1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1182 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1183 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1184 if (IsMSVCCXX || IsCoreCLR) 1185 CatchPadMBB->setIsEHFuncletEntry(); 1186 1187 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1188 1189 // Update machine-CFG edge. 1190 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1191 1192 SDValue Chain = 1193 DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()); 1194 1195 // If this is not a fall-through branch or optimizations are switched off, 1196 // emit the branch. 1197 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1198 TM.getOptLevel() == CodeGenOpt::None) 1199 Chain = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 1200 DAG.getBasicBlock(NormalDestMBB)); 1201 DAG.setRoot(Chain); 1202 } 1203 1204 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1205 // Update machine-CFG edge. 1206 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1207 FuncInfo.MBB->addSuccessor(TargetMBB); 1208 1209 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1210 bool IsSEH = isAsynchronousEHPersonality(Pers); 1211 if (IsSEH) { 1212 // If this is not a fall-through branch or optimizations are switched off, 1213 // emit the branch. 1214 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1215 TM.getOptLevel() == CodeGenOpt::None) 1216 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1217 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1218 return; 1219 } 1220 1221 // Figure out the funclet membership for the catchret's successor. 1222 // This will be used by the FuncletLayout pass to determine how to order the 1223 // BB's. 1224 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1225 WinEHFuncInfo &EHInfo = 1226 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 1227 const BasicBlock *SuccessorColor = EHInfo.CatchRetSuccessorColorMap[&I]; 1228 assert(SuccessorColor && "No parent funclet for catchret!"); 1229 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1230 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1231 1232 // Create the terminator node. 1233 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1234 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1235 DAG.getBasicBlock(SuccessorColorMBB)); 1236 DAG.setRoot(Ret); 1237 } 1238 1239 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1240 llvm_unreachable("should never codegen catchendpads"); 1241 } 1242 1243 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1244 // Don't emit any special code for the cleanuppad instruction. It just marks 1245 // the start of a funclet. 1246 FuncInfo.MBB->setIsEHFuncletEntry(); 1247 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1248 } 1249 1250 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1251 /// many places it could ultimately go. In the IR, we have a single unwind 1252 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1253 /// This function skips over imaginary basic blocks that hold catchpad, 1254 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1255 /// basic block destinations. As those destinations may not be successors of 1256 /// EHPadBB, here we also calculate the edge weight to those destinations. The 1257 /// passed-in Weight is the edge weight to EHPadBB. 1258 static void findUnwindDestinations( 1259 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, uint32_t Weight, 1260 SmallVectorImpl<std::pair<MachineBasicBlock *, uint32_t>> &UnwindDests) { 1261 EHPersonality Personality = 1262 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1263 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1264 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1265 1266 while (EHPadBB) { 1267 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1268 BasicBlock *NewEHPadBB = nullptr; 1269 if (isa<LandingPadInst>(Pad)) { 1270 // Stop on landingpads. They are not funclets. 1271 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1272 break; 1273 } else if (isa<CleanupPadInst>(Pad)) { 1274 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1275 // personalities. 1276 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1277 UnwindDests.back().first->setIsEHFuncletEntry(); 1278 break; 1279 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1280 // Add the catchpad handler to the possible destinations. 1281 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1282 // In MSVC C++, catchblocks are funclets and need prologues. 1283 if (IsMSVCCXX || IsCoreCLR) 1284 UnwindDests.back().first->setIsEHFuncletEntry(); 1285 NewEHPadBB = CPI->getUnwindDest(); 1286 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) 1287 NewEHPadBB = CEPI->getUnwindDest(); 1288 else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) 1289 NewEHPadBB = CEPI->getUnwindDest(); 1290 else 1291 continue; 1292 1293 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1294 if (BPI && NewEHPadBB) { 1295 // When BPI is available, the calculated weight cannot be zero as zero 1296 // will be turned to a default weight in MachineBlockFrequencyInfo. 1297 Weight = std::max<uint32_t>( 1298 BPI->getEdgeProbability(EHPadBB, NewEHPadBB).scale(Weight), 1); 1299 } 1300 EHPadBB = NewEHPadBB; 1301 } 1302 } 1303 1304 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1305 // Update successor info. 1306 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 1307 auto UnwindDest = I.getUnwindDest(); 1308 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1309 uint32_t UnwindDestWeight = 1310 BPI ? BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), UnwindDest) : 0; 1311 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestWeight, UnwindDests); 1312 for (auto &UnwindDest : UnwindDests) { 1313 UnwindDest.first->setIsEHPad(); 1314 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1315 } 1316 1317 // Create the terminator node. 1318 SDValue Ret = 1319 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1320 DAG.setRoot(Ret); 1321 } 1322 1323 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1324 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1325 } 1326 1327 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1328 report_fatal_error("visitTerminatePad not yet implemented!"); 1329 } 1330 1331 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1332 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1333 auto &DL = DAG.getDataLayout(); 1334 SDValue Chain = getControlRoot(); 1335 SmallVector<ISD::OutputArg, 8> Outs; 1336 SmallVector<SDValue, 8> OutVals; 1337 1338 if (!FuncInfo.CanLowerReturn) { 1339 unsigned DemoteReg = FuncInfo.DemoteRegister; 1340 const Function *F = I.getParent()->getParent(); 1341 1342 // Emit a store of the return value through the virtual register. 1343 // Leave Outs empty so that LowerReturn won't try to load return 1344 // registers the usual way. 1345 SmallVector<EVT, 1> PtrValueVTs; 1346 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1347 PtrValueVTs); 1348 1349 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1350 SDValue RetOp = getValue(I.getOperand(0)); 1351 1352 SmallVector<EVT, 4> ValueVTs; 1353 SmallVector<uint64_t, 4> Offsets; 1354 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1355 unsigned NumValues = ValueVTs.size(); 1356 1357 SmallVector<SDValue, 4> Chains(NumValues); 1358 for (unsigned i = 0; i != NumValues; ++i) { 1359 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1360 RetPtr.getValueType(), RetPtr, 1361 DAG.getIntPtrConstant(Offsets[i], 1362 getCurSDLoc())); 1363 Chains[i] = 1364 DAG.getStore(Chain, getCurSDLoc(), 1365 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1366 // FIXME: better loc info would be nice. 1367 Add, MachinePointerInfo(), false, false, 0); 1368 } 1369 1370 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1371 MVT::Other, Chains); 1372 } else if (I.getNumOperands() != 0) { 1373 SmallVector<EVT, 4> ValueVTs; 1374 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1375 unsigned NumValues = ValueVTs.size(); 1376 if (NumValues) { 1377 SDValue RetOp = getValue(I.getOperand(0)); 1378 1379 const Function *F = I.getParent()->getParent(); 1380 1381 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1382 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1383 Attribute::SExt)) 1384 ExtendKind = ISD::SIGN_EXTEND; 1385 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1386 Attribute::ZExt)) 1387 ExtendKind = ISD::ZERO_EXTEND; 1388 1389 LLVMContext &Context = F->getContext(); 1390 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1391 Attribute::InReg); 1392 1393 for (unsigned j = 0; j != NumValues; ++j) { 1394 EVT VT = ValueVTs[j]; 1395 1396 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1397 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1398 1399 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1400 MVT PartVT = TLI.getRegisterType(Context, VT); 1401 SmallVector<SDValue, 4> Parts(NumParts); 1402 getCopyToParts(DAG, getCurSDLoc(), 1403 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1404 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1405 1406 // 'inreg' on function refers to return value 1407 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1408 if (RetInReg) 1409 Flags.setInReg(); 1410 1411 // Propagate extension type if any 1412 if (ExtendKind == ISD::SIGN_EXTEND) 1413 Flags.setSExt(); 1414 else if (ExtendKind == ISD::ZERO_EXTEND) 1415 Flags.setZExt(); 1416 1417 for (unsigned i = 0; i < NumParts; ++i) { 1418 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1419 VT, /*isfixed=*/true, 0, 0)); 1420 OutVals.push_back(Parts[i]); 1421 } 1422 } 1423 } 1424 } 1425 1426 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1427 CallingConv::ID CallConv = 1428 DAG.getMachineFunction().getFunction()->getCallingConv(); 1429 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1430 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1431 1432 // Verify that the target's LowerReturn behaved as expected. 1433 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1434 "LowerReturn didn't return a valid chain!"); 1435 1436 // Update the DAG with the new chain value resulting from return lowering. 1437 DAG.setRoot(Chain); 1438 } 1439 1440 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1441 /// created for it, emit nodes to copy the value into the virtual 1442 /// registers. 1443 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1444 // Skip empty types 1445 if (V->getType()->isEmptyTy()) 1446 return; 1447 1448 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1449 if (VMI != FuncInfo.ValueMap.end()) { 1450 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1451 CopyValueToVirtualRegister(V, VMI->second); 1452 } 1453 } 1454 1455 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1456 /// the current basic block, add it to ValueMap now so that we'll get a 1457 /// CopyTo/FromReg. 1458 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1459 // No need to export constants. 1460 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1461 1462 // Already exported? 1463 if (FuncInfo.isExportedInst(V)) return; 1464 1465 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1466 CopyValueToVirtualRegister(V, Reg); 1467 } 1468 1469 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1470 const BasicBlock *FromBB) { 1471 // The operands of the setcc have to be in this block. We don't know 1472 // how to export them from some other block. 1473 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1474 // Can export from current BB. 1475 if (VI->getParent() == FromBB) 1476 return true; 1477 1478 // Is already exported, noop. 1479 return FuncInfo.isExportedInst(V); 1480 } 1481 1482 // If this is an argument, we can export it if the BB is the entry block or 1483 // if it is already exported. 1484 if (isa<Argument>(V)) { 1485 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1486 return true; 1487 1488 // Otherwise, can only export this if it is already exported. 1489 return FuncInfo.isExportedInst(V); 1490 } 1491 1492 // Otherwise, constants can always be exported. 1493 return true; 1494 } 1495 1496 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1497 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1498 const MachineBasicBlock *Dst) const { 1499 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1500 if (!BPI) 1501 return 0; 1502 const BasicBlock *SrcBB = Src->getBasicBlock(); 1503 const BasicBlock *DstBB = Dst->getBasicBlock(); 1504 return BPI->getEdgeWeight(SrcBB, DstBB); 1505 } 1506 1507 void SelectionDAGBuilder:: 1508 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1509 uint32_t Weight /* = 0 */) { 1510 if (!FuncInfo.BPI) 1511 Src->addSuccessorWithoutWeight(Dst); 1512 else { 1513 if (!Weight) 1514 Weight = getEdgeWeight(Src, Dst); 1515 Src->addSuccessor(Dst, Weight); 1516 } 1517 } 1518 1519 1520 static bool InBlock(const Value *V, const BasicBlock *BB) { 1521 if (const Instruction *I = dyn_cast<Instruction>(V)) 1522 return I->getParent() == BB; 1523 return true; 1524 } 1525 1526 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1527 /// This function emits a branch and is used at the leaves of an OR or an 1528 /// AND operator tree. 1529 /// 1530 void 1531 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1532 MachineBasicBlock *TBB, 1533 MachineBasicBlock *FBB, 1534 MachineBasicBlock *CurBB, 1535 MachineBasicBlock *SwitchBB, 1536 uint32_t TWeight, 1537 uint32_t FWeight) { 1538 const BasicBlock *BB = CurBB->getBasicBlock(); 1539 1540 // If the leaf of the tree is a comparison, merge the condition into 1541 // the caseblock. 1542 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1543 // The operands of the cmp have to be in this block. We don't know 1544 // how to export them from some other block. If this is the first block 1545 // of the sequence, no exporting is needed. 1546 if (CurBB == SwitchBB || 1547 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1548 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1549 ISD::CondCode Condition; 1550 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1551 Condition = getICmpCondCode(IC->getPredicate()); 1552 } else { 1553 const FCmpInst *FC = cast<FCmpInst>(Cond); 1554 Condition = getFCmpCondCode(FC->getPredicate()); 1555 if (TM.Options.NoNaNsFPMath) 1556 Condition = getFCmpCodeWithoutNaN(Condition); 1557 } 1558 1559 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1560 TBB, FBB, CurBB, TWeight, FWeight); 1561 SwitchCases.push_back(CB); 1562 return; 1563 } 1564 } 1565 1566 // Create a CaseBlock record representing this branch. 1567 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1568 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1569 SwitchCases.push_back(CB); 1570 } 1571 1572 /// Scale down both weights to fit into uint32_t. 1573 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1574 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1575 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1576 NewTrue = NewTrue / Scale; 1577 NewFalse = NewFalse / Scale; 1578 } 1579 1580 /// FindMergedConditions - If Cond is an expression like 1581 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1582 MachineBasicBlock *TBB, 1583 MachineBasicBlock *FBB, 1584 MachineBasicBlock *CurBB, 1585 MachineBasicBlock *SwitchBB, 1586 Instruction::BinaryOps Opc, 1587 uint32_t TWeight, 1588 uint32_t FWeight) { 1589 // If this node is not part of the or/and tree, emit it as a branch. 1590 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1591 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1592 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1593 BOp->getParent() != CurBB->getBasicBlock() || 1594 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1595 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1596 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1597 TWeight, FWeight); 1598 return; 1599 } 1600 1601 // Create TmpBB after CurBB. 1602 MachineFunction::iterator BBI(CurBB); 1603 MachineFunction &MF = DAG.getMachineFunction(); 1604 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1605 CurBB->getParent()->insert(++BBI, TmpBB); 1606 1607 if (Opc == Instruction::Or) { 1608 // Codegen X | Y as: 1609 // BB1: 1610 // jmp_if_X TBB 1611 // jmp TmpBB 1612 // TmpBB: 1613 // jmp_if_Y TBB 1614 // jmp FBB 1615 // 1616 1617 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1618 // The requirement is that 1619 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1620 // = TrueProb for original BB. 1621 // Assuming the original weights are A and B, one choice is to set BB1's 1622 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1623 // assumes that 1624 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1625 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1626 // TmpBB, but the math is more complicated. 1627 1628 uint64_t NewTrueWeight = TWeight; 1629 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1630 ScaleWeights(NewTrueWeight, NewFalseWeight); 1631 // Emit the LHS condition. 1632 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1633 NewTrueWeight, NewFalseWeight); 1634 1635 NewTrueWeight = TWeight; 1636 NewFalseWeight = 2 * (uint64_t)FWeight; 1637 ScaleWeights(NewTrueWeight, NewFalseWeight); 1638 // Emit the RHS condition into TmpBB. 1639 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1640 NewTrueWeight, NewFalseWeight); 1641 } else { 1642 assert(Opc == Instruction::And && "Unknown merge op!"); 1643 // Codegen X & Y as: 1644 // BB1: 1645 // jmp_if_X TmpBB 1646 // jmp FBB 1647 // TmpBB: 1648 // jmp_if_Y TBB 1649 // jmp FBB 1650 // 1651 // This requires creation of TmpBB after CurBB. 1652 1653 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1654 // The requirement is that 1655 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1656 // = FalseProb for original BB. 1657 // Assuming the original weights are A and B, one choice is to set BB1's 1658 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1659 // assumes that 1660 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1661 1662 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1663 uint64_t NewFalseWeight = FWeight; 1664 ScaleWeights(NewTrueWeight, NewFalseWeight); 1665 // Emit the LHS condition. 1666 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1667 NewTrueWeight, NewFalseWeight); 1668 1669 NewTrueWeight = 2 * (uint64_t)TWeight; 1670 NewFalseWeight = FWeight; 1671 ScaleWeights(NewTrueWeight, NewFalseWeight); 1672 // Emit the RHS condition into TmpBB. 1673 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1674 NewTrueWeight, NewFalseWeight); 1675 } 1676 } 1677 1678 /// If the set of cases should be emitted as a series of branches, return true. 1679 /// If we should emit this as a bunch of and/or'd together conditions, return 1680 /// false. 1681 bool 1682 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1683 if (Cases.size() != 2) return true; 1684 1685 // If this is two comparisons of the same values or'd or and'd together, they 1686 // will get folded into a single comparison, so don't emit two blocks. 1687 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1688 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1689 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1690 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1691 return false; 1692 } 1693 1694 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1695 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1696 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1697 Cases[0].CC == Cases[1].CC && 1698 isa<Constant>(Cases[0].CmpRHS) && 1699 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1700 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1701 return false; 1702 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1703 return false; 1704 } 1705 1706 return true; 1707 } 1708 1709 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1710 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1711 1712 // Update machine-CFG edges. 1713 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1714 1715 if (I.isUnconditional()) { 1716 // Update machine-CFG edges. 1717 BrMBB->addSuccessor(Succ0MBB); 1718 1719 // If this is not a fall-through branch or optimizations are switched off, 1720 // emit the branch. 1721 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1722 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1723 MVT::Other, getControlRoot(), 1724 DAG.getBasicBlock(Succ0MBB))); 1725 1726 return; 1727 } 1728 1729 // If this condition is one of the special cases we handle, do special stuff 1730 // now. 1731 const Value *CondVal = I.getCondition(); 1732 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1733 1734 // If this is a series of conditions that are or'd or and'd together, emit 1735 // this as a sequence of branches instead of setcc's with and/or operations. 1736 // As long as jumps are not expensive, this should improve performance. 1737 // For example, instead of something like: 1738 // cmp A, B 1739 // C = seteq 1740 // cmp D, E 1741 // F = setle 1742 // or C, F 1743 // jnz foo 1744 // Emit: 1745 // cmp A, B 1746 // je foo 1747 // cmp D, E 1748 // jle foo 1749 // 1750 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1751 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1752 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1753 !I.getMetadata(LLVMContext::MD_unpredictable) && 1754 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1755 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1756 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1757 getEdgeWeight(BrMBB, Succ1MBB)); 1758 // If the compares in later blocks need to use values not currently 1759 // exported from this block, export them now. This block should always 1760 // be the first entry. 1761 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1762 1763 // Allow some cases to be rejected. 1764 if (ShouldEmitAsBranches(SwitchCases)) { 1765 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1766 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1767 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1768 } 1769 1770 // Emit the branch for this block. 1771 visitSwitchCase(SwitchCases[0], BrMBB); 1772 SwitchCases.erase(SwitchCases.begin()); 1773 return; 1774 } 1775 1776 // Okay, we decided not to do this, remove any inserted MBB's and clear 1777 // SwitchCases. 1778 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1779 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1780 1781 SwitchCases.clear(); 1782 } 1783 } 1784 1785 // Create a CaseBlock record representing this branch. 1786 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1787 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1788 1789 // Use visitSwitchCase to actually insert the fast branch sequence for this 1790 // cond branch. 1791 visitSwitchCase(CB, BrMBB); 1792 } 1793 1794 /// visitSwitchCase - Emits the necessary code to represent a single node in 1795 /// the binary search tree resulting from lowering a switch instruction. 1796 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1797 MachineBasicBlock *SwitchBB) { 1798 SDValue Cond; 1799 SDValue CondLHS = getValue(CB.CmpLHS); 1800 SDLoc dl = getCurSDLoc(); 1801 1802 // Build the setcc now. 1803 if (!CB.CmpMHS) { 1804 // Fold "(X == true)" to X and "(X == false)" to !X to 1805 // handle common cases produced by branch lowering. 1806 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1807 CB.CC == ISD::SETEQ) 1808 Cond = CondLHS; 1809 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1810 CB.CC == ISD::SETEQ) { 1811 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1812 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1813 } else 1814 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1815 } else { 1816 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1817 1818 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1819 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1820 1821 SDValue CmpOp = getValue(CB.CmpMHS); 1822 EVT VT = CmpOp.getValueType(); 1823 1824 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1825 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1826 ISD::SETLE); 1827 } else { 1828 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1829 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1830 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1831 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1832 } 1833 } 1834 1835 // Update successor info 1836 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1837 // TrueBB and FalseBB are always different unless the incoming IR is 1838 // degenerate. This only happens when running llc on weird IR. 1839 if (CB.TrueBB != CB.FalseBB) 1840 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1841 1842 // If the lhs block is the next block, invert the condition so that we can 1843 // fall through to the lhs instead of the rhs block. 1844 if (CB.TrueBB == NextBlock(SwitchBB)) { 1845 std::swap(CB.TrueBB, CB.FalseBB); 1846 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1847 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1848 } 1849 1850 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1851 MVT::Other, getControlRoot(), Cond, 1852 DAG.getBasicBlock(CB.TrueBB)); 1853 1854 // Insert the false branch. Do this even if it's a fall through branch, 1855 // this makes it easier to do DAG optimizations which require inverting 1856 // the branch condition. 1857 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1858 DAG.getBasicBlock(CB.FalseBB)); 1859 1860 DAG.setRoot(BrCond); 1861 } 1862 1863 /// visitJumpTable - Emit JumpTable node in the current MBB 1864 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1865 // Emit the code for the jump table 1866 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1867 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1868 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1869 JT.Reg, PTy); 1870 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1871 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1872 MVT::Other, Index.getValue(1), 1873 Table, Index); 1874 DAG.setRoot(BrJumpTable); 1875 } 1876 1877 /// visitJumpTableHeader - This function emits necessary code to produce index 1878 /// in the JumpTable from switch case. 1879 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1880 JumpTableHeader &JTH, 1881 MachineBasicBlock *SwitchBB) { 1882 SDLoc dl = getCurSDLoc(); 1883 1884 // Subtract the lowest switch case value from the value being switched on and 1885 // conditional branch to default mbb if the result is greater than the 1886 // difference between smallest and largest cases. 1887 SDValue SwitchOp = getValue(JTH.SValue); 1888 EVT VT = SwitchOp.getValueType(); 1889 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1890 DAG.getConstant(JTH.First, dl, VT)); 1891 1892 // The SDNode we just created, which holds the value being switched on minus 1893 // the smallest case value, needs to be copied to a virtual register so it 1894 // can be used as an index into the jump table in a subsequent basic block. 1895 // This value may be smaller or larger than the target's pointer type, and 1896 // therefore require extension or truncating. 1897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1898 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1899 1900 unsigned JumpTableReg = 1901 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1902 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1903 JumpTableReg, SwitchOp); 1904 JT.Reg = JumpTableReg; 1905 1906 // Emit the range check for the jump table, and branch to the default block 1907 // for the switch statement if the value being switched on exceeds the largest 1908 // case in the switch. 1909 SDValue CMP = DAG.getSetCC( 1910 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1911 Sub.getValueType()), 1912 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1913 1914 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1915 MVT::Other, CopyTo, CMP, 1916 DAG.getBasicBlock(JT.Default)); 1917 1918 // Avoid emitting unnecessary branches to the next block. 1919 if (JT.MBB != NextBlock(SwitchBB)) 1920 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1921 DAG.getBasicBlock(JT.MBB)); 1922 1923 DAG.setRoot(BrCond); 1924 } 1925 1926 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1927 /// tail spliced into a stack protector check success bb. 1928 /// 1929 /// For a high level explanation of how this fits into the stack protector 1930 /// generation see the comment on the declaration of class 1931 /// StackProtectorDescriptor. 1932 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1933 MachineBasicBlock *ParentBB) { 1934 1935 // First create the loads to the guard/stack slot for the comparison. 1936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1937 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1938 1939 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1940 int FI = MFI->getStackProtectorIndex(); 1941 1942 const Value *IRGuard = SPD.getGuard(); 1943 SDValue GuardPtr = getValue(IRGuard); 1944 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1945 1946 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1947 1948 SDValue Guard; 1949 SDLoc dl = getCurSDLoc(); 1950 1951 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1952 // guard value from the virtual register holding the value. Otherwise, emit a 1953 // volatile load to retrieve the stack guard value. 1954 unsigned GuardReg = SPD.getGuardReg(); 1955 1956 if (GuardReg && TLI.useLoadStackGuardNode()) 1957 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1958 PtrTy); 1959 else 1960 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1961 GuardPtr, MachinePointerInfo(IRGuard, 0), 1962 true, false, false, Align); 1963 1964 SDValue StackSlot = DAG.getLoad( 1965 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1966 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1967 false, false, Align); 1968 1969 // Perform the comparison via a subtract/getsetcc. 1970 EVT VT = Guard.getValueType(); 1971 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1972 1973 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1974 *DAG.getContext(), 1975 Sub.getValueType()), 1976 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1977 1978 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1979 // branch to failure MBB. 1980 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1981 MVT::Other, StackSlot.getOperand(0), 1982 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1983 // Otherwise branch to success MBB. 1984 SDValue Br = DAG.getNode(ISD::BR, dl, 1985 MVT::Other, BrCond, 1986 DAG.getBasicBlock(SPD.getSuccessMBB())); 1987 1988 DAG.setRoot(Br); 1989 } 1990 1991 /// Codegen the failure basic block for a stack protector check. 1992 /// 1993 /// A failure stack protector machine basic block consists simply of a call to 1994 /// __stack_chk_fail(). 1995 /// 1996 /// For a high level explanation of how this fits into the stack protector 1997 /// generation see the comment on the declaration of class 1998 /// StackProtectorDescriptor. 1999 void 2000 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2001 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2002 SDValue Chain = 2003 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2004 None, false, getCurSDLoc(), false, false).second; 2005 DAG.setRoot(Chain); 2006 } 2007 2008 /// visitBitTestHeader - This function emits necessary code to produce value 2009 /// suitable for "bit tests" 2010 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2011 MachineBasicBlock *SwitchBB) { 2012 SDLoc dl = getCurSDLoc(); 2013 2014 // Subtract the minimum value 2015 SDValue SwitchOp = getValue(B.SValue); 2016 EVT VT = SwitchOp.getValueType(); 2017 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2018 DAG.getConstant(B.First, dl, VT)); 2019 2020 // Check range 2021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2022 SDValue RangeCmp = DAG.getSetCC( 2023 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2024 Sub.getValueType()), 2025 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2026 2027 // Determine the type of the test operands. 2028 bool UsePtrType = false; 2029 if (!TLI.isTypeLegal(VT)) 2030 UsePtrType = true; 2031 else { 2032 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2033 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2034 // Switch table case range are encoded into series of masks. 2035 // Just use pointer type, it's guaranteed to fit. 2036 UsePtrType = true; 2037 break; 2038 } 2039 } 2040 if (UsePtrType) { 2041 VT = TLI.getPointerTy(DAG.getDataLayout()); 2042 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2043 } 2044 2045 B.RegVT = VT.getSimpleVT(); 2046 B.Reg = FuncInfo.CreateReg(B.RegVT); 2047 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2048 2049 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2050 2051 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 2052 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 2053 2054 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2055 MVT::Other, CopyTo, RangeCmp, 2056 DAG.getBasicBlock(B.Default)); 2057 2058 // Avoid emitting unnecessary branches to the next block. 2059 if (MBB != NextBlock(SwitchBB)) 2060 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2061 DAG.getBasicBlock(MBB)); 2062 2063 DAG.setRoot(BrRange); 2064 } 2065 2066 /// visitBitTestCase - this function produces one "bit test" 2067 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2068 MachineBasicBlock* NextMBB, 2069 uint32_t BranchWeightToNext, 2070 unsigned Reg, 2071 BitTestCase &B, 2072 MachineBasicBlock *SwitchBB) { 2073 SDLoc dl = getCurSDLoc(); 2074 MVT VT = BB.RegVT; 2075 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2076 SDValue Cmp; 2077 unsigned PopCount = countPopulation(B.Mask); 2078 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2079 if (PopCount == 1) { 2080 // Testing for a single bit; just compare the shift count with what it 2081 // would need to be to shift a 1 bit in that position. 2082 Cmp = DAG.getSetCC( 2083 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2084 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2085 ISD::SETEQ); 2086 } else if (PopCount == BB.Range) { 2087 // There is only one zero bit in the range, test for it directly. 2088 Cmp = DAG.getSetCC( 2089 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2090 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2091 ISD::SETNE); 2092 } else { 2093 // Make desired shift 2094 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2095 DAG.getConstant(1, dl, VT), ShiftOp); 2096 2097 // Emit bit tests and jumps 2098 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2099 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2100 Cmp = DAG.getSetCC( 2101 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2102 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2103 } 2104 2105 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2106 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2107 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2108 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2109 2110 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2111 MVT::Other, getControlRoot(), 2112 Cmp, DAG.getBasicBlock(B.TargetBB)); 2113 2114 // Avoid emitting unnecessary branches to the next block. 2115 if (NextMBB != NextBlock(SwitchBB)) 2116 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2117 DAG.getBasicBlock(NextMBB)); 2118 2119 DAG.setRoot(BrAnd); 2120 } 2121 2122 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2123 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2124 2125 // Retrieve successors. Look through artificial IR level blocks like catchpads 2126 // and catchendpads for successors. 2127 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2128 const BasicBlock *EHPadBB = I.getSuccessor(1); 2129 2130 const Value *Callee(I.getCalledValue()); 2131 const Function *Fn = dyn_cast<Function>(Callee); 2132 if (isa<InlineAsm>(Callee)) 2133 visitInlineAsm(&I); 2134 else if (Fn && Fn->isIntrinsic()) { 2135 switch (Fn->getIntrinsicID()) { 2136 default: 2137 llvm_unreachable("Cannot invoke this intrinsic"); 2138 case Intrinsic::donothing: 2139 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2140 break; 2141 case Intrinsic::experimental_patchpoint_void: 2142 case Intrinsic::experimental_patchpoint_i64: 2143 visitPatchpoint(&I, EHPadBB); 2144 break; 2145 case Intrinsic::experimental_gc_statepoint: 2146 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2147 break; 2148 } 2149 } else 2150 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2151 2152 // If the value of the invoke is used outside of its defining block, make it 2153 // available as a virtual register. 2154 // We already took care of the exported value for the statepoint instruction 2155 // during call to the LowerStatepoint. 2156 if (!isStatepoint(I)) { 2157 CopyToExportRegsIfNeeded(&I); 2158 } 2159 2160 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 2161 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2162 uint32_t EHPadBBWeight = 2163 BPI ? BPI->getEdgeWeight(InvokeMBB->getBasicBlock(), EHPadBB) : 0; 2164 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBWeight, UnwindDests); 2165 2166 // Update successor info. 2167 addSuccessorWithWeight(InvokeMBB, Return); 2168 for (auto &UnwindDest : UnwindDests) { 2169 UnwindDest.first->setIsEHPad(); 2170 addSuccessorWithWeight(InvokeMBB, UnwindDest.first, UnwindDest.second); 2171 } 2172 2173 // Drop into normal successor. 2174 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2175 MVT::Other, getControlRoot(), 2176 DAG.getBasicBlock(Return))); 2177 } 2178 2179 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2180 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2181 } 2182 2183 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2184 assert(FuncInfo.MBB->isEHPad() && 2185 "Call to landingpad not in landing pad!"); 2186 2187 MachineBasicBlock *MBB = FuncInfo.MBB; 2188 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2189 AddLandingPadInfo(LP, MMI, MBB); 2190 2191 // If there aren't registers to copy the values into (e.g., during SjLj 2192 // exceptions), then don't bother to create these DAG nodes. 2193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2194 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2195 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2196 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2197 return; 2198 2199 SmallVector<EVT, 2> ValueVTs; 2200 SDLoc dl = getCurSDLoc(); 2201 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2202 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2203 2204 // Get the two live-in registers as SDValues. The physregs have already been 2205 // copied into virtual registers. 2206 SDValue Ops[2]; 2207 if (FuncInfo.ExceptionPointerVirtReg) { 2208 Ops[0] = DAG.getZExtOrTrunc( 2209 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2210 FuncInfo.ExceptionPointerVirtReg, 2211 TLI.getPointerTy(DAG.getDataLayout())), 2212 dl, ValueVTs[0]); 2213 } else { 2214 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2215 } 2216 Ops[1] = DAG.getZExtOrTrunc( 2217 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2218 FuncInfo.ExceptionSelectorVirtReg, 2219 TLI.getPointerTy(DAG.getDataLayout())), 2220 dl, ValueVTs[1]); 2221 2222 // Merge into one. 2223 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2224 DAG.getVTList(ValueVTs), Ops); 2225 setValue(&LP, Res); 2226 } 2227 2228 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2229 #ifndef NDEBUG 2230 for (const CaseCluster &CC : Clusters) 2231 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2232 #endif 2233 2234 std::sort(Clusters.begin(), Clusters.end(), 2235 [](const CaseCluster &a, const CaseCluster &b) { 2236 return a.Low->getValue().slt(b.Low->getValue()); 2237 }); 2238 2239 // Merge adjacent clusters with the same destination. 2240 const unsigned N = Clusters.size(); 2241 unsigned DstIndex = 0; 2242 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2243 CaseCluster &CC = Clusters[SrcIndex]; 2244 const ConstantInt *CaseVal = CC.Low; 2245 MachineBasicBlock *Succ = CC.MBB; 2246 2247 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2248 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2249 // If this case has the same successor and is a neighbour, merge it into 2250 // the previous cluster. 2251 Clusters[DstIndex - 1].High = CaseVal; 2252 Clusters[DstIndex - 1].Weight += CC.Weight; 2253 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2254 } else { 2255 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2256 sizeof(Clusters[SrcIndex])); 2257 } 2258 } 2259 Clusters.resize(DstIndex); 2260 } 2261 2262 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2263 MachineBasicBlock *Last) { 2264 // Update JTCases. 2265 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2266 if (JTCases[i].first.HeaderBB == First) 2267 JTCases[i].first.HeaderBB = Last; 2268 2269 // Update BitTestCases. 2270 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2271 if (BitTestCases[i].Parent == First) 2272 BitTestCases[i].Parent = Last; 2273 } 2274 2275 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2276 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2277 2278 // Update machine-CFG edges with unique successors. 2279 SmallSet<BasicBlock*, 32> Done; 2280 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2281 BasicBlock *BB = I.getSuccessor(i); 2282 bool Inserted = Done.insert(BB).second; 2283 if (!Inserted) 2284 continue; 2285 2286 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2287 addSuccessorWithWeight(IndirectBrMBB, Succ); 2288 } 2289 2290 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2291 MVT::Other, getControlRoot(), 2292 getValue(I.getAddress()))); 2293 } 2294 2295 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2296 if (DAG.getTarget().Options.TrapUnreachable) 2297 DAG.setRoot( 2298 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2299 } 2300 2301 void SelectionDAGBuilder::visitFSub(const User &I) { 2302 // -0.0 - X --> fneg 2303 Type *Ty = I.getType(); 2304 if (isa<Constant>(I.getOperand(0)) && 2305 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2306 SDValue Op2 = getValue(I.getOperand(1)); 2307 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2308 Op2.getValueType(), Op2)); 2309 return; 2310 } 2311 2312 visitBinary(I, ISD::FSUB); 2313 } 2314 2315 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2316 SDValue Op1 = getValue(I.getOperand(0)); 2317 SDValue Op2 = getValue(I.getOperand(1)); 2318 2319 bool nuw = false; 2320 bool nsw = false; 2321 bool exact = false; 2322 FastMathFlags FMF; 2323 2324 if (const OverflowingBinaryOperator *OFBinOp = 2325 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2326 nuw = OFBinOp->hasNoUnsignedWrap(); 2327 nsw = OFBinOp->hasNoSignedWrap(); 2328 } 2329 if (const PossiblyExactOperator *ExactOp = 2330 dyn_cast<const PossiblyExactOperator>(&I)) 2331 exact = ExactOp->isExact(); 2332 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2333 FMF = FPOp->getFastMathFlags(); 2334 2335 SDNodeFlags Flags; 2336 Flags.setExact(exact); 2337 Flags.setNoSignedWrap(nsw); 2338 Flags.setNoUnsignedWrap(nuw); 2339 if (EnableFMFInDAG) { 2340 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2341 Flags.setNoInfs(FMF.noInfs()); 2342 Flags.setNoNaNs(FMF.noNaNs()); 2343 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2344 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2345 } 2346 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2347 Op1, Op2, &Flags); 2348 setValue(&I, BinNodeValue); 2349 } 2350 2351 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2352 SDValue Op1 = getValue(I.getOperand(0)); 2353 SDValue Op2 = getValue(I.getOperand(1)); 2354 2355 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2356 Op2.getValueType(), DAG.getDataLayout()); 2357 2358 // Coerce the shift amount to the right type if we can. 2359 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2360 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2361 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2362 SDLoc DL = getCurSDLoc(); 2363 2364 // If the operand is smaller than the shift count type, promote it. 2365 if (ShiftSize > Op2Size) 2366 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2367 2368 // If the operand is larger than the shift count type but the shift 2369 // count type has enough bits to represent any shift value, truncate 2370 // it now. This is a common case and it exposes the truncate to 2371 // optimization early. 2372 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2373 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2374 // Otherwise we'll need to temporarily settle for some other convenient 2375 // type. Type legalization will make adjustments once the shiftee is split. 2376 else 2377 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2378 } 2379 2380 bool nuw = false; 2381 bool nsw = false; 2382 bool exact = false; 2383 2384 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2385 2386 if (const OverflowingBinaryOperator *OFBinOp = 2387 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2388 nuw = OFBinOp->hasNoUnsignedWrap(); 2389 nsw = OFBinOp->hasNoSignedWrap(); 2390 } 2391 if (const PossiblyExactOperator *ExactOp = 2392 dyn_cast<const PossiblyExactOperator>(&I)) 2393 exact = ExactOp->isExact(); 2394 } 2395 SDNodeFlags Flags; 2396 Flags.setExact(exact); 2397 Flags.setNoSignedWrap(nsw); 2398 Flags.setNoUnsignedWrap(nuw); 2399 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2400 &Flags); 2401 setValue(&I, Res); 2402 } 2403 2404 void SelectionDAGBuilder::visitSDiv(const User &I) { 2405 SDValue Op1 = getValue(I.getOperand(0)); 2406 SDValue Op2 = getValue(I.getOperand(1)); 2407 2408 SDNodeFlags Flags; 2409 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2410 cast<PossiblyExactOperator>(&I)->isExact()); 2411 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2412 Op2, &Flags)); 2413 } 2414 2415 void SelectionDAGBuilder::visitICmp(const User &I) { 2416 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2417 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2418 predicate = IC->getPredicate(); 2419 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2420 predicate = ICmpInst::Predicate(IC->getPredicate()); 2421 SDValue Op1 = getValue(I.getOperand(0)); 2422 SDValue Op2 = getValue(I.getOperand(1)); 2423 ISD::CondCode Opcode = getICmpCondCode(predicate); 2424 2425 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2426 I.getType()); 2427 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2428 } 2429 2430 void SelectionDAGBuilder::visitFCmp(const User &I) { 2431 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2432 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2433 predicate = FC->getPredicate(); 2434 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2435 predicate = FCmpInst::Predicate(FC->getPredicate()); 2436 SDValue Op1 = getValue(I.getOperand(0)); 2437 SDValue Op2 = getValue(I.getOperand(1)); 2438 ISD::CondCode Condition = getFCmpCondCode(predicate); 2439 2440 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2441 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2442 // further optimization, but currently FMF is only applicable to binary nodes. 2443 if (TM.Options.NoNaNsFPMath) 2444 Condition = getFCmpCodeWithoutNaN(Condition); 2445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2446 I.getType()); 2447 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2448 } 2449 2450 void SelectionDAGBuilder::visitSelect(const User &I) { 2451 SmallVector<EVT, 4> ValueVTs; 2452 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2453 ValueVTs); 2454 unsigned NumValues = ValueVTs.size(); 2455 if (NumValues == 0) return; 2456 2457 SmallVector<SDValue, 4> Values(NumValues); 2458 SDValue Cond = getValue(I.getOperand(0)); 2459 SDValue LHSVal = getValue(I.getOperand(1)); 2460 SDValue RHSVal = getValue(I.getOperand(2)); 2461 auto BaseOps = {Cond}; 2462 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2463 ISD::VSELECT : ISD::SELECT; 2464 2465 // Min/max matching is only viable if all output VTs are the same. 2466 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2467 EVT VT = ValueVTs[0]; 2468 LLVMContext &Ctx = *DAG.getContext(); 2469 auto &TLI = DAG.getTargetLoweringInfo(); 2470 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2471 VT = TLI.getTypeToTransformTo(Ctx, VT); 2472 2473 Value *LHS, *RHS; 2474 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2475 ISD::NodeType Opc = ISD::DELETED_NODE; 2476 switch (SPR.Flavor) { 2477 case SPF_UMAX: Opc = ISD::UMAX; break; 2478 case SPF_UMIN: Opc = ISD::UMIN; break; 2479 case SPF_SMAX: Opc = ISD::SMAX; break; 2480 case SPF_SMIN: Opc = ISD::SMIN; break; 2481 case SPF_FMINNUM: 2482 switch (SPR.NaNBehavior) { 2483 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2484 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2485 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2486 case SPNB_RETURNS_ANY: 2487 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2488 : ISD::FMINNAN; 2489 break; 2490 } 2491 break; 2492 case SPF_FMAXNUM: 2493 switch (SPR.NaNBehavior) { 2494 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2495 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2496 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2497 case SPNB_RETURNS_ANY: 2498 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2499 : ISD::FMAXNAN; 2500 break; 2501 } 2502 break; 2503 default: break; 2504 } 2505 2506 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2507 // If the underlying comparison instruction is used by any other instruction, 2508 // the consumed instructions won't be destroyed, so it is not profitable 2509 // to convert to a min/max. 2510 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2511 OpCode = Opc; 2512 LHSVal = getValue(LHS); 2513 RHSVal = getValue(RHS); 2514 BaseOps = {}; 2515 } 2516 } 2517 2518 for (unsigned i = 0; i != NumValues; ++i) { 2519 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2520 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2521 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2522 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2523 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2524 Ops); 2525 } 2526 2527 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2528 DAG.getVTList(ValueVTs), Values)); 2529 } 2530 2531 void SelectionDAGBuilder::visitTrunc(const User &I) { 2532 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2533 SDValue N = getValue(I.getOperand(0)); 2534 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2535 I.getType()); 2536 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2537 } 2538 2539 void SelectionDAGBuilder::visitZExt(const User &I) { 2540 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2541 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2542 SDValue N = getValue(I.getOperand(0)); 2543 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2544 I.getType()); 2545 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2546 } 2547 2548 void SelectionDAGBuilder::visitSExt(const User &I) { 2549 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2550 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2551 SDValue N = getValue(I.getOperand(0)); 2552 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2553 I.getType()); 2554 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2555 } 2556 2557 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2558 // FPTrunc is never a no-op cast, no need to check 2559 SDValue N = getValue(I.getOperand(0)); 2560 SDLoc dl = getCurSDLoc(); 2561 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2562 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2563 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2564 DAG.getTargetConstant( 2565 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2566 } 2567 2568 void SelectionDAGBuilder::visitFPExt(const User &I) { 2569 // FPExt is never a no-op cast, no need to check 2570 SDValue N = getValue(I.getOperand(0)); 2571 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2572 I.getType()); 2573 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2574 } 2575 2576 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2577 // FPToUI is never a no-op cast, no need to check 2578 SDValue N = getValue(I.getOperand(0)); 2579 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2580 I.getType()); 2581 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2582 } 2583 2584 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2585 // FPToSI is never a no-op cast, no need to check 2586 SDValue N = getValue(I.getOperand(0)); 2587 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2588 I.getType()); 2589 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2590 } 2591 2592 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2593 // UIToFP is never a no-op cast, no need to check 2594 SDValue N = getValue(I.getOperand(0)); 2595 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2596 I.getType()); 2597 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2598 } 2599 2600 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2601 // SIToFP is never a no-op cast, no need to check 2602 SDValue N = getValue(I.getOperand(0)); 2603 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2604 I.getType()); 2605 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2606 } 2607 2608 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2609 // What to do depends on the size of the integer and the size of the pointer. 2610 // We can either truncate, zero extend, or no-op, accordingly. 2611 SDValue N = getValue(I.getOperand(0)); 2612 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2613 I.getType()); 2614 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2615 } 2616 2617 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2618 // What to do depends on the size of the integer and the size of the pointer. 2619 // We can either truncate, zero extend, or no-op, accordingly. 2620 SDValue N = getValue(I.getOperand(0)); 2621 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2622 I.getType()); 2623 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2624 } 2625 2626 void SelectionDAGBuilder::visitBitCast(const User &I) { 2627 SDValue N = getValue(I.getOperand(0)); 2628 SDLoc dl = getCurSDLoc(); 2629 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2630 I.getType()); 2631 2632 // BitCast assures us that source and destination are the same size so this is 2633 // either a BITCAST or a no-op. 2634 if (DestVT != N.getValueType()) 2635 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2636 DestVT, N)); // convert types. 2637 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2638 // might fold any kind of constant expression to an integer constant and that 2639 // is not what we are looking for. Only regcognize a bitcast of a genuine 2640 // constant integer as an opaque constant. 2641 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2642 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2643 /*isOpaque*/true)); 2644 else 2645 setValue(&I, N); // noop cast. 2646 } 2647 2648 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2650 const Value *SV = I.getOperand(0); 2651 SDValue N = getValue(SV); 2652 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2653 2654 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2655 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2656 2657 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2658 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2659 2660 setValue(&I, N); 2661 } 2662 2663 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2665 SDValue InVec = getValue(I.getOperand(0)); 2666 SDValue InVal = getValue(I.getOperand(1)); 2667 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2668 TLI.getVectorIdxTy(DAG.getDataLayout())); 2669 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2670 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2671 InVec, InVal, InIdx)); 2672 } 2673 2674 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2675 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2676 SDValue InVec = getValue(I.getOperand(0)); 2677 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2678 TLI.getVectorIdxTy(DAG.getDataLayout())); 2679 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2680 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2681 InVec, InIdx)); 2682 } 2683 2684 // Utility for visitShuffleVector - Return true if every element in Mask, 2685 // beginning from position Pos and ending in Pos+Size, falls within the 2686 // specified sequential range [L, L+Pos). or is undef. 2687 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2688 unsigned Pos, unsigned Size, int Low) { 2689 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2690 if (Mask[i] >= 0 && Mask[i] != Low) 2691 return false; 2692 return true; 2693 } 2694 2695 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2696 SDValue Src1 = getValue(I.getOperand(0)); 2697 SDValue Src2 = getValue(I.getOperand(1)); 2698 2699 SmallVector<int, 8> Mask; 2700 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2701 unsigned MaskNumElts = Mask.size(); 2702 2703 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2704 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2705 EVT SrcVT = Src1.getValueType(); 2706 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2707 2708 if (SrcNumElts == MaskNumElts) { 2709 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2710 &Mask[0])); 2711 return; 2712 } 2713 2714 // Normalize the shuffle vector since mask and vector length don't match. 2715 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2716 // Mask is longer than the source vectors and is a multiple of the source 2717 // vectors. We can use concatenate vector to make the mask and vectors 2718 // lengths match. 2719 if (SrcNumElts*2 == MaskNumElts) { 2720 // First check for Src1 in low and Src2 in high 2721 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2722 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2723 // The shuffle is concatenating two vectors together. 2724 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2725 VT, Src1, Src2)); 2726 return; 2727 } 2728 // Then check for Src2 in low and Src1 in high 2729 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2730 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2731 // The shuffle is concatenating two vectors together. 2732 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2733 VT, Src2, Src1)); 2734 return; 2735 } 2736 } 2737 2738 // Pad both vectors with undefs to make them the same length as the mask. 2739 unsigned NumConcat = MaskNumElts / SrcNumElts; 2740 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2741 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2742 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2743 2744 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2745 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2746 MOps1[0] = Src1; 2747 MOps2[0] = Src2; 2748 2749 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2750 getCurSDLoc(), VT, MOps1); 2751 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2752 getCurSDLoc(), VT, MOps2); 2753 2754 // Readjust mask for new input vector length. 2755 SmallVector<int, 8> MappedOps; 2756 for (unsigned i = 0; i != MaskNumElts; ++i) { 2757 int Idx = Mask[i]; 2758 if (Idx >= (int)SrcNumElts) 2759 Idx -= SrcNumElts - MaskNumElts; 2760 MappedOps.push_back(Idx); 2761 } 2762 2763 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2764 &MappedOps[0])); 2765 return; 2766 } 2767 2768 if (SrcNumElts > MaskNumElts) { 2769 // Analyze the access pattern of the vector to see if we can extract 2770 // two subvectors and do the shuffle. The analysis is done by calculating 2771 // the range of elements the mask access on both vectors. 2772 int MinRange[2] = { static_cast<int>(SrcNumElts), 2773 static_cast<int>(SrcNumElts)}; 2774 int MaxRange[2] = {-1, -1}; 2775 2776 for (unsigned i = 0; i != MaskNumElts; ++i) { 2777 int Idx = Mask[i]; 2778 unsigned Input = 0; 2779 if (Idx < 0) 2780 continue; 2781 2782 if (Idx >= (int)SrcNumElts) { 2783 Input = 1; 2784 Idx -= SrcNumElts; 2785 } 2786 if (Idx > MaxRange[Input]) 2787 MaxRange[Input] = Idx; 2788 if (Idx < MinRange[Input]) 2789 MinRange[Input] = Idx; 2790 } 2791 2792 // Check if the access is smaller than the vector size and can we find 2793 // a reasonable extract index. 2794 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2795 // Extract. 2796 int StartIdx[2]; // StartIdx to extract from 2797 for (unsigned Input = 0; Input < 2; ++Input) { 2798 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2799 RangeUse[Input] = 0; // Unused 2800 StartIdx[Input] = 0; 2801 continue; 2802 } 2803 2804 // Find a good start index that is a multiple of the mask length. Then 2805 // see if the rest of the elements are in range. 2806 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2807 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2808 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2809 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2810 } 2811 2812 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2813 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2814 return; 2815 } 2816 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2817 // Extract appropriate subvector and generate a vector shuffle 2818 for (unsigned Input = 0; Input < 2; ++Input) { 2819 SDValue &Src = Input == 0 ? Src1 : Src2; 2820 if (RangeUse[Input] == 0) 2821 Src = DAG.getUNDEF(VT); 2822 else { 2823 SDLoc dl = getCurSDLoc(); 2824 Src = DAG.getNode( 2825 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2826 DAG.getConstant(StartIdx[Input], dl, 2827 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2828 } 2829 } 2830 2831 // Calculate new mask. 2832 SmallVector<int, 8> MappedOps; 2833 for (unsigned i = 0; i != MaskNumElts; ++i) { 2834 int Idx = Mask[i]; 2835 if (Idx >= 0) { 2836 if (Idx < (int)SrcNumElts) 2837 Idx -= StartIdx[0]; 2838 else 2839 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2840 } 2841 MappedOps.push_back(Idx); 2842 } 2843 2844 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2845 &MappedOps[0])); 2846 return; 2847 } 2848 } 2849 2850 // We can't use either concat vectors or extract subvectors so fall back to 2851 // replacing the shuffle with extract and build vector. 2852 // to insert and build vector. 2853 EVT EltVT = VT.getVectorElementType(); 2854 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2855 SDLoc dl = getCurSDLoc(); 2856 SmallVector<SDValue,8> Ops; 2857 for (unsigned i = 0; i != MaskNumElts; ++i) { 2858 int Idx = Mask[i]; 2859 SDValue Res; 2860 2861 if (Idx < 0) { 2862 Res = DAG.getUNDEF(EltVT); 2863 } else { 2864 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2865 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2866 2867 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2868 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2869 } 2870 2871 Ops.push_back(Res); 2872 } 2873 2874 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2875 } 2876 2877 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2878 const Value *Op0 = I.getOperand(0); 2879 const Value *Op1 = I.getOperand(1); 2880 Type *AggTy = I.getType(); 2881 Type *ValTy = Op1->getType(); 2882 bool IntoUndef = isa<UndefValue>(Op0); 2883 bool FromUndef = isa<UndefValue>(Op1); 2884 2885 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2886 2887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2888 SmallVector<EVT, 4> AggValueVTs; 2889 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2890 SmallVector<EVT, 4> ValValueVTs; 2891 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2892 2893 unsigned NumAggValues = AggValueVTs.size(); 2894 unsigned NumValValues = ValValueVTs.size(); 2895 SmallVector<SDValue, 4> Values(NumAggValues); 2896 2897 // Ignore an insertvalue that produces an empty object 2898 if (!NumAggValues) { 2899 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2900 return; 2901 } 2902 2903 SDValue Agg = getValue(Op0); 2904 unsigned i = 0; 2905 // Copy the beginning value(s) from the original aggregate. 2906 for (; i != LinearIndex; ++i) 2907 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2908 SDValue(Agg.getNode(), Agg.getResNo() + i); 2909 // Copy values from the inserted value(s). 2910 if (NumValValues) { 2911 SDValue Val = getValue(Op1); 2912 for (; i != LinearIndex + NumValValues; ++i) 2913 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2914 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2915 } 2916 // Copy remaining value(s) from the original aggregate. 2917 for (; i != NumAggValues; ++i) 2918 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2919 SDValue(Agg.getNode(), Agg.getResNo() + i); 2920 2921 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2922 DAG.getVTList(AggValueVTs), Values)); 2923 } 2924 2925 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2926 const Value *Op0 = I.getOperand(0); 2927 Type *AggTy = Op0->getType(); 2928 Type *ValTy = I.getType(); 2929 bool OutOfUndef = isa<UndefValue>(Op0); 2930 2931 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2932 2933 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2934 SmallVector<EVT, 4> ValValueVTs; 2935 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2936 2937 unsigned NumValValues = ValValueVTs.size(); 2938 2939 // Ignore a extractvalue that produces an empty object 2940 if (!NumValValues) { 2941 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2942 return; 2943 } 2944 2945 SmallVector<SDValue, 4> Values(NumValValues); 2946 2947 SDValue Agg = getValue(Op0); 2948 // Copy out the selected value(s). 2949 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2950 Values[i - LinearIndex] = 2951 OutOfUndef ? 2952 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2953 SDValue(Agg.getNode(), Agg.getResNo() + i); 2954 2955 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2956 DAG.getVTList(ValValueVTs), Values)); 2957 } 2958 2959 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2960 Value *Op0 = I.getOperand(0); 2961 // Note that the pointer operand may be a vector of pointers. Take the scalar 2962 // element which holds a pointer. 2963 Type *Ty = Op0->getType()->getScalarType(); 2964 unsigned AS = Ty->getPointerAddressSpace(); 2965 SDValue N = getValue(Op0); 2966 SDLoc dl = getCurSDLoc(); 2967 2968 // Normalize Vector GEP - all scalar operands should be converted to the 2969 // splat vector. 2970 unsigned VectorWidth = I.getType()->isVectorTy() ? 2971 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2972 2973 if (VectorWidth && !N.getValueType().isVector()) { 2974 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2975 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2976 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2977 } 2978 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2979 OI != E; ++OI) { 2980 const Value *Idx = *OI; 2981 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2982 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2983 if (Field) { 2984 // N = N + Offset 2985 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2986 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2987 DAG.getConstant(Offset, dl, N.getValueType())); 2988 } 2989 2990 Ty = StTy->getElementType(Field); 2991 } else { 2992 Ty = cast<SequentialType>(Ty)->getElementType(); 2993 MVT PtrTy = 2994 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2995 unsigned PtrSize = PtrTy.getSizeInBits(); 2996 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2997 2998 // If this is a scalar constant or a splat vector of constants, 2999 // handle it quickly. 3000 const auto *CI = dyn_cast<ConstantInt>(Idx); 3001 if (!CI && isa<ConstantDataVector>(Idx) && 3002 cast<ConstantDataVector>(Idx)->getSplatValue()) 3003 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3004 3005 if (CI) { 3006 if (CI->isZero()) 3007 continue; 3008 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3009 SDValue OffsVal = VectorWidth ? 3010 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3011 DAG.getConstant(Offs, dl, PtrTy); 3012 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3013 continue; 3014 } 3015 3016 // N = N + Idx * ElementSize; 3017 SDValue IdxN = getValue(Idx); 3018 3019 if (!IdxN.getValueType().isVector() && VectorWidth) { 3020 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3021 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3022 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3023 } 3024 // If the index is smaller or larger than intptr_t, truncate or extend 3025 // it. 3026 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3027 3028 // If this is a multiply by a power of two, turn it into a shl 3029 // immediately. This is a very common case. 3030 if (ElementSize != 1) { 3031 if (ElementSize.isPowerOf2()) { 3032 unsigned Amt = ElementSize.logBase2(); 3033 IdxN = DAG.getNode(ISD::SHL, dl, 3034 N.getValueType(), IdxN, 3035 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3036 } else { 3037 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3038 IdxN = DAG.getNode(ISD::MUL, dl, 3039 N.getValueType(), IdxN, Scale); 3040 } 3041 } 3042 3043 N = DAG.getNode(ISD::ADD, dl, 3044 N.getValueType(), N, IdxN); 3045 } 3046 } 3047 3048 setValue(&I, N); 3049 } 3050 3051 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3052 // If this is a fixed sized alloca in the entry block of the function, 3053 // allocate it statically on the stack. 3054 if (FuncInfo.StaticAllocaMap.count(&I)) 3055 return; // getValue will auto-populate this. 3056 3057 SDLoc dl = getCurSDLoc(); 3058 Type *Ty = I.getAllocatedType(); 3059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3060 auto &DL = DAG.getDataLayout(); 3061 uint64_t TySize = DL.getTypeAllocSize(Ty); 3062 unsigned Align = 3063 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3064 3065 SDValue AllocSize = getValue(I.getArraySize()); 3066 3067 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3068 if (AllocSize.getValueType() != IntPtr) 3069 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3070 3071 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3072 AllocSize, 3073 DAG.getConstant(TySize, dl, IntPtr)); 3074 3075 // Handle alignment. If the requested alignment is less than or equal to 3076 // the stack alignment, ignore it. If the size is greater than or equal to 3077 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3078 unsigned StackAlign = 3079 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3080 if (Align <= StackAlign) 3081 Align = 0; 3082 3083 // Round the size of the allocation up to the stack alignment size 3084 // by add SA-1 to the size. 3085 AllocSize = DAG.getNode(ISD::ADD, dl, 3086 AllocSize.getValueType(), AllocSize, 3087 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3088 3089 // Mask out the low bits for alignment purposes. 3090 AllocSize = DAG.getNode(ISD::AND, dl, 3091 AllocSize.getValueType(), AllocSize, 3092 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3093 dl)); 3094 3095 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3096 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3097 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3098 setValue(&I, DSA); 3099 DAG.setRoot(DSA.getValue(1)); 3100 3101 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3102 } 3103 3104 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3105 if (I.isAtomic()) 3106 return visitAtomicLoad(I); 3107 3108 const Value *SV = I.getOperand(0); 3109 SDValue Ptr = getValue(SV); 3110 3111 Type *Ty = I.getType(); 3112 3113 bool isVolatile = I.isVolatile(); 3114 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3115 3116 // The IR notion of invariant_load only guarantees that all *non-faulting* 3117 // invariant loads result in the same value. The MI notion of invariant load 3118 // guarantees that the load can be legally moved to any location within its 3119 // containing function. The MI notion of invariant_load is stronger than the 3120 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3121 // with a guarantee that the location being loaded from is dereferenceable 3122 // throughout the function's lifetime. 3123 3124 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3125 isDereferenceablePointer(SV, DAG.getDataLayout()); 3126 unsigned Alignment = I.getAlignment(); 3127 3128 AAMDNodes AAInfo; 3129 I.getAAMetadata(AAInfo); 3130 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3131 3132 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3133 SmallVector<EVT, 4> ValueVTs; 3134 SmallVector<uint64_t, 4> Offsets; 3135 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3136 unsigned NumValues = ValueVTs.size(); 3137 if (NumValues == 0) 3138 return; 3139 3140 SDValue Root; 3141 bool ConstantMemory = false; 3142 if (isVolatile || NumValues > MaxParallelChains) 3143 // Serialize volatile loads with other side effects. 3144 Root = getRoot(); 3145 else if (AA->pointsToConstantMemory(MemoryLocation( 3146 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3147 // Do not serialize (non-volatile) loads of constant memory with anything. 3148 Root = DAG.getEntryNode(); 3149 ConstantMemory = true; 3150 } else { 3151 // Do not serialize non-volatile loads against each other. 3152 Root = DAG.getRoot(); 3153 } 3154 3155 SDLoc dl = getCurSDLoc(); 3156 3157 if (isVolatile) 3158 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3159 3160 SmallVector<SDValue, 4> Values(NumValues); 3161 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3162 EVT PtrVT = Ptr.getValueType(); 3163 unsigned ChainI = 0; 3164 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3165 // Serializing loads here may result in excessive register pressure, and 3166 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3167 // could recover a bit by hoisting nodes upward in the chain by recognizing 3168 // they are side-effect free or do not alias. The optimizer should really 3169 // avoid this case by converting large object/array copies to llvm.memcpy 3170 // (MaxParallelChains should always remain as failsafe). 3171 if (ChainI == MaxParallelChains) { 3172 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3173 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3174 makeArrayRef(Chains.data(), ChainI)); 3175 Root = Chain; 3176 ChainI = 0; 3177 } 3178 SDValue A = DAG.getNode(ISD::ADD, dl, 3179 PtrVT, Ptr, 3180 DAG.getConstant(Offsets[i], dl, PtrVT)); 3181 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3182 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3183 isNonTemporal, isInvariant, Alignment, AAInfo, 3184 Ranges); 3185 3186 Values[i] = L; 3187 Chains[ChainI] = L.getValue(1); 3188 } 3189 3190 if (!ConstantMemory) { 3191 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3192 makeArrayRef(Chains.data(), ChainI)); 3193 if (isVolatile) 3194 DAG.setRoot(Chain); 3195 else 3196 PendingLoads.push_back(Chain); 3197 } 3198 3199 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3200 DAG.getVTList(ValueVTs), Values)); 3201 } 3202 3203 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3204 if (I.isAtomic()) 3205 return visitAtomicStore(I); 3206 3207 const Value *SrcV = I.getOperand(0); 3208 const Value *PtrV = I.getOperand(1); 3209 3210 SmallVector<EVT, 4> ValueVTs; 3211 SmallVector<uint64_t, 4> Offsets; 3212 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3213 SrcV->getType(), ValueVTs, &Offsets); 3214 unsigned NumValues = ValueVTs.size(); 3215 if (NumValues == 0) 3216 return; 3217 3218 // Get the lowered operands. Note that we do this after 3219 // checking if NumResults is zero, because with zero results 3220 // the operands won't have values in the map. 3221 SDValue Src = getValue(SrcV); 3222 SDValue Ptr = getValue(PtrV); 3223 3224 SDValue Root = getRoot(); 3225 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3226 EVT PtrVT = Ptr.getValueType(); 3227 bool isVolatile = I.isVolatile(); 3228 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3229 unsigned Alignment = I.getAlignment(); 3230 SDLoc dl = getCurSDLoc(); 3231 3232 AAMDNodes AAInfo; 3233 I.getAAMetadata(AAInfo); 3234 3235 unsigned ChainI = 0; 3236 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3237 // See visitLoad comments. 3238 if (ChainI == MaxParallelChains) { 3239 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3240 makeArrayRef(Chains.data(), ChainI)); 3241 Root = Chain; 3242 ChainI = 0; 3243 } 3244 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3245 DAG.getConstant(Offsets[i], dl, PtrVT)); 3246 SDValue St = DAG.getStore(Root, dl, 3247 SDValue(Src.getNode(), Src.getResNo() + i), 3248 Add, MachinePointerInfo(PtrV, Offsets[i]), 3249 isVolatile, isNonTemporal, Alignment, AAInfo); 3250 Chains[ChainI] = St; 3251 } 3252 3253 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3254 makeArrayRef(Chains.data(), ChainI)); 3255 DAG.setRoot(StoreNode); 3256 } 3257 3258 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3259 SDLoc sdl = getCurSDLoc(); 3260 3261 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3262 Value *PtrOperand = I.getArgOperand(1); 3263 SDValue Ptr = getValue(PtrOperand); 3264 SDValue Src0 = getValue(I.getArgOperand(0)); 3265 SDValue Mask = getValue(I.getArgOperand(3)); 3266 EVT VT = Src0.getValueType(); 3267 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3268 if (!Alignment) 3269 Alignment = DAG.getEVTAlignment(VT); 3270 3271 AAMDNodes AAInfo; 3272 I.getAAMetadata(AAInfo); 3273 3274 MachineMemOperand *MMO = 3275 DAG.getMachineFunction(). 3276 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3277 MachineMemOperand::MOStore, VT.getStoreSize(), 3278 Alignment, AAInfo); 3279 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3280 MMO, false); 3281 DAG.setRoot(StoreNode); 3282 setValue(&I, StoreNode); 3283 } 3284 3285 // Get a uniform base for the Gather/Scatter intrinsic. 3286 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3287 // We try to represent it as a base pointer + vector of indices. 3288 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3289 // The first operand of the GEP may be a single pointer or a vector of pointers 3290 // Example: 3291 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3292 // or 3293 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3294 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3295 // 3296 // When the first GEP operand is a single pointer - it is the uniform base we 3297 // are looking for. If first operand of the GEP is a splat vector - we 3298 // extract the spalt value and use it as a uniform base. 3299 // In all other cases the function returns 'false'. 3300 // 3301 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3302 SelectionDAGBuilder* SDB) { 3303 3304 SelectionDAG& DAG = SDB->DAG; 3305 LLVMContext &Context = *DAG.getContext(); 3306 3307 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3308 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3309 if (!GEP || GEP->getNumOperands() > 2) 3310 return false; 3311 3312 Value *GEPPtr = GEP->getPointerOperand(); 3313 if (!GEPPtr->getType()->isVectorTy()) 3314 Ptr = GEPPtr; 3315 else if (!(Ptr = getSplatValue(GEPPtr))) 3316 return false; 3317 3318 Value *IndexVal = GEP->getOperand(1); 3319 3320 // The operands of the GEP may be defined in another basic block. 3321 // In this case we'll not find nodes for the operands. 3322 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3323 return false; 3324 3325 Base = SDB->getValue(Ptr); 3326 Index = SDB->getValue(IndexVal); 3327 3328 // Suppress sign extension. 3329 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3330 if (SDB->findValue(Sext->getOperand(0))) { 3331 IndexVal = Sext->getOperand(0); 3332 Index = SDB->getValue(IndexVal); 3333 } 3334 } 3335 if (!Index.getValueType().isVector()) { 3336 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3337 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3338 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3339 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3340 } 3341 return true; 3342 } 3343 3344 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3345 SDLoc sdl = getCurSDLoc(); 3346 3347 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3348 Value *Ptr = I.getArgOperand(1); 3349 SDValue Src0 = getValue(I.getArgOperand(0)); 3350 SDValue Mask = getValue(I.getArgOperand(3)); 3351 EVT VT = Src0.getValueType(); 3352 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3353 if (!Alignment) 3354 Alignment = DAG.getEVTAlignment(VT); 3355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3356 3357 AAMDNodes AAInfo; 3358 I.getAAMetadata(AAInfo); 3359 3360 SDValue Base; 3361 SDValue Index; 3362 Value *BasePtr = Ptr; 3363 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3364 3365 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3366 MachineMemOperand *MMO = DAG.getMachineFunction(). 3367 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3368 MachineMemOperand::MOStore, VT.getStoreSize(), 3369 Alignment, AAInfo); 3370 if (!UniformBase) { 3371 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3372 Index = getValue(Ptr); 3373 } 3374 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3375 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3376 Ops, MMO); 3377 DAG.setRoot(Scatter); 3378 setValue(&I, Scatter); 3379 } 3380 3381 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3382 SDLoc sdl = getCurSDLoc(); 3383 3384 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3385 Value *PtrOperand = I.getArgOperand(0); 3386 SDValue Ptr = getValue(PtrOperand); 3387 SDValue Src0 = getValue(I.getArgOperand(3)); 3388 SDValue Mask = getValue(I.getArgOperand(2)); 3389 3390 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3391 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3392 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3393 if (!Alignment) 3394 Alignment = DAG.getEVTAlignment(VT); 3395 3396 AAMDNodes AAInfo; 3397 I.getAAMetadata(AAInfo); 3398 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3399 3400 SDValue InChain = DAG.getRoot(); 3401 if (AA->pointsToConstantMemory(MemoryLocation( 3402 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3403 AAInfo))) { 3404 // Do not serialize (non-volatile) loads of constant memory with anything. 3405 InChain = DAG.getEntryNode(); 3406 } 3407 3408 MachineMemOperand *MMO = 3409 DAG.getMachineFunction(). 3410 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3411 MachineMemOperand::MOLoad, VT.getStoreSize(), 3412 Alignment, AAInfo, Ranges); 3413 3414 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3415 ISD::NON_EXTLOAD); 3416 SDValue OutChain = Load.getValue(1); 3417 DAG.setRoot(OutChain); 3418 setValue(&I, Load); 3419 } 3420 3421 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3422 SDLoc sdl = getCurSDLoc(); 3423 3424 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3425 Value *Ptr = I.getArgOperand(0); 3426 SDValue Src0 = getValue(I.getArgOperand(3)); 3427 SDValue Mask = getValue(I.getArgOperand(2)); 3428 3429 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3430 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3431 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3432 if (!Alignment) 3433 Alignment = DAG.getEVTAlignment(VT); 3434 3435 AAMDNodes AAInfo; 3436 I.getAAMetadata(AAInfo); 3437 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3438 3439 SDValue Root = DAG.getRoot(); 3440 SDValue Base; 3441 SDValue Index; 3442 Value *BasePtr = Ptr; 3443 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3444 bool ConstantMemory = false; 3445 if (UniformBase && 3446 AA->pointsToConstantMemory(MemoryLocation( 3447 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3448 AAInfo))) { 3449 // Do not serialize (non-volatile) loads of constant memory with anything. 3450 Root = DAG.getEntryNode(); 3451 ConstantMemory = true; 3452 } 3453 3454 MachineMemOperand *MMO = 3455 DAG.getMachineFunction(). 3456 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3457 MachineMemOperand::MOLoad, VT.getStoreSize(), 3458 Alignment, AAInfo, Ranges); 3459 3460 if (!UniformBase) { 3461 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3462 Index = getValue(Ptr); 3463 } 3464 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3465 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3466 Ops, MMO); 3467 3468 SDValue OutChain = Gather.getValue(1); 3469 if (!ConstantMemory) 3470 PendingLoads.push_back(OutChain); 3471 setValue(&I, Gather); 3472 } 3473 3474 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3475 SDLoc dl = getCurSDLoc(); 3476 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3477 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3478 SynchronizationScope Scope = I.getSynchScope(); 3479 3480 SDValue InChain = getRoot(); 3481 3482 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3483 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3484 SDValue L = DAG.getAtomicCmpSwap( 3485 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3486 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3487 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3488 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3489 3490 SDValue OutChain = L.getValue(2); 3491 3492 setValue(&I, L); 3493 DAG.setRoot(OutChain); 3494 } 3495 3496 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3497 SDLoc dl = getCurSDLoc(); 3498 ISD::NodeType NT; 3499 switch (I.getOperation()) { 3500 default: llvm_unreachable("Unknown atomicrmw operation"); 3501 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3502 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3503 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3504 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3505 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3506 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3507 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3508 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3509 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3510 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3511 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3512 } 3513 AtomicOrdering Order = I.getOrdering(); 3514 SynchronizationScope Scope = I.getSynchScope(); 3515 3516 SDValue InChain = getRoot(); 3517 3518 SDValue L = 3519 DAG.getAtomic(NT, dl, 3520 getValue(I.getValOperand()).getSimpleValueType(), 3521 InChain, 3522 getValue(I.getPointerOperand()), 3523 getValue(I.getValOperand()), 3524 I.getPointerOperand(), 3525 /* Alignment=*/ 0, Order, Scope); 3526 3527 SDValue OutChain = L.getValue(1); 3528 3529 setValue(&I, L); 3530 DAG.setRoot(OutChain); 3531 } 3532 3533 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3534 SDLoc dl = getCurSDLoc(); 3535 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3536 SDValue Ops[3]; 3537 Ops[0] = getRoot(); 3538 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3539 TLI.getPointerTy(DAG.getDataLayout())); 3540 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3541 TLI.getPointerTy(DAG.getDataLayout())); 3542 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3543 } 3544 3545 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3546 SDLoc dl = getCurSDLoc(); 3547 AtomicOrdering Order = I.getOrdering(); 3548 SynchronizationScope Scope = I.getSynchScope(); 3549 3550 SDValue InChain = getRoot(); 3551 3552 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3553 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3554 3555 if (I.getAlignment() < VT.getSizeInBits() / 8) 3556 report_fatal_error("Cannot generate unaligned atomic load"); 3557 3558 MachineMemOperand *MMO = 3559 DAG.getMachineFunction(). 3560 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3561 MachineMemOperand::MOVolatile | 3562 MachineMemOperand::MOLoad, 3563 VT.getStoreSize(), 3564 I.getAlignment() ? I.getAlignment() : 3565 DAG.getEVTAlignment(VT)); 3566 3567 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3568 SDValue L = 3569 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3570 getValue(I.getPointerOperand()), MMO, 3571 Order, Scope); 3572 3573 SDValue OutChain = L.getValue(1); 3574 3575 setValue(&I, L); 3576 DAG.setRoot(OutChain); 3577 } 3578 3579 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3580 SDLoc dl = getCurSDLoc(); 3581 3582 AtomicOrdering Order = I.getOrdering(); 3583 SynchronizationScope Scope = I.getSynchScope(); 3584 3585 SDValue InChain = getRoot(); 3586 3587 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3588 EVT VT = 3589 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3590 3591 if (I.getAlignment() < VT.getSizeInBits() / 8) 3592 report_fatal_error("Cannot generate unaligned atomic store"); 3593 3594 SDValue OutChain = 3595 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3596 InChain, 3597 getValue(I.getPointerOperand()), 3598 getValue(I.getValueOperand()), 3599 I.getPointerOperand(), I.getAlignment(), 3600 Order, Scope); 3601 3602 DAG.setRoot(OutChain); 3603 } 3604 3605 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3606 /// node. 3607 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3608 unsigned Intrinsic) { 3609 bool HasChain = !I.doesNotAccessMemory(); 3610 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3611 3612 // Build the operand list. 3613 SmallVector<SDValue, 8> Ops; 3614 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3615 if (OnlyLoad) { 3616 // We don't need to serialize loads against other loads. 3617 Ops.push_back(DAG.getRoot()); 3618 } else { 3619 Ops.push_back(getRoot()); 3620 } 3621 } 3622 3623 // Info is set by getTgtMemInstrinsic 3624 TargetLowering::IntrinsicInfo Info; 3625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3626 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3627 3628 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3629 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3630 Info.opc == ISD::INTRINSIC_W_CHAIN) 3631 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3632 TLI.getPointerTy(DAG.getDataLayout()))); 3633 3634 // Add all operands of the call to the operand list. 3635 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3636 SDValue Op = getValue(I.getArgOperand(i)); 3637 Ops.push_back(Op); 3638 } 3639 3640 SmallVector<EVT, 4> ValueVTs; 3641 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3642 3643 if (HasChain) 3644 ValueVTs.push_back(MVT::Other); 3645 3646 SDVTList VTs = DAG.getVTList(ValueVTs); 3647 3648 // Create the node. 3649 SDValue Result; 3650 if (IsTgtIntrinsic) { 3651 // This is target intrinsic that touches memory 3652 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3653 VTs, Ops, Info.memVT, 3654 MachinePointerInfo(Info.ptrVal, Info.offset), 3655 Info.align, Info.vol, 3656 Info.readMem, Info.writeMem, Info.size); 3657 } else if (!HasChain) { 3658 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3659 } else if (!I.getType()->isVoidTy()) { 3660 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3661 } else { 3662 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3663 } 3664 3665 if (HasChain) { 3666 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3667 if (OnlyLoad) 3668 PendingLoads.push_back(Chain); 3669 else 3670 DAG.setRoot(Chain); 3671 } 3672 3673 if (!I.getType()->isVoidTy()) { 3674 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3675 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3676 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3677 } 3678 3679 setValue(&I, Result); 3680 } 3681 } 3682 3683 /// GetSignificand - Get the significand and build it into a floating-point 3684 /// number with exponent of 1: 3685 /// 3686 /// Op = (Op & 0x007fffff) | 0x3f800000; 3687 /// 3688 /// where Op is the hexadecimal representation of floating point value. 3689 static SDValue 3690 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3691 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3692 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3693 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3694 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3695 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3696 } 3697 3698 /// GetExponent - Get the exponent: 3699 /// 3700 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3701 /// 3702 /// where Op is the hexadecimal representation of floating point value. 3703 static SDValue 3704 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3705 SDLoc dl) { 3706 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3707 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3708 SDValue t1 = DAG.getNode( 3709 ISD::SRL, dl, MVT::i32, t0, 3710 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3711 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3712 DAG.getConstant(127, dl, MVT::i32)); 3713 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3714 } 3715 3716 /// getF32Constant - Get 32-bit floating point constant. 3717 static SDValue 3718 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3719 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3720 MVT::f32); 3721 } 3722 3723 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3724 SelectionDAG &DAG) { 3725 // TODO: What fast-math-flags should be set on the floating-point nodes? 3726 3727 // IntegerPartOfX = ((int32_t)(t0); 3728 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3729 3730 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3731 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3732 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3733 3734 // IntegerPartOfX <<= 23; 3735 IntegerPartOfX = DAG.getNode( 3736 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3737 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3738 DAG.getDataLayout()))); 3739 3740 SDValue TwoToFractionalPartOfX; 3741 if (LimitFloatPrecision <= 6) { 3742 // For floating-point precision of 6: 3743 // 3744 // TwoToFractionalPartOfX = 3745 // 0.997535578f + 3746 // (0.735607626f + 0.252464424f * x) * x; 3747 // 3748 // error 0.0144103317, which is 6 bits 3749 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3750 getF32Constant(DAG, 0x3e814304, dl)); 3751 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3752 getF32Constant(DAG, 0x3f3c50c8, dl)); 3753 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3754 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3755 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3756 } else if (LimitFloatPrecision <= 12) { 3757 // For floating-point precision of 12: 3758 // 3759 // TwoToFractionalPartOfX = 3760 // 0.999892986f + 3761 // (0.696457318f + 3762 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3763 // 3764 // error 0.000107046256, which is 13 to 14 bits 3765 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3766 getF32Constant(DAG, 0x3da235e3, dl)); 3767 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3768 getF32Constant(DAG, 0x3e65b8f3, dl)); 3769 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3770 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3771 getF32Constant(DAG, 0x3f324b07, dl)); 3772 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3773 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3774 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3775 } else { // LimitFloatPrecision <= 18 3776 // For floating-point precision of 18: 3777 // 3778 // TwoToFractionalPartOfX = 3779 // 0.999999982f + 3780 // (0.693148872f + 3781 // (0.240227044f + 3782 // (0.554906021e-1f + 3783 // (0.961591928e-2f + 3784 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3785 // error 2.47208000*10^(-7), which is better than 18 bits 3786 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3787 getF32Constant(DAG, 0x3924b03e, dl)); 3788 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3789 getF32Constant(DAG, 0x3ab24b87, dl)); 3790 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3791 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3792 getF32Constant(DAG, 0x3c1d8c17, dl)); 3793 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3794 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3795 getF32Constant(DAG, 0x3d634a1d, dl)); 3796 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3797 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3798 getF32Constant(DAG, 0x3e75fe14, dl)); 3799 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3800 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3801 getF32Constant(DAG, 0x3f317234, dl)); 3802 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3803 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3804 getF32Constant(DAG, 0x3f800000, dl)); 3805 } 3806 3807 // Add the exponent into the result in integer domain. 3808 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3809 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3810 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3811 } 3812 3813 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3814 /// limited-precision mode. 3815 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3816 const TargetLowering &TLI) { 3817 if (Op.getValueType() == MVT::f32 && 3818 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3819 3820 // Put the exponent in the right bit position for later addition to the 3821 // final result: 3822 // 3823 // #define LOG2OFe 1.4426950f 3824 // t0 = Op * LOG2OFe 3825 3826 // TODO: What fast-math-flags should be set here? 3827 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3828 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3829 return getLimitedPrecisionExp2(t0, dl, DAG); 3830 } 3831 3832 // No special expansion. 3833 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3834 } 3835 3836 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3837 /// limited-precision mode. 3838 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3839 const TargetLowering &TLI) { 3840 3841 // TODO: What fast-math-flags should be set on the floating-point nodes? 3842 3843 if (Op.getValueType() == MVT::f32 && 3844 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3845 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3846 3847 // Scale the exponent by log(2) [0.69314718f]. 3848 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3849 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3850 getF32Constant(DAG, 0x3f317218, dl)); 3851 3852 // Get the significand and build it into a floating-point number with 3853 // exponent of 1. 3854 SDValue X = GetSignificand(DAG, Op1, dl); 3855 3856 SDValue LogOfMantissa; 3857 if (LimitFloatPrecision <= 6) { 3858 // For floating-point precision of 6: 3859 // 3860 // LogofMantissa = 3861 // -1.1609546f + 3862 // (1.4034025f - 0.23903021f * x) * x; 3863 // 3864 // error 0.0034276066, which is better than 8 bits 3865 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3866 getF32Constant(DAG, 0xbe74c456, dl)); 3867 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3868 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3869 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3870 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3871 getF32Constant(DAG, 0x3f949a29, dl)); 3872 } else if (LimitFloatPrecision <= 12) { 3873 // For floating-point precision of 12: 3874 // 3875 // LogOfMantissa = 3876 // -1.7417939f + 3877 // (2.8212026f + 3878 // (-1.4699568f + 3879 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3880 // 3881 // error 0.000061011436, which is 14 bits 3882 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3883 getF32Constant(DAG, 0xbd67b6d6, dl)); 3884 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3885 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3886 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3887 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3888 getF32Constant(DAG, 0x3fbc278b, dl)); 3889 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3890 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3891 getF32Constant(DAG, 0x40348e95, dl)); 3892 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3893 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3894 getF32Constant(DAG, 0x3fdef31a, dl)); 3895 } else { // LimitFloatPrecision <= 18 3896 // For floating-point precision of 18: 3897 // 3898 // LogOfMantissa = 3899 // -2.1072184f + 3900 // (4.2372794f + 3901 // (-3.7029485f + 3902 // (2.2781945f + 3903 // (-0.87823314f + 3904 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3905 // 3906 // error 0.0000023660568, which is better than 18 bits 3907 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3908 getF32Constant(DAG, 0xbc91e5ac, dl)); 3909 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3910 getF32Constant(DAG, 0x3e4350aa, dl)); 3911 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3912 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3913 getF32Constant(DAG, 0x3f60d3e3, dl)); 3914 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3915 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3916 getF32Constant(DAG, 0x4011cdf0, dl)); 3917 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3918 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3919 getF32Constant(DAG, 0x406cfd1c, dl)); 3920 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3921 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3922 getF32Constant(DAG, 0x408797cb, dl)); 3923 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3924 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3925 getF32Constant(DAG, 0x4006dcab, dl)); 3926 } 3927 3928 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3929 } 3930 3931 // No special expansion. 3932 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3933 } 3934 3935 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3936 /// limited-precision mode. 3937 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3938 const TargetLowering &TLI) { 3939 3940 // TODO: What fast-math-flags should be set on the floating-point nodes? 3941 3942 if (Op.getValueType() == MVT::f32 && 3943 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3944 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3945 3946 // Get the exponent. 3947 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3948 3949 // Get the significand and build it into a floating-point number with 3950 // exponent of 1. 3951 SDValue X = GetSignificand(DAG, Op1, dl); 3952 3953 // Different possible minimax approximations of significand in 3954 // floating-point for various degrees of accuracy over [1,2]. 3955 SDValue Log2ofMantissa; 3956 if (LimitFloatPrecision <= 6) { 3957 // For floating-point precision of 6: 3958 // 3959 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3960 // 3961 // error 0.0049451742, which is more than 7 bits 3962 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3963 getF32Constant(DAG, 0xbeb08fe0, dl)); 3964 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3965 getF32Constant(DAG, 0x40019463, dl)); 3966 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3967 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3968 getF32Constant(DAG, 0x3fd6633d, dl)); 3969 } else if (LimitFloatPrecision <= 12) { 3970 // For floating-point precision of 12: 3971 // 3972 // Log2ofMantissa = 3973 // -2.51285454f + 3974 // (4.07009056f + 3975 // (-2.12067489f + 3976 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3977 // 3978 // error 0.0000876136000, which is better than 13 bits 3979 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3980 getF32Constant(DAG, 0xbda7262e, dl)); 3981 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3982 getF32Constant(DAG, 0x3f25280b, dl)); 3983 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3984 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3985 getF32Constant(DAG, 0x4007b923, dl)); 3986 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3987 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3988 getF32Constant(DAG, 0x40823e2f, dl)); 3989 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3990 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3991 getF32Constant(DAG, 0x4020d29c, dl)); 3992 } else { // LimitFloatPrecision <= 18 3993 // For floating-point precision of 18: 3994 // 3995 // Log2ofMantissa = 3996 // -3.0400495f + 3997 // (6.1129976f + 3998 // (-5.3420409f + 3999 // (3.2865683f + 4000 // (-1.2669343f + 4001 // (0.27515199f - 4002 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4003 // 4004 // error 0.0000018516, which is better than 18 bits 4005 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4006 getF32Constant(DAG, 0xbcd2769e, dl)); 4007 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4008 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4009 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4010 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4011 getF32Constant(DAG, 0x3fa22ae7, dl)); 4012 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4013 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4014 getF32Constant(DAG, 0x40525723, dl)); 4015 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4016 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4017 getF32Constant(DAG, 0x40aaf200, dl)); 4018 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4019 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4020 getF32Constant(DAG, 0x40c39dad, dl)); 4021 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4022 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4023 getF32Constant(DAG, 0x4042902c, dl)); 4024 } 4025 4026 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4027 } 4028 4029 // No special expansion. 4030 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4031 } 4032 4033 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4034 /// limited-precision mode. 4035 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4036 const TargetLowering &TLI) { 4037 4038 // TODO: What fast-math-flags should be set on the floating-point nodes? 4039 4040 if (Op.getValueType() == MVT::f32 && 4041 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4042 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4043 4044 // Scale the exponent by log10(2) [0.30102999f]. 4045 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4046 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4047 getF32Constant(DAG, 0x3e9a209a, dl)); 4048 4049 // Get the significand and build it into a floating-point number with 4050 // exponent of 1. 4051 SDValue X = GetSignificand(DAG, Op1, dl); 4052 4053 SDValue Log10ofMantissa; 4054 if (LimitFloatPrecision <= 6) { 4055 // For floating-point precision of 6: 4056 // 4057 // Log10ofMantissa = 4058 // -0.50419619f + 4059 // (0.60948995f - 0.10380950f * x) * x; 4060 // 4061 // error 0.0014886165, which is 6 bits 4062 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4063 getF32Constant(DAG, 0xbdd49a13, dl)); 4064 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4065 getF32Constant(DAG, 0x3f1c0789, dl)); 4066 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4067 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4068 getF32Constant(DAG, 0x3f011300, dl)); 4069 } else if (LimitFloatPrecision <= 12) { 4070 // For floating-point precision of 12: 4071 // 4072 // Log10ofMantissa = 4073 // -0.64831180f + 4074 // (0.91751397f + 4075 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4076 // 4077 // error 0.00019228036, which is better than 12 bits 4078 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4079 getF32Constant(DAG, 0x3d431f31, dl)); 4080 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4081 getF32Constant(DAG, 0x3ea21fb2, dl)); 4082 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4083 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4084 getF32Constant(DAG, 0x3f6ae232, dl)); 4085 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4086 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4087 getF32Constant(DAG, 0x3f25f7c3, dl)); 4088 } else { // LimitFloatPrecision <= 18 4089 // For floating-point precision of 18: 4090 // 4091 // Log10ofMantissa = 4092 // -0.84299375f + 4093 // (1.5327582f + 4094 // (-1.0688956f + 4095 // (0.49102474f + 4096 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4097 // 4098 // error 0.0000037995730, which is better than 18 bits 4099 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4100 getF32Constant(DAG, 0x3c5d51ce, dl)); 4101 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4102 getF32Constant(DAG, 0x3e00685a, dl)); 4103 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4104 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4105 getF32Constant(DAG, 0x3efb6798, dl)); 4106 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4107 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4108 getF32Constant(DAG, 0x3f88d192, dl)); 4109 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4110 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4111 getF32Constant(DAG, 0x3fc4316c, dl)); 4112 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4113 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4114 getF32Constant(DAG, 0x3f57ce70, dl)); 4115 } 4116 4117 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4118 } 4119 4120 // No special expansion. 4121 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4122 } 4123 4124 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4125 /// limited-precision mode. 4126 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4127 const TargetLowering &TLI) { 4128 if (Op.getValueType() == MVT::f32 && 4129 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4130 return getLimitedPrecisionExp2(Op, dl, DAG); 4131 4132 // No special expansion. 4133 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4134 } 4135 4136 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4137 /// limited-precision mode with x == 10.0f. 4138 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4139 SelectionDAG &DAG, const TargetLowering &TLI) { 4140 bool IsExp10 = false; 4141 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4142 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4143 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4144 APFloat Ten(10.0f); 4145 IsExp10 = LHSC->isExactlyValue(Ten); 4146 } 4147 } 4148 4149 // TODO: What fast-math-flags should be set on the FMUL node? 4150 if (IsExp10) { 4151 // Put the exponent in the right bit position for later addition to the 4152 // final result: 4153 // 4154 // #define LOG2OF10 3.3219281f 4155 // t0 = Op * LOG2OF10; 4156 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4157 getF32Constant(DAG, 0x40549a78, dl)); 4158 return getLimitedPrecisionExp2(t0, dl, DAG); 4159 } 4160 4161 // No special expansion. 4162 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4163 } 4164 4165 4166 /// ExpandPowI - Expand a llvm.powi intrinsic. 4167 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4168 SelectionDAG &DAG) { 4169 // If RHS is a constant, we can expand this out to a multiplication tree, 4170 // otherwise we end up lowering to a call to __powidf2 (for example). When 4171 // optimizing for size, we only want to do this if the expansion would produce 4172 // a small number of multiplies, otherwise we do the full expansion. 4173 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4174 // Get the exponent as a positive value. 4175 unsigned Val = RHSC->getSExtValue(); 4176 if ((int)Val < 0) Val = -Val; 4177 4178 // powi(x, 0) -> 1.0 4179 if (Val == 0) 4180 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4181 4182 const Function *F = DAG.getMachineFunction().getFunction(); 4183 if (!F->optForSize() || 4184 // If optimizing for size, don't insert too many multiplies. 4185 // This inserts up to 5 multiplies. 4186 countPopulation(Val) + Log2_32(Val) < 7) { 4187 // We use the simple binary decomposition method to generate the multiply 4188 // sequence. There are more optimal ways to do this (for example, 4189 // powi(x,15) generates one more multiply than it should), but this has 4190 // the benefit of being both really simple and much better than a libcall. 4191 SDValue Res; // Logically starts equal to 1.0 4192 SDValue CurSquare = LHS; 4193 // TODO: Intrinsics should have fast-math-flags that propagate to these 4194 // nodes. 4195 while (Val) { 4196 if (Val & 1) { 4197 if (Res.getNode()) 4198 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4199 else 4200 Res = CurSquare; // 1.0*CurSquare. 4201 } 4202 4203 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4204 CurSquare, CurSquare); 4205 Val >>= 1; 4206 } 4207 4208 // If the original was negative, invert the result, producing 1/(x*x*x). 4209 if (RHSC->getSExtValue() < 0) 4210 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4211 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4212 return Res; 4213 } 4214 } 4215 4216 // Otherwise, expand to a libcall. 4217 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4218 } 4219 4220 // getUnderlyingArgReg - Find underlying register used for a truncated or 4221 // bitcasted argument. 4222 static unsigned getUnderlyingArgReg(const SDValue &N) { 4223 switch (N.getOpcode()) { 4224 case ISD::CopyFromReg: 4225 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4226 case ISD::BITCAST: 4227 case ISD::AssertZext: 4228 case ISD::AssertSext: 4229 case ISD::TRUNCATE: 4230 return getUnderlyingArgReg(N.getOperand(0)); 4231 default: 4232 return 0; 4233 } 4234 } 4235 4236 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4237 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4238 /// At the end of instruction selection, they will be inserted to the entry BB. 4239 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4240 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4241 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4242 const Argument *Arg = dyn_cast<Argument>(V); 4243 if (!Arg) 4244 return false; 4245 4246 MachineFunction &MF = DAG.getMachineFunction(); 4247 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4248 4249 // Ignore inlined function arguments here. 4250 // 4251 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4252 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4253 return false; 4254 4255 Optional<MachineOperand> Op; 4256 // Some arguments' frame index is recorded during argument lowering. 4257 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4258 Op = MachineOperand::CreateFI(FI); 4259 4260 if (!Op && N.getNode()) { 4261 unsigned Reg = getUnderlyingArgReg(N); 4262 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4263 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4264 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4265 if (PR) 4266 Reg = PR; 4267 } 4268 if (Reg) 4269 Op = MachineOperand::CreateReg(Reg, false); 4270 } 4271 4272 if (!Op) { 4273 // Check if ValueMap has reg number. 4274 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4275 if (VMI != FuncInfo.ValueMap.end()) 4276 Op = MachineOperand::CreateReg(VMI->second, false); 4277 } 4278 4279 if (!Op && N.getNode()) 4280 // Check if frame index is available. 4281 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4282 if (FrameIndexSDNode *FINode = 4283 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4284 Op = MachineOperand::CreateFI(FINode->getIndex()); 4285 4286 if (!Op) 4287 return false; 4288 4289 assert(Variable->isValidLocationForIntrinsic(DL) && 4290 "Expected inlined-at fields to agree"); 4291 if (Op->isReg()) 4292 FuncInfo.ArgDbgValues.push_back( 4293 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4294 Op->getReg(), Offset, Variable, Expr)); 4295 else 4296 FuncInfo.ArgDbgValues.push_back( 4297 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4298 .addOperand(*Op) 4299 .addImm(Offset) 4300 .addMetadata(Variable) 4301 .addMetadata(Expr)); 4302 4303 return true; 4304 } 4305 4306 // VisualStudio defines setjmp as _setjmp 4307 #if defined(_MSC_VER) && defined(setjmp) && \ 4308 !defined(setjmp_undefined_for_msvc) 4309 # pragma push_macro("setjmp") 4310 # undef setjmp 4311 # define setjmp_undefined_for_msvc 4312 #endif 4313 4314 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4315 /// we want to emit this as a call to a named external function, return the name 4316 /// otherwise lower it and return null. 4317 const char * 4318 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4319 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4320 SDLoc sdl = getCurSDLoc(); 4321 DebugLoc dl = getCurDebugLoc(); 4322 SDValue Res; 4323 4324 switch (Intrinsic) { 4325 default: 4326 // By default, turn this into a target intrinsic node. 4327 visitTargetIntrinsic(I, Intrinsic); 4328 return nullptr; 4329 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4330 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4331 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4332 case Intrinsic::returnaddress: 4333 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4334 TLI.getPointerTy(DAG.getDataLayout()), 4335 getValue(I.getArgOperand(0)))); 4336 return nullptr; 4337 case Intrinsic::frameaddress: 4338 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4339 TLI.getPointerTy(DAG.getDataLayout()), 4340 getValue(I.getArgOperand(0)))); 4341 return nullptr; 4342 case Intrinsic::read_register: { 4343 Value *Reg = I.getArgOperand(0); 4344 SDValue Chain = getRoot(); 4345 SDValue RegName = 4346 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4347 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4348 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4349 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4350 setValue(&I, Res); 4351 DAG.setRoot(Res.getValue(1)); 4352 return nullptr; 4353 } 4354 case Intrinsic::write_register: { 4355 Value *Reg = I.getArgOperand(0); 4356 Value *RegValue = I.getArgOperand(1); 4357 SDValue Chain = getRoot(); 4358 SDValue RegName = 4359 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4360 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4361 RegName, getValue(RegValue))); 4362 return nullptr; 4363 } 4364 case Intrinsic::setjmp: 4365 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4366 case Intrinsic::longjmp: 4367 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4368 case Intrinsic::memcpy: { 4369 // FIXME: this definition of "user defined address space" is x86-specific 4370 // Assert for address < 256 since we support only user defined address 4371 // spaces. 4372 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4373 < 256 && 4374 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4375 < 256 && 4376 "Unknown address space"); 4377 SDValue Op1 = getValue(I.getArgOperand(0)); 4378 SDValue Op2 = getValue(I.getArgOperand(1)); 4379 SDValue Op3 = getValue(I.getArgOperand(2)); 4380 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4381 if (!Align) 4382 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4383 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4384 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4385 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4386 false, isTC, 4387 MachinePointerInfo(I.getArgOperand(0)), 4388 MachinePointerInfo(I.getArgOperand(1))); 4389 updateDAGForMaybeTailCall(MC); 4390 return nullptr; 4391 } 4392 case Intrinsic::memset: { 4393 // FIXME: this definition of "user defined address space" is x86-specific 4394 // Assert for address < 256 since we support only user defined address 4395 // spaces. 4396 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4397 < 256 && 4398 "Unknown address space"); 4399 SDValue Op1 = getValue(I.getArgOperand(0)); 4400 SDValue Op2 = getValue(I.getArgOperand(1)); 4401 SDValue Op3 = getValue(I.getArgOperand(2)); 4402 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4403 if (!Align) 4404 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4405 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4406 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4407 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4408 isTC, MachinePointerInfo(I.getArgOperand(0))); 4409 updateDAGForMaybeTailCall(MS); 4410 return nullptr; 4411 } 4412 case Intrinsic::memmove: { 4413 // FIXME: this definition of "user defined address space" is x86-specific 4414 // Assert for address < 256 since we support only user defined address 4415 // spaces. 4416 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4417 < 256 && 4418 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4419 < 256 && 4420 "Unknown address space"); 4421 SDValue Op1 = getValue(I.getArgOperand(0)); 4422 SDValue Op2 = getValue(I.getArgOperand(1)); 4423 SDValue Op3 = getValue(I.getArgOperand(2)); 4424 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4425 if (!Align) 4426 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4427 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4428 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4429 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4430 isTC, MachinePointerInfo(I.getArgOperand(0)), 4431 MachinePointerInfo(I.getArgOperand(1))); 4432 updateDAGForMaybeTailCall(MM); 4433 return nullptr; 4434 } 4435 case Intrinsic::dbg_declare: { 4436 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4437 DILocalVariable *Variable = DI.getVariable(); 4438 DIExpression *Expression = DI.getExpression(); 4439 const Value *Address = DI.getAddress(); 4440 assert(Variable && "Missing variable"); 4441 if (!Address) { 4442 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4443 return nullptr; 4444 } 4445 4446 // Check if address has undef value. 4447 if (isa<UndefValue>(Address) || 4448 (Address->use_empty() && !isa<Argument>(Address))) { 4449 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4450 return nullptr; 4451 } 4452 4453 SDValue &N = NodeMap[Address]; 4454 if (!N.getNode() && isa<Argument>(Address)) 4455 // Check unused arguments map. 4456 N = UnusedArgNodeMap[Address]; 4457 SDDbgValue *SDV; 4458 if (N.getNode()) { 4459 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4460 Address = BCI->getOperand(0); 4461 // Parameters are handled specially. 4462 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4463 4464 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4465 4466 if (isParameter && !AI) { 4467 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4468 if (FINode) 4469 // Byval parameter. We have a frame index at this point. 4470 SDV = DAG.getFrameIndexDbgValue( 4471 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4472 else { 4473 // Address is an argument, so try to emit its dbg value using 4474 // virtual register info from the FuncInfo.ValueMap. 4475 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4476 N); 4477 return nullptr; 4478 } 4479 } else { 4480 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4481 true, 0, dl, SDNodeOrder); 4482 } 4483 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4484 } else { 4485 // If Address is an argument then try to emit its dbg value using 4486 // virtual register info from the FuncInfo.ValueMap. 4487 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4488 N)) { 4489 // If variable is pinned by a alloca in dominating bb then 4490 // use StaticAllocaMap. 4491 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4492 if (AI->getParent() != DI.getParent()) { 4493 DenseMap<const AllocaInst*, int>::iterator SI = 4494 FuncInfo.StaticAllocaMap.find(AI); 4495 if (SI != FuncInfo.StaticAllocaMap.end()) { 4496 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4497 0, dl, SDNodeOrder); 4498 DAG.AddDbgValue(SDV, nullptr, false); 4499 return nullptr; 4500 } 4501 } 4502 } 4503 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4504 } 4505 } 4506 return nullptr; 4507 } 4508 case Intrinsic::dbg_value: { 4509 const DbgValueInst &DI = cast<DbgValueInst>(I); 4510 assert(DI.getVariable() && "Missing variable"); 4511 4512 DILocalVariable *Variable = DI.getVariable(); 4513 DIExpression *Expression = DI.getExpression(); 4514 uint64_t Offset = DI.getOffset(); 4515 const Value *V = DI.getValue(); 4516 if (!V) 4517 return nullptr; 4518 4519 SDDbgValue *SDV; 4520 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4521 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4522 SDNodeOrder); 4523 DAG.AddDbgValue(SDV, nullptr, false); 4524 } else { 4525 // Do not use getValue() in here; we don't want to generate code at 4526 // this point if it hasn't been done yet. 4527 SDValue N = NodeMap[V]; 4528 if (!N.getNode() && isa<Argument>(V)) 4529 // Check unused arguments map. 4530 N = UnusedArgNodeMap[V]; 4531 if (N.getNode()) { 4532 // A dbg.value for an alloca is always indirect. 4533 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4534 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4535 IsIndirect, N)) { 4536 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4537 IsIndirect, Offset, dl, SDNodeOrder); 4538 DAG.AddDbgValue(SDV, N.getNode(), false); 4539 } 4540 } else if (!V->use_empty() ) { 4541 // Do not call getValue(V) yet, as we don't want to generate code. 4542 // Remember it for later. 4543 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4544 DanglingDebugInfoMap[V] = DDI; 4545 } else { 4546 // We may expand this to cover more cases. One case where we have no 4547 // data available is an unreferenced parameter. 4548 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4549 } 4550 } 4551 4552 // Build a debug info table entry. 4553 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4554 V = BCI->getOperand(0); 4555 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4556 // Don't handle byval struct arguments or VLAs, for example. 4557 if (!AI) { 4558 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4559 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4560 return nullptr; 4561 } 4562 DenseMap<const AllocaInst*, int>::iterator SI = 4563 FuncInfo.StaticAllocaMap.find(AI); 4564 if (SI == FuncInfo.StaticAllocaMap.end()) 4565 return nullptr; // VLAs. 4566 return nullptr; 4567 } 4568 4569 case Intrinsic::eh_typeid_for: { 4570 // Find the type id for the given typeinfo. 4571 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4572 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4573 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4574 setValue(&I, Res); 4575 return nullptr; 4576 } 4577 4578 case Intrinsic::eh_return_i32: 4579 case Intrinsic::eh_return_i64: 4580 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4581 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4582 MVT::Other, 4583 getControlRoot(), 4584 getValue(I.getArgOperand(0)), 4585 getValue(I.getArgOperand(1)))); 4586 return nullptr; 4587 case Intrinsic::eh_unwind_init: 4588 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4589 return nullptr; 4590 case Intrinsic::eh_dwarf_cfa: { 4591 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4592 TLI.getPointerTy(DAG.getDataLayout())); 4593 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4594 CfaArg.getValueType(), 4595 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4596 CfaArg.getValueType()), 4597 CfaArg); 4598 SDValue FA = DAG.getNode( 4599 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4600 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4601 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4602 FA, Offset)); 4603 return nullptr; 4604 } 4605 case Intrinsic::eh_sjlj_callsite: { 4606 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4607 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4608 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4609 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4610 4611 MMI.setCurrentCallSite(CI->getZExtValue()); 4612 return nullptr; 4613 } 4614 case Intrinsic::eh_sjlj_functioncontext: { 4615 // Get and store the index of the function context. 4616 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4617 AllocaInst *FnCtx = 4618 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4619 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4620 MFI->setFunctionContextIndex(FI); 4621 return nullptr; 4622 } 4623 case Intrinsic::eh_sjlj_setjmp: { 4624 SDValue Ops[2]; 4625 Ops[0] = getRoot(); 4626 Ops[1] = getValue(I.getArgOperand(0)); 4627 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4628 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4629 setValue(&I, Op.getValue(0)); 4630 DAG.setRoot(Op.getValue(1)); 4631 return nullptr; 4632 } 4633 case Intrinsic::eh_sjlj_longjmp: { 4634 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4635 getRoot(), getValue(I.getArgOperand(0)))); 4636 return nullptr; 4637 } 4638 case Intrinsic::eh_sjlj_setup_dispatch: { 4639 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4640 getRoot())); 4641 return nullptr; 4642 } 4643 4644 case Intrinsic::masked_gather: 4645 visitMaskedGather(I); 4646 return nullptr; 4647 case Intrinsic::masked_load: 4648 visitMaskedLoad(I); 4649 return nullptr; 4650 case Intrinsic::masked_scatter: 4651 visitMaskedScatter(I); 4652 return nullptr; 4653 case Intrinsic::masked_store: 4654 visitMaskedStore(I); 4655 return nullptr; 4656 case Intrinsic::x86_mmx_pslli_w: 4657 case Intrinsic::x86_mmx_pslli_d: 4658 case Intrinsic::x86_mmx_pslli_q: 4659 case Intrinsic::x86_mmx_psrli_w: 4660 case Intrinsic::x86_mmx_psrli_d: 4661 case Intrinsic::x86_mmx_psrli_q: 4662 case Intrinsic::x86_mmx_psrai_w: 4663 case Intrinsic::x86_mmx_psrai_d: { 4664 SDValue ShAmt = getValue(I.getArgOperand(1)); 4665 if (isa<ConstantSDNode>(ShAmt)) { 4666 visitTargetIntrinsic(I, Intrinsic); 4667 return nullptr; 4668 } 4669 unsigned NewIntrinsic = 0; 4670 EVT ShAmtVT = MVT::v2i32; 4671 switch (Intrinsic) { 4672 case Intrinsic::x86_mmx_pslli_w: 4673 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4674 break; 4675 case Intrinsic::x86_mmx_pslli_d: 4676 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4677 break; 4678 case Intrinsic::x86_mmx_pslli_q: 4679 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4680 break; 4681 case Intrinsic::x86_mmx_psrli_w: 4682 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4683 break; 4684 case Intrinsic::x86_mmx_psrli_d: 4685 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4686 break; 4687 case Intrinsic::x86_mmx_psrli_q: 4688 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4689 break; 4690 case Intrinsic::x86_mmx_psrai_w: 4691 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4692 break; 4693 case Intrinsic::x86_mmx_psrai_d: 4694 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4695 break; 4696 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4697 } 4698 4699 // The vector shift intrinsics with scalars uses 32b shift amounts but 4700 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4701 // to be zero. 4702 // We must do this early because v2i32 is not a legal type. 4703 SDValue ShOps[2]; 4704 ShOps[0] = ShAmt; 4705 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4706 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4707 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4708 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4709 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4710 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4711 getValue(I.getArgOperand(0)), ShAmt); 4712 setValue(&I, Res); 4713 return nullptr; 4714 } 4715 case Intrinsic::convertff: 4716 case Intrinsic::convertfsi: 4717 case Intrinsic::convertfui: 4718 case Intrinsic::convertsif: 4719 case Intrinsic::convertuif: 4720 case Intrinsic::convertss: 4721 case Intrinsic::convertsu: 4722 case Intrinsic::convertus: 4723 case Intrinsic::convertuu: { 4724 ISD::CvtCode Code = ISD::CVT_INVALID; 4725 switch (Intrinsic) { 4726 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4727 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4728 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4729 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4730 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4731 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4732 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4733 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4734 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4735 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4736 } 4737 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4738 const Value *Op1 = I.getArgOperand(0); 4739 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4740 DAG.getValueType(DestVT), 4741 DAG.getValueType(getValue(Op1).getValueType()), 4742 getValue(I.getArgOperand(1)), 4743 getValue(I.getArgOperand(2)), 4744 Code); 4745 setValue(&I, Res); 4746 return nullptr; 4747 } 4748 case Intrinsic::powi: 4749 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4750 getValue(I.getArgOperand(1)), DAG)); 4751 return nullptr; 4752 case Intrinsic::log: 4753 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4754 return nullptr; 4755 case Intrinsic::log2: 4756 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4757 return nullptr; 4758 case Intrinsic::log10: 4759 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4760 return nullptr; 4761 case Intrinsic::exp: 4762 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4763 return nullptr; 4764 case Intrinsic::exp2: 4765 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4766 return nullptr; 4767 case Intrinsic::pow: 4768 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4769 getValue(I.getArgOperand(1)), DAG, TLI)); 4770 return nullptr; 4771 case Intrinsic::sqrt: 4772 case Intrinsic::fabs: 4773 case Intrinsic::sin: 4774 case Intrinsic::cos: 4775 case Intrinsic::floor: 4776 case Intrinsic::ceil: 4777 case Intrinsic::trunc: 4778 case Intrinsic::rint: 4779 case Intrinsic::nearbyint: 4780 case Intrinsic::round: { 4781 unsigned Opcode; 4782 switch (Intrinsic) { 4783 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4784 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4785 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4786 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4787 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4788 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4789 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4790 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4791 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4792 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4793 case Intrinsic::round: Opcode = ISD::FROUND; break; 4794 } 4795 4796 setValue(&I, DAG.getNode(Opcode, sdl, 4797 getValue(I.getArgOperand(0)).getValueType(), 4798 getValue(I.getArgOperand(0)))); 4799 return nullptr; 4800 } 4801 case Intrinsic::minnum: 4802 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4803 getValue(I.getArgOperand(0)).getValueType(), 4804 getValue(I.getArgOperand(0)), 4805 getValue(I.getArgOperand(1)))); 4806 return nullptr; 4807 case Intrinsic::maxnum: 4808 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4809 getValue(I.getArgOperand(0)).getValueType(), 4810 getValue(I.getArgOperand(0)), 4811 getValue(I.getArgOperand(1)))); 4812 return nullptr; 4813 case Intrinsic::copysign: 4814 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4815 getValue(I.getArgOperand(0)).getValueType(), 4816 getValue(I.getArgOperand(0)), 4817 getValue(I.getArgOperand(1)))); 4818 return nullptr; 4819 case Intrinsic::fma: 4820 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4821 getValue(I.getArgOperand(0)).getValueType(), 4822 getValue(I.getArgOperand(0)), 4823 getValue(I.getArgOperand(1)), 4824 getValue(I.getArgOperand(2)))); 4825 return nullptr; 4826 case Intrinsic::fmuladd: { 4827 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4828 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4829 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4830 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4831 getValue(I.getArgOperand(0)).getValueType(), 4832 getValue(I.getArgOperand(0)), 4833 getValue(I.getArgOperand(1)), 4834 getValue(I.getArgOperand(2)))); 4835 } else { 4836 // TODO: Intrinsic calls should have fast-math-flags. 4837 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4838 getValue(I.getArgOperand(0)).getValueType(), 4839 getValue(I.getArgOperand(0)), 4840 getValue(I.getArgOperand(1))); 4841 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4842 getValue(I.getArgOperand(0)).getValueType(), 4843 Mul, 4844 getValue(I.getArgOperand(2))); 4845 setValue(&I, Add); 4846 } 4847 return nullptr; 4848 } 4849 case Intrinsic::convert_to_fp16: 4850 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4851 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4852 getValue(I.getArgOperand(0)), 4853 DAG.getTargetConstant(0, sdl, 4854 MVT::i32)))); 4855 return nullptr; 4856 case Intrinsic::convert_from_fp16: 4857 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4858 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4859 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4860 getValue(I.getArgOperand(0))))); 4861 return nullptr; 4862 case Intrinsic::pcmarker: { 4863 SDValue Tmp = getValue(I.getArgOperand(0)); 4864 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4865 return nullptr; 4866 } 4867 case Intrinsic::readcyclecounter: { 4868 SDValue Op = getRoot(); 4869 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4870 DAG.getVTList(MVT::i64, MVT::Other), Op); 4871 setValue(&I, Res); 4872 DAG.setRoot(Res.getValue(1)); 4873 return nullptr; 4874 } 4875 case Intrinsic::bitreverse: 4876 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4877 getValue(I.getArgOperand(0)).getValueType(), 4878 getValue(I.getArgOperand(0)))); 4879 return nullptr; 4880 case Intrinsic::bswap: 4881 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4882 getValue(I.getArgOperand(0)).getValueType(), 4883 getValue(I.getArgOperand(0)))); 4884 return nullptr; 4885 case Intrinsic::uabsdiff: 4886 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4887 getValue(I.getArgOperand(0)).getValueType(), 4888 getValue(I.getArgOperand(0)), 4889 getValue(I.getArgOperand(1)))); 4890 return nullptr; 4891 case Intrinsic::sabsdiff: 4892 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4893 getValue(I.getArgOperand(0)).getValueType(), 4894 getValue(I.getArgOperand(0)), 4895 getValue(I.getArgOperand(1)))); 4896 return nullptr; 4897 case Intrinsic::cttz: { 4898 SDValue Arg = getValue(I.getArgOperand(0)); 4899 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4900 EVT Ty = Arg.getValueType(); 4901 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4902 sdl, Ty, Arg)); 4903 return nullptr; 4904 } 4905 case Intrinsic::ctlz: { 4906 SDValue Arg = getValue(I.getArgOperand(0)); 4907 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4908 EVT Ty = Arg.getValueType(); 4909 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4910 sdl, Ty, Arg)); 4911 return nullptr; 4912 } 4913 case Intrinsic::ctpop: { 4914 SDValue Arg = getValue(I.getArgOperand(0)); 4915 EVT Ty = Arg.getValueType(); 4916 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4917 return nullptr; 4918 } 4919 case Intrinsic::stacksave: { 4920 SDValue Op = getRoot(); 4921 Res = DAG.getNode( 4922 ISD::STACKSAVE, sdl, 4923 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4924 setValue(&I, Res); 4925 DAG.setRoot(Res.getValue(1)); 4926 return nullptr; 4927 } 4928 case Intrinsic::stackrestore: { 4929 Res = getValue(I.getArgOperand(0)); 4930 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4931 return nullptr; 4932 } 4933 case Intrinsic::stackprotector: { 4934 // Emit code into the DAG to store the stack guard onto the stack. 4935 MachineFunction &MF = DAG.getMachineFunction(); 4936 MachineFrameInfo *MFI = MF.getFrameInfo(); 4937 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4938 SDValue Src, Chain = getRoot(); 4939 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4940 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4941 4942 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4943 // global variable __stack_chk_guard. 4944 if (!GV) 4945 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4946 if (BC->getOpcode() == Instruction::BitCast) 4947 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4948 4949 if (GV && TLI.useLoadStackGuardNode()) { 4950 // Emit a LOAD_STACK_GUARD node. 4951 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4952 sdl, PtrTy, Chain); 4953 MachinePointerInfo MPInfo(GV); 4954 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4955 unsigned Flags = MachineMemOperand::MOLoad | 4956 MachineMemOperand::MOInvariant; 4957 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4958 PtrTy.getSizeInBits() / 8, 4959 DAG.getEVTAlignment(PtrTy)); 4960 Node->setMemRefs(MemRefs, MemRefs + 1); 4961 4962 // Copy the guard value to a virtual register so that it can be 4963 // retrieved in the epilogue. 4964 Src = SDValue(Node, 0); 4965 const TargetRegisterClass *RC = 4966 TLI.getRegClassFor(Src.getSimpleValueType()); 4967 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4968 4969 SPDescriptor.setGuardReg(Reg); 4970 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4971 } else { 4972 Src = getValue(I.getArgOperand(0)); // The guard's value. 4973 } 4974 4975 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4976 4977 int FI = FuncInfo.StaticAllocaMap[Slot]; 4978 MFI->setStackProtectorIndex(FI); 4979 4980 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4981 4982 // Store the stack protector onto the stack. 4983 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4984 DAG.getMachineFunction(), FI), 4985 true, false, 0); 4986 setValue(&I, Res); 4987 DAG.setRoot(Res); 4988 return nullptr; 4989 } 4990 case Intrinsic::objectsize: { 4991 // If we don't know by now, we're never going to know. 4992 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4993 4994 assert(CI && "Non-constant type in __builtin_object_size?"); 4995 4996 SDValue Arg = getValue(I.getCalledValue()); 4997 EVT Ty = Arg.getValueType(); 4998 4999 if (CI->isZero()) 5000 Res = DAG.getConstant(-1ULL, sdl, Ty); 5001 else 5002 Res = DAG.getConstant(0, sdl, Ty); 5003 5004 setValue(&I, Res); 5005 return nullptr; 5006 } 5007 case Intrinsic::annotation: 5008 case Intrinsic::ptr_annotation: 5009 // Drop the intrinsic, but forward the value 5010 setValue(&I, getValue(I.getOperand(0))); 5011 return nullptr; 5012 case Intrinsic::assume: 5013 case Intrinsic::var_annotation: 5014 // Discard annotate attributes and assumptions 5015 return nullptr; 5016 5017 case Intrinsic::init_trampoline: { 5018 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5019 5020 SDValue Ops[6]; 5021 Ops[0] = getRoot(); 5022 Ops[1] = getValue(I.getArgOperand(0)); 5023 Ops[2] = getValue(I.getArgOperand(1)); 5024 Ops[3] = getValue(I.getArgOperand(2)); 5025 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5026 Ops[5] = DAG.getSrcValue(F); 5027 5028 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5029 5030 DAG.setRoot(Res); 5031 return nullptr; 5032 } 5033 case Intrinsic::adjust_trampoline: { 5034 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5035 TLI.getPointerTy(DAG.getDataLayout()), 5036 getValue(I.getArgOperand(0)))); 5037 return nullptr; 5038 } 5039 case Intrinsic::gcroot: 5040 if (GFI) { 5041 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5042 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5043 5044 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5045 GFI->addStackRoot(FI->getIndex(), TypeMap); 5046 } 5047 return nullptr; 5048 case Intrinsic::gcread: 5049 case Intrinsic::gcwrite: 5050 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5051 case Intrinsic::flt_rounds: 5052 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5053 return nullptr; 5054 5055 case Intrinsic::expect: { 5056 // Just replace __builtin_expect(exp, c) with EXP. 5057 setValue(&I, getValue(I.getArgOperand(0))); 5058 return nullptr; 5059 } 5060 5061 case Intrinsic::debugtrap: 5062 case Intrinsic::trap: { 5063 StringRef TrapFuncName = 5064 I.getAttributes() 5065 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5066 .getValueAsString(); 5067 if (TrapFuncName.empty()) { 5068 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5069 ISD::TRAP : ISD::DEBUGTRAP; 5070 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5071 return nullptr; 5072 } 5073 TargetLowering::ArgListTy Args; 5074 5075 TargetLowering::CallLoweringInfo CLI(DAG); 5076 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5077 CallingConv::C, I.getType(), 5078 DAG.getExternalSymbol(TrapFuncName.data(), 5079 TLI.getPointerTy(DAG.getDataLayout())), 5080 std::move(Args), 0); 5081 5082 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5083 DAG.setRoot(Result.second); 5084 return nullptr; 5085 } 5086 5087 case Intrinsic::uadd_with_overflow: 5088 case Intrinsic::sadd_with_overflow: 5089 case Intrinsic::usub_with_overflow: 5090 case Intrinsic::ssub_with_overflow: 5091 case Intrinsic::umul_with_overflow: 5092 case Intrinsic::smul_with_overflow: { 5093 ISD::NodeType Op; 5094 switch (Intrinsic) { 5095 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5096 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5097 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5098 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5099 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5100 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5101 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5102 } 5103 SDValue Op1 = getValue(I.getArgOperand(0)); 5104 SDValue Op2 = getValue(I.getArgOperand(1)); 5105 5106 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5107 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5108 return nullptr; 5109 } 5110 case Intrinsic::prefetch: { 5111 SDValue Ops[5]; 5112 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5113 Ops[0] = getRoot(); 5114 Ops[1] = getValue(I.getArgOperand(0)); 5115 Ops[2] = getValue(I.getArgOperand(1)); 5116 Ops[3] = getValue(I.getArgOperand(2)); 5117 Ops[4] = getValue(I.getArgOperand(3)); 5118 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5119 DAG.getVTList(MVT::Other), Ops, 5120 EVT::getIntegerVT(*Context, 8), 5121 MachinePointerInfo(I.getArgOperand(0)), 5122 0, /* align */ 5123 false, /* volatile */ 5124 rw==0, /* read */ 5125 rw==1)); /* write */ 5126 return nullptr; 5127 } 5128 case Intrinsic::lifetime_start: 5129 case Intrinsic::lifetime_end: { 5130 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5131 // Stack coloring is not enabled in O0, discard region information. 5132 if (TM.getOptLevel() == CodeGenOpt::None) 5133 return nullptr; 5134 5135 SmallVector<Value *, 4> Allocas; 5136 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5137 5138 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5139 E = Allocas.end(); Object != E; ++Object) { 5140 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5141 5142 // Could not find an Alloca. 5143 if (!LifetimeObject) 5144 continue; 5145 5146 // First check that the Alloca is static, otherwise it won't have a 5147 // valid frame index. 5148 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5149 if (SI == FuncInfo.StaticAllocaMap.end()) 5150 return nullptr; 5151 5152 int FI = SI->second; 5153 5154 SDValue Ops[2]; 5155 Ops[0] = getRoot(); 5156 Ops[1] = 5157 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5158 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5159 5160 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5161 DAG.setRoot(Res); 5162 } 5163 return nullptr; 5164 } 5165 case Intrinsic::invariant_start: 5166 // Discard region information. 5167 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5168 return nullptr; 5169 case Intrinsic::invariant_end: 5170 // Discard region information. 5171 return nullptr; 5172 case Intrinsic::stackprotectorcheck: { 5173 // Do not actually emit anything for this basic block. Instead we initialize 5174 // the stack protector descriptor and export the guard variable so we can 5175 // access it in FinishBasicBlock. 5176 const BasicBlock *BB = I.getParent(); 5177 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5178 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5179 5180 // Flush our exports since we are going to process a terminator. 5181 (void)getControlRoot(); 5182 return nullptr; 5183 } 5184 case Intrinsic::clear_cache: 5185 return TLI.getClearCacheBuiltinName(); 5186 case Intrinsic::donothing: 5187 // ignore 5188 return nullptr; 5189 case Intrinsic::experimental_stackmap: { 5190 visitStackmap(I); 5191 return nullptr; 5192 } 5193 case Intrinsic::experimental_patchpoint_void: 5194 case Intrinsic::experimental_patchpoint_i64: { 5195 visitPatchpoint(&I); 5196 return nullptr; 5197 } 5198 case Intrinsic::experimental_gc_statepoint: { 5199 visitStatepoint(I); 5200 return nullptr; 5201 } 5202 case Intrinsic::experimental_gc_result_int: 5203 case Intrinsic::experimental_gc_result_float: 5204 case Intrinsic::experimental_gc_result_ptr: 5205 case Intrinsic::experimental_gc_result: { 5206 visitGCResult(I); 5207 return nullptr; 5208 } 5209 case Intrinsic::experimental_gc_relocate: { 5210 visitGCRelocate(I); 5211 return nullptr; 5212 } 5213 case Intrinsic::instrprof_increment: 5214 llvm_unreachable("instrprof failed to lower an increment"); 5215 5216 case Intrinsic::localescape: { 5217 MachineFunction &MF = DAG.getMachineFunction(); 5218 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5219 5220 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5221 // is the same on all targets. 5222 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5223 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5224 if (isa<ConstantPointerNull>(Arg)) 5225 continue; // Skip null pointers. They represent a hole in index space. 5226 AllocaInst *Slot = cast<AllocaInst>(Arg); 5227 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5228 "can only escape static allocas"); 5229 int FI = FuncInfo.StaticAllocaMap[Slot]; 5230 MCSymbol *FrameAllocSym = 5231 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5232 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5233 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5234 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5235 .addSym(FrameAllocSym) 5236 .addFrameIndex(FI); 5237 } 5238 5239 return nullptr; 5240 } 5241 5242 case Intrinsic::localrecover: { 5243 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5244 MachineFunction &MF = DAG.getMachineFunction(); 5245 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5246 5247 // Get the symbol that defines the frame offset. 5248 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5249 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5250 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5251 MCSymbol *FrameAllocSym = 5252 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5253 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5254 5255 // Create a MCSymbol for the label to avoid any target lowering 5256 // that would make this PC relative. 5257 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5258 SDValue OffsetVal = 5259 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5260 5261 // Add the offset to the FP. 5262 Value *FP = I.getArgOperand(1); 5263 SDValue FPVal = getValue(FP); 5264 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5265 setValue(&I, Add); 5266 5267 return nullptr; 5268 } 5269 5270 case Intrinsic::eh_exceptionpointer: 5271 case Intrinsic::eh_exceptioncode: { 5272 // Get the exception pointer vreg, copy from it, and resize it to fit. 5273 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5274 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5275 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5276 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5277 SDValue N = 5278 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5279 if (Intrinsic == Intrinsic::eh_exceptioncode) 5280 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5281 setValue(&I, N); 5282 return nullptr; 5283 } 5284 } 5285 } 5286 5287 std::pair<SDValue, SDValue> 5288 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5289 const BasicBlock *EHPadBB) { 5290 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5291 MCSymbol *BeginLabel = nullptr; 5292 5293 if (EHPadBB) { 5294 // Insert a label before the invoke call to mark the try range. This can be 5295 // used to detect deletion of the invoke via the MachineModuleInfo. 5296 BeginLabel = MMI.getContext().createTempSymbol(); 5297 5298 // For SjLj, keep track of which landing pads go with which invokes 5299 // so as to maintain the ordering of pads in the LSDA. 5300 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5301 if (CallSiteIndex) { 5302 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5303 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5304 5305 // Now that the call site is handled, stop tracking it. 5306 MMI.setCurrentCallSite(0); 5307 } 5308 5309 // Both PendingLoads and PendingExports must be flushed here; 5310 // this call might not return. 5311 (void)getRoot(); 5312 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5313 5314 CLI.setChain(getRoot()); 5315 } 5316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5317 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5318 5319 assert((CLI.IsTailCall || Result.second.getNode()) && 5320 "Non-null chain expected with non-tail call!"); 5321 assert((Result.second.getNode() || !Result.first.getNode()) && 5322 "Null value expected with tail call!"); 5323 5324 if (!Result.second.getNode()) { 5325 // As a special case, a null chain means that a tail call has been emitted 5326 // and the DAG root is already updated. 5327 HasTailCall = true; 5328 5329 // Since there's no actual continuation from this block, nothing can be 5330 // relying on us setting vregs for them. 5331 PendingExports.clear(); 5332 } else { 5333 DAG.setRoot(Result.second); 5334 } 5335 5336 if (EHPadBB) { 5337 // Insert a label at the end of the invoke call to mark the try range. This 5338 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5339 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5340 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5341 5342 // Inform MachineModuleInfo of range. 5343 if (MMI.hasEHFunclets()) { 5344 WinEHFuncInfo &EHInfo = 5345 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5346 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5347 } else { 5348 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5349 } 5350 } 5351 5352 return Result; 5353 } 5354 5355 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5356 bool isTailCall, 5357 const BasicBlock *EHPadBB) { 5358 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5359 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5360 Type *RetTy = FTy->getReturnType(); 5361 5362 TargetLowering::ArgListTy Args; 5363 TargetLowering::ArgListEntry Entry; 5364 Args.reserve(CS.arg_size()); 5365 5366 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5367 i != e; ++i) { 5368 const Value *V = *i; 5369 5370 // Skip empty types 5371 if (V->getType()->isEmptyTy()) 5372 continue; 5373 5374 SDValue ArgNode = getValue(V); 5375 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5376 5377 // Skip the first return-type Attribute to get to params. 5378 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5379 Args.push_back(Entry); 5380 5381 // If we have an explicit sret argument that is an Instruction, (i.e., it 5382 // might point to function-local memory), we can't meaningfully tail-call. 5383 if (Entry.isSRet && isa<Instruction>(V)) 5384 isTailCall = false; 5385 } 5386 5387 // Check if target-independent constraints permit a tail call here. 5388 // Target-dependent constraints are checked within TLI->LowerCallTo. 5389 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5390 isTailCall = false; 5391 5392 TargetLowering::CallLoweringInfo CLI(DAG); 5393 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5394 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5395 .setTailCall(isTailCall); 5396 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5397 5398 if (Result.first.getNode()) 5399 setValue(CS.getInstruction(), Result.first); 5400 } 5401 5402 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5403 /// value is equal or not-equal to zero. 5404 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5405 for (const User *U : V->users()) { 5406 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5407 if (IC->isEquality()) 5408 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5409 if (C->isNullValue()) 5410 continue; 5411 // Unknown instruction. 5412 return false; 5413 } 5414 return true; 5415 } 5416 5417 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5418 Type *LoadTy, 5419 SelectionDAGBuilder &Builder) { 5420 5421 // Check to see if this load can be trivially constant folded, e.g. if the 5422 // input is from a string literal. 5423 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5424 // Cast pointer to the type we really want to load. 5425 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5426 PointerType::getUnqual(LoadTy)); 5427 5428 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5429 const_cast<Constant *>(LoadInput), *Builder.DL)) 5430 return Builder.getValue(LoadCst); 5431 } 5432 5433 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5434 // still constant memory, the input chain can be the entry node. 5435 SDValue Root; 5436 bool ConstantMemory = false; 5437 5438 // Do not serialize (non-volatile) loads of constant memory with anything. 5439 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5440 Root = Builder.DAG.getEntryNode(); 5441 ConstantMemory = true; 5442 } else { 5443 // Do not serialize non-volatile loads against each other. 5444 Root = Builder.DAG.getRoot(); 5445 } 5446 5447 SDValue Ptr = Builder.getValue(PtrVal); 5448 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5449 Ptr, MachinePointerInfo(PtrVal), 5450 false /*volatile*/, 5451 false /*nontemporal*/, 5452 false /*isinvariant*/, 1 /* align=1 */); 5453 5454 if (!ConstantMemory) 5455 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5456 return LoadVal; 5457 } 5458 5459 /// processIntegerCallValue - Record the value for an instruction that 5460 /// produces an integer result, converting the type where necessary. 5461 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5462 SDValue Value, 5463 bool IsSigned) { 5464 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5465 I.getType(), true); 5466 if (IsSigned) 5467 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5468 else 5469 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5470 setValue(&I, Value); 5471 } 5472 5473 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5474 /// If so, return true and lower it, otherwise return false and it will be 5475 /// lowered like a normal call. 5476 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5477 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5478 if (I.getNumArgOperands() != 3) 5479 return false; 5480 5481 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5482 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5483 !I.getArgOperand(2)->getType()->isIntegerTy() || 5484 !I.getType()->isIntegerTy()) 5485 return false; 5486 5487 const Value *Size = I.getArgOperand(2); 5488 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5489 if (CSize && CSize->getZExtValue() == 0) { 5490 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5491 I.getType(), true); 5492 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5493 return true; 5494 } 5495 5496 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5497 std::pair<SDValue, SDValue> Res = 5498 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5499 getValue(LHS), getValue(RHS), getValue(Size), 5500 MachinePointerInfo(LHS), 5501 MachinePointerInfo(RHS)); 5502 if (Res.first.getNode()) { 5503 processIntegerCallValue(I, Res.first, true); 5504 PendingLoads.push_back(Res.second); 5505 return true; 5506 } 5507 5508 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5509 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5510 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5511 bool ActuallyDoIt = true; 5512 MVT LoadVT; 5513 Type *LoadTy; 5514 switch (CSize->getZExtValue()) { 5515 default: 5516 LoadVT = MVT::Other; 5517 LoadTy = nullptr; 5518 ActuallyDoIt = false; 5519 break; 5520 case 2: 5521 LoadVT = MVT::i16; 5522 LoadTy = Type::getInt16Ty(CSize->getContext()); 5523 break; 5524 case 4: 5525 LoadVT = MVT::i32; 5526 LoadTy = Type::getInt32Ty(CSize->getContext()); 5527 break; 5528 case 8: 5529 LoadVT = MVT::i64; 5530 LoadTy = Type::getInt64Ty(CSize->getContext()); 5531 break; 5532 /* 5533 case 16: 5534 LoadVT = MVT::v4i32; 5535 LoadTy = Type::getInt32Ty(CSize->getContext()); 5536 LoadTy = VectorType::get(LoadTy, 4); 5537 break; 5538 */ 5539 } 5540 5541 // This turns into unaligned loads. We only do this if the target natively 5542 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5543 // we'll only produce a small number of byte loads. 5544 5545 // Require that we can find a legal MVT, and only do this if the target 5546 // supports unaligned loads of that type. Expanding into byte loads would 5547 // bloat the code. 5548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5549 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5550 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5551 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5552 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5553 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5554 // TODO: Check alignment of src and dest ptrs. 5555 if (!TLI.isTypeLegal(LoadVT) || 5556 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5557 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5558 ActuallyDoIt = false; 5559 } 5560 5561 if (ActuallyDoIt) { 5562 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5563 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5564 5565 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5566 ISD::SETNE); 5567 processIntegerCallValue(I, Res, false); 5568 return true; 5569 } 5570 } 5571 5572 5573 return false; 5574 } 5575 5576 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5577 /// form. If so, return true and lower it, otherwise return false and it 5578 /// will be lowered like a normal call. 5579 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5580 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5581 if (I.getNumArgOperands() != 3) 5582 return false; 5583 5584 const Value *Src = I.getArgOperand(0); 5585 const Value *Char = I.getArgOperand(1); 5586 const Value *Length = I.getArgOperand(2); 5587 if (!Src->getType()->isPointerTy() || 5588 !Char->getType()->isIntegerTy() || 5589 !Length->getType()->isIntegerTy() || 5590 !I.getType()->isPointerTy()) 5591 return false; 5592 5593 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5594 std::pair<SDValue, SDValue> Res = 5595 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5596 getValue(Src), getValue(Char), getValue(Length), 5597 MachinePointerInfo(Src)); 5598 if (Res.first.getNode()) { 5599 setValue(&I, Res.first); 5600 PendingLoads.push_back(Res.second); 5601 return true; 5602 } 5603 5604 return false; 5605 } 5606 5607 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5608 /// optimized form. If so, return true and lower it, otherwise return false 5609 /// and it will be lowered like a normal call. 5610 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5611 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5612 if (I.getNumArgOperands() != 2) 5613 return false; 5614 5615 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5616 if (!Arg0->getType()->isPointerTy() || 5617 !Arg1->getType()->isPointerTy() || 5618 !I.getType()->isPointerTy()) 5619 return false; 5620 5621 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5622 std::pair<SDValue, SDValue> Res = 5623 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5624 getValue(Arg0), getValue(Arg1), 5625 MachinePointerInfo(Arg0), 5626 MachinePointerInfo(Arg1), isStpcpy); 5627 if (Res.first.getNode()) { 5628 setValue(&I, Res.first); 5629 DAG.setRoot(Res.second); 5630 return true; 5631 } 5632 5633 return false; 5634 } 5635 5636 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5637 /// If so, return true and lower it, otherwise return false and it will be 5638 /// lowered like a normal call. 5639 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5640 // Verify that the prototype makes sense. int strcmp(void*,void*) 5641 if (I.getNumArgOperands() != 2) 5642 return false; 5643 5644 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5645 if (!Arg0->getType()->isPointerTy() || 5646 !Arg1->getType()->isPointerTy() || 5647 !I.getType()->isIntegerTy()) 5648 return false; 5649 5650 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5651 std::pair<SDValue, SDValue> Res = 5652 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5653 getValue(Arg0), getValue(Arg1), 5654 MachinePointerInfo(Arg0), 5655 MachinePointerInfo(Arg1)); 5656 if (Res.first.getNode()) { 5657 processIntegerCallValue(I, Res.first, true); 5658 PendingLoads.push_back(Res.second); 5659 return true; 5660 } 5661 5662 return false; 5663 } 5664 5665 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5666 /// form. If so, return true and lower it, otherwise return false and it 5667 /// will be lowered like a normal call. 5668 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5669 // Verify that the prototype makes sense. size_t strlen(char *) 5670 if (I.getNumArgOperands() != 1) 5671 return false; 5672 5673 const Value *Arg0 = I.getArgOperand(0); 5674 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5675 return false; 5676 5677 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5678 std::pair<SDValue, SDValue> Res = 5679 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5680 getValue(Arg0), MachinePointerInfo(Arg0)); 5681 if (Res.first.getNode()) { 5682 processIntegerCallValue(I, Res.first, false); 5683 PendingLoads.push_back(Res.second); 5684 return true; 5685 } 5686 5687 return false; 5688 } 5689 5690 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5691 /// form. If so, return true and lower it, otherwise return false and it 5692 /// will be lowered like a normal call. 5693 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5694 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5695 if (I.getNumArgOperands() != 2) 5696 return false; 5697 5698 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5699 if (!Arg0->getType()->isPointerTy() || 5700 !Arg1->getType()->isIntegerTy() || 5701 !I.getType()->isIntegerTy()) 5702 return false; 5703 5704 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5705 std::pair<SDValue, SDValue> Res = 5706 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5707 getValue(Arg0), getValue(Arg1), 5708 MachinePointerInfo(Arg0)); 5709 if (Res.first.getNode()) { 5710 processIntegerCallValue(I, Res.first, false); 5711 PendingLoads.push_back(Res.second); 5712 return true; 5713 } 5714 5715 return false; 5716 } 5717 5718 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5719 /// operation (as expected), translate it to an SDNode with the specified opcode 5720 /// and return true. 5721 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5722 unsigned Opcode) { 5723 // Sanity check that it really is a unary floating-point call. 5724 if (I.getNumArgOperands() != 1 || 5725 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5726 I.getType() != I.getArgOperand(0)->getType() || 5727 !I.onlyReadsMemory()) 5728 return false; 5729 5730 SDValue Tmp = getValue(I.getArgOperand(0)); 5731 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5732 return true; 5733 } 5734 5735 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5736 /// operation (as expected), translate it to an SDNode with the specified opcode 5737 /// and return true. 5738 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5739 unsigned Opcode) { 5740 // Sanity check that it really is a binary floating-point call. 5741 if (I.getNumArgOperands() != 2 || 5742 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5743 I.getType() != I.getArgOperand(0)->getType() || 5744 I.getType() != I.getArgOperand(1)->getType() || 5745 !I.onlyReadsMemory()) 5746 return false; 5747 5748 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5749 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5750 EVT VT = Tmp0.getValueType(); 5751 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5752 return true; 5753 } 5754 5755 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5756 // Handle inline assembly differently. 5757 if (isa<InlineAsm>(I.getCalledValue())) { 5758 visitInlineAsm(&I); 5759 return; 5760 } 5761 5762 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5763 ComputeUsesVAFloatArgument(I, &MMI); 5764 5765 const char *RenameFn = nullptr; 5766 if (Function *F = I.getCalledFunction()) { 5767 if (F->isDeclaration()) { 5768 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5769 if (unsigned IID = II->getIntrinsicID(F)) { 5770 RenameFn = visitIntrinsicCall(I, IID); 5771 if (!RenameFn) 5772 return; 5773 } 5774 } 5775 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5776 RenameFn = visitIntrinsicCall(I, IID); 5777 if (!RenameFn) 5778 return; 5779 } 5780 } 5781 5782 // Check for well-known libc/libm calls. If the function is internal, it 5783 // can't be a library call. 5784 LibFunc::Func Func; 5785 if (!F->hasLocalLinkage() && F->hasName() && 5786 LibInfo->getLibFunc(F->getName(), Func) && 5787 LibInfo->hasOptimizedCodeGen(Func)) { 5788 switch (Func) { 5789 default: break; 5790 case LibFunc::copysign: 5791 case LibFunc::copysignf: 5792 case LibFunc::copysignl: 5793 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5794 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5795 I.getType() == I.getArgOperand(0)->getType() && 5796 I.getType() == I.getArgOperand(1)->getType() && 5797 I.onlyReadsMemory()) { 5798 SDValue LHS = getValue(I.getArgOperand(0)); 5799 SDValue RHS = getValue(I.getArgOperand(1)); 5800 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5801 LHS.getValueType(), LHS, RHS)); 5802 return; 5803 } 5804 break; 5805 case LibFunc::fabs: 5806 case LibFunc::fabsf: 5807 case LibFunc::fabsl: 5808 if (visitUnaryFloatCall(I, ISD::FABS)) 5809 return; 5810 break; 5811 case LibFunc::fmin: 5812 case LibFunc::fminf: 5813 case LibFunc::fminl: 5814 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5815 return; 5816 break; 5817 case LibFunc::fmax: 5818 case LibFunc::fmaxf: 5819 case LibFunc::fmaxl: 5820 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5821 return; 5822 break; 5823 case LibFunc::sin: 5824 case LibFunc::sinf: 5825 case LibFunc::sinl: 5826 if (visitUnaryFloatCall(I, ISD::FSIN)) 5827 return; 5828 break; 5829 case LibFunc::cos: 5830 case LibFunc::cosf: 5831 case LibFunc::cosl: 5832 if (visitUnaryFloatCall(I, ISD::FCOS)) 5833 return; 5834 break; 5835 case LibFunc::sqrt: 5836 case LibFunc::sqrtf: 5837 case LibFunc::sqrtl: 5838 case LibFunc::sqrt_finite: 5839 case LibFunc::sqrtf_finite: 5840 case LibFunc::sqrtl_finite: 5841 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5842 return; 5843 break; 5844 case LibFunc::floor: 5845 case LibFunc::floorf: 5846 case LibFunc::floorl: 5847 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5848 return; 5849 break; 5850 case LibFunc::nearbyint: 5851 case LibFunc::nearbyintf: 5852 case LibFunc::nearbyintl: 5853 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5854 return; 5855 break; 5856 case LibFunc::ceil: 5857 case LibFunc::ceilf: 5858 case LibFunc::ceill: 5859 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5860 return; 5861 break; 5862 case LibFunc::rint: 5863 case LibFunc::rintf: 5864 case LibFunc::rintl: 5865 if (visitUnaryFloatCall(I, ISD::FRINT)) 5866 return; 5867 break; 5868 case LibFunc::round: 5869 case LibFunc::roundf: 5870 case LibFunc::roundl: 5871 if (visitUnaryFloatCall(I, ISD::FROUND)) 5872 return; 5873 break; 5874 case LibFunc::trunc: 5875 case LibFunc::truncf: 5876 case LibFunc::truncl: 5877 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5878 return; 5879 break; 5880 case LibFunc::log2: 5881 case LibFunc::log2f: 5882 case LibFunc::log2l: 5883 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5884 return; 5885 break; 5886 case LibFunc::exp2: 5887 case LibFunc::exp2f: 5888 case LibFunc::exp2l: 5889 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5890 return; 5891 break; 5892 case LibFunc::memcmp: 5893 if (visitMemCmpCall(I)) 5894 return; 5895 break; 5896 case LibFunc::memchr: 5897 if (visitMemChrCall(I)) 5898 return; 5899 break; 5900 case LibFunc::strcpy: 5901 if (visitStrCpyCall(I, false)) 5902 return; 5903 break; 5904 case LibFunc::stpcpy: 5905 if (visitStrCpyCall(I, true)) 5906 return; 5907 break; 5908 case LibFunc::strcmp: 5909 if (visitStrCmpCall(I)) 5910 return; 5911 break; 5912 case LibFunc::strlen: 5913 if (visitStrLenCall(I)) 5914 return; 5915 break; 5916 case LibFunc::strnlen: 5917 if (visitStrNLenCall(I)) 5918 return; 5919 break; 5920 } 5921 } 5922 } 5923 5924 SDValue Callee; 5925 if (!RenameFn) 5926 Callee = getValue(I.getCalledValue()); 5927 else 5928 Callee = DAG.getExternalSymbol( 5929 RenameFn, 5930 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5931 5932 // Check if we can potentially perform a tail call. More detailed checking is 5933 // be done within LowerCallTo, after more information about the call is known. 5934 LowerCallTo(&I, Callee, I.isTailCall()); 5935 } 5936 5937 namespace { 5938 5939 /// AsmOperandInfo - This contains information for each constraint that we are 5940 /// lowering. 5941 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5942 public: 5943 /// CallOperand - If this is the result output operand or a clobber 5944 /// this is null, otherwise it is the incoming operand to the CallInst. 5945 /// This gets modified as the asm is processed. 5946 SDValue CallOperand; 5947 5948 /// AssignedRegs - If this is a register or register class operand, this 5949 /// contains the set of register corresponding to the operand. 5950 RegsForValue AssignedRegs; 5951 5952 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5953 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5954 } 5955 5956 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5957 /// corresponds to. If there is no Value* for this operand, it returns 5958 /// MVT::Other. 5959 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5960 const DataLayout &DL) const { 5961 if (!CallOperandVal) return MVT::Other; 5962 5963 if (isa<BasicBlock>(CallOperandVal)) 5964 return TLI.getPointerTy(DL); 5965 5966 llvm::Type *OpTy = CallOperandVal->getType(); 5967 5968 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5969 // If this is an indirect operand, the operand is a pointer to the 5970 // accessed type. 5971 if (isIndirect) { 5972 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5973 if (!PtrTy) 5974 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5975 OpTy = PtrTy->getElementType(); 5976 } 5977 5978 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5979 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5980 if (STy->getNumElements() == 1) 5981 OpTy = STy->getElementType(0); 5982 5983 // If OpTy is not a single value, it may be a struct/union that we 5984 // can tile with integers. 5985 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5986 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5987 switch (BitSize) { 5988 default: break; 5989 case 1: 5990 case 8: 5991 case 16: 5992 case 32: 5993 case 64: 5994 case 128: 5995 OpTy = IntegerType::get(Context, BitSize); 5996 break; 5997 } 5998 } 5999 6000 return TLI.getValueType(DL, OpTy, true); 6001 } 6002 }; 6003 6004 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6005 6006 } // end anonymous namespace 6007 6008 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6009 /// specified operand. We prefer to assign virtual registers, to allow the 6010 /// register allocator to handle the assignment process. However, if the asm 6011 /// uses features that we can't model on machineinstrs, we have SDISel do the 6012 /// allocation. This produces generally horrible, but correct, code. 6013 /// 6014 /// OpInfo describes the operand. 6015 /// 6016 static void GetRegistersForValue(SelectionDAG &DAG, 6017 const TargetLowering &TLI, 6018 SDLoc DL, 6019 SDISelAsmOperandInfo &OpInfo) { 6020 LLVMContext &Context = *DAG.getContext(); 6021 6022 MachineFunction &MF = DAG.getMachineFunction(); 6023 SmallVector<unsigned, 4> Regs; 6024 6025 // If this is a constraint for a single physreg, or a constraint for a 6026 // register class, find it. 6027 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6028 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6029 OpInfo.ConstraintCode, 6030 OpInfo.ConstraintVT); 6031 6032 unsigned NumRegs = 1; 6033 if (OpInfo.ConstraintVT != MVT::Other) { 6034 // If this is a FP input in an integer register (or visa versa) insert a bit 6035 // cast of the input value. More generally, handle any case where the input 6036 // value disagrees with the register class we plan to stick this in. 6037 if (OpInfo.Type == InlineAsm::isInput && 6038 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6039 // Try to convert to the first EVT that the reg class contains. If the 6040 // types are identical size, use a bitcast to convert (e.g. two differing 6041 // vector types). 6042 MVT RegVT = *PhysReg.second->vt_begin(); 6043 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6044 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6045 RegVT, OpInfo.CallOperand); 6046 OpInfo.ConstraintVT = RegVT; 6047 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6048 // If the input is a FP value and we want it in FP registers, do a 6049 // bitcast to the corresponding integer type. This turns an f64 value 6050 // into i64, which can be passed with two i32 values on a 32-bit 6051 // machine. 6052 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6053 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6054 RegVT, OpInfo.CallOperand); 6055 OpInfo.ConstraintVT = RegVT; 6056 } 6057 } 6058 6059 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6060 } 6061 6062 MVT RegVT; 6063 EVT ValueVT = OpInfo.ConstraintVT; 6064 6065 // If this is a constraint for a specific physical register, like {r17}, 6066 // assign it now. 6067 if (unsigned AssignedReg = PhysReg.first) { 6068 const TargetRegisterClass *RC = PhysReg.second; 6069 if (OpInfo.ConstraintVT == MVT::Other) 6070 ValueVT = *RC->vt_begin(); 6071 6072 // Get the actual register value type. This is important, because the user 6073 // may have asked for (e.g.) the AX register in i32 type. We need to 6074 // remember that AX is actually i16 to get the right extension. 6075 RegVT = *RC->vt_begin(); 6076 6077 // This is a explicit reference to a physical register. 6078 Regs.push_back(AssignedReg); 6079 6080 // If this is an expanded reference, add the rest of the regs to Regs. 6081 if (NumRegs != 1) { 6082 TargetRegisterClass::iterator I = RC->begin(); 6083 for (; *I != AssignedReg; ++I) 6084 assert(I != RC->end() && "Didn't find reg!"); 6085 6086 // Already added the first reg. 6087 --NumRegs; ++I; 6088 for (; NumRegs; --NumRegs, ++I) { 6089 assert(I != RC->end() && "Ran out of registers to allocate!"); 6090 Regs.push_back(*I); 6091 } 6092 } 6093 6094 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6095 return; 6096 } 6097 6098 // Otherwise, if this was a reference to an LLVM register class, create vregs 6099 // for this reference. 6100 if (const TargetRegisterClass *RC = PhysReg.second) { 6101 RegVT = *RC->vt_begin(); 6102 if (OpInfo.ConstraintVT == MVT::Other) 6103 ValueVT = RegVT; 6104 6105 // Create the appropriate number of virtual registers. 6106 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6107 for (; NumRegs; --NumRegs) 6108 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6109 6110 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6111 return; 6112 } 6113 6114 // Otherwise, we couldn't allocate enough registers for this. 6115 } 6116 6117 /// visitInlineAsm - Handle a call to an InlineAsm object. 6118 /// 6119 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6120 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6121 6122 /// ConstraintOperands - Information about all of the constraints. 6123 SDISelAsmOperandInfoVector ConstraintOperands; 6124 6125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6126 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6127 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6128 6129 bool hasMemory = false; 6130 6131 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6132 unsigned ResNo = 0; // ResNo - The result number of the next output. 6133 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6134 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6135 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6136 6137 MVT OpVT = MVT::Other; 6138 6139 // Compute the value type for each operand. 6140 switch (OpInfo.Type) { 6141 case InlineAsm::isOutput: 6142 // Indirect outputs just consume an argument. 6143 if (OpInfo.isIndirect) { 6144 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6145 break; 6146 } 6147 6148 // The return value of the call is this value. As such, there is no 6149 // corresponding argument. 6150 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6151 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6152 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6153 STy->getElementType(ResNo)); 6154 } else { 6155 assert(ResNo == 0 && "Asm only has one result!"); 6156 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6157 } 6158 ++ResNo; 6159 break; 6160 case InlineAsm::isInput: 6161 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6162 break; 6163 case InlineAsm::isClobber: 6164 // Nothing to do. 6165 break; 6166 } 6167 6168 // If this is an input or an indirect output, process the call argument. 6169 // BasicBlocks are labels, currently appearing only in asm's. 6170 if (OpInfo.CallOperandVal) { 6171 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6172 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6173 } else { 6174 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6175 } 6176 6177 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6178 DAG.getDataLayout()).getSimpleVT(); 6179 } 6180 6181 OpInfo.ConstraintVT = OpVT; 6182 6183 // Indirect operand accesses access memory. 6184 if (OpInfo.isIndirect) 6185 hasMemory = true; 6186 else { 6187 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6188 TargetLowering::ConstraintType 6189 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6190 if (CType == TargetLowering::C_Memory) { 6191 hasMemory = true; 6192 break; 6193 } 6194 } 6195 } 6196 } 6197 6198 SDValue Chain, Flag; 6199 6200 // We won't need to flush pending loads if this asm doesn't touch 6201 // memory and is nonvolatile. 6202 if (hasMemory || IA->hasSideEffects()) 6203 Chain = getRoot(); 6204 else 6205 Chain = DAG.getRoot(); 6206 6207 // Second pass over the constraints: compute which constraint option to use 6208 // and assign registers to constraints that want a specific physreg. 6209 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6210 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6211 6212 // If this is an output operand with a matching input operand, look up the 6213 // matching input. If their types mismatch, e.g. one is an integer, the 6214 // other is floating point, or their sizes are different, flag it as an 6215 // error. 6216 if (OpInfo.hasMatchingInput()) { 6217 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6218 6219 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6220 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6221 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6222 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6223 OpInfo.ConstraintVT); 6224 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6225 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6226 Input.ConstraintVT); 6227 if ((OpInfo.ConstraintVT.isInteger() != 6228 Input.ConstraintVT.isInteger()) || 6229 (MatchRC.second != InputRC.second)) { 6230 report_fatal_error("Unsupported asm: input constraint" 6231 " with a matching output constraint of" 6232 " incompatible type!"); 6233 } 6234 Input.ConstraintVT = OpInfo.ConstraintVT; 6235 } 6236 } 6237 6238 // Compute the constraint code and ConstraintType to use. 6239 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6240 6241 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6242 OpInfo.Type == InlineAsm::isClobber) 6243 continue; 6244 6245 // If this is a memory input, and if the operand is not indirect, do what we 6246 // need to to provide an address for the memory input. 6247 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6248 !OpInfo.isIndirect) { 6249 assert((OpInfo.isMultipleAlternative || 6250 (OpInfo.Type == InlineAsm::isInput)) && 6251 "Can only indirectify direct input operands!"); 6252 6253 // Memory operands really want the address of the value. If we don't have 6254 // an indirect input, put it in the constpool if we can, otherwise spill 6255 // it to a stack slot. 6256 // TODO: This isn't quite right. We need to handle these according to 6257 // the addressing mode that the constraint wants. Also, this may take 6258 // an additional register for the computation and we don't want that 6259 // either. 6260 6261 // If the operand is a float, integer, or vector constant, spill to a 6262 // constant pool entry to get its address. 6263 const Value *OpVal = OpInfo.CallOperandVal; 6264 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6265 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6266 OpInfo.CallOperand = DAG.getConstantPool( 6267 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6268 } else { 6269 // Otherwise, create a stack slot and emit a store to it before the 6270 // asm. 6271 Type *Ty = OpVal->getType(); 6272 auto &DL = DAG.getDataLayout(); 6273 uint64_t TySize = DL.getTypeAllocSize(Ty); 6274 unsigned Align = DL.getPrefTypeAlignment(Ty); 6275 MachineFunction &MF = DAG.getMachineFunction(); 6276 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6277 SDValue StackSlot = 6278 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6279 Chain = DAG.getStore( 6280 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6281 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6282 false, false, 0); 6283 OpInfo.CallOperand = StackSlot; 6284 } 6285 6286 // There is no longer a Value* corresponding to this operand. 6287 OpInfo.CallOperandVal = nullptr; 6288 6289 // It is now an indirect operand. 6290 OpInfo.isIndirect = true; 6291 } 6292 6293 // If this constraint is for a specific register, allocate it before 6294 // anything else. 6295 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6296 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6297 } 6298 6299 // Second pass - Loop over all of the operands, assigning virtual or physregs 6300 // to register class operands. 6301 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6302 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6303 6304 // C_Register operands have already been allocated, Other/Memory don't need 6305 // to be. 6306 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6307 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6308 } 6309 6310 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6311 std::vector<SDValue> AsmNodeOperands; 6312 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6313 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6314 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6315 6316 // If we have a !srcloc metadata node associated with it, we want to attach 6317 // this to the ultimately generated inline asm machineinstr. To do this, we 6318 // pass in the third operand as this (potentially null) inline asm MDNode. 6319 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6320 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6321 6322 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6323 // bits as operand 3. 6324 unsigned ExtraInfo = 0; 6325 if (IA->hasSideEffects()) 6326 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6327 if (IA->isAlignStack()) 6328 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6329 // Set the asm dialect. 6330 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6331 6332 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6333 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6334 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6335 6336 // Compute the constraint code and ConstraintType to use. 6337 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6338 6339 // Ideally, we would only check against memory constraints. However, the 6340 // meaning of an other constraint can be target-specific and we can't easily 6341 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6342 // for other constriants as well. 6343 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6344 OpInfo.ConstraintType == TargetLowering::C_Other) { 6345 if (OpInfo.Type == InlineAsm::isInput) 6346 ExtraInfo |= InlineAsm::Extra_MayLoad; 6347 else if (OpInfo.Type == InlineAsm::isOutput) 6348 ExtraInfo |= InlineAsm::Extra_MayStore; 6349 else if (OpInfo.Type == InlineAsm::isClobber) 6350 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6351 } 6352 } 6353 6354 AsmNodeOperands.push_back(DAG.getTargetConstant( 6355 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6356 6357 // Loop over all of the inputs, copying the operand values into the 6358 // appropriate registers and processing the output regs. 6359 RegsForValue RetValRegs; 6360 6361 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6362 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6363 6364 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6365 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6366 6367 switch (OpInfo.Type) { 6368 case InlineAsm::isOutput: { 6369 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6370 OpInfo.ConstraintType != TargetLowering::C_Register) { 6371 // Memory output, or 'other' output (e.g. 'X' constraint). 6372 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6373 6374 unsigned ConstraintID = 6375 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6376 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6377 "Failed to convert memory constraint code to constraint id."); 6378 6379 // Add information to the INLINEASM node to know about this output. 6380 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6381 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6382 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6383 MVT::i32)); 6384 AsmNodeOperands.push_back(OpInfo.CallOperand); 6385 break; 6386 } 6387 6388 // Otherwise, this is a register or register class output. 6389 6390 // Copy the output from the appropriate register. Find a register that 6391 // we can use. 6392 if (OpInfo.AssignedRegs.Regs.empty()) { 6393 LLVMContext &Ctx = *DAG.getContext(); 6394 Ctx.emitError(CS.getInstruction(), 6395 "couldn't allocate output register for constraint '" + 6396 Twine(OpInfo.ConstraintCode) + "'"); 6397 return; 6398 } 6399 6400 // If this is an indirect operand, store through the pointer after the 6401 // asm. 6402 if (OpInfo.isIndirect) { 6403 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6404 OpInfo.CallOperandVal)); 6405 } else { 6406 // This is the result value of the call. 6407 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6408 // Concatenate this output onto the outputs list. 6409 RetValRegs.append(OpInfo.AssignedRegs); 6410 } 6411 6412 // Add information to the INLINEASM node to know that this register is 6413 // set. 6414 OpInfo.AssignedRegs 6415 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6416 ? InlineAsm::Kind_RegDefEarlyClobber 6417 : InlineAsm::Kind_RegDef, 6418 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6419 break; 6420 } 6421 case InlineAsm::isInput: { 6422 SDValue InOperandVal = OpInfo.CallOperand; 6423 6424 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6425 // If this is required to match an output register we have already set, 6426 // just use its register. 6427 unsigned OperandNo = OpInfo.getMatchedOperand(); 6428 6429 // Scan until we find the definition we already emitted of this operand. 6430 // When we find it, create a RegsForValue operand. 6431 unsigned CurOp = InlineAsm::Op_FirstOperand; 6432 for (; OperandNo; --OperandNo) { 6433 // Advance to the next operand. 6434 unsigned OpFlag = 6435 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6436 assert((InlineAsm::isRegDefKind(OpFlag) || 6437 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6438 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6439 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6440 } 6441 6442 unsigned OpFlag = 6443 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6444 if (InlineAsm::isRegDefKind(OpFlag) || 6445 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6446 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6447 if (OpInfo.isIndirect) { 6448 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6449 LLVMContext &Ctx = *DAG.getContext(); 6450 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6451 " don't know how to handle tied " 6452 "indirect register inputs"); 6453 return; 6454 } 6455 6456 RegsForValue MatchedRegs; 6457 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6458 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6459 MatchedRegs.RegVTs.push_back(RegVT); 6460 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6461 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6462 i != e; ++i) { 6463 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6464 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6465 else { 6466 LLVMContext &Ctx = *DAG.getContext(); 6467 Ctx.emitError(CS.getInstruction(), 6468 "inline asm error: This value" 6469 " type register class is not natively supported!"); 6470 return; 6471 } 6472 } 6473 SDLoc dl = getCurSDLoc(); 6474 // Use the produced MatchedRegs object to 6475 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6476 Chain, &Flag, CS.getInstruction()); 6477 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6478 true, OpInfo.getMatchedOperand(), dl, 6479 DAG, AsmNodeOperands); 6480 break; 6481 } 6482 6483 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6484 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6485 "Unexpected number of operands"); 6486 // Add information to the INLINEASM node to know about this input. 6487 // See InlineAsm.h isUseOperandTiedToDef. 6488 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6489 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6490 OpInfo.getMatchedOperand()); 6491 AsmNodeOperands.push_back(DAG.getTargetConstant( 6492 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6493 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6494 break; 6495 } 6496 6497 // Treat indirect 'X' constraint as memory. 6498 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6499 OpInfo.isIndirect) 6500 OpInfo.ConstraintType = TargetLowering::C_Memory; 6501 6502 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6503 std::vector<SDValue> Ops; 6504 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6505 Ops, DAG); 6506 if (Ops.empty()) { 6507 LLVMContext &Ctx = *DAG.getContext(); 6508 Ctx.emitError(CS.getInstruction(), 6509 "invalid operand for inline asm constraint '" + 6510 Twine(OpInfo.ConstraintCode) + "'"); 6511 return; 6512 } 6513 6514 // Add information to the INLINEASM node to know about this input. 6515 unsigned ResOpType = 6516 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6517 AsmNodeOperands.push_back(DAG.getTargetConstant( 6518 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6519 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6520 break; 6521 } 6522 6523 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6524 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6525 assert(InOperandVal.getValueType() == 6526 TLI.getPointerTy(DAG.getDataLayout()) && 6527 "Memory operands expect pointer values"); 6528 6529 unsigned ConstraintID = 6530 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6531 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6532 "Failed to convert memory constraint code to constraint id."); 6533 6534 // Add information to the INLINEASM node to know about this input. 6535 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6536 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6537 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6538 getCurSDLoc(), 6539 MVT::i32)); 6540 AsmNodeOperands.push_back(InOperandVal); 6541 break; 6542 } 6543 6544 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6545 OpInfo.ConstraintType == TargetLowering::C_Register) && 6546 "Unknown constraint type!"); 6547 6548 // TODO: Support this. 6549 if (OpInfo.isIndirect) { 6550 LLVMContext &Ctx = *DAG.getContext(); 6551 Ctx.emitError(CS.getInstruction(), 6552 "Don't know how to handle indirect register inputs yet " 6553 "for constraint '" + 6554 Twine(OpInfo.ConstraintCode) + "'"); 6555 return; 6556 } 6557 6558 // Copy the input into the appropriate registers. 6559 if (OpInfo.AssignedRegs.Regs.empty()) { 6560 LLVMContext &Ctx = *DAG.getContext(); 6561 Ctx.emitError(CS.getInstruction(), 6562 "couldn't allocate input reg for constraint '" + 6563 Twine(OpInfo.ConstraintCode) + "'"); 6564 return; 6565 } 6566 6567 SDLoc dl = getCurSDLoc(); 6568 6569 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6570 Chain, &Flag, CS.getInstruction()); 6571 6572 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6573 dl, DAG, AsmNodeOperands); 6574 break; 6575 } 6576 case InlineAsm::isClobber: { 6577 // Add the clobbered value to the operand list, so that the register 6578 // allocator is aware that the physreg got clobbered. 6579 if (!OpInfo.AssignedRegs.Regs.empty()) 6580 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6581 false, 0, getCurSDLoc(), DAG, 6582 AsmNodeOperands); 6583 break; 6584 } 6585 } 6586 } 6587 6588 // Finish up input operands. Set the input chain and add the flag last. 6589 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6590 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6591 6592 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6593 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6594 Flag = Chain.getValue(1); 6595 6596 // If this asm returns a register value, copy the result from that register 6597 // and set it as the value of the call. 6598 if (!RetValRegs.Regs.empty()) { 6599 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6600 Chain, &Flag, CS.getInstruction()); 6601 6602 // FIXME: Why don't we do this for inline asms with MRVs? 6603 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6604 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6605 6606 // If any of the results of the inline asm is a vector, it may have the 6607 // wrong width/num elts. This can happen for register classes that can 6608 // contain multiple different value types. The preg or vreg allocated may 6609 // not have the same VT as was expected. Convert it to the right type 6610 // with bit_convert. 6611 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6612 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6613 ResultType, Val); 6614 6615 } else if (ResultType != Val.getValueType() && 6616 ResultType.isInteger() && Val.getValueType().isInteger()) { 6617 // If a result value was tied to an input value, the computed result may 6618 // have a wider width than the expected result. Extract the relevant 6619 // portion. 6620 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6621 } 6622 6623 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6624 } 6625 6626 setValue(CS.getInstruction(), Val); 6627 // Don't need to use this as a chain in this case. 6628 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6629 return; 6630 } 6631 6632 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6633 6634 // Process indirect outputs, first output all of the flagged copies out of 6635 // physregs. 6636 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6637 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6638 const Value *Ptr = IndirectStoresToEmit[i].second; 6639 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6640 Chain, &Flag, IA); 6641 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6642 } 6643 6644 // Emit the non-flagged stores from the physregs. 6645 SmallVector<SDValue, 8> OutChains; 6646 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6647 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6648 StoresToEmit[i].first, 6649 getValue(StoresToEmit[i].second), 6650 MachinePointerInfo(StoresToEmit[i].second), 6651 false, false, 0); 6652 OutChains.push_back(Val); 6653 } 6654 6655 if (!OutChains.empty()) 6656 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6657 6658 DAG.setRoot(Chain); 6659 } 6660 6661 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6662 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6663 MVT::Other, getRoot(), 6664 getValue(I.getArgOperand(0)), 6665 DAG.getSrcValue(I.getArgOperand(0)))); 6666 } 6667 6668 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6670 const DataLayout &DL = DAG.getDataLayout(); 6671 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6672 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6673 DAG.getSrcValue(I.getOperand(0)), 6674 DL.getABITypeAlignment(I.getType())); 6675 setValue(&I, V); 6676 DAG.setRoot(V.getValue(1)); 6677 } 6678 6679 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6680 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6681 MVT::Other, getRoot(), 6682 getValue(I.getArgOperand(0)), 6683 DAG.getSrcValue(I.getArgOperand(0)))); 6684 } 6685 6686 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6687 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6688 MVT::Other, getRoot(), 6689 getValue(I.getArgOperand(0)), 6690 getValue(I.getArgOperand(1)), 6691 DAG.getSrcValue(I.getArgOperand(0)), 6692 DAG.getSrcValue(I.getArgOperand(1)))); 6693 } 6694 6695 /// \brief Lower an argument list according to the target calling convention. 6696 /// 6697 /// \return A tuple of <return-value, token-chain> 6698 /// 6699 /// This is a helper for lowering intrinsics that follow a target calling 6700 /// convention or require stack pointer adjustment. Only a subset of the 6701 /// intrinsic's operands need to participate in the calling convention. 6702 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6703 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6704 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6705 TargetLowering::ArgListTy Args; 6706 Args.reserve(NumArgs); 6707 6708 // Populate the argument list. 6709 // Attributes for args start at offset 1, after the return attribute. 6710 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6711 ArgI != ArgE; ++ArgI) { 6712 const Value *V = CS->getOperand(ArgI); 6713 6714 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6715 6716 TargetLowering::ArgListEntry Entry; 6717 Entry.Node = getValue(V); 6718 Entry.Ty = V->getType(); 6719 Entry.setAttributes(&CS, AttrI); 6720 Args.push_back(Entry); 6721 } 6722 6723 TargetLowering::CallLoweringInfo CLI(DAG); 6724 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6725 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6726 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6727 6728 return lowerInvokable(CLI, EHPadBB); 6729 } 6730 6731 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6732 /// or patchpoint target node's operand list. 6733 /// 6734 /// Constants are converted to TargetConstants purely as an optimization to 6735 /// avoid constant materialization and register allocation. 6736 /// 6737 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6738 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6739 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6740 /// address materialization and register allocation, but may also be required 6741 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6742 /// alloca in the entry block, then the runtime may assume that the alloca's 6743 /// StackMap location can be read immediately after compilation and that the 6744 /// location is valid at any point during execution (this is similar to the 6745 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6746 /// only available in a register, then the runtime would need to trap when 6747 /// execution reaches the StackMap in order to read the alloca's location. 6748 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6749 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6750 SelectionDAGBuilder &Builder) { 6751 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6752 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6753 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6754 Ops.push_back( 6755 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6756 Ops.push_back( 6757 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6758 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6759 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6760 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6761 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6762 } else 6763 Ops.push_back(OpVal); 6764 } 6765 } 6766 6767 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6768 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6769 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6770 // [live variables...]) 6771 6772 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6773 6774 SDValue Chain, InFlag, Callee, NullPtr; 6775 SmallVector<SDValue, 32> Ops; 6776 6777 SDLoc DL = getCurSDLoc(); 6778 Callee = getValue(CI.getCalledValue()); 6779 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6780 6781 // The stackmap intrinsic only records the live variables (the arguemnts 6782 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6783 // intrinsic, this won't be lowered to a function call. This means we don't 6784 // have to worry about calling conventions and target specific lowering code. 6785 // Instead we perform the call lowering right here. 6786 // 6787 // chain, flag = CALLSEQ_START(chain, 0) 6788 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6789 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6790 // 6791 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6792 InFlag = Chain.getValue(1); 6793 6794 // Add the <id> and <numBytes> constants. 6795 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6796 Ops.push_back(DAG.getTargetConstant( 6797 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6798 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6799 Ops.push_back(DAG.getTargetConstant( 6800 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6801 MVT::i32)); 6802 6803 // Push live variables for the stack map. 6804 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6805 6806 // We are not pushing any register mask info here on the operands list, 6807 // because the stackmap doesn't clobber anything. 6808 6809 // Push the chain and the glue flag. 6810 Ops.push_back(Chain); 6811 Ops.push_back(InFlag); 6812 6813 // Create the STACKMAP node. 6814 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6815 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6816 Chain = SDValue(SM, 0); 6817 InFlag = Chain.getValue(1); 6818 6819 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6820 6821 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6822 6823 // Set the root to the target-lowered call chain. 6824 DAG.setRoot(Chain); 6825 6826 // Inform the Frame Information that we have a stackmap in this function. 6827 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6828 } 6829 6830 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6831 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6832 const BasicBlock *EHPadBB) { 6833 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6834 // i32 <numBytes>, 6835 // i8* <target>, 6836 // i32 <numArgs>, 6837 // [Args...], 6838 // [live variables...]) 6839 6840 CallingConv::ID CC = CS.getCallingConv(); 6841 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6842 bool HasDef = !CS->getType()->isVoidTy(); 6843 SDLoc dl = getCurSDLoc(); 6844 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6845 6846 // Handle immediate and symbolic callees. 6847 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6848 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6849 /*isTarget=*/true); 6850 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6851 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6852 SDLoc(SymbolicCallee), 6853 SymbolicCallee->getValueType(0)); 6854 6855 // Get the real number of arguments participating in the call <numArgs> 6856 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6857 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6858 6859 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6860 // Intrinsics include all meta-operands up to but not including CC. 6861 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6862 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6863 "Not enough arguments provided to the patchpoint intrinsic"); 6864 6865 // For AnyRegCC the arguments are lowered later on manually. 6866 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6867 Type *ReturnTy = 6868 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6869 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6870 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6871 6872 SDNode *CallEnd = Result.second.getNode(); 6873 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6874 CallEnd = CallEnd->getOperand(0).getNode(); 6875 6876 /// Get a call instruction from the call sequence chain. 6877 /// Tail calls are not allowed. 6878 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6879 "Expected a callseq node."); 6880 SDNode *Call = CallEnd->getOperand(0).getNode(); 6881 bool HasGlue = Call->getGluedNode(); 6882 6883 // Replace the target specific call node with the patchable intrinsic. 6884 SmallVector<SDValue, 8> Ops; 6885 6886 // Add the <id> and <numBytes> constants. 6887 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6888 Ops.push_back(DAG.getTargetConstant( 6889 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6890 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6891 Ops.push_back(DAG.getTargetConstant( 6892 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6893 MVT::i32)); 6894 6895 // Add the callee. 6896 Ops.push_back(Callee); 6897 6898 // Adjust <numArgs> to account for any arguments that have been passed on the 6899 // stack instead. 6900 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6901 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6902 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6903 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6904 6905 // Add the calling convention 6906 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6907 6908 // Add the arguments we omitted previously. The register allocator should 6909 // place these in any free register. 6910 if (IsAnyRegCC) 6911 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6912 Ops.push_back(getValue(CS.getArgument(i))); 6913 6914 // Push the arguments from the call instruction up to the register mask. 6915 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6916 Ops.append(Call->op_begin() + 2, e); 6917 6918 // Push live variables for the stack map. 6919 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6920 6921 // Push the register mask info. 6922 if (HasGlue) 6923 Ops.push_back(*(Call->op_end()-2)); 6924 else 6925 Ops.push_back(*(Call->op_end()-1)); 6926 6927 // Push the chain (this is originally the first operand of the call, but 6928 // becomes now the last or second to last operand). 6929 Ops.push_back(*(Call->op_begin())); 6930 6931 // Push the glue flag (last operand). 6932 if (HasGlue) 6933 Ops.push_back(*(Call->op_end()-1)); 6934 6935 SDVTList NodeTys; 6936 if (IsAnyRegCC && HasDef) { 6937 // Create the return types based on the intrinsic definition 6938 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6939 SmallVector<EVT, 3> ValueVTs; 6940 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6941 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6942 6943 // There is always a chain and a glue type at the end 6944 ValueVTs.push_back(MVT::Other); 6945 ValueVTs.push_back(MVT::Glue); 6946 NodeTys = DAG.getVTList(ValueVTs); 6947 } else 6948 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6949 6950 // Replace the target specific call node with a PATCHPOINT node. 6951 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6952 dl, NodeTys, Ops); 6953 6954 // Update the NodeMap. 6955 if (HasDef) { 6956 if (IsAnyRegCC) 6957 setValue(CS.getInstruction(), SDValue(MN, 0)); 6958 else 6959 setValue(CS.getInstruction(), Result.first); 6960 } 6961 6962 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6963 // call sequence. Furthermore the location of the chain and glue can change 6964 // when the AnyReg calling convention is used and the intrinsic returns a 6965 // value. 6966 if (IsAnyRegCC && HasDef) { 6967 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6968 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6969 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6970 } else 6971 DAG.ReplaceAllUsesWith(Call, MN); 6972 DAG.DeleteNode(Call); 6973 6974 // Inform the Frame Information that we have a patchpoint in this function. 6975 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6976 } 6977 6978 /// Returns an AttributeSet representing the attributes applied to the return 6979 /// value of the given call. 6980 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6981 SmallVector<Attribute::AttrKind, 2> Attrs; 6982 if (CLI.RetSExt) 6983 Attrs.push_back(Attribute::SExt); 6984 if (CLI.RetZExt) 6985 Attrs.push_back(Attribute::ZExt); 6986 if (CLI.IsInReg) 6987 Attrs.push_back(Attribute::InReg); 6988 6989 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6990 Attrs); 6991 } 6992 6993 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6994 /// implementation, which just calls LowerCall. 6995 /// FIXME: When all targets are 6996 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6997 std::pair<SDValue, SDValue> 6998 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6999 // Handle the incoming return values from the call. 7000 CLI.Ins.clear(); 7001 Type *OrigRetTy = CLI.RetTy; 7002 SmallVector<EVT, 4> RetTys; 7003 SmallVector<uint64_t, 4> Offsets; 7004 auto &DL = CLI.DAG.getDataLayout(); 7005 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7006 7007 SmallVector<ISD::OutputArg, 4> Outs; 7008 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7009 7010 bool CanLowerReturn = 7011 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7012 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7013 7014 SDValue DemoteStackSlot; 7015 int DemoteStackIdx = -100; 7016 if (!CanLowerReturn) { 7017 // FIXME: equivalent assert? 7018 // assert(!CS.hasInAllocaArgument() && 7019 // "sret demotion is incompatible with inalloca"); 7020 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7021 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7022 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7023 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7024 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7025 7026 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7027 ArgListEntry Entry; 7028 Entry.Node = DemoteStackSlot; 7029 Entry.Ty = StackSlotPtrType; 7030 Entry.isSExt = false; 7031 Entry.isZExt = false; 7032 Entry.isInReg = false; 7033 Entry.isSRet = true; 7034 Entry.isNest = false; 7035 Entry.isByVal = false; 7036 Entry.isReturned = false; 7037 Entry.Alignment = Align; 7038 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7039 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7040 7041 // sret demotion isn't compatible with tail-calls, since the sret argument 7042 // points into the callers stack frame. 7043 CLI.IsTailCall = false; 7044 } else { 7045 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7046 EVT VT = RetTys[I]; 7047 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7048 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7049 for (unsigned i = 0; i != NumRegs; ++i) { 7050 ISD::InputArg MyFlags; 7051 MyFlags.VT = RegisterVT; 7052 MyFlags.ArgVT = VT; 7053 MyFlags.Used = CLI.IsReturnValueUsed; 7054 if (CLI.RetSExt) 7055 MyFlags.Flags.setSExt(); 7056 if (CLI.RetZExt) 7057 MyFlags.Flags.setZExt(); 7058 if (CLI.IsInReg) 7059 MyFlags.Flags.setInReg(); 7060 CLI.Ins.push_back(MyFlags); 7061 } 7062 } 7063 } 7064 7065 // Handle all of the outgoing arguments. 7066 CLI.Outs.clear(); 7067 CLI.OutVals.clear(); 7068 ArgListTy &Args = CLI.getArgs(); 7069 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7070 SmallVector<EVT, 4> ValueVTs; 7071 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7072 Type *FinalType = Args[i].Ty; 7073 if (Args[i].isByVal) 7074 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7075 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7076 FinalType, CLI.CallConv, CLI.IsVarArg); 7077 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7078 ++Value) { 7079 EVT VT = ValueVTs[Value]; 7080 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7081 SDValue Op = SDValue(Args[i].Node.getNode(), 7082 Args[i].Node.getResNo() + Value); 7083 ISD::ArgFlagsTy Flags; 7084 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7085 7086 if (Args[i].isZExt) 7087 Flags.setZExt(); 7088 if (Args[i].isSExt) 7089 Flags.setSExt(); 7090 if (Args[i].isInReg) 7091 Flags.setInReg(); 7092 if (Args[i].isSRet) 7093 Flags.setSRet(); 7094 if (Args[i].isByVal) 7095 Flags.setByVal(); 7096 if (Args[i].isInAlloca) { 7097 Flags.setInAlloca(); 7098 // Set the byval flag for CCAssignFn callbacks that don't know about 7099 // inalloca. This way we can know how many bytes we should've allocated 7100 // and how many bytes a callee cleanup function will pop. If we port 7101 // inalloca to more targets, we'll have to add custom inalloca handling 7102 // in the various CC lowering callbacks. 7103 Flags.setByVal(); 7104 } 7105 if (Args[i].isByVal || Args[i].isInAlloca) { 7106 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7107 Type *ElementTy = Ty->getElementType(); 7108 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7109 // For ByVal, alignment should come from FE. BE will guess if this 7110 // info is not there but there are cases it cannot get right. 7111 unsigned FrameAlign; 7112 if (Args[i].Alignment) 7113 FrameAlign = Args[i].Alignment; 7114 else 7115 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7116 Flags.setByValAlign(FrameAlign); 7117 } 7118 if (Args[i].isNest) 7119 Flags.setNest(); 7120 if (NeedsRegBlock) 7121 Flags.setInConsecutiveRegs(); 7122 Flags.setOrigAlign(OriginalAlignment); 7123 7124 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7125 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7126 SmallVector<SDValue, 4> Parts(NumParts); 7127 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7128 7129 if (Args[i].isSExt) 7130 ExtendKind = ISD::SIGN_EXTEND; 7131 else if (Args[i].isZExt) 7132 ExtendKind = ISD::ZERO_EXTEND; 7133 7134 // Conservatively only handle 'returned' on non-vectors for now 7135 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7136 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7137 "unexpected use of 'returned'"); 7138 // Before passing 'returned' to the target lowering code, ensure that 7139 // either the register MVT and the actual EVT are the same size or that 7140 // the return value and argument are extended in the same way; in these 7141 // cases it's safe to pass the argument register value unchanged as the 7142 // return register value (although it's at the target's option whether 7143 // to do so) 7144 // TODO: allow code generation to take advantage of partially preserved 7145 // registers rather than clobbering the entire register when the 7146 // parameter extension method is not compatible with the return 7147 // extension method 7148 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7149 (ExtendKind != ISD::ANY_EXTEND && 7150 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7151 Flags.setReturned(); 7152 } 7153 7154 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7155 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7156 7157 for (unsigned j = 0; j != NumParts; ++j) { 7158 // if it isn't first piece, alignment must be 1 7159 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7160 i < CLI.NumFixedArgs, 7161 i, j*Parts[j].getValueType().getStoreSize()); 7162 if (NumParts > 1 && j == 0) 7163 MyFlags.Flags.setSplit(); 7164 else if (j != 0) 7165 MyFlags.Flags.setOrigAlign(1); 7166 7167 CLI.Outs.push_back(MyFlags); 7168 CLI.OutVals.push_back(Parts[j]); 7169 } 7170 7171 if (NeedsRegBlock && Value == NumValues - 1) 7172 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7173 } 7174 } 7175 7176 SmallVector<SDValue, 4> InVals; 7177 CLI.Chain = LowerCall(CLI, InVals); 7178 7179 // Verify that the target's LowerCall behaved as expected. 7180 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7181 "LowerCall didn't return a valid chain!"); 7182 assert((!CLI.IsTailCall || InVals.empty()) && 7183 "LowerCall emitted a return value for a tail call!"); 7184 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7185 "LowerCall didn't emit the correct number of values!"); 7186 7187 // For a tail call, the return value is merely live-out and there aren't 7188 // any nodes in the DAG representing it. Return a special value to 7189 // indicate that a tail call has been emitted and no more Instructions 7190 // should be processed in the current block. 7191 if (CLI.IsTailCall) { 7192 CLI.DAG.setRoot(CLI.Chain); 7193 return std::make_pair(SDValue(), SDValue()); 7194 } 7195 7196 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7197 assert(InVals[i].getNode() && 7198 "LowerCall emitted a null value!"); 7199 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7200 "LowerCall emitted a value with the wrong type!"); 7201 }); 7202 7203 SmallVector<SDValue, 4> ReturnValues; 7204 if (!CanLowerReturn) { 7205 // The instruction result is the result of loading from the 7206 // hidden sret parameter. 7207 SmallVector<EVT, 1> PVTs; 7208 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7209 7210 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7211 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7212 EVT PtrVT = PVTs[0]; 7213 7214 unsigned NumValues = RetTys.size(); 7215 ReturnValues.resize(NumValues); 7216 SmallVector<SDValue, 4> Chains(NumValues); 7217 7218 for (unsigned i = 0; i < NumValues; ++i) { 7219 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7220 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7221 PtrVT)); 7222 SDValue L = CLI.DAG.getLoad( 7223 RetTys[i], CLI.DL, CLI.Chain, Add, 7224 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7225 DemoteStackIdx, Offsets[i]), 7226 false, false, false, 1); 7227 ReturnValues[i] = L; 7228 Chains[i] = L.getValue(1); 7229 } 7230 7231 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7232 } else { 7233 // Collect the legal value parts into potentially illegal values 7234 // that correspond to the original function's return values. 7235 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7236 if (CLI.RetSExt) 7237 AssertOp = ISD::AssertSext; 7238 else if (CLI.RetZExt) 7239 AssertOp = ISD::AssertZext; 7240 unsigned CurReg = 0; 7241 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7242 EVT VT = RetTys[I]; 7243 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7244 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7245 7246 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7247 NumRegs, RegisterVT, VT, nullptr, 7248 AssertOp)); 7249 CurReg += NumRegs; 7250 } 7251 7252 // For a function returning void, there is no return value. We can't create 7253 // such a node, so we just return a null return value in that case. In 7254 // that case, nothing will actually look at the value. 7255 if (ReturnValues.empty()) 7256 return std::make_pair(SDValue(), CLI.Chain); 7257 } 7258 7259 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7260 CLI.DAG.getVTList(RetTys), ReturnValues); 7261 return std::make_pair(Res, CLI.Chain); 7262 } 7263 7264 void TargetLowering::LowerOperationWrapper(SDNode *N, 7265 SmallVectorImpl<SDValue> &Results, 7266 SelectionDAG &DAG) const { 7267 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7268 if (Res.getNode()) 7269 Results.push_back(Res); 7270 } 7271 7272 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7273 llvm_unreachable("LowerOperation not implemented for this target!"); 7274 } 7275 7276 void 7277 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7278 SDValue Op = getNonRegisterValue(V); 7279 assert((Op.getOpcode() != ISD::CopyFromReg || 7280 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7281 "Copy from a reg to the same reg!"); 7282 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7283 7284 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7285 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7286 V->getType()); 7287 SDValue Chain = DAG.getEntryNode(); 7288 7289 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7290 FuncInfo.PreferredExtendType.end()) 7291 ? ISD::ANY_EXTEND 7292 : FuncInfo.PreferredExtendType[V]; 7293 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7294 PendingExports.push_back(Chain); 7295 } 7296 7297 #include "llvm/CodeGen/SelectionDAGISel.h" 7298 7299 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7300 /// entry block, return true. This includes arguments used by switches, since 7301 /// the switch may expand into multiple basic blocks. 7302 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7303 // With FastISel active, we may be splitting blocks, so force creation 7304 // of virtual registers for all non-dead arguments. 7305 if (FastISel) 7306 return A->use_empty(); 7307 7308 const BasicBlock &Entry = A->getParent()->front(); 7309 for (const User *U : A->users()) 7310 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7311 return false; // Use not in entry block. 7312 7313 return true; 7314 } 7315 7316 void SelectionDAGISel::LowerArguments(const Function &F) { 7317 SelectionDAG &DAG = SDB->DAG; 7318 SDLoc dl = SDB->getCurSDLoc(); 7319 const DataLayout &DL = DAG.getDataLayout(); 7320 SmallVector<ISD::InputArg, 16> Ins; 7321 7322 if (!FuncInfo->CanLowerReturn) { 7323 // Put in an sret pointer parameter before all the other parameters. 7324 SmallVector<EVT, 1> ValueVTs; 7325 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7326 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7327 7328 // NOTE: Assuming that a pointer will never break down to more than one VT 7329 // or one register. 7330 ISD::ArgFlagsTy Flags; 7331 Flags.setSRet(); 7332 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7333 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7334 ISD::InputArg::NoArgIndex, 0); 7335 Ins.push_back(RetArg); 7336 } 7337 7338 // Set up the incoming argument description vector. 7339 unsigned Idx = 1; 7340 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7341 I != E; ++I, ++Idx) { 7342 SmallVector<EVT, 4> ValueVTs; 7343 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7344 bool isArgValueUsed = !I->use_empty(); 7345 unsigned PartBase = 0; 7346 Type *FinalType = I->getType(); 7347 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7348 FinalType = cast<PointerType>(FinalType)->getElementType(); 7349 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7350 FinalType, F.getCallingConv(), F.isVarArg()); 7351 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7352 Value != NumValues; ++Value) { 7353 EVT VT = ValueVTs[Value]; 7354 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7355 ISD::ArgFlagsTy Flags; 7356 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7357 7358 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7359 Flags.setZExt(); 7360 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7361 Flags.setSExt(); 7362 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7363 Flags.setInReg(); 7364 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7365 Flags.setSRet(); 7366 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7367 Flags.setByVal(); 7368 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7369 Flags.setInAlloca(); 7370 // Set the byval flag for CCAssignFn callbacks that don't know about 7371 // inalloca. This way we can know how many bytes we should've allocated 7372 // and how many bytes a callee cleanup function will pop. If we port 7373 // inalloca to more targets, we'll have to add custom inalloca handling 7374 // in the various CC lowering callbacks. 7375 Flags.setByVal(); 7376 } 7377 if (Flags.isByVal() || Flags.isInAlloca()) { 7378 PointerType *Ty = cast<PointerType>(I->getType()); 7379 Type *ElementTy = Ty->getElementType(); 7380 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7381 // For ByVal, alignment should be passed from FE. BE will guess if 7382 // this info is not there but there are cases it cannot get right. 7383 unsigned FrameAlign; 7384 if (F.getParamAlignment(Idx)) 7385 FrameAlign = F.getParamAlignment(Idx); 7386 else 7387 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7388 Flags.setByValAlign(FrameAlign); 7389 } 7390 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7391 Flags.setNest(); 7392 if (NeedsRegBlock) 7393 Flags.setInConsecutiveRegs(); 7394 Flags.setOrigAlign(OriginalAlignment); 7395 7396 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7397 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7398 for (unsigned i = 0; i != NumRegs; ++i) { 7399 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7400 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7401 if (NumRegs > 1 && i == 0) 7402 MyFlags.Flags.setSplit(); 7403 // if it isn't first piece, alignment must be 1 7404 else if (i > 0) 7405 MyFlags.Flags.setOrigAlign(1); 7406 Ins.push_back(MyFlags); 7407 } 7408 if (NeedsRegBlock && Value == NumValues - 1) 7409 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7410 PartBase += VT.getStoreSize(); 7411 } 7412 } 7413 7414 // Call the target to set up the argument values. 7415 SmallVector<SDValue, 8> InVals; 7416 SDValue NewRoot = TLI->LowerFormalArguments( 7417 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7418 7419 // Verify that the target's LowerFormalArguments behaved as expected. 7420 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7421 "LowerFormalArguments didn't return a valid chain!"); 7422 assert(InVals.size() == Ins.size() && 7423 "LowerFormalArguments didn't emit the correct number of values!"); 7424 DEBUG({ 7425 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7426 assert(InVals[i].getNode() && 7427 "LowerFormalArguments emitted a null value!"); 7428 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7429 "LowerFormalArguments emitted a value with the wrong type!"); 7430 } 7431 }); 7432 7433 // Update the DAG with the new chain value resulting from argument lowering. 7434 DAG.setRoot(NewRoot); 7435 7436 // Set up the argument values. 7437 unsigned i = 0; 7438 Idx = 1; 7439 if (!FuncInfo->CanLowerReturn) { 7440 // Create a virtual register for the sret pointer, and put in a copy 7441 // from the sret argument into it. 7442 SmallVector<EVT, 1> ValueVTs; 7443 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7444 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7445 MVT VT = ValueVTs[0].getSimpleVT(); 7446 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7447 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7448 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7449 RegVT, VT, nullptr, AssertOp); 7450 7451 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7452 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7453 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7454 FuncInfo->DemoteRegister = SRetReg; 7455 NewRoot = 7456 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7457 DAG.setRoot(NewRoot); 7458 7459 // i indexes lowered arguments. Bump it past the hidden sret argument. 7460 // Idx indexes LLVM arguments. Don't touch it. 7461 ++i; 7462 } 7463 7464 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7465 ++I, ++Idx) { 7466 SmallVector<SDValue, 4> ArgValues; 7467 SmallVector<EVT, 4> ValueVTs; 7468 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7469 unsigned NumValues = ValueVTs.size(); 7470 7471 // If this argument is unused then remember its value. It is used to generate 7472 // debugging information. 7473 if (I->use_empty() && NumValues) { 7474 SDB->setUnusedArgValue(&*I, InVals[i]); 7475 7476 // Also remember any frame index for use in FastISel. 7477 if (FrameIndexSDNode *FI = 7478 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7479 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7480 } 7481 7482 for (unsigned Val = 0; Val != NumValues; ++Val) { 7483 EVT VT = ValueVTs[Val]; 7484 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7485 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7486 7487 if (!I->use_empty()) { 7488 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7489 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7490 AssertOp = ISD::AssertSext; 7491 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7492 AssertOp = ISD::AssertZext; 7493 7494 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7495 NumParts, PartVT, VT, 7496 nullptr, AssertOp)); 7497 } 7498 7499 i += NumParts; 7500 } 7501 7502 // We don't need to do anything else for unused arguments. 7503 if (ArgValues.empty()) 7504 continue; 7505 7506 // Note down frame index. 7507 if (FrameIndexSDNode *FI = 7508 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7509 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7510 7511 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7512 SDB->getCurSDLoc()); 7513 7514 SDB->setValue(&*I, Res); 7515 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7516 if (LoadSDNode *LNode = 7517 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7518 if (FrameIndexSDNode *FI = 7519 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7520 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7521 } 7522 7523 // If this argument is live outside of the entry block, insert a copy from 7524 // wherever we got it to the vreg that other BB's will reference it as. 7525 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7526 // If we can, though, try to skip creating an unnecessary vreg. 7527 // FIXME: This isn't very clean... it would be nice to make this more 7528 // general. It's also subtly incompatible with the hacks FastISel 7529 // uses with vregs. 7530 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7531 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7532 FuncInfo->ValueMap[&*I] = Reg; 7533 continue; 7534 } 7535 } 7536 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7537 FuncInfo->InitializeRegForValue(&*I); 7538 SDB->CopyToExportRegsIfNeeded(&*I); 7539 } 7540 } 7541 7542 assert(i == InVals.size() && "Argument register count mismatch!"); 7543 7544 // Finally, if the target has anything special to do, allow it to do so. 7545 EmitFunctionEntryCode(); 7546 } 7547 7548 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7549 /// ensure constants are generated when needed. Remember the virtual registers 7550 /// that need to be added to the Machine PHI nodes as input. We cannot just 7551 /// directly add them, because expansion might result in multiple MBB's for one 7552 /// BB. As such, the start of the BB might correspond to a different MBB than 7553 /// the end. 7554 /// 7555 void 7556 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7557 const TerminatorInst *TI = LLVMBB->getTerminator(); 7558 7559 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7560 7561 // Check PHI nodes in successors that expect a value to be available from this 7562 // block. 7563 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7564 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7565 if (!isa<PHINode>(SuccBB->begin())) continue; 7566 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7567 7568 // If this terminator has multiple identical successors (common for 7569 // switches), only handle each succ once. 7570 if (!SuccsHandled.insert(SuccMBB).second) 7571 continue; 7572 7573 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7574 7575 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7576 // nodes and Machine PHI nodes, but the incoming operands have not been 7577 // emitted yet. 7578 for (BasicBlock::const_iterator I = SuccBB->begin(); 7579 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7580 // Ignore dead phi's. 7581 if (PN->use_empty()) continue; 7582 7583 // Skip empty types 7584 if (PN->getType()->isEmptyTy()) 7585 continue; 7586 7587 unsigned Reg; 7588 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7589 7590 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7591 unsigned &RegOut = ConstantsOut[C]; 7592 if (RegOut == 0) { 7593 RegOut = FuncInfo.CreateRegs(C->getType()); 7594 CopyValueToVirtualRegister(C, RegOut); 7595 } 7596 Reg = RegOut; 7597 } else { 7598 DenseMap<const Value *, unsigned>::iterator I = 7599 FuncInfo.ValueMap.find(PHIOp); 7600 if (I != FuncInfo.ValueMap.end()) 7601 Reg = I->second; 7602 else { 7603 assert(isa<AllocaInst>(PHIOp) && 7604 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7605 "Didn't codegen value into a register!??"); 7606 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7607 CopyValueToVirtualRegister(PHIOp, Reg); 7608 } 7609 } 7610 7611 // Remember that this register needs to added to the machine PHI node as 7612 // the input for this MBB. 7613 SmallVector<EVT, 4> ValueVTs; 7614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7615 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7616 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7617 EVT VT = ValueVTs[vti]; 7618 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7619 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7620 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7621 Reg += NumRegisters; 7622 } 7623 } 7624 } 7625 7626 ConstantsOut.clear(); 7627 } 7628 7629 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7630 /// is 0. 7631 MachineBasicBlock * 7632 SelectionDAGBuilder::StackProtectorDescriptor:: 7633 AddSuccessorMBB(const BasicBlock *BB, 7634 MachineBasicBlock *ParentMBB, 7635 bool IsLikely, 7636 MachineBasicBlock *SuccMBB) { 7637 // If SuccBB has not been created yet, create it. 7638 if (!SuccMBB) { 7639 MachineFunction *MF = ParentMBB->getParent(); 7640 MachineFunction::iterator BBI(ParentMBB); 7641 SuccMBB = MF->CreateMachineBasicBlock(BB); 7642 MF->insert(++BBI, SuccMBB); 7643 } 7644 // Add it as a successor of ParentMBB. 7645 ParentMBB->addSuccessor( 7646 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7647 return SuccMBB; 7648 } 7649 7650 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7651 MachineFunction::iterator I(MBB); 7652 if (++I == FuncInfo.MF->end()) 7653 return nullptr; 7654 return &*I; 7655 } 7656 7657 /// During lowering new call nodes can be created (such as memset, etc.). 7658 /// Those will become new roots of the current DAG, but complications arise 7659 /// when they are tail calls. In such cases, the call lowering will update 7660 /// the root, but the builder still needs to know that a tail call has been 7661 /// lowered in order to avoid generating an additional return. 7662 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7663 // If the node is null, we do have a tail call. 7664 if (MaybeTC.getNode() != nullptr) 7665 DAG.setRoot(MaybeTC); 7666 else 7667 HasTailCall = true; 7668 } 7669 7670 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7671 unsigned *TotalCases, unsigned First, 7672 unsigned Last) { 7673 assert(Last >= First); 7674 assert(TotalCases[Last] >= TotalCases[First]); 7675 7676 APInt LowCase = Clusters[First].Low->getValue(); 7677 APInt HighCase = Clusters[Last].High->getValue(); 7678 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7679 7680 // FIXME: A range of consecutive cases has 100% density, but only requires one 7681 // comparison to lower. We should discriminate against such consecutive ranges 7682 // in jump tables. 7683 7684 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7685 uint64_t Range = Diff + 1; 7686 7687 uint64_t NumCases = 7688 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7689 7690 assert(NumCases < UINT64_MAX / 100); 7691 assert(Range >= NumCases); 7692 7693 return NumCases * 100 >= Range * MinJumpTableDensity; 7694 } 7695 7696 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7697 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7698 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7699 } 7700 7701 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7702 unsigned First, unsigned Last, 7703 const SwitchInst *SI, 7704 MachineBasicBlock *DefaultMBB, 7705 CaseCluster &JTCluster) { 7706 assert(First <= Last); 7707 7708 uint32_t Weight = 0; 7709 unsigned NumCmps = 0; 7710 std::vector<MachineBasicBlock*> Table; 7711 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7712 for (unsigned I = First; I <= Last; ++I) { 7713 assert(Clusters[I].Kind == CC_Range); 7714 Weight += Clusters[I].Weight; 7715 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7716 APInt Low = Clusters[I].Low->getValue(); 7717 APInt High = Clusters[I].High->getValue(); 7718 NumCmps += (Low == High) ? 1 : 2; 7719 if (I != First) { 7720 // Fill the gap between this and the previous cluster. 7721 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7722 assert(PreviousHigh.slt(Low)); 7723 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7724 for (uint64_t J = 0; J < Gap; J++) 7725 Table.push_back(DefaultMBB); 7726 } 7727 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7728 for (uint64_t J = 0; J < ClusterSize; ++J) 7729 Table.push_back(Clusters[I].MBB); 7730 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7731 } 7732 7733 unsigned NumDests = JTWeights.size(); 7734 if (isSuitableForBitTests(NumDests, NumCmps, 7735 Clusters[First].Low->getValue(), 7736 Clusters[Last].High->getValue())) { 7737 // Clusters[First..Last] should be lowered as bit tests instead. 7738 return false; 7739 } 7740 7741 // Create the MBB that will load from and jump through the table. 7742 // Note: We create it here, but it's not inserted into the function yet. 7743 MachineFunction *CurMF = FuncInfo.MF; 7744 MachineBasicBlock *JumpTableMBB = 7745 CurMF->CreateMachineBasicBlock(SI->getParent()); 7746 7747 // Add successors. Note: use table order for determinism. 7748 SmallPtrSet<MachineBasicBlock *, 8> Done; 7749 for (MachineBasicBlock *Succ : Table) { 7750 if (Done.count(Succ)) 7751 continue; 7752 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7753 Done.insert(Succ); 7754 } 7755 7756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7757 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7758 ->createJumpTableIndex(Table); 7759 7760 // Set up the jump table info. 7761 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7762 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7763 Clusters[Last].High->getValue(), SI->getCondition(), 7764 nullptr, false); 7765 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7766 7767 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7768 JTCases.size() - 1, Weight); 7769 return true; 7770 } 7771 7772 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7773 const SwitchInst *SI, 7774 MachineBasicBlock *DefaultMBB) { 7775 #ifndef NDEBUG 7776 // Clusters must be non-empty, sorted, and only contain Range clusters. 7777 assert(!Clusters.empty()); 7778 for (CaseCluster &C : Clusters) 7779 assert(C.Kind == CC_Range); 7780 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7781 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7782 #endif 7783 7784 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7785 if (!areJTsAllowed(TLI)) 7786 return; 7787 7788 const int64_t N = Clusters.size(); 7789 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7790 7791 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7792 SmallVector<unsigned, 8> TotalCases(N); 7793 7794 for (unsigned i = 0; i < N; ++i) { 7795 APInt Hi = Clusters[i].High->getValue(); 7796 APInt Lo = Clusters[i].Low->getValue(); 7797 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7798 if (i != 0) 7799 TotalCases[i] += TotalCases[i - 1]; 7800 } 7801 7802 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7803 // Cheap case: the whole range might be suitable for jump table. 7804 CaseCluster JTCluster; 7805 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7806 Clusters[0] = JTCluster; 7807 Clusters.resize(1); 7808 return; 7809 } 7810 } 7811 7812 // The algorithm below is not suitable for -O0. 7813 if (TM.getOptLevel() == CodeGenOpt::None) 7814 return; 7815 7816 // Split Clusters into minimum number of dense partitions. The algorithm uses 7817 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7818 // for the Case Statement'" (1994), but builds the MinPartitions array in 7819 // reverse order to make it easier to reconstruct the partitions in ascending 7820 // order. In the choice between two optimal partitionings, it picks the one 7821 // which yields more jump tables. 7822 7823 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7824 SmallVector<unsigned, 8> MinPartitions(N); 7825 // LastElement[i] is the last element of the partition starting at i. 7826 SmallVector<unsigned, 8> LastElement(N); 7827 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7828 SmallVector<unsigned, 8> NumTables(N); 7829 7830 // Base case: There is only one way to partition Clusters[N-1]. 7831 MinPartitions[N - 1] = 1; 7832 LastElement[N - 1] = N - 1; 7833 assert(MinJumpTableSize > 1); 7834 NumTables[N - 1] = 0; 7835 7836 // Note: loop indexes are signed to avoid underflow. 7837 for (int64_t i = N - 2; i >= 0; i--) { 7838 // Find optimal partitioning of Clusters[i..N-1]. 7839 // Baseline: Put Clusters[i] into a partition on its own. 7840 MinPartitions[i] = MinPartitions[i + 1] + 1; 7841 LastElement[i] = i; 7842 NumTables[i] = NumTables[i + 1]; 7843 7844 // Search for a solution that results in fewer partitions. 7845 for (int64_t j = N - 1; j > i; j--) { 7846 // Try building a partition from Clusters[i..j]. 7847 if (isDense(Clusters, &TotalCases[0], i, j)) { 7848 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7849 bool IsTable = j - i + 1 >= MinJumpTableSize; 7850 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7851 7852 // If this j leads to fewer partitions, or same number of partitions 7853 // with more lookup tables, it is a better partitioning. 7854 if (NumPartitions < MinPartitions[i] || 7855 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7856 MinPartitions[i] = NumPartitions; 7857 LastElement[i] = j; 7858 NumTables[i] = Tables; 7859 } 7860 } 7861 } 7862 } 7863 7864 // Iterate over the partitions, replacing some with jump tables in-place. 7865 unsigned DstIndex = 0; 7866 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7867 Last = LastElement[First]; 7868 assert(Last >= First); 7869 assert(DstIndex <= First); 7870 unsigned NumClusters = Last - First + 1; 7871 7872 CaseCluster JTCluster; 7873 if (NumClusters >= MinJumpTableSize && 7874 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7875 Clusters[DstIndex++] = JTCluster; 7876 } else { 7877 for (unsigned I = First; I <= Last; ++I) 7878 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7879 } 7880 } 7881 Clusters.resize(DstIndex); 7882 } 7883 7884 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7885 // FIXME: Using the pointer type doesn't seem ideal. 7886 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7887 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7888 return Range <= BW; 7889 } 7890 7891 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7892 unsigned NumCmps, 7893 const APInt &Low, 7894 const APInt &High) { 7895 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7896 // range of cases both require only one branch to lower. Just looking at the 7897 // number of clusters and destinations should be enough to decide whether to 7898 // build bit tests. 7899 7900 // To lower a range with bit tests, the range must fit the bitwidth of a 7901 // machine word. 7902 if (!rangeFitsInWord(Low, High)) 7903 return false; 7904 7905 // Decide whether it's profitable to lower this range with bit tests. Each 7906 // destination requires a bit test and branch, and there is an overall range 7907 // check branch. For a small number of clusters, separate comparisons might be 7908 // cheaper, and for many destinations, splitting the range might be better. 7909 return (NumDests == 1 && NumCmps >= 3) || 7910 (NumDests == 2 && NumCmps >= 5) || 7911 (NumDests == 3 && NumCmps >= 6); 7912 } 7913 7914 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7915 unsigned First, unsigned Last, 7916 const SwitchInst *SI, 7917 CaseCluster &BTCluster) { 7918 assert(First <= Last); 7919 if (First == Last) 7920 return false; 7921 7922 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7923 unsigned NumCmps = 0; 7924 for (int64_t I = First; I <= Last; ++I) { 7925 assert(Clusters[I].Kind == CC_Range); 7926 Dests.set(Clusters[I].MBB->getNumber()); 7927 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7928 } 7929 unsigned NumDests = Dests.count(); 7930 7931 APInt Low = Clusters[First].Low->getValue(); 7932 APInt High = Clusters[Last].High->getValue(); 7933 assert(Low.slt(High)); 7934 7935 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7936 return false; 7937 7938 APInt LowBound; 7939 APInt CmpRange; 7940 7941 const int BitWidth = DAG.getTargetLoweringInfo() 7942 .getPointerTy(DAG.getDataLayout()) 7943 .getSizeInBits(); 7944 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7945 7946 // Check if the clusters cover a contiguous range such that no value in the 7947 // range will jump to the default statement. 7948 bool ContiguousRange = true; 7949 for (int64_t I = First + 1; I <= Last; ++I) { 7950 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7951 ContiguousRange = false; 7952 break; 7953 } 7954 } 7955 7956 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7957 // Optimize the case where all the case values fit in a word without having 7958 // to subtract minValue. In this case, we can optimize away the subtraction. 7959 LowBound = APInt::getNullValue(Low.getBitWidth()); 7960 CmpRange = High; 7961 ContiguousRange = false; 7962 } else { 7963 LowBound = Low; 7964 CmpRange = High - Low; 7965 } 7966 7967 CaseBitsVector CBV; 7968 uint32_t TotalWeight = 0; 7969 for (unsigned i = First; i <= Last; ++i) { 7970 // Find the CaseBits for this destination. 7971 unsigned j; 7972 for (j = 0; j < CBV.size(); ++j) 7973 if (CBV[j].BB == Clusters[i].MBB) 7974 break; 7975 if (j == CBV.size()) 7976 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7977 CaseBits *CB = &CBV[j]; 7978 7979 // Update Mask, Bits and ExtraWeight. 7980 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7981 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7982 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7983 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7984 CB->Bits += Hi - Lo + 1; 7985 CB->ExtraWeight += Clusters[i].Weight; 7986 TotalWeight += Clusters[i].Weight; 7987 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7988 } 7989 7990 BitTestInfo BTI; 7991 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7992 // Sort by weight first, number of bits second. 7993 if (a.ExtraWeight != b.ExtraWeight) 7994 return a.ExtraWeight > b.ExtraWeight; 7995 return a.Bits > b.Bits; 7996 }); 7997 7998 for (auto &CB : CBV) { 7999 MachineBasicBlock *BitTestBB = 8000 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8001 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 8002 } 8003 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8004 SI->getCondition(), -1U, MVT::Other, false, 8005 ContiguousRange, nullptr, nullptr, std::move(BTI), 8006 TotalWeight); 8007 8008 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8009 BitTestCases.size() - 1, TotalWeight); 8010 return true; 8011 } 8012 8013 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8014 const SwitchInst *SI) { 8015 // Partition Clusters into as few subsets as possible, where each subset has a 8016 // range that fits in a machine word and has <= 3 unique destinations. 8017 8018 #ifndef NDEBUG 8019 // Clusters must be sorted and contain Range or JumpTable clusters. 8020 assert(!Clusters.empty()); 8021 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8022 for (const CaseCluster &C : Clusters) 8023 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8024 for (unsigned i = 1; i < Clusters.size(); ++i) 8025 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8026 #endif 8027 8028 // The algorithm below is not suitable for -O0. 8029 if (TM.getOptLevel() == CodeGenOpt::None) 8030 return; 8031 8032 // If target does not have legal shift left, do not emit bit tests at all. 8033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8034 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8035 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8036 return; 8037 8038 int BitWidth = PTy.getSizeInBits(); 8039 const int64_t N = Clusters.size(); 8040 8041 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8042 SmallVector<unsigned, 8> MinPartitions(N); 8043 // LastElement[i] is the last element of the partition starting at i. 8044 SmallVector<unsigned, 8> LastElement(N); 8045 8046 // FIXME: This might not be the best algorithm for finding bit test clusters. 8047 8048 // Base case: There is only one way to partition Clusters[N-1]. 8049 MinPartitions[N - 1] = 1; 8050 LastElement[N - 1] = N - 1; 8051 8052 // Note: loop indexes are signed to avoid underflow. 8053 for (int64_t i = N - 2; i >= 0; --i) { 8054 // Find optimal partitioning of Clusters[i..N-1]. 8055 // Baseline: Put Clusters[i] into a partition on its own. 8056 MinPartitions[i] = MinPartitions[i + 1] + 1; 8057 LastElement[i] = i; 8058 8059 // Search for a solution that results in fewer partitions. 8060 // Note: the search is limited by BitWidth, reducing time complexity. 8061 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8062 // Try building a partition from Clusters[i..j]. 8063 8064 // Check the range. 8065 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8066 Clusters[j].High->getValue())) 8067 continue; 8068 8069 // Check nbr of destinations and cluster types. 8070 // FIXME: This works, but doesn't seem very efficient. 8071 bool RangesOnly = true; 8072 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8073 for (int64_t k = i; k <= j; k++) { 8074 if (Clusters[k].Kind != CC_Range) { 8075 RangesOnly = false; 8076 break; 8077 } 8078 Dests.set(Clusters[k].MBB->getNumber()); 8079 } 8080 if (!RangesOnly || Dests.count() > 3) 8081 break; 8082 8083 // Check if it's a better partition. 8084 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8085 if (NumPartitions < MinPartitions[i]) { 8086 // Found a better partition. 8087 MinPartitions[i] = NumPartitions; 8088 LastElement[i] = j; 8089 } 8090 } 8091 } 8092 8093 // Iterate over the partitions, replacing with bit-test clusters in-place. 8094 unsigned DstIndex = 0; 8095 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8096 Last = LastElement[First]; 8097 assert(First <= Last); 8098 assert(DstIndex <= First); 8099 8100 CaseCluster BitTestCluster; 8101 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8102 Clusters[DstIndex++] = BitTestCluster; 8103 } else { 8104 size_t NumClusters = Last - First + 1; 8105 std::memmove(&Clusters[DstIndex], &Clusters[First], 8106 sizeof(Clusters[0]) * NumClusters); 8107 DstIndex += NumClusters; 8108 } 8109 } 8110 Clusters.resize(DstIndex); 8111 } 8112 8113 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8114 MachineBasicBlock *SwitchMBB, 8115 MachineBasicBlock *DefaultMBB) { 8116 MachineFunction *CurMF = FuncInfo.MF; 8117 MachineBasicBlock *NextMBB = nullptr; 8118 MachineFunction::iterator BBI(W.MBB); 8119 if (++BBI != FuncInfo.MF->end()) 8120 NextMBB = &*BBI; 8121 8122 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8123 8124 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8125 8126 if (Size == 2 && W.MBB == SwitchMBB) { 8127 // If any two of the cases has the same destination, and if one value 8128 // is the same as the other, but has one bit unset that the other has set, 8129 // use bit manipulation to do two compares at once. For example: 8130 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8131 // TODO: This could be extended to merge any 2 cases in switches with 3 8132 // cases. 8133 // TODO: Handle cases where W.CaseBB != SwitchBB. 8134 CaseCluster &Small = *W.FirstCluster; 8135 CaseCluster &Big = *W.LastCluster; 8136 8137 if (Small.Low == Small.High && Big.Low == Big.High && 8138 Small.MBB == Big.MBB) { 8139 const APInt &SmallValue = Small.Low->getValue(); 8140 const APInt &BigValue = Big.Low->getValue(); 8141 8142 // Check that there is only one bit different. 8143 APInt CommonBit = BigValue ^ SmallValue; 8144 if (CommonBit.isPowerOf2()) { 8145 SDValue CondLHS = getValue(Cond); 8146 EVT VT = CondLHS.getValueType(); 8147 SDLoc DL = getCurSDLoc(); 8148 8149 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8150 DAG.getConstant(CommonBit, DL, VT)); 8151 SDValue Cond = DAG.getSetCC( 8152 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8153 ISD::SETEQ); 8154 8155 // Update successor info. 8156 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8157 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8158 addSuccessorWithWeight( 8159 SwitchMBB, DefaultMBB, 8160 // The default destination is the first successor in IR. 8161 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8162 : 0); 8163 8164 // Insert the true branch. 8165 SDValue BrCond = 8166 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8167 DAG.getBasicBlock(Small.MBB)); 8168 // Insert the false branch. 8169 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8170 DAG.getBasicBlock(DefaultMBB)); 8171 8172 DAG.setRoot(BrCond); 8173 return; 8174 } 8175 } 8176 } 8177 8178 if (TM.getOptLevel() != CodeGenOpt::None) { 8179 // Order cases by weight so the most likely case will be checked first. 8180 std::sort(W.FirstCluster, W.LastCluster + 1, 8181 [](const CaseCluster &a, const CaseCluster &b) { 8182 return a.Weight > b.Weight; 8183 }); 8184 8185 // Rearrange the case blocks so that the last one falls through if possible 8186 // without without changing the order of weights. 8187 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8188 --I; 8189 if (I->Weight > W.LastCluster->Weight) 8190 break; 8191 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8192 std::swap(*I, *W.LastCluster); 8193 break; 8194 } 8195 } 8196 } 8197 8198 // Compute total weight. 8199 uint32_t DefaultWeight = W.DefaultWeight; 8200 uint32_t UnhandledWeights = DefaultWeight; 8201 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8202 UnhandledWeights += I->Weight; 8203 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8204 } 8205 8206 MachineBasicBlock *CurMBB = W.MBB; 8207 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8208 MachineBasicBlock *Fallthrough; 8209 if (I == W.LastCluster) { 8210 // For the last cluster, fall through to the default destination. 8211 Fallthrough = DefaultMBB; 8212 } else { 8213 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8214 CurMF->insert(BBI, Fallthrough); 8215 // Put Cond in a virtual register to make it available from the new blocks. 8216 ExportFromCurrentBlock(Cond); 8217 } 8218 UnhandledWeights -= I->Weight; 8219 8220 switch (I->Kind) { 8221 case CC_JumpTable: { 8222 // FIXME: Optimize away range check based on pivot comparisons. 8223 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8224 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8225 8226 // The jump block hasn't been inserted yet; insert it here. 8227 MachineBasicBlock *JumpMBB = JT->MBB; 8228 CurMF->insert(BBI, JumpMBB); 8229 8230 uint32_t JumpWeight = I->Weight; 8231 uint32_t FallthroughWeight = UnhandledWeights; 8232 8233 // If the default statement is a target of the jump table, we evenly 8234 // distribute the default weight to successors of CurMBB. Also update 8235 // the weight on the edge from JumpMBB to Fallthrough. 8236 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8237 SE = JumpMBB->succ_end(); 8238 SI != SE; ++SI) { 8239 if (*SI == DefaultMBB) { 8240 JumpWeight += DefaultWeight / 2; 8241 FallthroughWeight -= DefaultWeight / 2; 8242 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8243 break; 8244 } 8245 } 8246 8247 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8248 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8249 8250 // The jump table header will be inserted in our current block, do the 8251 // range check, and fall through to our fallthrough block. 8252 JTH->HeaderBB = CurMBB; 8253 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8254 8255 // If we're in the right place, emit the jump table header right now. 8256 if (CurMBB == SwitchMBB) { 8257 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8258 JTH->Emitted = true; 8259 } 8260 break; 8261 } 8262 case CC_BitTests: { 8263 // FIXME: Optimize away range check based on pivot comparisons. 8264 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8265 8266 // The bit test blocks haven't been inserted yet; insert them here. 8267 for (BitTestCase &BTC : BTB->Cases) 8268 CurMF->insert(BBI, BTC.ThisBB); 8269 8270 // Fill in fields of the BitTestBlock. 8271 BTB->Parent = CurMBB; 8272 BTB->Default = Fallthrough; 8273 8274 BTB->DefaultWeight = UnhandledWeights; 8275 // If the cases in bit test don't form a contiguous range, we evenly 8276 // distribute the weight on the edge to Fallthrough to two successors 8277 // of CurMBB. 8278 if (!BTB->ContiguousRange) { 8279 BTB->Weight += DefaultWeight / 2; 8280 BTB->DefaultWeight -= DefaultWeight / 2; 8281 } 8282 8283 // If we're in the right place, emit the bit test header right now. 8284 if (CurMBB == SwitchMBB) { 8285 visitBitTestHeader(*BTB, SwitchMBB); 8286 BTB->Emitted = true; 8287 } 8288 break; 8289 } 8290 case CC_Range: { 8291 const Value *RHS, *LHS, *MHS; 8292 ISD::CondCode CC; 8293 if (I->Low == I->High) { 8294 // Check Cond == I->Low. 8295 CC = ISD::SETEQ; 8296 LHS = Cond; 8297 RHS=I->Low; 8298 MHS = nullptr; 8299 } else { 8300 // Check I->Low <= Cond <= I->High. 8301 CC = ISD::SETLE; 8302 LHS = I->Low; 8303 MHS = Cond; 8304 RHS = I->High; 8305 } 8306 8307 // The false weight is the sum of all unhandled cases. 8308 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8309 UnhandledWeights); 8310 8311 if (CurMBB == SwitchMBB) 8312 visitSwitchCase(CB, SwitchMBB); 8313 else 8314 SwitchCases.push_back(CB); 8315 8316 break; 8317 } 8318 } 8319 CurMBB = Fallthrough; 8320 } 8321 } 8322 8323 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8324 CaseClusterIt First, 8325 CaseClusterIt Last) { 8326 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8327 if (X.Weight != CC.Weight) 8328 return X.Weight > CC.Weight; 8329 8330 // Ties are broken by comparing the case value. 8331 return X.Low->getValue().slt(CC.Low->getValue()); 8332 }); 8333 } 8334 8335 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8336 const SwitchWorkListItem &W, 8337 Value *Cond, 8338 MachineBasicBlock *SwitchMBB) { 8339 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8340 "Clusters not sorted?"); 8341 8342 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8343 8344 // Balance the tree based on branch weights to create a near-optimal (in terms 8345 // of search time given key frequency) binary search tree. See e.g. Kurt 8346 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8347 CaseClusterIt LastLeft = W.FirstCluster; 8348 CaseClusterIt FirstRight = W.LastCluster; 8349 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8350 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8351 8352 // Move LastLeft and FirstRight towards each other from opposite directions to 8353 // find a partitioning of the clusters which balances the weight on both 8354 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8355 // taken to ensure 0-weight nodes are distributed evenly. 8356 unsigned I = 0; 8357 while (LastLeft + 1 < FirstRight) { 8358 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8359 LeftWeight += (++LastLeft)->Weight; 8360 else 8361 RightWeight += (--FirstRight)->Weight; 8362 I++; 8363 } 8364 8365 for (;;) { 8366 // Our binary search tree differs from a typical BST in that ours can have up 8367 // to three values in each leaf. The pivot selection above doesn't take that 8368 // into account, which means the tree might require more nodes and be less 8369 // efficient. We compensate for this here. 8370 8371 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8372 unsigned NumRight = W.LastCluster - FirstRight + 1; 8373 8374 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8375 // If one side has less than 3 clusters, and the other has more than 3, 8376 // consider taking a cluster from the other side. 8377 8378 if (NumLeft < NumRight) { 8379 // Consider moving the first cluster on the right to the left side. 8380 CaseCluster &CC = *FirstRight; 8381 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8382 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8383 if (LeftSideRank <= RightSideRank) { 8384 // Moving the cluster to the left does not demote it. 8385 ++LastLeft; 8386 ++FirstRight; 8387 continue; 8388 } 8389 } else { 8390 assert(NumRight < NumLeft); 8391 // Consider moving the last element on the left to the right side. 8392 CaseCluster &CC = *LastLeft; 8393 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8394 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8395 if (RightSideRank <= LeftSideRank) { 8396 // Moving the cluster to the right does not demot it. 8397 --LastLeft; 8398 --FirstRight; 8399 continue; 8400 } 8401 } 8402 } 8403 break; 8404 } 8405 8406 assert(LastLeft + 1 == FirstRight); 8407 assert(LastLeft >= W.FirstCluster); 8408 assert(FirstRight <= W.LastCluster); 8409 8410 // Use the first element on the right as pivot since we will make less-than 8411 // comparisons against it. 8412 CaseClusterIt PivotCluster = FirstRight; 8413 assert(PivotCluster > W.FirstCluster); 8414 assert(PivotCluster <= W.LastCluster); 8415 8416 CaseClusterIt FirstLeft = W.FirstCluster; 8417 CaseClusterIt LastRight = W.LastCluster; 8418 8419 const ConstantInt *Pivot = PivotCluster->Low; 8420 8421 // New blocks will be inserted immediately after the current one. 8422 MachineFunction::iterator BBI(W.MBB); 8423 ++BBI; 8424 8425 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8426 // we can branch to its destination directly if it's squeezed exactly in 8427 // between the known lower bound and Pivot - 1. 8428 MachineBasicBlock *LeftMBB; 8429 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8430 FirstLeft->Low == W.GE && 8431 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8432 LeftMBB = FirstLeft->MBB; 8433 } else { 8434 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8435 FuncInfo.MF->insert(BBI, LeftMBB); 8436 WorkList.push_back( 8437 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8438 // Put Cond in a virtual register to make it available from the new blocks. 8439 ExportFromCurrentBlock(Cond); 8440 } 8441 8442 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8443 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8444 // directly if RHS.High equals the current upper bound. 8445 MachineBasicBlock *RightMBB; 8446 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8447 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8448 RightMBB = FirstRight->MBB; 8449 } else { 8450 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8451 FuncInfo.MF->insert(BBI, RightMBB); 8452 WorkList.push_back( 8453 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8454 // Put Cond in a virtual register to make it available from the new blocks. 8455 ExportFromCurrentBlock(Cond); 8456 } 8457 8458 // Create the CaseBlock record that will be used to lower the branch. 8459 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8460 LeftWeight, RightWeight); 8461 8462 if (W.MBB == SwitchMBB) 8463 visitSwitchCase(CB, SwitchMBB); 8464 else 8465 SwitchCases.push_back(CB); 8466 } 8467 8468 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8469 // Extract cases from the switch. 8470 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8471 CaseClusterVector Clusters; 8472 Clusters.reserve(SI.getNumCases()); 8473 for (auto I : SI.cases()) { 8474 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8475 const ConstantInt *CaseVal = I.getCaseValue(); 8476 uint32_t Weight = 8477 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8478 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8479 } 8480 8481 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8482 8483 // Cluster adjacent cases with the same destination. We do this at all 8484 // optimization levels because it's cheap to do and will make codegen faster 8485 // if there are many clusters. 8486 sortAndRangeify(Clusters); 8487 8488 if (TM.getOptLevel() != CodeGenOpt::None) { 8489 // Replace an unreachable default with the most popular destination. 8490 // FIXME: Exploit unreachable default more aggressively. 8491 bool UnreachableDefault = 8492 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8493 if (UnreachableDefault && !Clusters.empty()) { 8494 DenseMap<const BasicBlock *, unsigned> Popularity; 8495 unsigned MaxPop = 0; 8496 const BasicBlock *MaxBB = nullptr; 8497 for (auto I : SI.cases()) { 8498 const BasicBlock *BB = I.getCaseSuccessor(); 8499 if (++Popularity[BB] > MaxPop) { 8500 MaxPop = Popularity[BB]; 8501 MaxBB = BB; 8502 } 8503 } 8504 // Set new default. 8505 assert(MaxPop > 0 && MaxBB); 8506 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8507 8508 // Remove cases that were pointing to the destination that is now the 8509 // default. 8510 CaseClusterVector New; 8511 New.reserve(Clusters.size()); 8512 for (CaseCluster &CC : Clusters) { 8513 if (CC.MBB != DefaultMBB) 8514 New.push_back(CC); 8515 } 8516 Clusters = std::move(New); 8517 } 8518 } 8519 8520 // If there is only the default destination, jump there directly. 8521 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8522 if (Clusters.empty()) { 8523 SwitchMBB->addSuccessor(DefaultMBB); 8524 if (DefaultMBB != NextBlock(SwitchMBB)) { 8525 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8526 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8527 } 8528 return; 8529 } 8530 8531 findJumpTables(Clusters, &SI, DefaultMBB); 8532 findBitTestClusters(Clusters, &SI); 8533 8534 DEBUG({ 8535 dbgs() << "Case clusters: "; 8536 for (const CaseCluster &C : Clusters) { 8537 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8538 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8539 8540 C.Low->getValue().print(dbgs(), true); 8541 if (C.Low != C.High) { 8542 dbgs() << '-'; 8543 C.High->getValue().print(dbgs(), true); 8544 } 8545 dbgs() << ' '; 8546 } 8547 dbgs() << '\n'; 8548 }); 8549 8550 assert(!Clusters.empty()); 8551 SwitchWorkList WorkList; 8552 CaseClusterIt First = Clusters.begin(); 8553 CaseClusterIt Last = Clusters.end() - 1; 8554 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8555 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8556 8557 while (!WorkList.empty()) { 8558 SwitchWorkListItem W = WorkList.back(); 8559 WorkList.pop_back(); 8560 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8561 8562 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8563 // For optimized builds, lower large range as a balanced binary tree. 8564 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8565 continue; 8566 } 8567 8568 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8569 } 8570 } 8571