xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 8f8e3f245cbce2d826c3c9fd0380d95e9eb97b8d)
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/TargetLibraryInfo.h"
24 #include "llvm/Analysis/ValueTracking.h"
25 #include "llvm/Analysis/VectorUtils.h"
26 #include "llvm/CodeGen/FastISel.h"
27 #include "llvm/CodeGen/FunctionLoweringInfo.h"
28 #include "llvm/CodeGen/GCMetadata.h"
29 #include "llvm/CodeGen/GCStrategy.h"
30 #include "llvm/CodeGen/MachineFrameInfo.h"
31 #include "llvm/CodeGen/MachineFunction.h"
32 #include "llvm/CodeGen/MachineInstrBuilder.h"
33 #include "llvm/CodeGen/MachineJumpTableInfo.h"
34 #include "llvm/CodeGen/MachineModuleInfo.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/SelectionDAG.h"
37 #include "llvm/CodeGen/StackMaps.h"
38 #include "llvm/CodeGen/WinEHFuncInfo.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/Constants.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DebugInfo.h"
43 #include "llvm/IR/DerivedTypes.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/InlineAsm.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/IntrinsicInst.h"
49 #include "llvm/IR/Intrinsics.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/Statepoint.h"
53 #include "llvm/MC/MCSymbol.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/MathExtras.h"
58 #include "llvm/Support/raw_ostream.h"
59 #include "llvm/Target/TargetFrameLowering.h"
60 #include "llvm/Target/TargetInstrInfo.h"
61 #include "llvm/Target/TargetIntrinsicInfo.h"
62 #include "llvm/Target/TargetLowering.h"
63 #include "llvm/Target/TargetOptions.h"
64 #include "llvm/Target/TargetSelectionDAGInfo.h"
65 #include "llvm/Target/TargetSubtargetInfo.h"
66 #include <algorithm>
67 #include <utility>
68 using namespace llvm;
69 
70 #define DEBUG_TYPE "isel"
71 
72 /// LimitFloatPrecision - Generate low-precision inline sequences for
73 /// some float libcalls (6, 8 or 12 bits).
74 static unsigned LimitFloatPrecision;
75 
76 static cl::opt<unsigned, true>
77 LimitFPPrecision("limit-float-precision",
78                  cl::desc("Generate low-precision inline sequences "
79                           "for some float libcalls"),
80                  cl::location(LimitFloatPrecision),
81                  cl::init(0));
82 
83 static cl::opt<bool>
84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden,
85                 cl::desc("Enable fast-math-flags for DAG nodes"));
86 
87 // Limit the width of DAG chains. This is important in general to prevent
88 // DAG-based analysis from blowing up. For example, alias analysis and
89 // load clustering may not complete in reasonable time. It is difficult to
90 // recognize and avoid this situation within each individual analysis, and
91 // future analyses are likely to have the same behavior. Limiting DAG width is
92 // the safe approach and will be especially important with global DAGs.
93 //
94 // MaxParallelChains default is arbitrarily high to avoid affecting
95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
96 // sequence over this should have been converted to llvm.memcpy by the
97 // frontend. It easy to induce this behavior with .ll code such as:
98 // %buffer = alloca [4096 x i8]
99 // %data = load [4096 x i8]* %argPtr
100 // store [4096 x i8] %data, [4096 x i8]* %buffer
101 static const unsigned MaxParallelChains = 64;
102 
103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
104                                       const SDValue *Parts, unsigned NumParts,
105                                       MVT PartVT, EVT ValueVT, const Value *V);
106 
107 /// getCopyFromParts - Create a value that contains the specified legal parts
108 /// combined into the value they represent.  If the parts combine to a type
109 /// larger then ValueVT then AssertOp can be used to specify whether the extra
110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
111 /// (ISD::AssertSext).
112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
113                                 const SDValue *Parts,
114                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
115                                 const Value *V,
116                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
117   if (ValueVT.isVector())
118     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
119                                   PartVT, ValueVT, V);
120 
121   assert(NumParts > 0 && "No parts to assemble!");
122   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
123   SDValue Val = Parts[0];
124 
125   if (NumParts > 1) {
126     // Assemble the value from multiple parts.
127     if (ValueVT.isInteger()) {
128       unsigned PartBits = PartVT.getSizeInBits();
129       unsigned ValueBits = ValueVT.getSizeInBits();
130 
131       // Assemble the power of 2 part.
132       unsigned RoundParts = NumParts & (NumParts - 1) ?
133         1 << Log2_32(NumParts) : NumParts;
134       unsigned RoundBits = PartBits * RoundParts;
135       EVT RoundVT = RoundBits == ValueBits ?
136         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
137       SDValue Lo, Hi;
138 
139       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
140 
141       if (RoundParts > 2) {
142         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
143                               PartVT, HalfVT, V);
144         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
145                               RoundParts / 2, PartVT, HalfVT, V);
146       } else {
147         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
148         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
149       }
150 
151       if (DAG.getDataLayout().isBigEndian())
152         std::swap(Lo, Hi);
153 
154       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
155 
156       if (RoundParts < NumParts) {
157         // Assemble the trailing non-power-of-2 part.
158         unsigned OddParts = NumParts - RoundParts;
159         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
160         Hi = getCopyFromParts(DAG, DL,
161                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
162 
163         // Combine the round and odd parts.
164         Lo = Val;
165         if (DAG.getDataLayout().isBigEndian())
166           std::swap(Lo, Hi);
167         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
168         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
169         Hi =
170             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
171                         DAG.getConstant(Lo.getValueType().getSizeInBits(), DL,
172                                         TLI.getPointerTy(DAG.getDataLayout())));
173         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
174         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
175       }
176     } else if (PartVT.isFloatingPoint()) {
177       // FP split into multiple FP parts (for ppcf128)
178       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
179              "Unexpected split");
180       SDValue Lo, Hi;
181       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
182       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
183       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
184         std::swap(Lo, Hi);
185       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
186     } else {
187       // FP split into integer parts (soft fp)
188       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
189              !PartVT.isVector() && "Unexpected split");
190       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
191       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
192     }
193   }
194 
195   // There is now one part, held in Val.  Correct it to match ValueVT.
196   EVT PartEVT = Val.getValueType();
197 
198   if (PartEVT == ValueVT)
199     return Val;
200 
201   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
202       ValueVT.bitsLT(PartEVT)) {
203     // For an FP value in an integer part, we need to truncate to the right
204     // width first.
205     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
206     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
207   }
208 
209   if (PartEVT.isInteger() && ValueVT.isInteger()) {
210     if (ValueVT.bitsLT(PartEVT)) {
211       // For a truncate, see if we have any information to
212       // indicate whether the truncated bits will always be
213       // zero or sign-extension.
214       if (AssertOp != ISD::DELETED_NODE)
215         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
216                           DAG.getValueType(ValueVT));
217       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
218     }
219     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
220   }
221 
222   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
223     // FP_ROUND's are always exact here.
224     if (ValueVT.bitsLT(Val.getValueType()))
225       return DAG.getNode(
226           ISD::FP_ROUND, DL, ValueVT, Val,
227           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
228 
229     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
230   }
231 
232   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
233     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
234 
235   llvm_unreachable("Unknown mismatch!");
236 }
237 
238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
239                                               const Twine &ErrMsg) {
240   const Instruction *I = dyn_cast_or_null<Instruction>(V);
241   if (!V)
242     return Ctx.emitError(ErrMsg);
243 
244   const char *AsmError = ", possible invalid constraint for vector type";
245   if (const CallInst *CI = dyn_cast<CallInst>(I))
246     if (isa<InlineAsm>(CI->getCalledValue()))
247       return Ctx.emitError(I, ErrMsg + AsmError);
248 
249   return Ctx.emitError(I, ErrMsg);
250 }
251 
252 /// getCopyFromPartsVector - Create a value that contains the specified legal
253 /// parts combined into the value they represent.  If the parts combine to a
254 /// type larger then ValueVT then AssertOp can be used to specify whether the
255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
256 /// ValueVT (ISD::AssertSext).
257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
258                                       const SDValue *Parts, unsigned NumParts,
259                                       MVT PartVT, EVT ValueVT, const Value *V) {
260   assert(ValueVT.isVector() && "Not a vector value");
261   assert(NumParts > 0 && "No parts to assemble!");
262   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
263   SDValue Val = Parts[0];
264 
265   // Handle a multi-element vector.
266   if (NumParts > 1) {
267     EVT IntermediateVT;
268     MVT RegisterVT;
269     unsigned NumIntermediates;
270     unsigned NumRegs =
271     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
272                                NumIntermediates, RegisterVT);
273     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
274     NumParts = NumRegs; // Silence a compiler warning.
275     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
276     assert(RegisterVT.getSizeInBits() ==
277            Parts[0].getSimpleValueType().getSizeInBits() &&
278            "Part type sizes don't match!");
279 
280     // Assemble the parts into intermediate operands.
281     SmallVector<SDValue, 8> Ops(NumIntermediates);
282     if (NumIntermediates == NumParts) {
283       // If the register was not expanded, truncate or copy the value,
284       // as appropriate.
285       for (unsigned i = 0; i != NumParts; ++i)
286         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
287                                   PartVT, IntermediateVT, V);
288     } else if (NumParts > 0) {
289       // If the intermediate type was expanded, build the intermediate
290       // operands from the parts.
291       assert(NumParts % NumIntermediates == 0 &&
292              "Must expand into a divisible number of parts!");
293       unsigned Factor = NumParts / NumIntermediates;
294       for (unsigned i = 0; i != NumIntermediates; ++i)
295         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
296                                   PartVT, IntermediateVT, V);
297     }
298 
299     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
300     // intermediate operands.
301     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
302                                                 : ISD::BUILD_VECTOR,
303                       DL, ValueVT, Ops);
304   }
305 
306   // There is now one part, held in Val.  Correct it to match ValueVT.
307   EVT PartEVT = Val.getValueType();
308 
309   if (PartEVT == ValueVT)
310     return Val;
311 
312   if (PartEVT.isVector()) {
313     // If the element type of the source/dest vectors are the same, but the
314     // parts vector has more elements than the value vector, then we have a
315     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
316     // elements we want.
317     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
318       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
319              "Cannot narrow, it would be a lossy transformation");
320       return DAG.getNode(
321           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
322           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
323     }
324 
325     // Vector/Vector bitcast.
326     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
327       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
328 
329     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
330       "Cannot handle this kind of promotion");
331     // Promoted vector extract
332     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
333 
334   }
335 
336   // Trivial bitcast if the types are the same size and the destination
337   // vector type is legal.
338   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
339       TLI.isTypeLegal(ValueVT))
340     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
341 
342   // Handle cases such as i8 -> <1 x i1>
343   if (ValueVT.getVectorNumElements() != 1) {
344     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
345                                       "non-trivial scalar-to-vector conversion");
346     return DAG.getUNDEF(ValueVT);
347   }
348 
349   if (ValueVT.getVectorNumElements() == 1 &&
350       ValueVT.getVectorElementType() != PartEVT)
351     Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType());
352 
353   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
354 }
355 
356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
357                                  SDValue Val, SDValue *Parts, unsigned NumParts,
358                                  MVT PartVT, const Value *V);
359 
360 /// getCopyToParts - Create a series of nodes that contain the specified value
361 /// split into legal parts.  If the parts contain more bits than Val, then, for
362 /// integers, ExtendKind can be used to specify how to generate the extra bits.
363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
364                            SDValue Val, SDValue *Parts, unsigned NumParts,
365                            MVT PartVT, const Value *V,
366                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
367   EVT ValueVT = Val.getValueType();
368 
369   // Handle the vector case separately.
370   if (ValueVT.isVector())
371     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
372 
373   unsigned PartBits = PartVT.getSizeInBits();
374   unsigned OrigNumParts = NumParts;
375   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
376          "Copying to an illegal type!");
377 
378   if (NumParts == 0)
379     return;
380 
381   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
382   EVT PartEVT = PartVT;
383   if (PartEVT == ValueVT) {
384     assert(NumParts == 1 && "No-op copy with multiple parts!");
385     Parts[0] = Val;
386     return;
387   }
388 
389   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
390     // If the parts cover more bits than the value has, promote the value.
391     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
392       assert(NumParts == 1 && "Do not know what to promote to!");
393       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
394     } else {
395       if (ValueVT.isFloatingPoint()) {
396         // FP values need to be bitcast, then extended if they are being put
397         // into a larger container.
398         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
399         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
400       }
401       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
402              ValueVT.isInteger() &&
403              "Unknown mismatch!");
404       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
405       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
406       if (PartVT == MVT::x86mmx)
407         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
408     }
409   } else if (PartBits == ValueVT.getSizeInBits()) {
410     // Different types of the same size.
411     assert(NumParts == 1 && PartEVT != ValueVT);
412     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
413   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
414     // If the parts cover less bits than value has, truncate the value.
415     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
416            ValueVT.isInteger() &&
417            "Unknown mismatch!");
418     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
419     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
420     if (PartVT == MVT::x86mmx)
421       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
422   }
423 
424   // The value may have changed - recompute ValueVT.
425   ValueVT = Val.getValueType();
426   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
427          "Failed to tile the value with PartVT!");
428 
429   if (NumParts == 1) {
430     if (PartEVT != ValueVT)
431       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
432                                         "scalar-to-vector conversion failed");
433 
434     Parts[0] = Val;
435     return;
436   }
437 
438   // Expand the value into multiple parts.
439   if (NumParts & (NumParts - 1)) {
440     // The number of parts is not a power of 2.  Split off and copy the tail.
441     assert(PartVT.isInteger() && ValueVT.isInteger() &&
442            "Do not know what to expand to!");
443     unsigned RoundParts = 1 << Log2_32(NumParts);
444     unsigned RoundBits = RoundParts * PartBits;
445     unsigned OddParts = NumParts - RoundParts;
446     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
447                                  DAG.getIntPtrConstant(RoundBits, DL));
448     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
449 
450     if (DAG.getDataLayout().isBigEndian())
451       // The odd parts were reversed by getCopyToParts - unreverse them.
452       std::reverse(Parts + RoundParts, Parts + NumParts);
453 
454     NumParts = RoundParts;
455     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
456     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
457   }
458 
459   // The number of parts is a power of 2.  Repeatedly bisect the value using
460   // EXTRACT_ELEMENT.
461   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
462                          EVT::getIntegerVT(*DAG.getContext(),
463                                            ValueVT.getSizeInBits()),
464                          Val);
465 
466   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
467     for (unsigned i = 0; i < NumParts; i += StepSize) {
468       unsigned ThisBits = StepSize * PartBits / 2;
469       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
470       SDValue &Part0 = Parts[i];
471       SDValue &Part1 = Parts[i+StepSize/2];
472 
473       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
474                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
475       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
476                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
477 
478       if (ThisBits == PartBits && ThisVT != PartVT) {
479         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
480         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
481       }
482     }
483   }
484 
485   if (DAG.getDataLayout().isBigEndian())
486     std::reverse(Parts, Parts + OrigNumParts);
487 }
488 
489 
490 /// getCopyToPartsVector - Create a series of nodes that contain the specified
491 /// value split into legal parts.
492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
493                                  SDValue Val, SDValue *Parts, unsigned NumParts,
494                                  MVT PartVT, const Value *V) {
495   EVT ValueVT = Val.getValueType();
496   assert(ValueVT.isVector() && "Not a vector");
497   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
498 
499   if (NumParts == 1) {
500     EVT PartEVT = PartVT;
501     if (PartEVT == ValueVT) {
502       // Nothing to do.
503     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
504       // Bitconvert vector->vector case.
505       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
506     } else if (PartVT.isVector() &&
507                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
508                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
509       EVT ElementVT = PartVT.getVectorElementType();
510       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
511       // undef elements.
512       SmallVector<SDValue, 16> Ops;
513       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
514         Ops.push_back(DAG.getNode(
515             ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val,
516             DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))));
517 
518       for (unsigned i = ValueVT.getVectorNumElements(),
519            e = PartVT.getVectorNumElements(); i != e; ++i)
520         Ops.push_back(DAG.getUNDEF(ElementVT));
521 
522       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
523 
524       // FIXME: Use CONCAT for 2x -> 4x.
525 
526       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
527       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
528     } else if (PartVT.isVector() &&
529                PartEVT.getVectorElementType().bitsGE(
530                  ValueVT.getVectorElementType()) &&
531                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
532 
533       // Promoted vector extract
534       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
535     } else{
536       // Vector -> scalar conversion.
537       assert(ValueVT.getVectorNumElements() == 1 &&
538              "Only trivial vector-to-scalar conversions should get here!");
539       Val = DAG.getNode(
540           ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
541           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
542 
543       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
544     }
545 
546     Parts[0] = Val;
547     return;
548   }
549 
550   // Handle a multi-element vector.
551   EVT IntermediateVT;
552   MVT RegisterVT;
553   unsigned NumIntermediates;
554   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
555                                                 IntermediateVT,
556                                                 NumIntermediates, RegisterVT);
557   unsigned NumElements = ValueVT.getVectorNumElements();
558 
559   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
560   NumParts = NumRegs; // Silence a compiler warning.
561   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
562 
563   // Split the vector into intermediate operands.
564   SmallVector<SDValue, 8> Ops(NumIntermediates);
565   for (unsigned i = 0; i != NumIntermediates; ++i) {
566     if (IntermediateVT.isVector())
567       Ops[i] =
568           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
569                       DAG.getConstant(i * (NumElements / NumIntermediates), DL,
570                                       TLI.getVectorIdxTy(DAG.getDataLayout())));
571     else
572       Ops[i] = DAG.getNode(
573           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
574           DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
575   }
576 
577   // Split the intermediate operands into legal parts.
578   if (NumParts == NumIntermediates) {
579     // If the register was not expanded, promote or copy the value,
580     // as appropriate.
581     for (unsigned i = 0; i != NumParts; ++i)
582       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
583   } else if (NumParts > 0) {
584     // If the intermediate type was expanded, split each the value into
585     // legal parts.
586     assert(NumIntermediates != 0 && "division by zero");
587     assert(NumParts % NumIntermediates == 0 &&
588            "Must expand into a divisible number of parts!");
589     unsigned Factor = NumParts / NumIntermediates;
590     for (unsigned i = 0; i != NumIntermediates; ++i)
591       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
592   }
593 }
594 
595 RegsForValue::RegsForValue() {}
596 
597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
598                            EVT valuevt)
599     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
600 
601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
602                            const DataLayout &DL, unsigned Reg, Type *Ty) {
603   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
604 
605   for (EVT ValueVT : ValueVTs) {
606     unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT);
607     MVT RegisterVT = TLI.getRegisterType(Context, ValueVT);
608     for (unsigned i = 0; i != NumRegs; ++i)
609       Regs.push_back(Reg + i);
610     RegVTs.push_back(RegisterVT);
611     Reg += NumRegs;
612   }
613 }
614 
615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
616 /// this value and returns the result as a ValueVT value.  This uses
617 /// Chain/Flag as the input and updates them for the output Chain/Flag.
618 /// If the Flag pointer is NULL, no flag is used.
619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
620                                       FunctionLoweringInfo &FuncInfo,
621                                       SDLoc dl,
622                                       SDValue &Chain, SDValue *Flag,
623                                       const Value *V) const {
624   // A Value with type {} or [0 x %t] needs no registers.
625   if (ValueVTs.empty())
626     return SDValue();
627 
628   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
629 
630   // Assemble the legal parts into the final values.
631   SmallVector<SDValue, 4> Values(ValueVTs.size());
632   SmallVector<SDValue, 8> Parts;
633   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
634     // Copy the legal parts from the registers.
635     EVT ValueVT = ValueVTs[Value];
636     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
637     MVT RegisterVT = RegVTs[Value];
638 
639     Parts.resize(NumRegs);
640     for (unsigned i = 0; i != NumRegs; ++i) {
641       SDValue P;
642       if (!Flag) {
643         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
644       } else {
645         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
646         *Flag = P.getValue(2);
647       }
648 
649       Chain = P.getValue(1);
650       Parts[i] = P;
651 
652       // If the source register was virtual and if we know something about it,
653       // add an assert node.
654       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
655           !RegisterVT.isInteger() || RegisterVT.isVector())
656         continue;
657 
658       const FunctionLoweringInfo::LiveOutInfo *LOI =
659         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
660       if (!LOI)
661         continue;
662 
663       unsigned RegSize = RegisterVT.getSizeInBits();
664       unsigned NumSignBits = LOI->NumSignBits;
665       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
666 
667       if (NumZeroBits == RegSize) {
668         // The current value is a zero.
669         // Explicitly express that as it would be easier for
670         // optimizations to kick in.
671         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
672         continue;
673       }
674 
675       // FIXME: We capture more information than the dag can represent.  For
676       // now, just use the tightest assertzext/assertsext possible.
677       bool isSExt = true;
678       EVT FromVT(MVT::Other);
679       if (NumSignBits == RegSize)
680         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
681       else if (NumZeroBits >= RegSize-1)
682         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
683       else if (NumSignBits > RegSize-8)
684         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
685       else if (NumZeroBits >= RegSize-8)
686         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
687       else if (NumSignBits > RegSize-16)
688         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
689       else if (NumZeroBits >= RegSize-16)
690         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
691       else if (NumSignBits > RegSize-32)
692         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
693       else if (NumZeroBits >= RegSize-32)
694         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
695       else
696         continue;
697 
698       // Add an assertion node.
699       assert(FromVT != MVT::Other);
700       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
701                              RegisterVT, P, DAG.getValueType(FromVT));
702     }
703 
704     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
705                                      NumRegs, RegisterVT, ValueVT, V);
706     Part += NumRegs;
707     Parts.clear();
708   }
709 
710   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
711 }
712 
713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
714 /// specified value into the registers specified by this object.  This uses
715 /// Chain/Flag as the input and updates them for the output Chain/Flag.
716 /// If the Flag pointer is NULL, no flag is used.
717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
718                                  SDValue &Chain, SDValue *Flag, const Value *V,
719                                  ISD::NodeType PreferredExtendType) const {
720   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
721   ISD::NodeType ExtendKind = PreferredExtendType;
722 
723   // Get the list of the values's legal parts.
724   unsigned NumRegs = Regs.size();
725   SmallVector<SDValue, 8> Parts(NumRegs);
726   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
727     EVT ValueVT = ValueVTs[Value];
728     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
729     MVT RegisterVT = RegVTs[Value];
730 
731     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
732       ExtendKind = ISD::ZERO_EXTEND;
733 
734     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
735                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
736     Part += NumParts;
737   }
738 
739   // Copy the parts into the registers.
740   SmallVector<SDValue, 8> Chains(NumRegs);
741   for (unsigned i = 0; i != NumRegs; ++i) {
742     SDValue Part;
743     if (!Flag) {
744       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
745     } else {
746       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
747       *Flag = Part.getValue(1);
748     }
749 
750     Chains[i] = Part.getValue(0);
751   }
752 
753   if (NumRegs == 1 || Flag)
754     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
755     // flagged to it. That is the CopyToReg nodes and the user are considered
756     // a single scheduling unit. If we create a TokenFactor and return it as
757     // chain, then the TokenFactor is both a predecessor (operand) of the
758     // user as well as a successor (the TF operands are flagged to the user).
759     // c1, f1 = CopyToReg
760     // c2, f2 = CopyToReg
761     // c3     = TokenFactor c1, c2
762     // ...
763     //        = op c3, ..., f2
764     Chain = Chains[NumRegs-1];
765   else
766     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
767 }
768 
769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
770 /// operand list.  This adds the code marker and includes the number of
771 /// values added into it.
772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
773                                         unsigned MatchingIdx, SDLoc dl,
774                                         SelectionDAG &DAG,
775                                         std::vector<SDValue> &Ops) const {
776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
777 
778   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
779   if (HasMatching)
780     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
781   else if (!Regs.empty() &&
782            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
783     // Put the register class of the virtual registers in the flag word.  That
784     // way, later passes can recompute register class constraints for inline
785     // assembly as well as normal instructions.
786     // Don't do this for tied operands that can use the regclass information
787     // from the def.
788     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
789     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
790     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
791   }
792 
793   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
794   Ops.push_back(Res);
795 
796   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
797   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
798     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
799     MVT RegisterVT = RegVTs[Value];
800     for (unsigned i = 0; i != NumRegs; ++i) {
801       assert(Reg < Regs.size() && "Mismatch in # registers expected");
802       unsigned TheReg = Regs[Reg++];
803       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
804 
805       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
806         // If we clobbered the stack pointer, MFI should know about it.
807         assert(DAG.getMachineFunction().getFrameInfo()->
808             hasOpaqueSPAdjustment());
809       }
810     }
811   }
812 }
813 
814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
815                                const TargetLibraryInfo *li) {
816   AA = &aa;
817   GFI = gfi;
818   LibInfo = li;
819   DL = &DAG.getDataLayout();
820   Context = DAG.getContext();
821   LPadToCallSiteMap.clear();
822 }
823 
824 /// clear - Clear out the current SelectionDAG and the associated
825 /// state and prepare this SelectionDAGBuilder object to be used
826 /// for a new block. This doesn't clear out information about
827 /// additional blocks that are needed to complete switch lowering
828 /// or PHI node updating; that information is cleared out as it is
829 /// consumed.
830 void SelectionDAGBuilder::clear() {
831   NodeMap.clear();
832   UnusedArgNodeMap.clear();
833   PendingLoads.clear();
834   PendingExports.clear();
835   CurInst = nullptr;
836   HasTailCall = false;
837   SDNodeOrder = LowestSDNodeOrder;
838   StatepointLowering.clear();
839 }
840 
841 /// clearDanglingDebugInfo - Clear the dangling debug information
842 /// map. This function is separated from the clear so that debug
843 /// information that is dangling in a basic block can be properly
844 /// resolved in a different basic block. This allows the
845 /// SelectionDAG to resolve dangling debug information attached
846 /// to PHI nodes.
847 void SelectionDAGBuilder::clearDanglingDebugInfo() {
848   DanglingDebugInfoMap.clear();
849 }
850 
851 /// getRoot - Return the current virtual root of the Selection DAG,
852 /// flushing any PendingLoad items. This must be done before emitting
853 /// a store or any other node that may need to be ordered after any
854 /// prior load instructions.
855 ///
856 SDValue SelectionDAGBuilder::getRoot() {
857   if (PendingLoads.empty())
858     return DAG.getRoot();
859 
860   if (PendingLoads.size() == 1) {
861     SDValue Root = PendingLoads[0];
862     DAG.setRoot(Root);
863     PendingLoads.clear();
864     return Root;
865   }
866 
867   // Otherwise, we have to make a token factor node.
868   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
869                              PendingLoads);
870   PendingLoads.clear();
871   DAG.setRoot(Root);
872   return Root;
873 }
874 
875 /// getControlRoot - Similar to getRoot, but instead of flushing all the
876 /// PendingLoad items, flush all the PendingExports items. It is necessary
877 /// to do this before emitting a terminator instruction.
878 ///
879 SDValue SelectionDAGBuilder::getControlRoot() {
880   SDValue Root = DAG.getRoot();
881 
882   if (PendingExports.empty())
883     return Root;
884 
885   // Turn all of the CopyToReg chains into one factored node.
886   if (Root.getOpcode() != ISD::EntryToken) {
887     unsigned i = 0, e = PendingExports.size();
888     for (; i != e; ++i) {
889       assert(PendingExports[i].getNode()->getNumOperands() > 1);
890       if (PendingExports[i].getNode()->getOperand(0) == Root)
891         break;  // Don't add the root if we already indirectly depend on it.
892     }
893 
894     if (i == e)
895       PendingExports.push_back(Root);
896   }
897 
898   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
899                      PendingExports);
900   PendingExports.clear();
901   DAG.setRoot(Root);
902   return Root;
903 }
904 
905 void SelectionDAGBuilder::visit(const Instruction &I) {
906   // Set up outgoing PHI node register values before emitting the terminator.
907   if (isa<TerminatorInst>(&I))
908     HandlePHINodesInSuccessorBlocks(I.getParent());
909 
910   ++SDNodeOrder;
911 
912   CurInst = &I;
913 
914   visit(I.getOpcode(), I);
915 
916   if (!isa<TerminatorInst>(&I) && !HasTailCall &&
917       !isStatepoint(&I)) // statepoints handle their exports internally
918     CopyToExportRegsIfNeeded(&I);
919 
920   CurInst = nullptr;
921 }
922 
923 void SelectionDAGBuilder::visitPHI(const PHINode &) {
924   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
925 }
926 
927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
928   // Note: this doesn't use InstVisitor, because it has to work with
929   // ConstantExpr's in addition to instructions.
930   switch (Opcode) {
931   default: llvm_unreachable("Unknown instruction type encountered!");
932     // Build the switch statement using the Instruction.def file.
933 #define HANDLE_INST(NUM, OPCODE, CLASS) \
934     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
935 #include "llvm/IR/Instruction.def"
936   }
937 }
938 
939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
940 // generate the debug data structures now that we've seen its definition.
941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
942                                                    SDValue Val) {
943   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
944   if (DDI.getDI()) {
945     const DbgValueInst *DI = DDI.getDI();
946     DebugLoc dl = DDI.getdl();
947     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
948     DILocalVariable *Variable = DI->getVariable();
949     DIExpression *Expr = DI->getExpression();
950     assert(Variable->isValidLocationForIntrinsic(dl) &&
951            "Expected inlined-at fields to agree");
952     uint64_t Offset = DI->getOffset();
953     SDDbgValue *SDV;
954     if (Val.getNode()) {
955       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false,
956                                     Val)) {
957         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
958                               false, Offset, dl, DbgSDNodeOrder);
959         DAG.AddDbgValue(SDV, Val.getNode(), false);
960       }
961     } else
962       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
963     DanglingDebugInfoMap[V] = DanglingDebugInfo();
964   }
965 }
966 
967 /// getCopyFromRegs - If there was virtual register allocated for the value V
968 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
969 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
970   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
971   SDValue Result;
972 
973   if (It != FuncInfo.ValueMap.end()) {
974     unsigned InReg = It->second;
975     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
976                      DAG.getDataLayout(), InReg, Ty);
977     SDValue Chain = DAG.getEntryNode();
978     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
979     resolveDanglingDebugInfo(V, Result);
980   }
981 
982   return Result;
983 }
984 
985 /// getValue - Return an SDValue for the given Value.
986 SDValue SelectionDAGBuilder::getValue(const Value *V) {
987   // If we already have an SDValue for this value, use it. It's important
988   // to do this first, so that we don't create a CopyFromReg if we already
989   // have a regular SDValue.
990   SDValue &N = NodeMap[V];
991   if (N.getNode()) return N;
992 
993   // If there's a virtual register allocated and initialized for this
994   // value, use it.
995   SDValue copyFromReg = getCopyFromRegs(V, V->getType());
996   if (copyFromReg.getNode()) {
997     return copyFromReg;
998   }
999 
1000   // Otherwise create a new SDValue and remember it.
1001   SDValue Val = getValueImpl(V);
1002   NodeMap[V] = Val;
1003   resolveDanglingDebugInfo(V, Val);
1004   return Val;
1005 }
1006 
1007 // Return true if SDValue exists for the given Value
1008 bool SelectionDAGBuilder::findValue(const Value *V) const {
1009   return (NodeMap.find(V) != NodeMap.end()) ||
1010     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1011 }
1012 
1013 /// getNonRegisterValue - Return an SDValue for the given Value, but
1014 /// don't look in FuncInfo.ValueMap for a virtual register.
1015 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1016   // If we already have an SDValue for this value, use it.
1017   SDValue &N = NodeMap[V];
1018   if (N.getNode()) {
1019     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1020       // Remove the debug location from the node as the node is about to be used
1021       // in a location which may differ from the original debug location.  This
1022       // is relevant to Constant and ConstantFP nodes because they can appear
1023       // as constant expressions inside PHI nodes.
1024       N->setDebugLoc(DebugLoc());
1025     }
1026     return N;
1027   }
1028 
1029   // Otherwise create a new SDValue and remember it.
1030   SDValue Val = getValueImpl(V);
1031   NodeMap[V] = Val;
1032   resolveDanglingDebugInfo(V, Val);
1033   return Val;
1034 }
1035 
1036 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1037 /// Create an SDValue for the given value.
1038 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1039   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1040 
1041   if (const Constant *C = dyn_cast<Constant>(V)) {
1042     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1043 
1044     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1045       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1046 
1047     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1048       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1049 
1050     if (isa<ConstantPointerNull>(C)) {
1051       unsigned AS = V->getType()->getPointerAddressSpace();
1052       return DAG.getConstant(0, getCurSDLoc(),
1053                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1054     }
1055 
1056     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1057       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1058 
1059     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1060       return DAG.getUNDEF(VT);
1061 
1062     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1063       visit(CE->getOpcode(), *CE);
1064       SDValue N1 = NodeMap[V];
1065       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1066       return N1;
1067     }
1068 
1069     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1070       SmallVector<SDValue, 4> Constants;
1071       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1072            OI != OE; ++OI) {
1073         SDNode *Val = getValue(*OI).getNode();
1074         // If the operand is an empty aggregate, there are no values.
1075         if (!Val) continue;
1076         // Add each leaf value from the operand to the Constants list
1077         // to form a flattened list of all the values.
1078         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1079           Constants.push_back(SDValue(Val, i));
1080       }
1081 
1082       return DAG.getMergeValues(Constants, getCurSDLoc());
1083     }
1084 
1085     if (const ConstantDataSequential *CDS =
1086           dyn_cast<ConstantDataSequential>(C)) {
1087       SmallVector<SDValue, 4> Ops;
1088       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1089         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1090         // Add each leaf value from the operand to the Constants list
1091         // to form a flattened list of all the values.
1092         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1093           Ops.push_back(SDValue(Val, i));
1094       }
1095 
1096       if (isa<ArrayType>(CDS->getType()))
1097         return DAG.getMergeValues(Ops, getCurSDLoc());
1098       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1099                                       VT, Ops);
1100     }
1101 
1102     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1103       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1104              "Unknown struct or array constant!");
1105 
1106       SmallVector<EVT, 4> ValueVTs;
1107       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1108       unsigned NumElts = ValueVTs.size();
1109       if (NumElts == 0)
1110         return SDValue(); // empty struct
1111       SmallVector<SDValue, 4> Constants(NumElts);
1112       for (unsigned i = 0; i != NumElts; ++i) {
1113         EVT EltVT = ValueVTs[i];
1114         if (isa<UndefValue>(C))
1115           Constants[i] = DAG.getUNDEF(EltVT);
1116         else if (EltVT.isFloatingPoint())
1117           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1118         else
1119           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1120       }
1121 
1122       return DAG.getMergeValues(Constants, getCurSDLoc());
1123     }
1124 
1125     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1126       return DAG.getBlockAddress(BA, VT);
1127 
1128     VectorType *VecTy = cast<VectorType>(V->getType());
1129     unsigned NumElements = VecTy->getNumElements();
1130 
1131     // Now that we know the number and type of the elements, get that number of
1132     // elements into the Ops array based on what kind of constant it is.
1133     SmallVector<SDValue, 16> Ops;
1134     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1135       for (unsigned i = 0; i != NumElements; ++i)
1136         Ops.push_back(getValue(CV->getOperand(i)));
1137     } else {
1138       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1139       EVT EltVT =
1140           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1141 
1142       SDValue Op;
1143       if (EltVT.isFloatingPoint())
1144         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1145       else
1146         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1147       Ops.assign(NumElements, Op);
1148     }
1149 
1150     // Create a BUILD_VECTOR node.
1151     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1152   }
1153 
1154   // If this is a static alloca, generate it as the frameindex instead of
1155   // computation.
1156   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1157     DenseMap<const AllocaInst*, int>::iterator SI =
1158       FuncInfo.StaticAllocaMap.find(AI);
1159     if (SI != FuncInfo.StaticAllocaMap.end())
1160       return DAG.getFrameIndex(SI->second,
1161                                TLI.getPointerTy(DAG.getDataLayout()));
1162   }
1163 
1164   // If this is an instruction which fast-isel has deferred, select it now.
1165   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1166     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1167     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1168                      Inst->getType());
1169     SDValue Chain = DAG.getEntryNode();
1170     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1171   }
1172 
1173   llvm_unreachable("Can't get register for value!");
1174 }
1175 
1176 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1177   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1178   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1179   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1180   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1181   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1182   if (IsMSVCCXX || IsCoreCLR)
1183     CatchPadMBB->setIsEHFuncletEntry();
1184 
1185   DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot()));
1186 }
1187 
1188 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1189   // Update machine-CFG edge.
1190   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1191   FuncInfo.MBB->addSuccessor(TargetMBB);
1192 
1193   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1194   bool IsSEH = isAsynchronousEHPersonality(Pers);
1195   if (IsSEH) {
1196     // If this is not a fall-through branch or optimizations are switched off,
1197     // emit the branch.
1198     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1199         TM.getOptLevel() == CodeGenOpt::None)
1200       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1201                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1202     return;
1203   }
1204 
1205   // Figure out the funclet membership for the catchret's successor.
1206   // This will be used by the FuncletLayout pass to determine how to order the
1207   // BB's.
1208   // A 'catchret' returns to the outer scope's color.
1209   Value *ParentPad = I.getParentPad();
1210   const BasicBlock *SuccessorColor;
1211   if (isa<ConstantTokenNone>(ParentPad))
1212     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1213   else
1214     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1215   assert(SuccessorColor && "No parent funclet for catchret!");
1216   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1217   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1218 
1219   // Create the terminator node.
1220   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1221                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1222                             DAG.getBasicBlock(SuccessorColorMBB));
1223   DAG.setRoot(Ret);
1224 }
1225 
1226 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1227   // Don't emit any special code for the cleanuppad instruction. It just marks
1228   // the start of a funclet.
1229   FuncInfo.MBB->setIsEHFuncletEntry();
1230   FuncInfo.MBB->setIsCleanupFuncletEntry();
1231 }
1232 
1233 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1234 /// many places it could ultimately go. In the IR, we have a single unwind
1235 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1236 /// This function skips over imaginary basic blocks that hold catchswitch
1237 /// instructions, and finds all the "real" machine
1238 /// basic block destinations. As those destinations may not be successors of
1239 /// EHPadBB, here we also calculate the edge probability to those destinations.
1240 /// The passed-in Prob is the edge probability to EHPadBB.
1241 static void findUnwindDestinations(
1242     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1243     BranchProbability Prob,
1244     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1245         &UnwindDests) {
1246   EHPersonality Personality =
1247     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1248   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1249   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1250 
1251   while (EHPadBB) {
1252     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1253     BasicBlock *NewEHPadBB = nullptr;
1254     if (isa<LandingPadInst>(Pad)) {
1255       // Stop on landingpads. They are not funclets.
1256       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1257       break;
1258     } else if (isa<CleanupPadInst>(Pad)) {
1259       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1260       // personalities.
1261       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1262       UnwindDests.back().first->setIsEHFuncletEntry();
1263       break;
1264     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1265       // Add the catchpad handlers to the possible destinations.
1266       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1267         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1268         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1269         if (IsMSVCCXX || IsCoreCLR)
1270           UnwindDests.back().first->setIsEHFuncletEntry();
1271       }
1272       NewEHPadBB = CatchSwitch->getUnwindDest();
1273     } else {
1274       continue;
1275     }
1276 
1277     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1278     if (BPI && NewEHPadBB)
1279       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1280     EHPadBB = NewEHPadBB;
1281   }
1282 }
1283 
1284 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1285   // Update successor info.
1286   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1287   auto UnwindDest = I.getUnwindDest();
1288   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1289   BranchProbability UnwindDestProb =
1290       (BPI && UnwindDest)
1291           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1292           : BranchProbability::getZero();
1293   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1294   for (auto &UnwindDest : UnwindDests) {
1295     UnwindDest.first->setIsEHPad();
1296     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1297   }
1298   FuncInfo.MBB->normalizeSuccProbs();
1299 
1300   // Create the terminator node.
1301   SDValue Ret =
1302       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1303   DAG.setRoot(Ret);
1304 }
1305 
1306 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1307   report_fatal_error("visitCatchSwitch not yet implemented!");
1308 }
1309 
1310 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1311   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1312   auto &DL = DAG.getDataLayout();
1313   SDValue Chain = getControlRoot();
1314   SmallVector<ISD::OutputArg, 8> Outs;
1315   SmallVector<SDValue, 8> OutVals;
1316 
1317   if (!FuncInfo.CanLowerReturn) {
1318     unsigned DemoteReg = FuncInfo.DemoteRegister;
1319     const Function *F = I.getParent()->getParent();
1320 
1321     // Emit a store of the return value through the virtual register.
1322     // Leave Outs empty so that LowerReturn won't try to load return
1323     // registers the usual way.
1324     SmallVector<EVT, 1> PtrValueVTs;
1325     ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()),
1326                     PtrValueVTs);
1327 
1328     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1329                                         DemoteReg, PtrValueVTs[0]);
1330     SDValue RetOp = getValue(I.getOperand(0));
1331 
1332     SmallVector<EVT, 4> ValueVTs;
1333     SmallVector<uint64_t, 4> Offsets;
1334     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1335     unsigned NumValues = ValueVTs.size();
1336 
1337     // An aggregate return value cannot wrap around the address space, so
1338     // offsets to its parts don't wrap either.
1339     SDNodeFlags Flags;
1340     Flags.setNoUnsignedWrap(true);
1341 
1342     SmallVector<SDValue, 4> Chains(NumValues);
1343     for (unsigned i = 0; i != NumValues; ++i) {
1344       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1345                                 RetPtr.getValueType(), RetPtr,
1346                                 DAG.getIntPtrConstant(Offsets[i],
1347                                                       getCurSDLoc()),
1348                                 &Flags);
1349       Chains[i] =
1350         DAG.getStore(Chain, getCurSDLoc(),
1351                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1352                      // FIXME: better loc info would be nice.
1353                      Add, MachinePointerInfo(), false, false, 0);
1354     }
1355 
1356     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1357                         MVT::Other, Chains);
1358   } else if (I.getNumOperands() != 0) {
1359     SmallVector<EVT, 4> ValueVTs;
1360     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1361     unsigned NumValues = ValueVTs.size();
1362     if (NumValues) {
1363       SDValue RetOp = getValue(I.getOperand(0));
1364 
1365       const Function *F = I.getParent()->getParent();
1366 
1367       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1368       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1369                                           Attribute::SExt))
1370         ExtendKind = ISD::SIGN_EXTEND;
1371       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1372                                                Attribute::ZExt))
1373         ExtendKind = ISD::ZERO_EXTEND;
1374 
1375       LLVMContext &Context = F->getContext();
1376       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1377                                                       Attribute::InReg);
1378 
1379       for (unsigned j = 0; j != NumValues; ++j) {
1380         EVT VT = ValueVTs[j];
1381 
1382         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1383           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1384 
1385         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1386         MVT PartVT = TLI.getRegisterType(Context, VT);
1387         SmallVector<SDValue, 4> Parts(NumParts);
1388         getCopyToParts(DAG, getCurSDLoc(),
1389                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1390                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1391 
1392         // 'inreg' on function refers to return value
1393         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1394         if (RetInReg)
1395           Flags.setInReg();
1396 
1397         // Propagate extension type if any
1398         if (ExtendKind == ISD::SIGN_EXTEND)
1399           Flags.setSExt();
1400         else if (ExtendKind == ISD::ZERO_EXTEND)
1401           Flags.setZExt();
1402 
1403         for (unsigned i = 0; i < NumParts; ++i) {
1404           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1405                                         VT, /*isfixed=*/true, 0, 0));
1406           OutVals.push_back(Parts[i]);
1407         }
1408       }
1409     }
1410   }
1411 
1412   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1413   CallingConv::ID CallConv =
1414     DAG.getMachineFunction().getFunction()->getCallingConv();
1415   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1416       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1417 
1418   // Verify that the target's LowerReturn behaved as expected.
1419   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1420          "LowerReturn didn't return a valid chain!");
1421 
1422   // Update the DAG with the new chain value resulting from return lowering.
1423   DAG.setRoot(Chain);
1424 }
1425 
1426 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1427 /// created for it, emit nodes to copy the value into the virtual
1428 /// registers.
1429 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1430   // Skip empty types
1431   if (V->getType()->isEmptyTy())
1432     return;
1433 
1434   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1435   if (VMI != FuncInfo.ValueMap.end()) {
1436     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1437     CopyValueToVirtualRegister(V, VMI->second);
1438   }
1439 }
1440 
1441 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1442 /// the current basic block, add it to ValueMap now so that we'll get a
1443 /// CopyTo/FromReg.
1444 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1445   // No need to export constants.
1446   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1447 
1448   // Already exported?
1449   if (FuncInfo.isExportedInst(V)) return;
1450 
1451   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1452   CopyValueToVirtualRegister(V, Reg);
1453 }
1454 
1455 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1456                                                      const BasicBlock *FromBB) {
1457   // The operands of the setcc have to be in this block.  We don't know
1458   // how to export them from some other block.
1459   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1460     // Can export from current BB.
1461     if (VI->getParent() == FromBB)
1462       return true;
1463 
1464     // Is already exported, noop.
1465     return FuncInfo.isExportedInst(V);
1466   }
1467 
1468   // If this is an argument, we can export it if the BB is the entry block or
1469   // if it is already exported.
1470   if (isa<Argument>(V)) {
1471     if (FromBB == &FromBB->getParent()->getEntryBlock())
1472       return true;
1473 
1474     // Otherwise, can only export this if it is already exported.
1475     return FuncInfo.isExportedInst(V);
1476   }
1477 
1478   // Otherwise, constants can always be exported.
1479   return true;
1480 }
1481 
1482 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1483 BranchProbability
1484 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1485                                         const MachineBasicBlock *Dst) const {
1486   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1487   const BasicBlock *SrcBB = Src->getBasicBlock();
1488   const BasicBlock *DstBB = Dst->getBasicBlock();
1489   if (!BPI) {
1490     // If BPI is not available, set the default probability as 1 / N, where N is
1491     // the number of successors.
1492     auto SuccSize = std::max<uint32_t>(
1493         std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1);
1494     return BranchProbability(1, SuccSize);
1495   }
1496   return BPI->getEdgeProbability(SrcBB, DstBB);
1497 }
1498 
1499 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1500                                                MachineBasicBlock *Dst,
1501                                                BranchProbability Prob) {
1502   if (!FuncInfo.BPI)
1503     Src->addSuccessorWithoutProb(Dst);
1504   else {
1505     if (Prob.isUnknown())
1506       Prob = getEdgeProbability(Src, Dst);
1507     Src->addSuccessor(Dst, Prob);
1508   }
1509 }
1510 
1511 static bool InBlock(const Value *V, const BasicBlock *BB) {
1512   if (const Instruction *I = dyn_cast<Instruction>(V))
1513     return I->getParent() == BB;
1514   return true;
1515 }
1516 
1517 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1518 /// This function emits a branch and is used at the leaves of an OR or an
1519 /// AND operator tree.
1520 ///
1521 void
1522 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1523                                                   MachineBasicBlock *TBB,
1524                                                   MachineBasicBlock *FBB,
1525                                                   MachineBasicBlock *CurBB,
1526                                                   MachineBasicBlock *SwitchBB,
1527                                                   BranchProbability TProb,
1528                                                   BranchProbability FProb) {
1529   const BasicBlock *BB = CurBB->getBasicBlock();
1530 
1531   // If the leaf of the tree is a comparison, merge the condition into
1532   // the caseblock.
1533   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1534     // The operands of the cmp have to be in this block.  We don't know
1535     // how to export them from some other block.  If this is the first block
1536     // of the sequence, no exporting is needed.
1537     if (CurBB == SwitchBB ||
1538         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1539          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1540       ISD::CondCode Condition;
1541       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1542         Condition = getICmpCondCode(IC->getPredicate());
1543       } else {
1544         const FCmpInst *FC = cast<FCmpInst>(Cond);
1545         Condition = getFCmpCondCode(FC->getPredicate());
1546         if (TM.Options.NoNaNsFPMath)
1547           Condition = getFCmpCodeWithoutNaN(Condition);
1548       }
1549 
1550       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1551                    TBB, FBB, CurBB, TProb, FProb);
1552       SwitchCases.push_back(CB);
1553       return;
1554     }
1555   }
1556 
1557   // Create a CaseBlock record representing this branch.
1558   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1559                nullptr, TBB, FBB, CurBB, TProb, FProb);
1560   SwitchCases.push_back(CB);
1561 }
1562 
1563 /// FindMergedConditions - If Cond is an expression like
1564 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1565                                                MachineBasicBlock *TBB,
1566                                                MachineBasicBlock *FBB,
1567                                                MachineBasicBlock *CurBB,
1568                                                MachineBasicBlock *SwitchBB,
1569                                                Instruction::BinaryOps Opc,
1570                                                BranchProbability TProb,
1571                                                BranchProbability FProb) {
1572   // If this node is not part of the or/and tree, emit it as a branch.
1573   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1574   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1575       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1576       BOp->getParent() != CurBB->getBasicBlock() ||
1577       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1578       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1579     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1580                                  TProb, FProb);
1581     return;
1582   }
1583 
1584   //  Create TmpBB after CurBB.
1585   MachineFunction::iterator BBI(CurBB);
1586   MachineFunction &MF = DAG.getMachineFunction();
1587   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1588   CurBB->getParent()->insert(++BBI, TmpBB);
1589 
1590   if (Opc == Instruction::Or) {
1591     // Codegen X | Y as:
1592     // BB1:
1593     //   jmp_if_X TBB
1594     //   jmp TmpBB
1595     // TmpBB:
1596     //   jmp_if_Y TBB
1597     //   jmp FBB
1598     //
1599 
1600     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1601     // The requirement is that
1602     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1603     //     = TrueProb for original BB.
1604     // Assuming the original probabilities are A and B, one choice is to set
1605     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
1606     // A/(1+B) and 2B/(1+B). This choice assumes that
1607     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1608     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1609     // TmpBB, but the math is more complicated.
1610 
1611     auto NewTrueProb = TProb / 2;
1612     auto NewFalseProb = TProb / 2 + FProb;
1613     // Emit the LHS condition.
1614     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1615                          NewTrueProb, NewFalseProb);
1616 
1617     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
1618     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
1619     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1620     // Emit the RHS condition into TmpBB.
1621     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1622                          Probs[0], Probs[1]);
1623   } else {
1624     assert(Opc == Instruction::And && "Unknown merge op!");
1625     // Codegen X & Y as:
1626     // BB1:
1627     //   jmp_if_X TmpBB
1628     //   jmp FBB
1629     // TmpBB:
1630     //   jmp_if_Y TBB
1631     //   jmp FBB
1632     //
1633     //  This requires creation of TmpBB after CurBB.
1634 
1635     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1636     // The requirement is that
1637     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1638     //     = FalseProb for original BB.
1639     // Assuming the original probabilities are A and B, one choice is to set
1640     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
1641     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
1642     // TrueProb for BB1 * FalseProb for TmpBB.
1643 
1644     auto NewTrueProb = TProb + FProb / 2;
1645     auto NewFalseProb = FProb / 2;
1646     // Emit the LHS condition.
1647     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1648                          NewTrueProb, NewFalseProb);
1649 
1650     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
1651     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
1652     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
1653     // Emit the RHS condition into TmpBB.
1654     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1655                          Probs[0], Probs[1]);
1656   }
1657 }
1658 
1659 /// If the set of cases should be emitted as a series of branches, return true.
1660 /// If we should emit this as a bunch of and/or'd together conditions, return
1661 /// false.
1662 bool
1663 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1664   if (Cases.size() != 2) return true;
1665 
1666   // If this is two comparisons of the same values or'd or and'd together, they
1667   // will get folded into a single comparison, so don't emit two blocks.
1668   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1669        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1670       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1671        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1672     return false;
1673   }
1674 
1675   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1676   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1677   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1678       Cases[0].CC == Cases[1].CC &&
1679       isa<Constant>(Cases[0].CmpRHS) &&
1680       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1681     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1682       return false;
1683     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1684       return false;
1685   }
1686 
1687   return true;
1688 }
1689 
1690 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1691   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1692 
1693   // Update machine-CFG edges.
1694   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1695 
1696   if (I.isUnconditional()) {
1697     // Update machine-CFG edges.
1698     BrMBB->addSuccessor(Succ0MBB);
1699 
1700     // If this is not a fall-through branch or optimizations are switched off,
1701     // emit the branch.
1702     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
1703       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1704                               MVT::Other, getControlRoot(),
1705                               DAG.getBasicBlock(Succ0MBB)));
1706 
1707     return;
1708   }
1709 
1710   // If this condition is one of the special cases we handle, do special stuff
1711   // now.
1712   const Value *CondVal = I.getCondition();
1713   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1714 
1715   // If this is a series of conditions that are or'd or and'd together, emit
1716   // this as a sequence of branches instead of setcc's with and/or operations.
1717   // As long as jumps are not expensive, this should improve performance.
1718   // For example, instead of something like:
1719   //     cmp A, B
1720   //     C = seteq
1721   //     cmp D, E
1722   //     F = setle
1723   //     or C, F
1724   //     jnz foo
1725   // Emit:
1726   //     cmp A, B
1727   //     je foo
1728   //     cmp D, E
1729   //     jle foo
1730   //
1731   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1732     Instruction::BinaryOps Opcode = BOp->getOpcode();
1733     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
1734         !I.getMetadata(LLVMContext::MD_unpredictable) &&
1735         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
1736       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1737                            Opcode,
1738                            getEdgeProbability(BrMBB, Succ0MBB),
1739                            getEdgeProbability(BrMBB, Succ1MBB));
1740       // If the compares in later blocks need to use values not currently
1741       // exported from this block, export them now.  This block should always
1742       // be the first entry.
1743       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1744 
1745       // Allow some cases to be rejected.
1746       if (ShouldEmitAsBranches(SwitchCases)) {
1747         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1748           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1749           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1750         }
1751 
1752         // Emit the branch for this block.
1753         visitSwitchCase(SwitchCases[0], BrMBB);
1754         SwitchCases.erase(SwitchCases.begin());
1755         return;
1756       }
1757 
1758       // Okay, we decided not to do this, remove any inserted MBB's and clear
1759       // SwitchCases.
1760       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1761         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1762 
1763       SwitchCases.clear();
1764     }
1765   }
1766 
1767   // Create a CaseBlock record representing this branch.
1768   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1769                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1770 
1771   // Use visitSwitchCase to actually insert the fast branch sequence for this
1772   // cond branch.
1773   visitSwitchCase(CB, BrMBB);
1774 }
1775 
1776 /// visitSwitchCase - Emits the necessary code to represent a single node in
1777 /// the binary search tree resulting from lowering a switch instruction.
1778 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1779                                           MachineBasicBlock *SwitchBB) {
1780   SDValue Cond;
1781   SDValue CondLHS = getValue(CB.CmpLHS);
1782   SDLoc dl = getCurSDLoc();
1783 
1784   // Build the setcc now.
1785   if (!CB.CmpMHS) {
1786     // Fold "(X == true)" to X and "(X == false)" to !X to
1787     // handle common cases produced by branch lowering.
1788     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1789         CB.CC == ISD::SETEQ)
1790       Cond = CondLHS;
1791     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1792              CB.CC == ISD::SETEQ) {
1793       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
1794       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1795     } else
1796       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1797   } else {
1798     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1799 
1800     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1801     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1802 
1803     SDValue CmpOp = getValue(CB.CmpMHS);
1804     EVT VT = CmpOp.getValueType();
1805 
1806     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1807       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
1808                           ISD::SETLE);
1809     } else {
1810       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1811                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
1812       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1813                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
1814     }
1815   }
1816 
1817   // Update successor info
1818   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
1819   // TrueBB and FalseBB are always different unless the incoming IR is
1820   // degenerate. This only happens when running llc on weird IR.
1821   if (CB.TrueBB != CB.FalseBB)
1822     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
1823   SwitchBB->normalizeSuccProbs();
1824 
1825   // If the lhs block is the next block, invert the condition so that we can
1826   // fall through to the lhs instead of the rhs block.
1827   if (CB.TrueBB == NextBlock(SwitchBB)) {
1828     std::swap(CB.TrueBB, CB.FalseBB);
1829     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
1830     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1831   }
1832 
1833   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1834                                MVT::Other, getControlRoot(), Cond,
1835                                DAG.getBasicBlock(CB.TrueBB));
1836 
1837   // Insert the false branch. Do this even if it's a fall through branch,
1838   // this makes it easier to do DAG optimizations which require inverting
1839   // the branch condition.
1840   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1841                        DAG.getBasicBlock(CB.FalseBB));
1842 
1843   DAG.setRoot(BrCond);
1844 }
1845 
1846 /// visitJumpTable - Emit JumpTable node in the current MBB
1847 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1848   // Emit the code for the jump table
1849   assert(JT.Reg != -1U && "Should lower JT Header first!");
1850   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
1851   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1852                                      JT.Reg, PTy);
1853   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1854   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1855                                     MVT::Other, Index.getValue(1),
1856                                     Table, Index);
1857   DAG.setRoot(BrJumpTable);
1858 }
1859 
1860 /// visitJumpTableHeader - This function emits necessary code to produce index
1861 /// in the JumpTable from switch case.
1862 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1863                                                JumpTableHeader &JTH,
1864                                                MachineBasicBlock *SwitchBB) {
1865   SDLoc dl = getCurSDLoc();
1866 
1867   // Subtract the lowest switch case value from the value being switched on and
1868   // conditional branch to default mbb if the result is greater than the
1869   // difference between smallest and largest cases.
1870   SDValue SwitchOp = getValue(JTH.SValue);
1871   EVT VT = SwitchOp.getValueType();
1872   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
1873                             DAG.getConstant(JTH.First, dl, VT));
1874 
1875   // The SDNode we just created, which holds the value being switched on minus
1876   // the smallest case value, needs to be copied to a virtual register so it
1877   // can be used as an index into the jump table in a subsequent basic block.
1878   // This value may be smaller or larger than the target's pointer type, and
1879   // therefore require extension or truncating.
1880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1881   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
1882 
1883   unsigned JumpTableReg =
1884       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
1885   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
1886                                     JumpTableReg, SwitchOp);
1887   JT.Reg = JumpTableReg;
1888 
1889   // Emit the range check for the jump table, and branch to the default block
1890   // for the switch statement if the value being switched on exceeds the largest
1891   // case in the switch.
1892   SDValue CMP = DAG.getSetCC(
1893       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
1894                                  Sub.getValueType()),
1895       Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
1896 
1897   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1898                                MVT::Other, CopyTo, CMP,
1899                                DAG.getBasicBlock(JT.Default));
1900 
1901   // Avoid emitting unnecessary branches to the next block.
1902   if (JT.MBB != NextBlock(SwitchBB))
1903     BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1904                          DAG.getBasicBlock(JT.MBB));
1905 
1906   DAG.setRoot(BrCond);
1907 }
1908 
1909 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1910 /// tail spliced into a stack protector check success bb.
1911 ///
1912 /// For a high level explanation of how this fits into the stack protector
1913 /// generation see the comment on the declaration of class
1914 /// StackProtectorDescriptor.
1915 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1916                                                   MachineBasicBlock *ParentBB) {
1917 
1918   // First create the loads to the guard/stack slot for the comparison.
1919   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1920   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
1921 
1922   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1923   int FI = MFI->getStackProtectorIndex();
1924 
1925   const Value *IRGuard = SPD.getGuard();
1926   SDValue GuardPtr = getValue(IRGuard);
1927   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1928 
1929   unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType());
1930 
1931   SDValue Guard;
1932   SDLoc dl = getCurSDLoc();
1933 
1934   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1935   // guard value from the virtual register holding the value. Otherwise, emit a
1936   // volatile load to retrieve the stack guard value.
1937   unsigned GuardReg = SPD.getGuardReg();
1938 
1939   if (GuardReg && TLI.useLoadStackGuardNode())
1940     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg,
1941                                PtrTy);
1942   else
1943     Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(),
1944                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1945                         true, false, false, Align);
1946 
1947   SDValue StackSlot = DAG.getLoad(
1948       PtrTy, dl, DAG.getEntryNode(), StackSlotPtr,
1949       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true,
1950       false, false, Align);
1951 
1952   // Perform the comparison via a subtract/getsetcc.
1953   EVT VT = Guard.getValueType();
1954   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot);
1955 
1956   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
1957                                                         *DAG.getContext(),
1958                                                         Sub.getValueType()),
1959                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
1960 
1961   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1962   // branch to failure MBB.
1963   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1964                                MVT::Other, StackSlot.getOperand(0),
1965                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1966   // Otherwise branch to success MBB.
1967   SDValue Br = DAG.getNode(ISD::BR, dl,
1968                            MVT::Other, BrCond,
1969                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1970 
1971   DAG.setRoot(Br);
1972 }
1973 
1974 /// Codegen the failure basic block for a stack protector check.
1975 ///
1976 /// A failure stack protector machine basic block consists simply of a call to
1977 /// __stack_chk_fail().
1978 ///
1979 /// For a high level explanation of how this fits into the stack protector
1980 /// generation see the comment on the declaration of class
1981 /// StackProtectorDescriptor.
1982 void
1983 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1984   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1985   SDValue Chain =
1986       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1987                       None, false, getCurSDLoc(), false, false).second;
1988   DAG.setRoot(Chain);
1989 }
1990 
1991 /// visitBitTestHeader - This function emits necessary code to produce value
1992 /// suitable for "bit tests"
1993 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1994                                              MachineBasicBlock *SwitchBB) {
1995   SDLoc dl = getCurSDLoc();
1996 
1997   // Subtract the minimum value
1998   SDValue SwitchOp = getValue(B.SValue);
1999   EVT VT = SwitchOp.getValueType();
2000   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2001                             DAG.getConstant(B.First, dl, VT));
2002 
2003   // Check range
2004   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2005   SDValue RangeCmp = DAG.getSetCC(
2006       dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2007                                  Sub.getValueType()),
2008       Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2009 
2010   // Determine the type of the test operands.
2011   bool UsePtrType = false;
2012   if (!TLI.isTypeLegal(VT))
2013     UsePtrType = true;
2014   else {
2015     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2016       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2017         // Switch table case range are encoded into series of masks.
2018         // Just use pointer type, it's guaranteed to fit.
2019         UsePtrType = true;
2020         break;
2021       }
2022   }
2023   if (UsePtrType) {
2024     VT = TLI.getPointerTy(DAG.getDataLayout());
2025     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2026   }
2027 
2028   B.RegVT = VT.getSimpleVT();
2029   B.Reg = FuncInfo.CreateReg(B.RegVT);
2030   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2031 
2032   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2033 
2034   addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2035   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2036   SwitchBB->normalizeSuccProbs();
2037 
2038   SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2039                                 MVT::Other, CopyTo, RangeCmp,
2040                                 DAG.getBasicBlock(B.Default));
2041 
2042   // Avoid emitting unnecessary branches to the next block.
2043   if (MBB != NextBlock(SwitchBB))
2044     BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2045                           DAG.getBasicBlock(MBB));
2046 
2047   DAG.setRoot(BrRange);
2048 }
2049 
2050 /// visitBitTestCase - this function produces one "bit test"
2051 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2052                                            MachineBasicBlock* NextMBB,
2053                                            BranchProbability BranchProbToNext,
2054                                            unsigned Reg,
2055                                            BitTestCase &B,
2056                                            MachineBasicBlock *SwitchBB) {
2057   SDLoc dl = getCurSDLoc();
2058   MVT VT = BB.RegVT;
2059   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2060   SDValue Cmp;
2061   unsigned PopCount = countPopulation(B.Mask);
2062   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2063   if (PopCount == 1) {
2064     // Testing for a single bit; just compare the shift count with what it
2065     // would need to be to shift a 1 bit in that position.
2066     Cmp = DAG.getSetCC(
2067         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2068         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2069         ISD::SETEQ);
2070   } else if (PopCount == BB.Range) {
2071     // There is only one zero bit in the range, test for it directly.
2072     Cmp = DAG.getSetCC(
2073         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2074         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2075         ISD::SETNE);
2076   } else {
2077     // Make desired shift
2078     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2079                                     DAG.getConstant(1, dl, VT), ShiftOp);
2080 
2081     // Emit bit tests and jumps
2082     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2083                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2084     Cmp = DAG.getSetCC(
2085         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2086         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2087   }
2088 
2089   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2090   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2091   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2092   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2093   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2094   // one as they are relative probabilities (and thus work more like weights),
2095   // and hence we need to normalize them to let the sum of them become one.
2096   SwitchBB->normalizeSuccProbs();
2097 
2098   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2099                               MVT::Other, getControlRoot(),
2100                               Cmp, DAG.getBasicBlock(B.TargetBB));
2101 
2102   // Avoid emitting unnecessary branches to the next block.
2103   if (NextMBB != NextBlock(SwitchBB))
2104     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2105                         DAG.getBasicBlock(NextMBB));
2106 
2107   DAG.setRoot(BrAnd);
2108 }
2109 
2110 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2111   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2112 
2113   // Retrieve successors. Look through artificial IR level blocks like
2114   // catchswitch for successors.
2115   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2116   const BasicBlock *EHPadBB = I.getSuccessor(1);
2117 
2118   const Value *Callee(I.getCalledValue());
2119   const Function *Fn = dyn_cast<Function>(Callee);
2120   if (isa<InlineAsm>(Callee))
2121     visitInlineAsm(&I);
2122   else if (Fn && Fn->isIntrinsic()) {
2123     switch (Fn->getIntrinsicID()) {
2124     default:
2125       llvm_unreachable("Cannot invoke this intrinsic");
2126     case Intrinsic::donothing:
2127       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2128       break;
2129     case Intrinsic::experimental_patchpoint_void:
2130     case Intrinsic::experimental_patchpoint_i64:
2131       visitPatchpoint(&I, EHPadBB);
2132       break;
2133     case Intrinsic::experimental_gc_statepoint:
2134       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2135       break;
2136     }
2137   } else
2138     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2139 
2140   // If the value of the invoke is used outside of its defining block, make it
2141   // available as a virtual register.
2142   // We already took care of the exported value for the statepoint instruction
2143   // during call to the LowerStatepoint.
2144   if (!isStatepoint(I)) {
2145     CopyToExportRegsIfNeeded(&I);
2146   }
2147 
2148   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2149   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2150   BranchProbability EHPadBBProb =
2151       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2152           : BranchProbability::getZero();
2153   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2154 
2155   // Update successor info.
2156   addSuccessorWithProb(InvokeMBB, Return);
2157   for (auto &UnwindDest : UnwindDests) {
2158     UnwindDest.first->setIsEHPad();
2159     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2160   }
2161   InvokeMBB->normalizeSuccProbs();
2162 
2163   // Drop into normal successor.
2164   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2165                           MVT::Other, getControlRoot(),
2166                           DAG.getBasicBlock(Return)));
2167 }
2168 
2169 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2170   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2171 }
2172 
2173 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2174   assert(FuncInfo.MBB->isEHPad() &&
2175          "Call to landingpad not in landing pad!");
2176 
2177   MachineBasicBlock *MBB = FuncInfo.MBB;
2178   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2179   AddLandingPadInfo(LP, MMI, MBB);
2180 
2181   // If there aren't registers to copy the values into (e.g., during SjLj
2182   // exceptions), then don't bother to create these DAG nodes.
2183   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2184   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2185   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2186       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2187     return;
2188 
2189   // If landingpad's return type is token type, we don't create DAG nodes
2190   // for its exception pointer and selector value. The extraction of exception
2191   // pointer or selector value from token type landingpads is not currently
2192   // supported.
2193   if (LP.getType()->isTokenTy())
2194     return;
2195 
2196   SmallVector<EVT, 2> ValueVTs;
2197   SDLoc dl = getCurSDLoc();
2198   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2199   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2200 
2201   // Get the two live-in registers as SDValues. The physregs have already been
2202   // copied into virtual registers.
2203   SDValue Ops[2];
2204   if (FuncInfo.ExceptionPointerVirtReg) {
2205     Ops[0] = DAG.getZExtOrTrunc(
2206         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2207                            FuncInfo.ExceptionPointerVirtReg,
2208                            TLI.getPointerTy(DAG.getDataLayout())),
2209         dl, ValueVTs[0]);
2210   } else {
2211     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2212   }
2213   Ops[1] = DAG.getZExtOrTrunc(
2214       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2215                          FuncInfo.ExceptionSelectorVirtReg,
2216                          TLI.getPointerTy(DAG.getDataLayout())),
2217       dl, ValueVTs[1]);
2218 
2219   // Merge into one.
2220   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2221                             DAG.getVTList(ValueVTs), Ops);
2222   setValue(&LP, Res);
2223 }
2224 
2225 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2226 #ifndef NDEBUG
2227   for (const CaseCluster &CC : Clusters)
2228     assert(CC.Low == CC.High && "Input clusters must be single-case");
2229 #endif
2230 
2231   std::sort(Clusters.begin(), Clusters.end(),
2232             [](const CaseCluster &a, const CaseCluster &b) {
2233     return a.Low->getValue().slt(b.Low->getValue());
2234   });
2235 
2236   // Merge adjacent clusters with the same destination.
2237   const unsigned N = Clusters.size();
2238   unsigned DstIndex = 0;
2239   for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2240     CaseCluster &CC = Clusters[SrcIndex];
2241     const ConstantInt *CaseVal = CC.Low;
2242     MachineBasicBlock *Succ = CC.MBB;
2243 
2244     if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2245         (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2246       // If this case has the same successor and is a neighbour, merge it into
2247       // the previous cluster.
2248       Clusters[DstIndex - 1].High = CaseVal;
2249       Clusters[DstIndex - 1].Prob += CC.Prob;
2250     } else {
2251       std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2252                    sizeof(Clusters[SrcIndex]));
2253     }
2254   }
2255   Clusters.resize(DstIndex);
2256 }
2257 
2258 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2259                                            MachineBasicBlock *Last) {
2260   // Update JTCases.
2261   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2262     if (JTCases[i].first.HeaderBB == First)
2263       JTCases[i].first.HeaderBB = Last;
2264 
2265   // Update BitTestCases.
2266   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2267     if (BitTestCases[i].Parent == First)
2268       BitTestCases[i].Parent = Last;
2269 }
2270 
2271 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2272   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2273 
2274   // Update machine-CFG edges with unique successors.
2275   SmallSet<BasicBlock*, 32> Done;
2276   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2277     BasicBlock *BB = I.getSuccessor(i);
2278     bool Inserted = Done.insert(BB).second;
2279     if (!Inserted)
2280         continue;
2281 
2282     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2283     addSuccessorWithProb(IndirectBrMBB, Succ);
2284   }
2285   IndirectBrMBB->normalizeSuccProbs();
2286 
2287   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2288                           MVT::Other, getControlRoot(),
2289                           getValue(I.getAddress())));
2290 }
2291 
2292 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2293   if (DAG.getTarget().Options.TrapUnreachable)
2294     DAG.setRoot(
2295         DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2296 }
2297 
2298 void SelectionDAGBuilder::visitFSub(const User &I) {
2299   // -0.0 - X --> fneg
2300   Type *Ty = I.getType();
2301   if (isa<Constant>(I.getOperand(0)) &&
2302       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2303     SDValue Op2 = getValue(I.getOperand(1));
2304     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2305                              Op2.getValueType(), Op2));
2306     return;
2307   }
2308 
2309   visitBinary(I, ISD::FSUB);
2310 }
2311 
2312 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2313   SDValue Op1 = getValue(I.getOperand(0));
2314   SDValue Op2 = getValue(I.getOperand(1));
2315 
2316   bool nuw = false;
2317   bool nsw = false;
2318   bool exact = false;
2319   FastMathFlags FMF;
2320 
2321   if (const OverflowingBinaryOperator *OFBinOp =
2322           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2323     nuw = OFBinOp->hasNoUnsignedWrap();
2324     nsw = OFBinOp->hasNoSignedWrap();
2325   }
2326   if (const PossiblyExactOperator *ExactOp =
2327           dyn_cast<const PossiblyExactOperator>(&I))
2328     exact = ExactOp->isExact();
2329   if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I))
2330     FMF = FPOp->getFastMathFlags();
2331 
2332   SDNodeFlags Flags;
2333   Flags.setExact(exact);
2334   Flags.setNoSignedWrap(nsw);
2335   Flags.setNoUnsignedWrap(nuw);
2336   if (EnableFMFInDAG) {
2337     Flags.setAllowReciprocal(FMF.allowReciprocal());
2338     Flags.setNoInfs(FMF.noInfs());
2339     Flags.setNoNaNs(FMF.noNaNs());
2340     Flags.setNoSignedZeros(FMF.noSignedZeros());
2341     Flags.setUnsafeAlgebra(FMF.unsafeAlgebra());
2342   }
2343   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2344                                      Op1, Op2, &Flags);
2345   setValue(&I, BinNodeValue);
2346 }
2347 
2348 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2349   SDValue Op1 = getValue(I.getOperand(0));
2350   SDValue Op2 = getValue(I.getOperand(1));
2351 
2352   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
2353       Op2.getValueType(), DAG.getDataLayout());
2354 
2355   // Coerce the shift amount to the right type if we can.
2356   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2357     unsigned ShiftSize = ShiftTy.getSizeInBits();
2358     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2359     SDLoc DL = getCurSDLoc();
2360 
2361     // If the operand is smaller than the shift count type, promote it.
2362     if (ShiftSize > Op2Size)
2363       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2364 
2365     // If the operand is larger than the shift count type but the shift
2366     // count type has enough bits to represent any shift value, truncate
2367     // it now. This is a common case and it exposes the truncate to
2368     // optimization early.
2369     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2370       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2371     // Otherwise we'll need to temporarily settle for some other convenient
2372     // type.  Type legalization will make adjustments once the shiftee is split.
2373     else
2374       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2375   }
2376 
2377   bool nuw = false;
2378   bool nsw = false;
2379   bool exact = false;
2380 
2381   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2382 
2383     if (const OverflowingBinaryOperator *OFBinOp =
2384             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2385       nuw = OFBinOp->hasNoUnsignedWrap();
2386       nsw = OFBinOp->hasNoSignedWrap();
2387     }
2388     if (const PossiblyExactOperator *ExactOp =
2389             dyn_cast<const PossiblyExactOperator>(&I))
2390       exact = ExactOp->isExact();
2391   }
2392   SDNodeFlags Flags;
2393   Flags.setExact(exact);
2394   Flags.setNoSignedWrap(nsw);
2395   Flags.setNoUnsignedWrap(nuw);
2396   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2397                             &Flags);
2398   setValue(&I, Res);
2399 }
2400 
2401 void SelectionDAGBuilder::visitSDiv(const User &I) {
2402   SDValue Op1 = getValue(I.getOperand(0));
2403   SDValue Op2 = getValue(I.getOperand(1));
2404 
2405   SDNodeFlags Flags;
2406   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
2407                  cast<PossiblyExactOperator>(&I)->isExact());
2408   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
2409                            Op2, &Flags));
2410 }
2411 
2412 void SelectionDAGBuilder::visitICmp(const User &I) {
2413   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2414   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2415     predicate = IC->getPredicate();
2416   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2417     predicate = ICmpInst::Predicate(IC->getPredicate());
2418   SDValue Op1 = getValue(I.getOperand(0));
2419   SDValue Op2 = getValue(I.getOperand(1));
2420   ISD::CondCode Opcode = getICmpCondCode(predicate);
2421 
2422   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2423                                                         I.getType());
2424   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2425 }
2426 
2427 void SelectionDAGBuilder::visitFCmp(const User &I) {
2428   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2429   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2430     predicate = FC->getPredicate();
2431   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2432     predicate = FCmpInst::Predicate(FC->getPredicate());
2433   SDValue Op1 = getValue(I.getOperand(0));
2434   SDValue Op2 = getValue(I.getOperand(1));
2435   ISD::CondCode Condition = getFCmpCondCode(predicate);
2436 
2437   // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them.
2438   // FIXME: We should propagate the fast-math-flags to the DAG node itself for
2439   // further optimization, but currently FMF is only applicable to binary nodes.
2440   if (TM.Options.NoNaNsFPMath)
2441     Condition = getFCmpCodeWithoutNaN(Condition);
2442   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2443                                                         I.getType());
2444   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2445 }
2446 
2447 void SelectionDAGBuilder::visitSelect(const User &I) {
2448   SmallVector<EVT, 4> ValueVTs;
2449   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
2450                   ValueVTs);
2451   unsigned NumValues = ValueVTs.size();
2452   if (NumValues == 0) return;
2453 
2454   SmallVector<SDValue, 4> Values(NumValues);
2455   SDValue Cond     = getValue(I.getOperand(0));
2456   SDValue LHSVal   = getValue(I.getOperand(1));
2457   SDValue RHSVal   = getValue(I.getOperand(2));
2458   auto BaseOps = {Cond};
2459   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2460     ISD::VSELECT : ISD::SELECT;
2461 
2462   // Min/max matching is only viable if all output VTs are the same.
2463   if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) {
2464     EVT VT = ValueVTs[0];
2465     LLVMContext &Ctx = *DAG.getContext();
2466     auto &TLI = DAG.getTargetLoweringInfo();
2467 
2468     // We care about the legality of the operation after it has been type
2469     // legalized.
2470     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
2471            VT != TLI.getTypeToTransformTo(Ctx, VT))
2472       VT = TLI.getTypeToTransformTo(Ctx, VT);
2473 
2474     // If the vselect is legal, assume we want to leave this as a vector setcc +
2475     // vselect. Otherwise, if this is going to be scalarized, we want to see if
2476     // min/max is legal on the scalar type.
2477     bool UseScalarMinMax = VT.isVector() &&
2478       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
2479 
2480     Value *LHS, *RHS;
2481     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
2482     ISD::NodeType Opc = ISD::DELETED_NODE;
2483     switch (SPR.Flavor) {
2484     case SPF_UMAX:    Opc = ISD::UMAX; break;
2485     case SPF_UMIN:    Opc = ISD::UMIN; break;
2486     case SPF_SMAX:    Opc = ISD::SMAX; break;
2487     case SPF_SMIN:    Opc = ISD::SMIN; break;
2488     case SPF_FMINNUM:
2489       switch (SPR.NaNBehavior) {
2490       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2491       case SPNB_RETURNS_NAN:   Opc = ISD::FMINNAN; break;
2492       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
2493       case SPNB_RETURNS_ANY: {
2494         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
2495           Opc = ISD::FMINNUM;
2496         else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT))
2497           Opc = ISD::FMINNAN;
2498         else if (UseScalarMinMax)
2499           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
2500             ISD::FMINNUM : ISD::FMINNAN;
2501         break;
2502       }
2503       }
2504       break;
2505     case SPF_FMAXNUM:
2506       switch (SPR.NaNBehavior) {
2507       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
2508       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXNAN; break;
2509       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
2510       case SPNB_RETURNS_ANY:
2511 
2512         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
2513           Opc = ISD::FMAXNUM;
2514         else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT))
2515           Opc = ISD::FMAXNAN;
2516         else if (UseScalarMinMax)
2517           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
2518             ISD::FMAXNUM : ISD::FMAXNAN;
2519         break;
2520       }
2521       break;
2522     default: break;
2523     }
2524 
2525     if (Opc != ISD::DELETED_NODE &&
2526         (TLI.isOperationLegalOrCustom(Opc, VT) ||
2527          (UseScalarMinMax &&
2528           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
2529         // If the underlying comparison instruction is used by any other
2530         // instruction, the consumed instructions won't be destroyed, so it is
2531         // not profitable to convert to a min/max.
2532         cast<SelectInst>(&I)->getCondition()->hasOneUse()) {
2533       OpCode = Opc;
2534       LHSVal = getValue(LHS);
2535       RHSVal = getValue(RHS);
2536       BaseOps = {};
2537     }
2538   }
2539 
2540   for (unsigned i = 0; i != NumValues; ++i) {
2541     SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
2542     Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
2543     Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
2544     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2545                             LHSVal.getNode()->getValueType(LHSVal.getResNo()+i),
2546                             Ops);
2547   }
2548 
2549   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2550                            DAG.getVTList(ValueVTs), Values));
2551 }
2552 
2553 void SelectionDAGBuilder::visitTrunc(const User &I) {
2554   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2555   SDValue N = getValue(I.getOperand(0));
2556   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2557                                                         I.getType());
2558   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2559 }
2560 
2561 void SelectionDAGBuilder::visitZExt(const User &I) {
2562   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2563   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2564   SDValue N = getValue(I.getOperand(0));
2565   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2566                                                         I.getType());
2567   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2568 }
2569 
2570 void SelectionDAGBuilder::visitSExt(const User &I) {
2571   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2572   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2573   SDValue N = getValue(I.getOperand(0));
2574   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2575                                                         I.getType());
2576   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2577 }
2578 
2579 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2580   // FPTrunc is never a no-op cast, no need to check
2581   SDValue N = getValue(I.getOperand(0));
2582   SDLoc dl = getCurSDLoc();
2583   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2584   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2585   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
2586                            DAG.getTargetConstant(
2587                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
2588 }
2589 
2590 void SelectionDAGBuilder::visitFPExt(const User &I) {
2591   // FPExt is never a no-op cast, no need to check
2592   SDValue N = getValue(I.getOperand(0));
2593   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2594                                                         I.getType());
2595   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2596 }
2597 
2598 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2599   // FPToUI is never a no-op cast, no need to check
2600   SDValue N = getValue(I.getOperand(0));
2601   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2602                                                         I.getType());
2603   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2604 }
2605 
2606 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2607   // FPToSI is never a no-op cast, no need to check
2608   SDValue N = getValue(I.getOperand(0));
2609   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2610                                                         I.getType());
2611   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2612 }
2613 
2614 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2615   // UIToFP is never a no-op cast, no need to check
2616   SDValue N = getValue(I.getOperand(0));
2617   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2618                                                         I.getType());
2619   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2620 }
2621 
2622 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2623   // SIToFP is never a no-op cast, no need to check
2624   SDValue N = getValue(I.getOperand(0));
2625   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2626                                                         I.getType());
2627   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2628 }
2629 
2630 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2631   // What to do depends on the size of the integer and the size of the pointer.
2632   // We can either truncate, zero extend, or no-op, accordingly.
2633   SDValue N = getValue(I.getOperand(0));
2634   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2635                                                         I.getType());
2636   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2637 }
2638 
2639 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2640   // What to do depends on the size of the integer and the size of the pointer.
2641   // We can either truncate, zero extend, or no-op, accordingly.
2642   SDValue N = getValue(I.getOperand(0));
2643   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2644                                                         I.getType());
2645   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2646 }
2647 
2648 void SelectionDAGBuilder::visitBitCast(const User &I) {
2649   SDValue N = getValue(I.getOperand(0));
2650   SDLoc dl = getCurSDLoc();
2651   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
2652                                                         I.getType());
2653 
2654   // BitCast assures us that source and destination are the same size so this is
2655   // either a BITCAST or a no-op.
2656   if (DestVT != N.getValueType())
2657     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
2658                              DestVT, N)); // convert types.
2659   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
2660   // might fold any kind of constant expression to an integer constant and that
2661   // is not what we are looking for. Only regcognize a bitcast of a genuine
2662   // constant integer as an opaque constant.
2663   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
2664     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
2665                                  /*isOpaque*/true));
2666   else
2667     setValue(&I, N);            // noop cast.
2668 }
2669 
2670 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
2671   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2672   const Value *SV = I.getOperand(0);
2673   SDValue N = getValue(SV);
2674   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2675 
2676   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
2677   unsigned DestAS = I.getType()->getPointerAddressSpace();
2678 
2679   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
2680     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
2681 
2682   setValue(&I, N);
2683 }
2684 
2685 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2686   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2687   SDValue InVec = getValue(I.getOperand(0));
2688   SDValue InVal = getValue(I.getOperand(1));
2689   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
2690                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2691   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2692                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2693                            InVec, InVal, InIdx));
2694 }
2695 
2696 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2697   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2698   SDValue InVec = getValue(I.getOperand(0));
2699   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
2700                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
2701   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2702                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
2703                            InVec, InIdx));
2704 }
2705 
2706 // Utility for visitShuffleVector - Return true if every element in Mask,
2707 // beginning from position Pos and ending in Pos+Size, falls within the
2708 // specified sequential range [L, L+Pos). or is undef.
2709 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2710                                 unsigned Pos, unsigned Size, int Low) {
2711   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2712     if (Mask[i] >= 0 && Mask[i] != Low)
2713       return false;
2714   return true;
2715 }
2716 
2717 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2718   SDValue Src1 = getValue(I.getOperand(0));
2719   SDValue Src2 = getValue(I.getOperand(1));
2720 
2721   SmallVector<int, 8> Mask;
2722   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2723   unsigned MaskNumElts = Mask.size();
2724 
2725   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2726   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
2727   EVT SrcVT = Src1.getValueType();
2728   unsigned SrcNumElts = SrcVT.getVectorNumElements();
2729 
2730   if (SrcNumElts == MaskNumElts) {
2731     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2732                                       &Mask[0]));
2733     return;
2734   }
2735 
2736   // Normalize the shuffle vector since mask and vector length don't match.
2737   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2738     // Mask is longer than the source vectors and is a multiple of the source
2739     // vectors.  We can use concatenate vector to make the mask and vectors
2740     // lengths match.
2741     if (SrcNumElts*2 == MaskNumElts) {
2742       // First check for Src1 in low and Src2 in high
2743       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2744           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
2745         // The shuffle is concatenating two vectors together.
2746         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2747                                  VT, Src1, Src2));
2748         return;
2749       }
2750       // Then check for Src2 in low and Src1 in high
2751       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
2752           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
2753         // The shuffle is concatenating two vectors together.
2754         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
2755                                  VT, Src2, Src1));
2756         return;
2757       }
2758     }
2759 
2760     // Pad both vectors with undefs to make them the same length as the mask.
2761     unsigned NumConcat = MaskNumElts / SrcNumElts;
2762     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
2763     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
2764     SDValue UndefVal = DAG.getUNDEF(SrcVT);
2765 
2766     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
2767     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
2768     MOps1[0] = Src1;
2769     MOps2[0] = Src2;
2770 
2771     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2772                                                   getCurSDLoc(), VT, MOps1);
2773     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
2774                                                   getCurSDLoc(), VT, MOps2);
2775 
2776     // Readjust mask for new input vector length.
2777     SmallVector<int, 8> MappedOps;
2778     for (unsigned i = 0; i != MaskNumElts; ++i) {
2779       int Idx = Mask[i];
2780       if (Idx >= (int)SrcNumElts)
2781         Idx -= SrcNumElts - MaskNumElts;
2782       MappedOps.push_back(Idx);
2783     }
2784 
2785     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2786                                       &MappedOps[0]));
2787     return;
2788   }
2789 
2790   if (SrcNumElts > MaskNumElts) {
2791     // Analyze the access pattern of the vector to see if we can extract
2792     // two subvectors and do the shuffle. The analysis is done by calculating
2793     // the range of elements the mask access on both vectors.
2794     int MinRange[2] = { static_cast<int>(SrcNumElts),
2795                         static_cast<int>(SrcNumElts)};
2796     int MaxRange[2] = {-1, -1};
2797 
2798     for (unsigned i = 0; i != MaskNumElts; ++i) {
2799       int Idx = Mask[i];
2800       unsigned Input = 0;
2801       if (Idx < 0)
2802         continue;
2803 
2804       if (Idx >= (int)SrcNumElts) {
2805         Input = 1;
2806         Idx -= SrcNumElts;
2807       }
2808       if (Idx > MaxRange[Input])
2809         MaxRange[Input] = Idx;
2810       if (Idx < MinRange[Input])
2811         MinRange[Input] = Idx;
2812     }
2813 
2814     // Check if the access is smaller than the vector size and can we find
2815     // a reasonable extract index.
2816     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
2817                                    // Extract.
2818     int StartIdx[2];  // StartIdx to extract from
2819     for (unsigned Input = 0; Input < 2; ++Input) {
2820       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
2821         RangeUse[Input] = 0; // Unused
2822         StartIdx[Input] = 0;
2823         continue;
2824       }
2825 
2826       // Find a good start index that is a multiple of the mask length. Then
2827       // see if the rest of the elements are in range.
2828       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
2829       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
2830           StartIdx[Input] + MaskNumElts <= SrcNumElts)
2831         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
2832     }
2833 
2834     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
2835       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
2836       return;
2837     }
2838     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
2839       // Extract appropriate subvector and generate a vector shuffle
2840       for (unsigned Input = 0; Input < 2; ++Input) {
2841         SDValue &Src = Input == 0 ? Src1 : Src2;
2842         if (RangeUse[Input] == 0)
2843           Src = DAG.getUNDEF(VT);
2844         else {
2845           SDLoc dl = getCurSDLoc();
2846           Src = DAG.getNode(
2847               ISD::EXTRACT_SUBVECTOR, dl, VT, Src,
2848               DAG.getConstant(StartIdx[Input], dl,
2849                               TLI.getVectorIdxTy(DAG.getDataLayout())));
2850         }
2851       }
2852 
2853       // Calculate new mask.
2854       SmallVector<int, 8> MappedOps;
2855       for (unsigned i = 0; i != MaskNumElts; ++i) {
2856         int Idx = Mask[i];
2857         if (Idx >= 0) {
2858           if (Idx < (int)SrcNumElts)
2859             Idx -= StartIdx[0];
2860           else
2861             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
2862         }
2863         MappedOps.push_back(Idx);
2864       }
2865 
2866       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2867                                         &MappedOps[0]));
2868       return;
2869     }
2870   }
2871 
2872   // We can't use either concat vectors or extract subvectors so fall back to
2873   // replacing the shuffle with extract and build vector.
2874   // to insert and build vector.
2875   EVT EltVT = VT.getVectorElementType();
2876   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
2877   SDLoc dl = getCurSDLoc();
2878   SmallVector<SDValue,8> Ops;
2879   for (unsigned i = 0; i != MaskNumElts; ++i) {
2880     int Idx = Mask[i];
2881     SDValue Res;
2882 
2883     if (Idx < 0) {
2884       Res = DAG.getUNDEF(EltVT);
2885     } else {
2886       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
2887       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
2888 
2889       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
2890                         EltVT, Src, DAG.getConstant(Idx, dl, IdxVT));
2891     }
2892 
2893     Ops.push_back(Res);
2894   }
2895 
2896   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops));
2897 }
2898 
2899 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
2900   const Value *Op0 = I.getOperand(0);
2901   const Value *Op1 = I.getOperand(1);
2902   Type *AggTy = I.getType();
2903   Type *ValTy = Op1->getType();
2904   bool IntoUndef = isa<UndefValue>(Op0);
2905   bool FromUndef = isa<UndefValue>(Op1);
2906 
2907   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2908 
2909   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2910   SmallVector<EVT, 4> AggValueVTs;
2911   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
2912   SmallVector<EVT, 4> ValValueVTs;
2913   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2914 
2915   unsigned NumAggValues = AggValueVTs.size();
2916   unsigned NumValValues = ValValueVTs.size();
2917   SmallVector<SDValue, 4> Values(NumAggValues);
2918 
2919   // Ignore an insertvalue that produces an empty object
2920   if (!NumAggValues) {
2921     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2922     return;
2923   }
2924 
2925   SDValue Agg = getValue(Op0);
2926   unsigned i = 0;
2927   // Copy the beginning value(s) from the original aggregate.
2928   for (; i != LinearIndex; ++i)
2929     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2930                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2931   // Copy values from the inserted value(s).
2932   if (NumValValues) {
2933     SDValue Val = getValue(Op1);
2934     for (; i != LinearIndex + NumValValues; ++i)
2935       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2936                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2937   }
2938   // Copy remaining value(s) from the original aggregate.
2939   for (; i != NumAggValues; ++i)
2940     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
2941                 SDValue(Agg.getNode(), Agg.getResNo() + i);
2942 
2943   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2944                            DAG.getVTList(AggValueVTs), Values));
2945 }
2946 
2947 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
2948   const Value *Op0 = I.getOperand(0);
2949   Type *AggTy = Op0->getType();
2950   Type *ValTy = I.getType();
2951   bool OutOfUndef = isa<UndefValue>(Op0);
2952 
2953   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
2954 
2955   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2956   SmallVector<EVT, 4> ValValueVTs;
2957   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
2958 
2959   unsigned NumValValues = ValValueVTs.size();
2960 
2961   // Ignore a extractvalue that produces an empty object
2962   if (!NumValValues) {
2963     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
2964     return;
2965   }
2966 
2967   SmallVector<SDValue, 4> Values(NumValValues);
2968 
2969   SDValue Agg = getValue(Op0);
2970   // Copy out the selected value(s).
2971   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2972     Values[i - LinearIndex] =
2973       OutOfUndef ?
2974         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2975         SDValue(Agg.getNode(), Agg.getResNo() + i);
2976 
2977   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2978                            DAG.getVTList(ValValueVTs), Values));
2979 }
2980 
2981 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
2982   Value *Op0 = I.getOperand(0);
2983   // Note that the pointer operand may be a vector of pointers. Take the scalar
2984   // element which holds a pointer.
2985   Type *Ty = Op0->getType()->getScalarType();
2986   unsigned AS = Ty->getPointerAddressSpace();
2987   SDValue N = getValue(Op0);
2988   SDLoc dl = getCurSDLoc();
2989 
2990   // Normalize Vector GEP - all scalar operands should be converted to the
2991   // splat vector.
2992   unsigned VectorWidth = I.getType()->isVectorTy() ?
2993     cast<VectorType>(I.getType())->getVectorNumElements() : 0;
2994 
2995   if (VectorWidth && !N.getValueType().isVector()) {
2996     MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth);
2997     SmallVector<SDValue, 16> Ops(VectorWidth, N);
2998     N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
2999   }
3000   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3001        OI != E; ++OI) {
3002     const Value *Idx = *OI;
3003     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3004       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3005       if (Field) {
3006         // N = N + Offset
3007         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3008 
3009         // In an inbouds GEP with an offset that is nonnegative even when
3010         // interpreted as signed, assume there is no unsigned overflow.
3011         SDNodeFlags Flags;
3012         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3013           Flags.setNoUnsignedWrap(true);
3014 
3015         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3016                         DAG.getConstant(Offset, dl, N.getValueType()), &Flags);
3017       }
3018 
3019       Ty = StTy->getElementType(Field);
3020     } else {
3021       Ty = cast<SequentialType>(Ty)->getElementType();
3022       MVT PtrTy =
3023           DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS);
3024       unsigned PtrSize = PtrTy.getSizeInBits();
3025       APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty));
3026 
3027       // If this is a scalar constant or a splat vector of constants,
3028       // handle it quickly.
3029       const auto *CI = dyn_cast<ConstantInt>(Idx);
3030       if (!CI && isa<ConstantDataVector>(Idx) &&
3031           cast<ConstantDataVector>(Idx)->getSplatValue())
3032         CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3033 
3034       if (CI) {
3035         if (CI->isZero())
3036           continue;
3037         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize);
3038         SDValue OffsVal = VectorWidth ?
3039           DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) :
3040           DAG.getConstant(Offs, dl, PtrTy);
3041 
3042         // In an inbouds GEP with an offset that is nonnegative even when
3043         // interpreted as signed, assume there is no unsigned overflow.
3044         SDNodeFlags Flags;
3045         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3046           Flags.setNoUnsignedWrap(true);
3047 
3048         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags);
3049         continue;
3050       }
3051 
3052       // N = N + Idx * ElementSize;
3053       SDValue IdxN = getValue(Idx);
3054 
3055       if (!IdxN.getValueType().isVector() && VectorWidth) {
3056         MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth);
3057         SmallVector<SDValue, 16> Ops(VectorWidth, IdxN);
3058         IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
3059       }
3060       // If the index is smaller or larger than intptr_t, truncate or extend
3061       // it.
3062       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3063 
3064       // If this is a multiply by a power of two, turn it into a shl
3065       // immediately.  This is a very common case.
3066       if (ElementSize != 1) {
3067         if (ElementSize.isPowerOf2()) {
3068           unsigned Amt = ElementSize.logBase2();
3069           IdxN = DAG.getNode(ISD::SHL, dl,
3070                              N.getValueType(), IdxN,
3071                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3072         } else {
3073           SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType());
3074           IdxN = DAG.getNode(ISD::MUL, dl,
3075                              N.getValueType(), IdxN, Scale);
3076         }
3077       }
3078 
3079       N = DAG.getNode(ISD::ADD, dl,
3080                       N.getValueType(), N, IdxN);
3081     }
3082   }
3083 
3084   setValue(&I, N);
3085 }
3086 
3087 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3088   // If this is a fixed sized alloca in the entry block of the function,
3089   // allocate it statically on the stack.
3090   if (FuncInfo.StaticAllocaMap.count(&I))
3091     return;   // getValue will auto-populate this.
3092 
3093   SDLoc dl = getCurSDLoc();
3094   Type *Ty = I.getAllocatedType();
3095   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3096   auto &DL = DAG.getDataLayout();
3097   uint64_t TySize = DL.getTypeAllocSize(Ty);
3098   unsigned Align =
3099       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3100 
3101   SDValue AllocSize = getValue(I.getArraySize());
3102 
3103   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout());
3104   if (AllocSize.getValueType() != IntPtr)
3105     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3106 
3107   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3108                           AllocSize,
3109                           DAG.getConstant(TySize, dl, IntPtr));
3110 
3111   // Handle alignment.  If the requested alignment is less than or equal to
3112   // the stack alignment, ignore it.  If the size is greater than or equal to
3113   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3114   unsigned StackAlign =
3115       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3116   if (Align <= StackAlign)
3117     Align = 0;
3118 
3119   // Round the size of the allocation up to the stack alignment size
3120   // by add SA-1 to the size. This doesn't overflow because we're computing
3121   // an address inside an alloca.
3122   SDNodeFlags Flags;
3123   Flags.setNoUnsignedWrap(true);
3124   AllocSize = DAG.getNode(ISD::ADD, dl,
3125                           AllocSize.getValueType(), AllocSize,
3126                           DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags);
3127 
3128   // Mask out the low bits for alignment purposes.
3129   AllocSize = DAG.getNode(ISD::AND, dl,
3130                           AllocSize.getValueType(), AllocSize,
3131                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1),
3132                                                 dl));
3133 
3134   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) };
3135   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3136   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3137   setValue(&I, DSA);
3138   DAG.setRoot(DSA.getValue(1));
3139 
3140   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3141 }
3142 
3143 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3144   if (I.isAtomic())
3145     return visitAtomicLoad(I);
3146 
3147   const Value *SV = I.getOperand(0);
3148   SDValue Ptr = getValue(SV);
3149 
3150   Type *Ty = I.getType();
3151 
3152   bool isVolatile = I.isVolatile();
3153   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3154 
3155   // The IR notion of invariant_load only guarantees that all *non-faulting*
3156   // invariant loads result in the same value.  The MI notion of invariant load
3157   // guarantees that the load can be legally moved to any location within its
3158   // containing function.  The MI notion of invariant_load is stronger than the
3159   // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load
3160   // with a guarantee that the location being loaded from is dereferenceable
3161   // throughout the function's lifetime.
3162 
3163   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr &&
3164                      isDereferenceablePointer(SV, DAG.getDataLayout());
3165   unsigned Alignment = I.getAlignment();
3166 
3167   AAMDNodes AAInfo;
3168   I.getAAMetadata(AAInfo);
3169   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3170 
3171   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3172   SmallVector<EVT, 4> ValueVTs;
3173   SmallVector<uint64_t, 4> Offsets;
3174   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets);
3175   unsigned NumValues = ValueVTs.size();
3176   if (NumValues == 0)
3177     return;
3178 
3179   SDValue Root;
3180   bool ConstantMemory = false;
3181   if (isVolatile || NumValues > MaxParallelChains)
3182     // Serialize volatile loads with other side effects.
3183     Root = getRoot();
3184   else if (AA->pointsToConstantMemory(MemoryLocation(
3185                SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) {
3186     // Do not serialize (non-volatile) loads of constant memory with anything.
3187     Root = DAG.getEntryNode();
3188     ConstantMemory = true;
3189   } else {
3190     // Do not serialize non-volatile loads against each other.
3191     Root = DAG.getRoot();
3192   }
3193 
3194   SDLoc dl = getCurSDLoc();
3195 
3196   if (isVolatile)
3197     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
3198 
3199   // An aggregate load cannot wrap around the address space, so offsets to its
3200   // parts don't wrap either.
3201   SDNodeFlags Flags;
3202   Flags.setNoUnsignedWrap(true);
3203 
3204   SmallVector<SDValue, 4> Values(NumValues);
3205   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3206   EVT PtrVT = Ptr.getValueType();
3207   unsigned ChainI = 0;
3208   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3209     // Serializing loads here may result in excessive register pressure, and
3210     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3211     // could recover a bit by hoisting nodes upward in the chain by recognizing
3212     // they are side-effect free or do not alias. The optimizer should really
3213     // avoid this case by converting large object/array copies to llvm.memcpy
3214     // (MaxParallelChains should always remain as failsafe).
3215     if (ChainI == MaxParallelChains) {
3216       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3217       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3218                                   makeArrayRef(Chains.data(), ChainI));
3219       Root = Chain;
3220       ChainI = 0;
3221     }
3222     SDValue A = DAG.getNode(ISD::ADD, dl,
3223                             PtrVT, Ptr,
3224                             DAG.getConstant(Offsets[i], dl, PtrVT),
3225                             &Flags);
3226     SDValue L = DAG.getLoad(ValueVTs[i], dl, Root,
3227                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3228                             isNonTemporal, isInvariant, Alignment, AAInfo,
3229                             Ranges);
3230 
3231     Values[i] = L;
3232     Chains[ChainI] = L.getValue(1);
3233   }
3234 
3235   if (!ConstantMemory) {
3236     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3237                                 makeArrayRef(Chains.data(), ChainI));
3238     if (isVolatile)
3239       DAG.setRoot(Chain);
3240     else
3241       PendingLoads.push_back(Chain);
3242   }
3243 
3244   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
3245                            DAG.getVTList(ValueVTs), Values));
3246 }
3247 
3248 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3249   if (I.isAtomic())
3250     return visitAtomicStore(I);
3251 
3252   const Value *SrcV = I.getOperand(0);
3253   const Value *PtrV = I.getOperand(1);
3254 
3255   SmallVector<EVT, 4> ValueVTs;
3256   SmallVector<uint64_t, 4> Offsets;
3257   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
3258                   SrcV->getType(), ValueVTs, &Offsets);
3259   unsigned NumValues = ValueVTs.size();
3260   if (NumValues == 0)
3261     return;
3262 
3263   // Get the lowered operands. Note that we do this after
3264   // checking if NumResults is zero, because with zero results
3265   // the operands won't have values in the map.
3266   SDValue Src = getValue(SrcV);
3267   SDValue Ptr = getValue(PtrV);
3268 
3269   SDValue Root = getRoot();
3270   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
3271   EVT PtrVT = Ptr.getValueType();
3272   bool isVolatile = I.isVolatile();
3273   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3274   unsigned Alignment = I.getAlignment();
3275   SDLoc dl = getCurSDLoc();
3276 
3277   AAMDNodes AAInfo;
3278   I.getAAMetadata(AAInfo);
3279 
3280   // An aggregate load cannot wrap around the address space, so offsets to its
3281   // parts don't wrap either.
3282   SDNodeFlags Flags;
3283   Flags.setNoUnsignedWrap(true);
3284 
3285   unsigned ChainI = 0;
3286   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3287     // See visitLoad comments.
3288     if (ChainI == MaxParallelChains) {
3289       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3290                                   makeArrayRef(Chains.data(), ChainI));
3291       Root = Chain;
3292       ChainI = 0;
3293     }
3294     SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
3295                               DAG.getConstant(Offsets[i], dl, PtrVT), &Flags);
3296     SDValue St = DAG.getStore(Root, dl,
3297                               SDValue(Src.getNode(), Src.getResNo() + i),
3298                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3299                               isVolatile, isNonTemporal, Alignment, AAInfo);
3300     Chains[ChainI] = St;
3301   }
3302 
3303   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3304                                   makeArrayRef(Chains.data(), ChainI));
3305   DAG.setRoot(StoreNode);
3306 }
3307 
3308 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3309   SDLoc sdl = getCurSDLoc();
3310 
3311   // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
3312   Value  *PtrOperand = I.getArgOperand(1);
3313   SDValue Ptr = getValue(PtrOperand);
3314   SDValue Src0 = getValue(I.getArgOperand(0));
3315   SDValue Mask = getValue(I.getArgOperand(3));
3316   EVT VT = Src0.getValueType();
3317   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3318   if (!Alignment)
3319     Alignment = DAG.getEVTAlignment(VT);
3320 
3321   AAMDNodes AAInfo;
3322   I.getAAMetadata(AAInfo);
3323 
3324   MachineMemOperand *MMO =
3325     DAG.getMachineFunction().
3326     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3327                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3328                           Alignment, AAInfo);
3329   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
3330                                          MMO, false);
3331   DAG.setRoot(StoreNode);
3332   setValue(&I, StoreNode);
3333 }
3334 
3335 // Get a uniform base for the Gather/Scatter intrinsic.
3336 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
3337 // We try to represent it as a base pointer + vector of indices.
3338 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
3339 // The first operand of the GEP may be a single pointer or a vector of pointers
3340 // Example:
3341 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
3342 //  or
3343 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
3344 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
3345 //
3346 // When the first GEP operand is a single pointer - it is the uniform base we
3347 // are looking for. If first operand of the GEP is a splat vector - we
3348 // extract the spalt value and use it as a uniform base.
3349 // In all other cases the function returns 'false'.
3350 //
3351 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index,
3352                            SelectionDAGBuilder* SDB) {
3353 
3354   SelectionDAG& DAG = SDB->DAG;
3355   LLVMContext &Context = *DAG.getContext();
3356 
3357   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
3358   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
3359   if (!GEP || GEP->getNumOperands() > 2)
3360     return false;
3361 
3362   const Value *GEPPtr = GEP->getPointerOperand();
3363   if (!GEPPtr->getType()->isVectorTy())
3364     Ptr = GEPPtr;
3365   else if (!(Ptr = getSplatValue(GEPPtr)))
3366     return false;
3367 
3368   Value *IndexVal = GEP->getOperand(1);
3369 
3370   // The operands of the GEP may be defined in another basic block.
3371   // In this case we'll not find nodes for the operands.
3372   if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
3373     return false;
3374 
3375   Base = SDB->getValue(Ptr);
3376   Index = SDB->getValue(IndexVal);
3377 
3378   // Suppress sign extension.
3379   if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) {
3380     if (SDB->findValue(Sext->getOperand(0))) {
3381       IndexVal = Sext->getOperand(0);
3382       Index = SDB->getValue(IndexVal);
3383     }
3384   }
3385   if (!Index.getValueType().isVector()) {
3386     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
3387     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
3388     SmallVector<SDValue, 16> Ops(GEPWidth, Index);
3389     Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops);
3390   }
3391   return true;
3392 }
3393 
3394 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
3395   SDLoc sdl = getCurSDLoc();
3396 
3397   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
3398   const Value *Ptr = I.getArgOperand(1);
3399   SDValue Src0 = getValue(I.getArgOperand(0));
3400   SDValue Mask = getValue(I.getArgOperand(3));
3401   EVT VT = Src0.getValueType();
3402   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3403   if (!Alignment)
3404     Alignment = DAG.getEVTAlignment(VT);
3405   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3406 
3407   AAMDNodes AAInfo;
3408   I.getAAMetadata(AAInfo);
3409 
3410   SDValue Base;
3411   SDValue Index;
3412   const Value *BasePtr = Ptr;
3413   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3414 
3415   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
3416   MachineMemOperand *MMO = DAG.getMachineFunction().
3417     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
3418                          MachineMemOperand::MOStore,  VT.getStoreSize(),
3419                          Alignment, AAInfo);
3420   if (!UniformBase) {
3421     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3422     Index = getValue(Ptr);
3423   }
3424   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index };
3425   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
3426                                          Ops, MMO);
3427   DAG.setRoot(Scatter);
3428   setValue(&I, Scatter);
3429 }
3430 
3431 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3432   SDLoc sdl = getCurSDLoc();
3433 
3434   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3435   Value  *PtrOperand = I.getArgOperand(0);
3436   SDValue Ptr = getValue(PtrOperand);
3437   SDValue Src0 = getValue(I.getArgOperand(3));
3438   SDValue Mask = getValue(I.getArgOperand(2));
3439 
3440   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3441   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3442   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3443   if (!Alignment)
3444     Alignment = DAG.getEVTAlignment(VT);
3445 
3446   AAMDNodes AAInfo;
3447   I.getAAMetadata(AAInfo);
3448   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3449 
3450   SDValue InChain = DAG.getRoot();
3451   if (AA->pointsToConstantMemory(MemoryLocation(
3452           PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3453           AAInfo))) {
3454     // Do not serialize (non-volatile) loads of constant memory with anything.
3455     InChain = DAG.getEntryNode();
3456   }
3457 
3458   MachineMemOperand *MMO =
3459     DAG.getMachineFunction().
3460     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3461                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3462                           Alignment, AAInfo, Ranges);
3463 
3464   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
3465                                    ISD::NON_EXTLOAD);
3466   SDValue OutChain = Load.getValue(1);
3467   DAG.setRoot(OutChain);
3468   setValue(&I, Load);
3469 }
3470 
3471 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
3472   SDLoc sdl = getCurSDLoc();
3473 
3474   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
3475   const Value *Ptr = I.getArgOperand(0);
3476   SDValue Src0 = getValue(I.getArgOperand(3));
3477   SDValue Mask = getValue(I.getArgOperand(2));
3478 
3479   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3480   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3481   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3482   if (!Alignment)
3483     Alignment = DAG.getEVTAlignment(VT);
3484 
3485   AAMDNodes AAInfo;
3486   I.getAAMetadata(AAInfo);
3487   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3488 
3489   SDValue Root = DAG.getRoot();
3490   SDValue Base;
3491   SDValue Index;
3492   const Value *BasePtr = Ptr;
3493   bool UniformBase = getUniformBase(BasePtr, Base, Index, this);
3494   bool ConstantMemory = false;
3495   if (UniformBase &&
3496       AA->pointsToConstantMemory(MemoryLocation(
3497           BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()),
3498           AAInfo))) {
3499     // Do not serialize (non-volatile) loads of constant memory with anything.
3500     Root = DAG.getEntryNode();
3501     ConstantMemory = true;
3502   }
3503 
3504   MachineMemOperand *MMO =
3505     DAG.getMachineFunction().
3506     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
3507                          MachineMemOperand::MOLoad,  VT.getStoreSize(),
3508                          Alignment, AAInfo, Ranges);
3509 
3510   if (!UniformBase) {
3511     Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
3512     Index = getValue(Ptr);
3513   }
3514   SDValue Ops[] = { Root, Src0, Mask, Base, Index };
3515   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
3516                                        Ops, MMO);
3517 
3518   SDValue OutChain = Gather.getValue(1);
3519   if (!ConstantMemory)
3520     PendingLoads.push_back(OutChain);
3521   setValue(&I, Gather);
3522 }
3523 
3524 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3525   SDLoc dl = getCurSDLoc();
3526   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3527   AtomicOrdering FailureOrder = I.getFailureOrdering();
3528   SynchronizationScope Scope = I.getSynchScope();
3529 
3530   SDValue InChain = getRoot();
3531 
3532   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3533   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3534   SDValue L = DAG.getAtomicCmpSwap(
3535       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3536       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3537       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3538       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3539 
3540   SDValue OutChain = L.getValue(2);
3541 
3542   setValue(&I, L);
3543   DAG.setRoot(OutChain);
3544 }
3545 
3546 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3547   SDLoc dl = getCurSDLoc();
3548   ISD::NodeType NT;
3549   switch (I.getOperation()) {
3550   default: llvm_unreachable("Unknown atomicrmw operation");
3551   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3552   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3553   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3554   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3555   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3556   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3557   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3558   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3559   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3560   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3561   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3562   }
3563   AtomicOrdering Order = I.getOrdering();
3564   SynchronizationScope Scope = I.getSynchScope();
3565 
3566   SDValue InChain = getRoot();
3567 
3568   SDValue L =
3569     DAG.getAtomic(NT, dl,
3570                   getValue(I.getValOperand()).getSimpleValueType(),
3571                   InChain,
3572                   getValue(I.getPointerOperand()),
3573                   getValue(I.getValOperand()),
3574                   I.getPointerOperand(),
3575                   /* Alignment=*/ 0, Order, Scope);
3576 
3577   SDValue OutChain = L.getValue(1);
3578 
3579   setValue(&I, L);
3580   DAG.setRoot(OutChain);
3581 }
3582 
3583 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3584   SDLoc dl = getCurSDLoc();
3585   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3586   SDValue Ops[3];
3587   Ops[0] = getRoot();
3588   Ops[1] = DAG.getConstant(I.getOrdering(), dl,
3589                            TLI.getPointerTy(DAG.getDataLayout()));
3590   Ops[2] = DAG.getConstant(I.getSynchScope(), dl,
3591                            TLI.getPointerTy(DAG.getDataLayout()));
3592   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3593 }
3594 
3595 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3596   SDLoc dl = getCurSDLoc();
3597   AtomicOrdering Order = I.getOrdering();
3598   SynchronizationScope Scope = I.getSynchScope();
3599 
3600   SDValue InChain = getRoot();
3601 
3602   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3603   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3604 
3605   if (I.getAlignment() < VT.getSizeInBits() / 8)
3606     report_fatal_error("Cannot generate unaligned atomic load");
3607 
3608   MachineMemOperand *MMO =
3609       DAG.getMachineFunction().
3610       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3611                            MachineMemOperand::MOVolatile |
3612                            MachineMemOperand::MOLoad,
3613                            VT.getStoreSize(),
3614                            I.getAlignment() ? I.getAlignment() :
3615                                               DAG.getEVTAlignment(VT));
3616 
3617   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3618   SDValue L =
3619       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3620                     getValue(I.getPointerOperand()), MMO,
3621                     Order, Scope);
3622 
3623   SDValue OutChain = L.getValue(1);
3624 
3625   setValue(&I, L);
3626   DAG.setRoot(OutChain);
3627 }
3628 
3629 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3630   SDLoc dl = getCurSDLoc();
3631 
3632   AtomicOrdering Order = I.getOrdering();
3633   SynchronizationScope Scope = I.getSynchScope();
3634 
3635   SDValue InChain = getRoot();
3636 
3637   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3638   EVT VT =
3639       TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
3640 
3641   if (I.getAlignment() < VT.getSizeInBits() / 8)
3642     report_fatal_error("Cannot generate unaligned atomic store");
3643 
3644   SDValue OutChain =
3645     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3646                   InChain,
3647                   getValue(I.getPointerOperand()),
3648                   getValue(I.getValueOperand()),
3649                   I.getPointerOperand(), I.getAlignment(),
3650                   Order, Scope);
3651 
3652   DAG.setRoot(OutChain);
3653 }
3654 
3655 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3656 /// node.
3657 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3658                                                unsigned Intrinsic) {
3659   bool HasChain = !I.doesNotAccessMemory();
3660   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3661 
3662   // Build the operand list.
3663   SmallVector<SDValue, 8> Ops;
3664   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3665     if (OnlyLoad) {
3666       // We don't need to serialize loads against other loads.
3667       Ops.push_back(DAG.getRoot());
3668     } else {
3669       Ops.push_back(getRoot());
3670     }
3671   }
3672 
3673   // Info is set by getTgtMemInstrinsic
3674   TargetLowering::IntrinsicInfo Info;
3675   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3676   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3677 
3678   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3679   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3680       Info.opc == ISD::INTRINSIC_W_CHAIN)
3681     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
3682                                         TLI.getPointerTy(DAG.getDataLayout())));
3683 
3684   // Add all operands of the call to the operand list.
3685   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3686     SDValue Op = getValue(I.getArgOperand(i));
3687     Ops.push_back(Op);
3688   }
3689 
3690   SmallVector<EVT, 4> ValueVTs;
3691   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
3692 
3693   if (HasChain)
3694     ValueVTs.push_back(MVT::Other);
3695 
3696   SDVTList VTs = DAG.getVTList(ValueVTs);
3697 
3698   // Create the node.
3699   SDValue Result;
3700   if (IsTgtIntrinsic) {
3701     // This is target intrinsic that touches memory
3702     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3703                                      VTs, Ops, Info.memVT,
3704                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3705                                      Info.align, Info.vol,
3706                                      Info.readMem, Info.writeMem, Info.size);
3707   } else if (!HasChain) {
3708     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3709   } else if (!I.getType()->isVoidTy()) {
3710     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3711   } else {
3712     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3713   }
3714 
3715   if (HasChain) {
3716     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3717     if (OnlyLoad)
3718       PendingLoads.push_back(Chain);
3719     else
3720       DAG.setRoot(Chain);
3721   }
3722 
3723   if (!I.getType()->isVoidTy()) {
3724     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3725       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
3726       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3727     }
3728 
3729     setValue(&I, Result);
3730   }
3731 }
3732 
3733 /// GetSignificand - Get the significand and build it into a floating-point
3734 /// number with exponent of 1:
3735 ///
3736 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3737 ///
3738 /// where Op is the hexadecimal representation of floating point value.
3739 static SDValue
3740 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3741   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3742                            DAG.getConstant(0x007fffff, dl, MVT::i32));
3743   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3744                            DAG.getConstant(0x3f800000, dl, MVT::i32));
3745   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3746 }
3747 
3748 /// GetExponent - Get the exponent:
3749 ///
3750 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3751 ///
3752 /// where Op is the hexadecimal representation of floating point value.
3753 static SDValue
3754 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3755             SDLoc dl) {
3756   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3757                            DAG.getConstant(0x7f800000, dl, MVT::i32));
3758   SDValue t1 = DAG.getNode(
3759       ISD::SRL, dl, MVT::i32, t0,
3760       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
3761   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3762                            DAG.getConstant(127, dl, MVT::i32));
3763   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3764 }
3765 
3766 /// getF32Constant - Get 32-bit floating point constant.
3767 static SDValue
3768 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) {
3769   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl,
3770                            MVT::f32);
3771 }
3772 
3773 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl,
3774                                        SelectionDAG &DAG) {
3775   // TODO: What fast-math-flags should be set on the floating-point nodes?
3776 
3777   //   IntegerPartOfX = ((int32_t)(t0);
3778   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3779 
3780   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
3781   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3782   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3783 
3784   //   IntegerPartOfX <<= 23;
3785   IntegerPartOfX = DAG.getNode(
3786       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3787       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
3788                                   DAG.getDataLayout())));
3789 
3790   SDValue TwoToFractionalPartOfX;
3791   if (LimitFloatPrecision <= 6) {
3792     // For floating-point precision of 6:
3793     //
3794     //   TwoToFractionalPartOfX =
3795     //     0.997535578f +
3796     //       (0.735607626f + 0.252464424f * x) * x;
3797     //
3798     // error 0.0144103317, which is 6 bits
3799     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3800                              getF32Constant(DAG, 0x3e814304, dl));
3801     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3802                              getF32Constant(DAG, 0x3f3c50c8, dl));
3803     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3804     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3805                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
3806   } else if (LimitFloatPrecision <= 12) {
3807     // For floating-point precision of 12:
3808     //
3809     //   TwoToFractionalPartOfX =
3810     //     0.999892986f +
3811     //       (0.696457318f +
3812     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
3813     //
3814     // error 0.000107046256, which is 13 to 14 bits
3815     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3816                              getF32Constant(DAG, 0x3da235e3, dl));
3817     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3818                              getF32Constant(DAG, 0x3e65b8f3, dl));
3819     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3820     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3821                              getF32Constant(DAG, 0x3f324b07, dl));
3822     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3823     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3824                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
3825   } else { // LimitFloatPrecision <= 18
3826     // For floating-point precision of 18:
3827     //
3828     //   TwoToFractionalPartOfX =
3829     //     0.999999982f +
3830     //       (0.693148872f +
3831     //         (0.240227044f +
3832     //           (0.554906021e-1f +
3833     //             (0.961591928e-2f +
3834     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3835     // error 2.47208000*10^(-7), which is better than 18 bits
3836     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3837                              getF32Constant(DAG, 0x3924b03e, dl));
3838     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3839                              getF32Constant(DAG, 0x3ab24b87, dl));
3840     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3841     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3842                              getF32Constant(DAG, 0x3c1d8c17, dl));
3843     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3844     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3845                              getF32Constant(DAG, 0x3d634a1d, dl));
3846     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3847     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3848                              getF32Constant(DAG, 0x3e75fe14, dl));
3849     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3850     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3851                               getF32Constant(DAG, 0x3f317234, dl));
3852     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3853     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3854                                          getF32Constant(DAG, 0x3f800000, dl));
3855   }
3856 
3857   // Add the exponent into the result in integer domain.
3858   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
3859   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3860                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
3861 }
3862 
3863 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3864 /// limited-precision mode.
3865 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3866                          const TargetLowering &TLI) {
3867   if (Op.getValueType() == MVT::f32 &&
3868       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3869 
3870     // Put the exponent in the right bit position for later addition to the
3871     // final result:
3872     //
3873     //   #define LOG2OFe 1.4426950f
3874     //   t0 = Op * LOG2OFe
3875 
3876     // TODO: What fast-math-flags should be set here?
3877     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3878                              getF32Constant(DAG, 0x3fb8aa3b, dl));
3879     return getLimitedPrecisionExp2(t0, dl, DAG);
3880   }
3881 
3882   // No special expansion.
3883   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3884 }
3885 
3886 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3887 /// limited-precision mode.
3888 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3889                          const TargetLowering &TLI) {
3890 
3891   // TODO: What fast-math-flags should be set on the floating-point nodes?
3892 
3893   if (Op.getValueType() == MVT::f32 &&
3894       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3895     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3896 
3897     // Scale the exponent by log(2) [0.69314718f].
3898     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3899     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3900                                         getF32Constant(DAG, 0x3f317218, dl));
3901 
3902     // Get the significand and build it into a floating-point number with
3903     // exponent of 1.
3904     SDValue X = GetSignificand(DAG, Op1, dl);
3905 
3906     SDValue LogOfMantissa;
3907     if (LimitFloatPrecision <= 6) {
3908       // For floating-point precision of 6:
3909       //
3910       //   LogofMantissa =
3911       //     -1.1609546f +
3912       //       (1.4034025f - 0.23903021f * x) * x;
3913       //
3914       // error 0.0034276066, which is better than 8 bits
3915       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3916                                getF32Constant(DAG, 0xbe74c456, dl));
3917       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3918                                getF32Constant(DAG, 0x3fb3a2b1, dl));
3919       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3920       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3921                                   getF32Constant(DAG, 0x3f949a29, dl));
3922     } else if (LimitFloatPrecision <= 12) {
3923       // For floating-point precision of 12:
3924       //
3925       //   LogOfMantissa =
3926       //     -1.7417939f +
3927       //       (2.8212026f +
3928       //         (-1.4699568f +
3929       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3930       //
3931       // error 0.000061011436, which is 14 bits
3932       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3933                                getF32Constant(DAG, 0xbd67b6d6, dl));
3934       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3935                                getF32Constant(DAG, 0x3ee4f4b8, dl));
3936       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3937       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3938                                getF32Constant(DAG, 0x3fbc278b, dl));
3939       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3940       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3941                                getF32Constant(DAG, 0x40348e95, dl));
3942       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3943       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3944                                   getF32Constant(DAG, 0x3fdef31a, dl));
3945     } else { // LimitFloatPrecision <= 18
3946       // For floating-point precision of 18:
3947       //
3948       //   LogOfMantissa =
3949       //     -2.1072184f +
3950       //       (4.2372794f +
3951       //         (-3.7029485f +
3952       //           (2.2781945f +
3953       //             (-0.87823314f +
3954       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3955       //
3956       // error 0.0000023660568, which is better than 18 bits
3957       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3958                                getF32Constant(DAG, 0xbc91e5ac, dl));
3959       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3960                                getF32Constant(DAG, 0x3e4350aa, dl));
3961       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3962       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3963                                getF32Constant(DAG, 0x3f60d3e3, dl));
3964       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3965       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3966                                getF32Constant(DAG, 0x4011cdf0, dl));
3967       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3968       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3969                                getF32Constant(DAG, 0x406cfd1c, dl));
3970       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3971       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3972                                getF32Constant(DAG, 0x408797cb, dl));
3973       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3974       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3975                                   getF32Constant(DAG, 0x4006dcab, dl));
3976     }
3977 
3978     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3979   }
3980 
3981   // No special expansion.
3982   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3983 }
3984 
3985 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3986 /// limited-precision mode.
3987 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3988                           const TargetLowering &TLI) {
3989 
3990   // TODO: What fast-math-flags should be set on the floating-point nodes?
3991 
3992   if (Op.getValueType() == MVT::f32 &&
3993       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3994     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3995 
3996     // Get the exponent.
3997     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
3998 
3999     // Get the significand and build it into a floating-point number with
4000     // exponent of 1.
4001     SDValue X = GetSignificand(DAG, Op1, dl);
4002 
4003     // Different possible minimax approximations of significand in
4004     // floating-point for various degrees of accuracy over [1,2].
4005     SDValue Log2ofMantissa;
4006     if (LimitFloatPrecision <= 6) {
4007       // For floating-point precision of 6:
4008       //
4009       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4010       //
4011       // error 0.0049451742, which is more than 7 bits
4012       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4013                                getF32Constant(DAG, 0xbeb08fe0, dl));
4014       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4015                                getF32Constant(DAG, 0x40019463, dl));
4016       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4017       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4018                                    getF32Constant(DAG, 0x3fd6633d, dl));
4019     } else if (LimitFloatPrecision <= 12) {
4020       // For floating-point precision of 12:
4021       //
4022       //   Log2ofMantissa =
4023       //     -2.51285454f +
4024       //       (4.07009056f +
4025       //         (-2.12067489f +
4026       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4027       //
4028       // error 0.0000876136000, which is better than 13 bits
4029       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4030                                getF32Constant(DAG, 0xbda7262e, dl));
4031       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4032                                getF32Constant(DAG, 0x3f25280b, dl));
4033       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4034       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4035                                getF32Constant(DAG, 0x4007b923, dl));
4036       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4037       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4038                                getF32Constant(DAG, 0x40823e2f, dl));
4039       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4040       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4041                                    getF32Constant(DAG, 0x4020d29c, dl));
4042     } else { // LimitFloatPrecision <= 18
4043       // For floating-point precision of 18:
4044       //
4045       //   Log2ofMantissa =
4046       //     -3.0400495f +
4047       //       (6.1129976f +
4048       //         (-5.3420409f +
4049       //           (3.2865683f +
4050       //             (-1.2669343f +
4051       //               (0.27515199f -
4052       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4053       //
4054       // error 0.0000018516, which is better than 18 bits
4055       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4056                                getF32Constant(DAG, 0xbcd2769e, dl));
4057       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4058                                getF32Constant(DAG, 0x3e8ce0b9, dl));
4059       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4060       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4061                                getF32Constant(DAG, 0x3fa22ae7, dl));
4062       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4063       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4064                                getF32Constant(DAG, 0x40525723, dl));
4065       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4066       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4067                                getF32Constant(DAG, 0x40aaf200, dl));
4068       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4069       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4070                                getF32Constant(DAG, 0x40c39dad, dl));
4071       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4072       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4073                                    getF32Constant(DAG, 0x4042902c, dl));
4074     }
4075 
4076     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4077   }
4078 
4079   // No special expansion.
4080   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4081 }
4082 
4083 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4084 /// limited-precision mode.
4085 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4086                            const TargetLowering &TLI) {
4087 
4088   // TODO: What fast-math-flags should be set on the floating-point nodes?
4089 
4090   if (Op.getValueType() == MVT::f32 &&
4091       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4092     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4093 
4094     // Scale the exponent by log10(2) [0.30102999f].
4095     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4096     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4097                                         getF32Constant(DAG, 0x3e9a209a, dl));
4098 
4099     // Get the significand and build it into a floating-point number with
4100     // exponent of 1.
4101     SDValue X = GetSignificand(DAG, Op1, dl);
4102 
4103     SDValue Log10ofMantissa;
4104     if (LimitFloatPrecision <= 6) {
4105       // For floating-point precision of 6:
4106       //
4107       //   Log10ofMantissa =
4108       //     -0.50419619f +
4109       //       (0.60948995f - 0.10380950f * x) * x;
4110       //
4111       // error 0.0014886165, which is 6 bits
4112       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4113                                getF32Constant(DAG, 0xbdd49a13, dl));
4114       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4115                                getF32Constant(DAG, 0x3f1c0789, dl));
4116       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4117       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4118                                     getF32Constant(DAG, 0x3f011300, dl));
4119     } else if (LimitFloatPrecision <= 12) {
4120       // For floating-point precision of 12:
4121       //
4122       //   Log10ofMantissa =
4123       //     -0.64831180f +
4124       //       (0.91751397f +
4125       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4126       //
4127       // error 0.00019228036, which is better than 12 bits
4128       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4129                                getF32Constant(DAG, 0x3d431f31, dl));
4130       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4131                                getF32Constant(DAG, 0x3ea21fb2, dl));
4132       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4133       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4134                                getF32Constant(DAG, 0x3f6ae232, dl));
4135       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4136       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4137                                     getF32Constant(DAG, 0x3f25f7c3, dl));
4138     } else { // LimitFloatPrecision <= 18
4139       // For floating-point precision of 18:
4140       //
4141       //   Log10ofMantissa =
4142       //     -0.84299375f +
4143       //       (1.5327582f +
4144       //         (-1.0688956f +
4145       //           (0.49102474f +
4146       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4147       //
4148       // error 0.0000037995730, which is better than 18 bits
4149       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4150                                getF32Constant(DAG, 0x3c5d51ce, dl));
4151       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4152                                getF32Constant(DAG, 0x3e00685a, dl));
4153       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4154       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4155                                getF32Constant(DAG, 0x3efb6798, dl));
4156       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4157       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4158                                getF32Constant(DAG, 0x3f88d192, dl));
4159       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4160       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4161                                getF32Constant(DAG, 0x3fc4316c, dl));
4162       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4163       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4164                                     getF32Constant(DAG, 0x3f57ce70, dl));
4165     }
4166 
4167     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4168   }
4169 
4170   // No special expansion.
4171   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4172 }
4173 
4174 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4175 /// limited-precision mode.
4176 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4177                           const TargetLowering &TLI) {
4178   if (Op.getValueType() == MVT::f32 &&
4179       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
4180     return getLimitedPrecisionExp2(Op, dl, DAG);
4181 
4182   // No special expansion.
4183   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4184 }
4185 
4186 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4187 /// limited-precision mode with x == 10.0f.
4188 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4189                          SelectionDAG &DAG, const TargetLowering &TLI) {
4190   bool IsExp10 = false;
4191   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4192       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4193     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4194       APFloat Ten(10.0f);
4195       IsExp10 = LHSC->isExactlyValue(Ten);
4196     }
4197   }
4198 
4199   // TODO: What fast-math-flags should be set on the FMUL node?
4200   if (IsExp10) {
4201     // Put the exponent in the right bit position for later addition to the
4202     // final result:
4203     //
4204     //   #define LOG2OF10 3.3219281f
4205     //   t0 = Op * LOG2OF10;
4206     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4207                              getF32Constant(DAG, 0x40549a78, dl));
4208     return getLimitedPrecisionExp2(t0, dl, DAG);
4209   }
4210 
4211   // No special expansion.
4212   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4213 }
4214 
4215 
4216 /// ExpandPowI - Expand a llvm.powi intrinsic.
4217 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4218                           SelectionDAG &DAG) {
4219   // If RHS is a constant, we can expand this out to a multiplication tree,
4220   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4221   // optimizing for size, we only want to do this if the expansion would produce
4222   // a small number of multiplies, otherwise we do the full expansion.
4223   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4224     // Get the exponent as a positive value.
4225     unsigned Val = RHSC->getSExtValue();
4226     if ((int)Val < 0) Val = -Val;
4227 
4228     // powi(x, 0) -> 1.0
4229     if (Val == 0)
4230       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
4231 
4232     const Function *F = DAG.getMachineFunction().getFunction();
4233     if (!F->optForSize() ||
4234         // If optimizing for size, don't insert too many multiplies.
4235         // This inserts up to 5 multiplies.
4236         countPopulation(Val) + Log2_32(Val) < 7) {
4237       // We use the simple binary decomposition method to generate the multiply
4238       // sequence.  There are more optimal ways to do this (for example,
4239       // powi(x,15) generates one more multiply than it should), but this has
4240       // the benefit of being both really simple and much better than a libcall.
4241       SDValue Res;  // Logically starts equal to 1.0
4242       SDValue CurSquare = LHS;
4243       // TODO: Intrinsics should have fast-math-flags that propagate to these
4244       // nodes.
4245       while (Val) {
4246         if (Val & 1) {
4247           if (Res.getNode())
4248             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4249           else
4250             Res = CurSquare;  // 1.0*CurSquare.
4251         }
4252 
4253         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4254                                 CurSquare, CurSquare);
4255         Val >>= 1;
4256       }
4257 
4258       // If the original was negative, invert the result, producing 1/(x*x*x).
4259       if (RHSC->getSExtValue() < 0)
4260         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4261                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
4262       return Res;
4263     }
4264   }
4265 
4266   // Otherwise, expand to a libcall.
4267   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4268 }
4269 
4270 // getUnderlyingArgReg - Find underlying register used for a truncated or
4271 // bitcasted argument.
4272 static unsigned getUnderlyingArgReg(const SDValue &N) {
4273   switch (N.getOpcode()) {
4274   case ISD::CopyFromReg:
4275     return cast<RegisterSDNode>(N.getOperand(1))->getReg();
4276   case ISD::BITCAST:
4277   case ISD::AssertZext:
4278   case ISD::AssertSext:
4279   case ISD::TRUNCATE:
4280     return getUnderlyingArgReg(N.getOperand(0));
4281   default:
4282     return 0;
4283   }
4284 }
4285 
4286 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4287 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4288 /// At the end of instruction selection, they will be inserted to the entry BB.
4289 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
4290     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
4291     DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) {
4292   const Argument *Arg = dyn_cast<Argument>(V);
4293   if (!Arg)
4294     return false;
4295 
4296   MachineFunction &MF = DAG.getMachineFunction();
4297   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4298 
4299   // Ignore inlined function arguments here.
4300   //
4301   // FIXME: Should we be checking DL->inlinedAt() to determine this?
4302   if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction()))
4303     return false;
4304 
4305   Optional<MachineOperand> Op;
4306   // Some arguments' frame index is recorded during argument lowering.
4307   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4308     Op = MachineOperand::CreateFI(FI);
4309 
4310   if (!Op && N.getNode()) {
4311     unsigned Reg = getUnderlyingArgReg(N);
4312     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4313       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4314       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4315       if (PR)
4316         Reg = PR;
4317     }
4318     if (Reg)
4319       Op = MachineOperand::CreateReg(Reg, false);
4320   }
4321 
4322   if (!Op) {
4323     // Check if ValueMap has reg number.
4324     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4325     if (VMI != FuncInfo.ValueMap.end())
4326       Op = MachineOperand::CreateReg(VMI->second, false);
4327   }
4328 
4329   if (!Op && N.getNode())
4330     // Check if frame index is available.
4331     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4332       if (FrameIndexSDNode *FINode =
4333           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4334         Op = MachineOperand::CreateFI(FINode->getIndex());
4335 
4336   if (!Op)
4337     return false;
4338 
4339   assert(Variable->isValidLocationForIntrinsic(DL) &&
4340          "Expected inlined-at fields to agree");
4341   if (Op->isReg())
4342     FuncInfo.ArgDbgValues.push_back(
4343         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
4344                 Op->getReg(), Offset, Variable, Expr));
4345   else
4346     FuncInfo.ArgDbgValues.push_back(
4347         BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE))
4348             .addOperand(*Op)
4349             .addImm(Offset)
4350             .addMetadata(Variable)
4351             .addMetadata(Expr));
4352 
4353   return true;
4354 }
4355 
4356 // VisualStudio defines setjmp as _setjmp
4357 #if defined(_MSC_VER) && defined(setjmp) && \
4358                          !defined(setjmp_undefined_for_msvc)
4359 #  pragma push_macro("setjmp")
4360 #  undef setjmp
4361 #  define setjmp_undefined_for_msvc
4362 #endif
4363 
4364 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4365 /// we want to emit this as a call to a named external function, return the name
4366 /// otherwise lower it and return null.
4367 const char *
4368 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4369   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4370   SDLoc sdl = getCurSDLoc();
4371   DebugLoc dl = getCurDebugLoc();
4372   SDValue Res;
4373 
4374   switch (Intrinsic) {
4375   default:
4376     // By default, turn this into a target intrinsic node.
4377     visitTargetIntrinsic(I, Intrinsic);
4378     return nullptr;
4379   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4380   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4381   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4382   case Intrinsic::returnaddress:
4383     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
4384                              TLI.getPointerTy(DAG.getDataLayout()),
4385                              getValue(I.getArgOperand(0))));
4386     return nullptr;
4387   case Intrinsic::frameaddress:
4388     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
4389                              TLI.getPointerTy(DAG.getDataLayout()),
4390                              getValue(I.getArgOperand(0))));
4391     return nullptr;
4392   case Intrinsic::read_register: {
4393     Value *Reg = I.getArgOperand(0);
4394     SDValue Chain = getRoot();
4395     SDValue RegName =
4396         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4397     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4398     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
4399       DAG.getVTList(VT, MVT::Other), Chain, RegName);
4400     setValue(&I, Res);
4401     DAG.setRoot(Res.getValue(1));
4402     return nullptr;
4403   }
4404   case Intrinsic::write_register: {
4405     Value *Reg = I.getArgOperand(0);
4406     Value *RegValue = I.getArgOperand(1);
4407     SDValue Chain = getRoot();
4408     SDValue RegName =
4409         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4410     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4411                             RegName, getValue(RegValue)));
4412     return nullptr;
4413   }
4414   case Intrinsic::setjmp:
4415     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4416   case Intrinsic::longjmp:
4417     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4418   case Intrinsic::memcpy: {
4419     SDValue Op1 = getValue(I.getArgOperand(0));
4420     SDValue Op2 = getValue(I.getArgOperand(1));
4421     SDValue Op3 = getValue(I.getArgOperand(2));
4422     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4423     if (!Align)
4424       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4425     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4426     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4427     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4428                                false, isTC,
4429                                MachinePointerInfo(I.getArgOperand(0)),
4430                                MachinePointerInfo(I.getArgOperand(1)));
4431     updateDAGForMaybeTailCall(MC);
4432     return nullptr;
4433   }
4434   case Intrinsic::memset: {
4435     SDValue Op1 = getValue(I.getArgOperand(0));
4436     SDValue Op2 = getValue(I.getArgOperand(1));
4437     SDValue Op3 = getValue(I.getArgOperand(2));
4438     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4439     if (!Align)
4440       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4441     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4442     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4443     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4444                                isTC, MachinePointerInfo(I.getArgOperand(0)));
4445     updateDAGForMaybeTailCall(MS);
4446     return nullptr;
4447   }
4448   case Intrinsic::memmove: {
4449     SDValue Op1 = getValue(I.getArgOperand(0));
4450     SDValue Op2 = getValue(I.getArgOperand(1));
4451     SDValue Op3 = getValue(I.getArgOperand(2));
4452     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4453     if (!Align)
4454       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4455     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4456     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
4457     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4458                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
4459                                 MachinePointerInfo(I.getArgOperand(1)));
4460     updateDAGForMaybeTailCall(MM);
4461     return nullptr;
4462   }
4463   case Intrinsic::dbg_declare: {
4464     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4465     DILocalVariable *Variable = DI.getVariable();
4466     DIExpression *Expression = DI.getExpression();
4467     const Value *Address = DI.getAddress();
4468     assert(Variable && "Missing variable");
4469     if (!Address) {
4470       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4471       return nullptr;
4472     }
4473 
4474     // Check if address has undef value.
4475     if (isa<UndefValue>(Address) ||
4476         (Address->use_empty() && !isa<Argument>(Address))) {
4477       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4478       return nullptr;
4479     }
4480 
4481     SDValue &N = NodeMap[Address];
4482     if (!N.getNode() && isa<Argument>(Address))
4483       // Check unused arguments map.
4484       N = UnusedArgNodeMap[Address];
4485     SDDbgValue *SDV;
4486     if (N.getNode()) {
4487       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4488         Address = BCI->getOperand(0);
4489       // Parameters are handled specially.
4490       bool isParameter = Variable->isParameter() || isa<Argument>(Address);
4491       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4492       if (isParameter && FINode) {
4493         // Byval parameter. We have a frame index at this point.
4494         SDV = DAG.getFrameIndexDbgValue(Variable, Expression,
4495                                         FINode->getIndex(), 0, dl, SDNodeOrder);
4496       } else if (isa<Argument>(Address)) {
4497         // Address is an argument, so try to emit its dbg value using
4498         // virtual register info from the FuncInfo.ValueMap.
4499         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4500                                  N);
4501         return nullptr;
4502       } else {
4503         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4504                               true, 0, dl, SDNodeOrder);
4505       }
4506       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4507     } else {
4508       // If Address is an argument then try to emit its dbg value using
4509       // virtual register info from the FuncInfo.ValueMap.
4510       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false,
4511                                     N)) {
4512         // If variable is pinned by a alloca in dominating bb then
4513         // use StaticAllocaMap.
4514         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4515           if (AI->getParent() != DI.getParent()) {
4516             DenseMap<const AllocaInst*, int>::iterator SI =
4517               FuncInfo.StaticAllocaMap.find(AI);
4518             if (SI != FuncInfo.StaticAllocaMap.end()) {
4519               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4520                                               0, dl, SDNodeOrder);
4521               DAG.AddDbgValue(SDV, nullptr, false);
4522               return nullptr;
4523             }
4524           }
4525         }
4526         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4527       }
4528     }
4529     return nullptr;
4530   }
4531   case Intrinsic::dbg_value: {
4532     const DbgValueInst &DI = cast<DbgValueInst>(I);
4533     assert(DI.getVariable() && "Missing variable");
4534 
4535     DILocalVariable *Variable = DI.getVariable();
4536     DIExpression *Expression = DI.getExpression();
4537     uint64_t Offset = DI.getOffset();
4538     const Value *V = DI.getValue();
4539     if (!V)
4540       return nullptr;
4541 
4542     SDDbgValue *SDV;
4543     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4544       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4545                                     SDNodeOrder);
4546       DAG.AddDbgValue(SDV, nullptr, false);
4547     } else {
4548       // Do not use getValue() in here; we don't want to generate code at
4549       // this point if it hasn't been done yet.
4550       SDValue N = NodeMap[V];
4551       if (!N.getNode() && isa<Argument>(V))
4552         // Check unused arguments map.
4553         N = UnusedArgNodeMap[V];
4554       if (N.getNode()) {
4555         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset,
4556                                       false, N)) {
4557           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4558                                 false, Offset, dl, SDNodeOrder);
4559           DAG.AddDbgValue(SDV, N.getNode(), false);
4560         }
4561       } else if (!V->use_empty() ) {
4562         // Do not call getValue(V) yet, as we don't want to generate code.
4563         // Remember it for later.
4564         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4565         DanglingDebugInfoMap[V] = DDI;
4566       } else {
4567         // We may expand this to cover more cases.  One case where we have no
4568         // data available is an unreferenced parameter.
4569         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4570       }
4571     }
4572 
4573     // Build a debug info table entry.
4574     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4575       V = BCI->getOperand(0);
4576     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4577     // Don't handle byval struct arguments or VLAs, for example.
4578     if (!AI) {
4579       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4580       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4581       return nullptr;
4582     }
4583     DenseMap<const AllocaInst*, int>::iterator SI =
4584       FuncInfo.StaticAllocaMap.find(AI);
4585     if (SI == FuncInfo.StaticAllocaMap.end())
4586       return nullptr; // VLAs.
4587     return nullptr;
4588   }
4589 
4590   case Intrinsic::eh_typeid_for: {
4591     // Find the type id for the given typeinfo.
4592     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4593     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4594     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
4595     setValue(&I, Res);
4596     return nullptr;
4597   }
4598 
4599   case Intrinsic::eh_return_i32:
4600   case Intrinsic::eh_return_i64:
4601     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4602     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4603                             MVT::Other,
4604                             getControlRoot(),
4605                             getValue(I.getArgOperand(0)),
4606                             getValue(I.getArgOperand(1))));
4607     return nullptr;
4608   case Intrinsic::eh_unwind_init:
4609     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4610     return nullptr;
4611   case Intrinsic::eh_dwarf_cfa: {
4612     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4613                                         TLI.getPointerTy(DAG.getDataLayout()));
4614     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4615                                  CfaArg.getValueType(),
4616                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4617                                              CfaArg.getValueType()),
4618                                  CfaArg);
4619     SDValue FA = DAG.getNode(
4620         ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()),
4621         DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
4622     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4623                              FA, Offset));
4624     return nullptr;
4625   }
4626   case Intrinsic::eh_sjlj_callsite: {
4627     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4628     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4629     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4630     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4631 
4632     MMI.setCurrentCallSite(CI->getZExtValue());
4633     return nullptr;
4634   }
4635   case Intrinsic::eh_sjlj_functioncontext: {
4636     // Get and store the index of the function context.
4637     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4638     AllocaInst *FnCtx =
4639       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4640     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4641     MFI->setFunctionContextIndex(FI);
4642     return nullptr;
4643   }
4644   case Intrinsic::eh_sjlj_setjmp: {
4645     SDValue Ops[2];
4646     Ops[0] = getRoot();
4647     Ops[1] = getValue(I.getArgOperand(0));
4648     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4649                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
4650     setValue(&I, Op.getValue(0));
4651     DAG.setRoot(Op.getValue(1));
4652     return nullptr;
4653   }
4654   case Intrinsic::eh_sjlj_longjmp: {
4655     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4656                             getRoot(), getValue(I.getArgOperand(0))));
4657     return nullptr;
4658   }
4659   case Intrinsic::eh_sjlj_setup_dispatch: {
4660     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
4661                             getRoot()));
4662     return nullptr;
4663   }
4664 
4665   case Intrinsic::masked_gather:
4666     visitMaskedGather(I);
4667     return nullptr;
4668   case Intrinsic::masked_load:
4669     visitMaskedLoad(I);
4670     return nullptr;
4671   case Intrinsic::masked_scatter:
4672     visitMaskedScatter(I);
4673     return nullptr;
4674   case Intrinsic::masked_store:
4675     visitMaskedStore(I);
4676     return nullptr;
4677   case Intrinsic::x86_mmx_pslli_w:
4678   case Intrinsic::x86_mmx_pslli_d:
4679   case Intrinsic::x86_mmx_pslli_q:
4680   case Intrinsic::x86_mmx_psrli_w:
4681   case Intrinsic::x86_mmx_psrli_d:
4682   case Intrinsic::x86_mmx_psrli_q:
4683   case Intrinsic::x86_mmx_psrai_w:
4684   case Intrinsic::x86_mmx_psrai_d: {
4685     SDValue ShAmt = getValue(I.getArgOperand(1));
4686     if (isa<ConstantSDNode>(ShAmt)) {
4687       visitTargetIntrinsic(I, Intrinsic);
4688       return nullptr;
4689     }
4690     unsigned NewIntrinsic = 0;
4691     EVT ShAmtVT = MVT::v2i32;
4692     switch (Intrinsic) {
4693     case Intrinsic::x86_mmx_pslli_w:
4694       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4695       break;
4696     case Intrinsic::x86_mmx_pslli_d:
4697       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4698       break;
4699     case Intrinsic::x86_mmx_pslli_q:
4700       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4701       break;
4702     case Intrinsic::x86_mmx_psrli_w:
4703       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4704       break;
4705     case Intrinsic::x86_mmx_psrli_d:
4706       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4707       break;
4708     case Intrinsic::x86_mmx_psrli_q:
4709       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4710       break;
4711     case Intrinsic::x86_mmx_psrai_w:
4712       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4713       break;
4714     case Intrinsic::x86_mmx_psrai_d:
4715       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4716       break;
4717     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4718     }
4719 
4720     // The vector shift intrinsics with scalars uses 32b shift amounts but
4721     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4722     // to be zero.
4723     // We must do this early because v2i32 is not a legal type.
4724     SDValue ShOps[2];
4725     ShOps[0] = ShAmt;
4726     ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
4727     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
4728     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4729     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4730     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4731                        DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
4732                        getValue(I.getArgOperand(0)), ShAmt);
4733     setValue(&I, Res);
4734     return nullptr;
4735   }
4736   case Intrinsic::convertff:
4737   case Intrinsic::convertfsi:
4738   case Intrinsic::convertfui:
4739   case Intrinsic::convertsif:
4740   case Intrinsic::convertuif:
4741   case Intrinsic::convertss:
4742   case Intrinsic::convertsu:
4743   case Intrinsic::convertus:
4744   case Intrinsic::convertuu: {
4745     ISD::CvtCode Code = ISD::CVT_INVALID;
4746     switch (Intrinsic) {
4747     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4748     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
4749     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4750     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4751     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4752     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4753     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
4754     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
4755     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
4756     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
4757     }
4758     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4759     const Value *Op1 = I.getArgOperand(0);
4760     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4761                                DAG.getValueType(DestVT),
4762                                DAG.getValueType(getValue(Op1).getValueType()),
4763                                getValue(I.getArgOperand(1)),
4764                                getValue(I.getArgOperand(2)),
4765                                Code);
4766     setValue(&I, Res);
4767     return nullptr;
4768   }
4769   case Intrinsic::powi:
4770     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4771                             getValue(I.getArgOperand(1)), DAG));
4772     return nullptr;
4773   case Intrinsic::log:
4774     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4775     return nullptr;
4776   case Intrinsic::log2:
4777     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4778     return nullptr;
4779   case Intrinsic::log10:
4780     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4781     return nullptr;
4782   case Intrinsic::exp:
4783     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4784     return nullptr;
4785   case Intrinsic::exp2:
4786     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
4787     return nullptr;
4788   case Intrinsic::pow:
4789     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4790                            getValue(I.getArgOperand(1)), DAG, TLI));
4791     return nullptr;
4792   case Intrinsic::sqrt:
4793   case Intrinsic::fabs:
4794   case Intrinsic::sin:
4795   case Intrinsic::cos:
4796   case Intrinsic::floor:
4797   case Intrinsic::ceil:
4798   case Intrinsic::trunc:
4799   case Intrinsic::rint:
4800   case Intrinsic::nearbyint:
4801   case Intrinsic::round: {
4802     unsigned Opcode;
4803     switch (Intrinsic) {
4804     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
4805     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
4806     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
4807     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
4808     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
4809     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
4810     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
4811     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
4812     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
4813     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
4814     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
4815     }
4816 
4817     setValue(&I, DAG.getNode(Opcode, sdl,
4818                              getValue(I.getArgOperand(0)).getValueType(),
4819                              getValue(I.getArgOperand(0))));
4820     return nullptr;
4821   }
4822   case Intrinsic::minnum:
4823     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
4824                              getValue(I.getArgOperand(0)).getValueType(),
4825                              getValue(I.getArgOperand(0)),
4826                              getValue(I.getArgOperand(1))));
4827     return nullptr;
4828   case Intrinsic::maxnum:
4829     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
4830                              getValue(I.getArgOperand(0)).getValueType(),
4831                              getValue(I.getArgOperand(0)),
4832                              getValue(I.getArgOperand(1))));
4833     return nullptr;
4834   case Intrinsic::copysign:
4835     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
4836                              getValue(I.getArgOperand(0)).getValueType(),
4837                              getValue(I.getArgOperand(0)),
4838                              getValue(I.getArgOperand(1))));
4839     return nullptr;
4840   case Intrinsic::fma:
4841     setValue(&I, DAG.getNode(ISD::FMA, sdl,
4842                              getValue(I.getArgOperand(0)).getValueType(),
4843                              getValue(I.getArgOperand(0)),
4844                              getValue(I.getArgOperand(1)),
4845                              getValue(I.getArgOperand(2))));
4846     return nullptr;
4847   case Intrinsic::fmuladd: {
4848     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4849     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
4850         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
4851       setValue(&I, DAG.getNode(ISD::FMA, sdl,
4852                                getValue(I.getArgOperand(0)).getValueType(),
4853                                getValue(I.getArgOperand(0)),
4854                                getValue(I.getArgOperand(1)),
4855                                getValue(I.getArgOperand(2))));
4856     } else {
4857       // TODO: Intrinsic calls should have fast-math-flags.
4858       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
4859                                 getValue(I.getArgOperand(0)).getValueType(),
4860                                 getValue(I.getArgOperand(0)),
4861                                 getValue(I.getArgOperand(1)));
4862       SDValue Add = DAG.getNode(ISD::FADD, sdl,
4863                                 getValue(I.getArgOperand(0)).getValueType(),
4864                                 Mul,
4865                                 getValue(I.getArgOperand(2)));
4866       setValue(&I, Add);
4867     }
4868     return nullptr;
4869   }
4870   case Intrinsic::convert_to_fp16:
4871     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
4872                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
4873                                          getValue(I.getArgOperand(0)),
4874                                          DAG.getTargetConstant(0, sdl,
4875                                                                MVT::i32))));
4876     return nullptr;
4877   case Intrinsic::convert_from_fp16:
4878     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
4879                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
4880                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
4881                                          getValue(I.getArgOperand(0)))));
4882     return nullptr;
4883   case Intrinsic::pcmarker: {
4884     SDValue Tmp = getValue(I.getArgOperand(0));
4885     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
4886     return nullptr;
4887   }
4888   case Intrinsic::readcyclecounter: {
4889     SDValue Op = getRoot();
4890     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
4891                       DAG.getVTList(MVT::i64, MVT::Other), Op);
4892     setValue(&I, Res);
4893     DAG.setRoot(Res.getValue(1));
4894     return nullptr;
4895   }
4896   case Intrinsic::bitreverse:
4897     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
4898                              getValue(I.getArgOperand(0)).getValueType(),
4899                              getValue(I.getArgOperand(0))));
4900     return nullptr;
4901   case Intrinsic::bswap:
4902     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
4903                              getValue(I.getArgOperand(0)).getValueType(),
4904                              getValue(I.getArgOperand(0))));
4905     return nullptr;
4906   case Intrinsic::cttz: {
4907     SDValue Arg = getValue(I.getArgOperand(0));
4908     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4909     EVT Ty = Arg.getValueType();
4910     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
4911                              sdl, Ty, Arg));
4912     return nullptr;
4913   }
4914   case Intrinsic::ctlz: {
4915     SDValue Arg = getValue(I.getArgOperand(0));
4916     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
4917     EVT Ty = Arg.getValueType();
4918     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
4919                              sdl, Ty, Arg));
4920     return nullptr;
4921   }
4922   case Intrinsic::ctpop: {
4923     SDValue Arg = getValue(I.getArgOperand(0));
4924     EVT Ty = Arg.getValueType();
4925     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
4926     return nullptr;
4927   }
4928   case Intrinsic::stacksave: {
4929     SDValue Op = getRoot();
4930     Res = DAG.getNode(
4931         ISD::STACKSAVE, sdl,
4932         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
4933     setValue(&I, Res);
4934     DAG.setRoot(Res.getValue(1));
4935     return nullptr;
4936   }
4937   case Intrinsic::stackrestore: {
4938     Res = getValue(I.getArgOperand(0));
4939     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
4940     return nullptr;
4941   }
4942   case Intrinsic::get_dynamic_area_offset: {
4943     SDValue Op = getRoot();
4944     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4945     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
4946     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
4947     // target.
4948     if (PtrTy != ResTy)
4949       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
4950                          " intrinsic!");
4951     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
4952                       Op);
4953     DAG.setRoot(Op);
4954     setValue(&I, Res);
4955     return nullptr;
4956   }
4957   case Intrinsic::stackprotector: {
4958     // Emit code into the DAG to store the stack guard onto the stack.
4959     MachineFunction &MF = DAG.getMachineFunction();
4960     MachineFrameInfo *MFI = MF.getFrameInfo();
4961     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
4962     SDValue Src, Chain = getRoot();
4963     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
4964     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
4965 
4966     // See if Ptr is a bitcast. If it is, look through it and see if we can get
4967     // global variable __stack_chk_guard.
4968     if (!GV)
4969       if (const Operator *BC = dyn_cast<Operator>(Ptr))
4970         if (BC->getOpcode() == Instruction::BitCast)
4971           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
4972 
4973     if (GV && TLI.useLoadStackGuardNode()) {
4974       // Emit a LOAD_STACK_GUARD node.
4975       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
4976                                                sdl, PtrTy, Chain);
4977       MachinePointerInfo MPInfo(GV);
4978       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
4979       unsigned Flags = MachineMemOperand::MOLoad |
4980                        MachineMemOperand::MOInvariant;
4981       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
4982                                          PtrTy.getSizeInBits() / 8,
4983                                          DAG.getEVTAlignment(PtrTy));
4984       Node->setMemRefs(MemRefs, MemRefs + 1);
4985 
4986       // Copy the guard value to a virtual register so that it can be
4987       // retrieved in the epilogue.
4988       Src = SDValue(Node, 0);
4989       const TargetRegisterClass *RC =
4990           TLI.getRegClassFor(Src.getSimpleValueType());
4991       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
4992 
4993       SPDescriptor.setGuardReg(Reg);
4994       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
4995     } else {
4996       Src = getValue(I.getArgOperand(0));   // The guard's value.
4997     }
4998 
4999     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5000 
5001     int FI = FuncInfo.StaticAllocaMap[Slot];
5002     MFI->setStackProtectorIndex(FI);
5003 
5004     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5005 
5006     // Store the stack protector onto the stack.
5007     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
5008                                                  DAG.getMachineFunction(), FI),
5009                        true, false, 0);
5010     setValue(&I, Res);
5011     DAG.setRoot(Res);
5012     return nullptr;
5013   }
5014   case Intrinsic::objectsize: {
5015     // If we don't know by now, we're never going to know.
5016     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5017 
5018     assert(CI && "Non-constant type in __builtin_object_size?");
5019 
5020     SDValue Arg = getValue(I.getCalledValue());
5021     EVT Ty = Arg.getValueType();
5022 
5023     if (CI->isZero())
5024       Res = DAG.getConstant(-1ULL, sdl, Ty);
5025     else
5026       Res = DAG.getConstant(0, sdl, Ty);
5027 
5028     setValue(&I, Res);
5029     return nullptr;
5030   }
5031   case Intrinsic::annotation:
5032   case Intrinsic::ptr_annotation:
5033     // Drop the intrinsic, but forward the value
5034     setValue(&I, getValue(I.getOperand(0)));
5035     return nullptr;
5036   case Intrinsic::assume:
5037   case Intrinsic::var_annotation:
5038     // Discard annotate attributes and assumptions
5039     return nullptr;
5040 
5041   case Intrinsic::init_trampoline: {
5042     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5043 
5044     SDValue Ops[6];
5045     Ops[0] = getRoot();
5046     Ops[1] = getValue(I.getArgOperand(0));
5047     Ops[2] = getValue(I.getArgOperand(1));
5048     Ops[3] = getValue(I.getArgOperand(2));
5049     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5050     Ops[5] = DAG.getSrcValue(F);
5051 
5052     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5053 
5054     DAG.setRoot(Res);
5055     return nullptr;
5056   }
5057   case Intrinsic::adjust_trampoline: {
5058     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5059                              TLI.getPointerTy(DAG.getDataLayout()),
5060                              getValue(I.getArgOperand(0))));
5061     return nullptr;
5062   }
5063   case Intrinsic::gcroot: {
5064     MachineFunction &MF = DAG.getMachineFunction();
5065     const Function *F = MF.getFunction();
5066     assert(F->hasGC() &&
5067            "only valid in functions with gc specified, enforced by Verifier");
5068     assert(GFI && "implied by previous");
5069     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5070     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5071 
5072     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5073     GFI->addStackRoot(FI->getIndex(), TypeMap);
5074     return nullptr;
5075   }
5076   case Intrinsic::gcread:
5077   case Intrinsic::gcwrite:
5078     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5079   case Intrinsic::flt_rounds:
5080     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5081     return nullptr;
5082 
5083   case Intrinsic::expect: {
5084     // Just replace __builtin_expect(exp, c) with EXP.
5085     setValue(&I, getValue(I.getArgOperand(0)));
5086     return nullptr;
5087   }
5088 
5089   case Intrinsic::debugtrap:
5090   case Intrinsic::trap: {
5091     StringRef TrapFuncName =
5092         I.getAttributes()
5093             .getAttribute(AttributeSet::FunctionIndex, "trap-func-name")
5094             .getValueAsString();
5095     if (TrapFuncName.empty()) {
5096       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5097         ISD::TRAP : ISD::DEBUGTRAP;
5098       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5099       return nullptr;
5100     }
5101     TargetLowering::ArgListTy Args;
5102 
5103     TargetLowering::CallLoweringInfo CLI(DAG);
5104     CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee(
5105         CallingConv::C, I.getType(),
5106         DAG.getExternalSymbol(TrapFuncName.data(),
5107                               TLI.getPointerTy(DAG.getDataLayout())),
5108         std::move(Args), 0);
5109 
5110     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5111     DAG.setRoot(Result.second);
5112     return nullptr;
5113   }
5114 
5115   case Intrinsic::uadd_with_overflow:
5116   case Intrinsic::sadd_with_overflow:
5117   case Intrinsic::usub_with_overflow:
5118   case Intrinsic::ssub_with_overflow:
5119   case Intrinsic::umul_with_overflow:
5120   case Intrinsic::smul_with_overflow: {
5121     ISD::NodeType Op;
5122     switch (Intrinsic) {
5123     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5124     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5125     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5126     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5127     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5128     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5129     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5130     }
5131     SDValue Op1 = getValue(I.getArgOperand(0));
5132     SDValue Op2 = getValue(I.getArgOperand(1));
5133 
5134     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5135     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5136     return nullptr;
5137   }
5138   case Intrinsic::prefetch: {
5139     SDValue Ops[5];
5140     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5141     Ops[0] = getRoot();
5142     Ops[1] = getValue(I.getArgOperand(0));
5143     Ops[2] = getValue(I.getArgOperand(1));
5144     Ops[3] = getValue(I.getArgOperand(2));
5145     Ops[4] = getValue(I.getArgOperand(3));
5146     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5147                                         DAG.getVTList(MVT::Other), Ops,
5148                                         EVT::getIntegerVT(*Context, 8),
5149                                         MachinePointerInfo(I.getArgOperand(0)),
5150                                         0, /* align */
5151                                         false, /* volatile */
5152                                         rw==0, /* read */
5153                                         rw==1)); /* write */
5154     return nullptr;
5155   }
5156   case Intrinsic::lifetime_start:
5157   case Intrinsic::lifetime_end: {
5158     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5159     // Stack coloring is not enabled in O0, discard region information.
5160     if (TM.getOptLevel() == CodeGenOpt::None)
5161       return nullptr;
5162 
5163     SmallVector<Value *, 4> Allocas;
5164     GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL);
5165 
5166     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5167            E = Allocas.end(); Object != E; ++Object) {
5168       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5169 
5170       // Could not find an Alloca.
5171       if (!LifetimeObject)
5172         continue;
5173 
5174       // First check that the Alloca is static, otherwise it won't have a
5175       // valid frame index.
5176       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5177       if (SI == FuncInfo.StaticAllocaMap.end())
5178         return nullptr;
5179 
5180       int FI = SI->second;
5181 
5182       SDValue Ops[2];
5183       Ops[0] = getRoot();
5184       Ops[1] =
5185           DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true);
5186       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5187 
5188       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5189       DAG.setRoot(Res);
5190     }
5191     return nullptr;
5192   }
5193   case Intrinsic::invariant_start:
5194     // Discard region information.
5195     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
5196     return nullptr;
5197   case Intrinsic::invariant_end:
5198     // Discard region information.
5199     return nullptr;
5200   case Intrinsic::stackprotectorcheck: {
5201     // Do not actually emit anything for this basic block. Instead we initialize
5202     // the stack protector descriptor and export the guard variable so we can
5203     // access it in FinishBasicBlock.
5204     const BasicBlock *BB = I.getParent();
5205     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5206     ExportFromCurrentBlock(SPDescriptor.getGuard());
5207 
5208     // Flush our exports since we are going to process a terminator.
5209     (void)getControlRoot();
5210     return nullptr;
5211   }
5212   case Intrinsic::clear_cache:
5213     return TLI.getClearCacheBuiltinName();
5214   case Intrinsic::donothing:
5215     // ignore
5216     return nullptr;
5217   case Intrinsic::experimental_stackmap: {
5218     visitStackmap(I);
5219     return nullptr;
5220   }
5221   case Intrinsic::experimental_patchpoint_void:
5222   case Intrinsic::experimental_patchpoint_i64: {
5223     visitPatchpoint(&I);
5224     return nullptr;
5225   }
5226   case Intrinsic::experimental_gc_statepoint: {
5227     visitStatepoint(I);
5228     return nullptr;
5229   }
5230   case Intrinsic::experimental_gc_result: {
5231     visitGCResult(I);
5232     return nullptr;
5233   }
5234   case Intrinsic::experimental_gc_relocate: {
5235     visitGCRelocate(cast<GCRelocateInst>(I));
5236     return nullptr;
5237   }
5238   case Intrinsic::instrprof_increment:
5239     llvm_unreachable("instrprof failed to lower an increment");
5240   case Intrinsic::instrprof_value_profile:
5241     llvm_unreachable("instrprof failed to lower a value profiling call");
5242   case Intrinsic::localescape: {
5243     MachineFunction &MF = DAG.getMachineFunction();
5244     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5245 
5246     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
5247     // is the same on all targets.
5248     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
5249       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
5250       if (isa<ConstantPointerNull>(Arg))
5251         continue; // Skip null pointers. They represent a hole in index space.
5252       AllocaInst *Slot = cast<AllocaInst>(Arg);
5253       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
5254              "can only escape static allocas");
5255       int FI = FuncInfo.StaticAllocaMap[Slot];
5256       MCSymbol *FrameAllocSym =
5257           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5258               GlobalValue::getRealLinkageName(MF.getName()), Idx);
5259       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5260               TII->get(TargetOpcode::LOCAL_ESCAPE))
5261           .addSym(FrameAllocSym)
5262           .addFrameIndex(FI);
5263     }
5264 
5265     return nullptr;
5266   }
5267 
5268   case Intrinsic::localrecover: {
5269     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
5270     MachineFunction &MF = DAG.getMachineFunction();
5271     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
5272 
5273     // Get the symbol that defines the frame offset.
5274     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5275     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
5276     unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX));
5277     MCSymbol *FrameAllocSym =
5278         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
5279             GlobalValue::getRealLinkageName(Fn->getName()), IdxVal);
5280 
5281     // Create a MCSymbol for the label to avoid any target lowering
5282     // that would make this PC relative.
5283     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
5284     SDValue OffsetVal =
5285         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
5286 
5287     // Add the offset to the FP.
5288     Value *FP = I.getArgOperand(1);
5289     SDValue FPVal = getValue(FP);
5290     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5291     setValue(&I, Add);
5292 
5293     return nullptr;
5294   }
5295 
5296   case Intrinsic::eh_exceptionpointer:
5297   case Intrinsic::eh_exceptioncode: {
5298     // Get the exception pointer vreg, copy from it, and resize it to fit.
5299     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
5300     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
5301     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
5302     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
5303     SDValue N =
5304         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
5305     if (Intrinsic == Intrinsic::eh_exceptioncode)
5306       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
5307     setValue(&I, N);
5308     return nullptr;
5309   }
5310   }
5311 }
5312 
5313 std::pair<SDValue, SDValue>
5314 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5315                                     const BasicBlock *EHPadBB) {
5316   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5317   MCSymbol *BeginLabel = nullptr;
5318 
5319   if (EHPadBB) {
5320     // Insert a label before the invoke call to mark the try range.  This can be
5321     // used to detect deletion of the invoke via the MachineModuleInfo.
5322     BeginLabel = MMI.getContext().createTempSymbol();
5323 
5324     // For SjLj, keep track of which landing pads go with which invokes
5325     // so as to maintain the ordering of pads in the LSDA.
5326     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5327     if (CallSiteIndex) {
5328       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5329       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
5330 
5331       // Now that the call site is handled, stop tracking it.
5332       MMI.setCurrentCallSite(0);
5333     }
5334 
5335     // Both PendingLoads and PendingExports must be flushed here;
5336     // this call might not return.
5337     (void)getRoot();
5338     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5339 
5340     CLI.setChain(getRoot());
5341   }
5342   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5343   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5344 
5345   assert((CLI.IsTailCall || Result.second.getNode()) &&
5346          "Non-null chain expected with non-tail call!");
5347   assert((Result.second.getNode() || !Result.first.getNode()) &&
5348          "Null value expected with tail call!");
5349 
5350   if (!Result.second.getNode()) {
5351     // As a special case, a null chain means that a tail call has been emitted
5352     // and the DAG root is already updated.
5353     HasTailCall = true;
5354 
5355     // Since there's no actual continuation from this block, nothing can be
5356     // relying on us setting vregs for them.
5357     PendingExports.clear();
5358   } else {
5359     DAG.setRoot(Result.second);
5360   }
5361 
5362   if (EHPadBB) {
5363     // Insert a label at the end of the invoke call to mark the try range.  This
5364     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5365     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
5366     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5367 
5368     // Inform MachineModuleInfo of range.
5369     if (MMI.hasEHFunclets()) {
5370       assert(CLI.CS);
5371       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
5372       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()),
5373                                 BeginLabel, EndLabel);
5374     } else {
5375       MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
5376     }
5377   }
5378 
5379   return Result;
5380 }
5381 
5382 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5383                                       bool isTailCall,
5384                                       const BasicBlock *EHPadBB) {
5385   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5386   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5387   Type *RetTy = FTy->getReturnType();
5388 
5389   TargetLowering::ArgListTy Args;
5390   TargetLowering::ArgListEntry Entry;
5391   Args.reserve(CS.arg_size());
5392 
5393   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5394        i != e; ++i) {
5395     const Value *V = *i;
5396 
5397     // Skip empty types
5398     if (V->getType()->isEmptyTy())
5399       continue;
5400 
5401     SDValue ArgNode = getValue(V);
5402     Entry.Node = ArgNode; Entry.Ty = V->getType();
5403 
5404     // Skip the first return-type Attribute to get to params.
5405     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5406     Args.push_back(Entry);
5407 
5408     // If we have an explicit sret argument that is an Instruction, (i.e., it
5409     // might point to function-local memory), we can't meaningfully tail-call.
5410     if (Entry.isSRet && isa<Instruction>(V))
5411       isTailCall = false;
5412   }
5413 
5414   // Check if target-independent constraints permit a tail call here.
5415   // Target-dependent constraints are checked within TLI->LowerCallTo.
5416   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5417     isTailCall = false;
5418 
5419   TargetLowering::CallLoweringInfo CLI(DAG);
5420   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5421     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5422     .setTailCall(isTailCall);
5423   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
5424 
5425   if (Result.first.getNode())
5426     setValue(CS.getInstruction(), Result.first);
5427 }
5428 
5429 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5430 /// value is equal or not-equal to zero.
5431 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5432   for (const User *U : V->users()) {
5433     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5434       if (IC->isEquality())
5435         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5436           if (C->isNullValue())
5437             continue;
5438     // Unknown instruction.
5439     return false;
5440   }
5441   return true;
5442 }
5443 
5444 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5445                              Type *LoadTy,
5446                              SelectionDAGBuilder &Builder) {
5447 
5448   // Check to see if this load can be trivially constant folded, e.g. if the
5449   // input is from a string literal.
5450   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5451     // Cast pointer to the type we really want to load.
5452     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5453                                          PointerType::getUnqual(LoadTy));
5454 
5455     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
5456             const_cast<Constant *>(LoadInput), *Builder.DL))
5457       return Builder.getValue(LoadCst);
5458   }
5459 
5460   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5461   // still constant memory, the input chain can be the entry node.
5462   SDValue Root;
5463   bool ConstantMemory = false;
5464 
5465   // Do not serialize (non-volatile) loads of constant memory with anything.
5466   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5467     Root = Builder.DAG.getEntryNode();
5468     ConstantMemory = true;
5469   } else {
5470     // Do not serialize non-volatile loads against each other.
5471     Root = Builder.DAG.getRoot();
5472   }
5473 
5474   SDValue Ptr = Builder.getValue(PtrVal);
5475   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5476                                         Ptr, MachinePointerInfo(PtrVal),
5477                                         false /*volatile*/,
5478                                         false /*nontemporal*/,
5479                                         false /*isinvariant*/, 1 /* align=1 */);
5480 
5481   if (!ConstantMemory)
5482     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5483   return LoadVal;
5484 }
5485 
5486 /// processIntegerCallValue - Record the value for an instruction that
5487 /// produces an integer result, converting the type where necessary.
5488 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5489                                                   SDValue Value,
5490                                                   bool IsSigned) {
5491   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5492                                                     I.getType(), true);
5493   if (IsSigned)
5494     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5495   else
5496     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5497   setValue(&I, Value);
5498 }
5499 
5500 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5501 /// If so, return true and lower it, otherwise return false and it will be
5502 /// lowered like a normal call.
5503 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5504   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5505   if (I.getNumArgOperands() != 3)
5506     return false;
5507 
5508   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5509   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5510       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5511       !I.getType()->isIntegerTy())
5512     return false;
5513 
5514   const Value *Size = I.getArgOperand(2);
5515   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5516   if (CSize && CSize->getZExtValue() == 0) {
5517     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
5518                                                           I.getType(), true);
5519     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
5520     return true;
5521   }
5522 
5523   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5524   std::pair<SDValue, SDValue> Res =
5525     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5526                                 getValue(LHS), getValue(RHS), getValue(Size),
5527                                 MachinePointerInfo(LHS),
5528                                 MachinePointerInfo(RHS));
5529   if (Res.first.getNode()) {
5530     processIntegerCallValue(I, Res.first, true);
5531     PendingLoads.push_back(Res.second);
5532     return true;
5533   }
5534 
5535   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5536   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5537   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5538     bool ActuallyDoIt = true;
5539     MVT LoadVT;
5540     Type *LoadTy;
5541     switch (CSize->getZExtValue()) {
5542     default:
5543       LoadVT = MVT::Other;
5544       LoadTy = nullptr;
5545       ActuallyDoIt = false;
5546       break;
5547     case 2:
5548       LoadVT = MVT::i16;
5549       LoadTy = Type::getInt16Ty(CSize->getContext());
5550       break;
5551     case 4:
5552       LoadVT = MVT::i32;
5553       LoadTy = Type::getInt32Ty(CSize->getContext());
5554       break;
5555     case 8:
5556       LoadVT = MVT::i64;
5557       LoadTy = Type::getInt64Ty(CSize->getContext());
5558       break;
5559         /*
5560     case 16:
5561       LoadVT = MVT::v4i32;
5562       LoadTy = Type::getInt32Ty(CSize->getContext());
5563       LoadTy = VectorType::get(LoadTy, 4);
5564       break;
5565          */
5566     }
5567 
5568     // This turns into unaligned loads.  We only do this if the target natively
5569     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5570     // we'll only produce a small number of byte loads.
5571 
5572     // Require that we can find a legal MVT, and only do this if the target
5573     // supports unaligned loads of that type.  Expanding into byte loads would
5574     // bloat the code.
5575     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5576     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5577       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5578       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5579       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5580       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5581       // TODO: Check alignment of src and dest ptrs.
5582       if (!TLI.isTypeLegal(LoadVT) ||
5583           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5584           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5585         ActuallyDoIt = false;
5586     }
5587 
5588     if (ActuallyDoIt) {
5589       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5590       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5591 
5592       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5593                                  ISD::SETNE);
5594       processIntegerCallValue(I, Res, false);
5595       return true;
5596     }
5597   }
5598 
5599 
5600   return false;
5601 }
5602 
5603 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5604 /// form.  If so, return true and lower it, otherwise return false and it
5605 /// will be lowered like a normal call.
5606 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5607   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5608   if (I.getNumArgOperands() != 3)
5609     return false;
5610 
5611   const Value *Src = I.getArgOperand(0);
5612   const Value *Char = I.getArgOperand(1);
5613   const Value *Length = I.getArgOperand(2);
5614   if (!Src->getType()->isPointerTy() ||
5615       !Char->getType()->isIntegerTy() ||
5616       !Length->getType()->isIntegerTy() ||
5617       !I.getType()->isPointerTy())
5618     return false;
5619 
5620   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5621   std::pair<SDValue, SDValue> Res =
5622     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5623                                 getValue(Src), getValue(Char), getValue(Length),
5624                                 MachinePointerInfo(Src));
5625   if (Res.first.getNode()) {
5626     setValue(&I, Res.first);
5627     PendingLoads.push_back(Res.second);
5628     return true;
5629   }
5630 
5631   return false;
5632 }
5633 
5634 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5635 /// optimized form.  If so, return true and lower it, otherwise return false
5636 /// and it will be lowered like a normal call.
5637 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5638   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5639   if (I.getNumArgOperands() != 2)
5640     return false;
5641 
5642   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5643   if (!Arg0->getType()->isPointerTy() ||
5644       !Arg1->getType()->isPointerTy() ||
5645       !I.getType()->isPointerTy())
5646     return false;
5647 
5648   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5649   std::pair<SDValue, SDValue> Res =
5650     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5651                                 getValue(Arg0), getValue(Arg1),
5652                                 MachinePointerInfo(Arg0),
5653                                 MachinePointerInfo(Arg1), isStpcpy);
5654   if (Res.first.getNode()) {
5655     setValue(&I, Res.first);
5656     DAG.setRoot(Res.second);
5657     return true;
5658   }
5659 
5660   return false;
5661 }
5662 
5663 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5664 /// If so, return true and lower it, otherwise return false and it will be
5665 /// lowered like a normal call.
5666 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5667   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5668   if (I.getNumArgOperands() != 2)
5669     return false;
5670 
5671   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5672   if (!Arg0->getType()->isPointerTy() ||
5673       !Arg1->getType()->isPointerTy() ||
5674       !I.getType()->isIntegerTy())
5675     return false;
5676 
5677   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5678   std::pair<SDValue, SDValue> Res =
5679     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5680                                 getValue(Arg0), getValue(Arg1),
5681                                 MachinePointerInfo(Arg0),
5682                                 MachinePointerInfo(Arg1));
5683   if (Res.first.getNode()) {
5684     processIntegerCallValue(I, Res.first, true);
5685     PendingLoads.push_back(Res.second);
5686     return true;
5687   }
5688 
5689   return false;
5690 }
5691 
5692 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5693 /// form.  If so, return true and lower it, otherwise return false and it
5694 /// will be lowered like a normal call.
5695 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5696   // Verify that the prototype makes sense.  size_t strlen(char *)
5697   if (I.getNumArgOperands() != 1)
5698     return false;
5699 
5700   const Value *Arg0 = I.getArgOperand(0);
5701   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5702     return false;
5703 
5704   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5705   std::pair<SDValue, SDValue> Res =
5706     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5707                                 getValue(Arg0), MachinePointerInfo(Arg0));
5708   if (Res.first.getNode()) {
5709     processIntegerCallValue(I, Res.first, false);
5710     PendingLoads.push_back(Res.second);
5711     return true;
5712   }
5713 
5714   return false;
5715 }
5716 
5717 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5718 /// form.  If so, return true and lower it, otherwise return false and it
5719 /// will be lowered like a normal call.
5720 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5721   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
5722   if (I.getNumArgOperands() != 2)
5723     return false;
5724 
5725   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5726   if (!Arg0->getType()->isPointerTy() ||
5727       !Arg1->getType()->isIntegerTy() ||
5728       !I.getType()->isIntegerTy())
5729     return false;
5730 
5731   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5732   std::pair<SDValue, SDValue> Res =
5733     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5734                                  getValue(Arg0), getValue(Arg1),
5735                                  MachinePointerInfo(Arg0));
5736   if (Res.first.getNode()) {
5737     processIntegerCallValue(I, Res.first, false);
5738     PendingLoads.push_back(Res.second);
5739     return true;
5740   }
5741 
5742   return false;
5743 }
5744 
5745 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5746 /// operation (as expected), translate it to an SDNode with the specified opcode
5747 /// and return true.
5748 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5749                                               unsigned Opcode) {
5750   // Sanity check that it really is a unary floating-point call.
5751   if (I.getNumArgOperands() != 1 ||
5752       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5753       I.getType() != I.getArgOperand(0)->getType() ||
5754       !I.onlyReadsMemory())
5755     return false;
5756 
5757   SDValue Tmp = getValue(I.getArgOperand(0));
5758   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5759   return true;
5760 }
5761 
5762 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
5763 /// operation (as expected), translate it to an SDNode with the specified opcode
5764 /// and return true.
5765 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
5766                                                unsigned Opcode) {
5767   // Sanity check that it really is a binary floating-point call.
5768   if (I.getNumArgOperands() != 2 ||
5769       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5770       I.getType() != I.getArgOperand(0)->getType() ||
5771       I.getType() != I.getArgOperand(1)->getType() ||
5772       !I.onlyReadsMemory())
5773     return false;
5774 
5775   SDValue Tmp0 = getValue(I.getArgOperand(0));
5776   SDValue Tmp1 = getValue(I.getArgOperand(1));
5777   EVT VT = Tmp0.getValueType();
5778   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
5779   return true;
5780 }
5781 
5782 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5783   // Handle inline assembly differently.
5784   if (isa<InlineAsm>(I.getCalledValue())) {
5785     visitInlineAsm(&I);
5786     return;
5787   }
5788 
5789   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5790   ComputeUsesVAFloatArgument(I, &MMI);
5791 
5792   const char *RenameFn = nullptr;
5793   if (Function *F = I.getCalledFunction()) {
5794     if (F->isDeclaration()) {
5795       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5796         if (unsigned IID = II->getIntrinsicID(F)) {
5797           RenameFn = visitIntrinsicCall(I, IID);
5798           if (!RenameFn)
5799             return;
5800         }
5801       }
5802       if (Intrinsic::ID IID = F->getIntrinsicID()) {
5803         RenameFn = visitIntrinsicCall(I, IID);
5804         if (!RenameFn)
5805           return;
5806       }
5807     }
5808 
5809     // Check for well-known libc/libm calls.  If the function is internal, it
5810     // can't be a library call.
5811     LibFunc::Func Func;
5812     if (!F->hasLocalLinkage() && F->hasName() &&
5813         LibInfo->getLibFunc(F->getName(), Func) &&
5814         LibInfo->hasOptimizedCodeGen(Func)) {
5815       switch (Func) {
5816       default: break;
5817       case LibFunc::copysign:
5818       case LibFunc::copysignf:
5819       case LibFunc::copysignl:
5820         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
5821             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5822             I.getType() == I.getArgOperand(0)->getType() &&
5823             I.getType() == I.getArgOperand(1)->getType() &&
5824             I.onlyReadsMemory()) {
5825           SDValue LHS = getValue(I.getArgOperand(0));
5826           SDValue RHS = getValue(I.getArgOperand(1));
5827           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5828                                    LHS.getValueType(), LHS, RHS));
5829           return;
5830         }
5831         break;
5832       case LibFunc::fabs:
5833       case LibFunc::fabsf:
5834       case LibFunc::fabsl:
5835         if (visitUnaryFloatCall(I, ISD::FABS))
5836           return;
5837         break;
5838       case LibFunc::fmin:
5839       case LibFunc::fminf:
5840       case LibFunc::fminl:
5841         if (visitBinaryFloatCall(I, ISD::FMINNUM))
5842           return;
5843         break;
5844       case LibFunc::fmax:
5845       case LibFunc::fmaxf:
5846       case LibFunc::fmaxl:
5847         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
5848           return;
5849         break;
5850       case LibFunc::sin:
5851       case LibFunc::sinf:
5852       case LibFunc::sinl:
5853         if (visitUnaryFloatCall(I, ISD::FSIN))
5854           return;
5855         break;
5856       case LibFunc::cos:
5857       case LibFunc::cosf:
5858       case LibFunc::cosl:
5859         if (visitUnaryFloatCall(I, ISD::FCOS))
5860           return;
5861         break;
5862       case LibFunc::sqrt:
5863       case LibFunc::sqrtf:
5864       case LibFunc::sqrtl:
5865       case LibFunc::sqrt_finite:
5866       case LibFunc::sqrtf_finite:
5867       case LibFunc::sqrtl_finite:
5868         if (visitUnaryFloatCall(I, ISD::FSQRT))
5869           return;
5870         break;
5871       case LibFunc::floor:
5872       case LibFunc::floorf:
5873       case LibFunc::floorl:
5874         if (visitUnaryFloatCall(I, ISD::FFLOOR))
5875           return;
5876         break;
5877       case LibFunc::nearbyint:
5878       case LibFunc::nearbyintf:
5879       case LibFunc::nearbyintl:
5880         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5881           return;
5882         break;
5883       case LibFunc::ceil:
5884       case LibFunc::ceilf:
5885       case LibFunc::ceill:
5886         if (visitUnaryFloatCall(I, ISD::FCEIL))
5887           return;
5888         break;
5889       case LibFunc::rint:
5890       case LibFunc::rintf:
5891       case LibFunc::rintl:
5892         if (visitUnaryFloatCall(I, ISD::FRINT))
5893           return;
5894         break;
5895       case LibFunc::round:
5896       case LibFunc::roundf:
5897       case LibFunc::roundl:
5898         if (visitUnaryFloatCall(I, ISD::FROUND))
5899           return;
5900         break;
5901       case LibFunc::trunc:
5902       case LibFunc::truncf:
5903       case LibFunc::truncl:
5904         if (visitUnaryFloatCall(I, ISD::FTRUNC))
5905           return;
5906         break;
5907       case LibFunc::log2:
5908       case LibFunc::log2f:
5909       case LibFunc::log2l:
5910         if (visitUnaryFloatCall(I, ISD::FLOG2))
5911           return;
5912         break;
5913       case LibFunc::exp2:
5914       case LibFunc::exp2f:
5915       case LibFunc::exp2l:
5916         if (visitUnaryFloatCall(I, ISD::FEXP2))
5917           return;
5918         break;
5919       case LibFunc::memcmp:
5920         if (visitMemCmpCall(I))
5921           return;
5922         break;
5923       case LibFunc::memchr:
5924         if (visitMemChrCall(I))
5925           return;
5926         break;
5927       case LibFunc::strcpy:
5928         if (visitStrCpyCall(I, false))
5929           return;
5930         break;
5931       case LibFunc::stpcpy:
5932         if (visitStrCpyCall(I, true))
5933           return;
5934         break;
5935       case LibFunc::strcmp:
5936         if (visitStrCmpCall(I))
5937           return;
5938         break;
5939       case LibFunc::strlen:
5940         if (visitStrLenCall(I))
5941           return;
5942         break;
5943       case LibFunc::strnlen:
5944         if (visitStrNLenCall(I))
5945           return;
5946         break;
5947       }
5948     }
5949   }
5950 
5951   SDValue Callee;
5952   if (!RenameFn)
5953     Callee = getValue(I.getCalledValue());
5954   else
5955     Callee = DAG.getExternalSymbol(
5956         RenameFn,
5957         DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5958 
5959   // Check if we can potentially perform a tail call. More detailed checking is
5960   // be done within LowerCallTo, after more information about the call is known.
5961   LowerCallTo(&I, Callee, I.isTailCall());
5962 }
5963 
5964 namespace {
5965 
5966 /// AsmOperandInfo - This contains information for each constraint that we are
5967 /// lowering.
5968 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5969 public:
5970   /// CallOperand - If this is the result output operand or a clobber
5971   /// this is null, otherwise it is the incoming operand to the CallInst.
5972   /// This gets modified as the asm is processed.
5973   SDValue CallOperand;
5974 
5975   /// AssignedRegs - If this is a register or register class operand, this
5976   /// contains the set of register corresponding to the operand.
5977   RegsForValue AssignedRegs;
5978 
5979   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
5980     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
5981   }
5982 
5983   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
5984   /// corresponds to.  If there is no Value* for this operand, it returns
5985   /// MVT::Other.
5986   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
5987                            const DataLayout &DL) const {
5988     if (!CallOperandVal) return MVT::Other;
5989 
5990     if (isa<BasicBlock>(CallOperandVal))
5991       return TLI.getPointerTy(DL);
5992 
5993     llvm::Type *OpTy = CallOperandVal->getType();
5994 
5995     // FIXME: code duplicated from TargetLowering::ParseConstraints().
5996     // If this is an indirect operand, the operand is a pointer to the
5997     // accessed type.
5998     if (isIndirect) {
5999       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6000       if (!PtrTy)
6001         report_fatal_error("Indirect operand for inline asm not a pointer!");
6002       OpTy = PtrTy->getElementType();
6003     }
6004 
6005     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6006     if (StructType *STy = dyn_cast<StructType>(OpTy))
6007       if (STy->getNumElements() == 1)
6008         OpTy = STy->getElementType(0);
6009 
6010     // If OpTy is not a single value, it may be a struct/union that we
6011     // can tile with integers.
6012     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6013       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
6014       switch (BitSize) {
6015       default: break;
6016       case 1:
6017       case 8:
6018       case 16:
6019       case 32:
6020       case 64:
6021       case 128:
6022         OpTy = IntegerType::get(Context, BitSize);
6023         break;
6024       }
6025     }
6026 
6027     return TLI.getValueType(DL, OpTy, true);
6028   }
6029 };
6030 
6031 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6032 
6033 } // end anonymous namespace
6034 
6035 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6036 /// specified operand.  We prefer to assign virtual registers, to allow the
6037 /// register allocator to handle the assignment process.  However, if the asm
6038 /// uses features that we can't model on machineinstrs, we have SDISel do the
6039 /// allocation.  This produces generally horrible, but correct, code.
6040 ///
6041 ///   OpInfo describes the operand.
6042 ///
6043 static void GetRegistersForValue(SelectionDAG &DAG,
6044                                  const TargetLowering &TLI,
6045                                  SDLoc DL,
6046                                  SDISelAsmOperandInfo &OpInfo) {
6047   LLVMContext &Context = *DAG.getContext();
6048 
6049   MachineFunction &MF = DAG.getMachineFunction();
6050   SmallVector<unsigned, 4> Regs;
6051 
6052   // If this is a constraint for a single physreg, or a constraint for a
6053   // register class, find it.
6054   std::pair<unsigned, const TargetRegisterClass *> PhysReg =
6055       TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(),
6056                                        OpInfo.ConstraintCode,
6057                                        OpInfo.ConstraintVT);
6058 
6059   unsigned NumRegs = 1;
6060   if (OpInfo.ConstraintVT != MVT::Other) {
6061     // If this is a FP input in an integer register (or visa versa) insert a bit
6062     // cast of the input value.  More generally, handle any case where the input
6063     // value disagrees with the register class we plan to stick this in.
6064     if (OpInfo.Type == InlineAsm::isInput &&
6065         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6066       // Try to convert to the first EVT that the reg class contains.  If the
6067       // types are identical size, use a bitcast to convert (e.g. two differing
6068       // vector types).
6069       MVT RegVT = *PhysReg.second->vt_begin();
6070       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6071         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6072                                          RegVT, OpInfo.CallOperand);
6073         OpInfo.ConstraintVT = RegVT;
6074       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6075         // If the input is a FP value and we want it in FP registers, do a
6076         // bitcast to the corresponding integer type.  This turns an f64 value
6077         // into i64, which can be passed with two i32 values on a 32-bit
6078         // machine.
6079         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6080         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6081                                          RegVT, OpInfo.CallOperand);
6082         OpInfo.ConstraintVT = RegVT;
6083       }
6084     }
6085 
6086     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6087   }
6088 
6089   MVT RegVT;
6090   EVT ValueVT = OpInfo.ConstraintVT;
6091 
6092   // If this is a constraint for a specific physical register, like {r17},
6093   // assign it now.
6094   if (unsigned AssignedReg = PhysReg.first) {
6095     const TargetRegisterClass *RC = PhysReg.second;
6096     if (OpInfo.ConstraintVT == MVT::Other)
6097       ValueVT = *RC->vt_begin();
6098 
6099     // Get the actual register value type.  This is important, because the user
6100     // may have asked for (e.g.) the AX register in i32 type.  We need to
6101     // remember that AX is actually i16 to get the right extension.
6102     RegVT = *RC->vt_begin();
6103 
6104     // This is a explicit reference to a physical register.
6105     Regs.push_back(AssignedReg);
6106 
6107     // If this is an expanded reference, add the rest of the regs to Regs.
6108     if (NumRegs != 1) {
6109       TargetRegisterClass::iterator I = RC->begin();
6110       for (; *I != AssignedReg; ++I)
6111         assert(I != RC->end() && "Didn't find reg!");
6112 
6113       // Already added the first reg.
6114       --NumRegs; ++I;
6115       for (; NumRegs; --NumRegs, ++I) {
6116         assert(I != RC->end() && "Ran out of registers to allocate!");
6117         Regs.push_back(*I);
6118       }
6119     }
6120 
6121     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6122     return;
6123   }
6124 
6125   // Otherwise, if this was a reference to an LLVM register class, create vregs
6126   // for this reference.
6127   if (const TargetRegisterClass *RC = PhysReg.second) {
6128     RegVT = *RC->vt_begin();
6129     if (OpInfo.ConstraintVT == MVT::Other)
6130       ValueVT = RegVT;
6131 
6132     // Create the appropriate number of virtual registers.
6133     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6134     for (; NumRegs; --NumRegs)
6135       Regs.push_back(RegInfo.createVirtualRegister(RC));
6136 
6137     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6138     return;
6139   }
6140 
6141   // Otherwise, we couldn't allocate enough registers for this.
6142 }
6143 
6144 /// visitInlineAsm - Handle a call to an InlineAsm object.
6145 ///
6146 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6147   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6148 
6149   /// ConstraintOperands - Information about all of the constraints.
6150   SDISelAsmOperandInfoVector ConstraintOperands;
6151 
6152   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6153   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
6154       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
6155 
6156   bool hasMemory = false;
6157 
6158   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6159   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6160   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6161     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6162     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6163 
6164     MVT OpVT = MVT::Other;
6165 
6166     // Compute the value type for each operand.
6167     switch (OpInfo.Type) {
6168     case InlineAsm::isOutput:
6169       // Indirect outputs just consume an argument.
6170       if (OpInfo.isIndirect) {
6171         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6172         break;
6173       }
6174 
6175       // The return value of the call is this value.  As such, there is no
6176       // corresponding argument.
6177       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6178       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6179         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(),
6180                                       STy->getElementType(ResNo));
6181       } else {
6182         assert(ResNo == 0 && "Asm only has one result!");
6183         OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
6184       }
6185       ++ResNo;
6186       break;
6187     case InlineAsm::isInput:
6188       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6189       break;
6190     case InlineAsm::isClobber:
6191       // Nothing to do.
6192       break;
6193     }
6194 
6195     // If this is an input or an indirect output, process the call argument.
6196     // BasicBlocks are labels, currently appearing only in asm's.
6197     if (OpInfo.CallOperandVal) {
6198       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6199         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6200       } else {
6201         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6202       }
6203 
6204       OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI,
6205                                          DAG.getDataLayout()).getSimpleVT();
6206     }
6207 
6208     OpInfo.ConstraintVT = OpVT;
6209 
6210     // Indirect operand accesses access memory.
6211     if (OpInfo.isIndirect)
6212       hasMemory = true;
6213     else {
6214       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6215         TargetLowering::ConstraintType
6216           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6217         if (CType == TargetLowering::C_Memory) {
6218           hasMemory = true;
6219           break;
6220         }
6221       }
6222     }
6223   }
6224 
6225   SDValue Chain, Flag;
6226 
6227   // We won't need to flush pending loads if this asm doesn't touch
6228   // memory and is nonvolatile.
6229   if (hasMemory || IA->hasSideEffects())
6230     Chain = getRoot();
6231   else
6232     Chain = DAG.getRoot();
6233 
6234   // Second pass over the constraints: compute which constraint option to use
6235   // and assign registers to constraints that want a specific physreg.
6236   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6237     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6238 
6239     // If this is an output operand with a matching input operand, look up the
6240     // matching input. If their types mismatch, e.g. one is an integer, the
6241     // other is floating point, or their sizes are different, flag it as an
6242     // error.
6243     if (OpInfo.hasMatchingInput()) {
6244       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6245 
6246       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6247         const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
6248         std::pair<unsigned, const TargetRegisterClass *> MatchRC =
6249             TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
6250                                              OpInfo.ConstraintVT);
6251         std::pair<unsigned, const TargetRegisterClass *> InputRC =
6252             TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
6253                                              Input.ConstraintVT);
6254         if ((OpInfo.ConstraintVT.isInteger() !=
6255              Input.ConstraintVT.isInteger()) ||
6256             (MatchRC.second != InputRC.second)) {
6257           report_fatal_error("Unsupported asm: input constraint"
6258                              " with a matching output constraint of"
6259                              " incompatible type!");
6260         }
6261         Input.ConstraintVT = OpInfo.ConstraintVT;
6262       }
6263     }
6264 
6265     // Compute the constraint code and ConstraintType to use.
6266     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6267 
6268     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6269         OpInfo.Type == InlineAsm::isClobber)
6270       continue;
6271 
6272     // If this is a memory input, and if the operand is not indirect, do what we
6273     // need to to provide an address for the memory input.
6274     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6275         !OpInfo.isIndirect) {
6276       assert((OpInfo.isMultipleAlternative ||
6277               (OpInfo.Type == InlineAsm::isInput)) &&
6278              "Can only indirectify direct input operands!");
6279 
6280       // Memory operands really want the address of the value.  If we don't have
6281       // an indirect input, put it in the constpool if we can, otherwise spill
6282       // it to a stack slot.
6283       // TODO: This isn't quite right. We need to handle these according to
6284       // the addressing mode that the constraint wants. Also, this may take
6285       // an additional register for the computation and we don't want that
6286       // either.
6287 
6288       // If the operand is a float, integer, or vector constant, spill to a
6289       // constant pool entry to get its address.
6290       const Value *OpVal = OpInfo.CallOperandVal;
6291       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6292           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6293         OpInfo.CallOperand = DAG.getConstantPool(
6294             cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
6295       } else {
6296         // Otherwise, create a stack slot and emit a store to it before the
6297         // asm.
6298         Type *Ty = OpVal->getType();
6299         auto &DL = DAG.getDataLayout();
6300         uint64_t TySize = DL.getTypeAllocSize(Ty);
6301         unsigned Align = DL.getPrefTypeAlignment(Ty);
6302         MachineFunction &MF = DAG.getMachineFunction();
6303         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6304         SDValue StackSlot =
6305             DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout()));
6306         Chain = DAG.getStore(
6307             Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot,
6308             MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI),
6309             false, false, 0);
6310         OpInfo.CallOperand = StackSlot;
6311       }
6312 
6313       // There is no longer a Value* corresponding to this operand.
6314       OpInfo.CallOperandVal = nullptr;
6315 
6316       // It is now an indirect operand.
6317       OpInfo.isIndirect = true;
6318     }
6319 
6320     // If this constraint is for a specific register, allocate it before
6321     // anything else.
6322     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6323       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6324   }
6325 
6326   // Second pass - Loop over all of the operands, assigning virtual or physregs
6327   // to register class operands.
6328   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6329     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6330 
6331     // C_Register operands have already been allocated, Other/Memory don't need
6332     // to be.
6333     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6334       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6335   }
6336 
6337   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6338   std::vector<SDValue> AsmNodeOperands;
6339   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6340   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
6341       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
6342 
6343   // If we have a !srcloc metadata node associated with it, we want to attach
6344   // this to the ultimately generated inline asm machineinstr.  To do this, we
6345   // pass in the third operand as this (potentially null) inline asm MDNode.
6346   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6347   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6348 
6349   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6350   // bits as operand 3.
6351   unsigned ExtraInfo = 0;
6352   if (IA->hasSideEffects())
6353     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6354   if (IA->isAlignStack())
6355     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6356   // Set the asm dialect.
6357   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6358 
6359   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6360   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6361     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6362 
6363     // Compute the constraint code and ConstraintType to use.
6364     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6365 
6366     // Ideally, we would only check against memory constraints.  However, the
6367     // meaning of an other constraint can be target-specific and we can't easily
6368     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6369     // for other constriants as well.
6370     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6371         OpInfo.ConstraintType == TargetLowering::C_Other) {
6372       if (OpInfo.Type == InlineAsm::isInput)
6373         ExtraInfo |= InlineAsm::Extra_MayLoad;
6374       else if (OpInfo.Type == InlineAsm::isOutput)
6375         ExtraInfo |= InlineAsm::Extra_MayStore;
6376       else if (OpInfo.Type == InlineAsm::isClobber)
6377         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6378     }
6379   }
6380 
6381   AsmNodeOperands.push_back(DAG.getTargetConstant(
6382       ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6383 
6384   // Loop over all of the inputs, copying the operand values into the
6385   // appropriate registers and processing the output regs.
6386   RegsForValue RetValRegs;
6387 
6388   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6389   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6390 
6391   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6392     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6393 
6394     switch (OpInfo.Type) {
6395     case InlineAsm::isOutput: {
6396       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6397           OpInfo.ConstraintType != TargetLowering::C_Register) {
6398         // Memory output, or 'other' output (e.g. 'X' constraint).
6399         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6400 
6401         unsigned ConstraintID =
6402             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6403         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6404                "Failed to convert memory constraint code to constraint id.");
6405 
6406         // Add information to the INLINEASM node to know about this output.
6407         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6408         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
6409         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
6410                                                         MVT::i32));
6411         AsmNodeOperands.push_back(OpInfo.CallOperand);
6412         break;
6413       }
6414 
6415       // Otherwise, this is a register or register class output.
6416 
6417       // Copy the output from the appropriate register.  Find a register that
6418       // we can use.
6419       if (OpInfo.AssignedRegs.Regs.empty()) {
6420         LLVMContext &Ctx = *DAG.getContext();
6421         Ctx.emitError(CS.getInstruction(),
6422                       "couldn't allocate output register for constraint '" +
6423                           Twine(OpInfo.ConstraintCode) + "'");
6424         return;
6425       }
6426 
6427       // If this is an indirect operand, store through the pointer after the
6428       // asm.
6429       if (OpInfo.isIndirect) {
6430         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6431                                                       OpInfo.CallOperandVal));
6432       } else {
6433         // This is the result value of the call.
6434         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6435         // Concatenate this output onto the outputs list.
6436         RetValRegs.append(OpInfo.AssignedRegs);
6437       }
6438 
6439       // Add information to the INLINEASM node to know that this register is
6440       // set.
6441       OpInfo.AssignedRegs
6442           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6443                                     ? InlineAsm::Kind_RegDefEarlyClobber
6444                                     : InlineAsm::Kind_RegDef,
6445                                 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
6446       break;
6447     }
6448     case InlineAsm::isInput: {
6449       SDValue InOperandVal = OpInfo.CallOperand;
6450 
6451       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6452         // If this is required to match an output register we have already set,
6453         // just use its register.
6454         unsigned OperandNo = OpInfo.getMatchedOperand();
6455 
6456         // Scan until we find the definition we already emitted of this operand.
6457         // When we find it, create a RegsForValue operand.
6458         unsigned CurOp = InlineAsm::Op_FirstOperand;
6459         for (; OperandNo; --OperandNo) {
6460           // Advance to the next operand.
6461           unsigned OpFlag =
6462             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6463           assert((InlineAsm::isRegDefKind(OpFlag) ||
6464                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6465                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6466           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6467         }
6468 
6469         unsigned OpFlag =
6470           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6471         if (InlineAsm::isRegDefKind(OpFlag) ||
6472             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6473           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6474           if (OpInfo.isIndirect) {
6475             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6476             LLVMContext &Ctx = *DAG.getContext();
6477             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6478                                                " don't know how to handle tied "
6479                                                "indirect register inputs");
6480             return;
6481           }
6482 
6483           RegsForValue MatchedRegs;
6484           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6485           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6486           MatchedRegs.RegVTs.push_back(RegVT);
6487           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6488           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6489                i != e; ++i) {
6490             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6491               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6492             else {
6493               LLVMContext &Ctx = *DAG.getContext();
6494               Ctx.emitError(CS.getInstruction(),
6495                             "inline asm error: This value"
6496                             " type register class is not natively supported!");
6497               return;
6498             }
6499           }
6500           SDLoc dl = getCurSDLoc();
6501           // Use the produced MatchedRegs object to
6502           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6503                                     Chain, &Flag, CS.getInstruction());
6504           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6505                                            true, OpInfo.getMatchedOperand(), dl,
6506                                            DAG, AsmNodeOperands);
6507           break;
6508         }
6509 
6510         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6511         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6512                "Unexpected number of operands");
6513         // Add information to the INLINEASM node to know about this input.
6514         // See InlineAsm.h isUseOperandTiedToDef.
6515         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
6516         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6517                                                     OpInfo.getMatchedOperand());
6518         AsmNodeOperands.push_back(DAG.getTargetConstant(
6519             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6520         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6521         break;
6522       }
6523 
6524       // Treat indirect 'X' constraint as memory.
6525       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6526           OpInfo.isIndirect)
6527         OpInfo.ConstraintType = TargetLowering::C_Memory;
6528 
6529       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6530         std::vector<SDValue> Ops;
6531         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6532                                           Ops, DAG);
6533         if (Ops.empty()) {
6534           LLVMContext &Ctx = *DAG.getContext();
6535           Ctx.emitError(CS.getInstruction(),
6536                         "invalid operand for inline asm constraint '" +
6537                             Twine(OpInfo.ConstraintCode) + "'");
6538           return;
6539         }
6540 
6541         // Add information to the INLINEASM node to know about this input.
6542         unsigned ResOpType =
6543           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6544         AsmNodeOperands.push_back(DAG.getTargetConstant(
6545             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
6546         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6547         break;
6548       }
6549 
6550       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6551         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6552         assert(InOperandVal.getValueType() ==
6553                    TLI.getPointerTy(DAG.getDataLayout()) &&
6554                "Memory operands expect pointer values");
6555 
6556         unsigned ConstraintID =
6557             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
6558         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
6559                "Failed to convert memory constraint code to constraint id.");
6560 
6561         // Add information to the INLINEASM node to know about this input.
6562         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6563         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
6564         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6565                                                         getCurSDLoc(),
6566                                                         MVT::i32));
6567         AsmNodeOperands.push_back(InOperandVal);
6568         break;
6569       }
6570 
6571       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6572               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6573              "Unknown constraint type!");
6574 
6575       // TODO: Support this.
6576       if (OpInfo.isIndirect) {
6577         LLVMContext &Ctx = *DAG.getContext();
6578         Ctx.emitError(CS.getInstruction(),
6579                       "Don't know how to handle indirect register inputs yet "
6580                       "for constraint '" +
6581                           Twine(OpInfo.ConstraintCode) + "'");
6582         return;
6583       }
6584 
6585       // Copy the input into the appropriate registers.
6586       if (OpInfo.AssignedRegs.Regs.empty()) {
6587         LLVMContext &Ctx = *DAG.getContext();
6588         Ctx.emitError(CS.getInstruction(),
6589                       "couldn't allocate input reg for constraint '" +
6590                           Twine(OpInfo.ConstraintCode) + "'");
6591         return;
6592       }
6593 
6594       SDLoc dl = getCurSDLoc();
6595 
6596       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
6597                                         Chain, &Flag, CS.getInstruction());
6598 
6599       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6600                                                dl, DAG, AsmNodeOperands);
6601       break;
6602     }
6603     case InlineAsm::isClobber: {
6604       // Add the clobbered value to the operand list, so that the register
6605       // allocator is aware that the physreg got clobbered.
6606       if (!OpInfo.AssignedRegs.Regs.empty())
6607         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6608                                                  false, 0, getCurSDLoc(), DAG,
6609                                                  AsmNodeOperands);
6610       break;
6611     }
6612     }
6613   }
6614 
6615   // Finish up input operands.  Set the input chain and add the flag last.
6616   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6617   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6618 
6619   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6620                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6621   Flag = Chain.getValue(1);
6622 
6623   // If this asm returns a register value, copy the result from that register
6624   // and set it as the value of the call.
6625   if (!RetValRegs.Regs.empty()) {
6626     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6627                                              Chain, &Flag, CS.getInstruction());
6628 
6629     // FIXME: Why don't we do this for inline asms with MRVs?
6630     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6631       EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType());
6632 
6633       // If any of the results of the inline asm is a vector, it may have the
6634       // wrong width/num elts.  This can happen for register classes that can
6635       // contain multiple different value types.  The preg or vreg allocated may
6636       // not have the same VT as was expected.  Convert it to the right type
6637       // with bit_convert.
6638       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6639         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6640                           ResultType, Val);
6641 
6642       } else if (ResultType != Val.getValueType() &&
6643                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6644         // If a result value was tied to an input value, the computed result may
6645         // have a wider width than the expected result.  Extract the relevant
6646         // portion.
6647         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6648       }
6649 
6650       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6651     }
6652 
6653     setValue(CS.getInstruction(), Val);
6654     // Don't need to use this as a chain in this case.
6655     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6656       return;
6657   }
6658 
6659   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6660 
6661   // Process indirect outputs, first output all of the flagged copies out of
6662   // physregs.
6663   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6664     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6665     const Value *Ptr = IndirectStoresToEmit[i].second;
6666     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6667                                              Chain, &Flag, IA);
6668     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6669   }
6670 
6671   // Emit the non-flagged stores from the physregs.
6672   SmallVector<SDValue, 8> OutChains;
6673   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6674     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6675                                StoresToEmit[i].first,
6676                                getValue(StoresToEmit[i].second),
6677                                MachinePointerInfo(StoresToEmit[i].second),
6678                                false, false, 0);
6679     OutChains.push_back(Val);
6680   }
6681 
6682   if (!OutChains.empty())
6683     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6684 
6685   DAG.setRoot(Chain);
6686 }
6687 
6688 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6689   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6690                           MVT::Other, getRoot(),
6691                           getValue(I.getArgOperand(0)),
6692                           DAG.getSrcValue(I.getArgOperand(0))));
6693 }
6694 
6695 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6696   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6697   const DataLayout &DL = DAG.getDataLayout();
6698   SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6699                            getCurSDLoc(), getRoot(), getValue(I.getOperand(0)),
6700                            DAG.getSrcValue(I.getOperand(0)),
6701                            DL.getABITypeAlignment(I.getType()));
6702   setValue(&I, V);
6703   DAG.setRoot(V.getValue(1));
6704 }
6705 
6706 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6707   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6708                           MVT::Other, getRoot(),
6709                           getValue(I.getArgOperand(0)),
6710                           DAG.getSrcValue(I.getArgOperand(0))));
6711 }
6712 
6713 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6714   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6715                           MVT::Other, getRoot(),
6716                           getValue(I.getArgOperand(0)),
6717                           getValue(I.getArgOperand(1)),
6718                           DAG.getSrcValue(I.getArgOperand(0)),
6719                           DAG.getSrcValue(I.getArgOperand(1))));
6720 }
6721 
6722 /// \brief Lower an argument list according to the target calling convention.
6723 ///
6724 /// \return A tuple of <return-value, token-chain>
6725 ///
6726 /// This is a helper for lowering intrinsics that follow a target calling
6727 /// convention or require stack pointer adjustment. Only a subset of the
6728 /// intrinsic's operands need to participate in the calling convention.
6729 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands(
6730     ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee,
6731     Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) {
6732   TargetLowering::ArgListTy Args;
6733   Args.reserve(NumArgs);
6734 
6735   // Populate the argument list.
6736   // Attributes for args start at offset 1, after the return attribute.
6737   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
6738        ArgI != ArgE; ++ArgI) {
6739     const Value *V = CS->getOperand(ArgI);
6740 
6741     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
6742 
6743     TargetLowering::ArgListEntry Entry;
6744     Entry.Node = getValue(V);
6745     Entry.Ty = V->getType();
6746     Entry.setAttributes(&CS, AttrI);
6747     Args.push_back(Entry);
6748   }
6749 
6750   TargetLowering::CallLoweringInfo CLI(DAG);
6751   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
6752     .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs)
6753     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
6754 
6755   return lowerInvokable(CLI, EHPadBB);
6756 }
6757 
6758 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
6759 /// or patchpoint target node's operand list.
6760 ///
6761 /// Constants are converted to TargetConstants purely as an optimization to
6762 /// avoid constant materialization and register allocation.
6763 ///
6764 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
6765 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
6766 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
6767 /// address materialization and register allocation, but may also be required
6768 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
6769 /// alloca in the entry block, then the runtime may assume that the alloca's
6770 /// StackMap location can be read immediately after compilation and that the
6771 /// location is valid at any point during execution (this is similar to the
6772 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
6773 /// only available in a register, then the runtime would need to trap when
6774 /// execution reaches the StackMap in order to read the alloca's location.
6775 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
6776                                 SDLoc DL, SmallVectorImpl<SDValue> &Ops,
6777                                 SelectionDAGBuilder &Builder) {
6778   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
6779     SDValue OpVal = Builder.getValue(CS.getArgument(i));
6780     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
6781       Ops.push_back(
6782         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
6783       Ops.push_back(
6784         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
6785     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
6786       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
6787       Ops.push_back(Builder.DAG.getTargetFrameIndex(
6788           FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout())));
6789     } else
6790       Ops.push_back(OpVal);
6791   }
6792 }
6793 
6794 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
6795 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
6796   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
6797   //                                  [live variables...])
6798 
6799   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
6800 
6801   SDValue Chain, InFlag, Callee, NullPtr;
6802   SmallVector<SDValue, 32> Ops;
6803 
6804   SDLoc DL = getCurSDLoc();
6805   Callee = getValue(CI.getCalledValue());
6806   NullPtr = DAG.getIntPtrConstant(0, DL, true);
6807 
6808   // The stackmap intrinsic only records the live variables (the arguemnts
6809   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
6810   // intrinsic, this won't be lowered to a function call. This means we don't
6811   // have to worry about calling conventions and target specific lowering code.
6812   // Instead we perform the call lowering right here.
6813   //
6814   // chain, flag = CALLSEQ_START(chain, 0)
6815   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
6816   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
6817   //
6818   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
6819   InFlag = Chain.getValue(1);
6820 
6821   // Add the <id> and <numBytes> constants.
6822   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
6823   Ops.push_back(DAG.getTargetConstant(
6824                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
6825   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
6826   Ops.push_back(DAG.getTargetConstant(
6827                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
6828                   MVT::i32));
6829 
6830   // Push live variables for the stack map.
6831   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
6832 
6833   // We are not pushing any register mask info here on the operands list,
6834   // because the stackmap doesn't clobber anything.
6835 
6836   // Push the chain and the glue flag.
6837   Ops.push_back(Chain);
6838   Ops.push_back(InFlag);
6839 
6840   // Create the STACKMAP node.
6841   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6842   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
6843   Chain = SDValue(SM, 0);
6844   InFlag = Chain.getValue(1);
6845 
6846   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
6847 
6848   // Stackmaps don't generate values, so nothing goes into the NodeMap.
6849 
6850   // Set the root to the target-lowered call chain.
6851   DAG.setRoot(Chain);
6852 
6853   // Inform the Frame Information that we have a stackmap in this function.
6854   FuncInfo.MF->getFrameInfo()->setHasStackMap();
6855 }
6856 
6857 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
6858 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
6859                                           const BasicBlock *EHPadBB) {
6860   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
6861   //                                                 i32 <numBytes>,
6862   //                                                 i8* <target>,
6863   //                                                 i32 <numArgs>,
6864   //                                                 [Args...],
6865   //                                                 [live variables...])
6866 
6867   CallingConv::ID CC = CS.getCallingConv();
6868   bool IsAnyRegCC = CC == CallingConv::AnyReg;
6869   bool HasDef = !CS->getType()->isVoidTy();
6870   SDLoc dl = getCurSDLoc();
6871   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
6872 
6873   // Handle immediate and symbolic callees.
6874   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
6875     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
6876                                    /*isTarget=*/true);
6877   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
6878     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
6879                                          SDLoc(SymbolicCallee),
6880                                          SymbolicCallee->getValueType(0));
6881 
6882   // Get the real number of arguments participating in the call <numArgs>
6883   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
6884   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
6885 
6886   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
6887   // Intrinsics include all meta-operands up to but not including CC.
6888   unsigned NumMetaOpers = PatchPointOpers::CCPos;
6889   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
6890          "Not enough arguments provided to the patchpoint intrinsic");
6891 
6892   // For AnyRegCC the arguments are lowered later on manually.
6893   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
6894   Type *ReturnTy =
6895     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
6896   std::pair<SDValue, SDValue> Result = lowerCallOperands(
6897       CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true);
6898 
6899   SDNode *CallEnd = Result.second.getNode();
6900   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
6901     CallEnd = CallEnd->getOperand(0).getNode();
6902 
6903   /// Get a call instruction from the call sequence chain.
6904   /// Tail calls are not allowed.
6905   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
6906          "Expected a callseq node.");
6907   SDNode *Call = CallEnd->getOperand(0).getNode();
6908   bool HasGlue = Call->getGluedNode();
6909 
6910   // Replace the target specific call node with the patchable intrinsic.
6911   SmallVector<SDValue, 8> Ops;
6912 
6913   // Add the <id> and <numBytes> constants.
6914   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
6915   Ops.push_back(DAG.getTargetConstant(
6916                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
6917   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
6918   Ops.push_back(DAG.getTargetConstant(
6919                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
6920                   MVT::i32));
6921 
6922   // Add the callee.
6923   Ops.push_back(Callee);
6924 
6925   // Adjust <numArgs> to account for any arguments that have been passed on the
6926   // stack instead.
6927   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
6928   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
6929   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
6930   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
6931 
6932   // Add the calling convention
6933   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
6934 
6935   // Add the arguments we omitted previously. The register allocator should
6936   // place these in any free register.
6937   if (IsAnyRegCC)
6938     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
6939       Ops.push_back(getValue(CS.getArgument(i)));
6940 
6941   // Push the arguments from the call instruction up to the register mask.
6942   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
6943   Ops.append(Call->op_begin() + 2, e);
6944 
6945   // Push live variables for the stack map.
6946   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
6947 
6948   // Push the register mask info.
6949   if (HasGlue)
6950     Ops.push_back(*(Call->op_end()-2));
6951   else
6952     Ops.push_back(*(Call->op_end()-1));
6953 
6954   // Push the chain (this is originally the first operand of the call, but
6955   // becomes now the last or second to last operand).
6956   Ops.push_back(*(Call->op_begin()));
6957 
6958   // Push the glue flag (last operand).
6959   if (HasGlue)
6960     Ops.push_back(*(Call->op_end()-1));
6961 
6962   SDVTList NodeTys;
6963   if (IsAnyRegCC && HasDef) {
6964     // Create the return types based on the intrinsic definition
6965     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6966     SmallVector<EVT, 3> ValueVTs;
6967     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
6968     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
6969 
6970     // There is always a chain and a glue type at the end
6971     ValueVTs.push_back(MVT::Other);
6972     ValueVTs.push_back(MVT::Glue);
6973     NodeTys = DAG.getVTList(ValueVTs);
6974   } else
6975     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6976 
6977   // Replace the target specific call node with a PATCHPOINT node.
6978   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
6979                                          dl, NodeTys, Ops);
6980 
6981   // Update the NodeMap.
6982   if (HasDef) {
6983     if (IsAnyRegCC)
6984       setValue(CS.getInstruction(), SDValue(MN, 0));
6985     else
6986       setValue(CS.getInstruction(), Result.first);
6987   }
6988 
6989   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
6990   // call sequence. Furthermore the location of the chain and glue can change
6991   // when the AnyReg calling convention is used and the intrinsic returns a
6992   // value.
6993   if (IsAnyRegCC && HasDef) {
6994     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
6995     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
6996     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
6997   } else
6998     DAG.ReplaceAllUsesWith(Call, MN);
6999   DAG.DeleteNode(Call);
7000 
7001   // Inform the Frame Information that we have a patchpoint in this function.
7002   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7003 }
7004 
7005 /// Returns an AttributeSet representing the attributes applied to the return
7006 /// value of the given call.
7007 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7008   SmallVector<Attribute::AttrKind, 2> Attrs;
7009   if (CLI.RetSExt)
7010     Attrs.push_back(Attribute::SExt);
7011   if (CLI.RetZExt)
7012     Attrs.push_back(Attribute::ZExt);
7013   if (CLI.IsInReg)
7014     Attrs.push_back(Attribute::InReg);
7015 
7016   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7017                            Attrs);
7018 }
7019 
7020 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7021 /// implementation, which just calls LowerCall.
7022 /// FIXME: When all targets are
7023 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7024 std::pair<SDValue, SDValue>
7025 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7026   // Handle the incoming return values from the call.
7027   CLI.Ins.clear();
7028   Type *OrigRetTy = CLI.RetTy;
7029   SmallVector<EVT, 4> RetTys;
7030   SmallVector<uint64_t, 4> Offsets;
7031   auto &DL = CLI.DAG.getDataLayout();
7032   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
7033 
7034   SmallVector<ISD::OutputArg, 4> Outs;
7035   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
7036 
7037   bool CanLowerReturn =
7038       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7039                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7040 
7041   SDValue DemoteStackSlot;
7042   int DemoteStackIdx = -100;
7043   if (!CanLowerReturn) {
7044     // FIXME: equivalent assert?
7045     // assert(!CS.hasInAllocaArgument() &&
7046     //        "sret demotion is incompatible with inalloca");
7047     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
7048     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
7049     MachineFunction &MF = CLI.DAG.getMachineFunction();
7050     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7051     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7052 
7053     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL));
7054     ArgListEntry Entry;
7055     Entry.Node = DemoteStackSlot;
7056     Entry.Ty = StackSlotPtrType;
7057     Entry.isSExt = false;
7058     Entry.isZExt = false;
7059     Entry.isInReg = false;
7060     Entry.isSRet = true;
7061     Entry.isNest = false;
7062     Entry.isByVal = false;
7063     Entry.isReturned = false;
7064     Entry.Alignment = Align;
7065     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7066     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7067 
7068     // sret demotion isn't compatible with tail-calls, since the sret argument
7069     // points into the callers stack frame.
7070     CLI.IsTailCall = false;
7071   } else {
7072     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7073       EVT VT = RetTys[I];
7074       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7075       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7076       for (unsigned i = 0; i != NumRegs; ++i) {
7077         ISD::InputArg MyFlags;
7078         MyFlags.VT = RegisterVT;
7079         MyFlags.ArgVT = VT;
7080         MyFlags.Used = CLI.IsReturnValueUsed;
7081         if (CLI.RetSExt)
7082           MyFlags.Flags.setSExt();
7083         if (CLI.RetZExt)
7084           MyFlags.Flags.setZExt();
7085         if (CLI.IsInReg)
7086           MyFlags.Flags.setInReg();
7087         CLI.Ins.push_back(MyFlags);
7088       }
7089     }
7090   }
7091 
7092   // Handle all of the outgoing arguments.
7093   CLI.Outs.clear();
7094   CLI.OutVals.clear();
7095   ArgListTy &Args = CLI.getArgs();
7096   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7097     SmallVector<EVT, 4> ValueVTs;
7098     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
7099     Type *FinalType = Args[i].Ty;
7100     if (Args[i].isByVal)
7101       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7102     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7103         FinalType, CLI.CallConv, CLI.IsVarArg);
7104     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7105          ++Value) {
7106       EVT VT = ValueVTs[Value];
7107       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7108       SDValue Op = SDValue(Args[i].Node.getNode(),
7109                            Args[i].Node.getResNo() + Value);
7110       ISD::ArgFlagsTy Flags;
7111       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7112 
7113       if (Args[i].isZExt)
7114         Flags.setZExt();
7115       if (Args[i].isSExt)
7116         Flags.setSExt();
7117       if (Args[i].isInReg)
7118         Flags.setInReg();
7119       if (Args[i].isSRet)
7120         Flags.setSRet();
7121       if (Args[i].isByVal)
7122         Flags.setByVal();
7123       if (Args[i].isInAlloca) {
7124         Flags.setInAlloca();
7125         // Set the byval flag for CCAssignFn callbacks that don't know about
7126         // inalloca.  This way we can know how many bytes we should've allocated
7127         // and how many bytes a callee cleanup function will pop.  If we port
7128         // inalloca to more targets, we'll have to add custom inalloca handling
7129         // in the various CC lowering callbacks.
7130         Flags.setByVal();
7131       }
7132       if (Args[i].isByVal || Args[i].isInAlloca) {
7133         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7134         Type *ElementTy = Ty->getElementType();
7135         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7136         // For ByVal, alignment should come from FE.  BE will guess if this
7137         // info is not there but there are cases it cannot get right.
7138         unsigned FrameAlign;
7139         if (Args[i].Alignment)
7140           FrameAlign = Args[i].Alignment;
7141         else
7142           FrameAlign = getByValTypeAlignment(ElementTy, DL);
7143         Flags.setByValAlign(FrameAlign);
7144       }
7145       if (Args[i].isNest)
7146         Flags.setNest();
7147       if (NeedsRegBlock)
7148         Flags.setInConsecutiveRegs();
7149       Flags.setOrigAlign(OriginalAlignment);
7150 
7151       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7152       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7153       SmallVector<SDValue, 4> Parts(NumParts);
7154       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7155 
7156       if (Args[i].isSExt)
7157         ExtendKind = ISD::SIGN_EXTEND;
7158       else if (Args[i].isZExt)
7159         ExtendKind = ISD::ZERO_EXTEND;
7160 
7161       // Conservatively only handle 'returned' on non-vectors for now
7162       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7163         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7164                "unexpected use of 'returned'");
7165         // Before passing 'returned' to the target lowering code, ensure that
7166         // either the register MVT and the actual EVT are the same size or that
7167         // the return value and argument are extended in the same way; in these
7168         // cases it's safe to pass the argument register value unchanged as the
7169         // return register value (although it's at the target's option whether
7170         // to do so)
7171         // TODO: allow code generation to take advantage of partially preserved
7172         // registers rather than clobbering the entire register when the
7173         // parameter extension method is not compatible with the return
7174         // extension method
7175         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7176             (ExtendKind != ISD::ANY_EXTEND &&
7177              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7178         Flags.setReturned();
7179       }
7180 
7181       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7182                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7183 
7184       for (unsigned j = 0; j != NumParts; ++j) {
7185         // if it isn't first piece, alignment must be 1
7186         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7187                                i < CLI.NumFixedArgs,
7188                                i, j*Parts[j].getValueType().getStoreSize());
7189         if (NumParts > 1 && j == 0)
7190           MyFlags.Flags.setSplit();
7191         else if (j != 0) {
7192           MyFlags.Flags.setOrigAlign(1);
7193           if (j == NumParts - 1)
7194             MyFlags.Flags.setSplitEnd();
7195         }
7196 
7197         CLI.Outs.push_back(MyFlags);
7198         CLI.OutVals.push_back(Parts[j]);
7199       }
7200 
7201       if (NeedsRegBlock && Value == NumValues - 1)
7202         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
7203     }
7204   }
7205 
7206   SmallVector<SDValue, 4> InVals;
7207   CLI.Chain = LowerCall(CLI, InVals);
7208 
7209   // Verify that the target's LowerCall behaved as expected.
7210   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7211          "LowerCall didn't return a valid chain!");
7212   assert((!CLI.IsTailCall || InVals.empty()) &&
7213          "LowerCall emitted a return value for a tail call!");
7214   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7215          "LowerCall didn't emit the correct number of values!");
7216 
7217   // For a tail call, the return value is merely live-out and there aren't
7218   // any nodes in the DAG representing it. Return a special value to
7219   // indicate that a tail call has been emitted and no more Instructions
7220   // should be processed in the current block.
7221   if (CLI.IsTailCall) {
7222     CLI.DAG.setRoot(CLI.Chain);
7223     return std::make_pair(SDValue(), SDValue());
7224   }
7225 
7226   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7227           assert(InVals[i].getNode() &&
7228                  "LowerCall emitted a null value!");
7229           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7230                  "LowerCall emitted a value with the wrong type!");
7231         });
7232 
7233   SmallVector<SDValue, 4> ReturnValues;
7234   if (!CanLowerReturn) {
7235     // The instruction result is the result of loading from the
7236     // hidden sret parameter.
7237     SmallVector<EVT, 1> PVTs;
7238     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7239 
7240     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
7241     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7242     EVT PtrVT = PVTs[0];
7243 
7244     unsigned NumValues = RetTys.size();
7245     ReturnValues.resize(NumValues);
7246     SmallVector<SDValue, 4> Chains(NumValues);
7247 
7248     // An aggregate return value cannot wrap around the address space, so
7249     // offsets to its parts don't wrap either.
7250     SDNodeFlags Flags;
7251     Flags.setNoUnsignedWrap(true);
7252 
7253     for (unsigned i = 0; i < NumValues; ++i) {
7254       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7255                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
7256                                                         PtrVT), &Flags);
7257       SDValue L = CLI.DAG.getLoad(
7258           RetTys[i], CLI.DL, CLI.Chain, Add,
7259           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
7260                                             DemoteStackIdx, Offsets[i]),
7261           false, false, false, 1);
7262       ReturnValues[i] = L;
7263       Chains[i] = L.getValue(1);
7264     }
7265 
7266     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7267   } else {
7268     // Collect the legal value parts into potentially illegal values
7269     // that correspond to the original function's return values.
7270     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7271     if (CLI.RetSExt)
7272       AssertOp = ISD::AssertSext;
7273     else if (CLI.RetZExt)
7274       AssertOp = ISD::AssertZext;
7275     unsigned CurReg = 0;
7276     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7277       EVT VT = RetTys[I];
7278       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7279       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7280 
7281       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7282                                               NumRegs, RegisterVT, VT, nullptr,
7283                                               AssertOp));
7284       CurReg += NumRegs;
7285     }
7286 
7287     // For a function returning void, there is no return value. We can't create
7288     // such a node, so we just return a null return value in that case. In
7289     // that case, nothing will actually look at the value.
7290     if (ReturnValues.empty())
7291       return std::make_pair(SDValue(), CLI.Chain);
7292   }
7293 
7294   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7295                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7296   return std::make_pair(Res, CLI.Chain);
7297 }
7298 
7299 void TargetLowering::LowerOperationWrapper(SDNode *N,
7300                                            SmallVectorImpl<SDValue> &Results,
7301                                            SelectionDAG &DAG) const {
7302   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7303   if (Res.getNode())
7304     Results.push_back(Res);
7305 }
7306 
7307 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7308   llvm_unreachable("LowerOperation not implemented for this target!");
7309 }
7310 
7311 void
7312 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7313   SDValue Op = getNonRegisterValue(V);
7314   assert((Op.getOpcode() != ISD::CopyFromReg ||
7315           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7316          "Copy from a reg to the same reg!");
7317   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7318 
7319   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7320   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
7321                    V->getType());
7322   SDValue Chain = DAG.getEntryNode();
7323 
7324   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7325                               FuncInfo.PreferredExtendType.end())
7326                                  ? ISD::ANY_EXTEND
7327                                  : FuncInfo.PreferredExtendType[V];
7328   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7329   PendingExports.push_back(Chain);
7330 }
7331 
7332 #include "llvm/CodeGen/SelectionDAGISel.h"
7333 
7334 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7335 /// entry block, return true.  This includes arguments used by switches, since
7336 /// the switch may expand into multiple basic blocks.
7337 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7338   // With FastISel active, we may be splitting blocks, so force creation
7339   // of virtual registers for all non-dead arguments.
7340   if (FastISel)
7341     return A->use_empty();
7342 
7343   const BasicBlock &Entry = A->getParent()->front();
7344   for (const User *U : A->users())
7345     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
7346       return false;  // Use not in entry block.
7347 
7348   return true;
7349 }
7350 
7351 void SelectionDAGISel::LowerArguments(const Function &F) {
7352   SelectionDAG &DAG = SDB->DAG;
7353   SDLoc dl = SDB->getCurSDLoc();
7354   const DataLayout &DL = DAG.getDataLayout();
7355   SmallVector<ISD::InputArg, 16> Ins;
7356 
7357   if (!FuncInfo->CanLowerReturn) {
7358     // Put in an sret pointer parameter before all the other parameters.
7359     SmallVector<EVT, 1> ValueVTs;
7360     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7361                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7362 
7363     // NOTE: Assuming that a pointer will never break down to more than one VT
7364     // or one register.
7365     ISD::ArgFlagsTy Flags;
7366     Flags.setSRet();
7367     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7368     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
7369                          ISD::InputArg::NoArgIndex, 0);
7370     Ins.push_back(RetArg);
7371   }
7372 
7373   // Set up the incoming argument description vector.
7374   unsigned Idx = 1;
7375   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7376        I != E; ++I, ++Idx) {
7377     SmallVector<EVT, 4> ValueVTs;
7378     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7379     bool isArgValueUsed = !I->use_empty();
7380     unsigned PartBase = 0;
7381     Type *FinalType = I->getType();
7382     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7383       FinalType = cast<PointerType>(FinalType)->getElementType();
7384     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7385         FinalType, F.getCallingConv(), F.isVarArg());
7386     for (unsigned Value = 0, NumValues = ValueVTs.size();
7387          Value != NumValues; ++Value) {
7388       EVT VT = ValueVTs[Value];
7389       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7390       ISD::ArgFlagsTy Flags;
7391       unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy);
7392 
7393       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7394         Flags.setZExt();
7395       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7396         Flags.setSExt();
7397       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7398         Flags.setInReg();
7399       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7400         Flags.setSRet();
7401       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7402         Flags.setByVal();
7403       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7404         Flags.setInAlloca();
7405         // Set the byval flag for CCAssignFn callbacks that don't know about
7406         // inalloca.  This way we can know how many bytes we should've allocated
7407         // and how many bytes a callee cleanup function will pop.  If we port
7408         // inalloca to more targets, we'll have to add custom inalloca handling
7409         // in the various CC lowering callbacks.
7410         Flags.setByVal();
7411       }
7412       if (F.getCallingConv() == CallingConv::X86_INTR) {
7413         // IA Interrupt passes frame (1st parameter) by value in the stack.
7414         if (Idx == 1)
7415           Flags.setByVal();
7416       }
7417       if (Flags.isByVal() || Flags.isInAlloca()) {
7418         PointerType *Ty = cast<PointerType>(I->getType());
7419         Type *ElementTy = Ty->getElementType();
7420         Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
7421         // For ByVal, alignment should be passed from FE.  BE will guess if
7422         // this info is not there but there are cases it cannot get right.
7423         unsigned FrameAlign;
7424         if (F.getParamAlignment(Idx))
7425           FrameAlign = F.getParamAlignment(Idx);
7426         else
7427           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
7428         Flags.setByValAlign(FrameAlign);
7429       }
7430       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7431         Flags.setNest();
7432       if (NeedsRegBlock)
7433         Flags.setInConsecutiveRegs();
7434       Flags.setOrigAlign(OriginalAlignment);
7435 
7436       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7437       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7438       for (unsigned i = 0; i != NumRegs; ++i) {
7439         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7440                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7441         if (NumRegs > 1 && i == 0)
7442           MyFlags.Flags.setSplit();
7443         // if it isn't first piece, alignment must be 1
7444         else if (i > 0) {
7445           MyFlags.Flags.setOrigAlign(1);
7446           if (i == NumRegs - 1)
7447             MyFlags.Flags.setSplitEnd();
7448         }
7449         Ins.push_back(MyFlags);
7450       }
7451       if (NeedsRegBlock && Value == NumValues - 1)
7452         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
7453       PartBase += VT.getStoreSize();
7454     }
7455   }
7456 
7457   // Call the target to set up the argument values.
7458   SmallVector<SDValue, 8> InVals;
7459   SDValue NewRoot = TLI->LowerFormalArguments(
7460       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7461 
7462   // Verify that the target's LowerFormalArguments behaved as expected.
7463   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7464          "LowerFormalArguments didn't return a valid chain!");
7465   assert(InVals.size() == Ins.size() &&
7466          "LowerFormalArguments didn't emit the correct number of values!");
7467   DEBUG({
7468       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7469         assert(InVals[i].getNode() &&
7470                "LowerFormalArguments emitted a null value!");
7471         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7472                "LowerFormalArguments emitted a value with the wrong type!");
7473       }
7474     });
7475 
7476   // Update the DAG with the new chain value resulting from argument lowering.
7477   DAG.setRoot(NewRoot);
7478 
7479   // Set up the argument values.
7480   unsigned i = 0;
7481   Idx = 1;
7482   if (!FuncInfo->CanLowerReturn) {
7483     // Create a virtual register for the sret pointer, and put in a copy
7484     // from the sret argument into it.
7485     SmallVector<EVT, 1> ValueVTs;
7486     ComputeValueVTs(*TLI, DAG.getDataLayout(),
7487                     PointerType::getUnqual(F.getReturnType()), ValueVTs);
7488     MVT VT = ValueVTs[0].getSimpleVT();
7489     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7490     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7491     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7492                                         RegVT, VT, nullptr, AssertOp);
7493 
7494     MachineFunction& MF = SDB->DAG.getMachineFunction();
7495     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7496     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7497     FuncInfo->DemoteRegister = SRetReg;
7498     NewRoot =
7499         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7500     DAG.setRoot(NewRoot);
7501 
7502     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7503     // Idx indexes LLVM arguments.  Don't touch it.
7504     ++i;
7505   }
7506 
7507   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7508       ++I, ++Idx) {
7509     SmallVector<SDValue, 4> ArgValues;
7510     SmallVector<EVT, 4> ValueVTs;
7511     ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs);
7512     unsigned NumValues = ValueVTs.size();
7513 
7514     // If this argument is unused then remember its value. It is used to generate
7515     // debugging information.
7516     if (I->use_empty() && NumValues) {
7517       SDB->setUnusedArgValue(&*I, InVals[i]);
7518 
7519       // Also remember any frame index for use in FastISel.
7520       if (FrameIndexSDNode *FI =
7521           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7522         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7523     }
7524 
7525     for (unsigned Val = 0; Val != NumValues; ++Val) {
7526       EVT VT = ValueVTs[Val];
7527       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7528       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7529 
7530       if (!I->use_empty()) {
7531         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7532         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7533           AssertOp = ISD::AssertSext;
7534         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7535           AssertOp = ISD::AssertZext;
7536 
7537         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7538                                              NumParts, PartVT, VT,
7539                                              nullptr, AssertOp));
7540       }
7541 
7542       i += NumParts;
7543     }
7544 
7545     // We don't need to do anything else for unused arguments.
7546     if (ArgValues.empty())
7547       continue;
7548 
7549     // Note down frame index.
7550     if (FrameIndexSDNode *FI =
7551         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7552       FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7553 
7554     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7555                                      SDB->getCurSDLoc());
7556 
7557     SDB->setValue(&*I, Res);
7558     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7559       if (LoadSDNode *LNode =
7560           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7561         if (FrameIndexSDNode *FI =
7562             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7563         FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex());
7564     }
7565 
7566     // If this argument is live outside of the entry block, insert a copy from
7567     // wherever we got it to the vreg that other BB's will reference it as.
7568     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7569       // If we can, though, try to skip creating an unnecessary vreg.
7570       // FIXME: This isn't very clean... it would be nice to make this more
7571       // general.  It's also subtly incompatible with the hacks FastISel
7572       // uses with vregs.
7573       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7574       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7575         FuncInfo->ValueMap[&*I] = Reg;
7576         continue;
7577       }
7578     }
7579     if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) {
7580       FuncInfo->InitializeRegForValue(&*I);
7581       SDB->CopyToExportRegsIfNeeded(&*I);
7582     }
7583   }
7584 
7585   assert(i == InVals.size() && "Argument register count mismatch!");
7586 
7587   // Finally, if the target has anything special to do, allow it to do so.
7588   EmitFunctionEntryCode();
7589 }
7590 
7591 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7592 /// ensure constants are generated when needed.  Remember the virtual registers
7593 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7594 /// directly add them, because expansion might result in multiple MBB's for one
7595 /// BB.  As such, the start of the BB might correspond to a different MBB than
7596 /// the end.
7597 ///
7598 void
7599 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7600   const TerminatorInst *TI = LLVMBB->getTerminator();
7601 
7602   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7603 
7604   // Check PHI nodes in successors that expect a value to be available from this
7605   // block.
7606   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7607     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7608     if (!isa<PHINode>(SuccBB->begin())) continue;
7609     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7610 
7611     // If this terminator has multiple identical successors (common for
7612     // switches), only handle each succ once.
7613     if (!SuccsHandled.insert(SuccMBB).second)
7614       continue;
7615 
7616     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7617 
7618     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7619     // nodes and Machine PHI nodes, but the incoming operands have not been
7620     // emitted yet.
7621     for (BasicBlock::const_iterator I = SuccBB->begin();
7622          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7623       // Ignore dead phi's.
7624       if (PN->use_empty()) continue;
7625 
7626       // Skip empty types
7627       if (PN->getType()->isEmptyTy())
7628         continue;
7629 
7630       unsigned Reg;
7631       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7632 
7633       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7634         unsigned &RegOut = ConstantsOut[C];
7635         if (RegOut == 0) {
7636           RegOut = FuncInfo.CreateRegs(C->getType());
7637           CopyValueToVirtualRegister(C, RegOut);
7638         }
7639         Reg = RegOut;
7640       } else {
7641         DenseMap<const Value *, unsigned>::iterator I =
7642           FuncInfo.ValueMap.find(PHIOp);
7643         if (I != FuncInfo.ValueMap.end())
7644           Reg = I->second;
7645         else {
7646           assert(isa<AllocaInst>(PHIOp) &&
7647                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7648                  "Didn't codegen value into a register!??");
7649           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7650           CopyValueToVirtualRegister(PHIOp, Reg);
7651         }
7652       }
7653 
7654       // Remember that this register needs to added to the machine PHI node as
7655       // the input for this MBB.
7656       SmallVector<EVT, 4> ValueVTs;
7657       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7658       ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs);
7659       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7660         EVT VT = ValueVTs[vti];
7661         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7662         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7663           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7664         Reg += NumRegisters;
7665       }
7666     }
7667   }
7668 
7669   ConstantsOut.clear();
7670 }
7671 
7672 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7673 /// is 0.
7674 MachineBasicBlock *
7675 SelectionDAGBuilder::StackProtectorDescriptor::
7676 AddSuccessorMBB(const BasicBlock *BB,
7677                 MachineBasicBlock *ParentMBB,
7678                 bool IsLikely,
7679                 MachineBasicBlock *SuccMBB) {
7680   // If SuccBB has not been created yet, create it.
7681   if (!SuccMBB) {
7682     MachineFunction *MF = ParentMBB->getParent();
7683     MachineFunction::iterator BBI(ParentMBB);
7684     SuccMBB = MF->CreateMachineBasicBlock(BB);
7685     MF->insert(++BBI, SuccMBB);
7686   }
7687   // Add it as a successor of ParentMBB.
7688   ParentMBB->addSuccessor(
7689       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
7690   return SuccMBB;
7691 }
7692 
7693 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
7694   MachineFunction::iterator I(MBB);
7695   if (++I == FuncInfo.MF->end())
7696     return nullptr;
7697   return &*I;
7698 }
7699 
7700 /// During lowering new call nodes can be created (such as memset, etc.).
7701 /// Those will become new roots of the current DAG, but complications arise
7702 /// when they are tail calls. In such cases, the call lowering will update
7703 /// the root, but the builder still needs to know that a tail call has been
7704 /// lowered in order to avoid generating an additional return.
7705 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
7706   // If the node is null, we do have a tail call.
7707   if (MaybeTC.getNode() != nullptr)
7708     DAG.setRoot(MaybeTC);
7709   else
7710     HasTailCall = true;
7711 }
7712 
7713 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters,
7714                                   unsigned *TotalCases, unsigned First,
7715                                   unsigned Last) {
7716   assert(Last >= First);
7717   assert(TotalCases[Last] >= TotalCases[First]);
7718 
7719   APInt LowCase = Clusters[First].Low->getValue();
7720   APInt HighCase = Clusters[Last].High->getValue();
7721   assert(LowCase.getBitWidth() == HighCase.getBitWidth());
7722 
7723   // FIXME: A range of consecutive cases has 100% density, but only requires one
7724   // comparison to lower. We should discriminate against such consecutive ranges
7725   // in jump tables.
7726 
7727   uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100);
7728   uint64_t Range = Diff + 1;
7729 
7730   uint64_t NumCases =
7731       TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
7732 
7733   assert(NumCases < UINT64_MAX / 100);
7734   assert(Range >= NumCases);
7735 
7736   return NumCases * 100 >= Range * MinJumpTableDensity;
7737 }
7738 
7739 static inline bool areJTsAllowed(const TargetLowering &TLI) {
7740   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
7741          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
7742 }
7743 
7744 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters,
7745                                          unsigned First, unsigned Last,
7746                                          const SwitchInst *SI,
7747                                          MachineBasicBlock *DefaultMBB,
7748                                          CaseCluster &JTCluster) {
7749   assert(First <= Last);
7750 
7751   auto Prob = BranchProbability::getZero();
7752   unsigned NumCmps = 0;
7753   std::vector<MachineBasicBlock*> Table;
7754   DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
7755 
7756   // Initialize probabilities in JTProbs.
7757   for (unsigned I = First; I <= Last; ++I)
7758     JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
7759 
7760   for (unsigned I = First; I <= Last; ++I) {
7761     assert(Clusters[I].Kind == CC_Range);
7762     Prob += Clusters[I].Prob;
7763     APInt Low = Clusters[I].Low->getValue();
7764     APInt High = Clusters[I].High->getValue();
7765     NumCmps += (Low == High) ? 1 : 2;
7766     if (I != First) {
7767       // Fill the gap between this and the previous cluster.
7768       APInt PreviousHigh = Clusters[I - 1].High->getValue();
7769       assert(PreviousHigh.slt(Low));
7770       uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
7771       for (uint64_t J = 0; J < Gap; J++)
7772         Table.push_back(DefaultMBB);
7773     }
7774     uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
7775     for (uint64_t J = 0; J < ClusterSize; ++J)
7776       Table.push_back(Clusters[I].MBB);
7777     JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
7778   }
7779 
7780   unsigned NumDests = JTProbs.size();
7781   if (isSuitableForBitTests(NumDests, NumCmps,
7782                             Clusters[First].Low->getValue(),
7783                             Clusters[Last].High->getValue())) {
7784     // Clusters[First..Last] should be lowered as bit tests instead.
7785     return false;
7786   }
7787 
7788   // Create the MBB that will load from and jump through the table.
7789   // Note: We create it here, but it's not inserted into the function yet.
7790   MachineFunction *CurMF = FuncInfo.MF;
7791   MachineBasicBlock *JumpTableMBB =
7792       CurMF->CreateMachineBasicBlock(SI->getParent());
7793 
7794   // Add successors. Note: use table order for determinism.
7795   SmallPtrSet<MachineBasicBlock *, 8> Done;
7796   for (MachineBasicBlock *Succ : Table) {
7797     if (Done.count(Succ))
7798       continue;
7799     addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
7800     Done.insert(Succ);
7801   }
7802   JumpTableMBB->normalizeSuccProbs();
7803 
7804   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7805   unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
7806                      ->createJumpTableIndex(Table);
7807 
7808   // Set up the jump table info.
7809   JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
7810   JumpTableHeader JTH(Clusters[First].Low->getValue(),
7811                       Clusters[Last].High->getValue(), SI->getCondition(),
7812                       nullptr, false);
7813   JTCases.emplace_back(std::move(JTH), std::move(JT));
7814 
7815   JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
7816                                      JTCases.size() - 1, Prob);
7817   return true;
7818 }
7819 
7820 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
7821                                          const SwitchInst *SI,
7822                                          MachineBasicBlock *DefaultMBB) {
7823 #ifndef NDEBUG
7824   // Clusters must be non-empty, sorted, and only contain Range clusters.
7825   assert(!Clusters.empty());
7826   for (CaseCluster &C : Clusters)
7827     assert(C.Kind == CC_Range);
7828   for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
7829     assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
7830 #endif
7831 
7832   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7833   if (!areJTsAllowed(TLI))
7834     return;
7835 
7836   const int64_t N = Clusters.size();
7837   const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries();
7838 
7839   // TotalCases[i]: Total nbr of cases in Clusters[0..i].
7840   SmallVector<unsigned, 8> TotalCases(N);
7841 
7842   for (unsigned i = 0; i < N; ++i) {
7843     APInt Hi = Clusters[i].High->getValue();
7844     APInt Lo = Clusters[i].Low->getValue();
7845     TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
7846     if (i != 0)
7847       TotalCases[i] += TotalCases[i - 1];
7848   }
7849 
7850   if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) {
7851     // Cheap case: the whole range might be suitable for jump table.
7852     CaseCluster JTCluster;
7853     if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
7854       Clusters[0] = JTCluster;
7855       Clusters.resize(1);
7856       return;
7857     }
7858   }
7859 
7860   // The algorithm below is not suitable for -O0.
7861   if (TM.getOptLevel() == CodeGenOpt::None)
7862     return;
7863 
7864   // Split Clusters into minimum number of dense partitions. The algorithm uses
7865   // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
7866   // for the Case Statement'" (1994), but builds the MinPartitions array in
7867   // reverse order to make it easier to reconstruct the partitions in ascending
7868   // order. In the choice between two optimal partitionings, it picks the one
7869   // which yields more jump tables.
7870 
7871   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
7872   SmallVector<unsigned, 8> MinPartitions(N);
7873   // LastElement[i] is the last element of the partition starting at i.
7874   SmallVector<unsigned, 8> LastElement(N);
7875   // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1].
7876   SmallVector<unsigned, 8> NumTables(N);
7877 
7878   // Base case: There is only one way to partition Clusters[N-1].
7879   MinPartitions[N - 1] = 1;
7880   LastElement[N - 1] = N - 1;
7881   assert(MinJumpTableSize > 1);
7882   NumTables[N - 1] = 0;
7883 
7884   // Note: loop indexes are signed to avoid underflow.
7885   for (int64_t i = N - 2; i >= 0; i--) {
7886     // Find optimal partitioning of Clusters[i..N-1].
7887     // Baseline: Put Clusters[i] into a partition on its own.
7888     MinPartitions[i] = MinPartitions[i + 1] + 1;
7889     LastElement[i] = i;
7890     NumTables[i] = NumTables[i + 1];
7891 
7892     // Search for a solution that results in fewer partitions.
7893     for (int64_t j = N - 1; j > i; j--) {
7894       // Try building a partition from Clusters[i..j].
7895       if (isDense(Clusters, &TotalCases[0], i, j)) {
7896         unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
7897         bool IsTable = j - i + 1 >= MinJumpTableSize;
7898         unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]);
7899 
7900         // If this j leads to fewer partitions, or same number of partitions
7901         // with more lookup tables, it is a better partitioning.
7902         if (NumPartitions < MinPartitions[i] ||
7903             (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) {
7904           MinPartitions[i] = NumPartitions;
7905           LastElement[i] = j;
7906           NumTables[i] = Tables;
7907         }
7908       }
7909     }
7910   }
7911 
7912   // Iterate over the partitions, replacing some with jump tables in-place.
7913   unsigned DstIndex = 0;
7914   for (unsigned First = 0, Last; First < N; First = Last + 1) {
7915     Last = LastElement[First];
7916     assert(Last >= First);
7917     assert(DstIndex <= First);
7918     unsigned NumClusters = Last - First + 1;
7919 
7920     CaseCluster JTCluster;
7921     if (NumClusters >= MinJumpTableSize &&
7922         buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
7923       Clusters[DstIndex++] = JTCluster;
7924     } else {
7925       for (unsigned I = First; I <= Last; ++I)
7926         std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
7927     }
7928   }
7929   Clusters.resize(DstIndex);
7930 }
7931 
7932 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) {
7933   // FIXME: Using the pointer type doesn't seem ideal.
7934   uint64_t BW = DAG.getDataLayout().getPointerSizeInBits();
7935   uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
7936   return Range <= BW;
7937 }
7938 
7939 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests,
7940                                                 unsigned NumCmps,
7941                                                 const APInt &Low,
7942                                                 const APInt &High) {
7943   // FIXME: I don't think NumCmps is the correct metric: a single case and a
7944   // range of cases both require only one branch to lower. Just looking at the
7945   // number of clusters and destinations should be enough to decide whether to
7946   // build bit tests.
7947 
7948   // To lower a range with bit tests, the range must fit the bitwidth of a
7949   // machine word.
7950   if (!rangeFitsInWord(Low, High))
7951     return false;
7952 
7953   // Decide whether it's profitable to lower this range with bit tests. Each
7954   // destination requires a bit test and branch, and there is an overall range
7955   // check branch. For a small number of clusters, separate comparisons might be
7956   // cheaper, and for many destinations, splitting the range might be better.
7957   return (NumDests == 1 && NumCmps >= 3) ||
7958          (NumDests == 2 && NumCmps >= 5) ||
7959          (NumDests == 3 && NumCmps >= 6);
7960 }
7961 
7962 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
7963                                         unsigned First, unsigned Last,
7964                                         const SwitchInst *SI,
7965                                         CaseCluster &BTCluster) {
7966   assert(First <= Last);
7967   if (First == Last)
7968     return false;
7969 
7970   BitVector Dests(FuncInfo.MF->getNumBlockIDs());
7971   unsigned NumCmps = 0;
7972   for (int64_t I = First; I <= Last; ++I) {
7973     assert(Clusters[I].Kind == CC_Range);
7974     Dests.set(Clusters[I].MBB->getNumber());
7975     NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
7976   }
7977   unsigned NumDests = Dests.count();
7978 
7979   APInt Low = Clusters[First].Low->getValue();
7980   APInt High = Clusters[Last].High->getValue();
7981   assert(Low.slt(High));
7982 
7983   if (!isSuitableForBitTests(NumDests, NumCmps, Low, High))
7984     return false;
7985 
7986   APInt LowBound;
7987   APInt CmpRange;
7988 
7989   const int BitWidth = DAG.getTargetLoweringInfo()
7990                            .getPointerTy(DAG.getDataLayout())
7991                            .getSizeInBits();
7992   assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!");
7993 
7994   // Check if the clusters cover a contiguous range such that no value in the
7995   // range will jump to the default statement.
7996   bool ContiguousRange = true;
7997   for (int64_t I = First + 1; I <= Last; ++I) {
7998     if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
7999       ContiguousRange = false;
8000       break;
8001     }
8002   }
8003 
8004   if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
8005     // Optimize the case where all the case values fit in a word without having
8006     // to subtract minValue. In this case, we can optimize away the subtraction.
8007     LowBound = APInt::getNullValue(Low.getBitWidth());
8008     CmpRange = High;
8009     ContiguousRange = false;
8010   } else {
8011     LowBound = Low;
8012     CmpRange = High - Low;
8013   }
8014 
8015   CaseBitsVector CBV;
8016   auto TotalProb = BranchProbability::getZero();
8017   for (unsigned i = First; i <= Last; ++i) {
8018     // Find the CaseBits for this destination.
8019     unsigned j;
8020     for (j = 0; j < CBV.size(); ++j)
8021       if (CBV[j].BB == Clusters[i].MBB)
8022         break;
8023     if (j == CBV.size())
8024       CBV.push_back(
8025           CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
8026     CaseBits *CB = &CBV[j];
8027 
8028     // Update Mask, Bits and ExtraProb.
8029     uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
8030     uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
8031     assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
8032     CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
8033     CB->Bits += Hi - Lo + 1;
8034     CB->ExtraProb += Clusters[i].Prob;
8035     TotalProb += Clusters[i].Prob;
8036   }
8037 
8038   BitTestInfo BTI;
8039   std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) {
8040     // Sort by probability first, number of bits second.
8041     if (a.ExtraProb != b.ExtraProb)
8042       return a.ExtraProb > b.ExtraProb;
8043     return a.Bits > b.Bits;
8044   });
8045 
8046   for (auto &CB : CBV) {
8047     MachineBasicBlock *BitTestBB =
8048         FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
8049     BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
8050   }
8051   BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
8052                             SI->getCondition(), -1U, MVT::Other, false,
8053                             ContiguousRange, nullptr, nullptr, std::move(BTI),
8054                             TotalProb);
8055 
8056   BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
8057                                     BitTestCases.size() - 1, TotalProb);
8058   return true;
8059 }
8060 
8061 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
8062                                               const SwitchInst *SI) {
8063 // Partition Clusters into as few subsets as possible, where each subset has a
8064 // range that fits in a machine word and has <= 3 unique destinations.
8065 
8066 #ifndef NDEBUG
8067   // Clusters must be sorted and contain Range or JumpTable clusters.
8068   assert(!Clusters.empty());
8069   assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
8070   for (const CaseCluster &C : Clusters)
8071     assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
8072   for (unsigned i = 1; i < Clusters.size(); ++i)
8073     assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
8074 #endif
8075 
8076   // The algorithm below is not suitable for -O0.
8077   if (TM.getOptLevel() == CodeGenOpt::None)
8078     return;
8079 
8080   // If target does not have legal shift left, do not emit bit tests at all.
8081   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8082   EVT PTy = TLI.getPointerTy(DAG.getDataLayout());
8083   if (!TLI.isOperationLegal(ISD::SHL, PTy))
8084     return;
8085 
8086   int BitWidth = PTy.getSizeInBits();
8087   const int64_t N = Clusters.size();
8088 
8089   // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
8090   SmallVector<unsigned, 8> MinPartitions(N);
8091   // LastElement[i] is the last element of the partition starting at i.
8092   SmallVector<unsigned, 8> LastElement(N);
8093 
8094   // FIXME: This might not be the best algorithm for finding bit test clusters.
8095 
8096   // Base case: There is only one way to partition Clusters[N-1].
8097   MinPartitions[N - 1] = 1;
8098   LastElement[N - 1] = N - 1;
8099 
8100   // Note: loop indexes are signed to avoid underflow.
8101   for (int64_t i = N - 2; i >= 0; --i) {
8102     // Find optimal partitioning of Clusters[i..N-1].
8103     // Baseline: Put Clusters[i] into a partition on its own.
8104     MinPartitions[i] = MinPartitions[i + 1] + 1;
8105     LastElement[i] = i;
8106 
8107     // Search for a solution that results in fewer partitions.
8108     // Note: the search is limited by BitWidth, reducing time complexity.
8109     for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
8110       // Try building a partition from Clusters[i..j].
8111 
8112       // Check the range.
8113       if (!rangeFitsInWord(Clusters[i].Low->getValue(),
8114                            Clusters[j].High->getValue()))
8115         continue;
8116 
8117       // Check nbr of destinations and cluster types.
8118       // FIXME: This works, but doesn't seem very efficient.
8119       bool RangesOnly = true;
8120       BitVector Dests(FuncInfo.MF->getNumBlockIDs());
8121       for (int64_t k = i; k <= j; k++) {
8122         if (Clusters[k].Kind != CC_Range) {
8123           RangesOnly = false;
8124           break;
8125         }
8126         Dests.set(Clusters[k].MBB->getNumber());
8127       }
8128       if (!RangesOnly || Dests.count() > 3)
8129         break;
8130 
8131       // Check if it's a better partition.
8132       unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
8133       if (NumPartitions < MinPartitions[i]) {
8134         // Found a better partition.
8135         MinPartitions[i] = NumPartitions;
8136         LastElement[i] = j;
8137       }
8138     }
8139   }
8140 
8141   // Iterate over the partitions, replacing with bit-test clusters in-place.
8142   unsigned DstIndex = 0;
8143   for (unsigned First = 0, Last; First < N; First = Last + 1) {
8144     Last = LastElement[First];
8145     assert(First <= Last);
8146     assert(DstIndex <= First);
8147 
8148     CaseCluster BitTestCluster;
8149     if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
8150       Clusters[DstIndex++] = BitTestCluster;
8151     } else {
8152       size_t NumClusters = Last - First + 1;
8153       std::memmove(&Clusters[DstIndex], &Clusters[First],
8154                    sizeof(Clusters[0]) * NumClusters);
8155       DstIndex += NumClusters;
8156     }
8157   }
8158   Clusters.resize(DstIndex);
8159 }
8160 
8161 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
8162                                         MachineBasicBlock *SwitchMBB,
8163                                         MachineBasicBlock *DefaultMBB) {
8164   MachineFunction *CurMF = FuncInfo.MF;
8165   MachineBasicBlock *NextMBB = nullptr;
8166   MachineFunction::iterator BBI(W.MBB);
8167   if (++BBI != FuncInfo.MF->end())
8168     NextMBB = &*BBI;
8169 
8170   unsigned Size = W.LastCluster - W.FirstCluster + 1;
8171 
8172   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8173 
8174   if (Size == 2 && W.MBB == SwitchMBB) {
8175     // If any two of the cases has the same destination, and if one value
8176     // is the same as the other, but has one bit unset that the other has set,
8177     // use bit manipulation to do two compares at once.  For example:
8178     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
8179     // TODO: This could be extended to merge any 2 cases in switches with 3
8180     // cases.
8181     // TODO: Handle cases where W.CaseBB != SwitchBB.
8182     CaseCluster &Small = *W.FirstCluster;
8183     CaseCluster &Big = *W.LastCluster;
8184 
8185     if (Small.Low == Small.High && Big.Low == Big.High &&
8186         Small.MBB == Big.MBB) {
8187       const APInt &SmallValue = Small.Low->getValue();
8188       const APInt &BigValue = Big.Low->getValue();
8189 
8190       // Check that there is only one bit different.
8191       APInt CommonBit = BigValue ^ SmallValue;
8192       if (CommonBit.isPowerOf2()) {
8193         SDValue CondLHS = getValue(Cond);
8194         EVT VT = CondLHS.getValueType();
8195         SDLoc DL = getCurSDLoc();
8196 
8197         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
8198                                  DAG.getConstant(CommonBit, DL, VT));
8199         SDValue Cond = DAG.getSetCC(
8200             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
8201             ISD::SETEQ);
8202 
8203         // Update successor info.
8204         // Both Small and Big will jump to Small.BB, so we sum up the
8205         // probabilities.
8206         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
8207         if (BPI)
8208           addSuccessorWithProb(
8209               SwitchMBB, DefaultMBB,
8210               // The default destination is the first successor in IR.
8211               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
8212         else
8213           addSuccessorWithProb(SwitchMBB, DefaultMBB);
8214 
8215         // Insert the true branch.
8216         SDValue BrCond =
8217             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
8218                         DAG.getBasicBlock(Small.MBB));
8219         // Insert the false branch.
8220         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
8221                              DAG.getBasicBlock(DefaultMBB));
8222 
8223         DAG.setRoot(BrCond);
8224         return;
8225       }
8226     }
8227   }
8228 
8229   if (TM.getOptLevel() != CodeGenOpt::None) {
8230     // Order cases by probability so the most likely case will be checked first.
8231     std::sort(W.FirstCluster, W.LastCluster + 1,
8232               [](const CaseCluster &a, const CaseCluster &b) {
8233       return a.Prob > b.Prob;
8234     });
8235 
8236     // Rearrange the case blocks so that the last one falls through if possible
8237     // without without changing the order of probabilities.
8238     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
8239       --I;
8240       if (I->Prob > W.LastCluster->Prob)
8241         break;
8242       if (I->Kind == CC_Range && I->MBB == NextMBB) {
8243         std::swap(*I, *W.LastCluster);
8244         break;
8245       }
8246     }
8247   }
8248 
8249   // Compute total probability.
8250   BranchProbability DefaultProb = W.DefaultProb;
8251   BranchProbability UnhandledProbs = DefaultProb;
8252   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
8253     UnhandledProbs += I->Prob;
8254 
8255   MachineBasicBlock *CurMBB = W.MBB;
8256   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
8257     MachineBasicBlock *Fallthrough;
8258     if (I == W.LastCluster) {
8259       // For the last cluster, fall through to the default destination.
8260       Fallthrough = DefaultMBB;
8261     } else {
8262       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
8263       CurMF->insert(BBI, Fallthrough);
8264       // Put Cond in a virtual register to make it available from the new blocks.
8265       ExportFromCurrentBlock(Cond);
8266     }
8267     UnhandledProbs -= I->Prob;
8268 
8269     switch (I->Kind) {
8270       case CC_JumpTable: {
8271         // FIXME: Optimize away range check based on pivot comparisons.
8272         JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
8273         JumpTable *JT = &JTCases[I->JTCasesIndex].second;
8274 
8275         // The jump block hasn't been inserted yet; insert it here.
8276         MachineBasicBlock *JumpMBB = JT->MBB;
8277         CurMF->insert(BBI, JumpMBB);
8278 
8279         auto JumpProb = I->Prob;
8280         auto FallthroughProb = UnhandledProbs;
8281 
8282         // If the default statement is a target of the jump table, we evenly
8283         // distribute the default probability to successors of CurMBB. Also
8284         // update the probability on the edge from JumpMBB to Fallthrough.
8285         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
8286                                               SE = JumpMBB->succ_end();
8287              SI != SE; ++SI) {
8288           if (*SI == DefaultMBB) {
8289             JumpProb += DefaultProb / 2;
8290             FallthroughProb -= DefaultProb / 2;
8291             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
8292             JumpMBB->normalizeSuccProbs();
8293             break;
8294           }
8295         }
8296 
8297         addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
8298         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
8299         CurMBB->normalizeSuccProbs();
8300 
8301         // The jump table header will be inserted in our current block, do the
8302         // range check, and fall through to our fallthrough block.
8303         JTH->HeaderBB = CurMBB;
8304         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
8305 
8306         // If we're in the right place, emit the jump table header right now.
8307         if (CurMBB == SwitchMBB) {
8308           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
8309           JTH->Emitted = true;
8310         }
8311         break;
8312       }
8313       case CC_BitTests: {
8314         // FIXME: Optimize away range check based on pivot comparisons.
8315         BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
8316 
8317         // The bit test blocks haven't been inserted yet; insert them here.
8318         for (BitTestCase &BTC : BTB->Cases)
8319           CurMF->insert(BBI, BTC.ThisBB);
8320 
8321         // Fill in fields of the BitTestBlock.
8322         BTB->Parent = CurMBB;
8323         BTB->Default = Fallthrough;
8324 
8325         BTB->DefaultProb = UnhandledProbs;
8326         // If the cases in bit test don't form a contiguous range, we evenly
8327         // distribute the probability on the edge to Fallthrough to two
8328         // successors of CurMBB.
8329         if (!BTB->ContiguousRange) {
8330           BTB->Prob += DefaultProb / 2;
8331           BTB->DefaultProb -= DefaultProb / 2;
8332         }
8333 
8334         // If we're in the right place, emit the bit test header right now.
8335         if (CurMBB == SwitchMBB) {
8336           visitBitTestHeader(*BTB, SwitchMBB);
8337           BTB->Emitted = true;
8338         }
8339         break;
8340       }
8341       case CC_Range: {
8342         const Value *RHS, *LHS, *MHS;
8343         ISD::CondCode CC;
8344         if (I->Low == I->High) {
8345           // Check Cond == I->Low.
8346           CC = ISD::SETEQ;
8347           LHS = Cond;
8348           RHS=I->Low;
8349           MHS = nullptr;
8350         } else {
8351           // Check I->Low <= Cond <= I->High.
8352           CC = ISD::SETLE;
8353           LHS = I->Low;
8354           MHS = Cond;
8355           RHS = I->High;
8356         }
8357 
8358         // The false probability is the sum of all unhandled cases.
8359         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob,
8360                      UnhandledProbs);
8361 
8362         if (CurMBB == SwitchMBB)
8363           visitSwitchCase(CB, SwitchMBB);
8364         else
8365           SwitchCases.push_back(CB);
8366 
8367         break;
8368       }
8369     }
8370     CurMBB = Fallthrough;
8371   }
8372 }
8373 
8374 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
8375                                               CaseClusterIt First,
8376                                               CaseClusterIt Last) {
8377   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
8378     if (X.Prob != CC.Prob)
8379       return X.Prob > CC.Prob;
8380 
8381     // Ties are broken by comparing the case value.
8382     return X.Low->getValue().slt(CC.Low->getValue());
8383   });
8384 }
8385 
8386 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
8387                                         const SwitchWorkListItem &W,
8388                                         Value *Cond,
8389                                         MachineBasicBlock *SwitchMBB) {
8390   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
8391          "Clusters not sorted?");
8392 
8393   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
8394 
8395   // Balance the tree based on branch probabilities to create a near-optimal (in
8396   // terms of search time given key frequency) binary search tree. See e.g. Kurt
8397   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
8398   CaseClusterIt LastLeft = W.FirstCluster;
8399   CaseClusterIt FirstRight = W.LastCluster;
8400   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
8401   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
8402 
8403   // Move LastLeft and FirstRight towards each other from opposite directions to
8404   // find a partitioning of the clusters which balances the probability on both
8405   // sides. If LeftProb and RightProb are equal, alternate which side is
8406   // taken to ensure 0-probability nodes are distributed evenly.
8407   unsigned I = 0;
8408   while (LastLeft + 1 < FirstRight) {
8409     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
8410       LeftProb += (++LastLeft)->Prob;
8411     else
8412       RightProb += (--FirstRight)->Prob;
8413     I++;
8414   }
8415 
8416   for (;;) {
8417     // Our binary search tree differs from a typical BST in that ours can have up
8418     // to three values in each leaf. The pivot selection above doesn't take that
8419     // into account, which means the tree might require more nodes and be less
8420     // efficient. We compensate for this here.
8421 
8422     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
8423     unsigned NumRight = W.LastCluster - FirstRight + 1;
8424 
8425     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
8426       // If one side has less than 3 clusters, and the other has more than 3,
8427       // consider taking a cluster from the other side.
8428 
8429       if (NumLeft < NumRight) {
8430         // Consider moving the first cluster on the right to the left side.
8431         CaseCluster &CC = *FirstRight;
8432         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8433         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8434         if (LeftSideRank <= RightSideRank) {
8435           // Moving the cluster to the left does not demote it.
8436           ++LastLeft;
8437           ++FirstRight;
8438           continue;
8439         }
8440       } else {
8441         assert(NumRight < NumLeft);
8442         // Consider moving the last element on the left to the right side.
8443         CaseCluster &CC = *LastLeft;
8444         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
8445         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
8446         if (RightSideRank <= LeftSideRank) {
8447           // Moving the cluster to the right does not demot it.
8448           --LastLeft;
8449           --FirstRight;
8450           continue;
8451         }
8452       }
8453     }
8454     break;
8455   }
8456 
8457   assert(LastLeft + 1 == FirstRight);
8458   assert(LastLeft >= W.FirstCluster);
8459   assert(FirstRight <= W.LastCluster);
8460 
8461   // Use the first element on the right as pivot since we will make less-than
8462   // comparisons against it.
8463   CaseClusterIt PivotCluster = FirstRight;
8464   assert(PivotCluster > W.FirstCluster);
8465   assert(PivotCluster <= W.LastCluster);
8466 
8467   CaseClusterIt FirstLeft = W.FirstCluster;
8468   CaseClusterIt LastRight = W.LastCluster;
8469 
8470   const ConstantInt *Pivot = PivotCluster->Low;
8471 
8472   // New blocks will be inserted immediately after the current one.
8473   MachineFunction::iterator BBI(W.MBB);
8474   ++BBI;
8475 
8476   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
8477   // we can branch to its destination directly if it's squeezed exactly in
8478   // between the known lower bound and Pivot - 1.
8479   MachineBasicBlock *LeftMBB;
8480   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
8481       FirstLeft->Low == W.GE &&
8482       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
8483     LeftMBB = FirstLeft->MBB;
8484   } else {
8485     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8486     FuncInfo.MF->insert(BBI, LeftMBB);
8487     WorkList.push_back(
8488         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
8489     // Put Cond in a virtual register to make it available from the new blocks.
8490     ExportFromCurrentBlock(Cond);
8491   }
8492 
8493   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
8494   // single cluster, RHS.Low == Pivot, and we can branch to its destination
8495   // directly if RHS.High equals the current upper bound.
8496   MachineBasicBlock *RightMBB;
8497   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
8498       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
8499     RightMBB = FirstRight->MBB;
8500   } else {
8501     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
8502     FuncInfo.MF->insert(BBI, RightMBB);
8503     WorkList.push_back(
8504         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
8505     // Put Cond in a virtual register to make it available from the new blocks.
8506     ExportFromCurrentBlock(Cond);
8507   }
8508 
8509   // Create the CaseBlock record that will be used to lower the branch.
8510   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
8511                LeftProb, RightProb);
8512 
8513   if (W.MBB == SwitchMBB)
8514     visitSwitchCase(CB, SwitchMBB);
8515   else
8516     SwitchCases.push_back(CB);
8517 }
8518 
8519 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
8520   // Extract cases from the switch.
8521   BranchProbabilityInfo *BPI = FuncInfo.BPI;
8522   CaseClusterVector Clusters;
8523   Clusters.reserve(SI.getNumCases());
8524   for (auto I : SI.cases()) {
8525     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
8526     const ConstantInt *CaseVal = I.getCaseValue();
8527     BranchProbability Prob =
8528         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
8529             : BranchProbability(1, SI.getNumCases() + 1);
8530     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
8531   }
8532 
8533   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
8534 
8535   // Cluster adjacent cases with the same destination. We do this at all
8536   // optimization levels because it's cheap to do and will make codegen faster
8537   // if there are many clusters.
8538   sortAndRangeify(Clusters);
8539 
8540   if (TM.getOptLevel() != CodeGenOpt::None) {
8541     // Replace an unreachable default with the most popular destination.
8542     // FIXME: Exploit unreachable default more aggressively.
8543     bool UnreachableDefault =
8544         isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg());
8545     if (UnreachableDefault && !Clusters.empty()) {
8546       DenseMap<const BasicBlock *, unsigned> Popularity;
8547       unsigned MaxPop = 0;
8548       const BasicBlock *MaxBB = nullptr;
8549       for (auto I : SI.cases()) {
8550         const BasicBlock *BB = I.getCaseSuccessor();
8551         if (++Popularity[BB] > MaxPop) {
8552           MaxPop = Popularity[BB];
8553           MaxBB = BB;
8554         }
8555       }
8556       // Set new default.
8557       assert(MaxPop > 0 && MaxBB);
8558       DefaultMBB = FuncInfo.MBBMap[MaxBB];
8559 
8560       // Remove cases that were pointing to the destination that is now the
8561       // default.
8562       CaseClusterVector New;
8563       New.reserve(Clusters.size());
8564       for (CaseCluster &CC : Clusters) {
8565         if (CC.MBB != DefaultMBB)
8566           New.push_back(CC);
8567       }
8568       Clusters = std::move(New);
8569     }
8570   }
8571 
8572   // If there is only the default destination, jump there directly.
8573   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
8574   if (Clusters.empty()) {
8575     SwitchMBB->addSuccessor(DefaultMBB);
8576     if (DefaultMBB != NextBlock(SwitchMBB)) {
8577       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
8578                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
8579     }
8580     return;
8581   }
8582 
8583   findJumpTables(Clusters, &SI, DefaultMBB);
8584   findBitTestClusters(Clusters, &SI);
8585 
8586   DEBUG({
8587     dbgs() << "Case clusters: ";
8588     for (const CaseCluster &C : Clusters) {
8589       if (C.Kind == CC_JumpTable) dbgs() << "JT:";
8590       if (C.Kind == CC_BitTests) dbgs() << "BT:";
8591 
8592       C.Low->getValue().print(dbgs(), true);
8593       if (C.Low != C.High) {
8594         dbgs() << '-';
8595         C.High->getValue().print(dbgs(), true);
8596       }
8597       dbgs() << ' ';
8598     }
8599     dbgs() << '\n';
8600   });
8601 
8602   assert(!Clusters.empty());
8603   SwitchWorkList WorkList;
8604   CaseClusterIt First = Clusters.begin();
8605   CaseClusterIt Last = Clusters.end() - 1;
8606   auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB);
8607   WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
8608 
8609   while (!WorkList.empty()) {
8610     SwitchWorkListItem W = WorkList.back();
8611     WorkList.pop_back();
8612     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
8613 
8614     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) {
8615       // For optimized builds, lower large range as a balanced binary tree.
8616       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
8617       continue;
8618     }
8619 
8620     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
8621   }
8622 }
8623