xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 92a286ae5aa6843dd13cd7941c91b4247fd23fd2)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/Loads.h"
24 #include "llvm/Analysis/TargetLibraryInfo.h"
25 #include "llvm/Analysis/ValueTracking.h"
26 #include "llvm/Analysis/VectorUtils.h"
27 #include "llvm/CodeGen/Analysis.h"
28 #include "llvm/CodeGen/FastISel.h"
29 #include "llvm/CodeGen/FunctionLoweringInfo.h"
30 #include "llvm/CodeGen/GCMetadata.h"
31 #include "llvm/CodeGen/GCStrategy.h"
32 #include "llvm/CodeGen/MachineFrameInfo.h"
33 #include "llvm/CodeGen/MachineFunction.h"
34 #include "llvm/CodeGen/MachineInstrBuilder.h"
35 #include "llvm/CodeGen/MachineJumpTableInfo.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineRegisterInfo.h"
38 #include "llvm/CodeGen/SelectionDAG.h"
39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
40 #include "llvm/CodeGen/StackMaps.h"
41 #include "llvm/CodeGen/WinEHFuncInfo.h"
42 #include "llvm/IR/CallingConv.h"
43 #include "llvm/IR/ConstantRange.h"
44 #include "llvm/IR/Constants.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfo.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GetElementPtrTypeIterator.h"
50 #include "llvm/IR/GlobalVariable.h"
51 #include "llvm/IR/InlineAsm.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/IntrinsicInst.h"
54 #include "llvm/IR/Intrinsics.h"
55 #include "llvm/IR/LLVMContext.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Statepoint.h"
58 #include "llvm/MC/MCSymbol.h"
59 #include "llvm/Support/CommandLine.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetFrameLowering.h"
65 #include "llvm/Target/TargetInstrInfo.h"
66 #include "llvm/Target/TargetIntrinsicInfo.h"
67 #include "llvm/Target/TargetLowering.h"
68 #include "llvm/Target/TargetOptions.h"
69 #include "llvm/Target/TargetSubtargetInfo.h"
70 #include <algorithm>
71 #include <utility>
72 using namespace llvm;
73 
74 #define DEBUG_TYPE "isel"
75 
76 /// LimitFloatPrecision - Generate low-precision inline sequences for
77 /// some float libcalls (6, 8 or 12 bits).
78 static unsigned LimitFloatPrecision;
79 
80 static cl::opt<unsigned, true>
81 LimitFPPrecision("limit-float-precision",
82                  cl::desc("Generate low-precision inline sequences "
83                           "for some float libcalls"),
84                  cl::location(LimitFloatPrecision),
85                  cl::init(0));
86 
87 static cl::opt<bool>
88 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
89                 cl::desc("Enable fast-math-flags for DAG nodes"));
90 
91 /// Minimum jump table density for normal functions.
92 static cl::opt<unsigned>
93 JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
94                  cl::desc("Minimum density for building a jump table in "
95                           "a normal function"));
96 
97 /// Minimum jump table density for -Os or -Oz functions.
98 static cl::opt<unsigned>
99 OptsizeJumpTableDensity("optsize-jump-table-density", cl::init(40), cl::Hidden,
100                         cl::desc("Minimum density for building a jump table in "
101                                  "an optsize function"));
102 
103 
104 // Limit the width of DAG chains. This is important in general to prevent
105 // DAG-based analysis from blowing up. For example, alias analysis and
106 // load clustering may not complete in reasonable time. It is difficult to
107 // recognize and avoid this situation within each individual analysis, and
108 // future analyses are likely to have the same behavior. Limiting DAG width is
109 // the safe approach and will be especially important with global DAGs.
110 //
111 // MaxParallelChains default is arbitrarily high to avoid affecting
112 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
113 // sequence over this should have been converted to llvm.memcpy by the
114 // frontend. It is easy to induce this behavior with .ll code such as:
115 // %buffer = alloca [4096 x i8]
116 // %data = load [4096 x i8]* %argPtr
117 // store [4096 x i8] %data, [4096 x i8]* %buffer
118 static const unsigned MaxParallelChains = 64;
119 
120 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
121                                       const SDValue *Parts, unsigned NumParts,
122                                       MVT PartVT, EVT ValueVT, const Value *V);
123 
124 /// getCopyFromParts - Create a value that contains the specified legal parts
125 /// combined into the value they represent.  If the parts combine to a type
126 /// larger than ValueVT then AssertOp can be used to specify whether the extra
127 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
128 /// (ISD::AssertSext).
129 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
130                                 const SDValue *Parts, unsigned NumParts,
131                                 MVT PartVT, EVT ValueVT, const Value *V,
132                                 Optional<ISD::NodeType> AssertOp = None) {
133   if (ValueVT.isVector())
134     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
135                                   PartVT, ValueVT, V);
136 
137   assert(NumParts > 0 && "No parts to assemble!");
138   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
139   SDValue Val = Parts[0];
140 
141   if (NumParts > 1) {
142     // Assemble the value from multiple parts.
143     if (ValueVT.isInteger()) {
144       unsigned PartBits = PartVT.getSizeInBits();
145       unsigned ValueBits = ValueVT.getSizeInBits();
146 
147       // Assemble the power of 2 part.
148       unsigned RoundParts = NumParts & (NumParts - 1) ?
149         1 << Log2_32(NumParts) : NumParts;
150       unsigned RoundBits = PartBits * RoundParts;
151       EVT RoundVT = RoundBits == ValueBits ?
152         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
153       SDValue Lo, Hi;
154 
155       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
156 
157       if (RoundParts > 2) {
158         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
159                               PartVT, HalfVT, V);
160         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
161                               RoundParts / 2, PartVT, HalfVT, V);
162       } else {
163         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
164         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
165       }
166 
167       if (DAG.getDataLayout().isBigEndian())
168         std::swap(Lo, Hi);
169 
170       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
171 
172       if (RoundParts < NumParts) {
173         // Assemble the trailing non-power-of-2 part.
174         unsigned OddParts = NumParts - RoundParts;
175         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
176         Hi = getCopyFromParts(DAG, DL,
177                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
178 
179         // Combine the round and odd parts.
180         Lo = Val;
181         if (DAG.getDataLayout().isBigEndian())
182           std::swap(Lo, Hi);
183         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
184         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
185         Hi =
186             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
187                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
188                                         TLI.getPointerTy(DAG.getDataLayout())));
189         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
190         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
191       }
192     } else if (PartVT.isFloatingPoint()) {
193       // FP split into multiple FP parts (for ppcf128)
194       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
195              "Unexpected split");
196       SDValue Lo, Hi;
197       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
198       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
199       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
200         std::swap(Lo, Hi);
201       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
202     } else {
203       // FP split into integer parts (soft fp)
204       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
205              !PartVT.isVector() && "Unexpected split");
206       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
207       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
208     }
209   }
210 
211   // There is now one part, held in Val.  Correct it to match ValueVT.
212   // PartEVT is the type of the register class that holds the value.
213   // ValueVT is the type of the inline asm operation.
214   EVT PartEVT = Val.getValueType();
215 
216   if (PartEVT == ValueVT)
217     return Val;
218 
219   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
220       ValueVT.bitsLT(PartEVT)) {
221     // For an FP value in an integer part, we need to truncate to the right
222     // width first.
223     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
224     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
225   }
226 
227   // Handle types that have the same size.
228   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
229     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
230 
231   // Handle types with different sizes.
232   if (PartEVT.isInteger() && ValueVT.isInteger()) {
233     if (ValueVT.bitsLT(PartEVT)) {
234       // For a truncate, see if we have any information to
235       // indicate whether the truncated bits will always be
236       // zero or sign-extension.
237       if (AssertOp.hasValue())
238         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
239                           DAG.getValueType(ValueVT));
240       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
241     }
242     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
243   }
244 
245   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
246     // FP_ROUND's are always exact here.
247     if (ValueVT.bitsLT(Val.getValueType()))
248       return DAG.getNode(
249           ISD::FP_ROUND, DL, ValueVT, Val,
250           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
251 
252     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
253   }
254 
255   llvm_unreachable("Unknown mismatch!");
256 }
257 
258 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
259                                               const Twine &ErrMsg) {
260   const Instruction *I = dyn_cast_or_null<Instruction>(V);
261   if (!V)
262     return Ctx.emitError(ErrMsg);
263 
264   const char *AsmError = ", possible invalid constraint for vector type";
265   if (const CallInst *CI = dyn_cast<CallInst>(I))
266     if (isa<InlineAsm>(CI->getCalledValue()))
267       return Ctx.emitError(I, ErrMsg + AsmError);
268 
269   return Ctx.emitError(I, ErrMsg);
270 }
271 
272 /// getCopyFromPartsVector - Create a value that contains the specified legal
273 /// parts combined into the value they represent.  If the parts combine to a
274 /// type larger than ValueVT then AssertOp can be used to specify whether the
275 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
276 /// ValueVT (ISD::AssertSext).
277 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
278                                       const SDValue *Parts, unsigned NumParts,
279                                       MVT PartVT, EVT ValueVT, const Value *V) {
280   assert(ValueVT.isVector() && "Not a vector value");
281   assert(NumParts > 0 && "No parts to assemble!");
282   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
283   SDValue Val = Parts[0];
284 
285   // Handle a multi-element vector.
286   if (NumParts > 1) {
287     EVT IntermediateVT;
288     MVT RegisterVT;
289     unsigned NumIntermediates;
290     unsigned NumRegs =
291     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
292                                NumIntermediates, RegisterVT);
293     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
294     NumParts = NumRegs; // Silence a compiler warning.
295     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
296     assert(RegisterVT.getSizeInBits() ==
297            Parts[0].getSimpleValueType().getSizeInBits() &&
298            "Part type sizes don't match!");
299 
300     // Assemble the parts into intermediate operands.
301     SmallVector<SDValue, 8> Ops(NumIntermediates);
302     if (NumIntermediates == NumParts) {
303       // If the register was not expanded, truncate or copy the value,
304       // as appropriate.
305       for (unsigned i = 0; i != NumParts; ++i)
306         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
307                                   PartVT, IntermediateVT, V);
308     } else if (NumParts > 0) {
309       // If the intermediate type was expanded, build the intermediate
310       // operands from the parts.
311       assert(NumParts % NumIntermediates == 0 &&
312              "Must expand into a divisible number of parts!");
313       unsigned Factor = NumParts / NumIntermediates;
314       for (unsigned i = 0; i != NumIntermediates; ++i)
315         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
316                                   PartVT, IntermediateVT, V);
317     }
318 
319     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
320     // intermediate operands.
321     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
322                                                 : ISD::BUILD_VECTOR,
323                       DL, ValueVT, Ops);
324   }
325 
326   // There is now one part, held in Val.  Correct it to match ValueVT.
327   EVT PartEVT = Val.getValueType();
328 
329   if (PartEVT == ValueVT)
330     return Val;
331 
332   if (PartEVT.isVector()) {
333     // If the element type of the source/dest vectors are the same, but the
334     // parts vector has more elements than the value vector, then we have a
335     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
336     // elements we want.
337     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
338       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
339              "Cannot narrow, it would be a lossy transformation");
340       return DAG.getNode(
341           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
342           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
343     }
344 
345     // Vector/Vector bitcast.
346     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
347       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
348 
349     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
350       "Cannot handle this kind of promotion");
351     // Promoted vector extract
352     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
353 
354   }
355 
356   // Trivial bitcast if the types are the same size and the destination
357   // vector type is legal.
358   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
359       TLI.isTypeLegal(ValueVT))
360     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
361 
362   // Handle cases such as i8 -> <1 x i1>
363   if (ValueVT.getVectorNumElements() != 1) {
364     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
365                                       "non-trivial scalar-to-vector conversion");
366     return DAG.getUNDEF(ValueVT);
367   }
368 
369   if (ValueVT.getVectorNumElements() == 1 &&
370       ValueVT.getVectorElementType() != PartEVT)
371     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
372 
373   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
374 }
375 
376 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
377                                  SDValue Val, SDValue *Parts, unsigned NumParts,
378                                  MVT PartVT, const Value *V);
379 
380 /// getCopyToParts - Create a series of nodes that contain the specified value
381 /// split into legal parts.  If the parts contain more bits than Val, then, for
382 /// integers, ExtendKind can be used to specify how to generate the extra bits.
383 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
384                            SDValue *Parts, unsigned NumParts, MVT PartVT,
385                            const Value *V,
386                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
387   EVT ValueVT = Val.getValueType();
388 
389   // Handle the vector case separately.
390   if (ValueVT.isVector())
391     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
392 
393   unsigned PartBits = PartVT.getSizeInBits();
394   unsigned OrigNumParts = NumParts;
395   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
396          "Copying to an illegal type!");
397 
398   if (NumParts == 0)
399     return;
400 
401   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
402   EVT PartEVT = PartVT;
403   if (PartEVT == ValueVT) {
404     assert(NumParts == 1 && "No-op copy with multiple parts!");
405     Parts[0] = Val;
406     return;
407   }
408 
409   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
410     // If the parts cover more bits than the value has, promote the value.
411     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
412       assert(NumParts == 1 && "Do not know what to promote to!");
413       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
414     } else {
415       if (ValueVT.isFloatingPoint()) {
416         // FP values need to be bitcast, then extended if they are being put
417         // into a larger container.
418         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
419         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420       }
421       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
422              ValueVT.isInteger() &&
423              "Unknown mismatch!");
424       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
425       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
426       if (PartVT == MVT::x86mmx)
427         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
428     }
429   } else if (PartBits == ValueVT.getSizeInBits()) {
430     // Different types of the same size.
431     assert(NumParts == 1 && PartEVT != ValueVT);
432     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
433   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
434     // If the parts cover less bits than value has, truncate the value.
435     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
436            ValueVT.isInteger() &&
437            "Unknown mismatch!");
438     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
439     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
440     if (PartVT == MVT::x86mmx)
441       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
442   }
443 
444   // The value may have changed - recompute ValueVT.
445   ValueVT = Val.getValueType();
446   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
447          "Failed to tile the value with PartVT!");
448 
449   if (NumParts == 1) {
450     if (PartEVT != ValueVT) {
451       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
452                                         "scalar-to-vector conversion failed");
453       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
454     }
455 
456     Parts[0] = Val;
457     return;
458   }
459 
460   // Expand the value into multiple parts.
461   if (NumParts & (NumParts - 1)) {
462     // The number of parts is not a power of 2.  Split off and copy the tail.
463     assert(PartVT.isInteger() && ValueVT.isInteger() &&
464            "Do not know what to expand to!");
465     unsigned RoundParts = 1 << Log2_32(NumParts);
466     unsigned RoundBits = RoundParts * PartBits;
467     unsigned OddParts = NumParts - RoundParts;
468     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
469                                  DAG.getIntPtrConstant(RoundBits, DL));
470     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
471 
472     if (DAG.getDataLayout().isBigEndian())
473       // The odd parts were reversed by getCopyToParts - unreverse them.
474       std::reverse(Parts + RoundParts, Parts + NumParts);
475 
476     NumParts = RoundParts;
477     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
478     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
479   }
480 
481   // The number of parts is a power of 2.  Repeatedly bisect the value using
482   // EXTRACT_ELEMENT.
483   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
484                          EVT::getIntegerVT(*DAG.getContext(),
485                                            ValueVT.getSizeInBits()),
486                          Val);
487 
488   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
489     for (unsigned i = 0; i < NumParts; i += StepSize) {
490       unsigned ThisBits = StepSize * PartBits / 2;
491       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
492       SDValue &Part0 = Parts[i];
493       SDValue &Part1 = Parts[i+StepSize/2];
494 
495       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
496                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
497       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
498                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
499 
500       if (ThisBits == PartBits && ThisVT != PartVT) {
501         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
502         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
503       }
504     }
505   }
506 
507   if (DAG.getDataLayout().isBigEndian())
508     std::reverse(Parts, Parts + OrigNumParts);
509 }
510 
511 
512 /// getCopyToPartsVector - Create a series of nodes that contain the specified
513 /// value split into legal parts.
514 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
515                                  SDValue Val, SDValue *Parts, unsigned NumParts,
516                                  MVT PartVT, const Value *V) {
517   EVT ValueVT = Val.getValueType();
518   assert(ValueVT.isVector() && "Not a vector");
519   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
520 
521   if (NumParts == 1) {
522     EVT PartEVT = PartVT;
523     if (PartEVT == ValueVT) {
524       // Nothing to do.
525     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
526       // Bitconvert vector->vector case.
527       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
528     } else if (PartVT.isVector() &&
529                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
530                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
531       EVT ElementVT = PartVT.getVectorElementType();
532       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
533       // undef elements.
534       SmallVector<SDValue, 16> Ops;
535       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
536         Ops.push_back(DAG.getNode(
537             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
538             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
539 
540       for (unsigned i = ValueVT.getVectorNumElements(),
541            e = PartVT.getVectorNumElements(); i != e; ++i)
542         Ops.push_back(DAG.getUNDEF(ElementVT));
543 
544       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
545 
546       // FIXME: Use CONCAT for 2x -> 4x.
547 
548       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
549       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
550     } else if (PartVT.isVector() &&
551                PartEVT.getVectorElementType().bitsGE(
552                  ValueVT.getVectorElementType()) &&
553                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
554 
555       // Promoted vector extract
556       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
557     } else{
558       // Vector -> scalar conversion.
559       assert(ValueVT.getVectorNumElements() == 1 &&
560              "Only trivial vector-to-scalar conversions should get here!");
561       Val = DAG.getNode(
562           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
563           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
564 
565       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
566     }
567 
568     Parts[0] = Val;
569     return;
570   }
571 
572   // Handle a multi-element vector.
573   EVT IntermediateVT;
574   MVT RegisterVT;
575   unsigned NumIntermediates;
576   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
577                                                 IntermediateVT,
578                                                 NumIntermediates, RegisterVT);
579   unsigned NumElements = ValueVT.getVectorNumElements();
580 
581   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
582   NumParts = NumRegs; // Silence a compiler warning.
583   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
584 
585   // Split the vector into intermediate operands.
586   SmallVector<SDValue, 8> Ops(NumIntermediates);
587   for (unsigned i = 0; i != NumIntermediates; ++i) {
588     if (IntermediateVT.isVector())
589       Ops[i] =
590           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
591                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
592                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
593     else
594       Ops[i] = DAG.getNode(
595           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
596           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
597   }
598 
599   // Split the intermediate operands into legal parts.
600   if (NumParts == NumIntermediates) {
601     // If the register was not expanded, promote or copy the value,
602     // as appropriate.
603     for (unsigned i = 0; i != NumParts; ++i)
604       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
605   } else if (NumParts > 0) {
606     // If the intermediate type was expanded, split each the value into
607     // legal parts.
608     assert(NumIntermediates != 0 && "division by zero");
609     assert(NumParts % NumIntermediates == 0 &&
610            "Must expand into a divisible number of parts!");
611     unsigned Factor = NumParts / NumIntermediates;
612     for (unsigned i = 0; i != NumIntermediates; ++i)
613       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
614   }
615 }
616 
617 RegsForValue::RegsForValue() {}
618 
619 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
620                            EVT valuevt)
621     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
622 
623 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
624                            const DataLayout &DL, unsigned Reg, Type *Ty) {
625   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
626 
627   for (EVT ValueVT : ValueVTs) {
628     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
629     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
630     for (unsigned i = 0; i != NumRegs; ++i)
631       Regs.push_back(Reg + i);
632     RegVTs.push_back(RegisterVT);
633     Reg += NumRegs;
634   }
635 }
636 
637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
638 /// this value and returns the result as a ValueVT value.  This uses
639 /// Chain/Flag as the input and updates them for the output Chain/Flag.
640 /// If the Flag pointer is NULL, no flag is used.
641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
642                                       FunctionLoweringInfo &FuncInfo,
643                                       const SDLoc &dl, SDValue &Chain,
644                                       SDValue *Flag, const Value *V) const {
645   // A Value with type {} or [0 x %t] needs no registers.
646   if (ValueVTs.empty())
647     return SDValue();
648 
649   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
650 
651   // Assemble the legal parts into the final values.
652   SmallVector<SDValue, 4> Values(ValueVTs.size());
653   SmallVector<SDValue, 8> Parts;
654   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
655     // Copy the legal parts from the registers.
656     EVT ValueVT = ValueVTs[Value];
657     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
658     MVT RegisterVT = RegVTs[Value];
659 
660     Parts.resize(NumRegs);
661     for (unsigned i = 0; i != NumRegs; ++i) {
662       SDValue P;
663       if (!Flag) {
664         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
665       } else {
666         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
667         *Flag = P.getValue(2);
668       }
669 
670       Chain = P.getValue(1);
671       Parts[i] = P;
672 
673       // If the source register was virtual and if we know something about it,
674       // add an assert node.
675       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
676           !RegisterVT.isInteger() || RegisterVT.isVector())
677         continue;
678 
679       const FunctionLoweringInfo::LiveOutInfo *LOI =
680         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
681       if (!LOI)
682         continue;
683 
684       unsigned RegSize = RegisterVT.getSizeInBits();
685       unsigned NumSignBits = LOI->NumSignBits;
686       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
687 
688       if (NumZeroBits == RegSize) {
689         // The current value is a zero.
690         // Explicitly express that as it would be easier for
691         // optimizations to kick in.
692         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
693         continue;
694       }
695 
696       // FIXME: We capture more information than the dag can represent.  For
697       // now, just use the tightest assertzext/assertsext possible.
698       bool isSExt = true;
699       EVT FromVT(MVT::Other);
700       if (NumSignBits == RegSize) {
701         isSExt = true;   // ASSERT SEXT 1
702         FromVT = MVT::i1;
703       } else if (NumZeroBits >= RegSize - 1) {
704         isSExt = false;  // ASSERT ZEXT 1
705         FromVT = MVT::i1;
706       } else if (NumSignBits > RegSize - 8) {
707         isSExt = true;   // ASSERT SEXT 8
708         FromVT = MVT::i8;
709       } else if (NumZeroBits >= RegSize - 8) {
710         isSExt = false;  // ASSERT ZEXT 8
711         FromVT = MVT::i8;
712       } else if (NumSignBits > RegSize - 16) {
713         isSExt = true;   // ASSERT SEXT 16
714         FromVT = MVT::i16;
715       } else if (NumZeroBits >= RegSize - 16) {
716         isSExt = false;  // ASSERT ZEXT 16
717         FromVT = MVT::i16;
718       } else if (NumSignBits > RegSize - 32) {
719         isSExt = true;   // ASSERT SEXT 32
720         FromVT = MVT::i32;
721       } else if (NumZeroBits >= RegSize - 32) {
722         isSExt = false;  // ASSERT ZEXT 32
723         FromVT = MVT::i32;
724       } else {
725         continue;
726       }
727       // Add an assertion node.
728       assert(FromVT != MVT::Other);
729       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
730                              RegisterVT, P, DAG.getValueType(FromVT));
731     }
732 
733     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
734                                      NumRegs, RegisterVT, ValueVT, V);
735     Part += NumRegs;
736     Parts.clear();
737   }
738 
739   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
740 }
741 
742 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
743 /// specified value into the registers specified by this object.  This uses
744 /// Chain/Flag as the input and updates them for the output Chain/Flag.
745 /// If the Flag pointer is NULL, no flag is used.
746 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
747                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
748                                  const Value *V,
749                                  ISD::NodeType PreferredExtendType) const {
750   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
751   ISD::NodeType ExtendKind = PreferredExtendType;
752 
753   // Get the list of the values's legal parts.
754   unsigned NumRegs = Regs.size();
755   SmallVector<SDValue, 8> Parts(NumRegs);
756   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
757     EVT ValueVT = ValueVTs[Value];
758     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
759     MVT RegisterVT = RegVTs[Value];
760 
761     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
762       ExtendKind = ISD::ZERO_EXTEND;
763 
764     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
765                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
766     Part += NumParts;
767   }
768 
769   // Copy the parts into the registers.
770   SmallVector<SDValue, 8> Chains(NumRegs);
771   for (unsigned i = 0; i != NumRegs; ++i) {
772     SDValue Part;
773     if (!Flag) {
774       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
775     } else {
776       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
777       *Flag = Part.getValue(1);
778     }
779 
780     Chains[i] = Part.getValue(0);
781   }
782 
783   if (NumRegs == 1 || Flag)
784     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
785     // flagged to it. That is the CopyToReg nodes and the user are considered
786     // a single scheduling unit. If we create a TokenFactor and return it as
787     // chain, then the TokenFactor is both a predecessor (operand) of the
788     // user as well as a successor (the TF operands are flagged to the user).
789     // c1, f1 = CopyToReg
790     // c2, f2 = CopyToReg
791     // c3     = TokenFactor c1, c2
792     // ...
793     //        = op c3, ..., f2
794     Chain = Chains[NumRegs-1];
795   else
796     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
797 }
798 
799 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
800 /// operand list.  This adds the code marker and includes the number of
801 /// values added into it.
802 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
803                                         unsigned MatchingIdx, const SDLoc &dl,
804                                         SelectionDAG &DAG,
805                                         std::vector<SDValue> &Ops) const {
806   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
807 
808   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
809   if (HasMatching)
810     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
811   else if (!Regs.empty() &&
812            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
813     // Put the register class of the virtual registers in the flag word.  That
814     // way, later passes can recompute register class constraints for inline
815     // assembly as well as normal instructions.
816     // Don't do this for tied operands that can use the regclass information
817     // from the def.
818     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
819     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
820     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
821   }
822 
823   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
824   Ops.push_back(Res);
825 
826   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
827   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
828     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
829     MVT RegisterVT = RegVTs[Value];
830     for (unsigned i = 0; i != NumRegs; ++i) {
831       assert(Reg < Regs.size() && "Mismatch in # registers expected");
832       unsigned TheReg = Regs[Reg++];
833       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
834 
835       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
836         // If we clobbered the stack pointer, MFI should know about it.
837         assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment());
838       }
839     }
840   }
841 }
842 
843 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
844                                const TargetLibraryInfo *li) {
845   AA = &aa;
846   GFI = gfi;
847   LibInfo = li;
848   DL = &DAG.getDataLayout();
849   Context = DAG.getContext();
850   LPadToCallSiteMap.clear();
851 }
852 
853 /// clear - Clear out the current SelectionDAG and the associated
854 /// state and prepare this SelectionDAGBuilder object to be used
855 /// for a new block. This doesn't clear out information about
856 /// additional blocks that are needed to complete switch lowering
857 /// or PHI node updating; that information is cleared out as it is
858 /// consumed.
859 void SelectionDAGBuilder::clear() {
860   NodeMap.clear();
861   UnusedArgNodeMap.clear();
862   PendingLoads.clear();
863   PendingExports.clear();
864   CurInst = nullptr;
865   HasTailCall = false;
866   SDNodeOrder = LowestSDNodeOrder;
867   StatepointLowering.clear();
868 }
869 
870 /// clearDanglingDebugInfo - Clear the dangling debug information
871 /// map. This function is separated from the clear so that debug
872 /// information that is dangling in a basic block can be properly
873 /// resolved in a different basic block. This allows the
874 /// SelectionDAG to resolve dangling debug information attached
875 /// to PHI nodes.
876 void SelectionDAGBuilder::clearDanglingDebugInfo() {
877   DanglingDebugInfoMap.clear();
878 }
879 
880 /// getRoot - Return the current virtual root of the Selection DAG,
881 /// flushing any PendingLoad items. This must be done before emitting
882 /// a store or any other node that may need to be ordered after any
883 /// prior load instructions.
884 ///
885 SDValue SelectionDAGBuilder::getRoot() {
886   if (PendingLoads.empty())
887     return DAG.getRoot();
888 
889   if (PendingLoads.size() == 1) {
890     SDValue Root = PendingLoads[0];
891     DAG.setRoot(Root);
892     PendingLoads.clear();
893     return Root;
894   }
895 
896   // Otherwise, we have to make a token factor node.
897   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
898                              PendingLoads);
899   PendingLoads.clear();
900   DAG.setRoot(Root);
901   return Root;
902 }
903 
904 /// getControlRoot - Similar to getRoot, but instead of flushing all the
905 /// PendingLoad items, flush all the PendingExports items. It is necessary
906 /// to do this before emitting a terminator instruction.
907 ///
908 SDValue SelectionDAGBuilder::getControlRoot() {
909   SDValue Root = DAG.getRoot();
910 
911   if (PendingExports.empty())
912     return Root;
913 
914   // Turn all of the CopyToReg chains into one factored node.
915   if (Root.getOpcode() != ISD::EntryToken) {
916     unsigned i = 0, e = PendingExports.size();
917     for (; i != e; ++i) {
918       assert(PendingExports[i].getNode()->getNumOperands() > 1);
919       if (PendingExports[i].getNode()->getOperand(0) == Root)
920         break;  // Don't add the root if we already indirectly depend on it.
921     }
922 
923     if (i == e)
924       PendingExports.push_back(Root);
925   }
926 
927   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
928                      PendingExports);
929   PendingExports.clear();
930   DAG.setRoot(Root);
931   return Root;
932 }
933 
934 void SelectionDAGBuilder::visit(const Instruction &I) {
935   // Set up outgoing PHI node register values before emitting the terminator.
936   if (isa<TerminatorInst>(&I)) {
937     HandlePHINodesInSuccessorBlocks(I.getParent());
938   }
939 
940   // Increase the SDNodeOrder if dealing with a non-debug instruction.
941   if (!isa<DbgInfoIntrinsic>(I))
942     ++SDNodeOrder;
943 
944   CurInst = &I;
945 
946   visit(I.getOpcode(), I);
947 
948   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
949       !isStatepoint(&I)) // statepoints handle their exports internally
950     CopyToExportRegsIfNeeded(&I);
951 
952   CurInst = nullptr;
953 }
954 
955 void SelectionDAGBuilder::visitPHI(const PHINode &) {
956   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
957 }
958 
959 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
960   // Note: this doesn't use InstVisitor, because it has to work with
961   // ConstantExpr's in addition to instructions.
962   switch (Opcode) {
963   default: llvm_unreachable("Unknown instruction type encountered!");
964     // Build the switch statement using the Instruction.def file.
965 #define HANDLE_INST(NUM, OPCODE, CLASS) \
966     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
967 #include "llvm/IR/Instruction.def"
968   }
969 }
970 
971 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
972 // generate the debug data structures now that we've seen its definition.
973 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
974                                                    SDValue Val) {
975   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
976   if (DDI.getDI()) {
977     const DbgValueInst *DI = DDI.getDI();
978     DebugLoc dl = DDI.getdl();
979     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
980     DILocalVariable *Variable = DI->getVariable();
981     DIExpression *Expr = DI->getExpression();
982     assert(Variable->isValidLocationForIntrinsic(dl) &&
983            "Expected inlined-at fields to agree");
984     uint64_t Offset = DI->getOffset();
985     SDDbgValue *SDV;
986     if (Val.getNode()) {
987       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
988                                     Val)) {
989         SDV = getDbgValue(Val, Variable, Expr, Offset, dl, DbgSDNodeOrder);
990         DAG.AddDbgValue(SDV, Val.getNode(), false);
991       }
992     } else
993       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
994     DanglingDebugInfoMap[V] = DanglingDebugInfo();
995   }
996 }
997 
998 /// getCopyFromRegs - If there was virtual register allocated for the value V
999 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1000 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1001   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1002   SDValue Result;
1003 
1004   if (It != FuncInfo.ValueMap.end()) {
1005     unsigned InReg = It->second;
1006     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1007                      DAG.getDataLayout(), InReg, Ty);
1008     SDValue Chain = DAG.getEntryNode();
1009     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1010     resolveDanglingDebugInfo(V, Result);
1011   }
1012 
1013   return Result;
1014 }
1015 
1016 /// getValue - Return an SDValue for the given Value.
1017 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1018   // If we already have an SDValue for this value, use it. It's important
1019   // to do this first, so that we don't create a CopyFromReg if we already
1020   // have a regular SDValue.
1021   SDValue &N = NodeMap[V];
1022   if (N.getNode()) return N;
1023 
1024   // If there's a virtual register allocated and initialized for this
1025   // value, use it.
1026   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1027     return copyFromReg;
1028 
1029   // Otherwise create a new SDValue and remember it.
1030   SDValue Val = getValueImpl(V);
1031   NodeMap[V] = Val;
1032   resolveDanglingDebugInfo(V, Val);
1033   return Val;
1034 }
1035 
1036 // Return true if SDValue exists for the given Value
1037 bool SelectionDAGBuilder::findValue(const Value *V) const {
1038   return (NodeMap.find(V) != NodeMap.end()) ||
1039     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1040 }
1041 
1042 /// getNonRegisterValue - Return an SDValue for the given Value, but
1043 /// don't look in FuncInfo.ValueMap for a virtual register.
1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1045   // If we already have an SDValue for this value, use it.
1046   SDValue &N = NodeMap[V];
1047   if (N.getNode()) {
1048     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1049       // Remove the debug location from the node as the node is about to be used
1050       // in a location which may differ from the original debug location.  This
1051       // is relevant to Constant and ConstantFP nodes because they can appear
1052       // as constant expressions inside PHI nodes.
1053       N->setDebugLoc(DebugLoc());
1054     }
1055     return N;
1056   }
1057 
1058   // Otherwise create a new SDValue and remember it.
1059   SDValue Val = getValueImpl(V);
1060   NodeMap[V] = Val;
1061   resolveDanglingDebugInfo(V, Val);
1062   return Val;
1063 }
1064 
1065 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1066 /// Create an SDValue for the given value.
1067 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1068   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1069 
1070   if (const Constant *C = dyn_cast<Constant>(V)) {
1071     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1072 
1073     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1074       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1075 
1076     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1077       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1078 
1079     if (isa<ConstantPointerNull>(C)) {
1080       unsigned AS = V->getType()->getPointerAddressSpace();
1081       return DAG.getConstant(0, getCurSDLoc(),
1082                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1083     }
1084 
1085     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1086       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1087 
1088     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1089       return DAG.getUNDEF(VT);
1090 
1091     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1092       visit(CE->getOpcode(), *CE);
1093       SDValue N1 = NodeMap[V];
1094       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1095       return N1;
1096     }
1097 
1098     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1099       SmallVector<SDValue, 4> Constants;
1100       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1101            OI != OE; ++OI) {
1102         SDNode *Val = getValue(*OI).getNode();
1103         // If the operand is an empty aggregate, there are no values.
1104         if (!Val) continue;
1105         // Add each leaf value from the operand to the Constants list
1106         // to form a flattened list of all the values.
1107         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1108           Constants.push_back(SDValue(Val, i));
1109       }
1110 
1111       return DAG.getMergeValues(Constants, getCurSDLoc());
1112     }
1113 
1114     if (const ConstantDataSequential *CDS =
1115           dyn_cast<ConstantDataSequential>(C)) {
1116       SmallVector<SDValue, 4> Ops;
1117       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1118         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1119         // Add each leaf value from the operand to the Constants list
1120         // to form a flattened list of all the values.
1121         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1122           Ops.push_back(SDValue(Val, i));
1123       }
1124 
1125       if (isa<ArrayType>(CDS->getType()))
1126         return DAG.getMergeValues(Ops, getCurSDLoc());
1127       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1128                                       VT, Ops);
1129     }
1130 
1131     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1132       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1133              "Unknown struct or array constant!");
1134 
1135       SmallVector<EVT, 4> ValueVTs;
1136       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1137       unsigned NumElts = ValueVTs.size();
1138       if (NumElts == 0)
1139         return SDValue(); // empty struct
1140       SmallVector<SDValue, 4> Constants(NumElts);
1141       for (unsigned i = 0; i != NumElts; ++i) {
1142         EVT EltVT = ValueVTs[i];
1143         if (isa<UndefValue>(C))
1144           Constants[i] = DAG.getUNDEF(EltVT);
1145         else if (EltVT.isFloatingPoint())
1146           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1147         else
1148           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1149       }
1150 
1151       return DAG.getMergeValues(Constants, getCurSDLoc());
1152     }
1153 
1154     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1155       return DAG.getBlockAddress(BA, VT);
1156 
1157     VectorType *VecTy = cast<VectorType>(V->getType());
1158     unsigned NumElements = VecTy->getNumElements();
1159 
1160     // Now that we know the number and type of the elements, get that number of
1161     // elements into the Ops array based on what kind of constant it is.
1162     SmallVector<SDValue, 16> Ops;
1163     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1164       for (unsigned i = 0; i != NumElements; ++i)
1165         Ops.push_back(getValue(CV->getOperand(i)));
1166     } else {
1167       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1168       EVT EltVT =
1169           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1170 
1171       SDValue Op;
1172       if (EltVT.isFloatingPoint())
1173         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1174       else
1175         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1176       Ops.assign(NumElements, Op);
1177     }
1178 
1179     // Create a BUILD_VECTOR node.
1180     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1181   }
1182 
1183   // If this is a static alloca, generate it as the frameindex instead of
1184   // computation.
1185   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1186     DenseMap<const AllocaInst*, int>::iterator SI =
1187       FuncInfo.StaticAllocaMap.find(AI);
1188     if (SI != FuncInfo.StaticAllocaMap.end())
1189       return DAG.getFrameIndex(SI->second,
1190                                TLI.getPointerTy(DAG.getDataLayout()));
1191   }
1192 
1193   // If this is an instruction which fast-isel has deferred, select it now.
1194   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1195     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1196     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1197                      Inst->getType());
1198     SDValue Chain = DAG.getEntryNode();
1199     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1200   }
1201 
1202   llvm_unreachable("Can't get register for value!");
1203 }
1204 
1205 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1206   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1207   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1208   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1209   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1210   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1211   if (IsMSVCCXX || IsCoreCLR)
1212     CatchPadMBB->setIsEHFuncletEntry();
1213 
1214   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1215 }
1216 
1217 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1218   // Update machine-CFG edge.
1219   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1220   FuncInfo.MBB->addSuccessor(TargetMBB);
1221 
1222   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1223   bool IsSEH = isAsynchronousEHPersonality(Pers);
1224   if (IsSEH) {
1225     // If this is not a fall-through branch or optimizations are switched off,
1226     // emit the branch.
1227     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1228         TM.getOptLevel() == CodeGenOpt::None)
1229       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1230                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1231     return;
1232   }
1233 
1234   // Figure out the funclet membership for the catchret's successor.
1235   // This will be used by the FuncletLayout pass to determine how to order the
1236   // BB's.
1237   // A 'catchret' returns to the outer scope's color.
1238   Value *ParentPad = I.getCatchSwitchParentPad();
1239   const BasicBlock *SuccessorColor;
1240   if (isa<ConstantTokenNone>(ParentPad))
1241     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1242   else
1243     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1244   assert(SuccessorColor && "No parent funclet for catchret!");
1245   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1246   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1247 
1248   // Create the terminator node.
1249   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1250                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1251                             DAG.getBasicBlock(SuccessorColorMBB));
1252   DAG.setRoot(Ret);
1253 }
1254 
1255 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1256   // Don't emit any special code for the cleanuppad instruction. It just marks
1257   // the start of a funclet.
1258   FuncInfo.MBB->setIsEHFuncletEntry();
1259   FuncInfo.MBB->setIsCleanupFuncletEntry();
1260 }
1261 
1262 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1263 /// many places it could ultimately go. In the IR, we have a single unwind
1264 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1265 /// This function skips over imaginary basic blocks that hold catchswitch
1266 /// instructions, and finds all the "real" machine
1267 /// basic block destinations. As those destinations may not be successors of
1268 /// EHPadBB, here we also calculate the edge probability to those destinations.
1269 /// The passed-in Prob is the edge probability to EHPadBB.
1270 static void findUnwindDestinations(
1271     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1272     BranchProbability Prob,
1273     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1274         &UnwindDests) {
1275   EHPersonality Personality =
1276     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1277   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1278   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1279 
1280   while (EHPadBB) {
1281     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1282     BasicBlock *NewEHPadBB = nullptr;
1283     if (isa<LandingPadInst>(Pad)) {
1284       // Stop on landingpads. They are not funclets.
1285       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1286       break;
1287     } else if (isa<CleanupPadInst>(Pad)) {
1288       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1289       // personalities.
1290       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1291       UnwindDests.back().first->setIsEHFuncletEntry();
1292       break;
1293     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1294       // Add the catchpad handlers to the possible destinations.
1295       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1296         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1297         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1298         if (IsMSVCCXX || IsCoreCLR)
1299           UnwindDests.back().first->setIsEHFuncletEntry();
1300       }
1301       NewEHPadBB = CatchSwitch->getUnwindDest();
1302     } else {
1303       continue;
1304     }
1305 
1306     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1307     if (BPI && NewEHPadBB)
1308       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1309     EHPadBB = NewEHPadBB;
1310   }
1311 }
1312 
1313 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1314   // Update successor info.
1315   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1316   auto UnwindDest = I.getUnwindDest();
1317   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1318   BranchProbability UnwindDestProb =
1319       (BPI && UnwindDest)
1320           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1321           : BranchProbability::getZero();
1322   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1323   for (auto &UnwindDest : UnwindDests) {
1324     UnwindDest.first->setIsEHPad();
1325     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1326   }
1327   FuncInfo.MBB->normalizeSuccProbs();
1328 
1329   // Create the terminator node.
1330   SDValue Ret =
1331       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1332   DAG.setRoot(Ret);
1333 }
1334 
1335 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1336   report_fatal_error("visitCatchSwitch not yet implemented!");
1337 }
1338 
1339 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1340   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1341   auto &DL = DAG.getDataLayout();
1342   SDValue Chain = getControlRoot();
1343   SmallVector<ISD::OutputArg, 8> Outs;
1344   SmallVector<SDValue, 8> OutVals;
1345 
1346   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1347   // lower
1348   //
1349   //   %val = call <ty> @llvm.experimental.deoptimize()
1350   //   ret <ty> %val
1351   //
1352   // differently.
1353   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1354     LowerDeoptimizingReturn();
1355     return;
1356   }
1357 
1358   if (!FuncInfo.CanLowerReturn) {
1359     unsigned DemoteReg = FuncInfo.DemoteRegister;
1360     const Function *F = I.getParent()->getParent();
1361 
1362     // Emit a store of the return value through the virtual register.
1363     // Leave Outs empty so that LowerReturn won't try to load return
1364     // registers the usual way.
1365     SmallVector<EVT, 1> PtrValueVTs;
1366     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1367                     PtrValueVTs);
1368 
1369     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1370                                         DemoteReg, PtrValueVTs[0]);
1371     SDValue RetOp = getValue(I.getOperand(0));
1372 
1373     SmallVector<EVT, 4> ValueVTs;
1374     SmallVector<uint64_t, 4> Offsets;
1375     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1376     unsigned NumValues = ValueVTs.size();
1377 
1378     // An aggregate return value cannot wrap around the address space, so
1379     // offsets to its parts don't wrap either.
1380     SDNodeFlags Flags;
1381     Flags.setNoUnsignedWrap(true);
1382 
1383     SmallVector<SDValue, 4> Chains(NumValues);
1384     for (unsigned i = 0; i != NumValues; ++i) {
1385       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1386                                 RetPtr.getValueType(), RetPtr,
1387                                 DAG.getIntPtrConstant(Offsets[i],
1388                                                       getCurSDLoc()),
1389                                 &Flags);
1390       Chains[i] = DAG.getStore(Chain, getCurSDLoc(),
1391                                SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1392                                // FIXME: better loc info would be nice.
1393                                Add, MachinePointerInfo());
1394     }
1395 
1396     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1397                         MVT::Other, Chains);
1398   } else if (I.getNumOperands() != 0) {
1399     SmallVector<EVT, 4> ValueVTs;
1400     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1401     unsigned NumValues = ValueVTs.size();
1402     if (NumValues) {
1403       SDValue RetOp = getValue(I.getOperand(0));
1404 
1405       const Function *F = I.getParent()->getParent();
1406 
1407       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1408       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1409                                           Attribute::SExt))
1410         ExtendKind = ISD::SIGN_EXTEND;
1411       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1412                                                Attribute::ZExt))
1413         ExtendKind = ISD::ZERO_EXTEND;
1414 
1415       LLVMContext &Context = F->getContext();
1416       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1417                                                       Attribute::InReg);
1418 
1419       for (unsigned j = 0; j != NumValues; ++j) {
1420         EVT VT = ValueVTs[j];
1421 
1422         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1423           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1424 
1425         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1426         MVT PartVT = TLI.getRegisterType(Context, VT);
1427         SmallVector<SDValue, 4> Parts(NumParts);
1428         getCopyToParts(DAG, getCurSDLoc(),
1429                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1430                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1431 
1432         // 'inreg' on function refers to return value
1433         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1434         if (RetInReg)
1435           Flags.setInReg();
1436 
1437         // Propagate extension type if any
1438         if (ExtendKind == ISD::SIGN_EXTEND)
1439           Flags.setSExt();
1440         else if (ExtendKind == ISD::ZERO_EXTEND)
1441           Flags.setZExt();
1442 
1443         for (unsigned i = 0; i < NumParts; ++i) {
1444           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1445                                         VT, /*isfixed=*/true, 0, 0));
1446           OutVals.push_back(Parts[i]);
1447         }
1448       }
1449     }
1450   }
1451 
1452   // Push in swifterror virtual register as the last element of Outs. This makes
1453   // sure swifterror virtual register will be returned in the swifterror
1454   // physical register.
1455   const Function *F = I.getParent()->getParent();
1456   if (TLI.supportSwiftError() &&
1457       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1458     assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1459     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1460     Flags.setSwiftError();
1461     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1462                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1463                                   true /*isfixed*/, 1 /*origidx*/,
1464                                   0 /*partOffs*/));
1465     // Create SDNode for the swifterror virtual register.
1466     OutVals.push_back(DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(
1467                                           FuncInfo.MBB, FuncInfo.SwiftErrorArg),
1468                                       EVT(TLI.getPointerTy(DL))));
1469   }
1470 
1471   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1472   CallingConv::ID CallConv =
1473     DAG.getMachineFunction().getFunction()->getCallingConv();
1474   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1475       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1476 
1477   // Verify that the target's LowerReturn behaved as expected.
1478   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1479          "LowerReturn didn't return a valid chain!");
1480 
1481   // Update the DAG with the new chain value resulting from return lowering.
1482   DAG.setRoot(Chain);
1483 }
1484 
1485 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1486 /// created for it, emit nodes to copy the value into the virtual
1487 /// registers.
1488 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1489   // Skip empty types
1490   if (V->getType()->isEmptyTy())
1491     return;
1492 
1493   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1494   if (VMI != FuncInfo.ValueMap.end()) {
1495     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1496     CopyValueToVirtualRegister(V, VMI->second);
1497   }
1498 }
1499 
1500 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1501 /// the current basic block, add it to ValueMap now so that we'll get a
1502 /// CopyTo/FromReg.
1503 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1504   // No need to export constants.
1505   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1506 
1507   // Already exported?
1508   if (FuncInfo.isExportedInst(V)) return;
1509 
1510   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1511   CopyValueToVirtualRegister(V, Reg);
1512 }
1513 
1514 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1515                                                      const BasicBlock *FromBB) {
1516   // The operands of the setcc have to be in this block.  We don't know
1517   // how to export them from some other block.
1518   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1519     // Can export from current BB.
1520     if (VI->getParent() == FromBB)
1521       return true;
1522 
1523     // Is already exported, noop.
1524     return FuncInfo.isExportedInst(V);
1525   }
1526 
1527   // If this is an argument, we can export it if the BB is the entry block or
1528   // if it is already exported.
1529   if (isa<Argument>(V)) {
1530     if (FromBB == &FromBB->getParent()->getEntryBlock())
1531       return true;
1532 
1533     // Otherwise, can only export this if it is already exported.
1534     return FuncInfo.isExportedInst(V);
1535   }
1536 
1537   // Otherwise, constants can always be exported.
1538   return true;
1539 }
1540 
1541 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1542 BranchProbability
1543 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1544                                         const MachineBasicBlock *Dst) const {
1545   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1546   const BasicBlock *SrcBB = Src->getBasicBlock();
1547   const BasicBlock *DstBB = Dst->getBasicBlock();
1548   if (!BPI) {
1549     // If BPI is not available, set the default probability as 1 / N, where N is
1550     // the number of successors.
1551     auto SuccSize = std::max<uint32_t>(
1552         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1553     return BranchProbability(1, SuccSize);
1554   }
1555   return BPI->getEdgeProbability(SrcBB, DstBB);
1556 }
1557 
1558 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1559                                                MachineBasicBlock *Dst,
1560                                                BranchProbability Prob) {
1561   if (!FuncInfo.BPI)
1562     Src->addSuccessorWithoutProb(Dst);
1563   else {
1564     if (Prob.isUnknown())
1565       Prob = getEdgeProbability(Src, Dst);
1566     Src->addSuccessor(Dst, Prob);
1567   }
1568 }
1569 
1570 static bool InBlock(const Value *V, const BasicBlock *BB) {
1571   if (const Instruction *I = dyn_cast<Instruction>(V))
1572     return I->getParent() == BB;
1573   return true;
1574 }
1575 
1576 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1577 /// This function emits a branch and is used at the leaves of an OR or an
1578 /// AND operator tree.
1579 ///
1580 void
1581 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1582                                                   MachineBasicBlock *TBB,
1583                                                   MachineBasicBlock *FBB,
1584                                                   MachineBasicBlock *CurBB,
1585                                                   MachineBasicBlock *SwitchBB,
1586                                                   BranchProbability TProb,
1587                                                   BranchProbability FProb,
1588                                                   bool InvertCond) {
1589   const BasicBlock *BB = CurBB->getBasicBlock();
1590 
1591   // If the leaf of the tree is a comparison, merge the condition into
1592   // the caseblock.
1593   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1594     // The operands of the cmp have to be in this block.  We don't know
1595     // how to export them from some other block.  If this is the first block
1596     // of the sequence, no exporting is needed.
1597     if (CurBB == SwitchBB ||
1598         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1599          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1600       ISD::CondCode Condition;
1601       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1602         ICmpInst::Predicate Pred =
1603             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
1604         Condition = getICmpCondCode(Pred);
1605       } else {
1606         const FCmpInst *FC = cast<FCmpInst>(Cond);
1607         FCmpInst::Predicate Pred =
1608             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
1609         Condition = getFCmpCondCode(Pred);
1610         if (TM.Options.NoNaNsFPMath)
1611           Condition = getFCmpCodeWithoutNaN(Condition);
1612       }
1613 
1614       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1615                    TBB, FBB, CurBB, TProb, FProb);
1616       SwitchCases.push_back(CB);
1617       return;
1618     }
1619   }
1620 
1621   // Create a CaseBlock record representing this branch.
1622   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
1623   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
1624                nullptr, TBB, FBB, CurBB, TProb, FProb);
1625   SwitchCases.push_back(CB);
1626 }
1627 
1628 /// FindMergedConditions - If Cond is an expression like
1629 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1630                                                MachineBasicBlock *TBB,
1631                                                MachineBasicBlock *FBB,
1632                                                MachineBasicBlock *CurBB,
1633                                                MachineBasicBlock *SwitchBB,
1634                                                Instruction::BinaryOps Opc,
1635                                                BranchProbability TProb,
1636                                                BranchProbability FProb,
1637                                                bool InvertCond) {
1638   // Skip over not part of the tree and remember to invert op and operands at
1639   // next level.
1640   if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) {
1641     Cond = cast<Instruction>(Cond)->getOperand(0);
1642     FindMergedConditions(Cond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
1643                          !InvertCond);
1644     return;
1645   }
1646 
1647   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1648   // Compute the effective opcode for Cond, taking into account whether it needs
1649   // to be inverted, e.g.
1650   //   and (not (or A, B)), C
1651   // gets lowered as
1652   //   and (and (not A, not B), C)
1653   unsigned BOpc = 0;
1654   if (BOp) {
1655     BOpc = BOp->getOpcode();
1656     if (InvertCond) {
1657       if (BOpc == Instruction::And)
1658         BOpc = Instruction::Or;
1659       else if (BOpc == Instruction::Or)
1660         BOpc = Instruction::And;
1661     }
1662   }
1663 
1664   // If this node is not part of the or/and tree, emit it as a branch.
1665   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1666       BOpc != Opc || !BOp->hasOneUse() ||
1667       BOp->getParent() != CurBB->getBasicBlock() ||
1668       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1669       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1670     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1671                                  TProb, FProb, InvertCond);
1672     return;
1673   }
1674 
1675   //  Create TmpBB after CurBB.
1676   MachineFunction::iterator BBI(CurBB);
1677   MachineFunction &MF = DAG.getMachineFunction();
1678   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1679   CurBB->getParent()->insert(++BBI, TmpBB);
1680 
1681   if (Opc == Instruction::Or) {
1682     // Codegen X | Y as:
1683     // BB1:
1684     //   jmp_if_X TBB
1685     //   jmp TmpBB
1686     // TmpBB:
1687     //   jmp_if_Y TBB
1688     //   jmp FBB
1689     //
1690 
1691     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1692     // The requirement is that
1693     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1694     //     = TrueProb for original BB.
1695     // Assuming the original probabilities are A and B, one choice is to set
1696     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1697     // A/(1+B) and 2B/(1+B). This choice assumes that
1698     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1699     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1700     // TmpBB, but the math is more complicated.
1701 
1702     auto NewTrueProb = TProb / 2;
1703     auto NewFalseProb = TProb / 2 + FProb;
1704     // Emit the LHS condition.
1705     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1706                          NewTrueProb, NewFalseProb, InvertCond);
1707 
1708     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1709     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1710     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1711     // Emit the RHS condition into TmpBB.
1712     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1713                          Probs[0], Probs[1], InvertCond);
1714   } else {
1715     assert(Opc == Instruction::And && "Unknown merge op!");
1716     // Codegen X & Y as:
1717     // BB1:
1718     //   jmp_if_X TmpBB
1719     //   jmp FBB
1720     // TmpBB:
1721     //   jmp_if_Y TBB
1722     //   jmp FBB
1723     //
1724     //  This requires creation of TmpBB after CurBB.
1725 
1726     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1727     // The requirement is that
1728     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1729     //     = FalseProb for original BB.
1730     // Assuming the original probabilities are A and B, one choice is to set
1731     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1732     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1733     // TrueProb for BB1 * FalseProb for TmpBB.
1734 
1735     auto NewTrueProb = TProb + FProb / 2;
1736     auto NewFalseProb = FProb / 2;
1737     // Emit the LHS condition.
1738     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1739                          NewTrueProb, NewFalseProb, InvertCond);
1740 
1741     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1742     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1743     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1744     // Emit the RHS condition into TmpBB.
1745     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1746                          Probs[0], Probs[1], InvertCond);
1747   }
1748 }
1749 
1750 /// If the set of cases should be emitted as a series of branches, return true.
1751 /// If we should emit this as a bunch of and/or'd together conditions, return
1752 /// false.
1753 bool
1754 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1755   if (Cases.size() != 2) return true;
1756 
1757   // If this is two comparisons of the same values or'd or and'd together, they
1758   // will get folded into a single comparison, so don't emit two blocks.
1759   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1760        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1761       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1762        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1763     return false;
1764   }
1765 
1766   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1767   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1768   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1769       Cases[0].CC == Cases[1].CC &&
1770       isa<Constant>(Cases[0].CmpRHS) &&
1771       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1772     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1773       return false;
1774     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1775       return false;
1776   }
1777 
1778   return true;
1779 }
1780 
1781 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1782   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1783 
1784   // Update machine-CFG edges.
1785   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1786 
1787   if (I.isUnconditional()) {
1788     // Update machine-CFG edges.
1789     BrMBB->addSuccessor(Succ0MBB);
1790 
1791     // If this is not a fall-through branch or optimizations are switched off,
1792     // emit the branch.
1793     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1794       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1795                               MVT::Other, getControlRoot(),
1796                               DAG.getBasicBlock(Succ0MBB)));
1797 
1798     return;
1799   }
1800 
1801   // If this condition is one of the special cases we handle, do special stuff
1802   // now.
1803   const Value *CondVal = I.getCondition();
1804   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1805 
1806   // If this is a series of conditions that are or'd or and'd together, emit
1807   // this as a sequence of branches instead of setcc's with and/or operations.
1808   // As long as jumps are not expensive, this should improve performance.
1809   // For example, instead of something like:
1810   //     cmp A, B
1811   //     C = seteq
1812   //     cmp D, E
1813   //     F = setle
1814   //     or C, F
1815   //     jnz foo
1816   // Emit:
1817   //     cmp A, B
1818   //     je foo
1819   //     cmp D, E
1820   //     jle foo
1821   //
1822   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1823     Instruction::BinaryOps Opcode = BOp->getOpcode();
1824     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1825         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1826         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1827       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1828                            Opcode,
1829                            getEdgeProbability(BrMBB, Succ0MBB),
1830                            getEdgeProbability(BrMBB, Succ1MBB),
1831                            /*InvertCond=*/false);
1832       // If the compares in later blocks need to use values not currently
1833       // exported from this block, export them now.  This block should always
1834       // be the first entry.
1835       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1836 
1837       // Allow some cases to be rejected.
1838       if (ShouldEmitAsBranches(SwitchCases)) {
1839         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1840           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1841           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1842         }
1843 
1844         // Emit the branch for this block.
1845         visitSwitchCase(SwitchCases[0], BrMBB);
1846         SwitchCases.erase(SwitchCases.begin());
1847         return;
1848       }
1849 
1850       // Okay, we decided not to do this, remove any inserted MBB's and clear
1851       // SwitchCases.
1852       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1853         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1854 
1855       SwitchCases.clear();
1856     }
1857   }
1858 
1859   // Create a CaseBlock record representing this branch.
1860   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1861                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1862 
1863   // Use visitSwitchCase to actually insert the fast branch sequence for this
1864   // cond branch.
1865   visitSwitchCase(CB, BrMBB);
1866 }
1867 
1868 /// visitSwitchCase - Emits the necessary code to represent a single node in
1869 /// the binary search tree resulting from lowering a switch instruction.
1870 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1871                                           MachineBasicBlock *SwitchBB) {
1872   SDValue Cond;
1873   SDValue CondLHS = getValue(CB.CmpLHS);
1874   SDLoc dl = getCurSDLoc();
1875 
1876   // Build the setcc now.
1877   if (!CB.CmpMHS) {
1878     // Fold "(X == true)" to X and "(X == false)" to !X to
1879     // handle common cases produced by branch lowering.
1880     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1881         CB.CC == ISD::SETEQ)
1882       Cond = CondLHS;
1883     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1884              CB.CC == ISD::SETEQ) {
1885       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1886       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1887     } else
1888       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1889   } else {
1890     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1891 
1892     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1893     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1894 
1895     SDValue CmpOp = getValue(CB.CmpMHS);
1896     EVT VT = CmpOp.getValueType();
1897 
1898     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1899       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1900                           ISD::SETLE);
1901     } else {
1902       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1903                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1904       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1905                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1906     }
1907   }
1908 
1909   // Update successor info
1910   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1911   // TrueBB and FalseBB are always different unless the incoming IR is
1912   // degenerate. This only happens when running llc on weird IR.
1913   if (CB.TrueBB != CB.FalseBB)
1914     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1915   SwitchBB->normalizeSuccProbs();
1916 
1917   // If the lhs block is the next block, invert the condition so that we can
1918   // fall through to the lhs instead of the rhs block.
1919   if (CB.TrueBB == NextBlock(SwitchBB)) {
1920     std::swap(CB.TrueBB, CB.FalseBB);
1921     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1922     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1923   }
1924 
1925   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1926                                MVT::Other, getControlRoot(), Cond,
1927                                DAG.getBasicBlock(CB.TrueBB));
1928 
1929   // Insert the false branch. Do this even if it's a fall through branch,
1930   // this makes it easier to do DAG optimizations which require inverting
1931   // the branch condition.
1932   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1933                        DAG.getBasicBlock(CB.FalseBB));
1934 
1935   DAG.setRoot(BrCond);
1936 }
1937 
1938 /// visitJumpTable - Emit JumpTable node in the current MBB
1939 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1940   // Emit the code for the jump table
1941   assert(JT.Reg != -1U && "Should lower JT Header first!");
1942   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1943   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1944                                      JT.Reg, PTy);
1945   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1946   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1947                                     MVT::Other, Index.getValue(1),
1948                                     Table, Index);
1949   DAG.setRoot(BrJumpTable);
1950 }
1951 
1952 /// visitJumpTableHeader - This function emits necessary code to produce index
1953 /// in the JumpTable from switch case.
1954 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1955                                                JumpTableHeader &JTH,
1956                                                MachineBasicBlock *SwitchBB) {
1957   SDLoc dl = getCurSDLoc();
1958 
1959   // Subtract the lowest switch case value from the value being switched on and
1960   // conditional branch to default mbb if the result is greater than the
1961   // difference between smallest and largest cases.
1962   SDValue SwitchOp = getValue(JTH.SValue);
1963   EVT VT = SwitchOp.getValueType();
1964   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1965                             DAG.getConstant(JTH.First, dl, VT));
1966 
1967   // The SDNode we just created, which holds the value being switched on minus
1968   // the smallest case value, needs to be copied to a virtual register so it
1969   // can be used as an index into the jump table in a subsequent basic block.
1970   // This value may be smaller or larger than the target's pointer type, and
1971   // therefore require extension or truncating.
1972   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1973   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1974 
1975   unsigned JumpTableReg =
1976       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1977   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1978                                     JumpTableReg, SwitchOp);
1979   JT.Reg = JumpTableReg;
1980 
1981   // Emit the range check for the jump table, and branch to the default block
1982   // for the switch statement if the value being switched on exceeds the largest
1983   // case in the switch.
1984   SDValue CMP = DAG.getSetCC(
1985       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1986                                  Sub.getValueType()),
1987       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1988 
1989   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1990                                MVT::Other, CopyTo, CMP,
1991                                DAG.getBasicBlock(JT.Default));
1992 
1993   // Avoid emitting unnecessary branches to the next block.
1994   if (JT.MBB != NextBlock(SwitchBB))
1995     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1996                          DAG.getBasicBlock(JT.MBB));
1997 
1998   DAG.setRoot(BrCond);
1999 }
2000 
2001 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2002 /// variable if there exists one.
2003 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2004                                  SDValue &Chain) {
2005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2006   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2007   MachineFunction &MF = DAG.getMachineFunction();
2008   Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent());
2009   MachineSDNode *Node =
2010       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2011   if (Global) {
2012     MachinePointerInfo MPInfo(Global);
2013     MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
2014     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2015                  MachineMemOperand::MODereferenceable;
2016     *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8,
2017                                        DAG.getEVTAlignment(PtrTy));
2018     Node->setMemRefs(MemRefs, MemRefs + 1);
2019   }
2020   return SDValue(Node, 0);
2021 }
2022 
2023 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2024 /// tail spliced into a stack protector check success bb.
2025 ///
2026 /// For a high level explanation of how this fits into the stack protector
2027 /// generation see the comment on the declaration of class
2028 /// StackProtectorDescriptor.
2029 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2030                                                   MachineBasicBlock *ParentBB) {
2031 
2032   // First create the loads to the guard/stack slot for the comparison.
2033   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2034   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2035 
2036   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2037   int FI = MFI.getStackProtectorIndex();
2038 
2039   SDValue Guard;
2040   SDLoc dl = getCurSDLoc();
2041   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2042   const Module &M = *ParentBB->getParent()->getFunction()->getParent();
2043   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2044 
2045   // Generate code to load the content of the guard slot.
2046   SDValue StackSlot = DAG.getLoad(
2047       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
2048       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2049       MachineMemOperand::MOVolatile);
2050 
2051   // Retrieve guard check function, nullptr if instrumentation is inlined.
2052   if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) {
2053     // The target provides a guard check function to validate the guard value.
2054     // Generate a call to that function with the content of the guard slot as
2055     // argument.
2056     auto *Fn = cast<Function>(GuardCheck);
2057     FunctionType *FnTy = Fn->getFunctionType();
2058     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2059 
2060     TargetLowering::ArgListTy Args;
2061     TargetLowering::ArgListEntry Entry;
2062     Entry.Node = StackSlot;
2063     Entry.Ty = FnTy->getParamType(0);
2064     if (Fn->hasAttribute(1, Attribute::AttrKind::InReg))
2065       Entry.isInReg = true;
2066     Args.push_back(Entry);
2067 
2068     TargetLowering::CallLoweringInfo CLI(DAG);
2069     CLI.setDebugLoc(getCurSDLoc())
2070       .setChain(DAG.getEntryNode())
2071       .setCallee(Fn->getCallingConv(), FnTy->getReturnType(),
2072                  getValue(GuardCheck), std::move(Args));
2073 
2074     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2075     DAG.setRoot(Result.second);
2076     return;
2077   }
2078 
2079   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2080   // Otherwise, emit a volatile load to retrieve the stack guard value.
2081   SDValue Chain = DAG.getEntryNode();
2082   if (TLI.useLoadStackGuardNode()) {
2083     Guard = getLoadStackGuard(DAG, dl, Chain);
2084   } else {
2085     const Value *IRGuard = TLI.getSDagStackGuard(M);
2086     SDValue GuardPtr = getValue(IRGuard);
2087 
2088     Guard =
2089         DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0),
2090                     Align, MachineMemOperand::MOVolatile);
2091   }
2092 
2093   // Perform the comparison via a subtract/getsetcc.
2094   EVT VT = Guard.getValueType();
2095   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
2096 
2097   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2098                                                         *DAG.getContext(),
2099                                                         Sub.getValueType()),
2100                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2101 
2102   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2103   // branch to failure MBB.
2104   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2105                                MVT::Other, StackSlot.getOperand(0),
2106                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2107   // Otherwise branch to success MBB.
2108   SDValue Br = DAG.getNode(ISD::BR, dl,
2109                            MVT::Other, BrCond,
2110                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2111 
2112   DAG.setRoot(Br);
2113 }
2114 
2115 /// Codegen the failure basic block for a stack protector check.
2116 ///
2117 /// A failure stack protector machine basic block consists simply of a call to
2118 /// __stack_chk_fail().
2119 ///
2120 /// For a high level explanation of how this fits into the stack protector
2121 /// generation see the comment on the declaration of class
2122 /// StackProtectorDescriptor.
2123 void
2124 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2125   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2126   SDValue Chain =
2127       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2128                       None, false, getCurSDLoc(), false, false).second;
2129   DAG.setRoot(Chain);
2130 }
2131 
2132 /// visitBitTestHeader - This function emits necessary code to produce value
2133 /// suitable for "bit tests"
2134 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2135                                              MachineBasicBlock *SwitchBB) {
2136   SDLoc dl = getCurSDLoc();
2137 
2138   // Subtract the minimum value
2139   SDValue SwitchOp = getValue(B.SValue);
2140   EVT VT = SwitchOp.getValueType();
2141   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2142                             DAG.getConstant(B.First, dl, VT));
2143 
2144   // Check range
2145   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2146   SDValue RangeCmp = DAG.getSetCC(
2147       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2148                                  Sub.getValueType()),
2149       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2150 
2151   // Determine the type of the test operands.
2152   bool UsePtrType = false;
2153   if (!TLI.isTypeLegal(VT))
2154     UsePtrType = true;
2155   else {
2156     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2157       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2158         // Switch table case range are encoded into series of masks.
2159         // Just use pointer type, it's guaranteed to fit.
2160         UsePtrType = true;
2161         break;
2162       }
2163   }
2164   if (UsePtrType) {
2165     VT = TLI.getPointerTy(DAG.getDataLayout());
2166     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2167   }
2168 
2169   B.RegVT = VT.getSimpleVT();
2170   B.Reg = FuncInfo.CreateReg(B.RegVT);
2171   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2172 
2173   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2174 
2175   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2176   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2177   SwitchBB->normalizeSuccProbs();
2178 
2179   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2180                                 MVT::Other, CopyTo, RangeCmp,
2181                                 DAG.getBasicBlock(B.Default));
2182 
2183   // Avoid emitting unnecessary branches to the next block.
2184   if (MBB != NextBlock(SwitchBB))
2185     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2186                           DAG.getBasicBlock(MBB));
2187 
2188   DAG.setRoot(BrRange);
2189 }
2190 
2191 /// visitBitTestCase - this function produces one "bit test"
2192 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2193                                            MachineBasicBlock* NextMBB,
2194                                            BranchProbability BranchProbToNext,
2195                                            unsigned Reg,
2196                                            BitTestCase &B,
2197                                            MachineBasicBlock *SwitchBB) {
2198   SDLoc dl = getCurSDLoc();
2199   MVT VT = BB.RegVT;
2200   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2201   SDValue Cmp;
2202   unsigned PopCount = countPopulation(B.Mask);
2203   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2204   if (PopCount == 1) {
2205     // Testing for a single bit; just compare the shift count with what it
2206     // would need to be to shift a 1 bit in that position.
2207     Cmp = DAG.getSetCC(
2208         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2209         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2210         ISD::SETEQ);
2211   } else if (PopCount == BB.Range) {
2212     // There is only one zero bit in the range, test for it directly.
2213     Cmp = DAG.getSetCC(
2214         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2215         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2216         ISD::SETNE);
2217   } else {
2218     // Make desired shift
2219     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2220                                     DAG.getConstant(1, dl, VT), ShiftOp);
2221 
2222     // Emit bit tests and jumps
2223     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2224                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2225     Cmp = DAG.getSetCC(
2226         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2227         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2228   }
2229 
2230   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2231   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2232   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2233   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2234   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2235   // one as they are relative probabilities (and thus work more like weights),
2236   // and hence we need to normalize them to let the sum of them become one.
2237   SwitchBB->normalizeSuccProbs();
2238 
2239   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2240                               MVT::Other, getControlRoot(),
2241                               Cmp, DAG.getBasicBlock(B.TargetBB));
2242 
2243   // Avoid emitting unnecessary branches to the next block.
2244   if (NextMBB != NextBlock(SwitchBB))
2245     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2246                         DAG.getBasicBlock(NextMBB));
2247 
2248   DAG.setRoot(BrAnd);
2249 }
2250 
2251 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2252   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2253 
2254   // Retrieve successors. Look through artificial IR level blocks like
2255   // catchswitch for successors.
2256   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2257   const BasicBlock *EHPadBB = I.getSuccessor(1);
2258 
2259   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2260   // have to do anything here to lower funclet bundles.
2261   assert(!I.hasOperandBundlesOtherThan(
2262              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2263          "Cannot lower invokes with arbitrary operand bundles yet!");
2264 
2265   const Value *Callee(I.getCalledValue());
2266   const Function *Fn = dyn_cast<Function>(Callee);
2267   if (isa<InlineAsm>(Callee))
2268     visitInlineAsm(&I);
2269   else if (Fn && Fn->isIntrinsic()) {
2270     switch (Fn->getIntrinsicID()) {
2271     default:
2272       llvm_unreachable("Cannot invoke this intrinsic");
2273     case Intrinsic::donothing:
2274       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2275       break;
2276     case Intrinsic::experimental_patchpoint_void:
2277     case Intrinsic::experimental_patchpoint_i64:
2278       visitPatchpoint(&I, EHPadBB);
2279       break;
2280     case Intrinsic::experimental_gc_statepoint:
2281       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2282       break;
2283     }
2284   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2285     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2286     // Eventually we will support lowering the @llvm.experimental.deoptimize
2287     // intrinsic, and right now there are no plans to support other intrinsics
2288     // with deopt state.
2289     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2290   } else {
2291     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2292   }
2293 
2294   // If the value of the invoke is used outside of its defining block, make it
2295   // available as a virtual register.
2296   // We already took care of the exported value for the statepoint instruction
2297   // during call to the LowerStatepoint.
2298   if (!isStatepoint(I)) {
2299     CopyToExportRegsIfNeeded(&I);
2300   }
2301 
2302   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2303   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2304   BranchProbability EHPadBBProb =
2305       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2306           : BranchProbability::getZero();
2307   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2308 
2309   // Update successor info.
2310   addSuccessorWithProb(InvokeMBB, Return);
2311   for (auto &UnwindDest : UnwindDests) {
2312     UnwindDest.first->setIsEHPad();
2313     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2314   }
2315   InvokeMBB->normalizeSuccProbs();
2316 
2317   // Drop into normal successor.
2318   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2319                           MVT::Other, getControlRoot(),
2320                           DAG.getBasicBlock(Return)));
2321 }
2322 
2323 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2324   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2325 }
2326 
2327 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2328   assert(FuncInfo.MBB->isEHPad() &&
2329          "Call to landingpad not in landing pad!");
2330 
2331   MachineBasicBlock *MBB = FuncInfo.MBB;
2332   addLandingPadInfo(LP, *MBB);
2333 
2334   // If there aren't registers to copy the values into (e.g., during SjLj
2335   // exceptions), then don't bother to create these DAG nodes.
2336   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2337   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2338   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2339       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2340     return;
2341 
2342   // If landingpad's return type is token type, we don't create DAG nodes
2343   // for its exception pointer and selector value. The extraction of exception
2344   // pointer or selector value from token type landingpads is not currently
2345   // supported.
2346   if (LP.getType()->isTokenTy())
2347     return;
2348 
2349   SmallVector<EVT, 2> ValueVTs;
2350   SDLoc dl = getCurSDLoc();
2351   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2352   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2353 
2354   // Get the two live-in registers as SDValues. The physregs have already been
2355   // copied into virtual registers.
2356   SDValue Ops[2];
2357   if (FuncInfo.ExceptionPointerVirtReg) {
2358     Ops[0] = DAG.getZExtOrTrunc(
2359         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2360                            FuncInfo.ExceptionPointerVirtReg,
2361                            TLI.getPointerTy(DAG.getDataLayout())),
2362         dl, ValueVTs[0]);
2363   } else {
2364     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2365   }
2366   Ops[1] = DAG.getZExtOrTrunc(
2367       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2368                          FuncInfo.ExceptionSelectorVirtReg,
2369                          TLI.getPointerTy(DAG.getDataLayout())),
2370       dl, ValueVTs[1]);
2371 
2372   // Merge into one.
2373   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2374                             DAG.getVTList(ValueVTs), Ops);
2375   setValue(&LP, Res);
2376 }
2377 
2378 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2379 #ifndef NDEBUG
2380   for (const CaseCluster &CC : Clusters)
2381     assert(CC.Low == CC.High && "Input clusters must be single-case");
2382 #endif
2383 
2384   std::sort(Clusters.begin(), Clusters.end(),
2385             [](const CaseCluster &a, const CaseCluster &b) {
2386     return a.Low->getValue().slt(b.Low->getValue());
2387   });
2388 
2389   // Merge adjacent clusters with the same destination.
2390   const unsigned N = Clusters.size();
2391   unsigned DstIndex = 0;
2392   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2393     CaseCluster &CC = Clusters[SrcIndex];
2394     const ConstantInt *CaseVal = CC.Low;
2395     MachineBasicBlock *Succ = CC.MBB;
2396 
2397     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2398         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2399       // If this case has the same successor and is a neighbour, merge it into
2400       // the previous cluster.
2401       Clusters[DstIndex - 1].High = CaseVal;
2402       Clusters[DstIndex - 1].Prob += CC.Prob;
2403     } else {
2404       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2405                    sizeof(Clusters[SrcIndex]));
2406     }
2407   }
2408   Clusters.resize(DstIndex);
2409 }
2410 
2411 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2412                                            MachineBasicBlock *Last) {
2413   // Update JTCases.
2414   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2415     if (JTCases[i].first.HeaderBB == First)
2416       JTCases[i].first.HeaderBB = Last;
2417 
2418   // Update BitTestCases.
2419   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2420     if (BitTestCases[i].Parent == First)
2421       BitTestCases[i].Parent = Last;
2422 }
2423 
2424 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2425   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2426 
2427   // Update machine-CFG edges with unique successors.
2428   SmallSet<BasicBlock*, 32> Done;
2429   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2430     BasicBlock *BB = I.getSuccessor(i);
2431     bool Inserted = Done.insert(BB).second;
2432     if (!Inserted)
2433         continue;
2434 
2435     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2436     addSuccessorWithProb(IndirectBrMBB, Succ);
2437   }
2438   IndirectBrMBB->normalizeSuccProbs();
2439 
2440   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2441                           MVT::Other, getControlRoot(),
2442                           getValue(I.getAddress())));
2443 }
2444 
2445 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2446   if (DAG.getTarget().Options.TrapUnreachable)
2447     DAG.setRoot(
2448         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2449 }
2450 
2451 void SelectionDAGBuilder::visitFSub(const User &I) {
2452   // -0.0 - X --> fneg
2453   Type *Ty = I.getType();
2454   if (isa<Constant>(I.getOperand(0)) &&
2455       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2456     SDValue Op2 = getValue(I.getOperand(1));
2457     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2458                              Op2.getValueType(), Op2));
2459     return;
2460   }
2461 
2462   visitBinary(I, ISD::FSUB);
2463 }
2464 
2465 /// Checks if the given instruction performs a vector reduction, in which case
2466 /// we have the freedom to alter the elements in the result as long as the
2467 /// reduction of them stays unchanged.
2468 static bool isVectorReductionOp(const User *I) {
2469   const Instruction *Inst = dyn_cast<Instruction>(I);
2470   if (!Inst || !Inst->getType()->isVectorTy())
2471     return false;
2472 
2473   auto OpCode = Inst->getOpcode();
2474   switch (OpCode) {
2475   case Instruction::Add:
2476   case Instruction::Mul:
2477   case Instruction::And:
2478   case Instruction::Or:
2479   case Instruction::Xor:
2480     break;
2481   case Instruction::FAdd:
2482   case Instruction::FMul:
2483     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2484       if (FPOp->getFastMathFlags().unsafeAlgebra())
2485         break;
2486     LLVM_FALLTHROUGH;
2487   default:
2488     return false;
2489   }
2490 
2491   unsigned ElemNum = Inst->getType()->getVectorNumElements();
2492   unsigned ElemNumToReduce = ElemNum;
2493 
2494   // Do DFS search on the def-use chain from the given instruction. We only
2495   // allow four kinds of operations during the search until we reach the
2496   // instruction that extracts the first element from the vector:
2497   //
2498   //   1. The reduction operation of the same opcode as the given instruction.
2499   //
2500   //   2. PHI node.
2501   //
2502   //   3. ShuffleVector instruction together with a reduction operation that
2503   //      does a partial reduction.
2504   //
2505   //   4. ExtractElement that extracts the first element from the vector, and we
2506   //      stop searching the def-use chain here.
2507   //
2508   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
2509   // from 1-3 to the stack to continue the DFS. The given instruction is not
2510   // a reduction operation if we meet any other instructions other than those
2511   // listed above.
2512 
2513   SmallVector<const User *, 16> UsersToVisit{Inst};
2514   SmallPtrSet<const User *, 16> Visited;
2515   bool ReduxExtracted = false;
2516 
2517   while (!UsersToVisit.empty()) {
2518     auto User = UsersToVisit.back();
2519     UsersToVisit.pop_back();
2520     if (!Visited.insert(User).second)
2521       continue;
2522 
2523     for (const auto &U : User->users()) {
2524       auto Inst = dyn_cast<Instruction>(U);
2525       if (!Inst)
2526         return false;
2527 
2528       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
2529         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2530           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra())
2531             return false;
2532         UsersToVisit.push_back(U);
2533       } else if (const ShuffleVectorInst *ShufInst =
2534                      dyn_cast<ShuffleVectorInst>(U)) {
2535         // Detect the following pattern: A ShuffleVector instruction together
2536         // with a reduction that do partial reduction on the first and second
2537         // ElemNumToReduce / 2 elements, and store the result in
2538         // ElemNumToReduce / 2 elements in another vector.
2539 
2540         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
2541         if (ResultElements < ElemNum)
2542           return false;
2543 
2544         if (ElemNumToReduce == 1)
2545           return false;
2546         if (!isa<UndefValue>(U->getOperand(1)))
2547           return false;
2548         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
2549           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
2550             return false;
2551         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
2552           if (ShufInst->getMaskValue(i) != -1)
2553             return false;
2554 
2555         // There is only one user of this ShuffleVector instruction, which
2556         // must be a reduction operation.
2557         if (!U->hasOneUse())
2558           return false;
2559 
2560         auto U2 = dyn_cast<Instruction>(*U->user_begin());
2561         if (!U2 || U2->getOpcode() != OpCode)
2562           return false;
2563 
2564         // Check operands of the reduction operation.
2565         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
2566             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
2567           UsersToVisit.push_back(U2);
2568           ElemNumToReduce /= 2;
2569         } else
2570           return false;
2571       } else if (isa<ExtractElementInst>(U)) {
2572         // At this moment we should have reduced all elements in the vector.
2573         if (ElemNumToReduce != 1)
2574           return false;
2575 
2576         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
2577         if (!Val || Val->getZExtValue() != 0)
2578           return false;
2579 
2580         ReduxExtracted = true;
2581       } else
2582         return false;
2583     }
2584   }
2585   return ReduxExtracted;
2586 }
2587 
2588 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2589   SDValue Op1 = getValue(I.getOperand(0));
2590   SDValue Op2 = getValue(I.getOperand(1));
2591 
2592   bool nuw = false;
2593   bool nsw = false;
2594   bool exact = false;
2595   bool vec_redux = false;
2596   FastMathFlags FMF;
2597 
2598   if (const OverflowingBinaryOperator *OFBinOp =
2599           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2600     nuw = OFBinOp->hasNoUnsignedWrap();
2601     nsw = OFBinOp->hasNoSignedWrap();
2602   }
2603   if (const PossiblyExactOperator *ExactOp =
2604           dyn_cast<const PossiblyExactOperator>(&I))
2605     exact = ExactOp->isExact();
2606   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2607     FMF = FPOp->getFastMathFlags();
2608 
2609   if (isVectorReductionOp(&I)) {
2610     vec_redux = true;
2611     DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
2612   }
2613 
2614   SDNodeFlags Flags;
2615   Flags.setExact(exact);
2616   Flags.setNoSignedWrap(nsw);
2617   Flags.setNoUnsignedWrap(nuw);
2618   Flags.setVectorReduction(vec_redux);
2619   if (EnableFMFInDAG) {
2620     Flags.setAllowReciprocal(FMF.allowReciprocal());
2621     Flags.setNoInfs(FMF.noInfs());
2622     Flags.setNoNaNs(FMF.noNaNs());
2623     Flags.setNoSignedZeros(FMF.noSignedZeros());
2624     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2625   }
2626   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2627                                      Op1, Op2, &Flags);
2628   setValue(&I, BinNodeValue);
2629 }
2630 
2631 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2632   SDValue Op1 = getValue(I.getOperand(0));
2633   SDValue Op2 = getValue(I.getOperand(1));
2634 
2635   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2636       Op2.getValueType(), DAG.getDataLayout());
2637 
2638   // Coerce the shift amount to the right type if we can.
2639   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2640     unsigned ShiftSize = ShiftTy.getSizeInBits();
2641     unsigned Op2Size = Op2.getValueSizeInBits();
2642     SDLoc DL = getCurSDLoc();
2643 
2644     // If the operand is smaller than the shift count type, promote it.
2645     if (ShiftSize > Op2Size)
2646       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2647 
2648     // If the operand is larger than the shift count type but the shift
2649     // count type has enough bits to represent any shift value, truncate
2650     // it now. This is a common case and it exposes the truncate to
2651     // optimization early.
2652     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
2653       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2654     // Otherwise we'll need to temporarily settle for some other convenient
2655     // type.  Type legalization will make adjustments once the shiftee is split.
2656     else
2657       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2658   }
2659 
2660   bool nuw = false;
2661   bool nsw = false;
2662   bool exact = false;
2663 
2664   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2665 
2666     if (const OverflowingBinaryOperator *OFBinOp =
2667             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2668       nuw = OFBinOp->hasNoUnsignedWrap();
2669       nsw = OFBinOp->hasNoSignedWrap();
2670     }
2671     if (const PossiblyExactOperator *ExactOp =
2672             dyn_cast<const PossiblyExactOperator>(&I))
2673       exact = ExactOp->isExact();
2674   }
2675   SDNodeFlags Flags;
2676   Flags.setExact(exact);
2677   Flags.setNoSignedWrap(nsw);
2678   Flags.setNoUnsignedWrap(nuw);
2679   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2680                             &Flags);
2681   setValue(&I, Res);
2682 }
2683 
2684 void SelectionDAGBuilder::visitSDiv(const User &I) {
2685   SDValue Op1 = getValue(I.getOperand(0));
2686   SDValue Op2 = getValue(I.getOperand(1));
2687 
2688   SDNodeFlags Flags;
2689   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2690                  cast<PossiblyExactOperator>(&I)->isExact());
2691   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2692                            Op2, &Flags));
2693 }
2694 
2695 void SelectionDAGBuilder::visitICmp(const User &I) {
2696   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2697   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2698     predicate = IC->getPredicate();
2699   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2700     predicate = ICmpInst::Predicate(IC->getPredicate());
2701   SDValue Op1 = getValue(I.getOperand(0));
2702   SDValue Op2 = getValue(I.getOperand(1));
2703   ISD::CondCode Opcode = getICmpCondCode(predicate);
2704 
2705   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2706                                                         I.getType());
2707   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2708 }
2709 
2710 void SelectionDAGBuilder::visitFCmp(const User &I) {
2711   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2712   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2713     predicate = FC->getPredicate();
2714   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2715     predicate = FCmpInst::Predicate(FC->getPredicate());
2716   SDValue Op1 = getValue(I.getOperand(0));
2717   SDValue Op2 = getValue(I.getOperand(1));
2718   ISD::CondCode Condition = getFCmpCondCode(predicate);
2719 
2720   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2721   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2722   // further optimization, but currently FMF is only applicable to binary nodes.
2723   if (TM.Options.NoNaNsFPMath)
2724     Condition = getFCmpCodeWithoutNaN(Condition);
2725   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2726                                                         I.getType());
2727   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2728 }
2729 
2730 // Check if the condition of the select has one use or two users that are both
2731 // selects with the same condition.
2732 static bool hasOnlySelectUsers(const Value *Cond) {
2733   return all_of(Cond->users(), [](const Value *V) {
2734     return isa<SelectInst>(V);
2735   });
2736 }
2737 
2738 void SelectionDAGBuilder::visitSelect(const User &I) {
2739   SmallVector<EVT, 4> ValueVTs;
2740   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2741                   ValueVTs);
2742   unsigned NumValues = ValueVTs.size();
2743   if (NumValues == 0) return;
2744 
2745   SmallVector<SDValue, 4> Values(NumValues);
2746   SDValue Cond     = getValue(I.getOperand(0));
2747   SDValue LHSVal   = getValue(I.getOperand(1));
2748   SDValue RHSVal   = getValue(I.getOperand(2));
2749   auto BaseOps = {Cond};
2750   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2751     ISD::VSELECT : ISD::SELECT;
2752 
2753   // Min/max matching is only viable if all output VTs are the same.
2754   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2755     EVT VT = ValueVTs[0];
2756     LLVMContext &Ctx = *DAG.getContext();
2757     auto &TLI = DAG.getTargetLoweringInfo();
2758 
2759     // We care about the legality of the operation after it has been type
2760     // legalized.
2761     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2762            VT != TLI.getTypeToTransformTo(Ctx, VT))
2763       VT = TLI.getTypeToTransformTo(Ctx, VT);
2764 
2765     // If the vselect is legal, assume we want to leave this as a vector setcc +
2766     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2767     // min/max is legal on the scalar type.
2768     bool UseScalarMinMax = VT.isVector() &&
2769       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2770 
2771     Value *LHS, *RHS;
2772     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2773     ISD::NodeType Opc = ISD::DELETED_NODE;
2774     switch (SPR.Flavor) {
2775     case SPF_UMAX:    Opc = ISD::UMAX; break;
2776     case SPF_UMIN:    Opc = ISD::UMIN; break;
2777     case SPF_SMAX:    Opc = ISD::SMAX; break;
2778     case SPF_SMIN:    Opc = ISD::SMIN; break;
2779     case SPF_FMINNUM:
2780       switch (SPR.NaNBehavior) {
2781       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2782       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2783       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2784       case SPNB_RETURNS_ANY: {
2785         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2786           Opc = ISD::FMINNUM;
2787         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2788           Opc = ISD::FMINNAN;
2789         else if (UseScalarMinMax)
2790           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2791             ISD::FMINNUM : ISD::FMINNAN;
2792         break;
2793       }
2794       }
2795       break;
2796     case SPF_FMAXNUM:
2797       switch (SPR.NaNBehavior) {
2798       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2799       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2800       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2801       case SPNB_RETURNS_ANY:
2802 
2803         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2804           Opc = ISD::FMAXNUM;
2805         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2806           Opc = ISD::FMAXNAN;
2807         else if (UseScalarMinMax)
2808           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2809             ISD::FMAXNUM : ISD::FMAXNAN;
2810         break;
2811       }
2812       break;
2813     default: break;
2814     }
2815 
2816     if (Opc != ISD::DELETED_NODE &&
2817         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2818          (UseScalarMinMax &&
2819           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2820         // If the underlying comparison instruction is used by any other
2821         // instruction, the consumed instructions won't be destroyed, so it is
2822         // not profitable to convert to a min/max.
2823         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
2824       OpCode = Opc;
2825       LHSVal = getValue(LHS);
2826       RHSVal = getValue(RHS);
2827       BaseOps = {};
2828     }
2829   }
2830 
2831   for (unsigned i = 0; i != NumValues; ++i) {
2832     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2833     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2834     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2835     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2836                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2837                             Ops);
2838   }
2839 
2840   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2841                            DAG.getVTList(ValueVTs), Values));
2842 }
2843 
2844 void SelectionDAGBuilder::visitTrunc(const User &I) {
2845   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2846   SDValue N = getValue(I.getOperand(0));
2847   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2848                                                         I.getType());
2849   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2850 }
2851 
2852 void SelectionDAGBuilder::visitZExt(const User &I) {
2853   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2854   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2855   SDValue N = getValue(I.getOperand(0));
2856   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2857                                                         I.getType());
2858   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2859 }
2860 
2861 void SelectionDAGBuilder::visitSExt(const User &I) {
2862   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2863   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2864   SDValue N = getValue(I.getOperand(0));
2865   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2866                                                         I.getType());
2867   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2868 }
2869 
2870 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2871   // FPTrunc is never a no-op cast, no need to check
2872   SDValue N = getValue(I.getOperand(0));
2873   SDLoc dl = getCurSDLoc();
2874   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2875   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2876   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2877                            DAG.getTargetConstant(
2878                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2879 }
2880 
2881 void SelectionDAGBuilder::visitFPExt(const User &I) {
2882   // FPExt is never a no-op cast, no need to check
2883   SDValue N = getValue(I.getOperand(0));
2884   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2885                                                         I.getType());
2886   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2887 }
2888 
2889 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2890   // FPToUI is never a no-op cast, no need to check
2891   SDValue N = getValue(I.getOperand(0));
2892   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2893                                                         I.getType());
2894   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2895 }
2896 
2897 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2898   // FPToSI is never a no-op cast, no need to check
2899   SDValue N = getValue(I.getOperand(0));
2900   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2901                                                         I.getType());
2902   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2903 }
2904 
2905 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2906   // UIToFP is never a no-op cast, no need to check
2907   SDValue N = getValue(I.getOperand(0));
2908   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2909                                                         I.getType());
2910   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2911 }
2912 
2913 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2914   // SIToFP is never a no-op cast, no need to check
2915   SDValue N = getValue(I.getOperand(0));
2916   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2917                                                         I.getType());
2918   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2919 }
2920 
2921 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2922   // What to do depends on the size of the integer and the size of the pointer.
2923   // We can either truncate, zero extend, or no-op, accordingly.
2924   SDValue N = getValue(I.getOperand(0));
2925   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2926                                                         I.getType());
2927   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2928 }
2929 
2930 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2931   // What to do depends on the size of the integer and the size of the pointer.
2932   // We can either truncate, zero extend, or no-op, accordingly.
2933   SDValue N = getValue(I.getOperand(0));
2934   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2935                                                         I.getType());
2936   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2937 }
2938 
2939 void SelectionDAGBuilder::visitBitCast(const User &I) {
2940   SDValue N = getValue(I.getOperand(0));
2941   SDLoc dl = getCurSDLoc();
2942   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2943                                                         I.getType());
2944 
2945   // BitCast assures us that source and destination are the same size so this is
2946   // either a BITCAST or a no-op.
2947   if (DestVT != N.getValueType())
2948     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2949                              DestVT, N)); // convert types.
2950   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2951   // might fold any kind of constant expression to an integer constant and that
2952   // is not what we are looking for. Only regcognize a bitcast of a genuine
2953   // constant integer as an opaque constant.
2954   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2955     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2956                                  /*isOpaque*/true));
2957   else
2958     setValue(&I, N);            // noop cast.
2959 }
2960 
2961 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2962   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2963   const Value *SV = I.getOperand(0);
2964   SDValue N = getValue(SV);
2965   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2966 
2967   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2968   unsigned DestAS = I.getType()->getPointerAddressSpace();
2969 
2970   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2971     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2972 
2973   setValue(&I, N);
2974 }
2975 
2976 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2977   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2978   SDValue InVec = getValue(I.getOperand(0));
2979   SDValue InVal = getValue(I.getOperand(1));
2980   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2981                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2982   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2983                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2984                            InVec, InVal, InIdx));
2985 }
2986 
2987 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2988   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2989   SDValue InVec = getValue(I.getOperand(0));
2990   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2991                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2992   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2993                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2994                            InVec, InIdx));
2995 }
2996 
2997 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2998   SDValue Src1 = getValue(I.getOperand(0));
2999   SDValue Src2 = getValue(I.getOperand(1));
3000   SDLoc DL = getCurSDLoc();
3001 
3002   SmallVector<int, 8> Mask;
3003   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3004   unsigned MaskNumElts = Mask.size();
3005 
3006   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3007   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3008   EVT SrcVT = Src1.getValueType();
3009   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3010 
3011   if (SrcNumElts == MaskNumElts) {
3012     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3013     return;
3014   }
3015 
3016   // Normalize the shuffle vector since mask and vector length don't match.
3017   if (SrcNumElts < MaskNumElts) {
3018     // Mask is longer than the source vectors. We can use concatenate vector to
3019     // make the mask and vectors lengths match.
3020 
3021     if (MaskNumElts % SrcNumElts == 0) {
3022       // Mask length is a multiple of the source vector length.
3023       // Check if the shuffle is some kind of concatenation of the input
3024       // vectors.
3025       unsigned NumConcat = MaskNumElts / SrcNumElts;
3026       bool IsConcat = true;
3027       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3028       for (unsigned i = 0; i != MaskNumElts; ++i) {
3029         int Idx = Mask[i];
3030         if (Idx < 0)
3031           continue;
3032         // Ensure the indices in each SrcVT sized piece are sequential and that
3033         // the same source is used for the whole piece.
3034         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3035             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3036              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3037           IsConcat = false;
3038           break;
3039         }
3040         // Remember which source this index came from.
3041         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3042       }
3043 
3044       // The shuffle is concatenating multiple vectors together. Just emit
3045       // a CONCAT_VECTORS operation.
3046       if (IsConcat) {
3047         SmallVector<SDValue, 8> ConcatOps;
3048         for (auto Src : ConcatSrcs) {
3049           if (Src < 0)
3050             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3051           else if (Src == 0)
3052             ConcatOps.push_back(Src1);
3053           else
3054             ConcatOps.push_back(Src2);
3055         }
3056         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3057         return;
3058       }
3059     }
3060 
3061     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3062     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3063     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3064                                     PaddedMaskNumElts);
3065 
3066     // Pad both vectors with undefs to make them the same length as the mask.
3067     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3068 
3069     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3070     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3071     MOps1[0] = Src1;
3072     MOps2[0] = Src2;
3073 
3074     Src1 = Src1.isUndef()
3075                ? DAG.getUNDEF(PaddedVT)
3076                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3077     Src2 = Src2.isUndef()
3078                ? DAG.getUNDEF(PaddedVT)
3079                : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3080 
3081     // Readjust mask for new input vector length.
3082     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3083     for (unsigned i = 0; i != MaskNumElts; ++i) {
3084       int Idx = Mask[i];
3085       if (Idx >= (int)SrcNumElts)
3086         Idx -= SrcNumElts - PaddedMaskNumElts;
3087       MappedOps[i] = Idx;
3088     }
3089 
3090     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3091 
3092     // If the concatenated vector was padded, extract a subvector with the
3093     // correct number of elements.
3094     if (MaskNumElts != PaddedMaskNumElts)
3095       Result = DAG.getNode(
3096           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3097           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3098 
3099     setValue(&I, Result);
3100     return;
3101   }
3102 
3103   if (SrcNumElts > MaskNumElts) {
3104     // Analyze the access pattern of the vector to see if we can extract
3105     // two subvectors and do the shuffle. The analysis is done by calculating
3106     // the range of elements the mask access on both vectors.
3107     int MinRange[2] = { static_cast<int>(SrcNumElts),
3108                         static_cast<int>(SrcNumElts)};
3109     int MaxRange[2] = {-1, -1};
3110 
3111     for (unsigned i = 0; i != MaskNumElts; ++i) {
3112       int Idx = Mask[i];
3113       unsigned Input = 0;
3114       if (Idx < 0)
3115         continue;
3116 
3117       if (Idx >= (int)SrcNumElts) {
3118         Input = 1;
3119         Idx -= SrcNumElts;
3120       }
3121       if (Idx > MaxRange[Input])
3122         MaxRange[Input] = Idx;
3123       if (Idx < MinRange[Input])
3124         MinRange[Input] = Idx;
3125     }
3126 
3127     // Check if the access is smaller than the vector size and can we find
3128     // a reasonable extract index.
3129     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3130                                    // Extract.
3131     int StartIdx[2];  // StartIdx to extract from
3132     for (unsigned Input = 0; Input < 2; ++Input) {
3133       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3134         RangeUse[Input] = 0; // Unused
3135         StartIdx[Input] = 0;
3136         continue;
3137       }
3138 
3139       // Find a good start index that is a multiple of the mask length. Then
3140       // see if the rest of the elements are in range.
3141       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3142       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3143           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3144         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3145     }
3146 
3147     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3148       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3149       return;
3150     }
3151     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3152       // Extract appropriate subvector and generate a vector shuffle
3153       for (unsigned Input = 0; Input < 2; ++Input) {
3154         SDValue &Src = Input == 0 ? Src1 : Src2;
3155         if (RangeUse[Input] == 0)
3156           Src = DAG.getUNDEF(VT);
3157         else {
3158           Src = DAG.getNode(
3159               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3160               DAG.getConstant(StartIdx[Input], DL,
3161                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3162         }
3163       }
3164 
3165       // Calculate new mask.
3166       SmallVector<int, 8> MappedOps;
3167       for (unsigned i = 0; i != MaskNumElts; ++i) {
3168         int Idx = Mask[i];
3169         if (Idx >= 0) {
3170           if (Idx < (int)SrcNumElts)
3171             Idx -= StartIdx[0];
3172           else
3173             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3174         }
3175         MappedOps.push_back(Idx);
3176       }
3177 
3178       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3179       return;
3180     }
3181   }
3182 
3183   // We can't use either concat vectors or extract subvectors so fall back to
3184   // replacing the shuffle with extract and build vector.
3185   // to insert and build vector.
3186   EVT EltVT = VT.getVectorElementType();
3187   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3188   SmallVector<SDValue,8> Ops;
3189   for (unsigned i = 0; i != MaskNumElts; ++i) {
3190     int Idx = Mask[i];
3191     SDValue Res;
3192 
3193     if (Idx < 0) {
3194       Res = DAG.getUNDEF(EltVT);
3195     } else {
3196       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3197       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3198 
3199       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3200                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3201     }
3202 
3203     Ops.push_back(Res);
3204   }
3205 
3206   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Ops));
3207 }
3208 
3209 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3210   const Value *Op0 = I.getOperand(0);
3211   const Value *Op1 = I.getOperand(1);
3212   Type *AggTy = I.getType();
3213   Type *ValTy = Op1->getType();
3214   bool IntoUndef = isa<UndefValue>(Op0);
3215   bool FromUndef = isa<UndefValue>(Op1);
3216 
3217   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3218 
3219   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3220   SmallVector<EVT, 4> AggValueVTs;
3221   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3222   SmallVector<EVT, 4> ValValueVTs;
3223   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3224 
3225   unsigned NumAggValues = AggValueVTs.size();
3226   unsigned NumValValues = ValValueVTs.size();
3227   SmallVector<SDValue, 4> Values(NumAggValues);
3228 
3229   // Ignore an insertvalue that produces an empty object
3230   if (!NumAggValues) {
3231     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3232     return;
3233   }
3234 
3235   SDValue Agg = getValue(Op0);
3236   unsigned i = 0;
3237   // Copy the beginning value(s) from the original aggregate.
3238   for (; i != LinearIndex; ++i)
3239     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3240                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3241   // Copy values from the inserted value(s).
3242   if (NumValValues) {
3243     SDValue Val = getValue(Op1);
3244     for (; i != LinearIndex + NumValValues; ++i)
3245       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3246                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3247   }
3248   // Copy remaining value(s) from the original aggregate.
3249   for (; i != NumAggValues; ++i)
3250     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3251                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3252 
3253   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3254                            DAG.getVTList(AggValueVTs), Values));
3255 }
3256 
3257 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3258   const Value *Op0 = I.getOperand(0);
3259   Type *AggTy = Op0->getType();
3260   Type *ValTy = I.getType();
3261   bool OutOfUndef = isa<UndefValue>(Op0);
3262 
3263   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3264 
3265   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3266   SmallVector<EVT, 4> ValValueVTs;
3267   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3268 
3269   unsigned NumValValues = ValValueVTs.size();
3270 
3271   // Ignore a extractvalue that produces an empty object
3272   if (!NumValValues) {
3273     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3274     return;
3275   }
3276 
3277   SmallVector<SDValue, 4> Values(NumValValues);
3278 
3279   SDValue Agg = getValue(Op0);
3280   // Copy out the selected value(s).
3281   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3282     Values[i - LinearIndex] =
3283       OutOfUndef ?
3284         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3285         SDValue(Agg.getNode(), Agg.getResNo() + i);
3286 
3287   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3288                            DAG.getVTList(ValValueVTs), Values));
3289 }
3290 
3291 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3292   Value *Op0 = I.getOperand(0);
3293   // Note that the pointer operand may be a vector of pointers. Take the scalar
3294   // element which holds a pointer.
3295   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3296   SDValue N = getValue(Op0);
3297   SDLoc dl = getCurSDLoc();
3298 
3299   // Normalize Vector GEP - all scalar operands should be converted to the
3300   // splat vector.
3301   unsigned VectorWidth = I.getType()->isVectorTy() ?
3302     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3303 
3304   if (VectorWidth && !N.getValueType().isVector()) {
3305     LLVMContext &Context = *DAG.getContext();
3306     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3307     N = DAG.getSplatBuildVector(VT, dl, N);
3308   }
3309 
3310   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3311        GTI != E; ++GTI) {
3312     const Value *Idx = GTI.getOperand();
3313     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3314       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3315       if (Field) {
3316         // N = N + Offset
3317         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3318 
3319         // In an inbouds GEP with an offset that is nonnegative even when
3320         // interpreted as signed, assume there is no unsigned overflow.
3321         SDNodeFlags Flags;
3322         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3323           Flags.setNoUnsignedWrap(true);
3324 
3325         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3326                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3327       }
3328     } else {
3329       MVT PtrTy =
3330           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3331       unsigned PtrSize = PtrTy.getSizeInBits();
3332       APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3333 
3334       // If this is a scalar constant or a splat vector of constants,
3335       // handle it quickly.
3336       const auto *CI = dyn_cast<ConstantInt>(Idx);
3337       if (!CI && isa<ConstantDataVector>(Idx) &&
3338           cast<ConstantDataVector>(Idx)->getSplatValue())
3339         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3340 
3341       if (CI) {
3342         if (CI->isZero())
3343           continue;
3344         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3345         LLVMContext &Context = *DAG.getContext();
3346         SDValue OffsVal = VectorWidth ?
3347           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) :
3348           DAG.getConstant(Offs, dl, PtrTy);
3349 
3350         // In an inbouds GEP with an offset that is nonnegative even when
3351         // interpreted as signed, assume there is no unsigned overflow.
3352         SDNodeFlags Flags;
3353         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3354           Flags.setNoUnsignedWrap(true);
3355 
3356         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3357         continue;
3358       }
3359 
3360       // N = N + Idx * ElementSize;
3361       SDValue IdxN = getValue(Idx);
3362 
3363       if (!IdxN.getValueType().isVector() && VectorWidth) {
3364         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3365         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3366       }
3367 
3368       // If the index is smaller or larger than intptr_t, truncate or extend
3369       // it.
3370       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3371 
3372       // If this is a multiply by a power of two, turn it into a shl
3373       // immediately.  This is a very common case.
3374       if (ElementSize != 1) {
3375         if (ElementSize.isPowerOf2()) {
3376           unsigned Amt = ElementSize.logBase2();
3377           IdxN = DAG.getNode(ISD::SHL, dl,
3378                              N.getValueType(), IdxN,
3379                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3380         } else {
3381           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3382           IdxN = DAG.getNode(ISD::MUL, dl,
3383                              N.getValueType(), IdxN, Scale);
3384         }
3385       }
3386 
3387       N = DAG.getNode(ISD::ADD, dl,
3388                       N.getValueType(), N, IdxN);
3389     }
3390   }
3391 
3392   setValue(&I, N);
3393 }
3394 
3395 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3396   // If this is a fixed sized alloca in the entry block of the function,
3397   // allocate it statically on the stack.
3398   if (FuncInfo.StaticAllocaMap.count(&I))
3399     return;   // getValue will auto-populate this.
3400 
3401   SDLoc dl = getCurSDLoc();
3402   Type *Ty = I.getAllocatedType();
3403   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3404   auto &DL = DAG.getDataLayout();
3405   uint64_t TySize = DL.getTypeAllocSize(Ty);
3406   unsigned Align =
3407       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3408 
3409   SDValue AllocSize = getValue(I.getArraySize());
3410 
3411   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3412   if (AllocSize.getValueType() != IntPtr)
3413     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3414 
3415   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3416                           AllocSize,
3417                           DAG.getConstant(TySize, dl, IntPtr));
3418 
3419   // Handle alignment.  If the requested alignment is less than or equal to
3420   // the stack alignment, ignore it.  If the size is greater than or equal to
3421   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3422   unsigned StackAlign =
3423       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3424   if (Align <= StackAlign)
3425     Align = 0;
3426 
3427   // Round the size of the allocation up to the stack alignment size
3428   // by add SA-1 to the size. This doesn't overflow because we're computing
3429   // an address inside an alloca.
3430   SDNodeFlags Flags;
3431   Flags.setNoUnsignedWrap(true);
3432   AllocSize = DAG.getNode(ISD::ADD, dl,
3433                           AllocSize.getValueType(), AllocSize,
3434                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3435 
3436   // Mask out the low bits for alignment purposes.
3437   AllocSize = DAG.getNode(ISD::AND, dl,
3438                           AllocSize.getValueType(), AllocSize,
3439                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3440                                                 dl));
3441 
3442   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3443   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3444   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3445   setValue(&I, DSA);
3446   DAG.setRoot(DSA.getValue(1));
3447 
3448   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
3449 }
3450 
3451 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3452   if (I.isAtomic())
3453     return visitAtomicLoad(I);
3454 
3455   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3456   const Value *SV = I.getOperand(0);
3457   if (TLI.supportSwiftError()) {
3458     // Swifterror values can come from either a function parameter with
3459     // swifterror attribute or an alloca with swifterror attribute.
3460     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
3461       if (Arg->hasSwiftErrorAttr())
3462         return visitLoadFromSwiftError(I);
3463     }
3464 
3465     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
3466       if (Alloca->isSwiftError())
3467         return visitLoadFromSwiftError(I);
3468     }
3469   }
3470 
3471   SDValue Ptr = getValue(SV);
3472 
3473   Type *Ty = I.getType();
3474 
3475   bool isVolatile = I.isVolatile();
3476   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3477   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3478   bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
3479   unsigned Alignment = I.getAlignment();
3480 
3481   AAMDNodes AAInfo;
3482   I.getAAMetadata(AAInfo);
3483   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3484 
3485   SmallVector<EVT, 4> ValueVTs;
3486   SmallVector<uint64_t, 4> Offsets;
3487   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3488   unsigned NumValues = ValueVTs.size();
3489   if (NumValues == 0)
3490     return;
3491 
3492   SDValue Root;
3493   bool ConstantMemory = false;
3494   if (isVolatile || NumValues > MaxParallelChains)
3495     // Serialize volatile loads with other side effects.
3496     Root = getRoot();
3497   else if (AA->pointsToConstantMemory(MemoryLocation(
3498                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3499     // Do not serialize (non-volatile) loads of constant memory with anything.
3500     Root = DAG.getEntryNode();
3501     ConstantMemory = true;
3502   } else {
3503     // Do not serialize non-volatile loads against each other.
3504     Root = DAG.getRoot();
3505   }
3506 
3507   SDLoc dl = getCurSDLoc();
3508 
3509   if (isVolatile)
3510     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3511 
3512   // An aggregate load cannot wrap around the address space, so offsets to its
3513   // parts don't wrap either.
3514   SDNodeFlags Flags;
3515   Flags.setNoUnsignedWrap(true);
3516 
3517   SmallVector<SDValue, 4> Values(NumValues);
3518   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3519   EVT PtrVT = Ptr.getValueType();
3520   unsigned ChainI = 0;
3521   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3522     // Serializing loads here may result in excessive register pressure, and
3523     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3524     // could recover a bit by hoisting nodes upward in the chain by recognizing
3525     // they are side-effect free or do not alias. The optimizer should really
3526     // avoid this case by converting large object/array copies to llvm.memcpy
3527     // (MaxParallelChains should always remain as failsafe).
3528     if (ChainI == MaxParallelChains) {
3529       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3530       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3531                                   makeArrayRef(Chains.data(), ChainI));
3532       Root = Chain;
3533       ChainI = 0;
3534     }
3535     SDValue A = DAG.getNode(ISD::ADD, dl,
3536                             PtrVT, Ptr,
3537                             DAG.getConstant(Offsets[i], dl, PtrVT),
3538                             &Flags);
3539     auto MMOFlags = MachineMemOperand::MONone;
3540     if (isVolatile)
3541       MMOFlags |= MachineMemOperand::MOVolatile;
3542     if (isNonTemporal)
3543       MMOFlags |= MachineMemOperand::MONonTemporal;
3544     if (isInvariant)
3545       MMOFlags |= MachineMemOperand::MOInvariant;
3546     if (isDereferenceable)
3547       MMOFlags |= MachineMemOperand::MODereferenceable;
3548 
3549     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A,
3550                             MachinePointerInfo(SV, Offsets[i]), Alignment,
3551                             MMOFlags, AAInfo, Ranges);
3552 
3553     Values[i] = L;
3554     Chains[ChainI] = L.getValue(1);
3555   }
3556 
3557   if (!ConstantMemory) {
3558     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3559                                 makeArrayRef(Chains.data(), ChainI));
3560     if (isVolatile)
3561       DAG.setRoot(Chain);
3562     else
3563       PendingLoads.push_back(Chain);
3564   }
3565 
3566   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3567                            DAG.getVTList(ValueVTs), Values));
3568 }
3569 
3570 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
3571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3572   assert(TLI.supportSwiftError() &&
3573          "call visitStoreToSwiftError when backend supports swifterror");
3574 
3575   SmallVector<EVT, 4> ValueVTs;
3576   SmallVector<uint64_t, 4> Offsets;
3577   const Value *SrcV = I.getOperand(0);
3578   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3579                   SrcV->getType(), ValueVTs, &Offsets);
3580   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3581          "expect a single EVT for swifterror");
3582 
3583   SDValue Src = getValue(SrcV);
3584   // Create a virtual register, then update the virtual register.
3585   auto &DL = DAG.getDataLayout();
3586   const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
3587   unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
3588   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
3589   // Chain can be getRoot or getControlRoot.
3590   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
3591                                       SDValue(Src.getNode(), Src.getResNo()));
3592   DAG.setRoot(CopyNode);
3593   FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
3594 }
3595 
3596 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
3597   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
3598          "call visitLoadFromSwiftError when backend supports swifterror");
3599 
3600   assert(!I.isVolatile() &&
3601          I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
3602          I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
3603          "Support volatile, non temporal, invariant for load_from_swift_error");
3604 
3605   const Value *SV = I.getOperand(0);
3606   Type *Ty = I.getType();
3607   AAMDNodes AAInfo;
3608   I.getAAMetadata(AAInfo);
3609   assert(!AA->pointsToConstantMemory(MemoryLocation(
3610              SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo)) &&
3611          "load_from_swift_error should not be constant memory");
3612 
3613   SmallVector<EVT, 4> ValueVTs;
3614   SmallVector<uint64_t, 4> Offsets;
3615   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
3616                   ValueVTs, &Offsets);
3617   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
3618          "expect a single EVT for swifterror");
3619 
3620   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
3621   SDValue L = DAG.getCopyFromReg(
3622       getRoot(), getCurSDLoc(),
3623       FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, SV), ValueVTs[0]);
3624 
3625   setValue(&I, L);
3626 }
3627 
3628 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3629   if (I.isAtomic())
3630     return visitAtomicStore(I);
3631 
3632   const Value *SrcV = I.getOperand(0);
3633   const Value *PtrV = I.getOperand(1);
3634 
3635   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3636   if (TLI.supportSwiftError()) {
3637     // Swifterror values can come from either a function parameter with
3638     // swifterror attribute or an alloca with swifterror attribute.
3639     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
3640       if (Arg->hasSwiftErrorAttr())
3641         return visitStoreToSwiftError(I);
3642     }
3643 
3644     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
3645       if (Alloca->isSwiftError())
3646         return visitStoreToSwiftError(I);
3647     }
3648   }
3649 
3650   SmallVector<EVT, 4> ValueVTs;
3651   SmallVector<uint64_t, 4> Offsets;
3652   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3653                   SrcV->getType(), ValueVTs, &Offsets);
3654   unsigned NumValues = ValueVTs.size();
3655   if (NumValues == 0)
3656     return;
3657 
3658   // Get the lowered operands. Note that we do this after
3659   // checking if NumResults is zero, because with zero results
3660   // the operands won't have values in the map.
3661   SDValue Src = getValue(SrcV);
3662   SDValue Ptr = getValue(PtrV);
3663 
3664   SDValue Root = getRoot();
3665   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3666   SDLoc dl = getCurSDLoc();
3667   EVT PtrVT = Ptr.getValueType();
3668   unsigned Alignment = I.getAlignment();
3669   AAMDNodes AAInfo;
3670   I.getAAMetadata(AAInfo);
3671 
3672   auto MMOFlags = MachineMemOperand::MONone;
3673   if (I.isVolatile())
3674     MMOFlags |= MachineMemOperand::MOVolatile;
3675   if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
3676     MMOFlags |= MachineMemOperand::MONonTemporal;
3677 
3678   // An aggregate load cannot wrap around the address space, so offsets to its
3679   // parts don't wrap either.
3680   SDNodeFlags Flags;
3681   Flags.setNoUnsignedWrap(true);
3682 
3683   unsigned ChainI = 0;
3684   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3685     // See visitLoad comments.
3686     if (ChainI == MaxParallelChains) {
3687       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3688                                   makeArrayRef(Chains.data(), ChainI));
3689       Root = Chain;
3690       ChainI = 0;
3691     }
3692     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3693                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3694     SDValue St = DAG.getStore(
3695         Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add,
3696         MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo);
3697     Chains[ChainI] = St;
3698   }
3699 
3700   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3701                                   makeArrayRef(Chains.data(), ChainI));
3702   DAG.setRoot(StoreNode);
3703 }
3704 
3705 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
3706                                            bool IsCompressing) {
3707   SDLoc sdl = getCurSDLoc();
3708 
3709   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3710                            unsigned& Alignment) {
3711     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3712     Src0 = I.getArgOperand(0);
3713     Ptr = I.getArgOperand(1);
3714     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
3715     Mask = I.getArgOperand(3);
3716   };
3717   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3718                            unsigned& Alignment) {
3719     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
3720     Src0 = I.getArgOperand(0);
3721     Ptr = I.getArgOperand(1);
3722     Mask = I.getArgOperand(2);
3723     Alignment = 0;
3724   };
3725 
3726   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3727   unsigned Alignment;
3728   if (IsCompressing)
3729     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3730   else
3731     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3732 
3733   SDValue Ptr = getValue(PtrOperand);
3734   SDValue Src0 = getValue(Src0Operand);
3735   SDValue Mask = getValue(MaskOperand);
3736 
3737   EVT VT = Src0.getValueType();
3738   if (!Alignment)
3739     Alignment = DAG.getEVTAlignment(VT);
3740 
3741   AAMDNodes AAInfo;
3742   I.getAAMetadata(AAInfo);
3743 
3744   MachineMemOperand *MMO =
3745     DAG.getMachineFunction().
3746     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3747                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3748                           Alignment, AAInfo);
3749   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3750                                          MMO, false /* Truncating */,
3751                                          IsCompressing);
3752   DAG.setRoot(StoreNode);
3753   setValue(&I, StoreNode);
3754 }
3755 
3756 // Get a uniform base for the Gather/Scatter intrinsic.
3757 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3758 // We try to represent it as a base pointer + vector of indices.
3759 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3760 // The first operand of the GEP may be a single pointer or a vector of pointers
3761 // Example:
3762 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3763 //  or
3764 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3765 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3766 //
3767 // When the first GEP operand is a single pointer - it is the uniform base we
3768 // are looking for. If first operand of the GEP is a splat vector - we
3769 // extract the spalt value and use it as a uniform base.
3770 // In all other cases the function returns 'false'.
3771 //
3772 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
3773                            SelectionDAGBuilder* SDB) {
3774 
3775   SelectionDAG& DAG = SDB->DAG;
3776   LLVMContext &Context = *DAG.getContext();
3777 
3778   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3779   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3780   if (!GEP || GEP->getNumOperands() > 2)
3781     return false;
3782 
3783   const Value *GEPPtr = GEP->getPointerOperand();
3784   if (!GEPPtr->getType()->isVectorTy())
3785     Ptr = GEPPtr;
3786   else if (!(Ptr = getSplatValue(GEPPtr)))
3787     return false;
3788 
3789   Value *IndexVal = GEP->getOperand(1);
3790 
3791   // The operands of the GEP may be defined in another basic block.
3792   // In this case we'll not find nodes for the operands.
3793   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3794     return false;
3795 
3796   Base = SDB->getValue(Ptr);
3797   Index = SDB->getValue(IndexVal);
3798 
3799   // Suppress sign extension.
3800   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3801     if (SDB->findValue(Sext->getOperand(0))) {
3802       IndexVal = Sext->getOperand(0);
3803       Index = SDB->getValue(IndexVal);
3804     }
3805   }
3806   if (!Index.getValueType().isVector()) {
3807     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3808     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3809     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
3810   }
3811   return true;
3812 }
3813 
3814 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3815   SDLoc sdl = getCurSDLoc();
3816 
3817   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3818   const Value *Ptr = I.getArgOperand(1);
3819   SDValue Src0 = getValue(I.getArgOperand(0));
3820   SDValue Mask = getValue(I.getArgOperand(3));
3821   EVT VT = Src0.getValueType();
3822   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3823   if (!Alignment)
3824     Alignment = DAG.getEVTAlignment(VT);
3825   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3826 
3827   AAMDNodes AAInfo;
3828   I.getAAMetadata(AAInfo);
3829 
3830   SDValue Base;
3831   SDValue Index;
3832   const Value *BasePtr = Ptr;
3833   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3834 
3835   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3836   MachineMemOperand *MMO = DAG.getMachineFunction().
3837     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3838                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3839                          Alignment, AAInfo);
3840   if (!UniformBase) {
3841     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3842     Index = getValue(Ptr);
3843   }
3844   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3845   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3846                                          Ops, MMO);
3847   DAG.setRoot(Scatter);
3848   setValue(&I, Scatter);
3849 }
3850 
3851 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
3852   SDLoc sdl = getCurSDLoc();
3853 
3854   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3855                            unsigned& Alignment) {
3856     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3857     Ptr = I.getArgOperand(0);
3858     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
3859     Mask = I.getArgOperand(2);
3860     Src0 = I.getArgOperand(3);
3861   };
3862   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
3863                            unsigned& Alignment) {
3864     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
3865     Ptr = I.getArgOperand(0);
3866     Alignment = 0;
3867     Mask = I.getArgOperand(1);
3868     Src0 = I.getArgOperand(2);
3869   };
3870 
3871   Value  *PtrOperand, *MaskOperand, *Src0Operand;
3872   unsigned Alignment;
3873   if (IsExpanding)
3874     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3875   else
3876     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
3877 
3878   SDValue Ptr = getValue(PtrOperand);
3879   SDValue Src0 = getValue(Src0Operand);
3880   SDValue Mask = getValue(MaskOperand);
3881 
3882   EVT VT = Src0.getValueType();
3883   if (!Alignment)
3884     Alignment = DAG.getEVTAlignment(VT);
3885 
3886   AAMDNodes AAInfo;
3887   I.getAAMetadata(AAInfo);
3888   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3889 
3890   // Do not serialize masked loads of constant memory with anything.
3891   bool AddToChain = !AA->pointsToConstantMemory(MemoryLocation(
3892       PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo));
3893   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
3894 
3895   MachineMemOperand *MMO =
3896     DAG.getMachineFunction().
3897     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3898                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3899                           Alignment, AAInfo, Ranges);
3900 
3901   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3902                                    ISD::NON_EXTLOAD, IsExpanding);
3903   if (AddToChain) {
3904     SDValue OutChain = Load.getValue(1);
3905     DAG.setRoot(OutChain);
3906   }
3907   setValue(&I, Load);
3908 }
3909 
3910 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3911   SDLoc sdl = getCurSDLoc();
3912 
3913   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3914   const Value *Ptr = I.getArgOperand(0);
3915   SDValue Src0 = getValue(I.getArgOperand(3));
3916   SDValue Mask = getValue(I.getArgOperand(2));
3917 
3918   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3919   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3920   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3921   if (!Alignment)
3922     Alignment = DAG.getEVTAlignment(VT);
3923 
3924   AAMDNodes AAInfo;
3925   I.getAAMetadata(AAInfo);
3926   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3927 
3928   SDValue Root = DAG.getRoot();
3929   SDValue Base;
3930   SDValue Index;
3931   const Value *BasePtr = Ptr;
3932   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3933   bool ConstantMemory = false;
3934   if (UniformBase &&
3935       AA->pointsToConstantMemory(MemoryLocation(
3936           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3937           AAInfo))) {
3938     // Do not serialize (non-volatile) loads of constant memory with anything.
3939     Root = DAG.getEntryNode();
3940     ConstantMemory = true;
3941   }
3942 
3943   MachineMemOperand *MMO =
3944     DAG.getMachineFunction().
3945     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3946                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3947                          Alignment, AAInfo, Ranges);
3948 
3949   if (!UniformBase) {
3950     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3951     Index = getValue(Ptr);
3952   }
3953   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3954   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3955                                        Ops, MMO);
3956 
3957   SDValue OutChain = Gather.getValue(1);
3958   if (!ConstantMemory)
3959     PendingLoads.push_back(OutChain);
3960   setValue(&I, Gather);
3961 }
3962 
3963 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3964   SDLoc dl = getCurSDLoc();
3965   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3966   AtomicOrdering FailureOrder = I.getFailureOrdering();
3967   SynchronizationScope Scope = I.getSynchScope();
3968 
3969   SDValue InChain = getRoot();
3970 
3971   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3972   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3973   SDValue L = DAG.getAtomicCmpSwap(
3974       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3975       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3976       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3977       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3978 
3979   SDValue OutChain = L.getValue(2);
3980 
3981   setValue(&I, L);
3982   DAG.setRoot(OutChain);
3983 }
3984 
3985 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3986   SDLoc dl = getCurSDLoc();
3987   ISD::NodeType NT;
3988   switch (I.getOperation()) {
3989   default: llvm_unreachable("Unknown atomicrmw operation");
3990   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3991   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3992   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3993   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3994   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3995   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3996   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3997   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3998   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3999   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4000   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4001   }
4002   AtomicOrdering Order = I.getOrdering();
4003   SynchronizationScope Scope = I.getSynchScope();
4004 
4005   SDValue InChain = getRoot();
4006 
4007   SDValue L =
4008     DAG.getAtomic(NT, dl,
4009                   getValue(I.getValOperand()).getSimpleValueType(),
4010                   InChain,
4011                   getValue(I.getPointerOperand()),
4012                   getValue(I.getValOperand()),
4013                   I.getPointerOperand(),
4014                   /* Alignment=*/ 0, Order, Scope);
4015 
4016   SDValue OutChain = L.getValue(1);
4017 
4018   setValue(&I, L);
4019   DAG.setRoot(OutChain);
4020 }
4021 
4022 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4023   SDLoc dl = getCurSDLoc();
4024   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4025   SDValue Ops[3];
4026   Ops[0] = getRoot();
4027   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4028                            TLI.getPointerTy(DAG.getDataLayout()));
4029   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
4030                            TLI.getPointerTy(DAG.getDataLayout()));
4031   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4032 }
4033 
4034 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4035   SDLoc dl = getCurSDLoc();
4036   AtomicOrdering Order = I.getOrdering();
4037   SynchronizationScope Scope = I.getSynchScope();
4038 
4039   SDValue InChain = getRoot();
4040 
4041   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4042   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4043 
4044   if (I.getAlignment() < VT.getSizeInBits() / 8)
4045     report_fatal_error("Cannot generate unaligned atomic load");
4046 
4047   MachineMemOperand *MMO =
4048       DAG.getMachineFunction().
4049       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4050                            MachineMemOperand::MOVolatile |
4051                            MachineMemOperand::MOLoad,
4052                            VT.getStoreSize(),
4053                            I.getAlignment() ? I.getAlignment() :
4054                                               DAG.getEVTAlignment(VT),
4055                            AAMDNodes(), nullptr, Scope, Order);
4056 
4057   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4058   SDValue L =
4059       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
4060                     getValue(I.getPointerOperand()), MMO);
4061 
4062   SDValue OutChain = L.getValue(1);
4063 
4064   setValue(&I, L);
4065   DAG.setRoot(OutChain);
4066 }
4067 
4068 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4069   SDLoc dl = getCurSDLoc();
4070 
4071   AtomicOrdering Order = I.getOrdering();
4072   SynchronizationScope Scope = I.getSynchScope();
4073 
4074   SDValue InChain = getRoot();
4075 
4076   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4077   EVT VT =
4078       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4079 
4080   if (I.getAlignment() < VT.getSizeInBits() / 8)
4081     report_fatal_error("Cannot generate unaligned atomic store");
4082 
4083   SDValue OutChain =
4084     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
4085                   InChain,
4086                   getValue(I.getPointerOperand()),
4087                   getValue(I.getValueOperand()),
4088                   I.getPointerOperand(), I.getAlignment(),
4089                   Order, Scope);
4090 
4091   DAG.setRoot(OutChain);
4092 }
4093 
4094 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4095 /// node.
4096 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4097                                                unsigned Intrinsic) {
4098   // Ignore the callsite's attributes. A specific call site may be marked with
4099   // readnone, but the lowering code will expect the chain based on the
4100   // definition.
4101   const Function *F = I.getCalledFunction();
4102   bool HasChain = !F->doesNotAccessMemory();
4103   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4104 
4105   // Build the operand list.
4106   SmallVector<SDValue, 8> Ops;
4107   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4108     if (OnlyLoad) {
4109       // We don't need to serialize loads against other loads.
4110       Ops.push_back(DAG.getRoot());
4111     } else {
4112       Ops.push_back(getRoot());
4113     }
4114   }
4115 
4116   // Info is set by getTgtMemInstrinsic
4117   TargetLowering::IntrinsicInfo Info;
4118   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4119   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
4120 
4121   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4122   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4123       Info.opc == ISD::INTRINSIC_W_CHAIN)
4124     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4125                                         TLI.getPointerTy(DAG.getDataLayout())));
4126 
4127   // Add all operands of the call to the operand list.
4128   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4129     SDValue Op = getValue(I.getArgOperand(i));
4130     Ops.push_back(Op);
4131   }
4132 
4133   SmallVector<EVT, 4> ValueVTs;
4134   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4135 
4136   if (HasChain)
4137     ValueVTs.push_back(MVT::Other);
4138 
4139   SDVTList VTs = DAG.getVTList(ValueVTs);
4140 
4141   // Create the node.
4142   SDValue Result;
4143   if (IsTgtIntrinsic) {
4144     // This is target intrinsic that touches memory
4145     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
4146                                      VTs, Ops, Info.memVT,
4147                                    MachinePointerInfo(Info.ptrVal, Info.offset),
4148                                      Info.align, Info.vol,
4149                                      Info.readMem, Info.writeMem, Info.size);
4150   } else if (!HasChain) {
4151     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4152   } else if (!I.getType()->isVoidTy()) {
4153     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4154   } else {
4155     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4156   }
4157 
4158   if (HasChain) {
4159     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4160     if (OnlyLoad)
4161       PendingLoads.push_back(Chain);
4162     else
4163       DAG.setRoot(Chain);
4164   }
4165 
4166   if (!I.getType()->isVoidTy()) {
4167     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4168       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4169       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4170     } else
4171       Result = lowerRangeToAssertZExt(DAG, I, Result);
4172 
4173     setValue(&I, Result);
4174   }
4175 }
4176 
4177 /// GetSignificand - Get the significand and build it into a floating-point
4178 /// number with exponent of 1:
4179 ///
4180 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4181 ///
4182 /// where Op is the hexadecimal representation of floating point value.
4183 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4184   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4185                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4186   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4187                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4188   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4189 }
4190 
4191 /// GetExponent - Get the exponent:
4192 ///
4193 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4194 ///
4195 /// where Op is the hexadecimal representation of floating point value.
4196 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4197                            const TargetLowering &TLI, const SDLoc &dl) {
4198   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4199                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4200   SDValue t1 = DAG.getNode(
4201       ISD::SRL, dl, MVT::i32, t0,
4202       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4203   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4204                            DAG.getConstant(127, dl, MVT::i32));
4205   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4206 }
4207 
4208 /// getF32Constant - Get 32-bit floating point constant.
4209 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4210                               const SDLoc &dl) {
4211   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4212                            MVT::f32);
4213 }
4214 
4215 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4216                                        SelectionDAG &DAG) {
4217   // TODO: What fast-math-flags should be set on the floating-point nodes?
4218 
4219   //   IntegerPartOfX = ((int32_t)(t0);
4220   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4221 
4222   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4223   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4224   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4225 
4226   //   IntegerPartOfX <<= 23;
4227   IntegerPartOfX = DAG.getNode(
4228       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4229       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4230                                   DAG.getDataLayout())));
4231 
4232   SDValue TwoToFractionalPartOfX;
4233   if (LimitFloatPrecision <= 6) {
4234     // For floating-point precision of 6:
4235     //
4236     //   TwoToFractionalPartOfX =
4237     //     0.997535578f +
4238     //       (0.735607626f + 0.252464424f * x) * x;
4239     //
4240     // error 0.0144103317, which is 6 bits
4241     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4242                              getF32Constant(DAG, 0x3e814304, dl));
4243     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4244                              getF32Constant(DAG, 0x3f3c50c8, dl));
4245     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4246     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4247                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4248   } else if (LimitFloatPrecision <= 12) {
4249     // For floating-point precision of 12:
4250     //
4251     //   TwoToFractionalPartOfX =
4252     //     0.999892986f +
4253     //       (0.696457318f +
4254     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4255     //
4256     // error 0.000107046256, which is 13 to 14 bits
4257     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4258                              getF32Constant(DAG, 0x3da235e3, dl));
4259     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4260                              getF32Constant(DAG, 0x3e65b8f3, dl));
4261     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4262     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4263                              getF32Constant(DAG, 0x3f324b07, dl));
4264     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4265     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4266                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4267   } else { // LimitFloatPrecision <= 18
4268     // For floating-point precision of 18:
4269     //
4270     //   TwoToFractionalPartOfX =
4271     //     0.999999982f +
4272     //       (0.693148872f +
4273     //         (0.240227044f +
4274     //           (0.554906021e-1f +
4275     //             (0.961591928e-2f +
4276     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4277     // error 2.47208000*10^(-7), which is better than 18 bits
4278     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4279                              getF32Constant(DAG, 0x3924b03e, dl));
4280     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4281                              getF32Constant(DAG, 0x3ab24b87, dl));
4282     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4283     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4284                              getF32Constant(DAG, 0x3c1d8c17, dl));
4285     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4286     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4287                              getF32Constant(DAG, 0x3d634a1d, dl));
4288     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4289     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4290                              getF32Constant(DAG, 0x3e75fe14, dl));
4291     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4292     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4293                               getF32Constant(DAG, 0x3f317234, dl));
4294     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4295     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4296                                          getF32Constant(DAG, 0x3f800000, dl));
4297   }
4298 
4299   // Add the exponent into the result in integer domain.
4300   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4301   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4302                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4303 }
4304 
4305 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4306 /// limited-precision mode.
4307 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4308                          const TargetLowering &TLI) {
4309   if (Op.getValueType() == MVT::f32 &&
4310       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4311 
4312     // Put the exponent in the right bit position for later addition to the
4313     // final result:
4314     //
4315     //   #define LOG2OFe 1.4426950f
4316     //   t0 = Op * LOG2OFe
4317 
4318     // TODO: What fast-math-flags should be set here?
4319     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4320                              getF32Constant(DAG, 0x3fb8aa3b, dl));
4321     return getLimitedPrecisionExp2(t0, dl, DAG);
4322   }
4323 
4324   // No special expansion.
4325   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4326 }
4327 
4328 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4329 /// limited-precision mode.
4330 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4331                          const TargetLowering &TLI) {
4332 
4333   // TODO: What fast-math-flags should be set on the floating-point nodes?
4334 
4335   if (Op.getValueType() == MVT::f32 &&
4336       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4337     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4338 
4339     // Scale the exponent by log(2) [0.69314718f].
4340     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4341     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4342                                         getF32Constant(DAG, 0x3f317218, dl));
4343 
4344     // Get the significand and build it into a floating-point number with
4345     // exponent of 1.
4346     SDValue X = GetSignificand(DAG, Op1, dl);
4347 
4348     SDValue LogOfMantissa;
4349     if (LimitFloatPrecision <= 6) {
4350       // For floating-point precision of 6:
4351       //
4352       //   LogofMantissa =
4353       //     -1.1609546f +
4354       //       (1.4034025f - 0.23903021f * x) * x;
4355       //
4356       // error 0.0034276066, which is better than 8 bits
4357       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4358                                getF32Constant(DAG, 0xbe74c456, dl));
4359       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4360                                getF32Constant(DAG, 0x3fb3a2b1, dl));
4361       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4362       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4363                                   getF32Constant(DAG, 0x3f949a29, dl));
4364     } else if (LimitFloatPrecision <= 12) {
4365       // For floating-point precision of 12:
4366       //
4367       //   LogOfMantissa =
4368       //     -1.7417939f +
4369       //       (2.8212026f +
4370       //         (-1.4699568f +
4371       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4372       //
4373       // error 0.000061011436, which is 14 bits
4374       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4375                                getF32Constant(DAG, 0xbd67b6d6, dl));
4376       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4377                                getF32Constant(DAG, 0x3ee4f4b8, dl));
4378       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4379       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4380                                getF32Constant(DAG, 0x3fbc278b, dl));
4381       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4382       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4383                                getF32Constant(DAG, 0x40348e95, dl));
4384       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4385       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4386                                   getF32Constant(DAG, 0x3fdef31a, dl));
4387     } else { // LimitFloatPrecision <= 18
4388       // For floating-point precision of 18:
4389       //
4390       //   LogOfMantissa =
4391       //     -2.1072184f +
4392       //       (4.2372794f +
4393       //         (-3.7029485f +
4394       //           (2.2781945f +
4395       //             (-0.87823314f +
4396       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4397       //
4398       // error 0.0000023660568, which is better than 18 bits
4399       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4400                                getF32Constant(DAG, 0xbc91e5ac, dl));
4401       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4402                                getF32Constant(DAG, 0x3e4350aa, dl));
4403       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4404       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4405                                getF32Constant(DAG, 0x3f60d3e3, dl));
4406       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4407       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4408                                getF32Constant(DAG, 0x4011cdf0, dl));
4409       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4410       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4411                                getF32Constant(DAG, 0x406cfd1c, dl));
4412       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4413       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4414                                getF32Constant(DAG, 0x408797cb, dl));
4415       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4416       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4417                                   getF32Constant(DAG, 0x4006dcab, dl));
4418     }
4419 
4420     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4421   }
4422 
4423   // No special expansion.
4424   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4425 }
4426 
4427 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4428 /// limited-precision mode.
4429 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4430                           const TargetLowering &TLI) {
4431 
4432   // TODO: What fast-math-flags should be set on the floating-point nodes?
4433 
4434   if (Op.getValueType() == MVT::f32 &&
4435       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4436     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4437 
4438     // Get the exponent.
4439     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4440 
4441     // Get the significand and build it into a floating-point number with
4442     // exponent of 1.
4443     SDValue X = GetSignificand(DAG, Op1, dl);
4444 
4445     // Different possible minimax approximations of significand in
4446     // floating-point for various degrees of accuracy over [1,2].
4447     SDValue Log2ofMantissa;
4448     if (LimitFloatPrecision <= 6) {
4449       // For floating-point precision of 6:
4450       //
4451       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4452       //
4453       // error 0.0049451742, which is more than 7 bits
4454       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4455                                getF32Constant(DAG, 0xbeb08fe0, dl));
4456       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4457                                getF32Constant(DAG, 0x40019463, dl));
4458       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4459       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4460                                    getF32Constant(DAG, 0x3fd6633d, dl));
4461     } else if (LimitFloatPrecision <= 12) {
4462       // For floating-point precision of 12:
4463       //
4464       //   Log2ofMantissa =
4465       //     -2.51285454f +
4466       //       (4.07009056f +
4467       //         (-2.12067489f +
4468       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4469       //
4470       // error 0.0000876136000, which is better than 13 bits
4471       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4472                                getF32Constant(DAG, 0xbda7262e, dl));
4473       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4474                                getF32Constant(DAG, 0x3f25280b, dl));
4475       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4476       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4477                                getF32Constant(DAG, 0x4007b923, dl));
4478       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4479       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4480                                getF32Constant(DAG, 0x40823e2f, dl));
4481       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4482       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4483                                    getF32Constant(DAG, 0x4020d29c, dl));
4484     } else { // LimitFloatPrecision <= 18
4485       // For floating-point precision of 18:
4486       //
4487       //   Log2ofMantissa =
4488       //     -3.0400495f +
4489       //       (6.1129976f +
4490       //         (-5.3420409f +
4491       //           (3.2865683f +
4492       //             (-1.2669343f +
4493       //               (0.27515199f -
4494       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4495       //
4496       // error 0.0000018516, which is better than 18 bits
4497       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4498                                getF32Constant(DAG, 0xbcd2769e, dl));
4499       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4500                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4501       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4502       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4503                                getF32Constant(DAG, 0x3fa22ae7, dl));
4504       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4505       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4506                                getF32Constant(DAG, 0x40525723, dl));
4507       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4508       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4509                                getF32Constant(DAG, 0x40aaf200, dl));
4510       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4511       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4512                                getF32Constant(DAG, 0x40c39dad, dl));
4513       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4514       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4515                                    getF32Constant(DAG, 0x4042902c, dl));
4516     }
4517 
4518     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4519   }
4520 
4521   // No special expansion.
4522   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4523 }
4524 
4525 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4526 /// limited-precision mode.
4527 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4528                            const TargetLowering &TLI) {
4529 
4530   // TODO: What fast-math-flags should be set on the floating-point nodes?
4531 
4532   if (Op.getValueType() == MVT::f32 &&
4533       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4534     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4535 
4536     // Scale the exponent by log10(2) [0.30102999f].
4537     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4538     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4539                                         getF32Constant(DAG, 0x3e9a209a, dl));
4540 
4541     // Get the significand and build it into a floating-point number with
4542     // exponent of 1.
4543     SDValue X = GetSignificand(DAG, Op1, dl);
4544 
4545     SDValue Log10ofMantissa;
4546     if (LimitFloatPrecision <= 6) {
4547       // For floating-point precision of 6:
4548       //
4549       //   Log10ofMantissa =
4550       //     -0.50419619f +
4551       //       (0.60948995f - 0.10380950f * x) * x;
4552       //
4553       // error 0.0014886165, which is 6 bits
4554       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4555                                getF32Constant(DAG, 0xbdd49a13, dl));
4556       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4557                                getF32Constant(DAG, 0x3f1c0789, dl));
4558       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4559       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4560                                     getF32Constant(DAG, 0x3f011300, dl));
4561     } else if (LimitFloatPrecision <= 12) {
4562       // For floating-point precision of 12:
4563       //
4564       //   Log10ofMantissa =
4565       //     -0.64831180f +
4566       //       (0.91751397f +
4567       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4568       //
4569       // error 0.00019228036, which is better than 12 bits
4570       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4571                                getF32Constant(DAG, 0x3d431f31, dl));
4572       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4573                                getF32Constant(DAG, 0x3ea21fb2, dl));
4574       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4575       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4576                                getF32Constant(DAG, 0x3f6ae232, dl));
4577       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4578       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4579                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4580     } else { // LimitFloatPrecision <= 18
4581       // For floating-point precision of 18:
4582       //
4583       //   Log10ofMantissa =
4584       //     -0.84299375f +
4585       //       (1.5327582f +
4586       //         (-1.0688956f +
4587       //           (0.49102474f +
4588       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4589       //
4590       // error 0.0000037995730, which is better than 18 bits
4591       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4592                                getF32Constant(DAG, 0x3c5d51ce, dl));
4593       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4594                                getF32Constant(DAG, 0x3e00685a, dl));
4595       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4596       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4597                                getF32Constant(DAG, 0x3efb6798, dl));
4598       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4599       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4600                                getF32Constant(DAG, 0x3f88d192, dl));
4601       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4602       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4603                                getF32Constant(DAG, 0x3fc4316c, dl));
4604       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4605       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4606                                     getF32Constant(DAG, 0x3f57ce70, dl));
4607     }
4608 
4609     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4610   }
4611 
4612   // No special expansion.
4613   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4614 }
4615 
4616 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4617 /// limited-precision mode.
4618 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4619                           const TargetLowering &TLI) {
4620   if (Op.getValueType() == MVT::f32 &&
4621       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4622     return getLimitedPrecisionExp2(Op, dl, DAG);
4623 
4624   // No special expansion.
4625   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4626 }
4627 
4628 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4629 /// limited-precision mode with x == 10.0f.
4630 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
4631                          SelectionDAG &DAG, const TargetLowering &TLI) {
4632   bool IsExp10 = false;
4633   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4634       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4635     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4636       APFloat Ten(10.0f);
4637       IsExp10 = LHSC->isExactlyValue(Ten);
4638     }
4639   }
4640 
4641   // TODO: What fast-math-flags should be set on the FMUL node?
4642   if (IsExp10) {
4643     // Put the exponent in the right bit position for later addition to the
4644     // final result:
4645     //
4646     //   #define LOG2OF10 3.3219281f
4647     //   t0 = Op * LOG2OF10;
4648     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4649                              getF32Constant(DAG, 0x40549a78, dl));
4650     return getLimitedPrecisionExp2(t0, dl, DAG);
4651   }
4652 
4653   // No special expansion.
4654   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4655 }
4656 
4657 
4658 /// ExpandPowI - Expand a llvm.powi intrinsic.
4659 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
4660                           SelectionDAG &DAG) {
4661   // If RHS is a constant, we can expand this out to a multiplication tree,
4662   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4663   // optimizing for size, we only want to do this if the expansion would produce
4664   // a small number of multiplies, otherwise we do the full expansion.
4665   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4666     // Get the exponent as a positive value.
4667     unsigned Val = RHSC->getSExtValue();
4668     if ((int)Val < 0) Val = -Val;
4669 
4670     // powi(x, 0) -> 1.0
4671     if (Val == 0)
4672       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4673 
4674     const Function *F = DAG.getMachineFunction().getFunction();
4675     if (!F->optForSize() ||
4676         // If optimizing for size, don't insert too many multiplies.
4677         // This inserts up to 5 multiplies.
4678         countPopulation(Val) + Log2_32(Val) < 7) {
4679       // We use the simple binary decomposition method to generate the multiply
4680       // sequence.  There are more optimal ways to do this (for example,
4681       // powi(x,15) generates one more multiply than it should), but this has
4682       // the benefit of being both really simple and much better than a libcall.
4683       SDValue Res;  // Logically starts equal to 1.0
4684       SDValue CurSquare = LHS;
4685       // TODO: Intrinsics should have fast-math-flags that propagate to these
4686       // nodes.
4687       while (Val) {
4688         if (Val & 1) {
4689           if (Res.getNode())
4690             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4691           else
4692             Res = CurSquare;  // 1.0*CurSquare.
4693         }
4694 
4695         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4696                                 CurSquare, CurSquare);
4697         Val >>= 1;
4698       }
4699 
4700       // If the original was negative, invert the result, producing 1/(x*x*x).
4701       if (RHSC->getSExtValue() < 0)
4702         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4703                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4704       return Res;
4705     }
4706   }
4707 
4708   // Otherwise, expand to a libcall.
4709   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4710 }
4711 
4712 // getUnderlyingArgReg - Find underlying register used for a truncated or
4713 // bitcasted argument.
4714 static unsigned getUnderlyingArgReg(const SDValue &N) {
4715   switch (N.getOpcode()) {
4716   case ISD::CopyFromReg:
4717     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4718   case ISD::BITCAST:
4719   case ISD::AssertZext:
4720   case ISD::AssertSext:
4721   case ISD::TRUNCATE:
4722     return getUnderlyingArgReg(N.getOperand(0));
4723   default:
4724     return 0;
4725   }
4726 }
4727 
4728 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4729 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4730 /// At the end of instruction selection, they will be inserted to the entry BB.
4731 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4732     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4733     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4734   const Argument *Arg = dyn_cast<Argument>(V);
4735   if (!Arg)
4736     return false;
4737 
4738   MachineFunction &MF = DAG.getMachineFunction();
4739   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4740 
4741   // Ignore inlined function arguments here.
4742   //
4743   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4744   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4745     return false;
4746 
4747   Optional<MachineOperand> Op;
4748   // Some arguments' frame index is recorded during argument lowering.
4749   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4750     Op = MachineOperand::CreateFI(FI);
4751 
4752   if (!Op && N.getNode()) {
4753     unsigned Reg = getUnderlyingArgReg(N);
4754     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4755       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4756       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4757       if (PR)
4758         Reg = PR;
4759     }
4760     if (Reg)
4761       Op = MachineOperand::CreateReg(Reg, false);
4762   }
4763 
4764   if (!Op) {
4765     // Check if ValueMap has reg number.
4766     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4767     if (VMI != FuncInfo.ValueMap.end())
4768       Op = MachineOperand::CreateReg(VMI->second, false);
4769   }
4770 
4771   if (!Op && N.getNode())
4772     // Check if frame index is available.
4773     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4774       if (FrameIndexSDNode *FINode =
4775           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4776         Op = MachineOperand::CreateFI(FINode->getIndex());
4777 
4778   if (!Op)
4779     return false;
4780 
4781   assert(Variable->isValidLocationForIntrinsic(DL) &&
4782          "Expected inlined-at fields to agree");
4783   if (Op->isReg())
4784     FuncInfo.ArgDbgValues.push_back(
4785         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4786                 Op->getReg(), Offset, Variable, Expr));
4787   else
4788     FuncInfo.ArgDbgValues.push_back(
4789         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4790             .add(*Op)
4791             .addImm(Offset)
4792             .addMetadata(Variable)
4793             .addMetadata(Expr));
4794 
4795   return true;
4796 }
4797 
4798 /// Return the appropriate SDDbgValue based on N.
4799 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
4800                                              DILocalVariable *Variable,
4801                                              DIExpression *Expr, int64_t Offset,
4802                                              const DebugLoc &dl,
4803                                              unsigned DbgSDNodeOrder) {
4804   SDDbgValue *SDV;
4805   auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode());
4806   if (FISDN && Expr->startsWithDeref()) {
4807     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
4808     // stack slot locations as such instead of as indirectly addressed
4809     // locations.
4810     ArrayRef<uint64_t> TrailingElements(Expr->elements_begin() + 1,
4811                                         Expr->elements_end());
4812     DIExpression *DerefedDIExpr =
4813         DIExpression::get(*DAG.getContext(), TrailingElements);
4814     int FI = FISDN->getIndex();
4815     SDV = DAG.getFrameIndexDbgValue(Variable, DerefedDIExpr, FI, 0, dl,
4816                                     DbgSDNodeOrder);
4817   } else {
4818     SDV = DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false,
4819                           Offset, dl, DbgSDNodeOrder);
4820   }
4821   return SDV;
4822 }
4823 
4824 // VisualStudio defines setjmp as _setjmp
4825 #if defined(_MSC_VER) && defined(setjmp) && \
4826                          !defined(setjmp_undefined_for_msvc)
4827 #  pragma push_macro("setjmp")
4828 #  undef setjmp
4829 #  define setjmp_undefined_for_msvc
4830 #endif
4831 
4832 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4833 /// we want to emit this as a call to a named external function, return the name
4834 /// otherwise lower it and return null.
4835 const char *
4836 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4837   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4838   SDLoc sdl = getCurSDLoc();
4839   DebugLoc dl = getCurDebugLoc();
4840   SDValue Res;
4841 
4842   switch (Intrinsic) {
4843   default:
4844     // By default, turn this into a target intrinsic node.
4845     visitTargetIntrinsic(I, Intrinsic);
4846     return nullptr;
4847   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4848   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4849   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4850   case Intrinsic::returnaddress:
4851     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4852                              TLI.getPointerTy(DAG.getDataLayout()),
4853                              getValue(I.getArgOperand(0))));
4854     return nullptr;
4855   case Intrinsic::addressofreturnaddress:
4856     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
4857                              TLI.getPointerTy(DAG.getDataLayout())));
4858     return nullptr;
4859   case Intrinsic::frameaddress:
4860     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4861                              TLI.getPointerTy(DAG.getDataLayout()),
4862                              getValue(I.getArgOperand(0))));
4863     return nullptr;
4864   case Intrinsic::read_register: {
4865     Value *Reg = I.getArgOperand(0);
4866     SDValue Chain = getRoot();
4867     SDValue RegName =
4868         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4869     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4870     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4871       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4872     setValue(&I, Res);
4873     DAG.setRoot(Res.getValue(1));
4874     return nullptr;
4875   }
4876   case Intrinsic::write_register: {
4877     Value *Reg = I.getArgOperand(0);
4878     Value *RegValue = I.getArgOperand(1);
4879     SDValue Chain = getRoot();
4880     SDValue RegName =
4881         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4882     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4883                             RegName, getValue(RegValue)));
4884     return nullptr;
4885   }
4886   case Intrinsic::setjmp:
4887     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4888   case Intrinsic::longjmp:
4889     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4890   case Intrinsic::memcpy: {
4891     SDValue Op1 = getValue(I.getArgOperand(0));
4892     SDValue Op2 = getValue(I.getArgOperand(1));
4893     SDValue Op3 = getValue(I.getArgOperand(2));
4894     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4895     if (!Align)
4896       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4897     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4898     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4899     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4900                                false, isTC,
4901                                MachinePointerInfo(I.getArgOperand(0)),
4902                                MachinePointerInfo(I.getArgOperand(1)));
4903     updateDAGForMaybeTailCall(MC);
4904     return nullptr;
4905   }
4906   case Intrinsic::memset: {
4907     SDValue Op1 = getValue(I.getArgOperand(0));
4908     SDValue Op2 = getValue(I.getArgOperand(1));
4909     SDValue Op3 = getValue(I.getArgOperand(2));
4910     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4911     if (!Align)
4912       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4913     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4914     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4915     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4916                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4917     updateDAGForMaybeTailCall(MS);
4918     return nullptr;
4919   }
4920   case Intrinsic::memmove: {
4921     SDValue Op1 = getValue(I.getArgOperand(0));
4922     SDValue Op2 = getValue(I.getArgOperand(1));
4923     SDValue Op3 = getValue(I.getArgOperand(2));
4924     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4925     if (!Align)
4926       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4927     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4928     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4929     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4930                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4931                                 MachinePointerInfo(I.getArgOperand(1)));
4932     updateDAGForMaybeTailCall(MM);
4933     return nullptr;
4934   }
4935   case Intrinsic::memcpy_element_atomic: {
4936     SDValue Dst = getValue(I.getArgOperand(0));
4937     SDValue Src = getValue(I.getArgOperand(1));
4938     SDValue NumElements = getValue(I.getArgOperand(2));
4939     SDValue ElementSize = getValue(I.getArgOperand(3));
4940 
4941     // Emit a library call.
4942     TargetLowering::ArgListTy Args;
4943     TargetLowering::ArgListEntry Entry;
4944     Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext());
4945     Entry.Node = Dst;
4946     Args.push_back(Entry);
4947 
4948     Entry.Node = Src;
4949     Args.push_back(Entry);
4950 
4951     Entry.Ty = I.getArgOperand(2)->getType();
4952     Entry.Node = NumElements;
4953     Args.push_back(Entry);
4954 
4955     Entry.Ty = Type::getInt32Ty(*DAG.getContext());
4956     Entry.Node = ElementSize;
4957     Args.push_back(Entry);
4958 
4959     uint64_t ElementSizeConstant =
4960         cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4961     RTLIB::Libcall LibraryCall =
4962         RTLIB::getMEMCPY_ELEMENT_ATOMIC(ElementSizeConstant);
4963     if (LibraryCall == RTLIB::UNKNOWN_LIBCALL)
4964       report_fatal_error("Unsupported element size");
4965 
4966     TargetLowering::CallLoweringInfo CLI(DAG);
4967     CLI.setDebugLoc(sdl)
4968         .setChain(getRoot())
4969         .setCallee(TLI.getLibcallCallingConv(LibraryCall),
4970                    Type::getVoidTy(*DAG.getContext()),
4971                    DAG.getExternalSymbol(
4972                        TLI.getLibcallName(LibraryCall),
4973                        TLI.getPointerTy(DAG.getDataLayout())),
4974                    std::move(Args));
4975 
4976     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
4977     DAG.setRoot(CallResult.second);
4978     return nullptr;
4979   }
4980   case Intrinsic::dbg_declare: {
4981     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4982     DILocalVariable *Variable = DI.getVariable();
4983     DIExpression *Expression = DI.getExpression();
4984     const Value *Address = DI.getAddress();
4985     assert(Variable && "Missing variable");
4986     if (!Address) {
4987       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4988       return nullptr;
4989     }
4990 
4991     // Check if address has undef value.
4992     if (isa<UndefValue>(Address) ||
4993         (Address->use_empty() && !isa<Argument>(Address))) {
4994       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4995       return nullptr;
4996     }
4997 
4998     SDValue &N = NodeMap[Address];
4999     if (!N.getNode() && isa<Argument>(Address))
5000       // Check unused arguments map.
5001       N = UnusedArgNodeMap[Address];
5002     SDDbgValue *SDV;
5003     if (N.getNode()) {
5004       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5005         Address = BCI->getOperand(0);
5006       // Parameters are handled specially.
5007       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5008       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5009       if (isParameter && FINode) {
5010         // Byval parameter. We have a frame index at this point.
5011         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
5012                                         FINode->getIndex(), 0, dl, SDNodeOrder);
5013       } else if (isa<Argument>(Address)) {
5014         // Address is an argument, so try to emit its dbg value using
5015         // virtual register info from the FuncInfo.ValueMap.
5016         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
5017                                  N);
5018         return nullptr;
5019       } else {
5020         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5021                               true, 0, dl, SDNodeOrder);
5022       }
5023       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5024     } else {
5025       // If Address is an argument then try to emit its dbg value using
5026       // virtual register info from the FuncInfo.ValueMap.
5027       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
5028                                     N)) {
5029         // If variable is pinned by a alloca in dominating bb then
5030         // use StaticAllocaMap.
5031         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
5032           if (AI->getParent() != DI.getParent()) {
5033             DenseMap<const AllocaInst*, int>::iterator SI =
5034               FuncInfo.StaticAllocaMap.find(AI);
5035             if (SI != FuncInfo.StaticAllocaMap.end()) {
5036               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
5037                                               0, dl, SDNodeOrder);
5038               DAG.AddDbgValue(SDV, nullptr, false);
5039               return nullptr;
5040             }
5041           }
5042         }
5043         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5044       }
5045     }
5046     return nullptr;
5047   }
5048   case Intrinsic::dbg_value: {
5049     const DbgValueInst &DI = cast<DbgValueInst>(I);
5050     assert(DI.getVariable() && "Missing variable");
5051 
5052     DILocalVariable *Variable = DI.getVariable();
5053     DIExpression *Expression = DI.getExpression();
5054     uint64_t Offset = DI.getOffset();
5055     const Value *V = DI.getValue();
5056     if (!V)
5057       return nullptr;
5058 
5059     SDDbgValue *SDV;
5060     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
5061       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
5062                                     SDNodeOrder);
5063       DAG.AddDbgValue(SDV, nullptr, false);
5064     } else {
5065       // Do not use getValue() in here; we don't want to generate code at
5066       // this point if it hasn't been done yet.
5067       SDValue N = NodeMap[V];
5068       if (!N.getNode() && isa<Argument>(V))
5069         // Check unused arguments map.
5070         N = UnusedArgNodeMap[V];
5071       if (N.getNode()) {
5072         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
5073                                       false, N)) {
5074           SDV = getDbgValue(N, Variable, Expression, Offset, dl, SDNodeOrder);
5075           DAG.AddDbgValue(SDV, N.getNode(), false);
5076         }
5077       } else if (!V->use_empty() ) {
5078         // Do not call getValue(V) yet, as we don't want to generate code.
5079         // Remember it for later.
5080         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
5081         DanglingDebugInfoMap[V] = DDI;
5082       } else {
5083         // We may expand this to cover more cases.  One case where we have no
5084         // data available is an unreferenced parameter.
5085         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5086       }
5087     }
5088 
5089     // Build a debug info table entry.
5090     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
5091       V = BCI->getOperand(0);
5092     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
5093     // Don't handle byval struct arguments or VLAs, for example.
5094     if (!AI) {
5095       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
5096       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
5097       return nullptr;
5098     }
5099     DenseMap<const AllocaInst*, int>::iterator SI =
5100       FuncInfo.StaticAllocaMap.find(AI);
5101     if (SI == FuncInfo.StaticAllocaMap.end())
5102       return nullptr; // VLAs.
5103     return nullptr;
5104   }
5105 
5106   case Intrinsic::eh_typeid_for: {
5107     // Find the type id for the given typeinfo.
5108     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5109     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5110     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5111     setValue(&I, Res);
5112     return nullptr;
5113   }
5114 
5115   case Intrinsic::eh_return_i32:
5116   case Intrinsic::eh_return_i64:
5117     DAG.getMachineFunction().setCallsEHReturn(true);
5118     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5119                             MVT::Other,
5120                             getControlRoot(),
5121                             getValue(I.getArgOperand(0)),
5122                             getValue(I.getArgOperand(1))));
5123     return nullptr;
5124   case Intrinsic::eh_unwind_init:
5125     DAG.getMachineFunction().setCallsUnwindInit(true);
5126     return nullptr;
5127   case Intrinsic::eh_dwarf_cfa: {
5128     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5129                              TLI.getPointerTy(DAG.getDataLayout()),
5130                              getValue(I.getArgOperand(0))));
5131     return nullptr;
5132   }
5133   case Intrinsic::eh_sjlj_callsite: {
5134     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5135     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5136     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5137     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5138 
5139     MMI.setCurrentCallSite(CI->getZExtValue());
5140     return nullptr;
5141   }
5142   case Intrinsic::eh_sjlj_functioncontext: {
5143     // Get and store the index of the function context.
5144     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5145     AllocaInst *FnCtx =
5146       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5147     int FI = FuncInfo.StaticAllocaMap[FnCtx];
5148     MFI.setFunctionContextIndex(FI);
5149     return nullptr;
5150   }
5151   case Intrinsic::eh_sjlj_setjmp: {
5152     SDValue Ops[2];
5153     Ops[0] = getRoot();
5154     Ops[1] = getValue(I.getArgOperand(0));
5155     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5156                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5157     setValue(&I, Op.getValue(0));
5158     DAG.setRoot(Op.getValue(1));
5159     return nullptr;
5160   }
5161   case Intrinsic::eh_sjlj_longjmp: {
5162     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5163                             getRoot(), getValue(I.getArgOperand(0))));
5164     return nullptr;
5165   }
5166   case Intrinsic::eh_sjlj_setup_dispatch: {
5167     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5168                             getRoot()));
5169     return nullptr;
5170   }
5171 
5172   case Intrinsic::masked_gather:
5173     visitMaskedGather(I);
5174     return nullptr;
5175   case Intrinsic::masked_load:
5176     visitMaskedLoad(I);
5177     return nullptr;
5178   case Intrinsic::masked_scatter:
5179     visitMaskedScatter(I);
5180     return nullptr;
5181   case Intrinsic::masked_store:
5182     visitMaskedStore(I);
5183     return nullptr;
5184   case Intrinsic::masked_expandload:
5185     visitMaskedLoad(I, true /* IsExpanding */);
5186     return nullptr;
5187   case Intrinsic::masked_compressstore:
5188     visitMaskedStore(I, true /* IsCompressing */);
5189     return nullptr;
5190   case Intrinsic::x86_mmx_pslli_w:
5191   case Intrinsic::x86_mmx_pslli_d:
5192   case Intrinsic::x86_mmx_pslli_q:
5193   case Intrinsic::x86_mmx_psrli_w:
5194   case Intrinsic::x86_mmx_psrli_d:
5195   case Intrinsic::x86_mmx_psrli_q:
5196   case Intrinsic::x86_mmx_psrai_w:
5197   case Intrinsic::x86_mmx_psrai_d: {
5198     SDValue ShAmt = getValue(I.getArgOperand(1));
5199     if (isa<ConstantSDNode>(ShAmt)) {
5200       visitTargetIntrinsic(I, Intrinsic);
5201       return nullptr;
5202     }
5203     unsigned NewIntrinsic = 0;
5204     EVT ShAmtVT = MVT::v2i32;
5205     switch (Intrinsic) {
5206     case Intrinsic::x86_mmx_pslli_w:
5207       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5208       break;
5209     case Intrinsic::x86_mmx_pslli_d:
5210       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5211       break;
5212     case Intrinsic::x86_mmx_pslli_q:
5213       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5214       break;
5215     case Intrinsic::x86_mmx_psrli_w:
5216       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5217       break;
5218     case Intrinsic::x86_mmx_psrli_d:
5219       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5220       break;
5221     case Intrinsic::x86_mmx_psrli_q:
5222       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5223       break;
5224     case Intrinsic::x86_mmx_psrai_w:
5225       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5226       break;
5227     case Intrinsic::x86_mmx_psrai_d:
5228       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5229       break;
5230     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5231     }
5232 
5233     // The vector shift intrinsics with scalars uses 32b shift amounts but
5234     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5235     // to be zero.
5236     // We must do this early because v2i32 is not a legal type.
5237     SDValue ShOps[2];
5238     ShOps[0] = ShAmt;
5239     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5240     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5241     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5242     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5243     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5244                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5245                        getValue(I.getArgOperand(0)), ShAmt);
5246     setValue(&I, Res);
5247     return nullptr;
5248   }
5249   case Intrinsic::powi:
5250     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5251                             getValue(I.getArgOperand(1)), DAG));
5252     return nullptr;
5253   case Intrinsic::log:
5254     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5255     return nullptr;
5256   case Intrinsic::log2:
5257     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5258     return nullptr;
5259   case Intrinsic::log10:
5260     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5261     return nullptr;
5262   case Intrinsic::exp:
5263     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5264     return nullptr;
5265   case Intrinsic::exp2:
5266     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5267     return nullptr;
5268   case Intrinsic::pow:
5269     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5270                            getValue(I.getArgOperand(1)), DAG, TLI));
5271     return nullptr;
5272   case Intrinsic::sqrt:
5273   case Intrinsic::fabs:
5274   case Intrinsic::sin:
5275   case Intrinsic::cos:
5276   case Intrinsic::floor:
5277   case Intrinsic::ceil:
5278   case Intrinsic::trunc:
5279   case Intrinsic::rint:
5280   case Intrinsic::nearbyint:
5281   case Intrinsic::round:
5282   case Intrinsic::canonicalize: {
5283     unsigned Opcode;
5284     switch (Intrinsic) {
5285     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5286     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5287     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5288     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5289     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5290     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5291     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5292     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5293     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5294     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5295     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5296     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
5297     }
5298 
5299     setValue(&I, DAG.getNode(Opcode, sdl,
5300                              getValue(I.getArgOperand(0)).getValueType(),
5301                              getValue(I.getArgOperand(0))));
5302     return nullptr;
5303   }
5304   case Intrinsic::minnum: {
5305     auto VT = getValue(I.getArgOperand(0)).getValueType();
5306     unsigned Opc =
5307         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)
5308             ? ISD::FMINNAN
5309             : ISD::FMINNUM;
5310     setValue(&I, DAG.getNode(Opc, sdl, VT,
5311                              getValue(I.getArgOperand(0)),
5312                              getValue(I.getArgOperand(1))));
5313     return nullptr;
5314   }
5315   case Intrinsic::maxnum: {
5316     auto VT = getValue(I.getArgOperand(0)).getValueType();
5317     unsigned Opc =
5318         I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)
5319             ? ISD::FMAXNAN
5320             : ISD::FMAXNUM;
5321     setValue(&I, DAG.getNode(Opc, sdl, VT,
5322                              getValue(I.getArgOperand(0)),
5323                              getValue(I.getArgOperand(1))));
5324     return nullptr;
5325   }
5326   case Intrinsic::copysign:
5327     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5328                              getValue(I.getArgOperand(0)).getValueType(),
5329                              getValue(I.getArgOperand(0)),
5330                              getValue(I.getArgOperand(1))));
5331     return nullptr;
5332   case Intrinsic::fma:
5333     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5334                              getValue(I.getArgOperand(0)).getValueType(),
5335                              getValue(I.getArgOperand(0)),
5336                              getValue(I.getArgOperand(1)),
5337                              getValue(I.getArgOperand(2))));
5338     return nullptr;
5339   case Intrinsic::fmuladd: {
5340     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5341     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5342         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5343       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5344                                getValue(I.getArgOperand(0)).getValueType(),
5345                                getValue(I.getArgOperand(0)),
5346                                getValue(I.getArgOperand(1)),
5347                                getValue(I.getArgOperand(2))));
5348     } else {
5349       // TODO: Intrinsic calls should have fast-math-flags.
5350       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5351                                 getValue(I.getArgOperand(0)).getValueType(),
5352                                 getValue(I.getArgOperand(0)),
5353                                 getValue(I.getArgOperand(1)));
5354       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5355                                 getValue(I.getArgOperand(0)).getValueType(),
5356                                 Mul,
5357                                 getValue(I.getArgOperand(2)));
5358       setValue(&I, Add);
5359     }
5360     return nullptr;
5361   }
5362   case Intrinsic::convert_to_fp16:
5363     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5364                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5365                                          getValue(I.getArgOperand(0)),
5366                                          DAG.getTargetConstant(0, sdl,
5367                                                                MVT::i32))));
5368     return nullptr;
5369   case Intrinsic::convert_from_fp16:
5370     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
5371                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5372                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5373                                          getValue(I.getArgOperand(0)))));
5374     return nullptr;
5375   case Intrinsic::pcmarker: {
5376     SDValue Tmp = getValue(I.getArgOperand(0));
5377     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5378     return nullptr;
5379   }
5380   case Intrinsic::readcyclecounter: {
5381     SDValue Op = getRoot();
5382     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5383                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5384     setValue(&I, Res);
5385     DAG.setRoot(Res.getValue(1));
5386     return nullptr;
5387   }
5388   case Intrinsic::bitreverse:
5389     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
5390                              getValue(I.getArgOperand(0)).getValueType(),
5391                              getValue(I.getArgOperand(0))));
5392     return nullptr;
5393   case Intrinsic::bswap:
5394     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5395                              getValue(I.getArgOperand(0)).getValueType(),
5396                              getValue(I.getArgOperand(0))));
5397     return nullptr;
5398   case Intrinsic::cttz: {
5399     SDValue Arg = getValue(I.getArgOperand(0));
5400     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5401     EVT Ty = Arg.getValueType();
5402     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5403                              sdl, Ty, Arg));
5404     return nullptr;
5405   }
5406   case Intrinsic::ctlz: {
5407     SDValue Arg = getValue(I.getArgOperand(0));
5408     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5409     EVT Ty = Arg.getValueType();
5410     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5411                              sdl, Ty, Arg));
5412     return nullptr;
5413   }
5414   case Intrinsic::ctpop: {
5415     SDValue Arg = getValue(I.getArgOperand(0));
5416     EVT Ty = Arg.getValueType();
5417     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5418     return nullptr;
5419   }
5420   case Intrinsic::stacksave: {
5421     SDValue Op = getRoot();
5422     Res = DAG.getNode(
5423         ISD::STACKSAVE, sdl,
5424         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
5425     setValue(&I, Res);
5426     DAG.setRoot(Res.getValue(1));
5427     return nullptr;
5428   }
5429   case Intrinsic::stackrestore: {
5430     Res = getValue(I.getArgOperand(0));
5431     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5432     return nullptr;
5433   }
5434   case Intrinsic::get_dynamic_area_offset: {
5435     SDValue Op = getRoot();
5436     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5437     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
5438     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
5439     // target.
5440     if (PtrTy != ResTy)
5441       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
5442                          " intrinsic!");
5443     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
5444                       Op);
5445     DAG.setRoot(Op);
5446     setValue(&I, Res);
5447     return nullptr;
5448   }
5449   case Intrinsic::stackguard: {
5450     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5451     MachineFunction &MF = DAG.getMachineFunction();
5452     const Module &M = *MF.getFunction()->getParent();
5453     SDValue Chain = getRoot();
5454     if (TLI.useLoadStackGuardNode()) {
5455       Res = getLoadStackGuard(DAG, sdl, Chain);
5456     } else {
5457       const Value *Global = TLI.getSDagStackGuard(M);
5458       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
5459       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
5460                         MachinePointerInfo(Global, 0), Align,
5461                         MachineMemOperand::MOVolatile);
5462     }
5463     DAG.setRoot(Chain);
5464     setValue(&I, Res);
5465     return nullptr;
5466   }
5467   case Intrinsic::stackprotector: {
5468     // Emit code into the DAG to store the stack guard onto the stack.
5469     MachineFunction &MF = DAG.getMachineFunction();
5470     MachineFrameInfo &MFI = MF.getFrameInfo();
5471     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
5472     SDValue Src, Chain = getRoot();
5473 
5474     if (TLI.useLoadStackGuardNode())
5475       Src = getLoadStackGuard(DAG, sdl, Chain);
5476     else
5477       Src = getValue(I.getArgOperand(0));   // The guard's value.
5478 
5479     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5480 
5481     int FI = FuncInfo.StaticAllocaMap[Slot];
5482     MFI.setStackProtectorIndex(FI);
5483 
5484     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5485 
5486     // Store the stack protector onto the stack.
5487     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5488                                                  DAG.getMachineFunction(), FI),
5489                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
5490     setValue(&I, Res);
5491     DAG.setRoot(Res);
5492     return nullptr;
5493   }
5494   case Intrinsic::objectsize: {
5495     // If we don't know by now, we're never going to know.
5496     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5497 
5498     assert(CI && "Non-constant type in __builtin_object_size?");
5499 
5500     SDValue Arg = getValue(I.getCalledValue());
5501     EVT Ty = Arg.getValueType();
5502 
5503     if (CI->isZero())
5504       Res = DAG.getConstant(-1ULL, sdl, Ty);
5505     else
5506       Res = DAG.getConstant(0, sdl, Ty);
5507 
5508     setValue(&I, Res);
5509     return nullptr;
5510   }
5511   case Intrinsic::annotation:
5512   case Intrinsic::ptr_annotation:
5513   case Intrinsic::invariant_group_barrier:
5514     // Drop the intrinsic, but forward the value
5515     setValue(&I, getValue(I.getOperand(0)));
5516     return nullptr;
5517   case Intrinsic::assume:
5518   case Intrinsic::var_annotation:
5519     // Discard annotate attributes and assumptions
5520     return nullptr;
5521 
5522   case Intrinsic::init_trampoline: {
5523     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5524 
5525     SDValue Ops[6];
5526     Ops[0] = getRoot();
5527     Ops[1] = getValue(I.getArgOperand(0));
5528     Ops[2] = getValue(I.getArgOperand(1));
5529     Ops[3] = getValue(I.getArgOperand(2));
5530     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5531     Ops[5] = DAG.getSrcValue(F);
5532 
5533     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5534 
5535     DAG.setRoot(Res);
5536     return nullptr;
5537   }
5538   case Intrinsic::adjust_trampoline: {
5539     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5540                              TLI.getPointerTy(DAG.getDataLayout()),
5541                              getValue(I.getArgOperand(0))));
5542     return nullptr;
5543   }
5544   case Intrinsic::gcroot: {
5545     MachineFunction &MF = DAG.getMachineFunction();
5546     const Function *F = MF.getFunction();
5547     (void)F;
5548     assert(F->hasGC() &&
5549            "only valid in functions with gc specified, enforced by Verifier");
5550     assert(GFI && "implied by previous");
5551     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5552     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5553 
5554     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5555     GFI->addStackRoot(FI->getIndex(), TypeMap);
5556     return nullptr;
5557   }
5558   case Intrinsic::gcread:
5559   case Intrinsic::gcwrite:
5560     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5561   case Intrinsic::flt_rounds:
5562     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5563     return nullptr;
5564 
5565   case Intrinsic::expect: {
5566     // Just replace __builtin_expect(exp, c) with EXP.
5567     setValue(&I, getValue(I.getArgOperand(0)));
5568     return nullptr;
5569   }
5570 
5571   case Intrinsic::debugtrap:
5572   case Intrinsic::trap: {
5573     StringRef TrapFuncName =
5574         I.getAttributes()
5575             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5576             .getValueAsString();
5577     if (TrapFuncName.empty()) {
5578       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5579         ISD::TRAP : ISD::DEBUGTRAP;
5580       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5581       return nullptr;
5582     }
5583     TargetLowering::ArgListTy Args;
5584 
5585     TargetLowering::CallLoweringInfo CLI(DAG);
5586     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5587         CallingConv::C, I.getType(),
5588         DAG.getExternalSymbol(TrapFuncName.data(),
5589                               TLI.getPointerTy(DAG.getDataLayout())),
5590         std::move(Args));
5591 
5592     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5593     DAG.setRoot(Result.second);
5594     return nullptr;
5595   }
5596 
5597   case Intrinsic::uadd_with_overflow:
5598   case Intrinsic::sadd_with_overflow:
5599   case Intrinsic::usub_with_overflow:
5600   case Intrinsic::ssub_with_overflow:
5601   case Intrinsic::umul_with_overflow:
5602   case Intrinsic::smul_with_overflow: {
5603     ISD::NodeType Op;
5604     switch (Intrinsic) {
5605     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5606     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5607     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5608     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5609     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5610     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5611     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5612     }
5613     SDValue Op1 = getValue(I.getArgOperand(0));
5614     SDValue Op2 = getValue(I.getArgOperand(1));
5615 
5616     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5617     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5618     return nullptr;
5619   }
5620   case Intrinsic::prefetch: {
5621     SDValue Ops[5];
5622     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5623     Ops[0] = getRoot();
5624     Ops[1] = getValue(I.getArgOperand(0));
5625     Ops[2] = getValue(I.getArgOperand(1));
5626     Ops[3] = getValue(I.getArgOperand(2));
5627     Ops[4] = getValue(I.getArgOperand(3));
5628     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5629                                         DAG.getVTList(MVT::Other), Ops,
5630                                         EVT::getIntegerVT(*Context, 8),
5631                                         MachinePointerInfo(I.getArgOperand(0)),
5632                                         0, /* align */
5633                                         false, /* volatile */
5634                                         rw==0, /* read */
5635                                         rw==1)); /* write */
5636     return nullptr;
5637   }
5638   case Intrinsic::lifetime_start:
5639   case Intrinsic::lifetime_end: {
5640     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5641     // Stack coloring is not enabled in O0, discard region information.
5642     if (TM.getOptLevel() == CodeGenOpt::None)
5643       return nullptr;
5644 
5645     SmallVector<Value *, 4> Allocas;
5646     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5647 
5648     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5649            E = Allocas.end(); Object != E; ++Object) {
5650       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5651 
5652       // Could not find an Alloca.
5653       if (!LifetimeObject)
5654         continue;
5655 
5656       // First check that the Alloca is static, otherwise it won't have a
5657       // valid frame index.
5658       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5659       if (SI == FuncInfo.StaticAllocaMap.end())
5660         return nullptr;
5661 
5662       int FI = SI->second;
5663 
5664       SDValue Ops[2];
5665       Ops[0] = getRoot();
5666       Ops[1] =
5667           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5668       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5669 
5670       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5671       DAG.setRoot(Res);
5672     }
5673     return nullptr;
5674   }
5675   case Intrinsic::invariant_start:
5676     // Discard region information.
5677     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5678     return nullptr;
5679   case Intrinsic::invariant_end:
5680     // Discard region information.
5681     return nullptr;
5682   case Intrinsic::clear_cache:
5683     return TLI.getClearCacheBuiltinName();
5684   case Intrinsic::donothing:
5685     // ignore
5686     return nullptr;
5687   case Intrinsic::experimental_stackmap: {
5688     visitStackmap(I);
5689     return nullptr;
5690   }
5691   case Intrinsic::experimental_patchpoint_void:
5692   case Intrinsic::experimental_patchpoint_i64: {
5693     visitPatchpoint(&I);
5694     return nullptr;
5695   }
5696   case Intrinsic::experimental_gc_statepoint: {
5697     LowerStatepoint(ImmutableStatepoint(&I));
5698     return nullptr;
5699   }
5700   case Intrinsic::experimental_gc_result: {
5701     visitGCResult(cast<GCResultInst>(I));
5702     return nullptr;
5703   }
5704   case Intrinsic::experimental_gc_relocate: {
5705     visitGCRelocate(cast<GCRelocateInst>(I));
5706     return nullptr;
5707   }
5708   case Intrinsic::instrprof_increment:
5709     llvm_unreachable("instrprof failed to lower an increment");
5710   case Intrinsic::instrprof_value_profile:
5711     llvm_unreachable("instrprof failed to lower a value profiling call");
5712   case Intrinsic::localescape: {
5713     MachineFunction &MF = DAG.getMachineFunction();
5714     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5715 
5716     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5717     // is the same on all targets.
5718     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5719       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5720       if (isa<ConstantPointerNull>(Arg))
5721         continue; // Skip null pointers. They represent a hole in index space.
5722       AllocaInst *Slot = cast<AllocaInst>(Arg);
5723       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5724              "can only escape static allocas");
5725       int FI = FuncInfo.StaticAllocaMap[Slot];
5726       MCSymbol *FrameAllocSym =
5727           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5728               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5729       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5730               TII->get(TargetOpcode::LOCAL_ESCAPE))
5731           .addSym(FrameAllocSym)
5732           .addFrameIndex(FI);
5733     }
5734 
5735     return nullptr;
5736   }
5737 
5738   case Intrinsic::localrecover: {
5739     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5740     MachineFunction &MF = DAG.getMachineFunction();
5741     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5742 
5743     // Get the symbol that defines the frame offset.
5744     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5745     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5746     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5747     MCSymbol *FrameAllocSym =
5748         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5749             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5750 
5751     // Create a MCSymbol for the label to avoid any target lowering
5752     // that would make this PC relative.
5753     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5754     SDValue OffsetVal =
5755         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5756 
5757     // Add the offset to the FP.
5758     Value *FP = I.getArgOperand(1);
5759     SDValue FPVal = getValue(FP);
5760     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5761     setValue(&I, Add);
5762 
5763     return nullptr;
5764   }
5765 
5766   case Intrinsic::eh_exceptionpointer:
5767   case Intrinsic::eh_exceptioncode: {
5768     // Get the exception pointer vreg, copy from it, and resize it to fit.
5769     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5770     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5771     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5772     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5773     SDValue N =
5774         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5775     if (Intrinsic == Intrinsic::eh_exceptioncode)
5776       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5777     setValue(&I, N);
5778     return nullptr;
5779   }
5780 
5781   case Intrinsic::experimental_deoptimize:
5782     LowerDeoptimizeCall(&I);
5783     return nullptr;
5784   }
5785 }
5786 
5787 std::pair<SDValue, SDValue>
5788 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5789                                     const BasicBlock *EHPadBB) {
5790   MachineFunction &MF = DAG.getMachineFunction();
5791   MachineModuleInfo &MMI = MF.getMMI();
5792   MCSymbol *BeginLabel = nullptr;
5793 
5794   if (EHPadBB) {
5795     // Insert a label before the invoke call to mark the try range.  This can be
5796     // used to detect deletion of the invoke via the MachineModuleInfo.
5797     BeginLabel = MMI.getContext().createTempSymbol();
5798 
5799     // For SjLj, keep track of which landing pads go with which invokes
5800     // so as to maintain the ordering of pads in the LSDA.
5801     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5802     if (CallSiteIndex) {
5803       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5804       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5805 
5806       // Now that the call site is handled, stop tracking it.
5807       MMI.setCurrentCallSite(0);
5808     }
5809 
5810     // Both PendingLoads and PendingExports must be flushed here;
5811     // this call might not return.
5812     (void)getRoot();
5813     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5814 
5815     CLI.setChain(getRoot());
5816   }
5817   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5818   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5819 
5820   assert((CLI.IsTailCall || Result.second.getNode()) &&
5821          "Non-null chain expected with non-tail call!");
5822   assert((Result.second.getNode() || !Result.first.getNode()) &&
5823          "Null value expected with tail call!");
5824 
5825   if (!Result.second.getNode()) {
5826     // As a special case, a null chain means that a tail call has been emitted
5827     // and the DAG root is already updated.
5828     HasTailCall = true;
5829 
5830     // Since there's no actual continuation from this block, nothing can be
5831     // relying on us setting vregs for them.
5832     PendingExports.clear();
5833   } else {
5834     DAG.setRoot(Result.second);
5835   }
5836 
5837   if (EHPadBB) {
5838     // Insert a label at the end of the invoke call to mark the try range.  This
5839     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5840     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5841     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5842 
5843     // Inform MachineModuleInfo of range.
5844     if (MF.hasEHFunclets()) {
5845       assert(CLI.CS);
5846       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5847       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5848                                 BeginLabel, EndLabel);
5849     } else {
5850       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5851     }
5852   }
5853 
5854   return Result;
5855 }
5856 
5857 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5858                                       bool isTailCall,
5859                                       const BasicBlock *EHPadBB) {
5860   auto &DL = DAG.getDataLayout();
5861   FunctionType *FTy = CS.getFunctionType();
5862   Type *RetTy = CS.getType();
5863 
5864   TargetLowering::ArgListTy Args;
5865   TargetLowering::ArgListEntry Entry;
5866   Args.reserve(CS.arg_size());
5867 
5868   const Value *SwiftErrorVal = nullptr;
5869   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5870   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5871        i != e; ++i) {
5872     const Value *V = *i;
5873 
5874     // Skip empty types
5875     if (V->getType()->isEmptyTy())
5876       continue;
5877 
5878     SDValue ArgNode = getValue(V);
5879     Entry.Node = ArgNode; Entry.Ty = V->getType();
5880 
5881     // Skip the first return-type Attribute to get to params.
5882     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5883 
5884     // Use swifterror virtual register as input to the call.
5885     if (Entry.isSwiftError && TLI.supportSwiftError()) {
5886       SwiftErrorVal = V;
5887       // We find the virtual register for the actual swifterror argument.
5888       // Instead of using the Value, we use the virtual register instead.
5889       Entry.Node =
5890           DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVReg(FuncInfo.MBB, V),
5891                           EVT(TLI.getPointerTy(DL)));
5892     }
5893 
5894     Args.push_back(Entry);
5895 
5896     // If we have an explicit sret argument that is an Instruction, (i.e., it
5897     // might point to function-local memory), we can't meaningfully tail-call.
5898     if (Entry.isSRet && isa<Instruction>(V))
5899       isTailCall = false;
5900   }
5901 
5902   // Check if target-independent constraints permit a tail call here.
5903   // Target-dependent constraints are checked within TLI->LowerCallTo.
5904   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5905     isTailCall = false;
5906 
5907   // Disable tail calls if there is an swifterror argument. Targets have not
5908   // been updated to support tail calls.
5909   if (TLI.supportSwiftError() && SwiftErrorVal)
5910     isTailCall = false;
5911 
5912   TargetLowering::CallLoweringInfo CLI(DAG);
5913   CLI.setDebugLoc(getCurSDLoc())
5914       .setChain(getRoot())
5915       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5916       .setTailCall(isTailCall)
5917       .setConvergent(CS.isConvergent());
5918   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5919 
5920   if (Result.first.getNode()) {
5921     const Instruction *Inst = CS.getInstruction();
5922     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
5923     setValue(Inst, Result.first);
5924   }
5925 
5926   // The last element of CLI.InVals has the SDValue for swifterror return.
5927   // Here we copy it to a virtual register and update SwiftErrorMap for
5928   // book-keeping.
5929   if (SwiftErrorVal && TLI.supportSwiftError()) {
5930     // Get the last element of InVals.
5931     SDValue Src = CLI.InVals.back();
5932     const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy(DL));
5933     unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC);
5934     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
5935     // We update the virtual register for the actual swifterror argument.
5936     FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
5937     DAG.setRoot(CopyNode);
5938   }
5939 }
5940 
5941 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5942 /// value is equal or not-equal to zero.
5943 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5944   for (const User *U : V->users()) {
5945     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5946       if (IC->isEquality())
5947         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5948           if (C->isNullValue())
5949             continue;
5950     // Unknown instruction.
5951     return false;
5952   }
5953   return true;
5954 }
5955 
5956 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5957                              Type *LoadTy,
5958                              SelectionDAGBuilder &Builder) {
5959 
5960   // Check to see if this load can be trivially constant folded, e.g. if the
5961   // input is from a string literal.
5962   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5963     // Cast pointer to the type we really want to load.
5964     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5965                                          PointerType::getUnqual(LoadTy));
5966 
5967     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5968             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
5969       return Builder.getValue(LoadCst);
5970   }
5971 
5972   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5973   // still constant memory, the input chain can be the entry node.
5974   SDValue Root;
5975   bool ConstantMemory = false;
5976 
5977   // Do not serialize (non-volatile) loads of constant memory with anything.
5978   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5979     Root = Builder.DAG.getEntryNode();
5980     ConstantMemory = true;
5981   } else {
5982     // Do not serialize non-volatile loads against each other.
5983     Root = Builder.DAG.getRoot();
5984   }
5985 
5986   SDValue Ptr = Builder.getValue(PtrVal);
5987   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5988                                         Ptr, MachinePointerInfo(PtrVal),
5989                                         /* Alignment = */ 1);
5990 
5991   if (!ConstantMemory)
5992     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5993   return LoadVal;
5994 }
5995 
5996 /// processIntegerCallValue - Record the value for an instruction that
5997 /// produces an integer result, converting the type where necessary.
5998 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5999                                                   SDValue Value,
6000                                                   bool IsSigned) {
6001   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6002                                                     I.getType(), true);
6003   if (IsSigned)
6004     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
6005   else
6006     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
6007   setValue(&I, Value);
6008 }
6009 
6010 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
6011 /// If so, return true and lower it, otherwise return false and it will be
6012 /// lowered like a normal call.
6013 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
6014   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
6015   if (I.getNumArgOperands() != 3)
6016     return false;
6017 
6018   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
6019   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
6020       !I.getArgOperand(2)->getType()->isIntegerTy() ||
6021       !I.getType()->isIntegerTy())
6022     return false;
6023 
6024   const Value *Size = I.getArgOperand(2);
6025   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
6026   if (CSize && CSize->getZExtValue() == 0) {
6027     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
6028                                                           I.getType(), true);
6029     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
6030     return true;
6031   }
6032 
6033   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6034   std::pair<SDValue, SDValue> Res =
6035     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6036                                 getValue(LHS), getValue(RHS), getValue(Size),
6037                                 MachinePointerInfo(LHS),
6038                                 MachinePointerInfo(RHS));
6039   if (Res.first.getNode()) {
6040     processIntegerCallValue(I, Res.first, true);
6041     PendingLoads.push_back(Res.second);
6042     return true;
6043   }
6044 
6045   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
6046   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
6047   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
6048     bool ActuallyDoIt = true;
6049     MVT LoadVT;
6050     Type *LoadTy;
6051     switch (CSize->getZExtValue()) {
6052     default:
6053       LoadVT = MVT::Other;
6054       LoadTy = nullptr;
6055       ActuallyDoIt = false;
6056       break;
6057     case 2:
6058       LoadVT = MVT::i16;
6059       LoadTy = Type::getInt16Ty(CSize->getContext());
6060       break;
6061     case 4:
6062       LoadVT = MVT::i32;
6063       LoadTy = Type::getInt32Ty(CSize->getContext());
6064       break;
6065     case 8:
6066       LoadVT = MVT::i64;
6067       LoadTy = Type::getInt64Ty(CSize->getContext());
6068       break;
6069         /*
6070     case 16:
6071       LoadVT = MVT::v4i32;
6072       LoadTy = Type::getInt32Ty(CSize->getContext());
6073       LoadTy = VectorType::get(LoadTy, 4);
6074       break;
6075          */
6076     }
6077 
6078     // This turns into unaligned loads.  We only do this if the target natively
6079     // supports the MVT we'll be loading or if it is small enough (<= 4) that
6080     // we'll only produce a small number of byte loads.
6081 
6082     // Require that we can find a legal MVT, and only do this if the target
6083     // supports unaligned loads of that type.  Expanding into byte loads would
6084     // bloat the code.
6085     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6086     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
6087       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
6088       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
6089       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
6090       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
6091       // TODO: Check alignment of src and dest ptrs.
6092       if (!TLI.isTypeLegal(LoadVT) ||
6093           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
6094           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
6095         ActuallyDoIt = false;
6096     }
6097 
6098     if (ActuallyDoIt) {
6099       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
6100       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
6101 
6102       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
6103                                  ISD::SETNE);
6104       processIntegerCallValue(I, Res, false);
6105       return true;
6106     }
6107   }
6108 
6109 
6110   return false;
6111 }
6112 
6113 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
6114 /// form.  If so, return true and lower it, otherwise return false and it
6115 /// will be lowered like a normal call.
6116 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
6117   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
6118   if (I.getNumArgOperands() != 3)
6119     return false;
6120 
6121   const Value *Src = I.getArgOperand(0);
6122   const Value *Char = I.getArgOperand(1);
6123   const Value *Length = I.getArgOperand(2);
6124   if (!Src->getType()->isPointerTy() ||
6125       !Char->getType()->isIntegerTy() ||
6126       !Length->getType()->isIntegerTy() ||
6127       !I.getType()->isPointerTy())
6128     return false;
6129 
6130   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6131   std::pair<SDValue, SDValue> Res =
6132     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
6133                                 getValue(Src), getValue(Char), getValue(Length),
6134                                 MachinePointerInfo(Src));
6135   if (Res.first.getNode()) {
6136     setValue(&I, Res.first);
6137     PendingLoads.push_back(Res.second);
6138     return true;
6139   }
6140 
6141   return false;
6142 }
6143 
6144 ///
6145 /// visitMemPCpyCall -- lower a mempcpy call as a memcpy followed by code to
6146 /// to adjust the dst pointer by the size of the copied memory.
6147 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
6148 
6149   // Verify argument count: void *mempcpy(void *, const void *, size_t)
6150   if (I.getNumArgOperands() != 3)
6151     return false;
6152 
6153   SDValue Dst = getValue(I.getArgOperand(0));
6154   SDValue Src = getValue(I.getArgOperand(1));
6155   SDValue Size = getValue(I.getArgOperand(2));
6156 
6157   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
6158   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
6159   unsigned Align = std::min(DstAlign, SrcAlign);
6160   if (Align == 0) // Alignment of one or both could not be inferred.
6161     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
6162 
6163   bool isVol = false;
6164   SDLoc sdl = getCurSDLoc();
6165 
6166   // In the mempcpy context we need to pass in a false value for isTailCall
6167   // because the return pointer needs to be adjusted by the size of
6168   // the copied memory.
6169   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
6170                              false, /*isTailCall=*/false,
6171                              MachinePointerInfo(I.getArgOperand(0)),
6172                              MachinePointerInfo(I.getArgOperand(1)));
6173   assert(MC.getNode() != nullptr &&
6174          "** memcpy should not be lowered as TailCall in mempcpy context **");
6175   DAG.setRoot(MC);
6176 
6177   // Check if Size needs to be truncated or extended.
6178   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
6179 
6180   // Adjust return pointer to point just past the last dst byte.
6181   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
6182                                     Dst, Size);
6183   setValue(&I, DstPlusSize);
6184   return true;
6185 }
6186 
6187 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
6188 /// optimized form.  If so, return true and lower it, otherwise return false
6189 /// and it will be lowered like a normal call.
6190 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
6191   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
6192   if (I.getNumArgOperands() != 2)
6193     return false;
6194 
6195   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6196   if (!Arg0->getType()->isPointerTy() ||
6197       !Arg1->getType()->isPointerTy() ||
6198       !I.getType()->isPointerTy())
6199     return false;
6200 
6201   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6202   std::pair<SDValue, SDValue> Res =
6203     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
6204                                 getValue(Arg0), getValue(Arg1),
6205                                 MachinePointerInfo(Arg0),
6206                                 MachinePointerInfo(Arg1), isStpcpy);
6207   if (Res.first.getNode()) {
6208     setValue(&I, Res.first);
6209     DAG.setRoot(Res.second);
6210     return true;
6211   }
6212 
6213   return false;
6214 }
6215 
6216 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
6217 /// If so, return true and lower it, otherwise return false and it will be
6218 /// lowered like a normal call.
6219 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
6220   // Verify that the prototype makes sense.  int strcmp(void*,void*)
6221   if (I.getNumArgOperands() != 2)
6222     return false;
6223 
6224   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6225   if (!Arg0->getType()->isPointerTy() ||
6226       !Arg1->getType()->isPointerTy() ||
6227       !I.getType()->isIntegerTy())
6228     return false;
6229 
6230   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6231   std::pair<SDValue, SDValue> Res =
6232     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
6233                                 getValue(Arg0), getValue(Arg1),
6234                                 MachinePointerInfo(Arg0),
6235                                 MachinePointerInfo(Arg1));
6236   if (Res.first.getNode()) {
6237     processIntegerCallValue(I, Res.first, true);
6238     PendingLoads.push_back(Res.second);
6239     return true;
6240   }
6241 
6242   return false;
6243 }
6244 
6245 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6246 /// form.  If so, return true and lower it, otherwise return false and it
6247 /// will be lowered like a normal call.
6248 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6249   // Verify that the prototype makes sense.  size_t strlen(char *)
6250   if (I.getNumArgOperands() != 1)
6251     return false;
6252 
6253   const Value *Arg0 = I.getArgOperand(0);
6254   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6255     return false;
6256 
6257   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6258   std::pair<SDValue, SDValue> Res =
6259     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6260                                 getValue(Arg0), MachinePointerInfo(Arg0));
6261   if (Res.first.getNode()) {
6262     processIntegerCallValue(I, Res.first, false);
6263     PendingLoads.push_back(Res.second);
6264     return true;
6265   }
6266 
6267   return false;
6268 }
6269 
6270 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6271 /// form.  If so, return true and lower it, otherwise return false and it
6272 /// will be lowered like a normal call.
6273 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6274   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6275   if (I.getNumArgOperands() != 2)
6276     return false;
6277 
6278   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6279   if (!Arg0->getType()->isPointerTy() ||
6280       !Arg1->getType()->isIntegerTy() ||
6281       !I.getType()->isIntegerTy())
6282     return false;
6283 
6284   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6285   std::pair<SDValue, SDValue> Res =
6286     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6287                                  getValue(Arg0), getValue(Arg1),
6288                                  MachinePointerInfo(Arg0));
6289   if (Res.first.getNode()) {
6290     processIntegerCallValue(I, Res.first, false);
6291     PendingLoads.push_back(Res.second);
6292     return true;
6293   }
6294 
6295   return false;
6296 }
6297 
6298 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6299 /// operation (as expected), translate it to an SDNode with the specified opcode
6300 /// and return true.
6301 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6302                                               unsigned Opcode) {
6303   // Sanity check that it really is a unary floating-point call.
6304   if (I.getNumArgOperands() != 1 ||
6305       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6306       I.getType() != I.getArgOperand(0)->getType() ||
6307       !I.onlyReadsMemory())
6308     return false;
6309 
6310   SDValue Tmp = getValue(I.getArgOperand(0));
6311   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6312   return true;
6313 }
6314 
6315 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6316 /// operation (as expected), translate it to an SDNode with the specified opcode
6317 /// and return true.
6318 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6319                                                unsigned Opcode) {
6320   // Sanity check that it really is a binary floating-point call.
6321   if (I.getNumArgOperands() != 2 ||
6322       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6323       I.getType() != I.getArgOperand(0)->getType() ||
6324       I.getType() != I.getArgOperand(1)->getType() ||
6325       !I.onlyReadsMemory())
6326     return false;
6327 
6328   SDValue Tmp0 = getValue(I.getArgOperand(0));
6329   SDValue Tmp1 = getValue(I.getArgOperand(1));
6330   EVT VT = Tmp0.getValueType();
6331   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6332   return true;
6333 }
6334 
6335 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6336   // Handle inline assembly differently.
6337   if (isa<InlineAsm>(I.getCalledValue())) {
6338     visitInlineAsm(&I);
6339     return;
6340   }
6341 
6342   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6343   computeUsesVAFloatArgument(I, MMI);
6344 
6345   const char *RenameFn = nullptr;
6346   if (Function *F = I.getCalledFunction()) {
6347     if (F->isDeclaration()) {
6348       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6349         if (unsigned IID = II->getIntrinsicID(F)) {
6350           RenameFn = visitIntrinsicCall(I, IID);
6351           if (!RenameFn)
6352             return;
6353         }
6354       }
6355       if (Intrinsic::ID IID = F->getIntrinsicID()) {
6356         RenameFn = visitIntrinsicCall(I, IID);
6357         if (!RenameFn)
6358           return;
6359       }
6360     }
6361 
6362     // Check for well-known libc/libm calls.  If the function is internal, it
6363     // can't be a library call.  Don't do the check if marked as nobuiltin for
6364     // some reason.
6365     LibFunc Func;
6366     if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() &&
6367         LibInfo->getLibFunc(F->getName(), Func) &&
6368         LibInfo->hasOptimizedCodeGen(Func)) {
6369       switch (Func) {
6370       default: break;
6371       case LibFunc_copysign:
6372       case LibFunc_copysignf:
6373       case LibFunc_copysignl:
6374         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6375             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6376             I.getType() == I.getArgOperand(0)->getType() &&
6377             I.getType() == I.getArgOperand(1)->getType() &&
6378             I.onlyReadsMemory()) {
6379           SDValue LHS = getValue(I.getArgOperand(0));
6380           SDValue RHS = getValue(I.getArgOperand(1));
6381           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6382                                    LHS.getValueType(), LHS, RHS));
6383           return;
6384         }
6385         break;
6386       case LibFunc_fabs:
6387       case LibFunc_fabsf:
6388       case LibFunc_fabsl:
6389         if (visitUnaryFloatCall(I, ISD::FABS))
6390           return;
6391         break;
6392       case LibFunc_fmin:
6393       case LibFunc_fminf:
6394       case LibFunc_fminl:
6395         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6396           return;
6397         break;
6398       case LibFunc_fmax:
6399       case LibFunc_fmaxf:
6400       case LibFunc_fmaxl:
6401         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6402           return;
6403         break;
6404       case LibFunc_sin:
6405       case LibFunc_sinf:
6406       case LibFunc_sinl:
6407         if (visitUnaryFloatCall(I, ISD::FSIN))
6408           return;
6409         break;
6410       case LibFunc_cos:
6411       case LibFunc_cosf:
6412       case LibFunc_cosl:
6413         if (visitUnaryFloatCall(I, ISD::FCOS))
6414           return;
6415         break;
6416       case LibFunc_sqrt:
6417       case LibFunc_sqrtf:
6418       case LibFunc_sqrtl:
6419       case LibFunc_sqrt_finite:
6420       case LibFunc_sqrtf_finite:
6421       case LibFunc_sqrtl_finite:
6422         if (visitUnaryFloatCall(I, ISD::FSQRT))
6423           return;
6424         break;
6425       case LibFunc_floor:
6426       case LibFunc_floorf:
6427       case LibFunc_floorl:
6428         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6429           return;
6430         break;
6431       case LibFunc_nearbyint:
6432       case LibFunc_nearbyintf:
6433       case LibFunc_nearbyintl:
6434         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6435           return;
6436         break;
6437       case LibFunc_ceil:
6438       case LibFunc_ceilf:
6439       case LibFunc_ceill:
6440         if (visitUnaryFloatCall(I, ISD::FCEIL))
6441           return;
6442         break;
6443       case LibFunc_rint:
6444       case LibFunc_rintf:
6445       case LibFunc_rintl:
6446         if (visitUnaryFloatCall(I, ISD::FRINT))
6447           return;
6448         break;
6449       case LibFunc_round:
6450       case LibFunc_roundf:
6451       case LibFunc_roundl:
6452         if (visitUnaryFloatCall(I, ISD::FROUND))
6453           return;
6454         break;
6455       case LibFunc_trunc:
6456       case LibFunc_truncf:
6457       case LibFunc_truncl:
6458         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6459           return;
6460         break;
6461       case LibFunc_log2:
6462       case LibFunc_log2f:
6463       case LibFunc_log2l:
6464         if (visitUnaryFloatCall(I, ISD::FLOG2))
6465           return;
6466         break;
6467       case LibFunc_exp2:
6468       case LibFunc_exp2f:
6469       case LibFunc_exp2l:
6470         if (visitUnaryFloatCall(I, ISD::FEXP2))
6471           return;
6472         break;
6473       case LibFunc_memcmp:
6474         if (visitMemCmpCall(I))
6475           return;
6476         break;
6477       case LibFunc_mempcpy:
6478         if (visitMemPCpyCall(I))
6479           return;
6480         break;
6481       case LibFunc_memchr:
6482         if (visitMemChrCall(I))
6483           return;
6484         break;
6485       case LibFunc_strcpy:
6486         if (visitStrCpyCall(I, false))
6487           return;
6488         break;
6489       case LibFunc_stpcpy:
6490         if (visitStrCpyCall(I, true))
6491           return;
6492         break;
6493       case LibFunc_strcmp:
6494         if (visitStrCmpCall(I))
6495           return;
6496         break;
6497       case LibFunc_strlen:
6498         if (visitStrLenCall(I))
6499           return;
6500         break;
6501       case LibFunc_strnlen:
6502         if (visitStrNLenCall(I))
6503           return;
6504         break;
6505       }
6506     }
6507   }
6508 
6509   SDValue Callee;
6510   if (!RenameFn)
6511     Callee = getValue(I.getCalledValue());
6512   else
6513     Callee = DAG.getExternalSymbol(
6514         RenameFn,
6515         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6516 
6517   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
6518   // have to do anything here to lower funclet bundles.
6519   assert(!I.hasOperandBundlesOtherThan(
6520              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
6521          "Cannot lower calls with arbitrary operand bundles!");
6522 
6523   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
6524     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
6525   else
6526     // Check if we can potentially perform a tail call. More detailed checking
6527     // is be done within LowerCallTo, after more information about the call is
6528     // known.
6529     LowerCallTo(&I, Callee, I.isTailCall());
6530 }
6531 
6532 namespace {
6533 
6534 /// AsmOperandInfo - This contains information for each constraint that we are
6535 /// lowering.
6536 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6537 public:
6538   /// CallOperand - If this is the result output operand or a clobber
6539   /// this is null, otherwise it is the incoming operand to the CallInst.
6540   /// This gets modified as the asm is processed.
6541   SDValue CallOperand;
6542 
6543   /// AssignedRegs - If this is a register or register class operand, this
6544   /// contains the set of register corresponding to the operand.
6545   RegsForValue AssignedRegs;
6546 
6547   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6548     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6549   }
6550 
6551   /// Whether or not this operand accesses memory
6552   bool hasMemory(const TargetLowering &TLI) const {
6553     // Indirect operand accesses access memory.
6554     if (isIndirect)
6555       return true;
6556 
6557     for (const auto &Code : Codes)
6558       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
6559         return true;
6560 
6561     return false;
6562   }
6563 
6564   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6565   /// corresponds to.  If there is no Value* for this operand, it returns
6566   /// MVT::Other.
6567   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
6568                            const DataLayout &DL) const {
6569     if (!CallOperandVal) return MVT::Other;
6570 
6571     if (isa<BasicBlock>(CallOperandVal))
6572       return TLI.getPointerTy(DL);
6573 
6574     llvm::Type *OpTy = CallOperandVal->getType();
6575 
6576     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6577     // If this is an indirect operand, the operand is a pointer to the
6578     // accessed type.
6579     if (isIndirect) {
6580       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6581       if (!PtrTy)
6582         report_fatal_error("Indirect operand for inline asm not a pointer!");
6583       OpTy = PtrTy->getElementType();
6584     }
6585 
6586     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6587     if (StructType *STy = dyn_cast<StructType>(OpTy))
6588       if (STy->getNumElements() == 1)
6589         OpTy = STy->getElementType(0);
6590 
6591     // If OpTy is not a single value, it may be a struct/union that we
6592     // can tile with integers.
6593     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6594       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6595       switch (BitSize) {
6596       default: break;
6597       case 1:
6598       case 8:
6599       case 16:
6600       case 32:
6601       case 64:
6602       case 128:
6603         OpTy = IntegerType::get(Context, BitSize);
6604         break;
6605       }
6606     }
6607 
6608     return TLI.getValueType(DL, OpTy, true);
6609   }
6610 };
6611 
6612 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6613 
6614 } // end anonymous namespace
6615 
6616 /// Make sure that the output operand \p OpInfo and its corresponding input
6617 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
6618 /// out).
6619 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
6620                                SDISelAsmOperandInfo &MatchingOpInfo,
6621                                SelectionDAG &DAG) {
6622   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
6623     return;
6624 
6625   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6626   const auto &TLI = DAG.getTargetLoweringInfo();
6627 
6628   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6629       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6630                                        OpInfo.ConstraintVT);
6631   std::pair<unsigned, const TargetRegisterClass *> InputRC =
6632       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
6633                                        MatchingOpInfo.ConstraintVT);
6634   if ((OpInfo.ConstraintVT.isInteger() !=
6635        MatchingOpInfo.ConstraintVT.isInteger()) ||
6636       (MatchRC.second != InputRC.second)) {
6637     // FIXME: error out in a more elegant fashion
6638     report_fatal_error("Unsupported asm: input constraint"
6639                        " with a matching output constraint of"
6640                        " incompatible type!");
6641   }
6642   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
6643 }
6644 
6645 /// Get a direct memory input to behave well as an indirect operand.
6646 /// This may introduce stores, hence the need for a \p Chain.
6647 /// \return The (possibly updated) chain.
6648 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
6649                                         SDISelAsmOperandInfo &OpInfo,
6650                                         SelectionDAG &DAG) {
6651   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6652 
6653   // If we don't have an indirect input, put it in the constpool if we can,
6654   // otherwise spill it to a stack slot.
6655   // TODO: This isn't quite right. We need to handle these according to
6656   // the addressing mode that the constraint wants. Also, this may take
6657   // an additional register for the computation and we don't want that
6658   // either.
6659 
6660   // If the operand is a float, integer, or vector constant, spill to a
6661   // constant pool entry to get its address.
6662   const Value *OpVal = OpInfo.CallOperandVal;
6663   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6664       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6665     OpInfo.CallOperand = DAG.getConstantPool(
6666         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6667     return Chain;
6668   }
6669 
6670   // Otherwise, create a stack slot and emit a store to it before the asm.
6671   Type *Ty = OpVal->getType();
6672   auto &DL = DAG.getDataLayout();
6673   uint64_t TySize = DL.getTypeAllocSize(Ty);
6674   unsigned Align = DL.getPrefTypeAlignment(Ty);
6675   MachineFunction &MF = DAG.getMachineFunction();
6676   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
6677   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy(DL));
6678   Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot,
6679                        MachinePointerInfo::getFixedStack(MF, SSFI));
6680   OpInfo.CallOperand = StackSlot;
6681 
6682   return Chain;
6683 }
6684 
6685 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6686 /// specified operand.  We prefer to assign virtual registers, to allow the
6687 /// register allocator to handle the assignment process.  However, if the asm
6688 /// uses features that we can't model on machineinstrs, we have SDISel do the
6689 /// allocation.  This produces generally horrible, but correct, code.
6690 ///
6691 ///   OpInfo describes the operand.
6692 ///
6693 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI,
6694                                  const SDLoc &DL,
6695                                  SDISelAsmOperandInfo &OpInfo) {
6696   LLVMContext &Context = *DAG.getContext();
6697 
6698   MachineFunction &MF = DAG.getMachineFunction();
6699   SmallVector<unsigned, 4> Regs;
6700 
6701   // If this is a constraint for a single physreg, or a constraint for a
6702   // register class, find it.
6703   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6704       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6705                                        OpInfo.ConstraintCode,
6706                                        OpInfo.ConstraintVT);
6707 
6708   unsigned NumRegs = 1;
6709   if (OpInfo.ConstraintVT != MVT::Other) {
6710     // If this is a FP input in an integer register (or visa versa) insert a bit
6711     // cast of the input value.  More generally, handle any case where the input
6712     // value disagrees with the register class we plan to stick this in.
6713     if (OpInfo.Type == InlineAsm::isInput &&
6714         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6715       // Try to convert to the first EVT that the reg class contains.  If the
6716       // types are identical size, use a bitcast to convert (e.g. two differing
6717       // vector types).
6718       MVT RegVT = *PhysReg.second->vt_begin();
6719       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6720         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6721                                          RegVT, OpInfo.CallOperand);
6722         OpInfo.ConstraintVT = RegVT;
6723       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6724         // If the input is a FP value and we want it in FP registers, do a
6725         // bitcast to the corresponding integer type.  This turns an f64 value
6726         // into i64, which can be passed with two i32 values on a 32-bit
6727         // machine.
6728         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6729         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6730                                          RegVT, OpInfo.CallOperand);
6731         OpInfo.ConstraintVT = RegVT;
6732       }
6733     }
6734 
6735     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6736   }
6737 
6738   MVT RegVT;
6739   EVT ValueVT = OpInfo.ConstraintVT;
6740 
6741   // If this is a constraint for a specific physical register, like {r17},
6742   // assign it now.
6743   if (unsigned AssignedReg = PhysReg.first) {
6744     const TargetRegisterClass *RC = PhysReg.second;
6745     if (OpInfo.ConstraintVT == MVT::Other)
6746       ValueVT = *RC->vt_begin();
6747 
6748     // Get the actual register value type.  This is important, because the user
6749     // may have asked for (e.g.) the AX register in i32 type.  We need to
6750     // remember that AX is actually i16 to get the right extension.
6751     RegVT = *RC->vt_begin();
6752 
6753     // This is a explicit reference to a physical register.
6754     Regs.push_back(AssignedReg);
6755 
6756     // If this is an expanded reference, add the rest of the regs to Regs.
6757     if (NumRegs != 1) {
6758       TargetRegisterClass::iterator I = RC->begin();
6759       for (; *I != AssignedReg; ++I)
6760         assert(I != RC->end() && "Didn't find reg!");
6761 
6762       // Already added the first reg.
6763       --NumRegs; ++I;
6764       for (; NumRegs; --NumRegs, ++I) {
6765         assert(I != RC->end() && "Ran out of registers to allocate!");
6766         Regs.push_back(*I);
6767       }
6768     }
6769 
6770     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6771     return;
6772   }
6773 
6774   // Otherwise, if this was a reference to an LLVM register class, create vregs
6775   // for this reference.
6776   if (const TargetRegisterClass *RC = PhysReg.second) {
6777     RegVT = *RC->vt_begin();
6778     if (OpInfo.ConstraintVT == MVT::Other)
6779       ValueVT = RegVT;
6780 
6781     // Create the appropriate number of virtual registers.
6782     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6783     for (; NumRegs; --NumRegs)
6784       Regs.push_back(RegInfo.createVirtualRegister(RC));
6785 
6786     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6787     return;
6788   }
6789 
6790   // Otherwise, we couldn't allocate enough registers for this.
6791 }
6792 
6793 static unsigned
6794 findMatchingInlineAsmOperand(unsigned OperandNo,
6795                              const std::vector<SDValue> &AsmNodeOperands) {
6796   // Scan until we find the definition we already emitted of this operand.
6797   unsigned CurOp = InlineAsm::Op_FirstOperand;
6798   for (; OperandNo; --OperandNo) {
6799     // Advance to the next operand.
6800     unsigned OpFlag =
6801         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6802     assert((InlineAsm::isRegDefKind(OpFlag) ||
6803             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6804             InlineAsm::isMemKind(OpFlag)) &&
6805            "Skipped past definitions?");
6806     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
6807   }
6808   return CurOp;
6809 }
6810 
6811 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT
6812 /// \return true if it has succeeded, false otherwise
6813 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs,
6814                               MVT RegVT, SelectionDAG &DAG) {
6815   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6816   MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6817   for (unsigned i = 0, e = NumRegs; i != e; ++i) {
6818     if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6819       Regs.push_back(RegInfo.createVirtualRegister(RC));
6820     else
6821       return false;
6822   }
6823   return true;
6824 }
6825 
6826 class ExtraFlags {
6827   unsigned Flags = 0;
6828 
6829 public:
6830   explicit ExtraFlags(ImmutableCallSite CS) {
6831     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6832     if (IA->hasSideEffects())
6833       Flags |= InlineAsm::Extra_HasSideEffects;
6834     if (IA->isAlignStack())
6835       Flags |= InlineAsm::Extra_IsAlignStack;
6836     if (CS.isConvergent())
6837       Flags |= InlineAsm::Extra_IsConvergent;
6838     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6839   }
6840 
6841   void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) {
6842     // Ideally, we would only check against memory constraints.  However, the
6843     // meaning of an Other constraint can be target-specific and we can't easily
6844     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6845     // for Other constraints as well.
6846     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6847         OpInfo.ConstraintType == TargetLowering::C_Other) {
6848       if (OpInfo.Type == InlineAsm::isInput)
6849         Flags |= InlineAsm::Extra_MayLoad;
6850       else if (OpInfo.Type == InlineAsm::isOutput)
6851         Flags |= InlineAsm::Extra_MayStore;
6852       else if (OpInfo.Type == InlineAsm::isClobber)
6853         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6854     }
6855   }
6856 
6857   unsigned get() const { return Flags; }
6858 };
6859 
6860 /// visitInlineAsm - Handle a call to an InlineAsm object.
6861 ///
6862 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6863   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6864 
6865   /// ConstraintOperands - Information about all of the constraints.
6866   SDISelAsmOperandInfoVector ConstraintOperands;
6867 
6868   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6869   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6870       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6871 
6872   bool hasMemory = false;
6873 
6874   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6875   ExtraFlags ExtraInfo(CS);
6876 
6877   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6878   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6879   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6880     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6881     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6882 
6883     MVT OpVT = MVT::Other;
6884 
6885     // Compute the value type for each operand.
6886     if (OpInfo.Type == InlineAsm::isInput ||
6887         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
6888       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6889 
6890       // Process the call argument. BasicBlocks are labels, currently appearing
6891       // only in asm's.
6892       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6893         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6894       } else {
6895         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6896       }
6897 
6898       OpVT =
6899           OpInfo
6900               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
6901               .getSimpleVT();
6902     }
6903 
6904     if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
6905       // The return value of the call is this value.  As such, there is no
6906       // corresponding argument.
6907       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6908       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6909         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6910                                       STy->getElementType(ResNo));
6911       } else {
6912         assert(ResNo == 0 && "Asm only has one result!");
6913         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6914       }
6915       ++ResNo;
6916     }
6917 
6918     OpInfo.ConstraintVT = OpVT;
6919 
6920     if (!hasMemory)
6921       hasMemory = OpInfo.hasMemory(TLI);
6922 
6923     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6924     // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]?
6925     auto TargetConstraint = TargetConstraints[i];
6926 
6927     // Compute the constraint code and ConstraintType to use.
6928     TLI.ComputeConstraintToUse(TargetConstraint, SDValue());
6929 
6930     ExtraInfo.update(TargetConstraint);
6931   }
6932 
6933   SDValue Chain, Flag;
6934 
6935   // We won't need to flush pending loads if this asm doesn't touch
6936   // memory and is nonvolatile.
6937   if (hasMemory || IA->hasSideEffects())
6938     Chain = getRoot();
6939   else
6940     Chain = DAG.getRoot();
6941 
6942   // Second pass over the constraints: compute which constraint option to use
6943   // and assign registers to constraints that want a specific physreg.
6944   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6945     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6946 
6947     // If this is an output operand with a matching input operand, look up the
6948     // matching input. If their types mismatch, e.g. one is an integer, the
6949     // other is floating point, or their sizes are different, flag it as an
6950     // error.
6951     if (OpInfo.hasMatchingInput()) {
6952       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6953       patchMatchingInput(OpInfo, Input, DAG);
6954     }
6955 
6956     // Compute the constraint code and ConstraintType to use.
6957     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6958 
6959     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6960         OpInfo.Type == InlineAsm::isClobber)
6961       continue;
6962 
6963     // If this is a memory input, and if the operand is not indirect, do what we
6964     // need to to provide an address for the memory input.
6965     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6966         !OpInfo.isIndirect) {
6967       assert((OpInfo.isMultipleAlternative ||
6968               (OpInfo.Type == InlineAsm::isInput)) &&
6969              "Can only indirectify direct input operands!");
6970 
6971       // Memory operands really want the address of the value.
6972       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
6973 
6974       // There is no longer a Value* corresponding to this operand.
6975       OpInfo.CallOperandVal = nullptr;
6976 
6977       // It is now an indirect operand.
6978       OpInfo.isIndirect = true;
6979     }
6980 
6981     // If this constraint is for a specific register, allocate it before
6982     // anything else.
6983     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6984       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6985   }
6986 
6987   // Third pass - Loop over all of the operands, assigning virtual or physregs
6988   // to register class operands.
6989   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6990     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6991 
6992     // C_Register operands have already been allocated, Other/Memory don't need
6993     // to be.
6994     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6995       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6996   }
6997 
6998   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6999   std::vector<SDValue> AsmNodeOperands;
7000   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
7001   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
7002       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
7003 
7004   // If we have a !srcloc metadata node associated with it, we want to attach
7005   // this to the ultimately generated inline asm machineinstr.  To do this, we
7006   // pass in the third operand as this (potentially null) inline asm MDNode.
7007   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
7008   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
7009 
7010   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
7011   // bits as operand 3.
7012   AsmNodeOperands.push_back(DAG.getTargetConstant(
7013       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7014 
7015   // Loop over all of the inputs, copying the operand values into the
7016   // appropriate registers and processing the output regs.
7017   RegsForValue RetValRegs;
7018 
7019   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
7020   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
7021 
7022   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
7023     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
7024 
7025     switch (OpInfo.Type) {
7026     case InlineAsm::isOutput: {
7027       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
7028           OpInfo.ConstraintType != TargetLowering::C_Register) {
7029         // Memory output, or 'other' output (e.g. 'X' constraint).
7030         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
7031 
7032         unsigned ConstraintID =
7033             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7034         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7035                "Failed to convert memory constraint code to constraint id.");
7036 
7037         // Add information to the INLINEASM node to know about this output.
7038         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7039         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
7040         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
7041                                                         MVT::i32));
7042         AsmNodeOperands.push_back(OpInfo.CallOperand);
7043         break;
7044       }
7045 
7046       // Otherwise, this is a register or register class output.
7047 
7048       // Copy the output from the appropriate register.  Find a register that
7049       // we can use.
7050       if (OpInfo.AssignedRegs.Regs.empty()) {
7051         emitInlineAsmError(
7052             CS, "couldn't allocate output register for constraint '" +
7053                     Twine(OpInfo.ConstraintCode) + "'");
7054         return;
7055       }
7056 
7057       // If this is an indirect operand, store through the pointer after the
7058       // asm.
7059       if (OpInfo.isIndirect) {
7060         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
7061                                                       OpInfo.CallOperandVal));
7062       } else {
7063         // This is the result value of the call.
7064         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
7065         // Concatenate this output onto the outputs list.
7066         RetValRegs.append(OpInfo.AssignedRegs);
7067       }
7068 
7069       // Add information to the INLINEASM node to know that this register is
7070       // set.
7071       OpInfo.AssignedRegs
7072           .AddInlineAsmOperands(OpInfo.isEarlyClobber
7073                                     ? InlineAsm::Kind_RegDefEarlyClobber
7074                                     : InlineAsm::Kind_RegDef,
7075                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
7076       break;
7077     }
7078     case InlineAsm::isInput: {
7079       SDValue InOperandVal = OpInfo.CallOperand;
7080 
7081       if (OpInfo.isMatchingInputConstraint()) {
7082         // If this is required to match an output register we have already set,
7083         // just use its register.
7084         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
7085                                                   AsmNodeOperands);
7086         unsigned OpFlag =
7087           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7088         if (InlineAsm::isRegDefKind(OpFlag) ||
7089             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
7090           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
7091           if (OpInfo.isIndirect) {
7092             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
7093             emitInlineAsmError(CS, "inline asm not supported yet:"
7094                                    " don't know how to handle tied "
7095                                    "indirect register inputs");
7096             return;
7097           }
7098 
7099           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
7100           SmallVector<unsigned, 4> Regs;
7101 
7102           if (!createVirtualRegs(Regs,
7103                                  InlineAsm::getNumOperandRegisters(OpFlag),
7104                                  RegVT, DAG)) {
7105             emitInlineAsmError(CS, "inline asm error: This value type register "
7106                                    "class is not natively supported!");
7107             return;
7108           }
7109 
7110           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
7111 
7112           SDLoc dl = getCurSDLoc();
7113           // Use the produced MatchedRegs object to
7114           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7115                                     Chain, &Flag, CS.getInstruction());
7116           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
7117                                            true, OpInfo.getMatchedOperand(), dl,
7118                                            DAG, AsmNodeOperands);
7119           break;
7120         }
7121 
7122         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
7123         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
7124                "Unexpected number of operands");
7125         // Add information to the INLINEASM node to know about this input.
7126         // See InlineAsm.h isUseOperandTiedToDef.
7127         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
7128         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
7129                                                     OpInfo.getMatchedOperand());
7130         AsmNodeOperands.push_back(DAG.getTargetConstant(
7131             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7132         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
7133         break;
7134       }
7135 
7136       // Treat indirect 'X' constraint as memory.
7137       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
7138           OpInfo.isIndirect)
7139         OpInfo.ConstraintType = TargetLowering::C_Memory;
7140 
7141       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
7142         std::vector<SDValue> Ops;
7143         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
7144                                           Ops, DAG);
7145         if (Ops.empty()) {
7146           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
7147                                      Twine(OpInfo.ConstraintCode) + "'");
7148           return;
7149         }
7150 
7151         // Add information to the INLINEASM node to know about this input.
7152         unsigned ResOpType =
7153           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
7154         AsmNodeOperands.push_back(DAG.getTargetConstant(
7155             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
7156         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
7157         break;
7158       }
7159 
7160       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
7161         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
7162         assert(InOperandVal.getValueType() ==
7163                    TLI.getPointerTy(DAG.getDataLayout()) &&
7164                "Memory operands expect pointer values");
7165 
7166         unsigned ConstraintID =
7167             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
7168         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
7169                "Failed to convert memory constraint code to constraint id.");
7170 
7171         // Add information to the INLINEASM node to know about this input.
7172         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
7173         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
7174         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
7175                                                         getCurSDLoc(),
7176                                                         MVT::i32));
7177         AsmNodeOperands.push_back(InOperandVal);
7178         break;
7179       }
7180 
7181       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
7182               OpInfo.ConstraintType == TargetLowering::C_Register) &&
7183              "Unknown constraint type!");
7184 
7185       // TODO: Support this.
7186       if (OpInfo.isIndirect) {
7187         emitInlineAsmError(
7188             CS, "Don't know how to handle indirect register inputs yet "
7189                 "for constraint '" +
7190                     Twine(OpInfo.ConstraintCode) + "'");
7191         return;
7192       }
7193 
7194       // Copy the input into the appropriate registers.
7195       if (OpInfo.AssignedRegs.Regs.empty()) {
7196         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
7197                                    Twine(OpInfo.ConstraintCode) + "'");
7198         return;
7199       }
7200 
7201       SDLoc dl = getCurSDLoc();
7202 
7203       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
7204                                         Chain, &Flag, CS.getInstruction());
7205 
7206       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
7207                                                dl, DAG, AsmNodeOperands);
7208       break;
7209     }
7210     case InlineAsm::isClobber: {
7211       // Add the clobbered value to the operand list, so that the register
7212       // allocator is aware that the physreg got clobbered.
7213       if (!OpInfo.AssignedRegs.Regs.empty())
7214         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
7215                                                  false, 0, getCurSDLoc(), DAG,
7216                                                  AsmNodeOperands);
7217       break;
7218     }
7219     }
7220   }
7221 
7222   // Finish up input operands.  Set the input chain and add the flag last.
7223   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
7224   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
7225 
7226   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
7227                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
7228   Flag = Chain.getValue(1);
7229 
7230   // If this asm returns a register value, copy the result from that register
7231   // and set it as the value of the call.
7232   if (!RetValRegs.Regs.empty()) {
7233     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7234                                              Chain, &Flag, CS.getInstruction());
7235 
7236     // FIXME: Why don't we do this for inline asms with MRVs?
7237     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
7238       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7239 
7240       // If any of the results of the inline asm is a vector, it may have the
7241       // wrong width/num elts.  This can happen for register classes that can
7242       // contain multiple different value types.  The preg or vreg allocated may
7243       // not have the same VT as was expected.  Convert it to the right type
7244       // with bit_convert.
7245       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
7246         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
7247                           ResultType, Val);
7248 
7249       } else if (ResultType != Val.getValueType() &&
7250                  ResultType.isInteger() && Val.getValueType().isInteger()) {
7251         // If a result value was tied to an input value, the computed result may
7252         // have a wider width than the expected result.  Extract the relevant
7253         // portion.
7254         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
7255       }
7256 
7257       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
7258     }
7259 
7260     setValue(CS.getInstruction(), Val);
7261     // Don't need to use this as a chain in this case.
7262     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
7263       return;
7264   }
7265 
7266   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
7267 
7268   // Process indirect outputs, first output all of the flagged copies out of
7269   // physregs.
7270   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
7271     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
7272     const Value *Ptr = IndirectStoresToEmit[i].second;
7273     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
7274                                              Chain, &Flag, IA);
7275     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
7276   }
7277 
7278   // Emit the non-flagged stores from the physregs.
7279   SmallVector<SDValue, 8> OutChains;
7280   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
7281     SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first,
7282                                getValue(StoresToEmit[i].second),
7283                                MachinePointerInfo(StoresToEmit[i].second));
7284     OutChains.push_back(Val);
7285   }
7286 
7287   if (!OutChains.empty())
7288     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
7289 
7290   DAG.setRoot(Chain);
7291 }
7292 
7293 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
7294                                              const Twine &Message) {
7295   LLVMContext &Ctx = *DAG.getContext();
7296   Ctx.emitError(CS.getInstruction(), Message);
7297 
7298   // Make sure we leave the DAG in a valid state
7299   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7300   auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType());
7301   setValue(CS.getInstruction(), DAG.getUNDEF(VT));
7302 }
7303 
7304 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
7305   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
7306                           MVT::Other, getRoot(),
7307                           getValue(I.getArgOperand(0)),
7308                           DAG.getSrcValue(I.getArgOperand(0))));
7309 }
7310 
7311 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
7312   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7313   const DataLayout &DL = DAG.getDataLayout();
7314   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
7315                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
7316                            DAG.getSrcValue(I.getOperand(0)),
7317                            DL.getABITypeAlignment(I.getType()));
7318   setValue(&I, V);
7319   DAG.setRoot(V.getValue(1));
7320 }
7321 
7322 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7323   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7324                           MVT::Other, getRoot(),
7325                           getValue(I.getArgOperand(0)),
7326                           DAG.getSrcValue(I.getArgOperand(0))));
7327 }
7328 
7329 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7330   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7331                           MVT::Other, getRoot(),
7332                           getValue(I.getArgOperand(0)),
7333                           getValue(I.getArgOperand(1)),
7334                           DAG.getSrcValue(I.getArgOperand(0)),
7335                           DAG.getSrcValue(I.getArgOperand(1))));
7336 }
7337 
7338 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
7339                                                     const Instruction &I,
7340                                                     SDValue Op) {
7341   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
7342   if (!Range)
7343     return Op;
7344 
7345   ConstantRange CR = getConstantRangeFromMetadata(*Range);
7346   if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet())
7347     return Op;
7348 
7349   APInt Lo = CR.getUnsignedMin();
7350   if (!Lo.isMinValue())
7351     return Op;
7352 
7353   APInt Hi = CR.getUnsignedMax();
7354   unsigned Bits = Hi.getActiveBits();
7355 
7356   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
7357 
7358   SDLoc SL = getCurSDLoc();
7359 
7360   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
7361                              DAG.getValueType(SmallVT));
7362   unsigned NumVals = Op.getNode()->getNumValues();
7363   if (NumVals == 1)
7364     return ZExt;
7365 
7366   SmallVector<SDValue, 4> Ops;
7367 
7368   Ops.push_back(ZExt);
7369   for (unsigned I = 1; I != NumVals; ++I)
7370     Ops.push_back(Op.getValue(I));
7371 
7372   return DAG.getMergeValues(Ops, SL);
7373 }
7374 
7375 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of
7376 /// the call being lowered.
7377 ///
7378 /// This is a helper for lowering intrinsics that follow a target calling
7379 /// convention or require stack pointer adjustment. Only a subset of the
7380 /// intrinsic's operands need to participate in the calling convention.
7381 void SelectionDAGBuilder::populateCallLoweringInfo(
7382     TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS,
7383     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
7384     bool IsPatchPoint) {
7385   TargetLowering::ArgListTy Args;
7386   Args.reserve(NumArgs);
7387 
7388   // Populate the argument list.
7389   // Attributes for args start at offset 1, after the return attribute.
7390   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7391        ArgI != ArgE; ++ArgI) {
7392     const Value *V = CS->getOperand(ArgI);
7393 
7394     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7395 
7396     TargetLowering::ArgListEntry Entry;
7397     Entry.Node = getValue(V);
7398     Entry.Ty = V->getType();
7399     Entry.setAttributes(&CS, AttrI);
7400     Args.push_back(Entry);
7401   }
7402 
7403   CLI.setDebugLoc(getCurSDLoc())
7404       .setChain(getRoot())
7405       .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args))
7406       .setDiscardResult(CS->use_empty())
7407       .setIsPatchPoint(IsPatchPoint);
7408 }
7409 
7410 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7411 /// or patchpoint target node's operand list.
7412 ///
7413 /// Constants are converted to TargetConstants purely as an optimization to
7414 /// avoid constant materialization and register allocation.
7415 ///
7416 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7417 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7418 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7419 /// address materialization and register allocation, but may also be required
7420 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7421 /// alloca in the entry block, then the runtime may assume that the alloca's
7422 /// StackMap location can be read immediately after compilation and that the
7423 /// location is valid at any point during execution (this is similar to the
7424 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7425 /// only available in a register, then the runtime would need to trap when
7426 /// execution reaches the StackMap in order to read the alloca's location.
7427 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7428                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
7429                                 SelectionDAGBuilder &Builder) {
7430   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7431     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7432     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7433       Ops.push_back(
7434         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
7435       Ops.push_back(
7436         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
7437     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7438       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7439       Ops.push_back(Builder.DAG.getTargetFrameIndex(
7440           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
7441     } else
7442       Ops.push_back(OpVal);
7443   }
7444 }
7445 
7446 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7447 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7448   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7449   //                                  [live variables...])
7450 
7451   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7452 
7453   SDValue Chain, InFlag, Callee, NullPtr;
7454   SmallVector<SDValue, 32> Ops;
7455 
7456   SDLoc DL = getCurSDLoc();
7457   Callee = getValue(CI.getCalledValue());
7458   NullPtr = DAG.getIntPtrConstant(0, DL, true);
7459 
7460   // The stackmap intrinsic only records the live variables (the arguemnts
7461   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7462   // intrinsic, this won't be lowered to a function call. This means we don't
7463   // have to worry about calling conventions and target specific lowering code.
7464   // Instead we perform the call lowering right here.
7465   //
7466   // chain, flag = CALLSEQ_START(chain, 0)
7467   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7468   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7469   //
7470   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7471   InFlag = Chain.getValue(1);
7472 
7473   // Add the <id> and <numBytes> constants.
7474   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7475   Ops.push_back(DAG.getTargetConstant(
7476                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
7477   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7478   Ops.push_back(DAG.getTargetConstant(
7479                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
7480                   MVT::i32));
7481 
7482   // Push live variables for the stack map.
7483   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
7484 
7485   // We are not pushing any register mask info here on the operands list,
7486   // because the stackmap doesn't clobber anything.
7487 
7488   // Push the chain and the glue flag.
7489   Ops.push_back(Chain);
7490   Ops.push_back(InFlag);
7491 
7492   // Create the STACKMAP node.
7493   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7494   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7495   Chain = SDValue(SM, 0);
7496   InFlag = Chain.getValue(1);
7497 
7498   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7499 
7500   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7501 
7502   // Set the root to the target-lowered call chain.
7503   DAG.setRoot(Chain);
7504 
7505   // Inform the Frame Information that we have a stackmap in this function.
7506   FuncInfo.MF->getFrameInfo().setHasStackMap();
7507 }
7508 
7509 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7510 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7511                                           const BasicBlock *EHPadBB) {
7512   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7513   //                                                 i32 <numBytes>,
7514   //                                                 i8* <target>,
7515   //                                                 i32 <numArgs>,
7516   //                                                 [Args...],
7517   //                                                 [live variables...])
7518 
7519   CallingConv::ID CC = CS.getCallingConv();
7520   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7521   bool HasDef = !CS->getType()->isVoidTy();
7522   SDLoc dl = getCurSDLoc();
7523   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
7524 
7525   // Handle immediate and symbolic callees.
7526   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
7527     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
7528                                    /*isTarget=*/true);
7529   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
7530     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
7531                                          SDLoc(SymbolicCallee),
7532                                          SymbolicCallee->getValueType(0));
7533 
7534   // Get the real number of arguments participating in the call <numArgs>
7535   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7536   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7537 
7538   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7539   // Intrinsics include all meta-operands up to but not including CC.
7540   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7541   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7542          "Not enough arguments provided to the patchpoint intrinsic");
7543 
7544   // For AnyRegCC the arguments are lowered later on manually.
7545   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7546   Type *ReturnTy =
7547     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7548 
7549   TargetLowering::CallLoweringInfo CLI(DAG);
7550   populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy,
7551                            true);
7552   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7553 
7554   SDNode *CallEnd = Result.second.getNode();
7555   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7556     CallEnd = CallEnd->getOperand(0).getNode();
7557 
7558   /// Get a call instruction from the call sequence chain.
7559   /// Tail calls are not allowed.
7560   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7561          "Expected a callseq node.");
7562   SDNode *Call = CallEnd->getOperand(0).getNode();
7563   bool HasGlue = Call->getGluedNode();
7564 
7565   // Replace the target specific call node with the patchable intrinsic.
7566   SmallVector<SDValue, 8> Ops;
7567 
7568   // Add the <id> and <numBytes> constants.
7569   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7570   Ops.push_back(DAG.getTargetConstant(
7571                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
7572   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7573   Ops.push_back(DAG.getTargetConstant(
7574                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
7575                   MVT::i32));
7576 
7577   // Add the callee.
7578   Ops.push_back(Callee);
7579 
7580   // Adjust <numArgs> to account for any arguments that have been passed on the
7581   // stack instead.
7582   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7583   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7584   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7585   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
7586 
7587   // Add the calling convention
7588   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
7589 
7590   // Add the arguments we omitted previously. The register allocator should
7591   // place these in any free register.
7592   if (IsAnyRegCC)
7593     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7594       Ops.push_back(getValue(CS.getArgument(i)));
7595 
7596   // Push the arguments from the call instruction up to the register mask.
7597   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7598   Ops.append(Call->op_begin() + 2, e);
7599 
7600   // Push live variables for the stack map.
7601   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
7602 
7603   // Push the register mask info.
7604   if (HasGlue)
7605     Ops.push_back(*(Call->op_end()-2));
7606   else
7607     Ops.push_back(*(Call->op_end()-1));
7608 
7609   // Push the chain (this is originally the first operand of the call, but
7610   // becomes now the last or second to last operand).
7611   Ops.push_back(*(Call->op_begin()));
7612 
7613   // Push the glue flag (last operand).
7614   if (HasGlue)
7615     Ops.push_back(*(Call->op_end()-1));
7616 
7617   SDVTList NodeTys;
7618   if (IsAnyRegCC && HasDef) {
7619     // Create the return types based on the intrinsic definition
7620     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7621     SmallVector<EVT, 3> ValueVTs;
7622     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
7623     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7624 
7625     // There is always a chain and a glue type at the end
7626     ValueVTs.push_back(MVT::Other);
7627     ValueVTs.push_back(MVT::Glue);
7628     NodeTys = DAG.getVTList(ValueVTs);
7629   } else
7630     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7631 
7632   // Replace the target specific call node with a PATCHPOINT node.
7633   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7634                                          dl, NodeTys, Ops);
7635 
7636   // Update the NodeMap.
7637   if (HasDef) {
7638     if (IsAnyRegCC)
7639       setValue(CS.getInstruction(), SDValue(MN, 0));
7640     else
7641       setValue(CS.getInstruction(), Result.first);
7642   }
7643 
7644   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7645   // call sequence. Furthermore the location of the chain and glue can change
7646   // when the AnyReg calling convention is used and the intrinsic returns a
7647   // value.
7648   if (IsAnyRegCC && HasDef) {
7649     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7650     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7651     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7652   } else
7653     DAG.ReplaceAllUsesWith(Call, MN);
7654   DAG.DeleteNode(Call);
7655 
7656   // Inform the Frame Information that we have a patchpoint in this function.
7657   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
7658 }
7659 
7660 /// Returns an AttributeSet representing the attributes applied to the return
7661 /// value of the given call.
7662 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7663   SmallVector<Attribute::AttrKind, 2> Attrs;
7664   if (CLI.RetSExt)
7665     Attrs.push_back(Attribute::SExt);
7666   if (CLI.RetZExt)
7667     Attrs.push_back(Attribute::ZExt);
7668   if (CLI.IsInReg)
7669     Attrs.push_back(Attribute::InReg);
7670 
7671   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7672                            Attrs);
7673 }
7674 
7675 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7676 /// implementation, which just calls LowerCall.
7677 /// FIXME: When all targets are
7678 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7679 std::pair<SDValue, SDValue>
7680 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7681   // Handle the incoming return values from the call.
7682   CLI.Ins.clear();
7683   Type *OrigRetTy = CLI.RetTy;
7684   SmallVector<EVT, 4> RetTys;
7685   SmallVector<uint64_t, 4> Offsets;
7686   auto &DL = CLI.DAG.getDataLayout();
7687   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7688 
7689   SmallVector<ISD::OutputArg, 4> Outs;
7690   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7691 
7692   bool CanLowerReturn =
7693       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7694                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7695 
7696   SDValue DemoteStackSlot;
7697   int DemoteStackIdx = -100;
7698   if (!CanLowerReturn) {
7699     // FIXME: equivalent assert?
7700     // assert(!CS.hasInAllocaArgument() &&
7701     //        "sret demotion is incompatible with inalloca");
7702     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7703     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7704     MachineFunction &MF = CLI.DAG.getMachineFunction();
7705     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7706     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7707 
7708     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7709     ArgListEntry Entry;
7710     Entry.Node = DemoteStackSlot;
7711     Entry.Ty = StackSlotPtrType;
7712     Entry.isSExt = false;
7713     Entry.isZExt = false;
7714     Entry.isInReg = false;
7715     Entry.isSRet = true;
7716     Entry.isNest = false;
7717     Entry.isByVal = false;
7718     Entry.isReturned = false;
7719     Entry.isSwiftSelf = false;
7720     Entry.isSwiftError = false;
7721     Entry.Alignment = Align;
7722     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7723     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7724 
7725     // sret demotion isn't compatible with tail-calls, since the sret argument
7726     // points into the callers stack frame.
7727     CLI.IsTailCall = false;
7728   } else {
7729     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7730       EVT VT = RetTys[I];
7731       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7732       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7733       for (unsigned i = 0; i != NumRegs; ++i) {
7734         ISD::InputArg MyFlags;
7735         MyFlags.VT = RegisterVT;
7736         MyFlags.ArgVT = VT;
7737         MyFlags.Used = CLI.IsReturnValueUsed;
7738         if (CLI.RetSExt)
7739           MyFlags.Flags.setSExt();
7740         if (CLI.RetZExt)
7741           MyFlags.Flags.setZExt();
7742         if (CLI.IsInReg)
7743           MyFlags.Flags.setInReg();
7744         CLI.Ins.push_back(MyFlags);
7745       }
7746     }
7747   }
7748 
7749   // We push in swifterror return as the last element of CLI.Ins.
7750   ArgListTy &Args = CLI.getArgs();
7751   if (supportSwiftError()) {
7752     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7753       if (Args[i].isSwiftError) {
7754         ISD::InputArg MyFlags;
7755         MyFlags.VT = getPointerTy(DL);
7756         MyFlags.ArgVT = EVT(getPointerTy(DL));
7757         MyFlags.Flags.setSwiftError();
7758         CLI.Ins.push_back(MyFlags);
7759       }
7760     }
7761   }
7762 
7763   // Handle all of the outgoing arguments.
7764   CLI.Outs.clear();
7765   CLI.OutVals.clear();
7766   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7767     SmallVector<EVT, 4> ValueVTs;
7768     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7769     Type *FinalType = Args[i].Ty;
7770     if (Args[i].isByVal)
7771       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7772     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7773         FinalType, CLI.CallConv, CLI.IsVarArg);
7774     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7775          ++Value) {
7776       EVT VT = ValueVTs[Value];
7777       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7778       SDValue Op = SDValue(Args[i].Node.getNode(),
7779                            Args[i].Node.getResNo() + Value);
7780       ISD::ArgFlagsTy Flags;
7781       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7782 
7783       if (Args[i].isZExt)
7784         Flags.setZExt();
7785       if (Args[i].isSExt)
7786         Flags.setSExt();
7787       if (Args[i].isInReg) {
7788         // If we are using vectorcall calling convention, a structure that is
7789         // passed InReg - is surely an HVA
7790         if (CLI.CallConv == CallingConv::X86_VectorCall &&
7791             isa<StructType>(FinalType)) {
7792           // The first value of a structure is marked
7793           if (0 == Value)
7794             Flags.setHvaStart();
7795           Flags.setHva();
7796         }
7797         // Set InReg Flag
7798         Flags.setInReg();
7799       }
7800       if (Args[i].isSRet)
7801         Flags.setSRet();
7802       if (Args[i].isSwiftSelf)
7803         Flags.setSwiftSelf();
7804       if (Args[i].isSwiftError)
7805         Flags.setSwiftError();
7806       if (Args[i].isByVal)
7807         Flags.setByVal();
7808       if (Args[i].isInAlloca) {
7809         Flags.setInAlloca();
7810         // Set the byval flag for CCAssignFn callbacks that don't know about
7811         // inalloca.  This way we can know how many bytes we should've allocated
7812         // and how many bytes a callee cleanup function will pop.  If we port
7813         // inalloca to more targets, we'll have to add custom inalloca handling
7814         // in the various CC lowering callbacks.
7815         Flags.setByVal();
7816       }
7817       if (Args[i].isByVal || Args[i].isInAlloca) {
7818         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7819         Type *ElementTy = Ty->getElementType();
7820         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7821         // For ByVal, alignment should come from FE.  BE will guess if this
7822         // info is not there but there are cases it cannot get right.
7823         unsigned FrameAlign;
7824         if (Args[i].Alignment)
7825           FrameAlign = Args[i].Alignment;
7826         else
7827           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7828         Flags.setByValAlign(FrameAlign);
7829       }
7830       if (Args[i].isNest)
7831         Flags.setNest();
7832       if (NeedsRegBlock)
7833         Flags.setInConsecutiveRegs();
7834       Flags.setOrigAlign(OriginalAlignment);
7835 
7836       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7837       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7838       SmallVector<SDValue, 4> Parts(NumParts);
7839       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7840 
7841       if (Args[i].isSExt)
7842         ExtendKind = ISD::SIGN_EXTEND;
7843       else if (Args[i].isZExt)
7844         ExtendKind = ISD::ZERO_EXTEND;
7845 
7846       // Conservatively only handle 'returned' on non-vectors for now
7847       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7848         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7849                "unexpected use of 'returned'");
7850         // Before passing 'returned' to the target lowering code, ensure that
7851         // either the register MVT and the actual EVT are the same size or that
7852         // the return value and argument are extended in the same way; in these
7853         // cases it's safe to pass the argument register value unchanged as the
7854         // return register value (although it's at the target's option whether
7855         // to do so)
7856         // TODO: allow code generation to take advantage of partially preserved
7857         // registers rather than clobbering the entire register when the
7858         // parameter extension method is not compatible with the return
7859         // extension method
7860         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7861             (ExtendKind != ISD::ANY_EXTEND &&
7862              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7863         Flags.setReturned();
7864       }
7865 
7866       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7867                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7868 
7869       for (unsigned j = 0; j != NumParts; ++j) {
7870         // if it isn't first piece, alignment must be 1
7871         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7872                                i < CLI.NumFixedArgs,
7873                                i, j*Parts[j].getValueType().getStoreSize());
7874         if (NumParts > 1 && j == 0)
7875           MyFlags.Flags.setSplit();
7876         else if (j != 0) {
7877           MyFlags.Flags.setOrigAlign(1);
7878           if (j == NumParts - 1)
7879             MyFlags.Flags.setSplitEnd();
7880         }
7881 
7882         CLI.Outs.push_back(MyFlags);
7883         CLI.OutVals.push_back(Parts[j]);
7884       }
7885 
7886       if (NeedsRegBlock && Value == NumValues - 1)
7887         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7888     }
7889   }
7890 
7891   SmallVector<SDValue, 4> InVals;
7892   CLI.Chain = LowerCall(CLI, InVals);
7893 
7894   // Update CLI.InVals to use outside of this function.
7895   CLI.InVals = InVals;
7896 
7897   // Verify that the target's LowerCall behaved as expected.
7898   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7899          "LowerCall didn't return a valid chain!");
7900   assert((!CLI.IsTailCall || InVals.empty()) &&
7901          "LowerCall emitted a return value for a tail call!");
7902   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7903          "LowerCall didn't emit the correct number of values!");
7904 
7905   // For a tail call, the return value is merely live-out and there aren't
7906   // any nodes in the DAG representing it. Return a special value to
7907   // indicate that a tail call has been emitted and no more Instructions
7908   // should be processed in the current block.
7909   if (CLI.IsTailCall) {
7910     CLI.DAG.setRoot(CLI.Chain);
7911     return std::make_pair(SDValue(), SDValue());
7912   }
7913 
7914 #ifndef NDEBUG
7915   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7916     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
7917     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7918            "LowerCall emitted a value with the wrong type!");
7919   }
7920 #endif
7921 
7922   SmallVector<SDValue, 4> ReturnValues;
7923   if (!CanLowerReturn) {
7924     // The instruction result is the result of loading from the
7925     // hidden sret parameter.
7926     SmallVector<EVT, 1> PVTs;
7927     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7928 
7929     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7930     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7931     EVT PtrVT = PVTs[0];
7932 
7933     unsigned NumValues = RetTys.size();
7934     ReturnValues.resize(NumValues);
7935     SmallVector<SDValue, 4> Chains(NumValues);
7936 
7937     // An aggregate return value cannot wrap around the address space, so
7938     // offsets to its parts don't wrap either.
7939     SDNodeFlags Flags;
7940     Flags.setNoUnsignedWrap(true);
7941 
7942     for (unsigned i = 0; i < NumValues; ++i) {
7943       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7944                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7945                                                         PtrVT), &Flags);
7946       SDValue L = CLI.DAG.getLoad(
7947           RetTys[i], CLI.DL, CLI.Chain, Add,
7948           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7949                                             DemoteStackIdx, Offsets[i]),
7950           /* Alignment = */ 1);
7951       ReturnValues[i] = L;
7952       Chains[i] = L.getValue(1);
7953     }
7954 
7955     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7956   } else {
7957     // Collect the legal value parts into potentially illegal values
7958     // that correspond to the original function's return values.
7959     Optional<ISD::NodeType> AssertOp;
7960     if (CLI.RetSExt)
7961       AssertOp = ISD::AssertSext;
7962     else if (CLI.RetZExt)
7963       AssertOp = ISD::AssertZext;
7964     unsigned CurReg = 0;
7965     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7966       EVT VT = RetTys[I];
7967       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7968       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7969 
7970       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7971                                               NumRegs, RegisterVT, VT, nullptr,
7972                                               AssertOp));
7973       CurReg += NumRegs;
7974     }
7975 
7976     // For a function returning void, there is no return value. We can't create
7977     // such a node, so we just return a null return value in that case. In
7978     // that case, nothing will actually look at the value.
7979     if (ReturnValues.empty())
7980       return std::make_pair(SDValue(), CLI.Chain);
7981   }
7982 
7983   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7984                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7985   return std::make_pair(Res, CLI.Chain);
7986 }
7987 
7988 void TargetLowering::LowerOperationWrapper(SDNode *N,
7989                                            SmallVectorImpl<SDValue> &Results,
7990                                            SelectionDAG &DAG) const {
7991   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
7992     Results.push_back(Res);
7993 }
7994 
7995 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7996   llvm_unreachable("LowerOperation not implemented for this target!");
7997 }
7998 
7999 void
8000 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
8001   SDValue Op = getNonRegisterValue(V);
8002   assert((Op.getOpcode() != ISD::CopyFromReg ||
8003           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
8004          "Copy from a reg to the same reg!");
8005   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
8006 
8007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8008   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
8009                    V->getType());
8010   SDValue Chain = DAG.getEntryNode();
8011 
8012   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
8013                               FuncInfo.PreferredExtendType.end())
8014                                  ? ISD::ANY_EXTEND
8015                                  : FuncInfo.PreferredExtendType[V];
8016   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
8017   PendingExports.push_back(Chain);
8018 }
8019 
8020 #include "llvm/CodeGen/SelectionDAGISel.h"
8021 
8022 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
8023 /// entry block, return true.  This includes arguments used by switches, since
8024 /// the switch may expand into multiple basic blocks.
8025 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
8026   // With FastISel active, we may be splitting blocks, so force creation
8027   // of virtual registers for all non-dead arguments.
8028   if (FastISel)
8029     return A->use_empty();
8030 
8031   const BasicBlock &Entry = A->getParent()->front();
8032   for (const User *U : A->users())
8033     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
8034       return false;  // Use not in entry block.
8035 
8036   return true;
8037 }
8038 
8039 void SelectionDAGISel::LowerArguments(const Function &F) {
8040   SelectionDAG &DAG = SDB->DAG;
8041   SDLoc dl = SDB->getCurSDLoc();
8042   const DataLayout &DL = DAG.getDataLayout();
8043   SmallVector<ISD::InputArg, 16> Ins;
8044 
8045   if (!FuncInfo->CanLowerReturn) {
8046     // Put in an sret pointer parameter before all the other parameters.
8047     SmallVector<EVT, 1> ValueVTs;
8048     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8049                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8050 
8051     // NOTE: Assuming that a pointer will never break down to more than one VT
8052     // or one register.
8053     ISD::ArgFlagsTy Flags;
8054     Flags.setSRet();
8055     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
8056     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
8057                          ISD::InputArg::NoArgIndex, 0);
8058     Ins.push_back(RetArg);
8059   }
8060 
8061   // Set up the incoming argument description vector.
8062   unsigned Idx = 1;
8063   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
8064        I != E; ++I, ++Idx) {
8065     SmallVector<EVT, 4> ValueVTs;
8066     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
8067     bool isArgValueUsed = !I->use_empty();
8068     unsigned PartBase = 0;
8069     Type *FinalType = I->getType();
8070     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
8071       FinalType = cast<PointerType>(FinalType)->getElementType();
8072     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
8073         FinalType, F.getCallingConv(), F.isVarArg());
8074     for (unsigned Value = 0, NumValues = ValueVTs.size();
8075          Value != NumValues; ++Value) {
8076       EVT VT = ValueVTs[Value];
8077       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
8078       ISD::ArgFlagsTy Flags;
8079       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
8080 
8081       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8082         Flags.setZExt();
8083       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8084         Flags.setSExt();
8085       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) {
8086         // If we are using vectorcall calling convention, a structure that is
8087         // passed InReg - is surely an HVA
8088         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
8089             isa<StructType>(I->getType())) {
8090           // The first value of a structure is marked
8091           if (0 == Value)
8092             Flags.setHvaStart();
8093           Flags.setHva();
8094         }
8095         // Set InReg Flag
8096         Flags.setInReg();
8097       }
8098       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
8099         Flags.setSRet();
8100       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftSelf))
8101         Flags.setSwiftSelf();
8102       if (F.getAttributes().hasAttribute(Idx, Attribute::SwiftError))
8103         Flags.setSwiftError();
8104       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
8105         Flags.setByVal();
8106       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
8107         Flags.setInAlloca();
8108         // Set the byval flag for CCAssignFn callbacks that don't know about
8109         // inalloca.  This way we can know how many bytes we should've allocated
8110         // and how many bytes a callee cleanup function will pop.  If we port
8111         // inalloca to more targets, we'll have to add custom inalloca handling
8112         // in the various CC lowering callbacks.
8113         Flags.setByVal();
8114       }
8115       if (F.getCallingConv() == CallingConv::X86_INTR) {
8116         // IA Interrupt passes frame (1st parameter) by value in the stack.
8117         if (Idx == 1)
8118           Flags.setByVal();
8119       }
8120       if (Flags.isByVal() || Flags.isInAlloca()) {
8121         PointerType *Ty = cast<PointerType>(I->getType());
8122         Type *ElementTy = Ty->getElementType();
8123         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
8124         // For ByVal, alignment should be passed from FE.  BE will guess if
8125         // this info is not there but there are cases it cannot get right.
8126         unsigned FrameAlign;
8127         if (F.getParamAlignment(Idx))
8128           FrameAlign = F.getParamAlignment(Idx);
8129         else
8130           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
8131         Flags.setByValAlign(FrameAlign);
8132       }
8133       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
8134         Flags.setNest();
8135       if (NeedsRegBlock)
8136         Flags.setInConsecutiveRegs();
8137       Flags.setOrigAlign(OriginalAlignment);
8138 
8139       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8140       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8141       for (unsigned i = 0; i != NumRegs; ++i) {
8142         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
8143                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
8144         if (NumRegs > 1 && i == 0)
8145           MyFlags.Flags.setSplit();
8146         // if it isn't first piece, alignment must be 1
8147         else if (i > 0) {
8148           MyFlags.Flags.setOrigAlign(1);
8149           if (i == NumRegs - 1)
8150             MyFlags.Flags.setSplitEnd();
8151         }
8152         Ins.push_back(MyFlags);
8153       }
8154       if (NeedsRegBlock && Value == NumValues - 1)
8155         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
8156       PartBase += VT.getStoreSize();
8157     }
8158   }
8159 
8160   // Call the target to set up the argument values.
8161   SmallVector<SDValue, 8> InVals;
8162   SDValue NewRoot = TLI->LowerFormalArguments(
8163       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
8164 
8165   // Verify that the target's LowerFormalArguments behaved as expected.
8166   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
8167          "LowerFormalArguments didn't return a valid chain!");
8168   assert(InVals.size() == Ins.size() &&
8169          "LowerFormalArguments didn't emit the correct number of values!");
8170   DEBUG({
8171       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
8172         assert(InVals[i].getNode() &&
8173                "LowerFormalArguments emitted a null value!");
8174         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
8175                "LowerFormalArguments emitted a value with the wrong type!");
8176       }
8177     });
8178 
8179   // Update the DAG with the new chain value resulting from argument lowering.
8180   DAG.setRoot(NewRoot);
8181 
8182   // Set up the argument values.
8183   unsigned i = 0;
8184   Idx = 1;
8185   if (!FuncInfo->CanLowerReturn) {
8186     // Create a virtual register for the sret pointer, and put in a copy
8187     // from the sret argument into it.
8188     SmallVector<EVT, 1> ValueVTs;
8189     ComputeValueVTs(*TLI, DAG.getDataLayout(),
8190                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
8191     MVT VT = ValueVTs[0].getSimpleVT();
8192     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8193     Optional<ISD::NodeType> AssertOp = None;
8194     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
8195                                         RegVT, VT, nullptr, AssertOp);
8196 
8197     MachineFunction& MF = SDB->DAG.getMachineFunction();
8198     MachineRegisterInfo& RegInfo = MF.getRegInfo();
8199     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
8200     FuncInfo->DemoteRegister = SRetReg;
8201     NewRoot =
8202         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
8203     DAG.setRoot(NewRoot);
8204 
8205     // i indexes lowered arguments.  Bump it past the hidden sret argument.
8206     // Idx indexes LLVM arguments.  Don't touch it.
8207     ++i;
8208   }
8209 
8210   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
8211       ++I, ++Idx) {
8212     SmallVector<SDValue, 4> ArgValues;
8213     SmallVector<EVT, 4> ValueVTs;
8214     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
8215     unsigned NumValues = ValueVTs.size();
8216 
8217     // If this argument is unused then remember its value. It is used to generate
8218     // debugging information.
8219     bool isSwiftErrorArg =
8220         TLI->supportSwiftError() &&
8221         F.getAttributes().hasAttribute(Idx, Attribute::SwiftError);
8222     if (I->use_empty() && NumValues && !isSwiftErrorArg) {
8223       SDB->setUnusedArgValue(&*I, InVals[i]);
8224 
8225       // Also remember any frame index for use in FastISel.
8226       if (FrameIndexSDNode *FI =
8227           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
8228         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8229     }
8230 
8231     for (unsigned Val = 0; Val != NumValues; ++Val) {
8232       EVT VT = ValueVTs[Val];
8233       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
8234       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
8235 
8236       // Even an apparant 'unused' swifterror argument needs to be returned. So
8237       // we do generate a copy for it that can be used on return from the
8238       // function.
8239       if (!I->use_empty() || isSwiftErrorArg) {
8240         Optional<ISD::NodeType> AssertOp;
8241         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
8242           AssertOp = ISD::AssertSext;
8243         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
8244           AssertOp = ISD::AssertZext;
8245 
8246         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
8247                                              NumParts, PartVT, VT,
8248                                              nullptr, AssertOp));
8249       }
8250 
8251       i += NumParts;
8252     }
8253 
8254     // We don't need to do anything else for unused arguments.
8255     if (ArgValues.empty())
8256       continue;
8257 
8258     // Note down frame index.
8259     if (FrameIndexSDNode *FI =
8260         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
8261       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8262 
8263     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
8264                                      SDB->getCurSDLoc());
8265 
8266     SDB->setValue(&*I, Res);
8267     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
8268       if (LoadSDNode *LNode =
8269           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
8270         if (FrameIndexSDNode *FI =
8271             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
8272         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
8273     }
8274 
8275     // Update the SwiftErrorVRegDefMap.
8276     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
8277       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8278       if (TargetRegisterInfo::isVirtualRegister(Reg))
8279         FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
8280                                            FuncInfo->SwiftErrorArg, Reg);
8281     }
8282 
8283     // If this argument is live outside of the entry block, insert a copy from
8284     // wherever we got it to the vreg that other BB's will reference it as.
8285     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
8286       // If we can, though, try to skip creating an unnecessary vreg.
8287       // FIXME: This isn't very clean... it would be nice to make this more
8288       // general.  It's also subtly incompatible with the hacks FastISel
8289       // uses with vregs.
8290       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
8291       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
8292         FuncInfo->ValueMap[&*I] = Reg;
8293         continue;
8294       }
8295     }
8296     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
8297       FuncInfo->InitializeRegForValue(&*I);
8298       SDB->CopyToExportRegsIfNeeded(&*I);
8299     }
8300   }
8301 
8302   assert(i == InVals.size() && "Argument register count mismatch!");
8303 
8304   // Finally, if the target has anything special to do, allow it to do so.
8305   EmitFunctionEntryCode();
8306 }
8307 
8308 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
8309 /// ensure constants are generated when needed.  Remember the virtual registers
8310 /// that need to be added to the Machine PHI nodes as input.  We cannot just
8311 /// directly add them, because expansion might result in multiple MBB's for one
8312 /// BB.  As such, the start of the BB might correspond to a different MBB than
8313 /// the end.
8314 ///
8315 void
8316 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
8317   const TerminatorInst *TI = LLVMBB->getTerminator();
8318 
8319   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
8320 
8321   // Check PHI nodes in successors that expect a value to be available from this
8322   // block.
8323   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
8324     const BasicBlock *SuccBB = TI->getSuccessor(succ);
8325     if (!isa<PHINode>(SuccBB->begin())) continue;
8326     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
8327 
8328     // If this terminator has multiple identical successors (common for
8329     // switches), only handle each succ once.
8330     if (!SuccsHandled.insert(SuccMBB).second)
8331       continue;
8332 
8333     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
8334 
8335     // At this point we know that there is a 1-1 correspondence between LLVM PHI
8336     // nodes and Machine PHI nodes, but the incoming operands have not been
8337     // emitted yet.
8338     for (BasicBlock::const_iterator I = SuccBB->begin();
8339          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
8340       // Ignore dead phi's.
8341       if (PN->use_empty()) continue;
8342 
8343       // Skip empty types
8344       if (PN->getType()->isEmptyTy())
8345         continue;
8346 
8347       unsigned Reg;
8348       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
8349 
8350       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
8351         unsigned &RegOut = ConstantsOut[C];
8352         if (RegOut == 0) {
8353           RegOut = FuncInfo.CreateRegs(C->getType());
8354           CopyValueToVirtualRegister(C, RegOut);
8355         }
8356         Reg = RegOut;
8357       } else {
8358         DenseMap<const Value *, unsigned>::iterator I =
8359           FuncInfo.ValueMap.find(PHIOp);
8360         if (I != FuncInfo.ValueMap.end())
8361           Reg = I->second;
8362         else {
8363           assert(isa<AllocaInst>(PHIOp) &&
8364                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
8365                  "Didn't codegen value into a register!??");
8366           Reg = FuncInfo.CreateRegs(PHIOp->getType());
8367           CopyValueToVirtualRegister(PHIOp, Reg);
8368         }
8369       }
8370 
8371       // Remember that this register needs to added to the machine PHI node as
8372       // the input for this MBB.
8373       SmallVector<EVT, 4> ValueVTs;
8374       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8375       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
8376       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
8377         EVT VT = ValueVTs[vti];
8378         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
8379         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
8380           FuncInfo.PHINodesToUpdate.push_back(
8381               std::make_pair(&*MBBI++, Reg + i));
8382         Reg += NumRegisters;
8383       }
8384     }
8385   }
8386 
8387   ConstantsOut.clear();
8388 }
8389 
8390 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
8391 /// is 0.
8392 MachineBasicBlock *
8393 SelectionDAGBuilder::StackProtectorDescriptor::
8394 AddSuccessorMBB(const BasicBlock *BB,
8395                 MachineBasicBlock *ParentMBB,
8396                 bool IsLikely,
8397                 MachineBasicBlock *SuccMBB) {
8398   // If SuccBB has not been created yet, create it.
8399   if (!SuccMBB) {
8400     MachineFunction *MF = ParentMBB->getParent();
8401     MachineFunction::iterator BBI(ParentMBB);
8402     SuccMBB = MF->CreateMachineBasicBlock(BB);
8403     MF->insert(++BBI, SuccMBB);
8404   }
8405   // Add it as a successor of ParentMBB.
8406   ParentMBB->addSuccessor(
8407       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
8408   return SuccMBB;
8409 }
8410 
8411 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
8412   MachineFunction::iterator I(MBB);
8413   if (++I == FuncInfo.MF->end())
8414     return nullptr;
8415   return &*I;
8416 }
8417 
8418 /// During lowering new call nodes can be created (such as memset, etc.).
8419 /// Those will become new roots of the current DAG, but complications arise
8420 /// when they are tail calls. In such cases, the call lowering will update
8421 /// the root, but the builder still needs to know that a tail call has been
8422 /// lowered in order to avoid generating an additional return.
8423 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
8424   // If the node is null, we do have a tail call.
8425   if (MaybeTC.getNode() != nullptr)
8426     DAG.setRoot(MaybeTC);
8427   else
8428     HasTailCall = true;
8429 }
8430 
8431 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
8432                                   const SmallVectorImpl<unsigned> &TotalCases,
8433                                   unsigned First, unsigned Last,
8434                                   unsigned Density) const {
8435   assert(Last >= First);
8436   assert(TotalCases[Last] >= TotalCases[First]);
8437 
8438   const APInt &LowCase = Clusters[First].Low->getValue();
8439   const APInt &HighCase = Clusters[Last].High->getValue();
8440   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
8441 
8442   // FIXME: A range of consecutive cases has 100% density, but only requires one
8443   // comparison to lower. We should discriminate against such consecutive ranges
8444   // in jump tables.
8445 
8446   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
8447   uint64_t Range = Diff + 1;
8448 
8449   uint64_t NumCases =
8450       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
8451 
8452   assert(NumCases < UINT64_MAX / 100);
8453   assert(Range >= NumCases);
8454 
8455   return NumCases * 100 >= Range * Density;
8456 }
8457 
8458 static inline bool areJTsAllowed(const TargetLowering &TLI,
8459                                  const SwitchInst *SI) {
8460   const Function *Fn = SI->getParent()->getParent();
8461   if (Fn->getFnAttribute("no-jump-tables").getValueAsString() == "true")
8462     return false;
8463 
8464   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
8465          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
8466 }
8467 
8468 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
8469                                          unsigned First, unsigned Last,
8470                                          const SwitchInst *SI,
8471                                          MachineBasicBlock *DefaultMBB,
8472                                          CaseCluster &JTCluster) {
8473   assert(First <= Last);
8474 
8475   auto Prob = BranchProbability::getZero();
8476   unsigned NumCmps = 0;
8477   std::vector<MachineBasicBlock*> Table;
8478   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
8479 
8480   // Initialize probabilities in JTProbs.
8481   for (unsigned I = First; I <= Last; ++I)
8482     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
8483 
8484   for (unsigned I = First; I <= Last; ++I) {
8485     assert(Clusters[I].Kind == CC_Range);
8486     Prob += Clusters[I].Prob;
8487     const APInt &Low = Clusters[I].Low->getValue();
8488     const APInt &High = Clusters[I].High->getValue();
8489     NumCmps += (Low == High) ? 1 : 2;
8490     if (I != First) {
8491       // Fill the gap between this and the previous cluster.
8492       const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
8493       assert(PreviousHigh.slt(Low));
8494       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
8495       for (uint64_t J = 0; J < Gap; J++)
8496         Table.push_back(DefaultMBB);
8497     }
8498     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
8499     for (uint64_t J = 0; J < ClusterSize; ++J)
8500       Table.push_back(Clusters[I].MBB);
8501     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
8502   }
8503 
8504   unsigned NumDests = JTProbs.size();
8505   if (isSuitableForBitTests(NumDests, NumCmps,
8506                             Clusters[First].Low->getValue(),
8507                             Clusters[Last].High->getValue())) {
8508     // Clusters[First..Last] should be lowered as bit tests instead.
8509     return false;
8510   }
8511 
8512   // Create the MBB that will load from and jump through the table.
8513   // Note: We create it here, but it's not inserted into the function yet.
8514   MachineFunction *CurMF = FuncInfo.MF;
8515   MachineBasicBlock *JumpTableMBB =
8516       CurMF->CreateMachineBasicBlock(SI->getParent());
8517 
8518   // Add successors. Note: use table order for determinism.
8519   SmallPtrSet<MachineBasicBlock *, 8> Done;
8520   for (MachineBasicBlock *Succ : Table) {
8521     if (Done.count(Succ))
8522       continue;
8523     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
8524     Done.insert(Succ);
8525   }
8526   JumpTableMBB->normalizeSuccProbs();
8527 
8528   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8529   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
8530                      ->createJumpTableIndex(Table);
8531 
8532   // Set up the jump table info.
8533   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
8534   JumpTableHeader JTH(Clusters[First].Low->getValue(),
8535                       Clusters[Last].High->getValue(), SI->getCondition(),
8536                       nullptr, false);
8537   JTCases.emplace_back(std::move(JTH), std::move(JT));
8538 
8539   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
8540                                      JTCases.size() - 1, Prob);
8541   return true;
8542 }
8543 
8544 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
8545                                          const SwitchInst *SI,
8546                                          MachineBasicBlock *DefaultMBB) {
8547 #ifndef NDEBUG
8548   // Clusters must be non-empty, sorted, and only contain Range clusters.
8549   assert(!Clusters.empty());
8550   for (CaseCluster &C : Clusters)
8551     assert(C.Kind == CC_Range);
8552   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
8553     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
8554 #endif
8555 
8556   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8557   if (!areJTsAllowed(TLI, SI))
8558     return;
8559 
8560   const bool OptForSize = DefaultMBB->getParent()->getFunction()->optForSize();
8561 
8562   const int64_t N = Clusters.size();
8563   const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
8564   const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
8565   const unsigned MaxJumpTableSize =
8566                    OptForSize || TLI.getMaximumJumpTableSize() == 0
8567                    ? UINT_MAX : TLI.getMaximumJumpTableSize();
8568 
8569   if (N < 2 || N < MinJumpTableEntries)
8570     return;
8571 
8572   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
8573   SmallVector<unsigned, 8> TotalCases(N);
8574   for (unsigned i = 0; i < N; ++i) {
8575     const APInt &Hi = Clusters[i].High->getValue();
8576     const APInt &Lo = Clusters[i].Low->getValue();
8577     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
8578     if (i != 0)
8579       TotalCases[i] += TotalCases[i - 1];
8580   }
8581 
8582   const unsigned MinDensity =
8583     OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
8584 
8585   // Cheap case: the whole range may be suitable for jump table.
8586   unsigned JumpTableSize = (Clusters[N - 1].High->getValue() -
8587                             Clusters[0].Low->getValue())
8588                            .getLimitedValue(UINT_MAX - 1) + 1;
8589   if (JumpTableSize <= MaxJumpTableSize &&
8590       isDense(Clusters, TotalCases, 0, N - 1, MinDensity)) {
8591     CaseCluster JTCluster;
8592     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
8593       Clusters[0] = JTCluster;
8594       Clusters.resize(1);
8595       return;
8596     }
8597   }
8598 
8599   // The algorithm below is not suitable for -O0.
8600   if (TM.getOptLevel() == CodeGenOpt::None)
8601     return;
8602 
8603   // Split Clusters into minimum number of dense partitions. The algorithm uses
8604   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
8605   // for the Case Statement'" (1994), but builds the MinPartitions array in
8606   // reverse order to make it easier to reconstruct the partitions in ascending
8607   // order. In the choice between two optimal partitionings, it picks the one
8608   // which yields more jump tables.
8609 
8610   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8611   SmallVector<unsigned, 8> MinPartitions(N);
8612   // LastElement[i] is the last element of the partition starting at i.
8613   SmallVector<unsigned, 8> LastElement(N);
8614   // PartitionsScore[i] is used to break ties when choosing between two
8615   // partitionings resulting in the same number of partitions.
8616   SmallVector<unsigned, 8> PartitionsScore(N);
8617   // For PartitionsScore, a small number of comparisons is considered as good as
8618   // a jump table and a single comparison is considered better than a jump
8619   // table.
8620   enum PartitionScores : unsigned {
8621     NoTable = 0,
8622     Table = 1,
8623     FewCases = 1,
8624     SingleCase = 2
8625   };
8626 
8627   // Base case: There is only one way to partition Clusters[N-1].
8628   MinPartitions[N - 1] = 1;
8629   LastElement[N - 1] = N - 1;
8630   PartitionsScore[N - 1] = PartitionScores::SingleCase;
8631 
8632   // Note: loop indexes are signed to avoid underflow.
8633   for (int64_t i = N - 2; i >= 0; i--) {
8634     // Find optimal partitioning of Clusters[i..N-1].
8635     // Baseline: Put Clusters[i] into a partition on its own.
8636     MinPartitions[i] = MinPartitions[i + 1] + 1;
8637     LastElement[i] = i;
8638     PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
8639 
8640     // Search for a solution that results in fewer partitions.
8641     for (int64_t j = N - 1; j > i; j--) {
8642       // Try building a partition from Clusters[i..j].
8643       JumpTableSize = (Clusters[j].High->getValue() -
8644                        Clusters[i].Low->getValue())
8645                       .getLimitedValue(UINT_MAX - 1) + 1;
8646       if (JumpTableSize <= MaxJumpTableSize &&
8647           isDense(Clusters, TotalCases, i, j, MinDensity)) {
8648         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8649         unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
8650         int64_t NumEntries = j - i + 1;
8651 
8652         if (NumEntries == 1)
8653           Score += PartitionScores::SingleCase;
8654         else if (NumEntries <= SmallNumberOfEntries)
8655           Score += PartitionScores::FewCases;
8656         else if (NumEntries >= MinJumpTableEntries)
8657           Score += PartitionScores::Table;
8658 
8659         // If this leads to fewer partitions, or to the same number of
8660         // partitions with better score, it is a better partitioning.
8661         if (NumPartitions < MinPartitions[i] ||
8662             (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
8663           MinPartitions[i] = NumPartitions;
8664           LastElement[i] = j;
8665           PartitionsScore[i] = Score;
8666         }
8667       }
8668     }
8669   }
8670 
8671   // Iterate over the partitions, replacing some with jump tables in-place.
8672   unsigned DstIndex = 0;
8673   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8674     Last = LastElement[First];
8675     assert(Last >= First);
8676     assert(DstIndex <= First);
8677     unsigned NumClusters = Last - First + 1;
8678 
8679     CaseCluster JTCluster;
8680     if (NumClusters >= MinJumpTableEntries &&
8681         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
8682       Clusters[DstIndex++] = JTCluster;
8683     } else {
8684       for (unsigned I = First; I <= Last; ++I)
8685         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
8686     }
8687   }
8688   Clusters.resize(DstIndex);
8689 }
8690 
8691 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
8692   // FIXME: Using the pointer type doesn't seem ideal.
8693   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
8694   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
8695   return Range <= BW;
8696 }
8697 
8698 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
8699                                                 unsigned NumCmps,
8700                                                 const APInt &Low,
8701                                                 const APInt &High) {
8702   // FIXME: I don't think NumCmps is the correct metric: a single case and a
8703   // range of cases both require only one branch to lower. Just looking at the
8704   // number of clusters and destinations should be enough to decide whether to
8705   // build bit tests.
8706 
8707   // To lower a range with bit tests, the range must fit the bitwidth of a
8708   // machine word.
8709   if (!rangeFitsInWord(Low, High))
8710     return false;
8711 
8712   // Decide whether it's profitable to lower this range with bit tests. Each
8713   // destination requires a bit test and branch, and there is an overall range
8714   // check branch. For a small number of clusters, separate comparisons might be
8715   // cheaper, and for many destinations, splitting the range might be better.
8716   return (NumDests == 1 && NumCmps >= 3) ||
8717          (NumDests == 2 && NumCmps >= 5) ||
8718          (NumDests == 3 && NumCmps >= 6);
8719 }
8720 
8721 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
8722                                         unsigned First, unsigned Last,
8723                                         const SwitchInst *SI,
8724                                         CaseCluster &BTCluster) {
8725   assert(First <= Last);
8726   if (First == Last)
8727     return false;
8728 
8729   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8730   unsigned NumCmps = 0;
8731   for (int64_t I = First; I <= Last; ++I) {
8732     assert(Clusters[I].Kind == CC_Range);
8733     Dests.set(Clusters[I].MBB->getNumber());
8734     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
8735   }
8736   unsigned NumDests = Dests.count();
8737 
8738   APInt Low = Clusters[First].Low->getValue();
8739   APInt High = Clusters[Last].High->getValue();
8740   assert(Low.slt(High));
8741 
8742   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
8743     return false;
8744 
8745   APInt LowBound;
8746   APInt CmpRange;
8747 
8748   const int BitWidth = DAG.getTargetLoweringInfo()
8749                            .getPointerTy(DAG.getDataLayout())
8750                            .getSizeInBits();
8751   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
8752 
8753   // Check if the clusters cover a contiguous range such that no value in the
8754   // range will jump to the default statement.
8755   bool ContiguousRange = true;
8756   for (int64_t I = First + 1; I <= Last; ++I) {
8757     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
8758       ContiguousRange = false;
8759       break;
8760     }
8761   }
8762 
8763   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8764     // Optimize the case where all the case values fit in a word without having
8765     // to subtract minValue. In this case, we can optimize away the subtraction.
8766     LowBound = APInt::getNullValue(Low.getBitWidth());
8767     CmpRange = High;
8768     ContiguousRange = false;
8769   } else {
8770     LowBound = Low;
8771     CmpRange = High - Low;
8772   }
8773 
8774   CaseBitsVector CBV;
8775   auto TotalProb = BranchProbability::getZero();
8776   for (unsigned i = First; i <= Last; ++i) {
8777     // Find the CaseBits for this destination.
8778     unsigned j;
8779     for (j = 0; j < CBV.size(); ++j)
8780       if (CBV[j].BB == Clusters[i].MBB)
8781         break;
8782     if (j == CBV.size())
8783       CBV.push_back(
8784           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8785     CaseBits *CB = &CBV[j];
8786 
8787     // Update Mask, Bits and ExtraProb.
8788     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8789     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8790     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8791     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8792     CB->Bits += Hi - Lo + 1;
8793     CB->ExtraProb += Clusters[i].Prob;
8794     TotalProb += Clusters[i].Prob;
8795   }
8796 
8797   BitTestInfo BTI;
8798   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8799     // Sort by probability first, number of bits second.
8800     if (a.ExtraProb != b.ExtraProb)
8801       return a.ExtraProb > b.ExtraProb;
8802     return a.Bits > b.Bits;
8803   });
8804 
8805   for (auto &CB : CBV) {
8806     MachineBasicBlock *BitTestBB =
8807         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8808     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8809   }
8810   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8811                             SI->getCondition(), -1U, MVT::Other, false,
8812                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8813                             TotalProb);
8814 
8815   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8816                                     BitTestCases.size() - 1, TotalProb);
8817   return true;
8818 }
8819 
8820 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8821                                               const SwitchInst *SI) {
8822 // Partition Clusters into as few subsets as possible, where each subset has a
8823 // range that fits in a machine word and has <= 3 unique destinations.
8824 
8825 #ifndef NDEBUG
8826   // Clusters must be sorted and contain Range or JumpTable clusters.
8827   assert(!Clusters.empty());
8828   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8829   for (const CaseCluster &C : Clusters)
8830     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8831   for (unsigned i = 1; i < Clusters.size(); ++i)
8832     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8833 #endif
8834 
8835   // The algorithm below is not suitable for -O0.
8836   if (TM.getOptLevel() == CodeGenOpt::None)
8837     return;
8838 
8839   // If target does not have legal shift left, do not emit bit tests at all.
8840   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8841   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8842   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8843     return;
8844 
8845   int BitWidth = PTy.getSizeInBits();
8846   const int64_t N = Clusters.size();
8847 
8848   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8849   SmallVector<unsigned, 8> MinPartitions(N);
8850   // LastElement[i] is the last element of the partition starting at i.
8851   SmallVector<unsigned, 8> LastElement(N);
8852 
8853   // FIXME: This might not be the best algorithm for finding bit test clusters.
8854 
8855   // Base case: There is only one way to partition Clusters[N-1].
8856   MinPartitions[N - 1] = 1;
8857   LastElement[N - 1] = N - 1;
8858 
8859   // Note: loop indexes are signed to avoid underflow.
8860   for (int64_t i = N - 2; i >= 0; --i) {
8861     // Find optimal partitioning of Clusters[i..N-1].
8862     // Baseline: Put Clusters[i] into a partition on its own.
8863     MinPartitions[i] = MinPartitions[i + 1] + 1;
8864     LastElement[i] = i;
8865 
8866     // Search for a solution that results in fewer partitions.
8867     // Note: the search is limited by BitWidth, reducing time complexity.
8868     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8869       // Try building a partition from Clusters[i..j].
8870 
8871       // Check the range.
8872       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8873                            Clusters[j].High->getValue()))
8874         continue;
8875 
8876       // Check nbr of destinations and cluster types.
8877       // FIXME: This works, but doesn't seem very efficient.
8878       bool RangesOnly = true;
8879       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8880       for (int64_t k = i; k <= j; k++) {
8881         if (Clusters[k].Kind != CC_Range) {
8882           RangesOnly = false;
8883           break;
8884         }
8885         Dests.set(Clusters[k].MBB->getNumber());
8886       }
8887       if (!RangesOnly || Dests.count() > 3)
8888         break;
8889 
8890       // Check if it's a better partition.
8891       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8892       if (NumPartitions < MinPartitions[i]) {
8893         // Found a better partition.
8894         MinPartitions[i] = NumPartitions;
8895         LastElement[i] = j;
8896       }
8897     }
8898   }
8899 
8900   // Iterate over the partitions, replacing with bit-test clusters in-place.
8901   unsigned DstIndex = 0;
8902   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8903     Last = LastElement[First];
8904     assert(First <= Last);
8905     assert(DstIndex <= First);
8906 
8907     CaseCluster BitTestCluster;
8908     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8909       Clusters[DstIndex++] = BitTestCluster;
8910     } else {
8911       size_t NumClusters = Last - First + 1;
8912       std::memmove(&Clusters[DstIndex], &Clusters[First],
8913                    sizeof(Clusters[0]) * NumClusters);
8914       DstIndex += NumClusters;
8915     }
8916   }
8917   Clusters.resize(DstIndex);
8918 }
8919 
8920 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8921                                         MachineBasicBlock *SwitchMBB,
8922                                         MachineBasicBlock *DefaultMBB) {
8923   MachineFunction *CurMF = FuncInfo.MF;
8924   MachineBasicBlock *NextMBB = nullptr;
8925   MachineFunction::iterator BBI(W.MBB);
8926   if (++BBI != FuncInfo.MF->end())
8927     NextMBB = &*BBI;
8928 
8929   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8930 
8931   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8932 
8933   if (Size == 2 && W.MBB == SwitchMBB) {
8934     // If any two of the cases has the same destination, and if one value
8935     // is the same as the other, but has one bit unset that the other has set,
8936     // use bit manipulation to do two compares at once.  For example:
8937     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8938     // TODO: This could be extended to merge any 2 cases in switches with 3
8939     // cases.
8940     // TODO: Handle cases where W.CaseBB != SwitchBB.
8941     CaseCluster &Small = *W.FirstCluster;
8942     CaseCluster &Big = *W.LastCluster;
8943 
8944     if (Small.Low == Small.High && Big.Low == Big.High &&
8945         Small.MBB == Big.MBB) {
8946       const APInt &SmallValue = Small.Low->getValue();
8947       const APInt &BigValue = Big.Low->getValue();
8948 
8949       // Check that there is only one bit different.
8950       APInt CommonBit = BigValue ^ SmallValue;
8951       if (CommonBit.isPowerOf2()) {
8952         SDValue CondLHS = getValue(Cond);
8953         EVT VT = CondLHS.getValueType();
8954         SDLoc DL = getCurSDLoc();
8955 
8956         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8957                                  DAG.getConstant(CommonBit, DL, VT));
8958         SDValue Cond = DAG.getSetCC(
8959             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8960             ISD::SETEQ);
8961 
8962         // Update successor info.
8963         // Both Small and Big will jump to Small.BB, so we sum up the
8964         // probabilities.
8965         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8966         if (BPI)
8967           addSuccessorWithProb(
8968               SwitchMBB, DefaultMBB,
8969               // The default destination is the first successor in IR.
8970               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8971         else
8972           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8973 
8974         // Insert the true branch.
8975         SDValue BrCond =
8976             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8977                         DAG.getBasicBlock(Small.MBB));
8978         // Insert the false branch.
8979         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8980                              DAG.getBasicBlock(DefaultMBB));
8981 
8982         DAG.setRoot(BrCond);
8983         return;
8984       }
8985     }
8986   }
8987 
8988   if (TM.getOptLevel() != CodeGenOpt::None) {
8989     // Order cases by probability so the most likely case will be checked first.
8990     std::sort(W.FirstCluster, W.LastCluster + 1,
8991               [](const CaseCluster &a, const CaseCluster &b) {
8992       return a.Prob > b.Prob;
8993     });
8994 
8995     // Rearrange the case blocks so that the last one falls through if possible
8996     // without without changing the order of probabilities.
8997     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8998       --I;
8999       if (I->Prob > W.LastCluster->Prob)
9000         break;
9001       if (I->Kind == CC_Range && I->MBB == NextMBB) {
9002         std::swap(*I, *W.LastCluster);
9003         break;
9004       }
9005     }
9006   }
9007 
9008   // Compute total probability.
9009   BranchProbability DefaultProb = W.DefaultProb;
9010   BranchProbability UnhandledProbs = DefaultProb;
9011   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
9012     UnhandledProbs += I->Prob;
9013 
9014   MachineBasicBlock *CurMBB = W.MBB;
9015   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
9016     MachineBasicBlock *Fallthrough;
9017     if (I == W.LastCluster) {
9018       // For the last cluster, fall through to the default destination.
9019       Fallthrough = DefaultMBB;
9020     } else {
9021       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
9022       CurMF->insert(BBI, Fallthrough);
9023       // Put Cond in a virtual register to make it available from the new blocks.
9024       ExportFromCurrentBlock(Cond);
9025     }
9026     UnhandledProbs -= I->Prob;
9027 
9028     switch (I->Kind) {
9029       case CC_JumpTable: {
9030         // FIXME: Optimize away range check based on pivot comparisons.
9031         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
9032         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
9033 
9034         // The jump block hasn't been inserted yet; insert it here.
9035         MachineBasicBlock *JumpMBB = JT->MBB;
9036         CurMF->insert(BBI, JumpMBB);
9037 
9038         auto JumpProb = I->Prob;
9039         auto FallthroughProb = UnhandledProbs;
9040 
9041         // If the default statement is a target of the jump table, we evenly
9042         // distribute the default probability to successors of CurMBB. Also
9043         // update the probability on the edge from JumpMBB to Fallthrough.
9044         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
9045                                               SE = JumpMBB->succ_end();
9046              SI != SE; ++SI) {
9047           if (*SI == DefaultMBB) {
9048             JumpProb += DefaultProb / 2;
9049             FallthroughProb -= DefaultProb / 2;
9050             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
9051             JumpMBB->normalizeSuccProbs();
9052             break;
9053           }
9054         }
9055 
9056         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
9057         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
9058         CurMBB->normalizeSuccProbs();
9059 
9060         // The jump table header will be inserted in our current block, do the
9061         // range check, and fall through to our fallthrough block.
9062         JTH->HeaderBB = CurMBB;
9063         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
9064 
9065         // If we're in the right place, emit the jump table header right now.
9066         if (CurMBB == SwitchMBB) {
9067           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
9068           JTH->Emitted = true;
9069         }
9070         break;
9071       }
9072       case CC_BitTests: {
9073         // FIXME: Optimize away range check based on pivot comparisons.
9074         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
9075 
9076         // The bit test blocks haven't been inserted yet; insert them here.
9077         for (BitTestCase &BTC : BTB->Cases)
9078           CurMF->insert(BBI, BTC.ThisBB);
9079 
9080         // Fill in fields of the BitTestBlock.
9081         BTB->Parent = CurMBB;
9082         BTB->Default = Fallthrough;
9083 
9084         BTB->DefaultProb = UnhandledProbs;
9085         // If the cases in bit test don't form a contiguous range, we evenly
9086         // distribute the probability on the edge to Fallthrough to two
9087         // successors of CurMBB.
9088         if (!BTB->ContiguousRange) {
9089           BTB->Prob += DefaultProb / 2;
9090           BTB->DefaultProb -= DefaultProb / 2;
9091         }
9092 
9093         // If we're in the right place, emit the bit test header right now.
9094         if (CurMBB == SwitchMBB) {
9095           visitBitTestHeader(*BTB, SwitchMBB);
9096           BTB->Emitted = true;
9097         }
9098         break;
9099       }
9100       case CC_Range: {
9101         const Value *RHS, *LHS, *MHS;
9102         ISD::CondCode CC;
9103         if (I->Low == I->High) {
9104           // Check Cond == I->Low.
9105           CC = ISD::SETEQ;
9106           LHS = Cond;
9107           RHS=I->Low;
9108           MHS = nullptr;
9109         } else {
9110           // Check I->Low <= Cond <= I->High.
9111           CC = ISD::SETLE;
9112           LHS = I->Low;
9113           MHS = Cond;
9114           RHS = I->High;
9115         }
9116 
9117         // The false probability is the sum of all unhandled cases.
9118         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
9119                      UnhandledProbs);
9120 
9121         if (CurMBB == SwitchMBB)
9122           visitSwitchCase(CB, SwitchMBB);
9123         else
9124           SwitchCases.push_back(CB);
9125 
9126         break;
9127       }
9128     }
9129     CurMBB = Fallthrough;
9130   }
9131 }
9132 
9133 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
9134                                               CaseClusterIt First,
9135                                               CaseClusterIt Last) {
9136   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
9137     if (X.Prob != CC.Prob)
9138       return X.Prob > CC.Prob;
9139 
9140     // Ties are broken by comparing the case value.
9141     return X.Low->getValue().slt(CC.Low->getValue());
9142   });
9143 }
9144 
9145 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
9146                                         const SwitchWorkListItem &W,
9147                                         Value *Cond,
9148                                         MachineBasicBlock *SwitchMBB) {
9149   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
9150          "Clusters not sorted?");
9151 
9152   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
9153 
9154   // Balance the tree based on branch probabilities to create a near-optimal (in
9155   // terms of search time given key frequency) binary search tree. See e.g. Kurt
9156   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
9157   CaseClusterIt LastLeft = W.FirstCluster;
9158   CaseClusterIt FirstRight = W.LastCluster;
9159   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
9160   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
9161 
9162   // Move LastLeft and FirstRight towards each other from opposite directions to
9163   // find a partitioning of the clusters which balances the probability on both
9164   // sides. If LeftProb and RightProb are equal, alternate which side is
9165   // taken to ensure 0-probability nodes are distributed evenly.
9166   unsigned I = 0;
9167   while (LastLeft + 1 < FirstRight) {
9168     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
9169       LeftProb += (++LastLeft)->Prob;
9170     else
9171       RightProb += (--FirstRight)->Prob;
9172     I++;
9173   }
9174 
9175   for (;;) {
9176     // Our binary search tree differs from a typical BST in that ours can have up
9177     // to three values in each leaf. The pivot selection above doesn't take that
9178     // into account, which means the tree might require more nodes and be less
9179     // efficient. We compensate for this here.
9180 
9181     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
9182     unsigned NumRight = W.LastCluster - FirstRight + 1;
9183 
9184     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
9185       // If one side has less than 3 clusters, and the other has more than 3,
9186       // consider taking a cluster from the other side.
9187 
9188       if (NumLeft < NumRight) {
9189         // Consider moving the first cluster on the right to the left side.
9190         CaseCluster &CC = *FirstRight;
9191         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9192         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9193         if (LeftSideRank <= RightSideRank) {
9194           // Moving the cluster to the left does not demote it.
9195           ++LastLeft;
9196           ++FirstRight;
9197           continue;
9198         }
9199       } else {
9200         assert(NumRight < NumLeft);
9201         // Consider moving the last element on the left to the right side.
9202         CaseCluster &CC = *LastLeft;
9203         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
9204         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
9205         if (RightSideRank <= LeftSideRank) {
9206           // Moving the cluster to the right does not demot it.
9207           --LastLeft;
9208           --FirstRight;
9209           continue;
9210         }
9211       }
9212     }
9213     break;
9214   }
9215 
9216   assert(LastLeft + 1 == FirstRight);
9217   assert(LastLeft >= W.FirstCluster);
9218   assert(FirstRight <= W.LastCluster);
9219 
9220   // Use the first element on the right as pivot since we will make less-than
9221   // comparisons against it.
9222   CaseClusterIt PivotCluster = FirstRight;
9223   assert(PivotCluster > W.FirstCluster);
9224   assert(PivotCluster <= W.LastCluster);
9225 
9226   CaseClusterIt FirstLeft = W.FirstCluster;
9227   CaseClusterIt LastRight = W.LastCluster;
9228 
9229   const ConstantInt *Pivot = PivotCluster->Low;
9230 
9231   // New blocks will be inserted immediately after the current one.
9232   MachineFunction::iterator BBI(W.MBB);
9233   ++BBI;
9234 
9235   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
9236   // we can branch to its destination directly if it's squeezed exactly in
9237   // between the known lower bound and Pivot - 1.
9238   MachineBasicBlock *LeftMBB;
9239   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
9240       FirstLeft->Low == W.GE &&
9241       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
9242     LeftMBB = FirstLeft->MBB;
9243   } else {
9244     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9245     FuncInfo.MF->insert(BBI, LeftMBB);
9246     WorkList.push_back(
9247         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
9248     // Put Cond in a virtual register to make it available from the new blocks.
9249     ExportFromCurrentBlock(Cond);
9250   }
9251 
9252   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
9253   // single cluster, RHS.Low == Pivot, and we can branch to its destination
9254   // directly if RHS.High equals the current upper bound.
9255   MachineBasicBlock *RightMBB;
9256   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
9257       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
9258     RightMBB = FirstRight->MBB;
9259   } else {
9260     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
9261     FuncInfo.MF->insert(BBI, RightMBB);
9262     WorkList.push_back(
9263         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
9264     // Put Cond in a virtual register to make it available from the new blocks.
9265     ExportFromCurrentBlock(Cond);
9266   }
9267 
9268   // Create the CaseBlock record that will be used to lower the branch.
9269   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
9270                LeftProb, RightProb);
9271 
9272   if (W.MBB == SwitchMBB)
9273     visitSwitchCase(CB, SwitchMBB);
9274   else
9275     SwitchCases.push_back(CB);
9276 }
9277 
9278 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
9279   // Extract cases from the switch.
9280   BranchProbabilityInfo *BPI = FuncInfo.BPI;
9281   CaseClusterVector Clusters;
9282   Clusters.reserve(SI.getNumCases());
9283   for (auto I : SI.cases()) {
9284     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
9285     const ConstantInt *CaseVal = I.getCaseValue();
9286     BranchProbability Prob =
9287         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
9288             : BranchProbability(1, SI.getNumCases() + 1);
9289     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
9290   }
9291 
9292   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
9293 
9294   // Cluster adjacent cases with the same destination. We do this at all
9295   // optimization levels because it's cheap to do and will make codegen faster
9296   // if there are many clusters.
9297   sortAndRangeify(Clusters);
9298 
9299   if (TM.getOptLevel() != CodeGenOpt::None) {
9300     // Replace an unreachable default with the most popular destination.
9301     // FIXME: Exploit unreachable default more aggressively.
9302     bool UnreachableDefault =
9303         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
9304     if (UnreachableDefault && !Clusters.empty()) {
9305       DenseMap<const BasicBlock *, unsigned> Popularity;
9306       unsigned MaxPop = 0;
9307       const BasicBlock *MaxBB = nullptr;
9308       for (auto I : SI.cases()) {
9309         const BasicBlock *BB = I.getCaseSuccessor();
9310         if (++Popularity[BB] > MaxPop) {
9311           MaxPop = Popularity[BB];
9312           MaxBB = BB;
9313         }
9314       }
9315       // Set new default.
9316       assert(MaxPop > 0 && MaxBB);
9317       DefaultMBB = FuncInfo.MBBMap[MaxBB];
9318 
9319       // Remove cases that were pointing to the destination that is now the
9320       // default.
9321       CaseClusterVector New;
9322       New.reserve(Clusters.size());
9323       for (CaseCluster &CC : Clusters) {
9324         if (CC.MBB != DefaultMBB)
9325           New.push_back(CC);
9326       }
9327       Clusters = std::move(New);
9328     }
9329   }
9330 
9331   // If there is only the default destination, jump there directly.
9332   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
9333   if (Clusters.empty()) {
9334     SwitchMBB->addSuccessor(DefaultMBB);
9335     if (DefaultMBB != NextBlock(SwitchMBB)) {
9336       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
9337                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
9338     }
9339     return;
9340   }
9341 
9342   findJumpTables(Clusters, &SI, DefaultMBB);
9343   findBitTestClusters(Clusters, &SI);
9344 
9345   DEBUG({
9346     dbgs() << "Case clusters: ";
9347     for (const CaseCluster &C : Clusters) {
9348       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
9349       if (C.Kind == CC_BitTests) dbgs() << "BT:";
9350 
9351       C.Low->getValue().print(dbgs(), true);
9352       if (C.Low != C.High) {
9353         dbgs() << '-';
9354         C.High->getValue().print(dbgs(), true);
9355       }
9356       dbgs() << ' ';
9357     }
9358     dbgs() << '\n';
9359   });
9360 
9361   assert(!Clusters.empty());
9362   SwitchWorkList WorkList;
9363   CaseClusterIt First = Clusters.begin();
9364   CaseClusterIt Last = Clusters.end() - 1;
9365   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
9366   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
9367 
9368   while (!WorkList.empty()) {
9369     SwitchWorkListItem W = WorkList.back();
9370     WorkList.pop_back();
9371     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
9372 
9373     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
9374         !DefaultMBB->getParent()->getFunction()->optForMinSize()) {
9375       // For optimized builds, lower large range as a balanced binary tree.
9376       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
9377       continue;
9378     }
9379 
9380     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
9381   }
9382 }
9383