1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isInteger()) { 202 if (ValueVT.bitsLT(PartEVT)) { 203 // For a truncate, see if we have any information to 204 // indicate whether the truncated bits will always be 205 // zero or sign-extension. 206 if (AssertOp != ISD::DELETED_NODE) 207 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 208 DAG.getValueType(ValueVT)); 209 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 210 } 211 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 212 } 213 214 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 215 // FP_ROUND's are always exact here. 216 if (ValueVT.bitsLT(Val.getValueType())) 217 return DAG.getNode( 218 ISD::FP_ROUND, DL, ValueVT, Val, 219 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 220 221 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 222 } 223 224 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 225 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 226 227 llvm_unreachable("Unknown mismatch!"); 228 } 229 230 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 231 const Twine &ErrMsg) { 232 const Instruction *I = dyn_cast_or_null<Instruction>(V); 233 if (!V) 234 return Ctx.emitError(ErrMsg); 235 236 const char *AsmError = ", possible invalid constraint for vector type"; 237 if (const CallInst *CI = dyn_cast<CallInst>(I)) 238 if (isa<InlineAsm>(CI->getCalledValue())) 239 return Ctx.emitError(I, ErrMsg + AsmError); 240 241 return Ctx.emitError(I, ErrMsg); 242 } 243 244 /// getCopyFromPartsVector - Create a value that contains the specified legal 245 /// parts combined into the value they represent. If the parts combine to a 246 /// type larger then ValueVT then AssertOp can be used to specify whether the 247 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 248 /// ValueVT (ISD::AssertSext). 249 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 250 const SDValue *Parts, unsigned NumParts, 251 MVT PartVT, EVT ValueVT, const Value *V) { 252 assert(ValueVT.isVector() && "Not a vector value"); 253 assert(NumParts > 0 && "No parts to assemble!"); 254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 255 SDValue Val = Parts[0]; 256 257 // Handle a multi-element vector. 258 if (NumParts > 1) { 259 EVT IntermediateVT; 260 MVT RegisterVT; 261 unsigned NumIntermediates; 262 unsigned NumRegs = 263 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 264 NumIntermediates, RegisterVT); 265 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 266 NumParts = NumRegs; // Silence a compiler warning. 267 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 268 assert(RegisterVT.getSizeInBits() == 269 Parts[0].getSimpleValueType().getSizeInBits() && 270 "Part type sizes don't match!"); 271 272 // Assemble the parts into intermediate operands. 273 SmallVector<SDValue, 8> Ops(NumIntermediates); 274 if (NumIntermediates == NumParts) { 275 // If the register was not expanded, truncate or copy the value, 276 // as appropriate. 277 for (unsigned i = 0; i != NumParts; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 279 PartVT, IntermediateVT, V); 280 } else if (NumParts > 0) { 281 // If the intermediate type was expanded, build the intermediate 282 // operands from the parts. 283 assert(NumParts % NumIntermediates == 0 && 284 "Must expand into a divisible number of parts!"); 285 unsigned Factor = NumParts / NumIntermediates; 286 for (unsigned i = 0; i != NumIntermediates; ++i) 287 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 288 PartVT, IntermediateVT, V); 289 } 290 291 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 292 // intermediate operands. 293 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 294 : ISD::BUILD_VECTOR, 295 DL, ValueVT, Ops); 296 } 297 298 // There is now one part, held in Val. Correct it to match ValueVT. 299 EVT PartEVT = Val.getValueType(); 300 301 if (PartEVT == ValueVT) 302 return Val; 303 304 if (PartEVT.isVector()) { 305 // If the element type of the source/dest vectors are the same, but the 306 // parts vector has more elements than the value vector, then we have a 307 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 308 // elements we want. 309 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 310 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 311 "Cannot narrow, it would be a lossy transformation"); 312 return DAG.getNode( 313 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 314 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 315 } 316 317 // Vector/Vector bitcast. 318 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 319 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 320 321 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 322 "Cannot handle this kind of promotion"); 323 // Promoted vector extract 324 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 325 326 } 327 328 // Trivial bitcast if the types are the same size and the destination 329 // vector type is legal. 330 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 331 TLI.isTypeLegal(ValueVT)) 332 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 333 334 // Handle cases such as i8 -> <1 x i1> 335 if (ValueVT.getVectorNumElements() != 1) { 336 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 337 "non-trivial scalar-to-vector conversion"); 338 return DAG.getUNDEF(ValueVT); 339 } 340 341 if (ValueVT.getVectorNumElements() == 1 && 342 ValueVT.getVectorElementType() != PartEVT) 343 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 344 345 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 346 } 347 348 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 349 SDValue Val, SDValue *Parts, unsigned NumParts, 350 MVT PartVT, const Value *V); 351 352 /// getCopyToParts - Create a series of nodes that contain the specified value 353 /// split into legal parts. If the parts contain more bits than Val, then, for 354 /// integers, ExtendKind can be used to specify how to generate the extra bits. 355 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 356 SDValue Val, SDValue *Parts, unsigned NumParts, 357 MVT PartVT, const Value *V, 358 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 359 EVT ValueVT = Val.getValueType(); 360 361 // Handle the vector case separately. 362 if (ValueVT.isVector()) 363 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 364 365 unsigned PartBits = PartVT.getSizeInBits(); 366 unsigned OrigNumParts = NumParts; 367 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 368 "Copying to an illegal type!"); 369 370 if (NumParts == 0) 371 return; 372 373 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 374 EVT PartEVT = PartVT; 375 if (PartEVT == ValueVT) { 376 assert(NumParts == 1 && "No-op copy with multiple parts!"); 377 Parts[0] = Val; 378 return; 379 } 380 381 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 382 // If the parts cover more bits than the value has, promote the value. 383 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 384 assert(NumParts == 1 && "Do not know what to promote to!"); 385 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 386 } else { 387 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 388 ValueVT.isInteger() && 389 "Unknown mismatch!"); 390 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 391 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 392 if (PartVT == MVT::x86mmx) 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } 395 } else if (PartBits == ValueVT.getSizeInBits()) { 396 // Different types of the same size. 397 assert(NumParts == 1 && PartEVT != ValueVT); 398 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 399 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 400 // If the parts cover less bits than value has, truncate the value. 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 410 // The value may have changed - recompute ValueVT. 411 ValueVT = Val.getValueType(); 412 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 413 "Failed to tile the value with PartVT!"); 414 415 if (NumParts == 1) { 416 if (PartEVT != ValueVT) 417 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 418 "scalar-to-vector conversion failed"); 419 420 Parts[0] = Val; 421 return; 422 } 423 424 // Expand the value into multiple parts. 425 if (NumParts & (NumParts - 1)) { 426 // The number of parts is not a power of 2. Split off and copy the tail. 427 assert(PartVT.isInteger() && ValueVT.isInteger() && 428 "Do not know what to expand to!"); 429 unsigned RoundParts = 1 << Log2_32(NumParts); 430 unsigned RoundBits = RoundParts * PartBits; 431 unsigned OddParts = NumParts - RoundParts; 432 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 433 DAG.getIntPtrConstant(RoundBits, DL)); 434 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 435 436 if (DAG.getDataLayout().isBigEndian()) 437 // The odd parts were reversed by getCopyToParts - unreverse them. 438 std::reverse(Parts + RoundParts, Parts + NumParts); 439 440 NumParts = RoundParts; 441 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 442 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 443 } 444 445 // The number of parts is a power of 2. Repeatedly bisect the value using 446 // EXTRACT_ELEMENT. 447 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 448 EVT::getIntegerVT(*DAG.getContext(), 449 ValueVT.getSizeInBits()), 450 Val); 451 452 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 453 for (unsigned i = 0; i < NumParts; i += StepSize) { 454 unsigned ThisBits = StepSize * PartBits / 2; 455 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 456 SDValue &Part0 = Parts[i]; 457 SDValue &Part1 = Parts[i+StepSize/2]; 458 459 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 460 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 461 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 462 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 463 464 if (ThisBits == PartBits && ThisVT != PartVT) { 465 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 466 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 467 } 468 } 469 } 470 471 if (DAG.getDataLayout().isBigEndian()) 472 std::reverse(Parts, Parts + OrigNumParts); 473 } 474 475 476 /// getCopyToPartsVector - Create a series of nodes that contain the specified 477 /// value split into legal parts. 478 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 479 SDValue Val, SDValue *Parts, unsigned NumParts, 480 MVT PartVT, const Value *V) { 481 EVT ValueVT = Val.getValueType(); 482 assert(ValueVT.isVector() && "Not a vector"); 483 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 484 485 if (NumParts == 1) { 486 EVT PartEVT = PartVT; 487 if (PartEVT == ValueVT) { 488 // Nothing to do. 489 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 490 // Bitconvert vector->vector case. 491 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 492 } else if (PartVT.isVector() && 493 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 494 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 495 EVT ElementVT = PartVT.getVectorElementType(); 496 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 497 // undef elements. 498 SmallVector<SDValue, 16> Ops; 499 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 500 Ops.push_back(DAG.getNode( 501 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 502 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 503 504 for (unsigned i = ValueVT.getVectorNumElements(), 505 e = PartVT.getVectorNumElements(); i != e; ++i) 506 Ops.push_back(DAG.getUNDEF(ElementVT)); 507 508 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 509 510 // FIXME: Use CONCAT for 2x -> 4x. 511 512 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 513 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 514 } else if (PartVT.isVector() && 515 PartEVT.getVectorElementType().bitsGE( 516 ValueVT.getVectorElementType()) && 517 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 518 519 // Promoted vector extract 520 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 521 } else{ 522 // Vector -> scalar conversion. 523 assert(ValueVT.getVectorNumElements() == 1 && 524 "Only trivial vector-to-scalar conversions should get here!"); 525 Val = DAG.getNode( 526 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 527 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 528 529 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 530 } 531 532 Parts[0] = Val; 533 return; 534 } 535 536 // Handle a multi-element vector. 537 EVT IntermediateVT; 538 MVT RegisterVT; 539 unsigned NumIntermediates; 540 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 541 IntermediateVT, 542 NumIntermediates, RegisterVT); 543 unsigned NumElements = ValueVT.getVectorNumElements(); 544 545 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 546 NumParts = NumRegs; // Silence a compiler warning. 547 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 548 549 // Split the vector into intermediate operands. 550 SmallVector<SDValue, 8> Ops(NumIntermediates); 551 for (unsigned i = 0; i != NumIntermediates; ++i) { 552 if (IntermediateVT.isVector()) 553 Ops[i] = 554 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 555 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 556 TLI.getVectorIdxTy(DAG.getDataLayout()))); 557 else 558 Ops[i] = DAG.getNode( 559 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 560 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 561 } 562 563 // Split the intermediate operands into legal parts. 564 if (NumParts == NumIntermediates) { 565 // If the register was not expanded, promote or copy the value, 566 // as appropriate. 567 for (unsigned i = 0; i != NumParts; ++i) 568 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 569 } else if (NumParts > 0) { 570 // If the intermediate type was expanded, split each the value into 571 // legal parts. 572 assert(NumIntermediates != 0 && "division by zero"); 573 assert(NumParts % NumIntermediates == 0 && 574 "Must expand into a divisible number of parts!"); 575 unsigned Factor = NumParts / NumIntermediates; 576 for (unsigned i = 0; i != NumIntermediates; ++i) 577 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 578 } 579 } 580 581 RegsForValue::RegsForValue() {} 582 583 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 584 EVT valuevt) 585 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 586 587 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 588 const DataLayout &DL, unsigned Reg, Type *Ty) { 589 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 590 591 for (EVT ValueVT : ValueVTs) { 592 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 593 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 594 for (unsigned i = 0; i != NumRegs; ++i) 595 Regs.push_back(Reg + i); 596 RegVTs.push_back(RegisterVT); 597 Reg += NumRegs; 598 } 599 } 600 601 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 602 /// this value and returns the result as a ValueVT value. This uses 603 /// Chain/Flag as the input and updates them for the output Chain/Flag. 604 /// If the Flag pointer is NULL, no flag is used. 605 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 606 FunctionLoweringInfo &FuncInfo, 607 SDLoc dl, 608 SDValue &Chain, SDValue *Flag, 609 const Value *V) const { 610 // A Value with type {} or [0 x %t] needs no registers. 611 if (ValueVTs.empty()) 612 return SDValue(); 613 614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 615 616 // Assemble the legal parts into the final values. 617 SmallVector<SDValue, 4> Values(ValueVTs.size()); 618 SmallVector<SDValue, 8> Parts; 619 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 620 // Copy the legal parts from the registers. 621 EVT ValueVT = ValueVTs[Value]; 622 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 623 MVT RegisterVT = RegVTs[Value]; 624 625 Parts.resize(NumRegs); 626 for (unsigned i = 0; i != NumRegs; ++i) { 627 SDValue P; 628 if (!Flag) { 629 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 630 } else { 631 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 632 *Flag = P.getValue(2); 633 } 634 635 Chain = P.getValue(1); 636 Parts[i] = P; 637 638 // If the source register was virtual and if we know something about it, 639 // add an assert node. 640 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 641 !RegisterVT.isInteger() || RegisterVT.isVector()) 642 continue; 643 644 const FunctionLoweringInfo::LiveOutInfo *LOI = 645 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 646 if (!LOI) 647 continue; 648 649 unsigned RegSize = RegisterVT.getSizeInBits(); 650 unsigned NumSignBits = LOI->NumSignBits; 651 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 652 653 if (NumZeroBits == RegSize) { 654 // The current value is a zero. 655 // Explicitly express that as it would be easier for 656 // optimizations to kick in. 657 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 658 continue; 659 } 660 661 // FIXME: We capture more information than the dag can represent. For 662 // now, just use the tightest assertzext/assertsext possible. 663 bool isSExt = true; 664 EVT FromVT(MVT::Other); 665 if (NumSignBits == RegSize) 666 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 667 else if (NumZeroBits >= RegSize-1) 668 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 669 else if (NumSignBits > RegSize-8) 670 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 671 else if (NumZeroBits >= RegSize-8) 672 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 673 else if (NumSignBits > RegSize-16) 674 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 675 else if (NumZeroBits >= RegSize-16) 676 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 677 else if (NumSignBits > RegSize-32) 678 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 679 else if (NumZeroBits >= RegSize-32) 680 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 681 else 682 continue; 683 684 // Add an assertion node. 685 assert(FromVT != MVT::Other); 686 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 687 RegisterVT, P, DAG.getValueType(FromVT)); 688 } 689 690 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 691 NumRegs, RegisterVT, ValueVT, V); 692 Part += NumRegs; 693 Parts.clear(); 694 } 695 696 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 697 } 698 699 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 700 /// specified value into the registers specified by this object. This uses 701 /// Chain/Flag as the input and updates them for the output Chain/Flag. 702 /// If the Flag pointer is NULL, no flag is used. 703 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 704 SDValue &Chain, SDValue *Flag, const Value *V, 705 ISD::NodeType PreferredExtendType) const { 706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 707 ISD::NodeType ExtendKind = PreferredExtendType; 708 709 // Get the list of the values's legal parts. 710 unsigned NumRegs = Regs.size(); 711 SmallVector<SDValue, 8> Parts(NumRegs); 712 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 713 EVT ValueVT = ValueVTs[Value]; 714 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 715 MVT RegisterVT = RegVTs[Value]; 716 717 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 718 ExtendKind = ISD::ZERO_EXTEND; 719 720 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 721 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 722 Part += NumParts; 723 } 724 725 // Copy the parts into the registers. 726 SmallVector<SDValue, 8> Chains(NumRegs); 727 for (unsigned i = 0; i != NumRegs; ++i) { 728 SDValue Part; 729 if (!Flag) { 730 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 731 } else { 732 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 733 *Flag = Part.getValue(1); 734 } 735 736 Chains[i] = Part.getValue(0); 737 } 738 739 if (NumRegs == 1 || Flag) 740 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 741 // flagged to it. That is the CopyToReg nodes and the user are considered 742 // a single scheduling unit. If we create a TokenFactor and return it as 743 // chain, then the TokenFactor is both a predecessor (operand) of the 744 // user as well as a successor (the TF operands are flagged to the user). 745 // c1, f1 = CopyToReg 746 // c2, f2 = CopyToReg 747 // c3 = TokenFactor c1, c2 748 // ... 749 // = op c3, ..., f2 750 Chain = Chains[NumRegs-1]; 751 else 752 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 753 } 754 755 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 756 /// operand list. This adds the code marker and includes the number of 757 /// values added into it. 758 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 759 unsigned MatchingIdx, SDLoc dl, 760 SelectionDAG &DAG, 761 std::vector<SDValue> &Ops) const { 762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 763 764 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 765 if (HasMatching) 766 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 767 else if (!Regs.empty() && 768 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 769 // Put the register class of the virtual registers in the flag word. That 770 // way, later passes can recompute register class constraints for inline 771 // assembly as well as normal instructions. 772 // Don't do this for tied operands that can use the regclass information 773 // from the def. 774 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 775 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 776 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 777 } 778 779 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 780 Ops.push_back(Res); 781 782 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 783 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 784 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 785 MVT RegisterVT = RegVTs[Value]; 786 for (unsigned i = 0; i != NumRegs; ++i) { 787 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 788 unsigned TheReg = Regs[Reg++]; 789 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 790 791 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 792 // If we clobbered the stack pointer, MFI should know about it. 793 assert(DAG.getMachineFunction().getFrameInfo()-> 794 hasOpaqueSPAdjustment()); 795 } 796 } 797 } 798 } 799 800 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 801 const TargetLibraryInfo *li) { 802 AA = &aa; 803 GFI = gfi; 804 LibInfo = li; 805 DL = &DAG.getDataLayout(); 806 Context = DAG.getContext(); 807 LPadToCallSiteMap.clear(); 808 } 809 810 /// clear - Clear out the current SelectionDAG and the associated 811 /// state and prepare this SelectionDAGBuilder object to be used 812 /// for a new block. This doesn't clear out information about 813 /// additional blocks that are needed to complete switch lowering 814 /// or PHI node updating; that information is cleared out as it is 815 /// consumed. 816 void SelectionDAGBuilder::clear() { 817 NodeMap.clear(); 818 UnusedArgNodeMap.clear(); 819 PendingLoads.clear(); 820 PendingExports.clear(); 821 CurInst = nullptr; 822 HasTailCall = false; 823 SDNodeOrder = LowestSDNodeOrder; 824 StatepointLowering.clear(); 825 } 826 827 /// clearDanglingDebugInfo - Clear the dangling debug information 828 /// map. This function is separated from the clear so that debug 829 /// information that is dangling in a basic block can be properly 830 /// resolved in a different basic block. This allows the 831 /// SelectionDAG to resolve dangling debug information attached 832 /// to PHI nodes. 833 void SelectionDAGBuilder::clearDanglingDebugInfo() { 834 DanglingDebugInfoMap.clear(); 835 } 836 837 /// getRoot - Return the current virtual root of the Selection DAG, 838 /// flushing any PendingLoad items. This must be done before emitting 839 /// a store or any other node that may need to be ordered after any 840 /// prior load instructions. 841 /// 842 SDValue SelectionDAGBuilder::getRoot() { 843 if (PendingLoads.empty()) 844 return DAG.getRoot(); 845 846 if (PendingLoads.size() == 1) { 847 SDValue Root = PendingLoads[0]; 848 DAG.setRoot(Root); 849 PendingLoads.clear(); 850 return Root; 851 } 852 853 // Otherwise, we have to make a token factor node. 854 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 855 PendingLoads); 856 PendingLoads.clear(); 857 DAG.setRoot(Root); 858 return Root; 859 } 860 861 /// getControlRoot - Similar to getRoot, but instead of flushing all the 862 /// PendingLoad items, flush all the PendingExports items. It is necessary 863 /// to do this before emitting a terminator instruction. 864 /// 865 SDValue SelectionDAGBuilder::getControlRoot() { 866 SDValue Root = DAG.getRoot(); 867 868 if (PendingExports.empty()) 869 return Root; 870 871 // Turn all of the CopyToReg chains into one factored node. 872 if (Root.getOpcode() != ISD::EntryToken) { 873 unsigned i = 0, e = PendingExports.size(); 874 for (; i != e; ++i) { 875 assert(PendingExports[i].getNode()->getNumOperands() > 1); 876 if (PendingExports[i].getNode()->getOperand(0) == Root) 877 break; // Don't add the root if we already indirectly depend on it. 878 } 879 880 if (i == e) 881 PendingExports.push_back(Root); 882 } 883 884 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 885 PendingExports); 886 PendingExports.clear(); 887 DAG.setRoot(Root); 888 return Root; 889 } 890 891 void SelectionDAGBuilder::visit(const Instruction &I) { 892 // Set up outgoing PHI node register values before emitting the terminator. 893 if (isa<TerminatorInst>(&I)) 894 HandlePHINodesInSuccessorBlocks(I.getParent()); 895 896 ++SDNodeOrder; 897 898 CurInst = &I; 899 900 visit(I.getOpcode(), I); 901 902 if (!isa<TerminatorInst>(&I) && !HasTailCall) 903 CopyToExportRegsIfNeeded(&I); 904 905 CurInst = nullptr; 906 } 907 908 void SelectionDAGBuilder::visitPHI(const PHINode &) { 909 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 910 } 911 912 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 913 // Note: this doesn't use InstVisitor, because it has to work with 914 // ConstantExpr's in addition to instructions. 915 switch (Opcode) { 916 default: llvm_unreachable("Unknown instruction type encountered!"); 917 // Build the switch statement using the Instruction.def file. 918 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 919 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 920 #include "llvm/IR/Instruction.def" 921 } 922 } 923 924 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 925 // generate the debug data structures now that we've seen its definition. 926 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 927 SDValue Val) { 928 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 929 if (DDI.getDI()) { 930 const DbgValueInst *DI = DDI.getDI(); 931 DebugLoc dl = DDI.getdl(); 932 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 933 DILocalVariable *Variable = DI->getVariable(); 934 DIExpression *Expr = DI->getExpression(); 935 assert(Variable->isValidLocationForIntrinsic(dl) && 936 "Expected inlined-at fields to agree"); 937 uint64_t Offset = DI->getOffset(); 938 // A dbg.value for an alloca is always indirect. 939 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 940 SDDbgValue *SDV; 941 if (Val.getNode()) { 942 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 943 Val)) { 944 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 945 IsIndirect, Offset, dl, DbgSDNodeOrder); 946 DAG.AddDbgValue(SDV, Val.getNode(), false); 947 } 948 } else 949 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 950 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 951 } 952 } 953 954 /// getCopyFromRegs - If there was virtual register allocated for the value V 955 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 956 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 957 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 958 SDValue Result; 959 960 if (It != FuncInfo.ValueMap.end()) { 961 unsigned InReg = It->second; 962 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 963 DAG.getDataLayout(), InReg, Ty); 964 SDValue Chain = DAG.getEntryNode(); 965 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 966 resolveDanglingDebugInfo(V, Result); 967 } 968 969 return Result; 970 } 971 972 /// getValue - Return an SDValue for the given Value. 973 SDValue SelectionDAGBuilder::getValue(const Value *V) { 974 // If we already have an SDValue for this value, use it. It's important 975 // to do this first, so that we don't create a CopyFromReg if we already 976 // have a regular SDValue. 977 SDValue &N = NodeMap[V]; 978 if (N.getNode()) return N; 979 980 // If there's a virtual register allocated and initialized for this 981 // value, use it. 982 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 983 if (copyFromReg.getNode()) { 984 return copyFromReg; 985 } 986 987 // Otherwise create a new SDValue and remember it. 988 SDValue Val = getValueImpl(V); 989 NodeMap[V] = Val; 990 resolveDanglingDebugInfo(V, Val); 991 return Val; 992 } 993 994 // Return true if SDValue exists for the given Value 995 bool SelectionDAGBuilder::findValue(const Value *V) const { 996 return (NodeMap.find(V) != NodeMap.end()) || 997 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 998 } 999 1000 /// getNonRegisterValue - Return an SDValue for the given Value, but 1001 /// don't look in FuncInfo.ValueMap for a virtual register. 1002 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1003 // If we already have an SDValue for this value, use it. 1004 SDValue &N = NodeMap[V]; 1005 if (N.getNode()) { 1006 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1007 // Remove the debug location from the node as the node is about to be used 1008 // in a location which may differ from the original debug location. This 1009 // is relevant to Constant and ConstantFP nodes because they can appear 1010 // as constant expressions inside PHI nodes. 1011 N->setDebugLoc(DebugLoc()); 1012 } 1013 return N; 1014 } 1015 1016 // Otherwise create a new SDValue and remember it. 1017 SDValue Val = getValueImpl(V); 1018 NodeMap[V] = Val; 1019 resolveDanglingDebugInfo(V, Val); 1020 return Val; 1021 } 1022 1023 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1024 /// Create an SDValue for the given value. 1025 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1026 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1027 1028 if (const Constant *C = dyn_cast<Constant>(V)) { 1029 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1030 1031 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1032 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1033 1034 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1035 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1036 1037 if (isa<ConstantPointerNull>(C)) { 1038 unsigned AS = V->getType()->getPointerAddressSpace(); 1039 return DAG.getConstant(0, getCurSDLoc(), 1040 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1041 } 1042 1043 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1044 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1045 1046 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1047 return DAG.getUNDEF(VT); 1048 1049 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1050 visit(CE->getOpcode(), *CE); 1051 SDValue N1 = NodeMap[V]; 1052 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1053 return N1; 1054 } 1055 1056 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1057 SmallVector<SDValue, 4> Constants; 1058 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1059 OI != OE; ++OI) { 1060 SDNode *Val = getValue(*OI).getNode(); 1061 // If the operand is an empty aggregate, there are no values. 1062 if (!Val) continue; 1063 // Add each leaf value from the operand to the Constants list 1064 // to form a flattened list of all the values. 1065 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1066 Constants.push_back(SDValue(Val, i)); 1067 } 1068 1069 return DAG.getMergeValues(Constants, getCurSDLoc()); 1070 } 1071 1072 if (const ConstantDataSequential *CDS = 1073 dyn_cast<ConstantDataSequential>(C)) { 1074 SmallVector<SDValue, 4> Ops; 1075 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1076 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1077 // Add each leaf value from the operand to the Constants list 1078 // to form a flattened list of all the values. 1079 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1080 Ops.push_back(SDValue(Val, i)); 1081 } 1082 1083 if (isa<ArrayType>(CDS->getType())) 1084 return DAG.getMergeValues(Ops, getCurSDLoc()); 1085 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1086 VT, Ops); 1087 } 1088 1089 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1090 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1091 "Unknown struct or array constant!"); 1092 1093 SmallVector<EVT, 4> ValueVTs; 1094 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1095 unsigned NumElts = ValueVTs.size(); 1096 if (NumElts == 0) 1097 return SDValue(); // empty struct 1098 SmallVector<SDValue, 4> Constants(NumElts); 1099 for (unsigned i = 0; i != NumElts; ++i) { 1100 EVT EltVT = ValueVTs[i]; 1101 if (isa<UndefValue>(C)) 1102 Constants[i] = DAG.getUNDEF(EltVT); 1103 else if (EltVT.isFloatingPoint()) 1104 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1105 else 1106 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1107 } 1108 1109 return DAG.getMergeValues(Constants, getCurSDLoc()); 1110 } 1111 1112 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1113 return DAG.getBlockAddress(BA, VT); 1114 1115 VectorType *VecTy = cast<VectorType>(V->getType()); 1116 unsigned NumElements = VecTy->getNumElements(); 1117 1118 // Now that we know the number and type of the elements, get that number of 1119 // elements into the Ops array based on what kind of constant it is. 1120 SmallVector<SDValue, 16> Ops; 1121 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1122 for (unsigned i = 0; i != NumElements; ++i) 1123 Ops.push_back(getValue(CV->getOperand(i))); 1124 } else { 1125 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1126 EVT EltVT = 1127 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1128 1129 SDValue Op; 1130 if (EltVT.isFloatingPoint()) 1131 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1132 else 1133 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1134 Ops.assign(NumElements, Op); 1135 } 1136 1137 // Create a BUILD_VECTOR node. 1138 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1139 } 1140 1141 // If this is a static alloca, generate it as the frameindex instead of 1142 // computation. 1143 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1144 DenseMap<const AllocaInst*, int>::iterator SI = 1145 FuncInfo.StaticAllocaMap.find(AI); 1146 if (SI != FuncInfo.StaticAllocaMap.end()) 1147 return DAG.getFrameIndex(SI->second, 1148 TLI.getPointerTy(DAG.getDataLayout())); 1149 } 1150 1151 // If this is an instruction which fast-isel has deferred, select it now. 1152 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1153 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1154 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1155 Inst->getType()); 1156 SDValue Chain = DAG.getEntryNode(); 1157 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1158 } 1159 1160 llvm_unreachable("Can't get register for value!"); 1161 } 1162 1163 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1164 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1165 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1166 bool IsSEH = isAsynchronousEHPersonality(Pers); 1167 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1168 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1169 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1170 if (IsMSVCCXX || IsCoreCLR) 1171 CatchPadMBB->setIsEHFuncletEntry(); 1172 1173 MachineBasicBlock *NormalDestMBB = FuncInfo.MBBMap[I.getNormalDest()]; 1174 1175 // Update machine-CFG edge. 1176 FuncInfo.MBB->addSuccessor(NormalDestMBB); 1177 1178 // CatchPads in SEH are not funclets, they are merely markers which indicate 1179 // where to insert register restoration code. 1180 if (IsSEH) { 1181 DAG.setRoot(DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1182 getControlRoot(), DAG.getBasicBlock(NormalDestMBB), 1183 DAG.getBasicBlock(&FuncInfo.MF->front()))); 1184 return; 1185 } 1186 1187 // If this is not a fall-through branch or optimizations are switched off, 1188 // emit the branch. 1189 if (NormalDestMBB != NextBlock(CatchPadMBB) || 1190 TM.getOptLevel() == CodeGenOpt::None) 1191 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1192 getControlRoot(), 1193 DAG.getBasicBlock(NormalDestMBB))); 1194 } 1195 1196 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1197 // Update machine-CFG edge. 1198 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1199 FuncInfo.MBB->addSuccessor(TargetMBB); 1200 1201 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1202 bool IsSEH = isAsynchronousEHPersonality(Pers); 1203 if (IsSEH) { 1204 // If this is not a fall-through branch or optimizations are switched off, 1205 // emit the branch. 1206 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1207 TM.getOptLevel() == CodeGenOpt::None) 1208 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1209 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1210 return; 1211 } 1212 1213 // Figure out the funclet membership for the catchret's successor. 1214 // This will be used by the FuncletLayout pass to determine how to order the 1215 // BB's. 1216 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1217 WinEHFuncInfo &EHInfo = 1218 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 1219 const BasicBlock *SuccessorColor = EHInfo.CatchRetSuccessorColorMap[&I]; 1220 assert(SuccessorColor && "No parent funclet for catchret!"); 1221 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1222 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1223 1224 // Create the terminator node. 1225 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1226 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1227 DAG.getBasicBlock(SuccessorColorMBB)); 1228 DAG.setRoot(Ret); 1229 } 1230 1231 void SelectionDAGBuilder::visitCatchEndPad(const CatchEndPadInst &I) { 1232 llvm_unreachable("should never codegen catchendpads"); 1233 } 1234 1235 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1236 // Don't emit any special code for the cleanuppad instruction. It just marks 1237 // the start of a funclet. 1238 FuncInfo.MBB->setIsEHFuncletEntry(); 1239 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1240 } 1241 1242 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1243 /// many places it could ultimately go. In the IR, we have a single unwind 1244 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1245 /// This function skips over imaginary basic blocks that hold catchpad, 1246 /// terminatepad, or catchendpad instructions, and finds all the "real" machine 1247 /// basic block destinations. As those destinations may not be successors of 1248 /// EHPadBB, here we also calculate the edge weight to those destinations. The 1249 /// passed-in Weight is the edge weight to EHPadBB. 1250 static void findUnwindDestinations( 1251 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, uint32_t Weight, 1252 SmallVectorImpl<std::pair<MachineBasicBlock *, uint32_t>> &UnwindDests) { 1253 EHPersonality Personality = 1254 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1255 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1256 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1257 1258 while (EHPadBB) { 1259 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1260 BasicBlock *NewEHPadBB = nullptr; 1261 if (isa<LandingPadInst>(Pad)) { 1262 // Stop on landingpads. They are not funclets. 1263 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1264 break; 1265 } else if (isa<CleanupPadInst>(Pad)) { 1266 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1267 // personalities. 1268 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1269 UnwindDests.back().first->setIsEHFuncletEntry(); 1270 break; 1271 } else if (const auto *CPI = dyn_cast<CatchPadInst>(Pad)) { 1272 // Add the catchpad handler to the possible destinations. 1273 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Weight); 1274 // In MSVC C++, catchblocks are funclets and need prologues. 1275 if (IsMSVCCXX || IsCoreCLR) 1276 UnwindDests.back().first->setIsEHFuncletEntry(); 1277 NewEHPadBB = CPI->getUnwindDest(); 1278 } else if (const auto *CEPI = dyn_cast<CatchEndPadInst>(Pad)) 1279 NewEHPadBB = CEPI->getUnwindDest(); 1280 else if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(Pad)) 1281 NewEHPadBB = CEPI->getUnwindDest(); 1282 else 1283 continue; 1284 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 if (BPI && NewEHPadBB) { 1287 // When BPI is available, the calculated weight cannot be zero as zero 1288 // will be turned to a default weight in MachineBlockFrequencyInfo. 1289 Weight = std::max<uint32_t>( 1290 BPI->getEdgeProbability(EHPadBB, NewEHPadBB).scale(Weight), 1); 1291 } 1292 EHPadBB = NewEHPadBB; 1293 } 1294 } 1295 1296 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1297 // Update successor info. 1298 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 1299 auto UnwindDest = I.getUnwindDest(); 1300 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1301 uint32_t UnwindDestWeight = 1302 BPI ? BPI->getEdgeWeight(FuncInfo.MBB->getBasicBlock(), UnwindDest) : 0; 1303 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestWeight, UnwindDests); 1304 for (auto &UnwindDest : UnwindDests) { 1305 UnwindDest.first->setIsEHPad(); 1306 addSuccessorWithWeight(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1307 } 1308 1309 // Create the terminator node. 1310 SDValue Ret = 1311 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1312 DAG.setRoot(Ret); 1313 } 1314 1315 void SelectionDAGBuilder::visitCleanupEndPad(const CleanupEndPadInst &I) { 1316 report_fatal_error("visitCleanupEndPad not yet implemented!"); 1317 } 1318 1319 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1320 report_fatal_error("visitTerminatePad not yet implemented!"); 1321 } 1322 1323 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1324 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1325 auto &DL = DAG.getDataLayout(); 1326 SDValue Chain = getControlRoot(); 1327 SmallVector<ISD::OutputArg, 8> Outs; 1328 SmallVector<SDValue, 8> OutVals; 1329 1330 if (!FuncInfo.CanLowerReturn) { 1331 unsigned DemoteReg = FuncInfo.DemoteRegister; 1332 const Function *F = I.getParent()->getParent(); 1333 1334 // Emit a store of the return value through the virtual register. 1335 // Leave Outs empty so that LowerReturn won't try to load return 1336 // registers the usual way. 1337 SmallVector<EVT, 1> PtrValueVTs; 1338 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1339 PtrValueVTs); 1340 1341 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1342 SDValue RetOp = getValue(I.getOperand(0)); 1343 1344 SmallVector<EVT, 4> ValueVTs; 1345 SmallVector<uint64_t, 4> Offsets; 1346 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1347 unsigned NumValues = ValueVTs.size(); 1348 1349 SmallVector<SDValue, 4> Chains(NumValues); 1350 for (unsigned i = 0; i != NumValues; ++i) { 1351 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1352 RetPtr.getValueType(), RetPtr, 1353 DAG.getIntPtrConstant(Offsets[i], 1354 getCurSDLoc())); 1355 Chains[i] = 1356 DAG.getStore(Chain, getCurSDLoc(), 1357 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1358 // FIXME: better loc info would be nice. 1359 Add, MachinePointerInfo(), false, false, 0); 1360 } 1361 1362 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1363 MVT::Other, Chains); 1364 } else if (I.getNumOperands() != 0) { 1365 SmallVector<EVT, 4> ValueVTs; 1366 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1367 unsigned NumValues = ValueVTs.size(); 1368 if (NumValues) { 1369 SDValue RetOp = getValue(I.getOperand(0)); 1370 1371 const Function *F = I.getParent()->getParent(); 1372 1373 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1374 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1375 Attribute::SExt)) 1376 ExtendKind = ISD::SIGN_EXTEND; 1377 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1378 Attribute::ZExt)) 1379 ExtendKind = ISD::ZERO_EXTEND; 1380 1381 LLVMContext &Context = F->getContext(); 1382 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1383 Attribute::InReg); 1384 1385 for (unsigned j = 0; j != NumValues; ++j) { 1386 EVT VT = ValueVTs[j]; 1387 1388 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1389 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1390 1391 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1392 MVT PartVT = TLI.getRegisterType(Context, VT); 1393 SmallVector<SDValue, 4> Parts(NumParts); 1394 getCopyToParts(DAG, getCurSDLoc(), 1395 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1396 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1397 1398 // 'inreg' on function refers to return value 1399 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1400 if (RetInReg) 1401 Flags.setInReg(); 1402 1403 // Propagate extension type if any 1404 if (ExtendKind == ISD::SIGN_EXTEND) 1405 Flags.setSExt(); 1406 else if (ExtendKind == ISD::ZERO_EXTEND) 1407 Flags.setZExt(); 1408 1409 for (unsigned i = 0; i < NumParts; ++i) { 1410 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1411 VT, /*isfixed=*/true, 0, 0)); 1412 OutVals.push_back(Parts[i]); 1413 } 1414 } 1415 } 1416 } 1417 1418 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1419 CallingConv::ID CallConv = 1420 DAG.getMachineFunction().getFunction()->getCallingConv(); 1421 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1422 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1423 1424 // Verify that the target's LowerReturn behaved as expected. 1425 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1426 "LowerReturn didn't return a valid chain!"); 1427 1428 // Update the DAG with the new chain value resulting from return lowering. 1429 DAG.setRoot(Chain); 1430 } 1431 1432 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1433 /// created for it, emit nodes to copy the value into the virtual 1434 /// registers. 1435 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1436 // Skip empty types 1437 if (V->getType()->isEmptyTy()) 1438 return; 1439 1440 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1441 if (VMI != FuncInfo.ValueMap.end()) { 1442 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1443 CopyValueToVirtualRegister(V, VMI->second); 1444 } 1445 } 1446 1447 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1448 /// the current basic block, add it to ValueMap now so that we'll get a 1449 /// CopyTo/FromReg. 1450 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1451 // No need to export constants. 1452 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1453 1454 // Already exported? 1455 if (FuncInfo.isExportedInst(V)) return; 1456 1457 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1458 CopyValueToVirtualRegister(V, Reg); 1459 } 1460 1461 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1462 const BasicBlock *FromBB) { 1463 // The operands of the setcc have to be in this block. We don't know 1464 // how to export them from some other block. 1465 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1466 // Can export from current BB. 1467 if (VI->getParent() == FromBB) 1468 return true; 1469 1470 // Is already exported, noop. 1471 return FuncInfo.isExportedInst(V); 1472 } 1473 1474 // If this is an argument, we can export it if the BB is the entry block or 1475 // if it is already exported. 1476 if (isa<Argument>(V)) { 1477 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1478 return true; 1479 1480 // Otherwise, can only export this if it is already exported. 1481 return FuncInfo.isExportedInst(V); 1482 } 1483 1484 // Otherwise, constants can always be exported. 1485 return true; 1486 } 1487 1488 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1489 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1490 const MachineBasicBlock *Dst) const { 1491 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1492 if (!BPI) 1493 return 0; 1494 const BasicBlock *SrcBB = Src->getBasicBlock(); 1495 const BasicBlock *DstBB = Dst->getBasicBlock(); 1496 return BPI->getEdgeWeight(SrcBB, DstBB); 1497 } 1498 1499 void SelectionDAGBuilder:: 1500 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1501 uint32_t Weight /* = 0 */) { 1502 if (!Weight) 1503 Weight = getEdgeWeight(Src, Dst); 1504 Src->addSuccessor(Dst, Weight); 1505 } 1506 1507 1508 static bool InBlock(const Value *V, const BasicBlock *BB) { 1509 if (const Instruction *I = dyn_cast<Instruction>(V)) 1510 return I->getParent() == BB; 1511 return true; 1512 } 1513 1514 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1515 /// This function emits a branch and is used at the leaves of an OR or an 1516 /// AND operator tree. 1517 /// 1518 void 1519 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1520 MachineBasicBlock *TBB, 1521 MachineBasicBlock *FBB, 1522 MachineBasicBlock *CurBB, 1523 MachineBasicBlock *SwitchBB, 1524 uint32_t TWeight, 1525 uint32_t FWeight) { 1526 const BasicBlock *BB = CurBB->getBasicBlock(); 1527 1528 // If the leaf of the tree is a comparison, merge the condition into 1529 // the caseblock. 1530 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1531 // The operands of the cmp have to be in this block. We don't know 1532 // how to export them from some other block. If this is the first block 1533 // of the sequence, no exporting is needed. 1534 if (CurBB == SwitchBB || 1535 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1536 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1537 ISD::CondCode Condition; 1538 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1539 Condition = getICmpCondCode(IC->getPredicate()); 1540 } else { 1541 const FCmpInst *FC = cast<FCmpInst>(Cond); 1542 Condition = getFCmpCondCode(FC->getPredicate()); 1543 if (TM.Options.NoNaNsFPMath) 1544 Condition = getFCmpCodeWithoutNaN(Condition); 1545 } 1546 1547 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1548 TBB, FBB, CurBB, TWeight, FWeight); 1549 SwitchCases.push_back(CB); 1550 return; 1551 } 1552 } 1553 1554 // Create a CaseBlock record representing this branch. 1555 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1556 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1557 SwitchCases.push_back(CB); 1558 } 1559 1560 /// Scale down both weights to fit into uint32_t. 1561 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1562 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1563 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1564 NewTrue = NewTrue / Scale; 1565 NewFalse = NewFalse / Scale; 1566 } 1567 1568 /// FindMergedConditions - If Cond is an expression like 1569 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1570 MachineBasicBlock *TBB, 1571 MachineBasicBlock *FBB, 1572 MachineBasicBlock *CurBB, 1573 MachineBasicBlock *SwitchBB, 1574 Instruction::BinaryOps Opc, 1575 uint32_t TWeight, 1576 uint32_t FWeight) { 1577 // If this node is not part of the or/and tree, emit it as a branch. 1578 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1579 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1580 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1581 BOp->getParent() != CurBB->getBasicBlock() || 1582 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1583 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1584 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1585 TWeight, FWeight); 1586 return; 1587 } 1588 1589 // Create TmpBB after CurBB. 1590 MachineFunction::iterator BBI(CurBB); 1591 MachineFunction &MF = DAG.getMachineFunction(); 1592 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1593 CurBB->getParent()->insert(++BBI, TmpBB); 1594 1595 if (Opc == Instruction::Or) { 1596 // Codegen X | Y as: 1597 // BB1: 1598 // jmp_if_X TBB 1599 // jmp TmpBB 1600 // TmpBB: 1601 // jmp_if_Y TBB 1602 // jmp FBB 1603 // 1604 1605 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1606 // The requirement is that 1607 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1608 // = TrueProb for original BB. 1609 // Assuming the original weights are A and B, one choice is to set BB1's 1610 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1611 // assumes that 1612 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1613 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1614 // TmpBB, but the math is more complicated. 1615 1616 uint64_t NewTrueWeight = TWeight; 1617 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1618 ScaleWeights(NewTrueWeight, NewFalseWeight); 1619 // Emit the LHS condition. 1620 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1621 NewTrueWeight, NewFalseWeight); 1622 1623 NewTrueWeight = TWeight; 1624 NewFalseWeight = 2 * (uint64_t)FWeight; 1625 ScaleWeights(NewTrueWeight, NewFalseWeight); 1626 // Emit the RHS condition into TmpBB. 1627 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1628 NewTrueWeight, NewFalseWeight); 1629 } else { 1630 assert(Opc == Instruction::And && "Unknown merge op!"); 1631 // Codegen X & Y as: 1632 // BB1: 1633 // jmp_if_X TmpBB 1634 // jmp FBB 1635 // TmpBB: 1636 // jmp_if_Y TBB 1637 // jmp FBB 1638 // 1639 // This requires creation of TmpBB after CurBB. 1640 1641 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1642 // The requirement is that 1643 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1644 // = FalseProb for original BB. 1645 // Assuming the original weights are A and B, one choice is to set BB1's 1646 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1647 // assumes that 1648 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1649 1650 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1651 uint64_t NewFalseWeight = FWeight; 1652 ScaleWeights(NewTrueWeight, NewFalseWeight); 1653 // Emit the LHS condition. 1654 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1655 NewTrueWeight, NewFalseWeight); 1656 1657 NewTrueWeight = 2 * (uint64_t)TWeight; 1658 NewFalseWeight = FWeight; 1659 ScaleWeights(NewTrueWeight, NewFalseWeight); 1660 // Emit the RHS condition into TmpBB. 1661 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1662 NewTrueWeight, NewFalseWeight); 1663 } 1664 } 1665 1666 /// If the set of cases should be emitted as a series of branches, return true. 1667 /// If we should emit this as a bunch of and/or'd together conditions, return 1668 /// false. 1669 bool 1670 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1671 if (Cases.size() != 2) return true; 1672 1673 // If this is two comparisons of the same values or'd or and'd together, they 1674 // will get folded into a single comparison, so don't emit two blocks. 1675 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1676 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1677 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1678 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1679 return false; 1680 } 1681 1682 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1683 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1684 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1685 Cases[0].CC == Cases[1].CC && 1686 isa<Constant>(Cases[0].CmpRHS) && 1687 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1688 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1689 return false; 1690 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1691 return false; 1692 } 1693 1694 return true; 1695 } 1696 1697 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1698 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1699 1700 // Update machine-CFG edges. 1701 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1702 1703 if (I.isUnconditional()) { 1704 // Update machine-CFG edges. 1705 BrMBB->addSuccessor(Succ0MBB); 1706 1707 // If this is not a fall-through branch or optimizations are switched off, 1708 // emit the branch. 1709 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1710 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1711 MVT::Other, getControlRoot(), 1712 DAG.getBasicBlock(Succ0MBB))); 1713 1714 return; 1715 } 1716 1717 // If this condition is one of the special cases we handle, do special stuff 1718 // now. 1719 const Value *CondVal = I.getCondition(); 1720 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1721 1722 // If this is a series of conditions that are or'd or and'd together, emit 1723 // this as a sequence of branches instead of setcc's with and/or operations. 1724 // As long as jumps are not expensive, this should improve performance. 1725 // For example, instead of something like: 1726 // cmp A, B 1727 // C = seteq 1728 // cmp D, E 1729 // F = setle 1730 // or C, F 1731 // jnz foo 1732 // Emit: 1733 // cmp A, B 1734 // je foo 1735 // cmp D, E 1736 // jle foo 1737 // 1738 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1739 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1740 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1741 !I.getMetadata(LLVMContext::MD_unpredictable) && 1742 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1743 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1744 Opcode, getEdgeWeight(BrMBB, Succ0MBB), 1745 getEdgeWeight(BrMBB, Succ1MBB)); 1746 // If the compares in later blocks need to use values not currently 1747 // exported from this block, export them now. This block should always 1748 // be the first entry. 1749 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1750 1751 // Allow some cases to be rejected. 1752 if (ShouldEmitAsBranches(SwitchCases)) { 1753 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1754 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1755 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1756 } 1757 1758 // Emit the branch for this block. 1759 visitSwitchCase(SwitchCases[0], BrMBB); 1760 SwitchCases.erase(SwitchCases.begin()); 1761 return; 1762 } 1763 1764 // Okay, we decided not to do this, remove any inserted MBB's and clear 1765 // SwitchCases. 1766 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1767 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1768 1769 SwitchCases.clear(); 1770 } 1771 } 1772 1773 // Create a CaseBlock record representing this branch. 1774 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1775 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1776 1777 // Use visitSwitchCase to actually insert the fast branch sequence for this 1778 // cond branch. 1779 visitSwitchCase(CB, BrMBB); 1780 } 1781 1782 /// visitSwitchCase - Emits the necessary code to represent a single node in 1783 /// the binary search tree resulting from lowering a switch instruction. 1784 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1785 MachineBasicBlock *SwitchBB) { 1786 SDValue Cond; 1787 SDValue CondLHS = getValue(CB.CmpLHS); 1788 SDLoc dl = getCurSDLoc(); 1789 1790 // Build the setcc now. 1791 if (!CB.CmpMHS) { 1792 // Fold "(X == true)" to X and "(X == false)" to !X to 1793 // handle common cases produced by branch lowering. 1794 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1795 CB.CC == ISD::SETEQ) 1796 Cond = CondLHS; 1797 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1798 CB.CC == ISD::SETEQ) { 1799 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1800 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1801 } else 1802 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1803 } else { 1804 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1805 1806 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1807 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1808 1809 SDValue CmpOp = getValue(CB.CmpMHS); 1810 EVT VT = CmpOp.getValueType(); 1811 1812 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1813 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1814 ISD::SETLE); 1815 } else { 1816 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1817 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1818 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1819 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1820 } 1821 } 1822 1823 // Update successor info 1824 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1825 // TrueBB and FalseBB are always different unless the incoming IR is 1826 // degenerate. This only happens when running llc on weird IR. 1827 if (CB.TrueBB != CB.FalseBB) 1828 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1829 1830 // If the lhs block is the next block, invert the condition so that we can 1831 // fall through to the lhs instead of the rhs block. 1832 if (CB.TrueBB == NextBlock(SwitchBB)) { 1833 std::swap(CB.TrueBB, CB.FalseBB); 1834 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1835 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1836 } 1837 1838 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1839 MVT::Other, getControlRoot(), Cond, 1840 DAG.getBasicBlock(CB.TrueBB)); 1841 1842 // Insert the false branch. Do this even if it's a fall through branch, 1843 // this makes it easier to do DAG optimizations which require inverting 1844 // the branch condition. 1845 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1846 DAG.getBasicBlock(CB.FalseBB)); 1847 1848 DAG.setRoot(BrCond); 1849 } 1850 1851 /// visitJumpTable - Emit JumpTable node in the current MBB 1852 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1853 // Emit the code for the jump table 1854 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1855 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1856 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1857 JT.Reg, PTy); 1858 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1859 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1860 MVT::Other, Index.getValue(1), 1861 Table, Index); 1862 DAG.setRoot(BrJumpTable); 1863 } 1864 1865 /// visitJumpTableHeader - This function emits necessary code to produce index 1866 /// in the JumpTable from switch case. 1867 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1868 JumpTableHeader &JTH, 1869 MachineBasicBlock *SwitchBB) { 1870 SDLoc dl = getCurSDLoc(); 1871 1872 // Subtract the lowest switch case value from the value being switched on and 1873 // conditional branch to default mbb if the result is greater than the 1874 // difference between smallest and largest cases. 1875 SDValue SwitchOp = getValue(JTH.SValue); 1876 EVT VT = SwitchOp.getValueType(); 1877 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1878 DAG.getConstant(JTH.First, dl, VT)); 1879 1880 // The SDNode we just created, which holds the value being switched on minus 1881 // the smallest case value, needs to be copied to a virtual register so it 1882 // can be used as an index into the jump table in a subsequent basic block. 1883 // This value may be smaller or larger than the target's pointer type, and 1884 // therefore require extension or truncating. 1885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1886 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1887 1888 unsigned JumpTableReg = 1889 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1890 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1891 JumpTableReg, SwitchOp); 1892 JT.Reg = JumpTableReg; 1893 1894 // Emit the range check for the jump table, and branch to the default block 1895 // for the switch statement if the value being switched on exceeds the largest 1896 // case in the switch. 1897 SDValue CMP = DAG.getSetCC( 1898 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1899 Sub.getValueType()), 1900 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1901 1902 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1903 MVT::Other, CopyTo, CMP, 1904 DAG.getBasicBlock(JT.Default)); 1905 1906 // Avoid emitting unnecessary branches to the next block. 1907 if (JT.MBB != NextBlock(SwitchBB)) 1908 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1909 DAG.getBasicBlock(JT.MBB)); 1910 1911 DAG.setRoot(BrCond); 1912 } 1913 1914 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1915 /// tail spliced into a stack protector check success bb. 1916 /// 1917 /// For a high level explanation of how this fits into the stack protector 1918 /// generation see the comment on the declaration of class 1919 /// StackProtectorDescriptor. 1920 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1921 MachineBasicBlock *ParentBB) { 1922 1923 // First create the loads to the guard/stack slot for the comparison. 1924 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1925 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1926 1927 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1928 int FI = MFI->getStackProtectorIndex(); 1929 1930 const Value *IRGuard = SPD.getGuard(); 1931 SDValue GuardPtr = getValue(IRGuard); 1932 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1933 1934 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1935 1936 SDValue Guard; 1937 SDLoc dl = getCurSDLoc(); 1938 1939 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1940 // guard value from the virtual register holding the value. Otherwise, emit a 1941 // volatile load to retrieve the stack guard value. 1942 unsigned GuardReg = SPD.getGuardReg(); 1943 1944 if (GuardReg && TLI.useLoadStackGuardNode()) 1945 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1946 PtrTy); 1947 else 1948 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1949 GuardPtr, MachinePointerInfo(IRGuard, 0), 1950 true, false, false, Align); 1951 1952 SDValue StackSlot = DAG.getLoad( 1953 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1954 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1955 false, false, Align); 1956 1957 // Perform the comparison via a subtract/getsetcc. 1958 EVT VT = Guard.getValueType(); 1959 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1960 1961 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1962 *DAG.getContext(), 1963 Sub.getValueType()), 1964 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1965 1966 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1967 // branch to failure MBB. 1968 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1969 MVT::Other, StackSlot.getOperand(0), 1970 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1971 // Otherwise branch to success MBB. 1972 SDValue Br = DAG.getNode(ISD::BR, dl, 1973 MVT::Other, BrCond, 1974 DAG.getBasicBlock(SPD.getSuccessMBB())); 1975 1976 DAG.setRoot(Br); 1977 } 1978 1979 /// Codegen the failure basic block for a stack protector check. 1980 /// 1981 /// A failure stack protector machine basic block consists simply of a call to 1982 /// __stack_chk_fail(). 1983 /// 1984 /// For a high level explanation of how this fits into the stack protector 1985 /// generation see the comment on the declaration of class 1986 /// StackProtectorDescriptor. 1987 void 1988 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1990 SDValue Chain = 1991 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1992 None, false, getCurSDLoc(), false, false).second; 1993 DAG.setRoot(Chain); 1994 } 1995 1996 /// visitBitTestHeader - This function emits necessary code to produce value 1997 /// suitable for "bit tests" 1998 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1999 MachineBasicBlock *SwitchBB) { 2000 SDLoc dl = getCurSDLoc(); 2001 2002 // Subtract the minimum value 2003 SDValue SwitchOp = getValue(B.SValue); 2004 EVT VT = SwitchOp.getValueType(); 2005 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2006 DAG.getConstant(B.First, dl, VT)); 2007 2008 // Check range 2009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2010 SDValue RangeCmp = DAG.getSetCC( 2011 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2012 Sub.getValueType()), 2013 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2014 2015 // Determine the type of the test operands. 2016 bool UsePtrType = false; 2017 if (!TLI.isTypeLegal(VT)) 2018 UsePtrType = true; 2019 else { 2020 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2021 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2022 // Switch table case range are encoded into series of masks. 2023 // Just use pointer type, it's guaranteed to fit. 2024 UsePtrType = true; 2025 break; 2026 } 2027 } 2028 if (UsePtrType) { 2029 VT = TLI.getPointerTy(DAG.getDataLayout()); 2030 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2031 } 2032 2033 B.RegVT = VT.getSimpleVT(); 2034 B.Reg = FuncInfo.CreateReg(B.RegVT); 2035 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2036 2037 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2038 2039 addSuccessorWithWeight(SwitchBB, B.Default, B.DefaultWeight); 2040 addSuccessorWithWeight(SwitchBB, MBB, B.Weight); 2041 2042 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2043 MVT::Other, CopyTo, RangeCmp, 2044 DAG.getBasicBlock(B.Default)); 2045 2046 // Avoid emitting unnecessary branches to the next block. 2047 if (MBB != NextBlock(SwitchBB)) 2048 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2049 DAG.getBasicBlock(MBB)); 2050 2051 DAG.setRoot(BrRange); 2052 } 2053 2054 /// visitBitTestCase - this function produces one "bit test" 2055 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2056 MachineBasicBlock* NextMBB, 2057 uint32_t BranchWeightToNext, 2058 unsigned Reg, 2059 BitTestCase &B, 2060 MachineBasicBlock *SwitchBB) { 2061 SDLoc dl = getCurSDLoc(); 2062 MVT VT = BB.RegVT; 2063 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2064 SDValue Cmp; 2065 unsigned PopCount = countPopulation(B.Mask); 2066 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2067 if (PopCount == 1) { 2068 // Testing for a single bit; just compare the shift count with what it 2069 // would need to be to shift a 1 bit in that position. 2070 Cmp = DAG.getSetCC( 2071 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2072 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2073 ISD::SETEQ); 2074 } else if (PopCount == BB.Range) { 2075 // There is only one zero bit in the range, test for it directly. 2076 Cmp = DAG.getSetCC( 2077 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2078 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2079 ISD::SETNE); 2080 } else { 2081 // Make desired shift 2082 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2083 DAG.getConstant(1, dl, VT), ShiftOp); 2084 2085 // Emit bit tests and jumps 2086 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2087 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2088 Cmp = DAG.getSetCC( 2089 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2090 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2091 } 2092 2093 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 2094 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 2095 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 2096 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 2097 2098 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2099 MVT::Other, getControlRoot(), 2100 Cmp, DAG.getBasicBlock(B.TargetBB)); 2101 2102 // Avoid emitting unnecessary branches to the next block. 2103 if (NextMBB != NextBlock(SwitchBB)) 2104 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2105 DAG.getBasicBlock(NextMBB)); 2106 2107 DAG.setRoot(BrAnd); 2108 } 2109 2110 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2111 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2112 2113 // Retrieve successors. Look through artificial IR level blocks like catchpads 2114 // and catchendpads for successors. 2115 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2116 const BasicBlock *EHPadBB = I.getSuccessor(1); 2117 2118 const Value *Callee(I.getCalledValue()); 2119 const Function *Fn = dyn_cast<Function>(Callee); 2120 if (isa<InlineAsm>(Callee)) 2121 visitInlineAsm(&I); 2122 else if (Fn && Fn->isIntrinsic()) { 2123 switch (Fn->getIntrinsicID()) { 2124 default: 2125 llvm_unreachable("Cannot invoke this intrinsic"); 2126 case Intrinsic::donothing: 2127 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2128 break; 2129 case Intrinsic::experimental_patchpoint_void: 2130 case Intrinsic::experimental_patchpoint_i64: 2131 visitPatchpoint(&I, EHPadBB); 2132 break; 2133 case Intrinsic::experimental_gc_statepoint: 2134 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2135 break; 2136 } 2137 } else 2138 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2139 2140 // If the value of the invoke is used outside of its defining block, make it 2141 // available as a virtual register. 2142 // We already took care of the exported value for the statepoint instruction 2143 // during call to the LowerStatepoint. 2144 if (!isStatepoint(I)) { 2145 CopyToExportRegsIfNeeded(&I); 2146 } 2147 2148 SmallVector<std::pair<MachineBasicBlock *, uint32_t>, 1> UnwindDests; 2149 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2150 uint32_t EHPadBBWeight = 2151 BPI ? BPI->getEdgeWeight(InvokeMBB->getBasicBlock(), EHPadBB) : 0; 2152 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBWeight, UnwindDests); 2153 2154 // Update successor info. 2155 addSuccessorWithWeight(InvokeMBB, Return); 2156 for (auto &UnwindDest : UnwindDests) { 2157 UnwindDest.first->setIsEHPad(); 2158 addSuccessorWithWeight(InvokeMBB, UnwindDest.first, UnwindDest.second); 2159 } 2160 2161 // Drop into normal successor. 2162 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2163 MVT::Other, getControlRoot(), 2164 DAG.getBasicBlock(Return))); 2165 } 2166 2167 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2168 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2169 } 2170 2171 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2172 assert(FuncInfo.MBB->isEHPad() && 2173 "Call to landingpad not in landing pad!"); 2174 2175 MachineBasicBlock *MBB = FuncInfo.MBB; 2176 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2177 AddLandingPadInfo(LP, MMI, MBB); 2178 2179 // If there aren't registers to copy the values into (e.g., during SjLj 2180 // exceptions), then don't bother to create these DAG nodes. 2181 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2182 if (TLI.getExceptionPointerRegister() == 0 && 2183 TLI.getExceptionSelectorRegister() == 0) 2184 return; 2185 2186 SmallVector<EVT, 2> ValueVTs; 2187 SDLoc dl = getCurSDLoc(); 2188 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2189 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2190 2191 // Get the two live-in registers as SDValues. The physregs have already been 2192 // copied into virtual registers. 2193 SDValue Ops[2]; 2194 if (FuncInfo.ExceptionPointerVirtReg) { 2195 Ops[0] = DAG.getZExtOrTrunc( 2196 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2197 FuncInfo.ExceptionPointerVirtReg, 2198 TLI.getPointerTy(DAG.getDataLayout())), 2199 dl, ValueVTs[0]); 2200 } else { 2201 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2202 } 2203 Ops[1] = DAG.getZExtOrTrunc( 2204 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2205 FuncInfo.ExceptionSelectorVirtReg, 2206 TLI.getPointerTy(DAG.getDataLayout())), 2207 dl, ValueVTs[1]); 2208 2209 // Merge into one. 2210 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2211 DAG.getVTList(ValueVTs), Ops); 2212 setValue(&LP, Res); 2213 } 2214 2215 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2216 #ifndef NDEBUG 2217 for (const CaseCluster &CC : Clusters) 2218 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2219 #endif 2220 2221 std::sort(Clusters.begin(), Clusters.end(), 2222 [](const CaseCluster &a, const CaseCluster &b) { 2223 return a.Low->getValue().slt(b.Low->getValue()); 2224 }); 2225 2226 // Merge adjacent clusters with the same destination. 2227 const unsigned N = Clusters.size(); 2228 unsigned DstIndex = 0; 2229 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2230 CaseCluster &CC = Clusters[SrcIndex]; 2231 const ConstantInt *CaseVal = CC.Low; 2232 MachineBasicBlock *Succ = CC.MBB; 2233 2234 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2235 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2236 // If this case has the same successor and is a neighbour, merge it into 2237 // the previous cluster. 2238 Clusters[DstIndex - 1].High = CaseVal; 2239 Clusters[DstIndex - 1].Weight += CC.Weight; 2240 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2241 } else { 2242 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2243 sizeof(Clusters[SrcIndex])); 2244 } 2245 } 2246 Clusters.resize(DstIndex); 2247 } 2248 2249 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2250 MachineBasicBlock *Last) { 2251 // Update JTCases. 2252 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2253 if (JTCases[i].first.HeaderBB == First) 2254 JTCases[i].first.HeaderBB = Last; 2255 2256 // Update BitTestCases. 2257 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2258 if (BitTestCases[i].Parent == First) 2259 BitTestCases[i].Parent = Last; 2260 } 2261 2262 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2263 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2264 2265 // Update machine-CFG edges with unique successors. 2266 SmallSet<BasicBlock*, 32> Done; 2267 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2268 BasicBlock *BB = I.getSuccessor(i); 2269 bool Inserted = Done.insert(BB).second; 2270 if (!Inserted) 2271 continue; 2272 2273 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2274 addSuccessorWithWeight(IndirectBrMBB, Succ); 2275 } 2276 2277 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2278 MVT::Other, getControlRoot(), 2279 getValue(I.getAddress()))); 2280 } 2281 2282 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2283 if (DAG.getTarget().Options.TrapUnreachable) 2284 DAG.setRoot( 2285 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2286 } 2287 2288 void SelectionDAGBuilder::visitFSub(const User &I) { 2289 // -0.0 - X --> fneg 2290 Type *Ty = I.getType(); 2291 if (isa<Constant>(I.getOperand(0)) && 2292 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2293 SDValue Op2 = getValue(I.getOperand(1)); 2294 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2295 Op2.getValueType(), Op2)); 2296 return; 2297 } 2298 2299 visitBinary(I, ISD::FSUB); 2300 } 2301 2302 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2303 SDValue Op1 = getValue(I.getOperand(0)); 2304 SDValue Op2 = getValue(I.getOperand(1)); 2305 2306 bool nuw = false; 2307 bool nsw = false; 2308 bool exact = false; 2309 FastMathFlags FMF; 2310 2311 if (const OverflowingBinaryOperator *OFBinOp = 2312 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2313 nuw = OFBinOp->hasNoUnsignedWrap(); 2314 nsw = OFBinOp->hasNoSignedWrap(); 2315 } 2316 if (const PossiblyExactOperator *ExactOp = 2317 dyn_cast<const PossiblyExactOperator>(&I)) 2318 exact = ExactOp->isExact(); 2319 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2320 FMF = FPOp->getFastMathFlags(); 2321 2322 SDNodeFlags Flags; 2323 Flags.setExact(exact); 2324 Flags.setNoSignedWrap(nsw); 2325 Flags.setNoUnsignedWrap(nuw); 2326 if (EnableFMFInDAG) { 2327 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2328 Flags.setNoInfs(FMF.noInfs()); 2329 Flags.setNoNaNs(FMF.noNaNs()); 2330 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2331 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2332 } 2333 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2334 Op1, Op2, &Flags); 2335 setValue(&I, BinNodeValue); 2336 } 2337 2338 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2339 SDValue Op1 = getValue(I.getOperand(0)); 2340 SDValue Op2 = getValue(I.getOperand(1)); 2341 2342 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2343 Op2.getValueType(), DAG.getDataLayout()); 2344 2345 // Coerce the shift amount to the right type if we can. 2346 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2347 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2348 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2349 SDLoc DL = getCurSDLoc(); 2350 2351 // If the operand is smaller than the shift count type, promote it. 2352 if (ShiftSize > Op2Size) 2353 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2354 2355 // If the operand is larger than the shift count type but the shift 2356 // count type has enough bits to represent any shift value, truncate 2357 // it now. This is a common case and it exposes the truncate to 2358 // optimization early. 2359 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2360 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2361 // Otherwise we'll need to temporarily settle for some other convenient 2362 // type. Type legalization will make adjustments once the shiftee is split. 2363 else 2364 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2365 } 2366 2367 bool nuw = false; 2368 bool nsw = false; 2369 bool exact = false; 2370 2371 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2372 2373 if (const OverflowingBinaryOperator *OFBinOp = 2374 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2375 nuw = OFBinOp->hasNoUnsignedWrap(); 2376 nsw = OFBinOp->hasNoSignedWrap(); 2377 } 2378 if (const PossiblyExactOperator *ExactOp = 2379 dyn_cast<const PossiblyExactOperator>(&I)) 2380 exact = ExactOp->isExact(); 2381 } 2382 SDNodeFlags Flags; 2383 Flags.setExact(exact); 2384 Flags.setNoSignedWrap(nsw); 2385 Flags.setNoUnsignedWrap(nuw); 2386 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2387 &Flags); 2388 setValue(&I, Res); 2389 } 2390 2391 void SelectionDAGBuilder::visitSDiv(const User &I) { 2392 SDValue Op1 = getValue(I.getOperand(0)); 2393 SDValue Op2 = getValue(I.getOperand(1)); 2394 2395 SDNodeFlags Flags; 2396 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2397 cast<PossiblyExactOperator>(&I)->isExact()); 2398 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2399 Op2, &Flags)); 2400 } 2401 2402 void SelectionDAGBuilder::visitICmp(const User &I) { 2403 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2404 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2405 predicate = IC->getPredicate(); 2406 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2407 predicate = ICmpInst::Predicate(IC->getPredicate()); 2408 SDValue Op1 = getValue(I.getOperand(0)); 2409 SDValue Op2 = getValue(I.getOperand(1)); 2410 ISD::CondCode Opcode = getICmpCondCode(predicate); 2411 2412 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2413 I.getType()); 2414 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2415 } 2416 2417 void SelectionDAGBuilder::visitFCmp(const User &I) { 2418 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2419 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2420 predicate = FC->getPredicate(); 2421 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2422 predicate = FCmpInst::Predicate(FC->getPredicate()); 2423 SDValue Op1 = getValue(I.getOperand(0)); 2424 SDValue Op2 = getValue(I.getOperand(1)); 2425 ISD::CondCode Condition = getFCmpCondCode(predicate); 2426 2427 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2428 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2429 // further optimization, but currently FMF is only applicable to binary nodes. 2430 if (TM.Options.NoNaNsFPMath) 2431 Condition = getFCmpCodeWithoutNaN(Condition); 2432 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2433 I.getType()); 2434 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2435 } 2436 2437 void SelectionDAGBuilder::visitSelect(const User &I) { 2438 SmallVector<EVT, 4> ValueVTs; 2439 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2440 ValueVTs); 2441 unsigned NumValues = ValueVTs.size(); 2442 if (NumValues == 0) return; 2443 2444 SmallVector<SDValue, 4> Values(NumValues); 2445 SDValue Cond = getValue(I.getOperand(0)); 2446 SDValue LHSVal = getValue(I.getOperand(1)); 2447 SDValue RHSVal = getValue(I.getOperand(2)); 2448 auto BaseOps = {Cond}; 2449 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2450 ISD::VSELECT : ISD::SELECT; 2451 2452 // Min/max matching is only viable if all output VTs are the same. 2453 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2454 EVT VT = ValueVTs[0]; 2455 LLVMContext &Ctx = *DAG.getContext(); 2456 auto &TLI = DAG.getTargetLoweringInfo(); 2457 while (TLI.getTypeAction(Ctx, VT) == TargetLoweringBase::TypeSplitVector) 2458 VT = TLI.getTypeToTransformTo(Ctx, VT); 2459 2460 Value *LHS, *RHS; 2461 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2462 ISD::NodeType Opc = ISD::DELETED_NODE; 2463 switch (SPR.Flavor) { 2464 case SPF_UMAX: Opc = ISD::UMAX; break; 2465 case SPF_UMIN: Opc = ISD::UMIN; break; 2466 case SPF_SMAX: Opc = ISD::SMAX; break; 2467 case SPF_SMIN: Opc = ISD::SMIN; break; 2468 case SPF_FMINNUM: 2469 switch (SPR.NaNBehavior) { 2470 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2471 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2472 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2473 case SPNB_RETURNS_ANY: 2474 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ? ISD::FMINNUM 2475 : ISD::FMINNAN; 2476 break; 2477 } 2478 break; 2479 case SPF_FMAXNUM: 2480 switch (SPR.NaNBehavior) { 2481 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2482 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2483 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2484 case SPNB_RETURNS_ANY: 2485 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ? ISD::FMAXNUM 2486 : ISD::FMAXNAN; 2487 break; 2488 } 2489 break; 2490 default: break; 2491 } 2492 2493 if (Opc != ISD::DELETED_NODE && TLI.isOperationLegalOrCustom(Opc, VT) && 2494 // If the underlying comparison instruction is used by any other instruction, 2495 // the consumed instructions won't be destroyed, so it is not profitable 2496 // to convert to a min/max. 2497 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2498 OpCode = Opc; 2499 LHSVal = getValue(LHS); 2500 RHSVal = getValue(RHS); 2501 BaseOps = {}; 2502 } 2503 } 2504 2505 for (unsigned i = 0; i != NumValues; ++i) { 2506 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2507 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2508 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2509 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2510 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2511 Ops); 2512 } 2513 2514 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2515 DAG.getVTList(ValueVTs), Values)); 2516 } 2517 2518 void SelectionDAGBuilder::visitTrunc(const User &I) { 2519 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2520 SDValue N = getValue(I.getOperand(0)); 2521 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2522 I.getType()); 2523 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2524 } 2525 2526 void SelectionDAGBuilder::visitZExt(const User &I) { 2527 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2528 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2529 SDValue N = getValue(I.getOperand(0)); 2530 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2531 I.getType()); 2532 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2533 } 2534 2535 void SelectionDAGBuilder::visitSExt(const User &I) { 2536 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2537 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2538 SDValue N = getValue(I.getOperand(0)); 2539 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2540 I.getType()); 2541 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2542 } 2543 2544 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2545 // FPTrunc is never a no-op cast, no need to check 2546 SDValue N = getValue(I.getOperand(0)); 2547 SDLoc dl = getCurSDLoc(); 2548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2549 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2550 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2551 DAG.getTargetConstant( 2552 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2553 } 2554 2555 void SelectionDAGBuilder::visitFPExt(const User &I) { 2556 // FPExt is never a no-op cast, no need to check 2557 SDValue N = getValue(I.getOperand(0)); 2558 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2559 I.getType()); 2560 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2561 } 2562 2563 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2564 // FPToUI is never a no-op cast, no need to check 2565 SDValue N = getValue(I.getOperand(0)); 2566 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2567 I.getType()); 2568 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2569 } 2570 2571 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2572 // FPToSI is never a no-op cast, no need to check 2573 SDValue N = getValue(I.getOperand(0)); 2574 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2575 I.getType()); 2576 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2577 } 2578 2579 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2580 // UIToFP is never a no-op cast, no need to check 2581 SDValue N = getValue(I.getOperand(0)); 2582 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2583 I.getType()); 2584 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2585 } 2586 2587 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2588 // SIToFP is never a no-op cast, no need to check 2589 SDValue N = getValue(I.getOperand(0)); 2590 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2591 I.getType()); 2592 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2593 } 2594 2595 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2596 // What to do depends on the size of the integer and the size of the pointer. 2597 // We can either truncate, zero extend, or no-op, accordingly. 2598 SDValue N = getValue(I.getOperand(0)); 2599 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2600 I.getType()); 2601 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2602 } 2603 2604 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2605 // What to do depends on the size of the integer and the size of the pointer. 2606 // We can either truncate, zero extend, or no-op, accordingly. 2607 SDValue N = getValue(I.getOperand(0)); 2608 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2609 I.getType()); 2610 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2611 } 2612 2613 void SelectionDAGBuilder::visitBitCast(const User &I) { 2614 SDValue N = getValue(I.getOperand(0)); 2615 SDLoc dl = getCurSDLoc(); 2616 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2617 I.getType()); 2618 2619 // BitCast assures us that source and destination are the same size so this is 2620 // either a BITCAST or a no-op. 2621 if (DestVT != N.getValueType()) 2622 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2623 DestVT, N)); // convert types. 2624 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2625 // might fold any kind of constant expression to an integer constant and that 2626 // is not what we are looking for. Only regcognize a bitcast of a genuine 2627 // constant integer as an opaque constant. 2628 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2629 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2630 /*isOpaque*/true)); 2631 else 2632 setValue(&I, N); // noop cast. 2633 } 2634 2635 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2637 const Value *SV = I.getOperand(0); 2638 SDValue N = getValue(SV); 2639 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2640 2641 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2642 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2643 2644 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2645 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2646 2647 setValue(&I, N); 2648 } 2649 2650 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2652 SDValue InVec = getValue(I.getOperand(0)); 2653 SDValue InVal = getValue(I.getOperand(1)); 2654 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2655 TLI.getVectorIdxTy(DAG.getDataLayout())); 2656 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2657 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2658 InVec, InVal, InIdx)); 2659 } 2660 2661 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2662 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2663 SDValue InVec = getValue(I.getOperand(0)); 2664 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2665 TLI.getVectorIdxTy(DAG.getDataLayout())); 2666 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2667 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2668 InVec, InIdx)); 2669 } 2670 2671 // Utility for visitShuffleVector - Return true if every element in Mask, 2672 // beginning from position Pos and ending in Pos+Size, falls within the 2673 // specified sequential range [L, L+Pos). or is undef. 2674 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2675 unsigned Pos, unsigned Size, int Low) { 2676 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2677 if (Mask[i] >= 0 && Mask[i] != Low) 2678 return false; 2679 return true; 2680 } 2681 2682 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2683 SDValue Src1 = getValue(I.getOperand(0)); 2684 SDValue Src2 = getValue(I.getOperand(1)); 2685 2686 SmallVector<int, 8> Mask; 2687 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2688 unsigned MaskNumElts = Mask.size(); 2689 2690 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2691 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2692 EVT SrcVT = Src1.getValueType(); 2693 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2694 2695 if (SrcNumElts == MaskNumElts) { 2696 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2697 &Mask[0])); 2698 return; 2699 } 2700 2701 // Normalize the shuffle vector since mask and vector length don't match. 2702 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2703 // Mask is longer than the source vectors and is a multiple of the source 2704 // vectors. We can use concatenate vector to make the mask and vectors 2705 // lengths match. 2706 if (SrcNumElts*2 == MaskNumElts) { 2707 // First check for Src1 in low and Src2 in high 2708 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2709 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2710 // The shuffle is concatenating two vectors together. 2711 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2712 VT, Src1, Src2)); 2713 return; 2714 } 2715 // Then check for Src2 in low and Src1 in high 2716 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2717 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2718 // The shuffle is concatenating two vectors together. 2719 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2720 VT, Src2, Src1)); 2721 return; 2722 } 2723 } 2724 2725 // Pad both vectors with undefs to make them the same length as the mask. 2726 unsigned NumConcat = MaskNumElts / SrcNumElts; 2727 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2728 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2729 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2730 2731 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2732 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2733 MOps1[0] = Src1; 2734 MOps2[0] = Src2; 2735 2736 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2737 getCurSDLoc(), VT, MOps1); 2738 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2739 getCurSDLoc(), VT, MOps2); 2740 2741 // Readjust mask for new input vector length. 2742 SmallVector<int, 8> MappedOps; 2743 for (unsigned i = 0; i != MaskNumElts; ++i) { 2744 int Idx = Mask[i]; 2745 if (Idx >= (int)SrcNumElts) 2746 Idx -= SrcNumElts - MaskNumElts; 2747 MappedOps.push_back(Idx); 2748 } 2749 2750 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2751 &MappedOps[0])); 2752 return; 2753 } 2754 2755 if (SrcNumElts > MaskNumElts) { 2756 // Analyze the access pattern of the vector to see if we can extract 2757 // two subvectors and do the shuffle. The analysis is done by calculating 2758 // the range of elements the mask access on both vectors. 2759 int MinRange[2] = { static_cast<int>(SrcNumElts), 2760 static_cast<int>(SrcNumElts)}; 2761 int MaxRange[2] = {-1, -1}; 2762 2763 for (unsigned i = 0; i != MaskNumElts; ++i) { 2764 int Idx = Mask[i]; 2765 unsigned Input = 0; 2766 if (Idx < 0) 2767 continue; 2768 2769 if (Idx >= (int)SrcNumElts) { 2770 Input = 1; 2771 Idx -= SrcNumElts; 2772 } 2773 if (Idx > MaxRange[Input]) 2774 MaxRange[Input] = Idx; 2775 if (Idx < MinRange[Input]) 2776 MinRange[Input] = Idx; 2777 } 2778 2779 // Check if the access is smaller than the vector size and can we find 2780 // a reasonable extract index. 2781 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2782 // Extract. 2783 int StartIdx[2]; // StartIdx to extract from 2784 for (unsigned Input = 0; Input < 2; ++Input) { 2785 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2786 RangeUse[Input] = 0; // Unused 2787 StartIdx[Input] = 0; 2788 continue; 2789 } 2790 2791 // Find a good start index that is a multiple of the mask length. Then 2792 // see if the rest of the elements are in range. 2793 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2794 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2795 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2796 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2797 } 2798 2799 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2800 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2801 return; 2802 } 2803 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2804 // Extract appropriate subvector and generate a vector shuffle 2805 for (unsigned Input = 0; Input < 2; ++Input) { 2806 SDValue &Src = Input == 0 ? Src1 : Src2; 2807 if (RangeUse[Input] == 0) 2808 Src = DAG.getUNDEF(VT); 2809 else { 2810 SDLoc dl = getCurSDLoc(); 2811 Src = DAG.getNode( 2812 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2813 DAG.getConstant(StartIdx[Input], dl, 2814 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2815 } 2816 } 2817 2818 // Calculate new mask. 2819 SmallVector<int, 8> MappedOps; 2820 for (unsigned i = 0; i != MaskNumElts; ++i) { 2821 int Idx = Mask[i]; 2822 if (Idx >= 0) { 2823 if (Idx < (int)SrcNumElts) 2824 Idx -= StartIdx[0]; 2825 else 2826 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2827 } 2828 MappedOps.push_back(Idx); 2829 } 2830 2831 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2832 &MappedOps[0])); 2833 return; 2834 } 2835 } 2836 2837 // We can't use either concat vectors or extract subvectors so fall back to 2838 // replacing the shuffle with extract and build vector. 2839 // to insert and build vector. 2840 EVT EltVT = VT.getVectorElementType(); 2841 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2842 SDLoc dl = getCurSDLoc(); 2843 SmallVector<SDValue,8> Ops; 2844 for (unsigned i = 0; i != MaskNumElts; ++i) { 2845 int Idx = Mask[i]; 2846 SDValue Res; 2847 2848 if (Idx < 0) { 2849 Res = DAG.getUNDEF(EltVT); 2850 } else { 2851 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2852 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2853 2854 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2855 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2856 } 2857 2858 Ops.push_back(Res); 2859 } 2860 2861 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2862 } 2863 2864 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2865 const Value *Op0 = I.getOperand(0); 2866 const Value *Op1 = I.getOperand(1); 2867 Type *AggTy = I.getType(); 2868 Type *ValTy = Op1->getType(); 2869 bool IntoUndef = isa<UndefValue>(Op0); 2870 bool FromUndef = isa<UndefValue>(Op1); 2871 2872 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2873 2874 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2875 SmallVector<EVT, 4> AggValueVTs; 2876 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2877 SmallVector<EVT, 4> ValValueVTs; 2878 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2879 2880 unsigned NumAggValues = AggValueVTs.size(); 2881 unsigned NumValValues = ValValueVTs.size(); 2882 SmallVector<SDValue, 4> Values(NumAggValues); 2883 2884 // Ignore an insertvalue that produces an empty object 2885 if (!NumAggValues) { 2886 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2887 return; 2888 } 2889 2890 SDValue Agg = getValue(Op0); 2891 unsigned i = 0; 2892 // Copy the beginning value(s) from the original aggregate. 2893 for (; i != LinearIndex; ++i) 2894 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2895 SDValue(Agg.getNode(), Agg.getResNo() + i); 2896 // Copy values from the inserted value(s). 2897 if (NumValValues) { 2898 SDValue Val = getValue(Op1); 2899 for (; i != LinearIndex + NumValValues; ++i) 2900 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2901 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2902 } 2903 // Copy remaining value(s) from the original aggregate. 2904 for (; i != NumAggValues; ++i) 2905 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2906 SDValue(Agg.getNode(), Agg.getResNo() + i); 2907 2908 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2909 DAG.getVTList(AggValueVTs), Values)); 2910 } 2911 2912 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2913 const Value *Op0 = I.getOperand(0); 2914 Type *AggTy = Op0->getType(); 2915 Type *ValTy = I.getType(); 2916 bool OutOfUndef = isa<UndefValue>(Op0); 2917 2918 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2919 2920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2921 SmallVector<EVT, 4> ValValueVTs; 2922 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2923 2924 unsigned NumValValues = ValValueVTs.size(); 2925 2926 // Ignore a extractvalue that produces an empty object 2927 if (!NumValValues) { 2928 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2929 return; 2930 } 2931 2932 SmallVector<SDValue, 4> Values(NumValValues); 2933 2934 SDValue Agg = getValue(Op0); 2935 // Copy out the selected value(s). 2936 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2937 Values[i - LinearIndex] = 2938 OutOfUndef ? 2939 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2940 SDValue(Agg.getNode(), Agg.getResNo() + i); 2941 2942 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2943 DAG.getVTList(ValValueVTs), Values)); 2944 } 2945 2946 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2947 Value *Op0 = I.getOperand(0); 2948 // Note that the pointer operand may be a vector of pointers. Take the scalar 2949 // element which holds a pointer. 2950 Type *Ty = Op0->getType()->getScalarType(); 2951 unsigned AS = Ty->getPointerAddressSpace(); 2952 SDValue N = getValue(Op0); 2953 SDLoc dl = getCurSDLoc(); 2954 2955 // Normalize Vector GEP - all scalar operands should be converted to the 2956 // splat vector. 2957 unsigned VectorWidth = I.getType()->isVectorTy() ? 2958 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2959 2960 if (VectorWidth && !N.getValueType().isVector()) { 2961 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2962 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2963 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2964 } 2965 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2966 OI != E; ++OI) { 2967 const Value *Idx = *OI; 2968 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2969 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2970 if (Field) { 2971 // N = N + Offset 2972 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2973 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2974 DAG.getConstant(Offset, dl, N.getValueType())); 2975 } 2976 2977 Ty = StTy->getElementType(Field); 2978 } else { 2979 Ty = cast<SequentialType>(Ty)->getElementType(); 2980 MVT PtrTy = 2981 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 2982 unsigned PtrSize = PtrTy.getSizeInBits(); 2983 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2984 2985 // If this is a scalar constant or a splat vector of constants, 2986 // handle it quickly. 2987 const auto *CI = dyn_cast<ConstantInt>(Idx); 2988 if (!CI && isa<ConstantDataVector>(Idx) && 2989 cast<ConstantDataVector>(Idx)->getSplatValue()) 2990 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 2991 2992 if (CI) { 2993 if (CI->isZero()) 2994 continue; 2995 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2996 SDValue OffsVal = VectorWidth ? 2997 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 2998 DAG.getConstant(Offs, dl, PtrTy); 2999 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3000 continue; 3001 } 3002 3003 // N = N + Idx * ElementSize; 3004 SDValue IdxN = getValue(Idx); 3005 3006 if (!IdxN.getValueType().isVector() && VectorWidth) { 3007 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3008 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3009 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3010 } 3011 // If the index is smaller or larger than intptr_t, truncate or extend 3012 // it. 3013 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3014 3015 // If this is a multiply by a power of two, turn it into a shl 3016 // immediately. This is a very common case. 3017 if (ElementSize != 1) { 3018 if (ElementSize.isPowerOf2()) { 3019 unsigned Amt = ElementSize.logBase2(); 3020 IdxN = DAG.getNode(ISD::SHL, dl, 3021 N.getValueType(), IdxN, 3022 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3023 } else { 3024 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3025 IdxN = DAG.getNode(ISD::MUL, dl, 3026 N.getValueType(), IdxN, Scale); 3027 } 3028 } 3029 3030 N = DAG.getNode(ISD::ADD, dl, 3031 N.getValueType(), N, IdxN); 3032 } 3033 } 3034 3035 setValue(&I, N); 3036 } 3037 3038 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3039 // If this is a fixed sized alloca in the entry block of the function, 3040 // allocate it statically on the stack. 3041 if (FuncInfo.StaticAllocaMap.count(&I)) 3042 return; // getValue will auto-populate this. 3043 3044 SDLoc dl = getCurSDLoc(); 3045 Type *Ty = I.getAllocatedType(); 3046 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3047 auto &DL = DAG.getDataLayout(); 3048 uint64_t TySize = DL.getTypeAllocSize(Ty); 3049 unsigned Align = 3050 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3051 3052 SDValue AllocSize = getValue(I.getArraySize()); 3053 3054 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3055 if (AllocSize.getValueType() != IntPtr) 3056 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3057 3058 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3059 AllocSize, 3060 DAG.getConstant(TySize, dl, IntPtr)); 3061 3062 // Handle alignment. If the requested alignment is less than or equal to 3063 // the stack alignment, ignore it. If the size is greater than or equal to 3064 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3065 unsigned StackAlign = 3066 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3067 if (Align <= StackAlign) 3068 Align = 0; 3069 3070 // Round the size of the allocation up to the stack alignment size 3071 // by add SA-1 to the size. 3072 AllocSize = DAG.getNode(ISD::ADD, dl, 3073 AllocSize.getValueType(), AllocSize, 3074 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3075 3076 // Mask out the low bits for alignment purposes. 3077 AllocSize = DAG.getNode(ISD::AND, dl, 3078 AllocSize.getValueType(), AllocSize, 3079 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3080 dl)); 3081 3082 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3083 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3084 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3085 setValue(&I, DSA); 3086 DAG.setRoot(DSA.getValue(1)); 3087 3088 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3089 } 3090 3091 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3092 if (I.isAtomic()) 3093 return visitAtomicLoad(I); 3094 3095 const Value *SV = I.getOperand(0); 3096 SDValue Ptr = getValue(SV); 3097 3098 Type *Ty = I.getType(); 3099 3100 bool isVolatile = I.isVolatile(); 3101 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3102 3103 // The IR notion of invariant_load only guarantees that all *non-faulting* 3104 // invariant loads result in the same value. The MI notion of invariant load 3105 // guarantees that the load can be legally moved to any location within its 3106 // containing function. The MI notion of invariant_load is stronger than the 3107 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3108 // with a guarantee that the location being loaded from is dereferenceable 3109 // throughout the function's lifetime. 3110 3111 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3112 isDereferenceablePointer(SV, DAG.getDataLayout()); 3113 unsigned Alignment = I.getAlignment(); 3114 3115 AAMDNodes AAInfo; 3116 I.getAAMetadata(AAInfo); 3117 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3118 3119 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3120 SmallVector<EVT, 4> ValueVTs; 3121 SmallVector<uint64_t, 4> Offsets; 3122 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3123 unsigned NumValues = ValueVTs.size(); 3124 if (NumValues == 0) 3125 return; 3126 3127 SDValue Root; 3128 bool ConstantMemory = false; 3129 if (isVolatile || NumValues > MaxParallelChains) 3130 // Serialize volatile loads with other side effects. 3131 Root = getRoot(); 3132 else if (AA->pointsToConstantMemory(MemoryLocation( 3133 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3134 // Do not serialize (non-volatile) loads of constant memory with anything. 3135 Root = DAG.getEntryNode(); 3136 ConstantMemory = true; 3137 } else { 3138 // Do not serialize non-volatile loads against each other. 3139 Root = DAG.getRoot(); 3140 } 3141 3142 SDLoc dl = getCurSDLoc(); 3143 3144 if (isVolatile) 3145 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3146 3147 SmallVector<SDValue, 4> Values(NumValues); 3148 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3149 EVT PtrVT = Ptr.getValueType(); 3150 unsigned ChainI = 0; 3151 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3152 // Serializing loads here may result in excessive register pressure, and 3153 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3154 // could recover a bit by hoisting nodes upward in the chain by recognizing 3155 // they are side-effect free or do not alias. The optimizer should really 3156 // avoid this case by converting large object/array copies to llvm.memcpy 3157 // (MaxParallelChains should always remain as failsafe). 3158 if (ChainI == MaxParallelChains) { 3159 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3160 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3161 makeArrayRef(Chains.data(), ChainI)); 3162 Root = Chain; 3163 ChainI = 0; 3164 } 3165 SDValue A = DAG.getNode(ISD::ADD, dl, 3166 PtrVT, Ptr, 3167 DAG.getConstant(Offsets[i], dl, PtrVT)); 3168 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3169 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3170 isNonTemporal, isInvariant, Alignment, AAInfo, 3171 Ranges); 3172 3173 Values[i] = L; 3174 Chains[ChainI] = L.getValue(1); 3175 } 3176 3177 if (!ConstantMemory) { 3178 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3179 makeArrayRef(Chains.data(), ChainI)); 3180 if (isVolatile) 3181 DAG.setRoot(Chain); 3182 else 3183 PendingLoads.push_back(Chain); 3184 } 3185 3186 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3187 DAG.getVTList(ValueVTs), Values)); 3188 } 3189 3190 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3191 if (I.isAtomic()) 3192 return visitAtomicStore(I); 3193 3194 const Value *SrcV = I.getOperand(0); 3195 const Value *PtrV = I.getOperand(1); 3196 3197 SmallVector<EVT, 4> ValueVTs; 3198 SmallVector<uint64_t, 4> Offsets; 3199 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3200 SrcV->getType(), ValueVTs, &Offsets); 3201 unsigned NumValues = ValueVTs.size(); 3202 if (NumValues == 0) 3203 return; 3204 3205 // Get the lowered operands. Note that we do this after 3206 // checking if NumResults is zero, because with zero results 3207 // the operands won't have values in the map. 3208 SDValue Src = getValue(SrcV); 3209 SDValue Ptr = getValue(PtrV); 3210 3211 SDValue Root = getRoot(); 3212 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3213 EVT PtrVT = Ptr.getValueType(); 3214 bool isVolatile = I.isVolatile(); 3215 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3216 unsigned Alignment = I.getAlignment(); 3217 SDLoc dl = getCurSDLoc(); 3218 3219 AAMDNodes AAInfo; 3220 I.getAAMetadata(AAInfo); 3221 3222 unsigned ChainI = 0; 3223 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3224 // See visitLoad comments. 3225 if (ChainI == MaxParallelChains) { 3226 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3227 makeArrayRef(Chains.data(), ChainI)); 3228 Root = Chain; 3229 ChainI = 0; 3230 } 3231 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3232 DAG.getConstant(Offsets[i], dl, PtrVT)); 3233 SDValue St = DAG.getStore(Root, dl, 3234 SDValue(Src.getNode(), Src.getResNo() + i), 3235 Add, MachinePointerInfo(PtrV, Offsets[i]), 3236 isVolatile, isNonTemporal, Alignment, AAInfo); 3237 Chains[ChainI] = St; 3238 } 3239 3240 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3241 makeArrayRef(Chains.data(), ChainI)); 3242 DAG.setRoot(StoreNode); 3243 } 3244 3245 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3246 SDLoc sdl = getCurSDLoc(); 3247 3248 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3249 Value *PtrOperand = I.getArgOperand(1); 3250 SDValue Ptr = getValue(PtrOperand); 3251 SDValue Src0 = getValue(I.getArgOperand(0)); 3252 SDValue Mask = getValue(I.getArgOperand(3)); 3253 EVT VT = Src0.getValueType(); 3254 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3255 if (!Alignment) 3256 Alignment = DAG.getEVTAlignment(VT); 3257 3258 AAMDNodes AAInfo; 3259 I.getAAMetadata(AAInfo); 3260 3261 MachineMemOperand *MMO = 3262 DAG.getMachineFunction(). 3263 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3264 MachineMemOperand::MOStore, VT.getStoreSize(), 3265 Alignment, AAInfo); 3266 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3267 MMO, false); 3268 DAG.setRoot(StoreNode); 3269 setValue(&I, StoreNode); 3270 } 3271 3272 // Get a uniform base for the Gather/Scatter intrinsic. 3273 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3274 // We try to represent it as a base pointer + vector of indices. 3275 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3276 // The first operand of the GEP may be a single pointer or a vector of pointers 3277 // Example: 3278 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3279 // or 3280 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3281 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3282 // 3283 // When the first GEP operand is a single pointer - it is the uniform base we 3284 // are looking for. If first operand of the GEP is a splat vector - we 3285 // extract the spalt value and use it as a uniform base. 3286 // In all other cases the function returns 'false'. 3287 // 3288 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3289 SelectionDAGBuilder* SDB) { 3290 3291 SelectionDAG& DAG = SDB->DAG; 3292 LLVMContext &Context = *DAG.getContext(); 3293 3294 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3295 GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3296 if (!GEP || GEP->getNumOperands() > 2) 3297 return false; 3298 3299 Value *GEPPtr = GEP->getPointerOperand(); 3300 if (!GEPPtr->getType()->isVectorTy()) 3301 Ptr = GEPPtr; 3302 else if (!(Ptr = getSplatValue(GEPPtr))) 3303 return false; 3304 3305 Value *IndexVal = GEP->getOperand(1); 3306 3307 // The operands of the GEP may be defined in another basic block. 3308 // In this case we'll not find nodes for the operands. 3309 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3310 return false; 3311 3312 Base = SDB->getValue(Ptr); 3313 Index = SDB->getValue(IndexVal); 3314 3315 // Suppress sign extension. 3316 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3317 if (SDB->findValue(Sext->getOperand(0))) { 3318 IndexVal = Sext->getOperand(0); 3319 Index = SDB->getValue(IndexVal); 3320 } 3321 } 3322 if (!Index.getValueType().isVector()) { 3323 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3324 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3325 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3326 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3327 } 3328 return true; 3329 } 3330 3331 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3332 SDLoc sdl = getCurSDLoc(); 3333 3334 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3335 Value *Ptr = I.getArgOperand(1); 3336 SDValue Src0 = getValue(I.getArgOperand(0)); 3337 SDValue Mask = getValue(I.getArgOperand(3)); 3338 EVT VT = Src0.getValueType(); 3339 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3340 if (!Alignment) 3341 Alignment = DAG.getEVTAlignment(VT); 3342 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3343 3344 AAMDNodes AAInfo; 3345 I.getAAMetadata(AAInfo); 3346 3347 SDValue Base; 3348 SDValue Index; 3349 Value *BasePtr = Ptr; 3350 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3351 3352 Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3353 MachineMemOperand *MMO = DAG.getMachineFunction(). 3354 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3355 MachineMemOperand::MOStore, VT.getStoreSize(), 3356 Alignment, AAInfo); 3357 if (!UniformBase) { 3358 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3359 Index = getValue(Ptr); 3360 } 3361 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3362 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3363 Ops, MMO); 3364 DAG.setRoot(Scatter); 3365 setValue(&I, Scatter); 3366 } 3367 3368 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3369 SDLoc sdl = getCurSDLoc(); 3370 3371 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3372 Value *PtrOperand = I.getArgOperand(0); 3373 SDValue Ptr = getValue(PtrOperand); 3374 SDValue Src0 = getValue(I.getArgOperand(3)); 3375 SDValue Mask = getValue(I.getArgOperand(2)); 3376 3377 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3378 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3379 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3380 if (!Alignment) 3381 Alignment = DAG.getEVTAlignment(VT); 3382 3383 AAMDNodes AAInfo; 3384 I.getAAMetadata(AAInfo); 3385 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3386 3387 SDValue InChain = DAG.getRoot(); 3388 if (AA->pointsToConstantMemory(MemoryLocation( 3389 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3390 AAInfo))) { 3391 // Do not serialize (non-volatile) loads of constant memory with anything. 3392 InChain = DAG.getEntryNode(); 3393 } 3394 3395 MachineMemOperand *MMO = 3396 DAG.getMachineFunction(). 3397 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3398 MachineMemOperand::MOLoad, VT.getStoreSize(), 3399 Alignment, AAInfo, Ranges); 3400 3401 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3402 ISD::NON_EXTLOAD); 3403 SDValue OutChain = Load.getValue(1); 3404 DAG.setRoot(OutChain); 3405 setValue(&I, Load); 3406 } 3407 3408 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3409 SDLoc sdl = getCurSDLoc(); 3410 3411 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3412 Value *Ptr = I.getArgOperand(0); 3413 SDValue Src0 = getValue(I.getArgOperand(3)); 3414 SDValue Mask = getValue(I.getArgOperand(2)); 3415 3416 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3417 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3418 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3419 if (!Alignment) 3420 Alignment = DAG.getEVTAlignment(VT); 3421 3422 AAMDNodes AAInfo; 3423 I.getAAMetadata(AAInfo); 3424 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3425 3426 SDValue Root = DAG.getRoot(); 3427 SDValue Base; 3428 SDValue Index; 3429 Value *BasePtr = Ptr; 3430 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3431 bool ConstantMemory = false; 3432 if (UniformBase && 3433 AA->pointsToConstantMemory(MemoryLocation( 3434 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3435 AAInfo))) { 3436 // Do not serialize (non-volatile) loads of constant memory with anything. 3437 Root = DAG.getEntryNode(); 3438 ConstantMemory = true; 3439 } 3440 3441 MachineMemOperand *MMO = 3442 DAG.getMachineFunction(). 3443 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3444 MachineMemOperand::MOLoad, VT.getStoreSize(), 3445 Alignment, AAInfo, Ranges); 3446 3447 if (!UniformBase) { 3448 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3449 Index = getValue(Ptr); 3450 } 3451 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3452 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3453 Ops, MMO); 3454 3455 SDValue OutChain = Gather.getValue(1); 3456 if (!ConstantMemory) 3457 PendingLoads.push_back(OutChain); 3458 setValue(&I, Gather); 3459 } 3460 3461 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3462 SDLoc dl = getCurSDLoc(); 3463 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3464 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3465 SynchronizationScope Scope = I.getSynchScope(); 3466 3467 SDValue InChain = getRoot(); 3468 3469 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3470 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3471 SDValue L = DAG.getAtomicCmpSwap( 3472 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3473 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3474 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3475 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3476 3477 SDValue OutChain = L.getValue(2); 3478 3479 setValue(&I, L); 3480 DAG.setRoot(OutChain); 3481 } 3482 3483 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3484 SDLoc dl = getCurSDLoc(); 3485 ISD::NodeType NT; 3486 switch (I.getOperation()) { 3487 default: llvm_unreachable("Unknown atomicrmw operation"); 3488 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3489 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3490 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3491 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3492 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3493 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3494 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3495 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3496 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3497 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3498 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3499 } 3500 AtomicOrdering Order = I.getOrdering(); 3501 SynchronizationScope Scope = I.getSynchScope(); 3502 3503 SDValue InChain = getRoot(); 3504 3505 SDValue L = 3506 DAG.getAtomic(NT, dl, 3507 getValue(I.getValOperand()).getSimpleValueType(), 3508 InChain, 3509 getValue(I.getPointerOperand()), 3510 getValue(I.getValOperand()), 3511 I.getPointerOperand(), 3512 /* Alignment=*/ 0, Order, Scope); 3513 3514 SDValue OutChain = L.getValue(1); 3515 3516 setValue(&I, L); 3517 DAG.setRoot(OutChain); 3518 } 3519 3520 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3521 SDLoc dl = getCurSDLoc(); 3522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3523 SDValue Ops[3]; 3524 Ops[0] = getRoot(); 3525 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3526 TLI.getPointerTy(DAG.getDataLayout())); 3527 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3528 TLI.getPointerTy(DAG.getDataLayout())); 3529 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3530 } 3531 3532 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3533 SDLoc dl = getCurSDLoc(); 3534 AtomicOrdering Order = I.getOrdering(); 3535 SynchronizationScope Scope = I.getSynchScope(); 3536 3537 SDValue InChain = getRoot(); 3538 3539 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3540 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3541 3542 if (I.getAlignment() < VT.getSizeInBits() / 8) 3543 report_fatal_error("Cannot generate unaligned atomic load"); 3544 3545 MachineMemOperand *MMO = 3546 DAG.getMachineFunction(). 3547 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3548 MachineMemOperand::MOVolatile | 3549 MachineMemOperand::MOLoad, 3550 VT.getStoreSize(), 3551 I.getAlignment() ? I.getAlignment() : 3552 DAG.getEVTAlignment(VT)); 3553 3554 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3555 SDValue L = 3556 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3557 getValue(I.getPointerOperand()), MMO, 3558 Order, Scope); 3559 3560 SDValue OutChain = L.getValue(1); 3561 3562 setValue(&I, L); 3563 DAG.setRoot(OutChain); 3564 } 3565 3566 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3567 SDLoc dl = getCurSDLoc(); 3568 3569 AtomicOrdering Order = I.getOrdering(); 3570 SynchronizationScope Scope = I.getSynchScope(); 3571 3572 SDValue InChain = getRoot(); 3573 3574 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3575 EVT VT = 3576 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3577 3578 if (I.getAlignment() < VT.getSizeInBits() / 8) 3579 report_fatal_error("Cannot generate unaligned atomic store"); 3580 3581 SDValue OutChain = 3582 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3583 InChain, 3584 getValue(I.getPointerOperand()), 3585 getValue(I.getValueOperand()), 3586 I.getPointerOperand(), I.getAlignment(), 3587 Order, Scope); 3588 3589 DAG.setRoot(OutChain); 3590 } 3591 3592 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3593 /// node. 3594 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3595 unsigned Intrinsic) { 3596 bool HasChain = !I.doesNotAccessMemory(); 3597 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3598 3599 // Build the operand list. 3600 SmallVector<SDValue, 8> Ops; 3601 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3602 if (OnlyLoad) { 3603 // We don't need to serialize loads against other loads. 3604 Ops.push_back(DAG.getRoot()); 3605 } else { 3606 Ops.push_back(getRoot()); 3607 } 3608 } 3609 3610 // Info is set by getTgtMemInstrinsic 3611 TargetLowering::IntrinsicInfo Info; 3612 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3613 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3614 3615 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3616 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3617 Info.opc == ISD::INTRINSIC_W_CHAIN) 3618 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3619 TLI.getPointerTy(DAG.getDataLayout()))); 3620 3621 // Add all operands of the call to the operand list. 3622 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3623 SDValue Op = getValue(I.getArgOperand(i)); 3624 Ops.push_back(Op); 3625 } 3626 3627 SmallVector<EVT, 4> ValueVTs; 3628 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3629 3630 if (HasChain) 3631 ValueVTs.push_back(MVT::Other); 3632 3633 SDVTList VTs = DAG.getVTList(ValueVTs); 3634 3635 // Create the node. 3636 SDValue Result; 3637 if (IsTgtIntrinsic) { 3638 // This is target intrinsic that touches memory 3639 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3640 VTs, Ops, Info.memVT, 3641 MachinePointerInfo(Info.ptrVal, Info.offset), 3642 Info.align, Info.vol, 3643 Info.readMem, Info.writeMem, Info.size); 3644 } else if (!HasChain) { 3645 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3646 } else if (!I.getType()->isVoidTy()) { 3647 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3648 } else { 3649 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3650 } 3651 3652 if (HasChain) { 3653 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3654 if (OnlyLoad) 3655 PendingLoads.push_back(Chain); 3656 else 3657 DAG.setRoot(Chain); 3658 } 3659 3660 if (!I.getType()->isVoidTy()) { 3661 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3662 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3663 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3664 } 3665 3666 setValue(&I, Result); 3667 } 3668 } 3669 3670 /// GetSignificand - Get the significand and build it into a floating-point 3671 /// number with exponent of 1: 3672 /// 3673 /// Op = (Op & 0x007fffff) | 0x3f800000; 3674 /// 3675 /// where Op is the hexadecimal representation of floating point value. 3676 static SDValue 3677 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3678 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3679 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3680 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3681 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3682 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3683 } 3684 3685 /// GetExponent - Get the exponent: 3686 /// 3687 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3688 /// 3689 /// where Op is the hexadecimal representation of floating point value. 3690 static SDValue 3691 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3692 SDLoc dl) { 3693 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3694 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3695 SDValue t1 = DAG.getNode( 3696 ISD::SRL, dl, MVT::i32, t0, 3697 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3698 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3699 DAG.getConstant(127, dl, MVT::i32)); 3700 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3701 } 3702 3703 /// getF32Constant - Get 32-bit floating point constant. 3704 static SDValue 3705 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3706 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3707 MVT::f32); 3708 } 3709 3710 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3711 SelectionDAG &DAG) { 3712 // TODO: What fast-math-flags should be set on the floating-point nodes? 3713 3714 // IntegerPartOfX = ((int32_t)(t0); 3715 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3716 3717 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3718 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3719 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3720 3721 // IntegerPartOfX <<= 23; 3722 IntegerPartOfX = DAG.getNode( 3723 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3724 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3725 DAG.getDataLayout()))); 3726 3727 SDValue TwoToFractionalPartOfX; 3728 if (LimitFloatPrecision <= 6) { 3729 // For floating-point precision of 6: 3730 // 3731 // TwoToFractionalPartOfX = 3732 // 0.997535578f + 3733 // (0.735607626f + 0.252464424f * x) * x; 3734 // 3735 // error 0.0144103317, which is 6 bits 3736 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3737 getF32Constant(DAG, 0x3e814304, dl)); 3738 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3739 getF32Constant(DAG, 0x3f3c50c8, dl)); 3740 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3741 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3742 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3743 } else if (LimitFloatPrecision <= 12) { 3744 // For floating-point precision of 12: 3745 // 3746 // TwoToFractionalPartOfX = 3747 // 0.999892986f + 3748 // (0.696457318f + 3749 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3750 // 3751 // error 0.000107046256, which is 13 to 14 bits 3752 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3753 getF32Constant(DAG, 0x3da235e3, dl)); 3754 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3755 getF32Constant(DAG, 0x3e65b8f3, dl)); 3756 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3757 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3758 getF32Constant(DAG, 0x3f324b07, dl)); 3759 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3760 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3761 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3762 } else { // LimitFloatPrecision <= 18 3763 // For floating-point precision of 18: 3764 // 3765 // TwoToFractionalPartOfX = 3766 // 0.999999982f + 3767 // (0.693148872f + 3768 // (0.240227044f + 3769 // (0.554906021e-1f + 3770 // (0.961591928e-2f + 3771 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3772 // error 2.47208000*10^(-7), which is better than 18 bits 3773 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3774 getF32Constant(DAG, 0x3924b03e, dl)); 3775 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3776 getF32Constant(DAG, 0x3ab24b87, dl)); 3777 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3778 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3779 getF32Constant(DAG, 0x3c1d8c17, dl)); 3780 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3781 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3782 getF32Constant(DAG, 0x3d634a1d, dl)); 3783 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3784 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3785 getF32Constant(DAG, 0x3e75fe14, dl)); 3786 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3787 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3788 getF32Constant(DAG, 0x3f317234, dl)); 3789 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3790 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3791 getF32Constant(DAG, 0x3f800000, dl)); 3792 } 3793 3794 // Add the exponent into the result in integer domain. 3795 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3796 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3797 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3798 } 3799 3800 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3801 /// limited-precision mode. 3802 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3803 const TargetLowering &TLI) { 3804 if (Op.getValueType() == MVT::f32 && 3805 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3806 3807 // Put the exponent in the right bit position for later addition to the 3808 // final result: 3809 // 3810 // #define LOG2OFe 1.4426950f 3811 // t0 = Op * LOG2OFe 3812 3813 // TODO: What fast-math-flags should be set here? 3814 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3815 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3816 return getLimitedPrecisionExp2(t0, dl, DAG); 3817 } 3818 3819 // No special expansion. 3820 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3821 } 3822 3823 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3824 /// limited-precision mode. 3825 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3826 const TargetLowering &TLI) { 3827 3828 // TODO: What fast-math-flags should be set on the floating-point nodes? 3829 3830 if (Op.getValueType() == MVT::f32 && 3831 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3832 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3833 3834 // Scale the exponent by log(2) [0.69314718f]. 3835 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3836 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3837 getF32Constant(DAG, 0x3f317218, dl)); 3838 3839 // Get the significand and build it into a floating-point number with 3840 // exponent of 1. 3841 SDValue X = GetSignificand(DAG, Op1, dl); 3842 3843 SDValue LogOfMantissa; 3844 if (LimitFloatPrecision <= 6) { 3845 // For floating-point precision of 6: 3846 // 3847 // LogofMantissa = 3848 // -1.1609546f + 3849 // (1.4034025f - 0.23903021f * x) * x; 3850 // 3851 // error 0.0034276066, which is better than 8 bits 3852 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3853 getF32Constant(DAG, 0xbe74c456, dl)); 3854 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3855 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3856 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3857 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3858 getF32Constant(DAG, 0x3f949a29, dl)); 3859 } else if (LimitFloatPrecision <= 12) { 3860 // For floating-point precision of 12: 3861 // 3862 // LogOfMantissa = 3863 // -1.7417939f + 3864 // (2.8212026f + 3865 // (-1.4699568f + 3866 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3867 // 3868 // error 0.000061011436, which is 14 bits 3869 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3870 getF32Constant(DAG, 0xbd67b6d6, dl)); 3871 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3872 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3873 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3874 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3875 getF32Constant(DAG, 0x3fbc278b, dl)); 3876 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3877 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3878 getF32Constant(DAG, 0x40348e95, dl)); 3879 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3880 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3881 getF32Constant(DAG, 0x3fdef31a, dl)); 3882 } else { // LimitFloatPrecision <= 18 3883 // For floating-point precision of 18: 3884 // 3885 // LogOfMantissa = 3886 // -2.1072184f + 3887 // (4.2372794f + 3888 // (-3.7029485f + 3889 // (2.2781945f + 3890 // (-0.87823314f + 3891 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3892 // 3893 // error 0.0000023660568, which is better than 18 bits 3894 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3895 getF32Constant(DAG, 0xbc91e5ac, dl)); 3896 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3897 getF32Constant(DAG, 0x3e4350aa, dl)); 3898 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3899 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3900 getF32Constant(DAG, 0x3f60d3e3, dl)); 3901 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3902 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3903 getF32Constant(DAG, 0x4011cdf0, dl)); 3904 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3905 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3906 getF32Constant(DAG, 0x406cfd1c, dl)); 3907 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3908 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3909 getF32Constant(DAG, 0x408797cb, dl)); 3910 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3911 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3912 getF32Constant(DAG, 0x4006dcab, dl)); 3913 } 3914 3915 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3916 } 3917 3918 // No special expansion. 3919 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3920 } 3921 3922 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3923 /// limited-precision mode. 3924 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3925 const TargetLowering &TLI) { 3926 3927 // TODO: What fast-math-flags should be set on the floating-point nodes? 3928 3929 if (Op.getValueType() == MVT::f32 && 3930 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3931 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3932 3933 // Get the exponent. 3934 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3935 3936 // Get the significand and build it into a floating-point number with 3937 // exponent of 1. 3938 SDValue X = GetSignificand(DAG, Op1, dl); 3939 3940 // Different possible minimax approximations of significand in 3941 // floating-point for various degrees of accuracy over [1,2]. 3942 SDValue Log2ofMantissa; 3943 if (LimitFloatPrecision <= 6) { 3944 // For floating-point precision of 6: 3945 // 3946 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3947 // 3948 // error 0.0049451742, which is more than 7 bits 3949 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3950 getF32Constant(DAG, 0xbeb08fe0, dl)); 3951 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3952 getF32Constant(DAG, 0x40019463, dl)); 3953 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3954 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3955 getF32Constant(DAG, 0x3fd6633d, dl)); 3956 } else if (LimitFloatPrecision <= 12) { 3957 // For floating-point precision of 12: 3958 // 3959 // Log2ofMantissa = 3960 // -2.51285454f + 3961 // (4.07009056f + 3962 // (-2.12067489f + 3963 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3964 // 3965 // error 0.0000876136000, which is better than 13 bits 3966 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3967 getF32Constant(DAG, 0xbda7262e, dl)); 3968 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3969 getF32Constant(DAG, 0x3f25280b, dl)); 3970 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3971 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3972 getF32Constant(DAG, 0x4007b923, dl)); 3973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3975 getF32Constant(DAG, 0x40823e2f, dl)); 3976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3977 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3978 getF32Constant(DAG, 0x4020d29c, dl)); 3979 } else { // LimitFloatPrecision <= 18 3980 // For floating-point precision of 18: 3981 // 3982 // Log2ofMantissa = 3983 // -3.0400495f + 3984 // (6.1129976f + 3985 // (-5.3420409f + 3986 // (3.2865683f + 3987 // (-1.2669343f + 3988 // (0.27515199f - 3989 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3990 // 3991 // error 0.0000018516, which is better than 18 bits 3992 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3993 getF32Constant(DAG, 0xbcd2769e, dl)); 3994 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3995 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3996 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3997 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3998 getF32Constant(DAG, 0x3fa22ae7, dl)); 3999 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4000 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4001 getF32Constant(DAG, 0x40525723, dl)); 4002 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4003 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4004 getF32Constant(DAG, 0x40aaf200, dl)); 4005 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4006 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4007 getF32Constant(DAG, 0x40c39dad, dl)); 4008 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4009 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4010 getF32Constant(DAG, 0x4042902c, dl)); 4011 } 4012 4013 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4014 } 4015 4016 // No special expansion. 4017 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4018 } 4019 4020 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4021 /// limited-precision mode. 4022 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4023 const TargetLowering &TLI) { 4024 4025 // TODO: What fast-math-flags should be set on the floating-point nodes? 4026 4027 if (Op.getValueType() == MVT::f32 && 4028 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4029 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4030 4031 // Scale the exponent by log10(2) [0.30102999f]. 4032 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4033 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4034 getF32Constant(DAG, 0x3e9a209a, dl)); 4035 4036 // Get the significand and build it into a floating-point number with 4037 // exponent of 1. 4038 SDValue X = GetSignificand(DAG, Op1, dl); 4039 4040 SDValue Log10ofMantissa; 4041 if (LimitFloatPrecision <= 6) { 4042 // For floating-point precision of 6: 4043 // 4044 // Log10ofMantissa = 4045 // -0.50419619f + 4046 // (0.60948995f - 0.10380950f * x) * x; 4047 // 4048 // error 0.0014886165, which is 6 bits 4049 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4050 getF32Constant(DAG, 0xbdd49a13, dl)); 4051 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4052 getF32Constant(DAG, 0x3f1c0789, dl)); 4053 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4054 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4055 getF32Constant(DAG, 0x3f011300, dl)); 4056 } else if (LimitFloatPrecision <= 12) { 4057 // For floating-point precision of 12: 4058 // 4059 // Log10ofMantissa = 4060 // -0.64831180f + 4061 // (0.91751397f + 4062 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4063 // 4064 // error 0.00019228036, which is better than 12 bits 4065 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4066 getF32Constant(DAG, 0x3d431f31, dl)); 4067 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4068 getF32Constant(DAG, 0x3ea21fb2, dl)); 4069 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4070 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4071 getF32Constant(DAG, 0x3f6ae232, dl)); 4072 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4073 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4074 getF32Constant(DAG, 0x3f25f7c3, dl)); 4075 } else { // LimitFloatPrecision <= 18 4076 // For floating-point precision of 18: 4077 // 4078 // Log10ofMantissa = 4079 // -0.84299375f + 4080 // (1.5327582f + 4081 // (-1.0688956f + 4082 // (0.49102474f + 4083 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4084 // 4085 // error 0.0000037995730, which is better than 18 bits 4086 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4087 getF32Constant(DAG, 0x3c5d51ce, dl)); 4088 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4089 getF32Constant(DAG, 0x3e00685a, dl)); 4090 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4091 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4092 getF32Constant(DAG, 0x3efb6798, dl)); 4093 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4094 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4095 getF32Constant(DAG, 0x3f88d192, dl)); 4096 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4097 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4098 getF32Constant(DAG, 0x3fc4316c, dl)); 4099 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4100 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4101 getF32Constant(DAG, 0x3f57ce70, dl)); 4102 } 4103 4104 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4105 } 4106 4107 // No special expansion. 4108 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4109 } 4110 4111 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4112 /// limited-precision mode. 4113 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4114 const TargetLowering &TLI) { 4115 if (Op.getValueType() == MVT::f32 && 4116 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4117 return getLimitedPrecisionExp2(Op, dl, DAG); 4118 4119 // No special expansion. 4120 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4121 } 4122 4123 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4124 /// limited-precision mode with x == 10.0f. 4125 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4126 SelectionDAG &DAG, const TargetLowering &TLI) { 4127 bool IsExp10 = false; 4128 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4129 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4130 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4131 APFloat Ten(10.0f); 4132 IsExp10 = LHSC->isExactlyValue(Ten); 4133 } 4134 } 4135 4136 // TODO: What fast-math-flags should be set on the FMUL node? 4137 if (IsExp10) { 4138 // Put the exponent in the right bit position for later addition to the 4139 // final result: 4140 // 4141 // #define LOG2OF10 3.3219281f 4142 // t0 = Op * LOG2OF10; 4143 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4144 getF32Constant(DAG, 0x40549a78, dl)); 4145 return getLimitedPrecisionExp2(t0, dl, DAG); 4146 } 4147 4148 // No special expansion. 4149 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4150 } 4151 4152 4153 /// ExpandPowI - Expand a llvm.powi intrinsic. 4154 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4155 SelectionDAG &DAG) { 4156 // If RHS is a constant, we can expand this out to a multiplication tree, 4157 // otherwise we end up lowering to a call to __powidf2 (for example). When 4158 // optimizing for size, we only want to do this if the expansion would produce 4159 // a small number of multiplies, otherwise we do the full expansion. 4160 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4161 // Get the exponent as a positive value. 4162 unsigned Val = RHSC->getSExtValue(); 4163 if ((int)Val < 0) Val = -Val; 4164 4165 // powi(x, 0) -> 1.0 4166 if (Val == 0) 4167 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4168 4169 const Function *F = DAG.getMachineFunction().getFunction(); 4170 if (!F->optForSize() || 4171 // If optimizing for size, don't insert too many multiplies. 4172 // This inserts up to 5 multiplies. 4173 countPopulation(Val) + Log2_32(Val) < 7) { 4174 // We use the simple binary decomposition method to generate the multiply 4175 // sequence. There are more optimal ways to do this (for example, 4176 // powi(x,15) generates one more multiply than it should), but this has 4177 // the benefit of being both really simple and much better than a libcall. 4178 SDValue Res; // Logically starts equal to 1.0 4179 SDValue CurSquare = LHS; 4180 // TODO: Intrinsics should have fast-math-flags that propagate to these 4181 // nodes. 4182 while (Val) { 4183 if (Val & 1) { 4184 if (Res.getNode()) 4185 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4186 else 4187 Res = CurSquare; // 1.0*CurSquare. 4188 } 4189 4190 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4191 CurSquare, CurSquare); 4192 Val >>= 1; 4193 } 4194 4195 // If the original was negative, invert the result, producing 1/(x*x*x). 4196 if (RHSC->getSExtValue() < 0) 4197 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4198 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4199 return Res; 4200 } 4201 } 4202 4203 // Otherwise, expand to a libcall. 4204 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4205 } 4206 4207 // getUnderlyingArgReg - Find underlying register used for a truncated or 4208 // bitcasted argument. 4209 static unsigned getUnderlyingArgReg(const SDValue &N) { 4210 switch (N.getOpcode()) { 4211 case ISD::CopyFromReg: 4212 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4213 case ISD::BITCAST: 4214 case ISD::AssertZext: 4215 case ISD::AssertSext: 4216 case ISD::TRUNCATE: 4217 return getUnderlyingArgReg(N.getOperand(0)); 4218 default: 4219 return 0; 4220 } 4221 } 4222 4223 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4224 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4225 /// At the end of instruction selection, they will be inserted to the entry BB. 4226 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4227 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4228 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4229 const Argument *Arg = dyn_cast<Argument>(V); 4230 if (!Arg) 4231 return false; 4232 4233 MachineFunction &MF = DAG.getMachineFunction(); 4234 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4235 4236 // Ignore inlined function arguments here. 4237 // 4238 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4239 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4240 return false; 4241 4242 Optional<MachineOperand> Op; 4243 // Some arguments' frame index is recorded during argument lowering. 4244 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4245 Op = MachineOperand::CreateFI(FI); 4246 4247 if (!Op && N.getNode()) { 4248 unsigned Reg = getUnderlyingArgReg(N); 4249 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4250 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4251 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4252 if (PR) 4253 Reg = PR; 4254 } 4255 if (Reg) 4256 Op = MachineOperand::CreateReg(Reg, false); 4257 } 4258 4259 if (!Op) { 4260 // Check if ValueMap has reg number. 4261 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4262 if (VMI != FuncInfo.ValueMap.end()) 4263 Op = MachineOperand::CreateReg(VMI->second, false); 4264 } 4265 4266 if (!Op && N.getNode()) 4267 // Check if frame index is available. 4268 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4269 if (FrameIndexSDNode *FINode = 4270 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4271 Op = MachineOperand::CreateFI(FINode->getIndex()); 4272 4273 if (!Op) 4274 return false; 4275 4276 assert(Variable->isValidLocationForIntrinsic(DL) && 4277 "Expected inlined-at fields to agree"); 4278 if (Op->isReg()) 4279 FuncInfo.ArgDbgValues.push_back( 4280 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4281 Op->getReg(), Offset, Variable, Expr)); 4282 else 4283 FuncInfo.ArgDbgValues.push_back( 4284 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4285 .addOperand(*Op) 4286 .addImm(Offset) 4287 .addMetadata(Variable) 4288 .addMetadata(Expr)); 4289 4290 return true; 4291 } 4292 4293 // VisualStudio defines setjmp as _setjmp 4294 #if defined(_MSC_VER) && defined(setjmp) && \ 4295 !defined(setjmp_undefined_for_msvc) 4296 # pragma push_macro("setjmp") 4297 # undef setjmp 4298 # define setjmp_undefined_for_msvc 4299 #endif 4300 4301 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4302 /// we want to emit this as a call to a named external function, return the name 4303 /// otherwise lower it and return null. 4304 const char * 4305 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4306 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4307 SDLoc sdl = getCurSDLoc(); 4308 DebugLoc dl = getCurDebugLoc(); 4309 SDValue Res; 4310 4311 switch (Intrinsic) { 4312 default: 4313 // By default, turn this into a target intrinsic node. 4314 visitTargetIntrinsic(I, Intrinsic); 4315 return nullptr; 4316 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4317 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4318 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4319 case Intrinsic::returnaddress: 4320 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4321 TLI.getPointerTy(DAG.getDataLayout()), 4322 getValue(I.getArgOperand(0)))); 4323 return nullptr; 4324 case Intrinsic::frameaddress: 4325 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4326 TLI.getPointerTy(DAG.getDataLayout()), 4327 getValue(I.getArgOperand(0)))); 4328 return nullptr; 4329 case Intrinsic::read_register: { 4330 Value *Reg = I.getArgOperand(0); 4331 SDValue Chain = getRoot(); 4332 SDValue RegName = 4333 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4334 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4335 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4336 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4337 setValue(&I, Res); 4338 DAG.setRoot(Res.getValue(1)); 4339 return nullptr; 4340 } 4341 case Intrinsic::write_register: { 4342 Value *Reg = I.getArgOperand(0); 4343 Value *RegValue = I.getArgOperand(1); 4344 SDValue Chain = getRoot(); 4345 SDValue RegName = 4346 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4347 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4348 RegName, getValue(RegValue))); 4349 return nullptr; 4350 } 4351 case Intrinsic::setjmp: 4352 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4353 case Intrinsic::longjmp: 4354 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4355 case Intrinsic::memcpy: { 4356 // FIXME: this definition of "user defined address space" is x86-specific 4357 // Assert for address < 256 since we support only user defined address 4358 // spaces. 4359 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4360 < 256 && 4361 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4362 < 256 && 4363 "Unknown address space"); 4364 SDValue Op1 = getValue(I.getArgOperand(0)); 4365 SDValue Op2 = getValue(I.getArgOperand(1)); 4366 SDValue Op3 = getValue(I.getArgOperand(2)); 4367 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4368 if (!Align) 4369 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4370 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4371 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4372 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4373 false, isTC, 4374 MachinePointerInfo(I.getArgOperand(0)), 4375 MachinePointerInfo(I.getArgOperand(1))); 4376 updateDAGForMaybeTailCall(MC); 4377 return nullptr; 4378 } 4379 case Intrinsic::memset: { 4380 // FIXME: this definition of "user defined address space" is x86-specific 4381 // Assert for address < 256 since we support only user defined address 4382 // spaces. 4383 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4384 < 256 && 4385 "Unknown address space"); 4386 SDValue Op1 = getValue(I.getArgOperand(0)); 4387 SDValue Op2 = getValue(I.getArgOperand(1)); 4388 SDValue Op3 = getValue(I.getArgOperand(2)); 4389 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4390 if (!Align) 4391 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4392 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4393 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4394 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4395 isTC, MachinePointerInfo(I.getArgOperand(0))); 4396 updateDAGForMaybeTailCall(MS); 4397 return nullptr; 4398 } 4399 case Intrinsic::memmove: { 4400 // FIXME: this definition of "user defined address space" is x86-specific 4401 // Assert for address < 256 since we support only user defined address 4402 // spaces. 4403 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4404 < 256 && 4405 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4406 < 256 && 4407 "Unknown address space"); 4408 SDValue Op1 = getValue(I.getArgOperand(0)); 4409 SDValue Op2 = getValue(I.getArgOperand(1)); 4410 SDValue Op3 = getValue(I.getArgOperand(2)); 4411 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4412 if (!Align) 4413 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4414 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4415 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4416 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4417 isTC, MachinePointerInfo(I.getArgOperand(0)), 4418 MachinePointerInfo(I.getArgOperand(1))); 4419 updateDAGForMaybeTailCall(MM); 4420 return nullptr; 4421 } 4422 case Intrinsic::dbg_declare: { 4423 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4424 DILocalVariable *Variable = DI.getVariable(); 4425 DIExpression *Expression = DI.getExpression(); 4426 const Value *Address = DI.getAddress(); 4427 assert(Variable && "Missing variable"); 4428 if (!Address) { 4429 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4430 return nullptr; 4431 } 4432 4433 // Check if address has undef value. 4434 if (isa<UndefValue>(Address) || 4435 (Address->use_empty() && !isa<Argument>(Address))) { 4436 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4437 return nullptr; 4438 } 4439 4440 SDValue &N = NodeMap[Address]; 4441 if (!N.getNode() && isa<Argument>(Address)) 4442 // Check unused arguments map. 4443 N = UnusedArgNodeMap[Address]; 4444 SDDbgValue *SDV; 4445 if (N.getNode()) { 4446 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4447 Address = BCI->getOperand(0); 4448 // Parameters are handled specially. 4449 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4450 4451 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4452 4453 if (isParameter && !AI) { 4454 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4455 if (FINode) 4456 // Byval parameter. We have a frame index at this point. 4457 SDV = DAG.getFrameIndexDbgValue( 4458 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4459 else { 4460 // Address is an argument, so try to emit its dbg value using 4461 // virtual register info from the FuncInfo.ValueMap. 4462 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4463 N); 4464 return nullptr; 4465 } 4466 } else { 4467 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4468 true, 0, dl, SDNodeOrder); 4469 } 4470 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4471 } else { 4472 // If Address is an argument then try to emit its dbg value using 4473 // virtual register info from the FuncInfo.ValueMap. 4474 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4475 N)) { 4476 // If variable is pinned by a alloca in dominating bb then 4477 // use StaticAllocaMap. 4478 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4479 if (AI->getParent() != DI.getParent()) { 4480 DenseMap<const AllocaInst*, int>::iterator SI = 4481 FuncInfo.StaticAllocaMap.find(AI); 4482 if (SI != FuncInfo.StaticAllocaMap.end()) { 4483 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4484 0, dl, SDNodeOrder); 4485 DAG.AddDbgValue(SDV, nullptr, false); 4486 return nullptr; 4487 } 4488 } 4489 } 4490 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4491 } 4492 } 4493 return nullptr; 4494 } 4495 case Intrinsic::dbg_value: { 4496 const DbgValueInst &DI = cast<DbgValueInst>(I); 4497 assert(DI.getVariable() && "Missing variable"); 4498 4499 DILocalVariable *Variable = DI.getVariable(); 4500 DIExpression *Expression = DI.getExpression(); 4501 uint64_t Offset = DI.getOffset(); 4502 const Value *V = DI.getValue(); 4503 if (!V) 4504 return nullptr; 4505 4506 SDDbgValue *SDV; 4507 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4508 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4509 SDNodeOrder); 4510 DAG.AddDbgValue(SDV, nullptr, false); 4511 } else { 4512 // Do not use getValue() in here; we don't want to generate code at 4513 // this point if it hasn't been done yet. 4514 SDValue N = NodeMap[V]; 4515 if (!N.getNode() && isa<Argument>(V)) 4516 // Check unused arguments map. 4517 N = UnusedArgNodeMap[V]; 4518 if (N.getNode()) { 4519 // A dbg.value for an alloca is always indirect. 4520 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4521 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4522 IsIndirect, N)) { 4523 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4524 IsIndirect, Offset, dl, SDNodeOrder); 4525 DAG.AddDbgValue(SDV, N.getNode(), false); 4526 } 4527 } else if (!V->use_empty() ) { 4528 // Do not call getValue(V) yet, as we don't want to generate code. 4529 // Remember it for later. 4530 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4531 DanglingDebugInfoMap[V] = DDI; 4532 } else { 4533 // We may expand this to cover more cases. One case where we have no 4534 // data available is an unreferenced parameter. 4535 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4536 } 4537 } 4538 4539 // Build a debug info table entry. 4540 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4541 V = BCI->getOperand(0); 4542 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4543 // Don't handle byval struct arguments or VLAs, for example. 4544 if (!AI) { 4545 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4546 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4547 return nullptr; 4548 } 4549 DenseMap<const AllocaInst*, int>::iterator SI = 4550 FuncInfo.StaticAllocaMap.find(AI); 4551 if (SI == FuncInfo.StaticAllocaMap.end()) 4552 return nullptr; // VLAs. 4553 return nullptr; 4554 } 4555 4556 case Intrinsic::eh_typeid_for: { 4557 // Find the type id for the given typeinfo. 4558 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4559 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4560 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4561 setValue(&I, Res); 4562 return nullptr; 4563 } 4564 4565 case Intrinsic::eh_return_i32: 4566 case Intrinsic::eh_return_i64: 4567 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4568 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4569 MVT::Other, 4570 getControlRoot(), 4571 getValue(I.getArgOperand(0)), 4572 getValue(I.getArgOperand(1)))); 4573 return nullptr; 4574 case Intrinsic::eh_unwind_init: 4575 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4576 return nullptr; 4577 case Intrinsic::eh_dwarf_cfa: { 4578 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4579 TLI.getPointerTy(DAG.getDataLayout())); 4580 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4581 CfaArg.getValueType(), 4582 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4583 CfaArg.getValueType()), 4584 CfaArg); 4585 SDValue FA = DAG.getNode( 4586 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4587 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4588 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4589 FA, Offset)); 4590 return nullptr; 4591 } 4592 case Intrinsic::eh_sjlj_callsite: { 4593 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4594 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4595 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4596 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4597 4598 MMI.setCurrentCallSite(CI->getZExtValue()); 4599 return nullptr; 4600 } 4601 case Intrinsic::eh_sjlj_functioncontext: { 4602 // Get and store the index of the function context. 4603 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4604 AllocaInst *FnCtx = 4605 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4606 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4607 MFI->setFunctionContextIndex(FI); 4608 return nullptr; 4609 } 4610 case Intrinsic::eh_sjlj_setjmp: { 4611 SDValue Ops[2]; 4612 Ops[0] = getRoot(); 4613 Ops[1] = getValue(I.getArgOperand(0)); 4614 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4615 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4616 setValue(&I, Op.getValue(0)); 4617 DAG.setRoot(Op.getValue(1)); 4618 return nullptr; 4619 } 4620 case Intrinsic::eh_sjlj_longjmp: { 4621 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4622 getRoot(), getValue(I.getArgOperand(0)))); 4623 return nullptr; 4624 } 4625 case Intrinsic::eh_sjlj_setup_dispatch: { 4626 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4627 getRoot())); 4628 return nullptr; 4629 } 4630 4631 case Intrinsic::masked_gather: 4632 visitMaskedGather(I); 4633 return nullptr; 4634 case Intrinsic::masked_load: 4635 visitMaskedLoad(I); 4636 return nullptr; 4637 case Intrinsic::masked_scatter: 4638 visitMaskedScatter(I); 4639 return nullptr; 4640 case Intrinsic::masked_store: 4641 visitMaskedStore(I); 4642 return nullptr; 4643 case Intrinsic::x86_mmx_pslli_w: 4644 case Intrinsic::x86_mmx_pslli_d: 4645 case Intrinsic::x86_mmx_pslli_q: 4646 case Intrinsic::x86_mmx_psrli_w: 4647 case Intrinsic::x86_mmx_psrli_d: 4648 case Intrinsic::x86_mmx_psrli_q: 4649 case Intrinsic::x86_mmx_psrai_w: 4650 case Intrinsic::x86_mmx_psrai_d: { 4651 SDValue ShAmt = getValue(I.getArgOperand(1)); 4652 if (isa<ConstantSDNode>(ShAmt)) { 4653 visitTargetIntrinsic(I, Intrinsic); 4654 return nullptr; 4655 } 4656 unsigned NewIntrinsic = 0; 4657 EVT ShAmtVT = MVT::v2i32; 4658 switch (Intrinsic) { 4659 case Intrinsic::x86_mmx_pslli_w: 4660 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4661 break; 4662 case Intrinsic::x86_mmx_pslli_d: 4663 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4664 break; 4665 case Intrinsic::x86_mmx_pslli_q: 4666 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4667 break; 4668 case Intrinsic::x86_mmx_psrli_w: 4669 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4670 break; 4671 case Intrinsic::x86_mmx_psrli_d: 4672 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4673 break; 4674 case Intrinsic::x86_mmx_psrli_q: 4675 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4676 break; 4677 case Intrinsic::x86_mmx_psrai_w: 4678 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4679 break; 4680 case Intrinsic::x86_mmx_psrai_d: 4681 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4682 break; 4683 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4684 } 4685 4686 // The vector shift intrinsics with scalars uses 32b shift amounts but 4687 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4688 // to be zero. 4689 // We must do this early because v2i32 is not a legal type. 4690 SDValue ShOps[2]; 4691 ShOps[0] = ShAmt; 4692 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4693 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4694 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4695 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4696 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4697 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4698 getValue(I.getArgOperand(0)), ShAmt); 4699 setValue(&I, Res); 4700 return nullptr; 4701 } 4702 case Intrinsic::convertff: 4703 case Intrinsic::convertfsi: 4704 case Intrinsic::convertfui: 4705 case Intrinsic::convertsif: 4706 case Intrinsic::convertuif: 4707 case Intrinsic::convertss: 4708 case Intrinsic::convertsu: 4709 case Intrinsic::convertus: 4710 case Intrinsic::convertuu: { 4711 ISD::CvtCode Code = ISD::CVT_INVALID; 4712 switch (Intrinsic) { 4713 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4714 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4715 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4716 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4717 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4718 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4719 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4720 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4721 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4722 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4723 } 4724 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4725 const Value *Op1 = I.getArgOperand(0); 4726 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4727 DAG.getValueType(DestVT), 4728 DAG.getValueType(getValue(Op1).getValueType()), 4729 getValue(I.getArgOperand(1)), 4730 getValue(I.getArgOperand(2)), 4731 Code); 4732 setValue(&I, Res); 4733 return nullptr; 4734 } 4735 case Intrinsic::powi: 4736 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4737 getValue(I.getArgOperand(1)), DAG)); 4738 return nullptr; 4739 case Intrinsic::log: 4740 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4741 return nullptr; 4742 case Intrinsic::log2: 4743 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4744 return nullptr; 4745 case Intrinsic::log10: 4746 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4747 return nullptr; 4748 case Intrinsic::exp: 4749 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4750 return nullptr; 4751 case Intrinsic::exp2: 4752 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4753 return nullptr; 4754 case Intrinsic::pow: 4755 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4756 getValue(I.getArgOperand(1)), DAG, TLI)); 4757 return nullptr; 4758 case Intrinsic::sqrt: 4759 case Intrinsic::fabs: 4760 case Intrinsic::sin: 4761 case Intrinsic::cos: 4762 case Intrinsic::floor: 4763 case Intrinsic::ceil: 4764 case Intrinsic::trunc: 4765 case Intrinsic::rint: 4766 case Intrinsic::nearbyint: 4767 case Intrinsic::round: { 4768 unsigned Opcode; 4769 switch (Intrinsic) { 4770 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4771 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4772 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4773 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4774 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4775 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4776 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4777 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4778 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4779 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4780 case Intrinsic::round: Opcode = ISD::FROUND; break; 4781 } 4782 4783 setValue(&I, DAG.getNode(Opcode, sdl, 4784 getValue(I.getArgOperand(0)).getValueType(), 4785 getValue(I.getArgOperand(0)))); 4786 return nullptr; 4787 } 4788 case Intrinsic::minnum: 4789 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4790 getValue(I.getArgOperand(0)).getValueType(), 4791 getValue(I.getArgOperand(0)), 4792 getValue(I.getArgOperand(1)))); 4793 return nullptr; 4794 case Intrinsic::maxnum: 4795 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4796 getValue(I.getArgOperand(0)).getValueType(), 4797 getValue(I.getArgOperand(0)), 4798 getValue(I.getArgOperand(1)))); 4799 return nullptr; 4800 case Intrinsic::copysign: 4801 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4802 getValue(I.getArgOperand(0)).getValueType(), 4803 getValue(I.getArgOperand(0)), 4804 getValue(I.getArgOperand(1)))); 4805 return nullptr; 4806 case Intrinsic::fma: 4807 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4808 getValue(I.getArgOperand(0)).getValueType(), 4809 getValue(I.getArgOperand(0)), 4810 getValue(I.getArgOperand(1)), 4811 getValue(I.getArgOperand(2)))); 4812 return nullptr; 4813 case Intrinsic::fmuladd: { 4814 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4815 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4816 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4817 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4818 getValue(I.getArgOperand(0)).getValueType(), 4819 getValue(I.getArgOperand(0)), 4820 getValue(I.getArgOperand(1)), 4821 getValue(I.getArgOperand(2)))); 4822 } else { 4823 // TODO: Intrinsic calls should have fast-math-flags. 4824 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4825 getValue(I.getArgOperand(0)).getValueType(), 4826 getValue(I.getArgOperand(0)), 4827 getValue(I.getArgOperand(1))); 4828 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4829 getValue(I.getArgOperand(0)).getValueType(), 4830 Mul, 4831 getValue(I.getArgOperand(2))); 4832 setValue(&I, Add); 4833 } 4834 return nullptr; 4835 } 4836 case Intrinsic::convert_to_fp16: 4837 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4838 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4839 getValue(I.getArgOperand(0)), 4840 DAG.getTargetConstant(0, sdl, 4841 MVT::i32)))); 4842 return nullptr; 4843 case Intrinsic::convert_from_fp16: 4844 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4845 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4846 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4847 getValue(I.getArgOperand(0))))); 4848 return nullptr; 4849 case Intrinsic::pcmarker: { 4850 SDValue Tmp = getValue(I.getArgOperand(0)); 4851 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4852 return nullptr; 4853 } 4854 case Intrinsic::readcyclecounter: { 4855 SDValue Op = getRoot(); 4856 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4857 DAG.getVTList(MVT::i64, MVT::Other), Op); 4858 setValue(&I, Res); 4859 DAG.setRoot(Res.getValue(1)); 4860 return nullptr; 4861 } 4862 case Intrinsic::bswap: 4863 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4864 getValue(I.getArgOperand(0)).getValueType(), 4865 getValue(I.getArgOperand(0)))); 4866 return nullptr; 4867 case Intrinsic::uabsdiff: 4868 setValue(&I, DAG.getNode(ISD::UABSDIFF, sdl, 4869 getValue(I.getArgOperand(0)).getValueType(), 4870 getValue(I.getArgOperand(0)), 4871 getValue(I.getArgOperand(1)))); 4872 return nullptr; 4873 case Intrinsic::sabsdiff: 4874 setValue(&I, DAG.getNode(ISD::SABSDIFF, sdl, 4875 getValue(I.getArgOperand(0)).getValueType(), 4876 getValue(I.getArgOperand(0)), 4877 getValue(I.getArgOperand(1)))); 4878 return nullptr; 4879 case Intrinsic::cttz: { 4880 SDValue Arg = getValue(I.getArgOperand(0)); 4881 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4882 EVT Ty = Arg.getValueType(); 4883 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4884 sdl, Ty, Arg)); 4885 return nullptr; 4886 } 4887 case Intrinsic::ctlz: { 4888 SDValue Arg = getValue(I.getArgOperand(0)); 4889 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4890 EVT Ty = Arg.getValueType(); 4891 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4892 sdl, Ty, Arg)); 4893 return nullptr; 4894 } 4895 case Intrinsic::ctpop: { 4896 SDValue Arg = getValue(I.getArgOperand(0)); 4897 EVT Ty = Arg.getValueType(); 4898 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4899 return nullptr; 4900 } 4901 case Intrinsic::stacksave: { 4902 SDValue Op = getRoot(); 4903 Res = DAG.getNode( 4904 ISD::STACKSAVE, sdl, 4905 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4906 setValue(&I, Res); 4907 DAG.setRoot(Res.getValue(1)); 4908 return nullptr; 4909 } 4910 case Intrinsic::stackrestore: { 4911 Res = getValue(I.getArgOperand(0)); 4912 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4913 return nullptr; 4914 } 4915 case Intrinsic::stackprotector: { 4916 // Emit code into the DAG to store the stack guard onto the stack. 4917 MachineFunction &MF = DAG.getMachineFunction(); 4918 MachineFrameInfo *MFI = MF.getFrameInfo(); 4919 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4920 SDValue Src, Chain = getRoot(); 4921 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4922 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4923 4924 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4925 // global variable __stack_chk_guard. 4926 if (!GV) 4927 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4928 if (BC->getOpcode() == Instruction::BitCast) 4929 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4930 4931 if (GV && TLI.useLoadStackGuardNode()) { 4932 // Emit a LOAD_STACK_GUARD node. 4933 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4934 sdl, PtrTy, Chain); 4935 MachinePointerInfo MPInfo(GV); 4936 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4937 unsigned Flags = MachineMemOperand::MOLoad | 4938 MachineMemOperand::MOInvariant; 4939 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4940 PtrTy.getSizeInBits() / 8, 4941 DAG.getEVTAlignment(PtrTy)); 4942 Node->setMemRefs(MemRefs, MemRefs + 1); 4943 4944 // Copy the guard value to a virtual register so that it can be 4945 // retrieved in the epilogue. 4946 Src = SDValue(Node, 0); 4947 const TargetRegisterClass *RC = 4948 TLI.getRegClassFor(Src.getSimpleValueType()); 4949 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4950 4951 SPDescriptor.setGuardReg(Reg); 4952 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4953 } else { 4954 Src = getValue(I.getArgOperand(0)); // The guard's value. 4955 } 4956 4957 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4958 4959 int FI = FuncInfo.StaticAllocaMap[Slot]; 4960 MFI->setStackProtectorIndex(FI); 4961 4962 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4963 4964 // Store the stack protector onto the stack. 4965 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4966 DAG.getMachineFunction(), FI), 4967 true, false, 0); 4968 setValue(&I, Res); 4969 DAG.setRoot(Res); 4970 return nullptr; 4971 } 4972 case Intrinsic::objectsize: { 4973 // If we don't know by now, we're never going to know. 4974 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4975 4976 assert(CI && "Non-constant type in __builtin_object_size?"); 4977 4978 SDValue Arg = getValue(I.getCalledValue()); 4979 EVT Ty = Arg.getValueType(); 4980 4981 if (CI->isZero()) 4982 Res = DAG.getConstant(-1ULL, sdl, Ty); 4983 else 4984 Res = DAG.getConstant(0, sdl, Ty); 4985 4986 setValue(&I, Res); 4987 return nullptr; 4988 } 4989 case Intrinsic::annotation: 4990 case Intrinsic::ptr_annotation: 4991 // Drop the intrinsic, but forward the value 4992 setValue(&I, getValue(I.getOperand(0))); 4993 return nullptr; 4994 case Intrinsic::assume: 4995 case Intrinsic::var_annotation: 4996 // Discard annotate attributes and assumptions 4997 return nullptr; 4998 4999 case Intrinsic::init_trampoline: { 5000 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5001 5002 SDValue Ops[6]; 5003 Ops[0] = getRoot(); 5004 Ops[1] = getValue(I.getArgOperand(0)); 5005 Ops[2] = getValue(I.getArgOperand(1)); 5006 Ops[3] = getValue(I.getArgOperand(2)); 5007 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5008 Ops[5] = DAG.getSrcValue(F); 5009 5010 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5011 5012 DAG.setRoot(Res); 5013 return nullptr; 5014 } 5015 case Intrinsic::adjust_trampoline: { 5016 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5017 TLI.getPointerTy(DAG.getDataLayout()), 5018 getValue(I.getArgOperand(0)))); 5019 return nullptr; 5020 } 5021 case Intrinsic::gcroot: 5022 if (GFI) { 5023 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5024 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5025 5026 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5027 GFI->addStackRoot(FI->getIndex(), TypeMap); 5028 } 5029 return nullptr; 5030 case Intrinsic::gcread: 5031 case Intrinsic::gcwrite: 5032 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5033 case Intrinsic::flt_rounds: 5034 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5035 return nullptr; 5036 5037 case Intrinsic::expect: { 5038 // Just replace __builtin_expect(exp, c) with EXP. 5039 setValue(&I, getValue(I.getArgOperand(0))); 5040 return nullptr; 5041 } 5042 5043 case Intrinsic::debugtrap: 5044 case Intrinsic::trap: { 5045 StringRef TrapFuncName = 5046 I.getAttributes() 5047 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5048 .getValueAsString(); 5049 if (TrapFuncName.empty()) { 5050 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5051 ISD::TRAP : ISD::DEBUGTRAP; 5052 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5053 return nullptr; 5054 } 5055 TargetLowering::ArgListTy Args; 5056 5057 TargetLowering::CallLoweringInfo CLI(DAG); 5058 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5059 CallingConv::C, I.getType(), 5060 DAG.getExternalSymbol(TrapFuncName.data(), 5061 TLI.getPointerTy(DAG.getDataLayout())), 5062 std::move(Args), 0); 5063 5064 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5065 DAG.setRoot(Result.second); 5066 return nullptr; 5067 } 5068 5069 case Intrinsic::uadd_with_overflow: 5070 case Intrinsic::sadd_with_overflow: 5071 case Intrinsic::usub_with_overflow: 5072 case Intrinsic::ssub_with_overflow: 5073 case Intrinsic::umul_with_overflow: 5074 case Intrinsic::smul_with_overflow: { 5075 ISD::NodeType Op; 5076 switch (Intrinsic) { 5077 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5078 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5079 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5080 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5081 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5082 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5083 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5084 } 5085 SDValue Op1 = getValue(I.getArgOperand(0)); 5086 SDValue Op2 = getValue(I.getArgOperand(1)); 5087 5088 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5089 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5090 return nullptr; 5091 } 5092 case Intrinsic::prefetch: { 5093 SDValue Ops[5]; 5094 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5095 Ops[0] = getRoot(); 5096 Ops[1] = getValue(I.getArgOperand(0)); 5097 Ops[2] = getValue(I.getArgOperand(1)); 5098 Ops[3] = getValue(I.getArgOperand(2)); 5099 Ops[4] = getValue(I.getArgOperand(3)); 5100 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5101 DAG.getVTList(MVT::Other), Ops, 5102 EVT::getIntegerVT(*Context, 8), 5103 MachinePointerInfo(I.getArgOperand(0)), 5104 0, /* align */ 5105 false, /* volatile */ 5106 rw==0, /* read */ 5107 rw==1)); /* write */ 5108 return nullptr; 5109 } 5110 case Intrinsic::lifetime_start: 5111 case Intrinsic::lifetime_end: { 5112 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5113 // Stack coloring is not enabled in O0, discard region information. 5114 if (TM.getOptLevel() == CodeGenOpt::None) 5115 return nullptr; 5116 5117 SmallVector<Value *, 4> Allocas; 5118 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5119 5120 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5121 E = Allocas.end(); Object != E; ++Object) { 5122 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5123 5124 // Could not find an Alloca. 5125 if (!LifetimeObject) 5126 continue; 5127 5128 // First check that the Alloca is static, otherwise it won't have a 5129 // valid frame index. 5130 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5131 if (SI == FuncInfo.StaticAllocaMap.end()) 5132 return nullptr; 5133 5134 int FI = SI->second; 5135 5136 SDValue Ops[2]; 5137 Ops[0] = getRoot(); 5138 Ops[1] = 5139 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5140 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5141 5142 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5143 DAG.setRoot(Res); 5144 } 5145 return nullptr; 5146 } 5147 case Intrinsic::invariant_start: 5148 // Discard region information. 5149 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5150 return nullptr; 5151 case Intrinsic::invariant_end: 5152 // Discard region information. 5153 return nullptr; 5154 case Intrinsic::stackprotectorcheck: { 5155 // Do not actually emit anything for this basic block. Instead we initialize 5156 // the stack protector descriptor and export the guard variable so we can 5157 // access it in FinishBasicBlock. 5158 const BasicBlock *BB = I.getParent(); 5159 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5160 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5161 5162 // Flush our exports since we are going to process a terminator. 5163 (void)getControlRoot(); 5164 return nullptr; 5165 } 5166 case Intrinsic::clear_cache: 5167 return TLI.getClearCacheBuiltinName(); 5168 case Intrinsic::donothing: 5169 // ignore 5170 return nullptr; 5171 case Intrinsic::experimental_stackmap: { 5172 visitStackmap(I); 5173 return nullptr; 5174 } 5175 case Intrinsic::experimental_patchpoint_void: 5176 case Intrinsic::experimental_patchpoint_i64: { 5177 visitPatchpoint(&I); 5178 return nullptr; 5179 } 5180 case Intrinsic::experimental_gc_statepoint: { 5181 visitStatepoint(I); 5182 return nullptr; 5183 } 5184 case Intrinsic::experimental_gc_result_int: 5185 case Intrinsic::experimental_gc_result_float: 5186 case Intrinsic::experimental_gc_result_ptr: 5187 case Intrinsic::experimental_gc_result: { 5188 visitGCResult(I); 5189 return nullptr; 5190 } 5191 case Intrinsic::experimental_gc_relocate: { 5192 visitGCRelocate(I); 5193 return nullptr; 5194 } 5195 case Intrinsic::instrprof_increment: 5196 llvm_unreachable("instrprof failed to lower an increment"); 5197 5198 case Intrinsic::localescape: { 5199 MachineFunction &MF = DAG.getMachineFunction(); 5200 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5201 5202 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5203 // is the same on all targets. 5204 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5205 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5206 if (isa<ConstantPointerNull>(Arg)) 5207 continue; // Skip null pointers. They represent a hole in index space. 5208 AllocaInst *Slot = cast<AllocaInst>(Arg); 5209 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5210 "can only escape static allocas"); 5211 int FI = FuncInfo.StaticAllocaMap[Slot]; 5212 MCSymbol *FrameAllocSym = 5213 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5214 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5215 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5216 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5217 .addSym(FrameAllocSym) 5218 .addFrameIndex(FI); 5219 } 5220 5221 return nullptr; 5222 } 5223 5224 case Intrinsic::localrecover: { 5225 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5226 MachineFunction &MF = DAG.getMachineFunction(); 5227 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5228 5229 // Get the symbol that defines the frame offset. 5230 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5231 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5232 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5233 MCSymbol *FrameAllocSym = 5234 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5235 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5236 5237 // Create a MCSymbol for the label to avoid any target lowering 5238 // that would make this PC relative. 5239 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5240 SDValue OffsetVal = 5241 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5242 5243 // Add the offset to the FP. 5244 Value *FP = I.getArgOperand(1); 5245 SDValue FPVal = getValue(FP); 5246 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5247 setValue(&I, Add); 5248 5249 return nullptr; 5250 } 5251 5252 case Intrinsic::eh_exceptionpointer: 5253 case Intrinsic::eh_exceptioncode: { 5254 // Get the exception pointer vreg, copy from it, and resize it to fit. 5255 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5256 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5257 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5258 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5259 SDValue N = 5260 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5261 if (Intrinsic == Intrinsic::eh_exceptioncode) 5262 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5263 setValue(&I, N); 5264 return nullptr; 5265 } 5266 } 5267 } 5268 5269 std::pair<SDValue, SDValue> 5270 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5271 const BasicBlock *EHPadBB) { 5272 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5273 MCSymbol *BeginLabel = nullptr; 5274 5275 if (EHPadBB) { 5276 // Insert a label before the invoke call to mark the try range. This can be 5277 // used to detect deletion of the invoke via the MachineModuleInfo. 5278 BeginLabel = MMI.getContext().createTempSymbol(); 5279 5280 // For SjLj, keep track of which landing pads go with which invokes 5281 // so as to maintain the ordering of pads in the LSDA. 5282 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5283 if (CallSiteIndex) { 5284 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5285 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5286 5287 // Now that the call site is handled, stop tracking it. 5288 MMI.setCurrentCallSite(0); 5289 } 5290 5291 // Both PendingLoads and PendingExports must be flushed here; 5292 // this call might not return. 5293 (void)getRoot(); 5294 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5295 5296 CLI.setChain(getRoot()); 5297 } 5298 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5299 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5300 5301 assert((CLI.IsTailCall || Result.second.getNode()) && 5302 "Non-null chain expected with non-tail call!"); 5303 assert((Result.second.getNode() || !Result.first.getNode()) && 5304 "Null value expected with tail call!"); 5305 5306 if (!Result.second.getNode()) { 5307 // As a special case, a null chain means that a tail call has been emitted 5308 // and the DAG root is already updated. 5309 HasTailCall = true; 5310 5311 // Since there's no actual continuation from this block, nothing can be 5312 // relying on us setting vregs for them. 5313 PendingExports.clear(); 5314 } else { 5315 DAG.setRoot(Result.second); 5316 } 5317 5318 if (EHPadBB) { 5319 // Insert a label at the end of the invoke call to mark the try range. This 5320 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5321 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5322 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5323 5324 // Inform MachineModuleInfo of range. 5325 if (MMI.hasEHFunclets()) { 5326 WinEHFuncInfo &EHInfo = 5327 MMI.getWinEHFuncInfo(DAG.getMachineFunction().getFunction()); 5328 EHInfo.addIPToStateRange(EHPadBB, BeginLabel, EndLabel); 5329 } else { 5330 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5331 } 5332 } 5333 5334 return Result; 5335 } 5336 5337 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5338 bool isTailCall, 5339 const BasicBlock *EHPadBB) { 5340 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5341 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5342 Type *RetTy = FTy->getReturnType(); 5343 5344 TargetLowering::ArgListTy Args; 5345 TargetLowering::ArgListEntry Entry; 5346 Args.reserve(CS.arg_size()); 5347 5348 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5349 i != e; ++i) { 5350 const Value *V = *i; 5351 5352 // Skip empty types 5353 if (V->getType()->isEmptyTy()) 5354 continue; 5355 5356 SDValue ArgNode = getValue(V); 5357 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5358 5359 // Skip the first return-type Attribute to get to params. 5360 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5361 Args.push_back(Entry); 5362 5363 // If we have an explicit sret argument that is an Instruction, (i.e., it 5364 // might point to function-local memory), we can't meaningfully tail-call. 5365 if (Entry.isSRet && isa<Instruction>(V)) 5366 isTailCall = false; 5367 } 5368 5369 // Check if target-independent constraints permit a tail call here. 5370 // Target-dependent constraints are checked within TLI->LowerCallTo. 5371 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5372 isTailCall = false; 5373 5374 TargetLowering::CallLoweringInfo CLI(DAG); 5375 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5376 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5377 .setTailCall(isTailCall); 5378 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5379 5380 if (Result.first.getNode()) 5381 setValue(CS.getInstruction(), Result.first); 5382 } 5383 5384 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5385 /// value is equal or not-equal to zero. 5386 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5387 for (const User *U : V->users()) { 5388 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5389 if (IC->isEquality()) 5390 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5391 if (C->isNullValue()) 5392 continue; 5393 // Unknown instruction. 5394 return false; 5395 } 5396 return true; 5397 } 5398 5399 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5400 Type *LoadTy, 5401 SelectionDAGBuilder &Builder) { 5402 5403 // Check to see if this load can be trivially constant folded, e.g. if the 5404 // input is from a string literal. 5405 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5406 // Cast pointer to the type we really want to load. 5407 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5408 PointerType::getUnqual(LoadTy)); 5409 5410 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5411 const_cast<Constant *>(LoadInput), *Builder.DL)) 5412 return Builder.getValue(LoadCst); 5413 } 5414 5415 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5416 // still constant memory, the input chain can be the entry node. 5417 SDValue Root; 5418 bool ConstantMemory = false; 5419 5420 // Do not serialize (non-volatile) loads of constant memory with anything. 5421 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5422 Root = Builder.DAG.getEntryNode(); 5423 ConstantMemory = true; 5424 } else { 5425 // Do not serialize non-volatile loads against each other. 5426 Root = Builder.DAG.getRoot(); 5427 } 5428 5429 SDValue Ptr = Builder.getValue(PtrVal); 5430 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5431 Ptr, MachinePointerInfo(PtrVal), 5432 false /*volatile*/, 5433 false /*nontemporal*/, 5434 false /*isinvariant*/, 1 /* align=1 */); 5435 5436 if (!ConstantMemory) 5437 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5438 return LoadVal; 5439 } 5440 5441 /// processIntegerCallValue - Record the value for an instruction that 5442 /// produces an integer result, converting the type where necessary. 5443 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5444 SDValue Value, 5445 bool IsSigned) { 5446 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5447 I.getType(), true); 5448 if (IsSigned) 5449 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5450 else 5451 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5452 setValue(&I, Value); 5453 } 5454 5455 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5456 /// If so, return true and lower it, otherwise return false and it will be 5457 /// lowered like a normal call. 5458 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5459 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5460 if (I.getNumArgOperands() != 3) 5461 return false; 5462 5463 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5464 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5465 !I.getArgOperand(2)->getType()->isIntegerTy() || 5466 !I.getType()->isIntegerTy()) 5467 return false; 5468 5469 const Value *Size = I.getArgOperand(2); 5470 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5471 if (CSize && CSize->getZExtValue() == 0) { 5472 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5473 I.getType(), true); 5474 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5475 return true; 5476 } 5477 5478 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5479 std::pair<SDValue, SDValue> Res = 5480 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5481 getValue(LHS), getValue(RHS), getValue(Size), 5482 MachinePointerInfo(LHS), 5483 MachinePointerInfo(RHS)); 5484 if (Res.first.getNode()) { 5485 processIntegerCallValue(I, Res.first, true); 5486 PendingLoads.push_back(Res.second); 5487 return true; 5488 } 5489 5490 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5491 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5492 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5493 bool ActuallyDoIt = true; 5494 MVT LoadVT; 5495 Type *LoadTy; 5496 switch (CSize->getZExtValue()) { 5497 default: 5498 LoadVT = MVT::Other; 5499 LoadTy = nullptr; 5500 ActuallyDoIt = false; 5501 break; 5502 case 2: 5503 LoadVT = MVT::i16; 5504 LoadTy = Type::getInt16Ty(CSize->getContext()); 5505 break; 5506 case 4: 5507 LoadVT = MVT::i32; 5508 LoadTy = Type::getInt32Ty(CSize->getContext()); 5509 break; 5510 case 8: 5511 LoadVT = MVT::i64; 5512 LoadTy = Type::getInt64Ty(CSize->getContext()); 5513 break; 5514 /* 5515 case 16: 5516 LoadVT = MVT::v4i32; 5517 LoadTy = Type::getInt32Ty(CSize->getContext()); 5518 LoadTy = VectorType::get(LoadTy, 4); 5519 break; 5520 */ 5521 } 5522 5523 // This turns into unaligned loads. We only do this if the target natively 5524 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5525 // we'll only produce a small number of byte loads. 5526 5527 // Require that we can find a legal MVT, and only do this if the target 5528 // supports unaligned loads of that type. Expanding into byte loads would 5529 // bloat the code. 5530 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5531 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5532 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5533 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5534 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5535 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5536 // TODO: Check alignment of src and dest ptrs. 5537 if (!TLI.isTypeLegal(LoadVT) || 5538 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5539 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5540 ActuallyDoIt = false; 5541 } 5542 5543 if (ActuallyDoIt) { 5544 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5545 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5546 5547 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5548 ISD::SETNE); 5549 processIntegerCallValue(I, Res, false); 5550 return true; 5551 } 5552 } 5553 5554 5555 return false; 5556 } 5557 5558 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5559 /// form. If so, return true and lower it, otherwise return false and it 5560 /// will be lowered like a normal call. 5561 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5562 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5563 if (I.getNumArgOperands() != 3) 5564 return false; 5565 5566 const Value *Src = I.getArgOperand(0); 5567 const Value *Char = I.getArgOperand(1); 5568 const Value *Length = I.getArgOperand(2); 5569 if (!Src->getType()->isPointerTy() || 5570 !Char->getType()->isIntegerTy() || 5571 !Length->getType()->isIntegerTy() || 5572 !I.getType()->isPointerTy()) 5573 return false; 5574 5575 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5576 std::pair<SDValue, SDValue> Res = 5577 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5578 getValue(Src), getValue(Char), getValue(Length), 5579 MachinePointerInfo(Src)); 5580 if (Res.first.getNode()) { 5581 setValue(&I, Res.first); 5582 PendingLoads.push_back(Res.second); 5583 return true; 5584 } 5585 5586 return false; 5587 } 5588 5589 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5590 /// optimized form. If so, return true and lower it, otherwise return false 5591 /// and it will be lowered like a normal call. 5592 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5593 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5594 if (I.getNumArgOperands() != 2) 5595 return false; 5596 5597 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5598 if (!Arg0->getType()->isPointerTy() || 5599 !Arg1->getType()->isPointerTy() || 5600 !I.getType()->isPointerTy()) 5601 return false; 5602 5603 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5604 std::pair<SDValue, SDValue> Res = 5605 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5606 getValue(Arg0), getValue(Arg1), 5607 MachinePointerInfo(Arg0), 5608 MachinePointerInfo(Arg1), isStpcpy); 5609 if (Res.first.getNode()) { 5610 setValue(&I, Res.first); 5611 DAG.setRoot(Res.second); 5612 return true; 5613 } 5614 5615 return false; 5616 } 5617 5618 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5619 /// If so, return true and lower it, otherwise return false and it will be 5620 /// lowered like a normal call. 5621 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5622 // Verify that the prototype makes sense. int strcmp(void*,void*) 5623 if (I.getNumArgOperands() != 2) 5624 return false; 5625 5626 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5627 if (!Arg0->getType()->isPointerTy() || 5628 !Arg1->getType()->isPointerTy() || 5629 !I.getType()->isIntegerTy()) 5630 return false; 5631 5632 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5633 std::pair<SDValue, SDValue> Res = 5634 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5635 getValue(Arg0), getValue(Arg1), 5636 MachinePointerInfo(Arg0), 5637 MachinePointerInfo(Arg1)); 5638 if (Res.first.getNode()) { 5639 processIntegerCallValue(I, Res.first, true); 5640 PendingLoads.push_back(Res.second); 5641 return true; 5642 } 5643 5644 return false; 5645 } 5646 5647 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5648 /// form. If so, return true and lower it, otherwise return false and it 5649 /// will be lowered like a normal call. 5650 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5651 // Verify that the prototype makes sense. size_t strlen(char *) 5652 if (I.getNumArgOperands() != 1) 5653 return false; 5654 5655 const Value *Arg0 = I.getArgOperand(0); 5656 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5657 return false; 5658 5659 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5660 std::pair<SDValue, SDValue> Res = 5661 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5662 getValue(Arg0), MachinePointerInfo(Arg0)); 5663 if (Res.first.getNode()) { 5664 processIntegerCallValue(I, Res.first, false); 5665 PendingLoads.push_back(Res.second); 5666 return true; 5667 } 5668 5669 return false; 5670 } 5671 5672 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5673 /// form. If so, return true and lower it, otherwise return false and it 5674 /// will be lowered like a normal call. 5675 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5676 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5677 if (I.getNumArgOperands() != 2) 5678 return false; 5679 5680 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5681 if (!Arg0->getType()->isPointerTy() || 5682 !Arg1->getType()->isIntegerTy() || 5683 !I.getType()->isIntegerTy()) 5684 return false; 5685 5686 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5687 std::pair<SDValue, SDValue> Res = 5688 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5689 getValue(Arg0), getValue(Arg1), 5690 MachinePointerInfo(Arg0)); 5691 if (Res.first.getNode()) { 5692 processIntegerCallValue(I, Res.first, false); 5693 PendingLoads.push_back(Res.second); 5694 return true; 5695 } 5696 5697 return false; 5698 } 5699 5700 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5701 /// operation (as expected), translate it to an SDNode with the specified opcode 5702 /// and return true. 5703 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5704 unsigned Opcode) { 5705 // Sanity check that it really is a unary floating-point call. 5706 if (I.getNumArgOperands() != 1 || 5707 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5708 I.getType() != I.getArgOperand(0)->getType() || 5709 !I.onlyReadsMemory()) 5710 return false; 5711 5712 SDValue Tmp = getValue(I.getArgOperand(0)); 5713 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5714 return true; 5715 } 5716 5717 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5718 /// operation (as expected), translate it to an SDNode with the specified opcode 5719 /// and return true. 5720 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5721 unsigned Opcode) { 5722 // Sanity check that it really is a binary floating-point call. 5723 if (I.getNumArgOperands() != 2 || 5724 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5725 I.getType() != I.getArgOperand(0)->getType() || 5726 I.getType() != I.getArgOperand(1)->getType() || 5727 !I.onlyReadsMemory()) 5728 return false; 5729 5730 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5731 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5732 EVT VT = Tmp0.getValueType(); 5733 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5734 return true; 5735 } 5736 5737 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5738 // Handle inline assembly differently. 5739 if (isa<InlineAsm>(I.getCalledValue())) { 5740 visitInlineAsm(&I); 5741 return; 5742 } 5743 5744 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5745 ComputeUsesVAFloatArgument(I, &MMI); 5746 5747 const char *RenameFn = nullptr; 5748 if (Function *F = I.getCalledFunction()) { 5749 if (F->isDeclaration()) { 5750 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5751 if (unsigned IID = II->getIntrinsicID(F)) { 5752 RenameFn = visitIntrinsicCall(I, IID); 5753 if (!RenameFn) 5754 return; 5755 } 5756 } 5757 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5758 RenameFn = visitIntrinsicCall(I, IID); 5759 if (!RenameFn) 5760 return; 5761 } 5762 } 5763 5764 // Check for well-known libc/libm calls. If the function is internal, it 5765 // can't be a library call. 5766 LibFunc::Func Func; 5767 if (!F->hasLocalLinkage() && F->hasName() && 5768 LibInfo->getLibFunc(F->getName(), Func) && 5769 LibInfo->hasOptimizedCodeGen(Func)) { 5770 switch (Func) { 5771 default: break; 5772 case LibFunc::copysign: 5773 case LibFunc::copysignf: 5774 case LibFunc::copysignl: 5775 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5776 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5777 I.getType() == I.getArgOperand(0)->getType() && 5778 I.getType() == I.getArgOperand(1)->getType() && 5779 I.onlyReadsMemory()) { 5780 SDValue LHS = getValue(I.getArgOperand(0)); 5781 SDValue RHS = getValue(I.getArgOperand(1)); 5782 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5783 LHS.getValueType(), LHS, RHS)); 5784 return; 5785 } 5786 break; 5787 case LibFunc::fabs: 5788 case LibFunc::fabsf: 5789 case LibFunc::fabsl: 5790 if (visitUnaryFloatCall(I, ISD::FABS)) 5791 return; 5792 break; 5793 case LibFunc::fmin: 5794 case LibFunc::fminf: 5795 case LibFunc::fminl: 5796 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5797 return; 5798 break; 5799 case LibFunc::fmax: 5800 case LibFunc::fmaxf: 5801 case LibFunc::fmaxl: 5802 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5803 return; 5804 break; 5805 case LibFunc::sin: 5806 case LibFunc::sinf: 5807 case LibFunc::sinl: 5808 if (visitUnaryFloatCall(I, ISD::FSIN)) 5809 return; 5810 break; 5811 case LibFunc::cos: 5812 case LibFunc::cosf: 5813 case LibFunc::cosl: 5814 if (visitUnaryFloatCall(I, ISD::FCOS)) 5815 return; 5816 break; 5817 case LibFunc::sqrt: 5818 case LibFunc::sqrtf: 5819 case LibFunc::sqrtl: 5820 case LibFunc::sqrt_finite: 5821 case LibFunc::sqrtf_finite: 5822 case LibFunc::sqrtl_finite: 5823 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5824 return; 5825 break; 5826 case LibFunc::floor: 5827 case LibFunc::floorf: 5828 case LibFunc::floorl: 5829 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5830 return; 5831 break; 5832 case LibFunc::nearbyint: 5833 case LibFunc::nearbyintf: 5834 case LibFunc::nearbyintl: 5835 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5836 return; 5837 break; 5838 case LibFunc::ceil: 5839 case LibFunc::ceilf: 5840 case LibFunc::ceill: 5841 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5842 return; 5843 break; 5844 case LibFunc::rint: 5845 case LibFunc::rintf: 5846 case LibFunc::rintl: 5847 if (visitUnaryFloatCall(I, ISD::FRINT)) 5848 return; 5849 break; 5850 case LibFunc::round: 5851 case LibFunc::roundf: 5852 case LibFunc::roundl: 5853 if (visitUnaryFloatCall(I, ISD::FROUND)) 5854 return; 5855 break; 5856 case LibFunc::trunc: 5857 case LibFunc::truncf: 5858 case LibFunc::truncl: 5859 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5860 return; 5861 break; 5862 case LibFunc::log2: 5863 case LibFunc::log2f: 5864 case LibFunc::log2l: 5865 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5866 return; 5867 break; 5868 case LibFunc::exp2: 5869 case LibFunc::exp2f: 5870 case LibFunc::exp2l: 5871 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5872 return; 5873 break; 5874 case LibFunc::memcmp: 5875 if (visitMemCmpCall(I)) 5876 return; 5877 break; 5878 case LibFunc::memchr: 5879 if (visitMemChrCall(I)) 5880 return; 5881 break; 5882 case LibFunc::strcpy: 5883 if (visitStrCpyCall(I, false)) 5884 return; 5885 break; 5886 case LibFunc::stpcpy: 5887 if (visitStrCpyCall(I, true)) 5888 return; 5889 break; 5890 case LibFunc::strcmp: 5891 if (visitStrCmpCall(I)) 5892 return; 5893 break; 5894 case LibFunc::strlen: 5895 if (visitStrLenCall(I)) 5896 return; 5897 break; 5898 case LibFunc::strnlen: 5899 if (visitStrNLenCall(I)) 5900 return; 5901 break; 5902 } 5903 } 5904 } 5905 5906 SDValue Callee; 5907 if (!RenameFn) 5908 Callee = getValue(I.getCalledValue()); 5909 else 5910 Callee = DAG.getExternalSymbol( 5911 RenameFn, 5912 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5913 5914 // Check if we can potentially perform a tail call. More detailed checking is 5915 // be done within LowerCallTo, after more information about the call is known. 5916 LowerCallTo(&I, Callee, I.isTailCall()); 5917 } 5918 5919 namespace { 5920 5921 /// AsmOperandInfo - This contains information for each constraint that we are 5922 /// lowering. 5923 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5924 public: 5925 /// CallOperand - If this is the result output operand or a clobber 5926 /// this is null, otherwise it is the incoming operand to the CallInst. 5927 /// This gets modified as the asm is processed. 5928 SDValue CallOperand; 5929 5930 /// AssignedRegs - If this is a register or register class operand, this 5931 /// contains the set of register corresponding to the operand. 5932 RegsForValue AssignedRegs; 5933 5934 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5935 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5936 } 5937 5938 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5939 /// corresponds to. If there is no Value* for this operand, it returns 5940 /// MVT::Other. 5941 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5942 const DataLayout &DL) const { 5943 if (!CallOperandVal) return MVT::Other; 5944 5945 if (isa<BasicBlock>(CallOperandVal)) 5946 return TLI.getPointerTy(DL); 5947 5948 llvm::Type *OpTy = CallOperandVal->getType(); 5949 5950 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5951 // If this is an indirect operand, the operand is a pointer to the 5952 // accessed type. 5953 if (isIndirect) { 5954 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5955 if (!PtrTy) 5956 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5957 OpTy = PtrTy->getElementType(); 5958 } 5959 5960 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5961 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5962 if (STy->getNumElements() == 1) 5963 OpTy = STy->getElementType(0); 5964 5965 // If OpTy is not a single value, it may be a struct/union that we 5966 // can tile with integers. 5967 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5968 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5969 switch (BitSize) { 5970 default: break; 5971 case 1: 5972 case 8: 5973 case 16: 5974 case 32: 5975 case 64: 5976 case 128: 5977 OpTy = IntegerType::get(Context, BitSize); 5978 break; 5979 } 5980 } 5981 5982 return TLI.getValueType(DL, OpTy, true); 5983 } 5984 }; 5985 5986 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5987 5988 } // end anonymous namespace 5989 5990 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5991 /// specified operand. We prefer to assign virtual registers, to allow the 5992 /// register allocator to handle the assignment process. However, if the asm 5993 /// uses features that we can't model on machineinstrs, we have SDISel do the 5994 /// allocation. This produces generally horrible, but correct, code. 5995 /// 5996 /// OpInfo describes the operand. 5997 /// 5998 static void GetRegistersForValue(SelectionDAG &DAG, 5999 const TargetLowering &TLI, 6000 SDLoc DL, 6001 SDISelAsmOperandInfo &OpInfo) { 6002 LLVMContext &Context = *DAG.getContext(); 6003 6004 MachineFunction &MF = DAG.getMachineFunction(); 6005 SmallVector<unsigned, 4> Regs; 6006 6007 // If this is a constraint for a single physreg, or a constraint for a 6008 // register class, find it. 6009 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6010 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6011 OpInfo.ConstraintCode, 6012 OpInfo.ConstraintVT); 6013 6014 unsigned NumRegs = 1; 6015 if (OpInfo.ConstraintVT != MVT::Other) { 6016 // If this is a FP input in an integer register (or visa versa) insert a bit 6017 // cast of the input value. More generally, handle any case where the input 6018 // value disagrees with the register class we plan to stick this in. 6019 if (OpInfo.Type == InlineAsm::isInput && 6020 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6021 // Try to convert to the first EVT that the reg class contains. If the 6022 // types are identical size, use a bitcast to convert (e.g. two differing 6023 // vector types). 6024 MVT RegVT = *PhysReg.second->vt_begin(); 6025 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6026 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6027 RegVT, OpInfo.CallOperand); 6028 OpInfo.ConstraintVT = RegVT; 6029 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6030 // If the input is a FP value and we want it in FP registers, do a 6031 // bitcast to the corresponding integer type. This turns an f64 value 6032 // into i64, which can be passed with two i32 values on a 32-bit 6033 // machine. 6034 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6035 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6036 RegVT, OpInfo.CallOperand); 6037 OpInfo.ConstraintVT = RegVT; 6038 } 6039 } 6040 6041 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6042 } 6043 6044 MVT RegVT; 6045 EVT ValueVT = OpInfo.ConstraintVT; 6046 6047 // If this is a constraint for a specific physical register, like {r17}, 6048 // assign it now. 6049 if (unsigned AssignedReg = PhysReg.first) { 6050 const TargetRegisterClass *RC = PhysReg.second; 6051 if (OpInfo.ConstraintVT == MVT::Other) 6052 ValueVT = *RC->vt_begin(); 6053 6054 // Get the actual register value type. This is important, because the user 6055 // may have asked for (e.g.) the AX register in i32 type. We need to 6056 // remember that AX is actually i16 to get the right extension. 6057 RegVT = *RC->vt_begin(); 6058 6059 // This is a explicit reference to a physical register. 6060 Regs.push_back(AssignedReg); 6061 6062 // If this is an expanded reference, add the rest of the regs to Regs. 6063 if (NumRegs != 1) { 6064 TargetRegisterClass::iterator I = RC->begin(); 6065 for (; *I != AssignedReg; ++I) 6066 assert(I != RC->end() && "Didn't find reg!"); 6067 6068 // Already added the first reg. 6069 --NumRegs; ++I; 6070 for (; NumRegs; --NumRegs, ++I) { 6071 assert(I != RC->end() && "Ran out of registers to allocate!"); 6072 Regs.push_back(*I); 6073 } 6074 } 6075 6076 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6077 return; 6078 } 6079 6080 // Otherwise, if this was a reference to an LLVM register class, create vregs 6081 // for this reference. 6082 if (const TargetRegisterClass *RC = PhysReg.second) { 6083 RegVT = *RC->vt_begin(); 6084 if (OpInfo.ConstraintVT == MVT::Other) 6085 ValueVT = RegVT; 6086 6087 // Create the appropriate number of virtual registers. 6088 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6089 for (; NumRegs; --NumRegs) 6090 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6091 6092 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6093 return; 6094 } 6095 6096 // Otherwise, we couldn't allocate enough registers for this. 6097 } 6098 6099 /// visitInlineAsm - Handle a call to an InlineAsm object. 6100 /// 6101 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6102 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6103 6104 /// ConstraintOperands - Information about all of the constraints. 6105 SDISelAsmOperandInfoVector ConstraintOperands; 6106 6107 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6108 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6109 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6110 6111 bool hasMemory = false; 6112 6113 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6114 unsigned ResNo = 0; // ResNo - The result number of the next output. 6115 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6116 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6117 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6118 6119 MVT OpVT = MVT::Other; 6120 6121 // Compute the value type for each operand. 6122 switch (OpInfo.Type) { 6123 case InlineAsm::isOutput: 6124 // Indirect outputs just consume an argument. 6125 if (OpInfo.isIndirect) { 6126 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6127 break; 6128 } 6129 6130 // The return value of the call is this value. As such, there is no 6131 // corresponding argument. 6132 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6133 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6134 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6135 STy->getElementType(ResNo)); 6136 } else { 6137 assert(ResNo == 0 && "Asm only has one result!"); 6138 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6139 } 6140 ++ResNo; 6141 break; 6142 case InlineAsm::isInput: 6143 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6144 break; 6145 case InlineAsm::isClobber: 6146 // Nothing to do. 6147 break; 6148 } 6149 6150 // If this is an input or an indirect output, process the call argument. 6151 // BasicBlocks are labels, currently appearing only in asm's. 6152 if (OpInfo.CallOperandVal) { 6153 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6154 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6155 } else { 6156 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6157 } 6158 6159 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6160 DAG.getDataLayout()).getSimpleVT(); 6161 } 6162 6163 OpInfo.ConstraintVT = OpVT; 6164 6165 // Indirect operand accesses access memory. 6166 if (OpInfo.isIndirect) 6167 hasMemory = true; 6168 else { 6169 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6170 TargetLowering::ConstraintType 6171 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6172 if (CType == TargetLowering::C_Memory) { 6173 hasMemory = true; 6174 break; 6175 } 6176 } 6177 } 6178 } 6179 6180 SDValue Chain, Flag; 6181 6182 // We won't need to flush pending loads if this asm doesn't touch 6183 // memory and is nonvolatile. 6184 if (hasMemory || IA->hasSideEffects()) 6185 Chain = getRoot(); 6186 else 6187 Chain = DAG.getRoot(); 6188 6189 // Second pass over the constraints: compute which constraint option to use 6190 // and assign registers to constraints that want a specific physreg. 6191 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6192 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6193 6194 // If this is an output operand with a matching input operand, look up the 6195 // matching input. If their types mismatch, e.g. one is an integer, the 6196 // other is floating point, or their sizes are different, flag it as an 6197 // error. 6198 if (OpInfo.hasMatchingInput()) { 6199 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6200 6201 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6202 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6203 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6204 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6205 OpInfo.ConstraintVT); 6206 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6207 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6208 Input.ConstraintVT); 6209 if ((OpInfo.ConstraintVT.isInteger() != 6210 Input.ConstraintVT.isInteger()) || 6211 (MatchRC.second != InputRC.second)) { 6212 report_fatal_error("Unsupported asm: input constraint" 6213 " with a matching output constraint of" 6214 " incompatible type!"); 6215 } 6216 Input.ConstraintVT = OpInfo.ConstraintVT; 6217 } 6218 } 6219 6220 // Compute the constraint code and ConstraintType to use. 6221 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6222 6223 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6224 OpInfo.Type == InlineAsm::isClobber) 6225 continue; 6226 6227 // If this is a memory input, and if the operand is not indirect, do what we 6228 // need to to provide an address for the memory input. 6229 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6230 !OpInfo.isIndirect) { 6231 assert((OpInfo.isMultipleAlternative || 6232 (OpInfo.Type == InlineAsm::isInput)) && 6233 "Can only indirectify direct input operands!"); 6234 6235 // Memory operands really want the address of the value. If we don't have 6236 // an indirect input, put it in the constpool if we can, otherwise spill 6237 // it to a stack slot. 6238 // TODO: This isn't quite right. We need to handle these according to 6239 // the addressing mode that the constraint wants. Also, this may take 6240 // an additional register for the computation and we don't want that 6241 // either. 6242 6243 // If the operand is a float, integer, or vector constant, spill to a 6244 // constant pool entry to get its address. 6245 const Value *OpVal = OpInfo.CallOperandVal; 6246 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6247 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6248 OpInfo.CallOperand = DAG.getConstantPool( 6249 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6250 } else { 6251 // Otherwise, create a stack slot and emit a store to it before the 6252 // asm. 6253 Type *Ty = OpVal->getType(); 6254 auto &DL = DAG.getDataLayout(); 6255 uint64_t TySize = DL.getTypeAllocSize(Ty); 6256 unsigned Align = DL.getPrefTypeAlignment(Ty); 6257 MachineFunction &MF = DAG.getMachineFunction(); 6258 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6259 SDValue StackSlot = 6260 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6261 Chain = DAG.getStore( 6262 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6263 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6264 false, false, 0); 6265 OpInfo.CallOperand = StackSlot; 6266 } 6267 6268 // There is no longer a Value* corresponding to this operand. 6269 OpInfo.CallOperandVal = nullptr; 6270 6271 // It is now an indirect operand. 6272 OpInfo.isIndirect = true; 6273 } 6274 6275 // If this constraint is for a specific register, allocate it before 6276 // anything else. 6277 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6278 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6279 } 6280 6281 // Second pass - Loop over all of the operands, assigning virtual or physregs 6282 // to register class operands. 6283 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6284 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6285 6286 // C_Register operands have already been allocated, Other/Memory don't need 6287 // to be. 6288 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6289 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6290 } 6291 6292 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6293 std::vector<SDValue> AsmNodeOperands; 6294 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6295 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6296 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6297 6298 // If we have a !srcloc metadata node associated with it, we want to attach 6299 // this to the ultimately generated inline asm machineinstr. To do this, we 6300 // pass in the third operand as this (potentially null) inline asm MDNode. 6301 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6302 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6303 6304 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6305 // bits as operand 3. 6306 unsigned ExtraInfo = 0; 6307 if (IA->hasSideEffects()) 6308 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6309 if (IA->isAlignStack()) 6310 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6311 // Set the asm dialect. 6312 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6313 6314 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6315 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6316 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6317 6318 // Compute the constraint code and ConstraintType to use. 6319 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6320 6321 // Ideally, we would only check against memory constraints. However, the 6322 // meaning of an other constraint can be target-specific and we can't easily 6323 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6324 // for other constriants as well. 6325 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6326 OpInfo.ConstraintType == TargetLowering::C_Other) { 6327 if (OpInfo.Type == InlineAsm::isInput) 6328 ExtraInfo |= InlineAsm::Extra_MayLoad; 6329 else if (OpInfo.Type == InlineAsm::isOutput) 6330 ExtraInfo |= InlineAsm::Extra_MayStore; 6331 else if (OpInfo.Type == InlineAsm::isClobber) 6332 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6333 } 6334 } 6335 6336 AsmNodeOperands.push_back(DAG.getTargetConstant( 6337 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6338 6339 // Loop over all of the inputs, copying the operand values into the 6340 // appropriate registers and processing the output regs. 6341 RegsForValue RetValRegs; 6342 6343 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6344 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6345 6346 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6347 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6348 6349 switch (OpInfo.Type) { 6350 case InlineAsm::isOutput: { 6351 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6352 OpInfo.ConstraintType != TargetLowering::C_Register) { 6353 // Memory output, or 'other' output (e.g. 'X' constraint). 6354 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6355 6356 unsigned ConstraintID = 6357 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6358 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6359 "Failed to convert memory constraint code to constraint id."); 6360 6361 // Add information to the INLINEASM node to know about this output. 6362 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6363 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6364 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6365 MVT::i32)); 6366 AsmNodeOperands.push_back(OpInfo.CallOperand); 6367 break; 6368 } 6369 6370 // Otherwise, this is a register or register class output. 6371 6372 // Copy the output from the appropriate register. Find a register that 6373 // we can use. 6374 if (OpInfo.AssignedRegs.Regs.empty()) { 6375 LLVMContext &Ctx = *DAG.getContext(); 6376 Ctx.emitError(CS.getInstruction(), 6377 "couldn't allocate output register for constraint '" + 6378 Twine(OpInfo.ConstraintCode) + "'"); 6379 return; 6380 } 6381 6382 // If this is an indirect operand, store through the pointer after the 6383 // asm. 6384 if (OpInfo.isIndirect) { 6385 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6386 OpInfo.CallOperandVal)); 6387 } else { 6388 // This is the result value of the call. 6389 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6390 // Concatenate this output onto the outputs list. 6391 RetValRegs.append(OpInfo.AssignedRegs); 6392 } 6393 6394 // Add information to the INLINEASM node to know that this register is 6395 // set. 6396 OpInfo.AssignedRegs 6397 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6398 ? InlineAsm::Kind_RegDefEarlyClobber 6399 : InlineAsm::Kind_RegDef, 6400 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6401 break; 6402 } 6403 case InlineAsm::isInput: { 6404 SDValue InOperandVal = OpInfo.CallOperand; 6405 6406 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6407 // If this is required to match an output register we have already set, 6408 // just use its register. 6409 unsigned OperandNo = OpInfo.getMatchedOperand(); 6410 6411 // Scan until we find the definition we already emitted of this operand. 6412 // When we find it, create a RegsForValue operand. 6413 unsigned CurOp = InlineAsm::Op_FirstOperand; 6414 for (; OperandNo; --OperandNo) { 6415 // Advance to the next operand. 6416 unsigned OpFlag = 6417 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6418 assert((InlineAsm::isRegDefKind(OpFlag) || 6419 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6420 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6421 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6422 } 6423 6424 unsigned OpFlag = 6425 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6426 if (InlineAsm::isRegDefKind(OpFlag) || 6427 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6428 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6429 if (OpInfo.isIndirect) { 6430 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6431 LLVMContext &Ctx = *DAG.getContext(); 6432 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6433 " don't know how to handle tied " 6434 "indirect register inputs"); 6435 return; 6436 } 6437 6438 RegsForValue MatchedRegs; 6439 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6440 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6441 MatchedRegs.RegVTs.push_back(RegVT); 6442 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6443 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6444 i != e; ++i) { 6445 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6446 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6447 else { 6448 LLVMContext &Ctx = *DAG.getContext(); 6449 Ctx.emitError(CS.getInstruction(), 6450 "inline asm error: This value" 6451 " type register class is not natively supported!"); 6452 return; 6453 } 6454 } 6455 SDLoc dl = getCurSDLoc(); 6456 // Use the produced MatchedRegs object to 6457 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6458 Chain, &Flag, CS.getInstruction()); 6459 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6460 true, OpInfo.getMatchedOperand(), dl, 6461 DAG, AsmNodeOperands); 6462 break; 6463 } 6464 6465 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6466 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6467 "Unexpected number of operands"); 6468 // Add information to the INLINEASM node to know about this input. 6469 // See InlineAsm.h isUseOperandTiedToDef. 6470 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6471 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6472 OpInfo.getMatchedOperand()); 6473 AsmNodeOperands.push_back(DAG.getTargetConstant( 6474 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6475 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6476 break; 6477 } 6478 6479 // Treat indirect 'X' constraint as memory. 6480 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6481 OpInfo.isIndirect) 6482 OpInfo.ConstraintType = TargetLowering::C_Memory; 6483 6484 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6485 std::vector<SDValue> Ops; 6486 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6487 Ops, DAG); 6488 if (Ops.empty()) { 6489 LLVMContext &Ctx = *DAG.getContext(); 6490 Ctx.emitError(CS.getInstruction(), 6491 "invalid operand for inline asm constraint '" + 6492 Twine(OpInfo.ConstraintCode) + "'"); 6493 return; 6494 } 6495 6496 // Add information to the INLINEASM node to know about this input. 6497 unsigned ResOpType = 6498 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6499 AsmNodeOperands.push_back(DAG.getTargetConstant( 6500 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6501 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6502 break; 6503 } 6504 6505 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6506 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6507 assert(InOperandVal.getValueType() == 6508 TLI.getPointerTy(DAG.getDataLayout()) && 6509 "Memory operands expect pointer values"); 6510 6511 unsigned ConstraintID = 6512 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6513 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6514 "Failed to convert memory constraint code to constraint id."); 6515 6516 // Add information to the INLINEASM node to know about this input. 6517 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6518 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6519 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6520 getCurSDLoc(), 6521 MVT::i32)); 6522 AsmNodeOperands.push_back(InOperandVal); 6523 break; 6524 } 6525 6526 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6527 OpInfo.ConstraintType == TargetLowering::C_Register) && 6528 "Unknown constraint type!"); 6529 6530 // TODO: Support this. 6531 if (OpInfo.isIndirect) { 6532 LLVMContext &Ctx = *DAG.getContext(); 6533 Ctx.emitError(CS.getInstruction(), 6534 "Don't know how to handle indirect register inputs yet " 6535 "for constraint '" + 6536 Twine(OpInfo.ConstraintCode) + "'"); 6537 return; 6538 } 6539 6540 // Copy the input into the appropriate registers. 6541 if (OpInfo.AssignedRegs.Regs.empty()) { 6542 LLVMContext &Ctx = *DAG.getContext(); 6543 Ctx.emitError(CS.getInstruction(), 6544 "couldn't allocate input reg for constraint '" + 6545 Twine(OpInfo.ConstraintCode) + "'"); 6546 return; 6547 } 6548 6549 SDLoc dl = getCurSDLoc(); 6550 6551 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6552 Chain, &Flag, CS.getInstruction()); 6553 6554 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6555 dl, DAG, AsmNodeOperands); 6556 break; 6557 } 6558 case InlineAsm::isClobber: { 6559 // Add the clobbered value to the operand list, so that the register 6560 // allocator is aware that the physreg got clobbered. 6561 if (!OpInfo.AssignedRegs.Regs.empty()) 6562 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6563 false, 0, getCurSDLoc(), DAG, 6564 AsmNodeOperands); 6565 break; 6566 } 6567 } 6568 } 6569 6570 // Finish up input operands. Set the input chain and add the flag last. 6571 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6572 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6573 6574 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6575 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6576 Flag = Chain.getValue(1); 6577 6578 // If this asm returns a register value, copy the result from that register 6579 // and set it as the value of the call. 6580 if (!RetValRegs.Regs.empty()) { 6581 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6582 Chain, &Flag, CS.getInstruction()); 6583 6584 // FIXME: Why don't we do this for inline asms with MRVs? 6585 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6586 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6587 6588 // If any of the results of the inline asm is a vector, it may have the 6589 // wrong width/num elts. This can happen for register classes that can 6590 // contain multiple different value types. The preg or vreg allocated may 6591 // not have the same VT as was expected. Convert it to the right type 6592 // with bit_convert. 6593 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6594 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6595 ResultType, Val); 6596 6597 } else if (ResultType != Val.getValueType() && 6598 ResultType.isInteger() && Val.getValueType().isInteger()) { 6599 // If a result value was tied to an input value, the computed result may 6600 // have a wider width than the expected result. Extract the relevant 6601 // portion. 6602 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6603 } 6604 6605 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6606 } 6607 6608 setValue(CS.getInstruction(), Val); 6609 // Don't need to use this as a chain in this case. 6610 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6611 return; 6612 } 6613 6614 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6615 6616 // Process indirect outputs, first output all of the flagged copies out of 6617 // physregs. 6618 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6619 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6620 const Value *Ptr = IndirectStoresToEmit[i].second; 6621 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6622 Chain, &Flag, IA); 6623 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6624 } 6625 6626 // Emit the non-flagged stores from the physregs. 6627 SmallVector<SDValue, 8> OutChains; 6628 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6629 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6630 StoresToEmit[i].first, 6631 getValue(StoresToEmit[i].second), 6632 MachinePointerInfo(StoresToEmit[i].second), 6633 false, false, 0); 6634 OutChains.push_back(Val); 6635 } 6636 6637 if (!OutChains.empty()) 6638 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6639 6640 DAG.setRoot(Chain); 6641 } 6642 6643 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6644 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6645 MVT::Other, getRoot(), 6646 getValue(I.getArgOperand(0)), 6647 DAG.getSrcValue(I.getArgOperand(0)))); 6648 } 6649 6650 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6651 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6652 const DataLayout &DL = DAG.getDataLayout(); 6653 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6654 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6655 DAG.getSrcValue(I.getOperand(0)), 6656 DL.getABITypeAlignment(I.getType())); 6657 setValue(&I, V); 6658 DAG.setRoot(V.getValue(1)); 6659 } 6660 6661 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6662 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6663 MVT::Other, getRoot(), 6664 getValue(I.getArgOperand(0)), 6665 DAG.getSrcValue(I.getArgOperand(0)))); 6666 } 6667 6668 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6669 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6670 MVT::Other, getRoot(), 6671 getValue(I.getArgOperand(0)), 6672 getValue(I.getArgOperand(1)), 6673 DAG.getSrcValue(I.getArgOperand(0)), 6674 DAG.getSrcValue(I.getArgOperand(1)))); 6675 } 6676 6677 /// \brief Lower an argument list according to the target calling convention. 6678 /// 6679 /// \return A tuple of <return-value, token-chain> 6680 /// 6681 /// This is a helper for lowering intrinsics that follow a target calling 6682 /// convention or require stack pointer adjustment. Only a subset of the 6683 /// intrinsic's operands need to participate in the calling convention. 6684 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6685 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6686 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6687 TargetLowering::ArgListTy Args; 6688 Args.reserve(NumArgs); 6689 6690 // Populate the argument list. 6691 // Attributes for args start at offset 1, after the return attribute. 6692 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6693 ArgI != ArgE; ++ArgI) { 6694 const Value *V = CS->getOperand(ArgI); 6695 6696 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6697 6698 TargetLowering::ArgListEntry Entry; 6699 Entry.Node = getValue(V); 6700 Entry.Ty = V->getType(); 6701 Entry.setAttributes(&CS, AttrI); 6702 Args.push_back(Entry); 6703 } 6704 6705 TargetLowering::CallLoweringInfo CLI(DAG); 6706 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6707 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6708 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6709 6710 return lowerInvokable(CLI, EHPadBB); 6711 } 6712 6713 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6714 /// or patchpoint target node's operand list. 6715 /// 6716 /// Constants are converted to TargetConstants purely as an optimization to 6717 /// avoid constant materialization and register allocation. 6718 /// 6719 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6720 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6721 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6722 /// address materialization and register allocation, but may also be required 6723 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6724 /// alloca in the entry block, then the runtime may assume that the alloca's 6725 /// StackMap location can be read immediately after compilation and that the 6726 /// location is valid at any point during execution (this is similar to the 6727 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6728 /// only available in a register, then the runtime would need to trap when 6729 /// execution reaches the StackMap in order to read the alloca's location. 6730 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6731 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6732 SelectionDAGBuilder &Builder) { 6733 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6734 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6735 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6736 Ops.push_back( 6737 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6738 Ops.push_back( 6739 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6740 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6741 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6742 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6743 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6744 } else 6745 Ops.push_back(OpVal); 6746 } 6747 } 6748 6749 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6750 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6751 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6752 // [live variables...]) 6753 6754 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6755 6756 SDValue Chain, InFlag, Callee, NullPtr; 6757 SmallVector<SDValue, 32> Ops; 6758 6759 SDLoc DL = getCurSDLoc(); 6760 Callee = getValue(CI.getCalledValue()); 6761 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6762 6763 // The stackmap intrinsic only records the live variables (the arguemnts 6764 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6765 // intrinsic, this won't be lowered to a function call. This means we don't 6766 // have to worry about calling conventions and target specific lowering code. 6767 // Instead we perform the call lowering right here. 6768 // 6769 // chain, flag = CALLSEQ_START(chain, 0) 6770 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6771 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6772 // 6773 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6774 InFlag = Chain.getValue(1); 6775 6776 // Add the <id> and <numBytes> constants. 6777 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6778 Ops.push_back(DAG.getTargetConstant( 6779 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6780 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6781 Ops.push_back(DAG.getTargetConstant( 6782 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6783 MVT::i32)); 6784 6785 // Push live variables for the stack map. 6786 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6787 6788 // We are not pushing any register mask info here on the operands list, 6789 // because the stackmap doesn't clobber anything. 6790 6791 // Push the chain and the glue flag. 6792 Ops.push_back(Chain); 6793 Ops.push_back(InFlag); 6794 6795 // Create the STACKMAP node. 6796 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6797 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6798 Chain = SDValue(SM, 0); 6799 InFlag = Chain.getValue(1); 6800 6801 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6802 6803 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6804 6805 // Set the root to the target-lowered call chain. 6806 DAG.setRoot(Chain); 6807 6808 // Inform the Frame Information that we have a stackmap in this function. 6809 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6810 } 6811 6812 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6813 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6814 const BasicBlock *EHPadBB) { 6815 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6816 // i32 <numBytes>, 6817 // i8* <target>, 6818 // i32 <numArgs>, 6819 // [Args...], 6820 // [live variables...]) 6821 6822 CallingConv::ID CC = CS.getCallingConv(); 6823 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6824 bool HasDef = !CS->getType()->isVoidTy(); 6825 SDLoc dl = getCurSDLoc(); 6826 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6827 6828 // Handle immediate and symbolic callees. 6829 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6830 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6831 /*isTarget=*/true); 6832 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6833 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6834 SDLoc(SymbolicCallee), 6835 SymbolicCallee->getValueType(0)); 6836 6837 // Get the real number of arguments participating in the call <numArgs> 6838 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6839 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6840 6841 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6842 // Intrinsics include all meta-operands up to but not including CC. 6843 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6844 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6845 "Not enough arguments provided to the patchpoint intrinsic"); 6846 6847 // For AnyRegCC the arguments are lowered later on manually. 6848 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6849 Type *ReturnTy = 6850 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6851 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6852 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6853 6854 SDNode *CallEnd = Result.second.getNode(); 6855 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6856 CallEnd = CallEnd->getOperand(0).getNode(); 6857 6858 /// Get a call instruction from the call sequence chain. 6859 /// Tail calls are not allowed. 6860 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6861 "Expected a callseq node."); 6862 SDNode *Call = CallEnd->getOperand(0).getNode(); 6863 bool HasGlue = Call->getGluedNode(); 6864 6865 // Replace the target specific call node with the patchable intrinsic. 6866 SmallVector<SDValue, 8> Ops; 6867 6868 // Add the <id> and <numBytes> constants. 6869 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6870 Ops.push_back(DAG.getTargetConstant( 6871 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6872 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6873 Ops.push_back(DAG.getTargetConstant( 6874 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6875 MVT::i32)); 6876 6877 // Add the callee. 6878 Ops.push_back(Callee); 6879 6880 // Adjust <numArgs> to account for any arguments that have been passed on the 6881 // stack instead. 6882 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6883 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6884 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6885 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6886 6887 // Add the calling convention 6888 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6889 6890 // Add the arguments we omitted previously. The register allocator should 6891 // place these in any free register. 6892 if (IsAnyRegCC) 6893 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6894 Ops.push_back(getValue(CS.getArgument(i))); 6895 6896 // Push the arguments from the call instruction up to the register mask. 6897 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6898 Ops.append(Call->op_begin() + 2, e); 6899 6900 // Push live variables for the stack map. 6901 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6902 6903 // Push the register mask info. 6904 if (HasGlue) 6905 Ops.push_back(*(Call->op_end()-2)); 6906 else 6907 Ops.push_back(*(Call->op_end()-1)); 6908 6909 // Push the chain (this is originally the first operand of the call, but 6910 // becomes now the last or second to last operand). 6911 Ops.push_back(*(Call->op_begin())); 6912 6913 // Push the glue flag (last operand). 6914 if (HasGlue) 6915 Ops.push_back(*(Call->op_end()-1)); 6916 6917 SDVTList NodeTys; 6918 if (IsAnyRegCC && HasDef) { 6919 // Create the return types based on the intrinsic definition 6920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6921 SmallVector<EVT, 3> ValueVTs; 6922 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6923 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6924 6925 // There is always a chain and a glue type at the end 6926 ValueVTs.push_back(MVT::Other); 6927 ValueVTs.push_back(MVT::Glue); 6928 NodeTys = DAG.getVTList(ValueVTs); 6929 } else 6930 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6931 6932 // Replace the target specific call node with a PATCHPOINT node. 6933 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6934 dl, NodeTys, Ops); 6935 6936 // Update the NodeMap. 6937 if (HasDef) { 6938 if (IsAnyRegCC) 6939 setValue(CS.getInstruction(), SDValue(MN, 0)); 6940 else 6941 setValue(CS.getInstruction(), Result.first); 6942 } 6943 6944 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6945 // call sequence. Furthermore the location of the chain and glue can change 6946 // when the AnyReg calling convention is used and the intrinsic returns a 6947 // value. 6948 if (IsAnyRegCC && HasDef) { 6949 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6950 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6951 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6952 } else 6953 DAG.ReplaceAllUsesWith(Call, MN); 6954 DAG.DeleteNode(Call); 6955 6956 // Inform the Frame Information that we have a patchpoint in this function. 6957 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6958 } 6959 6960 /// Returns an AttributeSet representing the attributes applied to the return 6961 /// value of the given call. 6962 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6963 SmallVector<Attribute::AttrKind, 2> Attrs; 6964 if (CLI.RetSExt) 6965 Attrs.push_back(Attribute::SExt); 6966 if (CLI.RetZExt) 6967 Attrs.push_back(Attribute::ZExt); 6968 if (CLI.IsInReg) 6969 Attrs.push_back(Attribute::InReg); 6970 6971 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6972 Attrs); 6973 } 6974 6975 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6976 /// implementation, which just calls LowerCall. 6977 /// FIXME: When all targets are 6978 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6979 std::pair<SDValue, SDValue> 6980 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6981 // Handle the incoming return values from the call. 6982 CLI.Ins.clear(); 6983 Type *OrigRetTy = CLI.RetTy; 6984 SmallVector<EVT, 4> RetTys; 6985 SmallVector<uint64_t, 4> Offsets; 6986 auto &DL = CLI.DAG.getDataLayout(); 6987 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 6988 6989 SmallVector<ISD::OutputArg, 4> Outs; 6990 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 6991 6992 bool CanLowerReturn = 6993 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6994 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6995 6996 SDValue DemoteStackSlot; 6997 int DemoteStackIdx = -100; 6998 if (!CanLowerReturn) { 6999 // FIXME: equivalent assert? 7000 // assert(!CS.hasInAllocaArgument() && 7001 // "sret demotion is incompatible with inalloca"); 7002 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7003 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7004 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7005 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7006 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7007 7008 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7009 ArgListEntry Entry; 7010 Entry.Node = DemoteStackSlot; 7011 Entry.Ty = StackSlotPtrType; 7012 Entry.isSExt = false; 7013 Entry.isZExt = false; 7014 Entry.isInReg = false; 7015 Entry.isSRet = true; 7016 Entry.isNest = false; 7017 Entry.isByVal = false; 7018 Entry.isReturned = false; 7019 Entry.Alignment = Align; 7020 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7021 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7022 7023 // sret demotion isn't compatible with tail-calls, since the sret argument 7024 // points into the callers stack frame. 7025 CLI.IsTailCall = false; 7026 } else { 7027 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7028 EVT VT = RetTys[I]; 7029 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7030 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7031 for (unsigned i = 0; i != NumRegs; ++i) { 7032 ISD::InputArg MyFlags; 7033 MyFlags.VT = RegisterVT; 7034 MyFlags.ArgVT = VT; 7035 MyFlags.Used = CLI.IsReturnValueUsed; 7036 if (CLI.RetSExt) 7037 MyFlags.Flags.setSExt(); 7038 if (CLI.RetZExt) 7039 MyFlags.Flags.setZExt(); 7040 if (CLI.IsInReg) 7041 MyFlags.Flags.setInReg(); 7042 CLI.Ins.push_back(MyFlags); 7043 } 7044 } 7045 } 7046 7047 // Handle all of the outgoing arguments. 7048 CLI.Outs.clear(); 7049 CLI.OutVals.clear(); 7050 ArgListTy &Args = CLI.getArgs(); 7051 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7052 SmallVector<EVT, 4> ValueVTs; 7053 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7054 Type *FinalType = Args[i].Ty; 7055 if (Args[i].isByVal) 7056 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7057 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7058 FinalType, CLI.CallConv, CLI.IsVarArg); 7059 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7060 ++Value) { 7061 EVT VT = ValueVTs[Value]; 7062 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7063 SDValue Op = SDValue(Args[i].Node.getNode(), 7064 Args[i].Node.getResNo() + Value); 7065 ISD::ArgFlagsTy Flags; 7066 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7067 7068 if (Args[i].isZExt) 7069 Flags.setZExt(); 7070 if (Args[i].isSExt) 7071 Flags.setSExt(); 7072 if (Args[i].isInReg) 7073 Flags.setInReg(); 7074 if (Args[i].isSRet) 7075 Flags.setSRet(); 7076 if (Args[i].isByVal) 7077 Flags.setByVal(); 7078 if (Args[i].isInAlloca) { 7079 Flags.setInAlloca(); 7080 // Set the byval flag for CCAssignFn callbacks that don't know about 7081 // inalloca. This way we can know how many bytes we should've allocated 7082 // and how many bytes a callee cleanup function will pop. If we port 7083 // inalloca to more targets, we'll have to add custom inalloca handling 7084 // in the various CC lowering callbacks. 7085 Flags.setByVal(); 7086 } 7087 if (Args[i].isByVal || Args[i].isInAlloca) { 7088 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7089 Type *ElementTy = Ty->getElementType(); 7090 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7091 // For ByVal, alignment should come from FE. BE will guess if this 7092 // info is not there but there are cases it cannot get right. 7093 unsigned FrameAlign; 7094 if (Args[i].Alignment) 7095 FrameAlign = Args[i].Alignment; 7096 else 7097 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7098 Flags.setByValAlign(FrameAlign); 7099 } 7100 if (Args[i].isNest) 7101 Flags.setNest(); 7102 if (NeedsRegBlock) 7103 Flags.setInConsecutiveRegs(); 7104 Flags.setOrigAlign(OriginalAlignment); 7105 7106 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7107 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7108 SmallVector<SDValue, 4> Parts(NumParts); 7109 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7110 7111 if (Args[i].isSExt) 7112 ExtendKind = ISD::SIGN_EXTEND; 7113 else if (Args[i].isZExt) 7114 ExtendKind = ISD::ZERO_EXTEND; 7115 7116 // Conservatively only handle 'returned' on non-vectors for now 7117 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7118 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7119 "unexpected use of 'returned'"); 7120 // Before passing 'returned' to the target lowering code, ensure that 7121 // either the register MVT and the actual EVT are the same size or that 7122 // the return value and argument are extended in the same way; in these 7123 // cases it's safe to pass the argument register value unchanged as the 7124 // return register value (although it's at the target's option whether 7125 // to do so) 7126 // TODO: allow code generation to take advantage of partially preserved 7127 // registers rather than clobbering the entire register when the 7128 // parameter extension method is not compatible with the return 7129 // extension method 7130 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7131 (ExtendKind != ISD::ANY_EXTEND && 7132 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7133 Flags.setReturned(); 7134 } 7135 7136 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7137 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7138 7139 for (unsigned j = 0; j != NumParts; ++j) { 7140 // if it isn't first piece, alignment must be 1 7141 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7142 i < CLI.NumFixedArgs, 7143 i, j*Parts[j].getValueType().getStoreSize()); 7144 if (NumParts > 1 && j == 0) 7145 MyFlags.Flags.setSplit(); 7146 else if (j != 0) 7147 MyFlags.Flags.setOrigAlign(1); 7148 7149 CLI.Outs.push_back(MyFlags); 7150 CLI.OutVals.push_back(Parts[j]); 7151 } 7152 7153 if (NeedsRegBlock && Value == NumValues - 1) 7154 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7155 } 7156 } 7157 7158 SmallVector<SDValue, 4> InVals; 7159 CLI.Chain = LowerCall(CLI, InVals); 7160 7161 // Verify that the target's LowerCall behaved as expected. 7162 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7163 "LowerCall didn't return a valid chain!"); 7164 assert((!CLI.IsTailCall || InVals.empty()) && 7165 "LowerCall emitted a return value for a tail call!"); 7166 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7167 "LowerCall didn't emit the correct number of values!"); 7168 7169 // For a tail call, the return value is merely live-out and there aren't 7170 // any nodes in the DAG representing it. Return a special value to 7171 // indicate that a tail call has been emitted and no more Instructions 7172 // should be processed in the current block. 7173 if (CLI.IsTailCall) { 7174 CLI.DAG.setRoot(CLI.Chain); 7175 return std::make_pair(SDValue(), SDValue()); 7176 } 7177 7178 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7179 assert(InVals[i].getNode() && 7180 "LowerCall emitted a null value!"); 7181 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7182 "LowerCall emitted a value with the wrong type!"); 7183 }); 7184 7185 SmallVector<SDValue, 4> ReturnValues; 7186 if (!CanLowerReturn) { 7187 // The instruction result is the result of loading from the 7188 // hidden sret parameter. 7189 SmallVector<EVT, 1> PVTs; 7190 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7191 7192 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7193 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7194 EVT PtrVT = PVTs[0]; 7195 7196 unsigned NumValues = RetTys.size(); 7197 ReturnValues.resize(NumValues); 7198 SmallVector<SDValue, 4> Chains(NumValues); 7199 7200 for (unsigned i = 0; i < NumValues; ++i) { 7201 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7202 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7203 PtrVT)); 7204 SDValue L = CLI.DAG.getLoad( 7205 RetTys[i], CLI.DL, CLI.Chain, Add, 7206 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7207 DemoteStackIdx, Offsets[i]), 7208 false, false, false, 1); 7209 ReturnValues[i] = L; 7210 Chains[i] = L.getValue(1); 7211 } 7212 7213 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7214 } else { 7215 // Collect the legal value parts into potentially illegal values 7216 // that correspond to the original function's return values. 7217 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7218 if (CLI.RetSExt) 7219 AssertOp = ISD::AssertSext; 7220 else if (CLI.RetZExt) 7221 AssertOp = ISD::AssertZext; 7222 unsigned CurReg = 0; 7223 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7224 EVT VT = RetTys[I]; 7225 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7226 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7227 7228 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7229 NumRegs, RegisterVT, VT, nullptr, 7230 AssertOp)); 7231 CurReg += NumRegs; 7232 } 7233 7234 // For a function returning void, there is no return value. We can't create 7235 // such a node, so we just return a null return value in that case. In 7236 // that case, nothing will actually look at the value. 7237 if (ReturnValues.empty()) 7238 return std::make_pair(SDValue(), CLI.Chain); 7239 } 7240 7241 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7242 CLI.DAG.getVTList(RetTys), ReturnValues); 7243 return std::make_pair(Res, CLI.Chain); 7244 } 7245 7246 void TargetLowering::LowerOperationWrapper(SDNode *N, 7247 SmallVectorImpl<SDValue> &Results, 7248 SelectionDAG &DAG) const { 7249 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7250 if (Res.getNode()) 7251 Results.push_back(Res); 7252 } 7253 7254 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7255 llvm_unreachable("LowerOperation not implemented for this target!"); 7256 } 7257 7258 void 7259 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7260 SDValue Op = getNonRegisterValue(V); 7261 assert((Op.getOpcode() != ISD::CopyFromReg || 7262 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7263 "Copy from a reg to the same reg!"); 7264 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7265 7266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7267 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7268 V->getType()); 7269 SDValue Chain = DAG.getEntryNode(); 7270 7271 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7272 FuncInfo.PreferredExtendType.end()) 7273 ? ISD::ANY_EXTEND 7274 : FuncInfo.PreferredExtendType[V]; 7275 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7276 PendingExports.push_back(Chain); 7277 } 7278 7279 #include "llvm/CodeGen/SelectionDAGISel.h" 7280 7281 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7282 /// entry block, return true. This includes arguments used by switches, since 7283 /// the switch may expand into multiple basic blocks. 7284 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7285 // With FastISel active, we may be splitting blocks, so force creation 7286 // of virtual registers for all non-dead arguments. 7287 if (FastISel) 7288 return A->use_empty(); 7289 7290 const BasicBlock &Entry = A->getParent()->front(); 7291 for (const User *U : A->users()) 7292 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7293 return false; // Use not in entry block. 7294 7295 return true; 7296 } 7297 7298 void SelectionDAGISel::LowerArguments(const Function &F) { 7299 SelectionDAG &DAG = SDB->DAG; 7300 SDLoc dl = SDB->getCurSDLoc(); 7301 const DataLayout &DL = DAG.getDataLayout(); 7302 SmallVector<ISD::InputArg, 16> Ins; 7303 7304 if (!FuncInfo->CanLowerReturn) { 7305 // Put in an sret pointer parameter before all the other parameters. 7306 SmallVector<EVT, 1> ValueVTs; 7307 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7308 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7309 7310 // NOTE: Assuming that a pointer will never break down to more than one VT 7311 // or one register. 7312 ISD::ArgFlagsTy Flags; 7313 Flags.setSRet(); 7314 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7315 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7316 ISD::InputArg::NoArgIndex, 0); 7317 Ins.push_back(RetArg); 7318 } 7319 7320 // Set up the incoming argument description vector. 7321 unsigned Idx = 1; 7322 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7323 I != E; ++I, ++Idx) { 7324 SmallVector<EVT, 4> ValueVTs; 7325 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7326 bool isArgValueUsed = !I->use_empty(); 7327 unsigned PartBase = 0; 7328 Type *FinalType = I->getType(); 7329 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7330 FinalType = cast<PointerType>(FinalType)->getElementType(); 7331 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7332 FinalType, F.getCallingConv(), F.isVarArg()); 7333 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7334 Value != NumValues; ++Value) { 7335 EVT VT = ValueVTs[Value]; 7336 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7337 ISD::ArgFlagsTy Flags; 7338 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7339 7340 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7341 Flags.setZExt(); 7342 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7343 Flags.setSExt(); 7344 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7345 Flags.setInReg(); 7346 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7347 Flags.setSRet(); 7348 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7349 Flags.setByVal(); 7350 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7351 Flags.setInAlloca(); 7352 // Set the byval flag for CCAssignFn callbacks that don't know about 7353 // inalloca. This way we can know how many bytes we should've allocated 7354 // and how many bytes a callee cleanup function will pop. If we port 7355 // inalloca to more targets, we'll have to add custom inalloca handling 7356 // in the various CC lowering callbacks. 7357 Flags.setByVal(); 7358 } 7359 if (Flags.isByVal() || Flags.isInAlloca()) { 7360 PointerType *Ty = cast<PointerType>(I->getType()); 7361 Type *ElementTy = Ty->getElementType(); 7362 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7363 // For ByVal, alignment should be passed from FE. BE will guess if 7364 // this info is not there but there are cases it cannot get right. 7365 unsigned FrameAlign; 7366 if (F.getParamAlignment(Idx)) 7367 FrameAlign = F.getParamAlignment(Idx); 7368 else 7369 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7370 Flags.setByValAlign(FrameAlign); 7371 } 7372 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7373 Flags.setNest(); 7374 if (NeedsRegBlock) 7375 Flags.setInConsecutiveRegs(); 7376 Flags.setOrigAlign(OriginalAlignment); 7377 7378 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7379 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7380 for (unsigned i = 0; i != NumRegs; ++i) { 7381 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7382 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7383 if (NumRegs > 1 && i == 0) 7384 MyFlags.Flags.setSplit(); 7385 // if it isn't first piece, alignment must be 1 7386 else if (i > 0) 7387 MyFlags.Flags.setOrigAlign(1); 7388 Ins.push_back(MyFlags); 7389 } 7390 if (NeedsRegBlock && Value == NumValues - 1) 7391 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7392 PartBase += VT.getStoreSize(); 7393 } 7394 } 7395 7396 // Call the target to set up the argument values. 7397 SmallVector<SDValue, 8> InVals; 7398 SDValue NewRoot = TLI->LowerFormalArguments( 7399 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7400 7401 // Verify that the target's LowerFormalArguments behaved as expected. 7402 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7403 "LowerFormalArguments didn't return a valid chain!"); 7404 assert(InVals.size() == Ins.size() && 7405 "LowerFormalArguments didn't emit the correct number of values!"); 7406 DEBUG({ 7407 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7408 assert(InVals[i].getNode() && 7409 "LowerFormalArguments emitted a null value!"); 7410 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7411 "LowerFormalArguments emitted a value with the wrong type!"); 7412 } 7413 }); 7414 7415 // Update the DAG with the new chain value resulting from argument lowering. 7416 DAG.setRoot(NewRoot); 7417 7418 // Set up the argument values. 7419 unsigned i = 0; 7420 Idx = 1; 7421 if (!FuncInfo->CanLowerReturn) { 7422 // Create a virtual register for the sret pointer, and put in a copy 7423 // from the sret argument into it. 7424 SmallVector<EVT, 1> ValueVTs; 7425 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7426 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7427 MVT VT = ValueVTs[0].getSimpleVT(); 7428 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7429 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7430 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7431 RegVT, VT, nullptr, AssertOp); 7432 7433 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7434 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7435 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7436 FuncInfo->DemoteRegister = SRetReg; 7437 NewRoot = 7438 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7439 DAG.setRoot(NewRoot); 7440 7441 // i indexes lowered arguments. Bump it past the hidden sret argument. 7442 // Idx indexes LLVM arguments. Don't touch it. 7443 ++i; 7444 } 7445 7446 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7447 ++I, ++Idx) { 7448 SmallVector<SDValue, 4> ArgValues; 7449 SmallVector<EVT, 4> ValueVTs; 7450 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7451 unsigned NumValues = ValueVTs.size(); 7452 7453 // If this argument is unused then remember its value. It is used to generate 7454 // debugging information. 7455 if (I->use_empty() && NumValues) { 7456 SDB->setUnusedArgValue(&*I, InVals[i]); 7457 7458 // Also remember any frame index for use in FastISel. 7459 if (FrameIndexSDNode *FI = 7460 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7461 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7462 } 7463 7464 for (unsigned Val = 0; Val != NumValues; ++Val) { 7465 EVT VT = ValueVTs[Val]; 7466 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7467 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7468 7469 if (!I->use_empty()) { 7470 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7471 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7472 AssertOp = ISD::AssertSext; 7473 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7474 AssertOp = ISD::AssertZext; 7475 7476 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7477 NumParts, PartVT, VT, 7478 nullptr, AssertOp)); 7479 } 7480 7481 i += NumParts; 7482 } 7483 7484 // We don't need to do anything else for unused arguments. 7485 if (ArgValues.empty()) 7486 continue; 7487 7488 // Note down frame index. 7489 if (FrameIndexSDNode *FI = 7490 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7491 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7492 7493 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7494 SDB->getCurSDLoc()); 7495 7496 SDB->setValue(&*I, Res); 7497 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7498 if (LoadSDNode *LNode = 7499 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7500 if (FrameIndexSDNode *FI = 7501 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7502 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7503 } 7504 7505 // If this argument is live outside of the entry block, insert a copy from 7506 // wherever we got it to the vreg that other BB's will reference it as. 7507 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7508 // If we can, though, try to skip creating an unnecessary vreg. 7509 // FIXME: This isn't very clean... it would be nice to make this more 7510 // general. It's also subtly incompatible with the hacks FastISel 7511 // uses with vregs. 7512 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7513 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7514 FuncInfo->ValueMap[&*I] = Reg; 7515 continue; 7516 } 7517 } 7518 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7519 FuncInfo->InitializeRegForValue(&*I); 7520 SDB->CopyToExportRegsIfNeeded(&*I); 7521 } 7522 } 7523 7524 assert(i == InVals.size() && "Argument register count mismatch!"); 7525 7526 // Finally, if the target has anything special to do, allow it to do so. 7527 EmitFunctionEntryCode(); 7528 } 7529 7530 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7531 /// ensure constants are generated when needed. Remember the virtual registers 7532 /// that need to be added to the Machine PHI nodes as input. We cannot just 7533 /// directly add them, because expansion might result in multiple MBB's for one 7534 /// BB. As such, the start of the BB might correspond to a different MBB than 7535 /// the end. 7536 /// 7537 void 7538 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7539 const TerminatorInst *TI = LLVMBB->getTerminator(); 7540 7541 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7542 7543 // Check PHI nodes in successors that expect a value to be available from this 7544 // block. 7545 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7546 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7547 if (!isa<PHINode>(SuccBB->begin())) continue; 7548 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7549 7550 // If this terminator has multiple identical successors (common for 7551 // switches), only handle each succ once. 7552 if (!SuccsHandled.insert(SuccMBB).second) 7553 continue; 7554 7555 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7556 7557 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7558 // nodes and Machine PHI nodes, but the incoming operands have not been 7559 // emitted yet. 7560 for (BasicBlock::const_iterator I = SuccBB->begin(); 7561 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7562 // Ignore dead phi's. 7563 if (PN->use_empty()) continue; 7564 7565 // Skip empty types 7566 if (PN->getType()->isEmptyTy()) 7567 continue; 7568 7569 unsigned Reg; 7570 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7571 7572 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7573 unsigned &RegOut = ConstantsOut[C]; 7574 if (RegOut == 0) { 7575 RegOut = FuncInfo.CreateRegs(C->getType()); 7576 CopyValueToVirtualRegister(C, RegOut); 7577 } 7578 Reg = RegOut; 7579 } else { 7580 DenseMap<const Value *, unsigned>::iterator I = 7581 FuncInfo.ValueMap.find(PHIOp); 7582 if (I != FuncInfo.ValueMap.end()) 7583 Reg = I->second; 7584 else { 7585 assert(isa<AllocaInst>(PHIOp) && 7586 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7587 "Didn't codegen value into a register!??"); 7588 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7589 CopyValueToVirtualRegister(PHIOp, Reg); 7590 } 7591 } 7592 7593 // Remember that this register needs to added to the machine PHI node as 7594 // the input for this MBB. 7595 SmallVector<EVT, 4> ValueVTs; 7596 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7597 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7598 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7599 EVT VT = ValueVTs[vti]; 7600 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7601 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7602 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7603 Reg += NumRegisters; 7604 } 7605 } 7606 } 7607 7608 ConstantsOut.clear(); 7609 } 7610 7611 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7612 /// is 0. 7613 MachineBasicBlock * 7614 SelectionDAGBuilder::StackProtectorDescriptor:: 7615 AddSuccessorMBB(const BasicBlock *BB, 7616 MachineBasicBlock *ParentMBB, 7617 bool IsLikely, 7618 MachineBasicBlock *SuccMBB) { 7619 // If SuccBB has not been created yet, create it. 7620 if (!SuccMBB) { 7621 MachineFunction *MF = ParentMBB->getParent(); 7622 MachineFunction::iterator BBI(ParentMBB); 7623 SuccMBB = MF->CreateMachineBasicBlock(BB); 7624 MF->insert(++BBI, SuccMBB); 7625 } 7626 // Add it as a successor of ParentMBB. 7627 ParentMBB->addSuccessor( 7628 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7629 return SuccMBB; 7630 } 7631 7632 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7633 MachineFunction::iterator I(MBB); 7634 if (++I == FuncInfo.MF->end()) 7635 return nullptr; 7636 return &*I; 7637 } 7638 7639 /// During lowering new call nodes can be created (such as memset, etc.). 7640 /// Those will become new roots of the current DAG, but complications arise 7641 /// when they are tail calls. In such cases, the call lowering will update 7642 /// the root, but the builder still needs to know that a tail call has been 7643 /// lowered in order to avoid generating an additional return. 7644 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7645 // If the node is null, we do have a tail call. 7646 if (MaybeTC.getNode() != nullptr) 7647 DAG.setRoot(MaybeTC); 7648 else 7649 HasTailCall = true; 7650 } 7651 7652 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7653 unsigned *TotalCases, unsigned First, 7654 unsigned Last) { 7655 assert(Last >= First); 7656 assert(TotalCases[Last] >= TotalCases[First]); 7657 7658 APInt LowCase = Clusters[First].Low->getValue(); 7659 APInt HighCase = Clusters[Last].High->getValue(); 7660 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7661 7662 // FIXME: A range of consecutive cases has 100% density, but only requires one 7663 // comparison to lower. We should discriminate against such consecutive ranges 7664 // in jump tables. 7665 7666 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7667 uint64_t Range = Diff + 1; 7668 7669 uint64_t NumCases = 7670 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7671 7672 assert(NumCases < UINT64_MAX / 100); 7673 assert(Range >= NumCases); 7674 7675 return NumCases * 100 >= Range * MinJumpTableDensity; 7676 } 7677 7678 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7679 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7680 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7681 } 7682 7683 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7684 unsigned First, unsigned Last, 7685 const SwitchInst *SI, 7686 MachineBasicBlock *DefaultMBB, 7687 CaseCluster &JTCluster) { 7688 assert(First <= Last); 7689 7690 uint32_t Weight = 0; 7691 unsigned NumCmps = 0; 7692 std::vector<MachineBasicBlock*> Table; 7693 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7694 for (unsigned I = First; I <= Last; ++I) { 7695 assert(Clusters[I].Kind == CC_Range); 7696 Weight += Clusters[I].Weight; 7697 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7698 APInt Low = Clusters[I].Low->getValue(); 7699 APInt High = Clusters[I].High->getValue(); 7700 NumCmps += (Low == High) ? 1 : 2; 7701 if (I != First) { 7702 // Fill the gap between this and the previous cluster. 7703 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7704 assert(PreviousHigh.slt(Low)); 7705 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7706 for (uint64_t J = 0; J < Gap; J++) 7707 Table.push_back(DefaultMBB); 7708 } 7709 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7710 for (uint64_t J = 0; J < ClusterSize; ++J) 7711 Table.push_back(Clusters[I].MBB); 7712 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7713 } 7714 7715 unsigned NumDests = JTWeights.size(); 7716 if (isSuitableForBitTests(NumDests, NumCmps, 7717 Clusters[First].Low->getValue(), 7718 Clusters[Last].High->getValue())) { 7719 // Clusters[First..Last] should be lowered as bit tests instead. 7720 return false; 7721 } 7722 7723 // Create the MBB that will load from and jump through the table. 7724 // Note: We create it here, but it's not inserted into the function yet. 7725 MachineFunction *CurMF = FuncInfo.MF; 7726 MachineBasicBlock *JumpTableMBB = 7727 CurMF->CreateMachineBasicBlock(SI->getParent()); 7728 7729 // Add successors. Note: use table order for determinism. 7730 SmallPtrSet<MachineBasicBlock *, 8> Done; 7731 for (MachineBasicBlock *Succ : Table) { 7732 if (Done.count(Succ)) 7733 continue; 7734 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7735 Done.insert(Succ); 7736 } 7737 7738 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7739 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7740 ->createJumpTableIndex(Table); 7741 7742 // Set up the jump table info. 7743 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7744 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7745 Clusters[Last].High->getValue(), SI->getCondition(), 7746 nullptr, false); 7747 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7748 7749 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7750 JTCases.size() - 1, Weight); 7751 return true; 7752 } 7753 7754 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7755 const SwitchInst *SI, 7756 MachineBasicBlock *DefaultMBB) { 7757 #ifndef NDEBUG 7758 // Clusters must be non-empty, sorted, and only contain Range clusters. 7759 assert(!Clusters.empty()); 7760 for (CaseCluster &C : Clusters) 7761 assert(C.Kind == CC_Range); 7762 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7763 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7764 #endif 7765 7766 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7767 if (!areJTsAllowed(TLI)) 7768 return; 7769 7770 const int64_t N = Clusters.size(); 7771 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7772 7773 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7774 SmallVector<unsigned, 8> TotalCases(N); 7775 7776 for (unsigned i = 0; i < N; ++i) { 7777 APInt Hi = Clusters[i].High->getValue(); 7778 APInt Lo = Clusters[i].Low->getValue(); 7779 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7780 if (i != 0) 7781 TotalCases[i] += TotalCases[i - 1]; 7782 } 7783 7784 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7785 // Cheap case: the whole range might be suitable for jump table. 7786 CaseCluster JTCluster; 7787 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7788 Clusters[0] = JTCluster; 7789 Clusters.resize(1); 7790 return; 7791 } 7792 } 7793 7794 // The algorithm below is not suitable for -O0. 7795 if (TM.getOptLevel() == CodeGenOpt::None) 7796 return; 7797 7798 // Split Clusters into minimum number of dense partitions. The algorithm uses 7799 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7800 // for the Case Statement'" (1994), but builds the MinPartitions array in 7801 // reverse order to make it easier to reconstruct the partitions in ascending 7802 // order. In the choice between two optimal partitionings, it picks the one 7803 // which yields more jump tables. 7804 7805 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7806 SmallVector<unsigned, 8> MinPartitions(N); 7807 // LastElement[i] is the last element of the partition starting at i. 7808 SmallVector<unsigned, 8> LastElement(N); 7809 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7810 SmallVector<unsigned, 8> NumTables(N); 7811 7812 // Base case: There is only one way to partition Clusters[N-1]. 7813 MinPartitions[N - 1] = 1; 7814 LastElement[N - 1] = N - 1; 7815 assert(MinJumpTableSize > 1); 7816 NumTables[N - 1] = 0; 7817 7818 // Note: loop indexes are signed to avoid underflow. 7819 for (int64_t i = N - 2; i >= 0; i--) { 7820 // Find optimal partitioning of Clusters[i..N-1]. 7821 // Baseline: Put Clusters[i] into a partition on its own. 7822 MinPartitions[i] = MinPartitions[i + 1] + 1; 7823 LastElement[i] = i; 7824 NumTables[i] = NumTables[i + 1]; 7825 7826 // Search for a solution that results in fewer partitions. 7827 for (int64_t j = N - 1; j > i; j--) { 7828 // Try building a partition from Clusters[i..j]. 7829 if (isDense(Clusters, &TotalCases[0], i, j)) { 7830 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7831 bool IsTable = j - i + 1 >= MinJumpTableSize; 7832 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7833 7834 // If this j leads to fewer partitions, or same number of partitions 7835 // with more lookup tables, it is a better partitioning. 7836 if (NumPartitions < MinPartitions[i] || 7837 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7838 MinPartitions[i] = NumPartitions; 7839 LastElement[i] = j; 7840 NumTables[i] = Tables; 7841 } 7842 } 7843 } 7844 } 7845 7846 // Iterate over the partitions, replacing some with jump tables in-place. 7847 unsigned DstIndex = 0; 7848 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7849 Last = LastElement[First]; 7850 assert(Last >= First); 7851 assert(DstIndex <= First); 7852 unsigned NumClusters = Last - First + 1; 7853 7854 CaseCluster JTCluster; 7855 if (NumClusters >= MinJumpTableSize && 7856 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7857 Clusters[DstIndex++] = JTCluster; 7858 } else { 7859 for (unsigned I = First; I <= Last; ++I) 7860 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7861 } 7862 } 7863 Clusters.resize(DstIndex); 7864 } 7865 7866 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7867 // FIXME: Using the pointer type doesn't seem ideal. 7868 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7869 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7870 return Range <= BW; 7871 } 7872 7873 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7874 unsigned NumCmps, 7875 const APInt &Low, 7876 const APInt &High) { 7877 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7878 // range of cases both require only one branch to lower. Just looking at the 7879 // number of clusters and destinations should be enough to decide whether to 7880 // build bit tests. 7881 7882 // To lower a range with bit tests, the range must fit the bitwidth of a 7883 // machine word. 7884 if (!rangeFitsInWord(Low, High)) 7885 return false; 7886 7887 // Decide whether it's profitable to lower this range with bit tests. Each 7888 // destination requires a bit test and branch, and there is an overall range 7889 // check branch. For a small number of clusters, separate comparisons might be 7890 // cheaper, and for many destinations, splitting the range might be better. 7891 return (NumDests == 1 && NumCmps >= 3) || 7892 (NumDests == 2 && NumCmps >= 5) || 7893 (NumDests == 3 && NumCmps >= 6); 7894 } 7895 7896 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7897 unsigned First, unsigned Last, 7898 const SwitchInst *SI, 7899 CaseCluster &BTCluster) { 7900 assert(First <= Last); 7901 if (First == Last) 7902 return false; 7903 7904 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7905 unsigned NumCmps = 0; 7906 for (int64_t I = First; I <= Last; ++I) { 7907 assert(Clusters[I].Kind == CC_Range); 7908 Dests.set(Clusters[I].MBB->getNumber()); 7909 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7910 } 7911 unsigned NumDests = Dests.count(); 7912 7913 APInt Low = Clusters[First].Low->getValue(); 7914 APInt High = Clusters[Last].High->getValue(); 7915 assert(Low.slt(High)); 7916 7917 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7918 return false; 7919 7920 APInt LowBound; 7921 APInt CmpRange; 7922 7923 const int BitWidth = DAG.getTargetLoweringInfo() 7924 .getPointerTy(DAG.getDataLayout()) 7925 .getSizeInBits(); 7926 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7927 7928 // Check if the clusters cover a contiguous range such that no value in the 7929 // range will jump to the default statement. 7930 bool ContiguousRange = true; 7931 for (int64_t I = First + 1; I <= Last; ++I) { 7932 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7933 ContiguousRange = false; 7934 break; 7935 } 7936 } 7937 7938 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7939 // Optimize the case where all the case values fit in a word without having 7940 // to subtract minValue. In this case, we can optimize away the subtraction. 7941 LowBound = APInt::getNullValue(Low.getBitWidth()); 7942 CmpRange = High; 7943 ContiguousRange = false; 7944 } else { 7945 LowBound = Low; 7946 CmpRange = High - Low; 7947 } 7948 7949 CaseBitsVector CBV; 7950 uint32_t TotalWeight = 0; 7951 for (unsigned i = First; i <= Last; ++i) { 7952 // Find the CaseBits for this destination. 7953 unsigned j; 7954 for (j = 0; j < CBV.size(); ++j) 7955 if (CBV[j].BB == Clusters[i].MBB) 7956 break; 7957 if (j == CBV.size()) 7958 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7959 CaseBits *CB = &CBV[j]; 7960 7961 // Update Mask, Bits and ExtraWeight. 7962 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7963 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7964 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7965 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7966 CB->Bits += Hi - Lo + 1; 7967 CB->ExtraWeight += Clusters[i].Weight; 7968 TotalWeight += Clusters[i].Weight; 7969 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7970 } 7971 7972 BitTestInfo BTI; 7973 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7974 // Sort by weight first, number of bits second. 7975 if (a.ExtraWeight != b.ExtraWeight) 7976 return a.ExtraWeight > b.ExtraWeight; 7977 return a.Bits > b.Bits; 7978 }); 7979 7980 for (auto &CB : CBV) { 7981 MachineBasicBlock *BitTestBB = 7982 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7983 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7984 } 7985 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 7986 SI->getCondition(), -1U, MVT::Other, false, 7987 ContiguousRange, nullptr, nullptr, std::move(BTI), 7988 TotalWeight); 7989 7990 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7991 BitTestCases.size() - 1, TotalWeight); 7992 return true; 7993 } 7994 7995 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7996 const SwitchInst *SI) { 7997 // Partition Clusters into as few subsets as possible, where each subset has a 7998 // range that fits in a machine word and has <= 3 unique destinations. 7999 8000 #ifndef NDEBUG 8001 // Clusters must be sorted and contain Range or JumpTable clusters. 8002 assert(!Clusters.empty()); 8003 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8004 for (const CaseCluster &C : Clusters) 8005 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8006 for (unsigned i = 1; i < Clusters.size(); ++i) 8007 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8008 #endif 8009 8010 // The algorithm below is not suitable for -O0. 8011 if (TM.getOptLevel() == CodeGenOpt::None) 8012 return; 8013 8014 // If target does not have legal shift left, do not emit bit tests at all. 8015 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8016 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8017 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8018 return; 8019 8020 int BitWidth = PTy.getSizeInBits(); 8021 const int64_t N = Clusters.size(); 8022 8023 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8024 SmallVector<unsigned, 8> MinPartitions(N); 8025 // LastElement[i] is the last element of the partition starting at i. 8026 SmallVector<unsigned, 8> LastElement(N); 8027 8028 // FIXME: This might not be the best algorithm for finding bit test clusters. 8029 8030 // Base case: There is only one way to partition Clusters[N-1]. 8031 MinPartitions[N - 1] = 1; 8032 LastElement[N - 1] = N - 1; 8033 8034 // Note: loop indexes are signed to avoid underflow. 8035 for (int64_t i = N - 2; i >= 0; --i) { 8036 // Find optimal partitioning of Clusters[i..N-1]. 8037 // Baseline: Put Clusters[i] into a partition on its own. 8038 MinPartitions[i] = MinPartitions[i + 1] + 1; 8039 LastElement[i] = i; 8040 8041 // Search for a solution that results in fewer partitions. 8042 // Note: the search is limited by BitWidth, reducing time complexity. 8043 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8044 // Try building a partition from Clusters[i..j]. 8045 8046 // Check the range. 8047 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8048 Clusters[j].High->getValue())) 8049 continue; 8050 8051 // Check nbr of destinations and cluster types. 8052 // FIXME: This works, but doesn't seem very efficient. 8053 bool RangesOnly = true; 8054 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8055 for (int64_t k = i; k <= j; k++) { 8056 if (Clusters[k].Kind != CC_Range) { 8057 RangesOnly = false; 8058 break; 8059 } 8060 Dests.set(Clusters[k].MBB->getNumber()); 8061 } 8062 if (!RangesOnly || Dests.count() > 3) 8063 break; 8064 8065 // Check if it's a better partition. 8066 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8067 if (NumPartitions < MinPartitions[i]) { 8068 // Found a better partition. 8069 MinPartitions[i] = NumPartitions; 8070 LastElement[i] = j; 8071 } 8072 } 8073 } 8074 8075 // Iterate over the partitions, replacing with bit-test clusters in-place. 8076 unsigned DstIndex = 0; 8077 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8078 Last = LastElement[First]; 8079 assert(First <= Last); 8080 assert(DstIndex <= First); 8081 8082 CaseCluster BitTestCluster; 8083 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8084 Clusters[DstIndex++] = BitTestCluster; 8085 } else { 8086 size_t NumClusters = Last - First + 1; 8087 std::memmove(&Clusters[DstIndex], &Clusters[First], 8088 sizeof(Clusters[0]) * NumClusters); 8089 DstIndex += NumClusters; 8090 } 8091 } 8092 Clusters.resize(DstIndex); 8093 } 8094 8095 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8096 MachineBasicBlock *SwitchMBB, 8097 MachineBasicBlock *DefaultMBB) { 8098 MachineFunction *CurMF = FuncInfo.MF; 8099 MachineBasicBlock *NextMBB = nullptr; 8100 MachineFunction::iterator BBI(W.MBB); 8101 if (++BBI != FuncInfo.MF->end()) 8102 NextMBB = &*BBI; 8103 8104 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8105 8106 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8107 8108 if (Size == 2 && W.MBB == SwitchMBB) { 8109 // If any two of the cases has the same destination, and if one value 8110 // is the same as the other, but has one bit unset that the other has set, 8111 // use bit manipulation to do two compares at once. For example: 8112 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8113 // TODO: This could be extended to merge any 2 cases in switches with 3 8114 // cases. 8115 // TODO: Handle cases where W.CaseBB != SwitchBB. 8116 CaseCluster &Small = *W.FirstCluster; 8117 CaseCluster &Big = *W.LastCluster; 8118 8119 if (Small.Low == Small.High && Big.Low == Big.High && 8120 Small.MBB == Big.MBB) { 8121 const APInt &SmallValue = Small.Low->getValue(); 8122 const APInt &BigValue = Big.Low->getValue(); 8123 8124 // Check that there is only one bit different. 8125 APInt CommonBit = BigValue ^ SmallValue; 8126 if (CommonBit.isPowerOf2()) { 8127 SDValue CondLHS = getValue(Cond); 8128 EVT VT = CondLHS.getValueType(); 8129 SDLoc DL = getCurSDLoc(); 8130 8131 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8132 DAG.getConstant(CommonBit, DL, VT)); 8133 SDValue Cond = DAG.getSetCC( 8134 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8135 ISD::SETEQ); 8136 8137 // Update successor info. 8138 // Both Small and Big will jump to Small.BB, so we sum up the weights. 8139 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 8140 addSuccessorWithWeight( 8141 SwitchMBB, DefaultMBB, 8142 // The default destination is the first successor in IR. 8143 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 8144 : 0); 8145 8146 // Insert the true branch. 8147 SDValue BrCond = 8148 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8149 DAG.getBasicBlock(Small.MBB)); 8150 // Insert the false branch. 8151 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8152 DAG.getBasicBlock(DefaultMBB)); 8153 8154 DAG.setRoot(BrCond); 8155 return; 8156 } 8157 } 8158 } 8159 8160 if (TM.getOptLevel() != CodeGenOpt::None) { 8161 // Order cases by weight so the most likely case will be checked first. 8162 std::sort(W.FirstCluster, W.LastCluster + 1, 8163 [](const CaseCluster &a, const CaseCluster &b) { 8164 return a.Weight > b.Weight; 8165 }); 8166 8167 // Rearrange the case blocks so that the last one falls through if possible 8168 // without without changing the order of weights. 8169 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8170 --I; 8171 if (I->Weight > W.LastCluster->Weight) 8172 break; 8173 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8174 std::swap(*I, *W.LastCluster); 8175 break; 8176 } 8177 } 8178 } 8179 8180 // Compute total weight. 8181 uint32_t DefaultWeight = W.DefaultWeight; 8182 uint32_t UnhandledWeights = DefaultWeight; 8183 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 8184 UnhandledWeights += I->Weight; 8185 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 8186 } 8187 8188 MachineBasicBlock *CurMBB = W.MBB; 8189 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8190 MachineBasicBlock *Fallthrough; 8191 if (I == W.LastCluster) { 8192 // For the last cluster, fall through to the default destination. 8193 Fallthrough = DefaultMBB; 8194 } else { 8195 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8196 CurMF->insert(BBI, Fallthrough); 8197 // Put Cond in a virtual register to make it available from the new blocks. 8198 ExportFromCurrentBlock(Cond); 8199 } 8200 UnhandledWeights -= I->Weight; 8201 8202 switch (I->Kind) { 8203 case CC_JumpTable: { 8204 // FIXME: Optimize away range check based on pivot comparisons. 8205 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8206 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8207 8208 // The jump block hasn't been inserted yet; insert it here. 8209 MachineBasicBlock *JumpMBB = JT->MBB; 8210 CurMF->insert(BBI, JumpMBB); 8211 8212 uint32_t JumpWeight = I->Weight; 8213 uint32_t FallthroughWeight = UnhandledWeights; 8214 8215 // If the default statement is a target of the jump table, we evenly 8216 // distribute the default weight to successors of CurMBB. Also update 8217 // the weight on the edge from JumpMBB to Fallthrough. 8218 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8219 SE = JumpMBB->succ_end(); 8220 SI != SE; ++SI) { 8221 if (*SI == DefaultMBB) { 8222 JumpWeight += DefaultWeight / 2; 8223 FallthroughWeight -= DefaultWeight / 2; 8224 JumpMBB->setSuccWeight(SI, DefaultWeight / 2); 8225 break; 8226 } 8227 } 8228 8229 addSuccessorWithWeight(CurMBB, Fallthrough, FallthroughWeight); 8230 addSuccessorWithWeight(CurMBB, JumpMBB, JumpWeight); 8231 8232 // The jump table header will be inserted in our current block, do the 8233 // range check, and fall through to our fallthrough block. 8234 JTH->HeaderBB = CurMBB; 8235 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8236 8237 // If we're in the right place, emit the jump table header right now. 8238 if (CurMBB == SwitchMBB) { 8239 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8240 JTH->Emitted = true; 8241 } 8242 break; 8243 } 8244 case CC_BitTests: { 8245 // FIXME: Optimize away range check based on pivot comparisons. 8246 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8247 8248 // The bit test blocks haven't been inserted yet; insert them here. 8249 for (BitTestCase &BTC : BTB->Cases) 8250 CurMF->insert(BBI, BTC.ThisBB); 8251 8252 // Fill in fields of the BitTestBlock. 8253 BTB->Parent = CurMBB; 8254 BTB->Default = Fallthrough; 8255 8256 BTB->DefaultWeight = UnhandledWeights; 8257 // If the cases in bit test don't form a contiguous range, we evenly 8258 // distribute the weight on the edge to Fallthrough to two successors 8259 // of CurMBB. 8260 if (!BTB->ContiguousRange) { 8261 BTB->Weight += DefaultWeight / 2; 8262 BTB->DefaultWeight -= DefaultWeight / 2; 8263 } 8264 8265 // If we're in the right place, emit the bit test header right now. 8266 if (CurMBB == SwitchMBB) { 8267 visitBitTestHeader(*BTB, SwitchMBB); 8268 BTB->Emitted = true; 8269 } 8270 break; 8271 } 8272 case CC_Range: { 8273 const Value *RHS, *LHS, *MHS; 8274 ISD::CondCode CC; 8275 if (I->Low == I->High) { 8276 // Check Cond == I->Low. 8277 CC = ISD::SETEQ; 8278 LHS = Cond; 8279 RHS=I->Low; 8280 MHS = nullptr; 8281 } else { 8282 // Check I->Low <= Cond <= I->High. 8283 CC = ISD::SETLE; 8284 LHS = I->Low; 8285 MHS = Cond; 8286 RHS = I->High; 8287 } 8288 8289 // The false weight is the sum of all unhandled cases. 8290 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 8291 UnhandledWeights); 8292 8293 if (CurMBB == SwitchMBB) 8294 visitSwitchCase(CB, SwitchMBB); 8295 else 8296 SwitchCases.push_back(CB); 8297 8298 break; 8299 } 8300 } 8301 CurMBB = Fallthrough; 8302 } 8303 } 8304 8305 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8306 CaseClusterIt First, 8307 CaseClusterIt Last) { 8308 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8309 if (X.Weight != CC.Weight) 8310 return X.Weight > CC.Weight; 8311 8312 // Ties are broken by comparing the case value. 8313 return X.Low->getValue().slt(CC.Low->getValue()); 8314 }); 8315 } 8316 8317 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8318 const SwitchWorkListItem &W, 8319 Value *Cond, 8320 MachineBasicBlock *SwitchMBB) { 8321 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8322 "Clusters not sorted?"); 8323 8324 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8325 8326 // Balance the tree based on branch weights to create a near-optimal (in terms 8327 // of search time given key frequency) binary search tree. See e.g. Kurt 8328 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8329 CaseClusterIt LastLeft = W.FirstCluster; 8330 CaseClusterIt FirstRight = W.LastCluster; 8331 uint32_t LeftWeight = LastLeft->Weight + W.DefaultWeight / 2; 8332 uint32_t RightWeight = FirstRight->Weight + W.DefaultWeight / 2; 8333 8334 // Move LastLeft and FirstRight towards each other from opposite directions to 8335 // find a partitioning of the clusters which balances the weight on both 8336 // sides. If LeftWeight and RightWeight are equal, alternate which side is 8337 // taken to ensure 0-weight nodes are distributed evenly. 8338 unsigned I = 0; 8339 while (LastLeft + 1 < FirstRight) { 8340 if (LeftWeight < RightWeight || (LeftWeight == RightWeight && (I & 1))) 8341 LeftWeight += (++LastLeft)->Weight; 8342 else 8343 RightWeight += (--FirstRight)->Weight; 8344 I++; 8345 } 8346 8347 for (;;) { 8348 // Our binary search tree differs from a typical BST in that ours can have up 8349 // to three values in each leaf. The pivot selection above doesn't take that 8350 // into account, which means the tree might require more nodes and be less 8351 // efficient. We compensate for this here. 8352 8353 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8354 unsigned NumRight = W.LastCluster - FirstRight + 1; 8355 8356 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8357 // If one side has less than 3 clusters, and the other has more than 3, 8358 // consider taking a cluster from the other side. 8359 8360 if (NumLeft < NumRight) { 8361 // Consider moving the first cluster on the right to the left side. 8362 CaseCluster &CC = *FirstRight; 8363 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8364 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8365 if (LeftSideRank <= RightSideRank) { 8366 // Moving the cluster to the left does not demote it. 8367 ++LastLeft; 8368 ++FirstRight; 8369 continue; 8370 } 8371 } else { 8372 assert(NumRight < NumLeft); 8373 // Consider moving the last element on the left to the right side. 8374 CaseCluster &CC = *LastLeft; 8375 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8376 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8377 if (RightSideRank <= LeftSideRank) { 8378 // Moving the cluster to the right does not demot it. 8379 --LastLeft; 8380 --FirstRight; 8381 continue; 8382 } 8383 } 8384 } 8385 break; 8386 } 8387 8388 assert(LastLeft + 1 == FirstRight); 8389 assert(LastLeft >= W.FirstCluster); 8390 assert(FirstRight <= W.LastCluster); 8391 8392 // Use the first element on the right as pivot since we will make less-than 8393 // comparisons against it. 8394 CaseClusterIt PivotCluster = FirstRight; 8395 assert(PivotCluster > W.FirstCluster); 8396 assert(PivotCluster <= W.LastCluster); 8397 8398 CaseClusterIt FirstLeft = W.FirstCluster; 8399 CaseClusterIt LastRight = W.LastCluster; 8400 8401 const ConstantInt *Pivot = PivotCluster->Low; 8402 8403 // New blocks will be inserted immediately after the current one. 8404 MachineFunction::iterator BBI(W.MBB); 8405 ++BBI; 8406 8407 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8408 // we can branch to its destination directly if it's squeezed exactly in 8409 // between the known lower bound and Pivot - 1. 8410 MachineBasicBlock *LeftMBB; 8411 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8412 FirstLeft->Low == W.GE && 8413 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8414 LeftMBB = FirstLeft->MBB; 8415 } else { 8416 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8417 FuncInfo.MF->insert(BBI, LeftMBB); 8418 WorkList.push_back( 8419 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultWeight / 2}); 8420 // Put Cond in a virtual register to make it available from the new blocks. 8421 ExportFromCurrentBlock(Cond); 8422 } 8423 8424 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8425 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8426 // directly if RHS.High equals the current upper bound. 8427 MachineBasicBlock *RightMBB; 8428 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8429 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8430 RightMBB = FirstRight->MBB; 8431 } else { 8432 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8433 FuncInfo.MF->insert(BBI, RightMBB); 8434 WorkList.push_back( 8435 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultWeight / 2}); 8436 // Put Cond in a virtual register to make it available from the new blocks. 8437 ExportFromCurrentBlock(Cond); 8438 } 8439 8440 // Create the CaseBlock record that will be used to lower the branch. 8441 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8442 LeftWeight, RightWeight); 8443 8444 if (W.MBB == SwitchMBB) 8445 visitSwitchCase(CB, SwitchMBB); 8446 else 8447 SwitchCases.push_back(CB); 8448 } 8449 8450 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8451 // Extract cases from the switch. 8452 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8453 CaseClusterVector Clusters; 8454 Clusters.reserve(SI.getNumCases()); 8455 for (auto I : SI.cases()) { 8456 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8457 const ConstantInt *CaseVal = I.getCaseValue(); 8458 uint32_t Weight = 8459 BPI ? BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()) : 0; 8460 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8461 } 8462 8463 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8464 8465 // Cluster adjacent cases with the same destination. We do this at all 8466 // optimization levels because it's cheap to do and will make codegen faster 8467 // if there are many clusters. 8468 sortAndRangeify(Clusters); 8469 8470 if (TM.getOptLevel() != CodeGenOpt::None) { 8471 // Replace an unreachable default with the most popular destination. 8472 // FIXME: Exploit unreachable default more aggressively. 8473 bool UnreachableDefault = 8474 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8475 if (UnreachableDefault && !Clusters.empty()) { 8476 DenseMap<const BasicBlock *, unsigned> Popularity; 8477 unsigned MaxPop = 0; 8478 const BasicBlock *MaxBB = nullptr; 8479 for (auto I : SI.cases()) { 8480 const BasicBlock *BB = I.getCaseSuccessor(); 8481 if (++Popularity[BB] > MaxPop) { 8482 MaxPop = Popularity[BB]; 8483 MaxBB = BB; 8484 } 8485 } 8486 // Set new default. 8487 assert(MaxPop > 0 && MaxBB); 8488 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8489 8490 // Remove cases that were pointing to the destination that is now the 8491 // default. 8492 CaseClusterVector New; 8493 New.reserve(Clusters.size()); 8494 for (CaseCluster &CC : Clusters) { 8495 if (CC.MBB != DefaultMBB) 8496 New.push_back(CC); 8497 } 8498 Clusters = std::move(New); 8499 } 8500 } 8501 8502 // If there is only the default destination, jump there directly. 8503 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8504 if (Clusters.empty()) { 8505 SwitchMBB->addSuccessor(DefaultMBB); 8506 if (DefaultMBB != NextBlock(SwitchMBB)) { 8507 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8508 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8509 } 8510 return; 8511 } 8512 8513 findJumpTables(Clusters, &SI, DefaultMBB); 8514 findBitTestClusters(Clusters, &SI); 8515 8516 DEBUG({ 8517 dbgs() << "Case clusters: "; 8518 for (const CaseCluster &C : Clusters) { 8519 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8520 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8521 8522 C.Low->getValue().print(dbgs(), true); 8523 if (C.Low != C.High) { 8524 dbgs() << '-'; 8525 C.High->getValue().print(dbgs(), true); 8526 } 8527 dbgs() << ' '; 8528 } 8529 dbgs() << '\n'; 8530 }); 8531 8532 assert(!Clusters.empty()); 8533 SwitchWorkList WorkList; 8534 CaseClusterIt First = Clusters.begin(); 8535 CaseClusterIt Last = Clusters.end() - 1; 8536 uint32_t DefaultWeight = getEdgeWeight(SwitchMBB, DefaultMBB); 8537 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultWeight}); 8538 8539 while (!WorkList.empty()) { 8540 SwitchWorkListItem W = WorkList.back(); 8541 WorkList.pop_back(); 8542 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8543 8544 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8545 // For optimized builds, lower large range as a balanced binary tree. 8546 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8547 continue; 8548 } 8549 8550 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8551 } 8552 } 8553