1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/PatternMatch.h" 92 #include "llvm/IR/Statepoint.h" 93 #include "llvm/IR/Type.h" 94 #include "llvm/IR/User.h" 95 #include "llvm/IR/Value.h" 96 #include "llvm/MC/MCContext.h" 97 #include "llvm/MC/MCSymbol.h" 98 #include "llvm/Support/AtomicOrdering.h" 99 #include "llvm/Support/BranchProbability.h" 100 #include "llvm/Support/Casting.h" 101 #include "llvm/Support/CodeGen.h" 102 #include "llvm/Support/CommandLine.h" 103 #include "llvm/Support/Compiler.h" 104 #include "llvm/Support/Debug.h" 105 #include "llvm/Support/ErrorHandling.h" 106 #include "llvm/Support/MachineValueType.h" 107 #include "llvm/Support/MathExtras.h" 108 #include "llvm/Support/raw_ostream.h" 109 #include "llvm/Target/TargetIntrinsicInfo.h" 110 #include "llvm/Target/TargetMachine.h" 111 #include "llvm/Target/TargetOptions.h" 112 #include "llvm/Transforms/Utils/Local.h" 113 #include <algorithm> 114 #include <cassert> 115 #include <cstddef> 116 #include <cstdint> 117 #include <cstring> 118 #include <iterator> 119 #include <limits> 120 #include <numeric> 121 #include <tuple> 122 #include <utility> 123 #include <vector> 124 125 using namespace llvm; 126 using namespace PatternMatch; 127 using namespace SwitchCG; 128 129 #define DEBUG_TYPE "isel" 130 131 /// LimitFloatPrecision - Generate low-precision inline sequences for 132 /// some float libcalls (6, 8 or 12 bits). 133 static unsigned LimitFloatPrecision; 134 135 static cl::opt<unsigned, true> 136 LimitFPPrecision("limit-float-precision", 137 cl::desc("Generate low-precision inline sequences " 138 "for some float libcalls"), 139 cl::location(LimitFloatPrecision), cl::Hidden, 140 cl::init(0)); 141 142 static cl::opt<unsigned> SwitchPeelThreshold( 143 "switch-peel-threshold", cl::Hidden, cl::init(66), 144 cl::desc("Set the case probability threshold for peeling the case from a " 145 "switch statement. A value greater than 100 will void this " 146 "optimization")); 147 148 // Limit the width of DAG chains. This is important in general to prevent 149 // DAG-based analysis from blowing up. For example, alias analysis and 150 // load clustering may not complete in reasonable time. It is difficult to 151 // recognize and avoid this situation within each individual analysis, and 152 // future analyses are likely to have the same behavior. Limiting DAG width is 153 // the safe approach and will be especially important with global DAGs. 154 // 155 // MaxParallelChains default is arbitrarily high to avoid affecting 156 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 157 // sequence over this should have been converted to llvm.memcpy by the 158 // frontend. It is easy to induce this behavior with .ll code such as: 159 // %buffer = alloca [4096 x i8] 160 // %data = load [4096 x i8]* %argPtr 161 // store [4096 x i8] %data, [4096 x i8]* %buffer 162 static const unsigned MaxParallelChains = 64; 163 164 // Return the calling convention if the Value passed requires ABI mangling as it 165 // is a parameter to a function or a return value from a function which is not 166 // an intrinsic. 167 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 168 if (auto *R = dyn_cast<ReturnInst>(V)) 169 return R->getParent()->getParent()->getCallingConv(); 170 171 if (auto *CI = dyn_cast<CallInst>(V)) { 172 const bool IsInlineAsm = CI->isInlineAsm(); 173 const bool IsIndirectFunctionCall = 174 !IsInlineAsm && !CI->getCalledFunction(); 175 176 // It is possible that the call instruction is an inline asm statement or an 177 // indirect function call in which case the return value of 178 // getCalledFunction() would be nullptr. 179 const bool IsInstrinsicCall = 180 !IsInlineAsm && !IsIndirectFunctionCall && 181 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 182 183 if (!IsInlineAsm && !IsInstrinsicCall) 184 return CI->getCallingConv(); 185 } 186 187 return None; 188 } 189 190 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 191 const SDValue *Parts, unsigned NumParts, 192 MVT PartVT, EVT ValueVT, const Value *V, 193 Optional<CallingConv::ID> CC); 194 195 /// getCopyFromParts - Create a value that contains the specified legal parts 196 /// combined into the value they represent. If the parts combine to a type 197 /// larger than ValueVT then AssertOp can be used to specify whether the extra 198 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 199 /// (ISD::AssertSext). 200 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 201 const SDValue *Parts, unsigned NumParts, 202 MVT PartVT, EVT ValueVT, const Value *V, 203 Optional<CallingConv::ID> CC = None, 204 Optional<ISD::NodeType> AssertOp = None) { 205 if (ValueVT.isVector()) 206 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 207 CC); 208 209 assert(NumParts > 0 && "No parts to assemble!"); 210 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 211 SDValue Val = Parts[0]; 212 213 if (NumParts > 1) { 214 // Assemble the value from multiple parts. 215 if (ValueVT.isInteger()) { 216 unsigned PartBits = PartVT.getSizeInBits(); 217 unsigned ValueBits = ValueVT.getSizeInBits(); 218 219 // Assemble the power of 2 part. 220 unsigned RoundParts = 221 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 222 unsigned RoundBits = PartBits * RoundParts; 223 EVT RoundVT = RoundBits == ValueBits ? 224 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 225 SDValue Lo, Hi; 226 227 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 228 229 if (RoundParts > 2) { 230 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 231 PartVT, HalfVT, V); 232 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 233 RoundParts / 2, PartVT, HalfVT, V); 234 } else { 235 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 237 } 238 239 if (DAG.getDataLayout().isBigEndian()) 240 std::swap(Lo, Hi); 241 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 243 244 if (RoundParts < NumParts) { 245 // Assemble the trailing non-power-of-2 part. 246 unsigned OddParts = NumParts - RoundParts; 247 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 248 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 249 OddVT, V, CC); 250 251 // Combine the round and odd parts. 252 Lo = Val; 253 if (DAG.getDataLayout().isBigEndian()) 254 std::swap(Lo, Hi); 255 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 256 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 257 Hi = 258 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 259 DAG.getConstant(Lo.getValueSizeInBits(), DL, 260 TLI.getPointerTy(DAG.getDataLayout()))); 261 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 262 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 263 } 264 } else if (PartVT.isFloatingPoint()) { 265 // FP split into multiple FP parts (for ppcf128) 266 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 267 "Unexpected split"); 268 SDValue Lo, Hi; 269 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 270 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 271 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 272 std::swap(Lo, Hi); 273 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 274 } else { 275 // FP split into integer parts (soft fp) 276 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 277 !PartVT.isVector() && "Unexpected split"); 278 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 279 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 280 } 281 } 282 283 // There is now one part, held in Val. Correct it to match ValueVT. 284 // PartEVT is the type of the register class that holds the value. 285 // ValueVT is the type of the inline asm operation. 286 EVT PartEVT = Val.getValueType(); 287 288 if (PartEVT == ValueVT) 289 return Val; 290 291 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 292 ValueVT.bitsLT(PartEVT)) { 293 // For an FP value in an integer part, we need to truncate to the right 294 // width first. 295 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 296 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 297 } 298 299 // Handle types that have the same size. 300 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 301 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 302 303 // Handle types with different sizes. 304 if (PartEVT.isInteger() && ValueVT.isInteger()) { 305 if (ValueVT.bitsLT(PartEVT)) { 306 // For a truncate, see if we have any information to 307 // indicate whether the truncated bits will always be 308 // zero or sign-extension. 309 if (AssertOp.hasValue()) 310 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 311 DAG.getValueType(ValueVT)); 312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 313 } 314 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 315 } 316 317 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 318 // FP_ROUND's are always exact here. 319 if (ValueVT.bitsLT(Val.getValueType())) 320 return DAG.getNode( 321 ISD::FP_ROUND, DL, ValueVT, Val, 322 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 323 324 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 325 } 326 327 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 328 // then truncating. 329 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 330 ValueVT.bitsLT(PartEVT)) { 331 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 332 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 333 } 334 335 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 336 } 337 338 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 339 const Twine &ErrMsg) { 340 const Instruction *I = dyn_cast_or_null<Instruction>(V); 341 if (!V) 342 return Ctx.emitError(ErrMsg); 343 344 const char *AsmError = ", possible invalid constraint for vector type"; 345 if (const CallInst *CI = dyn_cast<CallInst>(I)) 346 if (isa<InlineAsm>(CI->getCalledValue())) 347 return Ctx.emitError(I, ErrMsg + AsmError); 348 349 return Ctx.emitError(I, ErrMsg); 350 } 351 352 /// getCopyFromPartsVector - Create a value that contains the specified legal 353 /// parts combined into the value they represent. If the parts combine to a 354 /// type larger than ValueVT then AssertOp can be used to specify whether the 355 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 356 /// ValueVT (ISD::AssertSext). 357 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 358 const SDValue *Parts, unsigned NumParts, 359 MVT PartVT, EVT ValueVT, const Value *V, 360 Optional<CallingConv::ID> CallConv) { 361 assert(ValueVT.isVector() && "Not a vector value"); 362 assert(NumParts > 0 && "No parts to assemble!"); 363 const bool IsABIRegCopy = CallConv.hasValue(); 364 365 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 366 SDValue Val = Parts[0]; 367 368 // Handle a multi-element vector. 369 if (NumParts > 1) { 370 EVT IntermediateVT; 371 MVT RegisterVT; 372 unsigned NumIntermediates; 373 unsigned NumRegs; 374 375 if (IsABIRegCopy) { 376 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 377 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 378 NumIntermediates, RegisterVT); 379 } else { 380 NumRegs = 381 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } 384 385 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 386 NumParts = NumRegs; // Silence a compiler warning. 387 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 388 assert(RegisterVT.getSizeInBits() == 389 Parts[0].getSimpleValueType().getSizeInBits() && 390 "Part type sizes don't match!"); 391 392 // Assemble the parts into intermediate operands. 393 SmallVector<SDValue, 8> Ops(NumIntermediates); 394 if (NumIntermediates == NumParts) { 395 // If the register was not expanded, truncate or copy the value, 396 // as appropriate. 397 for (unsigned i = 0; i != NumParts; ++i) 398 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 399 PartVT, IntermediateVT, V); 400 } else if (NumParts > 0) { 401 // If the intermediate type was expanded, build the intermediate 402 // operands from the parts. 403 assert(NumParts % NumIntermediates == 0 && 404 "Must expand into a divisible number of parts!"); 405 unsigned Factor = NumParts / NumIntermediates; 406 for (unsigned i = 0; i != NumIntermediates; ++i) 407 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 408 PartVT, IntermediateVT, V); 409 } 410 411 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 412 // intermediate operands. 413 EVT BuiltVectorTy = 414 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 415 (IntermediateVT.isVector() 416 ? IntermediateVT.getVectorNumElements() * NumParts 417 : NumIntermediates)); 418 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 419 : ISD::BUILD_VECTOR, 420 DL, BuiltVectorTy, Ops); 421 } 422 423 // There is now one part, held in Val. Correct it to match ValueVT. 424 EVT PartEVT = Val.getValueType(); 425 426 if (PartEVT == ValueVT) 427 return Val; 428 429 if (PartEVT.isVector()) { 430 // If the element type of the source/dest vectors are the same, but the 431 // parts vector has more elements than the value vector, then we have a 432 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 433 // elements we want. 434 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 435 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 436 "Cannot narrow, it would be a lossy transformation"); 437 return DAG.getNode( 438 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 439 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 440 } 441 442 // Vector/Vector bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 446 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 447 "Cannot handle this kind of promotion"); 448 // Promoted vector extract 449 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 450 451 } 452 453 // Trivial bitcast if the types are the same size and the destination 454 // vector type is legal. 455 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 456 TLI.isTypeLegal(ValueVT)) 457 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 458 459 if (ValueVT.getVectorNumElements() != 1) { 460 // Certain ABIs require that vectors are passed as integers. For vectors 461 // are the same size, this is an obvious bitcast. 462 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 463 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 464 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 465 // Bitcast Val back the original type and extract the corresponding 466 // vector we want. 467 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 468 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 469 ValueVT.getVectorElementType(), Elts); 470 Val = DAG.getBitcast(WiderVecType, Val); 471 return DAG.getNode( 472 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 473 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 474 } 475 476 diagnosePossiblyInvalidConstraint( 477 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 478 return DAG.getUNDEF(ValueVT); 479 } 480 481 // Handle cases such as i8 -> <1 x i1> 482 EVT ValueSVT = ValueVT.getVectorElementType(); 483 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 484 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 485 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 486 487 return DAG.getBuildVector(ValueVT, DL, Val); 488 } 489 490 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 491 SDValue Val, SDValue *Parts, unsigned NumParts, 492 MVT PartVT, const Value *V, 493 Optional<CallingConv::ID> CallConv); 494 495 /// getCopyToParts - Create a series of nodes that contain the specified value 496 /// split into legal parts. If the parts contain more bits than Val, then, for 497 /// integers, ExtendKind can be used to specify how to generate the extra bits. 498 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 499 SDValue *Parts, unsigned NumParts, MVT PartVT, 500 const Value *V, 501 Optional<CallingConv::ID> CallConv = None, 502 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 503 EVT ValueVT = Val.getValueType(); 504 505 // Handle the vector case separately. 506 if (ValueVT.isVector()) 507 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 508 CallConv); 509 510 unsigned PartBits = PartVT.getSizeInBits(); 511 unsigned OrigNumParts = NumParts; 512 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 513 "Copying to an illegal type!"); 514 515 if (NumParts == 0) 516 return; 517 518 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 519 EVT PartEVT = PartVT; 520 if (PartEVT == ValueVT) { 521 assert(NumParts == 1 && "No-op copy with multiple parts!"); 522 Parts[0] = Val; 523 return; 524 } 525 526 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 527 // If the parts cover more bits than the value has, promote the value. 528 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 529 assert(NumParts == 1 && "Do not know what to promote to!"); 530 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 531 } else { 532 if (ValueVT.isFloatingPoint()) { 533 // FP values need to be bitcast, then extended if they are being put 534 // into a larger container. 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 536 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 537 } 538 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 539 ValueVT.isInteger() && 540 "Unknown mismatch!"); 541 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 542 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 543 if (PartVT == MVT::x86mmx) 544 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 545 } 546 } else if (PartBits == ValueVT.getSizeInBits()) { 547 // Different types of the same size. 548 assert(NumParts == 1 && PartEVT != ValueVT); 549 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 550 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 551 // If the parts cover less bits than value has, truncate the value. 552 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 553 ValueVT.isInteger() && 554 "Unknown mismatch!"); 555 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 556 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 557 if (PartVT == MVT::x86mmx) 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } 560 561 // The value may have changed - recompute ValueVT. 562 ValueVT = Val.getValueType(); 563 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 564 "Failed to tile the value with PartVT!"); 565 566 if (NumParts == 1) { 567 if (PartEVT != ValueVT) { 568 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 569 "scalar-to-vector conversion failed"); 570 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 571 } 572 573 Parts[0] = Val; 574 return; 575 } 576 577 // Expand the value into multiple parts. 578 if (NumParts & (NumParts - 1)) { 579 // The number of parts is not a power of 2. Split off and copy the tail. 580 assert(PartVT.isInteger() && ValueVT.isInteger() && 581 "Do not know what to expand to!"); 582 unsigned RoundParts = 1 << Log2_32(NumParts); 583 unsigned RoundBits = RoundParts * PartBits; 584 unsigned OddParts = NumParts - RoundParts; 585 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 586 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 587 588 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 589 CallConv); 590 591 if (DAG.getDataLayout().isBigEndian()) 592 // The odd parts were reversed by getCopyToParts - unreverse them. 593 std::reverse(Parts + RoundParts, Parts + NumParts); 594 595 NumParts = RoundParts; 596 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 597 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 598 } 599 600 // The number of parts is a power of 2. Repeatedly bisect the value using 601 // EXTRACT_ELEMENT. 602 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 603 EVT::getIntegerVT(*DAG.getContext(), 604 ValueVT.getSizeInBits()), 605 Val); 606 607 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 608 for (unsigned i = 0; i < NumParts; i += StepSize) { 609 unsigned ThisBits = StepSize * PartBits / 2; 610 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 611 SDValue &Part0 = Parts[i]; 612 SDValue &Part1 = Parts[i+StepSize/2]; 613 614 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 615 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 616 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 617 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 618 619 if (ThisBits == PartBits && ThisVT != PartVT) { 620 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 621 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 622 } 623 } 624 } 625 626 if (DAG.getDataLayout().isBigEndian()) 627 std::reverse(Parts, Parts + OrigNumParts); 628 } 629 630 static SDValue widenVectorToPartType(SelectionDAG &DAG, 631 SDValue Val, const SDLoc &DL, EVT PartVT) { 632 if (!PartVT.isVector()) 633 return SDValue(); 634 635 EVT ValueVT = Val.getValueType(); 636 unsigned PartNumElts = PartVT.getVectorNumElements(); 637 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 638 if (PartNumElts > ValueNumElts && 639 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 640 EVT ElementVT = PartVT.getVectorElementType(); 641 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 642 // undef elements. 643 SmallVector<SDValue, 16> Ops; 644 DAG.ExtractVectorElements(Val, Ops); 645 SDValue EltUndef = DAG.getUNDEF(ElementVT); 646 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 647 Ops.push_back(EltUndef); 648 649 // FIXME: Use CONCAT for 2x -> 4x. 650 return DAG.getBuildVector(PartVT, DL, Ops); 651 } 652 653 return SDValue(); 654 } 655 656 /// getCopyToPartsVector - Create a series of nodes that contain the specified 657 /// value split into legal parts. 658 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 659 SDValue Val, SDValue *Parts, unsigned NumParts, 660 MVT PartVT, const Value *V, 661 Optional<CallingConv::ID> CallConv) { 662 EVT ValueVT = Val.getValueType(); 663 assert(ValueVT.isVector() && "Not a vector"); 664 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 665 const bool IsABIRegCopy = CallConv.hasValue(); 666 667 if (NumParts == 1) { 668 EVT PartEVT = PartVT; 669 if (PartEVT == ValueVT) { 670 // Nothing to do. 671 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 672 // Bitconvert vector->vector case. 673 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 674 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 675 Val = Widened; 676 } else if (PartVT.isVector() && 677 PartEVT.getVectorElementType().bitsGE( 678 ValueVT.getVectorElementType()) && 679 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 680 681 // Promoted vector extract 682 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 683 } else { 684 if (ValueVT.getVectorNumElements() == 1) { 685 Val = DAG.getNode( 686 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 687 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 688 } else { 689 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 690 "lossy conversion of vector to scalar type"); 691 EVT IntermediateType = 692 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 693 Val = DAG.getBitcast(IntermediateType, Val); 694 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 695 } 696 } 697 698 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 699 Parts[0] = Val; 700 return; 701 } 702 703 // Handle a multi-element vector. 704 EVT IntermediateVT; 705 MVT RegisterVT; 706 unsigned NumIntermediates; 707 unsigned NumRegs; 708 if (IsABIRegCopy) { 709 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 710 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 711 NumIntermediates, RegisterVT); 712 } else { 713 NumRegs = 714 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } 717 718 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 719 NumParts = NumRegs; // Silence a compiler warning. 720 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 721 722 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 723 IntermediateVT.getVectorNumElements() : 1; 724 725 // Convert the vector to the appropiate type if necessary. 726 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 727 728 EVT BuiltVectorTy = EVT::getVectorVT( 729 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 730 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 731 if (ValueVT != BuiltVectorTy) { 732 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 733 Val = Widened; 734 735 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 736 } 737 738 // Split the vector into intermediate operands. 739 SmallVector<SDValue, 8> Ops(NumIntermediates); 740 for (unsigned i = 0; i != NumIntermediates; ++i) { 741 if (IntermediateVT.isVector()) { 742 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 743 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 744 } else { 745 Ops[i] = DAG.getNode( 746 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 747 DAG.getConstant(i, DL, IdxVT)); 748 } 749 } 750 751 // Split the intermediate operands into legal parts. 752 if (NumParts == NumIntermediates) { 753 // If the register was not expanded, promote or copy the value, 754 // as appropriate. 755 for (unsigned i = 0; i != NumParts; ++i) 756 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 757 } else if (NumParts > 0) { 758 // If the intermediate type was expanded, split each the value into 759 // legal parts. 760 assert(NumIntermediates != 0 && "division by zero"); 761 assert(NumParts % NumIntermediates == 0 && 762 "Must expand into a divisible number of parts!"); 763 unsigned Factor = NumParts / NumIntermediates; 764 for (unsigned i = 0; i != NumIntermediates; ++i) 765 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 766 CallConv); 767 } 768 } 769 770 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 771 EVT valuevt, Optional<CallingConv::ID> CC) 772 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 773 RegCount(1, regs.size()), CallConv(CC) {} 774 775 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 776 const DataLayout &DL, unsigned Reg, Type *Ty, 777 Optional<CallingConv::ID> CC) { 778 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 779 780 CallConv = CC; 781 782 for (EVT ValueVT : ValueVTs) { 783 unsigned NumRegs = 784 isABIMangled() 785 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 786 : TLI.getNumRegisters(Context, ValueVT); 787 MVT RegisterVT = 788 isABIMangled() 789 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getRegisterType(Context, ValueVT); 791 for (unsigned i = 0; i != NumRegs; ++i) 792 Regs.push_back(Reg + i); 793 RegVTs.push_back(RegisterVT); 794 RegCount.push_back(NumRegs); 795 Reg += NumRegs; 796 } 797 } 798 799 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 800 FunctionLoweringInfo &FuncInfo, 801 const SDLoc &dl, SDValue &Chain, 802 SDValue *Flag, const Value *V) const { 803 // A Value with type {} or [0 x %t] needs no registers. 804 if (ValueVTs.empty()) 805 return SDValue(); 806 807 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 808 809 // Assemble the legal parts into the final values. 810 SmallVector<SDValue, 4> Values(ValueVTs.size()); 811 SmallVector<SDValue, 8> Parts; 812 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 813 // Copy the legal parts from the registers. 814 EVT ValueVT = ValueVTs[Value]; 815 unsigned NumRegs = RegCount[Value]; 816 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 817 *DAG.getContext(), 818 CallConv.getValue(), RegVTs[Value]) 819 : RegVTs[Value]; 820 821 Parts.resize(NumRegs); 822 for (unsigned i = 0; i != NumRegs; ++i) { 823 SDValue P; 824 if (!Flag) { 825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 826 } else { 827 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 828 *Flag = P.getValue(2); 829 } 830 831 Chain = P.getValue(1); 832 Parts[i] = P; 833 834 // If the source register was virtual and if we know something about it, 835 // add an assert node. 836 if (!Register::isVirtualRegister(Regs[Part + i]) || 837 !RegisterVT.isInteger()) 838 continue; 839 840 const FunctionLoweringInfo::LiveOutInfo *LOI = 841 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 842 if (!LOI) 843 continue; 844 845 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 846 unsigned NumSignBits = LOI->NumSignBits; 847 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 848 849 if (NumZeroBits == RegSize) { 850 // The current value is a zero. 851 // Explicitly express that as it would be easier for 852 // optimizations to kick in. 853 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 854 continue; 855 } 856 857 // FIXME: We capture more information than the dag can represent. For 858 // now, just use the tightest assertzext/assertsext possible. 859 bool isSExt; 860 EVT FromVT(MVT::Other); 861 if (NumZeroBits) { 862 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 863 isSExt = false; 864 } else if (NumSignBits > 1) { 865 FromVT = 866 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 867 isSExt = true; 868 } else { 869 continue; 870 } 871 // Add an assertion node. 872 assert(FromVT != MVT::Other); 873 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 874 RegisterVT, P, DAG.getValueType(FromVT)); 875 } 876 877 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 878 RegisterVT, ValueVT, V, CallConv); 879 Part += NumRegs; 880 Parts.clear(); 881 } 882 883 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 884 } 885 886 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 887 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 888 const Value *V, 889 ISD::NodeType PreferredExtendType) const { 890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 891 ISD::NodeType ExtendKind = PreferredExtendType; 892 893 // Get the list of the values's legal parts. 894 unsigned NumRegs = Regs.size(); 895 SmallVector<SDValue, 8> Parts(NumRegs); 896 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 897 unsigned NumParts = RegCount[Value]; 898 899 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 900 *DAG.getContext(), 901 CallConv.getValue(), RegVTs[Value]) 902 : RegVTs[Value]; 903 904 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 905 ExtendKind = ISD::ZERO_EXTEND; 906 907 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 908 NumParts, RegisterVT, V, CallConv, ExtendKind); 909 Part += NumParts; 910 } 911 912 // Copy the parts into the registers. 913 SmallVector<SDValue, 8> Chains(NumRegs); 914 for (unsigned i = 0; i != NumRegs; ++i) { 915 SDValue Part; 916 if (!Flag) { 917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 918 } else { 919 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 920 *Flag = Part.getValue(1); 921 } 922 923 Chains[i] = Part.getValue(0); 924 } 925 926 if (NumRegs == 1 || Flag) 927 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 928 // flagged to it. That is the CopyToReg nodes and the user are considered 929 // a single scheduling unit. If we create a TokenFactor and return it as 930 // chain, then the TokenFactor is both a predecessor (operand) of the 931 // user as well as a successor (the TF operands are flagged to the user). 932 // c1, f1 = CopyToReg 933 // c2, f2 = CopyToReg 934 // c3 = TokenFactor c1, c2 935 // ... 936 // = op c3, ..., f2 937 Chain = Chains[NumRegs-1]; 938 else 939 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 940 } 941 942 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 943 unsigned MatchingIdx, const SDLoc &dl, 944 SelectionDAG &DAG, 945 std::vector<SDValue> &Ops) const { 946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 947 948 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 949 if (HasMatching) 950 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 951 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 952 // Put the register class of the virtual registers in the flag word. That 953 // way, later passes can recompute register class constraints for inline 954 // assembly as well as normal instructions. 955 // Don't do this for tied operands that can use the regclass information 956 // from the def. 957 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 958 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 959 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 960 } 961 962 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 963 Ops.push_back(Res); 964 965 if (Code == InlineAsm::Kind_Clobber) { 966 // Clobbers should always have a 1:1 mapping with registers, and may 967 // reference registers that have illegal (e.g. vector) types. Hence, we 968 // shouldn't try to apply any sort of splitting logic to them. 969 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 970 "No 1:1 mapping from clobbers to regs?"); 971 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 972 (void)SP; 973 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 974 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 975 assert( 976 (Regs[I] != SP || 977 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 978 "If we clobbered the stack pointer, MFI should know about it."); 979 } 980 return; 981 } 982 983 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 984 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 985 MVT RegisterVT = RegVTs[Value]; 986 for (unsigned i = 0; i != NumRegs; ++i) { 987 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 988 unsigned TheReg = Regs[Reg++]; 989 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 990 } 991 } 992 } 993 994 SmallVector<std::pair<unsigned, unsigned>, 4> 995 RegsForValue::getRegsAndSizes() const { 996 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 997 unsigned I = 0; 998 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 999 unsigned RegCount = std::get<0>(CountAndVT); 1000 MVT RegisterVT = std::get<1>(CountAndVT); 1001 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1002 for (unsigned E = I + RegCount; I != E; ++I) 1003 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1004 } 1005 return OutVec; 1006 } 1007 1008 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1009 const TargetLibraryInfo *li) { 1010 AA = aa; 1011 GFI = gfi; 1012 LibInfo = li; 1013 DL = &DAG.getDataLayout(); 1014 Context = DAG.getContext(); 1015 LPadToCallSiteMap.clear(); 1016 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1017 } 1018 1019 void SelectionDAGBuilder::clear() { 1020 NodeMap.clear(); 1021 UnusedArgNodeMap.clear(); 1022 PendingLoads.clear(); 1023 PendingExports.clear(); 1024 CurInst = nullptr; 1025 HasTailCall = false; 1026 SDNodeOrder = LowestSDNodeOrder; 1027 StatepointLowering.clear(); 1028 } 1029 1030 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1031 DanglingDebugInfoMap.clear(); 1032 } 1033 1034 SDValue SelectionDAGBuilder::getRoot() { 1035 if (PendingLoads.empty()) 1036 return DAG.getRoot(); 1037 1038 if (PendingLoads.size() == 1) { 1039 SDValue Root = PendingLoads[0]; 1040 DAG.setRoot(Root); 1041 PendingLoads.clear(); 1042 return Root; 1043 } 1044 1045 // Otherwise, we have to make a token factor node. 1046 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1047 PendingLoads.clear(); 1048 DAG.setRoot(Root); 1049 return Root; 1050 } 1051 1052 SDValue SelectionDAGBuilder::getControlRoot() { 1053 SDValue Root = DAG.getRoot(); 1054 1055 if (PendingExports.empty()) 1056 return Root; 1057 1058 // Turn all of the CopyToReg chains into one factored node. 1059 if (Root.getOpcode() != ISD::EntryToken) { 1060 unsigned i = 0, e = PendingExports.size(); 1061 for (; i != e; ++i) { 1062 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1063 if (PendingExports[i].getNode()->getOperand(0) == Root) 1064 break; // Don't add the root if we already indirectly depend on it. 1065 } 1066 1067 if (i == e) 1068 PendingExports.push_back(Root); 1069 } 1070 1071 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1072 PendingExports); 1073 PendingExports.clear(); 1074 DAG.setRoot(Root); 1075 return Root; 1076 } 1077 1078 void SelectionDAGBuilder::visit(const Instruction &I) { 1079 // Set up outgoing PHI node register values before emitting the terminator. 1080 if (I.isTerminator()) { 1081 HandlePHINodesInSuccessorBlocks(I.getParent()); 1082 } 1083 1084 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1085 if (!isa<DbgInfoIntrinsic>(I)) 1086 ++SDNodeOrder; 1087 1088 CurInst = &I; 1089 1090 visit(I.getOpcode(), I); 1091 1092 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1093 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1094 // maps to this instruction. 1095 // TODO: We could handle all flags (nsw, etc) here. 1096 // TODO: If an IR instruction maps to >1 node, only the final node will have 1097 // flags set. 1098 if (SDNode *Node = getNodeForIRValue(&I)) { 1099 SDNodeFlags IncomingFlags; 1100 IncomingFlags.copyFMF(*FPMO); 1101 if (!Node->getFlags().isDefined()) 1102 Node->setFlags(IncomingFlags); 1103 else 1104 Node->intersectFlagsWith(IncomingFlags); 1105 } 1106 } 1107 1108 if (!I.isTerminator() && !HasTailCall && 1109 !isStatepoint(&I)) // statepoints handle their exports internally 1110 CopyToExportRegsIfNeeded(&I); 1111 1112 CurInst = nullptr; 1113 } 1114 1115 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1116 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1117 } 1118 1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1120 // Note: this doesn't use InstVisitor, because it has to work with 1121 // ConstantExpr's in addition to instructions. 1122 switch (Opcode) { 1123 default: llvm_unreachable("Unknown instruction type encountered!"); 1124 // Build the switch statement using the Instruction.def file. 1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1126 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1127 #include "llvm/IR/Instruction.def" 1128 } 1129 } 1130 1131 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1132 const DIExpression *Expr) { 1133 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1134 const DbgValueInst *DI = DDI.getDI(); 1135 DIVariable *DanglingVariable = DI->getVariable(); 1136 DIExpression *DanglingExpr = DI->getExpression(); 1137 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1138 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1139 return true; 1140 } 1141 return false; 1142 }; 1143 1144 for (auto &DDIMI : DanglingDebugInfoMap) { 1145 DanglingDebugInfoVector &DDIV = DDIMI.second; 1146 1147 // If debug info is to be dropped, run it through final checks to see 1148 // whether it can be salvaged. 1149 for (auto &DDI : DDIV) 1150 if (isMatchingDbgValue(DDI)) 1151 salvageUnresolvedDbgValue(DDI); 1152 1153 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1154 } 1155 } 1156 1157 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1158 // generate the debug data structures now that we've seen its definition. 1159 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1160 SDValue Val) { 1161 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1162 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1163 return; 1164 1165 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1166 for (auto &DDI : DDIV) { 1167 const DbgValueInst *DI = DDI.getDI(); 1168 assert(DI && "Ill-formed DanglingDebugInfo"); 1169 DebugLoc dl = DDI.getdl(); 1170 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1171 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1172 DILocalVariable *Variable = DI->getVariable(); 1173 DIExpression *Expr = DI->getExpression(); 1174 assert(Variable->isValidLocationForIntrinsic(dl) && 1175 "Expected inlined-at fields to agree"); 1176 SDDbgValue *SDV; 1177 if (Val.getNode()) { 1178 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1179 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1180 // we couldn't resolve it directly when examining the DbgValue intrinsic 1181 // in the first place we should not be more successful here). Unless we 1182 // have some test case that prove this to be correct we should avoid 1183 // calling EmitFuncArgumentDbgValue here. 1184 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1185 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1186 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1187 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1188 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1189 // inserted after the definition of Val when emitting the instructions 1190 // after ISel. An alternative could be to teach 1191 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1192 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1193 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1194 << ValSDNodeOrder << "\n"); 1195 SDV = getDbgValue(Val, Variable, Expr, dl, 1196 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1197 DAG.AddDbgValue(SDV, Val.getNode(), false); 1198 } else 1199 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1200 << "in EmitFuncArgumentDbgValue\n"); 1201 } else { 1202 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1203 auto Undef = 1204 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1205 auto SDV = 1206 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1207 DAG.AddDbgValue(SDV, nullptr, false); 1208 } 1209 } 1210 DDIV.clear(); 1211 } 1212 1213 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1214 Value *V = DDI.getDI()->getValue(); 1215 DILocalVariable *Var = DDI.getDI()->getVariable(); 1216 DIExpression *Expr = DDI.getDI()->getExpression(); 1217 DebugLoc DL = DDI.getdl(); 1218 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1219 unsigned SDOrder = DDI.getSDNodeOrder(); 1220 1221 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1222 // that DW_OP_stack_value is desired. 1223 assert(isa<DbgValueInst>(DDI.getDI())); 1224 bool StackValue = true; 1225 1226 // Can this Value can be encoded without any further work? 1227 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1228 return; 1229 1230 // Attempt to salvage back through as many instructions as possible. Bail if 1231 // a non-instruction is seen, such as a constant expression or global 1232 // variable. FIXME: Further work could recover those too. 1233 while (isa<Instruction>(V)) { 1234 Instruction &VAsInst = *cast<Instruction>(V); 1235 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1236 1237 // If we cannot salvage any further, and haven't yet found a suitable debug 1238 // expression, bail out. 1239 if (!NewExpr) 1240 break; 1241 1242 // New value and expr now represent this debuginfo. 1243 V = VAsInst.getOperand(0); 1244 Expr = NewExpr; 1245 1246 // Some kind of simplification occurred: check whether the operand of the 1247 // salvaged debug expression can be encoded in this DAG. 1248 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1249 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1250 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1251 return; 1252 } 1253 } 1254 1255 // This was the final opportunity to salvage this debug information, and it 1256 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1257 // any earlier variable location. 1258 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1259 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1260 DAG.AddDbgValue(SDV, nullptr, false); 1261 1262 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1263 << "\n"); 1264 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1265 << "\n"); 1266 } 1267 1268 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1269 DIExpression *Expr, DebugLoc dl, 1270 DebugLoc InstDL, unsigned Order) { 1271 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1272 SDDbgValue *SDV; 1273 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1274 isa<ConstantPointerNull>(V)) { 1275 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1276 DAG.AddDbgValue(SDV, nullptr, false); 1277 return true; 1278 } 1279 1280 // If the Value is a frame index, we can create a FrameIndex debug value 1281 // without relying on the DAG at all. 1282 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1283 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1284 if (SI != FuncInfo.StaticAllocaMap.end()) { 1285 auto SDV = 1286 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1287 /*IsIndirect*/ false, dl, SDNodeOrder); 1288 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1289 // is still available even if the SDNode gets optimized out. 1290 DAG.AddDbgValue(SDV, nullptr, false); 1291 return true; 1292 } 1293 } 1294 1295 // Do not use getValue() in here; we don't want to generate code at 1296 // this point if it hasn't been done yet. 1297 SDValue N = NodeMap[V]; 1298 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1299 N = UnusedArgNodeMap[V]; 1300 if (N.getNode()) { 1301 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1302 return true; 1303 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1304 DAG.AddDbgValue(SDV, N.getNode(), false); 1305 return true; 1306 } 1307 1308 // Special rules apply for the first dbg.values of parameter variables in a 1309 // function. Identify them by the fact they reference Argument Values, that 1310 // they're parameters, and they are parameters of the current function. We 1311 // need to let them dangle until they get an SDNode. 1312 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1313 !InstDL.getInlinedAt(); 1314 if (!IsParamOfFunc) { 1315 // The value is not used in this block yet (or it would have an SDNode). 1316 // We still want the value to appear for the user if possible -- if it has 1317 // an associated VReg, we can refer to that instead. 1318 auto VMI = FuncInfo.ValueMap.find(V); 1319 if (VMI != FuncInfo.ValueMap.end()) { 1320 unsigned Reg = VMI->second; 1321 // If this is a PHI node, it may be split up into several MI PHI nodes 1322 // (in FunctionLoweringInfo::set). 1323 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1324 V->getType(), None); 1325 if (RFV.occupiesMultipleRegs()) { 1326 unsigned Offset = 0; 1327 unsigned BitsToDescribe = 0; 1328 if (auto VarSize = Var->getSizeInBits()) 1329 BitsToDescribe = *VarSize; 1330 if (auto Fragment = Expr->getFragmentInfo()) 1331 BitsToDescribe = Fragment->SizeInBits; 1332 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1333 unsigned RegisterSize = RegAndSize.second; 1334 // Bail out if all bits are described already. 1335 if (Offset >= BitsToDescribe) 1336 break; 1337 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1338 ? BitsToDescribe - Offset 1339 : RegisterSize; 1340 auto FragmentExpr = DIExpression::createFragmentExpression( 1341 Expr, Offset, FragmentSize); 1342 if (!FragmentExpr) 1343 continue; 1344 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1345 false, dl, SDNodeOrder); 1346 DAG.AddDbgValue(SDV, nullptr, false); 1347 Offset += RegisterSize; 1348 } 1349 } else { 1350 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1351 DAG.AddDbgValue(SDV, nullptr, false); 1352 } 1353 return true; 1354 } 1355 } 1356 1357 return false; 1358 } 1359 1360 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1361 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1362 for (auto &Pair : DanglingDebugInfoMap) 1363 for (auto &DDI : Pair.second) 1364 salvageUnresolvedDbgValue(DDI); 1365 clearDanglingDebugInfo(); 1366 } 1367 1368 /// getCopyFromRegs - If there was virtual register allocated for the value V 1369 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1370 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1371 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1372 SDValue Result; 1373 1374 if (It != FuncInfo.ValueMap.end()) { 1375 unsigned InReg = It->second; 1376 1377 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1378 DAG.getDataLayout(), InReg, Ty, 1379 None); // This is not an ABI copy. 1380 SDValue Chain = DAG.getEntryNode(); 1381 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1382 V); 1383 resolveDanglingDebugInfo(V, Result); 1384 } 1385 1386 return Result; 1387 } 1388 1389 /// getValue - Return an SDValue for the given Value. 1390 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1391 // If we already have an SDValue for this value, use it. It's important 1392 // to do this first, so that we don't create a CopyFromReg if we already 1393 // have a regular SDValue. 1394 SDValue &N = NodeMap[V]; 1395 if (N.getNode()) return N; 1396 1397 // If there's a virtual register allocated and initialized for this 1398 // value, use it. 1399 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1400 return copyFromReg; 1401 1402 // Otherwise create a new SDValue and remember it. 1403 SDValue Val = getValueImpl(V); 1404 NodeMap[V] = Val; 1405 resolveDanglingDebugInfo(V, Val); 1406 return Val; 1407 } 1408 1409 // Return true if SDValue exists for the given Value 1410 bool SelectionDAGBuilder::findValue(const Value *V) const { 1411 return (NodeMap.find(V) != NodeMap.end()) || 1412 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1413 } 1414 1415 /// getNonRegisterValue - Return an SDValue for the given Value, but 1416 /// don't look in FuncInfo.ValueMap for a virtual register. 1417 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1418 // If we already have an SDValue for this value, use it. 1419 SDValue &N = NodeMap[V]; 1420 if (N.getNode()) { 1421 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1422 // Remove the debug location from the node as the node is about to be used 1423 // in a location which may differ from the original debug location. This 1424 // is relevant to Constant and ConstantFP nodes because they can appear 1425 // as constant expressions inside PHI nodes. 1426 N->setDebugLoc(DebugLoc()); 1427 } 1428 return N; 1429 } 1430 1431 // Otherwise create a new SDValue and remember it. 1432 SDValue Val = getValueImpl(V); 1433 NodeMap[V] = Val; 1434 resolveDanglingDebugInfo(V, Val); 1435 return Val; 1436 } 1437 1438 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1439 /// Create an SDValue for the given value. 1440 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1441 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1442 1443 if (const Constant *C = dyn_cast<Constant>(V)) { 1444 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1445 1446 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1447 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1448 1449 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1450 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1451 1452 if (isa<ConstantPointerNull>(C)) { 1453 unsigned AS = V->getType()->getPointerAddressSpace(); 1454 return DAG.getConstant(0, getCurSDLoc(), 1455 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1456 } 1457 1458 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1459 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1460 1461 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1462 return DAG.getUNDEF(VT); 1463 1464 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1465 visit(CE->getOpcode(), *CE); 1466 SDValue N1 = NodeMap[V]; 1467 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1468 return N1; 1469 } 1470 1471 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1472 SmallVector<SDValue, 4> Constants; 1473 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1474 OI != OE; ++OI) { 1475 SDNode *Val = getValue(*OI).getNode(); 1476 // If the operand is an empty aggregate, there are no values. 1477 if (!Val) continue; 1478 // Add each leaf value from the operand to the Constants list 1479 // to form a flattened list of all the values. 1480 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1481 Constants.push_back(SDValue(Val, i)); 1482 } 1483 1484 return DAG.getMergeValues(Constants, getCurSDLoc()); 1485 } 1486 1487 if (const ConstantDataSequential *CDS = 1488 dyn_cast<ConstantDataSequential>(C)) { 1489 SmallVector<SDValue, 4> Ops; 1490 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1491 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1492 // Add each leaf value from the operand to the Constants list 1493 // to form a flattened list of all the values. 1494 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1495 Ops.push_back(SDValue(Val, i)); 1496 } 1497 1498 if (isa<ArrayType>(CDS->getType())) 1499 return DAG.getMergeValues(Ops, getCurSDLoc()); 1500 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1501 } 1502 1503 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1504 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1505 "Unknown struct or array constant!"); 1506 1507 SmallVector<EVT, 4> ValueVTs; 1508 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1509 unsigned NumElts = ValueVTs.size(); 1510 if (NumElts == 0) 1511 return SDValue(); // empty struct 1512 SmallVector<SDValue, 4> Constants(NumElts); 1513 for (unsigned i = 0; i != NumElts; ++i) { 1514 EVT EltVT = ValueVTs[i]; 1515 if (isa<UndefValue>(C)) 1516 Constants[i] = DAG.getUNDEF(EltVT); 1517 else if (EltVT.isFloatingPoint()) 1518 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1519 else 1520 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1521 } 1522 1523 return DAG.getMergeValues(Constants, getCurSDLoc()); 1524 } 1525 1526 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1527 return DAG.getBlockAddress(BA, VT); 1528 1529 VectorType *VecTy = cast<VectorType>(V->getType()); 1530 unsigned NumElements = VecTy->getNumElements(); 1531 1532 // Now that we know the number and type of the elements, get that number of 1533 // elements into the Ops array based on what kind of constant it is. 1534 SmallVector<SDValue, 16> Ops; 1535 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1536 for (unsigned i = 0; i != NumElements; ++i) 1537 Ops.push_back(getValue(CV->getOperand(i))); 1538 } else { 1539 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1540 EVT EltVT = 1541 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1542 1543 SDValue Op; 1544 if (EltVT.isFloatingPoint()) 1545 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1546 else 1547 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1548 Ops.assign(NumElements, Op); 1549 } 1550 1551 // Create a BUILD_VECTOR node. 1552 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1553 } 1554 1555 // If this is a static alloca, generate it as the frameindex instead of 1556 // computation. 1557 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1558 DenseMap<const AllocaInst*, int>::iterator SI = 1559 FuncInfo.StaticAllocaMap.find(AI); 1560 if (SI != FuncInfo.StaticAllocaMap.end()) 1561 return DAG.getFrameIndex(SI->second, 1562 TLI.getFrameIndexTy(DAG.getDataLayout())); 1563 } 1564 1565 // If this is an instruction which fast-isel has deferred, select it now. 1566 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1567 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1568 1569 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1570 Inst->getType(), getABIRegCopyCC(V)); 1571 SDValue Chain = DAG.getEntryNode(); 1572 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1573 } 1574 1575 llvm_unreachable("Can't get register for value!"); 1576 } 1577 1578 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1579 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1580 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1581 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1582 bool IsSEH = isAsynchronousEHPersonality(Pers); 1583 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1584 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1585 if (!IsSEH) 1586 CatchPadMBB->setIsEHScopeEntry(); 1587 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1588 if (IsMSVCCXX || IsCoreCLR) 1589 CatchPadMBB->setIsEHFuncletEntry(); 1590 // Wasm does not need catchpads anymore 1591 if (!IsWasmCXX) 1592 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1593 getControlRoot())); 1594 } 1595 1596 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1597 // Update machine-CFG edge. 1598 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1599 FuncInfo.MBB->addSuccessor(TargetMBB); 1600 1601 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1602 bool IsSEH = isAsynchronousEHPersonality(Pers); 1603 if (IsSEH) { 1604 // If this is not a fall-through branch or optimizations are switched off, 1605 // emit the branch. 1606 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1607 TM.getOptLevel() == CodeGenOpt::None) 1608 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1609 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1610 return; 1611 } 1612 1613 // Figure out the funclet membership for the catchret's successor. 1614 // This will be used by the FuncletLayout pass to determine how to order the 1615 // BB's. 1616 // A 'catchret' returns to the outer scope's color. 1617 Value *ParentPad = I.getCatchSwitchParentPad(); 1618 const BasicBlock *SuccessorColor; 1619 if (isa<ConstantTokenNone>(ParentPad)) 1620 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1621 else 1622 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1623 assert(SuccessorColor && "No parent funclet for catchret!"); 1624 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1625 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1626 1627 // Create the terminator node. 1628 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1629 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1630 DAG.getBasicBlock(SuccessorColorMBB)); 1631 DAG.setRoot(Ret); 1632 } 1633 1634 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1635 // Don't emit any special code for the cleanuppad instruction. It just marks 1636 // the start of an EH scope/funclet. 1637 FuncInfo.MBB->setIsEHScopeEntry(); 1638 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1639 if (Pers != EHPersonality::Wasm_CXX) { 1640 FuncInfo.MBB->setIsEHFuncletEntry(); 1641 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1642 } 1643 } 1644 1645 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1646 // the control flow always stops at the single catch pad, as it does for a 1647 // cleanup pad. In case the exception caught is not of the types the catch pad 1648 // catches, it will be rethrown by a rethrow. 1649 static void findWasmUnwindDestinations( 1650 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1651 BranchProbability Prob, 1652 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1653 &UnwindDests) { 1654 while (EHPadBB) { 1655 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1656 if (isa<CleanupPadInst>(Pad)) { 1657 // Stop on cleanup pads. 1658 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1659 UnwindDests.back().first->setIsEHScopeEntry(); 1660 break; 1661 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1662 // Add the catchpad handlers to the possible destinations. We don't 1663 // continue to the unwind destination of the catchswitch for wasm. 1664 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1665 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1666 UnwindDests.back().first->setIsEHScopeEntry(); 1667 } 1668 break; 1669 } else { 1670 continue; 1671 } 1672 } 1673 } 1674 1675 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1676 /// many places it could ultimately go. In the IR, we have a single unwind 1677 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1678 /// This function skips over imaginary basic blocks that hold catchswitch 1679 /// instructions, and finds all the "real" machine 1680 /// basic block destinations. As those destinations may not be successors of 1681 /// EHPadBB, here we also calculate the edge probability to those destinations. 1682 /// The passed-in Prob is the edge probability to EHPadBB. 1683 static void findUnwindDestinations( 1684 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1685 BranchProbability Prob, 1686 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1687 &UnwindDests) { 1688 EHPersonality Personality = 1689 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1690 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1691 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1692 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1693 bool IsSEH = isAsynchronousEHPersonality(Personality); 1694 1695 if (IsWasmCXX) { 1696 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1697 assert(UnwindDests.size() <= 1 && 1698 "There should be at most one unwind destination for wasm"); 1699 return; 1700 } 1701 1702 while (EHPadBB) { 1703 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1704 BasicBlock *NewEHPadBB = nullptr; 1705 if (isa<LandingPadInst>(Pad)) { 1706 // Stop on landingpads. They are not funclets. 1707 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1708 break; 1709 } else if (isa<CleanupPadInst>(Pad)) { 1710 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1711 // personalities. 1712 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1713 UnwindDests.back().first->setIsEHScopeEntry(); 1714 UnwindDests.back().first->setIsEHFuncletEntry(); 1715 break; 1716 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1717 // Add the catchpad handlers to the possible destinations. 1718 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1719 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1720 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1721 if (IsMSVCCXX || IsCoreCLR) 1722 UnwindDests.back().first->setIsEHFuncletEntry(); 1723 if (!IsSEH) 1724 UnwindDests.back().first->setIsEHScopeEntry(); 1725 } 1726 NewEHPadBB = CatchSwitch->getUnwindDest(); 1727 } else { 1728 continue; 1729 } 1730 1731 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1732 if (BPI && NewEHPadBB) 1733 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1734 EHPadBB = NewEHPadBB; 1735 } 1736 } 1737 1738 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1739 // Update successor info. 1740 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1741 auto UnwindDest = I.getUnwindDest(); 1742 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1743 BranchProbability UnwindDestProb = 1744 (BPI && UnwindDest) 1745 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1746 : BranchProbability::getZero(); 1747 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1748 for (auto &UnwindDest : UnwindDests) { 1749 UnwindDest.first->setIsEHPad(); 1750 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1751 } 1752 FuncInfo.MBB->normalizeSuccProbs(); 1753 1754 // Create the terminator node. 1755 SDValue Ret = 1756 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1757 DAG.setRoot(Ret); 1758 } 1759 1760 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1761 report_fatal_error("visitCatchSwitch not yet implemented!"); 1762 } 1763 1764 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1766 auto &DL = DAG.getDataLayout(); 1767 SDValue Chain = getControlRoot(); 1768 SmallVector<ISD::OutputArg, 8> Outs; 1769 SmallVector<SDValue, 8> OutVals; 1770 1771 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1772 // lower 1773 // 1774 // %val = call <ty> @llvm.experimental.deoptimize() 1775 // ret <ty> %val 1776 // 1777 // differently. 1778 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1779 LowerDeoptimizingReturn(); 1780 return; 1781 } 1782 1783 if (!FuncInfo.CanLowerReturn) { 1784 unsigned DemoteReg = FuncInfo.DemoteRegister; 1785 const Function *F = I.getParent()->getParent(); 1786 1787 // Emit a store of the return value through the virtual register. 1788 // Leave Outs empty so that LowerReturn won't try to load return 1789 // registers the usual way. 1790 SmallVector<EVT, 1> PtrValueVTs; 1791 ComputeValueVTs(TLI, DL, 1792 F->getReturnType()->getPointerTo( 1793 DAG.getDataLayout().getAllocaAddrSpace()), 1794 PtrValueVTs); 1795 1796 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1797 DemoteReg, PtrValueVTs[0]); 1798 SDValue RetOp = getValue(I.getOperand(0)); 1799 1800 SmallVector<EVT, 4> ValueVTs, MemVTs; 1801 SmallVector<uint64_t, 4> Offsets; 1802 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1803 &Offsets); 1804 unsigned NumValues = ValueVTs.size(); 1805 1806 SmallVector<SDValue, 4> Chains(NumValues); 1807 for (unsigned i = 0; i != NumValues; ++i) { 1808 // An aggregate return value cannot wrap around the address space, so 1809 // offsets to its parts don't wrap either. 1810 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1811 1812 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1813 if (MemVTs[i] != ValueVTs[i]) 1814 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1815 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1816 // FIXME: better loc info would be nice. 1817 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1818 } 1819 1820 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1821 MVT::Other, Chains); 1822 } else if (I.getNumOperands() != 0) { 1823 SmallVector<EVT, 4> ValueVTs; 1824 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1825 unsigned NumValues = ValueVTs.size(); 1826 if (NumValues) { 1827 SDValue RetOp = getValue(I.getOperand(0)); 1828 1829 const Function *F = I.getParent()->getParent(); 1830 1831 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1832 I.getOperand(0)->getType(), F->getCallingConv(), 1833 /*IsVarArg*/ false); 1834 1835 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1836 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1837 Attribute::SExt)) 1838 ExtendKind = ISD::SIGN_EXTEND; 1839 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1840 Attribute::ZExt)) 1841 ExtendKind = ISD::ZERO_EXTEND; 1842 1843 LLVMContext &Context = F->getContext(); 1844 bool RetInReg = F->getAttributes().hasAttribute( 1845 AttributeList::ReturnIndex, Attribute::InReg); 1846 1847 for (unsigned j = 0; j != NumValues; ++j) { 1848 EVT VT = ValueVTs[j]; 1849 1850 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1851 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1852 1853 CallingConv::ID CC = F->getCallingConv(); 1854 1855 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1856 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1857 SmallVector<SDValue, 4> Parts(NumParts); 1858 getCopyToParts(DAG, getCurSDLoc(), 1859 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1860 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1861 1862 // 'inreg' on function refers to return value 1863 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1864 if (RetInReg) 1865 Flags.setInReg(); 1866 1867 if (I.getOperand(0)->getType()->isPointerTy()) { 1868 Flags.setPointer(); 1869 Flags.setPointerAddrSpace( 1870 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1871 } 1872 1873 if (NeedsRegBlock) { 1874 Flags.setInConsecutiveRegs(); 1875 if (j == NumValues - 1) 1876 Flags.setInConsecutiveRegsLast(); 1877 } 1878 1879 // Propagate extension type if any 1880 if (ExtendKind == ISD::SIGN_EXTEND) 1881 Flags.setSExt(); 1882 else if (ExtendKind == ISD::ZERO_EXTEND) 1883 Flags.setZExt(); 1884 1885 for (unsigned i = 0; i < NumParts; ++i) { 1886 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1887 VT, /*isfixed=*/true, 0, 0)); 1888 OutVals.push_back(Parts[i]); 1889 } 1890 } 1891 } 1892 } 1893 1894 // Push in swifterror virtual register as the last element of Outs. This makes 1895 // sure swifterror virtual register will be returned in the swifterror 1896 // physical register. 1897 const Function *F = I.getParent()->getParent(); 1898 if (TLI.supportSwiftError() && 1899 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1900 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1901 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1902 Flags.setSwiftError(); 1903 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1904 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1905 true /*isfixed*/, 1 /*origidx*/, 1906 0 /*partOffs*/)); 1907 // Create SDNode for the swifterror virtual register. 1908 OutVals.push_back( 1909 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1910 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1911 EVT(TLI.getPointerTy(DL)))); 1912 } 1913 1914 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1915 CallingConv::ID CallConv = 1916 DAG.getMachineFunction().getFunction().getCallingConv(); 1917 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1918 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1919 1920 // Verify that the target's LowerReturn behaved as expected. 1921 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1922 "LowerReturn didn't return a valid chain!"); 1923 1924 // Update the DAG with the new chain value resulting from return lowering. 1925 DAG.setRoot(Chain); 1926 } 1927 1928 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1929 /// created for it, emit nodes to copy the value into the virtual 1930 /// registers. 1931 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1932 // Skip empty types 1933 if (V->getType()->isEmptyTy()) 1934 return; 1935 1936 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1937 if (VMI != FuncInfo.ValueMap.end()) { 1938 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1939 CopyValueToVirtualRegister(V, VMI->second); 1940 } 1941 } 1942 1943 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1944 /// the current basic block, add it to ValueMap now so that we'll get a 1945 /// CopyTo/FromReg. 1946 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1947 // No need to export constants. 1948 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1949 1950 // Already exported? 1951 if (FuncInfo.isExportedInst(V)) return; 1952 1953 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1954 CopyValueToVirtualRegister(V, Reg); 1955 } 1956 1957 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1958 const BasicBlock *FromBB) { 1959 // The operands of the setcc have to be in this block. We don't know 1960 // how to export them from some other block. 1961 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1962 // Can export from current BB. 1963 if (VI->getParent() == FromBB) 1964 return true; 1965 1966 // Is already exported, noop. 1967 return FuncInfo.isExportedInst(V); 1968 } 1969 1970 // If this is an argument, we can export it if the BB is the entry block or 1971 // if it is already exported. 1972 if (isa<Argument>(V)) { 1973 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1974 return true; 1975 1976 // Otherwise, can only export this if it is already exported. 1977 return FuncInfo.isExportedInst(V); 1978 } 1979 1980 // Otherwise, constants can always be exported. 1981 return true; 1982 } 1983 1984 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1985 BranchProbability 1986 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1987 const MachineBasicBlock *Dst) const { 1988 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1989 const BasicBlock *SrcBB = Src->getBasicBlock(); 1990 const BasicBlock *DstBB = Dst->getBasicBlock(); 1991 if (!BPI) { 1992 // If BPI is not available, set the default probability as 1 / N, where N is 1993 // the number of successors. 1994 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1995 return BranchProbability(1, SuccSize); 1996 } 1997 return BPI->getEdgeProbability(SrcBB, DstBB); 1998 } 1999 2000 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2001 MachineBasicBlock *Dst, 2002 BranchProbability Prob) { 2003 if (!FuncInfo.BPI) 2004 Src->addSuccessorWithoutProb(Dst); 2005 else { 2006 if (Prob.isUnknown()) 2007 Prob = getEdgeProbability(Src, Dst); 2008 Src->addSuccessor(Dst, Prob); 2009 } 2010 } 2011 2012 static bool InBlock(const Value *V, const BasicBlock *BB) { 2013 if (const Instruction *I = dyn_cast<Instruction>(V)) 2014 return I->getParent() == BB; 2015 return true; 2016 } 2017 2018 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2019 /// This function emits a branch and is used at the leaves of an OR or an 2020 /// AND operator tree. 2021 void 2022 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2023 MachineBasicBlock *TBB, 2024 MachineBasicBlock *FBB, 2025 MachineBasicBlock *CurBB, 2026 MachineBasicBlock *SwitchBB, 2027 BranchProbability TProb, 2028 BranchProbability FProb, 2029 bool InvertCond) { 2030 const BasicBlock *BB = CurBB->getBasicBlock(); 2031 2032 // If the leaf of the tree is a comparison, merge the condition into 2033 // the caseblock. 2034 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2035 // The operands of the cmp have to be in this block. We don't know 2036 // how to export them from some other block. If this is the first block 2037 // of the sequence, no exporting is needed. 2038 if (CurBB == SwitchBB || 2039 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2040 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2041 ISD::CondCode Condition; 2042 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2043 ICmpInst::Predicate Pred = 2044 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2045 Condition = getICmpCondCode(Pred); 2046 } else { 2047 const FCmpInst *FC = cast<FCmpInst>(Cond); 2048 FCmpInst::Predicate Pred = 2049 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2050 Condition = getFCmpCondCode(Pred); 2051 if (TM.Options.NoNaNsFPMath) 2052 Condition = getFCmpCodeWithoutNaN(Condition); 2053 } 2054 2055 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2056 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2057 SL->SwitchCases.push_back(CB); 2058 return; 2059 } 2060 } 2061 2062 // Create a CaseBlock record representing this branch. 2063 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2064 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2065 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2066 SL->SwitchCases.push_back(CB); 2067 } 2068 2069 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2070 MachineBasicBlock *TBB, 2071 MachineBasicBlock *FBB, 2072 MachineBasicBlock *CurBB, 2073 MachineBasicBlock *SwitchBB, 2074 Instruction::BinaryOps Opc, 2075 BranchProbability TProb, 2076 BranchProbability FProb, 2077 bool InvertCond) { 2078 // Skip over not part of the tree and remember to invert op and operands at 2079 // next level. 2080 Value *NotCond; 2081 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2082 InBlock(NotCond, CurBB->getBasicBlock())) { 2083 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2084 !InvertCond); 2085 return; 2086 } 2087 2088 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2089 // Compute the effective opcode for Cond, taking into account whether it needs 2090 // to be inverted, e.g. 2091 // and (not (or A, B)), C 2092 // gets lowered as 2093 // and (and (not A, not B), C) 2094 unsigned BOpc = 0; 2095 if (BOp) { 2096 BOpc = BOp->getOpcode(); 2097 if (InvertCond) { 2098 if (BOpc == Instruction::And) 2099 BOpc = Instruction::Or; 2100 else if (BOpc == Instruction::Or) 2101 BOpc = Instruction::And; 2102 } 2103 } 2104 2105 // If this node is not part of the or/and tree, emit it as a branch. 2106 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2107 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2108 BOp->getParent() != CurBB->getBasicBlock() || 2109 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2110 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2111 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2112 TProb, FProb, InvertCond); 2113 return; 2114 } 2115 2116 // Create TmpBB after CurBB. 2117 MachineFunction::iterator BBI(CurBB); 2118 MachineFunction &MF = DAG.getMachineFunction(); 2119 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2120 CurBB->getParent()->insert(++BBI, TmpBB); 2121 2122 if (Opc == Instruction::Or) { 2123 // Codegen X | Y as: 2124 // BB1: 2125 // jmp_if_X TBB 2126 // jmp TmpBB 2127 // TmpBB: 2128 // jmp_if_Y TBB 2129 // jmp FBB 2130 // 2131 2132 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2133 // The requirement is that 2134 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2135 // = TrueProb for original BB. 2136 // Assuming the original probabilities are A and B, one choice is to set 2137 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2138 // A/(1+B) and 2B/(1+B). This choice assumes that 2139 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2140 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2141 // TmpBB, but the math is more complicated. 2142 2143 auto NewTrueProb = TProb / 2; 2144 auto NewFalseProb = TProb / 2 + FProb; 2145 // Emit the LHS condition. 2146 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2147 NewTrueProb, NewFalseProb, InvertCond); 2148 2149 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2150 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2151 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2152 // Emit the RHS condition into TmpBB. 2153 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2154 Probs[0], Probs[1], InvertCond); 2155 } else { 2156 assert(Opc == Instruction::And && "Unknown merge op!"); 2157 // Codegen X & Y as: 2158 // BB1: 2159 // jmp_if_X TmpBB 2160 // jmp FBB 2161 // TmpBB: 2162 // jmp_if_Y TBB 2163 // jmp FBB 2164 // 2165 // This requires creation of TmpBB after CurBB. 2166 2167 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2168 // The requirement is that 2169 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2170 // = FalseProb for original BB. 2171 // Assuming the original probabilities are A and B, one choice is to set 2172 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2173 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2174 // TrueProb for BB1 * FalseProb for TmpBB. 2175 2176 auto NewTrueProb = TProb + FProb / 2; 2177 auto NewFalseProb = FProb / 2; 2178 // Emit the LHS condition. 2179 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2180 NewTrueProb, NewFalseProb, InvertCond); 2181 2182 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2183 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2184 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2185 // Emit the RHS condition into TmpBB. 2186 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2187 Probs[0], Probs[1], InvertCond); 2188 } 2189 } 2190 2191 /// If the set of cases should be emitted as a series of branches, return true. 2192 /// If we should emit this as a bunch of and/or'd together conditions, return 2193 /// false. 2194 bool 2195 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2196 if (Cases.size() != 2) return true; 2197 2198 // If this is two comparisons of the same values or'd or and'd together, they 2199 // will get folded into a single comparison, so don't emit two blocks. 2200 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2201 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2202 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2203 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2204 return false; 2205 } 2206 2207 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2208 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2209 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2210 Cases[0].CC == Cases[1].CC && 2211 isa<Constant>(Cases[0].CmpRHS) && 2212 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2213 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2214 return false; 2215 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2216 return false; 2217 } 2218 2219 return true; 2220 } 2221 2222 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2223 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2224 2225 // Update machine-CFG edges. 2226 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2227 2228 if (I.isUnconditional()) { 2229 // Update machine-CFG edges. 2230 BrMBB->addSuccessor(Succ0MBB); 2231 2232 // If this is not a fall-through branch or optimizations are switched off, 2233 // emit the branch. 2234 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2235 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2236 MVT::Other, getControlRoot(), 2237 DAG.getBasicBlock(Succ0MBB))); 2238 2239 return; 2240 } 2241 2242 // If this condition is one of the special cases we handle, do special stuff 2243 // now. 2244 const Value *CondVal = I.getCondition(); 2245 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2246 2247 // If this is a series of conditions that are or'd or and'd together, emit 2248 // this as a sequence of branches instead of setcc's with and/or operations. 2249 // As long as jumps are not expensive, this should improve performance. 2250 // For example, instead of something like: 2251 // cmp A, B 2252 // C = seteq 2253 // cmp D, E 2254 // F = setle 2255 // or C, F 2256 // jnz foo 2257 // Emit: 2258 // cmp A, B 2259 // je foo 2260 // cmp D, E 2261 // jle foo 2262 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2263 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2264 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2265 !I.getMetadata(LLVMContext::MD_unpredictable) && 2266 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2267 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2268 Opcode, 2269 getEdgeProbability(BrMBB, Succ0MBB), 2270 getEdgeProbability(BrMBB, Succ1MBB), 2271 /*InvertCond=*/false); 2272 // If the compares in later blocks need to use values not currently 2273 // exported from this block, export them now. This block should always 2274 // be the first entry. 2275 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2276 2277 // Allow some cases to be rejected. 2278 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2279 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2280 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2281 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2282 } 2283 2284 // Emit the branch for this block. 2285 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2286 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2287 return; 2288 } 2289 2290 // Okay, we decided not to do this, remove any inserted MBB's and clear 2291 // SwitchCases. 2292 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2293 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2294 2295 SL->SwitchCases.clear(); 2296 } 2297 } 2298 2299 // Create a CaseBlock record representing this branch. 2300 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2301 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2302 2303 // Use visitSwitchCase to actually insert the fast branch sequence for this 2304 // cond branch. 2305 visitSwitchCase(CB, BrMBB); 2306 } 2307 2308 /// visitSwitchCase - Emits the necessary code to represent a single node in 2309 /// the binary search tree resulting from lowering a switch instruction. 2310 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2311 MachineBasicBlock *SwitchBB) { 2312 SDValue Cond; 2313 SDValue CondLHS = getValue(CB.CmpLHS); 2314 SDLoc dl = CB.DL; 2315 2316 if (CB.CC == ISD::SETTRUE) { 2317 // Branch or fall through to TrueBB. 2318 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2319 SwitchBB->normalizeSuccProbs(); 2320 if (CB.TrueBB != NextBlock(SwitchBB)) { 2321 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2322 DAG.getBasicBlock(CB.TrueBB))); 2323 } 2324 return; 2325 } 2326 2327 auto &TLI = DAG.getTargetLoweringInfo(); 2328 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2329 2330 // Build the setcc now. 2331 if (!CB.CmpMHS) { 2332 // Fold "(X == true)" to X and "(X == false)" to !X to 2333 // handle common cases produced by branch lowering. 2334 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2335 CB.CC == ISD::SETEQ) 2336 Cond = CondLHS; 2337 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2338 CB.CC == ISD::SETEQ) { 2339 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2340 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2341 } else { 2342 SDValue CondRHS = getValue(CB.CmpRHS); 2343 2344 // If a pointer's DAG type is larger than its memory type then the DAG 2345 // values are zero-extended. This breaks signed comparisons so truncate 2346 // back to the underlying type before doing the compare. 2347 if (CondLHS.getValueType() != MemVT) { 2348 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2349 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2350 } 2351 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2352 } 2353 } else { 2354 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2355 2356 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2357 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2358 2359 SDValue CmpOp = getValue(CB.CmpMHS); 2360 EVT VT = CmpOp.getValueType(); 2361 2362 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2363 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2364 ISD::SETLE); 2365 } else { 2366 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2367 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2368 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2369 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2370 } 2371 } 2372 2373 // Update successor info 2374 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2375 // TrueBB and FalseBB are always different unless the incoming IR is 2376 // degenerate. This only happens when running llc on weird IR. 2377 if (CB.TrueBB != CB.FalseBB) 2378 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2379 SwitchBB->normalizeSuccProbs(); 2380 2381 // If the lhs block is the next block, invert the condition so that we can 2382 // fall through to the lhs instead of the rhs block. 2383 if (CB.TrueBB == NextBlock(SwitchBB)) { 2384 std::swap(CB.TrueBB, CB.FalseBB); 2385 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2386 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2387 } 2388 2389 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2390 MVT::Other, getControlRoot(), Cond, 2391 DAG.getBasicBlock(CB.TrueBB)); 2392 2393 // Insert the false branch. Do this even if it's a fall through branch, 2394 // this makes it easier to do DAG optimizations which require inverting 2395 // the branch condition. 2396 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2397 DAG.getBasicBlock(CB.FalseBB)); 2398 2399 DAG.setRoot(BrCond); 2400 } 2401 2402 /// visitJumpTable - Emit JumpTable node in the current MBB 2403 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2404 // Emit the code for the jump table 2405 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2406 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2407 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2408 JT.Reg, PTy); 2409 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2410 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2411 MVT::Other, Index.getValue(1), 2412 Table, Index); 2413 DAG.setRoot(BrJumpTable); 2414 } 2415 2416 /// visitJumpTableHeader - This function emits necessary code to produce index 2417 /// in the JumpTable from switch case. 2418 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2419 JumpTableHeader &JTH, 2420 MachineBasicBlock *SwitchBB) { 2421 SDLoc dl = getCurSDLoc(); 2422 2423 // Subtract the lowest switch case value from the value being switched on. 2424 SDValue SwitchOp = getValue(JTH.SValue); 2425 EVT VT = SwitchOp.getValueType(); 2426 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2427 DAG.getConstant(JTH.First, dl, VT)); 2428 2429 // The SDNode we just created, which holds the value being switched on minus 2430 // the smallest case value, needs to be copied to a virtual register so it 2431 // can be used as an index into the jump table in a subsequent basic block. 2432 // This value may be smaller or larger than the target's pointer type, and 2433 // therefore require extension or truncating. 2434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2435 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2436 2437 unsigned JumpTableReg = 2438 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2439 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2440 JumpTableReg, SwitchOp); 2441 JT.Reg = JumpTableReg; 2442 2443 if (!JTH.OmitRangeCheck) { 2444 // Emit the range check for the jump table, and branch to the default block 2445 // for the switch statement if the value being switched on exceeds the 2446 // largest case in the switch. 2447 SDValue CMP = DAG.getSetCC( 2448 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2449 Sub.getValueType()), 2450 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2451 2452 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2453 MVT::Other, CopyTo, CMP, 2454 DAG.getBasicBlock(JT.Default)); 2455 2456 // Avoid emitting unnecessary branches to the next block. 2457 if (JT.MBB != NextBlock(SwitchBB)) 2458 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2459 DAG.getBasicBlock(JT.MBB)); 2460 2461 DAG.setRoot(BrCond); 2462 } else { 2463 // Avoid emitting unnecessary branches to the next block. 2464 if (JT.MBB != NextBlock(SwitchBB)) 2465 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2466 DAG.getBasicBlock(JT.MBB))); 2467 else 2468 DAG.setRoot(CopyTo); 2469 } 2470 } 2471 2472 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2473 /// variable if there exists one. 2474 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2475 SDValue &Chain) { 2476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2477 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2478 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2479 MachineFunction &MF = DAG.getMachineFunction(); 2480 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2481 MachineSDNode *Node = 2482 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2483 if (Global) { 2484 MachinePointerInfo MPInfo(Global); 2485 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2486 MachineMemOperand::MODereferenceable; 2487 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2488 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2489 DAG.setNodeMemRefs(Node, {MemRef}); 2490 } 2491 if (PtrTy != PtrMemTy) 2492 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2493 return SDValue(Node, 0); 2494 } 2495 2496 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2497 /// tail spliced into a stack protector check success bb. 2498 /// 2499 /// For a high level explanation of how this fits into the stack protector 2500 /// generation see the comment on the declaration of class 2501 /// StackProtectorDescriptor. 2502 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2503 MachineBasicBlock *ParentBB) { 2504 2505 // First create the loads to the guard/stack slot for the comparison. 2506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2507 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2508 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2509 2510 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2511 int FI = MFI.getStackProtectorIndex(); 2512 2513 SDValue Guard; 2514 SDLoc dl = getCurSDLoc(); 2515 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2516 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2517 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2518 2519 // Generate code to load the content of the guard slot. 2520 SDValue GuardVal = DAG.getLoad( 2521 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2522 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2523 MachineMemOperand::MOVolatile); 2524 2525 if (TLI.useStackGuardXorFP()) 2526 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2527 2528 // Retrieve guard check function, nullptr if instrumentation is inlined. 2529 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2530 // The target provides a guard check function to validate the guard value. 2531 // Generate a call to that function with the content of the guard slot as 2532 // argument. 2533 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2534 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2535 2536 TargetLowering::ArgListTy Args; 2537 TargetLowering::ArgListEntry Entry; 2538 Entry.Node = GuardVal; 2539 Entry.Ty = FnTy->getParamType(0); 2540 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2541 Entry.IsInReg = true; 2542 Args.push_back(Entry); 2543 2544 TargetLowering::CallLoweringInfo CLI(DAG); 2545 CLI.setDebugLoc(getCurSDLoc()) 2546 .setChain(DAG.getEntryNode()) 2547 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2548 getValue(GuardCheckFn), std::move(Args)); 2549 2550 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2551 DAG.setRoot(Result.second); 2552 return; 2553 } 2554 2555 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2556 // Otherwise, emit a volatile load to retrieve the stack guard value. 2557 SDValue Chain = DAG.getEntryNode(); 2558 if (TLI.useLoadStackGuardNode()) { 2559 Guard = getLoadStackGuard(DAG, dl, Chain); 2560 } else { 2561 const Value *IRGuard = TLI.getSDagStackGuard(M); 2562 SDValue GuardPtr = getValue(IRGuard); 2563 2564 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2565 MachinePointerInfo(IRGuard, 0), Align, 2566 MachineMemOperand::MOVolatile); 2567 } 2568 2569 // Perform the comparison via a subtract/getsetcc. 2570 EVT VT = Guard.getValueType(); 2571 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2572 2573 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2574 *DAG.getContext(), 2575 Sub.getValueType()), 2576 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2577 2578 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2579 // branch to failure MBB. 2580 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2581 MVT::Other, GuardVal.getOperand(0), 2582 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2583 // Otherwise branch to success MBB. 2584 SDValue Br = DAG.getNode(ISD::BR, dl, 2585 MVT::Other, BrCond, 2586 DAG.getBasicBlock(SPD.getSuccessMBB())); 2587 2588 DAG.setRoot(Br); 2589 } 2590 2591 /// Codegen the failure basic block for a stack protector check. 2592 /// 2593 /// A failure stack protector machine basic block consists simply of a call to 2594 /// __stack_chk_fail(). 2595 /// 2596 /// For a high level explanation of how this fits into the stack protector 2597 /// generation see the comment on the declaration of class 2598 /// StackProtectorDescriptor. 2599 void 2600 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2601 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2602 TargetLowering::MakeLibCallOptions CallOptions; 2603 CallOptions.setDiscardResult(true); 2604 SDValue Chain = 2605 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2606 None, CallOptions, getCurSDLoc()).second; 2607 // On PS4, the "return address" must still be within the calling function, 2608 // even if it's at the very end, so emit an explicit TRAP here. 2609 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2610 if (TM.getTargetTriple().isPS4CPU()) 2611 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2612 2613 DAG.setRoot(Chain); 2614 } 2615 2616 /// visitBitTestHeader - This function emits necessary code to produce value 2617 /// suitable for "bit tests" 2618 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2619 MachineBasicBlock *SwitchBB) { 2620 SDLoc dl = getCurSDLoc(); 2621 2622 // Subtract the minimum value 2623 SDValue SwitchOp = getValue(B.SValue); 2624 EVT VT = SwitchOp.getValueType(); 2625 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2626 DAG.getConstant(B.First, dl, VT)); 2627 2628 // Check range 2629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2630 SDValue RangeCmp = DAG.getSetCC( 2631 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2632 Sub.getValueType()), 2633 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2634 2635 // Determine the type of the test operands. 2636 bool UsePtrType = false; 2637 if (!TLI.isTypeLegal(VT)) 2638 UsePtrType = true; 2639 else { 2640 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2641 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2642 // Switch table case range are encoded into series of masks. 2643 // Just use pointer type, it's guaranteed to fit. 2644 UsePtrType = true; 2645 break; 2646 } 2647 } 2648 if (UsePtrType) { 2649 VT = TLI.getPointerTy(DAG.getDataLayout()); 2650 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2651 } 2652 2653 B.RegVT = VT.getSimpleVT(); 2654 B.Reg = FuncInfo.CreateReg(B.RegVT); 2655 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2656 2657 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2658 2659 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2660 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2661 SwitchBB->normalizeSuccProbs(); 2662 2663 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2664 MVT::Other, CopyTo, RangeCmp, 2665 DAG.getBasicBlock(B.Default)); 2666 2667 // Avoid emitting unnecessary branches to the next block. 2668 if (MBB != NextBlock(SwitchBB)) 2669 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2670 DAG.getBasicBlock(MBB)); 2671 2672 DAG.setRoot(BrRange); 2673 } 2674 2675 /// visitBitTestCase - this function produces one "bit test" 2676 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2677 MachineBasicBlock* NextMBB, 2678 BranchProbability BranchProbToNext, 2679 unsigned Reg, 2680 BitTestCase &B, 2681 MachineBasicBlock *SwitchBB) { 2682 SDLoc dl = getCurSDLoc(); 2683 MVT VT = BB.RegVT; 2684 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2685 SDValue Cmp; 2686 unsigned PopCount = countPopulation(B.Mask); 2687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2688 if (PopCount == 1) { 2689 // Testing for a single bit; just compare the shift count with what it 2690 // would need to be to shift a 1 bit in that position. 2691 Cmp = DAG.getSetCC( 2692 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2693 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2694 ISD::SETEQ); 2695 } else if (PopCount == BB.Range) { 2696 // There is only one zero bit in the range, test for it directly. 2697 Cmp = DAG.getSetCC( 2698 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2699 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2700 ISD::SETNE); 2701 } else { 2702 // Make desired shift 2703 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2704 DAG.getConstant(1, dl, VT), ShiftOp); 2705 2706 // Emit bit tests and jumps 2707 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2708 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2709 Cmp = DAG.getSetCC( 2710 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2711 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2712 } 2713 2714 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2715 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2716 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2717 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2718 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2719 // one as they are relative probabilities (and thus work more like weights), 2720 // and hence we need to normalize them to let the sum of them become one. 2721 SwitchBB->normalizeSuccProbs(); 2722 2723 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2724 MVT::Other, getControlRoot(), 2725 Cmp, DAG.getBasicBlock(B.TargetBB)); 2726 2727 // Avoid emitting unnecessary branches to the next block. 2728 if (NextMBB != NextBlock(SwitchBB)) 2729 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2730 DAG.getBasicBlock(NextMBB)); 2731 2732 DAG.setRoot(BrAnd); 2733 } 2734 2735 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2736 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2737 2738 // Retrieve successors. Look through artificial IR level blocks like 2739 // catchswitch for successors. 2740 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2741 const BasicBlock *EHPadBB = I.getSuccessor(1); 2742 2743 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2744 // have to do anything here to lower funclet bundles. 2745 assert(!I.hasOperandBundlesOtherThan( 2746 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2747 "Cannot lower invokes with arbitrary operand bundles yet!"); 2748 2749 const Value *Callee(I.getCalledValue()); 2750 const Function *Fn = dyn_cast<Function>(Callee); 2751 if (isa<InlineAsm>(Callee)) 2752 visitInlineAsm(&I); 2753 else if (Fn && Fn->isIntrinsic()) { 2754 switch (Fn->getIntrinsicID()) { 2755 default: 2756 llvm_unreachable("Cannot invoke this intrinsic"); 2757 case Intrinsic::donothing: 2758 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2759 break; 2760 case Intrinsic::experimental_patchpoint_void: 2761 case Intrinsic::experimental_patchpoint_i64: 2762 visitPatchpoint(&I, EHPadBB); 2763 break; 2764 case Intrinsic::experimental_gc_statepoint: 2765 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2766 break; 2767 case Intrinsic::wasm_rethrow_in_catch: { 2768 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2769 // special because it can be invoked, so we manually lower it to a DAG 2770 // node here. 2771 SmallVector<SDValue, 8> Ops; 2772 Ops.push_back(getRoot()); // inchain 2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2774 Ops.push_back( 2775 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2776 TLI.getPointerTy(DAG.getDataLayout()))); 2777 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2778 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2779 break; 2780 } 2781 } 2782 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2783 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2784 // Eventually we will support lowering the @llvm.experimental.deoptimize 2785 // intrinsic, and right now there are no plans to support other intrinsics 2786 // with deopt state. 2787 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2788 } else { 2789 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2790 } 2791 2792 // If the value of the invoke is used outside of its defining block, make it 2793 // available as a virtual register. 2794 // We already took care of the exported value for the statepoint instruction 2795 // during call to the LowerStatepoint. 2796 if (!isStatepoint(I)) { 2797 CopyToExportRegsIfNeeded(&I); 2798 } 2799 2800 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2801 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2802 BranchProbability EHPadBBProb = 2803 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2804 : BranchProbability::getZero(); 2805 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2806 2807 // Update successor info. 2808 addSuccessorWithProb(InvokeMBB, Return); 2809 for (auto &UnwindDest : UnwindDests) { 2810 UnwindDest.first->setIsEHPad(); 2811 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2812 } 2813 InvokeMBB->normalizeSuccProbs(); 2814 2815 // Drop into normal successor. 2816 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2817 DAG.getBasicBlock(Return))); 2818 } 2819 2820 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2821 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2822 2823 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2824 // have to do anything here to lower funclet bundles. 2825 assert(!I.hasOperandBundlesOtherThan( 2826 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2827 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2828 2829 assert(isa<InlineAsm>(I.getCalledValue()) && 2830 "Only know how to handle inlineasm callbr"); 2831 visitInlineAsm(&I); 2832 2833 // Retrieve successors. 2834 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2835 2836 // Update successor info. 2837 addSuccessorWithProb(CallBrMBB, Return); 2838 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2839 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2840 addSuccessorWithProb(CallBrMBB, Target); 2841 } 2842 CallBrMBB->normalizeSuccProbs(); 2843 2844 // Drop into default successor. 2845 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2846 MVT::Other, getControlRoot(), 2847 DAG.getBasicBlock(Return))); 2848 } 2849 2850 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2851 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2852 } 2853 2854 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2855 assert(FuncInfo.MBB->isEHPad() && 2856 "Call to landingpad not in landing pad!"); 2857 2858 // If there aren't registers to copy the values into (e.g., during SjLj 2859 // exceptions), then don't bother to create these DAG nodes. 2860 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2861 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2862 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2863 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2864 return; 2865 2866 // If landingpad's return type is token type, we don't create DAG nodes 2867 // for its exception pointer and selector value. The extraction of exception 2868 // pointer or selector value from token type landingpads is not currently 2869 // supported. 2870 if (LP.getType()->isTokenTy()) 2871 return; 2872 2873 SmallVector<EVT, 2> ValueVTs; 2874 SDLoc dl = getCurSDLoc(); 2875 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2876 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2877 2878 // Get the two live-in registers as SDValues. The physregs have already been 2879 // copied into virtual registers. 2880 SDValue Ops[2]; 2881 if (FuncInfo.ExceptionPointerVirtReg) { 2882 Ops[0] = DAG.getZExtOrTrunc( 2883 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2884 FuncInfo.ExceptionPointerVirtReg, 2885 TLI.getPointerTy(DAG.getDataLayout())), 2886 dl, ValueVTs[0]); 2887 } else { 2888 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2889 } 2890 Ops[1] = DAG.getZExtOrTrunc( 2891 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2892 FuncInfo.ExceptionSelectorVirtReg, 2893 TLI.getPointerTy(DAG.getDataLayout())), 2894 dl, ValueVTs[1]); 2895 2896 // Merge into one. 2897 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2898 DAG.getVTList(ValueVTs), Ops); 2899 setValue(&LP, Res); 2900 } 2901 2902 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2903 MachineBasicBlock *Last) { 2904 // Update JTCases. 2905 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2906 if (SL->JTCases[i].first.HeaderBB == First) 2907 SL->JTCases[i].first.HeaderBB = Last; 2908 2909 // Update BitTestCases. 2910 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2911 if (SL->BitTestCases[i].Parent == First) 2912 SL->BitTestCases[i].Parent = Last; 2913 } 2914 2915 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2916 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2917 2918 // Update machine-CFG edges with unique successors. 2919 SmallSet<BasicBlock*, 32> Done; 2920 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2921 BasicBlock *BB = I.getSuccessor(i); 2922 bool Inserted = Done.insert(BB).second; 2923 if (!Inserted) 2924 continue; 2925 2926 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2927 addSuccessorWithProb(IndirectBrMBB, Succ); 2928 } 2929 IndirectBrMBB->normalizeSuccProbs(); 2930 2931 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2932 MVT::Other, getControlRoot(), 2933 getValue(I.getAddress()))); 2934 } 2935 2936 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2937 if (!DAG.getTarget().Options.TrapUnreachable) 2938 return; 2939 2940 // We may be able to ignore unreachable behind a noreturn call. 2941 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2942 const BasicBlock &BB = *I.getParent(); 2943 if (&I != &BB.front()) { 2944 BasicBlock::const_iterator PredI = 2945 std::prev(BasicBlock::const_iterator(&I)); 2946 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2947 if (Call->doesNotReturn()) 2948 return; 2949 } 2950 } 2951 } 2952 2953 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2954 } 2955 2956 void SelectionDAGBuilder::visitFSub(const User &I) { 2957 // -0.0 - X --> fneg 2958 Type *Ty = I.getType(); 2959 if (isa<Constant>(I.getOperand(0)) && 2960 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2961 SDValue Op2 = getValue(I.getOperand(1)); 2962 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2963 Op2.getValueType(), Op2)); 2964 return; 2965 } 2966 2967 visitBinary(I, ISD::FSUB); 2968 } 2969 2970 /// Checks if the given instruction performs a vector reduction, in which case 2971 /// we have the freedom to alter the elements in the result as long as the 2972 /// reduction of them stays unchanged. 2973 static bool isVectorReductionOp(const User *I) { 2974 const Instruction *Inst = dyn_cast<Instruction>(I); 2975 if (!Inst || !Inst->getType()->isVectorTy()) 2976 return false; 2977 2978 auto OpCode = Inst->getOpcode(); 2979 switch (OpCode) { 2980 case Instruction::Add: 2981 case Instruction::Mul: 2982 case Instruction::And: 2983 case Instruction::Or: 2984 case Instruction::Xor: 2985 break; 2986 case Instruction::FAdd: 2987 case Instruction::FMul: 2988 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2989 if (FPOp->getFastMathFlags().isFast()) 2990 break; 2991 LLVM_FALLTHROUGH; 2992 default: 2993 return false; 2994 } 2995 2996 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2997 // Ensure the reduction size is a power of 2. 2998 if (!isPowerOf2_32(ElemNum)) 2999 return false; 3000 3001 unsigned ElemNumToReduce = ElemNum; 3002 3003 // Do DFS search on the def-use chain from the given instruction. We only 3004 // allow four kinds of operations during the search until we reach the 3005 // instruction that extracts the first element from the vector: 3006 // 3007 // 1. The reduction operation of the same opcode as the given instruction. 3008 // 3009 // 2. PHI node. 3010 // 3011 // 3. ShuffleVector instruction together with a reduction operation that 3012 // does a partial reduction. 3013 // 3014 // 4. ExtractElement that extracts the first element from the vector, and we 3015 // stop searching the def-use chain here. 3016 // 3017 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3018 // from 1-3 to the stack to continue the DFS. The given instruction is not 3019 // a reduction operation if we meet any other instructions other than those 3020 // listed above. 3021 3022 SmallVector<const User *, 16> UsersToVisit{Inst}; 3023 SmallPtrSet<const User *, 16> Visited; 3024 bool ReduxExtracted = false; 3025 3026 while (!UsersToVisit.empty()) { 3027 auto User = UsersToVisit.back(); 3028 UsersToVisit.pop_back(); 3029 if (!Visited.insert(User).second) 3030 continue; 3031 3032 for (const auto &U : User->users()) { 3033 auto Inst = dyn_cast<Instruction>(U); 3034 if (!Inst) 3035 return false; 3036 3037 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3038 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3039 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3040 return false; 3041 UsersToVisit.push_back(U); 3042 } else if (const ShuffleVectorInst *ShufInst = 3043 dyn_cast<ShuffleVectorInst>(U)) { 3044 // Detect the following pattern: A ShuffleVector instruction together 3045 // with a reduction that do partial reduction on the first and second 3046 // ElemNumToReduce / 2 elements, and store the result in 3047 // ElemNumToReduce / 2 elements in another vector. 3048 3049 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3050 if (ResultElements < ElemNum) 3051 return false; 3052 3053 if (ElemNumToReduce == 1) 3054 return false; 3055 if (!isa<UndefValue>(U->getOperand(1))) 3056 return false; 3057 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3058 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3059 return false; 3060 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3061 if (ShufInst->getMaskValue(i) != -1) 3062 return false; 3063 3064 // There is only one user of this ShuffleVector instruction, which 3065 // must be a reduction operation. 3066 if (!U->hasOneUse()) 3067 return false; 3068 3069 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3070 if (!U2 || U2->getOpcode() != OpCode) 3071 return false; 3072 3073 // Check operands of the reduction operation. 3074 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3075 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3076 UsersToVisit.push_back(U2); 3077 ElemNumToReduce /= 2; 3078 } else 3079 return false; 3080 } else if (isa<ExtractElementInst>(U)) { 3081 // At this moment we should have reduced all elements in the vector. 3082 if (ElemNumToReduce != 1) 3083 return false; 3084 3085 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3086 if (!Val || !Val->isZero()) 3087 return false; 3088 3089 ReduxExtracted = true; 3090 } else 3091 return false; 3092 } 3093 } 3094 return ReduxExtracted; 3095 } 3096 3097 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3098 SDNodeFlags Flags; 3099 3100 SDValue Op = getValue(I.getOperand(0)); 3101 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3102 Op, Flags); 3103 setValue(&I, UnNodeValue); 3104 } 3105 3106 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3107 SDNodeFlags Flags; 3108 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3109 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3110 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3111 } 3112 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3113 Flags.setExact(ExactOp->isExact()); 3114 } 3115 if (isVectorReductionOp(&I)) { 3116 Flags.setVectorReduction(true); 3117 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3118 } 3119 3120 SDValue Op1 = getValue(I.getOperand(0)); 3121 SDValue Op2 = getValue(I.getOperand(1)); 3122 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3123 Op1, Op2, Flags); 3124 setValue(&I, BinNodeValue); 3125 } 3126 3127 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3128 SDValue Op1 = getValue(I.getOperand(0)); 3129 SDValue Op2 = getValue(I.getOperand(1)); 3130 3131 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3132 Op1.getValueType(), DAG.getDataLayout()); 3133 3134 // Coerce the shift amount to the right type if we can. 3135 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3136 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3137 unsigned Op2Size = Op2.getValueSizeInBits(); 3138 SDLoc DL = getCurSDLoc(); 3139 3140 // If the operand is smaller than the shift count type, promote it. 3141 if (ShiftSize > Op2Size) 3142 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3143 3144 // If the operand is larger than the shift count type but the shift 3145 // count type has enough bits to represent any shift value, truncate 3146 // it now. This is a common case and it exposes the truncate to 3147 // optimization early. 3148 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3149 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3150 // Otherwise we'll need to temporarily settle for some other convenient 3151 // type. Type legalization will make adjustments once the shiftee is split. 3152 else 3153 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3154 } 3155 3156 bool nuw = false; 3157 bool nsw = false; 3158 bool exact = false; 3159 3160 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3161 3162 if (const OverflowingBinaryOperator *OFBinOp = 3163 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3164 nuw = OFBinOp->hasNoUnsignedWrap(); 3165 nsw = OFBinOp->hasNoSignedWrap(); 3166 } 3167 if (const PossiblyExactOperator *ExactOp = 3168 dyn_cast<const PossiblyExactOperator>(&I)) 3169 exact = ExactOp->isExact(); 3170 } 3171 SDNodeFlags Flags; 3172 Flags.setExact(exact); 3173 Flags.setNoSignedWrap(nsw); 3174 Flags.setNoUnsignedWrap(nuw); 3175 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3176 Flags); 3177 setValue(&I, Res); 3178 } 3179 3180 void SelectionDAGBuilder::visitSDiv(const User &I) { 3181 SDValue Op1 = getValue(I.getOperand(0)); 3182 SDValue Op2 = getValue(I.getOperand(1)); 3183 3184 SDNodeFlags Flags; 3185 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3186 cast<PossiblyExactOperator>(&I)->isExact()); 3187 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3188 Op2, Flags)); 3189 } 3190 3191 void SelectionDAGBuilder::visitICmp(const User &I) { 3192 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3193 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3194 predicate = IC->getPredicate(); 3195 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3196 predicate = ICmpInst::Predicate(IC->getPredicate()); 3197 SDValue Op1 = getValue(I.getOperand(0)); 3198 SDValue Op2 = getValue(I.getOperand(1)); 3199 ISD::CondCode Opcode = getICmpCondCode(predicate); 3200 3201 auto &TLI = DAG.getTargetLoweringInfo(); 3202 EVT MemVT = 3203 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3204 3205 // If a pointer's DAG type is larger than its memory type then the DAG values 3206 // are zero-extended. This breaks signed comparisons so truncate back to the 3207 // underlying type before doing the compare. 3208 if (Op1.getValueType() != MemVT) { 3209 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3210 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3211 } 3212 3213 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3214 I.getType()); 3215 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3216 } 3217 3218 void SelectionDAGBuilder::visitFCmp(const User &I) { 3219 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3220 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3221 predicate = FC->getPredicate(); 3222 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3223 predicate = FCmpInst::Predicate(FC->getPredicate()); 3224 SDValue Op1 = getValue(I.getOperand(0)); 3225 SDValue Op2 = getValue(I.getOperand(1)); 3226 3227 ISD::CondCode Condition = getFCmpCondCode(predicate); 3228 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3229 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3230 Condition = getFCmpCodeWithoutNaN(Condition); 3231 3232 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3233 I.getType()); 3234 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3235 } 3236 3237 // Check if the condition of the select has one use or two users that are both 3238 // selects with the same condition. 3239 static bool hasOnlySelectUsers(const Value *Cond) { 3240 return llvm::all_of(Cond->users(), [](const Value *V) { 3241 return isa<SelectInst>(V); 3242 }); 3243 } 3244 3245 void SelectionDAGBuilder::visitSelect(const User &I) { 3246 SmallVector<EVT, 4> ValueVTs; 3247 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3248 ValueVTs); 3249 unsigned NumValues = ValueVTs.size(); 3250 if (NumValues == 0) return; 3251 3252 SmallVector<SDValue, 4> Values(NumValues); 3253 SDValue Cond = getValue(I.getOperand(0)); 3254 SDValue LHSVal = getValue(I.getOperand(1)); 3255 SDValue RHSVal = getValue(I.getOperand(2)); 3256 auto BaseOps = {Cond}; 3257 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3258 ISD::VSELECT : ISD::SELECT; 3259 3260 bool IsUnaryAbs = false; 3261 3262 // Min/max matching is only viable if all output VTs are the same. 3263 if (is_splat(ValueVTs)) { 3264 EVT VT = ValueVTs[0]; 3265 LLVMContext &Ctx = *DAG.getContext(); 3266 auto &TLI = DAG.getTargetLoweringInfo(); 3267 3268 // We care about the legality of the operation after it has been type 3269 // legalized. 3270 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3271 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3272 VT = TLI.getTypeToTransformTo(Ctx, VT); 3273 3274 // If the vselect is legal, assume we want to leave this as a vector setcc + 3275 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3276 // min/max is legal on the scalar type. 3277 bool UseScalarMinMax = VT.isVector() && 3278 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3279 3280 Value *LHS, *RHS; 3281 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3282 ISD::NodeType Opc = ISD::DELETED_NODE; 3283 switch (SPR.Flavor) { 3284 case SPF_UMAX: Opc = ISD::UMAX; break; 3285 case SPF_UMIN: Opc = ISD::UMIN; break; 3286 case SPF_SMAX: Opc = ISD::SMAX; break; 3287 case SPF_SMIN: Opc = ISD::SMIN; break; 3288 case SPF_FMINNUM: 3289 switch (SPR.NaNBehavior) { 3290 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3291 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3292 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3293 case SPNB_RETURNS_ANY: { 3294 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3295 Opc = ISD::FMINNUM; 3296 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3297 Opc = ISD::FMINIMUM; 3298 else if (UseScalarMinMax) 3299 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3300 ISD::FMINNUM : ISD::FMINIMUM; 3301 break; 3302 } 3303 } 3304 break; 3305 case SPF_FMAXNUM: 3306 switch (SPR.NaNBehavior) { 3307 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3308 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3309 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3310 case SPNB_RETURNS_ANY: 3311 3312 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3313 Opc = ISD::FMAXNUM; 3314 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3315 Opc = ISD::FMAXIMUM; 3316 else if (UseScalarMinMax) 3317 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3318 ISD::FMAXNUM : ISD::FMAXIMUM; 3319 break; 3320 } 3321 break; 3322 case SPF_ABS: 3323 IsUnaryAbs = true; 3324 Opc = ISD::ABS; 3325 break; 3326 case SPF_NABS: 3327 // TODO: we need to produce sub(0, abs(X)). 3328 default: break; 3329 } 3330 3331 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3332 (TLI.isOperationLegalOrCustom(Opc, VT) || 3333 (UseScalarMinMax && 3334 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3335 // If the underlying comparison instruction is used by any other 3336 // instruction, the consumed instructions won't be destroyed, so it is 3337 // not profitable to convert to a min/max. 3338 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3339 OpCode = Opc; 3340 LHSVal = getValue(LHS); 3341 RHSVal = getValue(RHS); 3342 BaseOps = {}; 3343 } 3344 3345 if (IsUnaryAbs) { 3346 OpCode = Opc; 3347 LHSVal = getValue(LHS); 3348 BaseOps = {}; 3349 } 3350 } 3351 3352 if (IsUnaryAbs) { 3353 for (unsigned i = 0; i != NumValues; ++i) { 3354 Values[i] = 3355 DAG.getNode(OpCode, getCurSDLoc(), 3356 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3357 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3358 } 3359 } else { 3360 for (unsigned i = 0; i != NumValues; ++i) { 3361 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3362 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3363 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3364 Values[i] = DAG.getNode( 3365 OpCode, getCurSDLoc(), 3366 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3367 } 3368 } 3369 3370 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3371 DAG.getVTList(ValueVTs), Values)); 3372 } 3373 3374 void SelectionDAGBuilder::visitTrunc(const User &I) { 3375 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3376 SDValue N = getValue(I.getOperand(0)); 3377 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3378 I.getType()); 3379 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3380 } 3381 3382 void SelectionDAGBuilder::visitZExt(const User &I) { 3383 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3384 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3385 SDValue N = getValue(I.getOperand(0)); 3386 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3387 I.getType()); 3388 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3389 } 3390 3391 void SelectionDAGBuilder::visitSExt(const User &I) { 3392 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3393 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3394 SDValue N = getValue(I.getOperand(0)); 3395 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3396 I.getType()); 3397 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3398 } 3399 3400 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3401 // FPTrunc is never a no-op cast, no need to check 3402 SDValue N = getValue(I.getOperand(0)); 3403 SDLoc dl = getCurSDLoc(); 3404 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3405 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3406 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3407 DAG.getTargetConstant( 3408 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3409 } 3410 3411 void SelectionDAGBuilder::visitFPExt(const User &I) { 3412 // FPExt is never a no-op cast, no need to check 3413 SDValue N = getValue(I.getOperand(0)); 3414 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3415 I.getType()); 3416 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3417 } 3418 3419 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3420 // FPToUI is never a no-op cast, no need to check 3421 SDValue N = getValue(I.getOperand(0)); 3422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3423 I.getType()); 3424 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3425 } 3426 3427 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3428 // FPToSI is never a no-op cast, no need to check 3429 SDValue N = getValue(I.getOperand(0)); 3430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3431 I.getType()); 3432 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3433 } 3434 3435 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3436 // UIToFP is never a no-op cast, no need to check 3437 SDValue N = getValue(I.getOperand(0)); 3438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3439 I.getType()); 3440 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3441 } 3442 3443 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3444 // SIToFP is never a no-op cast, no need to check 3445 SDValue N = getValue(I.getOperand(0)); 3446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3447 I.getType()); 3448 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3449 } 3450 3451 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3452 // What to do depends on the size of the integer and the size of the pointer. 3453 // We can either truncate, zero extend, or no-op, accordingly. 3454 SDValue N = getValue(I.getOperand(0)); 3455 auto &TLI = DAG.getTargetLoweringInfo(); 3456 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3457 I.getType()); 3458 EVT PtrMemVT = 3459 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3460 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3461 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3462 setValue(&I, N); 3463 } 3464 3465 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3466 // What to do depends on the size of the integer and the size of the pointer. 3467 // We can either truncate, zero extend, or no-op, accordingly. 3468 SDValue N = getValue(I.getOperand(0)); 3469 auto &TLI = DAG.getTargetLoweringInfo(); 3470 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3471 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3472 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3473 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3474 setValue(&I, N); 3475 } 3476 3477 void SelectionDAGBuilder::visitBitCast(const User &I) { 3478 SDValue N = getValue(I.getOperand(0)); 3479 SDLoc dl = getCurSDLoc(); 3480 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3481 I.getType()); 3482 3483 // BitCast assures us that source and destination are the same size so this is 3484 // either a BITCAST or a no-op. 3485 if (DestVT != N.getValueType()) 3486 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3487 DestVT, N)); // convert types. 3488 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3489 // might fold any kind of constant expression to an integer constant and that 3490 // is not what we are looking for. Only recognize a bitcast of a genuine 3491 // constant integer as an opaque constant. 3492 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3493 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3494 /*isOpaque*/true)); 3495 else 3496 setValue(&I, N); // noop cast. 3497 } 3498 3499 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3500 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3501 const Value *SV = I.getOperand(0); 3502 SDValue N = getValue(SV); 3503 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3504 3505 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3506 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3507 3508 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3509 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3510 3511 setValue(&I, N); 3512 } 3513 3514 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3515 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3516 SDValue InVec = getValue(I.getOperand(0)); 3517 SDValue InVal = getValue(I.getOperand(1)); 3518 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3519 TLI.getVectorIdxTy(DAG.getDataLayout())); 3520 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3521 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3522 InVec, InVal, InIdx)); 3523 } 3524 3525 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3527 SDValue InVec = getValue(I.getOperand(0)); 3528 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3529 TLI.getVectorIdxTy(DAG.getDataLayout())); 3530 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3531 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3532 InVec, InIdx)); 3533 } 3534 3535 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3536 SDValue Src1 = getValue(I.getOperand(0)); 3537 SDValue Src2 = getValue(I.getOperand(1)); 3538 SDLoc DL = getCurSDLoc(); 3539 3540 SmallVector<int, 8> Mask; 3541 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3542 unsigned MaskNumElts = Mask.size(); 3543 3544 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3545 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3546 EVT SrcVT = Src1.getValueType(); 3547 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3548 3549 if (SrcNumElts == MaskNumElts) { 3550 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3551 return; 3552 } 3553 3554 // Normalize the shuffle vector since mask and vector length don't match. 3555 if (SrcNumElts < MaskNumElts) { 3556 // Mask is longer than the source vectors. We can use concatenate vector to 3557 // make the mask and vectors lengths match. 3558 3559 if (MaskNumElts % SrcNumElts == 0) { 3560 // Mask length is a multiple of the source vector length. 3561 // Check if the shuffle is some kind of concatenation of the input 3562 // vectors. 3563 unsigned NumConcat = MaskNumElts / SrcNumElts; 3564 bool IsConcat = true; 3565 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3566 for (unsigned i = 0; i != MaskNumElts; ++i) { 3567 int Idx = Mask[i]; 3568 if (Idx < 0) 3569 continue; 3570 // Ensure the indices in each SrcVT sized piece are sequential and that 3571 // the same source is used for the whole piece. 3572 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3573 (ConcatSrcs[i / SrcNumElts] >= 0 && 3574 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3575 IsConcat = false; 3576 break; 3577 } 3578 // Remember which source this index came from. 3579 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3580 } 3581 3582 // The shuffle is concatenating multiple vectors together. Just emit 3583 // a CONCAT_VECTORS operation. 3584 if (IsConcat) { 3585 SmallVector<SDValue, 8> ConcatOps; 3586 for (auto Src : ConcatSrcs) { 3587 if (Src < 0) 3588 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3589 else if (Src == 0) 3590 ConcatOps.push_back(Src1); 3591 else 3592 ConcatOps.push_back(Src2); 3593 } 3594 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3595 return; 3596 } 3597 } 3598 3599 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3600 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3601 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3602 PaddedMaskNumElts); 3603 3604 // Pad both vectors with undefs to make them the same length as the mask. 3605 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3606 3607 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3608 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3609 MOps1[0] = Src1; 3610 MOps2[0] = Src2; 3611 3612 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3613 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3614 3615 // Readjust mask for new input vector length. 3616 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3617 for (unsigned i = 0; i != MaskNumElts; ++i) { 3618 int Idx = Mask[i]; 3619 if (Idx >= (int)SrcNumElts) 3620 Idx -= SrcNumElts - PaddedMaskNumElts; 3621 MappedOps[i] = Idx; 3622 } 3623 3624 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3625 3626 // If the concatenated vector was padded, extract a subvector with the 3627 // correct number of elements. 3628 if (MaskNumElts != PaddedMaskNumElts) 3629 Result = DAG.getNode( 3630 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3631 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3632 3633 setValue(&I, Result); 3634 return; 3635 } 3636 3637 if (SrcNumElts > MaskNumElts) { 3638 // Analyze the access pattern of the vector to see if we can extract 3639 // two subvectors and do the shuffle. 3640 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3641 bool CanExtract = true; 3642 for (int Idx : Mask) { 3643 unsigned Input = 0; 3644 if (Idx < 0) 3645 continue; 3646 3647 if (Idx >= (int)SrcNumElts) { 3648 Input = 1; 3649 Idx -= SrcNumElts; 3650 } 3651 3652 // If all the indices come from the same MaskNumElts sized portion of 3653 // the sources we can use extract. Also make sure the extract wouldn't 3654 // extract past the end of the source. 3655 int NewStartIdx = alignDown(Idx, MaskNumElts); 3656 if (NewStartIdx + MaskNumElts > SrcNumElts || 3657 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3658 CanExtract = false; 3659 // Make sure we always update StartIdx as we use it to track if all 3660 // elements are undef. 3661 StartIdx[Input] = NewStartIdx; 3662 } 3663 3664 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3665 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3666 return; 3667 } 3668 if (CanExtract) { 3669 // Extract appropriate subvector and generate a vector shuffle 3670 for (unsigned Input = 0; Input < 2; ++Input) { 3671 SDValue &Src = Input == 0 ? Src1 : Src2; 3672 if (StartIdx[Input] < 0) 3673 Src = DAG.getUNDEF(VT); 3674 else { 3675 Src = DAG.getNode( 3676 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3677 DAG.getConstant(StartIdx[Input], DL, 3678 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3679 } 3680 } 3681 3682 // Calculate new mask. 3683 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3684 for (int &Idx : MappedOps) { 3685 if (Idx >= (int)SrcNumElts) 3686 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3687 else if (Idx >= 0) 3688 Idx -= StartIdx[0]; 3689 } 3690 3691 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3692 return; 3693 } 3694 } 3695 3696 // We can't use either concat vectors or extract subvectors so fall back to 3697 // replacing the shuffle with extract and build vector. 3698 // to insert and build vector. 3699 EVT EltVT = VT.getVectorElementType(); 3700 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3701 SmallVector<SDValue,8> Ops; 3702 for (int Idx : Mask) { 3703 SDValue Res; 3704 3705 if (Idx < 0) { 3706 Res = DAG.getUNDEF(EltVT); 3707 } else { 3708 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3709 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3710 3711 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3712 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3713 } 3714 3715 Ops.push_back(Res); 3716 } 3717 3718 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3719 } 3720 3721 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3722 ArrayRef<unsigned> Indices; 3723 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3724 Indices = IV->getIndices(); 3725 else 3726 Indices = cast<ConstantExpr>(&I)->getIndices(); 3727 3728 const Value *Op0 = I.getOperand(0); 3729 const Value *Op1 = I.getOperand(1); 3730 Type *AggTy = I.getType(); 3731 Type *ValTy = Op1->getType(); 3732 bool IntoUndef = isa<UndefValue>(Op0); 3733 bool FromUndef = isa<UndefValue>(Op1); 3734 3735 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3736 3737 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3738 SmallVector<EVT, 4> AggValueVTs; 3739 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3740 SmallVector<EVT, 4> ValValueVTs; 3741 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3742 3743 unsigned NumAggValues = AggValueVTs.size(); 3744 unsigned NumValValues = ValValueVTs.size(); 3745 SmallVector<SDValue, 4> Values(NumAggValues); 3746 3747 // Ignore an insertvalue that produces an empty object 3748 if (!NumAggValues) { 3749 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3750 return; 3751 } 3752 3753 SDValue Agg = getValue(Op0); 3754 unsigned i = 0; 3755 // Copy the beginning value(s) from the original aggregate. 3756 for (; i != LinearIndex; ++i) 3757 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3758 SDValue(Agg.getNode(), Agg.getResNo() + i); 3759 // Copy values from the inserted value(s). 3760 if (NumValValues) { 3761 SDValue Val = getValue(Op1); 3762 for (; i != LinearIndex + NumValValues; ++i) 3763 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3764 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3765 } 3766 // Copy remaining value(s) from the original aggregate. 3767 for (; i != NumAggValues; ++i) 3768 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3769 SDValue(Agg.getNode(), Agg.getResNo() + i); 3770 3771 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3772 DAG.getVTList(AggValueVTs), Values)); 3773 } 3774 3775 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3776 ArrayRef<unsigned> Indices; 3777 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3778 Indices = EV->getIndices(); 3779 else 3780 Indices = cast<ConstantExpr>(&I)->getIndices(); 3781 3782 const Value *Op0 = I.getOperand(0); 3783 Type *AggTy = Op0->getType(); 3784 Type *ValTy = I.getType(); 3785 bool OutOfUndef = isa<UndefValue>(Op0); 3786 3787 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3788 3789 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3790 SmallVector<EVT, 4> ValValueVTs; 3791 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3792 3793 unsigned NumValValues = ValValueVTs.size(); 3794 3795 // Ignore a extractvalue that produces an empty object 3796 if (!NumValValues) { 3797 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3798 return; 3799 } 3800 3801 SmallVector<SDValue, 4> Values(NumValValues); 3802 3803 SDValue Agg = getValue(Op0); 3804 // Copy out the selected value(s). 3805 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3806 Values[i - LinearIndex] = 3807 OutOfUndef ? 3808 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3809 SDValue(Agg.getNode(), Agg.getResNo() + i); 3810 3811 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3812 DAG.getVTList(ValValueVTs), Values)); 3813 } 3814 3815 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3816 Value *Op0 = I.getOperand(0); 3817 // Note that the pointer operand may be a vector of pointers. Take the scalar 3818 // element which holds a pointer. 3819 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3820 SDValue N = getValue(Op0); 3821 SDLoc dl = getCurSDLoc(); 3822 auto &TLI = DAG.getTargetLoweringInfo(); 3823 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3824 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3825 3826 // Normalize Vector GEP - all scalar operands should be converted to the 3827 // splat vector. 3828 unsigned VectorWidth = I.getType()->isVectorTy() ? 3829 I.getType()->getVectorNumElements() : 0; 3830 3831 if (VectorWidth && !N.getValueType().isVector()) { 3832 LLVMContext &Context = *DAG.getContext(); 3833 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3834 N = DAG.getSplatBuildVector(VT, dl, N); 3835 } 3836 3837 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3838 GTI != E; ++GTI) { 3839 const Value *Idx = GTI.getOperand(); 3840 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3841 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3842 if (Field) { 3843 // N = N + Offset 3844 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3845 3846 // In an inbounds GEP with an offset that is nonnegative even when 3847 // interpreted as signed, assume there is no unsigned overflow. 3848 SDNodeFlags Flags; 3849 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3850 Flags.setNoUnsignedWrap(true); 3851 3852 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3853 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3854 } 3855 } else { 3856 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3857 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3858 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3859 3860 // If this is a scalar constant or a splat vector of constants, 3861 // handle it quickly. 3862 const auto *C = dyn_cast<Constant>(Idx); 3863 if (C && isa<VectorType>(C->getType())) 3864 C = C->getSplatValue(); 3865 3866 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3867 if (CI->isZero()) 3868 continue; 3869 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3870 LLVMContext &Context = *DAG.getContext(); 3871 SDValue OffsVal = VectorWidth ? 3872 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3873 DAG.getConstant(Offs, dl, IdxTy); 3874 3875 // In an inbounds GEP with an offset that is nonnegative even when 3876 // interpreted as signed, assume there is no unsigned overflow. 3877 SDNodeFlags Flags; 3878 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3879 Flags.setNoUnsignedWrap(true); 3880 3881 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3882 3883 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3884 continue; 3885 } 3886 3887 // N = N + Idx * ElementSize; 3888 SDValue IdxN = getValue(Idx); 3889 3890 if (!IdxN.getValueType().isVector() && VectorWidth) { 3891 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3892 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3893 } 3894 3895 // If the index is smaller or larger than intptr_t, truncate or extend 3896 // it. 3897 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3898 3899 // If this is a multiply by a power of two, turn it into a shl 3900 // immediately. This is a very common case. 3901 if (ElementSize != 1) { 3902 if (ElementSize.isPowerOf2()) { 3903 unsigned Amt = ElementSize.logBase2(); 3904 IdxN = DAG.getNode(ISD::SHL, dl, 3905 N.getValueType(), IdxN, 3906 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3907 } else { 3908 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3909 IdxN.getValueType()); 3910 IdxN = DAG.getNode(ISD::MUL, dl, 3911 N.getValueType(), IdxN, Scale); 3912 } 3913 } 3914 3915 N = DAG.getNode(ISD::ADD, dl, 3916 N.getValueType(), N, IdxN); 3917 } 3918 } 3919 3920 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3921 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3922 3923 setValue(&I, N); 3924 } 3925 3926 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3927 // If this is a fixed sized alloca in the entry block of the function, 3928 // allocate it statically on the stack. 3929 if (FuncInfo.StaticAllocaMap.count(&I)) 3930 return; // getValue will auto-populate this. 3931 3932 SDLoc dl = getCurSDLoc(); 3933 Type *Ty = I.getAllocatedType(); 3934 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3935 auto &DL = DAG.getDataLayout(); 3936 uint64_t TySize = DL.getTypeAllocSize(Ty); 3937 unsigned Align = 3938 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3939 3940 SDValue AllocSize = getValue(I.getArraySize()); 3941 3942 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3943 if (AllocSize.getValueType() != IntPtr) 3944 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3945 3946 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3947 AllocSize, 3948 DAG.getConstant(TySize, dl, IntPtr)); 3949 3950 // Handle alignment. If the requested alignment is less than or equal to 3951 // the stack alignment, ignore it. If the size is greater than or equal to 3952 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3953 unsigned StackAlign = 3954 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3955 if (Align <= StackAlign) 3956 Align = 0; 3957 3958 // Round the size of the allocation up to the stack alignment size 3959 // by add SA-1 to the size. This doesn't overflow because we're computing 3960 // an address inside an alloca. 3961 SDNodeFlags Flags; 3962 Flags.setNoUnsignedWrap(true); 3963 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3964 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3965 3966 // Mask out the low bits for alignment purposes. 3967 AllocSize = 3968 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3969 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3970 3971 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3972 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3973 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3974 setValue(&I, DSA); 3975 DAG.setRoot(DSA.getValue(1)); 3976 3977 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3978 } 3979 3980 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3981 if (I.isAtomic()) 3982 return visitAtomicLoad(I); 3983 3984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3985 const Value *SV = I.getOperand(0); 3986 if (TLI.supportSwiftError()) { 3987 // Swifterror values can come from either a function parameter with 3988 // swifterror attribute or an alloca with swifterror attribute. 3989 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3990 if (Arg->hasSwiftErrorAttr()) 3991 return visitLoadFromSwiftError(I); 3992 } 3993 3994 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3995 if (Alloca->isSwiftError()) 3996 return visitLoadFromSwiftError(I); 3997 } 3998 } 3999 4000 SDValue Ptr = getValue(SV); 4001 4002 Type *Ty = I.getType(); 4003 4004 bool isVolatile = I.isVolatile(); 4005 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 4006 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 4007 bool isDereferenceable = 4008 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4009 unsigned Alignment = I.getAlignment(); 4010 4011 AAMDNodes AAInfo; 4012 I.getAAMetadata(AAInfo); 4013 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4014 4015 SmallVector<EVT, 4> ValueVTs, MemVTs; 4016 SmallVector<uint64_t, 4> Offsets; 4017 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4018 unsigned NumValues = ValueVTs.size(); 4019 if (NumValues == 0) 4020 return; 4021 4022 SDValue Root; 4023 bool ConstantMemory = false; 4024 if (isVolatile || NumValues > MaxParallelChains) 4025 // Serialize volatile loads with other side effects. 4026 Root = getRoot(); 4027 else if (AA && 4028 AA->pointsToConstantMemory(MemoryLocation( 4029 SV, 4030 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4031 AAInfo))) { 4032 // Do not serialize (non-volatile) loads of constant memory with anything. 4033 Root = DAG.getEntryNode(); 4034 ConstantMemory = true; 4035 } else { 4036 // Do not serialize non-volatile loads against each other. 4037 Root = DAG.getRoot(); 4038 } 4039 4040 SDLoc dl = getCurSDLoc(); 4041 4042 if (isVolatile) 4043 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4044 4045 // An aggregate load cannot wrap around the address space, so offsets to its 4046 // parts don't wrap either. 4047 SDNodeFlags Flags; 4048 Flags.setNoUnsignedWrap(true); 4049 4050 SmallVector<SDValue, 4> Values(NumValues); 4051 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4052 EVT PtrVT = Ptr.getValueType(); 4053 unsigned ChainI = 0; 4054 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4055 // Serializing loads here may result in excessive register pressure, and 4056 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4057 // could recover a bit by hoisting nodes upward in the chain by recognizing 4058 // they are side-effect free or do not alias. The optimizer should really 4059 // avoid this case by converting large object/array copies to llvm.memcpy 4060 // (MaxParallelChains should always remain as failsafe). 4061 if (ChainI == MaxParallelChains) { 4062 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4063 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4064 makeArrayRef(Chains.data(), ChainI)); 4065 Root = Chain; 4066 ChainI = 0; 4067 } 4068 SDValue A = DAG.getNode(ISD::ADD, dl, 4069 PtrVT, Ptr, 4070 DAG.getConstant(Offsets[i], dl, PtrVT), 4071 Flags); 4072 auto MMOFlags = MachineMemOperand::MONone; 4073 if (isVolatile) 4074 MMOFlags |= MachineMemOperand::MOVolatile; 4075 if (isNonTemporal) 4076 MMOFlags |= MachineMemOperand::MONonTemporal; 4077 if (isInvariant) 4078 MMOFlags |= MachineMemOperand::MOInvariant; 4079 if (isDereferenceable) 4080 MMOFlags |= MachineMemOperand::MODereferenceable; 4081 MMOFlags |= TLI.getMMOFlags(I); 4082 4083 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4084 MachinePointerInfo(SV, Offsets[i]), Alignment, 4085 MMOFlags, AAInfo, Ranges); 4086 Chains[ChainI] = L.getValue(1); 4087 4088 if (MemVTs[i] != ValueVTs[i]) 4089 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4090 4091 Values[i] = L; 4092 } 4093 4094 if (!ConstantMemory) { 4095 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4096 makeArrayRef(Chains.data(), ChainI)); 4097 if (isVolatile) 4098 DAG.setRoot(Chain); 4099 else 4100 PendingLoads.push_back(Chain); 4101 } 4102 4103 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4104 DAG.getVTList(ValueVTs), Values)); 4105 } 4106 4107 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4108 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4109 "call visitStoreToSwiftError when backend supports swifterror"); 4110 4111 SmallVector<EVT, 4> ValueVTs; 4112 SmallVector<uint64_t, 4> Offsets; 4113 const Value *SrcV = I.getOperand(0); 4114 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4115 SrcV->getType(), ValueVTs, &Offsets); 4116 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4117 "expect a single EVT for swifterror"); 4118 4119 SDValue Src = getValue(SrcV); 4120 // Create a virtual register, then update the virtual register. 4121 Register VReg = 4122 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4123 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4124 // Chain can be getRoot or getControlRoot. 4125 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4126 SDValue(Src.getNode(), Src.getResNo())); 4127 DAG.setRoot(CopyNode); 4128 } 4129 4130 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4131 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4132 "call visitLoadFromSwiftError when backend supports swifterror"); 4133 4134 assert(!I.isVolatile() && 4135 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4136 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4137 "Support volatile, non temporal, invariant for load_from_swift_error"); 4138 4139 const Value *SV = I.getOperand(0); 4140 Type *Ty = I.getType(); 4141 AAMDNodes AAInfo; 4142 I.getAAMetadata(AAInfo); 4143 assert( 4144 (!AA || 4145 !AA->pointsToConstantMemory(MemoryLocation( 4146 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4147 AAInfo))) && 4148 "load_from_swift_error should not be constant memory"); 4149 4150 SmallVector<EVT, 4> ValueVTs; 4151 SmallVector<uint64_t, 4> Offsets; 4152 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4153 ValueVTs, &Offsets); 4154 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4155 "expect a single EVT for swifterror"); 4156 4157 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4158 SDValue L = DAG.getCopyFromReg( 4159 getRoot(), getCurSDLoc(), 4160 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4161 4162 setValue(&I, L); 4163 } 4164 4165 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4166 if (I.isAtomic()) 4167 return visitAtomicStore(I); 4168 4169 const Value *SrcV = I.getOperand(0); 4170 const Value *PtrV = I.getOperand(1); 4171 4172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4173 if (TLI.supportSwiftError()) { 4174 // Swifterror values can come from either a function parameter with 4175 // swifterror attribute or an alloca with swifterror attribute. 4176 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4177 if (Arg->hasSwiftErrorAttr()) 4178 return visitStoreToSwiftError(I); 4179 } 4180 4181 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4182 if (Alloca->isSwiftError()) 4183 return visitStoreToSwiftError(I); 4184 } 4185 } 4186 4187 SmallVector<EVT, 4> ValueVTs, MemVTs; 4188 SmallVector<uint64_t, 4> Offsets; 4189 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4190 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4191 unsigned NumValues = ValueVTs.size(); 4192 if (NumValues == 0) 4193 return; 4194 4195 // Get the lowered operands. Note that we do this after 4196 // checking if NumResults is zero, because with zero results 4197 // the operands won't have values in the map. 4198 SDValue Src = getValue(SrcV); 4199 SDValue Ptr = getValue(PtrV); 4200 4201 SDValue Root = getRoot(); 4202 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4203 SDLoc dl = getCurSDLoc(); 4204 EVT PtrVT = Ptr.getValueType(); 4205 unsigned Alignment = I.getAlignment(); 4206 AAMDNodes AAInfo; 4207 I.getAAMetadata(AAInfo); 4208 4209 auto MMOFlags = MachineMemOperand::MONone; 4210 if (I.isVolatile()) 4211 MMOFlags |= MachineMemOperand::MOVolatile; 4212 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4213 MMOFlags |= MachineMemOperand::MONonTemporal; 4214 MMOFlags |= TLI.getMMOFlags(I); 4215 4216 // An aggregate load cannot wrap around the address space, so offsets to its 4217 // parts don't wrap either. 4218 SDNodeFlags Flags; 4219 Flags.setNoUnsignedWrap(true); 4220 4221 unsigned ChainI = 0; 4222 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4223 // See visitLoad comments. 4224 if (ChainI == MaxParallelChains) { 4225 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4226 makeArrayRef(Chains.data(), ChainI)); 4227 Root = Chain; 4228 ChainI = 0; 4229 } 4230 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4231 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4232 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4233 if (MemVTs[i] != ValueVTs[i]) 4234 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4235 SDValue St = 4236 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4237 Alignment, MMOFlags, AAInfo); 4238 Chains[ChainI] = St; 4239 } 4240 4241 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4242 makeArrayRef(Chains.data(), ChainI)); 4243 DAG.setRoot(StoreNode); 4244 } 4245 4246 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4247 bool IsCompressing) { 4248 SDLoc sdl = getCurSDLoc(); 4249 4250 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4251 unsigned& Alignment) { 4252 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4253 Src0 = I.getArgOperand(0); 4254 Ptr = I.getArgOperand(1); 4255 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4256 Mask = I.getArgOperand(3); 4257 }; 4258 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4259 unsigned& Alignment) { 4260 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4261 Src0 = I.getArgOperand(0); 4262 Ptr = I.getArgOperand(1); 4263 Mask = I.getArgOperand(2); 4264 Alignment = 0; 4265 }; 4266 4267 Value *PtrOperand, *MaskOperand, *Src0Operand; 4268 unsigned Alignment; 4269 if (IsCompressing) 4270 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4271 else 4272 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4273 4274 SDValue Ptr = getValue(PtrOperand); 4275 SDValue Src0 = getValue(Src0Operand); 4276 SDValue Mask = getValue(MaskOperand); 4277 4278 EVT VT = Src0.getValueType(); 4279 if (!Alignment) 4280 Alignment = DAG.getEVTAlignment(VT); 4281 4282 AAMDNodes AAInfo; 4283 I.getAAMetadata(AAInfo); 4284 4285 MachineMemOperand *MMO = 4286 DAG.getMachineFunction(). 4287 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4288 MachineMemOperand::MOStore, VT.getStoreSize(), 4289 Alignment, AAInfo); 4290 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4291 MMO, false /* Truncating */, 4292 IsCompressing); 4293 DAG.setRoot(StoreNode); 4294 setValue(&I, StoreNode); 4295 } 4296 4297 // Get a uniform base for the Gather/Scatter intrinsic. 4298 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4299 // We try to represent it as a base pointer + vector of indices. 4300 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4301 // The first operand of the GEP may be a single pointer or a vector of pointers 4302 // Example: 4303 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4304 // or 4305 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4306 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4307 // 4308 // When the first GEP operand is a single pointer - it is the uniform base we 4309 // are looking for. If first operand of the GEP is a splat vector - we 4310 // extract the splat value and use it as a uniform base. 4311 // In all other cases the function returns 'false'. 4312 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4313 ISD::MemIndexType &IndexType, SDValue &Scale, 4314 SelectionDAGBuilder *SDB) { 4315 SelectionDAG& DAG = SDB->DAG; 4316 LLVMContext &Context = *DAG.getContext(); 4317 4318 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4319 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4320 if (!GEP) 4321 return false; 4322 4323 const Value *GEPPtr = GEP->getPointerOperand(); 4324 if (!GEPPtr->getType()->isVectorTy()) 4325 Ptr = GEPPtr; 4326 else if (!(Ptr = getSplatValue(GEPPtr))) 4327 return false; 4328 4329 unsigned FinalIndex = GEP->getNumOperands() - 1; 4330 Value *IndexVal = GEP->getOperand(FinalIndex); 4331 4332 // Ensure all the other indices are 0. 4333 for (unsigned i = 1; i < FinalIndex; ++i) { 4334 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4335 if (!C) 4336 return false; 4337 if (isa<VectorType>(C->getType())) 4338 C = C->getSplatValue(); 4339 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4340 if (!CI || !CI->isZero()) 4341 return false; 4342 } 4343 4344 // The operands of the GEP may be defined in another basic block. 4345 // In this case we'll not find nodes for the operands. 4346 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4347 return false; 4348 4349 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4350 const DataLayout &DL = DAG.getDataLayout(); 4351 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4352 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4353 Base = SDB->getValue(Ptr); 4354 Index = SDB->getValue(IndexVal); 4355 IndexType = ISD::SIGNED_SCALED; 4356 4357 if (!Index.getValueType().isVector()) { 4358 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4359 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4360 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4361 } 4362 return true; 4363 } 4364 4365 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4366 SDLoc sdl = getCurSDLoc(); 4367 4368 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4369 const Value *Ptr = I.getArgOperand(1); 4370 SDValue Src0 = getValue(I.getArgOperand(0)); 4371 SDValue Mask = getValue(I.getArgOperand(3)); 4372 EVT VT = Src0.getValueType(); 4373 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4374 if (!Alignment) 4375 Alignment = DAG.getEVTAlignment(VT); 4376 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4377 4378 AAMDNodes AAInfo; 4379 I.getAAMetadata(AAInfo); 4380 4381 SDValue Base; 4382 SDValue Index; 4383 ISD::MemIndexType IndexType; 4384 SDValue Scale; 4385 const Value *BasePtr = Ptr; 4386 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4387 this); 4388 4389 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4390 MachineMemOperand *MMO = DAG.getMachineFunction(). 4391 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4392 MachineMemOperand::MOStore, VT.getStoreSize(), 4393 Alignment, AAInfo); 4394 if (!UniformBase) { 4395 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4396 Index = getValue(Ptr); 4397 IndexType = ISD::SIGNED_SCALED; 4398 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4399 } 4400 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4401 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4402 Ops, MMO, IndexType); 4403 DAG.setRoot(Scatter); 4404 setValue(&I, Scatter); 4405 } 4406 4407 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4408 SDLoc sdl = getCurSDLoc(); 4409 4410 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4411 unsigned& Alignment) { 4412 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4413 Ptr = I.getArgOperand(0); 4414 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4415 Mask = I.getArgOperand(2); 4416 Src0 = I.getArgOperand(3); 4417 }; 4418 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4419 unsigned& Alignment) { 4420 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4421 Ptr = I.getArgOperand(0); 4422 Alignment = 0; 4423 Mask = I.getArgOperand(1); 4424 Src0 = I.getArgOperand(2); 4425 }; 4426 4427 Value *PtrOperand, *MaskOperand, *Src0Operand; 4428 unsigned Alignment; 4429 if (IsExpanding) 4430 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4431 else 4432 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4433 4434 SDValue Ptr = getValue(PtrOperand); 4435 SDValue Src0 = getValue(Src0Operand); 4436 SDValue Mask = getValue(MaskOperand); 4437 4438 EVT VT = Src0.getValueType(); 4439 if (!Alignment) 4440 Alignment = DAG.getEVTAlignment(VT); 4441 4442 AAMDNodes AAInfo; 4443 I.getAAMetadata(AAInfo); 4444 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4445 4446 // Do not serialize masked loads of constant memory with anything. 4447 bool AddToChain = 4448 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4449 PtrOperand, 4450 LocationSize::precise( 4451 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4452 AAInfo)); 4453 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4454 4455 MachineMemOperand *MMO = 4456 DAG.getMachineFunction(). 4457 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4458 MachineMemOperand::MOLoad, VT.getStoreSize(), 4459 Alignment, AAInfo, Ranges); 4460 4461 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4462 ISD::NON_EXTLOAD, IsExpanding); 4463 if (AddToChain) 4464 PendingLoads.push_back(Load.getValue(1)); 4465 setValue(&I, Load); 4466 } 4467 4468 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4469 SDLoc sdl = getCurSDLoc(); 4470 4471 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4472 const Value *Ptr = I.getArgOperand(0); 4473 SDValue Src0 = getValue(I.getArgOperand(3)); 4474 SDValue Mask = getValue(I.getArgOperand(2)); 4475 4476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4477 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4478 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4479 if (!Alignment) 4480 Alignment = DAG.getEVTAlignment(VT); 4481 4482 AAMDNodes AAInfo; 4483 I.getAAMetadata(AAInfo); 4484 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4485 4486 SDValue Root = DAG.getRoot(); 4487 SDValue Base; 4488 SDValue Index; 4489 ISD::MemIndexType IndexType; 4490 SDValue Scale; 4491 const Value *BasePtr = Ptr; 4492 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4493 this); 4494 bool ConstantMemory = false; 4495 if (UniformBase && AA && 4496 AA->pointsToConstantMemory( 4497 MemoryLocation(BasePtr, 4498 LocationSize::precise( 4499 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4500 AAInfo))) { 4501 // Do not serialize (non-volatile) loads of constant memory with anything. 4502 Root = DAG.getEntryNode(); 4503 ConstantMemory = true; 4504 } 4505 4506 MachineMemOperand *MMO = 4507 DAG.getMachineFunction(). 4508 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4509 MachineMemOperand::MOLoad, VT.getStoreSize(), 4510 Alignment, AAInfo, Ranges); 4511 4512 if (!UniformBase) { 4513 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4514 Index = getValue(Ptr); 4515 IndexType = ISD::SIGNED_SCALED; 4516 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4517 } 4518 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4519 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4520 Ops, MMO, IndexType); 4521 4522 SDValue OutChain = Gather.getValue(1); 4523 if (!ConstantMemory) 4524 PendingLoads.push_back(OutChain); 4525 setValue(&I, Gather); 4526 } 4527 4528 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4529 SDLoc dl = getCurSDLoc(); 4530 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4531 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4532 SyncScope::ID SSID = I.getSyncScopeID(); 4533 4534 SDValue InChain = getRoot(); 4535 4536 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4537 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4538 4539 auto Alignment = DAG.getEVTAlignment(MemVT); 4540 4541 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4542 if (I.isVolatile()) 4543 Flags |= MachineMemOperand::MOVolatile; 4544 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4545 4546 MachineFunction &MF = DAG.getMachineFunction(); 4547 MachineMemOperand *MMO = 4548 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4549 Flags, MemVT.getStoreSize(), Alignment, 4550 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4551 FailureOrdering); 4552 4553 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4554 dl, MemVT, VTs, InChain, 4555 getValue(I.getPointerOperand()), 4556 getValue(I.getCompareOperand()), 4557 getValue(I.getNewValOperand()), MMO); 4558 4559 SDValue OutChain = L.getValue(2); 4560 4561 setValue(&I, L); 4562 DAG.setRoot(OutChain); 4563 } 4564 4565 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4566 SDLoc dl = getCurSDLoc(); 4567 ISD::NodeType NT; 4568 switch (I.getOperation()) { 4569 default: llvm_unreachable("Unknown atomicrmw operation"); 4570 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4571 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4572 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4573 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4574 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4575 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4576 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4577 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4578 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4579 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4580 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4581 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4582 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4583 } 4584 AtomicOrdering Ordering = I.getOrdering(); 4585 SyncScope::ID SSID = I.getSyncScopeID(); 4586 4587 SDValue InChain = getRoot(); 4588 4589 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4590 auto Alignment = DAG.getEVTAlignment(MemVT); 4591 4592 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4593 if (I.isVolatile()) 4594 Flags |= MachineMemOperand::MOVolatile; 4595 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4596 4597 MachineFunction &MF = DAG.getMachineFunction(); 4598 MachineMemOperand *MMO = 4599 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4600 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4601 nullptr, SSID, Ordering); 4602 4603 SDValue L = 4604 DAG.getAtomic(NT, dl, MemVT, InChain, 4605 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4606 MMO); 4607 4608 SDValue OutChain = L.getValue(1); 4609 4610 setValue(&I, L); 4611 DAG.setRoot(OutChain); 4612 } 4613 4614 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4615 SDLoc dl = getCurSDLoc(); 4616 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4617 SDValue Ops[3]; 4618 Ops[0] = getRoot(); 4619 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4620 TLI.getFenceOperandTy(DAG.getDataLayout())); 4621 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4622 TLI.getFenceOperandTy(DAG.getDataLayout())); 4623 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4624 } 4625 4626 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4627 SDLoc dl = getCurSDLoc(); 4628 AtomicOrdering Order = I.getOrdering(); 4629 SyncScope::ID SSID = I.getSyncScopeID(); 4630 4631 SDValue InChain = getRoot(); 4632 4633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4634 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4635 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4636 4637 if (!TLI.supportsUnalignedAtomics() && 4638 I.getAlignment() < MemVT.getSizeInBits() / 8) 4639 report_fatal_error("Cannot generate unaligned atomic load"); 4640 4641 auto Flags = MachineMemOperand::MOLoad; 4642 if (I.isVolatile()) 4643 Flags |= MachineMemOperand::MOVolatile; 4644 if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr) 4645 Flags |= MachineMemOperand::MOInvariant; 4646 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4647 DAG.getDataLayout())) 4648 Flags |= MachineMemOperand::MODereferenceable; 4649 4650 Flags |= TLI.getMMOFlags(I); 4651 4652 MachineMemOperand *MMO = 4653 DAG.getMachineFunction(). 4654 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4655 Flags, MemVT.getStoreSize(), 4656 I.getAlignment() ? I.getAlignment() : 4657 DAG.getEVTAlignment(MemVT), 4658 AAMDNodes(), nullptr, SSID, Order); 4659 4660 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4661 SDValue L = 4662 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4663 getValue(I.getPointerOperand()), MMO); 4664 4665 SDValue OutChain = L.getValue(1); 4666 if (MemVT != VT) 4667 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4668 4669 setValue(&I, L); 4670 DAG.setRoot(OutChain); 4671 } 4672 4673 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4674 SDLoc dl = getCurSDLoc(); 4675 4676 AtomicOrdering Ordering = I.getOrdering(); 4677 SyncScope::ID SSID = I.getSyncScopeID(); 4678 4679 SDValue InChain = getRoot(); 4680 4681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4682 EVT MemVT = 4683 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4684 4685 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4686 report_fatal_error("Cannot generate unaligned atomic store"); 4687 4688 auto Flags = MachineMemOperand::MOStore; 4689 if (I.isVolatile()) 4690 Flags |= MachineMemOperand::MOVolatile; 4691 Flags |= TLI.getMMOFlags(I); 4692 4693 MachineFunction &MF = DAG.getMachineFunction(); 4694 MachineMemOperand *MMO = 4695 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4696 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4697 nullptr, SSID, Ordering); 4698 4699 SDValue Val = getValue(I.getValueOperand()); 4700 if (Val.getValueType() != MemVT) 4701 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4702 4703 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4704 getValue(I.getPointerOperand()), Val, MMO); 4705 4706 4707 DAG.setRoot(OutChain); 4708 } 4709 4710 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4711 /// node. 4712 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4713 unsigned Intrinsic) { 4714 // Ignore the callsite's attributes. A specific call site may be marked with 4715 // readnone, but the lowering code will expect the chain based on the 4716 // definition. 4717 const Function *F = I.getCalledFunction(); 4718 bool HasChain = !F->doesNotAccessMemory(); 4719 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4720 4721 // Build the operand list. 4722 SmallVector<SDValue, 8> Ops; 4723 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4724 if (OnlyLoad) { 4725 // We don't need to serialize loads against other loads. 4726 Ops.push_back(DAG.getRoot()); 4727 } else { 4728 Ops.push_back(getRoot()); 4729 } 4730 } 4731 4732 // Info is set by getTgtMemInstrinsic 4733 TargetLowering::IntrinsicInfo Info; 4734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4735 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4736 DAG.getMachineFunction(), 4737 Intrinsic); 4738 4739 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4740 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4741 Info.opc == ISD::INTRINSIC_W_CHAIN) 4742 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4743 TLI.getPointerTy(DAG.getDataLayout()))); 4744 4745 // Add all operands of the call to the operand list. 4746 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4747 SDValue Op = getValue(I.getArgOperand(i)); 4748 Ops.push_back(Op); 4749 } 4750 4751 SmallVector<EVT, 4> ValueVTs; 4752 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4753 4754 if (HasChain) 4755 ValueVTs.push_back(MVT::Other); 4756 4757 SDVTList VTs = DAG.getVTList(ValueVTs); 4758 4759 // Create the node. 4760 SDValue Result; 4761 if (IsTgtIntrinsic) { 4762 // This is target intrinsic that touches memory 4763 AAMDNodes AAInfo; 4764 I.getAAMetadata(AAInfo); 4765 Result = DAG.getMemIntrinsicNode( 4766 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4767 MachinePointerInfo(Info.ptrVal, Info.offset), 4768 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4769 } else if (!HasChain) { 4770 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4771 } else if (!I.getType()->isVoidTy()) { 4772 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4773 } else { 4774 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4775 } 4776 4777 if (HasChain) { 4778 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4779 if (OnlyLoad) 4780 PendingLoads.push_back(Chain); 4781 else 4782 DAG.setRoot(Chain); 4783 } 4784 4785 if (!I.getType()->isVoidTy()) { 4786 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4787 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4788 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4789 } else 4790 Result = lowerRangeToAssertZExt(DAG, I, Result); 4791 4792 setValue(&I, Result); 4793 } 4794 } 4795 4796 /// GetSignificand - Get the significand and build it into a floating-point 4797 /// number with exponent of 1: 4798 /// 4799 /// Op = (Op & 0x007fffff) | 0x3f800000; 4800 /// 4801 /// where Op is the hexadecimal representation of floating point value. 4802 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4803 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4804 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4805 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4806 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4807 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4808 } 4809 4810 /// GetExponent - Get the exponent: 4811 /// 4812 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4813 /// 4814 /// where Op is the hexadecimal representation of floating point value. 4815 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4816 const TargetLowering &TLI, const SDLoc &dl) { 4817 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4818 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4819 SDValue t1 = DAG.getNode( 4820 ISD::SRL, dl, MVT::i32, t0, 4821 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4822 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4823 DAG.getConstant(127, dl, MVT::i32)); 4824 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4825 } 4826 4827 /// getF32Constant - Get 32-bit floating point constant. 4828 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4829 const SDLoc &dl) { 4830 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4831 MVT::f32); 4832 } 4833 4834 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4835 SelectionDAG &DAG) { 4836 // TODO: What fast-math-flags should be set on the floating-point nodes? 4837 4838 // IntegerPartOfX = ((int32_t)(t0); 4839 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4840 4841 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4842 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4843 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4844 4845 // IntegerPartOfX <<= 23; 4846 IntegerPartOfX = DAG.getNode( 4847 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4848 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4849 DAG.getDataLayout()))); 4850 4851 SDValue TwoToFractionalPartOfX; 4852 if (LimitFloatPrecision <= 6) { 4853 // For floating-point precision of 6: 4854 // 4855 // TwoToFractionalPartOfX = 4856 // 0.997535578f + 4857 // (0.735607626f + 0.252464424f * x) * x; 4858 // 4859 // error 0.0144103317, which is 6 bits 4860 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4861 getF32Constant(DAG, 0x3e814304, dl)); 4862 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4863 getF32Constant(DAG, 0x3f3c50c8, dl)); 4864 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4865 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4866 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4867 } else if (LimitFloatPrecision <= 12) { 4868 // For floating-point precision of 12: 4869 // 4870 // TwoToFractionalPartOfX = 4871 // 0.999892986f + 4872 // (0.696457318f + 4873 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4874 // 4875 // error 0.000107046256, which is 13 to 14 bits 4876 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4877 getF32Constant(DAG, 0x3da235e3, dl)); 4878 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4879 getF32Constant(DAG, 0x3e65b8f3, dl)); 4880 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4881 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4882 getF32Constant(DAG, 0x3f324b07, dl)); 4883 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4884 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4885 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4886 } else { // LimitFloatPrecision <= 18 4887 // For floating-point precision of 18: 4888 // 4889 // TwoToFractionalPartOfX = 4890 // 0.999999982f + 4891 // (0.693148872f + 4892 // (0.240227044f + 4893 // (0.554906021e-1f + 4894 // (0.961591928e-2f + 4895 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4896 // error 2.47208000*10^(-7), which is better than 18 bits 4897 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4898 getF32Constant(DAG, 0x3924b03e, dl)); 4899 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4900 getF32Constant(DAG, 0x3ab24b87, dl)); 4901 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4902 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4903 getF32Constant(DAG, 0x3c1d8c17, dl)); 4904 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4905 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4906 getF32Constant(DAG, 0x3d634a1d, dl)); 4907 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4908 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4909 getF32Constant(DAG, 0x3e75fe14, dl)); 4910 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4911 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4912 getF32Constant(DAG, 0x3f317234, dl)); 4913 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4914 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4915 getF32Constant(DAG, 0x3f800000, dl)); 4916 } 4917 4918 // Add the exponent into the result in integer domain. 4919 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4920 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4921 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4922 } 4923 4924 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4925 /// limited-precision mode. 4926 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4927 const TargetLowering &TLI) { 4928 if (Op.getValueType() == MVT::f32 && 4929 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4930 4931 // Put the exponent in the right bit position for later addition to the 4932 // final result: 4933 // 4934 // #define LOG2OFe 1.4426950f 4935 // t0 = Op * LOG2OFe 4936 4937 // TODO: What fast-math-flags should be set here? 4938 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4939 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4940 return getLimitedPrecisionExp2(t0, dl, DAG); 4941 } 4942 4943 // No special expansion. 4944 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4945 } 4946 4947 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4948 /// limited-precision mode. 4949 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4950 const TargetLowering &TLI) { 4951 // TODO: What fast-math-flags should be set on the floating-point nodes? 4952 4953 if (Op.getValueType() == MVT::f32 && 4954 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4955 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4956 4957 // Scale the exponent by log(2) [0.69314718f]. 4958 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4959 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4960 getF32Constant(DAG, 0x3f317218, dl)); 4961 4962 // Get the significand and build it into a floating-point number with 4963 // exponent of 1. 4964 SDValue X = GetSignificand(DAG, Op1, dl); 4965 4966 SDValue LogOfMantissa; 4967 if (LimitFloatPrecision <= 6) { 4968 // For floating-point precision of 6: 4969 // 4970 // LogofMantissa = 4971 // -1.1609546f + 4972 // (1.4034025f - 0.23903021f * x) * x; 4973 // 4974 // error 0.0034276066, which is better than 8 bits 4975 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4976 getF32Constant(DAG, 0xbe74c456, dl)); 4977 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4978 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4979 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4980 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4981 getF32Constant(DAG, 0x3f949a29, dl)); 4982 } else if (LimitFloatPrecision <= 12) { 4983 // For floating-point precision of 12: 4984 // 4985 // LogOfMantissa = 4986 // -1.7417939f + 4987 // (2.8212026f + 4988 // (-1.4699568f + 4989 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4990 // 4991 // error 0.000061011436, which is 14 bits 4992 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4993 getF32Constant(DAG, 0xbd67b6d6, dl)); 4994 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4995 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4996 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4997 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4998 getF32Constant(DAG, 0x3fbc278b, dl)); 4999 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5000 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5001 getF32Constant(DAG, 0x40348e95, dl)); 5002 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5003 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5004 getF32Constant(DAG, 0x3fdef31a, dl)); 5005 } else { // LimitFloatPrecision <= 18 5006 // For floating-point precision of 18: 5007 // 5008 // LogOfMantissa = 5009 // -2.1072184f + 5010 // (4.2372794f + 5011 // (-3.7029485f + 5012 // (2.2781945f + 5013 // (-0.87823314f + 5014 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5015 // 5016 // error 0.0000023660568, which is better than 18 bits 5017 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5018 getF32Constant(DAG, 0xbc91e5ac, dl)); 5019 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5020 getF32Constant(DAG, 0x3e4350aa, dl)); 5021 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5022 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5023 getF32Constant(DAG, 0x3f60d3e3, dl)); 5024 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5025 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5026 getF32Constant(DAG, 0x4011cdf0, dl)); 5027 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5028 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5029 getF32Constant(DAG, 0x406cfd1c, dl)); 5030 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5031 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5032 getF32Constant(DAG, 0x408797cb, dl)); 5033 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5034 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5035 getF32Constant(DAG, 0x4006dcab, dl)); 5036 } 5037 5038 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5039 } 5040 5041 // No special expansion. 5042 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5043 } 5044 5045 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5046 /// limited-precision mode. 5047 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5048 const TargetLowering &TLI) { 5049 // TODO: What fast-math-flags should be set on the floating-point nodes? 5050 5051 if (Op.getValueType() == MVT::f32 && 5052 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5053 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5054 5055 // Get the exponent. 5056 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5057 5058 // Get the significand and build it into a floating-point number with 5059 // exponent of 1. 5060 SDValue X = GetSignificand(DAG, Op1, dl); 5061 5062 // Different possible minimax approximations of significand in 5063 // floating-point for various degrees of accuracy over [1,2]. 5064 SDValue Log2ofMantissa; 5065 if (LimitFloatPrecision <= 6) { 5066 // For floating-point precision of 6: 5067 // 5068 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5069 // 5070 // error 0.0049451742, which is more than 7 bits 5071 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5072 getF32Constant(DAG, 0xbeb08fe0, dl)); 5073 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5074 getF32Constant(DAG, 0x40019463, dl)); 5075 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5076 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5077 getF32Constant(DAG, 0x3fd6633d, dl)); 5078 } else if (LimitFloatPrecision <= 12) { 5079 // For floating-point precision of 12: 5080 // 5081 // Log2ofMantissa = 5082 // -2.51285454f + 5083 // (4.07009056f + 5084 // (-2.12067489f + 5085 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5086 // 5087 // error 0.0000876136000, which is better than 13 bits 5088 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5089 getF32Constant(DAG, 0xbda7262e, dl)); 5090 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5091 getF32Constant(DAG, 0x3f25280b, dl)); 5092 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5093 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5094 getF32Constant(DAG, 0x4007b923, dl)); 5095 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5096 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5097 getF32Constant(DAG, 0x40823e2f, dl)); 5098 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5099 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5100 getF32Constant(DAG, 0x4020d29c, dl)); 5101 } else { // LimitFloatPrecision <= 18 5102 // For floating-point precision of 18: 5103 // 5104 // Log2ofMantissa = 5105 // -3.0400495f + 5106 // (6.1129976f + 5107 // (-5.3420409f + 5108 // (3.2865683f + 5109 // (-1.2669343f + 5110 // (0.27515199f - 5111 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5112 // 5113 // error 0.0000018516, which is better than 18 bits 5114 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5115 getF32Constant(DAG, 0xbcd2769e, dl)); 5116 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5117 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5118 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5119 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5120 getF32Constant(DAG, 0x3fa22ae7, dl)); 5121 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5122 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5123 getF32Constant(DAG, 0x40525723, dl)); 5124 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5125 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5126 getF32Constant(DAG, 0x40aaf200, dl)); 5127 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5128 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5129 getF32Constant(DAG, 0x40c39dad, dl)); 5130 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5131 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5132 getF32Constant(DAG, 0x4042902c, dl)); 5133 } 5134 5135 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5136 } 5137 5138 // No special expansion. 5139 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5140 } 5141 5142 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5143 /// limited-precision mode. 5144 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5145 const TargetLowering &TLI) { 5146 // TODO: What fast-math-flags should be set on the floating-point nodes? 5147 5148 if (Op.getValueType() == MVT::f32 && 5149 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5150 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5151 5152 // Scale the exponent by log10(2) [0.30102999f]. 5153 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5154 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5155 getF32Constant(DAG, 0x3e9a209a, dl)); 5156 5157 // Get the significand and build it into a floating-point number with 5158 // exponent of 1. 5159 SDValue X = GetSignificand(DAG, Op1, dl); 5160 5161 SDValue Log10ofMantissa; 5162 if (LimitFloatPrecision <= 6) { 5163 // For floating-point precision of 6: 5164 // 5165 // Log10ofMantissa = 5166 // -0.50419619f + 5167 // (0.60948995f - 0.10380950f * x) * x; 5168 // 5169 // error 0.0014886165, which is 6 bits 5170 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5171 getF32Constant(DAG, 0xbdd49a13, dl)); 5172 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5173 getF32Constant(DAG, 0x3f1c0789, dl)); 5174 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5175 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5176 getF32Constant(DAG, 0x3f011300, dl)); 5177 } else if (LimitFloatPrecision <= 12) { 5178 // For floating-point precision of 12: 5179 // 5180 // Log10ofMantissa = 5181 // -0.64831180f + 5182 // (0.91751397f + 5183 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5184 // 5185 // error 0.00019228036, which is better than 12 bits 5186 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5187 getF32Constant(DAG, 0x3d431f31, dl)); 5188 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5189 getF32Constant(DAG, 0x3ea21fb2, dl)); 5190 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5191 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5192 getF32Constant(DAG, 0x3f6ae232, dl)); 5193 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5194 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5195 getF32Constant(DAG, 0x3f25f7c3, dl)); 5196 } else { // LimitFloatPrecision <= 18 5197 // For floating-point precision of 18: 5198 // 5199 // Log10ofMantissa = 5200 // -0.84299375f + 5201 // (1.5327582f + 5202 // (-1.0688956f + 5203 // (0.49102474f + 5204 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5205 // 5206 // error 0.0000037995730, which is better than 18 bits 5207 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5208 getF32Constant(DAG, 0x3c5d51ce, dl)); 5209 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5210 getF32Constant(DAG, 0x3e00685a, dl)); 5211 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5212 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5213 getF32Constant(DAG, 0x3efb6798, dl)); 5214 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5215 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5216 getF32Constant(DAG, 0x3f88d192, dl)); 5217 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5218 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5219 getF32Constant(DAG, 0x3fc4316c, dl)); 5220 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5221 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5222 getF32Constant(DAG, 0x3f57ce70, dl)); 5223 } 5224 5225 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5226 } 5227 5228 // No special expansion. 5229 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5230 } 5231 5232 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5233 /// limited-precision mode. 5234 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5235 const TargetLowering &TLI) { 5236 if (Op.getValueType() == MVT::f32 && 5237 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5238 return getLimitedPrecisionExp2(Op, dl, DAG); 5239 5240 // No special expansion. 5241 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5242 } 5243 5244 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5245 /// limited-precision mode with x == 10.0f. 5246 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5247 SelectionDAG &DAG, const TargetLowering &TLI) { 5248 bool IsExp10 = false; 5249 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5250 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5251 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5252 APFloat Ten(10.0f); 5253 IsExp10 = LHSC->isExactlyValue(Ten); 5254 } 5255 } 5256 5257 // TODO: What fast-math-flags should be set on the FMUL node? 5258 if (IsExp10) { 5259 // Put the exponent in the right bit position for later addition to the 5260 // final result: 5261 // 5262 // #define LOG2OF10 3.3219281f 5263 // t0 = Op * LOG2OF10; 5264 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5265 getF32Constant(DAG, 0x40549a78, dl)); 5266 return getLimitedPrecisionExp2(t0, dl, DAG); 5267 } 5268 5269 // No special expansion. 5270 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5271 } 5272 5273 /// ExpandPowI - Expand a llvm.powi intrinsic. 5274 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5275 SelectionDAG &DAG) { 5276 // If RHS is a constant, we can expand this out to a multiplication tree, 5277 // otherwise we end up lowering to a call to __powidf2 (for example). When 5278 // optimizing for size, we only want to do this if the expansion would produce 5279 // a small number of multiplies, otherwise we do the full expansion. 5280 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5281 // Get the exponent as a positive value. 5282 unsigned Val = RHSC->getSExtValue(); 5283 if ((int)Val < 0) Val = -Val; 5284 5285 // powi(x, 0) -> 1.0 5286 if (Val == 0) 5287 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5288 5289 const Function &F = DAG.getMachineFunction().getFunction(); 5290 if (!F.hasOptSize() || 5291 // If optimizing for size, don't insert too many multiplies. 5292 // This inserts up to 5 multiplies. 5293 countPopulation(Val) + Log2_32(Val) < 7) { 5294 // We use the simple binary decomposition method to generate the multiply 5295 // sequence. There are more optimal ways to do this (for example, 5296 // powi(x,15) generates one more multiply than it should), but this has 5297 // the benefit of being both really simple and much better than a libcall. 5298 SDValue Res; // Logically starts equal to 1.0 5299 SDValue CurSquare = LHS; 5300 // TODO: Intrinsics should have fast-math-flags that propagate to these 5301 // nodes. 5302 while (Val) { 5303 if (Val & 1) { 5304 if (Res.getNode()) 5305 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5306 else 5307 Res = CurSquare; // 1.0*CurSquare. 5308 } 5309 5310 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5311 CurSquare, CurSquare); 5312 Val >>= 1; 5313 } 5314 5315 // If the original was negative, invert the result, producing 1/(x*x*x). 5316 if (RHSC->getSExtValue() < 0) 5317 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5318 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5319 return Res; 5320 } 5321 } 5322 5323 // Otherwise, expand to a libcall. 5324 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5325 } 5326 5327 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5328 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5329 static void 5330 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5331 const SDValue &N) { 5332 switch (N.getOpcode()) { 5333 case ISD::CopyFromReg: { 5334 SDValue Op = N.getOperand(1); 5335 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5336 Op.getValueType().getSizeInBits()); 5337 return; 5338 } 5339 case ISD::BITCAST: 5340 case ISD::AssertZext: 5341 case ISD::AssertSext: 5342 case ISD::TRUNCATE: 5343 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5344 return; 5345 case ISD::BUILD_PAIR: 5346 case ISD::BUILD_VECTOR: 5347 case ISD::CONCAT_VECTORS: 5348 for (SDValue Op : N->op_values()) 5349 getUnderlyingArgRegs(Regs, Op); 5350 return; 5351 default: 5352 return; 5353 } 5354 } 5355 5356 /// If the DbgValueInst is a dbg_value of a function argument, create the 5357 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5358 /// instruction selection, they will be inserted to the entry BB. 5359 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5360 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5361 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5362 const Argument *Arg = dyn_cast<Argument>(V); 5363 if (!Arg) 5364 return false; 5365 5366 if (!IsDbgDeclare) { 5367 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5368 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5369 // the entry block. 5370 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5371 if (!IsInEntryBlock) 5372 return false; 5373 5374 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5375 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5376 // variable that also is a param. 5377 // 5378 // Although, if we are at the top of the entry block already, we can still 5379 // emit using ArgDbgValue. This might catch some situations when the 5380 // dbg.value refers to an argument that isn't used in the entry block, so 5381 // any CopyToReg node would be optimized out and the only way to express 5382 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5383 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5384 // we should only emit as ArgDbgValue if the Variable is an argument to the 5385 // current function, and the dbg.value intrinsic is found in the entry 5386 // block. 5387 bool VariableIsFunctionInputArg = Variable->isParameter() && 5388 !DL->getInlinedAt(); 5389 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5390 if (!IsInPrologue && !VariableIsFunctionInputArg) 5391 return false; 5392 5393 // Here we assume that a function argument on IR level only can be used to 5394 // describe one input parameter on source level. If we for example have 5395 // source code like this 5396 // 5397 // struct A { long x, y; }; 5398 // void foo(struct A a, long b) { 5399 // ... 5400 // b = a.x; 5401 // ... 5402 // } 5403 // 5404 // and IR like this 5405 // 5406 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5407 // entry: 5408 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5409 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5410 // call void @llvm.dbg.value(metadata i32 %b, "b", 5411 // ... 5412 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5413 // ... 5414 // 5415 // then the last dbg.value is describing a parameter "b" using a value that 5416 // is an argument. But since we already has used %a1 to describe a parameter 5417 // we should not handle that last dbg.value here (that would result in an 5418 // incorrect hoisting of the DBG_VALUE to the function entry). 5419 // Notice that we allow one dbg.value per IR level argument, to accomodate 5420 // for the situation with fragments above. 5421 if (VariableIsFunctionInputArg) { 5422 unsigned ArgNo = Arg->getArgNo(); 5423 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5424 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5425 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5426 return false; 5427 FuncInfo.DescribedArgs.set(ArgNo); 5428 } 5429 } 5430 5431 MachineFunction &MF = DAG.getMachineFunction(); 5432 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5433 5434 bool IsIndirect = false; 5435 Optional<MachineOperand> Op; 5436 // Some arguments' frame index is recorded during argument lowering. 5437 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5438 if (FI != std::numeric_limits<int>::max()) 5439 Op = MachineOperand::CreateFI(FI); 5440 5441 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5442 if (!Op && N.getNode()) { 5443 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5444 Register Reg; 5445 if (ArgRegsAndSizes.size() == 1) 5446 Reg = ArgRegsAndSizes.front().first; 5447 5448 if (Reg && Reg.isVirtual()) { 5449 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5450 Register PR = RegInfo.getLiveInPhysReg(Reg); 5451 if (PR) 5452 Reg = PR; 5453 } 5454 if (Reg) { 5455 Op = MachineOperand::CreateReg(Reg, false); 5456 IsIndirect = IsDbgDeclare; 5457 } 5458 } 5459 5460 if (!Op && N.getNode()) { 5461 // Check if frame index is available. 5462 SDValue LCandidate = peekThroughBitcasts(N); 5463 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5464 if (FrameIndexSDNode *FINode = 5465 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5466 Op = MachineOperand::CreateFI(FINode->getIndex()); 5467 } 5468 5469 if (!Op) { 5470 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5471 auto splitMultiRegDbgValue 5472 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5473 unsigned Offset = 0; 5474 for (auto RegAndSize : SplitRegs) { 5475 auto FragmentExpr = DIExpression::createFragmentExpression( 5476 Expr, Offset, RegAndSize.second); 5477 if (!FragmentExpr) 5478 continue; 5479 FuncInfo.ArgDbgValues.push_back( 5480 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5481 RegAndSize.first, Variable, *FragmentExpr)); 5482 Offset += RegAndSize.second; 5483 } 5484 }; 5485 5486 // Check if ValueMap has reg number. 5487 DenseMap<const Value *, unsigned>::const_iterator 5488 VMI = FuncInfo.ValueMap.find(V); 5489 if (VMI != FuncInfo.ValueMap.end()) { 5490 const auto &TLI = DAG.getTargetLoweringInfo(); 5491 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5492 V->getType(), getABIRegCopyCC(V)); 5493 if (RFV.occupiesMultipleRegs()) { 5494 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5495 return true; 5496 } 5497 5498 Op = MachineOperand::CreateReg(VMI->second, false); 5499 IsIndirect = IsDbgDeclare; 5500 } else if (ArgRegsAndSizes.size() > 1) { 5501 // This was split due to the calling convention, and no virtual register 5502 // mapping exists for the value. 5503 splitMultiRegDbgValue(ArgRegsAndSizes); 5504 return true; 5505 } 5506 } 5507 5508 if (!Op) 5509 return false; 5510 5511 assert(Variable->isValidLocationForIntrinsic(DL) && 5512 "Expected inlined-at fields to agree"); 5513 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5514 FuncInfo.ArgDbgValues.push_back( 5515 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5516 *Op, Variable, Expr)); 5517 5518 return true; 5519 } 5520 5521 /// Return the appropriate SDDbgValue based on N. 5522 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5523 DILocalVariable *Variable, 5524 DIExpression *Expr, 5525 const DebugLoc &dl, 5526 unsigned DbgSDNodeOrder) { 5527 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5528 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5529 // stack slot locations. 5530 // 5531 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5532 // debug values here after optimization: 5533 // 5534 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5535 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5536 // 5537 // Both describe the direct values of their associated variables. 5538 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5539 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5540 } 5541 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5542 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5543 } 5544 5545 // VisualStudio defines setjmp as _setjmp 5546 #if defined(_MSC_VER) && defined(setjmp) && \ 5547 !defined(setjmp_undefined_for_msvc) 5548 # pragma push_macro("setjmp") 5549 # undef setjmp 5550 # define setjmp_undefined_for_msvc 5551 #endif 5552 5553 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5554 switch (Intrinsic) { 5555 case Intrinsic::smul_fix: 5556 return ISD::SMULFIX; 5557 case Intrinsic::umul_fix: 5558 return ISD::UMULFIX; 5559 default: 5560 llvm_unreachable("Unhandled fixed point intrinsic"); 5561 } 5562 } 5563 5564 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5565 const char *FunctionName) { 5566 assert(FunctionName && "FunctionName must not be nullptr"); 5567 SDValue Callee = DAG.getExternalSymbol( 5568 FunctionName, 5569 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5570 LowerCallTo(&I, Callee, I.isTailCall()); 5571 } 5572 5573 /// Lower the call to the specified intrinsic function. 5574 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5575 unsigned Intrinsic) { 5576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5577 SDLoc sdl = getCurSDLoc(); 5578 DebugLoc dl = getCurDebugLoc(); 5579 SDValue Res; 5580 5581 switch (Intrinsic) { 5582 default: 5583 // By default, turn this into a target intrinsic node. 5584 visitTargetIntrinsic(I, Intrinsic); 5585 return; 5586 case Intrinsic::vastart: visitVAStart(I); return; 5587 case Intrinsic::vaend: visitVAEnd(I); return; 5588 case Intrinsic::vacopy: visitVACopy(I); return; 5589 case Intrinsic::returnaddress: 5590 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5591 TLI.getPointerTy(DAG.getDataLayout()), 5592 getValue(I.getArgOperand(0)))); 5593 return; 5594 case Intrinsic::addressofreturnaddress: 5595 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5596 TLI.getPointerTy(DAG.getDataLayout()))); 5597 return; 5598 case Intrinsic::sponentry: 5599 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5600 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5601 return; 5602 case Intrinsic::frameaddress: 5603 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5604 TLI.getFrameIndexTy(DAG.getDataLayout()), 5605 getValue(I.getArgOperand(0)))); 5606 return; 5607 case Intrinsic::read_register: { 5608 Value *Reg = I.getArgOperand(0); 5609 SDValue Chain = getRoot(); 5610 SDValue RegName = 5611 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5612 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5613 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5614 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5615 setValue(&I, Res); 5616 DAG.setRoot(Res.getValue(1)); 5617 return; 5618 } 5619 case Intrinsic::write_register: { 5620 Value *Reg = I.getArgOperand(0); 5621 Value *RegValue = I.getArgOperand(1); 5622 SDValue Chain = getRoot(); 5623 SDValue RegName = 5624 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5625 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5626 RegName, getValue(RegValue))); 5627 return; 5628 } 5629 case Intrinsic::setjmp: 5630 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5631 return; 5632 case Intrinsic::longjmp: 5633 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5634 return; 5635 case Intrinsic::memcpy: { 5636 const auto &MCI = cast<MemCpyInst>(I); 5637 SDValue Op1 = getValue(I.getArgOperand(0)); 5638 SDValue Op2 = getValue(I.getArgOperand(1)); 5639 SDValue Op3 = getValue(I.getArgOperand(2)); 5640 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5641 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5642 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5643 unsigned Align = MinAlign(DstAlign, SrcAlign); 5644 bool isVol = MCI.isVolatile(); 5645 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5646 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5647 // node. 5648 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5649 false, isTC, 5650 MachinePointerInfo(I.getArgOperand(0)), 5651 MachinePointerInfo(I.getArgOperand(1))); 5652 updateDAGForMaybeTailCall(MC); 5653 return; 5654 } 5655 case Intrinsic::memset: { 5656 const auto &MSI = cast<MemSetInst>(I); 5657 SDValue Op1 = getValue(I.getArgOperand(0)); 5658 SDValue Op2 = getValue(I.getArgOperand(1)); 5659 SDValue Op3 = getValue(I.getArgOperand(2)); 5660 // @llvm.memset defines 0 and 1 to both mean no alignment. 5661 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5662 bool isVol = MSI.isVolatile(); 5663 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5664 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5665 isTC, MachinePointerInfo(I.getArgOperand(0))); 5666 updateDAGForMaybeTailCall(MS); 5667 return; 5668 } 5669 case Intrinsic::memmove: { 5670 const auto &MMI = cast<MemMoveInst>(I); 5671 SDValue Op1 = getValue(I.getArgOperand(0)); 5672 SDValue Op2 = getValue(I.getArgOperand(1)); 5673 SDValue Op3 = getValue(I.getArgOperand(2)); 5674 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5675 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5676 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5677 unsigned Align = MinAlign(DstAlign, SrcAlign); 5678 bool isVol = MMI.isVolatile(); 5679 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5680 // FIXME: Support passing different dest/src alignments to the memmove DAG 5681 // node. 5682 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5683 isTC, MachinePointerInfo(I.getArgOperand(0)), 5684 MachinePointerInfo(I.getArgOperand(1))); 5685 updateDAGForMaybeTailCall(MM); 5686 return; 5687 } 5688 case Intrinsic::memcpy_element_unordered_atomic: { 5689 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5690 SDValue Dst = getValue(MI.getRawDest()); 5691 SDValue Src = getValue(MI.getRawSource()); 5692 SDValue Length = getValue(MI.getLength()); 5693 5694 unsigned DstAlign = MI.getDestAlignment(); 5695 unsigned SrcAlign = MI.getSourceAlignment(); 5696 Type *LengthTy = MI.getLength()->getType(); 5697 unsigned ElemSz = MI.getElementSizeInBytes(); 5698 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5699 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5700 SrcAlign, Length, LengthTy, ElemSz, isTC, 5701 MachinePointerInfo(MI.getRawDest()), 5702 MachinePointerInfo(MI.getRawSource())); 5703 updateDAGForMaybeTailCall(MC); 5704 return; 5705 } 5706 case Intrinsic::memmove_element_unordered_atomic: { 5707 auto &MI = cast<AtomicMemMoveInst>(I); 5708 SDValue Dst = getValue(MI.getRawDest()); 5709 SDValue Src = getValue(MI.getRawSource()); 5710 SDValue Length = getValue(MI.getLength()); 5711 5712 unsigned DstAlign = MI.getDestAlignment(); 5713 unsigned SrcAlign = MI.getSourceAlignment(); 5714 Type *LengthTy = MI.getLength()->getType(); 5715 unsigned ElemSz = MI.getElementSizeInBytes(); 5716 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5717 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5718 SrcAlign, Length, LengthTy, ElemSz, isTC, 5719 MachinePointerInfo(MI.getRawDest()), 5720 MachinePointerInfo(MI.getRawSource())); 5721 updateDAGForMaybeTailCall(MC); 5722 return; 5723 } 5724 case Intrinsic::memset_element_unordered_atomic: { 5725 auto &MI = cast<AtomicMemSetInst>(I); 5726 SDValue Dst = getValue(MI.getRawDest()); 5727 SDValue Val = getValue(MI.getValue()); 5728 SDValue Length = getValue(MI.getLength()); 5729 5730 unsigned DstAlign = MI.getDestAlignment(); 5731 Type *LengthTy = MI.getLength()->getType(); 5732 unsigned ElemSz = MI.getElementSizeInBytes(); 5733 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5734 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5735 LengthTy, ElemSz, isTC, 5736 MachinePointerInfo(MI.getRawDest())); 5737 updateDAGForMaybeTailCall(MC); 5738 return; 5739 } 5740 case Intrinsic::dbg_addr: 5741 case Intrinsic::dbg_declare: { 5742 const auto &DI = cast<DbgVariableIntrinsic>(I); 5743 DILocalVariable *Variable = DI.getVariable(); 5744 DIExpression *Expression = DI.getExpression(); 5745 dropDanglingDebugInfo(Variable, Expression); 5746 assert(Variable && "Missing variable"); 5747 5748 // Check if address has undef value. 5749 const Value *Address = DI.getVariableLocation(); 5750 if (!Address || isa<UndefValue>(Address) || 5751 (Address->use_empty() && !isa<Argument>(Address))) { 5752 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5753 return; 5754 } 5755 5756 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5757 5758 // Check if this variable can be described by a frame index, typically 5759 // either as a static alloca or a byval parameter. 5760 int FI = std::numeric_limits<int>::max(); 5761 if (const auto *AI = 5762 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5763 if (AI->isStaticAlloca()) { 5764 auto I = FuncInfo.StaticAllocaMap.find(AI); 5765 if (I != FuncInfo.StaticAllocaMap.end()) 5766 FI = I->second; 5767 } 5768 } else if (const auto *Arg = dyn_cast<Argument>( 5769 Address->stripInBoundsConstantOffsets())) { 5770 FI = FuncInfo.getArgumentFrameIndex(Arg); 5771 } 5772 5773 // llvm.dbg.addr is control dependent and always generates indirect 5774 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5775 // the MachineFunction variable table. 5776 if (FI != std::numeric_limits<int>::max()) { 5777 if (Intrinsic == Intrinsic::dbg_addr) { 5778 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5779 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5780 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5781 } 5782 return; 5783 } 5784 5785 SDValue &N = NodeMap[Address]; 5786 if (!N.getNode() && isa<Argument>(Address)) 5787 // Check unused arguments map. 5788 N = UnusedArgNodeMap[Address]; 5789 SDDbgValue *SDV; 5790 if (N.getNode()) { 5791 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5792 Address = BCI->getOperand(0); 5793 // Parameters are handled specially. 5794 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5795 if (isParameter && FINode) { 5796 // Byval parameter. We have a frame index at this point. 5797 SDV = 5798 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5799 /*IsIndirect*/ true, dl, SDNodeOrder); 5800 } else if (isa<Argument>(Address)) { 5801 // Address is an argument, so try to emit its dbg value using 5802 // virtual register info from the FuncInfo.ValueMap. 5803 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5804 return; 5805 } else { 5806 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5807 true, dl, SDNodeOrder); 5808 } 5809 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5810 } else { 5811 // If Address is an argument then try to emit its dbg value using 5812 // virtual register info from the FuncInfo.ValueMap. 5813 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5814 N)) { 5815 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5816 } 5817 } 5818 return; 5819 } 5820 case Intrinsic::dbg_label: { 5821 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5822 DILabel *Label = DI.getLabel(); 5823 assert(Label && "Missing label"); 5824 5825 SDDbgLabel *SDV; 5826 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5827 DAG.AddDbgLabel(SDV); 5828 return; 5829 } 5830 case Intrinsic::dbg_value: { 5831 const DbgValueInst &DI = cast<DbgValueInst>(I); 5832 assert(DI.getVariable() && "Missing variable"); 5833 5834 DILocalVariable *Variable = DI.getVariable(); 5835 DIExpression *Expression = DI.getExpression(); 5836 dropDanglingDebugInfo(Variable, Expression); 5837 const Value *V = DI.getValue(); 5838 if (!V) 5839 return; 5840 5841 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5842 SDNodeOrder)) 5843 return; 5844 5845 // TODO: Dangling debug info will eventually either be resolved or produce 5846 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5847 // between the original dbg.value location and its resolved DBG_VALUE, which 5848 // we should ideally fill with an extra Undef DBG_VALUE. 5849 5850 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5851 return; 5852 } 5853 5854 case Intrinsic::eh_typeid_for: { 5855 // Find the type id for the given typeinfo. 5856 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5857 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5858 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5859 setValue(&I, Res); 5860 return; 5861 } 5862 5863 case Intrinsic::eh_return_i32: 5864 case Intrinsic::eh_return_i64: 5865 DAG.getMachineFunction().setCallsEHReturn(true); 5866 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5867 MVT::Other, 5868 getControlRoot(), 5869 getValue(I.getArgOperand(0)), 5870 getValue(I.getArgOperand(1)))); 5871 return; 5872 case Intrinsic::eh_unwind_init: 5873 DAG.getMachineFunction().setCallsUnwindInit(true); 5874 return; 5875 case Intrinsic::eh_dwarf_cfa: 5876 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5877 TLI.getPointerTy(DAG.getDataLayout()), 5878 getValue(I.getArgOperand(0)))); 5879 return; 5880 case Intrinsic::eh_sjlj_callsite: { 5881 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5882 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5883 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5884 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5885 5886 MMI.setCurrentCallSite(CI->getZExtValue()); 5887 return; 5888 } 5889 case Intrinsic::eh_sjlj_functioncontext: { 5890 // Get and store the index of the function context. 5891 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5892 AllocaInst *FnCtx = 5893 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5894 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5895 MFI.setFunctionContextIndex(FI); 5896 return; 5897 } 5898 case Intrinsic::eh_sjlj_setjmp: { 5899 SDValue Ops[2]; 5900 Ops[0] = getRoot(); 5901 Ops[1] = getValue(I.getArgOperand(0)); 5902 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5903 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5904 setValue(&I, Op.getValue(0)); 5905 DAG.setRoot(Op.getValue(1)); 5906 return; 5907 } 5908 case Intrinsic::eh_sjlj_longjmp: 5909 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5910 getRoot(), getValue(I.getArgOperand(0)))); 5911 return; 5912 case Intrinsic::eh_sjlj_setup_dispatch: 5913 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5914 getRoot())); 5915 return; 5916 case Intrinsic::masked_gather: 5917 visitMaskedGather(I); 5918 return; 5919 case Intrinsic::masked_load: 5920 visitMaskedLoad(I); 5921 return; 5922 case Intrinsic::masked_scatter: 5923 visitMaskedScatter(I); 5924 return; 5925 case Intrinsic::masked_store: 5926 visitMaskedStore(I); 5927 return; 5928 case Intrinsic::masked_expandload: 5929 visitMaskedLoad(I, true /* IsExpanding */); 5930 return; 5931 case Intrinsic::masked_compressstore: 5932 visitMaskedStore(I, true /* IsCompressing */); 5933 return; 5934 case Intrinsic::x86_mmx_pslli_w: 5935 case Intrinsic::x86_mmx_pslli_d: 5936 case Intrinsic::x86_mmx_pslli_q: 5937 case Intrinsic::x86_mmx_psrli_w: 5938 case Intrinsic::x86_mmx_psrli_d: 5939 case Intrinsic::x86_mmx_psrli_q: 5940 case Intrinsic::x86_mmx_psrai_w: 5941 case Intrinsic::x86_mmx_psrai_d: { 5942 SDValue ShAmt = getValue(I.getArgOperand(1)); 5943 if (isa<ConstantSDNode>(ShAmt)) { 5944 visitTargetIntrinsic(I, Intrinsic); 5945 return; 5946 } 5947 unsigned NewIntrinsic = 0; 5948 EVT ShAmtVT = MVT::v2i32; 5949 switch (Intrinsic) { 5950 case Intrinsic::x86_mmx_pslli_w: 5951 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5952 break; 5953 case Intrinsic::x86_mmx_pslli_d: 5954 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5955 break; 5956 case Intrinsic::x86_mmx_pslli_q: 5957 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5958 break; 5959 case Intrinsic::x86_mmx_psrli_w: 5960 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5961 break; 5962 case Intrinsic::x86_mmx_psrli_d: 5963 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5964 break; 5965 case Intrinsic::x86_mmx_psrli_q: 5966 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5967 break; 5968 case Intrinsic::x86_mmx_psrai_w: 5969 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5970 break; 5971 case Intrinsic::x86_mmx_psrai_d: 5972 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5973 break; 5974 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5975 } 5976 5977 // The vector shift intrinsics with scalars uses 32b shift amounts but 5978 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5979 // to be zero. 5980 // We must do this early because v2i32 is not a legal type. 5981 SDValue ShOps[2]; 5982 ShOps[0] = ShAmt; 5983 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5984 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5985 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5986 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5987 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5988 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5989 getValue(I.getArgOperand(0)), ShAmt); 5990 setValue(&I, Res); 5991 return; 5992 } 5993 case Intrinsic::powi: 5994 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5995 getValue(I.getArgOperand(1)), DAG)); 5996 return; 5997 case Intrinsic::log: 5998 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5999 return; 6000 case Intrinsic::log2: 6001 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6002 return; 6003 case Intrinsic::log10: 6004 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6005 return; 6006 case Intrinsic::exp: 6007 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6008 return; 6009 case Intrinsic::exp2: 6010 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6011 return; 6012 case Intrinsic::pow: 6013 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6014 getValue(I.getArgOperand(1)), DAG, TLI)); 6015 return; 6016 case Intrinsic::sqrt: 6017 case Intrinsic::fabs: 6018 case Intrinsic::sin: 6019 case Intrinsic::cos: 6020 case Intrinsic::floor: 6021 case Intrinsic::ceil: 6022 case Intrinsic::trunc: 6023 case Intrinsic::rint: 6024 case Intrinsic::nearbyint: 6025 case Intrinsic::round: 6026 case Intrinsic::canonicalize: { 6027 unsigned Opcode; 6028 switch (Intrinsic) { 6029 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6030 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6031 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6032 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6033 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6034 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6035 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6036 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6037 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6038 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6039 case Intrinsic::round: Opcode = ISD::FROUND; break; 6040 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6041 } 6042 6043 setValue(&I, DAG.getNode(Opcode, sdl, 6044 getValue(I.getArgOperand(0)).getValueType(), 6045 getValue(I.getArgOperand(0)))); 6046 return; 6047 } 6048 case Intrinsic::lround: 6049 case Intrinsic::llround: 6050 case Intrinsic::lrint: 6051 case Intrinsic::llrint: { 6052 unsigned Opcode; 6053 switch (Intrinsic) { 6054 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6055 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6056 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6057 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6058 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6059 } 6060 6061 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6062 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6063 getValue(I.getArgOperand(0)))); 6064 return; 6065 } 6066 case Intrinsic::minnum: 6067 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6068 getValue(I.getArgOperand(0)).getValueType(), 6069 getValue(I.getArgOperand(0)), 6070 getValue(I.getArgOperand(1)))); 6071 return; 6072 case Intrinsic::maxnum: 6073 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6074 getValue(I.getArgOperand(0)).getValueType(), 6075 getValue(I.getArgOperand(0)), 6076 getValue(I.getArgOperand(1)))); 6077 return; 6078 case Intrinsic::minimum: 6079 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6080 getValue(I.getArgOperand(0)).getValueType(), 6081 getValue(I.getArgOperand(0)), 6082 getValue(I.getArgOperand(1)))); 6083 return; 6084 case Intrinsic::maximum: 6085 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6086 getValue(I.getArgOperand(0)).getValueType(), 6087 getValue(I.getArgOperand(0)), 6088 getValue(I.getArgOperand(1)))); 6089 return; 6090 case Intrinsic::copysign: 6091 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6092 getValue(I.getArgOperand(0)).getValueType(), 6093 getValue(I.getArgOperand(0)), 6094 getValue(I.getArgOperand(1)))); 6095 return; 6096 case Intrinsic::fma: 6097 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6098 getValue(I.getArgOperand(0)).getValueType(), 6099 getValue(I.getArgOperand(0)), 6100 getValue(I.getArgOperand(1)), 6101 getValue(I.getArgOperand(2)))); 6102 return; 6103 case Intrinsic::experimental_constrained_fadd: 6104 case Intrinsic::experimental_constrained_fsub: 6105 case Intrinsic::experimental_constrained_fmul: 6106 case Intrinsic::experimental_constrained_fdiv: 6107 case Intrinsic::experimental_constrained_frem: 6108 case Intrinsic::experimental_constrained_fma: 6109 case Intrinsic::experimental_constrained_fptosi: 6110 case Intrinsic::experimental_constrained_fptoui: 6111 case Intrinsic::experimental_constrained_fptrunc: 6112 case Intrinsic::experimental_constrained_fpext: 6113 case Intrinsic::experimental_constrained_sqrt: 6114 case Intrinsic::experimental_constrained_pow: 6115 case Intrinsic::experimental_constrained_powi: 6116 case Intrinsic::experimental_constrained_sin: 6117 case Intrinsic::experimental_constrained_cos: 6118 case Intrinsic::experimental_constrained_exp: 6119 case Intrinsic::experimental_constrained_exp2: 6120 case Intrinsic::experimental_constrained_log: 6121 case Intrinsic::experimental_constrained_log10: 6122 case Intrinsic::experimental_constrained_log2: 6123 case Intrinsic::experimental_constrained_rint: 6124 case Intrinsic::experimental_constrained_nearbyint: 6125 case Intrinsic::experimental_constrained_maxnum: 6126 case Intrinsic::experimental_constrained_minnum: 6127 case Intrinsic::experimental_constrained_ceil: 6128 case Intrinsic::experimental_constrained_floor: 6129 case Intrinsic::experimental_constrained_round: 6130 case Intrinsic::experimental_constrained_trunc: 6131 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6132 return; 6133 case Intrinsic::fmuladd: { 6134 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6135 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6136 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6137 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6138 getValue(I.getArgOperand(0)).getValueType(), 6139 getValue(I.getArgOperand(0)), 6140 getValue(I.getArgOperand(1)), 6141 getValue(I.getArgOperand(2)))); 6142 } else { 6143 // TODO: Intrinsic calls should have fast-math-flags. 6144 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6145 getValue(I.getArgOperand(0)).getValueType(), 6146 getValue(I.getArgOperand(0)), 6147 getValue(I.getArgOperand(1))); 6148 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6149 getValue(I.getArgOperand(0)).getValueType(), 6150 Mul, 6151 getValue(I.getArgOperand(2))); 6152 setValue(&I, Add); 6153 } 6154 return; 6155 } 6156 case Intrinsic::convert_to_fp16: 6157 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6158 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6159 getValue(I.getArgOperand(0)), 6160 DAG.getTargetConstant(0, sdl, 6161 MVT::i32)))); 6162 return; 6163 case Intrinsic::convert_from_fp16: 6164 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6165 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6166 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6167 getValue(I.getArgOperand(0))))); 6168 return; 6169 case Intrinsic::pcmarker: { 6170 SDValue Tmp = getValue(I.getArgOperand(0)); 6171 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6172 return; 6173 } 6174 case Intrinsic::readcyclecounter: { 6175 SDValue Op = getRoot(); 6176 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6177 DAG.getVTList(MVT::i64, MVT::Other), Op); 6178 setValue(&I, Res); 6179 DAG.setRoot(Res.getValue(1)); 6180 return; 6181 } 6182 case Intrinsic::bitreverse: 6183 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6184 getValue(I.getArgOperand(0)).getValueType(), 6185 getValue(I.getArgOperand(0)))); 6186 return; 6187 case Intrinsic::bswap: 6188 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6189 getValue(I.getArgOperand(0)).getValueType(), 6190 getValue(I.getArgOperand(0)))); 6191 return; 6192 case Intrinsic::cttz: { 6193 SDValue Arg = getValue(I.getArgOperand(0)); 6194 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6195 EVT Ty = Arg.getValueType(); 6196 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6197 sdl, Ty, Arg)); 6198 return; 6199 } 6200 case Intrinsic::ctlz: { 6201 SDValue Arg = getValue(I.getArgOperand(0)); 6202 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6203 EVT Ty = Arg.getValueType(); 6204 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6205 sdl, Ty, Arg)); 6206 return; 6207 } 6208 case Intrinsic::ctpop: { 6209 SDValue Arg = getValue(I.getArgOperand(0)); 6210 EVT Ty = Arg.getValueType(); 6211 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6212 return; 6213 } 6214 case Intrinsic::fshl: 6215 case Intrinsic::fshr: { 6216 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6217 SDValue X = getValue(I.getArgOperand(0)); 6218 SDValue Y = getValue(I.getArgOperand(1)); 6219 SDValue Z = getValue(I.getArgOperand(2)); 6220 EVT VT = X.getValueType(); 6221 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6222 SDValue Zero = DAG.getConstant(0, sdl, VT); 6223 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6224 6225 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6226 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6227 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6228 return; 6229 } 6230 6231 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6232 // avoid the select that is necessary in the general case to filter out 6233 // the 0-shift possibility that leads to UB. 6234 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6235 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6236 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6237 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6238 return; 6239 } 6240 6241 // Some targets only rotate one way. Try the opposite direction. 6242 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6243 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6244 // Negate the shift amount because it is safe to ignore the high bits. 6245 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6246 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6247 return; 6248 } 6249 6250 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6251 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6252 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6253 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6254 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6255 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6256 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6257 return; 6258 } 6259 6260 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6261 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6262 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6263 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6264 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6265 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6266 6267 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6268 // and that is undefined. We must compare and select to avoid UB. 6269 EVT CCVT = MVT::i1; 6270 if (VT.isVector()) 6271 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6272 6273 // For fshl, 0-shift returns the 1st arg (X). 6274 // For fshr, 0-shift returns the 2nd arg (Y). 6275 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6276 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6277 return; 6278 } 6279 case Intrinsic::sadd_sat: { 6280 SDValue Op1 = getValue(I.getArgOperand(0)); 6281 SDValue Op2 = getValue(I.getArgOperand(1)); 6282 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6283 return; 6284 } 6285 case Intrinsic::uadd_sat: { 6286 SDValue Op1 = getValue(I.getArgOperand(0)); 6287 SDValue Op2 = getValue(I.getArgOperand(1)); 6288 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6289 return; 6290 } 6291 case Intrinsic::ssub_sat: { 6292 SDValue Op1 = getValue(I.getArgOperand(0)); 6293 SDValue Op2 = getValue(I.getArgOperand(1)); 6294 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6295 return; 6296 } 6297 case Intrinsic::usub_sat: { 6298 SDValue Op1 = getValue(I.getArgOperand(0)); 6299 SDValue Op2 = getValue(I.getArgOperand(1)); 6300 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6301 return; 6302 } 6303 case Intrinsic::smul_fix: 6304 case Intrinsic::umul_fix: { 6305 SDValue Op1 = getValue(I.getArgOperand(0)); 6306 SDValue Op2 = getValue(I.getArgOperand(1)); 6307 SDValue Op3 = getValue(I.getArgOperand(2)); 6308 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6309 Op1.getValueType(), Op1, Op2, Op3)); 6310 return; 6311 } 6312 case Intrinsic::smul_fix_sat: { 6313 SDValue Op1 = getValue(I.getArgOperand(0)); 6314 SDValue Op2 = getValue(I.getArgOperand(1)); 6315 SDValue Op3 = getValue(I.getArgOperand(2)); 6316 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6317 Op3)); 6318 return; 6319 } 6320 case Intrinsic::stacksave: { 6321 SDValue Op = getRoot(); 6322 Res = DAG.getNode( 6323 ISD::STACKSAVE, sdl, 6324 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6325 setValue(&I, Res); 6326 DAG.setRoot(Res.getValue(1)); 6327 return; 6328 } 6329 case Intrinsic::stackrestore: 6330 Res = getValue(I.getArgOperand(0)); 6331 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6332 return; 6333 case Intrinsic::get_dynamic_area_offset: { 6334 SDValue Op = getRoot(); 6335 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6336 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6337 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6338 // target. 6339 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6340 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6341 " intrinsic!"); 6342 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6343 Op); 6344 DAG.setRoot(Op); 6345 setValue(&I, Res); 6346 return; 6347 } 6348 case Intrinsic::stackguard: { 6349 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6350 MachineFunction &MF = DAG.getMachineFunction(); 6351 const Module &M = *MF.getFunction().getParent(); 6352 SDValue Chain = getRoot(); 6353 if (TLI.useLoadStackGuardNode()) { 6354 Res = getLoadStackGuard(DAG, sdl, Chain); 6355 } else { 6356 const Value *Global = TLI.getSDagStackGuard(M); 6357 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6358 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6359 MachinePointerInfo(Global, 0), Align, 6360 MachineMemOperand::MOVolatile); 6361 } 6362 if (TLI.useStackGuardXorFP()) 6363 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6364 DAG.setRoot(Chain); 6365 setValue(&I, Res); 6366 return; 6367 } 6368 case Intrinsic::stackprotector: { 6369 // Emit code into the DAG to store the stack guard onto the stack. 6370 MachineFunction &MF = DAG.getMachineFunction(); 6371 MachineFrameInfo &MFI = MF.getFrameInfo(); 6372 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6373 SDValue Src, Chain = getRoot(); 6374 6375 if (TLI.useLoadStackGuardNode()) 6376 Src = getLoadStackGuard(DAG, sdl, Chain); 6377 else 6378 Src = getValue(I.getArgOperand(0)); // The guard's value. 6379 6380 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6381 6382 int FI = FuncInfo.StaticAllocaMap[Slot]; 6383 MFI.setStackProtectorIndex(FI); 6384 6385 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6386 6387 // Store the stack protector onto the stack. 6388 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6389 DAG.getMachineFunction(), FI), 6390 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6391 setValue(&I, Res); 6392 DAG.setRoot(Res); 6393 return; 6394 } 6395 case Intrinsic::objectsize: { 6396 // If we don't know by now, we're never going to know. 6397 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6398 6399 assert(CI && "Non-constant type in __builtin_object_size?"); 6400 6401 SDValue Arg = getValue(I.getCalledValue()); 6402 EVT Ty = Arg.getValueType(); 6403 6404 if (CI->isZero()) 6405 Res = DAG.getConstant(-1ULL, sdl, Ty); 6406 else 6407 Res = DAG.getConstant(0, sdl, Ty); 6408 6409 setValue(&I, Res); 6410 return; 6411 } 6412 6413 case Intrinsic::is_constant: 6414 // If this wasn't constant-folded away by now, then it's not a 6415 // constant. 6416 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6417 return; 6418 6419 case Intrinsic::annotation: 6420 case Intrinsic::ptr_annotation: 6421 case Intrinsic::launder_invariant_group: 6422 case Intrinsic::strip_invariant_group: 6423 // Drop the intrinsic, but forward the value 6424 setValue(&I, getValue(I.getOperand(0))); 6425 return; 6426 case Intrinsic::assume: 6427 case Intrinsic::var_annotation: 6428 case Intrinsic::sideeffect: 6429 // Discard annotate attributes, assumptions, and artificial side-effects. 6430 return; 6431 6432 case Intrinsic::codeview_annotation: { 6433 // Emit a label associated with this metadata. 6434 MachineFunction &MF = DAG.getMachineFunction(); 6435 MCSymbol *Label = 6436 MF.getMMI().getContext().createTempSymbol("annotation", true); 6437 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6438 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6439 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6440 DAG.setRoot(Res); 6441 return; 6442 } 6443 6444 case Intrinsic::init_trampoline: { 6445 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6446 6447 SDValue Ops[6]; 6448 Ops[0] = getRoot(); 6449 Ops[1] = getValue(I.getArgOperand(0)); 6450 Ops[2] = getValue(I.getArgOperand(1)); 6451 Ops[3] = getValue(I.getArgOperand(2)); 6452 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6453 Ops[5] = DAG.getSrcValue(F); 6454 6455 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6456 6457 DAG.setRoot(Res); 6458 return; 6459 } 6460 case Intrinsic::adjust_trampoline: 6461 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6462 TLI.getPointerTy(DAG.getDataLayout()), 6463 getValue(I.getArgOperand(0)))); 6464 return; 6465 case Intrinsic::gcroot: { 6466 assert(DAG.getMachineFunction().getFunction().hasGC() && 6467 "only valid in functions with gc specified, enforced by Verifier"); 6468 assert(GFI && "implied by previous"); 6469 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6470 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6471 6472 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6473 GFI->addStackRoot(FI->getIndex(), TypeMap); 6474 return; 6475 } 6476 case Intrinsic::gcread: 6477 case Intrinsic::gcwrite: 6478 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6479 case Intrinsic::flt_rounds: 6480 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6481 return; 6482 6483 case Intrinsic::expect: 6484 // Just replace __builtin_expect(exp, c) with EXP. 6485 setValue(&I, getValue(I.getArgOperand(0))); 6486 return; 6487 6488 case Intrinsic::debugtrap: 6489 case Intrinsic::trap: { 6490 StringRef TrapFuncName = 6491 I.getAttributes() 6492 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6493 .getValueAsString(); 6494 if (TrapFuncName.empty()) { 6495 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6496 ISD::TRAP : ISD::DEBUGTRAP; 6497 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6498 return; 6499 } 6500 TargetLowering::ArgListTy Args; 6501 6502 TargetLowering::CallLoweringInfo CLI(DAG); 6503 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6504 CallingConv::C, I.getType(), 6505 DAG.getExternalSymbol(TrapFuncName.data(), 6506 TLI.getPointerTy(DAG.getDataLayout())), 6507 std::move(Args)); 6508 6509 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6510 DAG.setRoot(Result.second); 6511 return; 6512 } 6513 6514 case Intrinsic::uadd_with_overflow: 6515 case Intrinsic::sadd_with_overflow: 6516 case Intrinsic::usub_with_overflow: 6517 case Intrinsic::ssub_with_overflow: 6518 case Intrinsic::umul_with_overflow: 6519 case Intrinsic::smul_with_overflow: { 6520 ISD::NodeType Op; 6521 switch (Intrinsic) { 6522 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6523 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6524 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6525 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6526 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6527 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6528 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6529 } 6530 SDValue Op1 = getValue(I.getArgOperand(0)); 6531 SDValue Op2 = getValue(I.getArgOperand(1)); 6532 6533 EVT ResultVT = Op1.getValueType(); 6534 EVT OverflowVT = MVT::i1; 6535 if (ResultVT.isVector()) 6536 OverflowVT = EVT::getVectorVT( 6537 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6538 6539 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6540 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6541 return; 6542 } 6543 case Intrinsic::prefetch: { 6544 SDValue Ops[5]; 6545 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6546 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6547 Ops[0] = DAG.getRoot(); 6548 Ops[1] = getValue(I.getArgOperand(0)); 6549 Ops[2] = getValue(I.getArgOperand(1)); 6550 Ops[3] = getValue(I.getArgOperand(2)); 6551 Ops[4] = getValue(I.getArgOperand(3)); 6552 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6553 DAG.getVTList(MVT::Other), Ops, 6554 EVT::getIntegerVT(*Context, 8), 6555 MachinePointerInfo(I.getArgOperand(0)), 6556 0, /* align */ 6557 Flags); 6558 6559 // Chain the prefetch in parallell with any pending loads, to stay out of 6560 // the way of later optimizations. 6561 PendingLoads.push_back(Result); 6562 Result = getRoot(); 6563 DAG.setRoot(Result); 6564 return; 6565 } 6566 case Intrinsic::lifetime_start: 6567 case Intrinsic::lifetime_end: { 6568 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6569 // Stack coloring is not enabled in O0, discard region information. 6570 if (TM.getOptLevel() == CodeGenOpt::None) 6571 return; 6572 6573 const int64_t ObjectSize = 6574 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6575 Value *const ObjectPtr = I.getArgOperand(1); 6576 SmallVector<const Value *, 4> Allocas; 6577 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6578 6579 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6580 E = Allocas.end(); Object != E; ++Object) { 6581 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6582 6583 // Could not find an Alloca. 6584 if (!LifetimeObject) 6585 continue; 6586 6587 // First check that the Alloca is static, otherwise it won't have a 6588 // valid frame index. 6589 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6590 if (SI == FuncInfo.StaticAllocaMap.end()) 6591 return; 6592 6593 const int FrameIndex = SI->second; 6594 int64_t Offset; 6595 if (GetPointerBaseWithConstantOffset( 6596 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6597 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6598 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6599 Offset); 6600 DAG.setRoot(Res); 6601 } 6602 return; 6603 } 6604 case Intrinsic::invariant_start: 6605 // Discard region information. 6606 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6607 return; 6608 case Intrinsic::invariant_end: 6609 // Discard region information. 6610 return; 6611 case Intrinsic::clear_cache: 6612 /// FunctionName may be null. 6613 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6614 lowerCallToExternalSymbol(I, FunctionName); 6615 return; 6616 case Intrinsic::donothing: 6617 // ignore 6618 return; 6619 case Intrinsic::experimental_stackmap: 6620 visitStackmap(I); 6621 return; 6622 case Intrinsic::experimental_patchpoint_void: 6623 case Intrinsic::experimental_patchpoint_i64: 6624 visitPatchpoint(&I); 6625 return; 6626 case Intrinsic::experimental_gc_statepoint: 6627 LowerStatepoint(ImmutableStatepoint(&I)); 6628 return; 6629 case Intrinsic::experimental_gc_result: 6630 visitGCResult(cast<GCResultInst>(I)); 6631 return; 6632 case Intrinsic::experimental_gc_relocate: 6633 visitGCRelocate(cast<GCRelocateInst>(I)); 6634 return; 6635 case Intrinsic::instrprof_increment: 6636 llvm_unreachable("instrprof failed to lower an increment"); 6637 case Intrinsic::instrprof_value_profile: 6638 llvm_unreachable("instrprof failed to lower a value profiling call"); 6639 case Intrinsic::localescape: { 6640 MachineFunction &MF = DAG.getMachineFunction(); 6641 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6642 6643 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6644 // is the same on all targets. 6645 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6646 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6647 if (isa<ConstantPointerNull>(Arg)) 6648 continue; // Skip null pointers. They represent a hole in index space. 6649 AllocaInst *Slot = cast<AllocaInst>(Arg); 6650 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6651 "can only escape static allocas"); 6652 int FI = FuncInfo.StaticAllocaMap[Slot]; 6653 MCSymbol *FrameAllocSym = 6654 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6655 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6656 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6657 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6658 .addSym(FrameAllocSym) 6659 .addFrameIndex(FI); 6660 } 6661 6662 return; 6663 } 6664 6665 case Intrinsic::localrecover: { 6666 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6667 MachineFunction &MF = DAG.getMachineFunction(); 6668 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6669 6670 // Get the symbol that defines the frame offset. 6671 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6672 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6673 unsigned IdxVal = 6674 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6675 MCSymbol *FrameAllocSym = 6676 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6677 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6678 6679 // Create a MCSymbol for the label to avoid any target lowering 6680 // that would make this PC relative. 6681 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6682 SDValue OffsetVal = 6683 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6684 6685 // Add the offset to the FP. 6686 Value *FP = I.getArgOperand(1); 6687 SDValue FPVal = getValue(FP); 6688 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6689 setValue(&I, Add); 6690 6691 return; 6692 } 6693 6694 case Intrinsic::eh_exceptionpointer: 6695 case Intrinsic::eh_exceptioncode: { 6696 // Get the exception pointer vreg, copy from it, and resize it to fit. 6697 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6698 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6699 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6700 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6701 SDValue N = 6702 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6703 if (Intrinsic == Intrinsic::eh_exceptioncode) 6704 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6705 setValue(&I, N); 6706 return; 6707 } 6708 case Intrinsic::xray_customevent: { 6709 // Here we want to make sure that the intrinsic behaves as if it has a 6710 // specific calling convention, and only for x86_64. 6711 // FIXME: Support other platforms later. 6712 const auto &Triple = DAG.getTarget().getTargetTriple(); 6713 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6714 return; 6715 6716 SDLoc DL = getCurSDLoc(); 6717 SmallVector<SDValue, 8> Ops; 6718 6719 // We want to say that we always want the arguments in registers. 6720 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6721 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6722 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6723 SDValue Chain = getRoot(); 6724 Ops.push_back(LogEntryVal); 6725 Ops.push_back(StrSizeVal); 6726 Ops.push_back(Chain); 6727 6728 // We need to enforce the calling convention for the callsite, so that 6729 // argument ordering is enforced correctly, and that register allocation can 6730 // see that some registers may be assumed clobbered and have to preserve 6731 // them across calls to the intrinsic. 6732 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6733 DL, NodeTys, Ops); 6734 SDValue patchableNode = SDValue(MN, 0); 6735 DAG.setRoot(patchableNode); 6736 setValue(&I, patchableNode); 6737 return; 6738 } 6739 case Intrinsic::xray_typedevent: { 6740 // Here we want to make sure that the intrinsic behaves as if it has a 6741 // specific calling convention, and only for x86_64. 6742 // FIXME: Support other platforms later. 6743 const auto &Triple = DAG.getTarget().getTargetTriple(); 6744 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6745 return; 6746 6747 SDLoc DL = getCurSDLoc(); 6748 SmallVector<SDValue, 8> Ops; 6749 6750 // We want to say that we always want the arguments in registers. 6751 // It's unclear to me how manipulating the selection DAG here forces callers 6752 // to provide arguments in registers instead of on the stack. 6753 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6754 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6755 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6756 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6757 SDValue Chain = getRoot(); 6758 Ops.push_back(LogTypeId); 6759 Ops.push_back(LogEntryVal); 6760 Ops.push_back(StrSizeVal); 6761 Ops.push_back(Chain); 6762 6763 // We need to enforce the calling convention for the callsite, so that 6764 // argument ordering is enforced correctly, and that register allocation can 6765 // see that some registers may be assumed clobbered and have to preserve 6766 // them across calls to the intrinsic. 6767 MachineSDNode *MN = DAG.getMachineNode( 6768 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6769 SDValue patchableNode = SDValue(MN, 0); 6770 DAG.setRoot(patchableNode); 6771 setValue(&I, patchableNode); 6772 return; 6773 } 6774 case Intrinsic::experimental_deoptimize: 6775 LowerDeoptimizeCall(&I); 6776 return; 6777 6778 case Intrinsic::experimental_vector_reduce_v2_fadd: 6779 case Intrinsic::experimental_vector_reduce_v2_fmul: 6780 case Intrinsic::experimental_vector_reduce_add: 6781 case Intrinsic::experimental_vector_reduce_mul: 6782 case Intrinsic::experimental_vector_reduce_and: 6783 case Intrinsic::experimental_vector_reduce_or: 6784 case Intrinsic::experimental_vector_reduce_xor: 6785 case Intrinsic::experimental_vector_reduce_smax: 6786 case Intrinsic::experimental_vector_reduce_smin: 6787 case Intrinsic::experimental_vector_reduce_umax: 6788 case Intrinsic::experimental_vector_reduce_umin: 6789 case Intrinsic::experimental_vector_reduce_fmax: 6790 case Intrinsic::experimental_vector_reduce_fmin: 6791 visitVectorReduce(I, Intrinsic); 6792 return; 6793 6794 case Intrinsic::icall_branch_funnel: { 6795 SmallVector<SDValue, 16> Ops; 6796 Ops.push_back(getValue(I.getArgOperand(0))); 6797 6798 int64_t Offset; 6799 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6800 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6801 if (!Base) 6802 report_fatal_error( 6803 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6804 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6805 6806 struct BranchFunnelTarget { 6807 int64_t Offset; 6808 SDValue Target; 6809 }; 6810 SmallVector<BranchFunnelTarget, 8> Targets; 6811 6812 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6813 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6814 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6815 if (ElemBase != Base) 6816 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6817 "to the same GlobalValue"); 6818 6819 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6820 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6821 if (!GA) 6822 report_fatal_error( 6823 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6824 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6825 GA->getGlobal(), getCurSDLoc(), 6826 Val.getValueType(), GA->getOffset())}); 6827 } 6828 llvm::sort(Targets, 6829 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6830 return T1.Offset < T2.Offset; 6831 }); 6832 6833 for (auto &T : Targets) { 6834 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6835 Ops.push_back(T.Target); 6836 } 6837 6838 Ops.push_back(DAG.getRoot()); // Chain 6839 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6840 getCurSDLoc(), MVT::Other, Ops), 6841 0); 6842 DAG.setRoot(N); 6843 setValue(&I, N); 6844 HasTailCall = true; 6845 return; 6846 } 6847 6848 case Intrinsic::wasm_landingpad_index: 6849 // Information this intrinsic contained has been transferred to 6850 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6851 // delete it now. 6852 return; 6853 6854 case Intrinsic::aarch64_settag: 6855 case Intrinsic::aarch64_settag_zero: { 6856 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6857 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6858 SDValue Val = TSI.EmitTargetCodeForSetTag( 6859 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6860 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6861 ZeroMemory); 6862 DAG.setRoot(Val); 6863 setValue(&I, Val); 6864 return; 6865 } 6866 case Intrinsic::ptrmask: { 6867 SDValue Ptr = getValue(I.getOperand(0)); 6868 SDValue Const = getValue(I.getOperand(1)); 6869 6870 EVT DestVT = 6871 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6872 6873 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6874 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6875 return; 6876 } 6877 } 6878 } 6879 6880 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6881 const ConstrainedFPIntrinsic &FPI) { 6882 SDLoc sdl = getCurSDLoc(); 6883 unsigned Opcode; 6884 switch (FPI.getIntrinsicID()) { 6885 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6886 case Intrinsic::experimental_constrained_fadd: 6887 Opcode = ISD::STRICT_FADD; 6888 break; 6889 case Intrinsic::experimental_constrained_fsub: 6890 Opcode = ISD::STRICT_FSUB; 6891 break; 6892 case Intrinsic::experimental_constrained_fmul: 6893 Opcode = ISD::STRICT_FMUL; 6894 break; 6895 case Intrinsic::experimental_constrained_fdiv: 6896 Opcode = ISD::STRICT_FDIV; 6897 break; 6898 case Intrinsic::experimental_constrained_frem: 6899 Opcode = ISD::STRICT_FREM; 6900 break; 6901 case Intrinsic::experimental_constrained_fma: 6902 Opcode = ISD::STRICT_FMA; 6903 break; 6904 case Intrinsic::experimental_constrained_fptosi: 6905 Opcode = ISD::STRICT_FP_TO_SINT; 6906 break; 6907 case Intrinsic::experimental_constrained_fptoui: 6908 Opcode = ISD::STRICT_FP_TO_UINT; 6909 break; 6910 case Intrinsic::experimental_constrained_fptrunc: 6911 Opcode = ISD::STRICT_FP_ROUND; 6912 break; 6913 case Intrinsic::experimental_constrained_fpext: 6914 Opcode = ISD::STRICT_FP_EXTEND; 6915 break; 6916 case Intrinsic::experimental_constrained_sqrt: 6917 Opcode = ISD::STRICT_FSQRT; 6918 break; 6919 case Intrinsic::experimental_constrained_pow: 6920 Opcode = ISD::STRICT_FPOW; 6921 break; 6922 case Intrinsic::experimental_constrained_powi: 6923 Opcode = ISD::STRICT_FPOWI; 6924 break; 6925 case Intrinsic::experimental_constrained_sin: 6926 Opcode = ISD::STRICT_FSIN; 6927 break; 6928 case Intrinsic::experimental_constrained_cos: 6929 Opcode = ISD::STRICT_FCOS; 6930 break; 6931 case Intrinsic::experimental_constrained_exp: 6932 Opcode = ISD::STRICT_FEXP; 6933 break; 6934 case Intrinsic::experimental_constrained_exp2: 6935 Opcode = ISD::STRICT_FEXP2; 6936 break; 6937 case Intrinsic::experimental_constrained_log: 6938 Opcode = ISD::STRICT_FLOG; 6939 break; 6940 case Intrinsic::experimental_constrained_log10: 6941 Opcode = ISD::STRICT_FLOG10; 6942 break; 6943 case Intrinsic::experimental_constrained_log2: 6944 Opcode = ISD::STRICT_FLOG2; 6945 break; 6946 case Intrinsic::experimental_constrained_rint: 6947 Opcode = ISD::STRICT_FRINT; 6948 break; 6949 case Intrinsic::experimental_constrained_nearbyint: 6950 Opcode = ISD::STRICT_FNEARBYINT; 6951 break; 6952 case Intrinsic::experimental_constrained_maxnum: 6953 Opcode = ISD::STRICT_FMAXNUM; 6954 break; 6955 case Intrinsic::experimental_constrained_minnum: 6956 Opcode = ISD::STRICT_FMINNUM; 6957 break; 6958 case Intrinsic::experimental_constrained_ceil: 6959 Opcode = ISD::STRICT_FCEIL; 6960 break; 6961 case Intrinsic::experimental_constrained_floor: 6962 Opcode = ISD::STRICT_FFLOOR; 6963 break; 6964 case Intrinsic::experimental_constrained_round: 6965 Opcode = ISD::STRICT_FROUND; 6966 break; 6967 case Intrinsic::experimental_constrained_trunc: 6968 Opcode = ISD::STRICT_FTRUNC; 6969 break; 6970 } 6971 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6972 SDValue Chain = getRoot(); 6973 SmallVector<EVT, 4> ValueVTs; 6974 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6975 ValueVTs.push_back(MVT::Other); // Out chain 6976 6977 SDVTList VTs = DAG.getVTList(ValueVTs); 6978 SDValue Result; 6979 if (Opcode == ISD::STRICT_FP_ROUND) 6980 Result = DAG.getNode(Opcode, sdl, VTs, 6981 { Chain, getValue(FPI.getArgOperand(0)), 6982 DAG.getTargetConstant(0, sdl, 6983 TLI.getPointerTy(DAG.getDataLayout())) }); 6984 else if (FPI.isUnaryOp()) 6985 Result = DAG.getNode(Opcode, sdl, VTs, 6986 { Chain, getValue(FPI.getArgOperand(0)) }); 6987 else if (FPI.isTernaryOp()) 6988 Result = DAG.getNode(Opcode, sdl, VTs, 6989 { Chain, getValue(FPI.getArgOperand(0)), 6990 getValue(FPI.getArgOperand(1)), 6991 getValue(FPI.getArgOperand(2)) }); 6992 else 6993 Result = DAG.getNode(Opcode, sdl, VTs, 6994 { Chain, getValue(FPI.getArgOperand(0)), 6995 getValue(FPI.getArgOperand(1)) }); 6996 6997 if (FPI.getExceptionBehavior() != 6998 ConstrainedFPIntrinsic::ExceptionBehavior::ebIgnore) { 6999 SDNodeFlags Flags; 7000 Flags.setFPExcept(true); 7001 Result->setFlags(Flags); 7002 } 7003 7004 assert(Result.getNode()->getNumValues() == 2); 7005 SDValue OutChain = Result.getValue(1); 7006 DAG.setRoot(OutChain); 7007 SDValue FPResult = Result.getValue(0); 7008 setValue(&FPI, FPResult); 7009 } 7010 7011 std::pair<SDValue, SDValue> 7012 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7013 const BasicBlock *EHPadBB) { 7014 MachineFunction &MF = DAG.getMachineFunction(); 7015 MachineModuleInfo &MMI = MF.getMMI(); 7016 MCSymbol *BeginLabel = nullptr; 7017 7018 if (EHPadBB) { 7019 // Insert a label before the invoke call to mark the try range. This can be 7020 // used to detect deletion of the invoke via the MachineModuleInfo. 7021 BeginLabel = MMI.getContext().createTempSymbol(); 7022 7023 // For SjLj, keep track of which landing pads go with which invokes 7024 // so as to maintain the ordering of pads in the LSDA. 7025 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7026 if (CallSiteIndex) { 7027 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7028 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7029 7030 // Now that the call site is handled, stop tracking it. 7031 MMI.setCurrentCallSite(0); 7032 } 7033 7034 // Both PendingLoads and PendingExports must be flushed here; 7035 // this call might not return. 7036 (void)getRoot(); 7037 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7038 7039 CLI.setChain(getRoot()); 7040 } 7041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7042 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7043 7044 assert((CLI.IsTailCall || Result.second.getNode()) && 7045 "Non-null chain expected with non-tail call!"); 7046 assert((Result.second.getNode() || !Result.first.getNode()) && 7047 "Null value expected with tail call!"); 7048 7049 if (!Result.second.getNode()) { 7050 // As a special case, a null chain means that a tail call has been emitted 7051 // and the DAG root is already updated. 7052 HasTailCall = true; 7053 7054 // Since there's no actual continuation from this block, nothing can be 7055 // relying on us setting vregs for them. 7056 PendingExports.clear(); 7057 } else { 7058 DAG.setRoot(Result.second); 7059 } 7060 7061 if (EHPadBB) { 7062 // Insert a label at the end of the invoke call to mark the try range. This 7063 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7064 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7065 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7066 7067 // Inform MachineModuleInfo of range. 7068 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7069 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7070 // actually use outlined funclets and their LSDA info style. 7071 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7072 assert(CLI.CS); 7073 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7074 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7075 BeginLabel, EndLabel); 7076 } else if (!isScopedEHPersonality(Pers)) { 7077 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7078 } 7079 } 7080 7081 return Result; 7082 } 7083 7084 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7085 bool isTailCall, 7086 const BasicBlock *EHPadBB) { 7087 auto &DL = DAG.getDataLayout(); 7088 FunctionType *FTy = CS.getFunctionType(); 7089 Type *RetTy = CS.getType(); 7090 7091 TargetLowering::ArgListTy Args; 7092 Args.reserve(CS.arg_size()); 7093 7094 const Value *SwiftErrorVal = nullptr; 7095 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7096 7097 // We can't tail call inside a function with a swifterror argument. Lowering 7098 // does not support this yet. It would have to move into the swifterror 7099 // register before the call. 7100 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7101 if (TLI.supportSwiftError() && 7102 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7103 isTailCall = false; 7104 7105 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7106 i != e; ++i) { 7107 TargetLowering::ArgListEntry Entry; 7108 const Value *V = *i; 7109 7110 // Skip empty types 7111 if (V->getType()->isEmptyTy()) 7112 continue; 7113 7114 SDValue ArgNode = getValue(V); 7115 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7116 7117 Entry.setAttributes(&CS, i - CS.arg_begin()); 7118 7119 // Use swifterror virtual register as input to the call. 7120 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7121 SwiftErrorVal = V; 7122 // We find the virtual register for the actual swifterror argument. 7123 // Instead of using the Value, we use the virtual register instead. 7124 Entry.Node = DAG.getRegister( 7125 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7126 EVT(TLI.getPointerTy(DL))); 7127 } 7128 7129 Args.push_back(Entry); 7130 7131 // If we have an explicit sret argument that is an Instruction, (i.e., it 7132 // might point to function-local memory), we can't meaningfully tail-call. 7133 if (Entry.IsSRet && isa<Instruction>(V)) 7134 isTailCall = false; 7135 } 7136 7137 // Check if target-independent constraints permit a tail call here. 7138 // Target-dependent constraints are checked within TLI->LowerCallTo. 7139 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7140 isTailCall = false; 7141 7142 // Disable tail calls if there is an swifterror argument. Targets have not 7143 // been updated to support tail calls. 7144 if (TLI.supportSwiftError() && SwiftErrorVal) 7145 isTailCall = false; 7146 7147 TargetLowering::CallLoweringInfo CLI(DAG); 7148 CLI.setDebugLoc(getCurSDLoc()) 7149 .setChain(getRoot()) 7150 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7151 .setTailCall(isTailCall) 7152 .setConvergent(CS.isConvergent()); 7153 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7154 7155 if (Result.first.getNode()) { 7156 const Instruction *Inst = CS.getInstruction(); 7157 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7158 setValue(Inst, Result.first); 7159 } 7160 7161 // The last element of CLI.InVals has the SDValue for swifterror return. 7162 // Here we copy it to a virtual register and update SwiftErrorMap for 7163 // book-keeping. 7164 if (SwiftErrorVal && TLI.supportSwiftError()) { 7165 // Get the last element of InVals. 7166 SDValue Src = CLI.InVals.back(); 7167 Register VReg = SwiftError.getOrCreateVRegDefAt( 7168 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7169 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7170 DAG.setRoot(CopyNode); 7171 } 7172 } 7173 7174 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7175 SelectionDAGBuilder &Builder) { 7176 // Check to see if this load can be trivially constant folded, e.g. if the 7177 // input is from a string literal. 7178 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7179 // Cast pointer to the type we really want to load. 7180 Type *LoadTy = 7181 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7182 if (LoadVT.isVector()) 7183 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7184 7185 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7186 PointerType::getUnqual(LoadTy)); 7187 7188 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7189 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7190 return Builder.getValue(LoadCst); 7191 } 7192 7193 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7194 // still constant memory, the input chain can be the entry node. 7195 SDValue Root; 7196 bool ConstantMemory = false; 7197 7198 // Do not serialize (non-volatile) loads of constant memory with anything. 7199 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7200 Root = Builder.DAG.getEntryNode(); 7201 ConstantMemory = true; 7202 } else { 7203 // Do not serialize non-volatile loads against each other. 7204 Root = Builder.DAG.getRoot(); 7205 } 7206 7207 SDValue Ptr = Builder.getValue(PtrVal); 7208 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7209 Ptr, MachinePointerInfo(PtrVal), 7210 /* Alignment = */ 1); 7211 7212 if (!ConstantMemory) 7213 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7214 return LoadVal; 7215 } 7216 7217 /// Record the value for an instruction that produces an integer result, 7218 /// converting the type where necessary. 7219 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7220 SDValue Value, 7221 bool IsSigned) { 7222 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7223 I.getType(), true); 7224 if (IsSigned) 7225 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7226 else 7227 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7228 setValue(&I, Value); 7229 } 7230 7231 /// See if we can lower a memcmp call into an optimized form. If so, return 7232 /// true and lower it. Otherwise return false, and it will be lowered like a 7233 /// normal call. 7234 /// The caller already checked that \p I calls the appropriate LibFunc with a 7235 /// correct prototype. 7236 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7237 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7238 const Value *Size = I.getArgOperand(2); 7239 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7240 if (CSize && CSize->getZExtValue() == 0) { 7241 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7242 I.getType(), true); 7243 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7244 return true; 7245 } 7246 7247 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7248 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7249 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7250 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7251 if (Res.first.getNode()) { 7252 processIntegerCallValue(I, Res.first, true); 7253 PendingLoads.push_back(Res.second); 7254 return true; 7255 } 7256 7257 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7258 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7259 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7260 return false; 7261 7262 // If the target has a fast compare for the given size, it will return a 7263 // preferred load type for that size. Require that the load VT is legal and 7264 // that the target supports unaligned loads of that type. Otherwise, return 7265 // INVALID. 7266 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7267 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7268 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7269 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7270 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7271 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7272 // TODO: Check alignment of src and dest ptrs. 7273 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7274 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7275 if (!TLI.isTypeLegal(LVT) || 7276 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7277 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7278 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7279 } 7280 7281 return LVT; 7282 }; 7283 7284 // This turns into unaligned loads. We only do this if the target natively 7285 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7286 // we'll only produce a small number of byte loads. 7287 MVT LoadVT; 7288 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7289 switch (NumBitsToCompare) { 7290 default: 7291 return false; 7292 case 16: 7293 LoadVT = MVT::i16; 7294 break; 7295 case 32: 7296 LoadVT = MVT::i32; 7297 break; 7298 case 64: 7299 case 128: 7300 case 256: 7301 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7302 break; 7303 } 7304 7305 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7306 return false; 7307 7308 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7309 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7310 7311 // Bitcast to a wide integer type if the loads are vectors. 7312 if (LoadVT.isVector()) { 7313 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7314 LoadL = DAG.getBitcast(CmpVT, LoadL); 7315 LoadR = DAG.getBitcast(CmpVT, LoadR); 7316 } 7317 7318 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7319 processIntegerCallValue(I, Cmp, false); 7320 return true; 7321 } 7322 7323 /// See if we can lower a memchr call into an optimized form. If so, return 7324 /// true and lower it. Otherwise return false, and it will be lowered like a 7325 /// normal call. 7326 /// The caller already checked that \p I calls the appropriate LibFunc with a 7327 /// correct prototype. 7328 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7329 const Value *Src = I.getArgOperand(0); 7330 const Value *Char = I.getArgOperand(1); 7331 const Value *Length = I.getArgOperand(2); 7332 7333 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7334 std::pair<SDValue, SDValue> Res = 7335 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7336 getValue(Src), getValue(Char), getValue(Length), 7337 MachinePointerInfo(Src)); 7338 if (Res.first.getNode()) { 7339 setValue(&I, Res.first); 7340 PendingLoads.push_back(Res.second); 7341 return true; 7342 } 7343 7344 return false; 7345 } 7346 7347 /// See if we can lower a mempcpy call into an optimized form. If so, return 7348 /// true and lower it. Otherwise return false, and it will be lowered like a 7349 /// normal call. 7350 /// The caller already checked that \p I calls the appropriate LibFunc with a 7351 /// correct prototype. 7352 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7353 SDValue Dst = getValue(I.getArgOperand(0)); 7354 SDValue Src = getValue(I.getArgOperand(1)); 7355 SDValue Size = getValue(I.getArgOperand(2)); 7356 7357 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7358 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7359 unsigned Align = std::min(DstAlign, SrcAlign); 7360 if (Align == 0) // Alignment of one or both could not be inferred. 7361 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7362 7363 bool isVol = false; 7364 SDLoc sdl = getCurSDLoc(); 7365 7366 // In the mempcpy context we need to pass in a false value for isTailCall 7367 // because the return pointer needs to be adjusted by the size of 7368 // the copied memory. 7369 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7370 false, /*isTailCall=*/false, 7371 MachinePointerInfo(I.getArgOperand(0)), 7372 MachinePointerInfo(I.getArgOperand(1))); 7373 assert(MC.getNode() != nullptr && 7374 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7375 DAG.setRoot(MC); 7376 7377 // Check if Size needs to be truncated or extended. 7378 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7379 7380 // Adjust return pointer to point just past the last dst byte. 7381 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7382 Dst, Size); 7383 setValue(&I, DstPlusSize); 7384 return true; 7385 } 7386 7387 /// See if we can lower a strcpy call into an optimized form. If so, return 7388 /// true and lower it, otherwise return false and it will be lowered like a 7389 /// normal call. 7390 /// The caller already checked that \p I calls the appropriate LibFunc with a 7391 /// correct prototype. 7392 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7393 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7394 7395 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7396 std::pair<SDValue, SDValue> Res = 7397 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7398 getValue(Arg0), getValue(Arg1), 7399 MachinePointerInfo(Arg0), 7400 MachinePointerInfo(Arg1), isStpcpy); 7401 if (Res.first.getNode()) { 7402 setValue(&I, Res.first); 7403 DAG.setRoot(Res.second); 7404 return true; 7405 } 7406 7407 return false; 7408 } 7409 7410 /// See if we can lower a strcmp call into an optimized form. If so, return 7411 /// true and lower it, otherwise return false and it will be lowered like a 7412 /// normal call. 7413 /// The caller already checked that \p I calls the appropriate LibFunc with a 7414 /// correct prototype. 7415 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7416 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7417 7418 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7419 std::pair<SDValue, SDValue> Res = 7420 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7421 getValue(Arg0), getValue(Arg1), 7422 MachinePointerInfo(Arg0), 7423 MachinePointerInfo(Arg1)); 7424 if (Res.first.getNode()) { 7425 processIntegerCallValue(I, Res.first, true); 7426 PendingLoads.push_back(Res.second); 7427 return true; 7428 } 7429 7430 return false; 7431 } 7432 7433 /// See if we can lower a strlen call into an optimized form. If so, return 7434 /// true and lower it, otherwise return false and it will be lowered like a 7435 /// normal call. 7436 /// The caller already checked that \p I calls the appropriate LibFunc with a 7437 /// correct prototype. 7438 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7439 const Value *Arg0 = I.getArgOperand(0); 7440 7441 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7442 std::pair<SDValue, SDValue> Res = 7443 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7444 getValue(Arg0), MachinePointerInfo(Arg0)); 7445 if (Res.first.getNode()) { 7446 processIntegerCallValue(I, Res.first, false); 7447 PendingLoads.push_back(Res.second); 7448 return true; 7449 } 7450 7451 return false; 7452 } 7453 7454 /// See if we can lower a strnlen call into an optimized form. If so, return 7455 /// true and lower it, otherwise return false and it will be lowered like a 7456 /// normal call. 7457 /// The caller already checked that \p I calls the appropriate LibFunc with a 7458 /// correct prototype. 7459 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7460 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7461 7462 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7463 std::pair<SDValue, SDValue> Res = 7464 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7465 getValue(Arg0), getValue(Arg1), 7466 MachinePointerInfo(Arg0)); 7467 if (Res.first.getNode()) { 7468 processIntegerCallValue(I, Res.first, false); 7469 PendingLoads.push_back(Res.second); 7470 return true; 7471 } 7472 7473 return false; 7474 } 7475 7476 /// See if we can lower a unary floating-point operation into an SDNode with 7477 /// the specified Opcode. If so, return true and lower it, otherwise return 7478 /// false and it will be lowered like a normal call. 7479 /// The caller already checked that \p I calls the appropriate LibFunc with a 7480 /// correct prototype. 7481 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7482 unsigned Opcode) { 7483 // We already checked this call's prototype; verify it doesn't modify errno. 7484 if (!I.onlyReadsMemory()) 7485 return false; 7486 7487 SDValue Tmp = getValue(I.getArgOperand(0)); 7488 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7489 return true; 7490 } 7491 7492 /// See if we can lower a binary floating-point operation into an SDNode with 7493 /// the specified Opcode. If so, return true and lower it. Otherwise return 7494 /// false, and it will be lowered like a normal call. 7495 /// The caller already checked that \p I calls the appropriate LibFunc with a 7496 /// correct prototype. 7497 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7498 unsigned Opcode) { 7499 // We already checked this call's prototype; verify it doesn't modify errno. 7500 if (!I.onlyReadsMemory()) 7501 return false; 7502 7503 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7504 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7505 EVT VT = Tmp0.getValueType(); 7506 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7507 return true; 7508 } 7509 7510 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7511 // Handle inline assembly differently. 7512 if (isa<InlineAsm>(I.getCalledValue())) { 7513 visitInlineAsm(&I); 7514 return; 7515 } 7516 7517 if (Function *F = I.getCalledFunction()) { 7518 if (F->isDeclaration()) { 7519 // Is this an LLVM intrinsic or a target-specific intrinsic? 7520 unsigned IID = F->getIntrinsicID(); 7521 if (!IID) 7522 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7523 IID = II->getIntrinsicID(F); 7524 7525 if (IID) { 7526 visitIntrinsicCall(I, IID); 7527 return; 7528 } 7529 } 7530 7531 // Check for well-known libc/libm calls. If the function is internal, it 7532 // can't be a library call. Don't do the check if marked as nobuiltin for 7533 // some reason or the call site requires strict floating point semantics. 7534 LibFunc Func; 7535 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7536 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7537 LibInfo->hasOptimizedCodeGen(Func)) { 7538 switch (Func) { 7539 default: break; 7540 case LibFunc_copysign: 7541 case LibFunc_copysignf: 7542 case LibFunc_copysignl: 7543 // We already checked this call's prototype; verify it doesn't modify 7544 // errno. 7545 if (I.onlyReadsMemory()) { 7546 SDValue LHS = getValue(I.getArgOperand(0)); 7547 SDValue RHS = getValue(I.getArgOperand(1)); 7548 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7549 LHS.getValueType(), LHS, RHS)); 7550 return; 7551 } 7552 break; 7553 case LibFunc_fabs: 7554 case LibFunc_fabsf: 7555 case LibFunc_fabsl: 7556 if (visitUnaryFloatCall(I, ISD::FABS)) 7557 return; 7558 break; 7559 case LibFunc_fmin: 7560 case LibFunc_fminf: 7561 case LibFunc_fminl: 7562 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7563 return; 7564 break; 7565 case LibFunc_fmax: 7566 case LibFunc_fmaxf: 7567 case LibFunc_fmaxl: 7568 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7569 return; 7570 break; 7571 case LibFunc_sin: 7572 case LibFunc_sinf: 7573 case LibFunc_sinl: 7574 if (visitUnaryFloatCall(I, ISD::FSIN)) 7575 return; 7576 break; 7577 case LibFunc_cos: 7578 case LibFunc_cosf: 7579 case LibFunc_cosl: 7580 if (visitUnaryFloatCall(I, ISD::FCOS)) 7581 return; 7582 break; 7583 case LibFunc_sqrt: 7584 case LibFunc_sqrtf: 7585 case LibFunc_sqrtl: 7586 case LibFunc_sqrt_finite: 7587 case LibFunc_sqrtf_finite: 7588 case LibFunc_sqrtl_finite: 7589 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7590 return; 7591 break; 7592 case LibFunc_floor: 7593 case LibFunc_floorf: 7594 case LibFunc_floorl: 7595 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7596 return; 7597 break; 7598 case LibFunc_nearbyint: 7599 case LibFunc_nearbyintf: 7600 case LibFunc_nearbyintl: 7601 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7602 return; 7603 break; 7604 case LibFunc_ceil: 7605 case LibFunc_ceilf: 7606 case LibFunc_ceill: 7607 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7608 return; 7609 break; 7610 case LibFunc_rint: 7611 case LibFunc_rintf: 7612 case LibFunc_rintl: 7613 if (visitUnaryFloatCall(I, ISD::FRINT)) 7614 return; 7615 break; 7616 case LibFunc_round: 7617 case LibFunc_roundf: 7618 case LibFunc_roundl: 7619 if (visitUnaryFloatCall(I, ISD::FROUND)) 7620 return; 7621 break; 7622 case LibFunc_trunc: 7623 case LibFunc_truncf: 7624 case LibFunc_truncl: 7625 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7626 return; 7627 break; 7628 case LibFunc_log2: 7629 case LibFunc_log2f: 7630 case LibFunc_log2l: 7631 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7632 return; 7633 break; 7634 case LibFunc_exp2: 7635 case LibFunc_exp2f: 7636 case LibFunc_exp2l: 7637 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7638 return; 7639 break; 7640 case LibFunc_memcmp: 7641 if (visitMemCmpCall(I)) 7642 return; 7643 break; 7644 case LibFunc_mempcpy: 7645 if (visitMemPCpyCall(I)) 7646 return; 7647 break; 7648 case LibFunc_memchr: 7649 if (visitMemChrCall(I)) 7650 return; 7651 break; 7652 case LibFunc_strcpy: 7653 if (visitStrCpyCall(I, false)) 7654 return; 7655 break; 7656 case LibFunc_stpcpy: 7657 if (visitStrCpyCall(I, true)) 7658 return; 7659 break; 7660 case LibFunc_strcmp: 7661 if (visitStrCmpCall(I)) 7662 return; 7663 break; 7664 case LibFunc_strlen: 7665 if (visitStrLenCall(I)) 7666 return; 7667 break; 7668 case LibFunc_strnlen: 7669 if (visitStrNLenCall(I)) 7670 return; 7671 break; 7672 } 7673 } 7674 } 7675 7676 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7677 // have to do anything here to lower funclet bundles. 7678 assert(!I.hasOperandBundlesOtherThan( 7679 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7680 "Cannot lower calls with arbitrary operand bundles!"); 7681 7682 SDValue Callee = getValue(I.getCalledValue()); 7683 7684 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7685 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7686 else 7687 // Check if we can potentially perform a tail call. More detailed checking 7688 // is be done within LowerCallTo, after more information about the call is 7689 // known. 7690 LowerCallTo(&I, Callee, I.isTailCall()); 7691 } 7692 7693 namespace { 7694 7695 /// AsmOperandInfo - This contains information for each constraint that we are 7696 /// lowering. 7697 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7698 public: 7699 /// CallOperand - If this is the result output operand or a clobber 7700 /// this is null, otherwise it is the incoming operand to the CallInst. 7701 /// This gets modified as the asm is processed. 7702 SDValue CallOperand; 7703 7704 /// AssignedRegs - If this is a register or register class operand, this 7705 /// contains the set of register corresponding to the operand. 7706 RegsForValue AssignedRegs; 7707 7708 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7709 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7710 } 7711 7712 /// Whether or not this operand accesses memory 7713 bool hasMemory(const TargetLowering &TLI) const { 7714 // Indirect operand accesses access memory. 7715 if (isIndirect) 7716 return true; 7717 7718 for (const auto &Code : Codes) 7719 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7720 return true; 7721 7722 return false; 7723 } 7724 7725 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7726 /// corresponds to. If there is no Value* for this operand, it returns 7727 /// MVT::Other. 7728 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7729 const DataLayout &DL) const { 7730 if (!CallOperandVal) return MVT::Other; 7731 7732 if (isa<BasicBlock>(CallOperandVal)) 7733 return TLI.getPointerTy(DL); 7734 7735 llvm::Type *OpTy = CallOperandVal->getType(); 7736 7737 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7738 // If this is an indirect operand, the operand is a pointer to the 7739 // accessed type. 7740 if (isIndirect) { 7741 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7742 if (!PtrTy) 7743 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7744 OpTy = PtrTy->getElementType(); 7745 } 7746 7747 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7748 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7749 if (STy->getNumElements() == 1) 7750 OpTy = STy->getElementType(0); 7751 7752 // If OpTy is not a single value, it may be a struct/union that we 7753 // can tile with integers. 7754 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7755 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7756 switch (BitSize) { 7757 default: break; 7758 case 1: 7759 case 8: 7760 case 16: 7761 case 32: 7762 case 64: 7763 case 128: 7764 OpTy = IntegerType::get(Context, BitSize); 7765 break; 7766 } 7767 } 7768 7769 return TLI.getValueType(DL, OpTy, true); 7770 } 7771 }; 7772 7773 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7774 7775 } // end anonymous namespace 7776 7777 /// Make sure that the output operand \p OpInfo and its corresponding input 7778 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7779 /// out). 7780 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7781 SDISelAsmOperandInfo &MatchingOpInfo, 7782 SelectionDAG &DAG) { 7783 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7784 return; 7785 7786 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7787 const auto &TLI = DAG.getTargetLoweringInfo(); 7788 7789 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7790 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7791 OpInfo.ConstraintVT); 7792 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7793 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7794 MatchingOpInfo.ConstraintVT); 7795 if ((OpInfo.ConstraintVT.isInteger() != 7796 MatchingOpInfo.ConstraintVT.isInteger()) || 7797 (MatchRC.second != InputRC.second)) { 7798 // FIXME: error out in a more elegant fashion 7799 report_fatal_error("Unsupported asm: input constraint" 7800 " with a matching output constraint of" 7801 " incompatible type!"); 7802 } 7803 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7804 } 7805 7806 /// Get a direct memory input to behave well as an indirect operand. 7807 /// This may introduce stores, hence the need for a \p Chain. 7808 /// \return The (possibly updated) chain. 7809 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7810 SDISelAsmOperandInfo &OpInfo, 7811 SelectionDAG &DAG) { 7812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7813 7814 // If we don't have an indirect input, put it in the constpool if we can, 7815 // otherwise spill it to a stack slot. 7816 // TODO: This isn't quite right. We need to handle these according to 7817 // the addressing mode that the constraint wants. Also, this may take 7818 // an additional register for the computation and we don't want that 7819 // either. 7820 7821 // If the operand is a float, integer, or vector constant, spill to a 7822 // constant pool entry to get its address. 7823 const Value *OpVal = OpInfo.CallOperandVal; 7824 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7825 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7826 OpInfo.CallOperand = DAG.getConstantPool( 7827 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7828 return Chain; 7829 } 7830 7831 // Otherwise, create a stack slot and emit a store to it before the asm. 7832 Type *Ty = OpVal->getType(); 7833 auto &DL = DAG.getDataLayout(); 7834 uint64_t TySize = DL.getTypeAllocSize(Ty); 7835 unsigned Align = DL.getPrefTypeAlignment(Ty); 7836 MachineFunction &MF = DAG.getMachineFunction(); 7837 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7838 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7839 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7840 MachinePointerInfo::getFixedStack(MF, SSFI), 7841 TLI.getMemValueType(DL, Ty)); 7842 OpInfo.CallOperand = StackSlot; 7843 7844 return Chain; 7845 } 7846 7847 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7848 /// specified operand. We prefer to assign virtual registers, to allow the 7849 /// register allocator to handle the assignment process. However, if the asm 7850 /// uses features that we can't model on machineinstrs, we have SDISel do the 7851 /// allocation. This produces generally horrible, but correct, code. 7852 /// 7853 /// OpInfo describes the operand 7854 /// RefOpInfo describes the matching operand if any, the operand otherwise 7855 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7856 SDISelAsmOperandInfo &OpInfo, 7857 SDISelAsmOperandInfo &RefOpInfo) { 7858 LLVMContext &Context = *DAG.getContext(); 7859 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7860 7861 MachineFunction &MF = DAG.getMachineFunction(); 7862 SmallVector<unsigned, 4> Regs; 7863 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7864 7865 // No work to do for memory operations. 7866 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7867 return; 7868 7869 // If this is a constraint for a single physreg, or a constraint for a 7870 // register class, find it. 7871 unsigned AssignedReg; 7872 const TargetRegisterClass *RC; 7873 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7874 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7875 // RC is unset only on failure. Return immediately. 7876 if (!RC) 7877 return; 7878 7879 // Get the actual register value type. This is important, because the user 7880 // may have asked for (e.g.) the AX register in i32 type. We need to 7881 // remember that AX is actually i16 to get the right extension. 7882 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7883 7884 if (OpInfo.ConstraintVT != MVT::Other) { 7885 // If this is an FP operand in an integer register (or visa versa), or more 7886 // generally if the operand value disagrees with the register class we plan 7887 // to stick it in, fix the operand type. 7888 // 7889 // If this is an input value, the bitcast to the new type is done now. 7890 // Bitcast for output value is done at the end of visitInlineAsm(). 7891 if ((OpInfo.Type == InlineAsm::isOutput || 7892 OpInfo.Type == InlineAsm::isInput) && 7893 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7894 // Try to convert to the first EVT that the reg class contains. If the 7895 // types are identical size, use a bitcast to convert (e.g. two differing 7896 // vector types). Note: output bitcast is done at the end of 7897 // visitInlineAsm(). 7898 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7899 // Exclude indirect inputs while they are unsupported because the code 7900 // to perform the load is missing and thus OpInfo.CallOperand still 7901 // refers to the input address rather than the pointed-to value. 7902 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7903 OpInfo.CallOperand = 7904 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7905 OpInfo.ConstraintVT = RegVT; 7906 // If the operand is an FP value and we want it in integer registers, 7907 // use the corresponding integer type. This turns an f64 value into 7908 // i64, which can be passed with two i32 values on a 32-bit machine. 7909 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7910 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7911 if (OpInfo.Type == InlineAsm::isInput) 7912 OpInfo.CallOperand = 7913 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7914 OpInfo.ConstraintVT = VT; 7915 } 7916 } 7917 } 7918 7919 // No need to allocate a matching input constraint since the constraint it's 7920 // matching to has already been allocated. 7921 if (OpInfo.isMatchingInputConstraint()) 7922 return; 7923 7924 EVT ValueVT = OpInfo.ConstraintVT; 7925 if (OpInfo.ConstraintVT == MVT::Other) 7926 ValueVT = RegVT; 7927 7928 // Initialize NumRegs. 7929 unsigned NumRegs = 1; 7930 if (OpInfo.ConstraintVT != MVT::Other) 7931 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7932 7933 // If this is a constraint for a specific physical register, like {r17}, 7934 // assign it now. 7935 7936 // If this associated to a specific register, initialize iterator to correct 7937 // place. If virtual, make sure we have enough registers 7938 7939 // Initialize iterator if necessary 7940 TargetRegisterClass::iterator I = RC->begin(); 7941 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7942 7943 // Do not check for single registers. 7944 if (AssignedReg) { 7945 for (; *I != AssignedReg; ++I) 7946 assert(I != RC->end() && "AssignedReg should be member of RC"); 7947 } 7948 7949 for (; NumRegs; --NumRegs, ++I) { 7950 assert(I != RC->end() && "Ran out of registers to allocate!"); 7951 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7952 Regs.push_back(R); 7953 } 7954 7955 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7956 } 7957 7958 static unsigned 7959 findMatchingInlineAsmOperand(unsigned OperandNo, 7960 const std::vector<SDValue> &AsmNodeOperands) { 7961 // Scan until we find the definition we already emitted of this operand. 7962 unsigned CurOp = InlineAsm::Op_FirstOperand; 7963 for (; OperandNo; --OperandNo) { 7964 // Advance to the next operand. 7965 unsigned OpFlag = 7966 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7967 assert((InlineAsm::isRegDefKind(OpFlag) || 7968 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7969 InlineAsm::isMemKind(OpFlag)) && 7970 "Skipped past definitions?"); 7971 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7972 } 7973 return CurOp; 7974 } 7975 7976 namespace { 7977 7978 class ExtraFlags { 7979 unsigned Flags = 0; 7980 7981 public: 7982 explicit ExtraFlags(ImmutableCallSite CS) { 7983 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7984 if (IA->hasSideEffects()) 7985 Flags |= InlineAsm::Extra_HasSideEffects; 7986 if (IA->isAlignStack()) 7987 Flags |= InlineAsm::Extra_IsAlignStack; 7988 if (CS.isConvergent()) 7989 Flags |= InlineAsm::Extra_IsConvergent; 7990 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7991 } 7992 7993 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7994 // Ideally, we would only check against memory constraints. However, the 7995 // meaning of an Other constraint can be target-specific and we can't easily 7996 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7997 // for Other constraints as well. 7998 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7999 OpInfo.ConstraintType == TargetLowering::C_Other) { 8000 if (OpInfo.Type == InlineAsm::isInput) 8001 Flags |= InlineAsm::Extra_MayLoad; 8002 else if (OpInfo.Type == InlineAsm::isOutput) 8003 Flags |= InlineAsm::Extra_MayStore; 8004 else if (OpInfo.Type == InlineAsm::isClobber) 8005 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8006 } 8007 } 8008 8009 unsigned get() const { return Flags; } 8010 }; 8011 8012 } // end anonymous namespace 8013 8014 /// visitInlineAsm - Handle a call to an InlineAsm object. 8015 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 8016 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 8017 8018 /// ConstraintOperands - Information about all of the constraints. 8019 SDISelAsmOperandInfoVector ConstraintOperands; 8020 8021 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8022 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8023 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8024 8025 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8026 // AsmDialect, MayLoad, MayStore). 8027 bool HasSideEffect = IA->hasSideEffects(); 8028 ExtraFlags ExtraInfo(CS); 8029 8030 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8031 unsigned ResNo = 0; // ResNo - The result number of the next output. 8032 for (auto &T : TargetConstraints) { 8033 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8034 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8035 8036 // Compute the value type for each operand. 8037 if (OpInfo.Type == InlineAsm::isInput || 8038 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8039 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8040 8041 // Process the call argument. BasicBlocks are labels, currently appearing 8042 // only in asm's. 8043 const Instruction *I = CS.getInstruction(); 8044 if (isa<CallBrInst>(I) && 8045 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8046 cast<CallBrInst>(I)->getNumIndirectDests())) { 8047 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8048 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8049 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8050 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8051 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8052 } else { 8053 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8054 } 8055 8056 OpInfo.ConstraintVT = 8057 OpInfo 8058 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8059 .getSimpleVT(); 8060 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8061 // The return value of the call is this value. As such, there is no 8062 // corresponding argument. 8063 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8064 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8065 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8066 DAG.getDataLayout(), STy->getElementType(ResNo)); 8067 } else { 8068 assert(ResNo == 0 && "Asm only has one result!"); 8069 OpInfo.ConstraintVT = 8070 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8071 } 8072 ++ResNo; 8073 } else { 8074 OpInfo.ConstraintVT = MVT::Other; 8075 } 8076 8077 if (!HasSideEffect) 8078 HasSideEffect = OpInfo.hasMemory(TLI); 8079 8080 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8081 // FIXME: Could we compute this on OpInfo rather than T? 8082 8083 // Compute the constraint code and ConstraintType to use. 8084 TLI.ComputeConstraintToUse(T, SDValue()); 8085 8086 if (T.ConstraintType == TargetLowering::C_Immediate && 8087 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8088 // We've delayed emitting a diagnostic like the "n" constraint because 8089 // inlining could cause an integer showing up. 8090 return emitInlineAsmError( 8091 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8092 "integer constant expression"); 8093 8094 ExtraInfo.update(T); 8095 } 8096 8097 8098 // We won't need to flush pending loads if this asm doesn't touch 8099 // memory and is nonvolatile. 8100 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8101 8102 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8103 if (IsCallBr) { 8104 // If this is a callbr we need to flush pending exports since inlineasm_br 8105 // is a terminator. We need to do this before nodes are glued to 8106 // the inlineasm_br node. 8107 Chain = getControlRoot(); 8108 } 8109 8110 // Second pass over the constraints: compute which constraint option to use. 8111 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8112 // If this is an output operand with a matching input operand, look up the 8113 // matching input. If their types mismatch, e.g. one is an integer, the 8114 // other is floating point, or their sizes are different, flag it as an 8115 // error. 8116 if (OpInfo.hasMatchingInput()) { 8117 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8118 patchMatchingInput(OpInfo, Input, DAG); 8119 } 8120 8121 // Compute the constraint code and ConstraintType to use. 8122 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8123 8124 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8125 OpInfo.Type == InlineAsm::isClobber) 8126 continue; 8127 8128 // If this is a memory input, and if the operand is not indirect, do what we 8129 // need to provide an address for the memory input. 8130 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8131 !OpInfo.isIndirect) { 8132 assert((OpInfo.isMultipleAlternative || 8133 (OpInfo.Type == InlineAsm::isInput)) && 8134 "Can only indirectify direct input operands!"); 8135 8136 // Memory operands really want the address of the value. 8137 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8138 8139 // There is no longer a Value* corresponding to this operand. 8140 OpInfo.CallOperandVal = nullptr; 8141 8142 // It is now an indirect operand. 8143 OpInfo.isIndirect = true; 8144 } 8145 8146 } 8147 8148 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8149 std::vector<SDValue> AsmNodeOperands; 8150 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8151 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8152 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8153 8154 // If we have a !srcloc metadata node associated with it, we want to attach 8155 // this to the ultimately generated inline asm machineinstr. To do this, we 8156 // pass in the third operand as this (potentially null) inline asm MDNode. 8157 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8158 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8159 8160 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8161 // bits as operand 3. 8162 AsmNodeOperands.push_back(DAG.getTargetConstant( 8163 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8164 8165 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8166 // this, assign virtual and physical registers for inputs and otput. 8167 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8168 // Assign Registers. 8169 SDISelAsmOperandInfo &RefOpInfo = 8170 OpInfo.isMatchingInputConstraint() 8171 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8172 : OpInfo; 8173 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8174 8175 switch (OpInfo.Type) { 8176 case InlineAsm::isOutput: 8177 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8178 ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8179 OpInfo.ConstraintType == TargetLowering::C_Other) && 8180 OpInfo.isIndirect)) { 8181 unsigned ConstraintID = 8182 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8183 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8184 "Failed to convert memory constraint code to constraint id."); 8185 8186 // Add information to the INLINEASM node to know about this output. 8187 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8188 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8189 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8190 MVT::i32)); 8191 AsmNodeOperands.push_back(OpInfo.CallOperand); 8192 break; 8193 } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8194 OpInfo.ConstraintType == TargetLowering::C_Other) && 8195 !OpInfo.isIndirect) || 8196 OpInfo.ConstraintType == TargetLowering::C_Register || 8197 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8198 // Otherwise, this outputs to a register (directly for C_Register / 8199 // C_RegisterClass, and a target-defined fashion for 8200 // C_Immediate/C_Other). Find a register that we can use. 8201 if (OpInfo.AssignedRegs.Regs.empty()) { 8202 emitInlineAsmError( 8203 CS, "couldn't allocate output register for constraint '" + 8204 Twine(OpInfo.ConstraintCode) + "'"); 8205 return; 8206 } 8207 8208 // Add information to the INLINEASM node to know that this register is 8209 // set. 8210 OpInfo.AssignedRegs.AddInlineAsmOperands( 8211 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8212 : InlineAsm::Kind_RegDef, 8213 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8214 } 8215 break; 8216 8217 case InlineAsm::isInput: { 8218 SDValue InOperandVal = OpInfo.CallOperand; 8219 8220 if (OpInfo.isMatchingInputConstraint()) { 8221 // If this is required to match an output register we have already set, 8222 // just use its register. 8223 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8224 AsmNodeOperands); 8225 unsigned OpFlag = 8226 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8227 if (InlineAsm::isRegDefKind(OpFlag) || 8228 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8229 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8230 if (OpInfo.isIndirect) { 8231 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8232 emitInlineAsmError(CS, "inline asm not supported yet:" 8233 " don't know how to handle tied " 8234 "indirect register inputs"); 8235 return; 8236 } 8237 8238 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8239 SmallVector<unsigned, 4> Regs; 8240 8241 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8242 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8243 MachineRegisterInfo &RegInfo = 8244 DAG.getMachineFunction().getRegInfo(); 8245 for (unsigned i = 0; i != NumRegs; ++i) 8246 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8247 } else { 8248 emitInlineAsmError(CS, "inline asm error: This value type register " 8249 "class is not natively supported!"); 8250 return; 8251 } 8252 8253 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8254 8255 SDLoc dl = getCurSDLoc(); 8256 // Use the produced MatchedRegs object to 8257 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8258 CS.getInstruction()); 8259 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8260 true, OpInfo.getMatchedOperand(), dl, 8261 DAG, AsmNodeOperands); 8262 break; 8263 } 8264 8265 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8266 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8267 "Unexpected number of operands"); 8268 // Add information to the INLINEASM node to know about this input. 8269 // See InlineAsm.h isUseOperandTiedToDef. 8270 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8271 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8272 OpInfo.getMatchedOperand()); 8273 AsmNodeOperands.push_back(DAG.getTargetConstant( 8274 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8275 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8276 break; 8277 } 8278 8279 // Treat indirect 'X' constraint as memory. 8280 if ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8281 OpInfo.ConstraintType == TargetLowering::C_Other) && 8282 OpInfo.isIndirect) 8283 OpInfo.ConstraintType = TargetLowering::C_Memory; 8284 8285 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8286 OpInfo.ConstraintType == TargetLowering::C_Other) { 8287 std::vector<SDValue> Ops; 8288 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8289 Ops, DAG); 8290 if (Ops.empty()) { 8291 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8292 if (isa<ConstantSDNode>(InOperandVal)) { 8293 emitInlineAsmError(CS, "value out of range for constraint '" + 8294 Twine(OpInfo.ConstraintCode) + "'"); 8295 return; 8296 } 8297 8298 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8299 Twine(OpInfo.ConstraintCode) + "'"); 8300 return; 8301 } 8302 8303 // Add information to the INLINEASM node to know about this input. 8304 unsigned ResOpType = 8305 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8306 AsmNodeOperands.push_back(DAG.getTargetConstant( 8307 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8308 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8309 break; 8310 } 8311 8312 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8313 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8314 assert(InOperandVal.getValueType() == 8315 TLI.getPointerTy(DAG.getDataLayout()) && 8316 "Memory operands expect pointer values"); 8317 8318 unsigned ConstraintID = 8319 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8320 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8321 "Failed to convert memory constraint code to constraint id."); 8322 8323 // Add information to the INLINEASM node to know about this input. 8324 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8325 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8326 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8327 getCurSDLoc(), 8328 MVT::i32)); 8329 AsmNodeOperands.push_back(InOperandVal); 8330 break; 8331 } 8332 8333 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8334 OpInfo.ConstraintType == TargetLowering::C_Register || 8335 OpInfo.ConstraintType == TargetLowering::C_Immediate) && 8336 "Unknown constraint type!"); 8337 8338 // TODO: Support this. 8339 if (OpInfo.isIndirect) { 8340 emitInlineAsmError( 8341 CS, "Don't know how to handle indirect register inputs yet " 8342 "for constraint '" + 8343 Twine(OpInfo.ConstraintCode) + "'"); 8344 return; 8345 } 8346 8347 // Copy the input into the appropriate registers. 8348 if (OpInfo.AssignedRegs.Regs.empty()) { 8349 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8350 Twine(OpInfo.ConstraintCode) + "'"); 8351 return; 8352 } 8353 8354 SDLoc dl = getCurSDLoc(); 8355 8356 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8357 Chain, &Flag, CS.getInstruction()); 8358 8359 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8360 dl, DAG, AsmNodeOperands); 8361 break; 8362 } 8363 case InlineAsm::isClobber: 8364 // Add the clobbered value to the operand list, so that the register 8365 // allocator is aware that the physreg got clobbered. 8366 if (!OpInfo.AssignedRegs.Regs.empty()) 8367 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8368 false, 0, getCurSDLoc(), DAG, 8369 AsmNodeOperands); 8370 break; 8371 } 8372 } 8373 8374 // Finish up input operands. Set the input chain and add the flag last. 8375 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8376 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8377 8378 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8379 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8380 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8381 Flag = Chain.getValue(1); 8382 8383 // Do additional work to generate outputs. 8384 8385 SmallVector<EVT, 1> ResultVTs; 8386 SmallVector<SDValue, 1> ResultValues; 8387 SmallVector<SDValue, 8> OutChains; 8388 8389 llvm::Type *CSResultType = CS.getType(); 8390 ArrayRef<Type *> ResultTypes; 8391 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8392 ResultTypes = StructResult->elements(); 8393 else if (!CSResultType->isVoidTy()) 8394 ResultTypes = makeArrayRef(CSResultType); 8395 8396 auto CurResultType = ResultTypes.begin(); 8397 auto handleRegAssign = [&](SDValue V) { 8398 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8399 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8400 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8401 ++CurResultType; 8402 // If the type of the inline asm call site return value is different but has 8403 // same size as the type of the asm output bitcast it. One example of this 8404 // is for vectors with different width / number of elements. This can 8405 // happen for register classes that can contain multiple different value 8406 // types. The preg or vreg allocated may not have the same VT as was 8407 // expected. 8408 // 8409 // This can also happen for a return value that disagrees with the register 8410 // class it is put in, eg. a double in a general-purpose register on a 8411 // 32-bit machine. 8412 if (ResultVT != V.getValueType() && 8413 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8414 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8415 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8416 V.getValueType().isInteger()) { 8417 // If a result value was tied to an input value, the computed result 8418 // may have a wider width than the expected result. Extract the 8419 // relevant portion. 8420 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8421 } 8422 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8423 ResultVTs.push_back(ResultVT); 8424 ResultValues.push_back(V); 8425 }; 8426 8427 // Deal with output operands. 8428 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8429 if (OpInfo.Type == InlineAsm::isOutput) { 8430 SDValue Val; 8431 // Skip trivial output operands. 8432 if (OpInfo.AssignedRegs.Regs.empty()) 8433 continue; 8434 8435 switch (OpInfo.ConstraintType) { 8436 case TargetLowering::C_Register: 8437 case TargetLowering::C_RegisterClass: 8438 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8439 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8440 break; 8441 case TargetLowering::C_Immediate: 8442 case TargetLowering::C_Other: 8443 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8444 OpInfo, DAG); 8445 break; 8446 case TargetLowering::C_Memory: 8447 break; // Already handled. 8448 case TargetLowering::C_Unknown: 8449 assert(false && "Unexpected unknown constraint"); 8450 } 8451 8452 // Indirect output manifest as stores. Record output chains. 8453 if (OpInfo.isIndirect) { 8454 const Value *Ptr = OpInfo.CallOperandVal; 8455 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8456 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8457 MachinePointerInfo(Ptr)); 8458 OutChains.push_back(Store); 8459 } else { 8460 // generate CopyFromRegs to associated registers. 8461 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8462 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8463 for (const SDValue &V : Val->op_values()) 8464 handleRegAssign(V); 8465 } else 8466 handleRegAssign(Val); 8467 } 8468 } 8469 } 8470 8471 // Set results. 8472 if (!ResultValues.empty()) { 8473 assert(CurResultType == ResultTypes.end() && 8474 "Mismatch in number of ResultTypes"); 8475 assert(ResultValues.size() == ResultTypes.size() && 8476 "Mismatch in number of output operands in asm result"); 8477 8478 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8479 DAG.getVTList(ResultVTs), ResultValues); 8480 setValue(CS.getInstruction(), V); 8481 } 8482 8483 // Collect store chains. 8484 if (!OutChains.empty()) 8485 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8486 8487 // Only Update Root if inline assembly has a memory effect. 8488 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8489 DAG.setRoot(Chain); 8490 } 8491 8492 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8493 const Twine &Message) { 8494 LLVMContext &Ctx = *DAG.getContext(); 8495 Ctx.emitError(CS.getInstruction(), Message); 8496 8497 // Make sure we leave the DAG in a valid state 8498 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8499 SmallVector<EVT, 1> ValueVTs; 8500 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8501 8502 if (ValueVTs.empty()) 8503 return; 8504 8505 SmallVector<SDValue, 1> Ops; 8506 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8507 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8508 8509 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8510 } 8511 8512 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8513 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8514 MVT::Other, getRoot(), 8515 getValue(I.getArgOperand(0)), 8516 DAG.getSrcValue(I.getArgOperand(0)))); 8517 } 8518 8519 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8520 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8521 const DataLayout &DL = DAG.getDataLayout(); 8522 SDValue V = DAG.getVAArg( 8523 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8524 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8525 DL.getABITypeAlignment(I.getType())); 8526 DAG.setRoot(V.getValue(1)); 8527 8528 if (I.getType()->isPointerTy()) 8529 V = DAG.getPtrExtOrTrunc( 8530 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8531 setValue(&I, V); 8532 } 8533 8534 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8535 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8536 MVT::Other, getRoot(), 8537 getValue(I.getArgOperand(0)), 8538 DAG.getSrcValue(I.getArgOperand(0)))); 8539 } 8540 8541 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8542 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8543 MVT::Other, getRoot(), 8544 getValue(I.getArgOperand(0)), 8545 getValue(I.getArgOperand(1)), 8546 DAG.getSrcValue(I.getArgOperand(0)), 8547 DAG.getSrcValue(I.getArgOperand(1)))); 8548 } 8549 8550 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8551 const Instruction &I, 8552 SDValue Op) { 8553 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8554 if (!Range) 8555 return Op; 8556 8557 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8558 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8559 return Op; 8560 8561 APInt Lo = CR.getUnsignedMin(); 8562 if (!Lo.isMinValue()) 8563 return Op; 8564 8565 APInt Hi = CR.getUnsignedMax(); 8566 unsigned Bits = std::max(Hi.getActiveBits(), 8567 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8568 8569 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8570 8571 SDLoc SL = getCurSDLoc(); 8572 8573 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8574 DAG.getValueType(SmallVT)); 8575 unsigned NumVals = Op.getNode()->getNumValues(); 8576 if (NumVals == 1) 8577 return ZExt; 8578 8579 SmallVector<SDValue, 4> Ops; 8580 8581 Ops.push_back(ZExt); 8582 for (unsigned I = 1; I != NumVals; ++I) 8583 Ops.push_back(Op.getValue(I)); 8584 8585 return DAG.getMergeValues(Ops, SL); 8586 } 8587 8588 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8589 /// the call being lowered. 8590 /// 8591 /// This is a helper for lowering intrinsics that follow a target calling 8592 /// convention or require stack pointer adjustment. Only a subset of the 8593 /// intrinsic's operands need to participate in the calling convention. 8594 void SelectionDAGBuilder::populateCallLoweringInfo( 8595 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8596 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8597 bool IsPatchPoint) { 8598 TargetLowering::ArgListTy Args; 8599 Args.reserve(NumArgs); 8600 8601 // Populate the argument list. 8602 // Attributes for args start at offset 1, after the return attribute. 8603 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8604 ArgI != ArgE; ++ArgI) { 8605 const Value *V = Call->getOperand(ArgI); 8606 8607 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8608 8609 TargetLowering::ArgListEntry Entry; 8610 Entry.Node = getValue(V); 8611 Entry.Ty = V->getType(); 8612 Entry.setAttributes(Call, ArgI); 8613 Args.push_back(Entry); 8614 } 8615 8616 CLI.setDebugLoc(getCurSDLoc()) 8617 .setChain(getRoot()) 8618 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8619 .setDiscardResult(Call->use_empty()) 8620 .setIsPatchPoint(IsPatchPoint); 8621 } 8622 8623 /// Add a stack map intrinsic call's live variable operands to a stackmap 8624 /// or patchpoint target node's operand list. 8625 /// 8626 /// Constants are converted to TargetConstants purely as an optimization to 8627 /// avoid constant materialization and register allocation. 8628 /// 8629 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8630 /// generate addess computation nodes, and so FinalizeISel can convert the 8631 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8632 /// address materialization and register allocation, but may also be required 8633 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8634 /// alloca in the entry block, then the runtime may assume that the alloca's 8635 /// StackMap location can be read immediately after compilation and that the 8636 /// location is valid at any point during execution (this is similar to the 8637 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8638 /// only available in a register, then the runtime would need to trap when 8639 /// execution reaches the StackMap in order to read the alloca's location. 8640 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8641 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8642 SelectionDAGBuilder &Builder) { 8643 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8644 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8645 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8646 Ops.push_back( 8647 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8648 Ops.push_back( 8649 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8650 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8651 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8652 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8653 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8654 } else 8655 Ops.push_back(OpVal); 8656 } 8657 } 8658 8659 /// Lower llvm.experimental.stackmap directly to its target opcode. 8660 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8661 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8662 // [live variables...]) 8663 8664 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8665 8666 SDValue Chain, InFlag, Callee, NullPtr; 8667 SmallVector<SDValue, 32> Ops; 8668 8669 SDLoc DL = getCurSDLoc(); 8670 Callee = getValue(CI.getCalledValue()); 8671 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8672 8673 // The stackmap intrinsic only records the live variables (the arguemnts 8674 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8675 // intrinsic, this won't be lowered to a function call. This means we don't 8676 // have to worry about calling conventions and target specific lowering code. 8677 // Instead we perform the call lowering right here. 8678 // 8679 // chain, flag = CALLSEQ_START(chain, 0, 0) 8680 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8681 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8682 // 8683 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8684 InFlag = Chain.getValue(1); 8685 8686 // Add the <id> and <numBytes> constants. 8687 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8688 Ops.push_back(DAG.getTargetConstant( 8689 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8690 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8691 Ops.push_back(DAG.getTargetConstant( 8692 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8693 MVT::i32)); 8694 8695 // Push live variables for the stack map. 8696 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8697 8698 // We are not pushing any register mask info here on the operands list, 8699 // because the stackmap doesn't clobber anything. 8700 8701 // Push the chain and the glue flag. 8702 Ops.push_back(Chain); 8703 Ops.push_back(InFlag); 8704 8705 // Create the STACKMAP node. 8706 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8707 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8708 Chain = SDValue(SM, 0); 8709 InFlag = Chain.getValue(1); 8710 8711 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8712 8713 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8714 8715 // Set the root to the target-lowered call chain. 8716 DAG.setRoot(Chain); 8717 8718 // Inform the Frame Information that we have a stackmap in this function. 8719 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8720 } 8721 8722 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8723 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8724 const BasicBlock *EHPadBB) { 8725 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8726 // i32 <numBytes>, 8727 // i8* <target>, 8728 // i32 <numArgs>, 8729 // [Args...], 8730 // [live variables...]) 8731 8732 CallingConv::ID CC = CS.getCallingConv(); 8733 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8734 bool HasDef = !CS->getType()->isVoidTy(); 8735 SDLoc dl = getCurSDLoc(); 8736 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8737 8738 // Handle immediate and symbolic callees. 8739 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8740 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8741 /*isTarget=*/true); 8742 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8743 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8744 SDLoc(SymbolicCallee), 8745 SymbolicCallee->getValueType(0)); 8746 8747 // Get the real number of arguments participating in the call <numArgs> 8748 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8749 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8750 8751 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8752 // Intrinsics include all meta-operands up to but not including CC. 8753 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8754 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8755 "Not enough arguments provided to the patchpoint intrinsic"); 8756 8757 // For AnyRegCC the arguments are lowered later on manually. 8758 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8759 Type *ReturnTy = 8760 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8761 8762 TargetLowering::CallLoweringInfo CLI(DAG); 8763 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8764 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8765 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8766 8767 SDNode *CallEnd = Result.second.getNode(); 8768 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8769 CallEnd = CallEnd->getOperand(0).getNode(); 8770 8771 /// Get a call instruction from the call sequence chain. 8772 /// Tail calls are not allowed. 8773 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8774 "Expected a callseq node."); 8775 SDNode *Call = CallEnd->getOperand(0).getNode(); 8776 bool HasGlue = Call->getGluedNode(); 8777 8778 // Replace the target specific call node with the patchable intrinsic. 8779 SmallVector<SDValue, 8> Ops; 8780 8781 // Add the <id> and <numBytes> constants. 8782 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8783 Ops.push_back(DAG.getTargetConstant( 8784 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8785 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8786 Ops.push_back(DAG.getTargetConstant( 8787 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8788 MVT::i32)); 8789 8790 // Add the callee. 8791 Ops.push_back(Callee); 8792 8793 // Adjust <numArgs> to account for any arguments that have been passed on the 8794 // stack instead. 8795 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8796 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8797 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8798 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8799 8800 // Add the calling convention 8801 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8802 8803 // Add the arguments we omitted previously. The register allocator should 8804 // place these in any free register. 8805 if (IsAnyRegCC) 8806 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8807 Ops.push_back(getValue(CS.getArgument(i))); 8808 8809 // Push the arguments from the call instruction up to the register mask. 8810 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8811 Ops.append(Call->op_begin() + 2, e); 8812 8813 // Push live variables for the stack map. 8814 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8815 8816 // Push the register mask info. 8817 if (HasGlue) 8818 Ops.push_back(*(Call->op_end()-2)); 8819 else 8820 Ops.push_back(*(Call->op_end()-1)); 8821 8822 // Push the chain (this is originally the first operand of the call, but 8823 // becomes now the last or second to last operand). 8824 Ops.push_back(*(Call->op_begin())); 8825 8826 // Push the glue flag (last operand). 8827 if (HasGlue) 8828 Ops.push_back(*(Call->op_end()-1)); 8829 8830 SDVTList NodeTys; 8831 if (IsAnyRegCC && HasDef) { 8832 // Create the return types based on the intrinsic definition 8833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8834 SmallVector<EVT, 3> ValueVTs; 8835 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8836 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8837 8838 // There is always a chain and a glue type at the end 8839 ValueVTs.push_back(MVT::Other); 8840 ValueVTs.push_back(MVT::Glue); 8841 NodeTys = DAG.getVTList(ValueVTs); 8842 } else 8843 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8844 8845 // Replace the target specific call node with a PATCHPOINT node. 8846 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8847 dl, NodeTys, Ops); 8848 8849 // Update the NodeMap. 8850 if (HasDef) { 8851 if (IsAnyRegCC) 8852 setValue(CS.getInstruction(), SDValue(MN, 0)); 8853 else 8854 setValue(CS.getInstruction(), Result.first); 8855 } 8856 8857 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8858 // call sequence. Furthermore the location of the chain and glue can change 8859 // when the AnyReg calling convention is used and the intrinsic returns a 8860 // value. 8861 if (IsAnyRegCC && HasDef) { 8862 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8863 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8864 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8865 } else 8866 DAG.ReplaceAllUsesWith(Call, MN); 8867 DAG.DeleteNode(Call); 8868 8869 // Inform the Frame Information that we have a patchpoint in this function. 8870 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8871 } 8872 8873 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8874 unsigned Intrinsic) { 8875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8876 SDValue Op1 = getValue(I.getArgOperand(0)); 8877 SDValue Op2; 8878 if (I.getNumArgOperands() > 1) 8879 Op2 = getValue(I.getArgOperand(1)); 8880 SDLoc dl = getCurSDLoc(); 8881 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8882 SDValue Res; 8883 FastMathFlags FMF; 8884 if (isa<FPMathOperator>(I)) 8885 FMF = I.getFastMathFlags(); 8886 8887 switch (Intrinsic) { 8888 case Intrinsic::experimental_vector_reduce_v2_fadd: 8889 if (FMF.allowReassoc()) 8890 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8891 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8892 else 8893 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8894 break; 8895 case Intrinsic::experimental_vector_reduce_v2_fmul: 8896 if (FMF.allowReassoc()) 8897 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8898 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8899 else 8900 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8901 break; 8902 case Intrinsic::experimental_vector_reduce_add: 8903 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8904 break; 8905 case Intrinsic::experimental_vector_reduce_mul: 8906 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8907 break; 8908 case Intrinsic::experimental_vector_reduce_and: 8909 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8910 break; 8911 case Intrinsic::experimental_vector_reduce_or: 8912 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8913 break; 8914 case Intrinsic::experimental_vector_reduce_xor: 8915 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8916 break; 8917 case Intrinsic::experimental_vector_reduce_smax: 8918 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8919 break; 8920 case Intrinsic::experimental_vector_reduce_smin: 8921 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8922 break; 8923 case Intrinsic::experimental_vector_reduce_umax: 8924 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8925 break; 8926 case Intrinsic::experimental_vector_reduce_umin: 8927 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8928 break; 8929 case Intrinsic::experimental_vector_reduce_fmax: 8930 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8931 break; 8932 case Intrinsic::experimental_vector_reduce_fmin: 8933 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8934 break; 8935 default: 8936 llvm_unreachable("Unhandled vector reduce intrinsic"); 8937 } 8938 setValue(&I, Res); 8939 } 8940 8941 /// Returns an AttributeList representing the attributes applied to the return 8942 /// value of the given call. 8943 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8944 SmallVector<Attribute::AttrKind, 2> Attrs; 8945 if (CLI.RetSExt) 8946 Attrs.push_back(Attribute::SExt); 8947 if (CLI.RetZExt) 8948 Attrs.push_back(Attribute::ZExt); 8949 if (CLI.IsInReg) 8950 Attrs.push_back(Attribute::InReg); 8951 8952 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8953 Attrs); 8954 } 8955 8956 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8957 /// implementation, which just calls LowerCall. 8958 /// FIXME: When all targets are 8959 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8960 std::pair<SDValue, SDValue> 8961 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8962 // Handle the incoming return values from the call. 8963 CLI.Ins.clear(); 8964 Type *OrigRetTy = CLI.RetTy; 8965 SmallVector<EVT, 4> RetTys; 8966 SmallVector<uint64_t, 4> Offsets; 8967 auto &DL = CLI.DAG.getDataLayout(); 8968 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8969 8970 if (CLI.IsPostTypeLegalization) { 8971 // If we are lowering a libcall after legalization, split the return type. 8972 SmallVector<EVT, 4> OldRetTys; 8973 SmallVector<uint64_t, 4> OldOffsets; 8974 RetTys.swap(OldRetTys); 8975 Offsets.swap(OldOffsets); 8976 8977 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8978 EVT RetVT = OldRetTys[i]; 8979 uint64_t Offset = OldOffsets[i]; 8980 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8981 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8982 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8983 RetTys.append(NumRegs, RegisterVT); 8984 for (unsigned j = 0; j != NumRegs; ++j) 8985 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8986 } 8987 } 8988 8989 SmallVector<ISD::OutputArg, 4> Outs; 8990 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8991 8992 bool CanLowerReturn = 8993 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8994 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8995 8996 SDValue DemoteStackSlot; 8997 int DemoteStackIdx = -100; 8998 if (!CanLowerReturn) { 8999 // FIXME: equivalent assert? 9000 // assert(!CS.hasInAllocaArgument() && 9001 // "sret demotion is incompatible with inalloca"); 9002 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9003 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 9004 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9005 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 9006 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9007 DL.getAllocaAddrSpace()); 9008 9009 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9010 ArgListEntry Entry; 9011 Entry.Node = DemoteStackSlot; 9012 Entry.Ty = StackSlotPtrType; 9013 Entry.IsSExt = false; 9014 Entry.IsZExt = false; 9015 Entry.IsInReg = false; 9016 Entry.IsSRet = true; 9017 Entry.IsNest = false; 9018 Entry.IsByVal = false; 9019 Entry.IsReturned = false; 9020 Entry.IsSwiftSelf = false; 9021 Entry.IsSwiftError = false; 9022 Entry.Alignment = Align; 9023 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9024 CLI.NumFixedArgs += 1; 9025 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9026 9027 // sret demotion isn't compatible with tail-calls, since the sret argument 9028 // points into the callers stack frame. 9029 CLI.IsTailCall = false; 9030 } else { 9031 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9032 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9033 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9034 ISD::ArgFlagsTy Flags; 9035 if (NeedsRegBlock) { 9036 Flags.setInConsecutiveRegs(); 9037 if (I == RetTys.size() - 1) 9038 Flags.setInConsecutiveRegsLast(); 9039 } 9040 EVT VT = RetTys[I]; 9041 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9042 CLI.CallConv, VT); 9043 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9044 CLI.CallConv, VT); 9045 for (unsigned i = 0; i != NumRegs; ++i) { 9046 ISD::InputArg MyFlags; 9047 MyFlags.Flags = Flags; 9048 MyFlags.VT = RegisterVT; 9049 MyFlags.ArgVT = VT; 9050 MyFlags.Used = CLI.IsReturnValueUsed; 9051 if (CLI.RetTy->isPointerTy()) { 9052 MyFlags.Flags.setPointer(); 9053 MyFlags.Flags.setPointerAddrSpace( 9054 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9055 } 9056 if (CLI.RetSExt) 9057 MyFlags.Flags.setSExt(); 9058 if (CLI.RetZExt) 9059 MyFlags.Flags.setZExt(); 9060 if (CLI.IsInReg) 9061 MyFlags.Flags.setInReg(); 9062 CLI.Ins.push_back(MyFlags); 9063 } 9064 } 9065 } 9066 9067 // We push in swifterror return as the last element of CLI.Ins. 9068 ArgListTy &Args = CLI.getArgs(); 9069 if (supportSwiftError()) { 9070 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9071 if (Args[i].IsSwiftError) { 9072 ISD::InputArg MyFlags; 9073 MyFlags.VT = getPointerTy(DL); 9074 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9075 MyFlags.Flags.setSwiftError(); 9076 CLI.Ins.push_back(MyFlags); 9077 } 9078 } 9079 } 9080 9081 // Handle all of the outgoing arguments. 9082 CLI.Outs.clear(); 9083 CLI.OutVals.clear(); 9084 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9085 SmallVector<EVT, 4> ValueVTs; 9086 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9087 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9088 Type *FinalType = Args[i].Ty; 9089 if (Args[i].IsByVal) 9090 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9091 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9092 FinalType, CLI.CallConv, CLI.IsVarArg); 9093 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9094 ++Value) { 9095 EVT VT = ValueVTs[Value]; 9096 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9097 SDValue Op = SDValue(Args[i].Node.getNode(), 9098 Args[i].Node.getResNo() + Value); 9099 ISD::ArgFlagsTy Flags; 9100 9101 // Certain targets (such as MIPS), may have a different ABI alignment 9102 // for a type depending on the context. Give the target a chance to 9103 // specify the alignment it wants. 9104 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 9105 9106 if (Args[i].Ty->isPointerTy()) { 9107 Flags.setPointer(); 9108 Flags.setPointerAddrSpace( 9109 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9110 } 9111 if (Args[i].IsZExt) 9112 Flags.setZExt(); 9113 if (Args[i].IsSExt) 9114 Flags.setSExt(); 9115 if (Args[i].IsInReg) { 9116 // If we are using vectorcall calling convention, a structure that is 9117 // passed InReg - is surely an HVA 9118 if (CLI.CallConv == CallingConv::X86_VectorCall && 9119 isa<StructType>(FinalType)) { 9120 // The first value of a structure is marked 9121 if (0 == Value) 9122 Flags.setHvaStart(); 9123 Flags.setHva(); 9124 } 9125 // Set InReg Flag 9126 Flags.setInReg(); 9127 } 9128 if (Args[i].IsSRet) 9129 Flags.setSRet(); 9130 if (Args[i].IsSwiftSelf) 9131 Flags.setSwiftSelf(); 9132 if (Args[i].IsSwiftError) 9133 Flags.setSwiftError(); 9134 if (Args[i].IsByVal) 9135 Flags.setByVal(); 9136 if (Args[i].IsInAlloca) { 9137 Flags.setInAlloca(); 9138 // Set the byval flag for CCAssignFn callbacks that don't know about 9139 // inalloca. This way we can know how many bytes we should've allocated 9140 // and how many bytes a callee cleanup function will pop. If we port 9141 // inalloca to more targets, we'll have to add custom inalloca handling 9142 // in the various CC lowering callbacks. 9143 Flags.setByVal(); 9144 } 9145 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9146 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9147 Type *ElementTy = Ty->getElementType(); 9148 9149 unsigned FrameSize = DL.getTypeAllocSize( 9150 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9151 Flags.setByValSize(FrameSize); 9152 9153 // info is not there but there are cases it cannot get right. 9154 unsigned FrameAlign; 9155 if (Args[i].Alignment) 9156 FrameAlign = Args[i].Alignment; 9157 else 9158 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9159 Flags.setByValAlign(FrameAlign); 9160 } 9161 if (Args[i].IsNest) 9162 Flags.setNest(); 9163 if (NeedsRegBlock) 9164 Flags.setInConsecutiveRegs(); 9165 Flags.setOrigAlign(OriginalAlignment); 9166 9167 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9168 CLI.CallConv, VT); 9169 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9170 CLI.CallConv, VT); 9171 SmallVector<SDValue, 4> Parts(NumParts); 9172 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9173 9174 if (Args[i].IsSExt) 9175 ExtendKind = ISD::SIGN_EXTEND; 9176 else if (Args[i].IsZExt) 9177 ExtendKind = ISD::ZERO_EXTEND; 9178 9179 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9180 // for now. 9181 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9182 CanLowerReturn) { 9183 assert((CLI.RetTy == Args[i].Ty || 9184 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9185 CLI.RetTy->getPointerAddressSpace() == 9186 Args[i].Ty->getPointerAddressSpace())) && 9187 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9188 // Before passing 'returned' to the target lowering code, ensure that 9189 // either the register MVT and the actual EVT are the same size or that 9190 // the return value and argument are extended in the same way; in these 9191 // cases it's safe to pass the argument register value unchanged as the 9192 // return register value (although it's at the target's option whether 9193 // to do so) 9194 // TODO: allow code generation to take advantage of partially preserved 9195 // registers rather than clobbering the entire register when the 9196 // parameter extension method is not compatible with the return 9197 // extension method 9198 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9199 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9200 CLI.RetZExt == Args[i].IsZExt)) 9201 Flags.setReturned(); 9202 } 9203 9204 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9205 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9206 9207 for (unsigned j = 0; j != NumParts; ++j) { 9208 // if it isn't first piece, alignment must be 1 9209 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9210 i < CLI.NumFixedArgs, 9211 i, j*Parts[j].getValueType().getStoreSize()); 9212 if (NumParts > 1 && j == 0) 9213 MyFlags.Flags.setSplit(); 9214 else if (j != 0) { 9215 MyFlags.Flags.setOrigAlign(1); 9216 if (j == NumParts - 1) 9217 MyFlags.Flags.setSplitEnd(); 9218 } 9219 9220 CLI.Outs.push_back(MyFlags); 9221 CLI.OutVals.push_back(Parts[j]); 9222 } 9223 9224 if (NeedsRegBlock && Value == NumValues - 1) 9225 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9226 } 9227 } 9228 9229 SmallVector<SDValue, 4> InVals; 9230 CLI.Chain = LowerCall(CLI, InVals); 9231 9232 // Update CLI.InVals to use outside of this function. 9233 CLI.InVals = InVals; 9234 9235 // Verify that the target's LowerCall behaved as expected. 9236 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9237 "LowerCall didn't return a valid chain!"); 9238 assert((!CLI.IsTailCall || InVals.empty()) && 9239 "LowerCall emitted a return value for a tail call!"); 9240 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9241 "LowerCall didn't emit the correct number of values!"); 9242 9243 // For a tail call, the return value is merely live-out and there aren't 9244 // any nodes in the DAG representing it. Return a special value to 9245 // indicate that a tail call has been emitted and no more Instructions 9246 // should be processed in the current block. 9247 if (CLI.IsTailCall) { 9248 CLI.DAG.setRoot(CLI.Chain); 9249 return std::make_pair(SDValue(), SDValue()); 9250 } 9251 9252 #ifndef NDEBUG 9253 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9254 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9255 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9256 "LowerCall emitted a value with the wrong type!"); 9257 } 9258 #endif 9259 9260 SmallVector<SDValue, 4> ReturnValues; 9261 if (!CanLowerReturn) { 9262 // The instruction result is the result of loading from the 9263 // hidden sret parameter. 9264 SmallVector<EVT, 1> PVTs; 9265 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9266 9267 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9268 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9269 EVT PtrVT = PVTs[0]; 9270 9271 unsigned NumValues = RetTys.size(); 9272 ReturnValues.resize(NumValues); 9273 SmallVector<SDValue, 4> Chains(NumValues); 9274 9275 // An aggregate return value cannot wrap around the address space, so 9276 // offsets to its parts don't wrap either. 9277 SDNodeFlags Flags; 9278 Flags.setNoUnsignedWrap(true); 9279 9280 for (unsigned i = 0; i < NumValues; ++i) { 9281 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9282 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9283 PtrVT), Flags); 9284 SDValue L = CLI.DAG.getLoad( 9285 RetTys[i], CLI.DL, CLI.Chain, Add, 9286 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9287 DemoteStackIdx, Offsets[i]), 9288 /* Alignment = */ 1); 9289 ReturnValues[i] = L; 9290 Chains[i] = L.getValue(1); 9291 } 9292 9293 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9294 } else { 9295 // Collect the legal value parts into potentially illegal values 9296 // that correspond to the original function's return values. 9297 Optional<ISD::NodeType> AssertOp; 9298 if (CLI.RetSExt) 9299 AssertOp = ISD::AssertSext; 9300 else if (CLI.RetZExt) 9301 AssertOp = ISD::AssertZext; 9302 unsigned CurReg = 0; 9303 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9304 EVT VT = RetTys[I]; 9305 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9306 CLI.CallConv, VT); 9307 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9308 CLI.CallConv, VT); 9309 9310 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9311 NumRegs, RegisterVT, VT, nullptr, 9312 CLI.CallConv, AssertOp)); 9313 CurReg += NumRegs; 9314 } 9315 9316 // For a function returning void, there is no return value. We can't create 9317 // such a node, so we just return a null return value in that case. In 9318 // that case, nothing will actually look at the value. 9319 if (ReturnValues.empty()) 9320 return std::make_pair(SDValue(), CLI.Chain); 9321 } 9322 9323 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9324 CLI.DAG.getVTList(RetTys), ReturnValues); 9325 return std::make_pair(Res, CLI.Chain); 9326 } 9327 9328 void TargetLowering::LowerOperationWrapper(SDNode *N, 9329 SmallVectorImpl<SDValue> &Results, 9330 SelectionDAG &DAG) const { 9331 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9332 Results.push_back(Res); 9333 } 9334 9335 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9336 llvm_unreachable("LowerOperation not implemented for this target!"); 9337 } 9338 9339 void 9340 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9341 SDValue Op = getNonRegisterValue(V); 9342 assert((Op.getOpcode() != ISD::CopyFromReg || 9343 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9344 "Copy from a reg to the same reg!"); 9345 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9346 9347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9348 // If this is an InlineAsm we have to match the registers required, not the 9349 // notional registers required by the type. 9350 9351 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9352 None); // This is not an ABI copy. 9353 SDValue Chain = DAG.getEntryNode(); 9354 9355 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9356 FuncInfo.PreferredExtendType.end()) 9357 ? ISD::ANY_EXTEND 9358 : FuncInfo.PreferredExtendType[V]; 9359 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9360 PendingExports.push_back(Chain); 9361 } 9362 9363 #include "llvm/CodeGen/SelectionDAGISel.h" 9364 9365 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9366 /// entry block, return true. This includes arguments used by switches, since 9367 /// the switch may expand into multiple basic blocks. 9368 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9369 // With FastISel active, we may be splitting blocks, so force creation 9370 // of virtual registers for all non-dead arguments. 9371 if (FastISel) 9372 return A->use_empty(); 9373 9374 const BasicBlock &Entry = A->getParent()->front(); 9375 for (const User *U : A->users()) 9376 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9377 return false; // Use not in entry block. 9378 9379 return true; 9380 } 9381 9382 using ArgCopyElisionMapTy = 9383 DenseMap<const Argument *, 9384 std::pair<const AllocaInst *, const StoreInst *>>; 9385 9386 /// Scan the entry block of the function in FuncInfo for arguments that look 9387 /// like copies into a local alloca. Record any copied arguments in 9388 /// ArgCopyElisionCandidates. 9389 static void 9390 findArgumentCopyElisionCandidates(const DataLayout &DL, 9391 FunctionLoweringInfo *FuncInfo, 9392 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9393 // Record the state of every static alloca used in the entry block. Argument 9394 // allocas are all used in the entry block, so we need approximately as many 9395 // entries as we have arguments. 9396 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9397 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9398 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9399 StaticAllocas.reserve(NumArgs * 2); 9400 9401 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9402 if (!V) 9403 return nullptr; 9404 V = V->stripPointerCasts(); 9405 const auto *AI = dyn_cast<AllocaInst>(V); 9406 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9407 return nullptr; 9408 auto Iter = StaticAllocas.insert({AI, Unknown}); 9409 return &Iter.first->second; 9410 }; 9411 9412 // Look for stores of arguments to static allocas. Look through bitcasts and 9413 // GEPs to handle type coercions, as long as the alloca is fully initialized 9414 // by the store. Any non-store use of an alloca escapes it and any subsequent 9415 // unanalyzed store might write it. 9416 // FIXME: Handle structs initialized with multiple stores. 9417 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9418 // Look for stores, and handle non-store uses conservatively. 9419 const auto *SI = dyn_cast<StoreInst>(&I); 9420 if (!SI) { 9421 // We will look through cast uses, so ignore them completely. 9422 if (I.isCast()) 9423 continue; 9424 // Ignore debug info intrinsics, they don't escape or store to allocas. 9425 if (isa<DbgInfoIntrinsic>(I)) 9426 continue; 9427 // This is an unknown instruction. Assume it escapes or writes to all 9428 // static alloca operands. 9429 for (const Use &U : I.operands()) { 9430 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9431 *Info = StaticAllocaInfo::Clobbered; 9432 } 9433 continue; 9434 } 9435 9436 // If the stored value is a static alloca, mark it as escaped. 9437 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9438 *Info = StaticAllocaInfo::Clobbered; 9439 9440 // Check if the destination is a static alloca. 9441 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9442 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9443 if (!Info) 9444 continue; 9445 const AllocaInst *AI = cast<AllocaInst>(Dst); 9446 9447 // Skip allocas that have been initialized or clobbered. 9448 if (*Info != StaticAllocaInfo::Unknown) 9449 continue; 9450 9451 // Check if the stored value is an argument, and that this store fully 9452 // initializes the alloca. Don't elide copies from the same argument twice. 9453 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9454 const auto *Arg = dyn_cast<Argument>(Val); 9455 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9456 Arg->getType()->isEmptyTy() || 9457 DL.getTypeStoreSize(Arg->getType()) != 9458 DL.getTypeAllocSize(AI->getAllocatedType()) || 9459 ArgCopyElisionCandidates.count(Arg)) { 9460 *Info = StaticAllocaInfo::Clobbered; 9461 continue; 9462 } 9463 9464 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9465 << '\n'); 9466 9467 // Mark this alloca and store for argument copy elision. 9468 *Info = StaticAllocaInfo::Elidable; 9469 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9470 9471 // Stop scanning if we've seen all arguments. This will happen early in -O0 9472 // builds, which is useful, because -O0 builds have large entry blocks and 9473 // many allocas. 9474 if (ArgCopyElisionCandidates.size() == NumArgs) 9475 break; 9476 } 9477 } 9478 9479 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9480 /// ArgVal is a load from a suitable fixed stack object. 9481 static void tryToElideArgumentCopy( 9482 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9483 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9484 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9485 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9486 SDValue ArgVal, bool &ArgHasUses) { 9487 // Check if this is a load from a fixed stack object. 9488 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9489 if (!LNode) 9490 return; 9491 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9492 if (!FINode) 9493 return; 9494 9495 // Check that the fixed stack object is the right size and alignment. 9496 // Look at the alignment that the user wrote on the alloca instead of looking 9497 // at the stack object. 9498 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9499 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9500 const AllocaInst *AI = ArgCopyIter->second.first; 9501 int FixedIndex = FINode->getIndex(); 9502 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9503 int OldIndex = AllocaIndex; 9504 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9505 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9506 LLVM_DEBUG( 9507 dbgs() << " argument copy elision failed due to bad fixed stack " 9508 "object size\n"); 9509 return; 9510 } 9511 unsigned RequiredAlignment = AI->getAlignment(); 9512 if (!RequiredAlignment) { 9513 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9514 AI->getAllocatedType()); 9515 } 9516 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9517 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9518 "greater than stack argument alignment (" 9519 << RequiredAlignment << " vs " 9520 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9521 return; 9522 } 9523 9524 // Perform the elision. Delete the old stack object and replace its only use 9525 // in the variable info map. Mark the stack object as mutable. 9526 LLVM_DEBUG({ 9527 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9528 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9529 << '\n'; 9530 }); 9531 MFI.RemoveStackObject(OldIndex); 9532 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9533 AllocaIndex = FixedIndex; 9534 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9535 Chains.push_back(ArgVal.getValue(1)); 9536 9537 // Avoid emitting code for the store implementing the copy. 9538 const StoreInst *SI = ArgCopyIter->second.second; 9539 ElidedArgCopyInstrs.insert(SI); 9540 9541 // Check for uses of the argument again so that we can avoid exporting ArgVal 9542 // if it is't used by anything other than the store. 9543 for (const Value *U : Arg.users()) { 9544 if (U != SI) { 9545 ArgHasUses = true; 9546 break; 9547 } 9548 } 9549 } 9550 9551 void SelectionDAGISel::LowerArguments(const Function &F) { 9552 SelectionDAG &DAG = SDB->DAG; 9553 SDLoc dl = SDB->getCurSDLoc(); 9554 const DataLayout &DL = DAG.getDataLayout(); 9555 SmallVector<ISD::InputArg, 16> Ins; 9556 9557 if (!FuncInfo->CanLowerReturn) { 9558 // Put in an sret pointer parameter before all the other parameters. 9559 SmallVector<EVT, 1> ValueVTs; 9560 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9561 F.getReturnType()->getPointerTo( 9562 DAG.getDataLayout().getAllocaAddrSpace()), 9563 ValueVTs); 9564 9565 // NOTE: Assuming that a pointer will never break down to more than one VT 9566 // or one register. 9567 ISD::ArgFlagsTy Flags; 9568 Flags.setSRet(); 9569 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9570 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9571 ISD::InputArg::NoArgIndex, 0); 9572 Ins.push_back(RetArg); 9573 } 9574 9575 // Look for stores of arguments to static allocas. Mark such arguments with a 9576 // flag to ask the target to give us the memory location of that argument if 9577 // available. 9578 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9579 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9580 9581 // Set up the incoming argument description vector. 9582 for (const Argument &Arg : F.args()) { 9583 unsigned ArgNo = Arg.getArgNo(); 9584 SmallVector<EVT, 4> ValueVTs; 9585 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9586 bool isArgValueUsed = !Arg.use_empty(); 9587 unsigned PartBase = 0; 9588 Type *FinalType = Arg.getType(); 9589 if (Arg.hasAttribute(Attribute::ByVal)) 9590 FinalType = Arg.getParamByValType(); 9591 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9592 FinalType, F.getCallingConv(), F.isVarArg()); 9593 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9594 Value != NumValues; ++Value) { 9595 EVT VT = ValueVTs[Value]; 9596 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9597 ISD::ArgFlagsTy Flags; 9598 9599 // Certain targets (such as MIPS), may have a different ABI alignment 9600 // for a type depending on the context. Give the target a chance to 9601 // specify the alignment it wants. 9602 unsigned OriginalAlignment = 9603 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9604 9605 if (Arg.getType()->isPointerTy()) { 9606 Flags.setPointer(); 9607 Flags.setPointerAddrSpace( 9608 cast<PointerType>(Arg.getType())->getAddressSpace()); 9609 } 9610 if (Arg.hasAttribute(Attribute::ZExt)) 9611 Flags.setZExt(); 9612 if (Arg.hasAttribute(Attribute::SExt)) 9613 Flags.setSExt(); 9614 if (Arg.hasAttribute(Attribute::InReg)) { 9615 // If we are using vectorcall calling convention, a structure that is 9616 // passed InReg - is surely an HVA 9617 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9618 isa<StructType>(Arg.getType())) { 9619 // The first value of a structure is marked 9620 if (0 == Value) 9621 Flags.setHvaStart(); 9622 Flags.setHva(); 9623 } 9624 // Set InReg Flag 9625 Flags.setInReg(); 9626 } 9627 if (Arg.hasAttribute(Attribute::StructRet)) 9628 Flags.setSRet(); 9629 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9630 Flags.setSwiftSelf(); 9631 if (Arg.hasAttribute(Attribute::SwiftError)) 9632 Flags.setSwiftError(); 9633 if (Arg.hasAttribute(Attribute::ByVal)) 9634 Flags.setByVal(); 9635 if (Arg.hasAttribute(Attribute::InAlloca)) { 9636 Flags.setInAlloca(); 9637 // Set the byval flag for CCAssignFn callbacks that don't know about 9638 // inalloca. This way we can know how many bytes we should've allocated 9639 // and how many bytes a callee cleanup function will pop. If we port 9640 // inalloca to more targets, we'll have to add custom inalloca handling 9641 // in the various CC lowering callbacks. 9642 Flags.setByVal(); 9643 } 9644 if (F.getCallingConv() == CallingConv::X86_INTR) { 9645 // IA Interrupt passes frame (1st parameter) by value in the stack. 9646 if (ArgNo == 0) 9647 Flags.setByVal(); 9648 } 9649 if (Flags.isByVal() || Flags.isInAlloca()) { 9650 Type *ElementTy = Arg.getParamByValType(); 9651 9652 // For ByVal, size and alignment should be passed from FE. BE will 9653 // guess if this info is not there but there are cases it cannot get 9654 // right. 9655 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9656 Flags.setByValSize(FrameSize); 9657 9658 unsigned FrameAlign; 9659 if (Arg.getParamAlignment()) 9660 FrameAlign = Arg.getParamAlignment(); 9661 else 9662 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9663 Flags.setByValAlign(FrameAlign); 9664 } 9665 if (Arg.hasAttribute(Attribute::Nest)) 9666 Flags.setNest(); 9667 if (NeedsRegBlock) 9668 Flags.setInConsecutiveRegs(); 9669 Flags.setOrigAlign(OriginalAlignment); 9670 if (ArgCopyElisionCandidates.count(&Arg)) 9671 Flags.setCopyElisionCandidate(); 9672 if (Arg.hasAttribute(Attribute::Returned)) 9673 Flags.setReturned(); 9674 9675 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9676 *CurDAG->getContext(), F.getCallingConv(), VT); 9677 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9678 *CurDAG->getContext(), F.getCallingConv(), VT); 9679 for (unsigned i = 0; i != NumRegs; ++i) { 9680 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9681 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9682 if (NumRegs > 1 && i == 0) 9683 MyFlags.Flags.setSplit(); 9684 // if it isn't first piece, alignment must be 1 9685 else if (i > 0) { 9686 MyFlags.Flags.setOrigAlign(1); 9687 if (i == NumRegs - 1) 9688 MyFlags.Flags.setSplitEnd(); 9689 } 9690 Ins.push_back(MyFlags); 9691 } 9692 if (NeedsRegBlock && Value == NumValues - 1) 9693 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9694 PartBase += VT.getStoreSize(); 9695 } 9696 } 9697 9698 // Call the target to set up the argument values. 9699 SmallVector<SDValue, 8> InVals; 9700 SDValue NewRoot = TLI->LowerFormalArguments( 9701 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9702 9703 // Verify that the target's LowerFormalArguments behaved as expected. 9704 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9705 "LowerFormalArguments didn't return a valid chain!"); 9706 assert(InVals.size() == Ins.size() && 9707 "LowerFormalArguments didn't emit the correct number of values!"); 9708 LLVM_DEBUG({ 9709 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9710 assert(InVals[i].getNode() && 9711 "LowerFormalArguments emitted a null value!"); 9712 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9713 "LowerFormalArguments emitted a value with the wrong type!"); 9714 } 9715 }); 9716 9717 // Update the DAG with the new chain value resulting from argument lowering. 9718 DAG.setRoot(NewRoot); 9719 9720 // Set up the argument values. 9721 unsigned i = 0; 9722 if (!FuncInfo->CanLowerReturn) { 9723 // Create a virtual register for the sret pointer, and put in a copy 9724 // from the sret argument into it. 9725 SmallVector<EVT, 1> ValueVTs; 9726 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9727 F.getReturnType()->getPointerTo( 9728 DAG.getDataLayout().getAllocaAddrSpace()), 9729 ValueVTs); 9730 MVT VT = ValueVTs[0].getSimpleVT(); 9731 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9732 Optional<ISD::NodeType> AssertOp = None; 9733 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9734 nullptr, F.getCallingConv(), AssertOp); 9735 9736 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9737 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9738 Register SRetReg = 9739 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9740 FuncInfo->DemoteRegister = SRetReg; 9741 NewRoot = 9742 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9743 DAG.setRoot(NewRoot); 9744 9745 // i indexes lowered arguments. Bump it past the hidden sret argument. 9746 ++i; 9747 } 9748 9749 SmallVector<SDValue, 4> Chains; 9750 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9751 for (const Argument &Arg : F.args()) { 9752 SmallVector<SDValue, 4> ArgValues; 9753 SmallVector<EVT, 4> ValueVTs; 9754 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9755 unsigned NumValues = ValueVTs.size(); 9756 if (NumValues == 0) 9757 continue; 9758 9759 bool ArgHasUses = !Arg.use_empty(); 9760 9761 // Elide the copying store if the target loaded this argument from a 9762 // suitable fixed stack object. 9763 if (Ins[i].Flags.isCopyElisionCandidate()) { 9764 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9765 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9766 InVals[i], ArgHasUses); 9767 } 9768 9769 // If this argument is unused then remember its value. It is used to generate 9770 // debugging information. 9771 bool isSwiftErrorArg = 9772 TLI->supportSwiftError() && 9773 Arg.hasAttribute(Attribute::SwiftError); 9774 if (!ArgHasUses && !isSwiftErrorArg) { 9775 SDB->setUnusedArgValue(&Arg, InVals[i]); 9776 9777 // Also remember any frame index for use in FastISel. 9778 if (FrameIndexSDNode *FI = 9779 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9780 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9781 } 9782 9783 for (unsigned Val = 0; Val != NumValues; ++Val) { 9784 EVT VT = ValueVTs[Val]; 9785 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9786 F.getCallingConv(), VT); 9787 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9788 *CurDAG->getContext(), F.getCallingConv(), VT); 9789 9790 // Even an apparant 'unused' swifterror argument needs to be returned. So 9791 // we do generate a copy for it that can be used on return from the 9792 // function. 9793 if (ArgHasUses || isSwiftErrorArg) { 9794 Optional<ISD::NodeType> AssertOp; 9795 if (Arg.hasAttribute(Attribute::SExt)) 9796 AssertOp = ISD::AssertSext; 9797 else if (Arg.hasAttribute(Attribute::ZExt)) 9798 AssertOp = ISD::AssertZext; 9799 9800 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9801 PartVT, VT, nullptr, 9802 F.getCallingConv(), AssertOp)); 9803 } 9804 9805 i += NumParts; 9806 } 9807 9808 // We don't need to do anything else for unused arguments. 9809 if (ArgValues.empty()) 9810 continue; 9811 9812 // Note down frame index. 9813 if (FrameIndexSDNode *FI = 9814 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9815 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9816 9817 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9818 SDB->getCurSDLoc()); 9819 9820 SDB->setValue(&Arg, Res); 9821 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9822 // We want to associate the argument with the frame index, among 9823 // involved operands, that correspond to the lowest address. The 9824 // getCopyFromParts function, called earlier, is swapping the order of 9825 // the operands to BUILD_PAIR depending on endianness. The result of 9826 // that swapping is that the least significant bits of the argument will 9827 // be in the first operand of the BUILD_PAIR node, and the most 9828 // significant bits will be in the second operand. 9829 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9830 if (LoadSDNode *LNode = 9831 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9832 if (FrameIndexSDNode *FI = 9833 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9834 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9835 } 9836 9837 // Update the SwiftErrorVRegDefMap. 9838 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9839 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9840 if (Register::isVirtualRegister(Reg)) 9841 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9842 Reg); 9843 } 9844 9845 // If this argument is live outside of the entry block, insert a copy from 9846 // wherever we got it to the vreg that other BB's will reference it as. 9847 if (Res.getOpcode() == ISD::CopyFromReg) { 9848 // If we can, though, try to skip creating an unnecessary vreg. 9849 // FIXME: This isn't very clean... it would be nice to make this more 9850 // general. 9851 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9852 if (Register::isVirtualRegister(Reg)) { 9853 FuncInfo->ValueMap[&Arg] = Reg; 9854 continue; 9855 } 9856 } 9857 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9858 FuncInfo->InitializeRegForValue(&Arg); 9859 SDB->CopyToExportRegsIfNeeded(&Arg); 9860 } 9861 } 9862 9863 if (!Chains.empty()) { 9864 Chains.push_back(NewRoot); 9865 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9866 } 9867 9868 DAG.setRoot(NewRoot); 9869 9870 assert(i == InVals.size() && "Argument register count mismatch!"); 9871 9872 // If any argument copy elisions occurred and we have debug info, update the 9873 // stale frame indices used in the dbg.declare variable info table. 9874 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9875 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9876 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9877 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9878 if (I != ArgCopyElisionFrameIndexMap.end()) 9879 VI.Slot = I->second; 9880 } 9881 } 9882 9883 // Finally, if the target has anything special to do, allow it to do so. 9884 EmitFunctionEntryCode(); 9885 } 9886 9887 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9888 /// ensure constants are generated when needed. Remember the virtual registers 9889 /// that need to be added to the Machine PHI nodes as input. We cannot just 9890 /// directly add them, because expansion might result in multiple MBB's for one 9891 /// BB. As such, the start of the BB might correspond to a different MBB than 9892 /// the end. 9893 void 9894 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9895 const Instruction *TI = LLVMBB->getTerminator(); 9896 9897 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9898 9899 // Check PHI nodes in successors that expect a value to be available from this 9900 // block. 9901 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9902 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9903 if (!isa<PHINode>(SuccBB->begin())) continue; 9904 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9905 9906 // If this terminator has multiple identical successors (common for 9907 // switches), only handle each succ once. 9908 if (!SuccsHandled.insert(SuccMBB).second) 9909 continue; 9910 9911 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9912 9913 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9914 // nodes and Machine PHI nodes, but the incoming operands have not been 9915 // emitted yet. 9916 for (const PHINode &PN : SuccBB->phis()) { 9917 // Ignore dead phi's. 9918 if (PN.use_empty()) 9919 continue; 9920 9921 // Skip empty types 9922 if (PN.getType()->isEmptyTy()) 9923 continue; 9924 9925 unsigned Reg; 9926 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9927 9928 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9929 unsigned &RegOut = ConstantsOut[C]; 9930 if (RegOut == 0) { 9931 RegOut = FuncInfo.CreateRegs(C); 9932 CopyValueToVirtualRegister(C, RegOut); 9933 } 9934 Reg = RegOut; 9935 } else { 9936 DenseMap<const Value *, unsigned>::iterator I = 9937 FuncInfo.ValueMap.find(PHIOp); 9938 if (I != FuncInfo.ValueMap.end()) 9939 Reg = I->second; 9940 else { 9941 assert(isa<AllocaInst>(PHIOp) && 9942 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9943 "Didn't codegen value into a register!??"); 9944 Reg = FuncInfo.CreateRegs(PHIOp); 9945 CopyValueToVirtualRegister(PHIOp, Reg); 9946 } 9947 } 9948 9949 // Remember that this register needs to added to the machine PHI node as 9950 // the input for this MBB. 9951 SmallVector<EVT, 4> ValueVTs; 9952 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9953 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9954 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9955 EVT VT = ValueVTs[vti]; 9956 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9957 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9958 FuncInfo.PHINodesToUpdate.push_back( 9959 std::make_pair(&*MBBI++, Reg + i)); 9960 Reg += NumRegisters; 9961 } 9962 } 9963 } 9964 9965 ConstantsOut.clear(); 9966 } 9967 9968 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9969 /// is 0. 9970 MachineBasicBlock * 9971 SelectionDAGBuilder::StackProtectorDescriptor:: 9972 AddSuccessorMBB(const BasicBlock *BB, 9973 MachineBasicBlock *ParentMBB, 9974 bool IsLikely, 9975 MachineBasicBlock *SuccMBB) { 9976 // If SuccBB has not been created yet, create it. 9977 if (!SuccMBB) { 9978 MachineFunction *MF = ParentMBB->getParent(); 9979 MachineFunction::iterator BBI(ParentMBB); 9980 SuccMBB = MF->CreateMachineBasicBlock(BB); 9981 MF->insert(++BBI, SuccMBB); 9982 } 9983 // Add it as a successor of ParentMBB. 9984 ParentMBB->addSuccessor( 9985 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9986 return SuccMBB; 9987 } 9988 9989 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9990 MachineFunction::iterator I(MBB); 9991 if (++I == FuncInfo.MF->end()) 9992 return nullptr; 9993 return &*I; 9994 } 9995 9996 /// During lowering new call nodes can be created (such as memset, etc.). 9997 /// Those will become new roots of the current DAG, but complications arise 9998 /// when they are tail calls. In such cases, the call lowering will update 9999 /// the root, but the builder still needs to know that a tail call has been 10000 /// lowered in order to avoid generating an additional return. 10001 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10002 // If the node is null, we do have a tail call. 10003 if (MaybeTC.getNode() != nullptr) 10004 DAG.setRoot(MaybeTC); 10005 else 10006 HasTailCall = true; 10007 } 10008 10009 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10010 MachineBasicBlock *SwitchMBB, 10011 MachineBasicBlock *DefaultMBB) { 10012 MachineFunction *CurMF = FuncInfo.MF; 10013 MachineBasicBlock *NextMBB = nullptr; 10014 MachineFunction::iterator BBI(W.MBB); 10015 if (++BBI != FuncInfo.MF->end()) 10016 NextMBB = &*BBI; 10017 10018 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10019 10020 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10021 10022 if (Size == 2 && W.MBB == SwitchMBB) { 10023 // If any two of the cases has the same destination, and if one value 10024 // is the same as the other, but has one bit unset that the other has set, 10025 // use bit manipulation to do two compares at once. For example: 10026 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10027 // TODO: This could be extended to merge any 2 cases in switches with 3 10028 // cases. 10029 // TODO: Handle cases where W.CaseBB != SwitchBB. 10030 CaseCluster &Small = *W.FirstCluster; 10031 CaseCluster &Big = *W.LastCluster; 10032 10033 if (Small.Low == Small.High && Big.Low == Big.High && 10034 Small.MBB == Big.MBB) { 10035 const APInt &SmallValue = Small.Low->getValue(); 10036 const APInt &BigValue = Big.Low->getValue(); 10037 10038 // Check that there is only one bit different. 10039 APInt CommonBit = BigValue ^ SmallValue; 10040 if (CommonBit.isPowerOf2()) { 10041 SDValue CondLHS = getValue(Cond); 10042 EVT VT = CondLHS.getValueType(); 10043 SDLoc DL = getCurSDLoc(); 10044 10045 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10046 DAG.getConstant(CommonBit, DL, VT)); 10047 SDValue Cond = DAG.getSetCC( 10048 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10049 ISD::SETEQ); 10050 10051 // Update successor info. 10052 // Both Small and Big will jump to Small.BB, so we sum up the 10053 // probabilities. 10054 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10055 if (BPI) 10056 addSuccessorWithProb( 10057 SwitchMBB, DefaultMBB, 10058 // The default destination is the first successor in IR. 10059 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10060 else 10061 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10062 10063 // Insert the true branch. 10064 SDValue BrCond = 10065 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10066 DAG.getBasicBlock(Small.MBB)); 10067 // Insert the false branch. 10068 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10069 DAG.getBasicBlock(DefaultMBB)); 10070 10071 DAG.setRoot(BrCond); 10072 return; 10073 } 10074 } 10075 } 10076 10077 if (TM.getOptLevel() != CodeGenOpt::None) { 10078 // Here, we order cases by probability so the most likely case will be 10079 // checked first. However, two clusters can have the same probability in 10080 // which case their relative ordering is non-deterministic. So we use Low 10081 // as a tie-breaker as clusters are guaranteed to never overlap. 10082 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10083 [](const CaseCluster &a, const CaseCluster &b) { 10084 return a.Prob != b.Prob ? 10085 a.Prob > b.Prob : 10086 a.Low->getValue().slt(b.Low->getValue()); 10087 }); 10088 10089 // Rearrange the case blocks so that the last one falls through if possible 10090 // without changing the order of probabilities. 10091 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10092 --I; 10093 if (I->Prob > W.LastCluster->Prob) 10094 break; 10095 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10096 std::swap(*I, *W.LastCluster); 10097 break; 10098 } 10099 } 10100 } 10101 10102 // Compute total probability. 10103 BranchProbability DefaultProb = W.DefaultProb; 10104 BranchProbability UnhandledProbs = DefaultProb; 10105 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10106 UnhandledProbs += I->Prob; 10107 10108 MachineBasicBlock *CurMBB = W.MBB; 10109 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10110 bool FallthroughUnreachable = false; 10111 MachineBasicBlock *Fallthrough; 10112 if (I == W.LastCluster) { 10113 // For the last cluster, fall through to the default destination. 10114 Fallthrough = DefaultMBB; 10115 FallthroughUnreachable = isa<UnreachableInst>( 10116 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10117 } else { 10118 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10119 CurMF->insert(BBI, Fallthrough); 10120 // Put Cond in a virtual register to make it available from the new blocks. 10121 ExportFromCurrentBlock(Cond); 10122 } 10123 UnhandledProbs -= I->Prob; 10124 10125 switch (I->Kind) { 10126 case CC_JumpTable: { 10127 // FIXME: Optimize away range check based on pivot comparisons. 10128 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10129 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10130 10131 // The jump block hasn't been inserted yet; insert it here. 10132 MachineBasicBlock *JumpMBB = JT->MBB; 10133 CurMF->insert(BBI, JumpMBB); 10134 10135 auto JumpProb = I->Prob; 10136 auto FallthroughProb = UnhandledProbs; 10137 10138 // If the default statement is a target of the jump table, we evenly 10139 // distribute the default probability to successors of CurMBB. Also 10140 // update the probability on the edge from JumpMBB to Fallthrough. 10141 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10142 SE = JumpMBB->succ_end(); 10143 SI != SE; ++SI) { 10144 if (*SI == DefaultMBB) { 10145 JumpProb += DefaultProb / 2; 10146 FallthroughProb -= DefaultProb / 2; 10147 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10148 JumpMBB->normalizeSuccProbs(); 10149 break; 10150 } 10151 } 10152 10153 if (FallthroughUnreachable) { 10154 // Skip the range check if the fallthrough block is unreachable. 10155 JTH->OmitRangeCheck = true; 10156 } 10157 10158 if (!JTH->OmitRangeCheck) 10159 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10160 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10161 CurMBB->normalizeSuccProbs(); 10162 10163 // The jump table header will be inserted in our current block, do the 10164 // range check, and fall through to our fallthrough block. 10165 JTH->HeaderBB = CurMBB; 10166 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10167 10168 // If we're in the right place, emit the jump table header right now. 10169 if (CurMBB == SwitchMBB) { 10170 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10171 JTH->Emitted = true; 10172 } 10173 break; 10174 } 10175 case CC_BitTests: { 10176 // FIXME: If Fallthrough is unreachable, skip the range check. 10177 10178 // FIXME: Optimize away range check based on pivot comparisons. 10179 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10180 10181 // The bit test blocks haven't been inserted yet; insert them here. 10182 for (BitTestCase &BTC : BTB->Cases) 10183 CurMF->insert(BBI, BTC.ThisBB); 10184 10185 // Fill in fields of the BitTestBlock. 10186 BTB->Parent = CurMBB; 10187 BTB->Default = Fallthrough; 10188 10189 BTB->DefaultProb = UnhandledProbs; 10190 // If the cases in bit test don't form a contiguous range, we evenly 10191 // distribute the probability on the edge to Fallthrough to two 10192 // successors of CurMBB. 10193 if (!BTB->ContiguousRange) { 10194 BTB->Prob += DefaultProb / 2; 10195 BTB->DefaultProb -= DefaultProb / 2; 10196 } 10197 10198 // If we're in the right place, emit the bit test header right now. 10199 if (CurMBB == SwitchMBB) { 10200 visitBitTestHeader(*BTB, SwitchMBB); 10201 BTB->Emitted = true; 10202 } 10203 break; 10204 } 10205 case CC_Range: { 10206 const Value *RHS, *LHS, *MHS; 10207 ISD::CondCode CC; 10208 if (I->Low == I->High) { 10209 // Check Cond == I->Low. 10210 CC = ISD::SETEQ; 10211 LHS = Cond; 10212 RHS=I->Low; 10213 MHS = nullptr; 10214 } else { 10215 // Check I->Low <= Cond <= I->High. 10216 CC = ISD::SETLE; 10217 LHS = I->Low; 10218 MHS = Cond; 10219 RHS = I->High; 10220 } 10221 10222 // If Fallthrough is unreachable, fold away the comparison. 10223 if (FallthroughUnreachable) 10224 CC = ISD::SETTRUE; 10225 10226 // The false probability is the sum of all unhandled cases. 10227 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10228 getCurSDLoc(), I->Prob, UnhandledProbs); 10229 10230 if (CurMBB == SwitchMBB) 10231 visitSwitchCase(CB, SwitchMBB); 10232 else 10233 SL->SwitchCases.push_back(CB); 10234 10235 break; 10236 } 10237 } 10238 CurMBB = Fallthrough; 10239 } 10240 } 10241 10242 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10243 CaseClusterIt First, 10244 CaseClusterIt Last) { 10245 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10246 if (X.Prob != CC.Prob) 10247 return X.Prob > CC.Prob; 10248 10249 // Ties are broken by comparing the case value. 10250 return X.Low->getValue().slt(CC.Low->getValue()); 10251 }); 10252 } 10253 10254 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10255 const SwitchWorkListItem &W, 10256 Value *Cond, 10257 MachineBasicBlock *SwitchMBB) { 10258 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10259 "Clusters not sorted?"); 10260 10261 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10262 10263 // Balance the tree based on branch probabilities to create a near-optimal (in 10264 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10265 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10266 CaseClusterIt LastLeft = W.FirstCluster; 10267 CaseClusterIt FirstRight = W.LastCluster; 10268 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10269 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10270 10271 // Move LastLeft and FirstRight towards each other from opposite directions to 10272 // find a partitioning of the clusters which balances the probability on both 10273 // sides. If LeftProb and RightProb are equal, alternate which side is 10274 // taken to ensure 0-probability nodes are distributed evenly. 10275 unsigned I = 0; 10276 while (LastLeft + 1 < FirstRight) { 10277 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10278 LeftProb += (++LastLeft)->Prob; 10279 else 10280 RightProb += (--FirstRight)->Prob; 10281 I++; 10282 } 10283 10284 while (true) { 10285 // Our binary search tree differs from a typical BST in that ours can have up 10286 // to three values in each leaf. The pivot selection above doesn't take that 10287 // into account, which means the tree might require more nodes and be less 10288 // efficient. We compensate for this here. 10289 10290 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10291 unsigned NumRight = W.LastCluster - FirstRight + 1; 10292 10293 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10294 // If one side has less than 3 clusters, and the other has more than 3, 10295 // consider taking a cluster from the other side. 10296 10297 if (NumLeft < NumRight) { 10298 // Consider moving the first cluster on the right to the left side. 10299 CaseCluster &CC = *FirstRight; 10300 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10301 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10302 if (LeftSideRank <= RightSideRank) { 10303 // Moving the cluster to the left does not demote it. 10304 ++LastLeft; 10305 ++FirstRight; 10306 continue; 10307 } 10308 } else { 10309 assert(NumRight < NumLeft); 10310 // Consider moving the last element on the left to the right side. 10311 CaseCluster &CC = *LastLeft; 10312 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10313 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10314 if (RightSideRank <= LeftSideRank) { 10315 // Moving the cluster to the right does not demot it. 10316 --LastLeft; 10317 --FirstRight; 10318 continue; 10319 } 10320 } 10321 } 10322 break; 10323 } 10324 10325 assert(LastLeft + 1 == FirstRight); 10326 assert(LastLeft >= W.FirstCluster); 10327 assert(FirstRight <= W.LastCluster); 10328 10329 // Use the first element on the right as pivot since we will make less-than 10330 // comparisons against it. 10331 CaseClusterIt PivotCluster = FirstRight; 10332 assert(PivotCluster > W.FirstCluster); 10333 assert(PivotCluster <= W.LastCluster); 10334 10335 CaseClusterIt FirstLeft = W.FirstCluster; 10336 CaseClusterIt LastRight = W.LastCluster; 10337 10338 const ConstantInt *Pivot = PivotCluster->Low; 10339 10340 // New blocks will be inserted immediately after the current one. 10341 MachineFunction::iterator BBI(W.MBB); 10342 ++BBI; 10343 10344 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10345 // we can branch to its destination directly if it's squeezed exactly in 10346 // between the known lower bound and Pivot - 1. 10347 MachineBasicBlock *LeftMBB; 10348 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10349 FirstLeft->Low == W.GE && 10350 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10351 LeftMBB = FirstLeft->MBB; 10352 } else { 10353 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10354 FuncInfo.MF->insert(BBI, LeftMBB); 10355 WorkList.push_back( 10356 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10357 // Put Cond in a virtual register to make it available from the new blocks. 10358 ExportFromCurrentBlock(Cond); 10359 } 10360 10361 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10362 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10363 // directly if RHS.High equals the current upper bound. 10364 MachineBasicBlock *RightMBB; 10365 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10366 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10367 RightMBB = FirstRight->MBB; 10368 } else { 10369 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10370 FuncInfo.MF->insert(BBI, RightMBB); 10371 WorkList.push_back( 10372 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10373 // Put Cond in a virtual register to make it available from the new blocks. 10374 ExportFromCurrentBlock(Cond); 10375 } 10376 10377 // Create the CaseBlock record that will be used to lower the branch. 10378 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10379 getCurSDLoc(), LeftProb, RightProb); 10380 10381 if (W.MBB == SwitchMBB) 10382 visitSwitchCase(CB, SwitchMBB); 10383 else 10384 SL->SwitchCases.push_back(CB); 10385 } 10386 10387 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10388 // from the swith statement. 10389 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10390 BranchProbability PeeledCaseProb) { 10391 if (PeeledCaseProb == BranchProbability::getOne()) 10392 return BranchProbability::getZero(); 10393 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10394 10395 uint32_t Numerator = CaseProb.getNumerator(); 10396 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10397 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10398 } 10399 10400 // Try to peel the top probability case if it exceeds the threshold. 10401 // Return current MachineBasicBlock for the switch statement if the peeling 10402 // does not occur. 10403 // If the peeling is performed, return the newly created MachineBasicBlock 10404 // for the peeled switch statement. Also update Clusters to remove the peeled 10405 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10406 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10407 const SwitchInst &SI, CaseClusterVector &Clusters, 10408 BranchProbability &PeeledCaseProb) { 10409 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10410 // Don't perform if there is only one cluster or optimizing for size. 10411 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10412 TM.getOptLevel() == CodeGenOpt::None || 10413 SwitchMBB->getParent()->getFunction().hasMinSize()) 10414 return SwitchMBB; 10415 10416 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10417 unsigned PeeledCaseIndex = 0; 10418 bool SwitchPeeled = false; 10419 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10420 CaseCluster &CC = Clusters[Index]; 10421 if (CC.Prob < TopCaseProb) 10422 continue; 10423 TopCaseProb = CC.Prob; 10424 PeeledCaseIndex = Index; 10425 SwitchPeeled = true; 10426 } 10427 if (!SwitchPeeled) 10428 return SwitchMBB; 10429 10430 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10431 << TopCaseProb << "\n"); 10432 10433 // Record the MBB for the peeled switch statement. 10434 MachineFunction::iterator BBI(SwitchMBB); 10435 ++BBI; 10436 MachineBasicBlock *PeeledSwitchMBB = 10437 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10438 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10439 10440 ExportFromCurrentBlock(SI.getCondition()); 10441 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10442 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10443 nullptr, nullptr, TopCaseProb.getCompl()}; 10444 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10445 10446 Clusters.erase(PeeledCaseIt); 10447 for (CaseCluster &CC : Clusters) { 10448 LLVM_DEBUG( 10449 dbgs() << "Scale the probablity for one cluster, before scaling: " 10450 << CC.Prob << "\n"); 10451 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10452 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10453 } 10454 PeeledCaseProb = TopCaseProb; 10455 return PeeledSwitchMBB; 10456 } 10457 10458 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10459 // Extract cases from the switch. 10460 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10461 CaseClusterVector Clusters; 10462 Clusters.reserve(SI.getNumCases()); 10463 for (auto I : SI.cases()) { 10464 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10465 const ConstantInt *CaseVal = I.getCaseValue(); 10466 BranchProbability Prob = 10467 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10468 : BranchProbability(1, SI.getNumCases() + 1); 10469 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10470 } 10471 10472 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10473 10474 // Cluster adjacent cases with the same destination. We do this at all 10475 // optimization levels because it's cheap to do and will make codegen faster 10476 // if there are many clusters. 10477 sortAndRangeify(Clusters); 10478 10479 // The branch probablity of the peeled case. 10480 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10481 MachineBasicBlock *PeeledSwitchMBB = 10482 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10483 10484 // If there is only the default destination, jump there directly. 10485 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10486 if (Clusters.empty()) { 10487 assert(PeeledSwitchMBB == SwitchMBB); 10488 SwitchMBB->addSuccessor(DefaultMBB); 10489 if (DefaultMBB != NextBlock(SwitchMBB)) { 10490 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10491 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10492 } 10493 return; 10494 } 10495 10496 SL->findJumpTables(Clusters, &SI, DefaultMBB); 10497 SL->findBitTestClusters(Clusters, &SI); 10498 10499 LLVM_DEBUG({ 10500 dbgs() << "Case clusters: "; 10501 for (const CaseCluster &C : Clusters) { 10502 if (C.Kind == CC_JumpTable) 10503 dbgs() << "JT:"; 10504 if (C.Kind == CC_BitTests) 10505 dbgs() << "BT:"; 10506 10507 C.Low->getValue().print(dbgs(), true); 10508 if (C.Low != C.High) { 10509 dbgs() << '-'; 10510 C.High->getValue().print(dbgs(), true); 10511 } 10512 dbgs() << ' '; 10513 } 10514 dbgs() << '\n'; 10515 }); 10516 10517 assert(!Clusters.empty()); 10518 SwitchWorkList WorkList; 10519 CaseClusterIt First = Clusters.begin(); 10520 CaseClusterIt Last = Clusters.end() - 1; 10521 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10522 // Scale the branchprobability for DefaultMBB if the peel occurs and 10523 // DefaultMBB is not replaced. 10524 if (PeeledCaseProb != BranchProbability::getZero() && 10525 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10526 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10527 WorkList.push_back( 10528 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10529 10530 while (!WorkList.empty()) { 10531 SwitchWorkListItem W = WorkList.back(); 10532 WorkList.pop_back(); 10533 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10534 10535 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10536 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10537 // For optimized builds, lower large range as a balanced binary tree. 10538 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10539 continue; 10540 } 10541 10542 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10543 } 10544 } 10545