xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 8cc0b586738157728a93af145c8f8dec1bf59ee1)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BlockFrequencyInfo.h"
31 #include "llvm/Analysis/BranchProbabilityInfo.h"
32 #include "llvm/Analysis/ConstantFolding.h"
33 #include "llvm/Analysis/EHPersonalities.h"
34 #include "llvm/Analysis/Loads.h"
35 #include "llvm/Analysis/MemoryLocation.h"
36 #include "llvm/Analysis/ProfileSummaryInfo.h"
37 #include "llvm/Analysis/TargetLibraryInfo.h"
38 #include "llvm/Analysis/ValueTracking.h"
39 #include "llvm/Analysis/VectorUtils.h"
40 #include "llvm/CodeGen/Analysis.h"
41 #include "llvm/CodeGen/FunctionLoweringInfo.h"
42 #include "llvm/CodeGen/GCMetadata.h"
43 #include "llvm/CodeGen/ISDOpcodes.h"
44 #include "llvm/CodeGen/MachineBasicBlock.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineInstr.h"
48 #include "llvm/CodeGen/MachineInstrBuilder.h"
49 #include "llvm/CodeGen/MachineJumpTableInfo.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineModuleInfo.h"
52 #include "llvm/CodeGen/MachineOperand.h"
53 #include "llvm/CodeGen/MachineRegisterInfo.h"
54 #include "llvm/CodeGen/RuntimeLibcalls.h"
55 #include "llvm/CodeGen/SelectionDAG.h"
56 #include "llvm/CodeGen/SelectionDAGNodes.h"
57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
58 #include "llvm/CodeGen/StackMaps.h"
59 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
60 #include "llvm/CodeGen/TargetFrameLowering.h"
61 #include "llvm/CodeGen/TargetInstrInfo.h"
62 #include "llvm/CodeGen/TargetLowering.h"
63 #include "llvm/CodeGen/TargetOpcodes.h"
64 #include "llvm/CodeGen/TargetRegisterInfo.h"
65 #include "llvm/CodeGen/TargetSubtargetInfo.h"
66 #include "llvm/CodeGen/ValueTypes.h"
67 #include "llvm/CodeGen/WinEHFuncInfo.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Attributes.h"
70 #include "llvm/IR/BasicBlock.h"
71 #include "llvm/IR/CFG.h"
72 #include "llvm/IR/CallSite.h"
73 #include "llvm/IR/CallingConv.h"
74 #include "llvm/IR/Constant.h"
75 #include "llvm/IR/ConstantRange.h"
76 #include "llvm/IR/Constants.h"
77 #include "llvm/IR/DataLayout.h"
78 #include "llvm/IR/DebugInfoMetadata.h"
79 #include "llvm/IR/DebugLoc.h"
80 #include "llvm/IR/DerivedTypes.h"
81 #include "llvm/IR/Function.h"
82 #include "llvm/IR/GetElementPtrTypeIterator.h"
83 #include "llvm/IR/InlineAsm.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/IntrinsicsAArch64.h"
90 #include "llvm/IR/IntrinsicsWebAssembly.h"
91 #include "llvm/IR/LLVMContext.h"
92 #include "llvm/IR/Metadata.h"
93 #include "llvm/IR/Module.h"
94 #include "llvm/IR/Operator.h"
95 #include "llvm/IR/PatternMatch.h"
96 #include "llvm/IR/Statepoint.h"
97 #include "llvm/IR/Type.h"
98 #include "llvm/IR/User.h"
99 #include "llvm/IR/Value.h"
100 #include "llvm/MC/MCContext.h"
101 #include "llvm/MC/MCSymbol.h"
102 #include "llvm/Support/AtomicOrdering.h"
103 #include "llvm/Support/BranchProbability.h"
104 #include "llvm/Support/Casting.h"
105 #include "llvm/Support/CodeGen.h"
106 #include "llvm/Support/CommandLine.h"
107 #include "llvm/Support/Compiler.h"
108 #include "llvm/Support/Debug.h"
109 #include "llvm/Support/ErrorHandling.h"
110 #include "llvm/Support/MachineValueType.h"
111 #include "llvm/Support/MathExtras.h"
112 #include "llvm/Support/raw_ostream.h"
113 #include "llvm/Target/TargetIntrinsicInfo.h"
114 #include "llvm/Target/TargetMachine.h"
115 #include "llvm/Target/TargetOptions.h"
116 #include "llvm/Transforms/Utils/Local.h"
117 #include <algorithm>
118 #include <cassert>
119 #include <cstddef>
120 #include <cstdint>
121 #include <cstring>
122 #include <iterator>
123 #include <limits>
124 #include <numeric>
125 #include <tuple>
126 #include <utility>
127 #include <vector>
128 
129 using namespace llvm;
130 using namespace PatternMatch;
131 using namespace SwitchCG;
132 
133 #define DEBUG_TYPE "isel"
134 
135 /// LimitFloatPrecision - Generate low-precision inline sequences for
136 /// some float libcalls (6, 8 or 12 bits).
137 static unsigned LimitFloatPrecision;
138 
139 static cl::opt<unsigned, true>
140     LimitFPPrecision("limit-float-precision",
141                      cl::desc("Generate low-precision inline sequences "
142                               "for some float libcalls"),
143                      cl::location(LimitFloatPrecision), cl::Hidden,
144                      cl::init(0));
145 
146 static cl::opt<unsigned> SwitchPeelThreshold(
147     "switch-peel-threshold", cl::Hidden, cl::init(66),
148     cl::desc("Set the case probability threshold for peeling the case from a "
149              "switch statement. A value greater than 100 will void this "
150              "optimization"));
151 
152 // Limit the width of DAG chains. This is important in general to prevent
153 // DAG-based analysis from blowing up. For example, alias analysis and
154 // load clustering may not complete in reasonable time. It is difficult to
155 // recognize and avoid this situation within each individual analysis, and
156 // future analyses are likely to have the same behavior. Limiting DAG width is
157 // the safe approach and will be especially important with global DAGs.
158 //
159 // MaxParallelChains default is arbitrarily high to avoid affecting
160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
161 // sequence over this should have been converted to llvm.memcpy by the
162 // frontend. It is easy to induce this behavior with .ll code such as:
163 // %buffer = alloca [4096 x i8]
164 // %data = load [4096 x i8]* %argPtr
165 // store [4096 x i8] %data, [4096 x i8]* %buffer
166 static const unsigned MaxParallelChains = 64;
167 
168 // Return the calling convention if the Value passed requires ABI mangling as it
169 // is a parameter to a function or a return value from a function which is not
170 // an intrinsic.
171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
172   if (auto *R = dyn_cast<ReturnInst>(V))
173     return R->getParent()->getParent()->getCallingConv();
174 
175   if (auto *CI = dyn_cast<CallInst>(V)) {
176     const bool IsInlineAsm = CI->isInlineAsm();
177     const bool IsIndirectFunctionCall =
178         !IsInlineAsm && !CI->getCalledFunction();
179 
180     // It is possible that the call instruction is an inline asm statement or an
181     // indirect function call in which case the return value of
182     // getCalledFunction() would be nullptr.
183     const bool IsInstrinsicCall =
184         !IsInlineAsm && !IsIndirectFunctionCall &&
185         CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
186 
187     if (!IsInlineAsm && !IsInstrinsicCall)
188       return CI->getCallingConv();
189   }
190 
191   return None;
192 }
193 
194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
195                                       const SDValue *Parts, unsigned NumParts,
196                                       MVT PartVT, EVT ValueVT, const Value *V,
197                                       Optional<CallingConv::ID> CC);
198 
199 /// getCopyFromParts - Create a value that contains the specified legal parts
200 /// combined into the value they represent.  If the parts combine to a type
201 /// larger than ValueVT then AssertOp can be used to specify whether the extra
202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
203 /// (ISD::AssertSext).
204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
205                                 const SDValue *Parts, unsigned NumParts,
206                                 MVT PartVT, EVT ValueVT, const Value *V,
207                                 Optional<CallingConv::ID> CC = None,
208                                 Optional<ISD::NodeType> AssertOp = None) {
209   if (ValueVT.isVector())
210     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
211                                   CC);
212 
213   assert(NumParts > 0 && "No parts to assemble!");
214   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
215   SDValue Val = Parts[0];
216 
217   if (NumParts > 1) {
218     // Assemble the value from multiple parts.
219     if (ValueVT.isInteger()) {
220       unsigned PartBits = PartVT.getSizeInBits();
221       unsigned ValueBits = ValueVT.getSizeInBits();
222 
223       // Assemble the power of 2 part.
224       unsigned RoundParts =
225           (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
226       unsigned RoundBits = PartBits * RoundParts;
227       EVT RoundVT = RoundBits == ValueBits ?
228         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
229       SDValue Lo, Hi;
230 
231       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
232 
233       if (RoundParts > 2) {
234         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
235                               PartVT, HalfVT, V);
236         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
237                               RoundParts / 2, PartVT, HalfVT, V);
238       } else {
239         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
240         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
241       }
242 
243       if (DAG.getDataLayout().isBigEndian())
244         std::swap(Lo, Hi);
245 
246       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
247 
248       if (RoundParts < NumParts) {
249         // Assemble the trailing non-power-of-2 part.
250         unsigned OddParts = NumParts - RoundParts;
251         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
252         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
253                               OddVT, V, CC);
254 
255         // Combine the round and odd parts.
256         Lo = Val;
257         if (DAG.getDataLayout().isBigEndian())
258           std::swap(Lo, Hi);
259         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
260         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
261         Hi =
262             DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
263                         DAG.getConstant(Lo.getValueSizeInBits(), DL,
264                                         TLI.getPointerTy(DAG.getDataLayout())));
265         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
266         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
267       }
268     } else if (PartVT.isFloatingPoint()) {
269       // FP split into multiple FP parts (for ppcf128)
270       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
271              "Unexpected split");
272       SDValue Lo, Hi;
273       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
274       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
275       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
276         std::swap(Lo, Hi);
277       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
278     } else {
279       // FP split into integer parts (soft fp)
280       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
281              !PartVT.isVector() && "Unexpected split");
282       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
283       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
284     }
285   }
286 
287   // There is now one part, held in Val.  Correct it to match ValueVT.
288   // PartEVT is the type of the register class that holds the value.
289   // ValueVT is the type of the inline asm operation.
290   EVT PartEVT = Val.getValueType();
291 
292   if (PartEVT == ValueVT)
293     return Val;
294 
295   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
296       ValueVT.bitsLT(PartEVT)) {
297     // For an FP value in an integer part, we need to truncate to the right
298     // width first.
299     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
300     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
301   }
302 
303   // Handle types that have the same size.
304   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
305     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306 
307   // Handle types with different sizes.
308   if (PartEVT.isInteger() && ValueVT.isInteger()) {
309     if (ValueVT.bitsLT(PartEVT)) {
310       // For a truncate, see if we have any information to
311       // indicate whether the truncated bits will always be
312       // zero or sign-extension.
313       if (AssertOp.hasValue())
314         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
315                           DAG.getValueType(ValueVT));
316       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
317     }
318     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
319   }
320 
321   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
322     // FP_ROUND's are always exact here.
323     if (ValueVT.bitsLT(Val.getValueType()))
324       return DAG.getNode(
325           ISD::FP_ROUND, DL, ValueVT, Val,
326           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
327 
328     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
329   }
330 
331   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
332   // then truncating.
333   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
334       ValueVT.bitsLT(PartEVT)) {
335     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
336     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
337   }
338 
339   report_fatal_error("Unknown mismatch in getCopyFromParts!");
340 }
341 
342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
343                                               const Twine &ErrMsg) {
344   const Instruction *I = dyn_cast_or_null<Instruction>(V);
345   if (!V)
346     return Ctx.emitError(ErrMsg);
347 
348   const char *AsmError = ", possible invalid constraint for vector type";
349   if (const CallInst *CI = dyn_cast<CallInst>(I))
350     if (isa<InlineAsm>(CI->getCalledValue()))
351       return Ctx.emitError(I, ErrMsg + AsmError);
352 
353   return Ctx.emitError(I, ErrMsg);
354 }
355 
356 /// getCopyFromPartsVector - Create a value that contains the specified legal
357 /// parts combined into the value they represent.  If the parts combine to a
358 /// type larger than ValueVT then AssertOp can be used to specify whether the
359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
360 /// ValueVT (ISD::AssertSext).
361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
362                                       const SDValue *Parts, unsigned NumParts,
363                                       MVT PartVT, EVT ValueVT, const Value *V,
364                                       Optional<CallingConv::ID> CallConv) {
365   assert(ValueVT.isVector() && "Not a vector value");
366   assert(NumParts > 0 && "No parts to assemble!");
367   const bool IsABIRegCopy = CallConv.hasValue();
368 
369   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
370   SDValue Val = Parts[0];
371 
372   // Handle a multi-element vector.
373   if (NumParts > 1) {
374     EVT IntermediateVT;
375     MVT RegisterVT;
376     unsigned NumIntermediates;
377     unsigned NumRegs;
378 
379     if (IsABIRegCopy) {
380       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
381           *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
382           NumIntermediates, RegisterVT);
383     } else {
384       NumRegs =
385           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
386                                      NumIntermediates, RegisterVT);
387     }
388 
389     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
390     NumParts = NumRegs; // Silence a compiler warning.
391     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
392     assert(RegisterVT.getSizeInBits() ==
393            Parts[0].getSimpleValueType().getSizeInBits() &&
394            "Part type sizes don't match!");
395 
396     // Assemble the parts into intermediate operands.
397     SmallVector<SDValue, 8> Ops(NumIntermediates);
398     if (NumIntermediates == NumParts) {
399       // If the register was not expanded, truncate or copy the value,
400       // as appropriate.
401       for (unsigned i = 0; i != NumParts; ++i)
402         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
403                                   PartVT, IntermediateVT, V);
404     } else if (NumParts > 0) {
405       // If the intermediate type was expanded, build the intermediate
406       // operands from the parts.
407       assert(NumParts % NumIntermediates == 0 &&
408              "Must expand into a divisible number of parts!");
409       unsigned Factor = NumParts / NumIntermediates;
410       for (unsigned i = 0; i != NumIntermediates; ++i)
411         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
412                                   PartVT, IntermediateVT, V);
413     }
414 
415     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
416     // intermediate operands.
417     EVT BuiltVectorTy =
418         EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
419                          (IntermediateVT.isVector()
420                               ? IntermediateVT.getVectorNumElements() * NumParts
421                               : NumIntermediates));
422     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
423                                                 : ISD::BUILD_VECTOR,
424                       DL, BuiltVectorTy, Ops);
425   }
426 
427   // There is now one part, held in Val.  Correct it to match ValueVT.
428   EVT PartEVT = Val.getValueType();
429 
430   if (PartEVT == ValueVT)
431     return Val;
432 
433   if (PartEVT.isVector()) {
434     // If the element type of the source/dest vectors are the same, but the
435     // parts vector has more elements than the value vector, then we have a
436     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
437     // elements we want.
438     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
439       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
440              "Cannot narrow, it would be a lossy transformation");
441       return DAG.getNode(
442           ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
443           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
444     }
445 
446     // Vector/Vector bitcast.
447     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
448       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
449 
450     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
451       "Cannot handle this kind of promotion");
452     // Promoted vector extract
453     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
454 
455   }
456 
457   // Trivial bitcast if the types are the same size and the destination
458   // vector type is legal.
459   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
460       TLI.isTypeLegal(ValueVT))
461     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
462 
463   if (ValueVT.getVectorNumElements() != 1) {
464      // Certain ABIs require that vectors are passed as integers. For vectors
465      // are the same size, this is an obvious bitcast.
466      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
467        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
468      } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
469        // Bitcast Val back the original type and extract the corresponding
470        // vector we want.
471        unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
472        EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
473                                            ValueVT.getVectorElementType(), Elts);
474        Val = DAG.getBitcast(WiderVecType, Val);
475        return DAG.getNode(
476            ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
477            DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
478      }
479 
480      diagnosePossiblyInvalidConstraint(
481          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
482      return DAG.getUNDEF(ValueVT);
483   }
484 
485   // Handle cases such as i8 -> <1 x i1>
486   EVT ValueSVT = ValueVT.getVectorElementType();
487   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
488     Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
489                                     : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
490 
491   return DAG.getBuildVector(ValueVT, DL, Val);
492 }
493 
494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
495                                  SDValue Val, SDValue *Parts, unsigned NumParts,
496                                  MVT PartVT, const Value *V,
497                                  Optional<CallingConv::ID> CallConv);
498 
499 /// getCopyToParts - Create a series of nodes that contain the specified value
500 /// split into legal parts.  If the parts contain more bits than Val, then, for
501 /// integers, ExtendKind can be used to specify how to generate the extra bits.
502 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
503                            SDValue *Parts, unsigned NumParts, MVT PartVT,
504                            const Value *V,
505                            Optional<CallingConv::ID> CallConv = None,
506                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
507   EVT ValueVT = Val.getValueType();
508 
509   // Handle the vector case separately.
510   if (ValueVT.isVector())
511     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
512                                 CallConv);
513 
514   unsigned PartBits = PartVT.getSizeInBits();
515   unsigned OrigNumParts = NumParts;
516   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
517          "Copying to an illegal type!");
518 
519   if (NumParts == 0)
520     return;
521 
522   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
523   EVT PartEVT = PartVT;
524   if (PartEVT == ValueVT) {
525     assert(NumParts == 1 && "No-op copy with multiple parts!");
526     Parts[0] = Val;
527     return;
528   }
529 
530   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
531     // If the parts cover more bits than the value has, promote the value.
532     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
533       assert(NumParts == 1 && "Do not know what to promote to!");
534       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
535     } else {
536       if (ValueVT.isFloatingPoint()) {
537         // FP values need to be bitcast, then extended if they are being put
538         // into a larger container.
539         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
540         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
541       }
542       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
543              ValueVT.isInteger() &&
544              "Unknown mismatch!");
545       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
546       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
547       if (PartVT == MVT::x86mmx)
548         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
549     }
550   } else if (PartBits == ValueVT.getSizeInBits()) {
551     // Different types of the same size.
552     assert(NumParts == 1 && PartEVT != ValueVT);
553     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
554   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
555     // If the parts cover less bits than value has, truncate the value.
556     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
557            ValueVT.isInteger() &&
558            "Unknown mismatch!");
559     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
560     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
561     if (PartVT == MVT::x86mmx)
562       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
563   }
564 
565   // The value may have changed - recompute ValueVT.
566   ValueVT = Val.getValueType();
567   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
568          "Failed to tile the value with PartVT!");
569 
570   if (NumParts == 1) {
571     if (PartEVT != ValueVT) {
572       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
573                                         "scalar-to-vector conversion failed");
574       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
575     }
576 
577     Parts[0] = Val;
578     return;
579   }
580 
581   // Expand the value into multiple parts.
582   if (NumParts & (NumParts - 1)) {
583     // The number of parts is not a power of 2.  Split off and copy the tail.
584     assert(PartVT.isInteger() && ValueVT.isInteger() &&
585            "Do not know what to expand to!");
586     unsigned RoundParts = 1 << Log2_32(NumParts);
587     unsigned RoundBits = RoundParts * PartBits;
588     unsigned OddParts = NumParts - RoundParts;
589     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
590       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
591 
592     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
593                    CallConv);
594 
595     if (DAG.getDataLayout().isBigEndian())
596       // The odd parts were reversed by getCopyToParts - unreverse them.
597       std::reverse(Parts + RoundParts, Parts + NumParts);
598 
599     NumParts = RoundParts;
600     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
601     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
602   }
603 
604   // The number of parts is a power of 2.  Repeatedly bisect the value using
605   // EXTRACT_ELEMENT.
606   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
607                          EVT::getIntegerVT(*DAG.getContext(),
608                                            ValueVT.getSizeInBits()),
609                          Val);
610 
611   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
612     for (unsigned i = 0; i < NumParts; i += StepSize) {
613       unsigned ThisBits = StepSize * PartBits / 2;
614       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
615       SDValue &Part0 = Parts[i];
616       SDValue &Part1 = Parts[i+StepSize/2];
617 
618       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
619                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
620       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
621                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
622 
623       if (ThisBits == PartBits && ThisVT != PartVT) {
624         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
625         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
626       }
627     }
628   }
629 
630   if (DAG.getDataLayout().isBigEndian())
631     std::reverse(Parts, Parts + OrigNumParts);
632 }
633 
634 static SDValue widenVectorToPartType(SelectionDAG &DAG,
635                                      SDValue Val, const SDLoc &DL, EVT PartVT) {
636   if (!PartVT.isVector())
637     return SDValue();
638 
639   EVT ValueVT = Val.getValueType();
640   unsigned PartNumElts = PartVT.getVectorNumElements();
641   unsigned ValueNumElts = ValueVT.getVectorNumElements();
642   if (PartNumElts > ValueNumElts &&
643       PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
644     EVT ElementVT = PartVT.getVectorElementType();
645     // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
646     // undef elements.
647     SmallVector<SDValue, 16> Ops;
648     DAG.ExtractVectorElements(Val, Ops);
649     SDValue EltUndef = DAG.getUNDEF(ElementVT);
650     for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
651       Ops.push_back(EltUndef);
652 
653     // FIXME: Use CONCAT for 2x -> 4x.
654     return DAG.getBuildVector(PartVT, DL, Ops);
655   }
656 
657   return SDValue();
658 }
659 
660 /// getCopyToPartsVector - Create a series of nodes that contain the specified
661 /// value split into legal parts.
662 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
663                                  SDValue Val, SDValue *Parts, unsigned NumParts,
664                                  MVT PartVT, const Value *V,
665                                  Optional<CallingConv::ID> CallConv) {
666   EVT ValueVT = Val.getValueType();
667   assert(ValueVT.isVector() && "Not a vector");
668   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
669   const bool IsABIRegCopy = CallConv.hasValue();
670 
671   if (NumParts == 1) {
672     EVT PartEVT = PartVT;
673     if (PartEVT == ValueVT) {
674       // Nothing to do.
675     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
676       // Bitconvert vector->vector case.
677       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
678     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
679       Val = Widened;
680     } else if (PartVT.isVector() &&
681                PartEVT.getVectorElementType().bitsGE(
682                  ValueVT.getVectorElementType()) &&
683                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
684 
685       // Promoted vector extract
686       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
687     } else {
688       if (ValueVT.getVectorNumElements() == 1) {
689         Val = DAG.getNode(
690             ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
691             DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
692       } else {
693         assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
694                "lossy conversion of vector to scalar type");
695         EVT IntermediateType =
696             EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
697         Val = DAG.getBitcast(IntermediateType, Val);
698         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
699       }
700     }
701 
702     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
703     Parts[0] = Val;
704     return;
705   }
706 
707   // Handle a multi-element vector.
708   EVT IntermediateVT;
709   MVT RegisterVT;
710   unsigned NumIntermediates;
711   unsigned NumRegs;
712   if (IsABIRegCopy) {
713     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
714         *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
715         NumIntermediates, RegisterVT);
716   } else {
717     NumRegs =
718         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
719                                    NumIntermediates, RegisterVT);
720   }
721 
722   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
723   NumParts = NumRegs; // Silence a compiler warning.
724   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
725 
726   unsigned IntermediateNumElts = IntermediateVT.isVector() ?
727     IntermediateVT.getVectorNumElements() : 1;
728 
729   // Convert the vector to the appropriate type if necessary.
730   unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
731 
732   EVT BuiltVectorTy = EVT::getVectorVT(
733       *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
734   MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
735   if (ValueVT != BuiltVectorTy) {
736     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
737       Val = Widened;
738 
739     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
740   }
741 
742   // Split the vector into intermediate operands.
743   SmallVector<SDValue, 8> Ops(NumIntermediates);
744   for (unsigned i = 0; i != NumIntermediates; ++i) {
745     if (IntermediateVT.isVector()) {
746       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
747                            DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
748     } else {
749       Ops[i] = DAG.getNode(
750           ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
751           DAG.getConstant(i, DL, IdxVT));
752     }
753   }
754 
755   // Split the intermediate operands into legal parts.
756   if (NumParts == NumIntermediates) {
757     // If the register was not expanded, promote or copy the value,
758     // as appropriate.
759     for (unsigned i = 0; i != NumParts; ++i)
760       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
761   } else if (NumParts > 0) {
762     // If the intermediate type was expanded, split each the value into
763     // legal parts.
764     assert(NumIntermediates != 0 && "division by zero");
765     assert(NumParts % NumIntermediates == 0 &&
766            "Must expand into a divisible number of parts!");
767     unsigned Factor = NumParts / NumIntermediates;
768     for (unsigned i = 0; i != NumIntermediates; ++i)
769       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
770                      CallConv);
771   }
772 }
773 
774 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
775                            EVT valuevt, Optional<CallingConv::ID> CC)
776     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
777       RegCount(1, regs.size()), CallConv(CC) {}
778 
779 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
780                            const DataLayout &DL, unsigned Reg, Type *Ty,
781                            Optional<CallingConv::ID> CC) {
782   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
783 
784   CallConv = CC;
785 
786   for (EVT ValueVT : ValueVTs) {
787     unsigned NumRegs =
788         isABIMangled()
789             ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
790             : TLI.getNumRegisters(Context, ValueVT);
791     MVT RegisterVT =
792         isABIMangled()
793             ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
794             : TLI.getRegisterType(Context, ValueVT);
795     for (unsigned i = 0; i != NumRegs; ++i)
796       Regs.push_back(Reg + i);
797     RegVTs.push_back(RegisterVT);
798     RegCount.push_back(NumRegs);
799     Reg += NumRegs;
800   }
801 }
802 
803 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
804                                       FunctionLoweringInfo &FuncInfo,
805                                       const SDLoc &dl, SDValue &Chain,
806                                       SDValue *Flag, const Value *V) const {
807   // A Value with type {} or [0 x %t] needs no registers.
808   if (ValueVTs.empty())
809     return SDValue();
810 
811   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
812 
813   // Assemble the legal parts into the final values.
814   SmallVector<SDValue, 4> Values(ValueVTs.size());
815   SmallVector<SDValue, 8> Parts;
816   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
817     // Copy the legal parts from the registers.
818     EVT ValueVT = ValueVTs[Value];
819     unsigned NumRegs = RegCount[Value];
820     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
821                                           *DAG.getContext(),
822                                           CallConv.getValue(), RegVTs[Value])
823                                     : RegVTs[Value];
824 
825     Parts.resize(NumRegs);
826     for (unsigned i = 0; i != NumRegs; ++i) {
827       SDValue P;
828       if (!Flag) {
829         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
830       } else {
831         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
832         *Flag = P.getValue(2);
833       }
834 
835       Chain = P.getValue(1);
836       Parts[i] = P;
837 
838       // If the source register was virtual and if we know something about it,
839       // add an assert node.
840       if (!Register::isVirtualRegister(Regs[Part + i]) ||
841           !RegisterVT.isInteger())
842         continue;
843 
844       const FunctionLoweringInfo::LiveOutInfo *LOI =
845         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
846       if (!LOI)
847         continue;
848 
849       unsigned RegSize = RegisterVT.getScalarSizeInBits();
850       unsigned NumSignBits = LOI->NumSignBits;
851       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
852 
853       if (NumZeroBits == RegSize) {
854         // The current value is a zero.
855         // Explicitly express that as it would be easier for
856         // optimizations to kick in.
857         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
858         continue;
859       }
860 
861       // FIXME: We capture more information than the dag can represent.  For
862       // now, just use the tightest assertzext/assertsext possible.
863       bool isSExt;
864       EVT FromVT(MVT::Other);
865       if (NumZeroBits) {
866         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
867         isSExt = false;
868       } else if (NumSignBits > 1) {
869         FromVT =
870             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
871         isSExt = true;
872       } else {
873         continue;
874       }
875       // Add an assertion node.
876       assert(FromVT != MVT::Other);
877       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
878                              RegisterVT, P, DAG.getValueType(FromVT));
879     }
880 
881     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
882                                      RegisterVT, ValueVT, V, CallConv);
883     Part += NumRegs;
884     Parts.clear();
885   }
886 
887   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
888 }
889 
890 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
891                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
892                                  const Value *V,
893                                  ISD::NodeType PreferredExtendType) const {
894   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
895   ISD::NodeType ExtendKind = PreferredExtendType;
896 
897   // Get the list of the values's legal parts.
898   unsigned NumRegs = Regs.size();
899   SmallVector<SDValue, 8> Parts(NumRegs);
900   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
901     unsigned NumParts = RegCount[Value];
902 
903     MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
904                                           *DAG.getContext(),
905                                           CallConv.getValue(), RegVTs[Value])
906                                     : RegVTs[Value];
907 
908     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
909       ExtendKind = ISD::ZERO_EXTEND;
910 
911     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
912                    NumParts, RegisterVT, V, CallConv, ExtendKind);
913     Part += NumParts;
914   }
915 
916   // Copy the parts into the registers.
917   SmallVector<SDValue, 8> Chains(NumRegs);
918   for (unsigned i = 0; i != NumRegs; ++i) {
919     SDValue Part;
920     if (!Flag) {
921       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
922     } else {
923       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
924       *Flag = Part.getValue(1);
925     }
926 
927     Chains[i] = Part.getValue(0);
928   }
929 
930   if (NumRegs == 1 || Flag)
931     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
932     // flagged to it. That is the CopyToReg nodes and the user are considered
933     // a single scheduling unit. If we create a TokenFactor and return it as
934     // chain, then the TokenFactor is both a predecessor (operand) of the
935     // user as well as a successor (the TF operands are flagged to the user).
936     // c1, f1 = CopyToReg
937     // c2, f2 = CopyToReg
938     // c3     = TokenFactor c1, c2
939     // ...
940     //        = op c3, ..., f2
941     Chain = Chains[NumRegs-1];
942   else
943     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
944 }
945 
946 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
947                                         unsigned MatchingIdx, const SDLoc &dl,
948                                         SelectionDAG &DAG,
949                                         std::vector<SDValue> &Ops) const {
950   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
951 
952   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
953   if (HasMatching)
954     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
955   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
956     // Put the register class of the virtual registers in the flag word.  That
957     // way, later passes can recompute register class constraints for inline
958     // assembly as well as normal instructions.
959     // Don't do this for tied operands that can use the regclass information
960     // from the def.
961     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
962     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
963     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
964   }
965 
966   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
967   Ops.push_back(Res);
968 
969   if (Code == InlineAsm::Kind_Clobber) {
970     // Clobbers should always have a 1:1 mapping with registers, and may
971     // reference registers that have illegal (e.g. vector) types. Hence, we
972     // shouldn't try to apply any sort of splitting logic to them.
973     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
974            "No 1:1 mapping from clobbers to regs?");
975     unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
976     (void)SP;
977     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
978       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
979       assert(
980           (Regs[I] != SP ||
981            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
982           "If we clobbered the stack pointer, MFI should know about it.");
983     }
984     return;
985   }
986 
987   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
988     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
989     MVT RegisterVT = RegVTs[Value];
990     for (unsigned i = 0; i != NumRegs; ++i) {
991       assert(Reg < Regs.size() && "Mismatch in # registers expected");
992       unsigned TheReg = Regs[Reg++];
993       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
994     }
995   }
996 }
997 
998 SmallVector<std::pair<unsigned, unsigned>, 4>
999 RegsForValue::getRegsAndSizes() const {
1000   SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
1001   unsigned I = 0;
1002   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1003     unsigned RegCount = std::get<0>(CountAndVT);
1004     MVT RegisterVT = std::get<1>(CountAndVT);
1005     unsigned RegisterSize = RegisterVT.getSizeInBits();
1006     for (unsigned E = I + RegCount; I != E; ++I)
1007       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1008   }
1009   return OutVec;
1010 }
1011 
1012 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1013                                const TargetLibraryInfo *li) {
1014   AA = aa;
1015   GFI = gfi;
1016   LibInfo = li;
1017   DL = &DAG.getDataLayout();
1018   Context = DAG.getContext();
1019   LPadToCallSiteMap.clear();
1020   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1021 }
1022 
1023 void SelectionDAGBuilder::clear() {
1024   NodeMap.clear();
1025   UnusedArgNodeMap.clear();
1026   PendingLoads.clear();
1027   PendingExports.clear();
1028   CurInst = nullptr;
1029   HasTailCall = false;
1030   SDNodeOrder = LowestSDNodeOrder;
1031   StatepointLowering.clear();
1032 }
1033 
1034 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1035   DanglingDebugInfoMap.clear();
1036 }
1037 
1038 SDValue SelectionDAGBuilder::getRoot() {
1039   if (PendingLoads.empty())
1040     return DAG.getRoot();
1041 
1042   if (PendingLoads.size() == 1) {
1043     SDValue Root = PendingLoads[0];
1044     DAG.setRoot(Root);
1045     PendingLoads.clear();
1046     return Root;
1047   }
1048 
1049   // Otherwise, we have to make a token factor node.
1050   SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1051   PendingLoads.clear();
1052   DAG.setRoot(Root);
1053   return Root;
1054 }
1055 
1056 SDValue SelectionDAGBuilder::getControlRoot() {
1057   SDValue Root = DAG.getRoot();
1058 
1059   if (PendingExports.empty())
1060     return Root;
1061 
1062   // Turn all of the CopyToReg chains into one factored node.
1063   if (Root.getOpcode() != ISD::EntryToken) {
1064     unsigned i = 0, e = PendingExports.size();
1065     for (; i != e; ++i) {
1066       assert(PendingExports[i].getNode()->getNumOperands() > 1);
1067       if (PendingExports[i].getNode()->getOperand(0) == Root)
1068         break;  // Don't add the root if we already indirectly depend on it.
1069     }
1070 
1071     if (i == e)
1072       PendingExports.push_back(Root);
1073   }
1074 
1075   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1076                      PendingExports);
1077   PendingExports.clear();
1078   DAG.setRoot(Root);
1079   return Root;
1080 }
1081 
1082 void SelectionDAGBuilder::visit(const Instruction &I) {
1083   // Set up outgoing PHI node register values before emitting the terminator.
1084   if (I.isTerminator()) {
1085     HandlePHINodesInSuccessorBlocks(I.getParent());
1086   }
1087 
1088   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1089   if (!isa<DbgInfoIntrinsic>(I))
1090     ++SDNodeOrder;
1091 
1092   CurInst = &I;
1093 
1094   visit(I.getOpcode(), I);
1095 
1096   if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1097     // Propagate the fast-math-flags of this IR instruction to the DAG node that
1098     // maps to this instruction.
1099     // TODO: We could handle all flags (nsw, etc) here.
1100     // TODO: If an IR instruction maps to >1 node, only the final node will have
1101     //       flags set.
1102     if (SDNode *Node = getNodeForIRValue(&I)) {
1103       SDNodeFlags IncomingFlags;
1104       IncomingFlags.copyFMF(*FPMO);
1105       if (!Node->getFlags().isDefined())
1106         Node->setFlags(IncomingFlags);
1107       else
1108         Node->intersectFlagsWith(IncomingFlags);
1109     }
1110   }
1111 
1112   if (!I.isTerminator() && !HasTailCall &&
1113       !isStatepoint(&I)) // statepoints handle their exports internally
1114     CopyToExportRegsIfNeeded(&I);
1115 
1116   CurInst = nullptr;
1117 }
1118 
1119 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1120   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1121 }
1122 
1123 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1124   // Note: this doesn't use InstVisitor, because it has to work with
1125   // ConstantExpr's in addition to instructions.
1126   switch (Opcode) {
1127   default: llvm_unreachable("Unknown instruction type encountered!");
1128     // Build the switch statement using the Instruction.def file.
1129 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1130     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1131 #include "llvm/IR/Instruction.def"
1132   }
1133 }
1134 
1135 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1136                                                 const DIExpression *Expr) {
1137   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1138     const DbgValueInst *DI = DDI.getDI();
1139     DIVariable *DanglingVariable = DI->getVariable();
1140     DIExpression *DanglingExpr = DI->getExpression();
1141     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1142       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1143       return true;
1144     }
1145     return false;
1146   };
1147 
1148   for (auto &DDIMI : DanglingDebugInfoMap) {
1149     DanglingDebugInfoVector &DDIV = DDIMI.second;
1150 
1151     // If debug info is to be dropped, run it through final checks to see
1152     // whether it can be salvaged.
1153     for (auto &DDI : DDIV)
1154       if (isMatchingDbgValue(DDI))
1155         salvageUnresolvedDbgValue(DDI);
1156 
1157     DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1158   }
1159 }
1160 
1161 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1162 // generate the debug data structures now that we've seen its definition.
1163 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1164                                                    SDValue Val) {
1165   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1166   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1167     return;
1168 
1169   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1170   for (auto &DDI : DDIV) {
1171     const DbgValueInst *DI = DDI.getDI();
1172     assert(DI && "Ill-formed DanglingDebugInfo");
1173     DebugLoc dl = DDI.getdl();
1174     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1175     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1176     DILocalVariable *Variable = DI->getVariable();
1177     DIExpression *Expr = DI->getExpression();
1178     assert(Variable->isValidLocationForIntrinsic(dl) &&
1179            "Expected inlined-at fields to agree");
1180     SDDbgValue *SDV;
1181     if (Val.getNode()) {
1182       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1183       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1184       // we couldn't resolve it directly when examining the DbgValue intrinsic
1185       // in the first place we should not be more successful here). Unless we
1186       // have some test case that prove this to be correct we should avoid
1187       // calling EmitFuncArgumentDbgValue here.
1188       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1189         LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1190                           << DbgSDNodeOrder << "] for:\n  " << *DI << "\n");
1191         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1192         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1193         // inserted after the definition of Val when emitting the instructions
1194         // after ISel. An alternative could be to teach
1195         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1196         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1197                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1198                    << ValSDNodeOrder << "\n");
1199         SDV = getDbgValue(Val, Variable, Expr, dl,
1200                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1201         DAG.AddDbgValue(SDV, Val.getNode(), false);
1202       } else
1203         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1204                           << "in EmitFuncArgumentDbgValue\n");
1205     } else {
1206       LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1207       auto Undef =
1208           UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1209       auto SDV =
1210           DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1211       DAG.AddDbgValue(SDV, nullptr, false);
1212     }
1213   }
1214   DDIV.clear();
1215 }
1216 
1217 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1218   Value *V = DDI.getDI()->getValue();
1219   DILocalVariable *Var = DDI.getDI()->getVariable();
1220   DIExpression *Expr = DDI.getDI()->getExpression();
1221   DebugLoc DL = DDI.getdl();
1222   DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1223   unsigned SDOrder = DDI.getSDNodeOrder();
1224 
1225   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1226   // that DW_OP_stack_value is desired.
1227   assert(isa<DbgValueInst>(DDI.getDI()));
1228   bool StackValue = true;
1229 
1230   // Can this Value can be encoded without any further work?
1231   if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1232     return;
1233 
1234   // Attempt to salvage back through as many instructions as possible. Bail if
1235   // a non-instruction is seen, such as a constant expression or global
1236   // variable. FIXME: Further work could recover those too.
1237   while (isa<Instruction>(V)) {
1238     Instruction &VAsInst = *cast<Instruction>(V);
1239     DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1240 
1241     // If we cannot salvage any further, and haven't yet found a suitable debug
1242     // expression, bail out.
1243     if (!NewExpr)
1244       break;
1245 
1246     // New value and expr now represent this debuginfo.
1247     V = VAsInst.getOperand(0);
1248     Expr = NewExpr;
1249 
1250     // Some kind of simplification occurred: check whether the operand of the
1251     // salvaged debug expression can be encoded in this DAG.
1252     if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1253       LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n  "
1254                         << DDI.getDI() << "\nBy stripping back to:\n  " << V);
1255       return;
1256     }
1257   }
1258 
1259   // This was the final opportunity to salvage this debug information, and it
1260   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1261   // any earlier variable location.
1262   auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1263   auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1264   DAG.AddDbgValue(SDV, nullptr, false);
1265 
1266   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << DDI.getDI()
1267                     << "\n");
1268   LLVM_DEBUG(dbgs() << "  Last seen at:\n    " << *DDI.getDI()->getOperand(0)
1269                     << "\n");
1270 }
1271 
1272 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1273                                            DIExpression *Expr, DebugLoc dl,
1274                                            DebugLoc InstDL, unsigned Order) {
1275   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1276   SDDbgValue *SDV;
1277   if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1278       isa<ConstantPointerNull>(V)) {
1279     SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1280     DAG.AddDbgValue(SDV, nullptr, false);
1281     return true;
1282   }
1283 
1284   // If the Value is a frame index, we can create a FrameIndex debug value
1285   // without relying on the DAG at all.
1286   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1287     auto SI = FuncInfo.StaticAllocaMap.find(AI);
1288     if (SI != FuncInfo.StaticAllocaMap.end()) {
1289       auto SDV =
1290           DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1291                                     /*IsIndirect*/ false, dl, SDNodeOrder);
1292       // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1293       // is still available even if the SDNode gets optimized out.
1294       DAG.AddDbgValue(SDV, nullptr, false);
1295       return true;
1296     }
1297   }
1298 
1299   // Do not use getValue() in here; we don't want to generate code at
1300   // this point if it hasn't been done yet.
1301   SDValue N = NodeMap[V];
1302   if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1303     N = UnusedArgNodeMap[V];
1304   if (N.getNode()) {
1305     if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1306       return true;
1307     SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1308     DAG.AddDbgValue(SDV, N.getNode(), false);
1309     return true;
1310   }
1311 
1312   // Special rules apply for the first dbg.values of parameter variables in a
1313   // function. Identify them by the fact they reference Argument Values, that
1314   // they're parameters, and they are parameters of the current function. We
1315   // need to let them dangle until they get an SDNode.
1316   bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1317                        !InstDL.getInlinedAt();
1318   if (!IsParamOfFunc) {
1319     // The value is not used in this block yet (or it would have an SDNode).
1320     // We still want the value to appear for the user if possible -- if it has
1321     // an associated VReg, we can refer to that instead.
1322     auto VMI = FuncInfo.ValueMap.find(V);
1323     if (VMI != FuncInfo.ValueMap.end()) {
1324       unsigned Reg = VMI->second;
1325       // If this is a PHI node, it may be split up into several MI PHI nodes
1326       // (in FunctionLoweringInfo::set).
1327       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1328                        V->getType(), None);
1329       if (RFV.occupiesMultipleRegs()) {
1330         unsigned Offset = 0;
1331         unsigned BitsToDescribe = 0;
1332         if (auto VarSize = Var->getSizeInBits())
1333           BitsToDescribe = *VarSize;
1334         if (auto Fragment = Expr->getFragmentInfo())
1335           BitsToDescribe = Fragment->SizeInBits;
1336         for (auto RegAndSize : RFV.getRegsAndSizes()) {
1337           unsigned RegisterSize = RegAndSize.second;
1338           // Bail out if all bits are described already.
1339           if (Offset >= BitsToDescribe)
1340             break;
1341           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1342               ? BitsToDescribe - Offset
1343               : RegisterSize;
1344           auto FragmentExpr = DIExpression::createFragmentExpression(
1345               Expr, Offset, FragmentSize);
1346           if (!FragmentExpr)
1347               continue;
1348           SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1349                                     false, dl, SDNodeOrder);
1350           DAG.AddDbgValue(SDV, nullptr, false);
1351           Offset += RegisterSize;
1352         }
1353       } else {
1354         SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1355         DAG.AddDbgValue(SDV, nullptr, false);
1356       }
1357       return true;
1358     }
1359   }
1360 
1361   return false;
1362 }
1363 
1364 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1365   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1366   for (auto &Pair : DanglingDebugInfoMap)
1367     for (auto &DDI : Pair.second)
1368       salvageUnresolvedDbgValue(DDI);
1369   clearDanglingDebugInfo();
1370 }
1371 
1372 /// getCopyFromRegs - If there was virtual register allocated for the value V
1373 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1374 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1375   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1376   SDValue Result;
1377 
1378   if (It != FuncInfo.ValueMap.end()) {
1379     unsigned InReg = It->second;
1380 
1381     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1382                      DAG.getDataLayout(), InReg, Ty,
1383                      None); // This is not an ABI copy.
1384     SDValue Chain = DAG.getEntryNode();
1385     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1386                                  V);
1387     resolveDanglingDebugInfo(V, Result);
1388   }
1389 
1390   return Result;
1391 }
1392 
1393 /// getValue - Return an SDValue for the given Value.
1394 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1395   // If we already have an SDValue for this value, use it. It's important
1396   // to do this first, so that we don't create a CopyFromReg if we already
1397   // have a regular SDValue.
1398   SDValue &N = NodeMap[V];
1399   if (N.getNode()) return N;
1400 
1401   // If there's a virtual register allocated and initialized for this
1402   // value, use it.
1403   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1404     return copyFromReg;
1405 
1406   // Otherwise create a new SDValue and remember it.
1407   SDValue Val = getValueImpl(V);
1408   NodeMap[V] = Val;
1409   resolveDanglingDebugInfo(V, Val);
1410   return Val;
1411 }
1412 
1413 // Return true if SDValue exists for the given Value
1414 bool SelectionDAGBuilder::findValue(const Value *V) const {
1415   return (NodeMap.find(V) != NodeMap.end()) ||
1416     (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1417 }
1418 
1419 /// getNonRegisterValue - Return an SDValue for the given Value, but
1420 /// don't look in FuncInfo.ValueMap for a virtual register.
1421 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1422   // If we already have an SDValue for this value, use it.
1423   SDValue &N = NodeMap[V];
1424   if (N.getNode()) {
1425     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1426       // Remove the debug location from the node as the node is about to be used
1427       // in a location which may differ from the original debug location.  This
1428       // is relevant to Constant and ConstantFP nodes because they can appear
1429       // as constant expressions inside PHI nodes.
1430       N->setDebugLoc(DebugLoc());
1431     }
1432     return N;
1433   }
1434 
1435   // Otherwise create a new SDValue and remember it.
1436   SDValue Val = getValueImpl(V);
1437   NodeMap[V] = Val;
1438   resolveDanglingDebugInfo(V, Val);
1439   return Val;
1440 }
1441 
1442 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1443 /// Create an SDValue for the given value.
1444 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1445   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1446 
1447   if (const Constant *C = dyn_cast<Constant>(V)) {
1448     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1449 
1450     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1451       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1452 
1453     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1454       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1455 
1456     if (isa<ConstantPointerNull>(C)) {
1457       unsigned AS = V->getType()->getPointerAddressSpace();
1458       return DAG.getConstant(0, getCurSDLoc(),
1459                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1460     }
1461 
1462     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1463       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1464 
1465     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1466       return DAG.getUNDEF(VT);
1467 
1468     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1469       visit(CE->getOpcode(), *CE);
1470       SDValue N1 = NodeMap[V];
1471       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1472       return N1;
1473     }
1474 
1475     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1476       SmallVector<SDValue, 4> Constants;
1477       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1478            OI != OE; ++OI) {
1479         SDNode *Val = getValue(*OI).getNode();
1480         // If the operand is an empty aggregate, there are no values.
1481         if (!Val) continue;
1482         // Add each leaf value from the operand to the Constants list
1483         // to form a flattened list of all the values.
1484         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1485           Constants.push_back(SDValue(Val, i));
1486       }
1487 
1488       return DAG.getMergeValues(Constants, getCurSDLoc());
1489     }
1490 
1491     if (const ConstantDataSequential *CDS =
1492           dyn_cast<ConstantDataSequential>(C)) {
1493       SmallVector<SDValue, 4> Ops;
1494       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1495         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1496         // Add each leaf value from the operand to the Constants list
1497         // to form a flattened list of all the values.
1498         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1499           Ops.push_back(SDValue(Val, i));
1500       }
1501 
1502       if (isa<ArrayType>(CDS->getType()))
1503         return DAG.getMergeValues(Ops, getCurSDLoc());
1504       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1505     }
1506 
1507     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1508       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1509              "Unknown struct or array constant!");
1510 
1511       SmallVector<EVT, 4> ValueVTs;
1512       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1513       unsigned NumElts = ValueVTs.size();
1514       if (NumElts == 0)
1515         return SDValue(); // empty struct
1516       SmallVector<SDValue, 4> Constants(NumElts);
1517       for (unsigned i = 0; i != NumElts; ++i) {
1518         EVT EltVT = ValueVTs[i];
1519         if (isa<UndefValue>(C))
1520           Constants[i] = DAG.getUNDEF(EltVT);
1521         else if (EltVT.isFloatingPoint())
1522           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1523         else
1524           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1525       }
1526 
1527       return DAG.getMergeValues(Constants, getCurSDLoc());
1528     }
1529 
1530     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1531       return DAG.getBlockAddress(BA, VT);
1532 
1533     VectorType *VecTy = cast<VectorType>(V->getType());
1534     unsigned NumElements = VecTy->getNumElements();
1535 
1536     // Now that we know the number and type of the elements, get that number of
1537     // elements into the Ops array based on what kind of constant it is.
1538     SmallVector<SDValue, 16> Ops;
1539     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1540       for (unsigned i = 0; i != NumElements; ++i)
1541         Ops.push_back(getValue(CV->getOperand(i)));
1542     } else {
1543       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1544       EVT EltVT =
1545           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1546 
1547       SDValue Op;
1548       if (EltVT.isFloatingPoint())
1549         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1550       else
1551         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1552       Ops.assign(NumElements, Op);
1553     }
1554 
1555     // Create a BUILD_VECTOR node.
1556     return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1557   }
1558 
1559   // If this is a static alloca, generate it as the frameindex instead of
1560   // computation.
1561   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1562     DenseMap<const AllocaInst*, int>::iterator SI =
1563       FuncInfo.StaticAllocaMap.find(AI);
1564     if (SI != FuncInfo.StaticAllocaMap.end())
1565       return DAG.getFrameIndex(SI->second,
1566                                TLI.getFrameIndexTy(DAG.getDataLayout()));
1567   }
1568 
1569   // If this is an instruction which fast-isel has deferred, select it now.
1570   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1571     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1572 
1573     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1574                      Inst->getType(), getABIRegCopyCC(V));
1575     SDValue Chain = DAG.getEntryNode();
1576     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1577   }
1578 
1579   llvm_unreachable("Can't get register for value!");
1580 }
1581 
1582 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1583   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1584   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1585   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1586   bool IsSEH = isAsynchronousEHPersonality(Pers);
1587   bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1588   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1589   if (!IsSEH)
1590     CatchPadMBB->setIsEHScopeEntry();
1591   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1592   if (IsMSVCCXX || IsCoreCLR)
1593     CatchPadMBB->setIsEHFuncletEntry();
1594   // Wasm does not need catchpads anymore
1595   if (!IsWasmCXX)
1596     DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1597                             getControlRoot()));
1598 }
1599 
1600 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1601   // Update machine-CFG edge.
1602   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1603   FuncInfo.MBB->addSuccessor(TargetMBB);
1604 
1605   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1606   bool IsSEH = isAsynchronousEHPersonality(Pers);
1607   if (IsSEH) {
1608     // If this is not a fall-through branch or optimizations are switched off,
1609     // emit the branch.
1610     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1611         TM.getOptLevel() == CodeGenOpt::None)
1612       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1613                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1614     return;
1615   }
1616 
1617   // Figure out the funclet membership for the catchret's successor.
1618   // This will be used by the FuncletLayout pass to determine how to order the
1619   // BB's.
1620   // A 'catchret' returns to the outer scope's color.
1621   Value *ParentPad = I.getCatchSwitchParentPad();
1622   const BasicBlock *SuccessorColor;
1623   if (isa<ConstantTokenNone>(ParentPad))
1624     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1625   else
1626     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1627   assert(SuccessorColor && "No parent funclet for catchret!");
1628   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1629   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1630 
1631   // Create the terminator node.
1632   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1633                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1634                             DAG.getBasicBlock(SuccessorColorMBB));
1635   DAG.setRoot(Ret);
1636 }
1637 
1638 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1639   // Don't emit any special code for the cleanuppad instruction. It just marks
1640   // the start of an EH scope/funclet.
1641   FuncInfo.MBB->setIsEHScopeEntry();
1642   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1643   if (Pers != EHPersonality::Wasm_CXX) {
1644     FuncInfo.MBB->setIsEHFuncletEntry();
1645     FuncInfo.MBB->setIsCleanupFuncletEntry();
1646   }
1647 }
1648 
1649 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1650 // the control flow always stops at the single catch pad, as it does for a
1651 // cleanup pad. In case the exception caught is not of the types the catch pad
1652 // catches, it will be rethrown by a rethrow.
1653 static void findWasmUnwindDestinations(
1654     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1655     BranchProbability Prob,
1656     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1657         &UnwindDests) {
1658   while (EHPadBB) {
1659     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1660     if (isa<CleanupPadInst>(Pad)) {
1661       // Stop on cleanup pads.
1662       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1663       UnwindDests.back().first->setIsEHScopeEntry();
1664       break;
1665     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1666       // Add the catchpad handlers to the possible destinations. We don't
1667       // continue to the unwind destination of the catchswitch for wasm.
1668       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1669         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1670         UnwindDests.back().first->setIsEHScopeEntry();
1671       }
1672       break;
1673     } else {
1674       continue;
1675     }
1676   }
1677 }
1678 
1679 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1680 /// many places it could ultimately go. In the IR, we have a single unwind
1681 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1682 /// This function skips over imaginary basic blocks that hold catchswitch
1683 /// instructions, and finds all the "real" machine
1684 /// basic block destinations. As those destinations may not be successors of
1685 /// EHPadBB, here we also calculate the edge probability to those destinations.
1686 /// The passed-in Prob is the edge probability to EHPadBB.
1687 static void findUnwindDestinations(
1688     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1689     BranchProbability Prob,
1690     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1691         &UnwindDests) {
1692   EHPersonality Personality =
1693     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1694   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1695   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1696   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1697   bool IsSEH = isAsynchronousEHPersonality(Personality);
1698 
1699   if (IsWasmCXX) {
1700     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1701     assert(UnwindDests.size() <= 1 &&
1702            "There should be at most one unwind destination for wasm");
1703     return;
1704   }
1705 
1706   while (EHPadBB) {
1707     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1708     BasicBlock *NewEHPadBB = nullptr;
1709     if (isa<LandingPadInst>(Pad)) {
1710       // Stop on landingpads. They are not funclets.
1711       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1712       break;
1713     } else if (isa<CleanupPadInst>(Pad)) {
1714       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1715       // personalities.
1716       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1717       UnwindDests.back().first->setIsEHScopeEntry();
1718       UnwindDests.back().first->setIsEHFuncletEntry();
1719       break;
1720     } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1721       // Add the catchpad handlers to the possible destinations.
1722       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1723         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1724         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1725         if (IsMSVCCXX || IsCoreCLR)
1726           UnwindDests.back().first->setIsEHFuncletEntry();
1727         if (!IsSEH)
1728           UnwindDests.back().first->setIsEHScopeEntry();
1729       }
1730       NewEHPadBB = CatchSwitch->getUnwindDest();
1731     } else {
1732       continue;
1733     }
1734 
1735     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1736     if (BPI && NewEHPadBB)
1737       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1738     EHPadBB = NewEHPadBB;
1739   }
1740 }
1741 
1742 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1743   // Update successor info.
1744   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1745   auto UnwindDest = I.getUnwindDest();
1746   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1747   BranchProbability UnwindDestProb =
1748       (BPI && UnwindDest)
1749           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1750           : BranchProbability::getZero();
1751   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1752   for (auto &UnwindDest : UnwindDests) {
1753     UnwindDest.first->setIsEHPad();
1754     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1755   }
1756   FuncInfo.MBB->normalizeSuccProbs();
1757 
1758   // Create the terminator node.
1759   SDValue Ret =
1760       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1761   DAG.setRoot(Ret);
1762 }
1763 
1764 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1765   report_fatal_error("visitCatchSwitch not yet implemented!");
1766 }
1767 
1768 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1769   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1770   auto &DL = DAG.getDataLayout();
1771   SDValue Chain = getControlRoot();
1772   SmallVector<ISD::OutputArg, 8> Outs;
1773   SmallVector<SDValue, 8> OutVals;
1774 
1775   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1776   // lower
1777   //
1778   //   %val = call <ty> @llvm.experimental.deoptimize()
1779   //   ret <ty> %val
1780   //
1781   // differently.
1782   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1783     LowerDeoptimizingReturn();
1784     return;
1785   }
1786 
1787   if (!FuncInfo.CanLowerReturn) {
1788     unsigned DemoteReg = FuncInfo.DemoteRegister;
1789     const Function *F = I.getParent()->getParent();
1790 
1791     // Emit a store of the return value through the virtual register.
1792     // Leave Outs empty so that LowerReturn won't try to load return
1793     // registers the usual way.
1794     SmallVector<EVT, 1> PtrValueVTs;
1795     ComputeValueVTs(TLI, DL,
1796                     F->getReturnType()->getPointerTo(
1797                         DAG.getDataLayout().getAllocaAddrSpace()),
1798                     PtrValueVTs);
1799 
1800     SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1801                                         DemoteReg, PtrValueVTs[0]);
1802     SDValue RetOp = getValue(I.getOperand(0));
1803 
1804     SmallVector<EVT, 4> ValueVTs, MemVTs;
1805     SmallVector<uint64_t, 4> Offsets;
1806     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1807                     &Offsets);
1808     unsigned NumValues = ValueVTs.size();
1809 
1810     SmallVector<SDValue, 4> Chains(NumValues);
1811     for (unsigned i = 0; i != NumValues; ++i) {
1812       // An aggregate return value cannot wrap around the address space, so
1813       // offsets to its parts don't wrap either.
1814       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1815 
1816       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
1817       if (MemVTs[i] != ValueVTs[i])
1818         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1819       Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1820           // FIXME: better loc info would be nice.
1821           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1822     }
1823 
1824     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1825                         MVT::Other, Chains);
1826   } else if (I.getNumOperands() != 0) {
1827     SmallVector<EVT, 4> ValueVTs;
1828     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1829     unsigned NumValues = ValueVTs.size();
1830     if (NumValues) {
1831       SDValue RetOp = getValue(I.getOperand(0));
1832 
1833       const Function *F = I.getParent()->getParent();
1834 
1835       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1836           I.getOperand(0)->getType(), F->getCallingConv(),
1837           /*IsVarArg*/ false);
1838 
1839       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1840       if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1841                                           Attribute::SExt))
1842         ExtendKind = ISD::SIGN_EXTEND;
1843       else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1844                                                Attribute::ZExt))
1845         ExtendKind = ISD::ZERO_EXTEND;
1846 
1847       LLVMContext &Context = F->getContext();
1848       bool RetInReg = F->getAttributes().hasAttribute(
1849           AttributeList::ReturnIndex, Attribute::InReg);
1850 
1851       for (unsigned j = 0; j != NumValues; ++j) {
1852         EVT VT = ValueVTs[j];
1853 
1854         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1855           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1856 
1857         CallingConv::ID CC = F->getCallingConv();
1858 
1859         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1860         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1861         SmallVector<SDValue, 4> Parts(NumParts);
1862         getCopyToParts(DAG, getCurSDLoc(),
1863                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1864                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1865 
1866         // 'inreg' on function refers to return value
1867         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1868         if (RetInReg)
1869           Flags.setInReg();
1870 
1871         if (I.getOperand(0)->getType()->isPointerTy()) {
1872           Flags.setPointer();
1873           Flags.setPointerAddrSpace(
1874               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1875         }
1876 
1877         if (NeedsRegBlock) {
1878           Flags.setInConsecutiveRegs();
1879           if (j == NumValues - 1)
1880             Flags.setInConsecutiveRegsLast();
1881         }
1882 
1883         // Propagate extension type if any
1884         if (ExtendKind == ISD::SIGN_EXTEND)
1885           Flags.setSExt();
1886         else if (ExtendKind == ISD::ZERO_EXTEND)
1887           Flags.setZExt();
1888 
1889         for (unsigned i = 0; i < NumParts; ++i) {
1890           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1891                                         VT, /*isfixed=*/true, 0, 0));
1892           OutVals.push_back(Parts[i]);
1893         }
1894       }
1895     }
1896   }
1897 
1898   // Push in swifterror virtual register as the last element of Outs. This makes
1899   // sure swifterror virtual register will be returned in the swifterror
1900   // physical register.
1901   const Function *F = I.getParent()->getParent();
1902   if (TLI.supportSwiftError() &&
1903       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1904     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
1905     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1906     Flags.setSwiftError();
1907     Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1908                                   EVT(TLI.getPointerTy(DL)) /*argvt*/,
1909                                   true /*isfixed*/, 1 /*origidx*/,
1910                                   0 /*partOffs*/));
1911     // Create SDNode for the swifterror virtual register.
1912     OutVals.push_back(
1913         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
1914                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
1915                         EVT(TLI.getPointerTy(DL))));
1916   }
1917 
1918   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1919   CallingConv::ID CallConv =
1920     DAG.getMachineFunction().getFunction().getCallingConv();
1921   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1922       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1923 
1924   // Verify that the target's LowerReturn behaved as expected.
1925   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1926          "LowerReturn didn't return a valid chain!");
1927 
1928   // Update the DAG with the new chain value resulting from return lowering.
1929   DAG.setRoot(Chain);
1930 }
1931 
1932 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1933 /// created for it, emit nodes to copy the value into the virtual
1934 /// registers.
1935 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1936   // Skip empty types
1937   if (V->getType()->isEmptyTy())
1938     return;
1939 
1940   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1941   if (VMI != FuncInfo.ValueMap.end()) {
1942     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1943     CopyValueToVirtualRegister(V, VMI->second);
1944   }
1945 }
1946 
1947 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1948 /// the current basic block, add it to ValueMap now so that we'll get a
1949 /// CopyTo/FromReg.
1950 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1951   // No need to export constants.
1952   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1953 
1954   // Already exported?
1955   if (FuncInfo.isExportedInst(V)) return;
1956 
1957   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1958   CopyValueToVirtualRegister(V, Reg);
1959 }
1960 
1961 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1962                                                      const BasicBlock *FromBB) {
1963   // The operands of the setcc have to be in this block.  We don't know
1964   // how to export them from some other block.
1965   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1966     // Can export from current BB.
1967     if (VI->getParent() == FromBB)
1968       return true;
1969 
1970     // Is already exported, noop.
1971     return FuncInfo.isExportedInst(V);
1972   }
1973 
1974   // If this is an argument, we can export it if the BB is the entry block or
1975   // if it is already exported.
1976   if (isa<Argument>(V)) {
1977     if (FromBB == &FromBB->getParent()->getEntryBlock())
1978       return true;
1979 
1980     // Otherwise, can only export this if it is already exported.
1981     return FuncInfo.isExportedInst(V);
1982   }
1983 
1984   // Otherwise, constants can always be exported.
1985   return true;
1986 }
1987 
1988 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1989 BranchProbability
1990 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1991                                         const MachineBasicBlock *Dst) const {
1992   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1993   const BasicBlock *SrcBB = Src->getBasicBlock();
1994   const BasicBlock *DstBB = Dst->getBasicBlock();
1995   if (!BPI) {
1996     // If BPI is not available, set the default probability as 1 / N, where N is
1997     // the number of successors.
1998     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1999     return BranchProbability(1, SuccSize);
2000   }
2001   return BPI->getEdgeProbability(SrcBB, DstBB);
2002 }
2003 
2004 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2005                                                MachineBasicBlock *Dst,
2006                                                BranchProbability Prob) {
2007   if (!FuncInfo.BPI)
2008     Src->addSuccessorWithoutProb(Dst);
2009   else {
2010     if (Prob.isUnknown())
2011       Prob = getEdgeProbability(Src, Dst);
2012     Src->addSuccessor(Dst, Prob);
2013   }
2014 }
2015 
2016 static bool InBlock(const Value *V, const BasicBlock *BB) {
2017   if (const Instruction *I = dyn_cast<Instruction>(V))
2018     return I->getParent() == BB;
2019   return true;
2020 }
2021 
2022 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2023 /// This function emits a branch and is used at the leaves of an OR or an
2024 /// AND operator tree.
2025 void
2026 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2027                                                   MachineBasicBlock *TBB,
2028                                                   MachineBasicBlock *FBB,
2029                                                   MachineBasicBlock *CurBB,
2030                                                   MachineBasicBlock *SwitchBB,
2031                                                   BranchProbability TProb,
2032                                                   BranchProbability FProb,
2033                                                   bool InvertCond) {
2034   const BasicBlock *BB = CurBB->getBasicBlock();
2035 
2036   // If the leaf of the tree is a comparison, merge the condition into
2037   // the caseblock.
2038   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2039     // The operands of the cmp have to be in this block.  We don't know
2040     // how to export them from some other block.  If this is the first block
2041     // of the sequence, no exporting is needed.
2042     if (CurBB == SwitchBB ||
2043         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2044          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2045       ISD::CondCode Condition;
2046       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2047         ICmpInst::Predicate Pred =
2048             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2049         Condition = getICmpCondCode(Pred);
2050       } else {
2051         const FCmpInst *FC = cast<FCmpInst>(Cond);
2052         FCmpInst::Predicate Pred =
2053             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2054         Condition = getFCmpCondCode(Pred);
2055         if (TM.Options.NoNaNsFPMath)
2056           Condition = getFCmpCodeWithoutNaN(Condition);
2057       }
2058 
2059       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2060                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2061       SL->SwitchCases.push_back(CB);
2062       return;
2063     }
2064   }
2065 
2066   // Create a CaseBlock record representing this branch.
2067   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2068   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2069                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2070   SL->SwitchCases.push_back(CB);
2071 }
2072 
2073 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2074                                                MachineBasicBlock *TBB,
2075                                                MachineBasicBlock *FBB,
2076                                                MachineBasicBlock *CurBB,
2077                                                MachineBasicBlock *SwitchBB,
2078                                                Instruction::BinaryOps Opc,
2079                                                BranchProbability TProb,
2080                                                BranchProbability FProb,
2081                                                bool InvertCond) {
2082   // Skip over not part of the tree and remember to invert op and operands at
2083   // next level.
2084   Value *NotCond;
2085   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2086       InBlock(NotCond, CurBB->getBasicBlock())) {
2087     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2088                          !InvertCond);
2089     return;
2090   }
2091 
2092   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2093   // Compute the effective opcode for Cond, taking into account whether it needs
2094   // to be inverted, e.g.
2095   //   and (not (or A, B)), C
2096   // gets lowered as
2097   //   and (and (not A, not B), C)
2098   unsigned BOpc = 0;
2099   if (BOp) {
2100     BOpc = BOp->getOpcode();
2101     if (InvertCond) {
2102       if (BOpc == Instruction::And)
2103         BOpc = Instruction::Or;
2104       else if (BOpc == Instruction::Or)
2105         BOpc = Instruction::And;
2106     }
2107   }
2108 
2109   // If this node is not part of the or/and tree, emit it as a branch.
2110   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2111       BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2112       BOp->getParent() != CurBB->getBasicBlock() ||
2113       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2114       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2115     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2116                                  TProb, FProb, InvertCond);
2117     return;
2118   }
2119 
2120   //  Create TmpBB after CurBB.
2121   MachineFunction::iterator BBI(CurBB);
2122   MachineFunction &MF = DAG.getMachineFunction();
2123   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2124   CurBB->getParent()->insert(++BBI, TmpBB);
2125 
2126   if (Opc == Instruction::Or) {
2127     // Codegen X | Y as:
2128     // BB1:
2129     //   jmp_if_X TBB
2130     //   jmp TmpBB
2131     // TmpBB:
2132     //   jmp_if_Y TBB
2133     //   jmp FBB
2134     //
2135 
2136     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2137     // The requirement is that
2138     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2139     //     = TrueProb for original BB.
2140     // Assuming the original probabilities are A and B, one choice is to set
2141     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2142     // A/(1+B) and 2B/(1+B). This choice assumes that
2143     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2144     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2145     // TmpBB, but the math is more complicated.
2146 
2147     auto NewTrueProb = TProb / 2;
2148     auto NewFalseProb = TProb / 2 + FProb;
2149     // Emit the LHS condition.
2150     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2151                          NewTrueProb, NewFalseProb, InvertCond);
2152 
2153     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2154     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2155     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2156     // Emit the RHS condition into TmpBB.
2157     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2158                          Probs[0], Probs[1], InvertCond);
2159   } else {
2160     assert(Opc == Instruction::And && "Unknown merge op!");
2161     // Codegen X & Y as:
2162     // BB1:
2163     //   jmp_if_X TmpBB
2164     //   jmp FBB
2165     // TmpBB:
2166     //   jmp_if_Y TBB
2167     //   jmp FBB
2168     //
2169     //  This requires creation of TmpBB after CurBB.
2170 
2171     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2172     // The requirement is that
2173     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2174     //     = FalseProb for original BB.
2175     // Assuming the original probabilities are A and B, one choice is to set
2176     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2177     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2178     // TrueProb for BB1 * FalseProb for TmpBB.
2179 
2180     auto NewTrueProb = TProb + FProb / 2;
2181     auto NewFalseProb = FProb / 2;
2182     // Emit the LHS condition.
2183     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2184                          NewTrueProb, NewFalseProb, InvertCond);
2185 
2186     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2187     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2188     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2189     // Emit the RHS condition into TmpBB.
2190     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2191                          Probs[0], Probs[1], InvertCond);
2192   }
2193 }
2194 
2195 /// If the set of cases should be emitted as a series of branches, return true.
2196 /// If we should emit this as a bunch of and/or'd together conditions, return
2197 /// false.
2198 bool
2199 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2200   if (Cases.size() != 2) return true;
2201 
2202   // If this is two comparisons of the same values or'd or and'd together, they
2203   // will get folded into a single comparison, so don't emit two blocks.
2204   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2205        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2206       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2207        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2208     return false;
2209   }
2210 
2211   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2212   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2213   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2214       Cases[0].CC == Cases[1].CC &&
2215       isa<Constant>(Cases[0].CmpRHS) &&
2216       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2217     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2218       return false;
2219     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2220       return false;
2221   }
2222 
2223   return true;
2224 }
2225 
2226 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2227   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2228 
2229   // Update machine-CFG edges.
2230   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2231 
2232   if (I.isUnconditional()) {
2233     // Update machine-CFG edges.
2234     BrMBB->addSuccessor(Succ0MBB);
2235 
2236     // If this is not a fall-through branch or optimizations are switched off,
2237     // emit the branch.
2238     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2239       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2240                               MVT::Other, getControlRoot(),
2241                               DAG.getBasicBlock(Succ0MBB)));
2242 
2243     return;
2244   }
2245 
2246   // If this condition is one of the special cases we handle, do special stuff
2247   // now.
2248   const Value *CondVal = I.getCondition();
2249   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2250 
2251   // If this is a series of conditions that are or'd or and'd together, emit
2252   // this as a sequence of branches instead of setcc's with and/or operations.
2253   // As long as jumps are not expensive, this should improve performance.
2254   // For example, instead of something like:
2255   //     cmp A, B
2256   //     C = seteq
2257   //     cmp D, E
2258   //     F = setle
2259   //     or C, F
2260   //     jnz foo
2261   // Emit:
2262   //     cmp A, B
2263   //     je foo
2264   //     cmp D, E
2265   //     jle foo
2266   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2267     Instruction::BinaryOps Opcode = BOp->getOpcode();
2268     if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2269         !I.hasMetadata(LLVMContext::MD_unpredictable) &&
2270         (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2271       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2272                            Opcode,
2273                            getEdgeProbability(BrMBB, Succ0MBB),
2274                            getEdgeProbability(BrMBB, Succ1MBB),
2275                            /*InvertCond=*/false);
2276       // If the compares in later blocks need to use values not currently
2277       // exported from this block, export them now.  This block should always
2278       // be the first entry.
2279       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2280 
2281       // Allow some cases to be rejected.
2282       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2283         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2284           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2285           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2286         }
2287 
2288         // Emit the branch for this block.
2289         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2290         SL->SwitchCases.erase(SL->SwitchCases.begin());
2291         return;
2292       }
2293 
2294       // Okay, we decided not to do this, remove any inserted MBB's and clear
2295       // SwitchCases.
2296       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2297         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2298 
2299       SL->SwitchCases.clear();
2300     }
2301   }
2302 
2303   // Create a CaseBlock record representing this branch.
2304   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2305                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2306 
2307   // Use visitSwitchCase to actually insert the fast branch sequence for this
2308   // cond branch.
2309   visitSwitchCase(CB, BrMBB);
2310 }
2311 
2312 /// visitSwitchCase - Emits the necessary code to represent a single node in
2313 /// the binary search tree resulting from lowering a switch instruction.
2314 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2315                                           MachineBasicBlock *SwitchBB) {
2316   SDValue Cond;
2317   SDValue CondLHS = getValue(CB.CmpLHS);
2318   SDLoc dl = CB.DL;
2319 
2320   if (CB.CC == ISD::SETTRUE) {
2321     // Branch or fall through to TrueBB.
2322     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2323     SwitchBB->normalizeSuccProbs();
2324     if (CB.TrueBB != NextBlock(SwitchBB)) {
2325       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2326                               DAG.getBasicBlock(CB.TrueBB)));
2327     }
2328     return;
2329   }
2330 
2331   auto &TLI = DAG.getTargetLoweringInfo();
2332   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2333 
2334   // Build the setcc now.
2335   if (!CB.CmpMHS) {
2336     // Fold "(X == true)" to X and "(X == false)" to !X to
2337     // handle common cases produced by branch lowering.
2338     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2339         CB.CC == ISD::SETEQ)
2340       Cond = CondLHS;
2341     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2342              CB.CC == ISD::SETEQ) {
2343       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2344       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2345     } else {
2346       SDValue CondRHS = getValue(CB.CmpRHS);
2347 
2348       // If a pointer's DAG type is larger than its memory type then the DAG
2349       // values are zero-extended. This breaks signed comparisons so truncate
2350       // back to the underlying type before doing the compare.
2351       if (CondLHS.getValueType() != MemVT) {
2352         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2353         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2354       }
2355       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2356     }
2357   } else {
2358     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2359 
2360     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2361     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2362 
2363     SDValue CmpOp = getValue(CB.CmpMHS);
2364     EVT VT = CmpOp.getValueType();
2365 
2366     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2367       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2368                           ISD::SETLE);
2369     } else {
2370       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2371                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2372       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2373                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2374     }
2375   }
2376 
2377   // Update successor info
2378   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2379   // TrueBB and FalseBB are always different unless the incoming IR is
2380   // degenerate. This only happens when running llc on weird IR.
2381   if (CB.TrueBB != CB.FalseBB)
2382     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2383   SwitchBB->normalizeSuccProbs();
2384 
2385   // If the lhs block is the next block, invert the condition so that we can
2386   // fall through to the lhs instead of the rhs block.
2387   if (CB.TrueBB == NextBlock(SwitchBB)) {
2388     std::swap(CB.TrueBB, CB.FalseBB);
2389     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2390     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2391   }
2392 
2393   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2394                                MVT::Other, getControlRoot(), Cond,
2395                                DAG.getBasicBlock(CB.TrueBB));
2396 
2397   // Insert the false branch. Do this even if it's a fall through branch,
2398   // this makes it easier to do DAG optimizations which require inverting
2399   // the branch condition.
2400   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2401                        DAG.getBasicBlock(CB.FalseBB));
2402 
2403   DAG.setRoot(BrCond);
2404 }
2405 
2406 /// visitJumpTable - Emit JumpTable node in the current MBB
2407 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2408   // Emit the code for the jump table
2409   assert(JT.Reg != -1U && "Should lower JT Header first!");
2410   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2411   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2412                                      JT.Reg, PTy);
2413   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2414   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2415                                     MVT::Other, Index.getValue(1),
2416                                     Table, Index);
2417   DAG.setRoot(BrJumpTable);
2418 }
2419 
2420 /// visitJumpTableHeader - This function emits necessary code to produce index
2421 /// in the JumpTable from switch case.
2422 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2423                                                JumpTableHeader &JTH,
2424                                                MachineBasicBlock *SwitchBB) {
2425   SDLoc dl = getCurSDLoc();
2426 
2427   // Subtract the lowest switch case value from the value being switched on.
2428   SDValue SwitchOp = getValue(JTH.SValue);
2429   EVT VT = SwitchOp.getValueType();
2430   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2431                             DAG.getConstant(JTH.First, dl, VT));
2432 
2433   // The SDNode we just created, which holds the value being switched on minus
2434   // the smallest case value, needs to be copied to a virtual register so it
2435   // can be used as an index into the jump table in a subsequent basic block.
2436   // This value may be smaller or larger than the target's pointer type, and
2437   // therefore require extension or truncating.
2438   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2439   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2440 
2441   unsigned JumpTableReg =
2442       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2443   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2444                                     JumpTableReg, SwitchOp);
2445   JT.Reg = JumpTableReg;
2446 
2447   if (!JTH.OmitRangeCheck) {
2448     // Emit the range check for the jump table, and branch to the default block
2449     // for the switch statement if the value being switched on exceeds the
2450     // largest case in the switch.
2451     SDValue CMP = DAG.getSetCC(
2452         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2453                                    Sub.getValueType()),
2454         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2455 
2456     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2457                                  MVT::Other, CopyTo, CMP,
2458                                  DAG.getBasicBlock(JT.Default));
2459 
2460     // Avoid emitting unnecessary branches to the next block.
2461     if (JT.MBB != NextBlock(SwitchBB))
2462       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2463                            DAG.getBasicBlock(JT.MBB));
2464 
2465     DAG.setRoot(BrCond);
2466   } else {
2467     // Avoid emitting unnecessary branches to the next block.
2468     if (JT.MBB != NextBlock(SwitchBB))
2469       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2470                               DAG.getBasicBlock(JT.MBB)));
2471     else
2472       DAG.setRoot(CopyTo);
2473   }
2474 }
2475 
2476 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2477 /// variable if there exists one.
2478 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2479                                  SDValue &Chain) {
2480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2481   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2482   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2483   MachineFunction &MF = DAG.getMachineFunction();
2484   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2485   MachineSDNode *Node =
2486       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2487   if (Global) {
2488     MachinePointerInfo MPInfo(Global);
2489     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2490                  MachineMemOperand::MODereferenceable;
2491     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2492         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2493     DAG.setNodeMemRefs(Node, {MemRef});
2494   }
2495   if (PtrTy != PtrMemTy)
2496     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2497   return SDValue(Node, 0);
2498 }
2499 
2500 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2501 /// tail spliced into a stack protector check success bb.
2502 ///
2503 /// For a high level explanation of how this fits into the stack protector
2504 /// generation see the comment on the declaration of class
2505 /// StackProtectorDescriptor.
2506 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2507                                                   MachineBasicBlock *ParentBB) {
2508 
2509   // First create the loads to the guard/stack slot for the comparison.
2510   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2511   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2512   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2513 
2514   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2515   int FI = MFI.getStackProtectorIndex();
2516 
2517   SDValue Guard;
2518   SDLoc dl = getCurSDLoc();
2519   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2520   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2521   unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2522 
2523   // Generate code to load the content of the guard slot.
2524   SDValue GuardVal = DAG.getLoad(
2525       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2526       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2527       MachineMemOperand::MOVolatile);
2528 
2529   if (TLI.useStackGuardXorFP())
2530     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2531 
2532   // Retrieve guard check function, nullptr if instrumentation is inlined.
2533   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2534     // The target provides a guard check function to validate the guard value.
2535     // Generate a call to that function with the content of the guard slot as
2536     // argument.
2537     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2538     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2539 
2540     TargetLowering::ArgListTy Args;
2541     TargetLowering::ArgListEntry Entry;
2542     Entry.Node = GuardVal;
2543     Entry.Ty = FnTy->getParamType(0);
2544     if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2545       Entry.IsInReg = true;
2546     Args.push_back(Entry);
2547 
2548     TargetLowering::CallLoweringInfo CLI(DAG);
2549     CLI.setDebugLoc(getCurSDLoc())
2550         .setChain(DAG.getEntryNode())
2551         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2552                    getValue(GuardCheckFn), std::move(Args));
2553 
2554     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2555     DAG.setRoot(Result.second);
2556     return;
2557   }
2558 
2559   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2560   // Otherwise, emit a volatile load to retrieve the stack guard value.
2561   SDValue Chain = DAG.getEntryNode();
2562   if (TLI.useLoadStackGuardNode()) {
2563     Guard = getLoadStackGuard(DAG, dl, Chain);
2564   } else {
2565     const Value *IRGuard = TLI.getSDagStackGuard(M);
2566     SDValue GuardPtr = getValue(IRGuard);
2567 
2568     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2569                         MachinePointerInfo(IRGuard, 0), Align,
2570                         MachineMemOperand::MOVolatile);
2571   }
2572 
2573   // Perform the comparison via a subtract/getsetcc.
2574   EVT VT = Guard.getValueType();
2575   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2576 
2577   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2578                                                         *DAG.getContext(),
2579                                                         Sub.getValueType()),
2580                              Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2581 
2582   // If the sub is not 0, then we know the guard/stackslot do not equal, so
2583   // branch to failure MBB.
2584   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2585                                MVT::Other, GuardVal.getOperand(0),
2586                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2587   // Otherwise branch to success MBB.
2588   SDValue Br = DAG.getNode(ISD::BR, dl,
2589                            MVT::Other, BrCond,
2590                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2591 
2592   DAG.setRoot(Br);
2593 }
2594 
2595 /// Codegen the failure basic block for a stack protector check.
2596 ///
2597 /// A failure stack protector machine basic block consists simply of a call to
2598 /// __stack_chk_fail().
2599 ///
2600 /// For a high level explanation of how this fits into the stack protector
2601 /// generation see the comment on the declaration of class
2602 /// StackProtectorDescriptor.
2603 void
2604 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2605   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2606   TargetLowering::MakeLibCallOptions CallOptions;
2607   CallOptions.setDiscardResult(true);
2608   SDValue Chain =
2609       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2610                       None, CallOptions, getCurSDLoc()).second;
2611   // On PS4, the "return address" must still be within the calling function,
2612   // even if it's at the very end, so emit an explicit TRAP here.
2613   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2614   if (TM.getTargetTriple().isPS4CPU())
2615     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2616 
2617   DAG.setRoot(Chain);
2618 }
2619 
2620 /// visitBitTestHeader - This function emits necessary code to produce value
2621 /// suitable for "bit tests"
2622 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2623                                              MachineBasicBlock *SwitchBB) {
2624   SDLoc dl = getCurSDLoc();
2625 
2626   // Subtract the minimum value.
2627   SDValue SwitchOp = getValue(B.SValue);
2628   EVT VT = SwitchOp.getValueType();
2629   SDValue RangeSub =
2630       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2631 
2632   // Determine the type of the test operands.
2633   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2634   bool UsePtrType = false;
2635   if (!TLI.isTypeLegal(VT)) {
2636     UsePtrType = true;
2637   } else {
2638     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2639       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2640         // Switch table case range are encoded into series of masks.
2641         // Just use pointer type, it's guaranteed to fit.
2642         UsePtrType = true;
2643         break;
2644       }
2645   }
2646   SDValue Sub = RangeSub;
2647   if (UsePtrType) {
2648     VT = TLI.getPointerTy(DAG.getDataLayout());
2649     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2650   }
2651 
2652   B.RegVT = VT.getSimpleVT();
2653   B.Reg = FuncInfo.CreateReg(B.RegVT);
2654   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2655 
2656   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2657 
2658   if (!B.OmitRangeCheck)
2659     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2660   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2661   SwitchBB->normalizeSuccProbs();
2662 
2663   SDValue Root = CopyTo;
2664   if (!B.OmitRangeCheck) {
2665     // Conditional branch to the default block.
2666     SDValue RangeCmp = DAG.getSetCC(dl,
2667         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2668                                RangeSub.getValueType()),
2669         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2670         ISD::SETUGT);
2671 
2672     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2673                        DAG.getBasicBlock(B.Default));
2674   }
2675 
2676   // Avoid emitting unnecessary branches to the next block.
2677   if (MBB != NextBlock(SwitchBB))
2678     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2679 
2680   DAG.setRoot(Root);
2681 }
2682 
2683 /// visitBitTestCase - this function produces one "bit test"
2684 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2685                                            MachineBasicBlock* NextMBB,
2686                                            BranchProbability BranchProbToNext,
2687                                            unsigned Reg,
2688                                            BitTestCase &B,
2689                                            MachineBasicBlock *SwitchBB) {
2690   SDLoc dl = getCurSDLoc();
2691   MVT VT = BB.RegVT;
2692   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2693   SDValue Cmp;
2694   unsigned PopCount = countPopulation(B.Mask);
2695   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2696   if (PopCount == 1) {
2697     // Testing for a single bit; just compare the shift count with what it
2698     // would need to be to shift a 1 bit in that position.
2699     Cmp = DAG.getSetCC(
2700         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2701         ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2702         ISD::SETEQ);
2703   } else if (PopCount == BB.Range) {
2704     // There is only one zero bit in the range, test for it directly.
2705     Cmp = DAG.getSetCC(
2706         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2707         ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2708         ISD::SETNE);
2709   } else {
2710     // Make desired shift
2711     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2712                                     DAG.getConstant(1, dl, VT), ShiftOp);
2713 
2714     // Emit bit tests and jumps
2715     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2716                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2717     Cmp = DAG.getSetCC(
2718         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2719         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2720   }
2721 
2722   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2723   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2724   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2725   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2726   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2727   // one as they are relative probabilities (and thus work more like weights),
2728   // and hence we need to normalize them to let the sum of them become one.
2729   SwitchBB->normalizeSuccProbs();
2730 
2731   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2732                               MVT::Other, getControlRoot(),
2733                               Cmp, DAG.getBasicBlock(B.TargetBB));
2734 
2735   // Avoid emitting unnecessary branches to the next block.
2736   if (NextMBB != NextBlock(SwitchBB))
2737     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2738                         DAG.getBasicBlock(NextMBB));
2739 
2740   DAG.setRoot(BrAnd);
2741 }
2742 
2743 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2744   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2745 
2746   // Retrieve successors. Look through artificial IR level blocks like
2747   // catchswitch for successors.
2748   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2749   const BasicBlock *EHPadBB = I.getSuccessor(1);
2750 
2751   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2752   // have to do anything here to lower funclet bundles.
2753   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
2754                                         LLVMContext::OB_funclet,
2755                                         LLVMContext::OB_cfguardtarget}) &&
2756          "Cannot lower invokes with arbitrary operand bundles yet!");
2757 
2758   const Value *Callee(I.getCalledValue());
2759   const Function *Fn = dyn_cast<Function>(Callee);
2760   if (isa<InlineAsm>(Callee))
2761     visitInlineAsm(&I);
2762   else if (Fn && Fn->isIntrinsic()) {
2763     switch (Fn->getIntrinsicID()) {
2764     default:
2765       llvm_unreachable("Cannot invoke this intrinsic");
2766     case Intrinsic::donothing:
2767       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2768       break;
2769     case Intrinsic::experimental_patchpoint_void:
2770     case Intrinsic::experimental_patchpoint_i64:
2771       visitPatchpoint(&I, EHPadBB);
2772       break;
2773     case Intrinsic::experimental_gc_statepoint:
2774       LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2775       break;
2776     case Intrinsic::wasm_rethrow_in_catch: {
2777       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2778       // special because it can be invoked, so we manually lower it to a DAG
2779       // node here.
2780       SmallVector<SDValue, 8> Ops;
2781       Ops.push_back(getRoot()); // inchain
2782       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2783       Ops.push_back(
2784           DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2785                                 TLI.getPointerTy(DAG.getDataLayout())));
2786       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2787       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2788       break;
2789     }
2790     }
2791   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2792     // Currently we do not lower any intrinsic calls with deopt operand bundles.
2793     // Eventually we will support lowering the @llvm.experimental.deoptimize
2794     // intrinsic, and right now there are no plans to support other intrinsics
2795     // with deopt state.
2796     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2797   } else {
2798     LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2799   }
2800 
2801   // If the value of the invoke is used outside of its defining block, make it
2802   // available as a virtual register.
2803   // We already took care of the exported value for the statepoint instruction
2804   // during call to the LowerStatepoint.
2805   if (!isStatepoint(I)) {
2806     CopyToExportRegsIfNeeded(&I);
2807   }
2808 
2809   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2810   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2811   BranchProbability EHPadBBProb =
2812       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2813           : BranchProbability::getZero();
2814   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2815 
2816   // Update successor info.
2817   addSuccessorWithProb(InvokeMBB, Return);
2818   for (auto &UnwindDest : UnwindDests) {
2819     UnwindDest.first->setIsEHPad();
2820     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2821   }
2822   InvokeMBB->normalizeSuccProbs();
2823 
2824   // Drop into normal successor.
2825   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2826                           DAG.getBasicBlock(Return)));
2827 }
2828 
2829 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2830   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2831 
2832   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2833   // have to do anything here to lower funclet bundles.
2834   assert(!I.hasOperandBundlesOtherThan(
2835              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2836          "Cannot lower callbrs with arbitrary operand bundles yet!");
2837 
2838   assert(isa<InlineAsm>(I.getCalledValue()) &&
2839          "Only know how to handle inlineasm callbr");
2840   visitInlineAsm(&I);
2841 
2842   // Retrieve successors.
2843   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2844 
2845   // Update successor info.
2846   addSuccessorWithProb(CallBrMBB, Return);
2847   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2848     MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2849     addSuccessorWithProb(CallBrMBB, Target);
2850   }
2851   CallBrMBB->normalizeSuccProbs();
2852 
2853   // Drop into default successor.
2854   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2855                           MVT::Other, getControlRoot(),
2856                           DAG.getBasicBlock(Return)));
2857 }
2858 
2859 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2860   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2861 }
2862 
2863 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2864   assert(FuncInfo.MBB->isEHPad() &&
2865          "Call to landingpad not in landing pad!");
2866 
2867   // If there aren't registers to copy the values into (e.g., during SjLj
2868   // exceptions), then don't bother to create these DAG nodes.
2869   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2870   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2871   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2872       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2873     return;
2874 
2875   // If landingpad's return type is token type, we don't create DAG nodes
2876   // for its exception pointer and selector value. The extraction of exception
2877   // pointer or selector value from token type landingpads is not currently
2878   // supported.
2879   if (LP.getType()->isTokenTy())
2880     return;
2881 
2882   SmallVector<EVT, 2> ValueVTs;
2883   SDLoc dl = getCurSDLoc();
2884   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2885   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2886 
2887   // Get the two live-in registers as SDValues. The physregs have already been
2888   // copied into virtual registers.
2889   SDValue Ops[2];
2890   if (FuncInfo.ExceptionPointerVirtReg) {
2891     Ops[0] = DAG.getZExtOrTrunc(
2892         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2893                            FuncInfo.ExceptionPointerVirtReg,
2894                            TLI.getPointerTy(DAG.getDataLayout())),
2895         dl, ValueVTs[0]);
2896   } else {
2897     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2898   }
2899   Ops[1] = DAG.getZExtOrTrunc(
2900       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2901                          FuncInfo.ExceptionSelectorVirtReg,
2902                          TLI.getPointerTy(DAG.getDataLayout())),
2903       dl, ValueVTs[1]);
2904 
2905   // Merge into one.
2906   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2907                             DAG.getVTList(ValueVTs), Ops);
2908   setValue(&LP, Res);
2909 }
2910 
2911 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2912                                            MachineBasicBlock *Last) {
2913   // Update JTCases.
2914   for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i)
2915     if (SL->JTCases[i].first.HeaderBB == First)
2916       SL->JTCases[i].first.HeaderBB = Last;
2917 
2918   // Update BitTestCases.
2919   for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i)
2920     if (SL->BitTestCases[i].Parent == First)
2921       SL->BitTestCases[i].Parent = Last;
2922 }
2923 
2924 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2925   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2926 
2927   // Update machine-CFG edges with unique successors.
2928   SmallSet<BasicBlock*, 32> Done;
2929   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2930     BasicBlock *BB = I.getSuccessor(i);
2931     bool Inserted = Done.insert(BB).second;
2932     if (!Inserted)
2933         continue;
2934 
2935     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2936     addSuccessorWithProb(IndirectBrMBB, Succ);
2937   }
2938   IndirectBrMBB->normalizeSuccProbs();
2939 
2940   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2941                           MVT::Other, getControlRoot(),
2942                           getValue(I.getAddress())));
2943 }
2944 
2945 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2946   if (!DAG.getTarget().Options.TrapUnreachable)
2947     return;
2948 
2949   // We may be able to ignore unreachable behind a noreturn call.
2950   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2951     const BasicBlock &BB = *I.getParent();
2952     if (&I != &BB.front()) {
2953       BasicBlock::const_iterator PredI =
2954         std::prev(BasicBlock::const_iterator(&I));
2955       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2956         if (Call->doesNotReturn())
2957           return;
2958       }
2959     }
2960   }
2961 
2962   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2963 }
2964 
2965 void SelectionDAGBuilder::visitFSub(const User &I) {
2966   // -0.0 - X --> fneg
2967   Type *Ty = I.getType();
2968   if (isa<Constant>(I.getOperand(0)) &&
2969       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2970     SDValue Op2 = getValue(I.getOperand(1));
2971     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2972                              Op2.getValueType(), Op2));
2973     return;
2974   }
2975 
2976   visitBinary(I, ISD::FSUB);
2977 }
2978 
2979 /// Checks if the given instruction performs a vector reduction, in which case
2980 /// we have the freedom to alter the elements in the result as long as the
2981 /// reduction of them stays unchanged.
2982 static bool isVectorReductionOp(const User *I) {
2983   const Instruction *Inst = dyn_cast<Instruction>(I);
2984   if (!Inst || !Inst->getType()->isVectorTy())
2985     return false;
2986 
2987   auto OpCode = Inst->getOpcode();
2988   switch (OpCode) {
2989   case Instruction::Add:
2990   case Instruction::Mul:
2991   case Instruction::And:
2992   case Instruction::Or:
2993   case Instruction::Xor:
2994     break;
2995   case Instruction::FAdd:
2996   case Instruction::FMul:
2997     if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
2998       if (FPOp->getFastMathFlags().isFast())
2999         break;
3000     LLVM_FALLTHROUGH;
3001   default:
3002     return false;
3003   }
3004 
3005   unsigned ElemNum = Inst->getType()->getVectorNumElements();
3006   // Ensure the reduction size is a power of 2.
3007   if (!isPowerOf2_32(ElemNum))
3008     return false;
3009 
3010   unsigned ElemNumToReduce = ElemNum;
3011 
3012   // Do DFS search on the def-use chain from the given instruction. We only
3013   // allow four kinds of operations during the search until we reach the
3014   // instruction that extracts the first element from the vector:
3015   //
3016   //   1. The reduction operation of the same opcode as the given instruction.
3017   //
3018   //   2. PHI node.
3019   //
3020   //   3. ShuffleVector instruction together with a reduction operation that
3021   //      does a partial reduction.
3022   //
3023   //   4. ExtractElement that extracts the first element from the vector, and we
3024   //      stop searching the def-use chain here.
3025   //
3026   // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3027   // from 1-3 to the stack to continue the DFS. The given instruction is not
3028   // a reduction operation if we meet any other instructions other than those
3029   // listed above.
3030 
3031   SmallVector<const User *, 16> UsersToVisit{Inst};
3032   SmallPtrSet<const User *, 16> Visited;
3033   bool ReduxExtracted = false;
3034 
3035   while (!UsersToVisit.empty()) {
3036     auto User = UsersToVisit.back();
3037     UsersToVisit.pop_back();
3038     if (!Visited.insert(User).second)
3039       continue;
3040 
3041     for (const auto &U : User->users()) {
3042       auto Inst = dyn_cast<Instruction>(U);
3043       if (!Inst)
3044         return false;
3045 
3046       if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3047         if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3048           if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3049             return false;
3050         UsersToVisit.push_back(U);
3051       } else if (const ShuffleVectorInst *ShufInst =
3052                      dyn_cast<ShuffleVectorInst>(U)) {
3053         // Detect the following pattern: A ShuffleVector instruction together
3054         // with a reduction that do partial reduction on the first and second
3055         // ElemNumToReduce / 2 elements, and store the result in
3056         // ElemNumToReduce / 2 elements in another vector.
3057 
3058         unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3059         if (ResultElements < ElemNum)
3060           return false;
3061 
3062         if (ElemNumToReduce == 1)
3063           return false;
3064         if (!isa<UndefValue>(U->getOperand(1)))
3065           return false;
3066         for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3067           if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3068             return false;
3069         for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3070           if (ShufInst->getMaskValue(i) != -1)
3071             return false;
3072 
3073         // There is only one user of this ShuffleVector instruction, which
3074         // must be a reduction operation.
3075         if (!U->hasOneUse())
3076           return false;
3077 
3078         auto U2 = dyn_cast<Instruction>(*U->user_begin());
3079         if (!U2 || U2->getOpcode() != OpCode)
3080           return false;
3081 
3082         // Check operands of the reduction operation.
3083         if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3084             (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3085           UsersToVisit.push_back(U2);
3086           ElemNumToReduce /= 2;
3087         } else
3088           return false;
3089       } else if (isa<ExtractElementInst>(U)) {
3090         // At this moment we should have reduced all elements in the vector.
3091         if (ElemNumToReduce != 1)
3092           return false;
3093 
3094         const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3095         if (!Val || !Val->isZero())
3096           return false;
3097 
3098         ReduxExtracted = true;
3099       } else
3100         return false;
3101     }
3102   }
3103   return ReduxExtracted;
3104 }
3105 
3106 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3107   SDNodeFlags Flags;
3108 
3109   SDValue Op = getValue(I.getOperand(0));
3110   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3111                                     Op, Flags);
3112   setValue(&I, UnNodeValue);
3113 }
3114 
3115 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3116   SDNodeFlags Flags;
3117   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3118     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3119     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3120   }
3121   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3122     Flags.setExact(ExactOp->isExact());
3123   }
3124   if (isVectorReductionOp(&I)) {
3125     Flags.setVectorReduction(true);
3126     LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3127   }
3128 
3129   SDValue Op1 = getValue(I.getOperand(0));
3130   SDValue Op2 = getValue(I.getOperand(1));
3131   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3132                                      Op1, Op2, Flags);
3133   setValue(&I, BinNodeValue);
3134 }
3135 
3136 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3137   SDValue Op1 = getValue(I.getOperand(0));
3138   SDValue Op2 = getValue(I.getOperand(1));
3139 
3140   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3141       Op1.getValueType(), DAG.getDataLayout());
3142 
3143   // Coerce the shift amount to the right type if we can.
3144   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3145     unsigned ShiftSize = ShiftTy.getSizeInBits();
3146     unsigned Op2Size = Op2.getValueSizeInBits();
3147     SDLoc DL = getCurSDLoc();
3148 
3149     // If the operand is smaller than the shift count type, promote it.
3150     if (ShiftSize > Op2Size)
3151       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3152 
3153     // If the operand is larger than the shift count type but the shift
3154     // count type has enough bits to represent any shift value, truncate
3155     // it now. This is a common case and it exposes the truncate to
3156     // optimization early.
3157     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3158       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3159     // Otherwise we'll need to temporarily settle for some other convenient
3160     // type.  Type legalization will make adjustments once the shiftee is split.
3161     else
3162       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3163   }
3164 
3165   bool nuw = false;
3166   bool nsw = false;
3167   bool exact = false;
3168 
3169   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3170 
3171     if (const OverflowingBinaryOperator *OFBinOp =
3172             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3173       nuw = OFBinOp->hasNoUnsignedWrap();
3174       nsw = OFBinOp->hasNoSignedWrap();
3175     }
3176     if (const PossiblyExactOperator *ExactOp =
3177             dyn_cast<const PossiblyExactOperator>(&I))
3178       exact = ExactOp->isExact();
3179   }
3180   SDNodeFlags Flags;
3181   Flags.setExact(exact);
3182   Flags.setNoSignedWrap(nsw);
3183   Flags.setNoUnsignedWrap(nuw);
3184   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3185                             Flags);
3186   setValue(&I, Res);
3187 }
3188 
3189 void SelectionDAGBuilder::visitSDiv(const User &I) {
3190   SDValue Op1 = getValue(I.getOperand(0));
3191   SDValue Op2 = getValue(I.getOperand(1));
3192 
3193   SDNodeFlags Flags;
3194   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3195                  cast<PossiblyExactOperator>(&I)->isExact());
3196   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3197                            Op2, Flags));
3198 }
3199 
3200 void SelectionDAGBuilder::visitICmp(const User &I) {
3201   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3202   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3203     predicate = IC->getPredicate();
3204   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3205     predicate = ICmpInst::Predicate(IC->getPredicate());
3206   SDValue Op1 = getValue(I.getOperand(0));
3207   SDValue Op2 = getValue(I.getOperand(1));
3208   ISD::CondCode Opcode = getICmpCondCode(predicate);
3209 
3210   auto &TLI = DAG.getTargetLoweringInfo();
3211   EVT MemVT =
3212       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3213 
3214   // If a pointer's DAG type is larger than its memory type then the DAG values
3215   // are zero-extended. This breaks signed comparisons so truncate back to the
3216   // underlying type before doing the compare.
3217   if (Op1.getValueType() != MemVT) {
3218     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3219     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3220   }
3221 
3222   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3223                                                         I.getType());
3224   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3225 }
3226 
3227 void SelectionDAGBuilder::visitFCmp(const User &I) {
3228   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3229   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3230     predicate = FC->getPredicate();
3231   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3232     predicate = FCmpInst::Predicate(FC->getPredicate());
3233   SDValue Op1 = getValue(I.getOperand(0));
3234   SDValue Op2 = getValue(I.getOperand(1));
3235 
3236   ISD::CondCode Condition = getFCmpCondCode(predicate);
3237   auto *FPMO = dyn_cast<FPMathOperator>(&I);
3238   if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3239     Condition = getFCmpCodeWithoutNaN(Condition);
3240 
3241   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3242                                                         I.getType());
3243   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3244 }
3245 
3246 // Check if the condition of the select has one use or two users that are both
3247 // selects with the same condition.
3248 static bool hasOnlySelectUsers(const Value *Cond) {
3249   return llvm::all_of(Cond->users(), [](const Value *V) {
3250     return isa<SelectInst>(V);
3251   });
3252 }
3253 
3254 void SelectionDAGBuilder::visitSelect(const User &I) {
3255   SmallVector<EVT, 4> ValueVTs;
3256   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3257                   ValueVTs);
3258   unsigned NumValues = ValueVTs.size();
3259   if (NumValues == 0) return;
3260 
3261   SmallVector<SDValue, 4> Values(NumValues);
3262   SDValue Cond     = getValue(I.getOperand(0));
3263   SDValue LHSVal   = getValue(I.getOperand(1));
3264   SDValue RHSVal   = getValue(I.getOperand(2));
3265   auto BaseOps = {Cond};
3266   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3267     ISD::VSELECT : ISD::SELECT;
3268 
3269   bool IsUnaryAbs = false;
3270 
3271   // Min/max matching is only viable if all output VTs are the same.
3272   if (is_splat(ValueVTs)) {
3273     EVT VT = ValueVTs[0];
3274     LLVMContext &Ctx = *DAG.getContext();
3275     auto &TLI = DAG.getTargetLoweringInfo();
3276 
3277     // We care about the legality of the operation after it has been type
3278     // legalized.
3279     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3280       VT = TLI.getTypeToTransformTo(Ctx, VT);
3281 
3282     // If the vselect is legal, assume we want to leave this as a vector setcc +
3283     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3284     // min/max is legal on the scalar type.
3285     bool UseScalarMinMax = VT.isVector() &&
3286       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3287 
3288     Value *LHS, *RHS;
3289     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3290     ISD::NodeType Opc = ISD::DELETED_NODE;
3291     switch (SPR.Flavor) {
3292     case SPF_UMAX:    Opc = ISD::UMAX; break;
3293     case SPF_UMIN:    Opc = ISD::UMIN; break;
3294     case SPF_SMAX:    Opc = ISD::SMAX; break;
3295     case SPF_SMIN:    Opc = ISD::SMIN; break;
3296     case SPF_FMINNUM:
3297       switch (SPR.NaNBehavior) {
3298       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3299       case SPNB_RETURNS_NAN:   Opc = ISD::FMINIMUM; break;
3300       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3301       case SPNB_RETURNS_ANY: {
3302         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3303           Opc = ISD::FMINNUM;
3304         else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3305           Opc = ISD::FMINIMUM;
3306         else if (UseScalarMinMax)
3307           Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3308             ISD::FMINNUM : ISD::FMINIMUM;
3309         break;
3310       }
3311       }
3312       break;
3313     case SPF_FMAXNUM:
3314       switch (SPR.NaNBehavior) {
3315       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3316       case SPNB_RETURNS_NAN:   Opc = ISD::FMAXIMUM; break;
3317       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3318       case SPNB_RETURNS_ANY:
3319 
3320         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3321           Opc = ISD::FMAXNUM;
3322         else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3323           Opc = ISD::FMAXIMUM;
3324         else if (UseScalarMinMax)
3325           Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3326             ISD::FMAXNUM : ISD::FMAXIMUM;
3327         break;
3328       }
3329       break;
3330     case SPF_ABS:
3331       IsUnaryAbs = true;
3332       Opc = ISD::ABS;
3333       break;
3334     case SPF_NABS:
3335       // TODO: we need to produce sub(0, abs(X)).
3336     default: break;
3337     }
3338 
3339     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3340         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3341          (UseScalarMinMax &&
3342           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3343         // If the underlying comparison instruction is used by any other
3344         // instruction, the consumed instructions won't be destroyed, so it is
3345         // not profitable to convert to a min/max.
3346         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3347       OpCode = Opc;
3348       LHSVal = getValue(LHS);
3349       RHSVal = getValue(RHS);
3350       BaseOps = {};
3351     }
3352 
3353     if (IsUnaryAbs) {
3354       OpCode = Opc;
3355       LHSVal = getValue(LHS);
3356       BaseOps = {};
3357     }
3358   }
3359 
3360   if (IsUnaryAbs) {
3361     for (unsigned i = 0; i != NumValues; ++i) {
3362       Values[i] =
3363           DAG.getNode(OpCode, getCurSDLoc(),
3364                       LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3365                       SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3366     }
3367   } else {
3368     for (unsigned i = 0; i != NumValues; ++i) {
3369       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3370       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3371       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3372       Values[i] = DAG.getNode(
3373           OpCode, getCurSDLoc(),
3374           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3375     }
3376   }
3377 
3378   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3379                            DAG.getVTList(ValueVTs), Values));
3380 }
3381 
3382 void SelectionDAGBuilder::visitTrunc(const User &I) {
3383   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3384   SDValue N = getValue(I.getOperand(0));
3385   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3386                                                         I.getType());
3387   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3388 }
3389 
3390 void SelectionDAGBuilder::visitZExt(const User &I) {
3391   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3392   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3393   SDValue N = getValue(I.getOperand(0));
3394   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3395                                                         I.getType());
3396   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3397 }
3398 
3399 void SelectionDAGBuilder::visitSExt(const User &I) {
3400   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3401   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3402   SDValue N = getValue(I.getOperand(0));
3403   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3404                                                         I.getType());
3405   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3406 }
3407 
3408 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3409   // FPTrunc is never a no-op cast, no need to check
3410   SDValue N = getValue(I.getOperand(0));
3411   SDLoc dl = getCurSDLoc();
3412   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3413   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3414   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3415                            DAG.getTargetConstant(
3416                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3417 }
3418 
3419 void SelectionDAGBuilder::visitFPExt(const User &I) {
3420   // FPExt is never a no-op cast, no need to check
3421   SDValue N = getValue(I.getOperand(0));
3422   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3423                                                         I.getType());
3424   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3425 }
3426 
3427 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3428   // FPToUI is never a no-op cast, no need to check
3429   SDValue N = getValue(I.getOperand(0));
3430   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3431                                                         I.getType());
3432   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3433 }
3434 
3435 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3436   // FPToSI is never a no-op cast, no need to check
3437   SDValue N = getValue(I.getOperand(0));
3438   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3439                                                         I.getType());
3440   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3441 }
3442 
3443 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3444   // UIToFP is never a no-op cast, no need to check
3445   SDValue N = getValue(I.getOperand(0));
3446   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3447                                                         I.getType());
3448   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3449 }
3450 
3451 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3452   // SIToFP is never a no-op cast, no need to check
3453   SDValue N = getValue(I.getOperand(0));
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3457 }
3458 
3459 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3460   // What to do depends on the size of the integer and the size of the pointer.
3461   // We can either truncate, zero extend, or no-op, accordingly.
3462   SDValue N = getValue(I.getOperand(0));
3463   auto &TLI = DAG.getTargetLoweringInfo();
3464   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3465                                                         I.getType());
3466   EVT PtrMemVT =
3467       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3468   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3469   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3470   setValue(&I, N);
3471 }
3472 
3473 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3474   // What to do depends on the size of the integer and the size of the pointer.
3475   // We can either truncate, zero extend, or no-op, accordingly.
3476   SDValue N = getValue(I.getOperand(0));
3477   auto &TLI = DAG.getTargetLoweringInfo();
3478   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3479   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3480   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3481   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3482   setValue(&I, N);
3483 }
3484 
3485 void SelectionDAGBuilder::visitBitCast(const User &I) {
3486   SDValue N = getValue(I.getOperand(0));
3487   SDLoc dl = getCurSDLoc();
3488   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3489                                                         I.getType());
3490 
3491   // BitCast assures us that source and destination are the same size so this is
3492   // either a BITCAST or a no-op.
3493   if (DestVT != N.getValueType())
3494     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3495                              DestVT, N)); // convert types.
3496   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3497   // might fold any kind of constant expression to an integer constant and that
3498   // is not what we are looking for. Only recognize a bitcast of a genuine
3499   // constant integer as an opaque constant.
3500   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3501     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3502                                  /*isOpaque*/true));
3503   else
3504     setValue(&I, N);            // noop cast.
3505 }
3506 
3507 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3508   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3509   const Value *SV = I.getOperand(0);
3510   SDValue N = getValue(SV);
3511   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3512 
3513   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3514   unsigned DestAS = I.getType()->getPointerAddressSpace();
3515 
3516   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3517     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3518 
3519   setValue(&I, N);
3520 }
3521 
3522 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3523   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3524   SDValue InVec = getValue(I.getOperand(0));
3525   SDValue InVal = getValue(I.getOperand(1));
3526   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3527                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3528   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3529                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3530                            InVec, InVal, InIdx));
3531 }
3532 
3533 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3534   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3535   SDValue InVec = getValue(I.getOperand(0));
3536   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3537                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3538   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3539                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3540                            InVec, InIdx));
3541 }
3542 
3543 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3544   SDValue Src1 = getValue(I.getOperand(0));
3545   SDValue Src2 = getValue(I.getOperand(1));
3546   Constant *MaskV = cast<Constant>(I.getOperand(2));
3547   SDLoc DL = getCurSDLoc();
3548   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3549   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3550   EVT SrcVT = Src1.getValueType();
3551   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3552 
3553   if (MaskV->isNullValue() && VT.isScalableVector()) {
3554     // Canonical splat form of first element of first input vector.
3555     SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3556                                    SrcVT.getScalarType(), Src1,
3557                                    DAG.getConstant(0, DL,
3558                                    TLI.getVectorIdxTy(DAG.getDataLayout())));
3559     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3560     return;
3561   }
3562 
3563   // For now, we only handle splats for scalable vectors.
3564   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3565   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3566   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3567 
3568   SmallVector<int, 8> Mask;
3569   ShuffleVectorInst::getShuffleMask(MaskV, Mask);
3570   unsigned MaskNumElts = Mask.size();
3571 
3572   if (SrcNumElts == MaskNumElts) {
3573     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3574     return;
3575   }
3576 
3577   // Normalize the shuffle vector since mask and vector length don't match.
3578   if (SrcNumElts < MaskNumElts) {
3579     // Mask is longer than the source vectors. We can use concatenate vector to
3580     // make the mask and vectors lengths match.
3581 
3582     if (MaskNumElts % SrcNumElts == 0) {
3583       // Mask length is a multiple of the source vector length.
3584       // Check if the shuffle is some kind of concatenation of the input
3585       // vectors.
3586       unsigned NumConcat = MaskNumElts / SrcNumElts;
3587       bool IsConcat = true;
3588       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3589       for (unsigned i = 0; i != MaskNumElts; ++i) {
3590         int Idx = Mask[i];
3591         if (Idx < 0)
3592           continue;
3593         // Ensure the indices in each SrcVT sized piece are sequential and that
3594         // the same source is used for the whole piece.
3595         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3596             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3597              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3598           IsConcat = false;
3599           break;
3600         }
3601         // Remember which source this index came from.
3602         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3603       }
3604 
3605       // The shuffle is concatenating multiple vectors together. Just emit
3606       // a CONCAT_VECTORS operation.
3607       if (IsConcat) {
3608         SmallVector<SDValue, 8> ConcatOps;
3609         for (auto Src : ConcatSrcs) {
3610           if (Src < 0)
3611             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3612           else if (Src == 0)
3613             ConcatOps.push_back(Src1);
3614           else
3615             ConcatOps.push_back(Src2);
3616         }
3617         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3618         return;
3619       }
3620     }
3621 
3622     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3623     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3624     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3625                                     PaddedMaskNumElts);
3626 
3627     // Pad both vectors with undefs to make them the same length as the mask.
3628     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3629 
3630     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3631     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3632     MOps1[0] = Src1;
3633     MOps2[0] = Src2;
3634 
3635     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3636     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3637 
3638     // Readjust mask for new input vector length.
3639     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3640     for (unsigned i = 0; i != MaskNumElts; ++i) {
3641       int Idx = Mask[i];
3642       if (Idx >= (int)SrcNumElts)
3643         Idx -= SrcNumElts - PaddedMaskNumElts;
3644       MappedOps[i] = Idx;
3645     }
3646 
3647     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3648 
3649     // If the concatenated vector was padded, extract a subvector with the
3650     // correct number of elements.
3651     if (MaskNumElts != PaddedMaskNumElts)
3652       Result = DAG.getNode(
3653           ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3654           DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3655 
3656     setValue(&I, Result);
3657     return;
3658   }
3659 
3660   if (SrcNumElts > MaskNumElts) {
3661     // Analyze the access pattern of the vector to see if we can extract
3662     // two subvectors and do the shuffle.
3663     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3664     bool CanExtract = true;
3665     for (int Idx : Mask) {
3666       unsigned Input = 0;
3667       if (Idx < 0)
3668         continue;
3669 
3670       if (Idx >= (int)SrcNumElts) {
3671         Input = 1;
3672         Idx -= SrcNumElts;
3673       }
3674 
3675       // If all the indices come from the same MaskNumElts sized portion of
3676       // the sources we can use extract. Also make sure the extract wouldn't
3677       // extract past the end of the source.
3678       int NewStartIdx = alignDown(Idx, MaskNumElts);
3679       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3680           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3681         CanExtract = false;
3682       // Make sure we always update StartIdx as we use it to track if all
3683       // elements are undef.
3684       StartIdx[Input] = NewStartIdx;
3685     }
3686 
3687     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3688       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3689       return;
3690     }
3691     if (CanExtract) {
3692       // Extract appropriate subvector and generate a vector shuffle
3693       for (unsigned Input = 0; Input < 2; ++Input) {
3694         SDValue &Src = Input == 0 ? Src1 : Src2;
3695         if (StartIdx[Input] < 0)
3696           Src = DAG.getUNDEF(VT);
3697         else {
3698           Src = DAG.getNode(
3699               ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3700               DAG.getConstant(StartIdx[Input], DL,
3701                               TLI.getVectorIdxTy(DAG.getDataLayout())));
3702         }
3703       }
3704 
3705       // Calculate new mask.
3706       SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3707       for (int &Idx : MappedOps) {
3708         if (Idx >= (int)SrcNumElts)
3709           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3710         else if (Idx >= 0)
3711           Idx -= StartIdx[0];
3712       }
3713 
3714       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3715       return;
3716     }
3717   }
3718 
3719   // We can't use either concat vectors or extract subvectors so fall back to
3720   // replacing the shuffle with extract and build vector.
3721   // to insert and build vector.
3722   EVT EltVT = VT.getVectorElementType();
3723   EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3724   SmallVector<SDValue,8> Ops;
3725   for (int Idx : Mask) {
3726     SDValue Res;
3727 
3728     if (Idx < 0) {
3729       Res = DAG.getUNDEF(EltVT);
3730     } else {
3731       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3732       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3733 
3734       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3735                         EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3736     }
3737 
3738     Ops.push_back(Res);
3739   }
3740 
3741   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3742 }
3743 
3744 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3745   ArrayRef<unsigned> Indices;
3746   if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3747     Indices = IV->getIndices();
3748   else
3749     Indices = cast<ConstantExpr>(&I)->getIndices();
3750 
3751   const Value *Op0 = I.getOperand(0);
3752   const Value *Op1 = I.getOperand(1);
3753   Type *AggTy = I.getType();
3754   Type *ValTy = Op1->getType();
3755   bool IntoUndef = isa<UndefValue>(Op0);
3756   bool FromUndef = isa<UndefValue>(Op1);
3757 
3758   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3759 
3760   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3761   SmallVector<EVT, 4> AggValueVTs;
3762   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3763   SmallVector<EVT, 4> ValValueVTs;
3764   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3765 
3766   unsigned NumAggValues = AggValueVTs.size();
3767   unsigned NumValValues = ValValueVTs.size();
3768   SmallVector<SDValue, 4> Values(NumAggValues);
3769 
3770   // Ignore an insertvalue that produces an empty object
3771   if (!NumAggValues) {
3772     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3773     return;
3774   }
3775 
3776   SDValue Agg = getValue(Op0);
3777   unsigned i = 0;
3778   // Copy the beginning value(s) from the original aggregate.
3779   for (; i != LinearIndex; ++i)
3780     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3781                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3782   // Copy values from the inserted value(s).
3783   if (NumValValues) {
3784     SDValue Val = getValue(Op1);
3785     for (; i != LinearIndex + NumValValues; ++i)
3786       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3787                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3788   }
3789   // Copy remaining value(s) from the original aggregate.
3790   for (; i != NumAggValues; ++i)
3791     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3792                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3793 
3794   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3795                            DAG.getVTList(AggValueVTs), Values));
3796 }
3797 
3798 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3799   ArrayRef<unsigned> Indices;
3800   if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3801     Indices = EV->getIndices();
3802   else
3803     Indices = cast<ConstantExpr>(&I)->getIndices();
3804 
3805   const Value *Op0 = I.getOperand(0);
3806   Type *AggTy = Op0->getType();
3807   Type *ValTy = I.getType();
3808   bool OutOfUndef = isa<UndefValue>(Op0);
3809 
3810   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3811 
3812   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3813   SmallVector<EVT, 4> ValValueVTs;
3814   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3815 
3816   unsigned NumValValues = ValValueVTs.size();
3817 
3818   // Ignore a extractvalue that produces an empty object
3819   if (!NumValValues) {
3820     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3821     return;
3822   }
3823 
3824   SmallVector<SDValue, 4> Values(NumValValues);
3825 
3826   SDValue Agg = getValue(Op0);
3827   // Copy out the selected value(s).
3828   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3829     Values[i - LinearIndex] =
3830       OutOfUndef ?
3831         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3832         SDValue(Agg.getNode(), Agg.getResNo() + i);
3833 
3834   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3835                            DAG.getVTList(ValValueVTs), Values));
3836 }
3837 
3838 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3839   Value *Op0 = I.getOperand(0);
3840   // Note that the pointer operand may be a vector of pointers. Take the scalar
3841   // element which holds a pointer.
3842   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3843   SDValue N = getValue(Op0);
3844   SDLoc dl = getCurSDLoc();
3845   auto &TLI = DAG.getTargetLoweringInfo();
3846   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3847   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3848 
3849   // Normalize Vector GEP - all scalar operands should be converted to the
3850   // splat vector.
3851   unsigned VectorWidth = I.getType()->isVectorTy() ?
3852     I.getType()->getVectorNumElements() : 0;
3853 
3854   if (VectorWidth && !N.getValueType().isVector()) {
3855     LLVMContext &Context = *DAG.getContext();
3856     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3857     N = DAG.getSplatBuildVector(VT, dl, N);
3858   }
3859 
3860   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3861        GTI != E; ++GTI) {
3862     const Value *Idx = GTI.getOperand();
3863     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3864       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3865       if (Field) {
3866         // N = N + Offset
3867         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3868 
3869         // In an inbounds GEP with an offset that is nonnegative even when
3870         // interpreted as signed, assume there is no unsigned overflow.
3871         SDNodeFlags Flags;
3872         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3873           Flags.setNoUnsignedWrap(true);
3874 
3875         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3876                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3877       }
3878     } else {
3879       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3880       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3881       APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3882 
3883       // If this is a scalar constant or a splat vector of constants,
3884       // handle it quickly.
3885       const auto *C = dyn_cast<Constant>(Idx);
3886       if (C && isa<VectorType>(C->getType()))
3887         C = C->getSplatValue();
3888 
3889       if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) {
3890         if (CI->isZero())
3891           continue;
3892         APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3893         LLVMContext &Context = *DAG.getContext();
3894         SDValue OffsVal = VectorWidth ?
3895           DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3896           DAG.getConstant(Offs, dl, IdxTy);
3897 
3898         // In an inbounds GEP with an offset that is nonnegative even when
3899         // interpreted as signed, assume there is no unsigned overflow.
3900         SDNodeFlags Flags;
3901         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3902           Flags.setNoUnsignedWrap(true);
3903 
3904         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3905 
3906         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3907         continue;
3908       }
3909 
3910       // N = N + Idx * ElementSize;
3911       SDValue IdxN = getValue(Idx);
3912 
3913       if (!IdxN.getValueType().isVector() && VectorWidth) {
3914         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3915         IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3916       }
3917 
3918       // If the index is smaller or larger than intptr_t, truncate or extend
3919       // it.
3920       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3921 
3922       // If this is a multiply by a power of two, turn it into a shl
3923       // immediately.  This is a very common case.
3924       if (ElementSize != 1) {
3925         if (ElementSize.isPowerOf2()) {
3926           unsigned Amt = ElementSize.logBase2();
3927           IdxN = DAG.getNode(ISD::SHL, dl,
3928                              N.getValueType(), IdxN,
3929                              DAG.getConstant(Amt, dl, IdxN.getValueType()));
3930         } else {
3931           SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3932                                           IdxN.getValueType());
3933           IdxN = DAG.getNode(ISD::MUL, dl,
3934                              N.getValueType(), IdxN, Scale);
3935         }
3936       }
3937 
3938       N = DAG.getNode(ISD::ADD, dl,
3939                       N.getValueType(), N, IdxN);
3940     }
3941   }
3942 
3943   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3944     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3945 
3946   setValue(&I, N);
3947 }
3948 
3949 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3950   // If this is a fixed sized alloca in the entry block of the function,
3951   // allocate it statically on the stack.
3952   if (FuncInfo.StaticAllocaMap.count(&I))
3953     return;   // getValue will auto-populate this.
3954 
3955   SDLoc dl = getCurSDLoc();
3956   Type *Ty = I.getAllocatedType();
3957   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3958   auto &DL = DAG.getDataLayout();
3959   uint64_t TySize = DL.getTypeAllocSize(Ty);
3960   unsigned Align =
3961       std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3962 
3963   SDValue AllocSize = getValue(I.getArraySize());
3964 
3965   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3966   if (AllocSize.getValueType() != IntPtr)
3967     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3968 
3969   AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3970                           AllocSize,
3971                           DAG.getConstant(TySize, dl, IntPtr));
3972 
3973   // Handle alignment.  If the requested alignment is less than or equal to
3974   // the stack alignment, ignore it.  If the size is greater than or equal to
3975   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3976   unsigned StackAlign =
3977       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3978   if (Align <= StackAlign)
3979     Align = 0;
3980 
3981   // Round the size of the allocation up to the stack alignment size
3982   // by add SA-1 to the size. This doesn't overflow because we're computing
3983   // an address inside an alloca.
3984   SDNodeFlags Flags;
3985   Flags.setNoUnsignedWrap(true);
3986   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3987                           DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3988 
3989   // Mask out the low bits for alignment purposes.
3990   AllocSize =
3991       DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
3992                   DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
3993 
3994   SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
3995   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3996   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
3997   setValue(&I, DSA);
3998   DAG.setRoot(DSA.getValue(1));
3999 
4000   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4001 }
4002 
4003 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4004   if (I.isAtomic())
4005     return visitAtomicLoad(I);
4006 
4007   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4008   const Value *SV = I.getOperand(0);
4009   if (TLI.supportSwiftError()) {
4010     // Swifterror values can come from either a function parameter with
4011     // swifterror attribute or an alloca with swifterror attribute.
4012     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4013       if (Arg->hasSwiftErrorAttr())
4014         return visitLoadFromSwiftError(I);
4015     }
4016 
4017     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4018       if (Alloca->isSwiftError())
4019         return visitLoadFromSwiftError(I);
4020     }
4021   }
4022 
4023   SDValue Ptr = getValue(SV);
4024 
4025   Type *Ty = I.getType();
4026 
4027   bool isVolatile = I.isVolatile();
4028   bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal);
4029   bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load);
4030   bool isDereferenceable =
4031       isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout());
4032   unsigned Alignment = I.getAlignment();
4033 
4034   AAMDNodes AAInfo;
4035   I.getAAMetadata(AAInfo);
4036   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4037 
4038   SmallVector<EVT, 4> ValueVTs, MemVTs;
4039   SmallVector<uint64_t, 4> Offsets;
4040   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4041   unsigned NumValues = ValueVTs.size();
4042   if (NumValues == 0)
4043     return;
4044 
4045   SDValue Root;
4046   bool ConstantMemory = false;
4047   if (isVolatile || NumValues > MaxParallelChains)
4048     // Serialize volatile loads with other side effects.
4049     Root = getRoot();
4050   else if (AA &&
4051            AA->pointsToConstantMemory(MemoryLocation(
4052                SV,
4053                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4054                AAInfo))) {
4055     // Do not serialize (non-volatile) loads of constant memory with anything.
4056     Root = DAG.getEntryNode();
4057     ConstantMemory = true;
4058   } else {
4059     // Do not serialize non-volatile loads against each other.
4060     Root = DAG.getRoot();
4061   }
4062 
4063   SDLoc dl = getCurSDLoc();
4064 
4065   if (isVolatile)
4066     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4067 
4068   // An aggregate load cannot wrap around the address space, so offsets to its
4069   // parts don't wrap either.
4070   SDNodeFlags Flags;
4071   Flags.setNoUnsignedWrap(true);
4072 
4073   SmallVector<SDValue, 4> Values(NumValues);
4074   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4075   EVT PtrVT = Ptr.getValueType();
4076   unsigned ChainI = 0;
4077   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4078     // Serializing loads here may result in excessive register pressure, and
4079     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4080     // could recover a bit by hoisting nodes upward in the chain by recognizing
4081     // they are side-effect free or do not alias. The optimizer should really
4082     // avoid this case by converting large object/array copies to llvm.memcpy
4083     // (MaxParallelChains should always remain as failsafe).
4084     if (ChainI == MaxParallelChains) {
4085       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4086       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4087                                   makeArrayRef(Chains.data(), ChainI));
4088       Root = Chain;
4089       ChainI = 0;
4090     }
4091     SDValue A = DAG.getNode(ISD::ADD, dl,
4092                             PtrVT, Ptr,
4093                             DAG.getConstant(Offsets[i], dl, PtrVT),
4094                             Flags);
4095     auto MMOFlags = MachineMemOperand::MONone;
4096     if (isVolatile)
4097       MMOFlags |= MachineMemOperand::MOVolatile;
4098     if (isNonTemporal)
4099       MMOFlags |= MachineMemOperand::MONonTemporal;
4100     if (isInvariant)
4101       MMOFlags |= MachineMemOperand::MOInvariant;
4102     if (isDereferenceable)
4103       MMOFlags |= MachineMemOperand::MODereferenceable;
4104     MMOFlags |= TLI.getMMOFlags(I);
4105 
4106     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4107                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4108                             MMOFlags, AAInfo, Ranges);
4109     Chains[ChainI] = L.getValue(1);
4110 
4111     if (MemVTs[i] != ValueVTs[i])
4112       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4113 
4114     Values[i] = L;
4115   }
4116 
4117   if (!ConstantMemory) {
4118     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4119                                 makeArrayRef(Chains.data(), ChainI));
4120     if (isVolatile)
4121       DAG.setRoot(Chain);
4122     else
4123       PendingLoads.push_back(Chain);
4124   }
4125 
4126   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4127                            DAG.getVTList(ValueVTs), Values));
4128 }
4129 
4130 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4131   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4132          "call visitStoreToSwiftError when backend supports swifterror");
4133 
4134   SmallVector<EVT, 4> ValueVTs;
4135   SmallVector<uint64_t, 4> Offsets;
4136   const Value *SrcV = I.getOperand(0);
4137   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4138                   SrcV->getType(), ValueVTs, &Offsets);
4139   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4140          "expect a single EVT for swifterror");
4141 
4142   SDValue Src = getValue(SrcV);
4143   // Create a virtual register, then update the virtual register.
4144   Register VReg =
4145       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4146   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4147   // Chain can be getRoot or getControlRoot.
4148   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4149                                       SDValue(Src.getNode(), Src.getResNo()));
4150   DAG.setRoot(CopyNode);
4151 }
4152 
4153 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4154   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4155          "call visitLoadFromSwiftError when backend supports swifterror");
4156 
4157   assert(!I.isVolatile() &&
4158          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4159          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4160          "Support volatile, non temporal, invariant for load_from_swift_error");
4161 
4162   const Value *SV = I.getOperand(0);
4163   Type *Ty = I.getType();
4164   AAMDNodes AAInfo;
4165   I.getAAMetadata(AAInfo);
4166   assert(
4167       (!AA ||
4168        !AA->pointsToConstantMemory(MemoryLocation(
4169            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4170            AAInfo))) &&
4171       "load_from_swift_error should not be constant memory");
4172 
4173   SmallVector<EVT, 4> ValueVTs;
4174   SmallVector<uint64_t, 4> Offsets;
4175   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4176                   ValueVTs, &Offsets);
4177   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4178          "expect a single EVT for swifterror");
4179 
4180   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4181   SDValue L = DAG.getCopyFromReg(
4182       getRoot(), getCurSDLoc(),
4183       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4184 
4185   setValue(&I, L);
4186 }
4187 
4188 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4189   if (I.isAtomic())
4190     return visitAtomicStore(I);
4191 
4192   const Value *SrcV = I.getOperand(0);
4193   const Value *PtrV = I.getOperand(1);
4194 
4195   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4196   if (TLI.supportSwiftError()) {
4197     // Swifterror values can come from either a function parameter with
4198     // swifterror attribute or an alloca with swifterror attribute.
4199     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4200       if (Arg->hasSwiftErrorAttr())
4201         return visitStoreToSwiftError(I);
4202     }
4203 
4204     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4205       if (Alloca->isSwiftError())
4206         return visitStoreToSwiftError(I);
4207     }
4208   }
4209 
4210   SmallVector<EVT, 4> ValueVTs, MemVTs;
4211   SmallVector<uint64_t, 4> Offsets;
4212   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4213                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4214   unsigned NumValues = ValueVTs.size();
4215   if (NumValues == 0)
4216     return;
4217 
4218   // Get the lowered operands. Note that we do this after
4219   // checking if NumResults is zero, because with zero results
4220   // the operands won't have values in the map.
4221   SDValue Src = getValue(SrcV);
4222   SDValue Ptr = getValue(PtrV);
4223 
4224   SDValue Root = getRoot();
4225   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4226   SDLoc dl = getCurSDLoc();
4227   unsigned Alignment = I.getAlignment();
4228   AAMDNodes AAInfo;
4229   I.getAAMetadata(AAInfo);
4230 
4231   auto MMOFlags = MachineMemOperand::MONone;
4232   if (I.isVolatile())
4233     MMOFlags |= MachineMemOperand::MOVolatile;
4234   if (I.hasMetadata(LLVMContext::MD_nontemporal))
4235     MMOFlags |= MachineMemOperand::MONonTemporal;
4236   MMOFlags |= TLI.getMMOFlags(I);
4237 
4238   // An aggregate load cannot wrap around the address space, so offsets to its
4239   // parts don't wrap either.
4240   SDNodeFlags Flags;
4241   Flags.setNoUnsignedWrap(true);
4242 
4243   unsigned ChainI = 0;
4244   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4245     // See visitLoad comments.
4246     if (ChainI == MaxParallelChains) {
4247       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4248                                   makeArrayRef(Chains.data(), ChainI));
4249       Root = Chain;
4250       ChainI = 0;
4251     }
4252     SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags);
4253     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4254     if (MemVTs[i] != ValueVTs[i])
4255       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4256     SDValue St =
4257         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4258                      Alignment, MMOFlags, AAInfo);
4259     Chains[ChainI] = St;
4260   }
4261 
4262   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4263                                   makeArrayRef(Chains.data(), ChainI));
4264   DAG.setRoot(StoreNode);
4265 }
4266 
4267 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4268                                            bool IsCompressing) {
4269   SDLoc sdl = getCurSDLoc();
4270 
4271   auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4272                            unsigned& Alignment) {
4273     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4274     Src0 = I.getArgOperand(0);
4275     Ptr = I.getArgOperand(1);
4276     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4277     Mask = I.getArgOperand(3);
4278   };
4279   auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4280                            unsigned& Alignment) {
4281     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4282     Src0 = I.getArgOperand(0);
4283     Ptr = I.getArgOperand(1);
4284     Mask = I.getArgOperand(2);
4285     Alignment = 0;
4286   };
4287 
4288   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4289   unsigned Alignment;
4290   if (IsCompressing)
4291     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4292   else
4293     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4294 
4295   SDValue Ptr = getValue(PtrOperand);
4296   SDValue Src0 = getValue(Src0Operand);
4297   SDValue Mask = getValue(MaskOperand);
4298   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4299 
4300   EVT VT = Src0.getValueType();
4301   if (!Alignment)
4302     Alignment = DAG.getEVTAlignment(VT);
4303 
4304   AAMDNodes AAInfo;
4305   I.getAAMetadata(AAInfo);
4306 
4307   MachineMemOperand *MMO =
4308     DAG.getMachineFunction().
4309     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4310                           MachineMemOperand::MOStore,
4311                           // TODO: Make MachineMemOperands aware of scalable
4312                           // vectors.
4313                           VT.getStoreSize().getKnownMinSize(),
4314                           Alignment, AAInfo);
4315   SDValue StoreNode =
4316       DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4317                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4318   DAG.setRoot(StoreNode);
4319   setValue(&I, StoreNode);
4320 }
4321 
4322 // Get a uniform base for the Gather/Scatter intrinsic.
4323 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4324 // We try to represent it as a base pointer + vector of indices.
4325 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4326 // The first operand of the GEP may be a single pointer or a vector of pointers
4327 // Example:
4328 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4329 //  or
4330 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4331 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4332 //
4333 // When the first GEP operand is a single pointer - it is the uniform base we
4334 // are looking for. If first operand of the GEP is a splat vector - we
4335 // extract the splat value and use it as a uniform base.
4336 // In all other cases the function returns 'false'.
4337 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index,
4338                            ISD::MemIndexType &IndexType, SDValue &Scale,
4339                            SelectionDAGBuilder *SDB) {
4340   SelectionDAG& DAG = SDB->DAG;
4341   LLVMContext &Context = *DAG.getContext();
4342 
4343   assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4344   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4345   if (!GEP)
4346     return false;
4347 
4348   const Value *GEPPtr = GEP->getPointerOperand();
4349   if (!GEPPtr->getType()->isVectorTy())
4350     Ptr = GEPPtr;
4351   else if (!(Ptr = getSplatValue(GEPPtr)))
4352     return false;
4353 
4354   unsigned FinalIndex = GEP->getNumOperands() - 1;
4355   Value *IndexVal = GEP->getOperand(FinalIndex);
4356   gep_type_iterator GTI = gep_type_begin(*GEP);
4357 
4358   // Ensure all the other indices are 0.
4359   for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) {
4360     auto *C = dyn_cast<Constant>(GEP->getOperand(i));
4361     if (!C)
4362       return false;
4363     if (isa<VectorType>(C->getType()))
4364       C = C->getSplatValue();
4365     auto *CI = dyn_cast_or_null<ConstantInt>(C);
4366     if (!CI || !CI->isZero())
4367       return false;
4368   }
4369 
4370   // The operands of the GEP may be defined in another basic block.
4371   // In this case we'll not find nodes for the operands.
4372   if (!SDB->findValue(Ptr))
4373     return false;
4374   Constant *C = dyn_cast<Constant>(IndexVal);
4375   if (!C && !SDB->findValue(IndexVal))
4376     return false;
4377 
4378   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4379   const DataLayout &DL = DAG.getDataLayout();
4380   StructType *STy = GTI.getStructTypeOrNull();
4381 
4382   if (STy) {
4383     const StructLayout *SL = DL.getStructLayout(STy);
4384     if (isa<VectorType>(C->getType())) {
4385       C = C->getSplatValue();
4386       // FIXME: If getSplatValue may return nullptr for a structure?
4387       // If not, the following check can be removed.
4388       if (!C)
4389         return false;
4390     }
4391     auto *CI = cast<ConstantInt>(C);
4392     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4393     Index = DAG.getTargetConstant(SL->getElementOffset(CI->getZExtValue()),
4394                                   SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4395   } else {
4396     Scale = DAG.getTargetConstant(
4397                 DL.getTypeAllocSize(GEP->getResultElementType()),
4398                 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4399     Index = SDB->getValue(IndexVal);
4400   }
4401   Base = SDB->getValue(Ptr);
4402   IndexType = ISD::SIGNED_SCALED;
4403 
4404   if (STy || !Index.getValueType().isVector()) {
4405     unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4406     EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4407     Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4408   }
4409   return true;
4410 }
4411 
4412 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4413   SDLoc sdl = getCurSDLoc();
4414 
4415   // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4416   const Value *Ptr = I.getArgOperand(1);
4417   SDValue Src0 = getValue(I.getArgOperand(0));
4418   SDValue Mask = getValue(I.getArgOperand(3));
4419   EVT VT = Src0.getValueType();
4420   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4421   if (!Alignment)
4422     Alignment = DAG.getEVTAlignment(VT);
4423   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4424 
4425   AAMDNodes AAInfo;
4426   I.getAAMetadata(AAInfo);
4427 
4428   SDValue Base;
4429   SDValue Index;
4430   ISD::MemIndexType IndexType;
4431   SDValue Scale;
4432   const Value *BasePtr = Ptr;
4433   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4434                                     this);
4435 
4436   const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4437   MachineMemOperand *MMO = DAG.getMachineFunction().
4438     getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4439                          MachineMemOperand::MOStore,
4440                          // TODO: Make MachineMemOperands aware of scalable
4441                          // vectors.
4442                          VT.getStoreSize().getKnownMinSize(),
4443                          Alignment, AAInfo);
4444   if (!UniformBase) {
4445     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4446     Index = getValue(Ptr);
4447     IndexType = ISD::SIGNED_SCALED;
4448     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4449   }
4450   SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4451   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4452                                          Ops, MMO, IndexType);
4453   DAG.setRoot(Scatter);
4454   setValue(&I, Scatter);
4455 }
4456 
4457 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4458   SDLoc sdl = getCurSDLoc();
4459 
4460   auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4461                            unsigned& Alignment) {
4462     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4463     Ptr = I.getArgOperand(0);
4464     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4465     Mask = I.getArgOperand(2);
4466     Src0 = I.getArgOperand(3);
4467   };
4468   auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4469                            unsigned& Alignment) {
4470     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4471     Ptr = I.getArgOperand(0);
4472     Alignment = 0;
4473     Mask = I.getArgOperand(1);
4474     Src0 = I.getArgOperand(2);
4475   };
4476 
4477   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4478   unsigned Alignment;
4479   if (IsExpanding)
4480     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4481   else
4482     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4483 
4484   SDValue Ptr = getValue(PtrOperand);
4485   SDValue Src0 = getValue(Src0Operand);
4486   SDValue Mask = getValue(MaskOperand);
4487   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4488 
4489   EVT VT = Src0.getValueType();
4490   if (!Alignment)
4491     Alignment = DAG.getEVTAlignment(VT);
4492 
4493   AAMDNodes AAInfo;
4494   I.getAAMetadata(AAInfo);
4495   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4496 
4497   // Do not serialize masked loads of constant memory with anything.
4498   MemoryLocation ML;
4499   if (VT.isScalableVector())
4500     ML = MemoryLocation(PtrOperand);
4501   else
4502     ML = MemoryLocation(PtrOperand, LocationSize::precise(
4503                            DAG.getDataLayout().getTypeStoreSize(I.getType())),
4504                            AAInfo);
4505   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4506 
4507   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4508 
4509   MachineMemOperand *MMO =
4510     DAG.getMachineFunction().
4511     getMachineMemOperand(MachinePointerInfo(PtrOperand),
4512                           MachineMemOperand::MOLoad,
4513                           // TODO: Make MachineMemOperands aware of scalable
4514                           // vectors.
4515                           VT.getStoreSize().getKnownMinSize(),
4516                           Alignment, AAInfo, Ranges);
4517 
4518   SDValue Load =
4519       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4520                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4521   if (AddToChain)
4522     PendingLoads.push_back(Load.getValue(1));
4523   setValue(&I, Load);
4524 }
4525 
4526 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4527   SDLoc sdl = getCurSDLoc();
4528 
4529   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4530   const Value *Ptr = I.getArgOperand(0);
4531   SDValue Src0 = getValue(I.getArgOperand(3));
4532   SDValue Mask = getValue(I.getArgOperand(2));
4533 
4534   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4535   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4536   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4537   if (!Alignment)
4538     Alignment = DAG.getEVTAlignment(VT);
4539 
4540   AAMDNodes AAInfo;
4541   I.getAAMetadata(AAInfo);
4542   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4543 
4544   SDValue Root = DAG.getRoot();
4545   SDValue Base;
4546   SDValue Index;
4547   ISD::MemIndexType IndexType;
4548   SDValue Scale;
4549   const Value *BasePtr = Ptr;
4550   bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale,
4551                                     this);
4552   bool ConstantMemory = false;
4553   if (UniformBase && AA &&
4554       AA->pointsToConstantMemory(
4555           MemoryLocation(BasePtr,
4556                          LocationSize::precise(
4557                              DAG.getDataLayout().getTypeStoreSize(I.getType())),
4558                          AAInfo))) {
4559     // Do not serialize (non-volatile) loads of constant memory with anything.
4560     Root = DAG.getEntryNode();
4561     ConstantMemory = true;
4562   }
4563 
4564   MachineMemOperand *MMO =
4565     DAG.getMachineFunction().
4566     getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4567                          MachineMemOperand::MOLoad,
4568                          // TODO: Make MachineMemOperands aware of scalable
4569                          // vectors.
4570                          VT.getStoreSize().getKnownMinSize(),
4571                          Alignment, AAInfo, Ranges);
4572 
4573   if (!UniformBase) {
4574     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4575     Index = getValue(Ptr);
4576     IndexType = ISD::SIGNED_SCALED;
4577     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4578   }
4579   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4580   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4581                                        Ops, MMO, IndexType);
4582 
4583   SDValue OutChain = Gather.getValue(1);
4584   if (!ConstantMemory)
4585     PendingLoads.push_back(OutChain);
4586   setValue(&I, Gather);
4587 }
4588 
4589 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4590   SDLoc dl = getCurSDLoc();
4591   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4592   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4593   SyncScope::ID SSID = I.getSyncScopeID();
4594 
4595   SDValue InChain = getRoot();
4596 
4597   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4598   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4599 
4600   auto Alignment = DAG.getEVTAlignment(MemVT);
4601 
4602   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4603   if (I.isVolatile())
4604     Flags |= MachineMemOperand::MOVolatile;
4605   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4606 
4607   MachineFunction &MF = DAG.getMachineFunction();
4608   MachineMemOperand *MMO =
4609     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4610                             Flags, MemVT.getStoreSize(), Alignment,
4611                             AAMDNodes(), nullptr, SSID, SuccessOrdering,
4612                             FailureOrdering);
4613 
4614   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4615                                    dl, MemVT, VTs, InChain,
4616                                    getValue(I.getPointerOperand()),
4617                                    getValue(I.getCompareOperand()),
4618                                    getValue(I.getNewValOperand()), MMO);
4619 
4620   SDValue OutChain = L.getValue(2);
4621 
4622   setValue(&I, L);
4623   DAG.setRoot(OutChain);
4624 }
4625 
4626 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4627   SDLoc dl = getCurSDLoc();
4628   ISD::NodeType NT;
4629   switch (I.getOperation()) {
4630   default: llvm_unreachable("Unknown atomicrmw operation");
4631   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4632   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4633   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4634   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4635   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4636   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4637   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4638   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4639   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4640   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4641   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4642   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4643   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4644   }
4645   AtomicOrdering Ordering = I.getOrdering();
4646   SyncScope::ID SSID = I.getSyncScopeID();
4647 
4648   SDValue InChain = getRoot();
4649 
4650   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4651   auto Alignment = DAG.getEVTAlignment(MemVT);
4652 
4653   auto Flags = MachineMemOperand::MOLoad |  MachineMemOperand::MOStore;
4654   if (I.isVolatile())
4655     Flags |= MachineMemOperand::MOVolatile;
4656   Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4657 
4658   MachineFunction &MF = DAG.getMachineFunction();
4659   MachineMemOperand *MMO =
4660     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4661                             MemVT.getStoreSize(), Alignment, AAMDNodes(),
4662                             nullptr, SSID, Ordering);
4663 
4664   SDValue L =
4665     DAG.getAtomic(NT, dl, MemVT, InChain,
4666                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4667                   MMO);
4668 
4669   SDValue OutChain = L.getValue(1);
4670 
4671   setValue(&I, L);
4672   DAG.setRoot(OutChain);
4673 }
4674 
4675 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4676   SDLoc dl = getCurSDLoc();
4677   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4678   SDValue Ops[3];
4679   Ops[0] = getRoot();
4680   Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4681                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4682   Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4683                            TLI.getFenceOperandTy(DAG.getDataLayout()));
4684   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4685 }
4686 
4687 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4688   SDLoc dl = getCurSDLoc();
4689   AtomicOrdering Order = I.getOrdering();
4690   SyncScope::ID SSID = I.getSyncScopeID();
4691 
4692   SDValue InChain = getRoot();
4693 
4694   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4695   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4696   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4697 
4698   if (!TLI.supportsUnalignedAtomics() &&
4699       I.getAlignment() < MemVT.getSizeInBits() / 8)
4700     report_fatal_error("Cannot generate unaligned atomic load");
4701 
4702   auto Flags = MachineMemOperand::MOLoad;
4703   if (I.isVolatile())
4704     Flags |= MachineMemOperand::MOVolatile;
4705   if (I.hasMetadata(LLVMContext::MD_invariant_load))
4706     Flags |= MachineMemOperand::MOInvariant;
4707   if (isDereferenceablePointer(I.getPointerOperand(), I.getType(),
4708                                DAG.getDataLayout()))
4709     Flags |= MachineMemOperand::MODereferenceable;
4710 
4711   Flags |= TLI.getMMOFlags(I);
4712 
4713   MachineMemOperand *MMO =
4714       DAG.getMachineFunction().
4715       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4716                            Flags, MemVT.getStoreSize(),
4717                            I.getAlignment() ? I.getAlignment() :
4718                                               DAG.getEVTAlignment(MemVT),
4719                            AAMDNodes(), nullptr, SSID, Order);
4720 
4721   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4722 
4723   SDValue Ptr = getValue(I.getPointerOperand());
4724 
4725   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4726     // TODO: Once this is better exercised by tests, it should be merged with
4727     // the normal path for loads to prevent future divergence.
4728     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4729     if (MemVT != VT)
4730       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4731 
4732     setValue(&I, L);
4733     SDValue OutChain = L.getValue(1);
4734     if (!I.isUnordered())
4735       DAG.setRoot(OutChain);
4736     else
4737       PendingLoads.push_back(OutChain);
4738     return;
4739   }
4740 
4741   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4742                             Ptr, MMO);
4743 
4744   SDValue OutChain = L.getValue(1);
4745   if (MemVT != VT)
4746     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4747 
4748   setValue(&I, L);
4749   DAG.setRoot(OutChain);
4750 }
4751 
4752 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4753   SDLoc dl = getCurSDLoc();
4754 
4755   AtomicOrdering Ordering = I.getOrdering();
4756   SyncScope::ID SSID = I.getSyncScopeID();
4757 
4758   SDValue InChain = getRoot();
4759 
4760   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4761   EVT MemVT =
4762       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4763 
4764   if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4765     report_fatal_error("Cannot generate unaligned atomic store");
4766 
4767   auto Flags = MachineMemOperand::MOStore;
4768   if (I.isVolatile())
4769     Flags |= MachineMemOperand::MOVolatile;
4770   Flags |= TLI.getMMOFlags(I);
4771 
4772   MachineFunction &MF = DAG.getMachineFunction();
4773   MachineMemOperand *MMO =
4774     MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4775                             MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4776                             nullptr, SSID, Ordering);
4777 
4778   SDValue Val = getValue(I.getValueOperand());
4779   if (Val.getValueType() != MemVT)
4780     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4781   SDValue Ptr = getValue(I.getPointerOperand());
4782 
4783   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4784     // TODO: Once this is better exercised by tests, it should be merged with
4785     // the normal path for stores to prevent future divergence.
4786     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4787     DAG.setRoot(S);
4788     return;
4789   }
4790   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4791                                    Ptr, Val, MMO);
4792 
4793 
4794   DAG.setRoot(OutChain);
4795 }
4796 
4797 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4798 /// node.
4799 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4800                                                unsigned Intrinsic) {
4801   // Ignore the callsite's attributes. A specific call site may be marked with
4802   // readnone, but the lowering code will expect the chain based on the
4803   // definition.
4804   const Function *F = I.getCalledFunction();
4805   bool HasChain = !F->doesNotAccessMemory();
4806   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4807 
4808   // Build the operand list.
4809   SmallVector<SDValue, 8> Ops;
4810   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4811     if (OnlyLoad) {
4812       // We don't need to serialize loads against other loads.
4813       Ops.push_back(DAG.getRoot());
4814     } else {
4815       Ops.push_back(getRoot());
4816     }
4817   }
4818 
4819   // Info is set by getTgtMemInstrinsic
4820   TargetLowering::IntrinsicInfo Info;
4821   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4822   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4823                                                DAG.getMachineFunction(),
4824                                                Intrinsic);
4825 
4826   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4827   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4828       Info.opc == ISD::INTRINSIC_W_CHAIN)
4829     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4830                                         TLI.getPointerTy(DAG.getDataLayout())));
4831 
4832   // Add all operands of the call to the operand list.
4833   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4834     const Value *Arg = I.getArgOperand(i);
4835     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4836       Ops.push_back(getValue(Arg));
4837       continue;
4838     }
4839 
4840     // Use TargetConstant instead of a regular constant for immarg.
4841     EVT VT = TLI.getValueType(*DL, Arg->getType(), true);
4842     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4843       assert(CI->getBitWidth() <= 64 &&
4844              "large intrinsic immediates not handled");
4845       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4846     } else {
4847       Ops.push_back(
4848           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4849     }
4850   }
4851 
4852   SmallVector<EVT, 4> ValueVTs;
4853   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4854 
4855   if (HasChain)
4856     ValueVTs.push_back(MVT::Other);
4857 
4858   SDVTList VTs = DAG.getVTList(ValueVTs);
4859 
4860   // Create the node.
4861   SDValue Result;
4862   if (IsTgtIntrinsic) {
4863     // This is target intrinsic that touches memory
4864     AAMDNodes AAInfo;
4865     I.getAAMetadata(AAInfo);
4866     Result = DAG.getMemIntrinsicNode(
4867         Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT,
4868         MachinePointerInfo(Info.ptrVal, Info.offset),
4869         Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo);
4870   } else if (!HasChain) {
4871     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4872   } else if (!I.getType()->isVoidTy()) {
4873     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4874   } else {
4875     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4876   }
4877 
4878   if (HasChain) {
4879     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4880     if (OnlyLoad)
4881       PendingLoads.push_back(Chain);
4882     else
4883       DAG.setRoot(Chain);
4884   }
4885 
4886   if (!I.getType()->isVoidTy()) {
4887     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4888       EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4889       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4890     } else
4891       Result = lowerRangeToAssertZExt(DAG, I, Result);
4892 
4893     setValue(&I, Result);
4894   }
4895 }
4896 
4897 /// GetSignificand - Get the significand and build it into a floating-point
4898 /// number with exponent of 1:
4899 ///
4900 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4901 ///
4902 /// where Op is the hexadecimal representation of floating point value.
4903 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4904   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4905                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4906   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4907                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4908   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4909 }
4910 
4911 /// GetExponent - Get the exponent:
4912 ///
4913 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4914 ///
4915 /// where Op is the hexadecimal representation of floating point value.
4916 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4917                            const TargetLowering &TLI, const SDLoc &dl) {
4918   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4919                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4920   SDValue t1 = DAG.getNode(
4921       ISD::SRL, dl, MVT::i32, t0,
4922       DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4923   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4924                            DAG.getConstant(127, dl, MVT::i32));
4925   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4926 }
4927 
4928 /// getF32Constant - Get 32-bit floating point constant.
4929 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4930                               const SDLoc &dl) {
4931   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4932                            MVT::f32);
4933 }
4934 
4935 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4936                                        SelectionDAG &DAG) {
4937   // TODO: What fast-math-flags should be set on the floating-point nodes?
4938 
4939   //   IntegerPartOfX = ((int32_t)(t0);
4940   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4941 
4942   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4943   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4944   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4945 
4946   //   IntegerPartOfX <<= 23;
4947   IntegerPartOfX = DAG.getNode(
4948       ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4949       DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4950                                   DAG.getDataLayout())));
4951 
4952   SDValue TwoToFractionalPartOfX;
4953   if (LimitFloatPrecision <= 6) {
4954     // For floating-point precision of 6:
4955     //
4956     //   TwoToFractionalPartOfX =
4957     //     0.997535578f +
4958     //       (0.735607626f + 0.252464424f * x) * x;
4959     //
4960     // error 0.0144103317, which is 6 bits
4961     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4962                              getF32Constant(DAG, 0x3e814304, dl));
4963     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4964                              getF32Constant(DAG, 0x3f3c50c8, dl));
4965     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4966     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4967                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
4968   } else if (LimitFloatPrecision <= 12) {
4969     // For floating-point precision of 12:
4970     //
4971     //   TwoToFractionalPartOfX =
4972     //     0.999892986f +
4973     //       (0.696457318f +
4974     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4975     //
4976     // error 0.000107046256, which is 13 to 14 bits
4977     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4978                              getF32Constant(DAG, 0x3da235e3, dl));
4979     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4980                              getF32Constant(DAG, 0x3e65b8f3, dl));
4981     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4982     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4983                              getF32Constant(DAG, 0x3f324b07, dl));
4984     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4985     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4986                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
4987   } else { // LimitFloatPrecision <= 18
4988     // For floating-point precision of 18:
4989     //
4990     //   TwoToFractionalPartOfX =
4991     //     0.999999982f +
4992     //       (0.693148872f +
4993     //         (0.240227044f +
4994     //           (0.554906021e-1f +
4995     //             (0.961591928e-2f +
4996     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4997     // error 2.47208000*10^(-7), which is better than 18 bits
4998     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4999                              getF32Constant(DAG, 0x3924b03e, dl));
5000     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5001                              getF32Constant(DAG, 0x3ab24b87, dl));
5002     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5003     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5004                              getF32Constant(DAG, 0x3c1d8c17, dl));
5005     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5006     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5007                              getF32Constant(DAG, 0x3d634a1d, dl));
5008     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5009     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5010                              getF32Constant(DAG, 0x3e75fe14, dl));
5011     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5012     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5013                               getF32Constant(DAG, 0x3f317234, dl));
5014     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5015     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5016                                          getF32Constant(DAG, 0x3f800000, dl));
5017   }
5018 
5019   // Add the exponent into the result in integer domain.
5020   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5021   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5022                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5023 }
5024 
5025 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5026 /// limited-precision mode.
5027 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5028                          const TargetLowering &TLI) {
5029   if (Op.getValueType() == MVT::f32 &&
5030       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5031 
5032     // Put the exponent in the right bit position for later addition to the
5033     // final result:
5034     //
5035     // t0 = Op * log2(e)
5036 
5037     // TODO: What fast-math-flags should be set here?
5038     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5039                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5040     return getLimitedPrecisionExp2(t0, dl, DAG);
5041   }
5042 
5043   // No special expansion.
5044   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
5045 }
5046 
5047 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5048 /// limited-precision mode.
5049 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5050                          const TargetLowering &TLI) {
5051   // TODO: What fast-math-flags should be set on the floating-point nodes?
5052 
5053   if (Op.getValueType() == MVT::f32 &&
5054       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5055     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5056 
5057     // Scale the exponent by log(2).
5058     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5059     SDValue LogOfExponent =
5060         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5061                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5062 
5063     // Get the significand and build it into a floating-point number with
5064     // exponent of 1.
5065     SDValue X = GetSignificand(DAG, Op1, dl);
5066 
5067     SDValue LogOfMantissa;
5068     if (LimitFloatPrecision <= 6) {
5069       // For floating-point precision of 6:
5070       //
5071       //   LogofMantissa =
5072       //     -1.1609546f +
5073       //       (1.4034025f - 0.23903021f * x) * x;
5074       //
5075       // error 0.0034276066, which is better than 8 bits
5076       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5077                                getF32Constant(DAG, 0xbe74c456, dl));
5078       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5079                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5080       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5081       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5082                                   getF32Constant(DAG, 0x3f949a29, dl));
5083     } else if (LimitFloatPrecision <= 12) {
5084       // For floating-point precision of 12:
5085       //
5086       //   LogOfMantissa =
5087       //     -1.7417939f +
5088       //       (2.8212026f +
5089       //         (-1.4699568f +
5090       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5091       //
5092       // error 0.000061011436, which is 14 bits
5093       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5094                                getF32Constant(DAG, 0xbd67b6d6, dl));
5095       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5096                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5097       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5098       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5099                                getF32Constant(DAG, 0x3fbc278b, dl));
5100       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5101       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5102                                getF32Constant(DAG, 0x40348e95, dl));
5103       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5104       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5105                                   getF32Constant(DAG, 0x3fdef31a, dl));
5106     } else { // LimitFloatPrecision <= 18
5107       // For floating-point precision of 18:
5108       //
5109       //   LogOfMantissa =
5110       //     -2.1072184f +
5111       //       (4.2372794f +
5112       //         (-3.7029485f +
5113       //           (2.2781945f +
5114       //             (-0.87823314f +
5115       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5116       //
5117       // error 0.0000023660568, which is better than 18 bits
5118       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5119                                getF32Constant(DAG, 0xbc91e5ac, dl));
5120       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5121                                getF32Constant(DAG, 0x3e4350aa, dl));
5122       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5123       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5124                                getF32Constant(DAG, 0x3f60d3e3, dl));
5125       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5126       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5127                                getF32Constant(DAG, 0x4011cdf0, dl));
5128       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5129       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5130                                getF32Constant(DAG, 0x406cfd1c, dl));
5131       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5132       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5133                                getF32Constant(DAG, 0x408797cb, dl));
5134       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5135       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5136                                   getF32Constant(DAG, 0x4006dcab, dl));
5137     }
5138 
5139     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5140   }
5141 
5142   // No special expansion.
5143   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5144 }
5145 
5146 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5147 /// limited-precision mode.
5148 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5149                           const TargetLowering &TLI) {
5150   // TODO: What fast-math-flags should be set on the floating-point nodes?
5151 
5152   if (Op.getValueType() == MVT::f32 &&
5153       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5154     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5155 
5156     // Get the exponent.
5157     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5158 
5159     // Get the significand and build it into a floating-point number with
5160     // exponent of 1.
5161     SDValue X = GetSignificand(DAG, Op1, dl);
5162 
5163     // Different possible minimax approximations of significand in
5164     // floating-point for various degrees of accuracy over [1,2].
5165     SDValue Log2ofMantissa;
5166     if (LimitFloatPrecision <= 6) {
5167       // For floating-point precision of 6:
5168       //
5169       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5170       //
5171       // error 0.0049451742, which is more than 7 bits
5172       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5173                                getF32Constant(DAG, 0xbeb08fe0, dl));
5174       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5175                                getF32Constant(DAG, 0x40019463, dl));
5176       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5177       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5178                                    getF32Constant(DAG, 0x3fd6633d, dl));
5179     } else if (LimitFloatPrecision <= 12) {
5180       // For floating-point precision of 12:
5181       //
5182       //   Log2ofMantissa =
5183       //     -2.51285454f +
5184       //       (4.07009056f +
5185       //         (-2.12067489f +
5186       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5187       //
5188       // error 0.0000876136000, which is better than 13 bits
5189       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5190                                getF32Constant(DAG, 0xbda7262e, dl));
5191       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5192                                getF32Constant(DAG, 0x3f25280b, dl));
5193       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5194       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5195                                getF32Constant(DAG, 0x4007b923, dl));
5196       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5197       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5198                                getF32Constant(DAG, 0x40823e2f, dl));
5199       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5200       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5201                                    getF32Constant(DAG, 0x4020d29c, dl));
5202     } else { // LimitFloatPrecision <= 18
5203       // For floating-point precision of 18:
5204       //
5205       //   Log2ofMantissa =
5206       //     -3.0400495f +
5207       //       (6.1129976f +
5208       //         (-5.3420409f +
5209       //           (3.2865683f +
5210       //             (-1.2669343f +
5211       //               (0.27515199f -
5212       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5213       //
5214       // error 0.0000018516, which is better than 18 bits
5215       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5216                                getF32Constant(DAG, 0xbcd2769e, dl));
5217       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5218                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5219       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5220       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5221                                getF32Constant(DAG, 0x3fa22ae7, dl));
5222       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5223       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5224                                getF32Constant(DAG, 0x40525723, dl));
5225       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5226       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5227                                getF32Constant(DAG, 0x40aaf200, dl));
5228       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5229       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5230                                getF32Constant(DAG, 0x40c39dad, dl));
5231       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5232       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5233                                    getF32Constant(DAG, 0x4042902c, dl));
5234     }
5235 
5236     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5237   }
5238 
5239   // No special expansion.
5240   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5241 }
5242 
5243 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5244 /// limited-precision mode.
5245 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5246                            const TargetLowering &TLI) {
5247   // TODO: What fast-math-flags should be set on the floating-point nodes?
5248 
5249   if (Op.getValueType() == MVT::f32 &&
5250       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5251     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5252 
5253     // Scale the exponent by log10(2) [0.30102999f].
5254     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5255     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5256                                         getF32Constant(DAG, 0x3e9a209a, dl));
5257 
5258     // Get the significand and build it into a floating-point number with
5259     // exponent of 1.
5260     SDValue X = GetSignificand(DAG, Op1, dl);
5261 
5262     SDValue Log10ofMantissa;
5263     if (LimitFloatPrecision <= 6) {
5264       // For floating-point precision of 6:
5265       //
5266       //   Log10ofMantissa =
5267       //     -0.50419619f +
5268       //       (0.60948995f - 0.10380950f * x) * x;
5269       //
5270       // error 0.0014886165, which is 6 bits
5271       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5272                                getF32Constant(DAG, 0xbdd49a13, dl));
5273       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5274                                getF32Constant(DAG, 0x3f1c0789, dl));
5275       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5276       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5277                                     getF32Constant(DAG, 0x3f011300, dl));
5278     } else if (LimitFloatPrecision <= 12) {
5279       // For floating-point precision of 12:
5280       //
5281       //   Log10ofMantissa =
5282       //     -0.64831180f +
5283       //       (0.91751397f +
5284       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5285       //
5286       // error 0.00019228036, which is better than 12 bits
5287       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5288                                getF32Constant(DAG, 0x3d431f31, dl));
5289       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5290                                getF32Constant(DAG, 0x3ea21fb2, dl));
5291       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5292       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5293                                getF32Constant(DAG, 0x3f6ae232, dl));
5294       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5295       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5296                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5297     } else { // LimitFloatPrecision <= 18
5298       // For floating-point precision of 18:
5299       //
5300       //   Log10ofMantissa =
5301       //     -0.84299375f +
5302       //       (1.5327582f +
5303       //         (-1.0688956f +
5304       //           (0.49102474f +
5305       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5306       //
5307       // error 0.0000037995730, which is better than 18 bits
5308       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5309                                getF32Constant(DAG, 0x3c5d51ce, dl));
5310       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5311                                getF32Constant(DAG, 0x3e00685a, dl));
5312       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5313       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5314                                getF32Constant(DAG, 0x3efb6798, dl));
5315       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5316       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5317                                getF32Constant(DAG, 0x3f88d192, dl));
5318       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5319       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5320                                getF32Constant(DAG, 0x3fc4316c, dl));
5321       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5322       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5323                                     getF32Constant(DAG, 0x3f57ce70, dl));
5324     }
5325 
5326     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5327   }
5328 
5329   // No special expansion.
5330   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5331 }
5332 
5333 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5334 /// limited-precision mode.
5335 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5336                           const TargetLowering &TLI) {
5337   if (Op.getValueType() == MVT::f32 &&
5338       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5339     return getLimitedPrecisionExp2(Op, dl, DAG);
5340 
5341   // No special expansion.
5342   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5343 }
5344 
5345 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5346 /// limited-precision mode with x == 10.0f.
5347 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5348                          SelectionDAG &DAG, const TargetLowering &TLI) {
5349   bool IsExp10 = false;
5350   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5351       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5352     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5353       APFloat Ten(10.0f);
5354       IsExp10 = LHSC->isExactlyValue(Ten);
5355     }
5356   }
5357 
5358   // TODO: What fast-math-flags should be set on the FMUL node?
5359   if (IsExp10) {
5360     // Put the exponent in the right bit position for later addition to the
5361     // final result:
5362     //
5363     //   #define LOG2OF10 3.3219281f
5364     //   t0 = Op * LOG2OF10;
5365     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5366                              getF32Constant(DAG, 0x40549a78, dl));
5367     return getLimitedPrecisionExp2(t0, dl, DAG);
5368   }
5369 
5370   // No special expansion.
5371   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5372 }
5373 
5374 /// ExpandPowI - Expand a llvm.powi intrinsic.
5375 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5376                           SelectionDAG &DAG) {
5377   // If RHS is a constant, we can expand this out to a multiplication tree,
5378   // otherwise we end up lowering to a call to __powidf2 (for example).  When
5379   // optimizing for size, we only want to do this if the expansion would produce
5380   // a small number of multiplies, otherwise we do the full expansion.
5381   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5382     // Get the exponent as a positive value.
5383     unsigned Val = RHSC->getSExtValue();
5384     if ((int)Val < 0) Val = -Val;
5385 
5386     // powi(x, 0) -> 1.0
5387     if (Val == 0)
5388       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5389 
5390     bool OptForSize = DAG.shouldOptForSize();
5391     if (!OptForSize ||
5392         // If optimizing for size, don't insert too many multiplies.
5393         // This inserts up to 5 multiplies.
5394         countPopulation(Val) + Log2_32(Val) < 7) {
5395       // We use the simple binary decomposition method to generate the multiply
5396       // sequence.  There are more optimal ways to do this (for example,
5397       // powi(x,15) generates one more multiply than it should), but this has
5398       // the benefit of being both really simple and much better than a libcall.
5399       SDValue Res;  // Logically starts equal to 1.0
5400       SDValue CurSquare = LHS;
5401       // TODO: Intrinsics should have fast-math-flags that propagate to these
5402       // nodes.
5403       while (Val) {
5404         if (Val & 1) {
5405           if (Res.getNode())
5406             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5407           else
5408             Res = CurSquare;  // 1.0*CurSquare.
5409         }
5410 
5411         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5412                                 CurSquare, CurSquare);
5413         Val >>= 1;
5414       }
5415 
5416       // If the original was negative, invert the result, producing 1/(x*x*x).
5417       if (RHSC->getSExtValue() < 0)
5418         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5419                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5420       return Res;
5421     }
5422   }
5423 
5424   // Otherwise, expand to a libcall.
5425   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5426 }
5427 
5428 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5429 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5430 static void
5431 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs,
5432                      const SDValue &N) {
5433   switch (N.getOpcode()) {
5434   case ISD::CopyFromReg: {
5435     SDValue Op = N.getOperand(1);
5436     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5437                       Op.getValueType().getSizeInBits());
5438     return;
5439   }
5440   case ISD::BITCAST:
5441   case ISD::AssertZext:
5442   case ISD::AssertSext:
5443   case ISD::TRUNCATE:
5444     getUnderlyingArgRegs(Regs, N.getOperand(0));
5445     return;
5446   case ISD::BUILD_PAIR:
5447   case ISD::BUILD_VECTOR:
5448   case ISD::CONCAT_VECTORS:
5449     for (SDValue Op : N->op_values())
5450       getUnderlyingArgRegs(Regs, Op);
5451     return;
5452   default:
5453     return;
5454   }
5455 }
5456 
5457 /// If the DbgValueInst is a dbg_value of a function argument, create the
5458 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5459 /// instruction selection, they will be inserted to the entry BB.
5460 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5461     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5462     DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5463   const Argument *Arg = dyn_cast<Argument>(V);
5464   if (!Arg)
5465     return false;
5466 
5467   if (!IsDbgDeclare) {
5468     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5469     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5470     // the entry block.
5471     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5472     if (!IsInEntryBlock)
5473       return false;
5474 
5475     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5476     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5477     // variable that also is a param.
5478     //
5479     // Although, if we are at the top of the entry block already, we can still
5480     // emit using ArgDbgValue. This might catch some situations when the
5481     // dbg.value refers to an argument that isn't used in the entry block, so
5482     // any CopyToReg node would be optimized out and the only way to express
5483     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5484     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5485     // we should only emit as ArgDbgValue if the Variable is an argument to the
5486     // current function, and the dbg.value intrinsic is found in the entry
5487     // block.
5488     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5489         !DL->getInlinedAt();
5490     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5491     if (!IsInPrologue && !VariableIsFunctionInputArg)
5492       return false;
5493 
5494     // Here we assume that a function argument on IR level only can be used to
5495     // describe one input parameter on source level. If we for example have
5496     // source code like this
5497     //
5498     //    struct A { long x, y; };
5499     //    void foo(struct A a, long b) {
5500     //      ...
5501     //      b = a.x;
5502     //      ...
5503     //    }
5504     //
5505     // and IR like this
5506     //
5507     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5508     //  entry:
5509     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5510     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5511     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5512     //    ...
5513     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5514     //    ...
5515     //
5516     // then the last dbg.value is describing a parameter "b" using a value that
5517     // is an argument. But since we already has used %a1 to describe a parameter
5518     // we should not handle that last dbg.value here (that would result in an
5519     // incorrect hoisting of the DBG_VALUE to the function entry).
5520     // Notice that we allow one dbg.value per IR level argument, to accommodate
5521     // for the situation with fragments above.
5522     if (VariableIsFunctionInputArg) {
5523       unsigned ArgNo = Arg->getArgNo();
5524       if (ArgNo >= FuncInfo.DescribedArgs.size())
5525         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5526       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5527         return false;
5528       FuncInfo.DescribedArgs.set(ArgNo);
5529     }
5530   }
5531 
5532   MachineFunction &MF = DAG.getMachineFunction();
5533   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5534 
5535   Optional<MachineOperand> Op;
5536   // Some arguments' frame index is recorded during argument lowering.
5537   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5538   if (FI != std::numeric_limits<int>::max())
5539     Op = MachineOperand::CreateFI(FI);
5540 
5541   SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes;
5542   if (!Op && N.getNode()) {
5543     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5544     Register Reg;
5545     if (ArgRegsAndSizes.size() == 1)
5546       Reg = ArgRegsAndSizes.front().first;
5547 
5548     if (Reg && Reg.isVirtual()) {
5549       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5550       Register PR = RegInfo.getLiveInPhysReg(Reg);
5551       if (PR)
5552         Reg = PR;
5553     }
5554     if (Reg) {
5555       Op = MachineOperand::CreateReg(Reg, false);
5556     }
5557   }
5558 
5559   if (!Op && N.getNode()) {
5560     // Check if frame index is available.
5561     SDValue LCandidate = peekThroughBitcasts(N);
5562     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5563       if (FrameIndexSDNode *FINode =
5564           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5565         Op = MachineOperand::CreateFI(FINode->getIndex());
5566   }
5567 
5568   if (!Op) {
5569     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5570     auto splitMultiRegDbgValue
5571       = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) {
5572       unsigned Offset = 0;
5573       for (auto RegAndSize : SplitRegs) {
5574         auto FragmentExpr = DIExpression::createFragmentExpression(
5575           Expr, Offset, RegAndSize.second);
5576         // If a valid fragment expression cannot be created, the variable's
5577         // correct value cannot be determined and so it is set as Undef.
5578         if (!FragmentExpr) {
5579           SDDbgValue *SDV = DAG.getConstantDbgValue(
5580               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5581           DAG.AddDbgValue(SDV, nullptr, false);
5582           continue;
5583         }
5584         assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?");
5585         FuncInfo.ArgDbgValues.push_back(
5586           BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5587                   RegAndSize.first, Variable, *FragmentExpr));
5588         Offset += RegAndSize.second;
5589       }
5590     };
5591 
5592     // Check if ValueMap has reg number.
5593     DenseMap<const Value *, unsigned>::const_iterator
5594       VMI = FuncInfo.ValueMap.find(V);
5595     if (VMI != FuncInfo.ValueMap.end()) {
5596       const auto &TLI = DAG.getTargetLoweringInfo();
5597       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5598                        V->getType(), getABIRegCopyCC(V));
5599       if (RFV.occupiesMultipleRegs()) {
5600         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5601         return true;
5602       }
5603 
5604       Op = MachineOperand::CreateReg(VMI->second, false);
5605     } else if (ArgRegsAndSizes.size() > 1) {
5606       // This was split due to the calling convention, and no virtual register
5607       // mapping exists for the value.
5608       splitMultiRegDbgValue(ArgRegsAndSizes);
5609       return true;
5610     }
5611   }
5612 
5613   if (!Op)
5614     return false;
5615 
5616   assert(Variable->isValidLocationForIntrinsic(DL) &&
5617          "Expected inlined-at fields to agree");
5618 
5619   // If the argument arrives in a stack slot, then what the IR thought was a
5620   // normal Value is actually in memory, and we must add a deref to load it.
5621   if (Op->isFI()) {
5622     int FI = Op->getIndex();
5623     unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI);
5624     if (Expr->isImplicit()) {
5625       SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size};
5626       Expr = DIExpression::prependOpcodes(Expr, Ops);
5627     } else {
5628       Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore);
5629     }
5630   }
5631 
5632   // If this location was specified with a dbg.declare, then it and its
5633   // expression calculate the address of the variable. Append a deref to
5634   // force it to be a memory location.
5635   if (IsDbgDeclare)
5636     Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref});
5637 
5638   FuncInfo.ArgDbgValues.push_back(
5639       BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false,
5640               *Op, Variable, Expr));
5641 
5642   return true;
5643 }
5644 
5645 /// Return the appropriate SDDbgValue based on N.
5646 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5647                                              DILocalVariable *Variable,
5648                                              DIExpression *Expr,
5649                                              const DebugLoc &dl,
5650                                              unsigned DbgSDNodeOrder) {
5651   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5652     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5653     // stack slot locations.
5654     //
5655     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5656     // debug values here after optimization:
5657     //
5658     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5659     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5660     //
5661     // Both describe the direct values of their associated variables.
5662     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5663                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5664   }
5665   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5666                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5667 }
5668 
5669 // VisualStudio defines setjmp as _setjmp
5670 #if defined(_MSC_VER) && defined(setjmp) && \
5671                          !defined(setjmp_undefined_for_msvc)
5672 #  pragma push_macro("setjmp")
5673 #  undef setjmp
5674 #  define setjmp_undefined_for_msvc
5675 #endif
5676 
5677 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5678   switch (Intrinsic) {
5679   case Intrinsic::smul_fix:
5680     return ISD::SMULFIX;
5681   case Intrinsic::umul_fix:
5682     return ISD::UMULFIX;
5683   default:
5684     llvm_unreachable("Unhandled fixed point intrinsic");
5685   }
5686 }
5687 
5688 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5689                                            const char *FunctionName) {
5690   assert(FunctionName && "FunctionName must not be nullptr");
5691   SDValue Callee = DAG.getExternalSymbol(
5692       FunctionName,
5693       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5694   LowerCallTo(&I, Callee, I.isTailCall());
5695 }
5696 
5697 /// Lower the call to the specified intrinsic function.
5698 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5699                                              unsigned Intrinsic) {
5700   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5701   SDLoc sdl = getCurSDLoc();
5702   DebugLoc dl = getCurDebugLoc();
5703   SDValue Res;
5704 
5705   switch (Intrinsic) {
5706   default:
5707     // By default, turn this into a target intrinsic node.
5708     visitTargetIntrinsic(I, Intrinsic);
5709     return;
5710   case Intrinsic::vastart:  visitVAStart(I); return;
5711   case Intrinsic::vaend:    visitVAEnd(I); return;
5712   case Intrinsic::vacopy:   visitVACopy(I); return;
5713   case Intrinsic::returnaddress:
5714     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5715                              TLI.getPointerTy(DAG.getDataLayout()),
5716                              getValue(I.getArgOperand(0))));
5717     return;
5718   case Intrinsic::addressofreturnaddress:
5719     setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5720                              TLI.getPointerTy(DAG.getDataLayout())));
5721     return;
5722   case Intrinsic::sponentry:
5723     setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5724                              TLI.getFrameIndexTy(DAG.getDataLayout())));
5725     return;
5726   case Intrinsic::frameaddress:
5727     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5728                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5729                              getValue(I.getArgOperand(0))));
5730     return;
5731   case Intrinsic::read_register: {
5732     Value *Reg = I.getArgOperand(0);
5733     SDValue Chain = getRoot();
5734     SDValue RegName =
5735         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5736     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5737     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5738       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5739     setValue(&I, Res);
5740     DAG.setRoot(Res.getValue(1));
5741     return;
5742   }
5743   case Intrinsic::write_register: {
5744     Value *Reg = I.getArgOperand(0);
5745     Value *RegValue = I.getArgOperand(1);
5746     SDValue Chain = getRoot();
5747     SDValue RegName =
5748         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5749     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5750                             RegName, getValue(RegValue)));
5751     return;
5752   }
5753   case Intrinsic::setjmp:
5754     lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]);
5755     return;
5756   case Intrinsic::longjmp:
5757     lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]);
5758     return;
5759   case Intrinsic::memcpy: {
5760     const auto &MCI = cast<MemCpyInst>(I);
5761     SDValue Op1 = getValue(I.getArgOperand(0));
5762     SDValue Op2 = getValue(I.getArgOperand(1));
5763     SDValue Op3 = getValue(I.getArgOperand(2));
5764     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5765     unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5766     unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5767     unsigned Align = MinAlign(DstAlign, SrcAlign);
5768     bool isVol = MCI.isVolatile();
5769     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5770     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5771     // node.
5772     SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5773                                false, isTC,
5774                                MachinePointerInfo(I.getArgOperand(0)),
5775                                MachinePointerInfo(I.getArgOperand(1)));
5776     updateDAGForMaybeTailCall(MC);
5777     return;
5778   }
5779   case Intrinsic::memset: {
5780     const auto &MSI = cast<MemSetInst>(I);
5781     SDValue Op1 = getValue(I.getArgOperand(0));
5782     SDValue Op2 = getValue(I.getArgOperand(1));
5783     SDValue Op3 = getValue(I.getArgOperand(2));
5784     // @llvm.memset defines 0 and 1 to both mean no alignment.
5785     unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5786     bool isVol = MSI.isVolatile();
5787     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5788     SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5789                                isTC, MachinePointerInfo(I.getArgOperand(0)));
5790     updateDAGForMaybeTailCall(MS);
5791     return;
5792   }
5793   case Intrinsic::memmove: {
5794     const auto &MMI = cast<MemMoveInst>(I);
5795     SDValue Op1 = getValue(I.getArgOperand(0));
5796     SDValue Op2 = getValue(I.getArgOperand(1));
5797     SDValue Op3 = getValue(I.getArgOperand(2));
5798     // @llvm.memmove defines 0 and 1 to both mean no alignment.
5799     unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5800     unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5801     unsigned Align = MinAlign(DstAlign, SrcAlign);
5802     bool isVol = MMI.isVolatile();
5803     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5804     // FIXME: Support passing different dest/src alignments to the memmove DAG
5805     // node.
5806     SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5807                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
5808                                 MachinePointerInfo(I.getArgOperand(1)));
5809     updateDAGForMaybeTailCall(MM);
5810     return;
5811   }
5812   case Intrinsic::memcpy_element_unordered_atomic: {
5813     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5814     SDValue Dst = getValue(MI.getRawDest());
5815     SDValue Src = getValue(MI.getRawSource());
5816     SDValue Length = getValue(MI.getLength());
5817 
5818     unsigned DstAlign = MI.getDestAlignment();
5819     unsigned SrcAlign = MI.getSourceAlignment();
5820     Type *LengthTy = MI.getLength()->getType();
5821     unsigned ElemSz = MI.getElementSizeInBytes();
5822     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5823     SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5824                                      SrcAlign, Length, LengthTy, ElemSz, isTC,
5825                                      MachinePointerInfo(MI.getRawDest()),
5826                                      MachinePointerInfo(MI.getRawSource()));
5827     updateDAGForMaybeTailCall(MC);
5828     return;
5829   }
5830   case Intrinsic::memmove_element_unordered_atomic: {
5831     auto &MI = cast<AtomicMemMoveInst>(I);
5832     SDValue Dst = getValue(MI.getRawDest());
5833     SDValue Src = getValue(MI.getRawSource());
5834     SDValue Length = getValue(MI.getLength());
5835 
5836     unsigned DstAlign = MI.getDestAlignment();
5837     unsigned SrcAlign = MI.getSourceAlignment();
5838     Type *LengthTy = MI.getLength()->getType();
5839     unsigned ElemSz = MI.getElementSizeInBytes();
5840     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5841     SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5842                                       SrcAlign, Length, LengthTy, ElemSz, isTC,
5843                                       MachinePointerInfo(MI.getRawDest()),
5844                                       MachinePointerInfo(MI.getRawSource()));
5845     updateDAGForMaybeTailCall(MC);
5846     return;
5847   }
5848   case Intrinsic::memset_element_unordered_atomic: {
5849     auto &MI = cast<AtomicMemSetInst>(I);
5850     SDValue Dst = getValue(MI.getRawDest());
5851     SDValue Val = getValue(MI.getValue());
5852     SDValue Length = getValue(MI.getLength());
5853 
5854     unsigned DstAlign = MI.getDestAlignment();
5855     Type *LengthTy = MI.getLength()->getType();
5856     unsigned ElemSz = MI.getElementSizeInBytes();
5857     bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5858     SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5859                                      LengthTy, ElemSz, isTC,
5860                                      MachinePointerInfo(MI.getRawDest()));
5861     updateDAGForMaybeTailCall(MC);
5862     return;
5863   }
5864   case Intrinsic::dbg_addr:
5865   case Intrinsic::dbg_declare: {
5866     const auto &DI = cast<DbgVariableIntrinsic>(I);
5867     DILocalVariable *Variable = DI.getVariable();
5868     DIExpression *Expression = DI.getExpression();
5869     dropDanglingDebugInfo(Variable, Expression);
5870     assert(Variable && "Missing variable");
5871 
5872     // Check if address has undef value.
5873     const Value *Address = DI.getVariableLocation();
5874     if (!Address || isa<UndefValue>(Address) ||
5875         (Address->use_empty() && !isa<Argument>(Address))) {
5876       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5877       return;
5878     }
5879 
5880     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5881 
5882     // Check if this variable can be described by a frame index, typically
5883     // either as a static alloca or a byval parameter.
5884     int FI = std::numeric_limits<int>::max();
5885     if (const auto *AI =
5886             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5887       if (AI->isStaticAlloca()) {
5888         auto I = FuncInfo.StaticAllocaMap.find(AI);
5889         if (I != FuncInfo.StaticAllocaMap.end())
5890           FI = I->second;
5891       }
5892     } else if (const auto *Arg = dyn_cast<Argument>(
5893                    Address->stripInBoundsConstantOffsets())) {
5894       FI = FuncInfo.getArgumentFrameIndex(Arg);
5895     }
5896 
5897     // llvm.dbg.addr is control dependent and always generates indirect
5898     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5899     // the MachineFunction variable table.
5900     if (FI != std::numeric_limits<int>::max()) {
5901       if (Intrinsic == Intrinsic::dbg_addr) {
5902         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5903             Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5904         DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5905       }
5906       return;
5907     }
5908 
5909     SDValue &N = NodeMap[Address];
5910     if (!N.getNode() && isa<Argument>(Address))
5911       // Check unused arguments map.
5912       N = UnusedArgNodeMap[Address];
5913     SDDbgValue *SDV;
5914     if (N.getNode()) {
5915       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5916         Address = BCI->getOperand(0);
5917       // Parameters are handled specially.
5918       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5919       if (isParameter && FINode) {
5920         // Byval parameter. We have a frame index at this point.
5921         SDV =
5922             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5923                                       /*IsIndirect*/ true, dl, SDNodeOrder);
5924       } else if (isa<Argument>(Address)) {
5925         // Address is an argument, so try to emit its dbg value using
5926         // virtual register info from the FuncInfo.ValueMap.
5927         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5928         return;
5929       } else {
5930         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5931                               true, dl, SDNodeOrder);
5932       }
5933       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5934     } else {
5935       // If Address is an argument then try to emit its dbg value using
5936       // virtual register info from the FuncInfo.ValueMap.
5937       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5938                                     N)) {
5939         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5940       }
5941     }
5942     return;
5943   }
5944   case Intrinsic::dbg_label: {
5945     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5946     DILabel *Label = DI.getLabel();
5947     assert(Label && "Missing label");
5948 
5949     SDDbgLabel *SDV;
5950     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5951     DAG.AddDbgLabel(SDV);
5952     return;
5953   }
5954   case Intrinsic::dbg_value: {
5955     const DbgValueInst &DI = cast<DbgValueInst>(I);
5956     assert(DI.getVariable() && "Missing variable");
5957 
5958     DILocalVariable *Variable = DI.getVariable();
5959     DIExpression *Expression = DI.getExpression();
5960     dropDanglingDebugInfo(Variable, Expression);
5961     const Value *V = DI.getValue();
5962     if (!V)
5963       return;
5964 
5965     if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5966         SDNodeOrder))
5967       return;
5968 
5969     // TODO: Dangling debug info will eventually either be resolved or produce
5970     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5971     // between the original dbg.value location and its resolved DBG_VALUE, which
5972     // we should ideally fill with an extra Undef DBG_VALUE.
5973 
5974     DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5975     return;
5976   }
5977 
5978   case Intrinsic::eh_typeid_for: {
5979     // Find the type id for the given typeinfo.
5980     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5981     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5982     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5983     setValue(&I, Res);
5984     return;
5985   }
5986 
5987   case Intrinsic::eh_return_i32:
5988   case Intrinsic::eh_return_i64:
5989     DAG.getMachineFunction().setCallsEHReturn(true);
5990     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5991                             MVT::Other,
5992                             getControlRoot(),
5993                             getValue(I.getArgOperand(0)),
5994                             getValue(I.getArgOperand(1))));
5995     return;
5996   case Intrinsic::eh_unwind_init:
5997     DAG.getMachineFunction().setCallsUnwindInit(true);
5998     return;
5999   case Intrinsic::eh_dwarf_cfa:
6000     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6001                              TLI.getPointerTy(DAG.getDataLayout()),
6002                              getValue(I.getArgOperand(0))));
6003     return;
6004   case Intrinsic::eh_sjlj_callsite: {
6005     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6006     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
6007     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
6008     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6009 
6010     MMI.setCurrentCallSite(CI->getZExtValue());
6011     return;
6012   }
6013   case Intrinsic::eh_sjlj_functioncontext: {
6014     // Get and store the index of the function context.
6015     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6016     AllocaInst *FnCtx =
6017       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6018     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6019     MFI.setFunctionContextIndex(FI);
6020     return;
6021   }
6022   case Intrinsic::eh_sjlj_setjmp: {
6023     SDValue Ops[2];
6024     Ops[0] = getRoot();
6025     Ops[1] = getValue(I.getArgOperand(0));
6026     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6027                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6028     setValue(&I, Op.getValue(0));
6029     DAG.setRoot(Op.getValue(1));
6030     return;
6031   }
6032   case Intrinsic::eh_sjlj_longjmp:
6033     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6034                             getRoot(), getValue(I.getArgOperand(0))));
6035     return;
6036   case Intrinsic::eh_sjlj_setup_dispatch:
6037     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6038                             getRoot()));
6039     return;
6040   case Intrinsic::masked_gather:
6041     visitMaskedGather(I);
6042     return;
6043   case Intrinsic::masked_load:
6044     visitMaskedLoad(I);
6045     return;
6046   case Intrinsic::masked_scatter:
6047     visitMaskedScatter(I);
6048     return;
6049   case Intrinsic::masked_store:
6050     visitMaskedStore(I);
6051     return;
6052   case Intrinsic::masked_expandload:
6053     visitMaskedLoad(I, true /* IsExpanding */);
6054     return;
6055   case Intrinsic::masked_compressstore:
6056     visitMaskedStore(I, true /* IsCompressing */);
6057     return;
6058   case Intrinsic::powi:
6059     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6060                             getValue(I.getArgOperand(1)), DAG));
6061     return;
6062   case Intrinsic::log:
6063     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6064     return;
6065   case Intrinsic::log2:
6066     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6067     return;
6068   case Intrinsic::log10:
6069     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6070     return;
6071   case Intrinsic::exp:
6072     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6073     return;
6074   case Intrinsic::exp2:
6075     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6076     return;
6077   case Intrinsic::pow:
6078     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6079                            getValue(I.getArgOperand(1)), DAG, TLI));
6080     return;
6081   case Intrinsic::sqrt:
6082   case Intrinsic::fabs:
6083   case Intrinsic::sin:
6084   case Intrinsic::cos:
6085   case Intrinsic::floor:
6086   case Intrinsic::ceil:
6087   case Intrinsic::trunc:
6088   case Intrinsic::rint:
6089   case Intrinsic::nearbyint:
6090   case Intrinsic::round:
6091   case Intrinsic::canonicalize: {
6092     unsigned Opcode;
6093     switch (Intrinsic) {
6094     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6095     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6096     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6097     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6098     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6099     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6100     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6101     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6102     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6103     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6104     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6105     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6106     }
6107 
6108     setValue(&I, DAG.getNode(Opcode, sdl,
6109                              getValue(I.getArgOperand(0)).getValueType(),
6110                              getValue(I.getArgOperand(0))));
6111     return;
6112   }
6113   case Intrinsic::lround:
6114   case Intrinsic::llround:
6115   case Intrinsic::lrint:
6116   case Intrinsic::llrint: {
6117     unsigned Opcode;
6118     switch (Intrinsic) {
6119     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6120     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6121     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6122     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6123     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6124     }
6125 
6126     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6127     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6128                              getValue(I.getArgOperand(0))));
6129     return;
6130   }
6131   case Intrinsic::minnum:
6132     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6133                              getValue(I.getArgOperand(0)).getValueType(),
6134                              getValue(I.getArgOperand(0)),
6135                              getValue(I.getArgOperand(1))));
6136     return;
6137   case Intrinsic::maxnum:
6138     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6139                              getValue(I.getArgOperand(0)).getValueType(),
6140                              getValue(I.getArgOperand(0)),
6141                              getValue(I.getArgOperand(1))));
6142     return;
6143   case Intrinsic::minimum:
6144     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6145                              getValue(I.getArgOperand(0)).getValueType(),
6146                              getValue(I.getArgOperand(0)),
6147                              getValue(I.getArgOperand(1))));
6148     return;
6149   case Intrinsic::maximum:
6150     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6151                              getValue(I.getArgOperand(0)).getValueType(),
6152                              getValue(I.getArgOperand(0)),
6153                              getValue(I.getArgOperand(1))));
6154     return;
6155   case Intrinsic::copysign:
6156     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6157                              getValue(I.getArgOperand(0)).getValueType(),
6158                              getValue(I.getArgOperand(0)),
6159                              getValue(I.getArgOperand(1))));
6160     return;
6161   case Intrinsic::fma:
6162     setValue(&I, DAG.getNode(ISD::FMA, sdl,
6163                              getValue(I.getArgOperand(0)).getValueType(),
6164                              getValue(I.getArgOperand(0)),
6165                              getValue(I.getArgOperand(1)),
6166                              getValue(I.getArgOperand(2))));
6167     return;
6168 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
6169   case Intrinsic::INTRINSIC:
6170 #include "llvm/IR/ConstrainedOps.def"
6171     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6172     return;
6173   case Intrinsic::fmuladd: {
6174     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6175     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6176         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6177       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6178                                getValue(I.getArgOperand(0)).getValueType(),
6179                                getValue(I.getArgOperand(0)),
6180                                getValue(I.getArgOperand(1)),
6181                                getValue(I.getArgOperand(2))));
6182     } else {
6183       // TODO: Intrinsic calls should have fast-math-flags.
6184       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6185                                 getValue(I.getArgOperand(0)).getValueType(),
6186                                 getValue(I.getArgOperand(0)),
6187                                 getValue(I.getArgOperand(1)));
6188       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6189                                 getValue(I.getArgOperand(0)).getValueType(),
6190                                 Mul,
6191                                 getValue(I.getArgOperand(2)));
6192       setValue(&I, Add);
6193     }
6194     return;
6195   }
6196   case Intrinsic::convert_to_fp16:
6197     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6198                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6199                                          getValue(I.getArgOperand(0)),
6200                                          DAG.getTargetConstant(0, sdl,
6201                                                                MVT::i32))));
6202     return;
6203   case Intrinsic::convert_from_fp16:
6204     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6205                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6206                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6207                                          getValue(I.getArgOperand(0)))));
6208     return;
6209   case Intrinsic::pcmarker: {
6210     SDValue Tmp = getValue(I.getArgOperand(0));
6211     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6212     return;
6213   }
6214   case Intrinsic::readcyclecounter: {
6215     SDValue Op = getRoot();
6216     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6217                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6218     setValue(&I, Res);
6219     DAG.setRoot(Res.getValue(1));
6220     return;
6221   }
6222   case Intrinsic::bitreverse:
6223     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6224                              getValue(I.getArgOperand(0)).getValueType(),
6225                              getValue(I.getArgOperand(0))));
6226     return;
6227   case Intrinsic::bswap:
6228     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6229                              getValue(I.getArgOperand(0)).getValueType(),
6230                              getValue(I.getArgOperand(0))));
6231     return;
6232   case Intrinsic::cttz: {
6233     SDValue Arg = getValue(I.getArgOperand(0));
6234     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6235     EVT Ty = Arg.getValueType();
6236     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6237                              sdl, Ty, Arg));
6238     return;
6239   }
6240   case Intrinsic::ctlz: {
6241     SDValue Arg = getValue(I.getArgOperand(0));
6242     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6243     EVT Ty = Arg.getValueType();
6244     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6245                              sdl, Ty, Arg));
6246     return;
6247   }
6248   case Intrinsic::ctpop: {
6249     SDValue Arg = getValue(I.getArgOperand(0));
6250     EVT Ty = Arg.getValueType();
6251     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6252     return;
6253   }
6254   case Intrinsic::fshl:
6255   case Intrinsic::fshr: {
6256     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6257     SDValue X = getValue(I.getArgOperand(0));
6258     SDValue Y = getValue(I.getArgOperand(1));
6259     SDValue Z = getValue(I.getArgOperand(2));
6260     EVT VT = X.getValueType();
6261     SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6262     SDValue Zero = DAG.getConstant(0, sdl, VT);
6263     SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6264 
6265     auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6266     if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6267       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6268       return;
6269     }
6270 
6271     // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6272     // avoid the select that is necessary in the general case to filter out
6273     // the 0-shift possibility that leads to UB.
6274     if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6275       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6276       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6277         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6278         return;
6279       }
6280 
6281       // Some targets only rotate one way. Try the opposite direction.
6282       RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6283       if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6284         // Negate the shift amount because it is safe to ignore the high bits.
6285         SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6286         setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6287         return;
6288       }
6289 
6290       // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6291       // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6292       SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6293       SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6294       SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6295       SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6296       setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6297       return;
6298     }
6299 
6300     // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6301     // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6302     SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6303     SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6304     SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6305     SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6306 
6307     // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6308     // and that is undefined. We must compare and select to avoid UB.
6309     EVT CCVT = MVT::i1;
6310     if (VT.isVector())
6311       CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6312 
6313     // For fshl, 0-shift returns the 1st arg (X).
6314     // For fshr, 0-shift returns the 2nd arg (Y).
6315     SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6316     setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6317     return;
6318   }
6319   case Intrinsic::sadd_sat: {
6320     SDValue Op1 = getValue(I.getArgOperand(0));
6321     SDValue Op2 = getValue(I.getArgOperand(1));
6322     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6323     return;
6324   }
6325   case Intrinsic::uadd_sat: {
6326     SDValue Op1 = getValue(I.getArgOperand(0));
6327     SDValue Op2 = getValue(I.getArgOperand(1));
6328     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6329     return;
6330   }
6331   case Intrinsic::ssub_sat: {
6332     SDValue Op1 = getValue(I.getArgOperand(0));
6333     SDValue Op2 = getValue(I.getArgOperand(1));
6334     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6335     return;
6336   }
6337   case Intrinsic::usub_sat: {
6338     SDValue Op1 = getValue(I.getArgOperand(0));
6339     SDValue Op2 = getValue(I.getArgOperand(1));
6340     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6341     return;
6342   }
6343   case Intrinsic::smul_fix:
6344   case Intrinsic::umul_fix: {
6345     SDValue Op1 = getValue(I.getArgOperand(0));
6346     SDValue Op2 = getValue(I.getArgOperand(1));
6347     SDValue Op3 = getValue(I.getArgOperand(2));
6348     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6349                              Op1.getValueType(), Op1, Op2, Op3));
6350     return;
6351   }
6352   case Intrinsic::smul_fix_sat: {
6353     SDValue Op1 = getValue(I.getArgOperand(0));
6354     SDValue Op2 = getValue(I.getArgOperand(1));
6355     SDValue Op3 = getValue(I.getArgOperand(2));
6356     setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6357                              Op3));
6358     return;
6359   }
6360   case Intrinsic::umul_fix_sat: {
6361     SDValue Op1 = getValue(I.getArgOperand(0));
6362     SDValue Op2 = getValue(I.getArgOperand(1));
6363     SDValue Op3 = getValue(I.getArgOperand(2));
6364     setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2,
6365                              Op3));
6366     return;
6367   }
6368   case Intrinsic::stacksave: {
6369     SDValue Op = getRoot();
6370     Res = DAG.getNode(
6371         ISD::STACKSAVE, sdl,
6372         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6373     setValue(&I, Res);
6374     DAG.setRoot(Res.getValue(1));
6375     return;
6376   }
6377   case Intrinsic::stackrestore:
6378     Res = getValue(I.getArgOperand(0));
6379     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6380     return;
6381   case Intrinsic::get_dynamic_area_offset: {
6382     SDValue Op = getRoot();
6383     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6384     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6385     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6386     // target.
6387     if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6388       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6389                          " intrinsic!");
6390     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6391                       Op);
6392     DAG.setRoot(Op);
6393     setValue(&I, Res);
6394     return;
6395   }
6396   case Intrinsic::stackguard: {
6397     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6398     MachineFunction &MF = DAG.getMachineFunction();
6399     const Module &M = *MF.getFunction().getParent();
6400     SDValue Chain = getRoot();
6401     if (TLI.useLoadStackGuardNode()) {
6402       Res = getLoadStackGuard(DAG, sdl, Chain);
6403     } else {
6404       const Value *Global = TLI.getSDagStackGuard(M);
6405       unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6406       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6407                         MachinePointerInfo(Global, 0), Align,
6408                         MachineMemOperand::MOVolatile);
6409     }
6410     if (TLI.useStackGuardXorFP())
6411       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6412     DAG.setRoot(Chain);
6413     setValue(&I, Res);
6414     return;
6415   }
6416   case Intrinsic::stackprotector: {
6417     // Emit code into the DAG to store the stack guard onto the stack.
6418     MachineFunction &MF = DAG.getMachineFunction();
6419     MachineFrameInfo &MFI = MF.getFrameInfo();
6420     EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6421     SDValue Src, Chain = getRoot();
6422 
6423     if (TLI.useLoadStackGuardNode())
6424       Src = getLoadStackGuard(DAG, sdl, Chain);
6425     else
6426       Src = getValue(I.getArgOperand(0));   // The guard's value.
6427 
6428     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6429 
6430     int FI = FuncInfo.StaticAllocaMap[Slot];
6431     MFI.setStackProtectorIndex(FI);
6432 
6433     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6434 
6435     // Store the stack protector onto the stack.
6436     Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6437                                                  DAG.getMachineFunction(), FI),
6438                        /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6439     setValue(&I, Res);
6440     DAG.setRoot(Res);
6441     return;
6442   }
6443   case Intrinsic::objectsize:
6444     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6445 
6446   case Intrinsic::is_constant:
6447     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6448 
6449   case Intrinsic::annotation:
6450   case Intrinsic::ptr_annotation:
6451   case Intrinsic::launder_invariant_group:
6452   case Intrinsic::strip_invariant_group:
6453     // Drop the intrinsic, but forward the value
6454     setValue(&I, getValue(I.getOperand(0)));
6455     return;
6456   case Intrinsic::assume:
6457   case Intrinsic::var_annotation:
6458   case Intrinsic::sideeffect:
6459     // Discard annotate attributes, assumptions, and artificial side-effects.
6460     return;
6461 
6462   case Intrinsic::codeview_annotation: {
6463     // Emit a label associated with this metadata.
6464     MachineFunction &MF = DAG.getMachineFunction();
6465     MCSymbol *Label =
6466         MF.getMMI().getContext().createTempSymbol("annotation", true);
6467     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6468     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6469     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6470     DAG.setRoot(Res);
6471     return;
6472   }
6473 
6474   case Intrinsic::init_trampoline: {
6475     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6476 
6477     SDValue Ops[6];
6478     Ops[0] = getRoot();
6479     Ops[1] = getValue(I.getArgOperand(0));
6480     Ops[2] = getValue(I.getArgOperand(1));
6481     Ops[3] = getValue(I.getArgOperand(2));
6482     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6483     Ops[5] = DAG.getSrcValue(F);
6484 
6485     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6486 
6487     DAG.setRoot(Res);
6488     return;
6489   }
6490   case Intrinsic::adjust_trampoline:
6491     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6492                              TLI.getPointerTy(DAG.getDataLayout()),
6493                              getValue(I.getArgOperand(0))));
6494     return;
6495   case Intrinsic::gcroot: {
6496     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6497            "only valid in functions with gc specified, enforced by Verifier");
6498     assert(GFI && "implied by previous");
6499     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6500     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6501 
6502     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6503     GFI->addStackRoot(FI->getIndex(), TypeMap);
6504     return;
6505   }
6506   case Intrinsic::gcread:
6507   case Intrinsic::gcwrite:
6508     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6509   case Intrinsic::flt_rounds:
6510     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6511     return;
6512 
6513   case Intrinsic::expect:
6514     // Just replace __builtin_expect(exp, c) with EXP.
6515     setValue(&I, getValue(I.getArgOperand(0)));
6516     return;
6517 
6518   case Intrinsic::debugtrap:
6519   case Intrinsic::trap: {
6520     StringRef TrapFuncName =
6521         I.getAttributes()
6522             .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6523             .getValueAsString();
6524     if (TrapFuncName.empty()) {
6525       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6526         ISD::TRAP : ISD::DEBUGTRAP;
6527       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6528       return;
6529     }
6530     TargetLowering::ArgListTy Args;
6531 
6532     TargetLowering::CallLoweringInfo CLI(DAG);
6533     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6534         CallingConv::C, I.getType(),
6535         DAG.getExternalSymbol(TrapFuncName.data(),
6536                               TLI.getPointerTy(DAG.getDataLayout())),
6537         std::move(Args));
6538 
6539     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6540     DAG.setRoot(Result.second);
6541     return;
6542   }
6543 
6544   case Intrinsic::uadd_with_overflow:
6545   case Intrinsic::sadd_with_overflow:
6546   case Intrinsic::usub_with_overflow:
6547   case Intrinsic::ssub_with_overflow:
6548   case Intrinsic::umul_with_overflow:
6549   case Intrinsic::smul_with_overflow: {
6550     ISD::NodeType Op;
6551     switch (Intrinsic) {
6552     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6553     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6554     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6555     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6556     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6557     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6558     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6559     }
6560     SDValue Op1 = getValue(I.getArgOperand(0));
6561     SDValue Op2 = getValue(I.getArgOperand(1));
6562 
6563     EVT ResultVT = Op1.getValueType();
6564     EVT OverflowVT = MVT::i1;
6565     if (ResultVT.isVector())
6566       OverflowVT = EVT::getVectorVT(
6567           *Context, OverflowVT, ResultVT.getVectorNumElements());
6568 
6569     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6570     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6571     return;
6572   }
6573   case Intrinsic::prefetch: {
6574     SDValue Ops[5];
6575     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6576     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6577     Ops[0] = DAG.getRoot();
6578     Ops[1] = getValue(I.getArgOperand(0));
6579     Ops[2] = getValue(I.getArgOperand(1));
6580     Ops[3] = getValue(I.getArgOperand(2));
6581     Ops[4] = getValue(I.getArgOperand(3));
6582     SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6583                                              DAG.getVTList(MVT::Other), Ops,
6584                                              EVT::getIntegerVT(*Context, 8),
6585                                              MachinePointerInfo(I.getArgOperand(0)),
6586                                              0, /* align */
6587                                              Flags);
6588 
6589     // Chain the prefetch in parallell with any pending loads, to stay out of
6590     // the way of later optimizations.
6591     PendingLoads.push_back(Result);
6592     Result = getRoot();
6593     DAG.setRoot(Result);
6594     return;
6595   }
6596   case Intrinsic::lifetime_start:
6597   case Intrinsic::lifetime_end: {
6598     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6599     // Stack coloring is not enabled in O0, discard region information.
6600     if (TM.getOptLevel() == CodeGenOpt::None)
6601       return;
6602 
6603     const int64_t ObjectSize =
6604         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6605     Value *const ObjectPtr = I.getArgOperand(1);
6606     SmallVector<const Value *, 4> Allocas;
6607     GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6608 
6609     for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6610            E = Allocas.end(); Object != E; ++Object) {
6611       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6612 
6613       // Could not find an Alloca.
6614       if (!LifetimeObject)
6615         continue;
6616 
6617       // First check that the Alloca is static, otherwise it won't have a
6618       // valid frame index.
6619       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6620       if (SI == FuncInfo.StaticAllocaMap.end())
6621         return;
6622 
6623       const int FrameIndex = SI->second;
6624       int64_t Offset;
6625       if (GetPointerBaseWithConstantOffset(
6626               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6627         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6628       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6629                                 Offset);
6630       DAG.setRoot(Res);
6631     }
6632     return;
6633   }
6634   case Intrinsic::invariant_start:
6635     // Discard region information.
6636     setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6637     return;
6638   case Intrinsic::invariant_end:
6639     // Discard region information.
6640     return;
6641   case Intrinsic::clear_cache:
6642     /// FunctionName may be null.
6643     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6644       lowerCallToExternalSymbol(I, FunctionName);
6645     return;
6646   case Intrinsic::donothing:
6647     // ignore
6648     return;
6649   case Intrinsic::experimental_stackmap:
6650     visitStackmap(I);
6651     return;
6652   case Intrinsic::experimental_patchpoint_void:
6653   case Intrinsic::experimental_patchpoint_i64:
6654     visitPatchpoint(&I);
6655     return;
6656   case Intrinsic::experimental_gc_statepoint:
6657     LowerStatepoint(ImmutableStatepoint(&I));
6658     return;
6659   case Intrinsic::experimental_gc_result:
6660     visitGCResult(cast<GCResultInst>(I));
6661     return;
6662   case Intrinsic::experimental_gc_relocate:
6663     visitGCRelocate(cast<GCRelocateInst>(I));
6664     return;
6665   case Intrinsic::instrprof_increment:
6666     llvm_unreachable("instrprof failed to lower an increment");
6667   case Intrinsic::instrprof_value_profile:
6668     llvm_unreachable("instrprof failed to lower a value profiling call");
6669   case Intrinsic::localescape: {
6670     MachineFunction &MF = DAG.getMachineFunction();
6671     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6672 
6673     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6674     // is the same on all targets.
6675     for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6676       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6677       if (isa<ConstantPointerNull>(Arg))
6678         continue; // Skip null pointers. They represent a hole in index space.
6679       AllocaInst *Slot = cast<AllocaInst>(Arg);
6680       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6681              "can only escape static allocas");
6682       int FI = FuncInfo.StaticAllocaMap[Slot];
6683       MCSymbol *FrameAllocSym =
6684           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6685               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6686       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6687               TII->get(TargetOpcode::LOCAL_ESCAPE))
6688           .addSym(FrameAllocSym)
6689           .addFrameIndex(FI);
6690     }
6691 
6692     return;
6693   }
6694 
6695   case Intrinsic::localrecover: {
6696     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6697     MachineFunction &MF = DAG.getMachineFunction();
6698     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6699 
6700     // Get the symbol that defines the frame offset.
6701     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6702     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6703     unsigned IdxVal =
6704         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6705     MCSymbol *FrameAllocSym =
6706         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6707             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6708 
6709     // Create a MCSymbol for the label to avoid any target lowering
6710     // that would make this PC relative.
6711     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6712     SDValue OffsetVal =
6713         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6714 
6715     // Add the offset to the FP.
6716     Value *FP = I.getArgOperand(1);
6717     SDValue FPVal = getValue(FP);
6718     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
6719     setValue(&I, Add);
6720 
6721     return;
6722   }
6723 
6724   case Intrinsic::eh_exceptionpointer:
6725   case Intrinsic::eh_exceptioncode: {
6726     // Get the exception pointer vreg, copy from it, and resize it to fit.
6727     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6728     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6729     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6730     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6731     SDValue N =
6732         DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6733     if (Intrinsic == Intrinsic::eh_exceptioncode)
6734       N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6735     setValue(&I, N);
6736     return;
6737   }
6738   case Intrinsic::xray_customevent: {
6739     // Here we want to make sure that the intrinsic behaves as if it has a
6740     // specific calling convention, and only for x86_64.
6741     // FIXME: Support other platforms later.
6742     const auto &Triple = DAG.getTarget().getTargetTriple();
6743     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6744       return;
6745 
6746     SDLoc DL = getCurSDLoc();
6747     SmallVector<SDValue, 8> Ops;
6748 
6749     // We want to say that we always want the arguments in registers.
6750     SDValue LogEntryVal = getValue(I.getArgOperand(0));
6751     SDValue StrSizeVal = getValue(I.getArgOperand(1));
6752     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6753     SDValue Chain = getRoot();
6754     Ops.push_back(LogEntryVal);
6755     Ops.push_back(StrSizeVal);
6756     Ops.push_back(Chain);
6757 
6758     // We need to enforce the calling convention for the callsite, so that
6759     // argument ordering is enforced correctly, and that register allocation can
6760     // see that some registers may be assumed clobbered and have to preserve
6761     // them across calls to the intrinsic.
6762     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6763                                            DL, NodeTys, Ops);
6764     SDValue patchableNode = SDValue(MN, 0);
6765     DAG.setRoot(patchableNode);
6766     setValue(&I, patchableNode);
6767     return;
6768   }
6769   case Intrinsic::xray_typedevent: {
6770     // Here we want to make sure that the intrinsic behaves as if it has a
6771     // specific calling convention, and only for x86_64.
6772     // FIXME: Support other platforms later.
6773     const auto &Triple = DAG.getTarget().getTargetTriple();
6774     if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6775       return;
6776 
6777     SDLoc DL = getCurSDLoc();
6778     SmallVector<SDValue, 8> Ops;
6779 
6780     // We want to say that we always want the arguments in registers.
6781     // It's unclear to me how manipulating the selection DAG here forces callers
6782     // to provide arguments in registers instead of on the stack.
6783     SDValue LogTypeId = getValue(I.getArgOperand(0));
6784     SDValue LogEntryVal = getValue(I.getArgOperand(1));
6785     SDValue StrSizeVal = getValue(I.getArgOperand(2));
6786     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6787     SDValue Chain = getRoot();
6788     Ops.push_back(LogTypeId);
6789     Ops.push_back(LogEntryVal);
6790     Ops.push_back(StrSizeVal);
6791     Ops.push_back(Chain);
6792 
6793     // We need to enforce the calling convention for the callsite, so that
6794     // argument ordering is enforced correctly, and that register allocation can
6795     // see that some registers may be assumed clobbered and have to preserve
6796     // them across calls to the intrinsic.
6797     MachineSDNode *MN = DAG.getMachineNode(
6798         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6799     SDValue patchableNode = SDValue(MN, 0);
6800     DAG.setRoot(patchableNode);
6801     setValue(&I, patchableNode);
6802     return;
6803   }
6804   case Intrinsic::experimental_deoptimize:
6805     LowerDeoptimizeCall(&I);
6806     return;
6807 
6808   case Intrinsic::experimental_vector_reduce_v2_fadd:
6809   case Intrinsic::experimental_vector_reduce_v2_fmul:
6810   case Intrinsic::experimental_vector_reduce_add:
6811   case Intrinsic::experimental_vector_reduce_mul:
6812   case Intrinsic::experimental_vector_reduce_and:
6813   case Intrinsic::experimental_vector_reduce_or:
6814   case Intrinsic::experimental_vector_reduce_xor:
6815   case Intrinsic::experimental_vector_reduce_smax:
6816   case Intrinsic::experimental_vector_reduce_smin:
6817   case Intrinsic::experimental_vector_reduce_umax:
6818   case Intrinsic::experimental_vector_reduce_umin:
6819   case Intrinsic::experimental_vector_reduce_fmax:
6820   case Intrinsic::experimental_vector_reduce_fmin:
6821     visitVectorReduce(I, Intrinsic);
6822     return;
6823 
6824   case Intrinsic::icall_branch_funnel: {
6825     SmallVector<SDValue, 16> Ops;
6826     Ops.push_back(getValue(I.getArgOperand(0)));
6827 
6828     int64_t Offset;
6829     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6830         I.getArgOperand(1), Offset, DAG.getDataLayout()));
6831     if (!Base)
6832       report_fatal_error(
6833           "llvm.icall.branch.funnel operand must be a GlobalValue");
6834     Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6835 
6836     struct BranchFunnelTarget {
6837       int64_t Offset;
6838       SDValue Target;
6839     };
6840     SmallVector<BranchFunnelTarget, 8> Targets;
6841 
6842     for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6843       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6844           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6845       if (ElemBase != Base)
6846         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6847                            "to the same GlobalValue");
6848 
6849       SDValue Val = getValue(I.getArgOperand(Op + 1));
6850       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6851       if (!GA)
6852         report_fatal_error(
6853             "llvm.icall.branch.funnel operand must be a GlobalValue");
6854       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6855                                      GA->getGlobal(), getCurSDLoc(),
6856                                      Val.getValueType(), GA->getOffset())});
6857     }
6858     llvm::sort(Targets,
6859                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6860                  return T1.Offset < T2.Offset;
6861                });
6862 
6863     for (auto &T : Targets) {
6864       Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6865       Ops.push_back(T.Target);
6866     }
6867 
6868     Ops.push_back(DAG.getRoot()); // Chain
6869     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6870                                  getCurSDLoc(), MVT::Other, Ops),
6871               0);
6872     DAG.setRoot(N);
6873     setValue(&I, N);
6874     HasTailCall = true;
6875     return;
6876   }
6877 
6878   case Intrinsic::wasm_landingpad_index:
6879     // Information this intrinsic contained has been transferred to
6880     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6881     // delete it now.
6882     return;
6883 
6884   case Intrinsic::aarch64_settag:
6885   case Intrinsic::aarch64_settag_zero: {
6886     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
6887     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
6888     SDValue Val = TSI.EmitTargetCodeForSetTag(
6889         DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)),
6890         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
6891         ZeroMemory);
6892     DAG.setRoot(Val);
6893     setValue(&I, Val);
6894     return;
6895   }
6896   case Intrinsic::ptrmask: {
6897     SDValue Ptr = getValue(I.getOperand(0));
6898     SDValue Const = getValue(I.getOperand(1));
6899 
6900     EVT DestVT =
6901         EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
6902 
6903     setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr,
6904                              DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT)));
6905     return;
6906   }
6907   }
6908 }
6909 
6910 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6911     const ConstrainedFPIntrinsic &FPI) {
6912   SDLoc sdl = getCurSDLoc();
6913 
6914   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6915   SmallVector<EVT, 4> ValueVTs;
6916   ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6917   ValueVTs.push_back(MVT::Other); // Out chain
6918 
6919   // We do not need to serialize constrained FP intrinsics against
6920   // each other or against (nonvolatile) loads, so they can be
6921   // chained like loads.
6922   SDValue Chain = DAG.getRoot();
6923   SmallVector<SDValue, 4> Opers;
6924   Opers.push_back(Chain);
6925   if (FPI.isUnaryOp()) {
6926     Opers.push_back(getValue(FPI.getArgOperand(0)));
6927   } else if (FPI.isTernaryOp()) {
6928     Opers.push_back(getValue(FPI.getArgOperand(0)));
6929     Opers.push_back(getValue(FPI.getArgOperand(1)));
6930     Opers.push_back(getValue(FPI.getArgOperand(2)));
6931   } else {
6932     Opers.push_back(getValue(FPI.getArgOperand(0)));
6933     Opers.push_back(getValue(FPI.getArgOperand(1)));
6934   }
6935 
6936   unsigned Opcode;
6937   switch (FPI.getIntrinsicID()) {
6938   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6939 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)                   \
6940   case Intrinsic::INTRINSIC:                                                   \
6941     Opcode = ISD::STRICT_##DAGN;                                               \
6942     break;
6943 #include "llvm/IR/ConstrainedOps.def"
6944   }
6945 
6946   // A few strict DAG nodes carry additional operands that are not
6947   // set up by the default code above.
6948   switch (Opcode) {
6949   default: break;
6950   case ISD::STRICT_FP_ROUND:
6951     Opers.push_back(
6952         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
6953     break;
6954   case ISD::STRICT_FSETCC:
6955   case ISD::STRICT_FSETCCS: {
6956     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
6957     Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate())));
6958     break;
6959   }
6960   }
6961 
6962   SDVTList VTs = DAG.getVTList(ValueVTs);
6963   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers);
6964 
6965   if (FPI.getExceptionBehavior() != fp::ExceptionBehavior::ebIgnore) {
6966     SDNodeFlags Flags;
6967     Flags.setFPExcept(true);
6968     Result->setFlags(Flags);
6969   }
6970 
6971   assert(Result.getNode()->getNumValues() == 2);
6972   // See above -- chain is handled like for loads here.
6973   SDValue OutChain = Result.getValue(1);
6974   PendingLoads.push_back(OutChain);
6975   SDValue FPResult = Result.getValue(0);
6976   setValue(&FPI, FPResult);
6977 }
6978 
6979 std::pair<SDValue, SDValue>
6980 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6981                                     const BasicBlock *EHPadBB) {
6982   MachineFunction &MF = DAG.getMachineFunction();
6983   MachineModuleInfo &MMI = MF.getMMI();
6984   MCSymbol *BeginLabel = nullptr;
6985 
6986   if (EHPadBB) {
6987     // Insert a label before the invoke call to mark the try range.  This can be
6988     // used to detect deletion of the invoke via the MachineModuleInfo.
6989     BeginLabel = MMI.getContext().createTempSymbol();
6990 
6991     // For SjLj, keep track of which landing pads go with which invokes
6992     // so as to maintain the ordering of pads in the LSDA.
6993     unsigned CallSiteIndex = MMI.getCurrentCallSite();
6994     if (CallSiteIndex) {
6995       MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6996       LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6997 
6998       // Now that the call site is handled, stop tracking it.
6999       MMI.setCurrentCallSite(0);
7000     }
7001 
7002     // Both PendingLoads and PendingExports must be flushed here;
7003     // this call might not return.
7004     (void)getRoot();
7005     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
7006 
7007     CLI.setChain(getRoot());
7008   }
7009   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7010   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7011 
7012   assert((CLI.IsTailCall || Result.second.getNode()) &&
7013          "Non-null chain expected with non-tail call!");
7014   assert((Result.second.getNode() || !Result.first.getNode()) &&
7015          "Null value expected with tail call!");
7016 
7017   if (!Result.second.getNode()) {
7018     // As a special case, a null chain means that a tail call has been emitted
7019     // and the DAG root is already updated.
7020     HasTailCall = true;
7021 
7022     // Since there's no actual continuation from this block, nothing can be
7023     // relying on us setting vregs for them.
7024     PendingExports.clear();
7025   } else {
7026     DAG.setRoot(Result.second);
7027   }
7028 
7029   if (EHPadBB) {
7030     // Insert a label at the end of the invoke call to mark the try range.  This
7031     // can be used to detect deletion of the invoke via the MachineModuleInfo.
7032     MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7033     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7034 
7035     // Inform MachineModuleInfo of range.
7036     auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7037     // There is a platform (e.g. wasm) that uses funclet style IR but does not
7038     // actually use outlined funclets and their LSDA info style.
7039     if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7040       assert(CLI.CS);
7041       WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7042       EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7043                                 BeginLabel, EndLabel);
7044     } else if (!isScopedEHPersonality(Pers)) {
7045       MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7046     }
7047   }
7048 
7049   return Result;
7050 }
7051 
7052 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7053                                       bool isTailCall,
7054                                       const BasicBlock *EHPadBB) {
7055   auto &DL = DAG.getDataLayout();
7056   FunctionType *FTy = CS.getFunctionType();
7057   Type *RetTy = CS.getType();
7058 
7059   TargetLowering::ArgListTy Args;
7060   Args.reserve(CS.arg_size());
7061 
7062   const Value *SwiftErrorVal = nullptr;
7063   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7064 
7065   // We can't tail call inside a function with a swifterror argument. Lowering
7066   // does not support this yet. It would have to move into the swifterror
7067   // register before the call.
7068   auto *Caller = CS.getInstruction()->getParent()->getParent();
7069   if (TLI.supportSwiftError() &&
7070       Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7071     isTailCall = false;
7072 
7073   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7074        i != e; ++i) {
7075     TargetLowering::ArgListEntry Entry;
7076     const Value *V = *i;
7077 
7078     // Skip empty types
7079     if (V->getType()->isEmptyTy())
7080       continue;
7081 
7082     SDValue ArgNode = getValue(V);
7083     Entry.Node = ArgNode; Entry.Ty = V->getType();
7084 
7085     Entry.setAttributes(&CS, i - CS.arg_begin());
7086 
7087     // Use swifterror virtual register as input to the call.
7088     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7089       SwiftErrorVal = V;
7090       // We find the virtual register for the actual swifterror argument.
7091       // Instead of using the Value, we use the virtual register instead.
7092       Entry.Node = DAG.getRegister(
7093           SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V),
7094           EVT(TLI.getPointerTy(DL)));
7095     }
7096 
7097     Args.push_back(Entry);
7098 
7099     // If we have an explicit sret argument that is an Instruction, (i.e., it
7100     // might point to function-local memory), we can't meaningfully tail-call.
7101     if (Entry.IsSRet && isa<Instruction>(V))
7102       isTailCall = false;
7103   }
7104 
7105   // If call site has a cfguardtarget operand bundle, create and add an
7106   // additional ArgListEntry.
7107   if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7108     TargetLowering::ArgListEntry Entry;
7109     Value *V = Bundle->Inputs[0];
7110     SDValue ArgNode = getValue(V);
7111     Entry.Node = ArgNode;
7112     Entry.Ty = V->getType();
7113     Entry.IsCFGuardTarget = true;
7114     Args.push_back(Entry);
7115   }
7116 
7117   // Check if target-independent constraints permit a tail call here.
7118   // Target-dependent constraints are checked within TLI->LowerCallTo.
7119   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7120     isTailCall = false;
7121 
7122   // Disable tail calls if there is an swifterror argument. Targets have not
7123   // been updated to support tail calls.
7124   if (TLI.supportSwiftError() && SwiftErrorVal)
7125     isTailCall = false;
7126 
7127   TargetLowering::CallLoweringInfo CLI(DAG);
7128   CLI.setDebugLoc(getCurSDLoc())
7129       .setChain(getRoot())
7130       .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7131       .setTailCall(isTailCall)
7132       .setConvergent(CS.isConvergent());
7133   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7134 
7135   if (Result.first.getNode()) {
7136     const Instruction *Inst = CS.getInstruction();
7137     Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7138     setValue(Inst, Result.first);
7139   }
7140 
7141   // The last element of CLI.InVals has the SDValue for swifterror return.
7142   // Here we copy it to a virtual register and update SwiftErrorMap for
7143   // book-keeping.
7144   if (SwiftErrorVal && TLI.supportSwiftError()) {
7145     // Get the last element of InVals.
7146     SDValue Src = CLI.InVals.back();
7147     Register VReg = SwiftError.getOrCreateVRegDefAt(
7148         CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal);
7149     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7150     DAG.setRoot(CopyNode);
7151   }
7152 }
7153 
7154 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7155                              SelectionDAGBuilder &Builder) {
7156   // Check to see if this load can be trivially constant folded, e.g. if the
7157   // input is from a string literal.
7158   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7159     // Cast pointer to the type we really want to load.
7160     Type *LoadTy =
7161         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7162     if (LoadVT.isVector())
7163       LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7164 
7165     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7166                                          PointerType::getUnqual(LoadTy));
7167 
7168     if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7169             const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7170       return Builder.getValue(LoadCst);
7171   }
7172 
7173   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
7174   // still constant memory, the input chain can be the entry node.
7175   SDValue Root;
7176   bool ConstantMemory = false;
7177 
7178   // Do not serialize (non-volatile) loads of constant memory with anything.
7179   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7180     Root = Builder.DAG.getEntryNode();
7181     ConstantMemory = true;
7182   } else {
7183     // Do not serialize non-volatile loads against each other.
7184     Root = Builder.DAG.getRoot();
7185   }
7186 
7187   SDValue Ptr = Builder.getValue(PtrVal);
7188   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7189                                         Ptr, MachinePointerInfo(PtrVal),
7190                                         /* Alignment = */ 1);
7191 
7192   if (!ConstantMemory)
7193     Builder.PendingLoads.push_back(LoadVal.getValue(1));
7194   return LoadVal;
7195 }
7196 
7197 /// Record the value for an instruction that produces an integer result,
7198 /// converting the type where necessary.
7199 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7200                                                   SDValue Value,
7201                                                   bool IsSigned) {
7202   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7203                                                     I.getType(), true);
7204   if (IsSigned)
7205     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7206   else
7207     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7208   setValue(&I, Value);
7209 }
7210 
7211 /// See if we can lower a memcmp call into an optimized form. If so, return
7212 /// true and lower it. Otherwise return false, and it will be lowered like a
7213 /// normal call.
7214 /// The caller already checked that \p I calls the appropriate LibFunc with a
7215 /// correct prototype.
7216 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7217   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7218   const Value *Size = I.getArgOperand(2);
7219   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7220   if (CSize && CSize->getZExtValue() == 0) {
7221     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7222                                                           I.getType(), true);
7223     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7224     return true;
7225   }
7226 
7227   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7228   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7229       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7230       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7231   if (Res.first.getNode()) {
7232     processIntegerCallValue(I, Res.first, true);
7233     PendingLoads.push_back(Res.second);
7234     return true;
7235   }
7236 
7237   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
7238   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
7239   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7240     return false;
7241 
7242   // If the target has a fast compare for the given size, it will return a
7243   // preferred load type for that size. Require that the load VT is legal and
7244   // that the target supports unaligned loads of that type. Otherwise, return
7245   // INVALID.
7246   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7247     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7248     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7249     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7250       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7251       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7252       // TODO: Check alignment of src and dest ptrs.
7253       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7254       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7255       if (!TLI.isTypeLegal(LVT) ||
7256           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7257           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7258         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7259     }
7260 
7261     return LVT;
7262   };
7263 
7264   // This turns into unaligned loads. We only do this if the target natively
7265   // supports the MVT we'll be loading or if it is small enough (<= 4) that
7266   // we'll only produce a small number of byte loads.
7267   MVT LoadVT;
7268   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7269   switch (NumBitsToCompare) {
7270   default:
7271     return false;
7272   case 16:
7273     LoadVT = MVT::i16;
7274     break;
7275   case 32:
7276     LoadVT = MVT::i32;
7277     break;
7278   case 64:
7279   case 128:
7280   case 256:
7281     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7282     break;
7283   }
7284 
7285   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7286     return false;
7287 
7288   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7289   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7290 
7291   // Bitcast to a wide integer type if the loads are vectors.
7292   if (LoadVT.isVector()) {
7293     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7294     LoadL = DAG.getBitcast(CmpVT, LoadL);
7295     LoadR = DAG.getBitcast(CmpVT, LoadR);
7296   }
7297 
7298   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7299   processIntegerCallValue(I, Cmp, false);
7300   return true;
7301 }
7302 
7303 /// See if we can lower a memchr call into an optimized form. If so, return
7304 /// true and lower it. Otherwise return false, and it will be lowered like a
7305 /// normal call.
7306 /// The caller already checked that \p I calls the appropriate LibFunc with a
7307 /// correct prototype.
7308 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7309   const Value *Src = I.getArgOperand(0);
7310   const Value *Char = I.getArgOperand(1);
7311   const Value *Length = I.getArgOperand(2);
7312 
7313   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7314   std::pair<SDValue, SDValue> Res =
7315     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7316                                 getValue(Src), getValue(Char), getValue(Length),
7317                                 MachinePointerInfo(Src));
7318   if (Res.first.getNode()) {
7319     setValue(&I, Res.first);
7320     PendingLoads.push_back(Res.second);
7321     return true;
7322   }
7323 
7324   return false;
7325 }
7326 
7327 /// See if we can lower a mempcpy call into an optimized form. If so, return
7328 /// true and lower it. Otherwise return false, and it will be lowered like a
7329 /// normal call.
7330 /// The caller already checked that \p I calls the appropriate LibFunc with a
7331 /// correct prototype.
7332 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7333   SDValue Dst = getValue(I.getArgOperand(0));
7334   SDValue Src = getValue(I.getArgOperand(1));
7335   SDValue Size = getValue(I.getArgOperand(2));
7336 
7337   unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7338   unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7339   unsigned Align = std::min(DstAlign, SrcAlign);
7340   if (Align == 0) // Alignment of one or both could not be inferred.
7341     Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7342 
7343   bool isVol = false;
7344   SDLoc sdl = getCurSDLoc();
7345 
7346   // In the mempcpy context we need to pass in a false value for isTailCall
7347   // because the return pointer needs to be adjusted by the size of
7348   // the copied memory.
7349   SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7350                              false, /*isTailCall=*/false,
7351                              MachinePointerInfo(I.getArgOperand(0)),
7352                              MachinePointerInfo(I.getArgOperand(1)));
7353   assert(MC.getNode() != nullptr &&
7354          "** memcpy should not be lowered as TailCall in mempcpy context **");
7355   DAG.setRoot(MC);
7356 
7357   // Check if Size needs to be truncated or extended.
7358   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7359 
7360   // Adjust return pointer to point just past the last dst byte.
7361   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7362                                     Dst, Size);
7363   setValue(&I, DstPlusSize);
7364   return true;
7365 }
7366 
7367 /// See if we can lower a strcpy call into an optimized form.  If so, return
7368 /// true and lower it, otherwise return false and it will be lowered like a
7369 /// normal call.
7370 /// The caller already checked that \p I calls the appropriate LibFunc with a
7371 /// correct prototype.
7372 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7373   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7374 
7375   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7376   std::pair<SDValue, SDValue> Res =
7377     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7378                                 getValue(Arg0), getValue(Arg1),
7379                                 MachinePointerInfo(Arg0),
7380                                 MachinePointerInfo(Arg1), isStpcpy);
7381   if (Res.first.getNode()) {
7382     setValue(&I, Res.first);
7383     DAG.setRoot(Res.second);
7384     return true;
7385   }
7386 
7387   return false;
7388 }
7389 
7390 /// See if we can lower a strcmp call into an optimized form.  If so, return
7391 /// true and lower it, otherwise return false and it will be lowered like a
7392 /// normal call.
7393 /// The caller already checked that \p I calls the appropriate LibFunc with a
7394 /// correct prototype.
7395 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7396   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7397 
7398   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7399   std::pair<SDValue, SDValue> Res =
7400     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7401                                 getValue(Arg0), getValue(Arg1),
7402                                 MachinePointerInfo(Arg0),
7403                                 MachinePointerInfo(Arg1));
7404   if (Res.first.getNode()) {
7405     processIntegerCallValue(I, Res.first, true);
7406     PendingLoads.push_back(Res.second);
7407     return true;
7408   }
7409 
7410   return false;
7411 }
7412 
7413 /// See if we can lower a strlen call into an optimized form.  If so, return
7414 /// true and lower it, otherwise return false and it will be lowered like a
7415 /// normal call.
7416 /// The caller already checked that \p I calls the appropriate LibFunc with a
7417 /// correct prototype.
7418 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7419   const Value *Arg0 = I.getArgOperand(0);
7420 
7421   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7422   std::pair<SDValue, SDValue> Res =
7423     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7424                                 getValue(Arg0), MachinePointerInfo(Arg0));
7425   if (Res.first.getNode()) {
7426     processIntegerCallValue(I, Res.first, false);
7427     PendingLoads.push_back(Res.second);
7428     return true;
7429   }
7430 
7431   return false;
7432 }
7433 
7434 /// See if we can lower a strnlen call into an optimized form.  If so, return
7435 /// true and lower it, otherwise return false and it will be lowered like a
7436 /// normal call.
7437 /// The caller already checked that \p I calls the appropriate LibFunc with a
7438 /// correct prototype.
7439 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7440   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7441 
7442   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7443   std::pair<SDValue, SDValue> Res =
7444     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7445                                  getValue(Arg0), getValue(Arg1),
7446                                  MachinePointerInfo(Arg0));
7447   if (Res.first.getNode()) {
7448     processIntegerCallValue(I, Res.first, false);
7449     PendingLoads.push_back(Res.second);
7450     return true;
7451   }
7452 
7453   return false;
7454 }
7455 
7456 /// See if we can lower a unary floating-point operation into an SDNode with
7457 /// the specified Opcode.  If so, return true and lower it, otherwise return
7458 /// false and it will be lowered like a normal call.
7459 /// The caller already checked that \p I calls the appropriate LibFunc with a
7460 /// correct prototype.
7461 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7462                                               unsigned Opcode) {
7463   // We already checked this call's prototype; verify it doesn't modify errno.
7464   if (!I.onlyReadsMemory())
7465     return false;
7466 
7467   SDValue Tmp = getValue(I.getArgOperand(0));
7468   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7469   return true;
7470 }
7471 
7472 /// See if we can lower a binary floating-point operation into an SDNode with
7473 /// the specified Opcode. If so, return true and lower it. Otherwise return
7474 /// false, and it will be lowered like a normal call.
7475 /// The caller already checked that \p I calls the appropriate LibFunc with a
7476 /// correct prototype.
7477 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7478                                                unsigned Opcode) {
7479   // We already checked this call's prototype; verify it doesn't modify errno.
7480   if (!I.onlyReadsMemory())
7481     return false;
7482 
7483   SDValue Tmp0 = getValue(I.getArgOperand(0));
7484   SDValue Tmp1 = getValue(I.getArgOperand(1));
7485   EVT VT = Tmp0.getValueType();
7486   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7487   return true;
7488 }
7489 
7490 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7491   // Handle inline assembly differently.
7492   if (isa<InlineAsm>(I.getCalledValue())) {
7493     visitInlineAsm(&I);
7494     return;
7495   }
7496 
7497   if (Function *F = I.getCalledFunction()) {
7498     if (F->isDeclaration()) {
7499       // Is this an LLVM intrinsic or a target-specific intrinsic?
7500       unsigned IID = F->getIntrinsicID();
7501       if (!IID)
7502         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7503           IID = II->getIntrinsicID(F);
7504 
7505       if (IID) {
7506         visitIntrinsicCall(I, IID);
7507         return;
7508       }
7509     }
7510 
7511     // Check for well-known libc/libm calls.  If the function is internal, it
7512     // can't be a library call.  Don't do the check if marked as nobuiltin for
7513     // some reason or the call site requires strict floating point semantics.
7514     LibFunc Func;
7515     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7516         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7517         LibInfo->hasOptimizedCodeGen(Func)) {
7518       switch (Func) {
7519       default: break;
7520       case LibFunc_copysign:
7521       case LibFunc_copysignf:
7522       case LibFunc_copysignl:
7523         // We already checked this call's prototype; verify it doesn't modify
7524         // errno.
7525         if (I.onlyReadsMemory()) {
7526           SDValue LHS = getValue(I.getArgOperand(0));
7527           SDValue RHS = getValue(I.getArgOperand(1));
7528           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7529                                    LHS.getValueType(), LHS, RHS));
7530           return;
7531         }
7532         break;
7533       case LibFunc_fabs:
7534       case LibFunc_fabsf:
7535       case LibFunc_fabsl:
7536         if (visitUnaryFloatCall(I, ISD::FABS))
7537           return;
7538         break;
7539       case LibFunc_fmin:
7540       case LibFunc_fminf:
7541       case LibFunc_fminl:
7542         if (visitBinaryFloatCall(I, ISD::FMINNUM))
7543           return;
7544         break;
7545       case LibFunc_fmax:
7546       case LibFunc_fmaxf:
7547       case LibFunc_fmaxl:
7548         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7549           return;
7550         break;
7551       case LibFunc_sin:
7552       case LibFunc_sinf:
7553       case LibFunc_sinl:
7554         if (visitUnaryFloatCall(I, ISD::FSIN))
7555           return;
7556         break;
7557       case LibFunc_cos:
7558       case LibFunc_cosf:
7559       case LibFunc_cosl:
7560         if (visitUnaryFloatCall(I, ISD::FCOS))
7561           return;
7562         break;
7563       case LibFunc_sqrt:
7564       case LibFunc_sqrtf:
7565       case LibFunc_sqrtl:
7566       case LibFunc_sqrt_finite:
7567       case LibFunc_sqrtf_finite:
7568       case LibFunc_sqrtl_finite:
7569         if (visitUnaryFloatCall(I, ISD::FSQRT))
7570           return;
7571         break;
7572       case LibFunc_floor:
7573       case LibFunc_floorf:
7574       case LibFunc_floorl:
7575         if (visitUnaryFloatCall(I, ISD::FFLOOR))
7576           return;
7577         break;
7578       case LibFunc_nearbyint:
7579       case LibFunc_nearbyintf:
7580       case LibFunc_nearbyintl:
7581         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7582           return;
7583         break;
7584       case LibFunc_ceil:
7585       case LibFunc_ceilf:
7586       case LibFunc_ceill:
7587         if (visitUnaryFloatCall(I, ISD::FCEIL))
7588           return;
7589         break;
7590       case LibFunc_rint:
7591       case LibFunc_rintf:
7592       case LibFunc_rintl:
7593         if (visitUnaryFloatCall(I, ISD::FRINT))
7594           return;
7595         break;
7596       case LibFunc_round:
7597       case LibFunc_roundf:
7598       case LibFunc_roundl:
7599         if (visitUnaryFloatCall(I, ISD::FROUND))
7600           return;
7601         break;
7602       case LibFunc_trunc:
7603       case LibFunc_truncf:
7604       case LibFunc_truncl:
7605         if (visitUnaryFloatCall(I, ISD::FTRUNC))
7606           return;
7607         break;
7608       case LibFunc_log2:
7609       case LibFunc_log2f:
7610       case LibFunc_log2l:
7611         if (visitUnaryFloatCall(I, ISD::FLOG2))
7612           return;
7613         break;
7614       case LibFunc_exp2:
7615       case LibFunc_exp2f:
7616       case LibFunc_exp2l:
7617         if (visitUnaryFloatCall(I, ISD::FEXP2))
7618           return;
7619         break;
7620       case LibFunc_memcmp:
7621         if (visitMemCmpCall(I))
7622           return;
7623         break;
7624       case LibFunc_mempcpy:
7625         if (visitMemPCpyCall(I))
7626           return;
7627         break;
7628       case LibFunc_memchr:
7629         if (visitMemChrCall(I))
7630           return;
7631         break;
7632       case LibFunc_strcpy:
7633         if (visitStrCpyCall(I, false))
7634           return;
7635         break;
7636       case LibFunc_stpcpy:
7637         if (visitStrCpyCall(I, true))
7638           return;
7639         break;
7640       case LibFunc_strcmp:
7641         if (visitStrCmpCall(I))
7642           return;
7643         break;
7644       case LibFunc_strlen:
7645         if (visitStrLenCall(I))
7646           return;
7647         break;
7648       case LibFunc_strnlen:
7649         if (visitStrNLenCall(I))
7650           return;
7651         break;
7652       }
7653     }
7654   }
7655 
7656   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7657   // have to do anything here to lower funclet bundles.
7658   // CFGuardTarget bundles are lowered in LowerCallTo.
7659   assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt,
7660                                         LLVMContext::OB_funclet,
7661                                         LLVMContext::OB_cfguardtarget}) &&
7662          "Cannot lower calls with arbitrary operand bundles!");
7663 
7664   SDValue Callee = getValue(I.getCalledValue());
7665 
7666   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7667     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7668   else
7669     // Check if we can potentially perform a tail call. More detailed checking
7670     // is be done within LowerCallTo, after more information about the call is
7671     // known.
7672     LowerCallTo(&I, Callee, I.isTailCall());
7673 }
7674 
7675 namespace {
7676 
7677 /// AsmOperandInfo - This contains information for each constraint that we are
7678 /// lowering.
7679 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7680 public:
7681   /// CallOperand - If this is the result output operand or a clobber
7682   /// this is null, otherwise it is the incoming operand to the CallInst.
7683   /// This gets modified as the asm is processed.
7684   SDValue CallOperand;
7685 
7686   /// AssignedRegs - If this is a register or register class operand, this
7687   /// contains the set of register corresponding to the operand.
7688   RegsForValue AssignedRegs;
7689 
7690   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7691     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7692   }
7693 
7694   /// Whether or not this operand accesses memory
7695   bool hasMemory(const TargetLowering &TLI) const {
7696     // Indirect operand accesses access memory.
7697     if (isIndirect)
7698       return true;
7699 
7700     for (const auto &Code : Codes)
7701       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7702         return true;
7703 
7704     return false;
7705   }
7706 
7707   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7708   /// corresponds to.  If there is no Value* for this operand, it returns
7709   /// MVT::Other.
7710   EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7711                            const DataLayout &DL) const {
7712     if (!CallOperandVal) return MVT::Other;
7713 
7714     if (isa<BasicBlock>(CallOperandVal))
7715       return TLI.getPointerTy(DL);
7716 
7717     llvm::Type *OpTy = CallOperandVal->getType();
7718 
7719     // FIXME: code duplicated from TargetLowering::ParseConstraints().
7720     // If this is an indirect operand, the operand is a pointer to the
7721     // accessed type.
7722     if (isIndirect) {
7723       PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7724       if (!PtrTy)
7725         report_fatal_error("Indirect operand for inline asm not a pointer!");
7726       OpTy = PtrTy->getElementType();
7727     }
7728 
7729     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7730     if (StructType *STy = dyn_cast<StructType>(OpTy))
7731       if (STy->getNumElements() == 1)
7732         OpTy = STy->getElementType(0);
7733 
7734     // If OpTy is not a single value, it may be a struct/union that we
7735     // can tile with integers.
7736     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7737       unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7738       switch (BitSize) {
7739       default: break;
7740       case 1:
7741       case 8:
7742       case 16:
7743       case 32:
7744       case 64:
7745       case 128:
7746         OpTy = IntegerType::get(Context, BitSize);
7747         break;
7748       }
7749     }
7750 
7751     return TLI.getValueType(DL, OpTy, true);
7752   }
7753 };
7754 
7755 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7756 
7757 } // end anonymous namespace
7758 
7759 /// Make sure that the output operand \p OpInfo and its corresponding input
7760 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7761 /// out).
7762 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7763                                SDISelAsmOperandInfo &MatchingOpInfo,
7764                                SelectionDAG &DAG) {
7765   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7766     return;
7767 
7768   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7769   const auto &TLI = DAG.getTargetLoweringInfo();
7770 
7771   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7772       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7773                                        OpInfo.ConstraintVT);
7774   std::pair<unsigned, const TargetRegisterClass *> InputRC =
7775       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7776                                        MatchingOpInfo.ConstraintVT);
7777   if ((OpInfo.ConstraintVT.isInteger() !=
7778        MatchingOpInfo.ConstraintVT.isInteger()) ||
7779       (MatchRC.second != InputRC.second)) {
7780     // FIXME: error out in a more elegant fashion
7781     report_fatal_error("Unsupported asm: input constraint"
7782                        " with a matching output constraint of"
7783                        " incompatible type!");
7784   }
7785   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7786 }
7787 
7788 /// Get a direct memory input to behave well as an indirect operand.
7789 /// This may introduce stores, hence the need for a \p Chain.
7790 /// \return The (possibly updated) chain.
7791 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7792                                         SDISelAsmOperandInfo &OpInfo,
7793                                         SelectionDAG &DAG) {
7794   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7795 
7796   // If we don't have an indirect input, put it in the constpool if we can,
7797   // otherwise spill it to a stack slot.
7798   // TODO: This isn't quite right. We need to handle these according to
7799   // the addressing mode that the constraint wants. Also, this may take
7800   // an additional register for the computation and we don't want that
7801   // either.
7802 
7803   // If the operand is a float, integer, or vector constant, spill to a
7804   // constant pool entry to get its address.
7805   const Value *OpVal = OpInfo.CallOperandVal;
7806   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7807       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7808     OpInfo.CallOperand = DAG.getConstantPool(
7809         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7810     return Chain;
7811   }
7812 
7813   // Otherwise, create a stack slot and emit a store to it before the asm.
7814   Type *Ty = OpVal->getType();
7815   auto &DL = DAG.getDataLayout();
7816   uint64_t TySize = DL.getTypeAllocSize(Ty);
7817   unsigned Align = DL.getPrefTypeAlignment(Ty);
7818   MachineFunction &MF = DAG.getMachineFunction();
7819   int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7820   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7821   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7822                             MachinePointerInfo::getFixedStack(MF, SSFI),
7823                             TLI.getMemValueType(DL, Ty));
7824   OpInfo.CallOperand = StackSlot;
7825 
7826   return Chain;
7827 }
7828 
7829 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7830 /// specified operand.  We prefer to assign virtual registers, to allow the
7831 /// register allocator to handle the assignment process.  However, if the asm
7832 /// uses features that we can't model on machineinstrs, we have SDISel do the
7833 /// allocation.  This produces generally horrible, but correct, code.
7834 ///
7835 ///   OpInfo describes the operand
7836 ///   RefOpInfo describes the matching operand if any, the operand otherwise
7837 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7838                                  SDISelAsmOperandInfo &OpInfo,
7839                                  SDISelAsmOperandInfo &RefOpInfo) {
7840   LLVMContext &Context = *DAG.getContext();
7841   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7842 
7843   MachineFunction &MF = DAG.getMachineFunction();
7844   SmallVector<unsigned, 4> Regs;
7845   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7846 
7847   // No work to do for memory operations.
7848   if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7849     return;
7850 
7851   // If this is a constraint for a single physreg, or a constraint for a
7852   // register class, find it.
7853   unsigned AssignedReg;
7854   const TargetRegisterClass *RC;
7855   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7856       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7857   // RC is unset only on failure. Return immediately.
7858   if (!RC)
7859     return;
7860 
7861   // Get the actual register value type.  This is important, because the user
7862   // may have asked for (e.g.) the AX register in i32 type.  We need to
7863   // remember that AX is actually i16 to get the right extension.
7864   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7865 
7866   if (OpInfo.ConstraintVT != MVT::Other) {
7867     // If this is an FP operand in an integer register (or visa versa), or more
7868     // generally if the operand value disagrees with the register class we plan
7869     // to stick it in, fix the operand type.
7870     //
7871     // If this is an input value, the bitcast to the new type is done now.
7872     // Bitcast for output value is done at the end of visitInlineAsm().
7873     if ((OpInfo.Type == InlineAsm::isOutput ||
7874          OpInfo.Type == InlineAsm::isInput) &&
7875         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7876       // Try to convert to the first EVT that the reg class contains.  If the
7877       // types are identical size, use a bitcast to convert (e.g. two differing
7878       // vector types).  Note: output bitcast is done at the end of
7879       // visitInlineAsm().
7880       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7881         // Exclude indirect inputs while they are unsupported because the code
7882         // to perform the load is missing and thus OpInfo.CallOperand still
7883         // refers to the input address rather than the pointed-to value.
7884         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7885           OpInfo.CallOperand =
7886               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7887         OpInfo.ConstraintVT = RegVT;
7888         // If the operand is an FP value and we want it in integer registers,
7889         // use the corresponding integer type. This turns an f64 value into
7890         // i64, which can be passed with two i32 values on a 32-bit machine.
7891       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7892         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7893         if (OpInfo.Type == InlineAsm::isInput)
7894           OpInfo.CallOperand =
7895               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7896         OpInfo.ConstraintVT = VT;
7897       }
7898     }
7899   }
7900 
7901   // No need to allocate a matching input constraint since the constraint it's
7902   // matching to has already been allocated.
7903   if (OpInfo.isMatchingInputConstraint())
7904     return;
7905 
7906   EVT ValueVT = OpInfo.ConstraintVT;
7907   if (OpInfo.ConstraintVT == MVT::Other)
7908     ValueVT = RegVT;
7909 
7910   // Initialize NumRegs.
7911   unsigned NumRegs = 1;
7912   if (OpInfo.ConstraintVT != MVT::Other)
7913     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7914 
7915   // If this is a constraint for a specific physical register, like {r17},
7916   // assign it now.
7917 
7918   // If this associated to a specific register, initialize iterator to correct
7919   // place. If virtual, make sure we have enough registers
7920 
7921   // Initialize iterator if necessary
7922   TargetRegisterClass::iterator I = RC->begin();
7923   MachineRegisterInfo &RegInfo = MF.getRegInfo();
7924 
7925   // Do not check for single registers.
7926   if (AssignedReg) {
7927       for (; *I != AssignedReg; ++I)
7928         assert(I != RC->end() && "AssignedReg should be member of RC");
7929   }
7930 
7931   for (; NumRegs; --NumRegs, ++I) {
7932     assert(I != RC->end() && "Ran out of registers to allocate!");
7933     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
7934     Regs.push_back(R);
7935   }
7936 
7937   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7938 }
7939 
7940 static unsigned
7941 findMatchingInlineAsmOperand(unsigned OperandNo,
7942                              const std::vector<SDValue> &AsmNodeOperands) {
7943   // Scan until we find the definition we already emitted of this operand.
7944   unsigned CurOp = InlineAsm::Op_FirstOperand;
7945   for (; OperandNo; --OperandNo) {
7946     // Advance to the next operand.
7947     unsigned OpFlag =
7948         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7949     assert((InlineAsm::isRegDefKind(OpFlag) ||
7950             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7951             InlineAsm::isMemKind(OpFlag)) &&
7952            "Skipped past definitions?");
7953     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7954   }
7955   return CurOp;
7956 }
7957 
7958 namespace {
7959 
7960 class ExtraFlags {
7961   unsigned Flags = 0;
7962 
7963 public:
7964   explicit ExtraFlags(ImmutableCallSite CS) {
7965     const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7966     if (IA->hasSideEffects())
7967       Flags |= InlineAsm::Extra_HasSideEffects;
7968     if (IA->isAlignStack())
7969       Flags |= InlineAsm::Extra_IsAlignStack;
7970     if (CS.isConvergent())
7971       Flags |= InlineAsm::Extra_IsConvergent;
7972     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7973   }
7974 
7975   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7976     // Ideally, we would only check against memory constraints.  However, the
7977     // meaning of an Other constraint can be target-specific and we can't easily
7978     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
7979     // for Other constraints as well.
7980     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7981         OpInfo.ConstraintType == TargetLowering::C_Other) {
7982       if (OpInfo.Type == InlineAsm::isInput)
7983         Flags |= InlineAsm::Extra_MayLoad;
7984       else if (OpInfo.Type == InlineAsm::isOutput)
7985         Flags |= InlineAsm::Extra_MayStore;
7986       else if (OpInfo.Type == InlineAsm::isClobber)
7987         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7988     }
7989   }
7990 
7991   unsigned get() const { return Flags; }
7992 };
7993 
7994 } // end anonymous namespace
7995 
7996 /// visitInlineAsm - Handle a call to an InlineAsm object.
7997 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7998   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7999 
8000   /// ConstraintOperands - Information about all of the constraints.
8001   SDISelAsmOperandInfoVector ConstraintOperands;
8002 
8003   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8004   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8005       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
8006 
8007   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8008   // AsmDialect, MayLoad, MayStore).
8009   bool HasSideEffect = IA->hasSideEffects();
8010   ExtraFlags ExtraInfo(CS);
8011 
8012   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
8013   unsigned ResNo = 0;   // ResNo - The result number of the next output.
8014   for (auto &T : TargetConstraints) {
8015     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8016     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8017 
8018     // Compute the value type for each operand.
8019     if (OpInfo.Type == InlineAsm::isInput ||
8020         (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
8021       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
8022 
8023       // Process the call argument. BasicBlocks are labels, currently appearing
8024       // only in asm's.
8025       const Instruction *I = CS.getInstruction();
8026       if (isa<CallBrInst>(I) &&
8027           (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8028                           cast<CallBrInst>(I)->getNumIndirectDests())) {
8029         const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8030         EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8031         OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8032       } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8033         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8034       } else {
8035         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8036       }
8037 
8038       OpInfo.ConstraintVT =
8039           OpInfo
8040               .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8041               .getSimpleVT();
8042     } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8043       // The return value of the call is this value.  As such, there is no
8044       // corresponding argument.
8045       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8046       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8047         OpInfo.ConstraintVT = TLI.getSimpleValueType(
8048             DAG.getDataLayout(), STy->getElementType(ResNo));
8049       } else {
8050         assert(ResNo == 0 && "Asm only has one result!");
8051         OpInfo.ConstraintVT =
8052             TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8053       }
8054       ++ResNo;
8055     } else {
8056       OpInfo.ConstraintVT = MVT::Other;
8057     }
8058 
8059     if (!HasSideEffect)
8060       HasSideEffect = OpInfo.hasMemory(TLI);
8061 
8062     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8063     // FIXME: Could we compute this on OpInfo rather than T?
8064 
8065     // Compute the constraint code and ConstraintType to use.
8066     TLI.ComputeConstraintToUse(T, SDValue());
8067 
8068     if (T.ConstraintType == TargetLowering::C_Immediate &&
8069         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8070       // We've delayed emitting a diagnostic like the "n" constraint because
8071       // inlining could cause an integer showing up.
8072       return emitInlineAsmError(
8073           CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an "
8074                   "integer constant expression");
8075 
8076     ExtraInfo.update(T);
8077   }
8078 
8079 
8080   // We won't need to flush pending loads if this asm doesn't touch
8081   // memory and is nonvolatile.
8082   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8083 
8084   bool IsCallBr = isa<CallBrInst>(CS.getInstruction());
8085   if (IsCallBr) {
8086     // If this is a callbr we need to flush pending exports since inlineasm_br
8087     // is a terminator. We need to do this before nodes are glued to
8088     // the inlineasm_br node.
8089     Chain = getControlRoot();
8090   }
8091 
8092   // Second pass over the constraints: compute which constraint option to use.
8093   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8094     // If this is an output operand with a matching input operand, look up the
8095     // matching input. If their types mismatch, e.g. one is an integer, the
8096     // other is floating point, or their sizes are different, flag it as an
8097     // error.
8098     if (OpInfo.hasMatchingInput()) {
8099       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8100       patchMatchingInput(OpInfo, Input, DAG);
8101     }
8102 
8103     // Compute the constraint code and ConstraintType to use.
8104     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8105 
8106     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8107         OpInfo.Type == InlineAsm::isClobber)
8108       continue;
8109 
8110     // If this is a memory input, and if the operand is not indirect, do what we
8111     // need to provide an address for the memory input.
8112     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8113         !OpInfo.isIndirect) {
8114       assert((OpInfo.isMultipleAlternative ||
8115               (OpInfo.Type == InlineAsm::isInput)) &&
8116              "Can only indirectify direct input operands!");
8117 
8118       // Memory operands really want the address of the value.
8119       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8120 
8121       // There is no longer a Value* corresponding to this operand.
8122       OpInfo.CallOperandVal = nullptr;
8123 
8124       // It is now an indirect operand.
8125       OpInfo.isIndirect = true;
8126     }
8127 
8128   }
8129 
8130   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8131   std::vector<SDValue> AsmNodeOperands;
8132   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8133   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8134       IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8135 
8136   // If we have a !srcloc metadata node associated with it, we want to attach
8137   // this to the ultimately generated inline asm machineinstr.  To do this, we
8138   // pass in the third operand as this (potentially null) inline asm MDNode.
8139   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8140   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8141 
8142   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8143   // bits as operand 3.
8144   AsmNodeOperands.push_back(DAG.getTargetConstant(
8145       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8146 
8147   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8148   // this, assign virtual and physical registers for inputs and otput.
8149   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8150     // Assign Registers.
8151     SDISelAsmOperandInfo &RefOpInfo =
8152         OpInfo.isMatchingInputConstraint()
8153             ? ConstraintOperands[OpInfo.getMatchedOperand()]
8154             : OpInfo;
8155     GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8156 
8157     switch (OpInfo.Type) {
8158     case InlineAsm::isOutput:
8159       if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8160           ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8161             OpInfo.ConstraintType == TargetLowering::C_Other) &&
8162            OpInfo.isIndirect)) {
8163         unsigned ConstraintID =
8164             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8165         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8166                "Failed to convert memory constraint code to constraint id.");
8167 
8168         // Add information to the INLINEASM node to know about this output.
8169         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8170         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8171         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8172                                                         MVT::i32));
8173         AsmNodeOperands.push_back(OpInfo.CallOperand);
8174         break;
8175       } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8176                    OpInfo.ConstraintType == TargetLowering::C_Other) &&
8177                   !OpInfo.isIndirect) ||
8178                  OpInfo.ConstraintType == TargetLowering::C_Register ||
8179                  OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8180         // Otherwise, this outputs to a register (directly for C_Register /
8181         // C_RegisterClass, and a target-defined fashion for
8182         // C_Immediate/C_Other). Find a register that we can use.
8183         if (OpInfo.AssignedRegs.Regs.empty()) {
8184           emitInlineAsmError(
8185               CS, "couldn't allocate output register for constraint '" +
8186                       Twine(OpInfo.ConstraintCode) + "'");
8187           return;
8188         }
8189 
8190         // Add information to the INLINEASM node to know that this register is
8191         // set.
8192         OpInfo.AssignedRegs.AddInlineAsmOperands(
8193             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8194                                   : InlineAsm::Kind_RegDef,
8195             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8196       }
8197       break;
8198 
8199     case InlineAsm::isInput: {
8200       SDValue InOperandVal = OpInfo.CallOperand;
8201 
8202       if (OpInfo.isMatchingInputConstraint()) {
8203         // If this is required to match an output register we have already set,
8204         // just use its register.
8205         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8206                                                   AsmNodeOperands);
8207         unsigned OpFlag =
8208           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8209         if (InlineAsm::isRegDefKind(OpFlag) ||
8210             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8211           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8212           if (OpInfo.isIndirect) {
8213             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8214             emitInlineAsmError(CS, "inline asm not supported yet:"
8215                                    " don't know how to handle tied "
8216                                    "indirect register inputs");
8217             return;
8218           }
8219 
8220           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8221           SmallVector<unsigned, 4> Regs;
8222 
8223           if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8224             unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8225             MachineRegisterInfo &RegInfo =
8226                 DAG.getMachineFunction().getRegInfo();
8227             for (unsigned i = 0; i != NumRegs; ++i)
8228               Regs.push_back(RegInfo.createVirtualRegister(RC));
8229           } else {
8230             emitInlineAsmError(CS, "inline asm error: This value type register "
8231                                    "class is not natively supported!");
8232             return;
8233           }
8234 
8235           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8236 
8237           SDLoc dl = getCurSDLoc();
8238           // Use the produced MatchedRegs object to
8239           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8240                                     CS.getInstruction());
8241           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8242                                            true, OpInfo.getMatchedOperand(), dl,
8243                                            DAG, AsmNodeOperands);
8244           break;
8245         }
8246 
8247         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8248         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8249                "Unexpected number of operands");
8250         // Add information to the INLINEASM node to know about this input.
8251         // See InlineAsm.h isUseOperandTiedToDef.
8252         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8253         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8254                                                     OpInfo.getMatchedOperand());
8255         AsmNodeOperands.push_back(DAG.getTargetConstant(
8256             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8257         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8258         break;
8259       }
8260 
8261       // Treat indirect 'X' constraint as memory.
8262       if ((OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8263            OpInfo.ConstraintType == TargetLowering::C_Other) &&
8264           OpInfo.isIndirect)
8265         OpInfo.ConstraintType = TargetLowering::C_Memory;
8266 
8267       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
8268           OpInfo.ConstraintType == TargetLowering::C_Other) {
8269         std::vector<SDValue> Ops;
8270         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8271                                           Ops, DAG);
8272         if (Ops.empty()) {
8273           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
8274             if (isa<ConstantSDNode>(InOperandVal)) {
8275               emitInlineAsmError(CS, "value out of range for constraint '" +
8276                                  Twine(OpInfo.ConstraintCode) + "'");
8277               return;
8278             }
8279 
8280           emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8281                                      Twine(OpInfo.ConstraintCode) + "'");
8282           return;
8283         }
8284 
8285         // Add information to the INLINEASM node to know about this input.
8286         unsigned ResOpType =
8287           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8288         AsmNodeOperands.push_back(DAG.getTargetConstant(
8289             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8290         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8291         break;
8292       }
8293 
8294       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8295         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8296         assert(InOperandVal.getValueType() ==
8297                    TLI.getPointerTy(DAG.getDataLayout()) &&
8298                "Memory operands expect pointer values");
8299 
8300         unsigned ConstraintID =
8301             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8302         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8303                "Failed to convert memory constraint code to constraint id.");
8304 
8305         // Add information to the INLINEASM node to know about this input.
8306         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8307         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8308         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8309                                                         getCurSDLoc(),
8310                                                         MVT::i32));
8311         AsmNodeOperands.push_back(InOperandVal);
8312         break;
8313       }
8314 
8315       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8316               OpInfo.ConstraintType == TargetLowering::C_Register ||
8317               OpInfo.ConstraintType == TargetLowering::C_Immediate) &&
8318              "Unknown constraint type!");
8319 
8320       // TODO: Support this.
8321       if (OpInfo.isIndirect) {
8322         emitInlineAsmError(
8323             CS, "Don't know how to handle indirect register inputs yet "
8324                 "for constraint '" +
8325                     Twine(OpInfo.ConstraintCode) + "'");
8326         return;
8327       }
8328 
8329       // Copy the input into the appropriate registers.
8330       if (OpInfo.AssignedRegs.Regs.empty()) {
8331         emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8332                                    Twine(OpInfo.ConstraintCode) + "'");
8333         return;
8334       }
8335 
8336       SDLoc dl = getCurSDLoc();
8337 
8338       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8339                                         Chain, &Flag, CS.getInstruction());
8340 
8341       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8342                                                dl, DAG, AsmNodeOperands);
8343       break;
8344     }
8345     case InlineAsm::isClobber:
8346       // Add the clobbered value to the operand list, so that the register
8347       // allocator is aware that the physreg got clobbered.
8348       if (!OpInfo.AssignedRegs.Regs.empty())
8349         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8350                                                  false, 0, getCurSDLoc(), DAG,
8351                                                  AsmNodeOperands);
8352       break;
8353     }
8354   }
8355 
8356   // Finish up input operands.  Set the input chain and add the flag last.
8357   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8358   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8359 
8360   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
8361   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8362                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8363   Flag = Chain.getValue(1);
8364 
8365   // Do additional work to generate outputs.
8366 
8367   SmallVector<EVT, 1> ResultVTs;
8368   SmallVector<SDValue, 1> ResultValues;
8369   SmallVector<SDValue, 8> OutChains;
8370 
8371   llvm::Type *CSResultType = CS.getType();
8372   ArrayRef<Type *> ResultTypes;
8373   if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8374     ResultTypes = StructResult->elements();
8375   else if (!CSResultType->isVoidTy())
8376     ResultTypes = makeArrayRef(CSResultType);
8377 
8378   auto CurResultType = ResultTypes.begin();
8379   auto handleRegAssign = [&](SDValue V) {
8380     assert(CurResultType != ResultTypes.end() && "Unexpected value");
8381     assert((*CurResultType)->isSized() && "Unexpected unsized type");
8382     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8383     ++CurResultType;
8384     // If the type of the inline asm call site return value is different but has
8385     // same size as the type of the asm output bitcast it.  One example of this
8386     // is for vectors with different width / number of elements.  This can
8387     // happen for register classes that can contain multiple different value
8388     // types.  The preg or vreg allocated may not have the same VT as was
8389     // expected.
8390     //
8391     // This can also happen for a return value that disagrees with the register
8392     // class it is put in, eg. a double in a general-purpose register on a
8393     // 32-bit machine.
8394     if (ResultVT != V.getValueType() &&
8395         ResultVT.getSizeInBits() == V.getValueSizeInBits())
8396       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8397     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8398              V.getValueType().isInteger()) {
8399       // If a result value was tied to an input value, the computed result
8400       // may have a wider width than the expected result.  Extract the
8401       // relevant portion.
8402       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8403     }
8404     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8405     ResultVTs.push_back(ResultVT);
8406     ResultValues.push_back(V);
8407   };
8408 
8409   // Deal with output operands.
8410   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8411     if (OpInfo.Type == InlineAsm::isOutput) {
8412       SDValue Val;
8413       // Skip trivial output operands.
8414       if (OpInfo.AssignedRegs.Regs.empty())
8415         continue;
8416 
8417       switch (OpInfo.ConstraintType) {
8418       case TargetLowering::C_Register:
8419       case TargetLowering::C_RegisterClass:
8420         Val = OpInfo.AssignedRegs.getCopyFromRegs(
8421             DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8422         break;
8423       case TargetLowering::C_Immediate:
8424       case TargetLowering::C_Other:
8425         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8426                                               OpInfo, DAG);
8427         break;
8428       case TargetLowering::C_Memory:
8429         break; // Already handled.
8430       case TargetLowering::C_Unknown:
8431         assert(false && "Unexpected unknown constraint");
8432       }
8433 
8434       // Indirect output manifest as stores. Record output chains.
8435       if (OpInfo.isIndirect) {
8436         const Value *Ptr = OpInfo.CallOperandVal;
8437         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8438         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8439                                      MachinePointerInfo(Ptr));
8440         OutChains.push_back(Store);
8441       } else {
8442         // generate CopyFromRegs to associated registers.
8443         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8444         if (Val.getOpcode() == ISD::MERGE_VALUES) {
8445           for (const SDValue &V : Val->op_values())
8446             handleRegAssign(V);
8447         } else
8448           handleRegAssign(Val);
8449       }
8450     }
8451   }
8452 
8453   // Set results.
8454   if (!ResultValues.empty()) {
8455     assert(CurResultType == ResultTypes.end() &&
8456            "Mismatch in number of ResultTypes");
8457     assert(ResultValues.size() == ResultTypes.size() &&
8458            "Mismatch in number of output operands in asm result");
8459 
8460     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8461                             DAG.getVTList(ResultVTs), ResultValues);
8462     setValue(CS.getInstruction(), V);
8463   }
8464 
8465   // Collect store chains.
8466   if (!OutChains.empty())
8467     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8468 
8469   // Only Update Root if inline assembly has a memory effect.
8470   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr)
8471     DAG.setRoot(Chain);
8472 }
8473 
8474 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8475                                              const Twine &Message) {
8476   LLVMContext &Ctx = *DAG.getContext();
8477   Ctx.emitError(CS.getInstruction(), Message);
8478 
8479   // Make sure we leave the DAG in a valid state
8480   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8481   SmallVector<EVT, 1> ValueVTs;
8482   ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8483 
8484   if (ValueVTs.empty())
8485     return;
8486 
8487   SmallVector<SDValue, 1> Ops;
8488   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8489     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8490 
8491   setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8492 }
8493 
8494 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8495   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8496                           MVT::Other, getRoot(),
8497                           getValue(I.getArgOperand(0)),
8498                           DAG.getSrcValue(I.getArgOperand(0))));
8499 }
8500 
8501 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8502   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8503   const DataLayout &DL = DAG.getDataLayout();
8504   SDValue V = DAG.getVAArg(
8505       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8506       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8507       DL.getABITypeAlignment(I.getType()));
8508   DAG.setRoot(V.getValue(1));
8509 
8510   if (I.getType()->isPointerTy())
8511     V = DAG.getPtrExtOrTrunc(
8512         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8513   setValue(&I, V);
8514 }
8515 
8516 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8517   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8518                           MVT::Other, getRoot(),
8519                           getValue(I.getArgOperand(0)),
8520                           DAG.getSrcValue(I.getArgOperand(0))));
8521 }
8522 
8523 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8524   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8525                           MVT::Other, getRoot(),
8526                           getValue(I.getArgOperand(0)),
8527                           getValue(I.getArgOperand(1)),
8528                           DAG.getSrcValue(I.getArgOperand(0)),
8529                           DAG.getSrcValue(I.getArgOperand(1))));
8530 }
8531 
8532 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8533                                                     const Instruction &I,
8534                                                     SDValue Op) {
8535   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8536   if (!Range)
8537     return Op;
8538 
8539   ConstantRange CR = getConstantRangeFromMetadata(*Range);
8540   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8541     return Op;
8542 
8543   APInt Lo = CR.getUnsignedMin();
8544   if (!Lo.isMinValue())
8545     return Op;
8546 
8547   APInt Hi = CR.getUnsignedMax();
8548   unsigned Bits = std::max(Hi.getActiveBits(),
8549                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8550 
8551   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8552 
8553   SDLoc SL = getCurSDLoc();
8554 
8555   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8556                              DAG.getValueType(SmallVT));
8557   unsigned NumVals = Op.getNode()->getNumValues();
8558   if (NumVals == 1)
8559     return ZExt;
8560 
8561   SmallVector<SDValue, 4> Ops;
8562 
8563   Ops.push_back(ZExt);
8564   for (unsigned I = 1; I != NumVals; ++I)
8565     Ops.push_back(Op.getValue(I));
8566 
8567   return DAG.getMergeValues(Ops, SL);
8568 }
8569 
8570 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8571 /// the call being lowered.
8572 ///
8573 /// This is a helper for lowering intrinsics that follow a target calling
8574 /// convention or require stack pointer adjustment. Only a subset of the
8575 /// intrinsic's operands need to participate in the calling convention.
8576 void SelectionDAGBuilder::populateCallLoweringInfo(
8577     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8578     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8579     bool IsPatchPoint) {
8580   TargetLowering::ArgListTy Args;
8581   Args.reserve(NumArgs);
8582 
8583   // Populate the argument list.
8584   // Attributes for args start at offset 1, after the return attribute.
8585   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8586        ArgI != ArgE; ++ArgI) {
8587     const Value *V = Call->getOperand(ArgI);
8588 
8589     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8590 
8591     TargetLowering::ArgListEntry Entry;
8592     Entry.Node = getValue(V);
8593     Entry.Ty = V->getType();
8594     Entry.setAttributes(Call, ArgI);
8595     Args.push_back(Entry);
8596   }
8597 
8598   CLI.setDebugLoc(getCurSDLoc())
8599       .setChain(getRoot())
8600       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8601       .setDiscardResult(Call->use_empty())
8602       .setIsPatchPoint(IsPatchPoint);
8603 }
8604 
8605 /// Add a stack map intrinsic call's live variable operands to a stackmap
8606 /// or patchpoint target node's operand list.
8607 ///
8608 /// Constants are converted to TargetConstants purely as an optimization to
8609 /// avoid constant materialization and register allocation.
8610 ///
8611 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8612 /// generate addess computation nodes, and so FinalizeISel can convert the
8613 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8614 /// address materialization and register allocation, but may also be required
8615 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8616 /// alloca in the entry block, then the runtime may assume that the alloca's
8617 /// StackMap location can be read immediately after compilation and that the
8618 /// location is valid at any point during execution (this is similar to the
8619 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8620 /// only available in a register, then the runtime would need to trap when
8621 /// execution reaches the StackMap in order to read the alloca's location.
8622 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8623                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8624                                 SelectionDAGBuilder &Builder) {
8625   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8626     SDValue OpVal = Builder.getValue(CS.getArgument(i));
8627     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8628       Ops.push_back(
8629         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8630       Ops.push_back(
8631         Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8632     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8633       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8634       Ops.push_back(Builder.DAG.getTargetFrameIndex(
8635           FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8636     } else
8637       Ops.push_back(OpVal);
8638   }
8639 }
8640 
8641 /// Lower llvm.experimental.stackmap directly to its target opcode.
8642 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8643   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8644   //                                  [live variables...])
8645 
8646   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8647 
8648   SDValue Chain, InFlag, Callee, NullPtr;
8649   SmallVector<SDValue, 32> Ops;
8650 
8651   SDLoc DL = getCurSDLoc();
8652   Callee = getValue(CI.getCalledValue());
8653   NullPtr = DAG.getIntPtrConstant(0, DL, true);
8654 
8655   // The stackmap intrinsic only records the live variables (the arguments
8656   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8657   // intrinsic, this won't be lowered to a function call. This means we don't
8658   // have to worry about calling conventions and target specific lowering code.
8659   // Instead we perform the call lowering right here.
8660   //
8661   // chain, flag = CALLSEQ_START(chain, 0, 0)
8662   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8663   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8664   //
8665   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8666   InFlag = Chain.getValue(1);
8667 
8668   // Add the <id> and <numBytes> constants.
8669   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8670   Ops.push_back(DAG.getTargetConstant(
8671                   cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8672   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8673   Ops.push_back(DAG.getTargetConstant(
8674                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8675                   MVT::i32));
8676 
8677   // Push live variables for the stack map.
8678   addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8679 
8680   // We are not pushing any register mask info here on the operands list,
8681   // because the stackmap doesn't clobber anything.
8682 
8683   // Push the chain and the glue flag.
8684   Ops.push_back(Chain);
8685   Ops.push_back(InFlag);
8686 
8687   // Create the STACKMAP node.
8688   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8689   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8690   Chain = SDValue(SM, 0);
8691   InFlag = Chain.getValue(1);
8692 
8693   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8694 
8695   // Stackmaps don't generate values, so nothing goes into the NodeMap.
8696 
8697   // Set the root to the target-lowered call chain.
8698   DAG.setRoot(Chain);
8699 
8700   // Inform the Frame Information that we have a stackmap in this function.
8701   FuncInfo.MF->getFrameInfo().setHasStackMap();
8702 }
8703 
8704 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8705 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8706                                           const BasicBlock *EHPadBB) {
8707   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8708   //                                                 i32 <numBytes>,
8709   //                                                 i8* <target>,
8710   //                                                 i32 <numArgs>,
8711   //                                                 [Args...],
8712   //                                                 [live variables...])
8713 
8714   CallingConv::ID CC = CS.getCallingConv();
8715   bool IsAnyRegCC = CC == CallingConv::AnyReg;
8716   bool HasDef = !CS->getType()->isVoidTy();
8717   SDLoc dl = getCurSDLoc();
8718   SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8719 
8720   // Handle immediate and symbolic callees.
8721   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8722     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8723                                    /*isTarget=*/true);
8724   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8725     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8726                                          SDLoc(SymbolicCallee),
8727                                          SymbolicCallee->getValueType(0));
8728 
8729   // Get the real number of arguments participating in the call <numArgs>
8730   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8731   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8732 
8733   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8734   // Intrinsics include all meta-operands up to but not including CC.
8735   unsigned NumMetaOpers = PatchPointOpers::CCPos;
8736   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8737          "Not enough arguments provided to the patchpoint intrinsic");
8738 
8739   // For AnyRegCC the arguments are lowered later on manually.
8740   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8741   Type *ReturnTy =
8742     IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8743 
8744   TargetLowering::CallLoweringInfo CLI(DAG);
8745   populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8746                            NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8747   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8748 
8749   SDNode *CallEnd = Result.second.getNode();
8750   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8751     CallEnd = CallEnd->getOperand(0).getNode();
8752 
8753   /// Get a call instruction from the call sequence chain.
8754   /// Tail calls are not allowed.
8755   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8756          "Expected a callseq node.");
8757   SDNode *Call = CallEnd->getOperand(0).getNode();
8758   bool HasGlue = Call->getGluedNode();
8759 
8760   // Replace the target specific call node with the patchable intrinsic.
8761   SmallVector<SDValue, 8> Ops;
8762 
8763   // Add the <id> and <numBytes> constants.
8764   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8765   Ops.push_back(DAG.getTargetConstant(
8766                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8767   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8768   Ops.push_back(DAG.getTargetConstant(
8769                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8770                   MVT::i32));
8771 
8772   // Add the callee.
8773   Ops.push_back(Callee);
8774 
8775   // Adjust <numArgs> to account for any arguments that have been passed on the
8776   // stack instead.
8777   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8778   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8779   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8780   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8781 
8782   // Add the calling convention
8783   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8784 
8785   // Add the arguments we omitted previously. The register allocator should
8786   // place these in any free register.
8787   if (IsAnyRegCC)
8788     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8789       Ops.push_back(getValue(CS.getArgument(i)));
8790 
8791   // Push the arguments from the call instruction up to the register mask.
8792   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8793   Ops.append(Call->op_begin() + 2, e);
8794 
8795   // Push live variables for the stack map.
8796   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8797 
8798   // Push the register mask info.
8799   if (HasGlue)
8800     Ops.push_back(*(Call->op_end()-2));
8801   else
8802     Ops.push_back(*(Call->op_end()-1));
8803 
8804   // Push the chain (this is originally the first operand of the call, but
8805   // becomes now the last or second to last operand).
8806   Ops.push_back(*(Call->op_begin()));
8807 
8808   // Push the glue flag (last operand).
8809   if (HasGlue)
8810     Ops.push_back(*(Call->op_end()-1));
8811 
8812   SDVTList NodeTys;
8813   if (IsAnyRegCC && HasDef) {
8814     // Create the return types based on the intrinsic definition
8815     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8816     SmallVector<EVT, 3> ValueVTs;
8817     ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8818     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8819 
8820     // There is always a chain and a glue type at the end
8821     ValueVTs.push_back(MVT::Other);
8822     ValueVTs.push_back(MVT::Glue);
8823     NodeTys = DAG.getVTList(ValueVTs);
8824   } else
8825     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8826 
8827   // Replace the target specific call node with a PATCHPOINT node.
8828   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8829                                          dl, NodeTys, Ops);
8830 
8831   // Update the NodeMap.
8832   if (HasDef) {
8833     if (IsAnyRegCC)
8834       setValue(CS.getInstruction(), SDValue(MN, 0));
8835     else
8836       setValue(CS.getInstruction(), Result.first);
8837   }
8838 
8839   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8840   // call sequence. Furthermore the location of the chain and glue can change
8841   // when the AnyReg calling convention is used and the intrinsic returns a
8842   // value.
8843   if (IsAnyRegCC && HasDef) {
8844     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8845     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8846     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8847   } else
8848     DAG.ReplaceAllUsesWith(Call, MN);
8849   DAG.DeleteNode(Call);
8850 
8851   // Inform the Frame Information that we have a patchpoint in this function.
8852   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8853 }
8854 
8855 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8856                                             unsigned Intrinsic) {
8857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8858   SDValue Op1 = getValue(I.getArgOperand(0));
8859   SDValue Op2;
8860   if (I.getNumArgOperands() > 1)
8861     Op2 = getValue(I.getArgOperand(1));
8862   SDLoc dl = getCurSDLoc();
8863   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8864   SDValue Res;
8865   FastMathFlags FMF;
8866   if (isa<FPMathOperator>(I))
8867     FMF = I.getFastMathFlags();
8868 
8869   switch (Intrinsic) {
8870   case Intrinsic::experimental_vector_reduce_v2_fadd:
8871     if (FMF.allowReassoc())
8872       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
8873                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2));
8874     else
8875       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8876     break;
8877   case Intrinsic::experimental_vector_reduce_v2_fmul:
8878     if (FMF.allowReassoc())
8879       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
8880                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2));
8881     else
8882       Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8883     break;
8884   case Intrinsic::experimental_vector_reduce_add:
8885     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8886     break;
8887   case Intrinsic::experimental_vector_reduce_mul:
8888     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8889     break;
8890   case Intrinsic::experimental_vector_reduce_and:
8891     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8892     break;
8893   case Intrinsic::experimental_vector_reduce_or:
8894     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8895     break;
8896   case Intrinsic::experimental_vector_reduce_xor:
8897     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8898     break;
8899   case Intrinsic::experimental_vector_reduce_smax:
8900     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8901     break;
8902   case Intrinsic::experimental_vector_reduce_smin:
8903     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8904     break;
8905   case Intrinsic::experimental_vector_reduce_umax:
8906     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8907     break;
8908   case Intrinsic::experimental_vector_reduce_umin:
8909     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8910     break;
8911   case Intrinsic::experimental_vector_reduce_fmax:
8912     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8913     break;
8914   case Intrinsic::experimental_vector_reduce_fmin:
8915     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8916     break;
8917   default:
8918     llvm_unreachable("Unhandled vector reduce intrinsic");
8919   }
8920   setValue(&I, Res);
8921 }
8922 
8923 /// Returns an AttributeList representing the attributes applied to the return
8924 /// value of the given call.
8925 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8926   SmallVector<Attribute::AttrKind, 2> Attrs;
8927   if (CLI.RetSExt)
8928     Attrs.push_back(Attribute::SExt);
8929   if (CLI.RetZExt)
8930     Attrs.push_back(Attribute::ZExt);
8931   if (CLI.IsInReg)
8932     Attrs.push_back(Attribute::InReg);
8933 
8934   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8935                             Attrs);
8936 }
8937 
8938 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8939 /// implementation, which just calls LowerCall.
8940 /// FIXME: When all targets are
8941 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8942 std::pair<SDValue, SDValue>
8943 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8944   // Handle the incoming return values from the call.
8945   CLI.Ins.clear();
8946   Type *OrigRetTy = CLI.RetTy;
8947   SmallVector<EVT, 4> RetTys;
8948   SmallVector<uint64_t, 4> Offsets;
8949   auto &DL = CLI.DAG.getDataLayout();
8950   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8951 
8952   if (CLI.IsPostTypeLegalization) {
8953     // If we are lowering a libcall after legalization, split the return type.
8954     SmallVector<EVT, 4> OldRetTys;
8955     SmallVector<uint64_t, 4> OldOffsets;
8956     RetTys.swap(OldRetTys);
8957     Offsets.swap(OldOffsets);
8958 
8959     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8960       EVT RetVT = OldRetTys[i];
8961       uint64_t Offset = OldOffsets[i];
8962       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8963       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8964       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8965       RetTys.append(NumRegs, RegisterVT);
8966       for (unsigned j = 0; j != NumRegs; ++j)
8967         Offsets.push_back(Offset + j * RegisterVTByteSZ);
8968     }
8969   }
8970 
8971   SmallVector<ISD::OutputArg, 4> Outs;
8972   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8973 
8974   bool CanLowerReturn =
8975       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8976                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8977 
8978   SDValue DemoteStackSlot;
8979   int DemoteStackIdx = -100;
8980   if (!CanLowerReturn) {
8981     // FIXME: equivalent assert?
8982     // assert(!CS.hasInAllocaArgument() &&
8983     //        "sret demotion is incompatible with inalloca");
8984     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8985     unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8986     MachineFunction &MF = CLI.DAG.getMachineFunction();
8987     DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8988     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8989                                               DL.getAllocaAddrSpace());
8990 
8991     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8992     ArgListEntry Entry;
8993     Entry.Node = DemoteStackSlot;
8994     Entry.Ty = StackSlotPtrType;
8995     Entry.IsSExt = false;
8996     Entry.IsZExt = false;
8997     Entry.IsInReg = false;
8998     Entry.IsSRet = true;
8999     Entry.IsNest = false;
9000     Entry.IsByVal = false;
9001     Entry.IsReturned = false;
9002     Entry.IsSwiftSelf = false;
9003     Entry.IsSwiftError = false;
9004     Entry.IsCFGuardTarget = false;
9005     Entry.Alignment = Align;
9006     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9007     CLI.NumFixedArgs += 1;
9008     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9009 
9010     // sret demotion isn't compatible with tail-calls, since the sret argument
9011     // points into the callers stack frame.
9012     CLI.IsTailCall = false;
9013   } else {
9014     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9015         CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
9016     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9017       ISD::ArgFlagsTy Flags;
9018       if (NeedsRegBlock) {
9019         Flags.setInConsecutiveRegs();
9020         if (I == RetTys.size() - 1)
9021           Flags.setInConsecutiveRegsLast();
9022       }
9023       EVT VT = RetTys[I];
9024       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9025                                                      CLI.CallConv, VT);
9026       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9027                                                        CLI.CallConv, VT);
9028       for (unsigned i = 0; i != NumRegs; ++i) {
9029         ISD::InputArg MyFlags;
9030         MyFlags.Flags = Flags;
9031         MyFlags.VT = RegisterVT;
9032         MyFlags.ArgVT = VT;
9033         MyFlags.Used = CLI.IsReturnValueUsed;
9034         if (CLI.RetTy->isPointerTy()) {
9035           MyFlags.Flags.setPointer();
9036           MyFlags.Flags.setPointerAddrSpace(
9037               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9038         }
9039         if (CLI.RetSExt)
9040           MyFlags.Flags.setSExt();
9041         if (CLI.RetZExt)
9042           MyFlags.Flags.setZExt();
9043         if (CLI.IsInReg)
9044           MyFlags.Flags.setInReg();
9045         CLI.Ins.push_back(MyFlags);
9046       }
9047     }
9048   }
9049 
9050   // We push in swifterror return as the last element of CLI.Ins.
9051   ArgListTy &Args = CLI.getArgs();
9052   if (supportSwiftError()) {
9053     for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9054       if (Args[i].IsSwiftError) {
9055         ISD::InputArg MyFlags;
9056         MyFlags.VT = getPointerTy(DL);
9057         MyFlags.ArgVT = EVT(getPointerTy(DL));
9058         MyFlags.Flags.setSwiftError();
9059         CLI.Ins.push_back(MyFlags);
9060       }
9061     }
9062   }
9063 
9064   // Handle all of the outgoing arguments.
9065   CLI.Outs.clear();
9066   CLI.OutVals.clear();
9067   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9068     SmallVector<EVT, 4> ValueVTs;
9069     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9070     // FIXME: Split arguments if CLI.IsPostTypeLegalization
9071     Type *FinalType = Args[i].Ty;
9072     if (Args[i].IsByVal)
9073       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9074     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9075         FinalType, CLI.CallConv, CLI.IsVarArg);
9076     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9077          ++Value) {
9078       EVT VT = ValueVTs[Value];
9079       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9080       SDValue Op = SDValue(Args[i].Node.getNode(),
9081                            Args[i].Node.getResNo() + Value);
9082       ISD::ArgFlagsTy Flags;
9083 
9084       // Certain targets (such as MIPS), may have a different ABI alignment
9085       // for a type depending on the context. Give the target a chance to
9086       // specify the alignment it wants.
9087       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
9088 
9089       if (Args[i].Ty->isPointerTy()) {
9090         Flags.setPointer();
9091         Flags.setPointerAddrSpace(
9092             cast<PointerType>(Args[i].Ty)->getAddressSpace());
9093       }
9094       if (Args[i].IsZExt)
9095         Flags.setZExt();
9096       if (Args[i].IsSExt)
9097         Flags.setSExt();
9098       if (Args[i].IsInReg) {
9099         // If we are using vectorcall calling convention, a structure that is
9100         // passed InReg - is surely an HVA
9101         if (CLI.CallConv == CallingConv::X86_VectorCall &&
9102             isa<StructType>(FinalType)) {
9103           // The first value of a structure is marked
9104           if (0 == Value)
9105             Flags.setHvaStart();
9106           Flags.setHva();
9107         }
9108         // Set InReg Flag
9109         Flags.setInReg();
9110       }
9111       if (Args[i].IsSRet)
9112         Flags.setSRet();
9113       if (Args[i].IsSwiftSelf)
9114         Flags.setSwiftSelf();
9115       if (Args[i].IsSwiftError)
9116         Flags.setSwiftError();
9117       if (Args[i].IsCFGuardTarget)
9118         Flags.setCFGuardTarget();
9119       if (Args[i].IsByVal)
9120         Flags.setByVal();
9121       if (Args[i].IsInAlloca) {
9122         Flags.setInAlloca();
9123         // Set the byval flag for CCAssignFn callbacks that don't know about
9124         // inalloca.  This way we can know how many bytes we should've allocated
9125         // and how many bytes a callee cleanup function will pop.  If we port
9126         // inalloca to more targets, we'll have to add custom inalloca handling
9127         // in the various CC lowering callbacks.
9128         Flags.setByVal();
9129       }
9130       if (Args[i].IsByVal || Args[i].IsInAlloca) {
9131         PointerType *Ty = cast<PointerType>(Args[i].Ty);
9132         Type *ElementTy = Ty->getElementType();
9133 
9134         unsigned FrameSize = DL.getTypeAllocSize(
9135             Args[i].ByValType ? Args[i].ByValType : ElementTy);
9136         Flags.setByValSize(FrameSize);
9137 
9138         // info is not there but there are cases it cannot get right.
9139         unsigned FrameAlign;
9140         if (Args[i].Alignment)
9141           FrameAlign = Args[i].Alignment;
9142         else
9143           FrameAlign = getByValTypeAlignment(ElementTy, DL);
9144         Flags.setByValAlign(Align(FrameAlign));
9145       }
9146       if (Args[i].IsNest)
9147         Flags.setNest();
9148       if (NeedsRegBlock)
9149         Flags.setInConsecutiveRegs();
9150       Flags.setOrigAlign(OriginalAlignment);
9151 
9152       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9153                                                  CLI.CallConv, VT);
9154       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9155                                                         CLI.CallConv, VT);
9156       SmallVector<SDValue, 4> Parts(NumParts);
9157       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9158 
9159       if (Args[i].IsSExt)
9160         ExtendKind = ISD::SIGN_EXTEND;
9161       else if (Args[i].IsZExt)
9162         ExtendKind = ISD::ZERO_EXTEND;
9163 
9164       // Conservatively only handle 'returned' on non-vectors that can be lowered,
9165       // for now.
9166       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9167           CanLowerReturn) {
9168         assert((CLI.RetTy == Args[i].Ty ||
9169                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
9170                  CLI.RetTy->getPointerAddressSpace() ==
9171                      Args[i].Ty->getPointerAddressSpace())) &&
9172                RetTys.size() == NumValues && "unexpected use of 'returned'");
9173         // Before passing 'returned' to the target lowering code, ensure that
9174         // either the register MVT and the actual EVT are the same size or that
9175         // the return value and argument are extended in the same way; in these
9176         // cases it's safe to pass the argument register value unchanged as the
9177         // return register value (although it's at the target's option whether
9178         // to do so)
9179         // TODO: allow code generation to take advantage of partially preserved
9180         // registers rather than clobbering the entire register when the
9181         // parameter extension method is not compatible with the return
9182         // extension method
9183         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9184             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9185              CLI.RetZExt == Args[i].IsZExt))
9186           Flags.setReturned();
9187       }
9188 
9189       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9190                      CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9191 
9192       for (unsigned j = 0; j != NumParts; ++j) {
9193         // if it isn't first piece, alignment must be 1
9194         // For scalable vectors the scalable part is currently handled
9195         // by individual targets, so we just use the known minimum size here.
9196         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9197                     i < CLI.NumFixedArgs, i,
9198                     j*Parts[j].getValueType().getStoreSize().getKnownMinSize());
9199         if (NumParts > 1 && j == 0)
9200           MyFlags.Flags.setSplit();
9201         else if (j != 0) {
9202           MyFlags.Flags.setOrigAlign(Align::None());
9203           if (j == NumParts - 1)
9204             MyFlags.Flags.setSplitEnd();
9205         }
9206 
9207         CLI.Outs.push_back(MyFlags);
9208         CLI.OutVals.push_back(Parts[j]);
9209       }
9210 
9211       if (NeedsRegBlock && Value == NumValues - 1)
9212         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9213     }
9214   }
9215 
9216   SmallVector<SDValue, 4> InVals;
9217   CLI.Chain = LowerCall(CLI, InVals);
9218 
9219   // Update CLI.InVals to use outside of this function.
9220   CLI.InVals = InVals;
9221 
9222   // Verify that the target's LowerCall behaved as expected.
9223   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9224          "LowerCall didn't return a valid chain!");
9225   assert((!CLI.IsTailCall || InVals.empty()) &&
9226          "LowerCall emitted a return value for a tail call!");
9227   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9228          "LowerCall didn't emit the correct number of values!");
9229 
9230   // For a tail call, the return value is merely live-out and there aren't
9231   // any nodes in the DAG representing it. Return a special value to
9232   // indicate that a tail call has been emitted and no more Instructions
9233   // should be processed in the current block.
9234   if (CLI.IsTailCall) {
9235     CLI.DAG.setRoot(CLI.Chain);
9236     return std::make_pair(SDValue(), SDValue());
9237   }
9238 
9239 #ifndef NDEBUG
9240   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9241     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9242     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9243            "LowerCall emitted a value with the wrong type!");
9244   }
9245 #endif
9246 
9247   SmallVector<SDValue, 4> ReturnValues;
9248   if (!CanLowerReturn) {
9249     // The instruction result is the result of loading from the
9250     // hidden sret parameter.
9251     SmallVector<EVT, 1> PVTs;
9252     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9253 
9254     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9255     assert(PVTs.size() == 1 && "Pointers should fit in one register");
9256     EVT PtrVT = PVTs[0];
9257 
9258     unsigned NumValues = RetTys.size();
9259     ReturnValues.resize(NumValues);
9260     SmallVector<SDValue, 4> Chains(NumValues);
9261 
9262     // An aggregate return value cannot wrap around the address space, so
9263     // offsets to its parts don't wrap either.
9264     SDNodeFlags Flags;
9265     Flags.setNoUnsignedWrap(true);
9266 
9267     for (unsigned i = 0; i < NumValues; ++i) {
9268       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9269                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
9270                                                         PtrVT), Flags);
9271       SDValue L = CLI.DAG.getLoad(
9272           RetTys[i], CLI.DL, CLI.Chain, Add,
9273           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9274                                             DemoteStackIdx, Offsets[i]),
9275           /* Alignment = */ 1);
9276       ReturnValues[i] = L;
9277       Chains[i] = L.getValue(1);
9278     }
9279 
9280     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9281   } else {
9282     // Collect the legal value parts into potentially illegal values
9283     // that correspond to the original function's return values.
9284     Optional<ISD::NodeType> AssertOp;
9285     if (CLI.RetSExt)
9286       AssertOp = ISD::AssertSext;
9287     else if (CLI.RetZExt)
9288       AssertOp = ISD::AssertZext;
9289     unsigned CurReg = 0;
9290     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9291       EVT VT = RetTys[I];
9292       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9293                                                      CLI.CallConv, VT);
9294       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9295                                                        CLI.CallConv, VT);
9296 
9297       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9298                                               NumRegs, RegisterVT, VT, nullptr,
9299                                               CLI.CallConv, AssertOp));
9300       CurReg += NumRegs;
9301     }
9302 
9303     // For a function returning void, there is no return value. We can't create
9304     // such a node, so we just return a null return value in that case. In
9305     // that case, nothing will actually look at the value.
9306     if (ReturnValues.empty())
9307       return std::make_pair(SDValue(), CLI.Chain);
9308   }
9309 
9310   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9311                                 CLI.DAG.getVTList(RetTys), ReturnValues);
9312   return std::make_pair(Res, CLI.Chain);
9313 }
9314 
9315 void TargetLowering::LowerOperationWrapper(SDNode *N,
9316                                            SmallVectorImpl<SDValue> &Results,
9317                                            SelectionDAG &DAG) const {
9318   if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9319     Results.push_back(Res);
9320 }
9321 
9322 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9323   llvm_unreachable("LowerOperation not implemented for this target!");
9324 }
9325 
9326 void
9327 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9328   SDValue Op = getNonRegisterValue(V);
9329   assert((Op.getOpcode() != ISD::CopyFromReg ||
9330           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9331          "Copy from a reg to the same reg!");
9332   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
9333 
9334   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9335   // If this is an InlineAsm we have to match the registers required, not the
9336   // notional registers required by the type.
9337 
9338   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9339                    None); // This is not an ABI copy.
9340   SDValue Chain = DAG.getEntryNode();
9341 
9342   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9343                               FuncInfo.PreferredExtendType.end())
9344                                  ? ISD::ANY_EXTEND
9345                                  : FuncInfo.PreferredExtendType[V];
9346   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9347   PendingExports.push_back(Chain);
9348 }
9349 
9350 #include "llvm/CodeGen/SelectionDAGISel.h"
9351 
9352 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9353 /// entry block, return true.  This includes arguments used by switches, since
9354 /// the switch may expand into multiple basic blocks.
9355 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9356   // With FastISel active, we may be splitting blocks, so force creation
9357   // of virtual registers for all non-dead arguments.
9358   if (FastISel)
9359     return A->use_empty();
9360 
9361   const BasicBlock &Entry = A->getParent()->front();
9362   for (const User *U : A->users())
9363     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9364       return false;  // Use not in entry block.
9365 
9366   return true;
9367 }
9368 
9369 using ArgCopyElisionMapTy =
9370     DenseMap<const Argument *,
9371              std::pair<const AllocaInst *, const StoreInst *>>;
9372 
9373 /// Scan the entry block of the function in FuncInfo for arguments that look
9374 /// like copies into a local alloca. Record any copied arguments in
9375 /// ArgCopyElisionCandidates.
9376 static void
9377 findArgumentCopyElisionCandidates(const DataLayout &DL,
9378                                   FunctionLoweringInfo *FuncInfo,
9379                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9380   // Record the state of every static alloca used in the entry block. Argument
9381   // allocas are all used in the entry block, so we need approximately as many
9382   // entries as we have arguments.
9383   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9384   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9385   unsigned NumArgs = FuncInfo->Fn->arg_size();
9386   StaticAllocas.reserve(NumArgs * 2);
9387 
9388   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9389     if (!V)
9390       return nullptr;
9391     V = V->stripPointerCasts();
9392     const auto *AI = dyn_cast<AllocaInst>(V);
9393     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9394       return nullptr;
9395     auto Iter = StaticAllocas.insert({AI, Unknown});
9396     return &Iter.first->second;
9397   };
9398 
9399   // Look for stores of arguments to static allocas. Look through bitcasts and
9400   // GEPs to handle type coercions, as long as the alloca is fully initialized
9401   // by the store. Any non-store use of an alloca escapes it and any subsequent
9402   // unanalyzed store might write it.
9403   // FIXME: Handle structs initialized with multiple stores.
9404   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9405     // Look for stores, and handle non-store uses conservatively.
9406     const auto *SI = dyn_cast<StoreInst>(&I);
9407     if (!SI) {
9408       // We will look through cast uses, so ignore them completely.
9409       if (I.isCast())
9410         continue;
9411       // Ignore debug info intrinsics, they don't escape or store to allocas.
9412       if (isa<DbgInfoIntrinsic>(I))
9413         continue;
9414       // This is an unknown instruction. Assume it escapes or writes to all
9415       // static alloca operands.
9416       for (const Use &U : I.operands()) {
9417         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9418           *Info = StaticAllocaInfo::Clobbered;
9419       }
9420       continue;
9421     }
9422 
9423     // If the stored value is a static alloca, mark it as escaped.
9424     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9425       *Info = StaticAllocaInfo::Clobbered;
9426 
9427     // Check if the destination is a static alloca.
9428     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9429     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9430     if (!Info)
9431       continue;
9432     const AllocaInst *AI = cast<AllocaInst>(Dst);
9433 
9434     // Skip allocas that have been initialized or clobbered.
9435     if (*Info != StaticAllocaInfo::Unknown)
9436       continue;
9437 
9438     // Check if the stored value is an argument, and that this store fully
9439     // initializes the alloca. Don't elide copies from the same argument twice.
9440     const Value *Val = SI->getValueOperand()->stripPointerCasts();
9441     const auto *Arg = dyn_cast<Argument>(Val);
9442     if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9443         Arg->getType()->isEmptyTy() ||
9444         DL.getTypeStoreSize(Arg->getType()) !=
9445             DL.getTypeAllocSize(AI->getAllocatedType()) ||
9446         ArgCopyElisionCandidates.count(Arg)) {
9447       *Info = StaticAllocaInfo::Clobbered;
9448       continue;
9449     }
9450 
9451     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9452                       << '\n');
9453 
9454     // Mark this alloca and store for argument copy elision.
9455     *Info = StaticAllocaInfo::Elidable;
9456     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9457 
9458     // Stop scanning if we've seen all arguments. This will happen early in -O0
9459     // builds, which is useful, because -O0 builds have large entry blocks and
9460     // many allocas.
9461     if (ArgCopyElisionCandidates.size() == NumArgs)
9462       break;
9463   }
9464 }
9465 
9466 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9467 /// ArgVal is a load from a suitable fixed stack object.
9468 static void tryToElideArgumentCopy(
9469     FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9470     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9471     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9472     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9473     SDValue ArgVal, bool &ArgHasUses) {
9474   // Check if this is a load from a fixed stack object.
9475   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9476   if (!LNode)
9477     return;
9478   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9479   if (!FINode)
9480     return;
9481 
9482   // Check that the fixed stack object is the right size and alignment.
9483   // Look at the alignment that the user wrote on the alloca instead of looking
9484   // at the stack object.
9485   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9486   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9487   const AllocaInst *AI = ArgCopyIter->second.first;
9488   int FixedIndex = FINode->getIndex();
9489   int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9490   int OldIndex = AllocaIndex;
9491   MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9492   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9493     LLVM_DEBUG(
9494         dbgs() << "  argument copy elision failed due to bad fixed stack "
9495                   "object size\n");
9496     return;
9497   }
9498   unsigned RequiredAlignment = AI->getAlignment();
9499   if (!RequiredAlignment) {
9500     RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9501         AI->getAllocatedType());
9502   }
9503   if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9504     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
9505                          "greater than stack argument alignment ("
9506                       << RequiredAlignment << " vs "
9507                       << MFI.getObjectAlignment(FixedIndex) << ")\n");
9508     return;
9509   }
9510 
9511   // Perform the elision. Delete the old stack object and replace its only use
9512   // in the variable info map. Mark the stack object as mutable.
9513   LLVM_DEBUG({
9514     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9515            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
9516            << '\n';
9517   });
9518   MFI.RemoveStackObject(OldIndex);
9519   MFI.setIsImmutableObjectIndex(FixedIndex, false);
9520   AllocaIndex = FixedIndex;
9521   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9522   Chains.push_back(ArgVal.getValue(1));
9523 
9524   // Avoid emitting code for the store implementing the copy.
9525   const StoreInst *SI = ArgCopyIter->second.second;
9526   ElidedArgCopyInstrs.insert(SI);
9527 
9528   // Check for uses of the argument again so that we can avoid exporting ArgVal
9529   // if it is't used by anything other than the store.
9530   for (const Value *U : Arg.users()) {
9531     if (U != SI) {
9532       ArgHasUses = true;
9533       break;
9534     }
9535   }
9536 }
9537 
9538 void SelectionDAGISel::LowerArguments(const Function &F) {
9539   SelectionDAG &DAG = SDB->DAG;
9540   SDLoc dl = SDB->getCurSDLoc();
9541   const DataLayout &DL = DAG.getDataLayout();
9542   SmallVector<ISD::InputArg, 16> Ins;
9543 
9544   if (!FuncInfo->CanLowerReturn) {
9545     // Put in an sret pointer parameter before all the other parameters.
9546     SmallVector<EVT, 1> ValueVTs;
9547     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9548                     F.getReturnType()->getPointerTo(
9549                         DAG.getDataLayout().getAllocaAddrSpace()),
9550                     ValueVTs);
9551 
9552     // NOTE: Assuming that a pointer will never break down to more than one VT
9553     // or one register.
9554     ISD::ArgFlagsTy Flags;
9555     Flags.setSRet();
9556     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9557     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9558                          ISD::InputArg::NoArgIndex, 0);
9559     Ins.push_back(RetArg);
9560   }
9561 
9562   // Look for stores of arguments to static allocas. Mark such arguments with a
9563   // flag to ask the target to give us the memory location of that argument if
9564   // available.
9565   ArgCopyElisionMapTy ArgCopyElisionCandidates;
9566   findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9567 
9568   // Set up the incoming argument description vector.
9569   for (const Argument &Arg : F.args()) {
9570     unsigned ArgNo = Arg.getArgNo();
9571     SmallVector<EVT, 4> ValueVTs;
9572     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9573     bool isArgValueUsed = !Arg.use_empty();
9574     unsigned PartBase = 0;
9575     Type *FinalType = Arg.getType();
9576     if (Arg.hasAttribute(Attribute::ByVal))
9577       FinalType = Arg.getParamByValType();
9578     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9579         FinalType, F.getCallingConv(), F.isVarArg());
9580     for (unsigned Value = 0, NumValues = ValueVTs.size();
9581          Value != NumValues; ++Value) {
9582       EVT VT = ValueVTs[Value];
9583       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9584       ISD::ArgFlagsTy Flags;
9585 
9586       // Certain targets (such as MIPS), may have a different ABI alignment
9587       // for a type depending on the context. Give the target a chance to
9588       // specify the alignment it wants.
9589       const Align OriginalAlignment(
9590           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
9591 
9592       if (Arg.getType()->isPointerTy()) {
9593         Flags.setPointer();
9594         Flags.setPointerAddrSpace(
9595             cast<PointerType>(Arg.getType())->getAddressSpace());
9596       }
9597       if (Arg.hasAttribute(Attribute::ZExt))
9598         Flags.setZExt();
9599       if (Arg.hasAttribute(Attribute::SExt))
9600         Flags.setSExt();
9601       if (Arg.hasAttribute(Attribute::InReg)) {
9602         // If we are using vectorcall calling convention, a structure that is
9603         // passed InReg - is surely an HVA
9604         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9605             isa<StructType>(Arg.getType())) {
9606           // The first value of a structure is marked
9607           if (0 == Value)
9608             Flags.setHvaStart();
9609           Flags.setHva();
9610         }
9611         // Set InReg Flag
9612         Flags.setInReg();
9613       }
9614       if (Arg.hasAttribute(Attribute::StructRet))
9615         Flags.setSRet();
9616       if (Arg.hasAttribute(Attribute::SwiftSelf))
9617         Flags.setSwiftSelf();
9618       if (Arg.hasAttribute(Attribute::SwiftError))
9619         Flags.setSwiftError();
9620       if (Arg.hasAttribute(Attribute::ByVal))
9621         Flags.setByVal();
9622       if (Arg.hasAttribute(Attribute::InAlloca)) {
9623         Flags.setInAlloca();
9624         // Set the byval flag for CCAssignFn callbacks that don't know about
9625         // inalloca.  This way we can know how many bytes we should've allocated
9626         // and how many bytes a callee cleanup function will pop.  If we port
9627         // inalloca to more targets, we'll have to add custom inalloca handling
9628         // in the various CC lowering callbacks.
9629         Flags.setByVal();
9630       }
9631       if (F.getCallingConv() == CallingConv::X86_INTR) {
9632         // IA Interrupt passes frame (1st parameter) by value in the stack.
9633         if (ArgNo == 0)
9634           Flags.setByVal();
9635       }
9636       if (Flags.isByVal() || Flags.isInAlloca()) {
9637         Type *ElementTy = Arg.getParamByValType();
9638 
9639         // For ByVal, size and alignment should be passed from FE.  BE will
9640         // guess if this info is not there but there are cases it cannot get
9641         // right.
9642         unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType());
9643         Flags.setByValSize(FrameSize);
9644 
9645         unsigned FrameAlign;
9646         if (Arg.getParamAlignment())
9647           FrameAlign = Arg.getParamAlignment();
9648         else
9649           FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9650         Flags.setByValAlign(Align(FrameAlign));
9651       }
9652       if (Arg.hasAttribute(Attribute::Nest))
9653         Flags.setNest();
9654       if (NeedsRegBlock)
9655         Flags.setInConsecutiveRegs();
9656       Flags.setOrigAlign(OriginalAlignment);
9657       if (ArgCopyElisionCandidates.count(&Arg))
9658         Flags.setCopyElisionCandidate();
9659       if (Arg.hasAttribute(Attribute::Returned))
9660         Flags.setReturned();
9661 
9662       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9663           *CurDAG->getContext(), F.getCallingConv(), VT);
9664       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9665           *CurDAG->getContext(), F.getCallingConv(), VT);
9666       for (unsigned i = 0; i != NumRegs; ++i) {
9667         // For scalable vectors, use the minimum size; individual targets
9668         // are responsible for handling scalable vector arguments and
9669         // return values.
9670         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9671                  ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize());
9672         if (NumRegs > 1 && i == 0)
9673           MyFlags.Flags.setSplit();
9674         // if it isn't first piece, alignment must be 1
9675         else if (i > 0) {
9676           MyFlags.Flags.setOrigAlign(Align::None());
9677           if (i == NumRegs - 1)
9678             MyFlags.Flags.setSplitEnd();
9679         }
9680         Ins.push_back(MyFlags);
9681       }
9682       if (NeedsRegBlock && Value == NumValues - 1)
9683         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9684       PartBase += VT.getStoreSize().getKnownMinSize();
9685     }
9686   }
9687 
9688   // Call the target to set up the argument values.
9689   SmallVector<SDValue, 8> InVals;
9690   SDValue NewRoot = TLI->LowerFormalArguments(
9691       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9692 
9693   // Verify that the target's LowerFormalArguments behaved as expected.
9694   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9695          "LowerFormalArguments didn't return a valid chain!");
9696   assert(InVals.size() == Ins.size() &&
9697          "LowerFormalArguments didn't emit the correct number of values!");
9698   LLVM_DEBUG({
9699     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9700       assert(InVals[i].getNode() &&
9701              "LowerFormalArguments emitted a null value!");
9702       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9703              "LowerFormalArguments emitted a value with the wrong type!");
9704     }
9705   });
9706 
9707   // Update the DAG with the new chain value resulting from argument lowering.
9708   DAG.setRoot(NewRoot);
9709 
9710   // Set up the argument values.
9711   unsigned i = 0;
9712   if (!FuncInfo->CanLowerReturn) {
9713     // Create a virtual register for the sret pointer, and put in a copy
9714     // from the sret argument into it.
9715     SmallVector<EVT, 1> ValueVTs;
9716     ComputeValueVTs(*TLI, DAG.getDataLayout(),
9717                     F.getReturnType()->getPointerTo(
9718                         DAG.getDataLayout().getAllocaAddrSpace()),
9719                     ValueVTs);
9720     MVT VT = ValueVTs[0].getSimpleVT();
9721     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9722     Optional<ISD::NodeType> AssertOp = None;
9723     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9724                                         nullptr, F.getCallingConv(), AssertOp);
9725 
9726     MachineFunction& MF = SDB->DAG.getMachineFunction();
9727     MachineRegisterInfo& RegInfo = MF.getRegInfo();
9728     Register SRetReg =
9729         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9730     FuncInfo->DemoteRegister = SRetReg;
9731     NewRoot =
9732         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9733     DAG.setRoot(NewRoot);
9734 
9735     // i indexes lowered arguments.  Bump it past the hidden sret argument.
9736     ++i;
9737   }
9738 
9739   SmallVector<SDValue, 4> Chains;
9740   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9741   for (const Argument &Arg : F.args()) {
9742     SmallVector<SDValue, 4> ArgValues;
9743     SmallVector<EVT, 4> ValueVTs;
9744     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9745     unsigned NumValues = ValueVTs.size();
9746     if (NumValues == 0)
9747       continue;
9748 
9749     bool ArgHasUses = !Arg.use_empty();
9750 
9751     // Elide the copying store if the target loaded this argument from a
9752     // suitable fixed stack object.
9753     if (Ins[i].Flags.isCopyElisionCandidate()) {
9754       tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9755                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9756                              InVals[i], ArgHasUses);
9757     }
9758 
9759     // If this argument is unused then remember its value. It is used to generate
9760     // debugging information.
9761     bool isSwiftErrorArg =
9762         TLI->supportSwiftError() &&
9763         Arg.hasAttribute(Attribute::SwiftError);
9764     if (!ArgHasUses && !isSwiftErrorArg) {
9765       SDB->setUnusedArgValue(&Arg, InVals[i]);
9766 
9767       // Also remember any frame index for use in FastISel.
9768       if (FrameIndexSDNode *FI =
9769           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9770         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9771     }
9772 
9773     for (unsigned Val = 0; Val != NumValues; ++Val) {
9774       EVT VT = ValueVTs[Val];
9775       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9776                                                       F.getCallingConv(), VT);
9777       unsigned NumParts = TLI->getNumRegistersForCallingConv(
9778           *CurDAG->getContext(), F.getCallingConv(), VT);
9779 
9780       // Even an apparent 'unused' swifterror argument needs to be returned. So
9781       // we do generate a copy for it that can be used on return from the
9782       // function.
9783       if (ArgHasUses || isSwiftErrorArg) {
9784         Optional<ISD::NodeType> AssertOp;
9785         if (Arg.hasAttribute(Attribute::SExt))
9786           AssertOp = ISD::AssertSext;
9787         else if (Arg.hasAttribute(Attribute::ZExt))
9788           AssertOp = ISD::AssertZext;
9789 
9790         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9791                                              PartVT, VT, nullptr,
9792                                              F.getCallingConv(), AssertOp));
9793       }
9794 
9795       i += NumParts;
9796     }
9797 
9798     // We don't need to do anything else for unused arguments.
9799     if (ArgValues.empty())
9800       continue;
9801 
9802     // Note down frame index.
9803     if (FrameIndexSDNode *FI =
9804         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9805       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9806 
9807     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9808                                      SDB->getCurSDLoc());
9809 
9810     SDB->setValue(&Arg, Res);
9811     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9812       // We want to associate the argument with the frame index, among
9813       // involved operands, that correspond to the lowest address. The
9814       // getCopyFromParts function, called earlier, is swapping the order of
9815       // the operands to BUILD_PAIR depending on endianness. The result of
9816       // that swapping is that the least significant bits of the argument will
9817       // be in the first operand of the BUILD_PAIR node, and the most
9818       // significant bits will be in the second operand.
9819       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9820       if (LoadSDNode *LNode =
9821           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9822         if (FrameIndexSDNode *FI =
9823             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9824           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9825     }
9826 
9827     // Analyses past this point are naive and don't expect an assertion.
9828     if (Res.getOpcode() == ISD::AssertZext)
9829       Res = Res.getOperand(0);
9830 
9831     // Update the SwiftErrorVRegDefMap.
9832     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9833       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9834       if (Register::isVirtualRegister(Reg))
9835         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
9836                                    Reg);
9837     }
9838 
9839     // If this argument is live outside of the entry block, insert a copy from
9840     // wherever we got it to the vreg that other BB's will reference it as.
9841     if (Res.getOpcode() == ISD::CopyFromReg) {
9842       // If we can, though, try to skip creating an unnecessary vreg.
9843       // FIXME: This isn't very clean... it would be nice to make this more
9844       // general.
9845       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9846       if (Register::isVirtualRegister(Reg)) {
9847         FuncInfo->ValueMap[&Arg] = Reg;
9848         continue;
9849       }
9850     }
9851     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9852       FuncInfo->InitializeRegForValue(&Arg);
9853       SDB->CopyToExportRegsIfNeeded(&Arg);
9854     }
9855   }
9856 
9857   if (!Chains.empty()) {
9858     Chains.push_back(NewRoot);
9859     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9860   }
9861 
9862   DAG.setRoot(NewRoot);
9863 
9864   assert(i == InVals.size() && "Argument register count mismatch!");
9865 
9866   // If any argument copy elisions occurred and we have debug info, update the
9867   // stale frame indices used in the dbg.declare variable info table.
9868   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9869   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9870     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9871       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9872       if (I != ArgCopyElisionFrameIndexMap.end())
9873         VI.Slot = I->second;
9874     }
9875   }
9876 
9877   // Finally, if the target has anything special to do, allow it to do so.
9878   EmitFunctionEntryCode();
9879 }
9880 
9881 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
9882 /// ensure constants are generated when needed.  Remember the virtual registers
9883 /// that need to be added to the Machine PHI nodes as input.  We cannot just
9884 /// directly add them, because expansion might result in multiple MBB's for one
9885 /// BB.  As such, the start of the BB might correspond to a different MBB than
9886 /// the end.
9887 void
9888 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9889   const Instruction *TI = LLVMBB->getTerminator();
9890 
9891   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9892 
9893   // Check PHI nodes in successors that expect a value to be available from this
9894   // block.
9895   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9896     const BasicBlock *SuccBB = TI->getSuccessor(succ);
9897     if (!isa<PHINode>(SuccBB->begin())) continue;
9898     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9899 
9900     // If this terminator has multiple identical successors (common for
9901     // switches), only handle each succ once.
9902     if (!SuccsHandled.insert(SuccMBB).second)
9903       continue;
9904 
9905     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9906 
9907     // At this point we know that there is a 1-1 correspondence between LLVM PHI
9908     // nodes and Machine PHI nodes, but the incoming operands have not been
9909     // emitted yet.
9910     for (const PHINode &PN : SuccBB->phis()) {
9911       // Ignore dead phi's.
9912       if (PN.use_empty())
9913         continue;
9914 
9915       // Skip empty types
9916       if (PN.getType()->isEmptyTy())
9917         continue;
9918 
9919       unsigned Reg;
9920       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9921 
9922       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9923         unsigned &RegOut = ConstantsOut[C];
9924         if (RegOut == 0) {
9925           RegOut = FuncInfo.CreateRegs(C);
9926           CopyValueToVirtualRegister(C, RegOut);
9927         }
9928         Reg = RegOut;
9929       } else {
9930         DenseMap<const Value *, unsigned>::iterator I =
9931           FuncInfo.ValueMap.find(PHIOp);
9932         if (I != FuncInfo.ValueMap.end())
9933           Reg = I->second;
9934         else {
9935           assert(isa<AllocaInst>(PHIOp) &&
9936                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9937                  "Didn't codegen value into a register!??");
9938           Reg = FuncInfo.CreateRegs(PHIOp);
9939           CopyValueToVirtualRegister(PHIOp, Reg);
9940         }
9941       }
9942 
9943       // Remember that this register needs to added to the machine PHI node as
9944       // the input for this MBB.
9945       SmallVector<EVT, 4> ValueVTs;
9946       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9947       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9948       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9949         EVT VT = ValueVTs[vti];
9950         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9951         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9952           FuncInfo.PHINodesToUpdate.push_back(
9953               std::make_pair(&*MBBI++, Reg + i));
9954         Reg += NumRegisters;
9955       }
9956     }
9957   }
9958 
9959   ConstantsOut.clear();
9960 }
9961 
9962 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9963 /// is 0.
9964 MachineBasicBlock *
9965 SelectionDAGBuilder::StackProtectorDescriptor::
9966 AddSuccessorMBB(const BasicBlock *BB,
9967                 MachineBasicBlock *ParentMBB,
9968                 bool IsLikely,
9969                 MachineBasicBlock *SuccMBB) {
9970   // If SuccBB has not been created yet, create it.
9971   if (!SuccMBB) {
9972     MachineFunction *MF = ParentMBB->getParent();
9973     MachineFunction::iterator BBI(ParentMBB);
9974     SuccMBB = MF->CreateMachineBasicBlock(BB);
9975     MF->insert(++BBI, SuccMBB);
9976   }
9977   // Add it as a successor of ParentMBB.
9978   ParentMBB->addSuccessor(
9979       SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9980   return SuccMBB;
9981 }
9982 
9983 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9984   MachineFunction::iterator I(MBB);
9985   if (++I == FuncInfo.MF->end())
9986     return nullptr;
9987   return &*I;
9988 }
9989 
9990 /// During lowering new call nodes can be created (such as memset, etc.).
9991 /// Those will become new roots of the current DAG, but complications arise
9992 /// when they are tail calls. In such cases, the call lowering will update
9993 /// the root, but the builder still needs to know that a tail call has been
9994 /// lowered in order to avoid generating an additional return.
9995 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9996   // If the node is null, we do have a tail call.
9997   if (MaybeTC.getNode() != nullptr)
9998     DAG.setRoot(MaybeTC);
9999   else
10000     HasTailCall = true;
10001 }
10002 
10003 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10004                                         MachineBasicBlock *SwitchMBB,
10005                                         MachineBasicBlock *DefaultMBB) {
10006   MachineFunction *CurMF = FuncInfo.MF;
10007   MachineBasicBlock *NextMBB = nullptr;
10008   MachineFunction::iterator BBI(W.MBB);
10009   if (++BBI != FuncInfo.MF->end())
10010     NextMBB = &*BBI;
10011 
10012   unsigned Size = W.LastCluster - W.FirstCluster + 1;
10013 
10014   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10015 
10016   if (Size == 2 && W.MBB == SwitchMBB) {
10017     // If any two of the cases has the same destination, and if one value
10018     // is the same as the other, but has one bit unset that the other has set,
10019     // use bit manipulation to do two compares at once.  For example:
10020     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10021     // TODO: This could be extended to merge any 2 cases in switches with 3
10022     // cases.
10023     // TODO: Handle cases where W.CaseBB != SwitchBB.
10024     CaseCluster &Small = *W.FirstCluster;
10025     CaseCluster &Big = *W.LastCluster;
10026 
10027     if (Small.Low == Small.High && Big.Low == Big.High &&
10028         Small.MBB == Big.MBB) {
10029       const APInt &SmallValue = Small.Low->getValue();
10030       const APInt &BigValue = Big.Low->getValue();
10031 
10032       // Check that there is only one bit different.
10033       APInt CommonBit = BigValue ^ SmallValue;
10034       if (CommonBit.isPowerOf2()) {
10035         SDValue CondLHS = getValue(Cond);
10036         EVT VT = CondLHS.getValueType();
10037         SDLoc DL = getCurSDLoc();
10038 
10039         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10040                                  DAG.getConstant(CommonBit, DL, VT));
10041         SDValue Cond = DAG.getSetCC(
10042             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10043             ISD::SETEQ);
10044 
10045         // Update successor info.
10046         // Both Small and Big will jump to Small.BB, so we sum up the
10047         // probabilities.
10048         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10049         if (BPI)
10050           addSuccessorWithProb(
10051               SwitchMBB, DefaultMBB,
10052               // The default destination is the first successor in IR.
10053               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10054         else
10055           addSuccessorWithProb(SwitchMBB, DefaultMBB);
10056 
10057         // Insert the true branch.
10058         SDValue BrCond =
10059             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10060                         DAG.getBasicBlock(Small.MBB));
10061         // Insert the false branch.
10062         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10063                              DAG.getBasicBlock(DefaultMBB));
10064 
10065         DAG.setRoot(BrCond);
10066         return;
10067       }
10068     }
10069   }
10070 
10071   if (TM.getOptLevel() != CodeGenOpt::None) {
10072     // Here, we order cases by probability so the most likely case will be
10073     // checked first. However, two clusters can have the same probability in
10074     // which case their relative ordering is non-deterministic. So we use Low
10075     // as a tie-breaker as clusters are guaranteed to never overlap.
10076     llvm::sort(W.FirstCluster, W.LastCluster + 1,
10077                [](const CaseCluster &a, const CaseCluster &b) {
10078       return a.Prob != b.Prob ?
10079              a.Prob > b.Prob :
10080              a.Low->getValue().slt(b.Low->getValue());
10081     });
10082 
10083     // Rearrange the case blocks so that the last one falls through if possible
10084     // without changing the order of probabilities.
10085     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10086       --I;
10087       if (I->Prob > W.LastCluster->Prob)
10088         break;
10089       if (I->Kind == CC_Range && I->MBB == NextMBB) {
10090         std::swap(*I, *W.LastCluster);
10091         break;
10092       }
10093     }
10094   }
10095 
10096   // Compute total probability.
10097   BranchProbability DefaultProb = W.DefaultProb;
10098   BranchProbability UnhandledProbs = DefaultProb;
10099   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10100     UnhandledProbs += I->Prob;
10101 
10102   MachineBasicBlock *CurMBB = W.MBB;
10103   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10104     bool FallthroughUnreachable = false;
10105     MachineBasicBlock *Fallthrough;
10106     if (I == W.LastCluster) {
10107       // For the last cluster, fall through to the default destination.
10108       Fallthrough = DefaultMBB;
10109       FallthroughUnreachable = isa<UnreachableInst>(
10110           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10111     } else {
10112       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10113       CurMF->insert(BBI, Fallthrough);
10114       // Put Cond in a virtual register to make it available from the new blocks.
10115       ExportFromCurrentBlock(Cond);
10116     }
10117     UnhandledProbs -= I->Prob;
10118 
10119     switch (I->Kind) {
10120       case CC_JumpTable: {
10121         // FIXME: Optimize away range check based on pivot comparisons.
10122         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
10123         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
10124 
10125         // The jump block hasn't been inserted yet; insert it here.
10126         MachineBasicBlock *JumpMBB = JT->MBB;
10127         CurMF->insert(BBI, JumpMBB);
10128 
10129         auto JumpProb = I->Prob;
10130         auto FallthroughProb = UnhandledProbs;
10131 
10132         // If the default statement is a target of the jump table, we evenly
10133         // distribute the default probability to successors of CurMBB. Also
10134         // update the probability on the edge from JumpMBB to Fallthrough.
10135         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10136                                               SE = JumpMBB->succ_end();
10137              SI != SE; ++SI) {
10138           if (*SI == DefaultMBB) {
10139             JumpProb += DefaultProb / 2;
10140             FallthroughProb -= DefaultProb / 2;
10141             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10142             JumpMBB->normalizeSuccProbs();
10143             break;
10144           }
10145         }
10146 
10147         if (FallthroughUnreachable) {
10148           // Skip the range check if the fallthrough block is unreachable.
10149           JTH->OmitRangeCheck = true;
10150         }
10151 
10152         if (!JTH->OmitRangeCheck)
10153           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10154         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10155         CurMBB->normalizeSuccProbs();
10156 
10157         // The jump table header will be inserted in our current block, do the
10158         // range check, and fall through to our fallthrough block.
10159         JTH->HeaderBB = CurMBB;
10160         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10161 
10162         // If we're in the right place, emit the jump table header right now.
10163         if (CurMBB == SwitchMBB) {
10164           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10165           JTH->Emitted = true;
10166         }
10167         break;
10168       }
10169       case CC_BitTests: {
10170         // FIXME: Optimize away range check based on pivot comparisons.
10171         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
10172 
10173         // The bit test blocks haven't been inserted yet; insert them here.
10174         for (BitTestCase &BTC : BTB->Cases)
10175           CurMF->insert(BBI, BTC.ThisBB);
10176 
10177         // Fill in fields of the BitTestBlock.
10178         BTB->Parent = CurMBB;
10179         BTB->Default = Fallthrough;
10180 
10181         BTB->DefaultProb = UnhandledProbs;
10182         // If the cases in bit test don't form a contiguous range, we evenly
10183         // distribute the probability on the edge to Fallthrough to two
10184         // successors of CurMBB.
10185         if (!BTB->ContiguousRange) {
10186           BTB->Prob += DefaultProb / 2;
10187           BTB->DefaultProb -= DefaultProb / 2;
10188         }
10189 
10190         if (FallthroughUnreachable) {
10191           // Skip the range check if the fallthrough block is unreachable.
10192           BTB->OmitRangeCheck = true;
10193         }
10194 
10195         // If we're in the right place, emit the bit test header right now.
10196         if (CurMBB == SwitchMBB) {
10197           visitBitTestHeader(*BTB, SwitchMBB);
10198           BTB->Emitted = true;
10199         }
10200         break;
10201       }
10202       case CC_Range: {
10203         const Value *RHS, *LHS, *MHS;
10204         ISD::CondCode CC;
10205         if (I->Low == I->High) {
10206           // Check Cond == I->Low.
10207           CC = ISD::SETEQ;
10208           LHS = Cond;
10209           RHS=I->Low;
10210           MHS = nullptr;
10211         } else {
10212           // Check I->Low <= Cond <= I->High.
10213           CC = ISD::SETLE;
10214           LHS = I->Low;
10215           MHS = Cond;
10216           RHS = I->High;
10217         }
10218 
10219         // If Fallthrough is unreachable, fold away the comparison.
10220         if (FallthroughUnreachable)
10221           CC = ISD::SETTRUE;
10222 
10223         // The false probability is the sum of all unhandled cases.
10224         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10225                      getCurSDLoc(), I->Prob, UnhandledProbs);
10226 
10227         if (CurMBB == SwitchMBB)
10228           visitSwitchCase(CB, SwitchMBB);
10229         else
10230           SL->SwitchCases.push_back(CB);
10231 
10232         break;
10233       }
10234     }
10235     CurMBB = Fallthrough;
10236   }
10237 }
10238 
10239 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10240                                               CaseClusterIt First,
10241                                               CaseClusterIt Last) {
10242   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10243     if (X.Prob != CC.Prob)
10244       return X.Prob > CC.Prob;
10245 
10246     // Ties are broken by comparing the case value.
10247     return X.Low->getValue().slt(CC.Low->getValue());
10248   });
10249 }
10250 
10251 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10252                                         const SwitchWorkListItem &W,
10253                                         Value *Cond,
10254                                         MachineBasicBlock *SwitchMBB) {
10255   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10256          "Clusters not sorted?");
10257 
10258   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10259 
10260   // Balance the tree based on branch probabilities to create a near-optimal (in
10261   // terms of search time given key frequency) binary search tree. See e.g. Kurt
10262   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10263   CaseClusterIt LastLeft = W.FirstCluster;
10264   CaseClusterIt FirstRight = W.LastCluster;
10265   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10266   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10267 
10268   // Move LastLeft and FirstRight towards each other from opposite directions to
10269   // find a partitioning of the clusters which balances the probability on both
10270   // sides. If LeftProb and RightProb are equal, alternate which side is
10271   // taken to ensure 0-probability nodes are distributed evenly.
10272   unsigned I = 0;
10273   while (LastLeft + 1 < FirstRight) {
10274     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10275       LeftProb += (++LastLeft)->Prob;
10276     else
10277       RightProb += (--FirstRight)->Prob;
10278     I++;
10279   }
10280 
10281   while (true) {
10282     // Our binary search tree differs from a typical BST in that ours can have up
10283     // to three values in each leaf. The pivot selection above doesn't take that
10284     // into account, which means the tree might require more nodes and be less
10285     // efficient. We compensate for this here.
10286 
10287     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10288     unsigned NumRight = W.LastCluster - FirstRight + 1;
10289 
10290     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10291       // If one side has less than 3 clusters, and the other has more than 3,
10292       // consider taking a cluster from the other side.
10293 
10294       if (NumLeft < NumRight) {
10295         // Consider moving the first cluster on the right to the left side.
10296         CaseCluster &CC = *FirstRight;
10297         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10298         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10299         if (LeftSideRank <= RightSideRank) {
10300           // Moving the cluster to the left does not demote it.
10301           ++LastLeft;
10302           ++FirstRight;
10303           continue;
10304         }
10305       } else {
10306         assert(NumRight < NumLeft);
10307         // Consider moving the last element on the left to the right side.
10308         CaseCluster &CC = *LastLeft;
10309         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10310         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10311         if (RightSideRank <= LeftSideRank) {
10312           // Moving the cluster to the right does not demot it.
10313           --LastLeft;
10314           --FirstRight;
10315           continue;
10316         }
10317       }
10318     }
10319     break;
10320   }
10321 
10322   assert(LastLeft + 1 == FirstRight);
10323   assert(LastLeft >= W.FirstCluster);
10324   assert(FirstRight <= W.LastCluster);
10325 
10326   // Use the first element on the right as pivot since we will make less-than
10327   // comparisons against it.
10328   CaseClusterIt PivotCluster = FirstRight;
10329   assert(PivotCluster > W.FirstCluster);
10330   assert(PivotCluster <= W.LastCluster);
10331 
10332   CaseClusterIt FirstLeft = W.FirstCluster;
10333   CaseClusterIt LastRight = W.LastCluster;
10334 
10335   const ConstantInt *Pivot = PivotCluster->Low;
10336 
10337   // New blocks will be inserted immediately after the current one.
10338   MachineFunction::iterator BBI(W.MBB);
10339   ++BBI;
10340 
10341   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10342   // we can branch to its destination directly if it's squeezed exactly in
10343   // between the known lower bound and Pivot - 1.
10344   MachineBasicBlock *LeftMBB;
10345   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10346       FirstLeft->Low == W.GE &&
10347       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10348     LeftMBB = FirstLeft->MBB;
10349   } else {
10350     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10351     FuncInfo.MF->insert(BBI, LeftMBB);
10352     WorkList.push_back(
10353         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10354     // Put Cond in a virtual register to make it available from the new blocks.
10355     ExportFromCurrentBlock(Cond);
10356   }
10357 
10358   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10359   // single cluster, RHS.Low == Pivot, and we can branch to its destination
10360   // directly if RHS.High equals the current upper bound.
10361   MachineBasicBlock *RightMBB;
10362   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10363       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10364     RightMBB = FirstRight->MBB;
10365   } else {
10366     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10367     FuncInfo.MF->insert(BBI, RightMBB);
10368     WorkList.push_back(
10369         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10370     // Put Cond in a virtual register to make it available from the new blocks.
10371     ExportFromCurrentBlock(Cond);
10372   }
10373 
10374   // Create the CaseBlock record that will be used to lower the branch.
10375   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10376                getCurSDLoc(), LeftProb, RightProb);
10377 
10378   if (W.MBB == SwitchMBB)
10379     visitSwitchCase(CB, SwitchMBB);
10380   else
10381     SL->SwitchCases.push_back(CB);
10382 }
10383 
10384 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10385 // from the swith statement.
10386 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10387                                             BranchProbability PeeledCaseProb) {
10388   if (PeeledCaseProb == BranchProbability::getOne())
10389     return BranchProbability::getZero();
10390   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10391 
10392   uint32_t Numerator = CaseProb.getNumerator();
10393   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10394   return BranchProbability(Numerator, std::max(Numerator, Denominator));
10395 }
10396 
10397 // Try to peel the top probability case if it exceeds the threshold.
10398 // Return current MachineBasicBlock for the switch statement if the peeling
10399 // does not occur.
10400 // If the peeling is performed, return the newly created MachineBasicBlock
10401 // for the peeled switch statement. Also update Clusters to remove the peeled
10402 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10403 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10404     const SwitchInst &SI, CaseClusterVector &Clusters,
10405     BranchProbability &PeeledCaseProb) {
10406   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10407   // Don't perform if there is only one cluster or optimizing for size.
10408   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10409       TM.getOptLevel() == CodeGenOpt::None ||
10410       SwitchMBB->getParent()->getFunction().hasMinSize())
10411     return SwitchMBB;
10412 
10413   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10414   unsigned PeeledCaseIndex = 0;
10415   bool SwitchPeeled = false;
10416   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10417     CaseCluster &CC = Clusters[Index];
10418     if (CC.Prob < TopCaseProb)
10419       continue;
10420     TopCaseProb = CC.Prob;
10421     PeeledCaseIndex = Index;
10422     SwitchPeeled = true;
10423   }
10424   if (!SwitchPeeled)
10425     return SwitchMBB;
10426 
10427   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10428                     << TopCaseProb << "\n");
10429 
10430   // Record the MBB for the peeled switch statement.
10431   MachineFunction::iterator BBI(SwitchMBB);
10432   ++BBI;
10433   MachineBasicBlock *PeeledSwitchMBB =
10434       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10435   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10436 
10437   ExportFromCurrentBlock(SI.getCondition());
10438   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10439   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10440                           nullptr,   nullptr,      TopCaseProb.getCompl()};
10441   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10442 
10443   Clusters.erase(PeeledCaseIt);
10444   for (CaseCluster &CC : Clusters) {
10445     LLVM_DEBUG(
10446         dbgs() << "Scale the probablity for one cluster, before scaling: "
10447                << CC.Prob << "\n");
10448     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10449     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10450   }
10451   PeeledCaseProb = TopCaseProb;
10452   return PeeledSwitchMBB;
10453 }
10454 
10455 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10456   // Extract cases from the switch.
10457   BranchProbabilityInfo *BPI = FuncInfo.BPI;
10458   CaseClusterVector Clusters;
10459   Clusters.reserve(SI.getNumCases());
10460   for (auto I : SI.cases()) {
10461     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10462     const ConstantInt *CaseVal = I.getCaseValue();
10463     BranchProbability Prob =
10464         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10465             : BranchProbability(1, SI.getNumCases() + 1);
10466     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10467   }
10468 
10469   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10470 
10471   // Cluster adjacent cases with the same destination. We do this at all
10472   // optimization levels because it's cheap to do and will make codegen faster
10473   // if there are many clusters.
10474   sortAndRangeify(Clusters);
10475 
10476   // The branch probablity of the peeled case.
10477   BranchProbability PeeledCaseProb = BranchProbability::getZero();
10478   MachineBasicBlock *PeeledSwitchMBB =
10479       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10480 
10481   // If there is only the default destination, jump there directly.
10482   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10483   if (Clusters.empty()) {
10484     assert(PeeledSwitchMBB == SwitchMBB);
10485     SwitchMBB->addSuccessor(DefaultMBB);
10486     if (DefaultMBB != NextBlock(SwitchMBB)) {
10487       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10488                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10489     }
10490     return;
10491   }
10492 
10493   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
10494   SL->findBitTestClusters(Clusters, &SI);
10495 
10496   LLVM_DEBUG({
10497     dbgs() << "Case clusters: ";
10498     for (const CaseCluster &C : Clusters) {
10499       if (C.Kind == CC_JumpTable)
10500         dbgs() << "JT:";
10501       if (C.Kind == CC_BitTests)
10502         dbgs() << "BT:";
10503 
10504       C.Low->getValue().print(dbgs(), true);
10505       if (C.Low != C.High) {
10506         dbgs() << '-';
10507         C.High->getValue().print(dbgs(), true);
10508       }
10509       dbgs() << ' ';
10510     }
10511     dbgs() << '\n';
10512   });
10513 
10514   assert(!Clusters.empty());
10515   SwitchWorkList WorkList;
10516   CaseClusterIt First = Clusters.begin();
10517   CaseClusterIt Last = Clusters.end() - 1;
10518   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10519   // Scale the branchprobability for DefaultMBB if the peel occurs and
10520   // DefaultMBB is not replaced.
10521   if (PeeledCaseProb != BranchProbability::getZero() &&
10522       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10523     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10524   WorkList.push_back(
10525       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10526 
10527   while (!WorkList.empty()) {
10528     SwitchWorkListItem W = WorkList.back();
10529     WorkList.pop_back();
10530     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10531 
10532     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10533         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10534       // For optimized builds, lower large range as a balanced binary tree.
10535       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10536       continue;
10537     }
10538 
10539     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
10540   }
10541 }
10542 
10543 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
10544   SDValue N = getValue(I.getOperand(0));
10545   setValue(&I, N);
10546 }
10547