1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallSite.h" 73 #include "llvm/IR/CallingConv.h" 74 #include "llvm/IR/Constant.h" 75 #include "llvm/IR/ConstantRange.h" 76 #include "llvm/IR/Constants.h" 77 #include "llvm/IR/DataLayout.h" 78 #include "llvm/IR/DebugInfoMetadata.h" 79 #include "llvm/IR/DebugLoc.h" 80 #include "llvm/IR/DerivedTypes.h" 81 #include "llvm/IR/Function.h" 82 #include "llvm/IR/GetElementPtrTypeIterator.h" 83 #include "llvm/IR/InlineAsm.h" 84 #include "llvm/IR/InstrTypes.h" 85 #include "llvm/IR/Instruction.h" 86 #include "llvm/IR/Instructions.h" 87 #include "llvm/IR/IntrinsicInst.h" 88 #include "llvm/IR/Intrinsics.h" 89 #include "llvm/IR/IntrinsicsAArch64.h" 90 #include "llvm/IR/IntrinsicsWebAssembly.h" 91 #include "llvm/IR/LLVMContext.h" 92 #include "llvm/IR/Metadata.h" 93 #include "llvm/IR/Module.h" 94 #include "llvm/IR/Operator.h" 95 #include "llvm/IR/PatternMatch.h" 96 #include "llvm/IR/Statepoint.h" 97 #include "llvm/IR/Type.h" 98 #include "llvm/IR/User.h" 99 #include "llvm/IR/Value.h" 100 #include "llvm/MC/MCContext.h" 101 #include "llvm/MC/MCSymbol.h" 102 #include "llvm/Support/AtomicOrdering.h" 103 #include "llvm/Support/BranchProbability.h" 104 #include "llvm/Support/Casting.h" 105 #include "llvm/Support/CodeGen.h" 106 #include "llvm/Support/CommandLine.h" 107 #include "llvm/Support/Compiler.h" 108 #include "llvm/Support/Debug.h" 109 #include "llvm/Support/ErrorHandling.h" 110 #include "llvm/Support/MachineValueType.h" 111 #include "llvm/Support/MathExtras.h" 112 #include "llvm/Support/raw_ostream.h" 113 #include "llvm/Target/TargetIntrinsicInfo.h" 114 #include "llvm/Target/TargetMachine.h" 115 #include "llvm/Target/TargetOptions.h" 116 #include "llvm/Transforms/Utils/Local.h" 117 #include <algorithm> 118 #include <cassert> 119 #include <cstddef> 120 #include <cstdint> 121 #include <cstring> 122 #include <iterator> 123 #include <limits> 124 #include <numeric> 125 #include <tuple> 126 #include <utility> 127 #include <vector> 128 129 using namespace llvm; 130 using namespace PatternMatch; 131 using namespace SwitchCG; 132 133 #define DEBUG_TYPE "isel" 134 135 /// LimitFloatPrecision - Generate low-precision inline sequences for 136 /// some float libcalls (6, 8 or 12 bits). 137 static unsigned LimitFloatPrecision; 138 139 static cl::opt<unsigned, true> 140 LimitFPPrecision("limit-float-precision", 141 cl::desc("Generate low-precision inline sequences " 142 "for some float libcalls"), 143 cl::location(LimitFloatPrecision), cl::Hidden, 144 cl::init(0)); 145 146 static cl::opt<unsigned> SwitchPeelThreshold( 147 "switch-peel-threshold", cl::Hidden, cl::init(66), 148 cl::desc("Set the case probability threshold for peeling the case from a " 149 "switch statement. A value greater than 100 will void this " 150 "optimization")); 151 152 // Limit the width of DAG chains. This is important in general to prevent 153 // DAG-based analysis from blowing up. For example, alias analysis and 154 // load clustering may not complete in reasonable time. It is difficult to 155 // recognize and avoid this situation within each individual analysis, and 156 // future analyses are likely to have the same behavior. Limiting DAG width is 157 // the safe approach and will be especially important with global DAGs. 158 // 159 // MaxParallelChains default is arbitrarily high to avoid affecting 160 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 161 // sequence over this should have been converted to llvm.memcpy by the 162 // frontend. It is easy to induce this behavior with .ll code such as: 163 // %buffer = alloca [4096 x i8] 164 // %data = load [4096 x i8]* %argPtr 165 // store [4096 x i8] %data, [4096 x i8]* %buffer 166 static const unsigned MaxParallelChains = 64; 167 168 // Return the calling convention if the Value passed requires ABI mangling as it 169 // is a parameter to a function or a return value from a function which is not 170 // an intrinsic. 171 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 172 if (auto *R = dyn_cast<ReturnInst>(V)) 173 return R->getParent()->getParent()->getCallingConv(); 174 175 if (auto *CI = dyn_cast<CallInst>(V)) { 176 const bool IsInlineAsm = CI->isInlineAsm(); 177 const bool IsIndirectFunctionCall = 178 !IsInlineAsm && !CI->getCalledFunction(); 179 180 // It is possible that the call instruction is an inline asm statement or an 181 // indirect function call in which case the return value of 182 // getCalledFunction() would be nullptr. 183 const bool IsInstrinsicCall = 184 !IsInlineAsm && !IsIndirectFunctionCall && 185 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 186 187 if (!IsInlineAsm && !IsInstrinsicCall) 188 return CI->getCallingConv(); 189 } 190 191 return None; 192 } 193 194 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 195 const SDValue *Parts, unsigned NumParts, 196 MVT PartVT, EVT ValueVT, const Value *V, 197 Optional<CallingConv::ID> CC); 198 199 /// getCopyFromParts - Create a value that contains the specified legal parts 200 /// combined into the value they represent. If the parts combine to a type 201 /// larger than ValueVT then AssertOp can be used to specify whether the extra 202 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 203 /// (ISD::AssertSext). 204 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 205 const SDValue *Parts, unsigned NumParts, 206 MVT PartVT, EVT ValueVT, const Value *V, 207 Optional<CallingConv::ID> CC = None, 208 Optional<ISD::NodeType> AssertOp = None) { 209 if (ValueVT.isVector()) 210 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 211 CC); 212 213 assert(NumParts > 0 && "No parts to assemble!"); 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 SDValue Val = Parts[0]; 216 217 if (NumParts > 1) { 218 // Assemble the value from multiple parts. 219 if (ValueVT.isInteger()) { 220 unsigned PartBits = PartVT.getSizeInBits(); 221 unsigned ValueBits = ValueVT.getSizeInBits(); 222 223 // Assemble the power of 2 part. 224 unsigned RoundParts = 225 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 226 unsigned RoundBits = PartBits * RoundParts; 227 EVT RoundVT = RoundBits == ValueBits ? 228 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 229 SDValue Lo, Hi; 230 231 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 232 233 if (RoundParts > 2) { 234 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 235 PartVT, HalfVT, V); 236 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 237 RoundParts / 2, PartVT, HalfVT, V); 238 } else { 239 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 240 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 241 } 242 243 if (DAG.getDataLayout().isBigEndian()) 244 std::swap(Lo, Hi); 245 246 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 247 248 if (RoundParts < NumParts) { 249 // Assemble the trailing non-power-of-2 part. 250 unsigned OddParts = NumParts - RoundParts; 251 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 252 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 253 OddVT, V, CC); 254 255 // Combine the round and odd parts. 256 Lo = Val; 257 if (DAG.getDataLayout().isBigEndian()) 258 std::swap(Lo, Hi); 259 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 260 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 261 Hi = 262 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 263 DAG.getConstant(Lo.getValueSizeInBits(), DL, 264 TLI.getPointerTy(DAG.getDataLayout()))); 265 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 266 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 267 } 268 } else if (PartVT.isFloatingPoint()) { 269 // FP split into multiple FP parts (for ppcf128) 270 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 271 "Unexpected split"); 272 SDValue Lo, Hi; 273 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 274 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 275 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 276 std::swap(Lo, Hi); 277 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 278 } else { 279 // FP split into integer parts (soft fp) 280 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 281 !PartVT.isVector() && "Unexpected split"); 282 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 283 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 284 } 285 } 286 287 // There is now one part, held in Val. Correct it to match ValueVT. 288 // PartEVT is the type of the register class that holds the value. 289 // ValueVT is the type of the inline asm operation. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 296 ValueVT.bitsLT(PartEVT)) { 297 // For an FP value in an integer part, we need to truncate to the right 298 // width first. 299 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 300 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 301 } 302 303 // Handle types that have the same size. 304 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 305 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 306 307 // Handle types with different sizes. 308 if (PartEVT.isInteger() && ValueVT.isInteger()) { 309 if (ValueVT.bitsLT(PartEVT)) { 310 // For a truncate, see if we have any information to 311 // indicate whether the truncated bits will always be 312 // zero or sign-extension. 313 if (AssertOp.hasValue()) 314 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 315 DAG.getValueType(ValueVT)); 316 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 317 } 318 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 319 } 320 321 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 322 // FP_ROUND's are always exact here. 323 if (ValueVT.bitsLT(Val.getValueType())) 324 return DAG.getNode( 325 ISD::FP_ROUND, DL, ValueVT, Val, 326 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 327 328 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 329 } 330 331 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 332 // then truncating. 333 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 334 ValueVT.bitsLT(PartEVT)) { 335 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 336 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 337 } 338 339 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 340 } 341 342 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 343 const Twine &ErrMsg) { 344 const Instruction *I = dyn_cast_or_null<Instruction>(V); 345 if (!V) 346 return Ctx.emitError(ErrMsg); 347 348 const char *AsmError = ", possible invalid constraint for vector type"; 349 if (const CallInst *CI = dyn_cast<CallInst>(I)) 350 if (isa<InlineAsm>(CI->getCalledValue())) 351 return Ctx.emitError(I, ErrMsg + AsmError); 352 353 return Ctx.emitError(I, ErrMsg); 354 } 355 356 /// getCopyFromPartsVector - Create a value that contains the specified legal 357 /// parts combined into the value they represent. If the parts combine to a 358 /// type larger than ValueVT then AssertOp can be used to specify whether the 359 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 360 /// ValueVT (ISD::AssertSext). 361 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 362 const SDValue *Parts, unsigned NumParts, 363 MVT PartVT, EVT ValueVT, const Value *V, 364 Optional<CallingConv::ID> CallConv) { 365 assert(ValueVT.isVector() && "Not a vector value"); 366 assert(NumParts > 0 && "No parts to assemble!"); 367 const bool IsABIRegCopy = CallConv.hasValue(); 368 369 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 370 SDValue Val = Parts[0]; 371 372 // Handle a multi-element vector. 373 if (NumParts > 1) { 374 EVT IntermediateVT; 375 MVT RegisterVT; 376 unsigned NumIntermediates; 377 unsigned NumRegs; 378 379 if (IsABIRegCopy) { 380 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 381 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 382 NumIntermediates, RegisterVT); 383 } else { 384 NumRegs = 385 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 386 NumIntermediates, RegisterVT); 387 } 388 389 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 390 NumParts = NumRegs; // Silence a compiler warning. 391 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 392 assert(RegisterVT.getSizeInBits() == 393 Parts[0].getSimpleValueType().getSizeInBits() && 394 "Part type sizes don't match!"); 395 396 // Assemble the parts into intermediate operands. 397 SmallVector<SDValue, 8> Ops(NumIntermediates); 398 if (NumIntermediates == NumParts) { 399 // If the register was not expanded, truncate or copy the value, 400 // as appropriate. 401 for (unsigned i = 0; i != NumParts; ++i) 402 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 403 PartVT, IntermediateVT, V); 404 } else if (NumParts > 0) { 405 // If the intermediate type was expanded, build the intermediate 406 // operands from the parts. 407 assert(NumParts % NumIntermediates == 0 && 408 "Must expand into a divisible number of parts!"); 409 unsigned Factor = NumParts / NumIntermediates; 410 for (unsigned i = 0; i != NumIntermediates; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 412 PartVT, IntermediateVT, V); 413 } 414 415 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 416 // intermediate operands. 417 EVT BuiltVectorTy = 418 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 419 (IntermediateVT.isVector() 420 ? IntermediateVT.getVectorNumElements() * NumParts 421 : NumIntermediates)); 422 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 423 : ISD::BUILD_VECTOR, 424 DL, BuiltVectorTy, Ops); 425 } 426 427 // There is now one part, held in Val. Correct it to match ValueVT. 428 EVT PartEVT = Val.getValueType(); 429 430 if (PartEVT == ValueVT) 431 return Val; 432 433 if (PartEVT.isVector()) { 434 // If the element type of the source/dest vectors are the same, but the 435 // parts vector has more elements than the value vector, then we have a 436 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 437 // elements we want. 438 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 439 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 440 "Cannot narrow, it would be a lossy transformation"); 441 return DAG.getNode( 442 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 443 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 444 } 445 446 // Vector/Vector bitcast. 447 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 448 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 449 450 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 451 "Cannot handle this kind of promotion"); 452 // Promoted vector extract 453 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 454 455 } 456 457 // Trivial bitcast if the types are the same size and the destination 458 // vector type is legal. 459 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 460 TLI.isTypeLegal(ValueVT)) 461 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 462 463 if (ValueVT.getVectorNumElements() != 1) { 464 // Certain ABIs require that vectors are passed as integers. For vectors 465 // are the same size, this is an obvious bitcast. 466 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 467 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 468 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 469 // Bitcast Val back the original type and extract the corresponding 470 // vector we want. 471 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 472 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 473 ValueVT.getVectorElementType(), Elts); 474 Val = DAG.getBitcast(WiderVecType, Val); 475 return DAG.getNode( 476 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 477 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 478 } 479 480 diagnosePossiblyInvalidConstraint( 481 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 482 return DAG.getUNDEF(ValueVT); 483 } 484 485 // Handle cases such as i8 -> <1 x i1> 486 EVT ValueSVT = ValueVT.getVectorElementType(); 487 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 488 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 489 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 490 491 return DAG.getBuildVector(ValueVT, DL, Val); 492 } 493 494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V, 497 Optional<CallingConv::ID> CallConv); 498 499 /// getCopyToParts - Create a series of nodes that contain the specified value 500 /// split into legal parts. If the parts contain more bits than Val, then, for 501 /// integers, ExtendKind can be used to specify how to generate the extra bits. 502 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 503 SDValue *Parts, unsigned NumParts, MVT PartVT, 504 const Value *V, 505 Optional<CallingConv::ID> CallConv = None, 506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 507 EVT ValueVT = Val.getValueType(); 508 509 // Handle the vector case separately. 510 if (ValueVT.isVector()) 511 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 512 CallConv); 513 514 unsigned PartBits = PartVT.getSizeInBits(); 515 unsigned OrigNumParts = NumParts; 516 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 517 "Copying to an illegal type!"); 518 519 if (NumParts == 0) 520 return; 521 522 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 523 EVT PartEVT = PartVT; 524 if (PartEVT == ValueVT) { 525 assert(NumParts == 1 && "No-op copy with multiple parts!"); 526 Parts[0] = Val; 527 return; 528 } 529 530 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 531 // If the parts cover more bits than the value has, promote the value. 532 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 533 assert(NumParts == 1 && "Do not know what to promote to!"); 534 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 535 } else { 536 if (ValueVT.isFloatingPoint()) { 537 // FP values need to be bitcast, then extended if they are being put 538 // into a larger container. 539 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 540 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 541 } 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 } else if (PartBits == ValueVT.getSizeInBits()) { 551 // Different types of the same size. 552 assert(NumParts == 1 && PartEVT != ValueVT); 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 555 // If the parts cover less bits than value has, truncate the value. 556 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 557 ValueVT.isInteger() && 558 "Unknown mismatch!"); 559 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 560 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 561 if (PartVT == MVT::x86mmx) 562 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 563 } 564 565 // The value may have changed - recompute ValueVT. 566 ValueVT = Val.getValueType(); 567 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 568 "Failed to tile the value with PartVT!"); 569 570 if (NumParts == 1) { 571 if (PartEVT != ValueVT) { 572 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 573 "scalar-to-vector conversion failed"); 574 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 575 } 576 577 Parts[0] = Val; 578 return; 579 } 580 581 // Expand the value into multiple parts. 582 if (NumParts & (NumParts - 1)) { 583 // The number of parts is not a power of 2. Split off and copy the tail. 584 assert(PartVT.isInteger() && ValueVT.isInteger() && 585 "Do not know what to expand to!"); 586 unsigned RoundParts = 1 << Log2_32(NumParts); 587 unsigned RoundBits = RoundParts * PartBits; 588 unsigned OddParts = NumParts - RoundParts; 589 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 590 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 591 592 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 593 CallConv); 594 595 if (DAG.getDataLayout().isBigEndian()) 596 // The odd parts were reversed by getCopyToParts - unreverse them. 597 std::reverse(Parts + RoundParts, Parts + NumParts); 598 599 NumParts = RoundParts; 600 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 601 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 602 } 603 604 // The number of parts is a power of 2. Repeatedly bisect the value using 605 // EXTRACT_ELEMENT. 606 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 607 EVT::getIntegerVT(*DAG.getContext(), 608 ValueVT.getSizeInBits()), 609 Val); 610 611 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 612 for (unsigned i = 0; i < NumParts; i += StepSize) { 613 unsigned ThisBits = StepSize * PartBits / 2; 614 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 615 SDValue &Part0 = Parts[i]; 616 SDValue &Part1 = Parts[i+StepSize/2]; 617 618 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 619 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 620 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 621 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 622 623 if (ThisBits == PartBits && ThisVT != PartVT) { 624 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 625 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 626 } 627 } 628 } 629 630 if (DAG.getDataLayout().isBigEndian()) 631 std::reverse(Parts, Parts + OrigNumParts); 632 } 633 634 static SDValue widenVectorToPartType(SelectionDAG &DAG, 635 SDValue Val, const SDLoc &DL, EVT PartVT) { 636 if (!PartVT.isVector()) 637 return SDValue(); 638 639 EVT ValueVT = Val.getValueType(); 640 unsigned PartNumElts = PartVT.getVectorNumElements(); 641 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 642 if (PartNumElts > ValueNumElts && 643 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 644 EVT ElementVT = PartVT.getVectorElementType(); 645 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 646 // undef elements. 647 SmallVector<SDValue, 16> Ops; 648 DAG.ExtractVectorElements(Val, Ops); 649 SDValue EltUndef = DAG.getUNDEF(ElementVT); 650 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 651 Ops.push_back(EltUndef); 652 653 // FIXME: Use CONCAT for 2x -> 4x. 654 return DAG.getBuildVector(PartVT, DL, Ops); 655 } 656 657 return SDValue(); 658 } 659 660 /// getCopyToPartsVector - Create a series of nodes that contain the specified 661 /// value split into legal parts. 662 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 663 SDValue Val, SDValue *Parts, unsigned NumParts, 664 MVT PartVT, const Value *V, 665 Optional<CallingConv::ID> CallConv) { 666 EVT ValueVT = Val.getValueType(); 667 assert(ValueVT.isVector() && "Not a vector"); 668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 669 const bool IsABIRegCopy = CallConv.hasValue(); 670 671 if (NumParts == 1) { 672 EVT PartEVT = PartVT; 673 if (PartEVT == ValueVT) { 674 // Nothing to do. 675 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 676 // Bitconvert vector->vector case. 677 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 678 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 679 Val = Widened; 680 } else if (PartVT.isVector() && 681 PartEVT.getVectorElementType().bitsGE( 682 ValueVT.getVectorElementType()) && 683 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 684 685 // Promoted vector extract 686 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 687 } else { 688 if (ValueVT.getVectorNumElements() == 1) { 689 Val = DAG.getNode( 690 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 691 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 692 } else { 693 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 694 "lossy conversion of vector to scalar type"); 695 EVT IntermediateType = 696 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 697 Val = DAG.getBitcast(IntermediateType, Val); 698 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 699 } 700 } 701 702 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 703 Parts[0] = Val; 704 return; 705 } 706 707 // Handle a multi-element vector. 708 EVT IntermediateVT; 709 MVT RegisterVT; 710 unsigned NumIntermediates; 711 unsigned NumRegs; 712 if (IsABIRegCopy) { 713 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 714 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 715 NumIntermediates, RegisterVT); 716 } else { 717 NumRegs = 718 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 719 NumIntermediates, RegisterVT); 720 } 721 722 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 723 NumParts = NumRegs; // Silence a compiler warning. 724 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 725 726 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 727 IntermediateVT.getVectorNumElements() : 1; 728 729 // Convert the vector to the appropriate type if necessary. 730 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 731 732 EVT BuiltVectorTy = EVT::getVectorVT( 733 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 734 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 735 if (ValueVT != BuiltVectorTy) { 736 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 737 Val = Widened; 738 739 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 740 } 741 742 // Split the vector into intermediate operands. 743 SmallVector<SDValue, 8> Ops(NumIntermediates); 744 for (unsigned i = 0; i != NumIntermediates; ++i) { 745 if (IntermediateVT.isVector()) { 746 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 747 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 748 } else { 749 Ops[i] = DAG.getNode( 750 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 751 DAG.getConstant(i, DL, IdxVT)); 752 } 753 } 754 755 // Split the intermediate operands into legal parts. 756 if (NumParts == NumIntermediates) { 757 // If the register was not expanded, promote or copy the value, 758 // as appropriate. 759 for (unsigned i = 0; i != NumParts; ++i) 760 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 761 } else if (NumParts > 0) { 762 // If the intermediate type was expanded, split each the value into 763 // legal parts. 764 assert(NumIntermediates != 0 && "division by zero"); 765 assert(NumParts % NumIntermediates == 0 && 766 "Must expand into a divisible number of parts!"); 767 unsigned Factor = NumParts / NumIntermediates; 768 for (unsigned i = 0; i != NumIntermediates; ++i) 769 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 770 CallConv); 771 } 772 } 773 774 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 775 EVT valuevt, Optional<CallingConv::ID> CC) 776 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 777 RegCount(1, regs.size()), CallConv(CC) {} 778 779 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 780 const DataLayout &DL, unsigned Reg, Type *Ty, 781 Optional<CallingConv::ID> CC) { 782 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 783 784 CallConv = CC; 785 786 for (EVT ValueVT : ValueVTs) { 787 unsigned NumRegs = 788 isABIMangled() 789 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 790 : TLI.getNumRegisters(Context, ValueVT); 791 MVT RegisterVT = 792 isABIMangled() 793 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 794 : TLI.getRegisterType(Context, ValueVT); 795 for (unsigned i = 0; i != NumRegs; ++i) 796 Regs.push_back(Reg + i); 797 RegVTs.push_back(RegisterVT); 798 RegCount.push_back(NumRegs); 799 Reg += NumRegs; 800 } 801 } 802 803 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 804 FunctionLoweringInfo &FuncInfo, 805 const SDLoc &dl, SDValue &Chain, 806 SDValue *Flag, const Value *V) const { 807 // A Value with type {} or [0 x %t] needs no registers. 808 if (ValueVTs.empty()) 809 return SDValue(); 810 811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 812 813 // Assemble the legal parts into the final values. 814 SmallVector<SDValue, 4> Values(ValueVTs.size()); 815 SmallVector<SDValue, 8> Parts; 816 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 817 // Copy the legal parts from the registers. 818 EVT ValueVT = ValueVTs[Value]; 819 unsigned NumRegs = RegCount[Value]; 820 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 821 *DAG.getContext(), 822 CallConv.getValue(), RegVTs[Value]) 823 : RegVTs[Value]; 824 825 Parts.resize(NumRegs); 826 for (unsigned i = 0; i != NumRegs; ++i) { 827 SDValue P; 828 if (!Flag) { 829 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 830 } else { 831 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 832 *Flag = P.getValue(2); 833 } 834 835 Chain = P.getValue(1); 836 Parts[i] = P; 837 838 // If the source register was virtual and if we know something about it, 839 // add an assert node. 840 if (!Register::isVirtualRegister(Regs[Part + i]) || 841 !RegisterVT.isInteger()) 842 continue; 843 844 const FunctionLoweringInfo::LiveOutInfo *LOI = 845 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 846 if (!LOI) 847 continue; 848 849 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 850 unsigned NumSignBits = LOI->NumSignBits; 851 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 852 853 if (NumZeroBits == RegSize) { 854 // The current value is a zero. 855 // Explicitly express that as it would be easier for 856 // optimizations to kick in. 857 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 858 continue; 859 } 860 861 // FIXME: We capture more information than the dag can represent. For 862 // now, just use the tightest assertzext/assertsext possible. 863 bool isSExt; 864 EVT FromVT(MVT::Other); 865 if (NumZeroBits) { 866 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 867 isSExt = false; 868 } else if (NumSignBits > 1) { 869 FromVT = 870 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 871 isSExt = true; 872 } else { 873 continue; 874 } 875 // Add an assertion node. 876 assert(FromVT != MVT::Other); 877 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 878 RegisterVT, P, DAG.getValueType(FromVT)); 879 } 880 881 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 882 RegisterVT, ValueVT, V, CallConv); 883 Part += NumRegs; 884 Parts.clear(); 885 } 886 887 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 888 } 889 890 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 891 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 892 const Value *V, 893 ISD::NodeType PreferredExtendType) const { 894 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 895 ISD::NodeType ExtendKind = PreferredExtendType; 896 897 // Get the list of the values's legal parts. 898 unsigned NumRegs = Regs.size(); 899 SmallVector<SDValue, 8> Parts(NumRegs); 900 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 901 unsigned NumParts = RegCount[Value]; 902 903 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 904 *DAG.getContext(), 905 CallConv.getValue(), RegVTs[Value]) 906 : RegVTs[Value]; 907 908 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 909 ExtendKind = ISD::ZERO_EXTEND; 910 911 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 912 NumParts, RegisterVT, V, CallConv, ExtendKind); 913 Part += NumParts; 914 } 915 916 // Copy the parts into the registers. 917 SmallVector<SDValue, 8> Chains(NumRegs); 918 for (unsigned i = 0; i != NumRegs; ++i) { 919 SDValue Part; 920 if (!Flag) { 921 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 922 } else { 923 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 924 *Flag = Part.getValue(1); 925 } 926 927 Chains[i] = Part.getValue(0); 928 } 929 930 if (NumRegs == 1 || Flag) 931 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 932 // flagged to it. That is the CopyToReg nodes and the user are considered 933 // a single scheduling unit. If we create a TokenFactor and return it as 934 // chain, then the TokenFactor is both a predecessor (operand) of the 935 // user as well as a successor (the TF operands are flagged to the user). 936 // c1, f1 = CopyToReg 937 // c2, f2 = CopyToReg 938 // c3 = TokenFactor c1, c2 939 // ... 940 // = op c3, ..., f2 941 Chain = Chains[NumRegs-1]; 942 else 943 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 944 } 945 946 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 947 unsigned MatchingIdx, const SDLoc &dl, 948 SelectionDAG &DAG, 949 std::vector<SDValue> &Ops) const { 950 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 951 952 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 953 if (HasMatching) 954 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 955 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 956 // Put the register class of the virtual registers in the flag word. That 957 // way, later passes can recompute register class constraints for inline 958 // assembly as well as normal instructions. 959 // Don't do this for tied operands that can use the regclass information 960 // from the def. 961 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 962 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 963 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 964 } 965 966 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 967 Ops.push_back(Res); 968 969 if (Code == InlineAsm::Kind_Clobber) { 970 // Clobbers should always have a 1:1 mapping with registers, and may 971 // reference registers that have illegal (e.g. vector) types. Hence, we 972 // shouldn't try to apply any sort of splitting logic to them. 973 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 974 "No 1:1 mapping from clobbers to regs?"); 975 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 976 (void)SP; 977 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 978 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 979 assert( 980 (Regs[I] != SP || 981 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 982 "If we clobbered the stack pointer, MFI should know about it."); 983 } 984 return; 985 } 986 987 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 988 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 989 MVT RegisterVT = RegVTs[Value]; 990 for (unsigned i = 0; i != NumRegs; ++i) { 991 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 992 unsigned TheReg = Regs[Reg++]; 993 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 994 } 995 } 996 } 997 998 SmallVector<std::pair<unsigned, unsigned>, 4> 999 RegsForValue::getRegsAndSizes() const { 1000 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1001 unsigned I = 0; 1002 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1003 unsigned RegCount = std::get<0>(CountAndVT); 1004 MVT RegisterVT = std::get<1>(CountAndVT); 1005 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1006 for (unsigned E = I + RegCount; I != E; ++I) 1007 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1008 } 1009 return OutVec; 1010 } 1011 1012 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1013 const TargetLibraryInfo *li) { 1014 AA = aa; 1015 GFI = gfi; 1016 LibInfo = li; 1017 DL = &DAG.getDataLayout(); 1018 Context = DAG.getContext(); 1019 LPadToCallSiteMap.clear(); 1020 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1021 } 1022 1023 void SelectionDAGBuilder::clear() { 1024 NodeMap.clear(); 1025 UnusedArgNodeMap.clear(); 1026 PendingLoads.clear(); 1027 PendingExports.clear(); 1028 CurInst = nullptr; 1029 HasTailCall = false; 1030 SDNodeOrder = LowestSDNodeOrder; 1031 StatepointLowering.clear(); 1032 } 1033 1034 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1035 DanglingDebugInfoMap.clear(); 1036 } 1037 1038 SDValue SelectionDAGBuilder::getRoot() { 1039 if (PendingLoads.empty()) 1040 return DAG.getRoot(); 1041 1042 if (PendingLoads.size() == 1) { 1043 SDValue Root = PendingLoads[0]; 1044 DAG.setRoot(Root); 1045 PendingLoads.clear(); 1046 return Root; 1047 } 1048 1049 // Otherwise, we have to make a token factor node. 1050 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1051 PendingLoads.clear(); 1052 DAG.setRoot(Root); 1053 return Root; 1054 } 1055 1056 SDValue SelectionDAGBuilder::getControlRoot() { 1057 SDValue Root = DAG.getRoot(); 1058 1059 if (PendingExports.empty()) 1060 return Root; 1061 1062 // Turn all of the CopyToReg chains into one factored node. 1063 if (Root.getOpcode() != ISD::EntryToken) { 1064 unsigned i = 0, e = PendingExports.size(); 1065 for (; i != e; ++i) { 1066 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1067 if (PendingExports[i].getNode()->getOperand(0) == Root) 1068 break; // Don't add the root if we already indirectly depend on it. 1069 } 1070 1071 if (i == e) 1072 PendingExports.push_back(Root); 1073 } 1074 1075 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1076 PendingExports); 1077 PendingExports.clear(); 1078 DAG.setRoot(Root); 1079 return Root; 1080 } 1081 1082 void SelectionDAGBuilder::visit(const Instruction &I) { 1083 // Set up outgoing PHI node register values before emitting the terminator. 1084 if (I.isTerminator()) { 1085 HandlePHINodesInSuccessorBlocks(I.getParent()); 1086 } 1087 1088 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1089 if (!isa<DbgInfoIntrinsic>(I)) 1090 ++SDNodeOrder; 1091 1092 CurInst = &I; 1093 1094 visit(I.getOpcode(), I); 1095 1096 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1097 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1098 // maps to this instruction. 1099 // TODO: We could handle all flags (nsw, etc) here. 1100 // TODO: If an IR instruction maps to >1 node, only the final node will have 1101 // flags set. 1102 if (SDNode *Node = getNodeForIRValue(&I)) { 1103 SDNodeFlags IncomingFlags; 1104 IncomingFlags.copyFMF(*FPMO); 1105 if (!Node->getFlags().isDefined()) 1106 Node->setFlags(IncomingFlags); 1107 else 1108 Node->intersectFlagsWith(IncomingFlags); 1109 } 1110 } 1111 1112 if (!I.isTerminator() && !HasTailCall && 1113 !isStatepoint(&I)) // statepoints handle their exports internally 1114 CopyToExportRegsIfNeeded(&I); 1115 1116 CurInst = nullptr; 1117 } 1118 1119 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1120 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1121 } 1122 1123 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1124 // Note: this doesn't use InstVisitor, because it has to work with 1125 // ConstantExpr's in addition to instructions. 1126 switch (Opcode) { 1127 default: llvm_unreachable("Unknown instruction type encountered!"); 1128 // Build the switch statement using the Instruction.def file. 1129 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1130 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1131 #include "llvm/IR/Instruction.def" 1132 } 1133 } 1134 1135 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1136 const DIExpression *Expr) { 1137 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1138 const DbgValueInst *DI = DDI.getDI(); 1139 DIVariable *DanglingVariable = DI->getVariable(); 1140 DIExpression *DanglingExpr = DI->getExpression(); 1141 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1142 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1143 return true; 1144 } 1145 return false; 1146 }; 1147 1148 for (auto &DDIMI : DanglingDebugInfoMap) { 1149 DanglingDebugInfoVector &DDIV = DDIMI.second; 1150 1151 // If debug info is to be dropped, run it through final checks to see 1152 // whether it can be salvaged. 1153 for (auto &DDI : DDIV) 1154 if (isMatchingDbgValue(DDI)) 1155 salvageUnresolvedDbgValue(DDI); 1156 1157 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1158 } 1159 } 1160 1161 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1162 // generate the debug data structures now that we've seen its definition. 1163 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1164 SDValue Val) { 1165 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1166 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1167 return; 1168 1169 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1170 for (auto &DDI : DDIV) { 1171 const DbgValueInst *DI = DDI.getDI(); 1172 assert(DI && "Ill-formed DanglingDebugInfo"); 1173 DebugLoc dl = DDI.getdl(); 1174 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1175 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1176 DILocalVariable *Variable = DI->getVariable(); 1177 DIExpression *Expr = DI->getExpression(); 1178 assert(Variable->isValidLocationForIntrinsic(dl) && 1179 "Expected inlined-at fields to agree"); 1180 SDDbgValue *SDV; 1181 if (Val.getNode()) { 1182 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1183 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1184 // we couldn't resolve it directly when examining the DbgValue intrinsic 1185 // in the first place we should not be more successful here). Unless we 1186 // have some test case that prove this to be correct we should avoid 1187 // calling EmitFuncArgumentDbgValue here. 1188 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1189 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1190 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1191 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1192 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1193 // inserted after the definition of Val when emitting the instructions 1194 // after ISel. An alternative could be to teach 1195 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1196 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1197 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1198 << ValSDNodeOrder << "\n"); 1199 SDV = getDbgValue(Val, Variable, Expr, dl, 1200 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1201 DAG.AddDbgValue(SDV, Val.getNode(), false); 1202 } else 1203 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1204 << "in EmitFuncArgumentDbgValue\n"); 1205 } else { 1206 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1207 auto Undef = 1208 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1209 auto SDV = 1210 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1211 DAG.AddDbgValue(SDV, nullptr, false); 1212 } 1213 } 1214 DDIV.clear(); 1215 } 1216 1217 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1218 Value *V = DDI.getDI()->getValue(); 1219 DILocalVariable *Var = DDI.getDI()->getVariable(); 1220 DIExpression *Expr = DDI.getDI()->getExpression(); 1221 DebugLoc DL = DDI.getdl(); 1222 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1223 unsigned SDOrder = DDI.getSDNodeOrder(); 1224 1225 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1226 // that DW_OP_stack_value is desired. 1227 assert(isa<DbgValueInst>(DDI.getDI())); 1228 bool StackValue = true; 1229 1230 // Can this Value can be encoded without any further work? 1231 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1232 return; 1233 1234 // Attempt to salvage back through as many instructions as possible. Bail if 1235 // a non-instruction is seen, such as a constant expression or global 1236 // variable. FIXME: Further work could recover those too. 1237 while (isa<Instruction>(V)) { 1238 Instruction &VAsInst = *cast<Instruction>(V); 1239 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1240 1241 // If we cannot salvage any further, and haven't yet found a suitable debug 1242 // expression, bail out. 1243 if (!NewExpr) 1244 break; 1245 1246 // New value and expr now represent this debuginfo. 1247 V = VAsInst.getOperand(0); 1248 Expr = NewExpr; 1249 1250 // Some kind of simplification occurred: check whether the operand of the 1251 // salvaged debug expression can be encoded in this DAG. 1252 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1253 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1254 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1255 return; 1256 } 1257 } 1258 1259 // This was the final opportunity to salvage this debug information, and it 1260 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1261 // any earlier variable location. 1262 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1263 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1264 DAG.AddDbgValue(SDV, nullptr, false); 1265 1266 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1267 << "\n"); 1268 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1269 << "\n"); 1270 } 1271 1272 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1273 DIExpression *Expr, DebugLoc dl, 1274 DebugLoc InstDL, unsigned Order) { 1275 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1276 SDDbgValue *SDV; 1277 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1278 isa<ConstantPointerNull>(V)) { 1279 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 1284 // If the Value is a frame index, we can create a FrameIndex debug value 1285 // without relying on the DAG at all. 1286 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1287 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1288 if (SI != FuncInfo.StaticAllocaMap.end()) { 1289 auto SDV = 1290 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1291 /*IsIndirect*/ false, dl, SDNodeOrder); 1292 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1293 // is still available even if the SDNode gets optimized out. 1294 DAG.AddDbgValue(SDV, nullptr, false); 1295 return true; 1296 } 1297 } 1298 1299 // Do not use getValue() in here; we don't want to generate code at 1300 // this point if it hasn't been done yet. 1301 SDValue N = NodeMap[V]; 1302 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1303 N = UnusedArgNodeMap[V]; 1304 if (N.getNode()) { 1305 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1306 return true; 1307 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1308 DAG.AddDbgValue(SDV, N.getNode(), false); 1309 return true; 1310 } 1311 1312 // Special rules apply for the first dbg.values of parameter variables in a 1313 // function. Identify them by the fact they reference Argument Values, that 1314 // they're parameters, and they are parameters of the current function. We 1315 // need to let them dangle until they get an SDNode. 1316 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1317 !InstDL.getInlinedAt(); 1318 if (!IsParamOfFunc) { 1319 // The value is not used in this block yet (or it would have an SDNode). 1320 // We still want the value to appear for the user if possible -- if it has 1321 // an associated VReg, we can refer to that instead. 1322 auto VMI = FuncInfo.ValueMap.find(V); 1323 if (VMI != FuncInfo.ValueMap.end()) { 1324 unsigned Reg = VMI->second; 1325 // If this is a PHI node, it may be split up into several MI PHI nodes 1326 // (in FunctionLoweringInfo::set). 1327 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1328 V->getType(), None); 1329 if (RFV.occupiesMultipleRegs()) { 1330 unsigned Offset = 0; 1331 unsigned BitsToDescribe = 0; 1332 if (auto VarSize = Var->getSizeInBits()) 1333 BitsToDescribe = *VarSize; 1334 if (auto Fragment = Expr->getFragmentInfo()) 1335 BitsToDescribe = Fragment->SizeInBits; 1336 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1337 unsigned RegisterSize = RegAndSize.second; 1338 // Bail out if all bits are described already. 1339 if (Offset >= BitsToDescribe) 1340 break; 1341 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1342 ? BitsToDescribe - Offset 1343 : RegisterSize; 1344 auto FragmentExpr = DIExpression::createFragmentExpression( 1345 Expr, Offset, FragmentSize); 1346 if (!FragmentExpr) 1347 continue; 1348 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1349 false, dl, SDNodeOrder); 1350 DAG.AddDbgValue(SDV, nullptr, false); 1351 Offset += RegisterSize; 1352 } 1353 } else { 1354 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1355 DAG.AddDbgValue(SDV, nullptr, false); 1356 } 1357 return true; 1358 } 1359 } 1360 1361 return false; 1362 } 1363 1364 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1365 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1366 for (auto &Pair : DanglingDebugInfoMap) 1367 for (auto &DDI : Pair.second) 1368 salvageUnresolvedDbgValue(DDI); 1369 clearDanglingDebugInfo(); 1370 } 1371 1372 /// getCopyFromRegs - If there was virtual register allocated for the value V 1373 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1374 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1375 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1376 SDValue Result; 1377 1378 if (It != FuncInfo.ValueMap.end()) { 1379 unsigned InReg = It->second; 1380 1381 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1382 DAG.getDataLayout(), InReg, Ty, 1383 None); // This is not an ABI copy. 1384 SDValue Chain = DAG.getEntryNode(); 1385 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1386 V); 1387 resolveDanglingDebugInfo(V, Result); 1388 } 1389 1390 return Result; 1391 } 1392 1393 /// getValue - Return an SDValue for the given Value. 1394 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1395 // If we already have an SDValue for this value, use it. It's important 1396 // to do this first, so that we don't create a CopyFromReg if we already 1397 // have a regular SDValue. 1398 SDValue &N = NodeMap[V]; 1399 if (N.getNode()) return N; 1400 1401 // If there's a virtual register allocated and initialized for this 1402 // value, use it. 1403 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1404 return copyFromReg; 1405 1406 // Otherwise create a new SDValue and remember it. 1407 SDValue Val = getValueImpl(V); 1408 NodeMap[V] = Val; 1409 resolveDanglingDebugInfo(V, Val); 1410 return Val; 1411 } 1412 1413 // Return true if SDValue exists for the given Value 1414 bool SelectionDAGBuilder::findValue(const Value *V) const { 1415 return (NodeMap.find(V) != NodeMap.end()) || 1416 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1417 } 1418 1419 /// getNonRegisterValue - Return an SDValue for the given Value, but 1420 /// don't look in FuncInfo.ValueMap for a virtual register. 1421 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1422 // If we already have an SDValue for this value, use it. 1423 SDValue &N = NodeMap[V]; 1424 if (N.getNode()) { 1425 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1426 // Remove the debug location from the node as the node is about to be used 1427 // in a location which may differ from the original debug location. This 1428 // is relevant to Constant and ConstantFP nodes because they can appear 1429 // as constant expressions inside PHI nodes. 1430 N->setDebugLoc(DebugLoc()); 1431 } 1432 return N; 1433 } 1434 1435 // Otherwise create a new SDValue and remember it. 1436 SDValue Val = getValueImpl(V); 1437 NodeMap[V] = Val; 1438 resolveDanglingDebugInfo(V, Val); 1439 return Val; 1440 } 1441 1442 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1443 /// Create an SDValue for the given value. 1444 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1445 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1446 1447 if (const Constant *C = dyn_cast<Constant>(V)) { 1448 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1449 1450 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1451 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1452 1453 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1454 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1455 1456 if (isa<ConstantPointerNull>(C)) { 1457 unsigned AS = V->getType()->getPointerAddressSpace(); 1458 return DAG.getConstant(0, getCurSDLoc(), 1459 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1460 } 1461 1462 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1463 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1464 1465 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1466 return DAG.getUNDEF(VT); 1467 1468 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1469 visit(CE->getOpcode(), *CE); 1470 SDValue N1 = NodeMap[V]; 1471 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1472 return N1; 1473 } 1474 1475 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1476 SmallVector<SDValue, 4> Constants; 1477 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1478 OI != OE; ++OI) { 1479 SDNode *Val = getValue(*OI).getNode(); 1480 // If the operand is an empty aggregate, there are no values. 1481 if (!Val) continue; 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Constants.push_back(SDValue(Val, i)); 1486 } 1487 1488 return DAG.getMergeValues(Constants, getCurSDLoc()); 1489 } 1490 1491 if (const ConstantDataSequential *CDS = 1492 dyn_cast<ConstantDataSequential>(C)) { 1493 SmallVector<SDValue, 4> Ops; 1494 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1495 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1496 // Add each leaf value from the operand to the Constants list 1497 // to form a flattened list of all the values. 1498 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1499 Ops.push_back(SDValue(Val, i)); 1500 } 1501 1502 if (isa<ArrayType>(CDS->getType())) 1503 return DAG.getMergeValues(Ops, getCurSDLoc()); 1504 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1505 } 1506 1507 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1508 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1509 "Unknown struct or array constant!"); 1510 1511 SmallVector<EVT, 4> ValueVTs; 1512 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1513 unsigned NumElts = ValueVTs.size(); 1514 if (NumElts == 0) 1515 return SDValue(); // empty struct 1516 SmallVector<SDValue, 4> Constants(NumElts); 1517 for (unsigned i = 0; i != NumElts; ++i) { 1518 EVT EltVT = ValueVTs[i]; 1519 if (isa<UndefValue>(C)) 1520 Constants[i] = DAG.getUNDEF(EltVT); 1521 else if (EltVT.isFloatingPoint()) 1522 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1523 else 1524 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1525 } 1526 1527 return DAG.getMergeValues(Constants, getCurSDLoc()); 1528 } 1529 1530 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1531 return DAG.getBlockAddress(BA, VT); 1532 1533 VectorType *VecTy = cast<VectorType>(V->getType()); 1534 unsigned NumElements = VecTy->getNumElements(); 1535 1536 // Now that we know the number and type of the elements, get that number of 1537 // elements into the Ops array based on what kind of constant it is. 1538 SmallVector<SDValue, 16> Ops; 1539 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1540 for (unsigned i = 0; i != NumElements; ++i) 1541 Ops.push_back(getValue(CV->getOperand(i))); 1542 } else { 1543 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1544 EVT EltVT = 1545 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1546 1547 SDValue Op; 1548 if (EltVT.isFloatingPoint()) 1549 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1550 else 1551 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1552 Ops.assign(NumElements, Op); 1553 } 1554 1555 // Create a BUILD_VECTOR node. 1556 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1557 } 1558 1559 // If this is a static alloca, generate it as the frameindex instead of 1560 // computation. 1561 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1562 DenseMap<const AllocaInst*, int>::iterator SI = 1563 FuncInfo.StaticAllocaMap.find(AI); 1564 if (SI != FuncInfo.StaticAllocaMap.end()) 1565 return DAG.getFrameIndex(SI->second, 1566 TLI.getFrameIndexTy(DAG.getDataLayout())); 1567 } 1568 1569 // If this is an instruction which fast-isel has deferred, select it now. 1570 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1571 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1572 1573 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1574 Inst->getType(), getABIRegCopyCC(V)); 1575 SDValue Chain = DAG.getEntryNode(); 1576 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1577 } 1578 1579 llvm_unreachable("Can't get register for value!"); 1580 } 1581 1582 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1583 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1584 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1585 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1586 bool IsSEH = isAsynchronousEHPersonality(Pers); 1587 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1588 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1589 if (!IsSEH) 1590 CatchPadMBB->setIsEHScopeEntry(); 1591 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1592 if (IsMSVCCXX || IsCoreCLR) 1593 CatchPadMBB->setIsEHFuncletEntry(); 1594 // Wasm does not need catchpads anymore 1595 if (!IsWasmCXX) 1596 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1597 getControlRoot())); 1598 } 1599 1600 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1601 // Update machine-CFG edge. 1602 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1603 FuncInfo.MBB->addSuccessor(TargetMBB); 1604 1605 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1606 bool IsSEH = isAsynchronousEHPersonality(Pers); 1607 if (IsSEH) { 1608 // If this is not a fall-through branch or optimizations are switched off, 1609 // emit the branch. 1610 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1611 TM.getOptLevel() == CodeGenOpt::None) 1612 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1613 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1614 return; 1615 } 1616 1617 // Figure out the funclet membership for the catchret's successor. 1618 // This will be used by the FuncletLayout pass to determine how to order the 1619 // BB's. 1620 // A 'catchret' returns to the outer scope's color. 1621 Value *ParentPad = I.getCatchSwitchParentPad(); 1622 const BasicBlock *SuccessorColor; 1623 if (isa<ConstantTokenNone>(ParentPad)) 1624 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1625 else 1626 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1627 assert(SuccessorColor && "No parent funclet for catchret!"); 1628 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1629 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1630 1631 // Create the terminator node. 1632 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1633 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1634 DAG.getBasicBlock(SuccessorColorMBB)); 1635 DAG.setRoot(Ret); 1636 } 1637 1638 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1639 // Don't emit any special code for the cleanuppad instruction. It just marks 1640 // the start of an EH scope/funclet. 1641 FuncInfo.MBB->setIsEHScopeEntry(); 1642 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1643 if (Pers != EHPersonality::Wasm_CXX) { 1644 FuncInfo.MBB->setIsEHFuncletEntry(); 1645 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1646 } 1647 } 1648 1649 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1650 // the control flow always stops at the single catch pad, as it does for a 1651 // cleanup pad. In case the exception caught is not of the types the catch pad 1652 // catches, it will be rethrown by a rethrow. 1653 static void findWasmUnwindDestinations( 1654 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1655 BranchProbability Prob, 1656 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1657 &UnwindDests) { 1658 while (EHPadBB) { 1659 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1660 if (isa<CleanupPadInst>(Pad)) { 1661 // Stop on cleanup pads. 1662 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1663 UnwindDests.back().first->setIsEHScopeEntry(); 1664 break; 1665 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1666 // Add the catchpad handlers to the possible destinations. We don't 1667 // continue to the unwind destination of the catchswitch for wasm. 1668 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1669 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1670 UnwindDests.back().first->setIsEHScopeEntry(); 1671 } 1672 break; 1673 } else { 1674 continue; 1675 } 1676 } 1677 } 1678 1679 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1680 /// many places it could ultimately go. In the IR, we have a single unwind 1681 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1682 /// This function skips over imaginary basic blocks that hold catchswitch 1683 /// instructions, and finds all the "real" machine 1684 /// basic block destinations. As those destinations may not be successors of 1685 /// EHPadBB, here we also calculate the edge probability to those destinations. 1686 /// The passed-in Prob is the edge probability to EHPadBB. 1687 static void findUnwindDestinations( 1688 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1689 BranchProbability Prob, 1690 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1691 &UnwindDests) { 1692 EHPersonality Personality = 1693 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1694 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1695 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1696 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1697 bool IsSEH = isAsynchronousEHPersonality(Personality); 1698 1699 if (IsWasmCXX) { 1700 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1701 assert(UnwindDests.size() <= 1 && 1702 "There should be at most one unwind destination for wasm"); 1703 return; 1704 } 1705 1706 while (EHPadBB) { 1707 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1708 BasicBlock *NewEHPadBB = nullptr; 1709 if (isa<LandingPadInst>(Pad)) { 1710 // Stop on landingpads. They are not funclets. 1711 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1712 break; 1713 } else if (isa<CleanupPadInst>(Pad)) { 1714 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1715 // personalities. 1716 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1717 UnwindDests.back().first->setIsEHScopeEntry(); 1718 UnwindDests.back().first->setIsEHFuncletEntry(); 1719 break; 1720 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1721 // Add the catchpad handlers to the possible destinations. 1722 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1723 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1724 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1725 if (IsMSVCCXX || IsCoreCLR) 1726 UnwindDests.back().first->setIsEHFuncletEntry(); 1727 if (!IsSEH) 1728 UnwindDests.back().first->setIsEHScopeEntry(); 1729 } 1730 NewEHPadBB = CatchSwitch->getUnwindDest(); 1731 } else { 1732 continue; 1733 } 1734 1735 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1736 if (BPI && NewEHPadBB) 1737 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1738 EHPadBB = NewEHPadBB; 1739 } 1740 } 1741 1742 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1743 // Update successor info. 1744 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1745 auto UnwindDest = I.getUnwindDest(); 1746 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1747 BranchProbability UnwindDestProb = 1748 (BPI && UnwindDest) 1749 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1750 : BranchProbability::getZero(); 1751 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1752 for (auto &UnwindDest : UnwindDests) { 1753 UnwindDest.first->setIsEHPad(); 1754 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1755 } 1756 FuncInfo.MBB->normalizeSuccProbs(); 1757 1758 // Create the terminator node. 1759 SDValue Ret = 1760 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1761 DAG.setRoot(Ret); 1762 } 1763 1764 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1765 report_fatal_error("visitCatchSwitch not yet implemented!"); 1766 } 1767 1768 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1770 auto &DL = DAG.getDataLayout(); 1771 SDValue Chain = getControlRoot(); 1772 SmallVector<ISD::OutputArg, 8> Outs; 1773 SmallVector<SDValue, 8> OutVals; 1774 1775 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1776 // lower 1777 // 1778 // %val = call <ty> @llvm.experimental.deoptimize() 1779 // ret <ty> %val 1780 // 1781 // differently. 1782 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1783 LowerDeoptimizingReturn(); 1784 return; 1785 } 1786 1787 if (!FuncInfo.CanLowerReturn) { 1788 unsigned DemoteReg = FuncInfo.DemoteRegister; 1789 const Function *F = I.getParent()->getParent(); 1790 1791 // Emit a store of the return value through the virtual register. 1792 // Leave Outs empty so that LowerReturn won't try to load return 1793 // registers the usual way. 1794 SmallVector<EVT, 1> PtrValueVTs; 1795 ComputeValueVTs(TLI, DL, 1796 F->getReturnType()->getPointerTo( 1797 DAG.getDataLayout().getAllocaAddrSpace()), 1798 PtrValueVTs); 1799 1800 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1801 DemoteReg, PtrValueVTs[0]); 1802 SDValue RetOp = getValue(I.getOperand(0)); 1803 1804 SmallVector<EVT, 4> ValueVTs, MemVTs; 1805 SmallVector<uint64_t, 4> Offsets; 1806 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1807 &Offsets); 1808 unsigned NumValues = ValueVTs.size(); 1809 1810 SmallVector<SDValue, 4> Chains(NumValues); 1811 for (unsigned i = 0; i != NumValues; ++i) { 1812 // An aggregate return value cannot wrap around the address space, so 1813 // offsets to its parts don't wrap either. 1814 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1815 1816 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1817 if (MemVTs[i] != ValueVTs[i]) 1818 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1819 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val, 1820 // FIXME: better loc info would be nice. 1821 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1822 } 1823 1824 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1825 MVT::Other, Chains); 1826 } else if (I.getNumOperands() != 0) { 1827 SmallVector<EVT, 4> ValueVTs; 1828 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1829 unsigned NumValues = ValueVTs.size(); 1830 if (NumValues) { 1831 SDValue RetOp = getValue(I.getOperand(0)); 1832 1833 const Function *F = I.getParent()->getParent(); 1834 1835 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1836 I.getOperand(0)->getType(), F->getCallingConv(), 1837 /*IsVarArg*/ false); 1838 1839 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1840 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1841 Attribute::SExt)) 1842 ExtendKind = ISD::SIGN_EXTEND; 1843 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1844 Attribute::ZExt)) 1845 ExtendKind = ISD::ZERO_EXTEND; 1846 1847 LLVMContext &Context = F->getContext(); 1848 bool RetInReg = F->getAttributes().hasAttribute( 1849 AttributeList::ReturnIndex, Attribute::InReg); 1850 1851 for (unsigned j = 0; j != NumValues; ++j) { 1852 EVT VT = ValueVTs[j]; 1853 1854 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1855 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1856 1857 CallingConv::ID CC = F->getCallingConv(); 1858 1859 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1860 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1861 SmallVector<SDValue, 4> Parts(NumParts); 1862 getCopyToParts(DAG, getCurSDLoc(), 1863 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1864 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1865 1866 // 'inreg' on function refers to return value 1867 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1868 if (RetInReg) 1869 Flags.setInReg(); 1870 1871 if (I.getOperand(0)->getType()->isPointerTy()) { 1872 Flags.setPointer(); 1873 Flags.setPointerAddrSpace( 1874 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1875 } 1876 1877 if (NeedsRegBlock) { 1878 Flags.setInConsecutiveRegs(); 1879 if (j == NumValues - 1) 1880 Flags.setInConsecutiveRegsLast(); 1881 } 1882 1883 // Propagate extension type if any 1884 if (ExtendKind == ISD::SIGN_EXTEND) 1885 Flags.setSExt(); 1886 else if (ExtendKind == ISD::ZERO_EXTEND) 1887 Flags.setZExt(); 1888 1889 for (unsigned i = 0; i < NumParts; ++i) { 1890 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1891 VT, /*isfixed=*/true, 0, 0)); 1892 OutVals.push_back(Parts[i]); 1893 } 1894 } 1895 } 1896 } 1897 1898 // Push in swifterror virtual register as the last element of Outs. This makes 1899 // sure swifterror virtual register will be returned in the swifterror 1900 // physical register. 1901 const Function *F = I.getParent()->getParent(); 1902 if (TLI.supportSwiftError() && 1903 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1904 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1905 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1906 Flags.setSwiftError(); 1907 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1908 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1909 true /*isfixed*/, 1 /*origidx*/, 1910 0 /*partOffs*/)); 1911 // Create SDNode for the swifterror virtual register. 1912 OutVals.push_back( 1913 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1914 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1915 EVT(TLI.getPointerTy(DL)))); 1916 } 1917 1918 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1919 CallingConv::ID CallConv = 1920 DAG.getMachineFunction().getFunction().getCallingConv(); 1921 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1922 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1923 1924 // Verify that the target's LowerReturn behaved as expected. 1925 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1926 "LowerReturn didn't return a valid chain!"); 1927 1928 // Update the DAG with the new chain value resulting from return lowering. 1929 DAG.setRoot(Chain); 1930 } 1931 1932 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1933 /// created for it, emit nodes to copy the value into the virtual 1934 /// registers. 1935 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1936 // Skip empty types 1937 if (V->getType()->isEmptyTy()) 1938 return; 1939 1940 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1941 if (VMI != FuncInfo.ValueMap.end()) { 1942 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1943 CopyValueToVirtualRegister(V, VMI->second); 1944 } 1945 } 1946 1947 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1948 /// the current basic block, add it to ValueMap now so that we'll get a 1949 /// CopyTo/FromReg. 1950 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1951 // No need to export constants. 1952 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1953 1954 // Already exported? 1955 if (FuncInfo.isExportedInst(V)) return; 1956 1957 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1958 CopyValueToVirtualRegister(V, Reg); 1959 } 1960 1961 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1962 const BasicBlock *FromBB) { 1963 // The operands of the setcc have to be in this block. We don't know 1964 // how to export them from some other block. 1965 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1966 // Can export from current BB. 1967 if (VI->getParent() == FromBB) 1968 return true; 1969 1970 // Is already exported, noop. 1971 return FuncInfo.isExportedInst(V); 1972 } 1973 1974 // If this is an argument, we can export it if the BB is the entry block or 1975 // if it is already exported. 1976 if (isa<Argument>(V)) { 1977 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1978 return true; 1979 1980 // Otherwise, can only export this if it is already exported. 1981 return FuncInfo.isExportedInst(V); 1982 } 1983 1984 // Otherwise, constants can always be exported. 1985 return true; 1986 } 1987 1988 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1989 BranchProbability 1990 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1991 const MachineBasicBlock *Dst) const { 1992 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1993 const BasicBlock *SrcBB = Src->getBasicBlock(); 1994 const BasicBlock *DstBB = Dst->getBasicBlock(); 1995 if (!BPI) { 1996 // If BPI is not available, set the default probability as 1 / N, where N is 1997 // the number of successors. 1998 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1999 return BranchProbability(1, SuccSize); 2000 } 2001 return BPI->getEdgeProbability(SrcBB, DstBB); 2002 } 2003 2004 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2005 MachineBasicBlock *Dst, 2006 BranchProbability Prob) { 2007 if (!FuncInfo.BPI) 2008 Src->addSuccessorWithoutProb(Dst); 2009 else { 2010 if (Prob.isUnknown()) 2011 Prob = getEdgeProbability(Src, Dst); 2012 Src->addSuccessor(Dst, Prob); 2013 } 2014 } 2015 2016 static bool InBlock(const Value *V, const BasicBlock *BB) { 2017 if (const Instruction *I = dyn_cast<Instruction>(V)) 2018 return I->getParent() == BB; 2019 return true; 2020 } 2021 2022 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2023 /// This function emits a branch and is used at the leaves of an OR or an 2024 /// AND operator tree. 2025 void 2026 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2027 MachineBasicBlock *TBB, 2028 MachineBasicBlock *FBB, 2029 MachineBasicBlock *CurBB, 2030 MachineBasicBlock *SwitchBB, 2031 BranchProbability TProb, 2032 BranchProbability FProb, 2033 bool InvertCond) { 2034 const BasicBlock *BB = CurBB->getBasicBlock(); 2035 2036 // If the leaf of the tree is a comparison, merge the condition into 2037 // the caseblock. 2038 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2039 // The operands of the cmp have to be in this block. We don't know 2040 // how to export them from some other block. If this is the first block 2041 // of the sequence, no exporting is needed. 2042 if (CurBB == SwitchBB || 2043 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2044 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2045 ISD::CondCode Condition; 2046 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2047 ICmpInst::Predicate Pred = 2048 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2049 Condition = getICmpCondCode(Pred); 2050 } else { 2051 const FCmpInst *FC = cast<FCmpInst>(Cond); 2052 FCmpInst::Predicate Pred = 2053 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2054 Condition = getFCmpCondCode(Pred); 2055 if (TM.Options.NoNaNsFPMath) 2056 Condition = getFCmpCodeWithoutNaN(Condition); 2057 } 2058 2059 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2060 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2061 SL->SwitchCases.push_back(CB); 2062 return; 2063 } 2064 } 2065 2066 // Create a CaseBlock record representing this branch. 2067 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2068 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2069 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2070 SL->SwitchCases.push_back(CB); 2071 } 2072 2073 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2074 MachineBasicBlock *TBB, 2075 MachineBasicBlock *FBB, 2076 MachineBasicBlock *CurBB, 2077 MachineBasicBlock *SwitchBB, 2078 Instruction::BinaryOps Opc, 2079 BranchProbability TProb, 2080 BranchProbability FProb, 2081 bool InvertCond) { 2082 // Skip over not part of the tree and remember to invert op and operands at 2083 // next level. 2084 Value *NotCond; 2085 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2086 InBlock(NotCond, CurBB->getBasicBlock())) { 2087 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2088 !InvertCond); 2089 return; 2090 } 2091 2092 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2093 // Compute the effective opcode for Cond, taking into account whether it needs 2094 // to be inverted, e.g. 2095 // and (not (or A, B)), C 2096 // gets lowered as 2097 // and (and (not A, not B), C) 2098 unsigned BOpc = 0; 2099 if (BOp) { 2100 BOpc = BOp->getOpcode(); 2101 if (InvertCond) { 2102 if (BOpc == Instruction::And) 2103 BOpc = Instruction::Or; 2104 else if (BOpc == Instruction::Or) 2105 BOpc = Instruction::And; 2106 } 2107 } 2108 2109 // If this node is not part of the or/and tree, emit it as a branch. 2110 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2111 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2112 BOp->getParent() != CurBB->getBasicBlock() || 2113 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2114 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2115 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2116 TProb, FProb, InvertCond); 2117 return; 2118 } 2119 2120 // Create TmpBB after CurBB. 2121 MachineFunction::iterator BBI(CurBB); 2122 MachineFunction &MF = DAG.getMachineFunction(); 2123 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2124 CurBB->getParent()->insert(++BBI, TmpBB); 2125 2126 if (Opc == Instruction::Or) { 2127 // Codegen X | Y as: 2128 // BB1: 2129 // jmp_if_X TBB 2130 // jmp TmpBB 2131 // TmpBB: 2132 // jmp_if_Y TBB 2133 // jmp FBB 2134 // 2135 2136 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2137 // The requirement is that 2138 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2139 // = TrueProb for original BB. 2140 // Assuming the original probabilities are A and B, one choice is to set 2141 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2142 // A/(1+B) and 2B/(1+B). This choice assumes that 2143 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2144 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2145 // TmpBB, but the math is more complicated. 2146 2147 auto NewTrueProb = TProb / 2; 2148 auto NewFalseProb = TProb / 2 + FProb; 2149 // Emit the LHS condition. 2150 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2151 NewTrueProb, NewFalseProb, InvertCond); 2152 2153 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2154 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2155 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2156 // Emit the RHS condition into TmpBB. 2157 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2158 Probs[0], Probs[1], InvertCond); 2159 } else { 2160 assert(Opc == Instruction::And && "Unknown merge op!"); 2161 // Codegen X & Y as: 2162 // BB1: 2163 // jmp_if_X TmpBB 2164 // jmp FBB 2165 // TmpBB: 2166 // jmp_if_Y TBB 2167 // jmp FBB 2168 // 2169 // This requires creation of TmpBB after CurBB. 2170 2171 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2172 // The requirement is that 2173 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2174 // = FalseProb for original BB. 2175 // Assuming the original probabilities are A and B, one choice is to set 2176 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2177 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2178 // TrueProb for BB1 * FalseProb for TmpBB. 2179 2180 auto NewTrueProb = TProb + FProb / 2; 2181 auto NewFalseProb = FProb / 2; 2182 // Emit the LHS condition. 2183 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2184 NewTrueProb, NewFalseProb, InvertCond); 2185 2186 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2187 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2188 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2189 // Emit the RHS condition into TmpBB. 2190 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2191 Probs[0], Probs[1], InvertCond); 2192 } 2193 } 2194 2195 /// If the set of cases should be emitted as a series of branches, return true. 2196 /// If we should emit this as a bunch of and/or'd together conditions, return 2197 /// false. 2198 bool 2199 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2200 if (Cases.size() != 2) return true; 2201 2202 // If this is two comparisons of the same values or'd or and'd together, they 2203 // will get folded into a single comparison, so don't emit two blocks. 2204 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2205 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2206 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2207 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2208 return false; 2209 } 2210 2211 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2212 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2213 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2214 Cases[0].CC == Cases[1].CC && 2215 isa<Constant>(Cases[0].CmpRHS) && 2216 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2217 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2218 return false; 2219 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2220 return false; 2221 } 2222 2223 return true; 2224 } 2225 2226 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2227 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2228 2229 // Update machine-CFG edges. 2230 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2231 2232 if (I.isUnconditional()) { 2233 // Update machine-CFG edges. 2234 BrMBB->addSuccessor(Succ0MBB); 2235 2236 // If this is not a fall-through branch or optimizations are switched off, 2237 // emit the branch. 2238 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2239 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2240 MVT::Other, getControlRoot(), 2241 DAG.getBasicBlock(Succ0MBB))); 2242 2243 return; 2244 } 2245 2246 // If this condition is one of the special cases we handle, do special stuff 2247 // now. 2248 const Value *CondVal = I.getCondition(); 2249 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2250 2251 // If this is a series of conditions that are or'd or and'd together, emit 2252 // this as a sequence of branches instead of setcc's with and/or operations. 2253 // As long as jumps are not expensive, this should improve performance. 2254 // For example, instead of something like: 2255 // cmp A, B 2256 // C = seteq 2257 // cmp D, E 2258 // F = setle 2259 // or C, F 2260 // jnz foo 2261 // Emit: 2262 // cmp A, B 2263 // je foo 2264 // cmp D, E 2265 // jle foo 2266 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2267 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2268 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2269 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2270 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2271 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2272 Opcode, 2273 getEdgeProbability(BrMBB, Succ0MBB), 2274 getEdgeProbability(BrMBB, Succ1MBB), 2275 /*InvertCond=*/false); 2276 // If the compares in later blocks need to use values not currently 2277 // exported from this block, export them now. This block should always 2278 // be the first entry. 2279 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2280 2281 // Allow some cases to be rejected. 2282 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2283 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2284 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2285 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2286 } 2287 2288 // Emit the branch for this block. 2289 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2290 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2291 return; 2292 } 2293 2294 // Okay, we decided not to do this, remove any inserted MBB's and clear 2295 // SwitchCases. 2296 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2297 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2298 2299 SL->SwitchCases.clear(); 2300 } 2301 } 2302 2303 // Create a CaseBlock record representing this branch. 2304 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2305 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2306 2307 // Use visitSwitchCase to actually insert the fast branch sequence for this 2308 // cond branch. 2309 visitSwitchCase(CB, BrMBB); 2310 } 2311 2312 /// visitSwitchCase - Emits the necessary code to represent a single node in 2313 /// the binary search tree resulting from lowering a switch instruction. 2314 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2315 MachineBasicBlock *SwitchBB) { 2316 SDValue Cond; 2317 SDValue CondLHS = getValue(CB.CmpLHS); 2318 SDLoc dl = CB.DL; 2319 2320 if (CB.CC == ISD::SETTRUE) { 2321 // Branch or fall through to TrueBB. 2322 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2323 SwitchBB->normalizeSuccProbs(); 2324 if (CB.TrueBB != NextBlock(SwitchBB)) { 2325 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2326 DAG.getBasicBlock(CB.TrueBB))); 2327 } 2328 return; 2329 } 2330 2331 auto &TLI = DAG.getTargetLoweringInfo(); 2332 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2333 2334 // Build the setcc now. 2335 if (!CB.CmpMHS) { 2336 // Fold "(X == true)" to X and "(X == false)" to !X to 2337 // handle common cases produced by branch lowering. 2338 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2339 CB.CC == ISD::SETEQ) 2340 Cond = CondLHS; 2341 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2342 CB.CC == ISD::SETEQ) { 2343 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2344 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2345 } else { 2346 SDValue CondRHS = getValue(CB.CmpRHS); 2347 2348 // If a pointer's DAG type is larger than its memory type then the DAG 2349 // values are zero-extended. This breaks signed comparisons so truncate 2350 // back to the underlying type before doing the compare. 2351 if (CondLHS.getValueType() != MemVT) { 2352 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2353 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2354 } 2355 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2356 } 2357 } else { 2358 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2359 2360 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2361 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2362 2363 SDValue CmpOp = getValue(CB.CmpMHS); 2364 EVT VT = CmpOp.getValueType(); 2365 2366 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2367 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2368 ISD::SETLE); 2369 } else { 2370 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2371 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2372 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2373 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2374 } 2375 } 2376 2377 // Update successor info 2378 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2379 // TrueBB and FalseBB are always different unless the incoming IR is 2380 // degenerate. This only happens when running llc on weird IR. 2381 if (CB.TrueBB != CB.FalseBB) 2382 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2383 SwitchBB->normalizeSuccProbs(); 2384 2385 // If the lhs block is the next block, invert the condition so that we can 2386 // fall through to the lhs instead of the rhs block. 2387 if (CB.TrueBB == NextBlock(SwitchBB)) { 2388 std::swap(CB.TrueBB, CB.FalseBB); 2389 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2390 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2391 } 2392 2393 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2394 MVT::Other, getControlRoot(), Cond, 2395 DAG.getBasicBlock(CB.TrueBB)); 2396 2397 // Insert the false branch. Do this even if it's a fall through branch, 2398 // this makes it easier to do DAG optimizations which require inverting 2399 // the branch condition. 2400 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2401 DAG.getBasicBlock(CB.FalseBB)); 2402 2403 DAG.setRoot(BrCond); 2404 } 2405 2406 /// visitJumpTable - Emit JumpTable node in the current MBB 2407 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2408 // Emit the code for the jump table 2409 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2410 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2411 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2412 JT.Reg, PTy); 2413 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2414 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2415 MVT::Other, Index.getValue(1), 2416 Table, Index); 2417 DAG.setRoot(BrJumpTable); 2418 } 2419 2420 /// visitJumpTableHeader - This function emits necessary code to produce index 2421 /// in the JumpTable from switch case. 2422 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2423 JumpTableHeader &JTH, 2424 MachineBasicBlock *SwitchBB) { 2425 SDLoc dl = getCurSDLoc(); 2426 2427 // Subtract the lowest switch case value from the value being switched on. 2428 SDValue SwitchOp = getValue(JTH.SValue); 2429 EVT VT = SwitchOp.getValueType(); 2430 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2431 DAG.getConstant(JTH.First, dl, VT)); 2432 2433 // The SDNode we just created, which holds the value being switched on minus 2434 // the smallest case value, needs to be copied to a virtual register so it 2435 // can be used as an index into the jump table in a subsequent basic block. 2436 // This value may be smaller or larger than the target's pointer type, and 2437 // therefore require extension or truncating. 2438 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2439 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2440 2441 unsigned JumpTableReg = 2442 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2443 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2444 JumpTableReg, SwitchOp); 2445 JT.Reg = JumpTableReg; 2446 2447 if (!JTH.OmitRangeCheck) { 2448 // Emit the range check for the jump table, and branch to the default block 2449 // for the switch statement if the value being switched on exceeds the 2450 // largest case in the switch. 2451 SDValue CMP = DAG.getSetCC( 2452 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2453 Sub.getValueType()), 2454 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2455 2456 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2457 MVT::Other, CopyTo, CMP, 2458 DAG.getBasicBlock(JT.Default)); 2459 2460 // Avoid emitting unnecessary branches to the next block. 2461 if (JT.MBB != NextBlock(SwitchBB)) 2462 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2463 DAG.getBasicBlock(JT.MBB)); 2464 2465 DAG.setRoot(BrCond); 2466 } else { 2467 // Avoid emitting unnecessary branches to the next block. 2468 if (JT.MBB != NextBlock(SwitchBB)) 2469 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2470 DAG.getBasicBlock(JT.MBB))); 2471 else 2472 DAG.setRoot(CopyTo); 2473 } 2474 } 2475 2476 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2477 /// variable if there exists one. 2478 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2479 SDValue &Chain) { 2480 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2481 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2482 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2483 MachineFunction &MF = DAG.getMachineFunction(); 2484 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2485 MachineSDNode *Node = 2486 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2487 if (Global) { 2488 MachinePointerInfo MPInfo(Global); 2489 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2490 MachineMemOperand::MODereferenceable; 2491 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2492 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2493 DAG.setNodeMemRefs(Node, {MemRef}); 2494 } 2495 if (PtrTy != PtrMemTy) 2496 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2497 return SDValue(Node, 0); 2498 } 2499 2500 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2501 /// tail spliced into a stack protector check success bb. 2502 /// 2503 /// For a high level explanation of how this fits into the stack protector 2504 /// generation see the comment on the declaration of class 2505 /// StackProtectorDescriptor. 2506 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2507 MachineBasicBlock *ParentBB) { 2508 2509 // First create the loads to the guard/stack slot for the comparison. 2510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2511 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2512 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2513 2514 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2515 int FI = MFI.getStackProtectorIndex(); 2516 2517 SDValue Guard; 2518 SDLoc dl = getCurSDLoc(); 2519 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2520 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2521 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2522 2523 // Generate code to load the content of the guard slot. 2524 SDValue GuardVal = DAG.getLoad( 2525 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2526 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2527 MachineMemOperand::MOVolatile); 2528 2529 if (TLI.useStackGuardXorFP()) 2530 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2531 2532 // Retrieve guard check function, nullptr if instrumentation is inlined. 2533 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2534 // The target provides a guard check function to validate the guard value. 2535 // Generate a call to that function with the content of the guard slot as 2536 // argument. 2537 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2538 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2539 2540 TargetLowering::ArgListTy Args; 2541 TargetLowering::ArgListEntry Entry; 2542 Entry.Node = GuardVal; 2543 Entry.Ty = FnTy->getParamType(0); 2544 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2545 Entry.IsInReg = true; 2546 Args.push_back(Entry); 2547 2548 TargetLowering::CallLoweringInfo CLI(DAG); 2549 CLI.setDebugLoc(getCurSDLoc()) 2550 .setChain(DAG.getEntryNode()) 2551 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2552 getValue(GuardCheckFn), std::move(Args)); 2553 2554 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2555 DAG.setRoot(Result.second); 2556 return; 2557 } 2558 2559 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2560 // Otherwise, emit a volatile load to retrieve the stack guard value. 2561 SDValue Chain = DAG.getEntryNode(); 2562 if (TLI.useLoadStackGuardNode()) { 2563 Guard = getLoadStackGuard(DAG, dl, Chain); 2564 } else { 2565 const Value *IRGuard = TLI.getSDagStackGuard(M); 2566 SDValue GuardPtr = getValue(IRGuard); 2567 2568 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2569 MachinePointerInfo(IRGuard, 0), Align, 2570 MachineMemOperand::MOVolatile); 2571 } 2572 2573 // Perform the comparison via a subtract/getsetcc. 2574 EVT VT = Guard.getValueType(); 2575 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2576 2577 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2578 *DAG.getContext(), 2579 Sub.getValueType()), 2580 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2581 2582 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2583 // branch to failure MBB. 2584 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2585 MVT::Other, GuardVal.getOperand(0), 2586 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2587 // Otherwise branch to success MBB. 2588 SDValue Br = DAG.getNode(ISD::BR, dl, 2589 MVT::Other, BrCond, 2590 DAG.getBasicBlock(SPD.getSuccessMBB())); 2591 2592 DAG.setRoot(Br); 2593 } 2594 2595 /// Codegen the failure basic block for a stack protector check. 2596 /// 2597 /// A failure stack protector machine basic block consists simply of a call to 2598 /// __stack_chk_fail(). 2599 /// 2600 /// For a high level explanation of how this fits into the stack protector 2601 /// generation see the comment on the declaration of class 2602 /// StackProtectorDescriptor. 2603 void 2604 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2605 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2606 TargetLowering::MakeLibCallOptions CallOptions; 2607 CallOptions.setDiscardResult(true); 2608 SDValue Chain = 2609 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2610 None, CallOptions, getCurSDLoc()).second; 2611 // On PS4, the "return address" must still be within the calling function, 2612 // even if it's at the very end, so emit an explicit TRAP here. 2613 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2614 if (TM.getTargetTriple().isPS4CPU()) 2615 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2616 2617 DAG.setRoot(Chain); 2618 } 2619 2620 /// visitBitTestHeader - This function emits necessary code to produce value 2621 /// suitable for "bit tests" 2622 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2623 MachineBasicBlock *SwitchBB) { 2624 SDLoc dl = getCurSDLoc(); 2625 2626 // Subtract the minimum value. 2627 SDValue SwitchOp = getValue(B.SValue); 2628 EVT VT = SwitchOp.getValueType(); 2629 SDValue RangeSub = 2630 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2631 2632 // Determine the type of the test operands. 2633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2634 bool UsePtrType = false; 2635 if (!TLI.isTypeLegal(VT)) { 2636 UsePtrType = true; 2637 } else { 2638 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2639 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2640 // Switch table case range are encoded into series of masks. 2641 // Just use pointer type, it's guaranteed to fit. 2642 UsePtrType = true; 2643 break; 2644 } 2645 } 2646 SDValue Sub = RangeSub; 2647 if (UsePtrType) { 2648 VT = TLI.getPointerTy(DAG.getDataLayout()); 2649 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2650 } 2651 2652 B.RegVT = VT.getSimpleVT(); 2653 B.Reg = FuncInfo.CreateReg(B.RegVT); 2654 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2655 2656 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2657 2658 if (!B.OmitRangeCheck) 2659 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2660 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2661 SwitchBB->normalizeSuccProbs(); 2662 2663 SDValue Root = CopyTo; 2664 if (!B.OmitRangeCheck) { 2665 // Conditional branch to the default block. 2666 SDValue RangeCmp = DAG.getSetCC(dl, 2667 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2668 RangeSub.getValueType()), 2669 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2670 ISD::SETUGT); 2671 2672 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2673 DAG.getBasicBlock(B.Default)); 2674 } 2675 2676 // Avoid emitting unnecessary branches to the next block. 2677 if (MBB != NextBlock(SwitchBB)) 2678 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2679 2680 DAG.setRoot(Root); 2681 } 2682 2683 /// visitBitTestCase - this function produces one "bit test" 2684 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2685 MachineBasicBlock* NextMBB, 2686 BranchProbability BranchProbToNext, 2687 unsigned Reg, 2688 BitTestCase &B, 2689 MachineBasicBlock *SwitchBB) { 2690 SDLoc dl = getCurSDLoc(); 2691 MVT VT = BB.RegVT; 2692 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2693 SDValue Cmp; 2694 unsigned PopCount = countPopulation(B.Mask); 2695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2696 if (PopCount == 1) { 2697 // Testing for a single bit; just compare the shift count with what it 2698 // would need to be to shift a 1 bit in that position. 2699 Cmp = DAG.getSetCC( 2700 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2701 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2702 ISD::SETEQ); 2703 } else if (PopCount == BB.Range) { 2704 // There is only one zero bit in the range, test for it directly. 2705 Cmp = DAG.getSetCC( 2706 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2707 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2708 ISD::SETNE); 2709 } else { 2710 // Make desired shift 2711 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2712 DAG.getConstant(1, dl, VT), ShiftOp); 2713 2714 // Emit bit tests and jumps 2715 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2716 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2717 Cmp = DAG.getSetCC( 2718 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2719 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2720 } 2721 2722 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2723 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2724 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2725 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2726 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2727 // one as they are relative probabilities (and thus work more like weights), 2728 // and hence we need to normalize them to let the sum of them become one. 2729 SwitchBB->normalizeSuccProbs(); 2730 2731 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2732 MVT::Other, getControlRoot(), 2733 Cmp, DAG.getBasicBlock(B.TargetBB)); 2734 2735 // Avoid emitting unnecessary branches to the next block. 2736 if (NextMBB != NextBlock(SwitchBB)) 2737 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2738 DAG.getBasicBlock(NextMBB)); 2739 2740 DAG.setRoot(BrAnd); 2741 } 2742 2743 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2744 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2745 2746 // Retrieve successors. Look through artificial IR level blocks like 2747 // catchswitch for successors. 2748 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2749 const BasicBlock *EHPadBB = I.getSuccessor(1); 2750 2751 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2752 // have to do anything here to lower funclet bundles. 2753 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2754 LLVMContext::OB_funclet, 2755 LLVMContext::OB_cfguardtarget}) && 2756 "Cannot lower invokes with arbitrary operand bundles yet!"); 2757 2758 const Value *Callee(I.getCalledValue()); 2759 const Function *Fn = dyn_cast<Function>(Callee); 2760 if (isa<InlineAsm>(Callee)) 2761 visitInlineAsm(&I); 2762 else if (Fn && Fn->isIntrinsic()) { 2763 switch (Fn->getIntrinsicID()) { 2764 default: 2765 llvm_unreachable("Cannot invoke this intrinsic"); 2766 case Intrinsic::donothing: 2767 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2768 break; 2769 case Intrinsic::experimental_patchpoint_void: 2770 case Intrinsic::experimental_patchpoint_i64: 2771 visitPatchpoint(&I, EHPadBB); 2772 break; 2773 case Intrinsic::experimental_gc_statepoint: 2774 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2775 break; 2776 case Intrinsic::wasm_rethrow_in_catch: { 2777 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2778 // special because it can be invoked, so we manually lower it to a DAG 2779 // node here. 2780 SmallVector<SDValue, 8> Ops; 2781 Ops.push_back(getRoot()); // inchain 2782 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2783 Ops.push_back( 2784 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2785 TLI.getPointerTy(DAG.getDataLayout()))); 2786 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2787 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2788 break; 2789 } 2790 } 2791 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2792 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2793 // Eventually we will support lowering the @llvm.experimental.deoptimize 2794 // intrinsic, and right now there are no plans to support other intrinsics 2795 // with deopt state. 2796 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2797 } else { 2798 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2799 } 2800 2801 // If the value of the invoke is used outside of its defining block, make it 2802 // available as a virtual register. 2803 // We already took care of the exported value for the statepoint instruction 2804 // during call to the LowerStatepoint. 2805 if (!isStatepoint(I)) { 2806 CopyToExportRegsIfNeeded(&I); 2807 } 2808 2809 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2810 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2811 BranchProbability EHPadBBProb = 2812 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2813 : BranchProbability::getZero(); 2814 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2815 2816 // Update successor info. 2817 addSuccessorWithProb(InvokeMBB, Return); 2818 for (auto &UnwindDest : UnwindDests) { 2819 UnwindDest.first->setIsEHPad(); 2820 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2821 } 2822 InvokeMBB->normalizeSuccProbs(); 2823 2824 // Drop into normal successor. 2825 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2826 DAG.getBasicBlock(Return))); 2827 } 2828 2829 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2830 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2831 2832 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2833 // have to do anything here to lower funclet bundles. 2834 assert(!I.hasOperandBundlesOtherThan( 2835 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2836 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2837 2838 assert(isa<InlineAsm>(I.getCalledValue()) && 2839 "Only know how to handle inlineasm callbr"); 2840 visitInlineAsm(&I); 2841 2842 // Retrieve successors. 2843 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2844 2845 // Update successor info. 2846 addSuccessorWithProb(CallBrMBB, Return); 2847 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2848 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2849 addSuccessorWithProb(CallBrMBB, Target); 2850 } 2851 CallBrMBB->normalizeSuccProbs(); 2852 2853 // Drop into default successor. 2854 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2855 MVT::Other, getControlRoot(), 2856 DAG.getBasicBlock(Return))); 2857 } 2858 2859 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2860 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2861 } 2862 2863 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2864 assert(FuncInfo.MBB->isEHPad() && 2865 "Call to landingpad not in landing pad!"); 2866 2867 // If there aren't registers to copy the values into (e.g., during SjLj 2868 // exceptions), then don't bother to create these DAG nodes. 2869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2870 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2871 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2872 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2873 return; 2874 2875 // If landingpad's return type is token type, we don't create DAG nodes 2876 // for its exception pointer and selector value. The extraction of exception 2877 // pointer or selector value from token type landingpads is not currently 2878 // supported. 2879 if (LP.getType()->isTokenTy()) 2880 return; 2881 2882 SmallVector<EVT, 2> ValueVTs; 2883 SDLoc dl = getCurSDLoc(); 2884 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2885 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2886 2887 // Get the two live-in registers as SDValues. The physregs have already been 2888 // copied into virtual registers. 2889 SDValue Ops[2]; 2890 if (FuncInfo.ExceptionPointerVirtReg) { 2891 Ops[0] = DAG.getZExtOrTrunc( 2892 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2893 FuncInfo.ExceptionPointerVirtReg, 2894 TLI.getPointerTy(DAG.getDataLayout())), 2895 dl, ValueVTs[0]); 2896 } else { 2897 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2898 } 2899 Ops[1] = DAG.getZExtOrTrunc( 2900 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2901 FuncInfo.ExceptionSelectorVirtReg, 2902 TLI.getPointerTy(DAG.getDataLayout())), 2903 dl, ValueVTs[1]); 2904 2905 // Merge into one. 2906 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2907 DAG.getVTList(ValueVTs), Ops); 2908 setValue(&LP, Res); 2909 } 2910 2911 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2912 MachineBasicBlock *Last) { 2913 // Update JTCases. 2914 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2915 if (SL->JTCases[i].first.HeaderBB == First) 2916 SL->JTCases[i].first.HeaderBB = Last; 2917 2918 // Update BitTestCases. 2919 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2920 if (SL->BitTestCases[i].Parent == First) 2921 SL->BitTestCases[i].Parent = Last; 2922 } 2923 2924 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2925 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2926 2927 // Update machine-CFG edges with unique successors. 2928 SmallSet<BasicBlock*, 32> Done; 2929 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2930 BasicBlock *BB = I.getSuccessor(i); 2931 bool Inserted = Done.insert(BB).second; 2932 if (!Inserted) 2933 continue; 2934 2935 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2936 addSuccessorWithProb(IndirectBrMBB, Succ); 2937 } 2938 IndirectBrMBB->normalizeSuccProbs(); 2939 2940 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2941 MVT::Other, getControlRoot(), 2942 getValue(I.getAddress()))); 2943 } 2944 2945 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2946 if (!DAG.getTarget().Options.TrapUnreachable) 2947 return; 2948 2949 // We may be able to ignore unreachable behind a noreturn call. 2950 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2951 const BasicBlock &BB = *I.getParent(); 2952 if (&I != &BB.front()) { 2953 BasicBlock::const_iterator PredI = 2954 std::prev(BasicBlock::const_iterator(&I)); 2955 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2956 if (Call->doesNotReturn()) 2957 return; 2958 } 2959 } 2960 } 2961 2962 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2963 } 2964 2965 void SelectionDAGBuilder::visitFSub(const User &I) { 2966 // -0.0 - X --> fneg 2967 Type *Ty = I.getType(); 2968 if (isa<Constant>(I.getOperand(0)) && 2969 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2970 SDValue Op2 = getValue(I.getOperand(1)); 2971 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2972 Op2.getValueType(), Op2)); 2973 return; 2974 } 2975 2976 visitBinary(I, ISD::FSUB); 2977 } 2978 2979 /// Checks if the given instruction performs a vector reduction, in which case 2980 /// we have the freedom to alter the elements in the result as long as the 2981 /// reduction of them stays unchanged. 2982 static bool isVectorReductionOp(const User *I) { 2983 const Instruction *Inst = dyn_cast<Instruction>(I); 2984 if (!Inst || !Inst->getType()->isVectorTy()) 2985 return false; 2986 2987 auto OpCode = Inst->getOpcode(); 2988 switch (OpCode) { 2989 case Instruction::Add: 2990 case Instruction::Mul: 2991 case Instruction::And: 2992 case Instruction::Or: 2993 case Instruction::Xor: 2994 break; 2995 case Instruction::FAdd: 2996 case Instruction::FMul: 2997 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2998 if (FPOp->getFastMathFlags().isFast()) 2999 break; 3000 LLVM_FALLTHROUGH; 3001 default: 3002 return false; 3003 } 3004 3005 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 3006 // Ensure the reduction size is a power of 2. 3007 if (!isPowerOf2_32(ElemNum)) 3008 return false; 3009 3010 unsigned ElemNumToReduce = ElemNum; 3011 3012 // Do DFS search on the def-use chain from the given instruction. We only 3013 // allow four kinds of operations during the search until we reach the 3014 // instruction that extracts the first element from the vector: 3015 // 3016 // 1. The reduction operation of the same opcode as the given instruction. 3017 // 3018 // 2. PHI node. 3019 // 3020 // 3. ShuffleVector instruction together with a reduction operation that 3021 // does a partial reduction. 3022 // 3023 // 4. ExtractElement that extracts the first element from the vector, and we 3024 // stop searching the def-use chain here. 3025 // 3026 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3027 // from 1-3 to the stack to continue the DFS. The given instruction is not 3028 // a reduction operation if we meet any other instructions other than those 3029 // listed above. 3030 3031 SmallVector<const User *, 16> UsersToVisit{Inst}; 3032 SmallPtrSet<const User *, 16> Visited; 3033 bool ReduxExtracted = false; 3034 3035 while (!UsersToVisit.empty()) { 3036 auto User = UsersToVisit.back(); 3037 UsersToVisit.pop_back(); 3038 if (!Visited.insert(User).second) 3039 continue; 3040 3041 for (const auto &U : User->users()) { 3042 auto Inst = dyn_cast<Instruction>(U); 3043 if (!Inst) 3044 return false; 3045 3046 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3047 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3048 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3049 return false; 3050 UsersToVisit.push_back(U); 3051 } else if (const ShuffleVectorInst *ShufInst = 3052 dyn_cast<ShuffleVectorInst>(U)) { 3053 // Detect the following pattern: A ShuffleVector instruction together 3054 // with a reduction that do partial reduction on the first and second 3055 // ElemNumToReduce / 2 elements, and store the result in 3056 // ElemNumToReduce / 2 elements in another vector. 3057 3058 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3059 if (ResultElements < ElemNum) 3060 return false; 3061 3062 if (ElemNumToReduce == 1) 3063 return false; 3064 if (!isa<UndefValue>(U->getOperand(1))) 3065 return false; 3066 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3067 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3068 return false; 3069 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3070 if (ShufInst->getMaskValue(i) != -1) 3071 return false; 3072 3073 // There is only one user of this ShuffleVector instruction, which 3074 // must be a reduction operation. 3075 if (!U->hasOneUse()) 3076 return false; 3077 3078 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3079 if (!U2 || U2->getOpcode() != OpCode) 3080 return false; 3081 3082 // Check operands of the reduction operation. 3083 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3084 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3085 UsersToVisit.push_back(U2); 3086 ElemNumToReduce /= 2; 3087 } else 3088 return false; 3089 } else if (isa<ExtractElementInst>(U)) { 3090 // At this moment we should have reduced all elements in the vector. 3091 if (ElemNumToReduce != 1) 3092 return false; 3093 3094 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3095 if (!Val || !Val->isZero()) 3096 return false; 3097 3098 ReduxExtracted = true; 3099 } else 3100 return false; 3101 } 3102 } 3103 return ReduxExtracted; 3104 } 3105 3106 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3107 SDNodeFlags Flags; 3108 3109 SDValue Op = getValue(I.getOperand(0)); 3110 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3111 Op, Flags); 3112 setValue(&I, UnNodeValue); 3113 } 3114 3115 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3116 SDNodeFlags Flags; 3117 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3118 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3119 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3120 } 3121 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3122 Flags.setExact(ExactOp->isExact()); 3123 } 3124 if (isVectorReductionOp(&I)) { 3125 Flags.setVectorReduction(true); 3126 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3127 } 3128 3129 SDValue Op1 = getValue(I.getOperand(0)); 3130 SDValue Op2 = getValue(I.getOperand(1)); 3131 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3132 Op1, Op2, Flags); 3133 setValue(&I, BinNodeValue); 3134 } 3135 3136 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3137 SDValue Op1 = getValue(I.getOperand(0)); 3138 SDValue Op2 = getValue(I.getOperand(1)); 3139 3140 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3141 Op1.getValueType(), DAG.getDataLayout()); 3142 3143 // Coerce the shift amount to the right type if we can. 3144 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3145 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3146 unsigned Op2Size = Op2.getValueSizeInBits(); 3147 SDLoc DL = getCurSDLoc(); 3148 3149 // If the operand is smaller than the shift count type, promote it. 3150 if (ShiftSize > Op2Size) 3151 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3152 3153 // If the operand is larger than the shift count type but the shift 3154 // count type has enough bits to represent any shift value, truncate 3155 // it now. This is a common case and it exposes the truncate to 3156 // optimization early. 3157 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3158 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3159 // Otherwise we'll need to temporarily settle for some other convenient 3160 // type. Type legalization will make adjustments once the shiftee is split. 3161 else 3162 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3163 } 3164 3165 bool nuw = false; 3166 bool nsw = false; 3167 bool exact = false; 3168 3169 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3170 3171 if (const OverflowingBinaryOperator *OFBinOp = 3172 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3173 nuw = OFBinOp->hasNoUnsignedWrap(); 3174 nsw = OFBinOp->hasNoSignedWrap(); 3175 } 3176 if (const PossiblyExactOperator *ExactOp = 3177 dyn_cast<const PossiblyExactOperator>(&I)) 3178 exact = ExactOp->isExact(); 3179 } 3180 SDNodeFlags Flags; 3181 Flags.setExact(exact); 3182 Flags.setNoSignedWrap(nsw); 3183 Flags.setNoUnsignedWrap(nuw); 3184 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3185 Flags); 3186 setValue(&I, Res); 3187 } 3188 3189 void SelectionDAGBuilder::visitSDiv(const User &I) { 3190 SDValue Op1 = getValue(I.getOperand(0)); 3191 SDValue Op2 = getValue(I.getOperand(1)); 3192 3193 SDNodeFlags Flags; 3194 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3195 cast<PossiblyExactOperator>(&I)->isExact()); 3196 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3197 Op2, Flags)); 3198 } 3199 3200 void SelectionDAGBuilder::visitICmp(const User &I) { 3201 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3202 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3203 predicate = IC->getPredicate(); 3204 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3205 predicate = ICmpInst::Predicate(IC->getPredicate()); 3206 SDValue Op1 = getValue(I.getOperand(0)); 3207 SDValue Op2 = getValue(I.getOperand(1)); 3208 ISD::CondCode Opcode = getICmpCondCode(predicate); 3209 3210 auto &TLI = DAG.getTargetLoweringInfo(); 3211 EVT MemVT = 3212 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3213 3214 // If a pointer's DAG type is larger than its memory type then the DAG values 3215 // are zero-extended. This breaks signed comparisons so truncate back to the 3216 // underlying type before doing the compare. 3217 if (Op1.getValueType() != MemVT) { 3218 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3219 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3220 } 3221 3222 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3223 I.getType()); 3224 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3225 } 3226 3227 void SelectionDAGBuilder::visitFCmp(const User &I) { 3228 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3229 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3230 predicate = FC->getPredicate(); 3231 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3232 predicate = FCmpInst::Predicate(FC->getPredicate()); 3233 SDValue Op1 = getValue(I.getOperand(0)); 3234 SDValue Op2 = getValue(I.getOperand(1)); 3235 3236 ISD::CondCode Condition = getFCmpCondCode(predicate); 3237 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3238 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3239 Condition = getFCmpCodeWithoutNaN(Condition); 3240 3241 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3242 I.getType()); 3243 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3244 } 3245 3246 // Check if the condition of the select has one use or two users that are both 3247 // selects with the same condition. 3248 static bool hasOnlySelectUsers(const Value *Cond) { 3249 return llvm::all_of(Cond->users(), [](const Value *V) { 3250 return isa<SelectInst>(V); 3251 }); 3252 } 3253 3254 void SelectionDAGBuilder::visitSelect(const User &I) { 3255 SmallVector<EVT, 4> ValueVTs; 3256 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3257 ValueVTs); 3258 unsigned NumValues = ValueVTs.size(); 3259 if (NumValues == 0) return; 3260 3261 SmallVector<SDValue, 4> Values(NumValues); 3262 SDValue Cond = getValue(I.getOperand(0)); 3263 SDValue LHSVal = getValue(I.getOperand(1)); 3264 SDValue RHSVal = getValue(I.getOperand(2)); 3265 auto BaseOps = {Cond}; 3266 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3267 ISD::VSELECT : ISD::SELECT; 3268 3269 bool IsUnaryAbs = false; 3270 3271 // Min/max matching is only viable if all output VTs are the same. 3272 if (is_splat(ValueVTs)) { 3273 EVT VT = ValueVTs[0]; 3274 LLVMContext &Ctx = *DAG.getContext(); 3275 auto &TLI = DAG.getTargetLoweringInfo(); 3276 3277 // We care about the legality of the operation after it has been type 3278 // legalized. 3279 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3280 VT = TLI.getTypeToTransformTo(Ctx, VT); 3281 3282 // If the vselect is legal, assume we want to leave this as a vector setcc + 3283 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3284 // min/max is legal on the scalar type. 3285 bool UseScalarMinMax = VT.isVector() && 3286 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3287 3288 Value *LHS, *RHS; 3289 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3290 ISD::NodeType Opc = ISD::DELETED_NODE; 3291 switch (SPR.Flavor) { 3292 case SPF_UMAX: Opc = ISD::UMAX; break; 3293 case SPF_UMIN: Opc = ISD::UMIN; break; 3294 case SPF_SMAX: Opc = ISD::SMAX; break; 3295 case SPF_SMIN: Opc = ISD::SMIN; break; 3296 case SPF_FMINNUM: 3297 switch (SPR.NaNBehavior) { 3298 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3299 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3300 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3301 case SPNB_RETURNS_ANY: { 3302 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3303 Opc = ISD::FMINNUM; 3304 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3305 Opc = ISD::FMINIMUM; 3306 else if (UseScalarMinMax) 3307 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3308 ISD::FMINNUM : ISD::FMINIMUM; 3309 break; 3310 } 3311 } 3312 break; 3313 case SPF_FMAXNUM: 3314 switch (SPR.NaNBehavior) { 3315 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3316 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3317 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3318 case SPNB_RETURNS_ANY: 3319 3320 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3321 Opc = ISD::FMAXNUM; 3322 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3323 Opc = ISD::FMAXIMUM; 3324 else if (UseScalarMinMax) 3325 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3326 ISD::FMAXNUM : ISD::FMAXIMUM; 3327 break; 3328 } 3329 break; 3330 case SPF_ABS: 3331 IsUnaryAbs = true; 3332 Opc = ISD::ABS; 3333 break; 3334 case SPF_NABS: 3335 // TODO: we need to produce sub(0, abs(X)). 3336 default: break; 3337 } 3338 3339 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3340 (TLI.isOperationLegalOrCustom(Opc, VT) || 3341 (UseScalarMinMax && 3342 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3343 // If the underlying comparison instruction is used by any other 3344 // instruction, the consumed instructions won't be destroyed, so it is 3345 // not profitable to convert to a min/max. 3346 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3347 OpCode = Opc; 3348 LHSVal = getValue(LHS); 3349 RHSVal = getValue(RHS); 3350 BaseOps = {}; 3351 } 3352 3353 if (IsUnaryAbs) { 3354 OpCode = Opc; 3355 LHSVal = getValue(LHS); 3356 BaseOps = {}; 3357 } 3358 } 3359 3360 if (IsUnaryAbs) { 3361 for (unsigned i = 0; i != NumValues; ++i) { 3362 Values[i] = 3363 DAG.getNode(OpCode, getCurSDLoc(), 3364 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3365 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3366 } 3367 } else { 3368 for (unsigned i = 0; i != NumValues; ++i) { 3369 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3370 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3371 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3372 Values[i] = DAG.getNode( 3373 OpCode, getCurSDLoc(), 3374 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3375 } 3376 } 3377 3378 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3379 DAG.getVTList(ValueVTs), Values)); 3380 } 3381 3382 void SelectionDAGBuilder::visitTrunc(const User &I) { 3383 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3384 SDValue N = getValue(I.getOperand(0)); 3385 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3386 I.getType()); 3387 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3388 } 3389 3390 void SelectionDAGBuilder::visitZExt(const User &I) { 3391 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3392 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3393 SDValue N = getValue(I.getOperand(0)); 3394 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3395 I.getType()); 3396 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3397 } 3398 3399 void SelectionDAGBuilder::visitSExt(const User &I) { 3400 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3401 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3402 SDValue N = getValue(I.getOperand(0)); 3403 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3404 I.getType()); 3405 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3406 } 3407 3408 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3409 // FPTrunc is never a no-op cast, no need to check 3410 SDValue N = getValue(I.getOperand(0)); 3411 SDLoc dl = getCurSDLoc(); 3412 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3413 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3414 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3415 DAG.getTargetConstant( 3416 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3417 } 3418 3419 void SelectionDAGBuilder::visitFPExt(const User &I) { 3420 // FPExt is never a no-op cast, no need to check 3421 SDValue N = getValue(I.getOperand(0)); 3422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3423 I.getType()); 3424 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3425 } 3426 3427 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3428 // FPToUI is never a no-op cast, no need to check 3429 SDValue N = getValue(I.getOperand(0)); 3430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3431 I.getType()); 3432 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3433 } 3434 3435 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3436 // FPToSI is never a no-op cast, no need to check 3437 SDValue N = getValue(I.getOperand(0)); 3438 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3439 I.getType()); 3440 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3441 } 3442 3443 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3444 // UIToFP is never a no-op cast, no need to check 3445 SDValue N = getValue(I.getOperand(0)); 3446 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3447 I.getType()); 3448 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3449 } 3450 3451 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3452 // SIToFP is never a no-op cast, no need to check 3453 SDValue N = getValue(I.getOperand(0)); 3454 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3455 I.getType()); 3456 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3457 } 3458 3459 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3460 // What to do depends on the size of the integer and the size of the pointer. 3461 // We can either truncate, zero extend, or no-op, accordingly. 3462 SDValue N = getValue(I.getOperand(0)); 3463 auto &TLI = DAG.getTargetLoweringInfo(); 3464 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3465 I.getType()); 3466 EVT PtrMemVT = 3467 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3468 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3469 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3470 setValue(&I, N); 3471 } 3472 3473 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3474 // What to do depends on the size of the integer and the size of the pointer. 3475 // We can either truncate, zero extend, or no-op, accordingly. 3476 SDValue N = getValue(I.getOperand(0)); 3477 auto &TLI = DAG.getTargetLoweringInfo(); 3478 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3479 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3480 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3481 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3482 setValue(&I, N); 3483 } 3484 3485 void SelectionDAGBuilder::visitBitCast(const User &I) { 3486 SDValue N = getValue(I.getOperand(0)); 3487 SDLoc dl = getCurSDLoc(); 3488 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3489 I.getType()); 3490 3491 // BitCast assures us that source and destination are the same size so this is 3492 // either a BITCAST or a no-op. 3493 if (DestVT != N.getValueType()) 3494 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3495 DestVT, N)); // convert types. 3496 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3497 // might fold any kind of constant expression to an integer constant and that 3498 // is not what we are looking for. Only recognize a bitcast of a genuine 3499 // constant integer as an opaque constant. 3500 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3501 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3502 /*isOpaque*/true)); 3503 else 3504 setValue(&I, N); // noop cast. 3505 } 3506 3507 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3509 const Value *SV = I.getOperand(0); 3510 SDValue N = getValue(SV); 3511 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3512 3513 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3514 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3515 3516 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3517 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3518 3519 setValue(&I, N); 3520 } 3521 3522 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3523 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3524 SDValue InVec = getValue(I.getOperand(0)); 3525 SDValue InVal = getValue(I.getOperand(1)); 3526 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3527 TLI.getVectorIdxTy(DAG.getDataLayout())); 3528 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3529 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3530 InVec, InVal, InIdx)); 3531 } 3532 3533 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3535 SDValue InVec = getValue(I.getOperand(0)); 3536 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3537 TLI.getVectorIdxTy(DAG.getDataLayout())); 3538 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3539 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3540 InVec, InIdx)); 3541 } 3542 3543 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3544 SDValue Src1 = getValue(I.getOperand(0)); 3545 SDValue Src2 = getValue(I.getOperand(1)); 3546 Constant *MaskV = cast<Constant>(I.getOperand(2)); 3547 SDLoc DL = getCurSDLoc(); 3548 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3549 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3550 EVT SrcVT = Src1.getValueType(); 3551 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3552 3553 if (MaskV->isNullValue() && VT.isScalableVector()) { 3554 // Canonical splat form of first element of first input vector. 3555 SDValue FirstElt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3556 SrcVT.getScalarType(), Src1, 3557 DAG.getConstant(0, DL, 3558 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3559 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3560 return; 3561 } 3562 3563 // For now, we only handle splats for scalable vectors. 3564 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3565 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3566 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3567 3568 SmallVector<int, 8> Mask; 3569 ShuffleVectorInst::getShuffleMask(MaskV, Mask); 3570 unsigned MaskNumElts = Mask.size(); 3571 3572 if (SrcNumElts == MaskNumElts) { 3573 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3574 return; 3575 } 3576 3577 // Normalize the shuffle vector since mask and vector length don't match. 3578 if (SrcNumElts < MaskNumElts) { 3579 // Mask is longer than the source vectors. We can use concatenate vector to 3580 // make the mask and vectors lengths match. 3581 3582 if (MaskNumElts % SrcNumElts == 0) { 3583 // Mask length is a multiple of the source vector length. 3584 // Check if the shuffle is some kind of concatenation of the input 3585 // vectors. 3586 unsigned NumConcat = MaskNumElts / SrcNumElts; 3587 bool IsConcat = true; 3588 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3589 for (unsigned i = 0; i != MaskNumElts; ++i) { 3590 int Idx = Mask[i]; 3591 if (Idx < 0) 3592 continue; 3593 // Ensure the indices in each SrcVT sized piece are sequential and that 3594 // the same source is used for the whole piece. 3595 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3596 (ConcatSrcs[i / SrcNumElts] >= 0 && 3597 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3598 IsConcat = false; 3599 break; 3600 } 3601 // Remember which source this index came from. 3602 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3603 } 3604 3605 // The shuffle is concatenating multiple vectors together. Just emit 3606 // a CONCAT_VECTORS operation. 3607 if (IsConcat) { 3608 SmallVector<SDValue, 8> ConcatOps; 3609 for (auto Src : ConcatSrcs) { 3610 if (Src < 0) 3611 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3612 else if (Src == 0) 3613 ConcatOps.push_back(Src1); 3614 else 3615 ConcatOps.push_back(Src2); 3616 } 3617 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3618 return; 3619 } 3620 } 3621 3622 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3623 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3624 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3625 PaddedMaskNumElts); 3626 3627 // Pad both vectors with undefs to make them the same length as the mask. 3628 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3629 3630 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3631 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3632 MOps1[0] = Src1; 3633 MOps2[0] = Src2; 3634 3635 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3636 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3637 3638 // Readjust mask for new input vector length. 3639 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3640 for (unsigned i = 0; i != MaskNumElts; ++i) { 3641 int Idx = Mask[i]; 3642 if (Idx >= (int)SrcNumElts) 3643 Idx -= SrcNumElts - PaddedMaskNumElts; 3644 MappedOps[i] = Idx; 3645 } 3646 3647 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3648 3649 // If the concatenated vector was padded, extract a subvector with the 3650 // correct number of elements. 3651 if (MaskNumElts != PaddedMaskNumElts) 3652 Result = DAG.getNode( 3653 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3654 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3655 3656 setValue(&I, Result); 3657 return; 3658 } 3659 3660 if (SrcNumElts > MaskNumElts) { 3661 // Analyze the access pattern of the vector to see if we can extract 3662 // two subvectors and do the shuffle. 3663 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3664 bool CanExtract = true; 3665 for (int Idx : Mask) { 3666 unsigned Input = 0; 3667 if (Idx < 0) 3668 continue; 3669 3670 if (Idx >= (int)SrcNumElts) { 3671 Input = 1; 3672 Idx -= SrcNumElts; 3673 } 3674 3675 // If all the indices come from the same MaskNumElts sized portion of 3676 // the sources we can use extract. Also make sure the extract wouldn't 3677 // extract past the end of the source. 3678 int NewStartIdx = alignDown(Idx, MaskNumElts); 3679 if (NewStartIdx + MaskNumElts > SrcNumElts || 3680 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3681 CanExtract = false; 3682 // Make sure we always update StartIdx as we use it to track if all 3683 // elements are undef. 3684 StartIdx[Input] = NewStartIdx; 3685 } 3686 3687 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3688 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3689 return; 3690 } 3691 if (CanExtract) { 3692 // Extract appropriate subvector and generate a vector shuffle 3693 for (unsigned Input = 0; Input < 2; ++Input) { 3694 SDValue &Src = Input == 0 ? Src1 : Src2; 3695 if (StartIdx[Input] < 0) 3696 Src = DAG.getUNDEF(VT); 3697 else { 3698 Src = DAG.getNode( 3699 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3700 DAG.getConstant(StartIdx[Input], DL, 3701 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3702 } 3703 } 3704 3705 // Calculate new mask. 3706 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3707 for (int &Idx : MappedOps) { 3708 if (Idx >= (int)SrcNumElts) 3709 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3710 else if (Idx >= 0) 3711 Idx -= StartIdx[0]; 3712 } 3713 3714 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3715 return; 3716 } 3717 } 3718 3719 // We can't use either concat vectors or extract subvectors so fall back to 3720 // replacing the shuffle with extract and build vector. 3721 // to insert and build vector. 3722 EVT EltVT = VT.getVectorElementType(); 3723 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3724 SmallVector<SDValue,8> Ops; 3725 for (int Idx : Mask) { 3726 SDValue Res; 3727 3728 if (Idx < 0) { 3729 Res = DAG.getUNDEF(EltVT); 3730 } else { 3731 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3732 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3733 3734 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3735 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3736 } 3737 3738 Ops.push_back(Res); 3739 } 3740 3741 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3742 } 3743 3744 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3745 ArrayRef<unsigned> Indices; 3746 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3747 Indices = IV->getIndices(); 3748 else 3749 Indices = cast<ConstantExpr>(&I)->getIndices(); 3750 3751 const Value *Op0 = I.getOperand(0); 3752 const Value *Op1 = I.getOperand(1); 3753 Type *AggTy = I.getType(); 3754 Type *ValTy = Op1->getType(); 3755 bool IntoUndef = isa<UndefValue>(Op0); 3756 bool FromUndef = isa<UndefValue>(Op1); 3757 3758 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3759 3760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3761 SmallVector<EVT, 4> AggValueVTs; 3762 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3763 SmallVector<EVT, 4> ValValueVTs; 3764 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3765 3766 unsigned NumAggValues = AggValueVTs.size(); 3767 unsigned NumValValues = ValValueVTs.size(); 3768 SmallVector<SDValue, 4> Values(NumAggValues); 3769 3770 // Ignore an insertvalue that produces an empty object 3771 if (!NumAggValues) { 3772 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3773 return; 3774 } 3775 3776 SDValue Agg = getValue(Op0); 3777 unsigned i = 0; 3778 // Copy the beginning value(s) from the original aggregate. 3779 for (; i != LinearIndex; ++i) 3780 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3781 SDValue(Agg.getNode(), Agg.getResNo() + i); 3782 // Copy values from the inserted value(s). 3783 if (NumValValues) { 3784 SDValue Val = getValue(Op1); 3785 for (; i != LinearIndex + NumValValues; ++i) 3786 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3787 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3788 } 3789 // Copy remaining value(s) from the original aggregate. 3790 for (; i != NumAggValues; ++i) 3791 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3792 SDValue(Agg.getNode(), Agg.getResNo() + i); 3793 3794 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3795 DAG.getVTList(AggValueVTs), Values)); 3796 } 3797 3798 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3799 ArrayRef<unsigned> Indices; 3800 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3801 Indices = EV->getIndices(); 3802 else 3803 Indices = cast<ConstantExpr>(&I)->getIndices(); 3804 3805 const Value *Op0 = I.getOperand(0); 3806 Type *AggTy = Op0->getType(); 3807 Type *ValTy = I.getType(); 3808 bool OutOfUndef = isa<UndefValue>(Op0); 3809 3810 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3811 3812 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3813 SmallVector<EVT, 4> ValValueVTs; 3814 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3815 3816 unsigned NumValValues = ValValueVTs.size(); 3817 3818 // Ignore a extractvalue that produces an empty object 3819 if (!NumValValues) { 3820 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3821 return; 3822 } 3823 3824 SmallVector<SDValue, 4> Values(NumValValues); 3825 3826 SDValue Agg = getValue(Op0); 3827 // Copy out the selected value(s). 3828 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3829 Values[i - LinearIndex] = 3830 OutOfUndef ? 3831 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3832 SDValue(Agg.getNode(), Agg.getResNo() + i); 3833 3834 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3835 DAG.getVTList(ValValueVTs), Values)); 3836 } 3837 3838 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3839 Value *Op0 = I.getOperand(0); 3840 // Note that the pointer operand may be a vector of pointers. Take the scalar 3841 // element which holds a pointer. 3842 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3843 SDValue N = getValue(Op0); 3844 SDLoc dl = getCurSDLoc(); 3845 auto &TLI = DAG.getTargetLoweringInfo(); 3846 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3847 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3848 3849 // Normalize Vector GEP - all scalar operands should be converted to the 3850 // splat vector. 3851 unsigned VectorWidth = I.getType()->isVectorTy() ? 3852 I.getType()->getVectorNumElements() : 0; 3853 3854 if (VectorWidth && !N.getValueType().isVector()) { 3855 LLVMContext &Context = *DAG.getContext(); 3856 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3857 N = DAG.getSplatBuildVector(VT, dl, N); 3858 } 3859 3860 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3861 GTI != E; ++GTI) { 3862 const Value *Idx = GTI.getOperand(); 3863 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3864 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3865 if (Field) { 3866 // N = N + Offset 3867 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3868 3869 // In an inbounds GEP with an offset that is nonnegative even when 3870 // interpreted as signed, assume there is no unsigned overflow. 3871 SDNodeFlags Flags; 3872 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3873 Flags.setNoUnsignedWrap(true); 3874 3875 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3876 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3877 } 3878 } else { 3879 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3880 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3881 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3882 3883 // If this is a scalar constant or a splat vector of constants, 3884 // handle it quickly. 3885 const auto *C = dyn_cast<Constant>(Idx); 3886 if (C && isa<VectorType>(C->getType())) 3887 C = C->getSplatValue(); 3888 3889 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C)) { 3890 if (CI->isZero()) 3891 continue; 3892 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3893 LLVMContext &Context = *DAG.getContext(); 3894 SDValue OffsVal = VectorWidth ? 3895 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3896 DAG.getConstant(Offs, dl, IdxTy); 3897 3898 // In an inbounds GEP with an offset that is nonnegative even when 3899 // interpreted as signed, assume there is no unsigned overflow. 3900 SDNodeFlags Flags; 3901 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3902 Flags.setNoUnsignedWrap(true); 3903 3904 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3905 3906 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3907 continue; 3908 } 3909 3910 // N = N + Idx * ElementSize; 3911 SDValue IdxN = getValue(Idx); 3912 3913 if (!IdxN.getValueType().isVector() && VectorWidth) { 3914 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3915 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3916 } 3917 3918 // If the index is smaller or larger than intptr_t, truncate or extend 3919 // it. 3920 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3921 3922 // If this is a multiply by a power of two, turn it into a shl 3923 // immediately. This is a very common case. 3924 if (ElementSize != 1) { 3925 if (ElementSize.isPowerOf2()) { 3926 unsigned Amt = ElementSize.logBase2(); 3927 IdxN = DAG.getNode(ISD::SHL, dl, 3928 N.getValueType(), IdxN, 3929 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3930 } else { 3931 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl, 3932 IdxN.getValueType()); 3933 IdxN = DAG.getNode(ISD::MUL, dl, 3934 N.getValueType(), IdxN, Scale); 3935 } 3936 } 3937 3938 N = DAG.getNode(ISD::ADD, dl, 3939 N.getValueType(), N, IdxN); 3940 } 3941 } 3942 3943 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3944 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3945 3946 setValue(&I, N); 3947 } 3948 3949 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3950 // If this is a fixed sized alloca in the entry block of the function, 3951 // allocate it statically on the stack. 3952 if (FuncInfo.StaticAllocaMap.count(&I)) 3953 return; // getValue will auto-populate this. 3954 3955 SDLoc dl = getCurSDLoc(); 3956 Type *Ty = I.getAllocatedType(); 3957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3958 auto &DL = DAG.getDataLayout(); 3959 uint64_t TySize = DL.getTypeAllocSize(Ty); 3960 unsigned Align = 3961 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3962 3963 SDValue AllocSize = getValue(I.getArraySize()); 3964 3965 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3966 if (AllocSize.getValueType() != IntPtr) 3967 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3968 3969 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3970 AllocSize, 3971 DAG.getConstant(TySize, dl, IntPtr)); 3972 3973 // Handle alignment. If the requested alignment is less than or equal to 3974 // the stack alignment, ignore it. If the size is greater than or equal to 3975 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3976 unsigned StackAlign = 3977 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3978 if (Align <= StackAlign) 3979 Align = 0; 3980 3981 // Round the size of the allocation up to the stack alignment size 3982 // by add SA-1 to the size. This doesn't overflow because we're computing 3983 // an address inside an alloca. 3984 SDNodeFlags Flags; 3985 Flags.setNoUnsignedWrap(true); 3986 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3987 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3988 3989 // Mask out the low bits for alignment purposes. 3990 AllocSize = 3991 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3992 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3993 3994 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3995 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3996 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3997 setValue(&I, DSA); 3998 DAG.setRoot(DSA.getValue(1)); 3999 4000 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4001 } 4002 4003 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4004 if (I.isAtomic()) 4005 return visitAtomicLoad(I); 4006 4007 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4008 const Value *SV = I.getOperand(0); 4009 if (TLI.supportSwiftError()) { 4010 // Swifterror values can come from either a function parameter with 4011 // swifterror attribute or an alloca with swifterror attribute. 4012 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4013 if (Arg->hasSwiftErrorAttr()) 4014 return visitLoadFromSwiftError(I); 4015 } 4016 4017 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4018 if (Alloca->isSwiftError()) 4019 return visitLoadFromSwiftError(I); 4020 } 4021 } 4022 4023 SDValue Ptr = getValue(SV); 4024 4025 Type *Ty = I.getType(); 4026 4027 bool isVolatile = I.isVolatile(); 4028 bool isNonTemporal = I.hasMetadata(LLVMContext::MD_nontemporal); 4029 bool isInvariant = I.hasMetadata(LLVMContext::MD_invariant_load); 4030 bool isDereferenceable = 4031 isDereferenceablePointer(SV, I.getType(), DAG.getDataLayout()); 4032 unsigned Alignment = I.getAlignment(); 4033 4034 AAMDNodes AAInfo; 4035 I.getAAMetadata(AAInfo); 4036 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4037 4038 SmallVector<EVT, 4> ValueVTs, MemVTs; 4039 SmallVector<uint64_t, 4> Offsets; 4040 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4041 unsigned NumValues = ValueVTs.size(); 4042 if (NumValues == 0) 4043 return; 4044 4045 SDValue Root; 4046 bool ConstantMemory = false; 4047 if (isVolatile || NumValues > MaxParallelChains) 4048 // Serialize volatile loads with other side effects. 4049 Root = getRoot(); 4050 else if (AA && 4051 AA->pointsToConstantMemory(MemoryLocation( 4052 SV, 4053 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4054 AAInfo))) { 4055 // Do not serialize (non-volatile) loads of constant memory with anything. 4056 Root = DAG.getEntryNode(); 4057 ConstantMemory = true; 4058 } else { 4059 // Do not serialize non-volatile loads against each other. 4060 Root = DAG.getRoot(); 4061 } 4062 4063 SDLoc dl = getCurSDLoc(); 4064 4065 if (isVolatile) 4066 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4067 4068 // An aggregate load cannot wrap around the address space, so offsets to its 4069 // parts don't wrap either. 4070 SDNodeFlags Flags; 4071 Flags.setNoUnsignedWrap(true); 4072 4073 SmallVector<SDValue, 4> Values(NumValues); 4074 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4075 EVT PtrVT = Ptr.getValueType(); 4076 unsigned ChainI = 0; 4077 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4078 // Serializing loads here may result in excessive register pressure, and 4079 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4080 // could recover a bit by hoisting nodes upward in the chain by recognizing 4081 // they are side-effect free or do not alias. The optimizer should really 4082 // avoid this case by converting large object/array copies to llvm.memcpy 4083 // (MaxParallelChains should always remain as failsafe). 4084 if (ChainI == MaxParallelChains) { 4085 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4086 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4087 makeArrayRef(Chains.data(), ChainI)); 4088 Root = Chain; 4089 ChainI = 0; 4090 } 4091 SDValue A = DAG.getNode(ISD::ADD, dl, 4092 PtrVT, Ptr, 4093 DAG.getConstant(Offsets[i], dl, PtrVT), 4094 Flags); 4095 auto MMOFlags = MachineMemOperand::MONone; 4096 if (isVolatile) 4097 MMOFlags |= MachineMemOperand::MOVolatile; 4098 if (isNonTemporal) 4099 MMOFlags |= MachineMemOperand::MONonTemporal; 4100 if (isInvariant) 4101 MMOFlags |= MachineMemOperand::MOInvariant; 4102 if (isDereferenceable) 4103 MMOFlags |= MachineMemOperand::MODereferenceable; 4104 MMOFlags |= TLI.getMMOFlags(I); 4105 4106 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4107 MachinePointerInfo(SV, Offsets[i]), Alignment, 4108 MMOFlags, AAInfo, Ranges); 4109 Chains[ChainI] = L.getValue(1); 4110 4111 if (MemVTs[i] != ValueVTs[i]) 4112 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4113 4114 Values[i] = L; 4115 } 4116 4117 if (!ConstantMemory) { 4118 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4119 makeArrayRef(Chains.data(), ChainI)); 4120 if (isVolatile) 4121 DAG.setRoot(Chain); 4122 else 4123 PendingLoads.push_back(Chain); 4124 } 4125 4126 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4127 DAG.getVTList(ValueVTs), Values)); 4128 } 4129 4130 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4131 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4132 "call visitStoreToSwiftError when backend supports swifterror"); 4133 4134 SmallVector<EVT, 4> ValueVTs; 4135 SmallVector<uint64_t, 4> Offsets; 4136 const Value *SrcV = I.getOperand(0); 4137 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4138 SrcV->getType(), ValueVTs, &Offsets); 4139 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4140 "expect a single EVT for swifterror"); 4141 4142 SDValue Src = getValue(SrcV); 4143 // Create a virtual register, then update the virtual register. 4144 Register VReg = 4145 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4146 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4147 // Chain can be getRoot or getControlRoot. 4148 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4149 SDValue(Src.getNode(), Src.getResNo())); 4150 DAG.setRoot(CopyNode); 4151 } 4152 4153 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4154 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4155 "call visitLoadFromSwiftError when backend supports swifterror"); 4156 4157 assert(!I.isVolatile() && 4158 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4159 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4160 "Support volatile, non temporal, invariant for load_from_swift_error"); 4161 4162 const Value *SV = I.getOperand(0); 4163 Type *Ty = I.getType(); 4164 AAMDNodes AAInfo; 4165 I.getAAMetadata(AAInfo); 4166 assert( 4167 (!AA || 4168 !AA->pointsToConstantMemory(MemoryLocation( 4169 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4170 AAInfo))) && 4171 "load_from_swift_error should not be constant memory"); 4172 4173 SmallVector<EVT, 4> ValueVTs; 4174 SmallVector<uint64_t, 4> Offsets; 4175 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4176 ValueVTs, &Offsets); 4177 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4178 "expect a single EVT for swifterror"); 4179 4180 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4181 SDValue L = DAG.getCopyFromReg( 4182 getRoot(), getCurSDLoc(), 4183 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4184 4185 setValue(&I, L); 4186 } 4187 4188 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4189 if (I.isAtomic()) 4190 return visitAtomicStore(I); 4191 4192 const Value *SrcV = I.getOperand(0); 4193 const Value *PtrV = I.getOperand(1); 4194 4195 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4196 if (TLI.supportSwiftError()) { 4197 // Swifterror values can come from either a function parameter with 4198 // swifterror attribute or an alloca with swifterror attribute. 4199 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4200 if (Arg->hasSwiftErrorAttr()) 4201 return visitStoreToSwiftError(I); 4202 } 4203 4204 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4205 if (Alloca->isSwiftError()) 4206 return visitStoreToSwiftError(I); 4207 } 4208 } 4209 4210 SmallVector<EVT, 4> ValueVTs, MemVTs; 4211 SmallVector<uint64_t, 4> Offsets; 4212 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4213 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4214 unsigned NumValues = ValueVTs.size(); 4215 if (NumValues == 0) 4216 return; 4217 4218 // Get the lowered operands. Note that we do this after 4219 // checking if NumResults is zero, because with zero results 4220 // the operands won't have values in the map. 4221 SDValue Src = getValue(SrcV); 4222 SDValue Ptr = getValue(PtrV); 4223 4224 SDValue Root = getRoot(); 4225 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4226 SDLoc dl = getCurSDLoc(); 4227 unsigned Alignment = I.getAlignment(); 4228 AAMDNodes AAInfo; 4229 I.getAAMetadata(AAInfo); 4230 4231 auto MMOFlags = MachineMemOperand::MONone; 4232 if (I.isVolatile()) 4233 MMOFlags |= MachineMemOperand::MOVolatile; 4234 if (I.hasMetadata(LLVMContext::MD_nontemporal)) 4235 MMOFlags |= MachineMemOperand::MONonTemporal; 4236 MMOFlags |= TLI.getMMOFlags(I); 4237 4238 // An aggregate load cannot wrap around the address space, so offsets to its 4239 // parts don't wrap either. 4240 SDNodeFlags Flags; 4241 Flags.setNoUnsignedWrap(true); 4242 4243 unsigned ChainI = 0; 4244 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4245 // See visitLoad comments. 4246 if (ChainI == MaxParallelChains) { 4247 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4248 makeArrayRef(Chains.data(), ChainI)); 4249 Root = Chain; 4250 ChainI = 0; 4251 } 4252 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4253 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4254 if (MemVTs[i] != ValueVTs[i]) 4255 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4256 SDValue St = 4257 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4258 Alignment, MMOFlags, AAInfo); 4259 Chains[ChainI] = St; 4260 } 4261 4262 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4263 makeArrayRef(Chains.data(), ChainI)); 4264 DAG.setRoot(StoreNode); 4265 } 4266 4267 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4268 bool IsCompressing) { 4269 SDLoc sdl = getCurSDLoc(); 4270 4271 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4272 unsigned& Alignment) { 4273 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4274 Src0 = I.getArgOperand(0); 4275 Ptr = I.getArgOperand(1); 4276 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4277 Mask = I.getArgOperand(3); 4278 }; 4279 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4280 unsigned& Alignment) { 4281 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4282 Src0 = I.getArgOperand(0); 4283 Ptr = I.getArgOperand(1); 4284 Mask = I.getArgOperand(2); 4285 Alignment = 0; 4286 }; 4287 4288 Value *PtrOperand, *MaskOperand, *Src0Operand; 4289 unsigned Alignment; 4290 if (IsCompressing) 4291 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4292 else 4293 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4294 4295 SDValue Ptr = getValue(PtrOperand); 4296 SDValue Src0 = getValue(Src0Operand); 4297 SDValue Mask = getValue(MaskOperand); 4298 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4299 4300 EVT VT = Src0.getValueType(); 4301 if (!Alignment) 4302 Alignment = DAG.getEVTAlignment(VT); 4303 4304 AAMDNodes AAInfo; 4305 I.getAAMetadata(AAInfo); 4306 4307 MachineMemOperand *MMO = 4308 DAG.getMachineFunction(). 4309 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4310 MachineMemOperand::MOStore, 4311 // TODO: Make MachineMemOperands aware of scalable 4312 // vectors. 4313 VT.getStoreSize().getKnownMinSize(), 4314 Alignment, AAInfo); 4315 SDValue StoreNode = 4316 DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4317 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4318 DAG.setRoot(StoreNode); 4319 setValue(&I, StoreNode); 4320 } 4321 4322 // Get a uniform base for the Gather/Scatter intrinsic. 4323 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4324 // We try to represent it as a base pointer + vector of indices. 4325 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4326 // The first operand of the GEP may be a single pointer or a vector of pointers 4327 // Example: 4328 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4329 // or 4330 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4331 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4332 // 4333 // When the first GEP operand is a single pointer - it is the uniform base we 4334 // are looking for. If first operand of the GEP is a splat vector - we 4335 // extract the splat value and use it as a uniform base. 4336 // In all other cases the function returns 'false'. 4337 static bool getUniformBase(const Value *&Ptr, SDValue &Base, SDValue &Index, 4338 ISD::MemIndexType &IndexType, SDValue &Scale, 4339 SelectionDAGBuilder *SDB) { 4340 SelectionDAG& DAG = SDB->DAG; 4341 LLVMContext &Context = *DAG.getContext(); 4342 4343 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4344 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4345 if (!GEP) 4346 return false; 4347 4348 const Value *GEPPtr = GEP->getPointerOperand(); 4349 if (!GEPPtr->getType()->isVectorTy()) 4350 Ptr = GEPPtr; 4351 else if (!(Ptr = getSplatValue(GEPPtr))) 4352 return false; 4353 4354 unsigned FinalIndex = GEP->getNumOperands() - 1; 4355 Value *IndexVal = GEP->getOperand(FinalIndex); 4356 gep_type_iterator GTI = gep_type_begin(*GEP); 4357 4358 // Ensure all the other indices are 0. 4359 for (unsigned i = 1; i < FinalIndex; ++i, ++GTI) { 4360 auto *C = dyn_cast<Constant>(GEP->getOperand(i)); 4361 if (!C) 4362 return false; 4363 if (isa<VectorType>(C->getType())) 4364 C = C->getSplatValue(); 4365 auto *CI = dyn_cast_or_null<ConstantInt>(C); 4366 if (!CI || !CI->isZero()) 4367 return false; 4368 } 4369 4370 // The operands of the GEP may be defined in another basic block. 4371 // In this case we'll not find nodes for the operands. 4372 if (!SDB->findValue(Ptr)) 4373 return false; 4374 Constant *C = dyn_cast<Constant>(IndexVal); 4375 if (!C && !SDB->findValue(IndexVal)) 4376 return false; 4377 4378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4379 const DataLayout &DL = DAG.getDataLayout(); 4380 StructType *STy = GTI.getStructTypeOrNull(); 4381 4382 if (STy) { 4383 const StructLayout *SL = DL.getStructLayout(STy); 4384 if (isa<VectorType>(C->getType())) { 4385 C = C->getSplatValue(); 4386 // FIXME: If getSplatValue may return nullptr for a structure? 4387 // If not, the following check can be removed. 4388 if (!C) 4389 return false; 4390 } 4391 auto *CI = cast<ConstantInt>(C); 4392 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4393 Index = DAG.getTargetConstant(SL->getElementOffset(CI->getZExtValue()), 4394 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4395 } else { 4396 Scale = DAG.getTargetConstant( 4397 DL.getTypeAllocSize(GEP->getResultElementType()), 4398 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4399 Index = SDB->getValue(IndexVal); 4400 } 4401 Base = SDB->getValue(Ptr); 4402 IndexType = ISD::SIGNED_SCALED; 4403 4404 if (STy || !Index.getValueType().isVector()) { 4405 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4406 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4407 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4408 } 4409 return true; 4410 } 4411 4412 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4413 SDLoc sdl = getCurSDLoc(); 4414 4415 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4416 const Value *Ptr = I.getArgOperand(1); 4417 SDValue Src0 = getValue(I.getArgOperand(0)); 4418 SDValue Mask = getValue(I.getArgOperand(3)); 4419 EVT VT = Src0.getValueType(); 4420 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4421 if (!Alignment) 4422 Alignment = DAG.getEVTAlignment(VT); 4423 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4424 4425 AAMDNodes AAInfo; 4426 I.getAAMetadata(AAInfo); 4427 4428 SDValue Base; 4429 SDValue Index; 4430 ISD::MemIndexType IndexType; 4431 SDValue Scale; 4432 const Value *BasePtr = Ptr; 4433 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4434 this); 4435 4436 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4437 MachineMemOperand *MMO = DAG.getMachineFunction(). 4438 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4439 MachineMemOperand::MOStore, 4440 // TODO: Make MachineMemOperands aware of scalable 4441 // vectors. 4442 VT.getStoreSize().getKnownMinSize(), 4443 Alignment, AAInfo); 4444 if (!UniformBase) { 4445 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4446 Index = getValue(Ptr); 4447 IndexType = ISD::SIGNED_SCALED; 4448 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4449 } 4450 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4451 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4452 Ops, MMO, IndexType); 4453 DAG.setRoot(Scatter); 4454 setValue(&I, Scatter); 4455 } 4456 4457 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4458 SDLoc sdl = getCurSDLoc(); 4459 4460 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4461 unsigned& Alignment) { 4462 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4463 Ptr = I.getArgOperand(0); 4464 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4465 Mask = I.getArgOperand(2); 4466 Src0 = I.getArgOperand(3); 4467 }; 4468 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4469 unsigned& Alignment) { 4470 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4471 Ptr = I.getArgOperand(0); 4472 Alignment = 0; 4473 Mask = I.getArgOperand(1); 4474 Src0 = I.getArgOperand(2); 4475 }; 4476 4477 Value *PtrOperand, *MaskOperand, *Src0Operand; 4478 unsigned Alignment; 4479 if (IsExpanding) 4480 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4481 else 4482 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4483 4484 SDValue Ptr = getValue(PtrOperand); 4485 SDValue Src0 = getValue(Src0Operand); 4486 SDValue Mask = getValue(MaskOperand); 4487 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4488 4489 EVT VT = Src0.getValueType(); 4490 if (!Alignment) 4491 Alignment = DAG.getEVTAlignment(VT); 4492 4493 AAMDNodes AAInfo; 4494 I.getAAMetadata(AAInfo); 4495 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4496 4497 // Do not serialize masked loads of constant memory with anything. 4498 MemoryLocation ML; 4499 if (VT.isScalableVector()) 4500 ML = MemoryLocation(PtrOperand); 4501 else 4502 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4503 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4504 AAInfo); 4505 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4506 4507 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4508 4509 MachineMemOperand *MMO = 4510 DAG.getMachineFunction(). 4511 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4512 MachineMemOperand::MOLoad, 4513 // TODO: Make MachineMemOperands aware of scalable 4514 // vectors. 4515 VT.getStoreSize().getKnownMinSize(), 4516 Alignment, AAInfo, Ranges); 4517 4518 SDValue Load = 4519 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4520 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4521 if (AddToChain) 4522 PendingLoads.push_back(Load.getValue(1)); 4523 setValue(&I, Load); 4524 } 4525 4526 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4527 SDLoc sdl = getCurSDLoc(); 4528 4529 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4530 const Value *Ptr = I.getArgOperand(0); 4531 SDValue Src0 = getValue(I.getArgOperand(3)); 4532 SDValue Mask = getValue(I.getArgOperand(2)); 4533 4534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4535 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4536 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4537 if (!Alignment) 4538 Alignment = DAG.getEVTAlignment(VT); 4539 4540 AAMDNodes AAInfo; 4541 I.getAAMetadata(AAInfo); 4542 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4543 4544 SDValue Root = DAG.getRoot(); 4545 SDValue Base; 4546 SDValue Index; 4547 ISD::MemIndexType IndexType; 4548 SDValue Scale; 4549 const Value *BasePtr = Ptr; 4550 bool UniformBase = getUniformBase(BasePtr, Base, Index, IndexType, Scale, 4551 this); 4552 bool ConstantMemory = false; 4553 if (UniformBase && AA && 4554 AA->pointsToConstantMemory( 4555 MemoryLocation(BasePtr, 4556 LocationSize::precise( 4557 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4558 AAInfo))) { 4559 // Do not serialize (non-volatile) loads of constant memory with anything. 4560 Root = DAG.getEntryNode(); 4561 ConstantMemory = true; 4562 } 4563 4564 MachineMemOperand *MMO = 4565 DAG.getMachineFunction(). 4566 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4567 MachineMemOperand::MOLoad, 4568 // TODO: Make MachineMemOperands aware of scalable 4569 // vectors. 4570 VT.getStoreSize().getKnownMinSize(), 4571 Alignment, AAInfo, Ranges); 4572 4573 if (!UniformBase) { 4574 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4575 Index = getValue(Ptr); 4576 IndexType = ISD::SIGNED_SCALED; 4577 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4578 } 4579 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4580 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4581 Ops, MMO, IndexType); 4582 4583 SDValue OutChain = Gather.getValue(1); 4584 if (!ConstantMemory) 4585 PendingLoads.push_back(OutChain); 4586 setValue(&I, Gather); 4587 } 4588 4589 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4590 SDLoc dl = getCurSDLoc(); 4591 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4592 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4593 SyncScope::ID SSID = I.getSyncScopeID(); 4594 4595 SDValue InChain = getRoot(); 4596 4597 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4598 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4599 4600 auto Alignment = DAG.getEVTAlignment(MemVT); 4601 4602 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4603 if (I.isVolatile()) 4604 Flags |= MachineMemOperand::MOVolatile; 4605 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4606 4607 MachineFunction &MF = DAG.getMachineFunction(); 4608 MachineMemOperand *MMO = 4609 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4610 Flags, MemVT.getStoreSize(), Alignment, 4611 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4612 FailureOrdering); 4613 4614 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4615 dl, MemVT, VTs, InChain, 4616 getValue(I.getPointerOperand()), 4617 getValue(I.getCompareOperand()), 4618 getValue(I.getNewValOperand()), MMO); 4619 4620 SDValue OutChain = L.getValue(2); 4621 4622 setValue(&I, L); 4623 DAG.setRoot(OutChain); 4624 } 4625 4626 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4627 SDLoc dl = getCurSDLoc(); 4628 ISD::NodeType NT; 4629 switch (I.getOperation()) { 4630 default: llvm_unreachable("Unknown atomicrmw operation"); 4631 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4632 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4633 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4634 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4635 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4636 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4637 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4638 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4639 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4640 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4641 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4642 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4643 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4644 } 4645 AtomicOrdering Ordering = I.getOrdering(); 4646 SyncScope::ID SSID = I.getSyncScopeID(); 4647 4648 SDValue InChain = getRoot(); 4649 4650 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4651 auto Alignment = DAG.getEVTAlignment(MemVT); 4652 4653 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4654 if (I.isVolatile()) 4655 Flags |= MachineMemOperand::MOVolatile; 4656 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4657 4658 MachineFunction &MF = DAG.getMachineFunction(); 4659 MachineMemOperand *MMO = 4660 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4661 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4662 nullptr, SSID, Ordering); 4663 4664 SDValue L = 4665 DAG.getAtomic(NT, dl, MemVT, InChain, 4666 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4667 MMO); 4668 4669 SDValue OutChain = L.getValue(1); 4670 4671 setValue(&I, L); 4672 DAG.setRoot(OutChain); 4673 } 4674 4675 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4676 SDLoc dl = getCurSDLoc(); 4677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4678 SDValue Ops[3]; 4679 Ops[0] = getRoot(); 4680 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4681 TLI.getFenceOperandTy(DAG.getDataLayout())); 4682 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4683 TLI.getFenceOperandTy(DAG.getDataLayout())); 4684 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4685 } 4686 4687 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4688 SDLoc dl = getCurSDLoc(); 4689 AtomicOrdering Order = I.getOrdering(); 4690 SyncScope::ID SSID = I.getSyncScopeID(); 4691 4692 SDValue InChain = getRoot(); 4693 4694 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4695 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4696 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4697 4698 if (!TLI.supportsUnalignedAtomics() && 4699 I.getAlignment() < MemVT.getSizeInBits() / 8) 4700 report_fatal_error("Cannot generate unaligned atomic load"); 4701 4702 auto Flags = MachineMemOperand::MOLoad; 4703 if (I.isVolatile()) 4704 Flags |= MachineMemOperand::MOVolatile; 4705 if (I.hasMetadata(LLVMContext::MD_invariant_load)) 4706 Flags |= MachineMemOperand::MOInvariant; 4707 if (isDereferenceablePointer(I.getPointerOperand(), I.getType(), 4708 DAG.getDataLayout())) 4709 Flags |= MachineMemOperand::MODereferenceable; 4710 4711 Flags |= TLI.getMMOFlags(I); 4712 4713 MachineMemOperand *MMO = 4714 DAG.getMachineFunction(). 4715 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4716 Flags, MemVT.getStoreSize(), 4717 I.getAlignment() ? I.getAlignment() : 4718 DAG.getEVTAlignment(MemVT), 4719 AAMDNodes(), nullptr, SSID, Order); 4720 4721 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4722 4723 SDValue Ptr = getValue(I.getPointerOperand()); 4724 4725 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4726 // TODO: Once this is better exercised by tests, it should be merged with 4727 // the normal path for loads to prevent future divergence. 4728 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4729 if (MemVT != VT) 4730 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4731 4732 setValue(&I, L); 4733 SDValue OutChain = L.getValue(1); 4734 if (!I.isUnordered()) 4735 DAG.setRoot(OutChain); 4736 else 4737 PendingLoads.push_back(OutChain); 4738 return; 4739 } 4740 4741 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4742 Ptr, MMO); 4743 4744 SDValue OutChain = L.getValue(1); 4745 if (MemVT != VT) 4746 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4747 4748 setValue(&I, L); 4749 DAG.setRoot(OutChain); 4750 } 4751 4752 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4753 SDLoc dl = getCurSDLoc(); 4754 4755 AtomicOrdering Ordering = I.getOrdering(); 4756 SyncScope::ID SSID = I.getSyncScopeID(); 4757 4758 SDValue InChain = getRoot(); 4759 4760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4761 EVT MemVT = 4762 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4763 4764 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4765 report_fatal_error("Cannot generate unaligned atomic store"); 4766 4767 auto Flags = MachineMemOperand::MOStore; 4768 if (I.isVolatile()) 4769 Flags |= MachineMemOperand::MOVolatile; 4770 Flags |= TLI.getMMOFlags(I); 4771 4772 MachineFunction &MF = DAG.getMachineFunction(); 4773 MachineMemOperand *MMO = 4774 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4775 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4776 nullptr, SSID, Ordering); 4777 4778 SDValue Val = getValue(I.getValueOperand()); 4779 if (Val.getValueType() != MemVT) 4780 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4781 SDValue Ptr = getValue(I.getPointerOperand()); 4782 4783 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4784 // TODO: Once this is better exercised by tests, it should be merged with 4785 // the normal path for stores to prevent future divergence. 4786 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4787 DAG.setRoot(S); 4788 return; 4789 } 4790 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4791 Ptr, Val, MMO); 4792 4793 4794 DAG.setRoot(OutChain); 4795 } 4796 4797 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4798 /// node. 4799 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4800 unsigned Intrinsic) { 4801 // Ignore the callsite's attributes. A specific call site may be marked with 4802 // readnone, but the lowering code will expect the chain based on the 4803 // definition. 4804 const Function *F = I.getCalledFunction(); 4805 bool HasChain = !F->doesNotAccessMemory(); 4806 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4807 4808 // Build the operand list. 4809 SmallVector<SDValue, 8> Ops; 4810 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4811 if (OnlyLoad) { 4812 // We don't need to serialize loads against other loads. 4813 Ops.push_back(DAG.getRoot()); 4814 } else { 4815 Ops.push_back(getRoot()); 4816 } 4817 } 4818 4819 // Info is set by getTgtMemInstrinsic 4820 TargetLowering::IntrinsicInfo Info; 4821 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4822 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4823 DAG.getMachineFunction(), 4824 Intrinsic); 4825 4826 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4827 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4828 Info.opc == ISD::INTRINSIC_W_CHAIN) 4829 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4830 TLI.getPointerTy(DAG.getDataLayout()))); 4831 4832 // Add all operands of the call to the operand list. 4833 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4834 const Value *Arg = I.getArgOperand(i); 4835 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4836 Ops.push_back(getValue(Arg)); 4837 continue; 4838 } 4839 4840 // Use TargetConstant instead of a regular constant for immarg. 4841 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4842 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4843 assert(CI->getBitWidth() <= 64 && 4844 "large intrinsic immediates not handled"); 4845 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4846 } else { 4847 Ops.push_back( 4848 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4849 } 4850 } 4851 4852 SmallVector<EVT, 4> ValueVTs; 4853 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4854 4855 if (HasChain) 4856 ValueVTs.push_back(MVT::Other); 4857 4858 SDVTList VTs = DAG.getVTList(ValueVTs); 4859 4860 // Create the node. 4861 SDValue Result; 4862 if (IsTgtIntrinsic) { 4863 // This is target intrinsic that touches memory 4864 AAMDNodes AAInfo; 4865 I.getAAMetadata(AAInfo); 4866 Result = DAG.getMemIntrinsicNode( 4867 Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4868 MachinePointerInfo(Info.ptrVal, Info.offset), 4869 Info.align ? Info.align->value() : 0, Info.flags, Info.size, AAInfo); 4870 } else if (!HasChain) { 4871 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4872 } else if (!I.getType()->isVoidTy()) { 4873 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4874 } else { 4875 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4876 } 4877 4878 if (HasChain) { 4879 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4880 if (OnlyLoad) 4881 PendingLoads.push_back(Chain); 4882 else 4883 DAG.setRoot(Chain); 4884 } 4885 4886 if (!I.getType()->isVoidTy()) { 4887 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4888 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4889 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4890 } else 4891 Result = lowerRangeToAssertZExt(DAG, I, Result); 4892 4893 setValue(&I, Result); 4894 } 4895 } 4896 4897 /// GetSignificand - Get the significand and build it into a floating-point 4898 /// number with exponent of 1: 4899 /// 4900 /// Op = (Op & 0x007fffff) | 0x3f800000; 4901 /// 4902 /// where Op is the hexadecimal representation of floating point value. 4903 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4904 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4905 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4906 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4907 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4908 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4909 } 4910 4911 /// GetExponent - Get the exponent: 4912 /// 4913 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4914 /// 4915 /// where Op is the hexadecimal representation of floating point value. 4916 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4917 const TargetLowering &TLI, const SDLoc &dl) { 4918 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4919 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4920 SDValue t1 = DAG.getNode( 4921 ISD::SRL, dl, MVT::i32, t0, 4922 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4923 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4924 DAG.getConstant(127, dl, MVT::i32)); 4925 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4926 } 4927 4928 /// getF32Constant - Get 32-bit floating point constant. 4929 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4930 const SDLoc &dl) { 4931 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4932 MVT::f32); 4933 } 4934 4935 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4936 SelectionDAG &DAG) { 4937 // TODO: What fast-math-flags should be set on the floating-point nodes? 4938 4939 // IntegerPartOfX = ((int32_t)(t0); 4940 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4941 4942 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4943 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4944 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4945 4946 // IntegerPartOfX <<= 23; 4947 IntegerPartOfX = DAG.getNode( 4948 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4949 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4950 DAG.getDataLayout()))); 4951 4952 SDValue TwoToFractionalPartOfX; 4953 if (LimitFloatPrecision <= 6) { 4954 // For floating-point precision of 6: 4955 // 4956 // TwoToFractionalPartOfX = 4957 // 0.997535578f + 4958 // (0.735607626f + 0.252464424f * x) * x; 4959 // 4960 // error 0.0144103317, which is 6 bits 4961 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4962 getF32Constant(DAG, 0x3e814304, dl)); 4963 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4964 getF32Constant(DAG, 0x3f3c50c8, dl)); 4965 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4966 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4967 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4968 } else if (LimitFloatPrecision <= 12) { 4969 // For floating-point precision of 12: 4970 // 4971 // TwoToFractionalPartOfX = 4972 // 0.999892986f + 4973 // (0.696457318f + 4974 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4975 // 4976 // error 0.000107046256, which is 13 to 14 bits 4977 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4978 getF32Constant(DAG, 0x3da235e3, dl)); 4979 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4980 getF32Constant(DAG, 0x3e65b8f3, dl)); 4981 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4982 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4983 getF32Constant(DAG, 0x3f324b07, dl)); 4984 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4985 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4986 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4987 } else { // LimitFloatPrecision <= 18 4988 // For floating-point precision of 18: 4989 // 4990 // TwoToFractionalPartOfX = 4991 // 0.999999982f + 4992 // (0.693148872f + 4993 // (0.240227044f + 4994 // (0.554906021e-1f + 4995 // (0.961591928e-2f + 4996 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4997 // error 2.47208000*10^(-7), which is better than 18 bits 4998 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4999 getF32Constant(DAG, 0x3924b03e, dl)); 5000 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5001 getF32Constant(DAG, 0x3ab24b87, dl)); 5002 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5003 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5004 getF32Constant(DAG, 0x3c1d8c17, dl)); 5005 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5006 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5007 getF32Constant(DAG, 0x3d634a1d, dl)); 5008 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5009 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5010 getF32Constant(DAG, 0x3e75fe14, dl)); 5011 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5012 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5013 getF32Constant(DAG, 0x3f317234, dl)); 5014 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5015 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5016 getF32Constant(DAG, 0x3f800000, dl)); 5017 } 5018 5019 // Add the exponent into the result in integer domain. 5020 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5021 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5022 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5023 } 5024 5025 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5026 /// limited-precision mode. 5027 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5028 const TargetLowering &TLI) { 5029 if (Op.getValueType() == MVT::f32 && 5030 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5031 5032 // Put the exponent in the right bit position for later addition to the 5033 // final result: 5034 // 5035 // t0 = Op * log2(e) 5036 5037 // TODO: What fast-math-flags should be set here? 5038 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5039 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5040 return getLimitedPrecisionExp2(t0, dl, DAG); 5041 } 5042 5043 // No special expansion. 5044 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 5045 } 5046 5047 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5048 /// limited-precision mode. 5049 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5050 const TargetLowering &TLI) { 5051 // TODO: What fast-math-flags should be set on the floating-point nodes? 5052 5053 if (Op.getValueType() == MVT::f32 && 5054 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5055 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5056 5057 // Scale the exponent by log(2). 5058 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5059 SDValue LogOfExponent = 5060 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5061 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5062 5063 // Get the significand and build it into a floating-point number with 5064 // exponent of 1. 5065 SDValue X = GetSignificand(DAG, Op1, dl); 5066 5067 SDValue LogOfMantissa; 5068 if (LimitFloatPrecision <= 6) { 5069 // For floating-point precision of 6: 5070 // 5071 // LogofMantissa = 5072 // -1.1609546f + 5073 // (1.4034025f - 0.23903021f * x) * x; 5074 // 5075 // error 0.0034276066, which is better than 8 bits 5076 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5077 getF32Constant(DAG, 0xbe74c456, dl)); 5078 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5079 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5080 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5081 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5082 getF32Constant(DAG, 0x3f949a29, dl)); 5083 } else if (LimitFloatPrecision <= 12) { 5084 // For floating-point precision of 12: 5085 // 5086 // LogOfMantissa = 5087 // -1.7417939f + 5088 // (2.8212026f + 5089 // (-1.4699568f + 5090 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5091 // 5092 // error 0.000061011436, which is 14 bits 5093 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5094 getF32Constant(DAG, 0xbd67b6d6, dl)); 5095 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5096 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5097 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5098 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5099 getF32Constant(DAG, 0x3fbc278b, dl)); 5100 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5101 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5102 getF32Constant(DAG, 0x40348e95, dl)); 5103 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5104 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5105 getF32Constant(DAG, 0x3fdef31a, dl)); 5106 } else { // LimitFloatPrecision <= 18 5107 // For floating-point precision of 18: 5108 // 5109 // LogOfMantissa = 5110 // -2.1072184f + 5111 // (4.2372794f + 5112 // (-3.7029485f + 5113 // (2.2781945f + 5114 // (-0.87823314f + 5115 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5116 // 5117 // error 0.0000023660568, which is better than 18 bits 5118 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5119 getF32Constant(DAG, 0xbc91e5ac, dl)); 5120 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5121 getF32Constant(DAG, 0x3e4350aa, dl)); 5122 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5123 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5124 getF32Constant(DAG, 0x3f60d3e3, dl)); 5125 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5126 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5127 getF32Constant(DAG, 0x4011cdf0, dl)); 5128 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5129 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5130 getF32Constant(DAG, 0x406cfd1c, dl)); 5131 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5132 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5133 getF32Constant(DAG, 0x408797cb, dl)); 5134 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5135 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5136 getF32Constant(DAG, 0x4006dcab, dl)); 5137 } 5138 5139 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5140 } 5141 5142 // No special expansion. 5143 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5144 } 5145 5146 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5147 /// limited-precision mode. 5148 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5149 const TargetLowering &TLI) { 5150 // TODO: What fast-math-flags should be set on the floating-point nodes? 5151 5152 if (Op.getValueType() == MVT::f32 && 5153 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5154 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5155 5156 // Get the exponent. 5157 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5158 5159 // Get the significand and build it into a floating-point number with 5160 // exponent of 1. 5161 SDValue X = GetSignificand(DAG, Op1, dl); 5162 5163 // Different possible minimax approximations of significand in 5164 // floating-point for various degrees of accuracy over [1,2]. 5165 SDValue Log2ofMantissa; 5166 if (LimitFloatPrecision <= 6) { 5167 // For floating-point precision of 6: 5168 // 5169 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5170 // 5171 // error 0.0049451742, which is more than 7 bits 5172 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5173 getF32Constant(DAG, 0xbeb08fe0, dl)); 5174 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5175 getF32Constant(DAG, 0x40019463, dl)); 5176 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5177 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5178 getF32Constant(DAG, 0x3fd6633d, dl)); 5179 } else if (LimitFloatPrecision <= 12) { 5180 // For floating-point precision of 12: 5181 // 5182 // Log2ofMantissa = 5183 // -2.51285454f + 5184 // (4.07009056f + 5185 // (-2.12067489f + 5186 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5187 // 5188 // error 0.0000876136000, which is better than 13 bits 5189 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5190 getF32Constant(DAG, 0xbda7262e, dl)); 5191 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5192 getF32Constant(DAG, 0x3f25280b, dl)); 5193 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5194 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5195 getF32Constant(DAG, 0x4007b923, dl)); 5196 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5197 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5198 getF32Constant(DAG, 0x40823e2f, dl)); 5199 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5200 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5201 getF32Constant(DAG, 0x4020d29c, dl)); 5202 } else { // LimitFloatPrecision <= 18 5203 // For floating-point precision of 18: 5204 // 5205 // Log2ofMantissa = 5206 // -3.0400495f + 5207 // (6.1129976f + 5208 // (-5.3420409f + 5209 // (3.2865683f + 5210 // (-1.2669343f + 5211 // (0.27515199f - 5212 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5213 // 5214 // error 0.0000018516, which is better than 18 bits 5215 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5216 getF32Constant(DAG, 0xbcd2769e, dl)); 5217 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5218 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5219 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5220 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5221 getF32Constant(DAG, 0x3fa22ae7, dl)); 5222 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5223 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5224 getF32Constant(DAG, 0x40525723, dl)); 5225 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5226 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5227 getF32Constant(DAG, 0x40aaf200, dl)); 5228 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5229 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5230 getF32Constant(DAG, 0x40c39dad, dl)); 5231 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5232 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5233 getF32Constant(DAG, 0x4042902c, dl)); 5234 } 5235 5236 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5237 } 5238 5239 // No special expansion. 5240 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5241 } 5242 5243 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5244 /// limited-precision mode. 5245 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5246 const TargetLowering &TLI) { 5247 // TODO: What fast-math-flags should be set on the floating-point nodes? 5248 5249 if (Op.getValueType() == MVT::f32 && 5250 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5251 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5252 5253 // Scale the exponent by log10(2) [0.30102999f]. 5254 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5255 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5256 getF32Constant(DAG, 0x3e9a209a, dl)); 5257 5258 // Get the significand and build it into a floating-point number with 5259 // exponent of 1. 5260 SDValue X = GetSignificand(DAG, Op1, dl); 5261 5262 SDValue Log10ofMantissa; 5263 if (LimitFloatPrecision <= 6) { 5264 // For floating-point precision of 6: 5265 // 5266 // Log10ofMantissa = 5267 // -0.50419619f + 5268 // (0.60948995f - 0.10380950f * x) * x; 5269 // 5270 // error 0.0014886165, which is 6 bits 5271 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5272 getF32Constant(DAG, 0xbdd49a13, dl)); 5273 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5274 getF32Constant(DAG, 0x3f1c0789, dl)); 5275 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5276 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5277 getF32Constant(DAG, 0x3f011300, dl)); 5278 } else if (LimitFloatPrecision <= 12) { 5279 // For floating-point precision of 12: 5280 // 5281 // Log10ofMantissa = 5282 // -0.64831180f + 5283 // (0.91751397f + 5284 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5285 // 5286 // error 0.00019228036, which is better than 12 bits 5287 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5288 getF32Constant(DAG, 0x3d431f31, dl)); 5289 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5290 getF32Constant(DAG, 0x3ea21fb2, dl)); 5291 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5292 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5293 getF32Constant(DAG, 0x3f6ae232, dl)); 5294 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5295 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5296 getF32Constant(DAG, 0x3f25f7c3, dl)); 5297 } else { // LimitFloatPrecision <= 18 5298 // For floating-point precision of 18: 5299 // 5300 // Log10ofMantissa = 5301 // -0.84299375f + 5302 // (1.5327582f + 5303 // (-1.0688956f + 5304 // (0.49102474f + 5305 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5306 // 5307 // error 0.0000037995730, which is better than 18 bits 5308 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5309 getF32Constant(DAG, 0x3c5d51ce, dl)); 5310 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5311 getF32Constant(DAG, 0x3e00685a, dl)); 5312 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5313 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5314 getF32Constant(DAG, 0x3efb6798, dl)); 5315 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5316 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5317 getF32Constant(DAG, 0x3f88d192, dl)); 5318 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5319 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5320 getF32Constant(DAG, 0x3fc4316c, dl)); 5321 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5322 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5323 getF32Constant(DAG, 0x3f57ce70, dl)); 5324 } 5325 5326 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5327 } 5328 5329 // No special expansion. 5330 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5331 } 5332 5333 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5334 /// limited-precision mode. 5335 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5336 const TargetLowering &TLI) { 5337 if (Op.getValueType() == MVT::f32 && 5338 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5339 return getLimitedPrecisionExp2(Op, dl, DAG); 5340 5341 // No special expansion. 5342 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5343 } 5344 5345 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5346 /// limited-precision mode with x == 10.0f. 5347 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5348 SelectionDAG &DAG, const TargetLowering &TLI) { 5349 bool IsExp10 = false; 5350 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5351 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5352 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5353 APFloat Ten(10.0f); 5354 IsExp10 = LHSC->isExactlyValue(Ten); 5355 } 5356 } 5357 5358 // TODO: What fast-math-flags should be set on the FMUL node? 5359 if (IsExp10) { 5360 // Put the exponent in the right bit position for later addition to the 5361 // final result: 5362 // 5363 // #define LOG2OF10 3.3219281f 5364 // t0 = Op * LOG2OF10; 5365 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5366 getF32Constant(DAG, 0x40549a78, dl)); 5367 return getLimitedPrecisionExp2(t0, dl, DAG); 5368 } 5369 5370 // No special expansion. 5371 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5372 } 5373 5374 /// ExpandPowI - Expand a llvm.powi intrinsic. 5375 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5376 SelectionDAG &DAG) { 5377 // If RHS is a constant, we can expand this out to a multiplication tree, 5378 // otherwise we end up lowering to a call to __powidf2 (for example). When 5379 // optimizing for size, we only want to do this if the expansion would produce 5380 // a small number of multiplies, otherwise we do the full expansion. 5381 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5382 // Get the exponent as a positive value. 5383 unsigned Val = RHSC->getSExtValue(); 5384 if ((int)Val < 0) Val = -Val; 5385 5386 // powi(x, 0) -> 1.0 5387 if (Val == 0) 5388 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5389 5390 bool OptForSize = DAG.shouldOptForSize(); 5391 if (!OptForSize || 5392 // If optimizing for size, don't insert too many multiplies. 5393 // This inserts up to 5 multiplies. 5394 countPopulation(Val) + Log2_32(Val) < 7) { 5395 // We use the simple binary decomposition method to generate the multiply 5396 // sequence. There are more optimal ways to do this (for example, 5397 // powi(x,15) generates one more multiply than it should), but this has 5398 // the benefit of being both really simple and much better than a libcall. 5399 SDValue Res; // Logically starts equal to 1.0 5400 SDValue CurSquare = LHS; 5401 // TODO: Intrinsics should have fast-math-flags that propagate to these 5402 // nodes. 5403 while (Val) { 5404 if (Val & 1) { 5405 if (Res.getNode()) 5406 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5407 else 5408 Res = CurSquare; // 1.0*CurSquare. 5409 } 5410 5411 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5412 CurSquare, CurSquare); 5413 Val >>= 1; 5414 } 5415 5416 // If the original was negative, invert the result, producing 1/(x*x*x). 5417 if (RHSC->getSExtValue() < 0) 5418 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5419 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5420 return Res; 5421 } 5422 } 5423 5424 // Otherwise, expand to a libcall. 5425 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5426 } 5427 5428 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5429 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5430 static void 5431 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5432 const SDValue &N) { 5433 switch (N.getOpcode()) { 5434 case ISD::CopyFromReg: { 5435 SDValue Op = N.getOperand(1); 5436 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5437 Op.getValueType().getSizeInBits()); 5438 return; 5439 } 5440 case ISD::BITCAST: 5441 case ISD::AssertZext: 5442 case ISD::AssertSext: 5443 case ISD::TRUNCATE: 5444 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5445 return; 5446 case ISD::BUILD_PAIR: 5447 case ISD::BUILD_VECTOR: 5448 case ISD::CONCAT_VECTORS: 5449 for (SDValue Op : N->op_values()) 5450 getUnderlyingArgRegs(Regs, Op); 5451 return; 5452 default: 5453 return; 5454 } 5455 } 5456 5457 /// If the DbgValueInst is a dbg_value of a function argument, create the 5458 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5459 /// instruction selection, they will be inserted to the entry BB. 5460 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5461 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5462 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5463 const Argument *Arg = dyn_cast<Argument>(V); 5464 if (!Arg) 5465 return false; 5466 5467 if (!IsDbgDeclare) { 5468 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5469 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5470 // the entry block. 5471 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5472 if (!IsInEntryBlock) 5473 return false; 5474 5475 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5476 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5477 // variable that also is a param. 5478 // 5479 // Although, if we are at the top of the entry block already, we can still 5480 // emit using ArgDbgValue. This might catch some situations when the 5481 // dbg.value refers to an argument that isn't used in the entry block, so 5482 // any CopyToReg node would be optimized out and the only way to express 5483 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5484 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5485 // we should only emit as ArgDbgValue if the Variable is an argument to the 5486 // current function, and the dbg.value intrinsic is found in the entry 5487 // block. 5488 bool VariableIsFunctionInputArg = Variable->isParameter() && 5489 !DL->getInlinedAt(); 5490 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5491 if (!IsInPrologue && !VariableIsFunctionInputArg) 5492 return false; 5493 5494 // Here we assume that a function argument on IR level only can be used to 5495 // describe one input parameter on source level. If we for example have 5496 // source code like this 5497 // 5498 // struct A { long x, y; }; 5499 // void foo(struct A a, long b) { 5500 // ... 5501 // b = a.x; 5502 // ... 5503 // } 5504 // 5505 // and IR like this 5506 // 5507 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5508 // entry: 5509 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5510 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5511 // call void @llvm.dbg.value(metadata i32 %b, "b", 5512 // ... 5513 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5514 // ... 5515 // 5516 // then the last dbg.value is describing a parameter "b" using a value that 5517 // is an argument. But since we already has used %a1 to describe a parameter 5518 // we should not handle that last dbg.value here (that would result in an 5519 // incorrect hoisting of the DBG_VALUE to the function entry). 5520 // Notice that we allow one dbg.value per IR level argument, to accommodate 5521 // for the situation with fragments above. 5522 if (VariableIsFunctionInputArg) { 5523 unsigned ArgNo = Arg->getArgNo(); 5524 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5525 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5526 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5527 return false; 5528 FuncInfo.DescribedArgs.set(ArgNo); 5529 } 5530 } 5531 5532 MachineFunction &MF = DAG.getMachineFunction(); 5533 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5534 5535 Optional<MachineOperand> Op; 5536 // Some arguments' frame index is recorded during argument lowering. 5537 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5538 if (FI != std::numeric_limits<int>::max()) 5539 Op = MachineOperand::CreateFI(FI); 5540 5541 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5542 if (!Op && N.getNode()) { 5543 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5544 Register Reg; 5545 if (ArgRegsAndSizes.size() == 1) 5546 Reg = ArgRegsAndSizes.front().first; 5547 5548 if (Reg && Reg.isVirtual()) { 5549 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5550 Register PR = RegInfo.getLiveInPhysReg(Reg); 5551 if (PR) 5552 Reg = PR; 5553 } 5554 if (Reg) { 5555 Op = MachineOperand::CreateReg(Reg, false); 5556 } 5557 } 5558 5559 if (!Op && N.getNode()) { 5560 // Check if frame index is available. 5561 SDValue LCandidate = peekThroughBitcasts(N); 5562 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5563 if (FrameIndexSDNode *FINode = 5564 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5565 Op = MachineOperand::CreateFI(FINode->getIndex()); 5566 } 5567 5568 if (!Op) { 5569 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5570 auto splitMultiRegDbgValue 5571 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5572 unsigned Offset = 0; 5573 for (auto RegAndSize : SplitRegs) { 5574 auto FragmentExpr = DIExpression::createFragmentExpression( 5575 Expr, Offset, RegAndSize.second); 5576 // If a valid fragment expression cannot be created, the variable's 5577 // correct value cannot be determined and so it is set as Undef. 5578 if (!FragmentExpr) { 5579 SDDbgValue *SDV = DAG.getConstantDbgValue( 5580 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5581 DAG.AddDbgValue(SDV, nullptr, false); 5582 continue; 5583 } 5584 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5585 FuncInfo.ArgDbgValues.push_back( 5586 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5587 RegAndSize.first, Variable, *FragmentExpr)); 5588 Offset += RegAndSize.second; 5589 } 5590 }; 5591 5592 // Check if ValueMap has reg number. 5593 DenseMap<const Value *, unsigned>::const_iterator 5594 VMI = FuncInfo.ValueMap.find(V); 5595 if (VMI != FuncInfo.ValueMap.end()) { 5596 const auto &TLI = DAG.getTargetLoweringInfo(); 5597 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5598 V->getType(), getABIRegCopyCC(V)); 5599 if (RFV.occupiesMultipleRegs()) { 5600 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5601 return true; 5602 } 5603 5604 Op = MachineOperand::CreateReg(VMI->second, false); 5605 } else if (ArgRegsAndSizes.size() > 1) { 5606 // This was split due to the calling convention, and no virtual register 5607 // mapping exists for the value. 5608 splitMultiRegDbgValue(ArgRegsAndSizes); 5609 return true; 5610 } 5611 } 5612 5613 if (!Op) 5614 return false; 5615 5616 assert(Variable->isValidLocationForIntrinsic(DL) && 5617 "Expected inlined-at fields to agree"); 5618 5619 // If the argument arrives in a stack slot, then what the IR thought was a 5620 // normal Value is actually in memory, and we must add a deref to load it. 5621 if (Op->isFI()) { 5622 int FI = Op->getIndex(); 5623 unsigned Size = DAG.getMachineFunction().getFrameInfo().getObjectSize(FI); 5624 if (Expr->isImplicit()) { 5625 SmallVector<uint64_t, 2> Ops = {dwarf::DW_OP_deref_size, Size}; 5626 Expr = DIExpression::prependOpcodes(Expr, Ops); 5627 } else { 5628 Expr = DIExpression::prepend(Expr, DIExpression::DerefBefore); 5629 } 5630 } 5631 5632 // If this location was specified with a dbg.declare, then it and its 5633 // expression calculate the address of the variable. Append a deref to 5634 // force it to be a memory location. 5635 if (IsDbgDeclare) 5636 Expr = DIExpression::append(Expr, {dwarf::DW_OP_deref}); 5637 5638 FuncInfo.ArgDbgValues.push_back( 5639 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), false, 5640 *Op, Variable, Expr)); 5641 5642 return true; 5643 } 5644 5645 /// Return the appropriate SDDbgValue based on N. 5646 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5647 DILocalVariable *Variable, 5648 DIExpression *Expr, 5649 const DebugLoc &dl, 5650 unsigned DbgSDNodeOrder) { 5651 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5652 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5653 // stack slot locations. 5654 // 5655 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5656 // debug values here after optimization: 5657 // 5658 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5659 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5660 // 5661 // Both describe the direct values of their associated variables. 5662 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5663 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5664 } 5665 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5666 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5667 } 5668 5669 // VisualStudio defines setjmp as _setjmp 5670 #if defined(_MSC_VER) && defined(setjmp) && \ 5671 !defined(setjmp_undefined_for_msvc) 5672 # pragma push_macro("setjmp") 5673 # undef setjmp 5674 # define setjmp_undefined_for_msvc 5675 #endif 5676 5677 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5678 switch (Intrinsic) { 5679 case Intrinsic::smul_fix: 5680 return ISD::SMULFIX; 5681 case Intrinsic::umul_fix: 5682 return ISD::UMULFIX; 5683 default: 5684 llvm_unreachable("Unhandled fixed point intrinsic"); 5685 } 5686 } 5687 5688 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5689 const char *FunctionName) { 5690 assert(FunctionName && "FunctionName must not be nullptr"); 5691 SDValue Callee = DAG.getExternalSymbol( 5692 FunctionName, 5693 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5694 LowerCallTo(&I, Callee, I.isTailCall()); 5695 } 5696 5697 /// Lower the call to the specified intrinsic function. 5698 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5699 unsigned Intrinsic) { 5700 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5701 SDLoc sdl = getCurSDLoc(); 5702 DebugLoc dl = getCurDebugLoc(); 5703 SDValue Res; 5704 5705 switch (Intrinsic) { 5706 default: 5707 // By default, turn this into a target intrinsic node. 5708 visitTargetIntrinsic(I, Intrinsic); 5709 return; 5710 case Intrinsic::vastart: visitVAStart(I); return; 5711 case Intrinsic::vaend: visitVAEnd(I); return; 5712 case Intrinsic::vacopy: visitVACopy(I); return; 5713 case Intrinsic::returnaddress: 5714 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5715 TLI.getPointerTy(DAG.getDataLayout()), 5716 getValue(I.getArgOperand(0)))); 5717 return; 5718 case Intrinsic::addressofreturnaddress: 5719 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5720 TLI.getPointerTy(DAG.getDataLayout()))); 5721 return; 5722 case Intrinsic::sponentry: 5723 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5724 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5725 return; 5726 case Intrinsic::frameaddress: 5727 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5728 TLI.getFrameIndexTy(DAG.getDataLayout()), 5729 getValue(I.getArgOperand(0)))); 5730 return; 5731 case Intrinsic::read_register: { 5732 Value *Reg = I.getArgOperand(0); 5733 SDValue Chain = getRoot(); 5734 SDValue RegName = 5735 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5736 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5737 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5738 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5739 setValue(&I, Res); 5740 DAG.setRoot(Res.getValue(1)); 5741 return; 5742 } 5743 case Intrinsic::write_register: { 5744 Value *Reg = I.getArgOperand(0); 5745 Value *RegValue = I.getArgOperand(1); 5746 SDValue Chain = getRoot(); 5747 SDValue RegName = 5748 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5749 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5750 RegName, getValue(RegValue))); 5751 return; 5752 } 5753 case Intrinsic::setjmp: 5754 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]); 5755 return; 5756 case Intrinsic::longjmp: 5757 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]); 5758 return; 5759 case Intrinsic::memcpy: { 5760 const auto &MCI = cast<MemCpyInst>(I); 5761 SDValue Op1 = getValue(I.getArgOperand(0)); 5762 SDValue Op2 = getValue(I.getArgOperand(1)); 5763 SDValue Op3 = getValue(I.getArgOperand(2)); 5764 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5765 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5766 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5767 unsigned Align = MinAlign(DstAlign, SrcAlign); 5768 bool isVol = MCI.isVolatile(); 5769 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5770 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5771 // node. 5772 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5773 false, isTC, 5774 MachinePointerInfo(I.getArgOperand(0)), 5775 MachinePointerInfo(I.getArgOperand(1))); 5776 updateDAGForMaybeTailCall(MC); 5777 return; 5778 } 5779 case Intrinsic::memset: { 5780 const auto &MSI = cast<MemSetInst>(I); 5781 SDValue Op1 = getValue(I.getArgOperand(0)); 5782 SDValue Op2 = getValue(I.getArgOperand(1)); 5783 SDValue Op3 = getValue(I.getArgOperand(2)); 5784 // @llvm.memset defines 0 and 1 to both mean no alignment. 5785 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5786 bool isVol = MSI.isVolatile(); 5787 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5788 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5789 isTC, MachinePointerInfo(I.getArgOperand(0))); 5790 updateDAGForMaybeTailCall(MS); 5791 return; 5792 } 5793 case Intrinsic::memmove: { 5794 const auto &MMI = cast<MemMoveInst>(I); 5795 SDValue Op1 = getValue(I.getArgOperand(0)); 5796 SDValue Op2 = getValue(I.getArgOperand(1)); 5797 SDValue Op3 = getValue(I.getArgOperand(2)); 5798 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5799 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5800 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5801 unsigned Align = MinAlign(DstAlign, SrcAlign); 5802 bool isVol = MMI.isVolatile(); 5803 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5804 // FIXME: Support passing different dest/src alignments to the memmove DAG 5805 // node. 5806 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5807 isTC, MachinePointerInfo(I.getArgOperand(0)), 5808 MachinePointerInfo(I.getArgOperand(1))); 5809 updateDAGForMaybeTailCall(MM); 5810 return; 5811 } 5812 case Intrinsic::memcpy_element_unordered_atomic: { 5813 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5814 SDValue Dst = getValue(MI.getRawDest()); 5815 SDValue Src = getValue(MI.getRawSource()); 5816 SDValue Length = getValue(MI.getLength()); 5817 5818 unsigned DstAlign = MI.getDestAlignment(); 5819 unsigned SrcAlign = MI.getSourceAlignment(); 5820 Type *LengthTy = MI.getLength()->getType(); 5821 unsigned ElemSz = MI.getElementSizeInBytes(); 5822 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5823 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5824 SrcAlign, Length, LengthTy, ElemSz, isTC, 5825 MachinePointerInfo(MI.getRawDest()), 5826 MachinePointerInfo(MI.getRawSource())); 5827 updateDAGForMaybeTailCall(MC); 5828 return; 5829 } 5830 case Intrinsic::memmove_element_unordered_atomic: { 5831 auto &MI = cast<AtomicMemMoveInst>(I); 5832 SDValue Dst = getValue(MI.getRawDest()); 5833 SDValue Src = getValue(MI.getRawSource()); 5834 SDValue Length = getValue(MI.getLength()); 5835 5836 unsigned DstAlign = MI.getDestAlignment(); 5837 unsigned SrcAlign = MI.getSourceAlignment(); 5838 Type *LengthTy = MI.getLength()->getType(); 5839 unsigned ElemSz = MI.getElementSizeInBytes(); 5840 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5841 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5842 SrcAlign, Length, LengthTy, ElemSz, isTC, 5843 MachinePointerInfo(MI.getRawDest()), 5844 MachinePointerInfo(MI.getRawSource())); 5845 updateDAGForMaybeTailCall(MC); 5846 return; 5847 } 5848 case Intrinsic::memset_element_unordered_atomic: { 5849 auto &MI = cast<AtomicMemSetInst>(I); 5850 SDValue Dst = getValue(MI.getRawDest()); 5851 SDValue Val = getValue(MI.getValue()); 5852 SDValue Length = getValue(MI.getLength()); 5853 5854 unsigned DstAlign = MI.getDestAlignment(); 5855 Type *LengthTy = MI.getLength()->getType(); 5856 unsigned ElemSz = MI.getElementSizeInBytes(); 5857 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5858 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5859 LengthTy, ElemSz, isTC, 5860 MachinePointerInfo(MI.getRawDest())); 5861 updateDAGForMaybeTailCall(MC); 5862 return; 5863 } 5864 case Intrinsic::dbg_addr: 5865 case Intrinsic::dbg_declare: { 5866 const auto &DI = cast<DbgVariableIntrinsic>(I); 5867 DILocalVariable *Variable = DI.getVariable(); 5868 DIExpression *Expression = DI.getExpression(); 5869 dropDanglingDebugInfo(Variable, Expression); 5870 assert(Variable && "Missing variable"); 5871 5872 // Check if address has undef value. 5873 const Value *Address = DI.getVariableLocation(); 5874 if (!Address || isa<UndefValue>(Address) || 5875 (Address->use_empty() && !isa<Argument>(Address))) { 5876 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5877 return; 5878 } 5879 5880 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5881 5882 // Check if this variable can be described by a frame index, typically 5883 // either as a static alloca or a byval parameter. 5884 int FI = std::numeric_limits<int>::max(); 5885 if (const auto *AI = 5886 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5887 if (AI->isStaticAlloca()) { 5888 auto I = FuncInfo.StaticAllocaMap.find(AI); 5889 if (I != FuncInfo.StaticAllocaMap.end()) 5890 FI = I->second; 5891 } 5892 } else if (const auto *Arg = dyn_cast<Argument>( 5893 Address->stripInBoundsConstantOffsets())) { 5894 FI = FuncInfo.getArgumentFrameIndex(Arg); 5895 } 5896 5897 // llvm.dbg.addr is control dependent and always generates indirect 5898 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5899 // the MachineFunction variable table. 5900 if (FI != std::numeric_limits<int>::max()) { 5901 if (Intrinsic == Intrinsic::dbg_addr) { 5902 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5903 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5904 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5905 } 5906 return; 5907 } 5908 5909 SDValue &N = NodeMap[Address]; 5910 if (!N.getNode() && isa<Argument>(Address)) 5911 // Check unused arguments map. 5912 N = UnusedArgNodeMap[Address]; 5913 SDDbgValue *SDV; 5914 if (N.getNode()) { 5915 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5916 Address = BCI->getOperand(0); 5917 // Parameters are handled specially. 5918 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5919 if (isParameter && FINode) { 5920 // Byval parameter. We have a frame index at this point. 5921 SDV = 5922 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5923 /*IsIndirect*/ true, dl, SDNodeOrder); 5924 } else if (isa<Argument>(Address)) { 5925 // Address is an argument, so try to emit its dbg value using 5926 // virtual register info from the FuncInfo.ValueMap. 5927 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5928 return; 5929 } else { 5930 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5931 true, dl, SDNodeOrder); 5932 } 5933 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5934 } else { 5935 // If Address is an argument then try to emit its dbg value using 5936 // virtual register info from the FuncInfo.ValueMap. 5937 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5938 N)) { 5939 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5940 } 5941 } 5942 return; 5943 } 5944 case Intrinsic::dbg_label: { 5945 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5946 DILabel *Label = DI.getLabel(); 5947 assert(Label && "Missing label"); 5948 5949 SDDbgLabel *SDV; 5950 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5951 DAG.AddDbgLabel(SDV); 5952 return; 5953 } 5954 case Intrinsic::dbg_value: { 5955 const DbgValueInst &DI = cast<DbgValueInst>(I); 5956 assert(DI.getVariable() && "Missing variable"); 5957 5958 DILocalVariable *Variable = DI.getVariable(); 5959 DIExpression *Expression = DI.getExpression(); 5960 dropDanglingDebugInfo(Variable, Expression); 5961 const Value *V = DI.getValue(); 5962 if (!V) 5963 return; 5964 5965 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5966 SDNodeOrder)) 5967 return; 5968 5969 // TODO: Dangling debug info will eventually either be resolved or produce 5970 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5971 // between the original dbg.value location and its resolved DBG_VALUE, which 5972 // we should ideally fill with an extra Undef DBG_VALUE. 5973 5974 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5975 return; 5976 } 5977 5978 case Intrinsic::eh_typeid_for: { 5979 // Find the type id for the given typeinfo. 5980 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5981 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5982 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5983 setValue(&I, Res); 5984 return; 5985 } 5986 5987 case Intrinsic::eh_return_i32: 5988 case Intrinsic::eh_return_i64: 5989 DAG.getMachineFunction().setCallsEHReturn(true); 5990 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5991 MVT::Other, 5992 getControlRoot(), 5993 getValue(I.getArgOperand(0)), 5994 getValue(I.getArgOperand(1)))); 5995 return; 5996 case Intrinsic::eh_unwind_init: 5997 DAG.getMachineFunction().setCallsUnwindInit(true); 5998 return; 5999 case Intrinsic::eh_dwarf_cfa: 6000 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6001 TLI.getPointerTy(DAG.getDataLayout()), 6002 getValue(I.getArgOperand(0)))); 6003 return; 6004 case Intrinsic::eh_sjlj_callsite: { 6005 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6006 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6007 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6008 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6009 6010 MMI.setCurrentCallSite(CI->getZExtValue()); 6011 return; 6012 } 6013 case Intrinsic::eh_sjlj_functioncontext: { 6014 // Get and store the index of the function context. 6015 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6016 AllocaInst *FnCtx = 6017 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6018 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6019 MFI.setFunctionContextIndex(FI); 6020 return; 6021 } 6022 case Intrinsic::eh_sjlj_setjmp: { 6023 SDValue Ops[2]; 6024 Ops[0] = getRoot(); 6025 Ops[1] = getValue(I.getArgOperand(0)); 6026 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6027 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6028 setValue(&I, Op.getValue(0)); 6029 DAG.setRoot(Op.getValue(1)); 6030 return; 6031 } 6032 case Intrinsic::eh_sjlj_longjmp: 6033 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6034 getRoot(), getValue(I.getArgOperand(0)))); 6035 return; 6036 case Intrinsic::eh_sjlj_setup_dispatch: 6037 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6038 getRoot())); 6039 return; 6040 case Intrinsic::masked_gather: 6041 visitMaskedGather(I); 6042 return; 6043 case Intrinsic::masked_load: 6044 visitMaskedLoad(I); 6045 return; 6046 case Intrinsic::masked_scatter: 6047 visitMaskedScatter(I); 6048 return; 6049 case Intrinsic::masked_store: 6050 visitMaskedStore(I); 6051 return; 6052 case Intrinsic::masked_expandload: 6053 visitMaskedLoad(I, true /* IsExpanding */); 6054 return; 6055 case Intrinsic::masked_compressstore: 6056 visitMaskedStore(I, true /* IsCompressing */); 6057 return; 6058 case Intrinsic::powi: 6059 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6060 getValue(I.getArgOperand(1)), DAG)); 6061 return; 6062 case Intrinsic::log: 6063 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6064 return; 6065 case Intrinsic::log2: 6066 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6067 return; 6068 case Intrinsic::log10: 6069 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6070 return; 6071 case Intrinsic::exp: 6072 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6073 return; 6074 case Intrinsic::exp2: 6075 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6076 return; 6077 case Intrinsic::pow: 6078 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6079 getValue(I.getArgOperand(1)), DAG, TLI)); 6080 return; 6081 case Intrinsic::sqrt: 6082 case Intrinsic::fabs: 6083 case Intrinsic::sin: 6084 case Intrinsic::cos: 6085 case Intrinsic::floor: 6086 case Intrinsic::ceil: 6087 case Intrinsic::trunc: 6088 case Intrinsic::rint: 6089 case Intrinsic::nearbyint: 6090 case Intrinsic::round: 6091 case Intrinsic::canonicalize: { 6092 unsigned Opcode; 6093 switch (Intrinsic) { 6094 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6095 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6096 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6097 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6098 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6099 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6100 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6101 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6102 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6103 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6104 case Intrinsic::round: Opcode = ISD::FROUND; break; 6105 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6106 } 6107 6108 setValue(&I, DAG.getNode(Opcode, sdl, 6109 getValue(I.getArgOperand(0)).getValueType(), 6110 getValue(I.getArgOperand(0)))); 6111 return; 6112 } 6113 case Intrinsic::lround: 6114 case Intrinsic::llround: 6115 case Intrinsic::lrint: 6116 case Intrinsic::llrint: { 6117 unsigned Opcode; 6118 switch (Intrinsic) { 6119 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6120 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6121 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6122 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6123 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6124 } 6125 6126 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6127 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6128 getValue(I.getArgOperand(0)))); 6129 return; 6130 } 6131 case Intrinsic::minnum: 6132 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6133 getValue(I.getArgOperand(0)).getValueType(), 6134 getValue(I.getArgOperand(0)), 6135 getValue(I.getArgOperand(1)))); 6136 return; 6137 case Intrinsic::maxnum: 6138 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6139 getValue(I.getArgOperand(0)).getValueType(), 6140 getValue(I.getArgOperand(0)), 6141 getValue(I.getArgOperand(1)))); 6142 return; 6143 case Intrinsic::minimum: 6144 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6145 getValue(I.getArgOperand(0)).getValueType(), 6146 getValue(I.getArgOperand(0)), 6147 getValue(I.getArgOperand(1)))); 6148 return; 6149 case Intrinsic::maximum: 6150 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6151 getValue(I.getArgOperand(0)).getValueType(), 6152 getValue(I.getArgOperand(0)), 6153 getValue(I.getArgOperand(1)))); 6154 return; 6155 case Intrinsic::copysign: 6156 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6157 getValue(I.getArgOperand(0)).getValueType(), 6158 getValue(I.getArgOperand(0)), 6159 getValue(I.getArgOperand(1)))); 6160 return; 6161 case Intrinsic::fma: 6162 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6163 getValue(I.getArgOperand(0)).getValueType(), 6164 getValue(I.getArgOperand(0)), 6165 getValue(I.getArgOperand(1)), 6166 getValue(I.getArgOperand(2)))); 6167 return; 6168 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6169 case Intrinsic::INTRINSIC: 6170 #include "llvm/IR/ConstrainedOps.def" 6171 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6172 return; 6173 case Intrinsic::fmuladd: { 6174 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6175 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6176 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6177 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6178 getValue(I.getArgOperand(0)).getValueType(), 6179 getValue(I.getArgOperand(0)), 6180 getValue(I.getArgOperand(1)), 6181 getValue(I.getArgOperand(2)))); 6182 } else { 6183 // TODO: Intrinsic calls should have fast-math-flags. 6184 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6185 getValue(I.getArgOperand(0)).getValueType(), 6186 getValue(I.getArgOperand(0)), 6187 getValue(I.getArgOperand(1))); 6188 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6189 getValue(I.getArgOperand(0)).getValueType(), 6190 Mul, 6191 getValue(I.getArgOperand(2))); 6192 setValue(&I, Add); 6193 } 6194 return; 6195 } 6196 case Intrinsic::convert_to_fp16: 6197 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6198 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6199 getValue(I.getArgOperand(0)), 6200 DAG.getTargetConstant(0, sdl, 6201 MVT::i32)))); 6202 return; 6203 case Intrinsic::convert_from_fp16: 6204 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6205 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6206 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6207 getValue(I.getArgOperand(0))))); 6208 return; 6209 case Intrinsic::pcmarker: { 6210 SDValue Tmp = getValue(I.getArgOperand(0)); 6211 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6212 return; 6213 } 6214 case Intrinsic::readcyclecounter: { 6215 SDValue Op = getRoot(); 6216 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6217 DAG.getVTList(MVT::i64, MVT::Other), Op); 6218 setValue(&I, Res); 6219 DAG.setRoot(Res.getValue(1)); 6220 return; 6221 } 6222 case Intrinsic::bitreverse: 6223 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6224 getValue(I.getArgOperand(0)).getValueType(), 6225 getValue(I.getArgOperand(0)))); 6226 return; 6227 case Intrinsic::bswap: 6228 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6229 getValue(I.getArgOperand(0)).getValueType(), 6230 getValue(I.getArgOperand(0)))); 6231 return; 6232 case Intrinsic::cttz: { 6233 SDValue Arg = getValue(I.getArgOperand(0)); 6234 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6235 EVT Ty = Arg.getValueType(); 6236 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6237 sdl, Ty, Arg)); 6238 return; 6239 } 6240 case Intrinsic::ctlz: { 6241 SDValue Arg = getValue(I.getArgOperand(0)); 6242 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6243 EVT Ty = Arg.getValueType(); 6244 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6245 sdl, Ty, Arg)); 6246 return; 6247 } 6248 case Intrinsic::ctpop: { 6249 SDValue Arg = getValue(I.getArgOperand(0)); 6250 EVT Ty = Arg.getValueType(); 6251 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6252 return; 6253 } 6254 case Intrinsic::fshl: 6255 case Intrinsic::fshr: { 6256 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6257 SDValue X = getValue(I.getArgOperand(0)); 6258 SDValue Y = getValue(I.getArgOperand(1)); 6259 SDValue Z = getValue(I.getArgOperand(2)); 6260 EVT VT = X.getValueType(); 6261 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6262 SDValue Zero = DAG.getConstant(0, sdl, VT); 6263 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6264 6265 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6266 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6267 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6268 return; 6269 } 6270 6271 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6272 // avoid the select that is necessary in the general case to filter out 6273 // the 0-shift possibility that leads to UB. 6274 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6275 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6276 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6277 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6278 return; 6279 } 6280 6281 // Some targets only rotate one way. Try the opposite direction. 6282 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6283 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6284 // Negate the shift amount because it is safe to ignore the high bits. 6285 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6286 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6287 return; 6288 } 6289 6290 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6291 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6292 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6293 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6294 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6295 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6296 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6297 return; 6298 } 6299 6300 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6301 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6302 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6303 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6304 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6305 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6306 6307 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6308 // and that is undefined. We must compare and select to avoid UB. 6309 EVT CCVT = MVT::i1; 6310 if (VT.isVector()) 6311 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6312 6313 // For fshl, 0-shift returns the 1st arg (X). 6314 // For fshr, 0-shift returns the 2nd arg (Y). 6315 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6316 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6317 return; 6318 } 6319 case Intrinsic::sadd_sat: { 6320 SDValue Op1 = getValue(I.getArgOperand(0)); 6321 SDValue Op2 = getValue(I.getArgOperand(1)); 6322 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6323 return; 6324 } 6325 case Intrinsic::uadd_sat: { 6326 SDValue Op1 = getValue(I.getArgOperand(0)); 6327 SDValue Op2 = getValue(I.getArgOperand(1)); 6328 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6329 return; 6330 } 6331 case Intrinsic::ssub_sat: { 6332 SDValue Op1 = getValue(I.getArgOperand(0)); 6333 SDValue Op2 = getValue(I.getArgOperand(1)); 6334 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6335 return; 6336 } 6337 case Intrinsic::usub_sat: { 6338 SDValue Op1 = getValue(I.getArgOperand(0)); 6339 SDValue Op2 = getValue(I.getArgOperand(1)); 6340 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6341 return; 6342 } 6343 case Intrinsic::smul_fix: 6344 case Intrinsic::umul_fix: { 6345 SDValue Op1 = getValue(I.getArgOperand(0)); 6346 SDValue Op2 = getValue(I.getArgOperand(1)); 6347 SDValue Op3 = getValue(I.getArgOperand(2)); 6348 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6349 Op1.getValueType(), Op1, Op2, Op3)); 6350 return; 6351 } 6352 case Intrinsic::smul_fix_sat: { 6353 SDValue Op1 = getValue(I.getArgOperand(0)); 6354 SDValue Op2 = getValue(I.getArgOperand(1)); 6355 SDValue Op3 = getValue(I.getArgOperand(2)); 6356 setValue(&I, DAG.getNode(ISD::SMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6357 Op3)); 6358 return; 6359 } 6360 case Intrinsic::umul_fix_sat: { 6361 SDValue Op1 = getValue(I.getArgOperand(0)); 6362 SDValue Op2 = getValue(I.getArgOperand(1)); 6363 SDValue Op3 = getValue(I.getArgOperand(2)); 6364 setValue(&I, DAG.getNode(ISD::UMULFIXSAT, sdl, Op1.getValueType(), Op1, Op2, 6365 Op3)); 6366 return; 6367 } 6368 case Intrinsic::stacksave: { 6369 SDValue Op = getRoot(); 6370 Res = DAG.getNode( 6371 ISD::STACKSAVE, sdl, 6372 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6373 setValue(&I, Res); 6374 DAG.setRoot(Res.getValue(1)); 6375 return; 6376 } 6377 case Intrinsic::stackrestore: 6378 Res = getValue(I.getArgOperand(0)); 6379 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6380 return; 6381 case Intrinsic::get_dynamic_area_offset: { 6382 SDValue Op = getRoot(); 6383 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6384 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6385 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6386 // target. 6387 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6388 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6389 " intrinsic!"); 6390 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6391 Op); 6392 DAG.setRoot(Op); 6393 setValue(&I, Res); 6394 return; 6395 } 6396 case Intrinsic::stackguard: { 6397 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6398 MachineFunction &MF = DAG.getMachineFunction(); 6399 const Module &M = *MF.getFunction().getParent(); 6400 SDValue Chain = getRoot(); 6401 if (TLI.useLoadStackGuardNode()) { 6402 Res = getLoadStackGuard(DAG, sdl, Chain); 6403 } else { 6404 const Value *Global = TLI.getSDagStackGuard(M); 6405 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6406 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6407 MachinePointerInfo(Global, 0), Align, 6408 MachineMemOperand::MOVolatile); 6409 } 6410 if (TLI.useStackGuardXorFP()) 6411 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6412 DAG.setRoot(Chain); 6413 setValue(&I, Res); 6414 return; 6415 } 6416 case Intrinsic::stackprotector: { 6417 // Emit code into the DAG to store the stack guard onto the stack. 6418 MachineFunction &MF = DAG.getMachineFunction(); 6419 MachineFrameInfo &MFI = MF.getFrameInfo(); 6420 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6421 SDValue Src, Chain = getRoot(); 6422 6423 if (TLI.useLoadStackGuardNode()) 6424 Src = getLoadStackGuard(DAG, sdl, Chain); 6425 else 6426 Src = getValue(I.getArgOperand(0)); // The guard's value. 6427 6428 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6429 6430 int FI = FuncInfo.StaticAllocaMap[Slot]; 6431 MFI.setStackProtectorIndex(FI); 6432 6433 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6434 6435 // Store the stack protector onto the stack. 6436 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6437 DAG.getMachineFunction(), FI), 6438 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6439 setValue(&I, Res); 6440 DAG.setRoot(Res); 6441 return; 6442 } 6443 case Intrinsic::objectsize: 6444 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6445 6446 case Intrinsic::is_constant: 6447 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6448 6449 case Intrinsic::annotation: 6450 case Intrinsic::ptr_annotation: 6451 case Intrinsic::launder_invariant_group: 6452 case Intrinsic::strip_invariant_group: 6453 // Drop the intrinsic, but forward the value 6454 setValue(&I, getValue(I.getOperand(0))); 6455 return; 6456 case Intrinsic::assume: 6457 case Intrinsic::var_annotation: 6458 case Intrinsic::sideeffect: 6459 // Discard annotate attributes, assumptions, and artificial side-effects. 6460 return; 6461 6462 case Intrinsic::codeview_annotation: { 6463 // Emit a label associated with this metadata. 6464 MachineFunction &MF = DAG.getMachineFunction(); 6465 MCSymbol *Label = 6466 MF.getMMI().getContext().createTempSymbol("annotation", true); 6467 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6468 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6469 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6470 DAG.setRoot(Res); 6471 return; 6472 } 6473 6474 case Intrinsic::init_trampoline: { 6475 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6476 6477 SDValue Ops[6]; 6478 Ops[0] = getRoot(); 6479 Ops[1] = getValue(I.getArgOperand(0)); 6480 Ops[2] = getValue(I.getArgOperand(1)); 6481 Ops[3] = getValue(I.getArgOperand(2)); 6482 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6483 Ops[5] = DAG.getSrcValue(F); 6484 6485 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6486 6487 DAG.setRoot(Res); 6488 return; 6489 } 6490 case Intrinsic::adjust_trampoline: 6491 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6492 TLI.getPointerTy(DAG.getDataLayout()), 6493 getValue(I.getArgOperand(0)))); 6494 return; 6495 case Intrinsic::gcroot: { 6496 assert(DAG.getMachineFunction().getFunction().hasGC() && 6497 "only valid in functions with gc specified, enforced by Verifier"); 6498 assert(GFI && "implied by previous"); 6499 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6500 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6501 6502 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6503 GFI->addStackRoot(FI->getIndex(), TypeMap); 6504 return; 6505 } 6506 case Intrinsic::gcread: 6507 case Intrinsic::gcwrite: 6508 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6509 case Intrinsic::flt_rounds: 6510 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6511 return; 6512 6513 case Intrinsic::expect: 6514 // Just replace __builtin_expect(exp, c) with EXP. 6515 setValue(&I, getValue(I.getArgOperand(0))); 6516 return; 6517 6518 case Intrinsic::debugtrap: 6519 case Intrinsic::trap: { 6520 StringRef TrapFuncName = 6521 I.getAttributes() 6522 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6523 .getValueAsString(); 6524 if (TrapFuncName.empty()) { 6525 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6526 ISD::TRAP : ISD::DEBUGTRAP; 6527 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6528 return; 6529 } 6530 TargetLowering::ArgListTy Args; 6531 6532 TargetLowering::CallLoweringInfo CLI(DAG); 6533 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6534 CallingConv::C, I.getType(), 6535 DAG.getExternalSymbol(TrapFuncName.data(), 6536 TLI.getPointerTy(DAG.getDataLayout())), 6537 std::move(Args)); 6538 6539 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6540 DAG.setRoot(Result.second); 6541 return; 6542 } 6543 6544 case Intrinsic::uadd_with_overflow: 6545 case Intrinsic::sadd_with_overflow: 6546 case Intrinsic::usub_with_overflow: 6547 case Intrinsic::ssub_with_overflow: 6548 case Intrinsic::umul_with_overflow: 6549 case Intrinsic::smul_with_overflow: { 6550 ISD::NodeType Op; 6551 switch (Intrinsic) { 6552 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6553 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6554 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6555 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6556 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6557 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6558 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6559 } 6560 SDValue Op1 = getValue(I.getArgOperand(0)); 6561 SDValue Op2 = getValue(I.getArgOperand(1)); 6562 6563 EVT ResultVT = Op1.getValueType(); 6564 EVT OverflowVT = MVT::i1; 6565 if (ResultVT.isVector()) 6566 OverflowVT = EVT::getVectorVT( 6567 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6568 6569 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6570 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6571 return; 6572 } 6573 case Intrinsic::prefetch: { 6574 SDValue Ops[5]; 6575 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6576 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6577 Ops[0] = DAG.getRoot(); 6578 Ops[1] = getValue(I.getArgOperand(0)); 6579 Ops[2] = getValue(I.getArgOperand(1)); 6580 Ops[3] = getValue(I.getArgOperand(2)); 6581 Ops[4] = getValue(I.getArgOperand(3)); 6582 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6583 DAG.getVTList(MVT::Other), Ops, 6584 EVT::getIntegerVT(*Context, 8), 6585 MachinePointerInfo(I.getArgOperand(0)), 6586 0, /* align */ 6587 Flags); 6588 6589 // Chain the prefetch in parallell with any pending loads, to stay out of 6590 // the way of later optimizations. 6591 PendingLoads.push_back(Result); 6592 Result = getRoot(); 6593 DAG.setRoot(Result); 6594 return; 6595 } 6596 case Intrinsic::lifetime_start: 6597 case Intrinsic::lifetime_end: { 6598 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6599 // Stack coloring is not enabled in O0, discard region information. 6600 if (TM.getOptLevel() == CodeGenOpt::None) 6601 return; 6602 6603 const int64_t ObjectSize = 6604 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6605 Value *const ObjectPtr = I.getArgOperand(1); 6606 SmallVector<const Value *, 4> Allocas; 6607 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6608 6609 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6610 E = Allocas.end(); Object != E; ++Object) { 6611 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6612 6613 // Could not find an Alloca. 6614 if (!LifetimeObject) 6615 continue; 6616 6617 // First check that the Alloca is static, otherwise it won't have a 6618 // valid frame index. 6619 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6620 if (SI == FuncInfo.StaticAllocaMap.end()) 6621 return; 6622 6623 const int FrameIndex = SI->second; 6624 int64_t Offset; 6625 if (GetPointerBaseWithConstantOffset( 6626 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6627 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6628 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6629 Offset); 6630 DAG.setRoot(Res); 6631 } 6632 return; 6633 } 6634 case Intrinsic::invariant_start: 6635 // Discard region information. 6636 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6637 return; 6638 case Intrinsic::invariant_end: 6639 // Discard region information. 6640 return; 6641 case Intrinsic::clear_cache: 6642 /// FunctionName may be null. 6643 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6644 lowerCallToExternalSymbol(I, FunctionName); 6645 return; 6646 case Intrinsic::donothing: 6647 // ignore 6648 return; 6649 case Intrinsic::experimental_stackmap: 6650 visitStackmap(I); 6651 return; 6652 case Intrinsic::experimental_patchpoint_void: 6653 case Intrinsic::experimental_patchpoint_i64: 6654 visitPatchpoint(&I); 6655 return; 6656 case Intrinsic::experimental_gc_statepoint: 6657 LowerStatepoint(ImmutableStatepoint(&I)); 6658 return; 6659 case Intrinsic::experimental_gc_result: 6660 visitGCResult(cast<GCResultInst>(I)); 6661 return; 6662 case Intrinsic::experimental_gc_relocate: 6663 visitGCRelocate(cast<GCRelocateInst>(I)); 6664 return; 6665 case Intrinsic::instrprof_increment: 6666 llvm_unreachable("instrprof failed to lower an increment"); 6667 case Intrinsic::instrprof_value_profile: 6668 llvm_unreachable("instrprof failed to lower a value profiling call"); 6669 case Intrinsic::localescape: { 6670 MachineFunction &MF = DAG.getMachineFunction(); 6671 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6672 6673 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6674 // is the same on all targets. 6675 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6676 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6677 if (isa<ConstantPointerNull>(Arg)) 6678 continue; // Skip null pointers. They represent a hole in index space. 6679 AllocaInst *Slot = cast<AllocaInst>(Arg); 6680 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6681 "can only escape static allocas"); 6682 int FI = FuncInfo.StaticAllocaMap[Slot]; 6683 MCSymbol *FrameAllocSym = 6684 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6685 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6686 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6687 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6688 .addSym(FrameAllocSym) 6689 .addFrameIndex(FI); 6690 } 6691 6692 return; 6693 } 6694 6695 case Intrinsic::localrecover: { 6696 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6697 MachineFunction &MF = DAG.getMachineFunction(); 6698 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6699 6700 // Get the symbol that defines the frame offset. 6701 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6702 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6703 unsigned IdxVal = 6704 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6705 MCSymbol *FrameAllocSym = 6706 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6707 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6708 6709 // Create a MCSymbol for the label to avoid any target lowering 6710 // that would make this PC relative. 6711 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6712 SDValue OffsetVal = 6713 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6714 6715 // Add the offset to the FP. 6716 Value *FP = I.getArgOperand(1); 6717 SDValue FPVal = getValue(FP); 6718 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6719 setValue(&I, Add); 6720 6721 return; 6722 } 6723 6724 case Intrinsic::eh_exceptionpointer: 6725 case Intrinsic::eh_exceptioncode: { 6726 // Get the exception pointer vreg, copy from it, and resize it to fit. 6727 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6728 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6729 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6730 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6731 SDValue N = 6732 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6733 if (Intrinsic == Intrinsic::eh_exceptioncode) 6734 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6735 setValue(&I, N); 6736 return; 6737 } 6738 case Intrinsic::xray_customevent: { 6739 // Here we want to make sure that the intrinsic behaves as if it has a 6740 // specific calling convention, and only for x86_64. 6741 // FIXME: Support other platforms later. 6742 const auto &Triple = DAG.getTarget().getTargetTriple(); 6743 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6744 return; 6745 6746 SDLoc DL = getCurSDLoc(); 6747 SmallVector<SDValue, 8> Ops; 6748 6749 // We want to say that we always want the arguments in registers. 6750 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6751 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6752 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6753 SDValue Chain = getRoot(); 6754 Ops.push_back(LogEntryVal); 6755 Ops.push_back(StrSizeVal); 6756 Ops.push_back(Chain); 6757 6758 // We need to enforce the calling convention for the callsite, so that 6759 // argument ordering is enforced correctly, and that register allocation can 6760 // see that some registers may be assumed clobbered and have to preserve 6761 // them across calls to the intrinsic. 6762 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6763 DL, NodeTys, Ops); 6764 SDValue patchableNode = SDValue(MN, 0); 6765 DAG.setRoot(patchableNode); 6766 setValue(&I, patchableNode); 6767 return; 6768 } 6769 case Intrinsic::xray_typedevent: { 6770 // Here we want to make sure that the intrinsic behaves as if it has a 6771 // specific calling convention, and only for x86_64. 6772 // FIXME: Support other platforms later. 6773 const auto &Triple = DAG.getTarget().getTargetTriple(); 6774 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6775 return; 6776 6777 SDLoc DL = getCurSDLoc(); 6778 SmallVector<SDValue, 8> Ops; 6779 6780 // We want to say that we always want the arguments in registers. 6781 // It's unclear to me how manipulating the selection DAG here forces callers 6782 // to provide arguments in registers instead of on the stack. 6783 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6784 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6785 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6786 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6787 SDValue Chain = getRoot(); 6788 Ops.push_back(LogTypeId); 6789 Ops.push_back(LogEntryVal); 6790 Ops.push_back(StrSizeVal); 6791 Ops.push_back(Chain); 6792 6793 // We need to enforce the calling convention for the callsite, so that 6794 // argument ordering is enforced correctly, and that register allocation can 6795 // see that some registers may be assumed clobbered and have to preserve 6796 // them across calls to the intrinsic. 6797 MachineSDNode *MN = DAG.getMachineNode( 6798 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6799 SDValue patchableNode = SDValue(MN, 0); 6800 DAG.setRoot(patchableNode); 6801 setValue(&I, patchableNode); 6802 return; 6803 } 6804 case Intrinsic::experimental_deoptimize: 6805 LowerDeoptimizeCall(&I); 6806 return; 6807 6808 case Intrinsic::experimental_vector_reduce_v2_fadd: 6809 case Intrinsic::experimental_vector_reduce_v2_fmul: 6810 case Intrinsic::experimental_vector_reduce_add: 6811 case Intrinsic::experimental_vector_reduce_mul: 6812 case Intrinsic::experimental_vector_reduce_and: 6813 case Intrinsic::experimental_vector_reduce_or: 6814 case Intrinsic::experimental_vector_reduce_xor: 6815 case Intrinsic::experimental_vector_reduce_smax: 6816 case Intrinsic::experimental_vector_reduce_smin: 6817 case Intrinsic::experimental_vector_reduce_umax: 6818 case Intrinsic::experimental_vector_reduce_umin: 6819 case Intrinsic::experimental_vector_reduce_fmax: 6820 case Intrinsic::experimental_vector_reduce_fmin: 6821 visitVectorReduce(I, Intrinsic); 6822 return; 6823 6824 case Intrinsic::icall_branch_funnel: { 6825 SmallVector<SDValue, 16> Ops; 6826 Ops.push_back(getValue(I.getArgOperand(0))); 6827 6828 int64_t Offset; 6829 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6830 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6831 if (!Base) 6832 report_fatal_error( 6833 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6834 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6835 6836 struct BranchFunnelTarget { 6837 int64_t Offset; 6838 SDValue Target; 6839 }; 6840 SmallVector<BranchFunnelTarget, 8> Targets; 6841 6842 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6843 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6844 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6845 if (ElemBase != Base) 6846 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6847 "to the same GlobalValue"); 6848 6849 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6850 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6851 if (!GA) 6852 report_fatal_error( 6853 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6854 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6855 GA->getGlobal(), getCurSDLoc(), 6856 Val.getValueType(), GA->getOffset())}); 6857 } 6858 llvm::sort(Targets, 6859 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6860 return T1.Offset < T2.Offset; 6861 }); 6862 6863 for (auto &T : Targets) { 6864 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6865 Ops.push_back(T.Target); 6866 } 6867 6868 Ops.push_back(DAG.getRoot()); // Chain 6869 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6870 getCurSDLoc(), MVT::Other, Ops), 6871 0); 6872 DAG.setRoot(N); 6873 setValue(&I, N); 6874 HasTailCall = true; 6875 return; 6876 } 6877 6878 case Intrinsic::wasm_landingpad_index: 6879 // Information this intrinsic contained has been transferred to 6880 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6881 // delete it now. 6882 return; 6883 6884 case Intrinsic::aarch64_settag: 6885 case Intrinsic::aarch64_settag_zero: { 6886 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6887 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6888 SDValue Val = TSI.EmitTargetCodeForSetTag( 6889 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6890 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6891 ZeroMemory); 6892 DAG.setRoot(Val); 6893 setValue(&I, Val); 6894 return; 6895 } 6896 case Intrinsic::ptrmask: { 6897 SDValue Ptr = getValue(I.getOperand(0)); 6898 SDValue Const = getValue(I.getOperand(1)); 6899 6900 EVT DestVT = 6901 EVT(DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6902 6903 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), DestVT, Ptr, 6904 DAG.getZExtOrTrunc(Const, getCurSDLoc(), DestVT))); 6905 return; 6906 } 6907 } 6908 } 6909 6910 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6911 const ConstrainedFPIntrinsic &FPI) { 6912 SDLoc sdl = getCurSDLoc(); 6913 6914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6915 SmallVector<EVT, 4> ValueVTs; 6916 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6917 ValueVTs.push_back(MVT::Other); // Out chain 6918 6919 // We do not need to serialize constrained FP intrinsics against 6920 // each other or against (nonvolatile) loads, so they can be 6921 // chained like loads. 6922 SDValue Chain = DAG.getRoot(); 6923 SmallVector<SDValue, 4> Opers; 6924 Opers.push_back(Chain); 6925 if (FPI.isUnaryOp()) { 6926 Opers.push_back(getValue(FPI.getArgOperand(0))); 6927 } else if (FPI.isTernaryOp()) { 6928 Opers.push_back(getValue(FPI.getArgOperand(0))); 6929 Opers.push_back(getValue(FPI.getArgOperand(1))); 6930 Opers.push_back(getValue(FPI.getArgOperand(2))); 6931 } else { 6932 Opers.push_back(getValue(FPI.getArgOperand(0))); 6933 Opers.push_back(getValue(FPI.getArgOperand(1))); 6934 } 6935 6936 unsigned Opcode; 6937 switch (FPI.getIntrinsicID()) { 6938 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6939 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 6940 case Intrinsic::INTRINSIC: \ 6941 Opcode = ISD::STRICT_##DAGN; \ 6942 break; 6943 #include "llvm/IR/ConstrainedOps.def" 6944 } 6945 6946 // A few strict DAG nodes carry additional operands that are not 6947 // set up by the default code above. 6948 switch (Opcode) { 6949 default: break; 6950 case ISD::STRICT_FP_ROUND: 6951 Opers.push_back( 6952 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 6953 break; 6954 case ISD::STRICT_FSETCC: 6955 case ISD::STRICT_FSETCCS: { 6956 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 6957 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 6958 break; 6959 } 6960 } 6961 6962 SDVTList VTs = DAG.getVTList(ValueVTs); 6963 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers); 6964 6965 if (FPI.getExceptionBehavior() != fp::ExceptionBehavior::ebIgnore) { 6966 SDNodeFlags Flags; 6967 Flags.setFPExcept(true); 6968 Result->setFlags(Flags); 6969 } 6970 6971 assert(Result.getNode()->getNumValues() == 2); 6972 // See above -- chain is handled like for loads here. 6973 SDValue OutChain = Result.getValue(1); 6974 PendingLoads.push_back(OutChain); 6975 SDValue FPResult = Result.getValue(0); 6976 setValue(&FPI, FPResult); 6977 } 6978 6979 std::pair<SDValue, SDValue> 6980 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6981 const BasicBlock *EHPadBB) { 6982 MachineFunction &MF = DAG.getMachineFunction(); 6983 MachineModuleInfo &MMI = MF.getMMI(); 6984 MCSymbol *BeginLabel = nullptr; 6985 6986 if (EHPadBB) { 6987 // Insert a label before the invoke call to mark the try range. This can be 6988 // used to detect deletion of the invoke via the MachineModuleInfo. 6989 BeginLabel = MMI.getContext().createTempSymbol(); 6990 6991 // For SjLj, keep track of which landing pads go with which invokes 6992 // so as to maintain the ordering of pads in the LSDA. 6993 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6994 if (CallSiteIndex) { 6995 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6996 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6997 6998 // Now that the call site is handled, stop tracking it. 6999 MMI.setCurrentCallSite(0); 7000 } 7001 7002 // Both PendingLoads and PendingExports must be flushed here; 7003 // this call might not return. 7004 (void)getRoot(); 7005 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7006 7007 CLI.setChain(getRoot()); 7008 } 7009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7010 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7011 7012 assert((CLI.IsTailCall || Result.second.getNode()) && 7013 "Non-null chain expected with non-tail call!"); 7014 assert((Result.second.getNode() || !Result.first.getNode()) && 7015 "Null value expected with tail call!"); 7016 7017 if (!Result.second.getNode()) { 7018 // As a special case, a null chain means that a tail call has been emitted 7019 // and the DAG root is already updated. 7020 HasTailCall = true; 7021 7022 // Since there's no actual continuation from this block, nothing can be 7023 // relying on us setting vregs for them. 7024 PendingExports.clear(); 7025 } else { 7026 DAG.setRoot(Result.second); 7027 } 7028 7029 if (EHPadBB) { 7030 // Insert a label at the end of the invoke call to mark the try range. This 7031 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7032 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7033 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7034 7035 // Inform MachineModuleInfo of range. 7036 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7037 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7038 // actually use outlined funclets and their LSDA info style. 7039 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7040 assert(CLI.CS); 7041 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7042 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 7043 BeginLabel, EndLabel); 7044 } else if (!isScopedEHPersonality(Pers)) { 7045 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7046 } 7047 } 7048 7049 return Result; 7050 } 7051 7052 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 7053 bool isTailCall, 7054 const BasicBlock *EHPadBB) { 7055 auto &DL = DAG.getDataLayout(); 7056 FunctionType *FTy = CS.getFunctionType(); 7057 Type *RetTy = CS.getType(); 7058 7059 TargetLowering::ArgListTy Args; 7060 Args.reserve(CS.arg_size()); 7061 7062 const Value *SwiftErrorVal = nullptr; 7063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7064 7065 // We can't tail call inside a function with a swifterror argument. Lowering 7066 // does not support this yet. It would have to move into the swifterror 7067 // register before the call. 7068 auto *Caller = CS.getInstruction()->getParent()->getParent(); 7069 if (TLI.supportSwiftError() && 7070 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7071 isTailCall = false; 7072 7073 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 7074 i != e; ++i) { 7075 TargetLowering::ArgListEntry Entry; 7076 const Value *V = *i; 7077 7078 // Skip empty types 7079 if (V->getType()->isEmptyTy()) 7080 continue; 7081 7082 SDValue ArgNode = getValue(V); 7083 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7084 7085 Entry.setAttributes(&CS, i - CS.arg_begin()); 7086 7087 // Use swifterror virtual register as input to the call. 7088 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7089 SwiftErrorVal = V; 7090 // We find the virtual register for the actual swifterror argument. 7091 // Instead of using the Value, we use the virtual register instead. 7092 Entry.Node = DAG.getRegister( 7093 SwiftError.getOrCreateVRegUseAt(CS.getInstruction(), FuncInfo.MBB, V), 7094 EVT(TLI.getPointerTy(DL))); 7095 } 7096 7097 Args.push_back(Entry); 7098 7099 // If we have an explicit sret argument that is an Instruction, (i.e., it 7100 // might point to function-local memory), we can't meaningfully tail-call. 7101 if (Entry.IsSRet && isa<Instruction>(V)) 7102 isTailCall = false; 7103 } 7104 7105 // If call site has a cfguardtarget operand bundle, create and add an 7106 // additional ArgListEntry. 7107 if (auto Bundle = CS.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7108 TargetLowering::ArgListEntry Entry; 7109 Value *V = Bundle->Inputs[0]; 7110 SDValue ArgNode = getValue(V); 7111 Entry.Node = ArgNode; 7112 Entry.Ty = V->getType(); 7113 Entry.IsCFGuardTarget = true; 7114 Args.push_back(Entry); 7115 } 7116 7117 // Check if target-independent constraints permit a tail call here. 7118 // Target-dependent constraints are checked within TLI->LowerCallTo. 7119 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 7120 isTailCall = false; 7121 7122 // Disable tail calls if there is an swifterror argument. Targets have not 7123 // been updated to support tail calls. 7124 if (TLI.supportSwiftError() && SwiftErrorVal) 7125 isTailCall = false; 7126 7127 TargetLowering::CallLoweringInfo CLI(DAG); 7128 CLI.setDebugLoc(getCurSDLoc()) 7129 .setChain(getRoot()) 7130 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 7131 .setTailCall(isTailCall) 7132 .setConvergent(CS.isConvergent()); 7133 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7134 7135 if (Result.first.getNode()) { 7136 const Instruction *Inst = CS.getInstruction(); 7137 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 7138 setValue(Inst, Result.first); 7139 } 7140 7141 // The last element of CLI.InVals has the SDValue for swifterror return. 7142 // Here we copy it to a virtual register and update SwiftErrorMap for 7143 // book-keeping. 7144 if (SwiftErrorVal && TLI.supportSwiftError()) { 7145 // Get the last element of InVals. 7146 SDValue Src = CLI.InVals.back(); 7147 Register VReg = SwiftError.getOrCreateVRegDefAt( 7148 CS.getInstruction(), FuncInfo.MBB, SwiftErrorVal); 7149 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7150 DAG.setRoot(CopyNode); 7151 } 7152 } 7153 7154 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7155 SelectionDAGBuilder &Builder) { 7156 // Check to see if this load can be trivially constant folded, e.g. if the 7157 // input is from a string literal. 7158 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7159 // Cast pointer to the type we really want to load. 7160 Type *LoadTy = 7161 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7162 if (LoadVT.isVector()) 7163 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7164 7165 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7166 PointerType::getUnqual(LoadTy)); 7167 7168 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7169 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7170 return Builder.getValue(LoadCst); 7171 } 7172 7173 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7174 // still constant memory, the input chain can be the entry node. 7175 SDValue Root; 7176 bool ConstantMemory = false; 7177 7178 // Do not serialize (non-volatile) loads of constant memory with anything. 7179 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7180 Root = Builder.DAG.getEntryNode(); 7181 ConstantMemory = true; 7182 } else { 7183 // Do not serialize non-volatile loads against each other. 7184 Root = Builder.DAG.getRoot(); 7185 } 7186 7187 SDValue Ptr = Builder.getValue(PtrVal); 7188 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7189 Ptr, MachinePointerInfo(PtrVal), 7190 /* Alignment = */ 1); 7191 7192 if (!ConstantMemory) 7193 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7194 return LoadVal; 7195 } 7196 7197 /// Record the value for an instruction that produces an integer result, 7198 /// converting the type where necessary. 7199 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7200 SDValue Value, 7201 bool IsSigned) { 7202 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7203 I.getType(), true); 7204 if (IsSigned) 7205 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7206 else 7207 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7208 setValue(&I, Value); 7209 } 7210 7211 /// See if we can lower a memcmp call into an optimized form. If so, return 7212 /// true and lower it. Otherwise return false, and it will be lowered like a 7213 /// normal call. 7214 /// The caller already checked that \p I calls the appropriate LibFunc with a 7215 /// correct prototype. 7216 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7217 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7218 const Value *Size = I.getArgOperand(2); 7219 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7220 if (CSize && CSize->getZExtValue() == 0) { 7221 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7222 I.getType(), true); 7223 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7224 return true; 7225 } 7226 7227 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7228 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7229 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7230 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7231 if (Res.first.getNode()) { 7232 processIntegerCallValue(I, Res.first, true); 7233 PendingLoads.push_back(Res.second); 7234 return true; 7235 } 7236 7237 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7238 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7239 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7240 return false; 7241 7242 // If the target has a fast compare for the given size, it will return a 7243 // preferred load type for that size. Require that the load VT is legal and 7244 // that the target supports unaligned loads of that type. Otherwise, return 7245 // INVALID. 7246 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7248 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7249 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7250 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7251 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7252 // TODO: Check alignment of src and dest ptrs. 7253 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7254 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7255 if (!TLI.isTypeLegal(LVT) || 7256 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7257 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7258 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7259 } 7260 7261 return LVT; 7262 }; 7263 7264 // This turns into unaligned loads. We only do this if the target natively 7265 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7266 // we'll only produce a small number of byte loads. 7267 MVT LoadVT; 7268 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7269 switch (NumBitsToCompare) { 7270 default: 7271 return false; 7272 case 16: 7273 LoadVT = MVT::i16; 7274 break; 7275 case 32: 7276 LoadVT = MVT::i32; 7277 break; 7278 case 64: 7279 case 128: 7280 case 256: 7281 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7282 break; 7283 } 7284 7285 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7286 return false; 7287 7288 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7289 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7290 7291 // Bitcast to a wide integer type if the loads are vectors. 7292 if (LoadVT.isVector()) { 7293 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7294 LoadL = DAG.getBitcast(CmpVT, LoadL); 7295 LoadR = DAG.getBitcast(CmpVT, LoadR); 7296 } 7297 7298 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7299 processIntegerCallValue(I, Cmp, false); 7300 return true; 7301 } 7302 7303 /// See if we can lower a memchr call into an optimized form. If so, return 7304 /// true and lower it. Otherwise return false, and it will be lowered like a 7305 /// normal call. 7306 /// The caller already checked that \p I calls the appropriate LibFunc with a 7307 /// correct prototype. 7308 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7309 const Value *Src = I.getArgOperand(0); 7310 const Value *Char = I.getArgOperand(1); 7311 const Value *Length = I.getArgOperand(2); 7312 7313 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7314 std::pair<SDValue, SDValue> Res = 7315 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7316 getValue(Src), getValue(Char), getValue(Length), 7317 MachinePointerInfo(Src)); 7318 if (Res.first.getNode()) { 7319 setValue(&I, Res.first); 7320 PendingLoads.push_back(Res.second); 7321 return true; 7322 } 7323 7324 return false; 7325 } 7326 7327 /// See if we can lower a mempcpy call into an optimized form. If so, return 7328 /// true and lower it. Otherwise return false, and it will be lowered like a 7329 /// normal call. 7330 /// The caller already checked that \p I calls the appropriate LibFunc with a 7331 /// correct prototype. 7332 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7333 SDValue Dst = getValue(I.getArgOperand(0)); 7334 SDValue Src = getValue(I.getArgOperand(1)); 7335 SDValue Size = getValue(I.getArgOperand(2)); 7336 7337 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7338 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7339 unsigned Align = std::min(DstAlign, SrcAlign); 7340 if (Align == 0) // Alignment of one or both could not be inferred. 7341 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7342 7343 bool isVol = false; 7344 SDLoc sdl = getCurSDLoc(); 7345 7346 // In the mempcpy context we need to pass in a false value for isTailCall 7347 // because the return pointer needs to be adjusted by the size of 7348 // the copied memory. 7349 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7350 false, /*isTailCall=*/false, 7351 MachinePointerInfo(I.getArgOperand(0)), 7352 MachinePointerInfo(I.getArgOperand(1))); 7353 assert(MC.getNode() != nullptr && 7354 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7355 DAG.setRoot(MC); 7356 7357 // Check if Size needs to be truncated or extended. 7358 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7359 7360 // Adjust return pointer to point just past the last dst byte. 7361 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7362 Dst, Size); 7363 setValue(&I, DstPlusSize); 7364 return true; 7365 } 7366 7367 /// See if we can lower a strcpy call into an optimized form. If so, return 7368 /// true and lower it, otherwise return false and it will be lowered like a 7369 /// normal call. 7370 /// The caller already checked that \p I calls the appropriate LibFunc with a 7371 /// correct prototype. 7372 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7373 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7374 7375 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7376 std::pair<SDValue, SDValue> Res = 7377 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7378 getValue(Arg0), getValue(Arg1), 7379 MachinePointerInfo(Arg0), 7380 MachinePointerInfo(Arg1), isStpcpy); 7381 if (Res.first.getNode()) { 7382 setValue(&I, Res.first); 7383 DAG.setRoot(Res.second); 7384 return true; 7385 } 7386 7387 return false; 7388 } 7389 7390 /// See if we can lower a strcmp call into an optimized form. If so, return 7391 /// true and lower it, otherwise return false and it will be lowered like a 7392 /// normal call. 7393 /// The caller already checked that \p I calls the appropriate LibFunc with a 7394 /// correct prototype. 7395 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7396 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7397 7398 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7399 std::pair<SDValue, SDValue> Res = 7400 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7401 getValue(Arg0), getValue(Arg1), 7402 MachinePointerInfo(Arg0), 7403 MachinePointerInfo(Arg1)); 7404 if (Res.first.getNode()) { 7405 processIntegerCallValue(I, Res.first, true); 7406 PendingLoads.push_back(Res.second); 7407 return true; 7408 } 7409 7410 return false; 7411 } 7412 7413 /// See if we can lower a strlen call into an optimized form. If so, return 7414 /// true and lower it, otherwise return false and it will be lowered like a 7415 /// normal call. 7416 /// The caller already checked that \p I calls the appropriate LibFunc with a 7417 /// correct prototype. 7418 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7419 const Value *Arg0 = I.getArgOperand(0); 7420 7421 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7422 std::pair<SDValue, SDValue> Res = 7423 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7424 getValue(Arg0), MachinePointerInfo(Arg0)); 7425 if (Res.first.getNode()) { 7426 processIntegerCallValue(I, Res.first, false); 7427 PendingLoads.push_back(Res.second); 7428 return true; 7429 } 7430 7431 return false; 7432 } 7433 7434 /// See if we can lower a strnlen call into an optimized form. If so, return 7435 /// true and lower it, otherwise return false and it will be lowered like a 7436 /// normal call. 7437 /// The caller already checked that \p I calls the appropriate LibFunc with a 7438 /// correct prototype. 7439 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7440 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7441 7442 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7443 std::pair<SDValue, SDValue> Res = 7444 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7445 getValue(Arg0), getValue(Arg1), 7446 MachinePointerInfo(Arg0)); 7447 if (Res.first.getNode()) { 7448 processIntegerCallValue(I, Res.first, false); 7449 PendingLoads.push_back(Res.second); 7450 return true; 7451 } 7452 7453 return false; 7454 } 7455 7456 /// See if we can lower a unary floating-point operation into an SDNode with 7457 /// the specified Opcode. If so, return true and lower it, otherwise return 7458 /// false and it will be lowered like a normal call. 7459 /// The caller already checked that \p I calls the appropriate LibFunc with a 7460 /// correct prototype. 7461 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7462 unsigned Opcode) { 7463 // We already checked this call's prototype; verify it doesn't modify errno. 7464 if (!I.onlyReadsMemory()) 7465 return false; 7466 7467 SDValue Tmp = getValue(I.getArgOperand(0)); 7468 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7469 return true; 7470 } 7471 7472 /// See if we can lower a binary floating-point operation into an SDNode with 7473 /// the specified Opcode. If so, return true and lower it. Otherwise return 7474 /// false, and it will be lowered like a normal call. 7475 /// The caller already checked that \p I calls the appropriate LibFunc with a 7476 /// correct prototype. 7477 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7478 unsigned Opcode) { 7479 // We already checked this call's prototype; verify it doesn't modify errno. 7480 if (!I.onlyReadsMemory()) 7481 return false; 7482 7483 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7484 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7485 EVT VT = Tmp0.getValueType(); 7486 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7487 return true; 7488 } 7489 7490 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7491 // Handle inline assembly differently. 7492 if (isa<InlineAsm>(I.getCalledValue())) { 7493 visitInlineAsm(&I); 7494 return; 7495 } 7496 7497 if (Function *F = I.getCalledFunction()) { 7498 if (F->isDeclaration()) { 7499 // Is this an LLVM intrinsic or a target-specific intrinsic? 7500 unsigned IID = F->getIntrinsicID(); 7501 if (!IID) 7502 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7503 IID = II->getIntrinsicID(F); 7504 7505 if (IID) { 7506 visitIntrinsicCall(I, IID); 7507 return; 7508 } 7509 } 7510 7511 // Check for well-known libc/libm calls. If the function is internal, it 7512 // can't be a library call. Don't do the check if marked as nobuiltin for 7513 // some reason or the call site requires strict floating point semantics. 7514 LibFunc Func; 7515 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7516 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7517 LibInfo->hasOptimizedCodeGen(Func)) { 7518 switch (Func) { 7519 default: break; 7520 case LibFunc_copysign: 7521 case LibFunc_copysignf: 7522 case LibFunc_copysignl: 7523 // We already checked this call's prototype; verify it doesn't modify 7524 // errno. 7525 if (I.onlyReadsMemory()) { 7526 SDValue LHS = getValue(I.getArgOperand(0)); 7527 SDValue RHS = getValue(I.getArgOperand(1)); 7528 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7529 LHS.getValueType(), LHS, RHS)); 7530 return; 7531 } 7532 break; 7533 case LibFunc_fabs: 7534 case LibFunc_fabsf: 7535 case LibFunc_fabsl: 7536 if (visitUnaryFloatCall(I, ISD::FABS)) 7537 return; 7538 break; 7539 case LibFunc_fmin: 7540 case LibFunc_fminf: 7541 case LibFunc_fminl: 7542 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7543 return; 7544 break; 7545 case LibFunc_fmax: 7546 case LibFunc_fmaxf: 7547 case LibFunc_fmaxl: 7548 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7549 return; 7550 break; 7551 case LibFunc_sin: 7552 case LibFunc_sinf: 7553 case LibFunc_sinl: 7554 if (visitUnaryFloatCall(I, ISD::FSIN)) 7555 return; 7556 break; 7557 case LibFunc_cos: 7558 case LibFunc_cosf: 7559 case LibFunc_cosl: 7560 if (visitUnaryFloatCall(I, ISD::FCOS)) 7561 return; 7562 break; 7563 case LibFunc_sqrt: 7564 case LibFunc_sqrtf: 7565 case LibFunc_sqrtl: 7566 case LibFunc_sqrt_finite: 7567 case LibFunc_sqrtf_finite: 7568 case LibFunc_sqrtl_finite: 7569 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7570 return; 7571 break; 7572 case LibFunc_floor: 7573 case LibFunc_floorf: 7574 case LibFunc_floorl: 7575 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7576 return; 7577 break; 7578 case LibFunc_nearbyint: 7579 case LibFunc_nearbyintf: 7580 case LibFunc_nearbyintl: 7581 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7582 return; 7583 break; 7584 case LibFunc_ceil: 7585 case LibFunc_ceilf: 7586 case LibFunc_ceill: 7587 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7588 return; 7589 break; 7590 case LibFunc_rint: 7591 case LibFunc_rintf: 7592 case LibFunc_rintl: 7593 if (visitUnaryFloatCall(I, ISD::FRINT)) 7594 return; 7595 break; 7596 case LibFunc_round: 7597 case LibFunc_roundf: 7598 case LibFunc_roundl: 7599 if (visitUnaryFloatCall(I, ISD::FROUND)) 7600 return; 7601 break; 7602 case LibFunc_trunc: 7603 case LibFunc_truncf: 7604 case LibFunc_truncl: 7605 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7606 return; 7607 break; 7608 case LibFunc_log2: 7609 case LibFunc_log2f: 7610 case LibFunc_log2l: 7611 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7612 return; 7613 break; 7614 case LibFunc_exp2: 7615 case LibFunc_exp2f: 7616 case LibFunc_exp2l: 7617 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7618 return; 7619 break; 7620 case LibFunc_memcmp: 7621 if (visitMemCmpCall(I)) 7622 return; 7623 break; 7624 case LibFunc_mempcpy: 7625 if (visitMemPCpyCall(I)) 7626 return; 7627 break; 7628 case LibFunc_memchr: 7629 if (visitMemChrCall(I)) 7630 return; 7631 break; 7632 case LibFunc_strcpy: 7633 if (visitStrCpyCall(I, false)) 7634 return; 7635 break; 7636 case LibFunc_stpcpy: 7637 if (visitStrCpyCall(I, true)) 7638 return; 7639 break; 7640 case LibFunc_strcmp: 7641 if (visitStrCmpCall(I)) 7642 return; 7643 break; 7644 case LibFunc_strlen: 7645 if (visitStrLenCall(I)) 7646 return; 7647 break; 7648 case LibFunc_strnlen: 7649 if (visitStrNLenCall(I)) 7650 return; 7651 break; 7652 } 7653 } 7654 } 7655 7656 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7657 // have to do anything here to lower funclet bundles. 7658 // CFGuardTarget bundles are lowered in LowerCallTo. 7659 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 7660 LLVMContext::OB_funclet, 7661 LLVMContext::OB_cfguardtarget}) && 7662 "Cannot lower calls with arbitrary operand bundles!"); 7663 7664 SDValue Callee = getValue(I.getCalledValue()); 7665 7666 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7667 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7668 else 7669 // Check if we can potentially perform a tail call. More detailed checking 7670 // is be done within LowerCallTo, after more information about the call is 7671 // known. 7672 LowerCallTo(&I, Callee, I.isTailCall()); 7673 } 7674 7675 namespace { 7676 7677 /// AsmOperandInfo - This contains information for each constraint that we are 7678 /// lowering. 7679 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7680 public: 7681 /// CallOperand - If this is the result output operand or a clobber 7682 /// this is null, otherwise it is the incoming operand to the CallInst. 7683 /// This gets modified as the asm is processed. 7684 SDValue CallOperand; 7685 7686 /// AssignedRegs - If this is a register or register class operand, this 7687 /// contains the set of register corresponding to the operand. 7688 RegsForValue AssignedRegs; 7689 7690 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7691 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7692 } 7693 7694 /// Whether or not this operand accesses memory 7695 bool hasMemory(const TargetLowering &TLI) const { 7696 // Indirect operand accesses access memory. 7697 if (isIndirect) 7698 return true; 7699 7700 for (const auto &Code : Codes) 7701 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7702 return true; 7703 7704 return false; 7705 } 7706 7707 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7708 /// corresponds to. If there is no Value* for this operand, it returns 7709 /// MVT::Other. 7710 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7711 const DataLayout &DL) const { 7712 if (!CallOperandVal) return MVT::Other; 7713 7714 if (isa<BasicBlock>(CallOperandVal)) 7715 return TLI.getPointerTy(DL); 7716 7717 llvm::Type *OpTy = CallOperandVal->getType(); 7718 7719 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7720 // If this is an indirect operand, the operand is a pointer to the 7721 // accessed type. 7722 if (isIndirect) { 7723 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7724 if (!PtrTy) 7725 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7726 OpTy = PtrTy->getElementType(); 7727 } 7728 7729 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7730 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7731 if (STy->getNumElements() == 1) 7732 OpTy = STy->getElementType(0); 7733 7734 // If OpTy is not a single value, it may be a struct/union that we 7735 // can tile with integers. 7736 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7737 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7738 switch (BitSize) { 7739 default: break; 7740 case 1: 7741 case 8: 7742 case 16: 7743 case 32: 7744 case 64: 7745 case 128: 7746 OpTy = IntegerType::get(Context, BitSize); 7747 break; 7748 } 7749 } 7750 7751 return TLI.getValueType(DL, OpTy, true); 7752 } 7753 }; 7754 7755 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7756 7757 } // end anonymous namespace 7758 7759 /// Make sure that the output operand \p OpInfo and its corresponding input 7760 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7761 /// out). 7762 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7763 SDISelAsmOperandInfo &MatchingOpInfo, 7764 SelectionDAG &DAG) { 7765 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7766 return; 7767 7768 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7769 const auto &TLI = DAG.getTargetLoweringInfo(); 7770 7771 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7772 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7773 OpInfo.ConstraintVT); 7774 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7775 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7776 MatchingOpInfo.ConstraintVT); 7777 if ((OpInfo.ConstraintVT.isInteger() != 7778 MatchingOpInfo.ConstraintVT.isInteger()) || 7779 (MatchRC.second != InputRC.second)) { 7780 // FIXME: error out in a more elegant fashion 7781 report_fatal_error("Unsupported asm: input constraint" 7782 " with a matching output constraint of" 7783 " incompatible type!"); 7784 } 7785 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7786 } 7787 7788 /// Get a direct memory input to behave well as an indirect operand. 7789 /// This may introduce stores, hence the need for a \p Chain. 7790 /// \return The (possibly updated) chain. 7791 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7792 SDISelAsmOperandInfo &OpInfo, 7793 SelectionDAG &DAG) { 7794 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7795 7796 // If we don't have an indirect input, put it in the constpool if we can, 7797 // otherwise spill it to a stack slot. 7798 // TODO: This isn't quite right. We need to handle these according to 7799 // the addressing mode that the constraint wants. Also, this may take 7800 // an additional register for the computation and we don't want that 7801 // either. 7802 7803 // If the operand is a float, integer, or vector constant, spill to a 7804 // constant pool entry to get its address. 7805 const Value *OpVal = OpInfo.CallOperandVal; 7806 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7807 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7808 OpInfo.CallOperand = DAG.getConstantPool( 7809 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7810 return Chain; 7811 } 7812 7813 // Otherwise, create a stack slot and emit a store to it before the asm. 7814 Type *Ty = OpVal->getType(); 7815 auto &DL = DAG.getDataLayout(); 7816 uint64_t TySize = DL.getTypeAllocSize(Ty); 7817 unsigned Align = DL.getPrefTypeAlignment(Ty); 7818 MachineFunction &MF = DAG.getMachineFunction(); 7819 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7820 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7821 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7822 MachinePointerInfo::getFixedStack(MF, SSFI), 7823 TLI.getMemValueType(DL, Ty)); 7824 OpInfo.CallOperand = StackSlot; 7825 7826 return Chain; 7827 } 7828 7829 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7830 /// specified operand. We prefer to assign virtual registers, to allow the 7831 /// register allocator to handle the assignment process. However, if the asm 7832 /// uses features that we can't model on machineinstrs, we have SDISel do the 7833 /// allocation. This produces generally horrible, but correct, code. 7834 /// 7835 /// OpInfo describes the operand 7836 /// RefOpInfo describes the matching operand if any, the operand otherwise 7837 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7838 SDISelAsmOperandInfo &OpInfo, 7839 SDISelAsmOperandInfo &RefOpInfo) { 7840 LLVMContext &Context = *DAG.getContext(); 7841 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7842 7843 MachineFunction &MF = DAG.getMachineFunction(); 7844 SmallVector<unsigned, 4> Regs; 7845 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7846 7847 // No work to do for memory operations. 7848 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7849 return; 7850 7851 // If this is a constraint for a single physreg, or a constraint for a 7852 // register class, find it. 7853 unsigned AssignedReg; 7854 const TargetRegisterClass *RC; 7855 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7856 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7857 // RC is unset only on failure. Return immediately. 7858 if (!RC) 7859 return; 7860 7861 // Get the actual register value type. This is important, because the user 7862 // may have asked for (e.g.) the AX register in i32 type. We need to 7863 // remember that AX is actually i16 to get the right extension. 7864 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7865 7866 if (OpInfo.ConstraintVT != MVT::Other) { 7867 // If this is an FP operand in an integer register (or visa versa), or more 7868 // generally if the operand value disagrees with the register class we plan 7869 // to stick it in, fix the operand type. 7870 // 7871 // If this is an input value, the bitcast to the new type is done now. 7872 // Bitcast for output value is done at the end of visitInlineAsm(). 7873 if ((OpInfo.Type == InlineAsm::isOutput || 7874 OpInfo.Type == InlineAsm::isInput) && 7875 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7876 // Try to convert to the first EVT that the reg class contains. If the 7877 // types are identical size, use a bitcast to convert (e.g. two differing 7878 // vector types). Note: output bitcast is done at the end of 7879 // visitInlineAsm(). 7880 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7881 // Exclude indirect inputs while they are unsupported because the code 7882 // to perform the load is missing and thus OpInfo.CallOperand still 7883 // refers to the input address rather than the pointed-to value. 7884 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7885 OpInfo.CallOperand = 7886 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7887 OpInfo.ConstraintVT = RegVT; 7888 // If the operand is an FP value and we want it in integer registers, 7889 // use the corresponding integer type. This turns an f64 value into 7890 // i64, which can be passed with two i32 values on a 32-bit machine. 7891 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7892 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7893 if (OpInfo.Type == InlineAsm::isInput) 7894 OpInfo.CallOperand = 7895 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7896 OpInfo.ConstraintVT = VT; 7897 } 7898 } 7899 } 7900 7901 // No need to allocate a matching input constraint since the constraint it's 7902 // matching to has already been allocated. 7903 if (OpInfo.isMatchingInputConstraint()) 7904 return; 7905 7906 EVT ValueVT = OpInfo.ConstraintVT; 7907 if (OpInfo.ConstraintVT == MVT::Other) 7908 ValueVT = RegVT; 7909 7910 // Initialize NumRegs. 7911 unsigned NumRegs = 1; 7912 if (OpInfo.ConstraintVT != MVT::Other) 7913 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7914 7915 // If this is a constraint for a specific physical register, like {r17}, 7916 // assign it now. 7917 7918 // If this associated to a specific register, initialize iterator to correct 7919 // place. If virtual, make sure we have enough registers 7920 7921 // Initialize iterator if necessary 7922 TargetRegisterClass::iterator I = RC->begin(); 7923 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7924 7925 // Do not check for single registers. 7926 if (AssignedReg) { 7927 for (; *I != AssignedReg; ++I) 7928 assert(I != RC->end() && "AssignedReg should be member of RC"); 7929 } 7930 7931 for (; NumRegs; --NumRegs, ++I) { 7932 assert(I != RC->end() && "Ran out of registers to allocate!"); 7933 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 7934 Regs.push_back(R); 7935 } 7936 7937 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7938 } 7939 7940 static unsigned 7941 findMatchingInlineAsmOperand(unsigned OperandNo, 7942 const std::vector<SDValue> &AsmNodeOperands) { 7943 // Scan until we find the definition we already emitted of this operand. 7944 unsigned CurOp = InlineAsm::Op_FirstOperand; 7945 for (; OperandNo; --OperandNo) { 7946 // Advance to the next operand. 7947 unsigned OpFlag = 7948 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7949 assert((InlineAsm::isRegDefKind(OpFlag) || 7950 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7951 InlineAsm::isMemKind(OpFlag)) && 7952 "Skipped past definitions?"); 7953 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7954 } 7955 return CurOp; 7956 } 7957 7958 namespace { 7959 7960 class ExtraFlags { 7961 unsigned Flags = 0; 7962 7963 public: 7964 explicit ExtraFlags(ImmutableCallSite CS) { 7965 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7966 if (IA->hasSideEffects()) 7967 Flags |= InlineAsm::Extra_HasSideEffects; 7968 if (IA->isAlignStack()) 7969 Flags |= InlineAsm::Extra_IsAlignStack; 7970 if (CS.isConvergent()) 7971 Flags |= InlineAsm::Extra_IsConvergent; 7972 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7973 } 7974 7975 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7976 // Ideally, we would only check against memory constraints. However, the 7977 // meaning of an Other constraint can be target-specific and we can't easily 7978 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7979 // for Other constraints as well. 7980 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7981 OpInfo.ConstraintType == TargetLowering::C_Other) { 7982 if (OpInfo.Type == InlineAsm::isInput) 7983 Flags |= InlineAsm::Extra_MayLoad; 7984 else if (OpInfo.Type == InlineAsm::isOutput) 7985 Flags |= InlineAsm::Extra_MayStore; 7986 else if (OpInfo.Type == InlineAsm::isClobber) 7987 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7988 } 7989 } 7990 7991 unsigned get() const { return Flags; } 7992 }; 7993 7994 } // end anonymous namespace 7995 7996 /// visitInlineAsm - Handle a call to an InlineAsm object. 7997 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7998 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7999 8000 /// ConstraintOperands - Information about all of the constraints. 8001 SDISelAsmOperandInfoVector ConstraintOperands; 8002 8003 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8004 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8005 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 8006 8007 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8008 // AsmDialect, MayLoad, MayStore). 8009 bool HasSideEffect = IA->hasSideEffects(); 8010 ExtraFlags ExtraInfo(CS); 8011 8012 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8013 unsigned ResNo = 0; // ResNo - The result number of the next output. 8014 for (auto &T : TargetConstraints) { 8015 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8016 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8017 8018 // Compute the value type for each operand. 8019 if (OpInfo.Type == InlineAsm::isInput || 8020 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8021 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 8022 8023 // Process the call argument. BasicBlocks are labels, currently appearing 8024 // only in asm's. 8025 const Instruction *I = CS.getInstruction(); 8026 if (isa<CallBrInst>(I) && 8027 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 8028 cast<CallBrInst>(I)->getNumIndirectDests())) { 8029 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8030 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8031 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8032 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8033 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8034 } else { 8035 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8036 } 8037 8038 OpInfo.ConstraintVT = 8039 OpInfo 8040 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8041 .getSimpleVT(); 8042 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8043 // The return value of the call is this value. As such, there is no 8044 // corresponding argument. 8045 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8046 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 8047 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8048 DAG.getDataLayout(), STy->getElementType(ResNo)); 8049 } else { 8050 assert(ResNo == 0 && "Asm only has one result!"); 8051 OpInfo.ConstraintVT = 8052 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 8053 } 8054 ++ResNo; 8055 } else { 8056 OpInfo.ConstraintVT = MVT::Other; 8057 } 8058 8059 if (!HasSideEffect) 8060 HasSideEffect = OpInfo.hasMemory(TLI); 8061 8062 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8063 // FIXME: Could we compute this on OpInfo rather than T? 8064 8065 // Compute the constraint code and ConstraintType to use. 8066 TLI.ComputeConstraintToUse(T, SDValue()); 8067 8068 if (T.ConstraintType == TargetLowering::C_Immediate && 8069 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8070 // We've delayed emitting a diagnostic like the "n" constraint because 8071 // inlining could cause an integer showing up. 8072 return emitInlineAsmError( 8073 CS, "constraint '" + Twine(T.ConstraintCode) + "' expects an " 8074 "integer constant expression"); 8075 8076 ExtraInfo.update(T); 8077 } 8078 8079 8080 // We won't need to flush pending loads if this asm doesn't touch 8081 // memory and is nonvolatile. 8082 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8083 8084 bool IsCallBr = isa<CallBrInst>(CS.getInstruction()); 8085 if (IsCallBr) { 8086 // If this is a callbr we need to flush pending exports since inlineasm_br 8087 // is a terminator. We need to do this before nodes are glued to 8088 // the inlineasm_br node. 8089 Chain = getControlRoot(); 8090 } 8091 8092 // Second pass over the constraints: compute which constraint option to use. 8093 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8094 // If this is an output operand with a matching input operand, look up the 8095 // matching input. If their types mismatch, e.g. one is an integer, the 8096 // other is floating point, or their sizes are different, flag it as an 8097 // error. 8098 if (OpInfo.hasMatchingInput()) { 8099 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8100 patchMatchingInput(OpInfo, Input, DAG); 8101 } 8102 8103 // Compute the constraint code and ConstraintType to use. 8104 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8105 8106 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8107 OpInfo.Type == InlineAsm::isClobber) 8108 continue; 8109 8110 // If this is a memory input, and if the operand is not indirect, do what we 8111 // need to provide an address for the memory input. 8112 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8113 !OpInfo.isIndirect) { 8114 assert((OpInfo.isMultipleAlternative || 8115 (OpInfo.Type == InlineAsm::isInput)) && 8116 "Can only indirectify direct input operands!"); 8117 8118 // Memory operands really want the address of the value. 8119 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8120 8121 // There is no longer a Value* corresponding to this operand. 8122 OpInfo.CallOperandVal = nullptr; 8123 8124 // It is now an indirect operand. 8125 OpInfo.isIndirect = true; 8126 } 8127 8128 } 8129 8130 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8131 std::vector<SDValue> AsmNodeOperands; 8132 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8133 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8134 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 8135 8136 // If we have a !srcloc metadata node associated with it, we want to attach 8137 // this to the ultimately generated inline asm machineinstr. To do this, we 8138 // pass in the third operand as this (potentially null) inline asm MDNode. 8139 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 8140 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8141 8142 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8143 // bits as operand 3. 8144 AsmNodeOperands.push_back(DAG.getTargetConstant( 8145 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8146 8147 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8148 // this, assign virtual and physical registers for inputs and otput. 8149 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8150 // Assign Registers. 8151 SDISelAsmOperandInfo &RefOpInfo = 8152 OpInfo.isMatchingInputConstraint() 8153 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8154 : OpInfo; 8155 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8156 8157 switch (OpInfo.Type) { 8158 case InlineAsm::isOutput: 8159 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8160 ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8161 OpInfo.ConstraintType == TargetLowering::C_Other) && 8162 OpInfo.isIndirect)) { 8163 unsigned ConstraintID = 8164 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8165 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8166 "Failed to convert memory constraint code to constraint id."); 8167 8168 // Add information to the INLINEASM node to know about this output. 8169 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8170 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8171 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8172 MVT::i32)); 8173 AsmNodeOperands.push_back(OpInfo.CallOperand); 8174 break; 8175 } else if (((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8176 OpInfo.ConstraintType == TargetLowering::C_Other) && 8177 !OpInfo.isIndirect) || 8178 OpInfo.ConstraintType == TargetLowering::C_Register || 8179 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8180 // Otherwise, this outputs to a register (directly for C_Register / 8181 // C_RegisterClass, and a target-defined fashion for 8182 // C_Immediate/C_Other). Find a register that we can use. 8183 if (OpInfo.AssignedRegs.Regs.empty()) { 8184 emitInlineAsmError( 8185 CS, "couldn't allocate output register for constraint '" + 8186 Twine(OpInfo.ConstraintCode) + "'"); 8187 return; 8188 } 8189 8190 // Add information to the INLINEASM node to know that this register is 8191 // set. 8192 OpInfo.AssignedRegs.AddInlineAsmOperands( 8193 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8194 : InlineAsm::Kind_RegDef, 8195 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8196 } 8197 break; 8198 8199 case InlineAsm::isInput: { 8200 SDValue InOperandVal = OpInfo.CallOperand; 8201 8202 if (OpInfo.isMatchingInputConstraint()) { 8203 // If this is required to match an output register we have already set, 8204 // just use its register. 8205 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8206 AsmNodeOperands); 8207 unsigned OpFlag = 8208 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8209 if (InlineAsm::isRegDefKind(OpFlag) || 8210 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8211 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8212 if (OpInfo.isIndirect) { 8213 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8214 emitInlineAsmError(CS, "inline asm not supported yet:" 8215 " don't know how to handle tied " 8216 "indirect register inputs"); 8217 return; 8218 } 8219 8220 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8221 SmallVector<unsigned, 4> Regs; 8222 8223 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8224 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8225 MachineRegisterInfo &RegInfo = 8226 DAG.getMachineFunction().getRegInfo(); 8227 for (unsigned i = 0; i != NumRegs; ++i) 8228 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8229 } else { 8230 emitInlineAsmError(CS, "inline asm error: This value type register " 8231 "class is not natively supported!"); 8232 return; 8233 } 8234 8235 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8236 8237 SDLoc dl = getCurSDLoc(); 8238 // Use the produced MatchedRegs object to 8239 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8240 CS.getInstruction()); 8241 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8242 true, OpInfo.getMatchedOperand(), dl, 8243 DAG, AsmNodeOperands); 8244 break; 8245 } 8246 8247 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8248 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8249 "Unexpected number of operands"); 8250 // Add information to the INLINEASM node to know about this input. 8251 // See InlineAsm.h isUseOperandTiedToDef. 8252 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8253 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8254 OpInfo.getMatchedOperand()); 8255 AsmNodeOperands.push_back(DAG.getTargetConstant( 8256 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8257 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8258 break; 8259 } 8260 8261 // Treat indirect 'X' constraint as memory. 8262 if ((OpInfo.ConstraintType == TargetLowering::C_Immediate || 8263 OpInfo.ConstraintType == TargetLowering::C_Other) && 8264 OpInfo.isIndirect) 8265 OpInfo.ConstraintType = TargetLowering::C_Memory; 8266 8267 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8268 OpInfo.ConstraintType == TargetLowering::C_Other) { 8269 std::vector<SDValue> Ops; 8270 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8271 Ops, DAG); 8272 if (Ops.empty()) { 8273 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8274 if (isa<ConstantSDNode>(InOperandVal)) { 8275 emitInlineAsmError(CS, "value out of range for constraint '" + 8276 Twine(OpInfo.ConstraintCode) + "'"); 8277 return; 8278 } 8279 8280 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8281 Twine(OpInfo.ConstraintCode) + "'"); 8282 return; 8283 } 8284 8285 // Add information to the INLINEASM node to know about this input. 8286 unsigned ResOpType = 8287 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8288 AsmNodeOperands.push_back(DAG.getTargetConstant( 8289 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8290 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8291 break; 8292 } 8293 8294 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8295 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8296 assert(InOperandVal.getValueType() == 8297 TLI.getPointerTy(DAG.getDataLayout()) && 8298 "Memory operands expect pointer values"); 8299 8300 unsigned ConstraintID = 8301 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8302 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8303 "Failed to convert memory constraint code to constraint id."); 8304 8305 // Add information to the INLINEASM node to know about this input. 8306 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8307 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8308 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8309 getCurSDLoc(), 8310 MVT::i32)); 8311 AsmNodeOperands.push_back(InOperandVal); 8312 break; 8313 } 8314 8315 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8316 OpInfo.ConstraintType == TargetLowering::C_Register || 8317 OpInfo.ConstraintType == TargetLowering::C_Immediate) && 8318 "Unknown constraint type!"); 8319 8320 // TODO: Support this. 8321 if (OpInfo.isIndirect) { 8322 emitInlineAsmError( 8323 CS, "Don't know how to handle indirect register inputs yet " 8324 "for constraint '" + 8325 Twine(OpInfo.ConstraintCode) + "'"); 8326 return; 8327 } 8328 8329 // Copy the input into the appropriate registers. 8330 if (OpInfo.AssignedRegs.Regs.empty()) { 8331 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8332 Twine(OpInfo.ConstraintCode) + "'"); 8333 return; 8334 } 8335 8336 SDLoc dl = getCurSDLoc(); 8337 8338 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8339 Chain, &Flag, CS.getInstruction()); 8340 8341 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8342 dl, DAG, AsmNodeOperands); 8343 break; 8344 } 8345 case InlineAsm::isClobber: 8346 // Add the clobbered value to the operand list, so that the register 8347 // allocator is aware that the physreg got clobbered. 8348 if (!OpInfo.AssignedRegs.Regs.empty()) 8349 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8350 false, 0, getCurSDLoc(), DAG, 8351 AsmNodeOperands); 8352 break; 8353 } 8354 } 8355 8356 // Finish up input operands. Set the input chain and add the flag last. 8357 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8358 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8359 8360 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8361 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8362 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8363 Flag = Chain.getValue(1); 8364 8365 // Do additional work to generate outputs. 8366 8367 SmallVector<EVT, 1> ResultVTs; 8368 SmallVector<SDValue, 1> ResultValues; 8369 SmallVector<SDValue, 8> OutChains; 8370 8371 llvm::Type *CSResultType = CS.getType(); 8372 ArrayRef<Type *> ResultTypes; 8373 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8374 ResultTypes = StructResult->elements(); 8375 else if (!CSResultType->isVoidTy()) 8376 ResultTypes = makeArrayRef(CSResultType); 8377 8378 auto CurResultType = ResultTypes.begin(); 8379 auto handleRegAssign = [&](SDValue V) { 8380 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8381 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8382 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8383 ++CurResultType; 8384 // If the type of the inline asm call site return value is different but has 8385 // same size as the type of the asm output bitcast it. One example of this 8386 // is for vectors with different width / number of elements. This can 8387 // happen for register classes that can contain multiple different value 8388 // types. The preg or vreg allocated may not have the same VT as was 8389 // expected. 8390 // 8391 // This can also happen for a return value that disagrees with the register 8392 // class it is put in, eg. a double in a general-purpose register on a 8393 // 32-bit machine. 8394 if (ResultVT != V.getValueType() && 8395 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8396 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8397 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8398 V.getValueType().isInteger()) { 8399 // If a result value was tied to an input value, the computed result 8400 // may have a wider width than the expected result. Extract the 8401 // relevant portion. 8402 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8403 } 8404 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8405 ResultVTs.push_back(ResultVT); 8406 ResultValues.push_back(V); 8407 }; 8408 8409 // Deal with output operands. 8410 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8411 if (OpInfo.Type == InlineAsm::isOutput) { 8412 SDValue Val; 8413 // Skip trivial output operands. 8414 if (OpInfo.AssignedRegs.Regs.empty()) 8415 continue; 8416 8417 switch (OpInfo.ConstraintType) { 8418 case TargetLowering::C_Register: 8419 case TargetLowering::C_RegisterClass: 8420 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8421 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8422 break; 8423 case TargetLowering::C_Immediate: 8424 case TargetLowering::C_Other: 8425 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8426 OpInfo, DAG); 8427 break; 8428 case TargetLowering::C_Memory: 8429 break; // Already handled. 8430 case TargetLowering::C_Unknown: 8431 assert(false && "Unexpected unknown constraint"); 8432 } 8433 8434 // Indirect output manifest as stores. Record output chains. 8435 if (OpInfo.isIndirect) { 8436 const Value *Ptr = OpInfo.CallOperandVal; 8437 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8438 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8439 MachinePointerInfo(Ptr)); 8440 OutChains.push_back(Store); 8441 } else { 8442 // generate CopyFromRegs to associated registers. 8443 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8444 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8445 for (const SDValue &V : Val->op_values()) 8446 handleRegAssign(V); 8447 } else 8448 handleRegAssign(Val); 8449 } 8450 } 8451 } 8452 8453 // Set results. 8454 if (!ResultValues.empty()) { 8455 assert(CurResultType == ResultTypes.end() && 8456 "Mismatch in number of ResultTypes"); 8457 assert(ResultValues.size() == ResultTypes.size() && 8458 "Mismatch in number of output operands in asm result"); 8459 8460 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8461 DAG.getVTList(ResultVTs), ResultValues); 8462 setValue(CS.getInstruction(), V); 8463 } 8464 8465 // Collect store chains. 8466 if (!OutChains.empty()) 8467 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8468 8469 // Only Update Root if inline assembly has a memory effect. 8470 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8471 DAG.setRoot(Chain); 8472 } 8473 8474 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8475 const Twine &Message) { 8476 LLVMContext &Ctx = *DAG.getContext(); 8477 Ctx.emitError(CS.getInstruction(), Message); 8478 8479 // Make sure we leave the DAG in a valid state 8480 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8481 SmallVector<EVT, 1> ValueVTs; 8482 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8483 8484 if (ValueVTs.empty()) 8485 return; 8486 8487 SmallVector<SDValue, 1> Ops; 8488 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8489 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8490 8491 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8492 } 8493 8494 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8495 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8496 MVT::Other, getRoot(), 8497 getValue(I.getArgOperand(0)), 8498 DAG.getSrcValue(I.getArgOperand(0)))); 8499 } 8500 8501 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8503 const DataLayout &DL = DAG.getDataLayout(); 8504 SDValue V = DAG.getVAArg( 8505 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8506 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8507 DL.getABITypeAlignment(I.getType())); 8508 DAG.setRoot(V.getValue(1)); 8509 8510 if (I.getType()->isPointerTy()) 8511 V = DAG.getPtrExtOrTrunc( 8512 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8513 setValue(&I, V); 8514 } 8515 8516 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8517 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8518 MVT::Other, getRoot(), 8519 getValue(I.getArgOperand(0)), 8520 DAG.getSrcValue(I.getArgOperand(0)))); 8521 } 8522 8523 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8524 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8525 MVT::Other, getRoot(), 8526 getValue(I.getArgOperand(0)), 8527 getValue(I.getArgOperand(1)), 8528 DAG.getSrcValue(I.getArgOperand(0)), 8529 DAG.getSrcValue(I.getArgOperand(1)))); 8530 } 8531 8532 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8533 const Instruction &I, 8534 SDValue Op) { 8535 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8536 if (!Range) 8537 return Op; 8538 8539 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8540 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8541 return Op; 8542 8543 APInt Lo = CR.getUnsignedMin(); 8544 if (!Lo.isMinValue()) 8545 return Op; 8546 8547 APInt Hi = CR.getUnsignedMax(); 8548 unsigned Bits = std::max(Hi.getActiveBits(), 8549 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8550 8551 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8552 8553 SDLoc SL = getCurSDLoc(); 8554 8555 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8556 DAG.getValueType(SmallVT)); 8557 unsigned NumVals = Op.getNode()->getNumValues(); 8558 if (NumVals == 1) 8559 return ZExt; 8560 8561 SmallVector<SDValue, 4> Ops; 8562 8563 Ops.push_back(ZExt); 8564 for (unsigned I = 1; I != NumVals; ++I) 8565 Ops.push_back(Op.getValue(I)); 8566 8567 return DAG.getMergeValues(Ops, SL); 8568 } 8569 8570 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8571 /// the call being lowered. 8572 /// 8573 /// This is a helper for lowering intrinsics that follow a target calling 8574 /// convention or require stack pointer adjustment. Only a subset of the 8575 /// intrinsic's operands need to participate in the calling convention. 8576 void SelectionDAGBuilder::populateCallLoweringInfo( 8577 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8578 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8579 bool IsPatchPoint) { 8580 TargetLowering::ArgListTy Args; 8581 Args.reserve(NumArgs); 8582 8583 // Populate the argument list. 8584 // Attributes for args start at offset 1, after the return attribute. 8585 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8586 ArgI != ArgE; ++ArgI) { 8587 const Value *V = Call->getOperand(ArgI); 8588 8589 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8590 8591 TargetLowering::ArgListEntry Entry; 8592 Entry.Node = getValue(V); 8593 Entry.Ty = V->getType(); 8594 Entry.setAttributes(Call, ArgI); 8595 Args.push_back(Entry); 8596 } 8597 8598 CLI.setDebugLoc(getCurSDLoc()) 8599 .setChain(getRoot()) 8600 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8601 .setDiscardResult(Call->use_empty()) 8602 .setIsPatchPoint(IsPatchPoint); 8603 } 8604 8605 /// Add a stack map intrinsic call's live variable operands to a stackmap 8606 /// or patchpoint target node's operand list. 8607 /// 8608 /// Constants are converted to TargetConstants purely as an optimization to 8609 /// avoid constant materialization and register allocation. 8610 /// 8611 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8612 /// generate addess computation nodes, and so FinalizeISel can convert the 8613 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8614 /// address materialization and register allocation, but may also be required 8615 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8616 /// alloca in the entry block, then the runtime may assume that the alloca's 8617 /// StackMap location can be read immediately after compilation and that the 8618 /// location is valid at any point during execution (this is similar to the 8619 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8620 /// only available in a register, then the runtime would need to trap when 8621 /// execution reaches the StackMap in order to read the alloca's location. 8622 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8623 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8624 SelectionDAGBuilder &Builder) { 8625 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8626 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8627 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8628 Ops.push_back( 8629 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8630 Ops.push_back( 8631 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8632 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8633 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8634 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8635 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8636 } else 8637 Ops.push_back(OpVal); 8638 } 8639 } 8640 8641 /// Lower llvm.experimental.stackmap directly to its target opcode. 8642 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8643 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8644 // [live variables...]) 8645 8646 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8647 8648 SDValue Chain, InFlag, Callee, NullPtr; 8649 SmallVector<SDValue, 32> Ops; 8650 8651 SDLoc DL = getCurSDLoc(); 8652 Callee = getValue(CI.getCalledValue()); 8653 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8654 8655 // The stackmap intrinsic only records the live variables (the arguments 8656 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8657 // intrinsic, this won't be lowered to a function call. This means we don't 8658 // have to worry about calling conventions and target specific lowering code. 8659 // Instead we perform the call lowering right here. 8660 // 8661 // chain, flag = CALLSEQ_START(chain, 0, 0) 8662 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8663 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8664 // 8665 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8666 InFlag = Chain.getValue(1); 8667 8668 // Add the <id> and <numBytes> constants. 8669 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8670 Ops.push_back(DAG.getTargetConstant( 8671 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8672 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8673 Ops.push_back(DAG.getTargetConstant( 8674 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8675 MVT::i32)); 8676 8677 // Push live variables for the stack map. 8678 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8679 8680 // We are not pushing any register mask info here on the operands list, 8681 // because the stackmap doesn't clobber anything. 8682 8683 // Push the chain and the glue flag. 8684 Ops.push_back(Chain); 8685 Ops.push_back(InFlag); 8686 8687 // Create the STACKMAP node. 8688 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8689 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8690 Chain = SDValue(SM, 0); 8691 InFlag = Chain.getValue(1); 8692 8693 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8694 8695 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8696 8697 // Set the root to the target-lowered call chain. 8698 DAG.setRoot(Chain); 8699 8700 // Inform the Frame Information that we have a stackmap in this function. 8701 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8702 } 8703 8704 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8705 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8706 const BasicBlock *EHPadBB) { 8707 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8708 // i32 <numBytes>, 8709 // i8* <target>, 8710 // i32 <numArgs>, 8711 // [Args...], 8712 // [live variables...]) 8713 8714 CallingConv::ID CC = CS.getCallingConv(); 8715 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8716 bool HasDef = !CS->getType()->isVoidTy(); 8717 SDLoc dl = getCurSDLoc(); 8718 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8719 8720 // Handle immediate and symbolic callees. 8721 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8722 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8723 /*isTarget=*/true); 8724 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8725 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8726 SDLoc(SymbolicCallee), 8727 SymbolicCallee->getValueType(0)); 8728 8729 // Get the real number of arguments participating in the call <numArgs> 8730 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8731 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8732 8733 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8734 // Intrinsics include all meta-operands up to but not including CC. 8735 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8736 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8737 "Not enough arguments provided to the patchpoint intrinsic"); 8738 8739 // For AnyRegCC the arguments are lowered later on manually. 8740 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8741 Type *ReturnTy = 8742 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8743 8744 TargetLowering::CallLoweringInfo CLI(DAG); 8745 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8746 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8747 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8748 8749 SDNode *CallEnd = Result.second.getNode(); 8750 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8751 CallEnd = CallEnd->getOperand(0).getNode(); 8752 8753 /// Get a call instruction from the call sequence chain. 8754 /// Tail calls are not allowed. 8755 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8756 "Expected a callseq node."); 8757 SDNode *Call = CallEnd->getOperand(0).getNode(); 8758 bool HasGlue = Call->getGluedNode(); 8759 8760 // Replace the target specific call node with the patchable intrinsic. 8761 SmallVector<SDValue, 8> Ops; 8762 8763 // Add the <id> and <numBytes> constants. 8764 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8765 Ops.push_back(DAG.getTargetConstant( 8766 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8767 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8768 Ops.push_back(DAG.getTargetConstant( 8769 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8770 MVT::i32)); 8771 8772 // Add the callee. 8773 Ops.push_back(Callee); 8774 8775 // Adjust <numArgs> to account for any arguments that have been passed on the 8776 // stack instead. 8777 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8778 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8779 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8780 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8781 8782 // Add the calling convention 8783 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8784 8785 // Add the arguments we omitted previously. The register allocator should 8786 // place these in any free register. 8787 if (IsAnyRegCC) 8788 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8789 Ops.push_back(getValue(CS.getArgument(i))); 8790 8791 // Push the arguments from the call instruction up to the register mask. 8792 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8793 Ops.append(Call->op_begin() + 2, e); 8794 8795 // Push live variables for the stack map. 8796 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8797 8798 // Push the register mask info. 8799 if (HasGlue) 8800 Ops.push_back(*(Call->op_end()-2)); 8801 else 8802 Ops.push_back(*(Call->op_end()-1)); 8803 8804 // Push the chain (this is originally the first operand of the call, but 8805 // becomes now the last or second to last operand). 8806 Ops.push_back(*(Call->op_begin())); 8807 8808 // Push the glue flag (last operand). 8809 if (HasGlue) 8810 Ops.push_back(*(Call->op_end()-1)); 8811 8812 SDVTList NodeTys; 8813 if (IsAnyRegCC && HasDef) { 8814 // Create the return types based on the intrinsic definition 8815 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8816 SmallVector<EVT, 3> ValueVTs; 8817 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8818 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8819 8820 // There is always a chain and a glue type at the end 8821 ValueVTs.push_back(MVT::Other); 8822 ValueVTs.push_back(MVT::Glue); 8823 NodeTys = DAG.getVTList(ValueVTs); 8824 } else 8825 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8826 8827 // Replace the target specific call node with a PATCHPOINT node. 8828 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8829 dl, NodeTys, Ops); 8830 8831 // Update the NodeMap. 8832 if (HasDef) { 8833 if (IsAnyRegCC) 8834 setValue(CS.getInstruction(), SDValue(MN, 0)); 8835 else 8836 setValue(CS.getInstruction(), Result.first); 8837 } 8838 8839 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8840 // call sequence. Furthermore the location of the chain and glue can change 8841 // when the AnyReg calling convention is used and the intrinsic returns a 8842 // value. 8843 if (IsAnyRegCC && HasDef) { 8844 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8845 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8846 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8847 } else 8848 DAG.ReplaceAllUsesWith(Call, MN); 8849 DAG.DeleteNode(Call); 8850 8851 // Inform the Frame Information that we have a patchpoint in this function. 8852 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8853 } 8854 8855 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8856 unsigned Intrinsic) { 8857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8858 SDValue Op1 = getValue(I.getArgOperand(0)); 8859 SDValue Op2; 8860 if (I.getNumArgOperands() > 1) 8861 Op2 = getValue(I.getArgOperand(1)); 8862 SDLoc dl = getCurSDLoc(); 8863 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8864 SDValue Res; 8865 FastMathFlags FMF; 8866 if (isa<FPMathOperator>(I)) 8867 FMF = I.getFastMathFlags(); 8868 8869 switch (Intrinsic) { 8870 case Intrinsic::experimental_vector_reduce_v2_fadd: 8871 if (FMF.allowReassoc()) 8872 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8873 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8874 else 8875 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8876 break; 8877 case Intrinsic::experimental_vector_reduce_v2_fmul: 8878 if (FMF.allowReassoc()) 8879 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8880 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8881 else 8882 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8883 break; 8884 case Intrinsic::experimental_vector_reduce_add: 8885 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8886 break; 8887 case Intrinsic::experimental_vector_reduce_mul: 8888 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8889 break; 8890 case Intrinsic::experimental_vector_reduce_and: 8891 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8892 break; 8893 case Intrinsic::experimental_vector_reduce_or: 8894 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8895 break; 8896 case Intrinsic::experimental_vector_reduce_xor: 8897 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8898 break; 8899 case Intrinsic::experimental_vector_reduce_smax: 8900 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8901 break; 8902 case Intrinsic::experimental_vector_reduce_smin: 8903 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8904 break; 8905 case Intrinsic::experimental_vector_reduce_umax: 8906 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8907 break; 8908 case Intrinsic::experimental_vector_reduce_umin: 8909 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8910 break; 8911 case Intrinsic::experimental_vector_reduce_fmax: 8912 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8913 break; 8914 case Intrinsic::experimental_vector_reduce_fmin: 8915 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8916 break; 8917 default: 8918 llvm_unreachable("Unhandled vector reduce intrinsic"); 8919 } 8920 setValue(&I, Res); 8921 } 8922 8923 /// Returns an AttributeList representing the attributes applied to the return 8924 /// value of the given call. 8925 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8926 SmallVector<Attribute::AttrKind, 2> Attrs; 8927 if (CLI.RetSExt) 8928 Attrs.push_back(Attribute::SExt); 8929 if (CLI.RetZExt) 8930 Attrs.push_back(Attribute::ZExt); 8931 if (CLI.IsInReg) 8932 Attrs.push_back(Attribute::InReg); 8933 8934 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8935 Attrs); 8936 } 8937 8938 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8939 /// implementation, which just calls LowerCall. 8940 /// FIXME: When all targets are 8941 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8942 std::pair<SDValue, SDValue> 8943 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8944 // Handle the incoming return values from the call. 8945 CLI.Ins.clear(); 8946 Type *OrigRetTy = CLI.RetTy; 8947 SmallVector<EVT, 4> RetTys; 8948 SmallVector<uint64_t, 4> Offsets; 8949 auto &DL = CLI.DAG.getDataLayout(); 8950 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8951 8952 if (CLI.IsPostTypeLegalization) { 8953 // If we are lowering a libcall after legalization, split the return type. 8954 SmallVector<EVT, 4> OldRetTys; 8955 SmallVector<uint64_t, 4> OldOffsets; 8956 RetTys.swap(OldRetTys); 8957 Offsets.swap(OldOffsets); 8958 8959 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8960 EVT RetVT = OldRetTys[i]; 8961 uint64_t Offset = OldOffsets[i]; 8962 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8963 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8964 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8965 RetTys.append(NumRegs, RegisterVT); 8966 for (unsigned j = 0; j != NumRegs; ++j) 8967 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8968 } 8969 } 8970 8971 SmallVector<ISD::OutputArg, 4> Outs; 8972 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8973 8974 bool CanLowerReturn = 8975 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8976 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8977 8978 SDValue DemoteStackSlot; 8979 int DemoteStackIdx = -100; 8980 if (!CanLowerReturn) { 8981 // FIXME: equivalent assert? 8982 // assert(!CS.hasInAllocaArgument() && 8983 // "sret demotion is incompatible with inalloca"); 8984 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8985 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8986 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8987 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8988 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8989 DL.getAllocaAddrSpace()); 8990 8991 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8992 ArgListEntry Entry; 8993 Entry.Node = DemoteStackSlot; 8994 Entry.Ty = StackSlotPtrType; 8995 Entry.IsSExt = false; 8996 Entry.IsZExt = false; 8997 Entry.IsInReg = false; 8998 Entry.IsSRet = true; 8999 Entry.IsNest = false; 9000 Entry.IsByVal = false; 9001 Entry.IsReturned = false; 9002 Entry.IsSwiftSelf = false; 9003 Entry.IsSwiftError = false; 9004 Entry.IsCFGuardTarget = false; 9005 Entry.Alignment = Align; 9006 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9007 CLI.NumFixedArgs += 1; 9008 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9009 9010 // sret demotion isn't compatible with tail-calls, since the sret argument 9011 // points into the callers stack frame. 9012 CLI.IsTailCall = false; 9013 } else { 9014 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9015 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9016 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9017 ISD::ArgFlagsTy Flags; 9018 if (NeedsRegBlock) { 9019 Flags.setInConsecutiveRegs(); 9020 if (I == RetTys.size() - 1) 9021 Flags.setInConsecutiveRegsLast(); 9022 } 9023 EVT VT = RetTys[I]; 9024 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9025 CLI.CallConv, VT); 9026 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9027 CLI.CallConv, VT); 9028 for (unsigned i = 0; i != NumRegs; ++i) { 9029 ISD::InputArg MyFlags; 9030 MyFlags.Flags = Flags; 9031 MyFlags.VT = RegisterVT; 9032 MyFlags.ArgVT = VT; 9033 MyFlags.Used = CLI.IsReturnValueUsed; 9034 if (CLI.RetTy->isPointerTy()) { 9035 MyFlags.Flags.setPointer(); 9036 MyFlags.Flags.setPointerAddrSpace( 9037 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9038 } 9039 if (CLI.RetSExt) 9040 MyFlags.Flags.setSExt(); 9041 if (CLI.RetZExt) 9042 MyFlags.Flags.setZExt(); 9043 if (CLI.IsInReg) 9044 MyFlags.Flags.setInReg(); 9045 CLI.Ins.push_back(MyFlags); 9046 } 9047 } 9048 } 9049 9050 // We push in swifterror return as the last element of CLI.Ins. 9051 ArgListTy &Args = CLI.getArgs(); 9052 if (supportSwiftError()) { 9053 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9054 if (Args[i].IsSwiftError) { 9055 ISD::InputArg MyFlags; 9056 MyFlags.VT = getPointerTy(DL); 9057 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9058 MyFlags.Flags.setSwiftError(); 9059 CLI.Ins.push_back(MyFlags); 9060 } 9061 } 9062 } 9063 9064 // Handle all of the outgoing arguments. 9065 CLI.Outs.clear(); 9066 CLI.OutVals.clear(); 9067 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9068 SmallVector<EVT, 4> ValueVTs; 9069 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9070 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9071 Type *FinalType = Args[i].Ty; 9072 if (Args[i].IsByVal) 9073 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9074 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9075 FinalType, CLI.CallConv, CLI.IsVarArg); 9076 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9077 ++Value) { 9078 EVT VT = ValueVTs[Value]; 9079 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9080 SDValue Op = SDValue(Args[i].Node.getNode(), 9081 Args[i].Node.getResNo() + Value); 9082 ISD::ArgFlagsTy Flags; 9083 9084 // Certain targets (such as MIPS), may have a different ABI alignment 9085 // for a type depending on the context. Give the target a chance to 9086 // specify the alignment it wants. 9087 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9088 9089 if (Args[i].Ty->isPointerTy()) { 9090 Flags.setPointer(); 9091 Flags.setPointerAddrSpace( 9092 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9093 } 9094 if (Args[i].IsZExt) 9095 Flags.setZExt(); 9096 if (Args[i].IsSExt) 9097 Flags.setSExt(); 9098 if (Args[i].IsInReg) { 9099 // If we are using vectorcall calling convention, a structure that is 9100 // passed InReg - is surely an HVA 9101 if (CLI.CallConv == CallingConv::X86_VectorCall && 9102 isa<StructType>(FinalType)) { 9103 // The first value of a structure is marked 9104 if (0 == Value) 9105 Flags.setHvaStart(); 9106 Flags.setHva(); 9107 } 9108 // Set InReg Flag 9109 Flags.setInReg(); 9110 } 9111 if (Args[i].IsSRet) 9112 Flags.setSRet(); 9113 if (Args[i].IsSwiftSelf) 9114 Flags.setSwiftSelf(); 9115 if (Args[i].IsSwiftError) 9116 Flags.setSwiftError(); 9117 if (Args[i].IsCFGuardTarget) 9118 Flags.setCFGuardTarget(); 9119 if (Args[i].IsByVal) 9120 Flags.setByVal(); 9121 if (Args[i].IsInAlloca) { 9122 Flags.setInAlloca(); 9123 // Set the byval flag for CCAssignFn callbacks that don't know about 9124 // inalloca. This way we can know how many bytes we should've allocated 9125 // and how many bytes a callee cleanup function will pop. If we port 9126 // inalloca to more targets, we'll have to add custom inalloca handling 9127 // in the various CC lowering callbacks. 9128 Flags.setByVal(); 9129 } 9130 if (Args[i].IsByVal || Args[i].IsInAlloca) { 9131 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9132 Type *ElementTy = Ty->getElementType(); 9133 9134 unsigned FrameSize = DL.getTypeAllocSize( 9135 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9136 Flags.setByValSize(FrameSize); 9137 9138 // info is not there but there are cases it cannot get right. 9139 unsigned FrameAlign; 9140 if (Args[i].Alignment) 9141 FrameAlign = Args[i].Alignment; 9142 else 9143 FrameAlign = getByValTypeAlignment(ElementTy, DL); 9144 Flags.setByValAlign(Align(FrameAlign)); 9145 } 9146 if (Args[i].IsNest) 9147 Flags.setNest(); 9148 if (NeedsRegBlock) 9149 Flags.setInConsecutiveRegs(); 9150 Flags.setOrigAlign(OriginalAlignment); 9151 9152 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9153 CLI.CallConv, VT); 9154 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9155 CLI.CallConv, VT); 9156 SmallVector<SDValue, 4> Parts(NumParts); 9157 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9158 9159 if (Args[i].IsSExt) 9160 ExtendKind = ISD::SIGN_EXTEND; 9161 else if (Args[i].IsZExt) 9162 ExtendKind = ISD::ZERO_EXTEND; 9163 9164 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9165 // for now. 9166 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9167 CanLowerReturn) { 9168 assert((CLI.RetTy == Args[i].Ty || 9169 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9170 CLI.RetTy->getPointerAddressSpace() == 9171 Args[i].Ty->getPointerAddressSpace())) && 9172 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9173 // Before passing 'returned' to the target lowering code, ensure that 9174 // either the register MVT and the actual EVT are the same size or that 9175 // the return value and argument are extended in the same way; in these 9176 // cases it's safe to pass the argument register value unchanged as the 9177 // return register value (although it's at the target's option whether 9178 // to do so) 9179 // TODO: allow code generation to take advantage of partially preserved 9180 // registers rather than clobbering the entire register when the 9181 // parameter extension method is not compatible with the return 9182 // extension method 9183 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9184 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9185 CLI.RetZExt == Args[i].IsZExt)) 9186 Flags.setReturned(); 9187 } 9188 9189 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 9190 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 9191 9192 for (unsigned j = 0; j != NumParts; ++j) { 9193 // if it isn't first piece, alignment must be 1 9194 // For scalable vectors the scalable part is currently handled 9195 // by individual targets, so we just use the known minimum size here. 9196 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9197 i < CLI.NumFixedArgs, i, 9198 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9199 if (NumParts > 1 && j == 0) 9200 MyFlags.Flags.setSplit(); 9201 else if (j != 0) { 9202 MyFlags.Flags.setOrigAlign(Align::None()); 9203 if (j == NumParts - 1) 9204 MyFlags.Flags.setSplitEnd(); 9205 } 9206 9207 CLI.Outs.push_back(MyFlags); 9208 CLI.OutVals.push_back(Parts[j]); 9209 } 9210 9211 if (NeedsRegBlock && Value == NumValues - 1) 9212 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9213 } 9214 } 9215 9216 SmallVector<SDValue, 4> InVals; 9217 CLI.Chain = LowerCall(CLI, InVals); 9218 9219 // Update CLI.InVals to use outside of this function. 9220 CLI.InVals = InVals; 9221 9222 // Verify that the target's LowerCall behaved as expected. 9223 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9224 "LowerCall didn't return a valid chain!"); 9225 assert((!CLI.IsTailCall || InVals.empty()) && 9226 "LowerCall emitted a return value for a tail call!"); 9227 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9228 "LowerCall didn't emit the correct number of values!"); 9229 9230 // For a tail call, the return value is merely live-out and there aren't 9231 // any nodes in the DAG representing it. Return a special value to 9232 // indicate that a tail call has been emitted and no more Instructions 9233 // should be processed in the current block. 9234 if (CLI.IsTailCall) { 9235 CLI.DAG.setRoot(CLI.Chain); 9236 return std::make_pair(SDValue(), SDValue()); 9237 } 9238 9239 #ifndef NDEBUG 9240 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9241 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9242 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9243 "LowerCall emitted a value with the wrong type!"); 9244 } 9245 #endif 9246 9247 SmallVector<SDValue, 4> ReturnValues; 9248 if (!CanLowerReturn) { 9249 // The instruction result is the result of loading from the 9250 // hidden sret parameter. 9251 SmallVector<EVT, 1> PVTs; 9252 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9253 9254 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9255 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9256 EVT PtrVT = PVTs[0]; 9257 9258 unsigned NumValues = RetTys.size(); 9259 ReturnValues.resize(NumValues); 9260 SmallVector<SDValue, 4> Chains(NumValues); 9261 9262 // An aggregate return value cannot wrap around the address space, so 9263 // offsets to its parts don't wrap either. 9264 SDNodeFlags Flags; 9265 Flags.setNoUnsignedWrap(true); 9266 9267 for (unsigned i = 0; i < NumValues; ++i) { 9268 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9269 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9270 PtrVT), Flags); 9271 SDValue L = CLI.DAG.getLoad( 9272 RetTys[i], CLI.DL, CLI.Chain, Add, 9273 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9274 DemoteStackIdx, Offsets[i]), 9275 /* Alignment = */ 1); 9276 ReturnValues[i] = L; 9277 Chains[i] = L.getValue(1); 9278 } 9279 9280 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9281 } else { 9282 // Collect the legal value parts into potentially illegal values 9283 // that correspond to the original function's return values. 9284 Optional<ISD::NodeType> AssertOp; 9285 if (CLI.RetSExt) 9286 AssertOp = ISD::AssertSext; 9287 else if (CLI.RetZExt) 9288 AssertOp = ISD::AssertZext; 9289 unsigned CurReg = 0; 9290 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9291 EVT VT = RetTys[I]; 9292 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9293 CLI.CallConv, VT); 9294 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9295 CLI.CallConv, VT); 9296 9297 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9298 NumRegs, RegisterVT, VT, nullptr, 9299 CLI.CallConv, AssertOp)); 9300 CurReg += NumRegs; 9301 } 9302 9303 // For a function returning void, there is no return value. We can't create 9304 // such a node, so we just return a null return value in that case. In 9305 // that case, nothing will actually look at the value. 9306 if (ReturnValues.empty()) 9307 return std::make_pair(SDValue(), CLI.Chain); 9308 } 9309 9310 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9311 CLI.DAG.getVTList(RetTys), ReturnValues); 9312 return std::make_pair(Res, CLI.Chain); 9313 } 9314 9315 void TargetLowering::LowerOperationWrapper(SDNode *N, 9316 SmallVectorImpl<SDValue> &Results, 9317 SelectionDAG &DAG) const { 9318 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9319 Results.push_back(Res); 9320 } 9321 9322 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9323 llvm_unreachable("LowerOperation not implemented for this target!"); 9324 } 9325 9326 void 9327 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9328 SDValue Op = getNonRegisterValue(V); 9329 assert((Op.getOpcode() != ISD::CopyFromReg || 9330 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9331 "Copy from a reg to the same reg!"); 9332 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9333 9334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9335 // If this is an InlineAsm we have to match the registers required, not the 9336 // notional registers required by the type. 9337 9338 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9339 None); // This is not an ABI copy. 9340 SDValue Chain = DAG.getEntryNode(); 9341 9342 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9343 FuncInfo.PreferredExtendType.end()) 9344 ? ISD::ANY_EXTEND 9345 : FuncInfo.PreferredExtendType[V]; 9346 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9347 PendingExports.push_back(Chain); 9348 } 9349 9350 #include "llvm/CodeGen/SelectionDAGISel.h" 9351 9352 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9353 /// entry block, return true. This includes arguments used by switches, since 9354 /// the switch may expand into multiple basic blocks. 9355 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9356 // With FastISel active, we may be splitting blocks, so force creation 9357 // of virtual registers for all non-dead arguments. 9358 if (FastISel) 9359 return A->use_empty(); 9360 9361 const BasicBlock &Entry = A->getParent()->front(); 9362 for (const User *U : A->users()) 9363 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9364 return false; // Use not in entry block. 9365 9366 return true; 9367 } 9368 9369 using ArgCopyElisionMapTy = 9370 DenseMap<const Argument *, 9371 std::pair<const AllocaInst *, const StoreInst *>>; 9372 9373 /// Scan the entry block of the function in FuncInfo for arguments that look 9374 /// like copies into a local alloca. Record any copied arguments in 9375 /// ArgCopyElisionCandidates. 9376 static void 9377 findArgumentCopyElisionCandidates(const DataLayout &DL, 9378 FunctionLoweringInfo *FuncInfo, 9379 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9380 // Record the state of every static alloca used in the entry block. Argument 9381 // allocas are all used in the entry block, so we need approximately as many 9382 // entries as we have arguments. 9383 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9384 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9385 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9386 StaticAllocas.reserve(NumArgs * 2); 9387 9388 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9389 if (!V) 9390 return nullptr; 9391 V = V->stripPointerCasts(); 9392 const auto *AI = dyn_cast<AllocaInst>(V); 9393 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9394 return nullptr; 9395 auto Iter = StaticAllocas.insert({AI, Unknown}); 9396 return &Iter.first->second; 9397 }; 9398 9399 // Look for stores of arguments to static allocas. Look through bitcasts and 9400 // GEPs to handle type coercions, as long as the alloca is fully initialized 9401 // by the store. Any non-store use of an alloca escapes it and any subsequent 9402 // unanalyzed store might write it. 9403 // FIXME: Handle structs initialized with multiple stores. 9404 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9405 // Look for stores, and handle non-store uses conservatively. 9406 const auto *SI = dyn_cast<StoreInst>(&I); 9407 if (!SI) { 9408 // We will look through cast uses, so ignore them completely. 9409 if (I.isCast()) 9410 continue; 9411 // Ignore debug info intrinsics, they don't escape or store to allocas. 9412 if (isa<DbgInfoIntrinsic>(I)) 9413 continue; 9414 // This is an unknown instruction. Assume it escapes or writes to all 9415 // static alloca operands. 9416 for (const Use &U : I.operands()) { 9417 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9418 *Info = StaticAllocaInfo::Clobbered; 9419 } 9420 continue; 9421 } 9422 9423 // If the stored value is a static alloca, mark it as escaped. 9424 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9425 *Info = StaticAllocaInfo::Clobbered; 9426 9427 // Check if the destination is a static alloca. 9428 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9429 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9430 if (!Info) 9431 continue; 9432 const AllocaInst *AI = cast<AllocaInst>(Dst); 9433 9434 // Skip allocas that have been initialized or clobbered. 9435 if (*Info != StaticAllocaInfo::Unknown) 9436 continue; 9437 9438 // Check if the stored value is an argument, and that this store fully 9439 // initializes the alloca. Don't elide copies from the same argument twice. 9440 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9441 const auto *Arg = dyn_cast<Argument>(Val); 9442 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9443 Arg->getType()->isEmptyTy() || 9444 DL.getTypeStoreSize(Arg->getType()) != 9445 DL.getTypeAllocSize(AI->getAllocatedType()) || 9446 ArgCopyElisionCandidates.count(Arg)) { 9447 *Info = StaticAllocaInfo::Clobbered; 9448 continue; 9449 } 9450 9451 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9452 << '\n'); 9453 9454 // Mark this alloca and store for argument copy elision. 9455 *Info = StaticAllocaInfo::Elidable; 9456 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9457 9458 // Stop scanning if we've seen all arguments. This will happen early in -O0 9459 // builds, which is useful, because -O0 builds have large entry blocks and 9460 // many allocas. 9461 if (ArgCopyElisionCandidates.size() == NumArgs) 9462 break; 9463 } 9464 } 9465 9466 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9467 /// ArgVal is a load from a suitable fixed stack object. 9468 static void tryToElideArgumentCopy( 9469 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9470 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9471 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9472 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9473 SDValue ArgVal, bool &ArgHasUses) { 9474 // Check if this is a load from a fixed stack object. 9475 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9476 if (!LNode) 9477 return; 9478 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9479 if (!FINode) 9480 return; 9481 9482 // Check that the fixed stack object is the right size and alignment. 9483 // Look at the alignment that the user wrote on the alloca instead of looking 9484 // at the stack object. 9485 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9486 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9487 const AllocaInst *AI = ArgCopyIter->second.first; 9488 int FixedIndex = FINode->getIndex(); 9489 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9490 int OldIndex = AllocaIndex; 9491 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9492 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9493 LLVM_DEBUG( 9494 dbgs() << " argument copy elision failed due to bad fixed stack " 9495 "object size\n"); 9496 return; 9497 } 9498 unsigned RequiredAlignment = AI->getAlignment(); 9499 if (!RequiredAlignment) { 9500 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9501 AI->getAllocatedType()); 9502 } 9503 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9504 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9505 "greater than stack argument alignment (" 9506 << RequiredAlignment << " vs " 9507 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9508 return; 9509 } 9510 9511 // Perform the elision. Delete the old stack object and replace its only use 9512 // in the variable info map. Mark the stack object as mutable. 9513 LLVM_DEBUG({ 9514 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9515 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9516 << '\n'; 9517 }); 9518 MFI.RemoveStackObject(OldIndex); 9519 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9520 AllocaIndex = FixedIndex; 9521 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9522 Chains.push_back(ArgVal.getValue(1)); 9523 9524 // Avoid emitting code for the store implementing the copy. 9525 const StoreInst *SI = ArgCopyIter->second.second; 9526 ElidedArgCopyInstrs.insert(SI); 9527 9528 // Check for uses of the argument again so that we can avoid exporting ArgVal 9529 // if it is't used by anything other than the store. 9530 for (const Value *U : Arg.users()) { 9531 if (U != SI) { 9532 ArgHasUses = true; 9533 break; 9534 } 9535 } 9536 } 9537 9538 void SelectionDAGISel::LowerArguments(const Function &F) { 9539 SelectionDAG &DAG = SDB->DAG; 9540 SDLoc dl = SDB->getCurSDLoc(); 9541 const DataLayout &DL = DAG.getDataLayout(); 9542 SmallVector<ISD::InputArg, 16> Ins; 9543 9544 if (!FuncInfo->CanLowerReturn) { 9545 // Put in an sret pointer parameter before all the other parameters. 9546 SmallVector<EVT, 1> ValueVTs; 9547 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9548 F.getReturnType()->getPointerTo( 9549 DAG.getDataLayout().getAllocaAddrSpace()), 9550 ValueVTs); 9551 9552 // NOTE: Assuming that a pointer will never break down to more than one VT 9553 // or one register. 9554 ISD::ArgFlagsTy Flags; 9555 Flags.setSRet(); 9556 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9557 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9558 ISD::InputArg::NoArgIndex, 0); 9559 Ins.push_back(RetArg); 9560 } 9561 9562 // Look for stores of arguments to static allocas. Mark such arguments with a 9563 // flag to ask the target to give us the memory location of that argument if 9564 // available. 9565 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9566 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9567 9568 // Set up the incoming argument description vector. 9569 for (const Argument &Arg : F.args()) { 9570 unsigned ArgNo = Arg.getArgNo(); 9571 SmallVector<EVT, 4> ValueVTs; 9572 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9573 bool isArgValueUsed = !Arg.use_empty(); 9574 unsigned PartBase = 0; 9575 Type *FinalType = Arg.getType(); 9576 if (Arg.hasAttribute(Attribute::ByVal)) 9577 FinalType = Arg.getParamByValType(); 9578 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9579 FinalType, F.getCallingConv(), F.isVarArg()); 9580 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9581 Value != NumValues; ++Value) { 9582 EVT VT = ValueVTs[Value]; 9583 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9584 ISD::ArgFlagsTy Flags; 9585 9586 // Certain targets (such as MIPS), may have a different ABI alignment 9587 // for a type depending on the context. Give the target a chance to 9588 // specify the alignment it wants. 9589 const Align OriginalAlignment( 9590 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9591 9592 if (Arg.getType()->isPointerTy()) { 9593 Flags.setPointer(); 9594 Flags.setPointerAddrSpace( 9595 cast<PointerType>(Arg.getType())->getAddressSpace()); 9596 } 9597 if (Arg.hasAttribute(Attribute::ZExt)) 9598 Flags.setZExt(); 9599 if (Arg.hasAttribute(Attribute::SExt)) 9600 Flags.setSExt(); 9601 if (Arg.hasAttribute(Attribute::InReg)) { 9602 // If we are using vectorcall calling convention, a structure that is 9603 // passed InReg - is surely an HVA 9604 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9605 isa<StructType>(Arg.getType())) { 9606 // The first value of a structure is marked 9607 if (0 == Value) 9608 Flags.setHvaStart(); 9609 Flags.setHva(); 9610 } 9611 // Set InReg Flag 9612 Flags.setInReg(); 9613 } 9614 if (Arg.hasAttribute(Attribute::StructRet)) 9615 Flags.setSRet(); 9616 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9617 Flags.setSwiftSelf(); 9618 if (Arg.hasAttribute(Attribute::SwiftError)) 9619 Flags.setSwiftError(); 9620 if (Arg.hasAttribute(Attribute::ByVal)) 9621 Flags.setByVal(); 9622 if (Arg.hasAttribute(Attribute::InAlloca)) { 9623 Flags.setInAlloca(); 9624 // Set the byval flag for CCAssignFn callbacks that don't know about 9625 // inalloca. This way we can know how many bytes we should've allocated 9626 // and how many bytes a callee cleanup function will pop. If we port 9627 // inalloca to more targets, we'll have to add custom inalloca handling 9628 // in the various CC lowering callbacks. 9629 Flags.setByVal(); 9630 } 9631 if (F.getCallingConv() == CallingConv::X86_INTR) { 9632 // IA Interrupt passes frame (1st parameter) by value in the stack. 9633 if (ArgNo == 0) 9634 Flags.setByVal(); 9635 } 9636 if (Flags.isByVal() || Flags.isInAlloca()) { 9637 Type *ElementTy = Arg.getParamByValType(); 9638 9639 // For ByVal, size and alignment should be passed from FE. BE will 9640 // guess if this info is not there but there are cases it cannot get 9641 // right. 9642 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9643 Flags.setByValSize(FrameSize); 9644 9645 unsigned FrameAlign; 9646 if (Arg.getParamAlignment()) 9647 FrameAlign = Arg.getParamAlignment(); 9648 else 9649 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9650 Flags.setByValAlign(Align(FrameAlign)); 9651 } 9652 if (Arg.hasAttribute(Attribute::Nest)) 9653 Flags.setNest(); 9654 if (NeedsRegBlock) 9655 Flags.setInConsecutiveRegs(); 9656 Flags.setOrigAlign(OriginalAlignment); 9657 if (ArgCopyElisionCandidates.count(&Arg)) 9658 Flags.setCopyElisionCandidate(); 9659 if (Arg.hasAttribute(Attribute::Returned)) 9660 Flags.setReturned(); 9661 9662 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9663 *CurDAG->getContext(), F.getCallingConv(), VT); 9664 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9665 *CurDAG->getContext(), F.getCallingConv(), VT); 9666 for (unsigned i = 0; i != NumRegs; ++i) { 9667 // For scalable vectors, use the minimum size; individual targets 9668 // are responsible for handling scalable vector arguments and 9669 // return values. 9670 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9671 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9672 if (NumRegs > 1 && i == 0) 9673 MyFlags.Flags.setSplit(); 9674 // if it isn't first piece, alignment must be 1 9675 else if (i > 0) { 9676 MyFlags.Flags.setOrigAlign(Align::None()); 9677 if (i == NumRegs - 1) 9678 MyFlags.Flags.setSplitEnd(); 9679 } 9680 Ins.push_back(MyFlags); 9681 } 9682 if (NeedsRegBlock && Value == NumValues - 1) 9683 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9684 PartBase += VT.getStoreSize().getKnownMinSize(); 9685 } 9686 } 9687 9688 // Call the target to set up the argument values. 9689 SmallVector<SDValue, 8> InVals; 9690 SDValue NewRoot = TLI->LowerFormalArguments( 9691 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9692 9693 // Verify that the target's LowerFormalArguments behaved as expected. 9694 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9695 "LowerFormalArguments didn't return a valid chain!"); 9696 assert(InVals.size() == Ins.size() && 9697 "LowerFormalArguments didn't emit the correct number of values!"); 9698 LLVM_DEBUG({ 9699 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9700 assert(InVals[i].getNode() && 9701 "LowerFormalArguments emitted a null value!"); 9702 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9703 "LowerFormalArguments emitted a value with the wrong type!"); 9704 } 9705 }); 9706 9707 // Update the DAG with the new chain value resulting from argument lowering. 9708 DAG.setRoot(NewRoot); 9709 9710 // Set up the argument values. 9711 unsigned i = 0; 9712 if (!FuncInfo->CanLowerReturn) { 9713 // Create a virtual register for the sret pointer, and put in a copy 9714 // from the sret argument into it. 9715 SmallVector<EVT, 1> ValueVTs; 9716 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9717 F.getReturnType()->getPointerTo( 9718 DAG.getDataLayout().getAllocaAddrSpace()), 9719 ValueVTs); 9720 MVT VT = ValueVTs[0].getSimpleVT(); 9721 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9722 Optional<ISD::NodeType> AssertOp = None; 9723 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9724 nullptr, F.getCallingConv(), AssertOp); 9725 9726 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9727 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9728 Register SRetReg = 9729 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9730 FuncInfo->DemoteRegister = SRetReg; 9731 NewRoot = 9732 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9733 DAG.setRoot(NewRoot); 9734 9735 // i indexes lowered arguments. Bump it past the hidden sret argument. 9736 ++i; 9737 } 9738 9739 SmallVector<SDValue, 4> Chains; 9740 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9741 for (const Argument &Arg : F.args()) { 9742 SmallVector<SDValue, 4> ArgValues; 9743 SmallVector<EVT, 4> ValueVTs; 9744 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9745 unsigned NumValues = ValueVTs.size(); 9746 if (NumValues == 0) 9747 continue; 9748 9749 bool ArgHasUses = !Arg.use_empty(); 9750 9751 // Elide the copying store if the target loaded this argument from a 9752 // suitable fixed stack object. 9753 if (Ins[i].Flags.isCopyElisionCandidate()) { 9754 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9755 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9756 InVals[i], ArgHasUses); 9757 } 9758 9759 // If this argument is unused then remember its value. It is used to generate 9760 // debugging information. 9761 bool isSwiftErrorArg = 9762 TLI->supportSwiftError() && 9763 Arg.hasAttribute(Attribute::SwiftError); 9764 if (!ArgHasUses && !isSwiftErrorArg) { 9765 SDB->setUnusedArgValue(&Arg, InVals[i]); 9766 9767 // Also remember any frame index for use in FastISel. 9768 if (FrameIndexSDNode *FI = 9769 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9770 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9771 } 9772 9773 for (unsigned Val = 0; Val != NumValues; ++Val) { 9774 EVT VT = ValueVTs[Val]; 9775 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9776 F.getCallingConv(), VT); 9777 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9778 *CurDAG->getContext(), F.getCallingConv(), VT); 9779 9780 // Even an apparent 'unused' swifterror argument needs to be returned. So 9781 // we do generate a copy for it that can be used on return from the 9782 // function. 9783 if (ArgHasUses || isSwiftErrorArg) { 9784 Optional<ISD::NodeType> AssertOp; 9785 if (Arg.hasAttribute(Attribute::SExt)) 9786 AssertOp = ISD::AssertSext; 9787 else if (Arg.hasAttribute(Attribute::ZExt)) 9788 AssertOp = ISD::AssertZext; 9789 9790 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9791 PartVT, VT, nullptr, 9792 F.getCallingConv(), AssertOp)); 9793 } 9794 9795 i += NumParts; 9796 } 9797 9798 // We don't need to do anything else for unused arguments. 9799 if (ArgValues.empty()) 9800 continue; 9801 9802 // Note down frame index. 9803 if (FrameIndexSDNode *FI = 9804 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9805 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9806 9807 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9808 SDB->getCurSDLoc()); 9809 9810 SDB->setValue(&Arg, Res); 9811 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9812 // We want to associate the argument with the frame index, among 9813 // involved operands, that correspond to the lowest address. The 9814 // getCopyFromParts function, called earlier, is swapping the order of 9815 // the operands to BUILD_PAIR depending on endianness. The result of 9816 // that swapping is that the least significant bits of the argument will 9817 // be in the first operand of the BUILD_PAIR node, and the most 9818 // significant bits will be in the second operand. 9819 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9820 if (LoadSDNode *LNode = 9821 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9822 if (FrameIndexSDNode *FI = 9823 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9824 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9825 } 9826 9827 // Analyses past this point are naive and don't expect an assertion. 9828 if (Res.getOpcode() == ISD::AssertZext) 9829 Res = Res.getOperand(0); 9830 9831 // Update the SwiftErrorVRegDefMap. 9832 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9833 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9834 if (Register::isVirtualRegister(Reg)) 9835 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9836 Reg); 9837 } 9838 9839 // If this argument is live outside of the entry block, insert a copy from 9840 // wherever we got it to the vreg that other BB's will reference it as. 9841 if (Res.getOpcode() == ISD::CopyFromReg) { 9842 // If we can, though, try to skip creating an unnecessary vreg. 9843 // FIXME: This isn't very clean... it would be nice to make this more 9844 // general. 9845 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9846 if (Register::isVirtualRegister(Reg)) { 9847 FuncInfo->ValueMap[&Arg] = Reg; 9848 continue; 9849 } 9850 } 9851 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9852 FuncInfo->InitializeRegForValue(&Arg); 9853 SDB->CopyToExportRegsIfNeeded(&Arg); 9854 } 9855 } 9856 9857 if (!Chains.empty()) { 9858 Chains.push_back(NewRoot); 9859 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9860 } 9861 9862 DAG.setRoot(NewRoot); 9863 9864 assert(i == InVals.size() && "Argument register count mismatch!"); 9865 9866 // If any argument copy elisions occurred and we have debug info, update the 9867 // stale frame indices used in the dbg.declare variable info table. 9868 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9869 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9870 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9871 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9872 if (I != ArgCopyElisionFrameIndexMap.end()) 9873 VI.Slot = I->second; 9874 } 9875 } 9876 9877 // Finally, if the target has anything special to do, allow it to do so. 9878 EmitFunctionEntryCode(); 9879 } 9880 9881 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9882 /// ensure constants are generated when needed. Remember the virtual registers 9883 /// that need to be added to the Machine PHI nodes as input. We cannot just 9884 /// directly add them, because expansion might result in multiple MBB's for one 9885 /// BB. As such, the start of the BB might correspond to a different MBB than 9886 /// the end. 9887 void 9888 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9889 const Instruction *TI = LLVMBB->getTerminator(); 9890 9891 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9892 9893 // Check PHI nodes in successors that expect a value to be available from this 9894 // block. 9895 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9896 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9897 if (!isa<PHINode>(SuccBB->begin())) continue; 9898 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9899 9900 // If this terminator has multiple identical successors (common for 9901 // switches), only handle each succ once. 9902 if (!SuccsHandled.insert(SuccMBB).second) 9903 continue; 9904 9905 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9906 9907 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9908 // nodes and Machine PHI nodes, but the incoming operands have not been 9909 // emitted yet. 9910 for (const PHINode &PN : SuccBB->phis()) { 9911 // Ignore dead phi's. 9912 if (PN.use_empty()) 9913 continue; 9914 9915 // Skip empty types 9916 if (PN.getType()->isEmptyTy()) 9917 continue; 9918 9919 unsigned Reg; 9920 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9921 9922 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9923 unsigned &RegOut = ConstantsOut[C]; 9924 if (RegOut == 0) { 9925 RegOut = FuncInfo.CreateRegs(C); 9926 CopyValueToVirtualRegister(C, RegOut); 9927 } 9928 Reg = RegOut; 9929 } else { 9930 DenseMap<const Value *, unsigned>::iterator I = 9931 FuncInfo.ValueMap.find(PHIOp); 9932 if (I != FuncInfo.ValueMap.end()) 9933 Reg = I->second; 9934 else { 9935 assert(isa<AllocaInst>(PHIOp) && 9936 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9937 "Didn't codegen value into a register!??"); 9938 Reg = FuncInfo.CreateRegs(PHIOp); 9939 CopyValueToVirtualRegister(PHIOp, Reg); 9940 } 9941 } 9942 9943 // Remember that this register needs to added to the machine PHI node as 9944 // the input for this MBB. 9945 SmallVector<EVT, 4> ValueVTs; 9946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9947 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9948 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9949 EVT VT = ValueVTs[vti]; 9950 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9951 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9952 FuncInfo.PHINodesToUpdate.push_back( 9953 std::make_pair(&*MBBI++, Reg + i)); 9954 Reg += NumRegisters; 9955 } 9956 } 9957 } 9958 9959 ConstantsOut.clear(); 9960 } 9961 9962 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9963 /// is 0. 9964 MachineBasicBlock * 9965 SelectionDAGBuilder::StackProtectorDescriptor:: 9966 AddSuccessorMBB(const BasicBlock *BB, 9967 MachineBasicBlock *ParentMBB, 9968 bool IsLikely, 9969 MachineBasicBlock *SuccMBB) { 9970 // If SuccBB has not been created yet, create it. 9971 if (!SuccMBB) { 9972 MachineFunction *MF = ParentMBB->getParent(); 9973 MachineFunction::iterator BBI(ParentMBB); 9974 SuccMBB = MF->CreateMachineBasicBlock(BB); 9975 MF->insert(++BBI, SuccMBB); 9976 } 9977 // Add it as a successor of ParentMBB. 9978 ParentMBB->addSuccessor( 9979 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9980 return SuccMBB; 9981 } 9982 9983 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9984 MachineFunction::iterator I(MBB); 9985 if (++I == FuncInfo.MF->end()) 9986 return nullptr; 9987 return &*I; 9988 } 9989 9990 /// During lowering new call nodes can be created (such as memset, etc.). 9991 /// Those will become new roots of the current DAG, but complications arise 9992 /// when they are tail calls. In such cases, the call lowering will update 9993 /// the root, but the builder still needs to know that a tail call has been 9994 /// lowered in order to avoid generating an additional return. 9995 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9996 // If the node is null, we do have a tail call. 9997 if (MaybeTC.getNode() != nullptr) 9998 DAG.setRoot(MaybeTC); 9999 else 10000 HasTailCall = true; 10001 } 10002 10003 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10004 MachineBasicBlock *SwitchMBB, 10005 MachineBasicBlock *DefaultMBB) { 10006 MachineFunction *CurMF = FuncInfo.MF; 10007 MachineBasicBlock *NextMBB = nullptr; 10008 MachineFunction::iterator BBI(W.MBB); 10009 if (++BBI != FuncInfo.MF->end()) 10010 NextMBB = &*BBI; 10011 10012 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10013 10014 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10015 10016 if (Size == 2 && W.MBB == SwitchMBB) { 10017 // If any two of the cases has the same destination, and if one value 10018 // is the same as the other, but has one bit unset that the other has set, 10019 // use bit manipulation to do two compares at once. For example: 10020 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10021 // TODO: This could be extended to merge any 2 cases in switches with 3 10022 // cases. 10023 // TODO: Handle cases where W.CaseBB != SwitchBB. 10024 CaseCluster &Small = *W.FirstCluster; 10025 CaseCluster &Big = *W.LastCluster; 10026 10027 if (Small.Low == Small.High && Big.Low == Big.High && 10028 Small.MBB == Big.MBB) { 10029 const APInt &SmallValue = Small.Low->getValue(); 10030 const APInt &BigValue = Big.Low->getValue(); 10031 10032 // Check that there is only one bit different. 10033 APInt CommonBit = BigValue ^ SmallValue; 10034 if (CommonBit.isPowerOf2()) { 10035 SDValue CondLHS = getValue(Cond); 10036 EVT VT = CondLHS.getValueType(); 10037 SDLoc DL = getCurSDLoc(); 10038 10039 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10040 DAG.getConstant(CommonBit, DL, VT)); 10041 SDValue Cond = DAG.getSetCC( 10042 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10043 ISD::SETEQ); 10044 10045 // Update successor info. 10046 // Both Small and Big will jump to Small.BB, so we sum up the 10047 // probabilities. 10048 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10049 if (BPI) 10050 addSuccessorWithProb( 10051 SwitchMBB, DefaultMBB, 10052 // The default destination is the first successor in IR. 10053 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10054 else 10055 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10056 10057 // Insert the true branch. 10058 SDValue BrCond = 10059 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10060 DAG.getBasicBlock(Small.MBB)); 10061 // Insert the false branch. 10062 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10063 DAG.getBasicBlock(DefaultMBB)); 10064 10065 DAG.setRoot(BrCond); 10066 return; 10067 } 10068 } 10069 } 10070 10071 if (TM.getOptLevel() != CodeGenOpt::None) { 10072 // Here, we order cases by probability so the most likely case will be 10073 // checked first. However, two clusters can have the same probability in 10074 // which case their relative ordering is non-deterministic. So we use Low 10075 // as a tie-breaker as clusters are guaranteed to never overlap. 10076 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10077 [](const CaseCluster &a, const CaseCluster &b) { 10078 return a.Prob != b.Prob ? 10079 a.Prob > b.Prob : 10080 a.Low->getValue().slt(b.Low->getValue()); 10081 }); 10082 10083 // Rearrange the case blocks so that the last one falls through if possible 10084 // without changing the order of probabilities. 10085 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10086 --I; 10087 if (I->Prob > W.LastCluster->Prob) 10088 break; 10089 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10090 std::swap(*I, *W.LastCluster); 10091 break; 10092 } 10093 } 10094 } 10095 10096 // Compute total probability. 10097 BranchProbability DefaultProb = W.DefaultProb; 10098 BranchProbability UnhandledProbs = DefaultProb; 10099 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10100 UnhandledProbs += I->Prob; 10101 10102 MachineBasicBlock *CurMBB = W.MBB; 10103 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10104 bool FallthroughUnreachable = false; 10105 MachineBasicBlock *Fallthrough; 10106 if (I == W.LastCluster) { 10107 // For the last cluster, fall through to the default destination. 10108 Fallthrough = DefaultMBB; 10109 FallthroughUnreachable = isa<UnreachableInst>( 10110 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10111 } else { 10112 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10113 CurMF->insert(BBI, Fallthrough); 10114 // Put Cond in a virtual register to make it available from the new blocks. 10115 ExportFromCurrentBlock(Cond); 10116 } 10117 UnhandledProbs -= I->Prob; 10118 10119 switch (I->Kind) { 10120 case CC_JumpTable: { 10121 // FIXME: Optimize away range check based on pivot comparisons. 10122 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10123 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10124 10125 // The jump block hasn't been inserted yet; insert it here. 10126 MachineBasicBlock *JumpMBB = JT->MBB; 10127 CurMF->insert(BBI, JumpMBB); 10128 10129 auto JumpProb = I->Prob; 10130 auto FallthroughProb = UnhandledProbs; 10131 10132 // If the default statement is a target of the jump table, we evenly 10133 // distribute the default probability to successors of CurMBB. Also 10134 // update the probability on the edge from JumpMBB to Fallthrough. 10135 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10136 SE = JumpMBB->succ_end(); 10137 SI != SE; ++SI) { 10138 if (*SI == DefaultMBB) { 10139 JumpProb += DefaultProb / 2; 10140 FallthroughProb -= DefaultProb / 2; 10141 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10142 JumpMBB->normalizeSuccProbs(); 10143 break; 10144 } 10145 } 10146 10147 if (FallthroughUnreachable) { 10148 // Skip the range check if the fallthrough block is unreachable. 10149 JTH->OmitRangeCheck = true; 10150 } 10151 10152 if (!JTH->OmitRangeCheck) 10153 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10154 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10155 CurMBB->normalizeSuccProbs(); 10156 10157 // The jump table header will be inserted in our current block, do the 10158 // range check, and fall through to our fallthrough block. 10159 JTH->HeaderBB = CurMBB; 10160 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10161 10162 // If we're in the right place, emit the jump table header right now. 10163 if (CurMBB == SwitchMBB) { 10164 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10165 JTH->Emitted = true; 10166 } 10167 break; 10168 } 10169 case CC_BitTests: { 10170 // FIXME: Optimize away range check based on pivot comparisons. 10171 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10172 10173 // The bit test blocks haven't been inserted yet; insert them here. 10174 for (BitTestCase &BTC : BTB->Cases) 10175 CurMF->insert(BBI, BTC.ThisBB); 10176 10177 // Fill in fields of the BitTestBlock. 10178 BTB->Parent = CurMBB; 10179 BTB->Default = Fallthrough; 10180 10181 BTB->DefaultProb = UnhandledProbs; 10182 // If the cases in bit test don't form a contiguous range, we evenly 10183 // distribute the probability on the edge to Fallthrough to two 10184 // successors of CurMBB. 10185 if (!BTB->ContiguousRange) { 10186 BTB->Prob += DefaultProb / 2; 10187 BTB->DefaultProb -= DefaultProb / 2; 10188 } 10189 10190 if (FallthroughUnreachable) { 10191 // Skip the range check if the fallthrough block is unreachable. 10192 BTB->OmitRangeCheck = true; 10193 } 10194 10195 // If we're in the right place, emit the bit test header right now. 10196 if (CurMBB == SwitchMBB) { 10197 visitBitTestHeader(*BTB, SwitchMBB); 10198 BTB->Emitted = true; 10199 } 10200 break; 10201 } 10202 case CC_Range: { 10203 const Value *RHS, *LHS, *MHS; 10204 ISD::CondCode CC; 10205 if (I->Low == I->High) { 10206 // Check Cond == I->Low. 10207 CC = ISD::SETEQ; 10208 LHS = Cond; 10209 RHS=I->Low; 10210 MHS = nullptr; 10211 } else { 10212 // Check I->Low <= Cond <= I->High. 10213 CC = ISD::SETLE; 10214 LHS = I->Low; 10215 MHS = Cond; 10216 RHS = I->High; 10217 } 10218 10219 // If Fallthrough is unreachable, fold away the comparison. 10220 if (FallthroughUnreachable) 10221 CC = ISD::SETTRUE; 10222 10223 // The false probability is the sum of all unhandled cases. 10224 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10225 getCurSDLoc(), I->Prob, UnhandledProbs); 10226 10227 if (CurMBB == SwitchMBB) 10228 visitSwitchCase(CB, SwitchMBB); 10229 else 10230 SL->SwitchCases.push_back(CB); 10231 10232 break; 10233 } 10234 } 10235 CurMBB = Fallthrough; 10236 } 10237 } 10238 10239 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10240 CaseClusterIt First, 10241 CaseClusterIt Last) { 10242 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10243 if (X.Prob != CC.Prob) 10244 return X.Prob > CC.Prob; 10245 10246 // Ties are broken by comparing the case value. 10247 return X.Low->getValue().slt(CC.Low->getValue()); 10248 }); 10249 } 10250 10251 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10252 const SwitchWorkListItem &W, 10253 Value *Cond, 10254 MachineBasicBlock *SwitchMBB) { 10255 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10256 "Clusters not sorted?"); 10257 10258 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10259 10260 // Balance the tree based on branch probabilities to create a near-optimal (in 10261 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10262 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10263 CaseClusterIt LastLeft = W.FirstCluster; 10264 CaseClusterIt FirstRight = W.LastCluster; 10265 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10266 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10267 10268 // Move LastLeft and FirstRight towards each other from opposite directions to 10269 // find a partitioning of the clusters which balances the probability on both 10270 // sides. If LeftProb and RightProb are equal, alternate which side is 10271 // taken to ensure 0-probability nodes are distributed evenly. 10272 unsigned I = 0; 10273 while (LastLeft + 1 < FirstRight) { 10274 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10275 LeftProb += (++LastLeft)->Prob; 10276 else 10277 RightProb += (--FirstRight)->Prob; 10278 I++; 10279 } 10280 10281 while (true) { 10282 // Our binary search tree differs from a typical BST in that ours can have up 10283 // to three values in each leaf. The pivot selection above doesn't take that 10284 // into account, which means the tree might require more nodes and be less 10285 // efficient. We compensate for this here. 10286 10287 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10288 unsigned NumRight = W.LastCluster - FirstRight + 1; 10289 10290 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10291 // If one side has less than 3 clusters, and the other has more than 3, 10292 // consider taking a cluster from the other side. 10293 10294 if (NumLeft < NumRight) { 10295 // Consider moving the first cluster on the right to the left side. 10296 CaseCluster &CC = *FirstRight; 10297 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10298 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10299 if (LeftSideRank <= RightSideRank) { 10300 // Moving the cluster to the left does not demote it. 10301 ++LastLeft; 10302 ++FirstRight; 10303 continue; 10304 } 10305 } else { 10306 assert(NumRight < NumLeft); 10307 // Consider moving the last element on the left to the right side. 10308 CaseCluster &CC = *LastLeft; 10309 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10310 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10311 if (RightSideRank <= LeftSideRank) { 10312 // Moving the cluster to the right does not demot it. 10313 --LastLeft; 10314 --FirstRight; 10315 continue; 10316 } 10317 } 10318 } 10319 break; 10320 } 10321 10322 assert(LastLeft + 1 == FirstRight); 10323 assert(LastLeft >= W.FirstCluster); 10324 assert(FirstRight <= W.LastCluster); 10325 10326 // Use the first element on the right as pivot since we will make less-than 10327 // comparisons against it. 10328 CaseClusterIt PivotCluster = FirstRight; 10329 assert(PivotCluster > W.FirstCluster); 10330 assert(PivotCluster <= W.LastCluster); 10331 10332 CaseClusterIt FirstLeft = W.FirstCluster; 10333 CaseClusterIt LastRight = W.LastCluster; 10334 10335 const ConstantInt *Pivot = PivotCluster->Low; 10336 10337 // New blocks will be inserted immediately after the current one. 10338 MachineFunction::iterator BBI(W.MBB); 10339 ++BBI; 10340 10341 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10342 // we can branch to its destination directly if it's squeezed exactly in 10343 // between the known lower bound and Pivot - 1. 10344 MachineBasicBlock *LeftMBB; 10345 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10346 FirstLeft->Low == W.GE && 10347 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10348 LeftMBB = FirstLeft->MBB; 10349 } else { 10350 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10351 FuncInfo.MF->insert(BBI, LeftMBB); 10352 WorkList.push_back( 10353 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10354 // Put Cond in a virtual register to make it available from the new blocks. 10355 ExportFromCurrentBlock(Cond); 10356 } 10357 10358 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10359 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10360 // directly if RHS.High equals the current upper bound. 10361 MachineBasicBlock *RightMBB; 10362 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10363 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10364 RightMBB = FirstRight->MBB; 10365 } else { 10366 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10367 FuncInfo.MF->insert(BBI, RightMBB); 10368 WorkList.push_back( 10369 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10370 // Put Cond in a virtual register to make it available from the new blocks. 10371 ExportFromCurrentBlock(Cond); 10372 } 10373 10374 // Create the CaseBlock record that will be used to lower the branch. 10375 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10376 getCurSDLoc(), LeftProb, RightProb); 10377 10378 if (W.MBB == SwitchMBB) 10379 visitSwitchCase(CB, SwitchMBB); 10380 else 10381 SL->SwitchCases.push_back(CB); 10382 } 10383 10384 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10385 // from the swith statement. 10386 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10387 BranchProbability PeeledCaseProb) { 10388 if (PeeledCaseProb == BranchProbability::getOne()) 10389 return BranchProbability::getZero(); 10390 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10391 10392 uint32_t Numerator = CaseProb.getNumerator(); 10393 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10394 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10395 } 10396 10397 // Try to peel the top probability case if it exceeds the threshold. 10398 // Return current MachineBasicBlock for the switch statement if the peeling 10399 // does not occur. 10400 // If the peeling is performed, return the newly created MachineBasicBlock 10401 // for the peeled switch statement. Also update Clusters to remove the peeled 10402 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10403 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10404 const SwitchInst &SI, CaseClusterVector &Clusters, 10405 BranchProbability &PeeledCaseProb) { 10406 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10407 // Don't perform if there is only one cluster or optimizing for size. 10408 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10409 TM.getOptLevel() == CodeGenOpt::None || 10410 SwitchMBB->getParent()->getFunction().hasMinSize()) 10411 return SwitchMBB; 10412 10413 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10414 unsigned PeeledCaseIndex = 0; 10415 bool SwitchPeeled = false; 10416 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10417 CaseCluster &CC = Clusters[Index]; 10418 if (CC.Prob < TopCaseProb) 10419 continue; 10420 TopCaseProb = CC.Prob; 10421 PeeledCaseIndex = Index; 10422 SwitchPeeled = true; 10423 } 10424 if (!SwitchPeeled) 10425 return SwitchMBB; 10426 10427 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10428 << TopCaseProb << "\n"); 10429 10430 // Record the MBB for the peeled switch statement. 10431 MachineFunction::iterator BBI(SwitchMBB); 10432 ++BBI; 10433 MachineBasicBlock *PeeledSwitchMBB = 10434 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10435 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10436 10437 ExportFromCurrentBlock(SI.getCondition()); 10438 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10439 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10440 nullptr, nullptr, TopCaseProb.getCompl()}; 10441 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10442 10443 Clusters.erase(PeeledCaseIt); 10444 for (CaseCluster &CC : Clusters) { 10445 LLVM_DEBUG( 10446 dbgs() << "Scale the probablity for one cluster, before scaling: " 10447 << CC.Prob << "\n"); 10448 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10449 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10450 } 10451 PeeledCaseProb = TopCaseProb; 10452 return PeeledSwitchMBB; 10453 } 10454 10455 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10456 // Extract cases from the switch. 10457 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10458 CaseClusterVector Clusters; 10459 Clusters.reserve(SI.getNumCases()); 10460 for (auto I : SI.cases()) { 10461 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10462 const ConstantInt *CaseVal = I.getCaseValue(); 10463 BranchProbability Prob = 10464 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10465 : BranchProbability(1, SI.getNumCases() + 1); 10466 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10467 } 10468 10469 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10470 10471 // Cluster adjacent cases with the same destination. We do this at all 10472 // optimization levels because it's cheap to do and will make codegen faster 10473 // if there are many clusters. 10474 sortAndRangeify(Clusters); 10475 10476 // The branch probablity of the peeled case. 10477 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10478 MachineBasicBlock *PeeledSwitchMBB = 10479 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10480 10481 // If there is only the default destination, jump there directly. 10482 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10483 if (Clusters.empty()) { 10484 assert(PeeledSwitchMBB == SwitchMBB); 10485 SwitchMBB->addSuccessor(DefaultMBB); 10486 if (DefaultMBB != NextBlock(SwitchMBB)) { 10487 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10488 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10489 } 10490 return; 10491 } 10492 10493 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10494 SL->findBitTestClusters(Clusters, &SI); 10495 10496 LLVM_DEBUG({ 10497 dbgs() << "Case clusters: "; 10498 for (const CaseCluster &C : Clusters) { 10499 if (C.Kind == CC_JumpTable) 10500 dbgs() << "JT:"; 10501 if (C.Kind == CC_BitTests) 10502 dbgs() << "BT:"; 10503 10504 C.Low->getValue().print(dbgs(), true); 10505 if (C.Low != C.High) { 10506 dbgs() << '-'; 10507 C.High->getValue().print(dbgs(), true); 10508 } 10509 dbgs() << ' '; 10510 } 10511 dbgs() << '\n'; 10512 }); 10513 10514 assert(!Clusters.empty()); 10515 SwitchWorkList WorkList; 10516 CaseClusterIt First = Clusters.begin(); 10517 CaseClusterIt Last = Clusters.end() - 1; 10518 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10519 // Scale the branchprobability for DefaultMBB if the peel occurs and 10520 // DefaultMBB is not replaced. 10521 if (PeeledCaseProb != BranchProbability::getZero() && 10522 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10523 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10524 WorkList.push_back( 10525 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10526 10527 while (!WorkList.empty()) { 10528 SwitchWorkListItem W = WorkList.back(); 10529 WorkList.pop_back(); 10530 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10531 10532 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10533 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10534 // For optimized builds, lower large range as a balanced binary tree. 10535 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10536 continue; 10537 } 10538 10539 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10540 } 10541 } 10542 10543 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10544 SDValue N = getValue(I.getOperand(0)); 10545 setValue(&I, N); 10546 } 10547