1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsAMDGPU.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/Support/AtomicOrdering.h" 92 #include "llvm/Support/Casting.h" 93 #include "llvm/Support/CommandLine.h" 94 #include "llvm/Support/Compiler.h" 95 #include "llvm/Support/Debug.h" 96 #include "llvm/Support/MathExtras.h" 97 #include "llvm/Support/raw_ostream.h" 98 #include "llvm/Target/TargetIntrinsicInfo.h" 99 #include "llvm/Target/TargetMachine.h" 100 #include "llvm/Target/TargetOptions.h" 101 #include "llvm/TargetParser/Triple.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <iterator> 105 #include <limits> 106 #include <optional> 107 #include <tuple> 108 109 using namespace llvm; 110 using namespace PatternMatch; 111 using namespace SwitchCG; 112 113 #define DEBUG_TYPE "isel" 114 115 /// LimitFloatPrecision - Generate low-precision inline sequences for 116 /// some float libcalls (6, 8 or 12 bits). 117 static unsigned LimitFloatPrecision; 118 119 static cl::opt<bool> 120 InsertAssertAlign("insert-assert-align", cl::init(true), 121 cl::desc("Insert the experimental `assertalign` node."), 122 cl::ReallyHidden); 123 124 static cl::opt<unsigned, true> 125 LimitFPPrecision("limit-float-precision", 126 cl::desc("Generate low-precision inline sequences " 127 "for some float libcalls"), 128 cl::location(LimitFloatPrecision), cl::Hidden, 129 cl::init(0)); 130 131 static cl::opt<unsigned> SwitchPeelThreshold( 132 "switch-peel-threshold", cl::Hidden, cl::init(66), 133 cl::desc("Set the case probability threshold for peeling the case from a " 134 "switch statement. A value greater than 100 will void this " 135 "optimization")); 136 137 // Limit the width of DAG chains. This is important in general to prevent 138 // DAG-based analysis from blowing up. For example, alias analysis and 139 // load clustering may not complete in reasonable time. It is difficult to 140 // recognize and avoid this situation within each individual analysis, and 141 // future analyses are likely to have the same behavior. Limiting DAG width is 142 // the safe approach and will be especially important with global DAGs. 143 // 144 // MaxParallelChains default is arbitrarily high to avoid affecting 145 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 146 // sequence over this should have been converted to llvm.memcpy by the 147 // frontend. It is easy to induce this behavior with .ll code such as: 148 // %buffer = alloca [4096 x i8] 149 // %data = load [4096 x i8]* %argPtr 150 // store [4096 x i8] %data, [4096 x i8]* %buffer 151 static const unsigned MaxParallelChains = 64; 152 153 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 154 const SDValue *Parts, unsigned NumParts, 155 MVT PartVT, EVT ValueVT, const Value *V, 156 SDValue InChain, 157 std::optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue 165 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 166 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 167 SDValue InChain, 168 std::optional<CallingConv::ID> CC = std::nullopt, 169 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 170 // Let the target assemble the parts if it wants to 171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 172 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 173 PartVT, ValueVT, CC)) 174 return Val; 175 176 if (ValueVT.isVector()) 177 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 178 InChain, CC); 179 180 assert(NumParts > 0 && "No parts to assemble!"); 181 SDValue Val = Parts[0]; 182 183 if (NumParts > 1) { 184 // Assemble the value from multiple parts. 185 if (ValueVT.isInteger()) { 186 unsigned PartBits = PartVT.getSizeInBits(); 187 unsigned ValueBits = ValueVT.getSizeInBits(); 188 189 // Assemble the power of 2 part. 190 unsigned RoundParts = llvm::bit_floor(NumParts); 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, PartVT, HalfVT, V, 200 InChain); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, RoundParts / 2, 202 PartVT, HalfVT, V, InChain); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, InChain, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 227 DAG.getConstant(Lo.getValueSizeInBits(), DL, 228 TLI.getShiftAmountTy( 229 TotalVT, DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, 249 InChain, CC); 250 } 251 } 252 253 // There is now one part, held in Val. Correct it to match ValueVT. 254 // PartEVT is the type of the register class that holds the value. 255 // ValueVT is the type of the inline asm operation. 256 EVT PartEVT = Val.getValueType(); 257 258 if (PartEVT == ValueVT) 259 return Val; 260 261 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 262 ValueVT.bitsLT(PartEVT)) { 263 // For an FP value in an integer part, we need to truncate to the right 264 // width first. 265 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 266 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 267 } 268 269 // Handle types that have the same size. 270 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 271 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 272 273 // Handle types with different sizes. 274 if (PartEVT.isInteger() && ValueVT.isInteger()) { 275 if (ValueVT.bitsLT(PartEVT)) { 276 // For a truncate, see if we have any information to 277 // indicate whether the truncated bits will always be 278 // zero or sign-extension. 279 if (AssertOp) 280 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 281 DAG.getValueType(ValueVT)); 282 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 283 } 284 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 285 } 286 287 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 288 // FP_ROUND's are always exact here. 289 if (ValueVT.bitsLT(Val.getValueType())) { 290 291 SDValue NoChange = 292 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 293 294 if (DAG.getMachineFunction().getFunction().getAttributes().hasFnAttr( 295 llvm::Attribute::StrictFP)) { 296 return DAG.getNode(ISD::STRICT_FP_ROUND, DL, 297 DAG.getVTList(ValueVT, MVT::Other), InChain, Val, 298 NoChange); 299 } 300 301 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, NoChange); 302 } 303 304 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 305 } 306 307 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 308 // then truncating. 309 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 310 ValueVT.bitsLT(PartEVT)) { 311 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 312 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 313 } 314 315 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 316 } 317 318 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 319 const Twine &ErrMsg) { 320 const Instruction *I = dyn_cast_or_null<Instruction>(V); 321 if (!V) 322 return Ctx.emitError(ErrMsg); 323 324 const char *AsmError = ", possible invalid constraint for vector type"; 325 if (const CallInst *CI = dyn_cast<CallInst>(I)) 326 if (CI->isInlineAsm()) 327 return Ctx.emitError(I, ErrMsg + AsmError); 328 329 return Ctx.emitError(I, ErrMsg); 330 } 331 332 /// getCopyFromPartsVector - Create a value that contains the specified legal 333 /// parts combined into the value they represent. If the parts combine to a 334 /// type larger than ValueVT then AssertOp can be used to specify whether the 335 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 336 /// ValueVT (ISD::AssertSext). 337 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 338 const SDValue *Parts, unsigned NumParts, 339 MVT PartVT, EVT ValueVT, const Value *V, 340 SDValue InChain, 341 std::optional<CallingConv::ID> CallConv) { 342 assert(ValueVT.isVector() && "Not a vector value"); 343 assert(NumParts > 0 && "No parts to assemble!"); 344 const bool IsABIRegCopy = CallConv.has_value(); 345 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 359 NumIntermediates, RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, PartVT, IntermediateVT, 380 V, InChain, CallConv); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, PartVT, 389 IntermediateVT, V, InChain, CallConv); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 IntermediateVT.isVector() 396 ? EVT::getVectorVT( 397 *DAG.getContext(), IntermediateVT.getScalarType(), 398 IntermediateVT.getVectorElementCount() * NumParts) 399 : EVT::getVectorVT(*DAG.getContext(), 400 IntermediateVT.getScalarType(), 401 NumIntermediates); 402 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 403 : ISD::BUILD_VECTOR, 404 DL, BuiltVectorTy, Ops); 405 } 406 407 // There is now one part, held in Val. Correct it to match ValueVT. 408 EVT PartEVT = Val.getValueType(); 409 410 if (PartEVT == ValueVT) 411 return Val; 412 413 if (PartEVT.isVector()) { 414 // Vector/Vector bitcast. 415 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 416 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 417 418 // If the parts vector has more elements than the value vector, then we 419 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 420 // Extract the elements we want. 421 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 422 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 423 ValueVT.getVectorElementCount().getKnownMinValue()) && 424 (PartEVT.getVectorElementCount().isScalable() == 425 ValueVT.getVectorElementCount().isScalable()) && 426 "Cannot narrow, it would be a lossy transformation"); 427 PartEVT = 428 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 429 ValueVT.getVectorElementCount()); 430 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 431 DAG.getVectorIdxConstant(0, DL)); 432 if (PartEVT == ValueVT) 433 return Val; 434 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 437 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 438 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 439 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 440 } 441 442 // Promoted vector extract 443 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 444 } 445 446 // Trivial bitcast if the types are the same size and the destination 447 // vector type is legal. 448 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 449 TLI.isTypeLegal(ValueVT)) 450 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 451 452 if (ValueVT.getVectorNumElements() != 1) { 453 // Certain ABIs require that vectors are passed as integers. For vectors 454 // are the same size, this is an obvious bitcast. 455 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 456 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 457 } else if (ValueVT.bitsLT(PartEVT)) { 458 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 459 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 460 // Drop the extra bits. 461 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 462 return DAG.getBitcast(ValueVT, Val); 463 } 464 465 diagnosePossiblyInvalidConstraint( 466 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 467 return DAG.getUNDEF(ValueVT); 468 } 469 470 // Handle cases such as i8 -> <1 x i1> 471 EVT ValueSVT = ValueVT.getVectorElementType(); 472 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 473 unsigned ValueSize = ValueSVT.getSizeInBits(); 474 if (ValueSize == PartEVT.getSizeInBits()) { 475 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 476 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 477 // It's possible a scalar floating point type gets softened to integer and 478 // then promoted to a larger integer. If PartEVT is the larger integer 479 // we need to truncate it and then bitcast to the FP type. 480 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 481 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 482 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 483 Val = DAG.getBitcast(ValueSVT, Val); 484 } else { 485 Val = ValueVT.isFloatingPoint() 486 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 487 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 488 } 489 } 490 491 return DAG.getBuildVector(ValueVT, DL, Val); 492 } 493 494 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 495 SDValue Val, SDValue *Parts, unsigned NumParts, 496 MVT PartVT, const Value *V, 497 std::optional<CallingConv::ID> CallConv); 498 499 /// getCopyToParts - Create a series of nodes that contain the specified value 500 /// split into legal parts. If the parts contain more bits than Val, then, for 501 /// integers, ExtendKind can be used to specify how to generate the extra bits. 502 static void 503 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 504 unsigned NumParts, MVT PartVT, const Value *V, 505 std::optional<CallingConv::ID> CallConv = std::nullopt, 506 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 507 // Let the target split the parts if it wants to 508 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 509 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 510 CallConv)) 511 return; 512 EVT ValueVT = Val.getValueType(); 513 514 // Handle the vector case separately. 515 if (ValueVT.isVector()) 516 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 517 CallConv); 518 519 unsigned OrigNumParts = NumParts; 520 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 521 "Copying to an illegal type!"); 522 523 if (NumParts == 0) 524 return; 525 526 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 527 EVT PartEVT = PartVT; 528 if (PartEVT == ValueVT) { 529 assert(NumParts == 1 && "No-op copy with multiple parts!"); 530 Parts[0] = Val; 531 return; 532 } 533 534 unsigned PartBits = PartVT.getSizeInBits(); 535 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 536 // If the parts cover more bits than the value has, promote the value. 537 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 538 assert(NumParts == 1 && "Do not know what to promote to!"); 539 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 540 } else { 541 if (ValueVT.isFloatingPoint()) { 542 // FP values need to be bitcast, then extended if they are being put 543 // into a larger container. 544 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 545 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 546 } 547 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 548 ValueVT.isInteger() && 549 "Unknown mismatch!"); 550 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 551 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 552 if (PartVT == MVT::x86mmx) 553 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 554 } 555 } else if (PartBits == ValueVT.getSizeInBits()) { 556 // Different types of the same size. 557 assert(NumParts == 1 && PartEVT != ValueVT); 558 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 559 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 560 // If the parts cover less bits than value has, truncate the value. 561 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 562 ValueVT.isInteger() && 563 "Unknown mismatch!"); 564 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 565 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 566 if (PartVT == MVT::x86mmx) 567 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 568 } 569 570 // The value may have changed - recompute ValueVT. 571 ValueVT = Val.getValueType(); 572 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 573 "Failed to tile the value with PartVT!"); 574 575 if (NumParts == 1) { 576 if (PartEVT != ValueVT) { 577 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 578 "scalar-to-vector conversion failed"); 579 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 580 } 581 582 Parts[0] = Val; 583 return; 584 } 585 586 // Expand the value into multiple parts. 587 if (NumParts & (NumParts - 1)) { 588 // The number of parts is not a power of 2. Split off and copy the tail. 589 assert(PartVT.isInteger() && ValueVT.isInteger() && 590 "Do not know what to expand to!"); 591 unsigned RoundParts = llvm::bit_floor(NumParts); 592 unsigned RoundBits = RoundParts * PartBits; 593 unsigned OddParts = NumParts - RoundParts; 594 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 595 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 596 597 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 598 CallConv); 599 600 if (DAG.getDataLayout().isBigEndian()) 601 // The odd parts were reversed by getCopyToParts - unreverse them. 602 std::reverse(Parts + RoundParts, Parts + NumParts); 603 604 NumParts = RoundParts; 605 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 606 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 607 } 608 609 // The number of parts is a power of 2. Repeatedly bisect the value using 610 // EXTRACT_ELEMENT. 611 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 612 EVT::getIntegerVT(*DAG.getContext(), 613 ValueVT.getSizeInBits()), 614 Val); 615 616 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 617 for (unsigned i = 0; i < NumParts; i += StepSize) { 618 unsigned ThisBits = StepSize * PartBits / 2; 619 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 620 SDValue &Part0 = Parts[i]; 621 SDValue &Part1 = Parts[i+StepSize/2]; 622 623 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 624 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 625 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 626 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 627 628 if (ThisBits == PartBits && ThisVT != PartVT) { 629 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 630 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 631 } 632 } 633 } 634 635 if (DAG.getDataLayout().isBigEndian()) 636 std::reverse(Parts, Parts + OrigNumParts); 637 } 638 639 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 640 const SDLoc &DL, EVT PartVT) { 641 if (!PartVT.isVector()) 642 return SDValue(); 643 644 EVT ValueVT = Val.getValueType(); 645 EVT PartEVT = PartVT.getVectorElementType(); 646 EVT ValueEVT = ValueVT.getVectorElementType(); 647 ElementCount PartNumElts = PartVT.getVectorElementCount(); 648 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 649 650 // We only support widening vectors with equivalent element types and 651 // fixed/scalable properties. If a target needs to widen a fixed-length type 652 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 653 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 654 PartNumElts.isScalable() != ValueNumElts.isScalable()) 655 return SDValue(); 656 657 // Have a try for bf16 because some targets share its ABI with fp16. 658 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 659 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 660 "Cannot widen to illegal type"); 661 Val = DAG.getNode(ISD::BITCAST, DL, 662 ValueVT.changeVectorElementType(MVT::f16), Val); 663 } else if (PartEVT != ValueEVT) { 664 return SDValue(); 665 } 666 667 // Widening a scalable vector to another scalable vector is done by inserting 668 // the vector into a larger undef one. 669 if (PartNumElts.isScalable()) 670 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 671 Val, DAG.getVectorIdxConstant(0, DL)); 672 673 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 674 // undef elements. 675 SmallVector<SDValue, 16> Ops; 676 DAG.ExtractVectorElements(Val, Ops); 677 SDValue EltUndef = DAG.getUNDEF(PartEVT); 678 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 679 680 // FIXME: Use CONCAT for 2x -> 4x. 681 return DAG.getBuildVector(PartVT, DL, Ops); 682 } 683 684 /// getCopyToPartsVector - Create a series of nodes that contain the specified 685 /// value split into legal parts. 686 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 687 SDValue Val, SDValue *Parts, unsigned NumParts, 688 MVT PartVT, const Value *V, 689 std::optional<CallingConv::ID> CallConv) { 690 EVT ValueVT = Val.getValueType(); 691 assert(ValueVT.isVector() && "Not a vector"); 692 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 693 const bool IsABIRegCopy = CallConv.has_value(); 694 695 if (NumParts == 1) { 696 EVT PartEVT = PartVT; 697 if (PartEVT == ValueVT) { 698 // Nothing to do. 699 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 700 // Bitconvert vector->vector case. 701 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 702 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 703 Val = Widened; 704 } else if (PartVT.isVector() && 705 PartEVT.getVectorElementType().bitsGE( 706 ValueVT.getVectorElementType()) && 707 PartEVT.getVectorElementCount() == 708 ValueVT.getVectorElementCount()) { 709 710 // Promoted vector extract 711 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 712 } else if (PartEVT.isVector() && 713 PartEVT.getVectorElementType() != 714 ValueVT.getVectorElementType() && 715 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 716 TargetLowering::TypeWidenVector) { 717 // Combination of widening and promotion. 718 EVT WidenVT = 719 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 720 PartVT.getVectorElementCount()); 721 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 722 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 723 } else { 724 // Don't extract an integer from a float vector. This can happen if the 725 // FP type gets softened to integer and then promoted. The promotion 726 // prevents it from being picked up by the earlier bitcast case. 727 if (ValueVT.getVectorElementCount().isScalar() && 728 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 729 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 730 DAG.getVectorIdxConstant(0, DL)); 731 } else { 732 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 733 assert(PartVT.getFixedSizeInBits() > ValueSize && 734 "lossy conversion of vector to scalar type"); 735 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 736 Val = DAG.getBitcast(IntermediateType, Val); 737 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 738 } 739 } 740 741 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 742 Parts[0] = Val; 743 return; 744 } 745 746 // Handle a multi-element vector. 747 EVT IntermediateVT; 748 MVT RegisterVT; 749 unsigned NumIntermediates; 750 unsigned NumRegs; 751 if (IsABIRegCopy) { 752 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 753 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 754 RegisterVT); 755 } else { 756 NumRegs = 757 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 758 NumIntermediates, RegisterVT); 759 } 760 761 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 762 NumParts = NumRegs; // Silence a compiler warning. 763 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 764 765 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 766 "Mixing scalable and fixed vectors when copying in parts"); 767 768 std::optional<ElementCount> DestEltCnt; 769 770 if (IntermediateVT.isVector()) 771 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 772 else 773 DestEltCnt = ElementCount::getFixed(NumIntermediates); 774 775 EVT BuiltVectorTy = EVT::getVectorVT( 776 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 777 778 if (ValueVT == BuiltVectorTy) { 779 // Nothing to do. 780 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 781 // Bitconvert vector->vector case. 782 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 783 } else { 784 if (BuiltVectorTy.getVectorElementType().bitsGT( 785 ValueVT.getVectorElementType())) { 786 // Integer promotion. 787 ValueVT = EVT::getVectorVT(*DAG.getContext(), 788 BuiltVectorTy.getVectorElementType(), 789 ValueVT.getVectorElementCount()); 790 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 791 } 792 793 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 794 Val = Widened; 795 } 796 } 797 798 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 799 800 // Split the vector into intermediate operands. 801 SmallVector<SDValue, 8> Ops(NumIntermediates); 802 for (unsigned i = 0; i != NumIntermediates; ++i) { 803 if (IntermediateVT.isVector()) { 804 // This does something sensible for scalable vectors - see the 805 // definition of EXTRACT_SUBVECTOR for further details. 806 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 807 Ops[i] = 808 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 809 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 810 } else { 811 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 812 DAG.getVectorIdxConstant(i, DL)); 813 } 814 } 815 816 // Split the intermediate operands into legal parts. 817 if (NumParts == NumIntermediates) { 818 // If the register was not expanded, promote or copy the value, 819 // as appropriate. 820 for (unsigned i = 0; i != NumParts; ++i) 821 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 822 } else if (NumParts > 0) { 823 // If the intermediate type was expanded, split each the value into 824 // legal parts. 825 assert(NumIntermediates != 0 && "division by zero"); 826 assert(NumParts % NumIntermediates == 0 && 827 "Must expand into a divisible number of parts!"); 828 unsigned Factor = NumParts / NumIntermediates; 829 for (unsigned i = 0; i != NumIntermediates; ++i) 830 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 831 CallConv); 832 } 833 } 834 835 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 836 EVT valuevt, std::optional<CallingConv::ID> CC) 837 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 838 RegCount(1, regs.size()), CallConv(CC) {} 839 840 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 841 const DataLayout &DL, unsigned Reg, Type *Ty, 842 std::optional<CallingConv::ID> CC) { 843 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 844 845 CallConv = CC; 846 847 for (EVT ValueVT : ValueVTs) { 848 unsigned NumRegs = 849 isABIMangled() 850 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 851 : TLI.getNumRegisters(Context, ValueVT); 852 MVT RegisterVT = 853 isABIMangled() 854 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 855 : TLI.getRegisterType(Context, ValueVT); 856 for (unsigned i = 0; i != NumRegs; ++i) 857 Regs.push_back(Reg + i); 858 RegVTs.push_back(RegisterVT); 859 RegCount.push_back(NumRegs); 860 Reg += NumRegs; 861 } 862 } 863 864 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 865 FunctionLoweringInfo &FuncInfo, 866 const SDLoc &dl, SDValue &Chain, 867 SDValue *Glue, const Value *V) const { 868 // A Value with type {} or [0 x %t] needs no registers. 869 if (ValueVTs.empty()) 870 return SDValue(); 871 872 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 873 874 // Assemble the legal parts into the final values. 875 SmallVector<SDValue, 4> Values(ValueVTs.size()); 876 SmallVector<SDValue, 8> Parts; 877 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 878 // Copy the legal parts from the registers. 879 EVT ValueVT = ValueVTs[Value]; 880 unsigned NumRegs = RegCount[Value]; 881 MVT RegisterVT = isABIMangled() 882 ? TLI.getRegisterTypeForCallingConv( 883 *DAG.getContext(), *CallConv, RegVTs[Value]) 884 : RegVTs[Value]; 885 886 Parts.resize(NumRegs); 887 for (unsigned i = 0; i != NumRegs; ++i) { 888 SDValue P; 889 if (!Glue) { 890 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 891 } else { 892 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 893 *Glue = P.getValue(2); 894 } 895 896 Chain = P.getValue(1); 897 Parts[i] = P; 898 899 // If the source register was virtual and if we know something about it, 900 // add an assert node. 901 if (!Register::isVirtualRegister(Regs[Part + i]) || 902 !RegisterVT.isInteger()) 903 continue; 904 905 const FunctionLoweringInfo::LiveOutInfo *LOI = 906 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 907 if (!LOI) 908 continue; 909 910 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 911 unsigned NumSignBits = LOI->NumSignBits; 912 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 913 914 if (NumZeroBits == RegSize) { 915 // The current value is a zero. 916 // Explicitly express that as it would be easier for 917 // optimizations to kick in. 918 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 919 continue; 920 } 921 922 // FIXME: We capture more information than the dag can represent. For 923 // now, just use the tightest assertzext/assertsext possible. 924 bool isSExt; 925 EVT FromVT(MVT::Other); 926 if (NumZeroBits) { 927 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 928 isSExt = false; 929 } else if (NumSignBits > 1) { 930 FromVT = 931 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 932 isSExt = true; 933 } else { 934 continue; 935 } 936 // Add an assertion node. 937 assert(FromVT != MVT::Other); 938 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 939 RegisterVT, P, DAG.getValueType(FromVT)); 940 } 941 942 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 943 RegisterVT, ValueVT, V, Chain, CallConv); 944 Part += NumRegs; 945 Parts.clear(); 946 } 947 948 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 949 } 950 951 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 952 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 953 const Value *V, 954 ISD::NodeType PreferredExtendType) const { 955 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 956 ISD::NodeType ExtendKind = PreferredExtendType; 957 958 // Get the list of the values's legal parts. 959 unsigned NumRegs = Regs.size(); 960 SmallVector<SDValue, 8> Parts(NumRegs); 961 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 962 unsigned NumParts = RegCount[Value]; 963 964 MVT RegisterVT = isABIMangled() 965 ? TLI.getRegisterTypeForCallingConv( 966 *DAG.getContext(), *CallConv, RegVTs[Value]) 967 : RegVTs[Value]; 968 969 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 970 ExtendKind = ISD::ZERO_EXTEND; 971 972 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 973 NumParts, RegisterVT, V, CallConv, ExtendKind); 974 Part += NumParts; 975 } 976 977 // Copy the parts into the registers. 978 SmallVector<SDValue, 8> Chains(NumRegs); 979 for (unsigned i = 0; i != NumRegs; ++i) { 980 SDValue Part; 981 if (!Glue) { 982 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 983 } else { 984 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 985 *Glue = Part.getValue(1); 986 } 987 988 Chains[i] = Part.getValue(0); 989 } 990 991 if (NumRegs == 1 || Glue) 992 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 993 // flagged to it. That is the CopyToReg nodes and the user are considered 994 // a single scheduling unit. If we create a TokenFactor and return it as 995 // chain, then the TokenFactor is both a predecessor (operand) of the 996 // user as well as a successor (the TF operands are flagged to the user). 997 // c1, f1 = CopyToReg 998 // c2, f2 = CopyToReg 999 // c3 = TokenFactor c1, c2 1000 // ... 1001 // = op c3, ..., f2 1002 Chain = Chains[NumRegs-1]; 1003 else 1004 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 1005 } 1006 1007 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 1008 unsigned MatchingIdx, const SDLoc &dl, 1009 SelectionDAG &DAG, 1010 std::vector<SDValue> &Ops) const { 1011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1012 1013 InlineAsm::Flag Flag(Code, Regs.size()); 1014 if (HasMatching) 1015 Flag.setMatchingOp(MatchingIdx); 1016 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1017 // Put the register class of the virtual registers in the flag word. That 1018 // way, later passes can recompute register class constraints for inline 1019 // assembly as well as normal instructions. 1020 // Don't do this for tied operands that can use the regclass information 1021 // from the def. 1022 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1023 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1024 Flag.setRegClass(RC->getID()); 1025 } 1026 1027 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1028 Ops.push_back(Res); 1029 1030 if (Code == InlineAsm::Kind::Clobber) { 1031 // Clobbers should always have a 1:1 mapping with registers, and may 1032 // reference registers that have illegal (e.g. vector) types. Hence, we 1033 // shouldn't try to apply any sort of splitting logic to them. 1034 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1035 "No 1:1 mapping from clobbers to regs?"); 1036 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1037 (void)SP; 1038 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1039 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1040 assert( 1041 (Regs[I] != SP || 1042 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1043 "If we clobbered the stack pointer, MFI should know about it."); 1044 } 1045 return; 1046 } 1047 1048 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1049 MVT RegisterVT = RegVTs[Value]; 1050 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1051 RegisterVT); 1052 for (unsigned i = 0; i != NumRegs; ++i) { 1053 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1054 unsigned TheReg = Regs[Reg++]; 1055 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1056 } 1057 } 1058 } 1059 1060 SmallVector<std::pair<unsigned, TypeSize>, 4> 1061 RegsForValue::getRegsAndSizes() const { 1062 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1063 unsigned I = 0; 1064 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1065 unsigned RegCount = std::get<0>(CountAndVT); 1066 MVT RegisterVT = std::get<1>(CountAndVT); 1067 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1068 for (unsigned E = I + RegCount; I != E; ++I) 1069 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1070 } 1071 return OutVec; 1072 } 1073 1074 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1075 AssumptionCache *ac, 1076 const TargetLibraryInfo *li) { 1077 AA = aa; 1078 AC = ac; 1079 GFI = gfi; 1080 LibInfo = li; 1081 Context = DAG.getContext(); 1082 LPadToCallSiteMap.clear(); 1083 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1084 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1085 *DAG.getMachineFunction().getFunction().getParent()); 1086 } 1087 1088 void SelectionDAGBuilder::clear() { 1089 NodeMap.clear(); 1090 UnusedArgNodeMap.clear(); 1091 PendingLoads.clear(); 1092 PendingExports.clear(); 1093 PendingConstrainedFP.clear(); 1094 PendingConstrainedFPStrict.clear(); 1095 CurInst = nullptr; 1096 HasTailCall = false; 1097 SDNodeOrder = LowestSDNodeOrder; 1098 StatepointLowering.clear(); 1099 } 1100 1101 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1102 DanglingDebugInfoMap.clear(); 1103 } 1104 1105 // Update DAG root to include dependencies on Pending chains. 1106 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1107 SDValue Root = DAG.getRoot(); 1108 1109 if (Pending.empty()) 1110 return Root; 1111 1112 // Add current root to PendingChains, unless we already indirectly 1113 // depend on it. 1114 if (Root.getOpcode() != ISD::EntryToken) { 1115 unsigned i = 0, e = Pending.size(); 1116 for (; i != e; ++i) { 1117 assert(Pending[i].getNode()->getNumOperands() > 1); 1118 if (Pending[i].getNode()->getOperand(0) == Root) 1119 break; // Don't add the root if we already indirectly depend on it. 1120 } 1121 1122 if (i == e) 1123 Pending.push_back(Root); 1124 } 1125 1126 if (Pending.size() == 1) 1127 Root = Pending[0]; 1128 else 1129 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1130 1131 DAG.setRoot(Root); 1132 Pending.clear(); 1133 return Root; 1134 } 1135 1136 SDValue SelectionDAGBuilder::getMemoryRoot() { 1137 return updateRoot(PendingLoads); 1138 } 1139 1140 SDValue SelectionDAGBuilder::getRoot() { 1141 // Chain up all pending constrained intrinsics together with all 1142 // pending loads, by simply appending them to PendingLoads and 1143 // then calling getMemoryRoot(). 1144 PendingLoads.reserve(PendingLoads.size() + 1145 PendingConstrainedFP.size() + 1146 PendingConstrainedFPStrict.size()); 1147 PendingLoads.append(PendingConstrainedFP.begin(), 1148 PendingConstrainedFP.end()); 1149 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1150 PendingConstrainedFPStrict.end()); 1151 PendingConstrainedFP.clear(); 1152 PendingConstrainedFPStrict.clear(); 1153 return getMemoryRoot(); 1154 } 1155 1156 SDValue SelectionDAGBuilder::getControlRoot() { 1157 // We need to emit pending fpexcept.strict constrained intrinsics, 1158 // so append them to the PendingExports list. 1159 PendingExports.append(PendingConstrainedFPStrict.begin(), 1160 PendingConstrainedFPStrict.end()); 1161 PendingConstrainedFPStrict.clear(); 1162 return updateRoot(PendingExports); 1163 } 1164 1165 void SelectionDAGBuilder::handleDebugDeclare(Value *Address, 1166 DILocalVariable *Variable, 1167 DIExpression *Expression, 1168 DebugLoc DL) { 1169 assert(Variable && "Missing variable"); 1170 1171 // Check if address has undef value. 1172 if (!Address || isa<UndefValue>(Address) || 1173 (Address->use_empty() && !isa<Argument>(Address))) { 1174 LLVM_DEBUG( 1175 dbgs() 1176 << "dbg_declare: Dropping debug info (bad/undef/unused-arg address)\n"); 1177 return; 1178 } 1179 1180 bool IsParameter = Variable->isParameter() || isa<Argument>(Address); 1181 1182 SDValue &N = NodeMap[Address]; 1183 if (!N.getNode() && isa<Argument>(Address)) 1184 // Check unused arguments map. 1185 N = UnusedArgNodeMap[Address]; 1186 SDDbgValue *SDV; 1187 if (N.getNode()) { 1188 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 1189 Address = BCI->getOperand(0); 1190 // Parameters are handled specially. 1191 auto *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 1192 if (IsParameter && FINode) { 1193 // Byval parameter. We have a frame index at this point. 1194 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 1195 /*IsIndirect*/ true, DL, SDNodeOrder); 1196 } else if (isa<Argument>(Address)) { 1197 // Address is an argument, so try to emit its dbg value using 1198 // virtual register info from the FuncInfo.ValueMap. 1199 EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1200 FuncArgumentDbgValueKind::Declare, N); 1201 return; 1202 } else { 1203 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 1204 true, DL, SDNodeOrder); 1205 } 1206 DAG.AddDbgValue(SDV, IsParameter); 1207 } else { 1208 // If Address is an argument then try to emit its dbg value using 1209 // virtual register info from the FuncInfo.ValueMap. 1210 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, DL, 1211 FuncArgumentDbgValueKind::Declare, N)) { 1212 LLVM_DEBUG(dbgs() << "dbg_declare: Dropping debug info" 1213 << " (could not emit func-arg dbg_value)\n"); 1214 } 1215 } 1216 return; 1217 } 1218 1219 void SelectionDAGBuilder::visitDbgInfo(const Instruction &I) { 1220 // Add SDDbgValue nodes for any var locs here. Do so before updating 1221 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1222 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1223 // Add SDDbgValue nodes for any var locs here. Do so before updating 1224 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1225 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1226 It != End; ++It) { 1227 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1228 dropDanglingDebugInfo(Var, It->Expr); 1229 if (It->Values.isKillLocation(It->Expr)) { 1230 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1231 continue; 1232 } 1233 SmallVector<Value *> Values(It->Values.location_ops()); 1234 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1235 It->Values.hasArgList())) { 1236 SmallVector<Value *, 4> Vals; 1237 for (Value *V : It->Values.location_ops()) 1238 Vals.push_back(V); 1239 addDanglingDebugInfo(Vals, 1240 FnVarLocs->getDILocalVariable(It->VariableID), 1241 It->Expr, Vals.size() > 1, It->DL, SDNodeOrder); 1242 } 1243 } 1244 } 1245 1246 // Is there is any debug-info attached to this instruction, in the form of 1247 // DPValue non-instruction debug-info records. 1248 for (DPValue &DPV : I.getDbgValueRange()) { 1249 DILocalVariable *Variable = DPV.getVariable(); 1250 DIExpression *Expression = DPV.getExpression(); 1251 dropDanglingDebugInfo(Variable, Expression); 1252 1253 if (DPV.getType() == DPValue::LocationType::Declare) { 1254 if (FuncInfo.PreprocessedDPVDeclares.contains(&DPV)) 1255 continue; 1256 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DPV 1257 << "\n"); 1258 handleDebugDeclare(DPV.getVariableLocationOp(0), Variable, Expression, 1259 DPV.getDebugLoc()); 1260 continue; 1261 } 1262 1263 // A DPValue with no locations is a kill location. 1264 SmallVector<Value *, 4> Values(DPV.location_ops()); 1265 if (Values.empty()) { 1266 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1267 SDNodeOrder); 1268 continue; 1269 } 1270 1271 // A DPValue with an undef or absent location is also a kill location. 1272 if (llvm::any_of(Values, 1273 [](Value *V) { return !V || isa<UndefValue>(V); })) { 1274 handleKillDebugValue(Variable, Expression, DPV.getDebugLoc(), 1275 SDNodeOrder); 1276 continue; 1277 } 1278 1279 bool IsVariadic = DPV.hasArgList(); 1280 if (!handleDebugValue(Values, Variable, Expression, DPV.getDebugLoc(), 1281 SDNodeOrder, IsVariadic)) { 1282 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 1283 DPV.getDebugLoc(), SDNodeOrder); 1284 } 1285 } 1286 } 1287 1288 void SelectionDAGBuilder::visit(const Instruction &I) { 1289 visitDbgInfo(I); 1290 1291 // Set up outgoing PHI node register values before emitting the terminator. 1292 if (I.isTerminator()) { 1293 HandlePHINodesInSuccessorBlocks(I.getParent()); 1294 } 1295 1296 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1297 if (!isa<DbgInfoIntrinsic>(I)) 1298 ++SDNodeOrder; 1299 1300 CurInst = &I; 1301 1302 // Set inserted listener only if required. 1303 bool NodeInserted = false; 1304 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1305 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1306 if (PCSectionsMD) { 1307 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1308 DAG, [&](SDNode *) { NodeInserted = true; }); 1309 } 1310 1311 visit(I.getOpcode(), I); 1312 1313 if (!I.isTerminator() && !HasTailCall && 1314 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1315 CopyToExportRegsIfNeeded(&I); 1316 1317 // Handle metadata. 1318 if (PCSectionsMD) { 1319 auto It = NodeMap.find(&I); 1320 if (It != NodeMap.end()) { 1321 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1322 } else if (NodeInserted) { 1323 // This should not happen; if it does, don't let it go unnoticed so we can 1324 // fix it. Relevant visit*() function is probably missing a setValue(). 1325 errs() << "warning: loosing !pcsections metadata [" 1326 << I.getModule()->getName() << "]\n"; 1327 LLVM_DEBUG(I.dump()); 1328 assert(false); 1329 } 1330 } 1331 1332 CurInst = nullptr; 1333 } 1334 1335 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1336 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1337 } 1338 1339 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1340 // Note: this doesn't use InstVisitor, because it has to work with 1341 // ConstantExpr's in addition to instructions. 1342 switch (Opcode) { 1343 default: llvm_unreachable("Unknown instruction type encountered!"); 1344 // Build the switch statement using the Instruction.def file. 1345 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1346 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1347 #include "llvm/IR/Instruction.def" 1348 } 1349 } 1350 1351 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1352 DILocalVariable *Variable, 1353 DebugLoc DL, unsigned Order, 1354 SmallVectorImpl<Value *> &Values, 1355 DIExpression *Expression) { 1356 // For variadic dbg_values we will now insert an undef. 1357 // FIXME: We can potentially recover these! 1358 SmallVector<SDDbgOperand, 2> Locs; 1359 for (const Value *V : Values) { 1360 auto *Undef = UndefValue::get(V->getType()); 1361 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1362 } 1363 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1364 /*IsIndirect=*/false, DL, Order, 1365 /*IsVariadic=*/true); 1366 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1367 return true; 1368 } 1369 1370 void SelectionDAGBuilder::addDanglingDebugInfo(SmallVectorImpl<Value *> &Values, 1371 DILocalVariable *Var, 1372 DIExpression *Expr, 1373 bool IsVariadic, DebugLoc DL, 1374 unsigned Order) { 1375 if (IsVariadic) { 1376 handleDanglingVariadicDebugInfo(DAG, Var, DL, Order, Values, Expr); 1377 return; 1378 } 1379 // TODO: Dangling debug info will eventually either be resolved or produce 1380 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1381 // between the original dbg.value location and its resolved DBG_VALUE, 1382 // which we should ideally fill with an extra Undef DBG_VALUE. 1383 assert(Values.size() == 1); 1384 DanglingDebugInfoMap[Values[0]].emplace_back(Var, Expr, DL, Order); 1385 } 1386 1387 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1388 const DIExpression *Expr) { 1389 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1390 DIVariable *DanglingVariable = DDI.getVariable(); 1391 DIExpression *DanglingExpr = DDI.getExpression(); 1392 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1393 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " 1394 << printDDI(nullptr, DDI) << "\n"); 1395 return true; 1396 } 1397 return false; 1398 }; 1399 1400 for (auto &DDIMI : DanglingDebugInfoMap) { 1401 DanglingDebugInfoVector &DDIV = DDIMI.second; 1402 1403 // If debug info is to be dropped, run it through final checks to see 1404 // whether it can be salvaged. 1405 for (auto &DDI : DDIV) 1406 if (isMatchingDbgValue(DDI)) 1407 salvageUnresolvedDbgValue(DDIMI.first, DDI); 1408 1409 erase_if(DDIV, isMatchingDbgValue); 1410 } 1411 } 1412 1413 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1414 // generate the debug data structures now that we've seen its definition. 1415 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1416 SDValue Val) { 1417 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1418 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1419 return; 1420 1421 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1422 for (auto &DDI : DDIV) { 1423 DebugLoc DL = DDI.getDebugLoc(); 1424 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1425 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1426 DILocalVariable *Variable = DDI.getVariable(); 1427 DIExpression *Expr = DDI.getExpression(); 1428 assert(Variable->isValidLocationForIntrinsic(DL) && 1429 "Expected inlined-at fields to agree"); 1430 SDDbgValue *SDV; 1431 if (Val.getNode()) { 1432 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1433 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1434 // we couldn't resolve it directly when examining the DbgValue intrinsic 1435 // in the first place we should not be more successful here). Unless we 1436 // have some test case that prove this to be correct we should avoid 1437 // calling EmitFuncArgumentDbgValue here. 1438 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1439 FuncArgumentDbgValueKind::Value, Val)) { 1440 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " 1441 << printDDI(V, DDI) << "\n"); 1442 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1443 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1444 // inserted after the definition of Val when emitting the instructions 1445 // after ISel. An alternative could be to teach 1446 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1447 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1448 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1449 << ValSDNodeOrder << "\n"); 1450 SDV = getDbgValue(Val, Variable, Expr, DL, 1451 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1452 DAG.AddDbgValue(SDV, false); 1453 } else 1454 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1455 << printDDI(V, DDI) 1456 << " in EmitFuncArgumentDbgValue\n"); 1457 } else { 1458 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(V, DDI) 1459 << "\n"); 1460 auto Undef = UndefValue::get(V->getType()); 1461 auto SDV = 1462 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1463 DAG.AddDbgValue(SDV, false); 1464 } 1465 } 1466 DDIV.clear(); 1467 } 1468 1469 void SelectionDAGBuilder::salvageUnresolvedDbgValue(const Value *V, 1470 DanglingDebugInfo &DDI) { 1471 // TODO: For the variadic implementation, instead of only checking the fail 1472 // state of `handleDebugValue`, we need know specifically which values were 1473 // invalid, so that we attempt to salvage only those values when processing 1474 // a DIArgList. 1475 const Value *OrigV = V; 1476 DILocalVariable *Var = DDI.getVariable(); 1477 DIExpression *Expr = DDI.getExpression(); 1478 DebugLoc DL = DDI.getDebugLoc(); 1479 unsigned SDOrder = DDI.getSDNodeOrder(); 1480 1481 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1482 // that DW_OP_stack_value is desired. 1483 bool StackValue = true; 1484 1485 // Can this Value can be encoded without any further work? 1486 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1487 return; 1488 1489 // Attempt to salvage back through as many instructions as possible. Bail if 1490 // a non-instruction is seen, such as a constant expression or global 1491 // variable. FIXME: Further work could recover those too. 1492 while (isa<Instruction>(V)) { 1493 const Instruction &VAsInst = *cast<const Instruction>(V); 1494 // Temporary "0", awaiting real implementation. 1495 SmallVector<uint64_t, 16> Ops; 1496 SmallVector<Value *, 4> AdditionalValues; 1497 V = salvageDebugInfoImpl(const_cast<Instruction &>(VAsInst), 1498 Expr->getNumLocationOperands(), Ops, 1499 AdditionalValues); 1500 // If we cannot salvage any further, and haven't yet found a suitable debug 1501 // expression, bail out. 1502 if (!V) 1503 break; 1504 1505 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1506 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1507 // here for variadic dbg_values, remove that condition. 1508 if (!AdditionalValues.empty()) 1509 break; 1510 1511 // New value and expr now represent this debuginfo. 1512 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1513 1514 // Some kind of simplification occurred: check whether the operand of the 1515 // salvaged debug expression can be encoded in this DAG. 1516 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1517 LLVM_DEBUG( 1518 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1519 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1520 return; 1521 } 1522 } 1523 1524 // This was the final opportunity to salvage this debug information, and it 1525 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1526 // any earlier variable location. 1527 assert(OrigV && "V shouldn't be null"); 1528 auto *Undef = UndefValue::get(OrigV->getType()); 1529 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1530 DAG.AddDbgValue(SDV, false); 1531 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " 1532 << printDDI(OrigV, DDI) << "\n"); 1533 } 1534 1535 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1536 DIExpression *Expr, 1537 DebugLoc DbgLoc, 1538 unsigned Order) { 1539 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1540 DIExpression *NewExpr = 1541 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1542 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1543 /*IsVariadic*/ false); 1544 } 1545 1546 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1547 DILocalVariable *Var, 1548 DIExpression *Expr, DebugLoc DbgLoc, 1549 unsigned Order, bool IsVariadic) { 1550 if (Values.empty()) 1551 return true; 1552 1553 // Filter EntryValue locations out early. 1554 if (visitEntryValueDbgValue(Values, Var, Expr, DbgLoc)) 1555 return true; 1556 1557 SmallVector<SDDbgOperand> LocationOps; 1558 SmallVector<SDNode *> Dependencies; 1559 for (const Value *V : Values) { 1560 // Constant value. 1561 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1562 isa<ConstantPointerNull>(V)) { 1563 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1564 continue; 1565 } 1566 1567 // Look through IntToPtr constants. 1568 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1569 if (CE->getOpcode() == Instruction::IntToPtr) { 1570 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1571 continue; 1572 } 1573 1574 // If the Value is a frame index, we can create a FrameIndex debug value 1575 // without relying on the DAG at all. 1576 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1577 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1578 if (SI != FuncInfo.StaticAllocaMap.end()) { 1579 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1580 continue; 1581 } 1582 } 1583 1584 // Do not use getValue() in here; we don't want to generate code at 1585 // this point if it hasn't been done yet. 1586 SDValue N = NodeMap[V]; 1587 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1588 N = UnusedArgNodeMap[V]; 1589 if (N.getNode()) { 1590 // Only emit func arg dbg value for non-variadic dbg.values for now. 1591 if (!IsVariadic && 1592 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1593 FuncArgumentDbgValueKind::Value, N)) 1594 return true; 1595 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1596 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1597 // describe stack slot locations. 1598 // 1599 // Consider "int x = 0; int *px = &x;". There are two kinds of 1600 // interesting debug values here after optimization: 1601 // 1602 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1603 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1604 // 1605 // Both describe the direct values of their associated variables. 1606 Dependencies.push_back(N.getNode()); 1607 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1608 continue; 1609 } 1610 LocationOps.emplace_back( 1611 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1612 continue; 1613 } 1614 1615 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1616 // Special rules apply for the first dbg.values of parameter variables in a 1617 // function. Identify them by the fact they reference Argument Values, that 1618 // they're parameters, and they are parameters of the current function. We 1619 // need to let them dangle until they get an SDNode. 1620 bool IsParamOfFunc = 1621 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1622 if (IsParamOfFunc) 1623 return false; 1624 1625 // The value is not used in this block yet (or it would have an SDNode). 1626 // We still want the value to appear for the user if possible -- if it has 1627 // an associated VReg, we can refer to that instead. 1628 auto VMI = FuncInfo.ValueMap.find(V); 1629 if (VMI != FuncInfo.ValueMap.end()) { 1630 unsigned Reg = VMI->second; 1631 // If this is a PHI node, it may be split up into several MI PHI nodes 1632 // (in FunctionLoweringInfo::set). 1633 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1634 V->getType(), std::nullopt); 1635 if (RFV.occupiesMultipleRegs()) { 1636 // FIXME: We could potentially support variadic dbg_values here. 1637 if (IsVariadic) 1638 return false; 1639 unsigned Offset = 0; 1640 unsigned BitsToDescribe = 0; 1641 if (auto VarSize = Var->getSizeInBits()) 1642 BitsToDescribe = *VarSize; 1643 if (auto Fragment = Expr->getFragmentInfo()) 1644 BitsToDescribe = Fragment->SizeInBits; 1645 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1646 // Bail out if all bits are described already. 1647 if (Offset >= BitsToDescribe) 1648 break; 1649 // TODO: handle scalable vectors. 1650 unsigned RegisterSize = RegAndSize.second; 1651 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1652 ? BitsToDescribe - Offset 1653 : RegisterSize; 1654 auto FragmentExpr = DIExpression::createFragmentExpression( 1655 Expr, Offset, FragmentSize); 1656 if (!FragmentExpr) 1657 continue; 1658 SDDbgValue *SDV = DAG.getVRegDbgValue( 1659 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1660 DAG.AddDbgValue(SDV, false); 1661 Offset += RegisterSize; 1662 } 1663 return true; 1664 } 1665 // We can use simple vreg locations for variadic dbg_values as well. 1666 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1667 continue; 1668 } 1669 // We failed to create a SDDbgOperand for V. 1670 return false; 1671 } 1672 1673 // We have created a SDDbgOperand for each Value in Values. 1674 // Should use Order instead of SDNodeOrder? 1675 assert(!LocationOps.empty()); 1676 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1677 /*IsIndirect=*/false, DbgLoc, 1678 SDNodeOrder, IsVariadic); 1679 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1680 return true; 1681 } 1682 1683 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1684 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1685 for (auto &Pair : DanglingDebugInfoMap) 1686 for (auto &DDI : Pair.second) 1687 salvageUnresolvedDbgValue(const_cast<Value *>(Pair.first), DDI); 1688 clearDanglingDebugInfo(); 1689 } 1690 1691 /// getCopyFromRegs - If there was virtual register allocated for the value V 1692 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1693 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1694 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1695 SDValue Result; 1696 1697 if (It != FuncInfo.ValueMap.end()) { 1698 Register InReg = It->second; 1699 1700 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1701 DAG.getDataLayout(), InReg, Ty, 1702 std::nullopt); // This is not an ABI copy. 1703 SDValue Chain = DAG.getEntryNode(); 1704 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1705 V); 1706 resolveDanglingDebugInfo(V, Result); 1707 } 1708 1709 return Result; 1710 } 1711 1712 /// getValue - Return an SDValue for the given Value. 1713 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1714 // If we already have an SDValue for this value, use it. It's important 1715 // to do this first, so that we don't create a CopyFromReg if we already 1716 // have a regular SDValue. 1717 SDValue &N = NodeMap[V]; 1718 if (N.getNode()) return N; 1719 1720 // If there's a virtual register allocated and initialized for this 1721 // value, use it. 1722 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1723 return copyFromReg; 1724 1725 // Otherwise create a new SDValue and remember it. 1726 SDValue Val = getValueImpl(V); 1727 NodeMap[V] = Val; 1728 resolveDanglingDebugInfo(V, Val); 1729 return Val; 1730 } 1731 1732 /// getNonRegisterValue - Return an SDValue for the given Value, but 1733 /// don't look in FuncInfo.ValueMap for a virtual register. 1734 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1735 // If we already have an SDValue for this value, use it. 1736 SDValue &N = NodeMap[V]; 1737 if (N.getNode()) { 1738 if (isIntOrFPConstant(N)) { 1739 // Remove the debug location from the node as the node is about to be used 1740 // in a location which may differ from the original debug location. This 1741 // is relevant to Constant and ConstantFP nodes because they can appear 1742 // as constant expressions inside PHI nodes. 1743 N->setDebugLoc(DebugLoc()); 1744 } 1745 return N; 1746 } 1747 1748 // Otherwise create a new SDValue and remember it. 1749 SDValue Val = getValueImpl(V); 1750 NodeMap[V] = Val; 1751 resolveDanglingDebugInfo(V, Val); 1752 return Val; 1753 } 1754 1755 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1756 /// Create an SDValue for the given value. 1757 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1758 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1759 1760 if (const Constant *C = dyn_cast<Constant>(V)) { 1761 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1762 1763 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1764 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1765 1766 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1767 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1768 1769 if (isa<ConstantPointerNull>(C)) { 1770 unsigned AS = V->getType()->getPointerAddressSpace(); 1771 return DAG.getConstant(0, getCurSDLoc(), 1772 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1773 } 1774 1775 if (match(C, m_VScale())) 1776 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1777 1778 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1779 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1780 1781 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1782 return DAG.getUNDEF(VT); 1783 1784 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1785 visit(CE->getOpcode(), *CE); 1786 SDValue N1 = NodeMap[V]; 1787 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1788 return N1; 1789 } 1790 1791 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1792 SmallVector<SDValue, 4> Constants; 1793 for (const Use &U : C->operands()) { 1794 SDNode *Val = getValue(U).getNode(); 1795 // If the operand is an empty aggregate, there are no values. 1796 if (!Val) continue; 1797 // Add each leaf value from the operand to the Constants list 1798 // to form a flattened list of all the values. 1799 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1800 Constants.push_back(SDValue(Val, i)); 1801 } 1802 1803 return DAG.getMergeValues(Constants, getCurSDLoc()); 1804 } 1805 1806 if (const ConstantDataSequential *CDS = 1807 dyn_cast<ConstantDataSequential>(C)) { 1808 SmallVector<SDValue, 4> Ops; 1809 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1810 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1811 // Add each leaf value from the operand to the Constants list 1812 // to form a flattened list of all the values. 1813 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1814 Ops.push_back(SDValue(Val, i)); 1815 } 1816 1817 if (isa<ArrayType>(CDS->getType())) 1818 return DAG.getMergeValues(Ops, getCurSDLoc()); 1819 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1820 } 1821 1822 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1823 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1824 "Unknown struct or array constant!"); 1825 1826 SmallVector<EVT, 4> ValueVTs; 1827 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1828 unsigned NumElts = ValueVTs.size(); 1829 if (NumElts == 0) 1830 return SDValue(); // empty struct 1831 SmallVector<SDValue, 4> Constants(NumElts); 1832 for (unsigned i = 0; i != NumElts; ++i) { 1833 EVT EltVT = ValueVTs[i]; 1834 if (isa<UndefValue>(C)) 1835 Constants[i] = DAG.getUNDEF(EltVT); 1836 else if (EltVT.isFloatingPoint()) 1837 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1838 else 1839 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1840 } 1841 1842 return DAG.getMergeValues(Constants, getCurSDLoc()); 1843 } 1844 1845 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1846 return DAG.getBlockAddress(BA, VT); 1847 1848 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1849 return getValue(Equiv->getGlobalValue()); 1850 1851 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1852 return getValue(NC->getGlobalValue()); 1853 1854 if (VT == MVT::aarch64svcount) { 1855 assert(C->isNullValue() && "Can only zero this target type!"); 1856 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1857 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1858 } 1859 1860 VectorType *VecTy = cast<VectorType>(V->getType()); 1861 1862 // Now that we know the number and type of the elements, get that number of 1863 // elements into the Ops array based on what kind of constant it is. 1864 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1865 SmallVector<SDValue, 16> Ops; 1866 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1867 for (unsigned i = 0; i != NumElements; ++i) 1868 Ops.push_back(getValue(CV->getOperand(i))); 1869 1870 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1871 } 1872 1873 if (isa<ConstantAggregateZero>(C)) { 1874 EVT EltVT = 1875 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1876 1877 SDValue Op; 1878 if (EltVT.isFloatingPoint()) 1879 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1880 else 1881 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1882 1883 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1884 } 1885 1886 llvm_unreachable("Unknown vector constant"); 1887 } 1888 1889 // If this is a static alloca, generate it as the frameindex instead of 1890 // computation. 1891 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1892 DenseMap<const AllocaInst*, int>::iterator SI = 1893 FuncInfo.StaticAllocaMap.find(AI); 1894 if (SI != FuncInfo.StaticAllocaMap.end()) 1895 return DAG.getFrameIndex( 1896 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1897 } 1898 1899 // If this is an instruction which fast-isel has deferred, select it now. 1900 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1901 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1902 1903 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1904 Inst->getType(), std::nullopt); 1905 SDValue Chain = DAG.getEntryNode(); 1906 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1907 } 1908 1909 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1910 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1911 1912 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1913 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1914 1915 llvm_unreachable("Can't get register for value!"); 1916 } 1917 1918 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1919 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1920 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1921 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1922 bool IsSEH = isAsynchronousEHPersonality(Pers); 1923 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1924 if (!IsSEH) 1925 CatchPadMBB->setIsEHScopeEntry(); 1926 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1927 if (IsMSVCCXX || IsCoreCLR) 1928 CatchPadMBB->setIsEHFuncletEntry(); 1929 } 1930 1931 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1932 // Update machine-CFG edge. 1933 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1934 FuncInfo.MBB->addSuccessor(TargetMBB); 1935 TargetMBB->setIsEHCatchretTarget(true); 1936 DAG.getMachineFunction().setHasEHCatchret(true); 1937 1938 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1939 bool IsSEH = isAsynchronousEHPersonality(Pers); 1940 if (IsSEH) { 1941 // If this is not a fall-through branch or optimizations are switched off, 1942 // emit the branch. 1943 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1944 TM.getOptLevel() == CodeGenOptLevel::None) 1945 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1946 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1947 return; 1948 } 1949 1950 // Figure out the funclet membership for the catchret's successor. 1951 // This will be used by the FuncletLayout pass to determine how to order the 1952 // BB's. 1953 // A 'catchret' returns to the outer scope's color. 1954 Value *ParentPad = I.getCatchSwitchParentPad(); 1955 const BasicBlock *SuccessorColor; 1956 if (isa<ConstantTokenNone>(ParentPad)) 1957 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1958 else 1959 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1960 assert(SuccessorColor && "No parent funclet for catchret!"); 1961 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1962 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1963 1964 // Create the terminator node. 1965 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1966 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1967 DAG.getBasicBlock(SuccessorColorMBB)); 1968 DAG.setRoot(Ret); 1969 } 1970 1971 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1972 // Don't emit any special code for the cleanuppad instruction. It just marks 1973 // the start of an EH scope/funclet. 1974 FuncInfo.MBB->setIsEHScopeEntry(); 1975 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1976 if (Pers != EHPersonality::Wasm_CXX) { 1977 FuncInfo.MBB->setIsEHFuncletEntry(); 1978 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1979 } 1980 } 1981 1982 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1983 // not match, it is OK to add only the first unwind destination catchpad to the 1984 // successors, because there will be at least one invoke instruction within the 1985 // catch scope that points to the next unwind destination, if one exists, so 1986 // CFGSort cannot mess up with BB sorting order. 1987 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1988 // call within them, and catchpads only consisting of 'catch (...)' have a 1989 // '__cxa_end_catch' call within them, both of which generate invokes in case 1990 // the next unwind destination exists, i.e., the next unwind destination is not 1991 // the caller.) 1992 // 1993 // Having at most one EH pad successor is also simpler and helps later 1994 // transformations. 1995 // 1996 // For example, 1997 // current: 1998 // invoke void @foo to ... unwind label %catch.dispatch 1999 // catch.dispatch: 2000 // %0 = catchswitch within ... [label %catch.start] unwind label %next 2001 // catch.start: 2002 // ... 2003 // ... in this BB or some other child BB dominated by this BB there will be an 2004 // invoke that points to 'next' BB as an unwind destination 2005 // 2006 // next: ; We don't need to add this to 'current' BB's successor 2007 // ... 2008 static void findWasmUnwindDestinations( 2009 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2010 BranchProbability Prob, 2011 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2012 &UnwindDests) { 2013 while (EHPadBB) { 2014 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2015 if (isa<CleanupPadInst>(Pad)) { 2016 // Stop on cleanup pads. 2017 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2018 UnwindDests.back().first->setIsEHScopeEntry(); 2019 break; 2020 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2021 // Add the catchpad handlers to the possible destinations. We don't 2022 // continue to the unwind destination of the catchswitch for wasm. 2023 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2024 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2025 UnwindDests.back().first->setIsEHScopeEntry(); 2026 } 2027 break; 2028 } else { 2029 continue; 2030 } 2031 } 2032 } 2033 2034 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 2035 /// many places it could ultimately go. In the IR, we have a single unwind 2036 /// destination, but in the machine CFG, we enumerate all the possible blocks. 2037 /// This function skips over imaginary basic blocks that hold catchswitch 2038 /// instructions, and finds all the "real" machine 2039 /// basic block destinations. As those destinations may not be successors of 2040 /// EHPadBB, here we also calculate the edge probability to those destinations. 2041 /// The passed-in Prob is the edge probability to EHPadBB. 2042 static void findUnwindDestinations( 2043 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 2044 BranchProbability Prob, 2045 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 2046 &UnwindDests) { 2047 EHPersonality Personality = 2048 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 2049 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 2050 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 2051 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 2052 bool IsSEH = isAsynchronousEHPersonality(Personality); 2053 2054 if (IsWasmCXX) { 2055 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 2056 assert(UnwindDests.size() <= 1 && 2057 "There should be at most one unwind destination for wasm"); 2058 return; 2059 } 2060 2061 while (EHPadBB) { 2062 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 2063 BasicBlock *NewEHPadBB = nullptr; 2064 if (isa<LandingPadInst>(Pad)) { 2065 // Stop on landingpads. They are not funclets. 2066 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2067 break; 2068 } else if (isa<CleanupPadInst>(Pad)) { 2069 // Stop on cleanup pads. Cleanups are always funclet entries for all known 2070 // personalities. 2071 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 2072 UnwindDests.back().first->setIsEHScopeEntry(); 2073 UnwindDests.back().first->setIsEHFuncletEntry(); 2074 break; 2075 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 2076 // Add the catchpad handlers to the possible destinations. 2077 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 2078 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 2079 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 2080 if (IsMSVCCXX || IsCoreCLR) 2081 UnwindDests.back().first->setIsEHFuncletEntry(); 2082 if (!IsSEH) 2083 UnwindDests.back().first->setIsEHScopeEntry(); 2084 } 2085 NewEHPadBB = CatchSwitch->getUnwindDest(); 2086 } else { 2087 continue; 2088 } 2089 2090 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2091 if (BPI && NewEHPadBB) 2092 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 2093 EHPadBB = NewEHPadBB; 2094 } 2095 } 2096 2097 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 2098 // Update successor info. 2099 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2100 auto UnwindDest = I.getUnwindDest(); 2101 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2102 BranchProbability UnwindDestProb = 2103 (BPI && UnwindDest) 2104 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 2105 : BranchProbability::getZero(); 2106 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 2107 for (auto &UnwindDest : UnwindDests) { 2108 UnwindDest.first->setIsEHPad(); 2109 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 2110 } 2111 FuncInfo.MBB->normalizeSuccProbs(); 2112 2113 // Create the terminator node. 2114 SDValue Ret = 2115 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2116 DAG.setRoot(Ret); 2117 } 2118 2119 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2120 report_fatal_error("visitCatchSwitch not yet implemented!"); 2121 } 2122 2123 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2124 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2125 auto &DL = DAG.getDataLayout(); 2126 SDValue Chain = getControlRoot(); 2127 SmallVector<ISD::OutputArg, 8> Outs; 2128 SmallVector<SDValue, 8> OutVals; 2129 2130 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2131 // lower 2132 // 2133 // %val = call <ty> @llvm.experimental.deoptimize() 2134 // ret <ty> %val 2135 // 2136 // differently. 2137 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2138 LowerDeoptimizingReturn(); 2139 return; 2140 } 2141 2142 if (!FuncInfo.CanLowerReturn) { 2143 unsigned DemoteReg = FuncInfo.DemoteRegister; 2144 const Function *F = I.getParent()->getParent(); 2145 2146 // Emit a store of the return value through the virtual register. 2147 // Leave Outs empty so that LowerReturn won't try to load return 2148 // registers the usual way. 2149 SmallVector<EVT, 1> PtrValueVTs; 2150 ComputeValueVTs(TLI, DL, 2151 PointerType::get(F->getContext(), 2152 DAG.getDataLayout().getAllocaAddrSpace()), 2153 PtrValueVTs); 2154 2155 SDValue RetPtr = 2156 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2157 SDValue RetOp = getValue(I.getOperand(0)); 2158 2159 SmallVector<EVT, 4> ValueVTs, MemVTs; 2160 SmallVector<uint64_t, 4> Offsets; 2161 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2162 &Offsets, 0); 2163 unsigned NumValues = ValueVTs.size(); 2164 2165 SmallVector<SDValue, 4> Chains(NumValues); 2166 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2167 for (unsigned i = 0; i != NumValues; ++i) { 2168 // An aggregate return value cannot wrap around the address space, so 2169 // offsets to its parts don't wrap either. 2170 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2171 TypeSize::getFixed(Offsets[i])); 2172 2173 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2174 if (MemVTs[i] != ValueVTs[i]) 2175 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2176 Chains[i] = DAG.getStore( 2177 Chain, getCurSDLoc(), Val, 2178 // FIXME: better loc info would be nice. 2179 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2180 commonAlignment(BaseAlign, Offsets[i])); 2181 } 2182 2183 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2184 MVT::Other, Chains); 2185 } else if (I.getNumOperands() != 0) { 2186 SmallVector<EVT, 4> ValueVTs; 2187 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2188 unsigned NumValues = ValueVTs.size(); 2189 if (NumValues) { 2190 SDValue RetOp = getValue(I.getOperand(0)); 2191 2192 const Function *F = I.getParent()->getParent(); 2193 2194 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2195 I.getOperand(0)->getType(), F->getCallingConv(), 2196 /*IsVarArg*/ false, DL); 2197 2198 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2199 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2200 ExtendKind = ISD::SIGN_EXTEND; 2201 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2202 ExtendKind = ISD::ZERO_EXTEND; 2203 2204 LLVMContext &Context = F->getContext(); 2205 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2206 2207 for (unsigned j = 0; j != NumValues; ++j) { 2208 EVT VT = ValueVTs[j]; 2209 2210 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2211 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2212 2213 CallingConv::ID CC = F->getCallingConv(); 2214 2215 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2216 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2217 SmallVector<SDValue, 4> Parts(NumParts); 2218 getCopyToParts(DAG, getCurSDLoc(), 2219 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2220 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2221 2222 // 'inreg' on function refers to return value 2223 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2224 if (RetInReg) 2225 Flags.setInReg(); 2226 2227 if (I.getOperand(0)->getType()->isPointerTy()) { 2228 Flags.setPointer(); 2229 Flags.setPointerAddrSpace( 2230 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2231 } 2232 2233 if (NeedsRegBlock) { 2234 Flags.setInConsecutiveRegs(); 2235 if (j == NumValues - 1) 2236 Flags.setInConsecutiveRegsLast(); 2237 } 2238 2239 // Propagate extension type if any 2240 if (ExtendKind == ISD::SIGN_EXTEND) 2241 Flags.setSExt(); 2242 else if (ExtendKind == ISD::ZERO_EXTEND) 2243 Flags.setZExt(); 2244 2245 for (unsigned i = 0; i < NumParts; ++i) { 2246 Outs.push_back(ISD::OutputArg(Flags, 2247 Parts[i].getValueType().getSimpleVT(), 2248 VT, /*isfixed=*/true, 0, 0)); 2249 OutVals.push_back(Parts[i]); 2250 } 2251 } 2252 } 2253 } 2254 2255 // Push in swifterror virtual register as the last element of Outs. This makes 2256 // sure swifterror virtual register will be returned in the swifterror 2257 // physical register. 2258 const Function *F = I.getParent()->getParent(); 2259 if (TLI.supportSwiftError() && 2260 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2261 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2262 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2263 Flags.setSwiftError(); 2264 Outs.push_back(ISD::OutputArg( 2265 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2266 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2267 // Create SDNode for the swifterror virtual register. 2268 OutVals.push_back( 2269 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2270 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2271 EVT(TLI.getPointerTy(DL)))); 2272 } 2273 2274 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2275 CallingConv::ID CallConv = 2276 DAG.getMachineFunction().getFunction().getCallingConv(); 2277 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2278 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2279 2280 // Verify that the target's LowerReturn behaved as expected. 2281 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2282 "LowerReturn didn't return a valid chain!"); 2283 2284 // Update the DAG with the new chain value resulting from return lowering. 2285 DAG.setRoot(Chain); 2286 } 2287 2288 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2289 /// created for it, emit nodes to copy the value into the virtual 2290 /// registers. 2291 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2292 // Skip empty types 2293 if (V->getType()->isEmptyTy()) 2294 return; 2295 2296 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2297 if (VMI != FuncInfo.ValueMap.end()) { 2298 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2299 "Unused value assigned virtual registers!"); 2300 CopyValueToVirtualRegister(V, VMI->second); 2301 } 2302 } 2303 2304 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2305 /// the current basic block, add it to ValueMap now so that we'll get a 2306 /// CopyTo/FromReg. 2307 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2308 // No need to export constants. 2309 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2310 2311 // Already exported? 2312 if (FuncInfo.isExportedInst(V)) return; 2313 2314 Register Reg = FuncInfo.InitializeRegForValue(V); 2315 CopyValueToVirtualRegister(V, Reg); 2316 } 2317 2318 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2319 const BasicBlock *FromBB) { 2320 // The operands of the setcc have to be in this block. We don't know 2321 // how to export them from some other block. 2322 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2323 // Can export from current BB. 2324 if (VI->getParent() == FromBB) 2325 return true; 2326 2327 // Is already exported, noop. 2328 return FuncInfo.isExportedInst(V); 2329 } 2330 2331 // If this is an argument, we can export it if the BB is the entry block or 2332 // if it is already exported. 2333 if (isa<Argument>(V)) { 2334 if (FromBB->isEntryBlock()) 2335 return true; 2336 2337 // Otherwise, can only export this if it is already exported. 2338 return FuncInfo.isExportedInst(V); 2339 } 2340 2341 // Otherwise, constants can always be exported. 2342 return true; 2343 } 2344 2345 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2346 BranchProbability 2347 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2348 const MachineBasicBlock *Dst) const { 2349 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2350 const BasicBlock *SrcBB = Src->getBasicBlock(); 2351 const BasicBlock *DstBB = Dst->getBasicBlock(); 2352 if (!BPI) { 2353 // If BPI is not available, set the default probability as 1 / N, where N is 2354 // the number of successors. 2355 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2356 return BranchProbability(1, SuccSize); 2357 } 2358 return BPI->getEdgeProbability(SrcBB, DstBB); 2359 } 2360 2361 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2362 MachineBasicBlock *Dst, 2363 BranchProbability Prob) { 2364 if (!FuncInfo.BPI) 2365 Src->addSuccessorWithoutProb(Dst); 2366 else { 2367 if (Prob.isUnknown()) 2368 Prob = getEdgeProbability(Src, Dst); 2369 Src->addSuccessor(Dst, Prob); 2370 } 2371 } 2372 2373 static bool InBlock(const Value *V, const BasicBlock *BB) { 2374 if (const Instruction *I = dyn_cast<Instruction>(V)) 2375 return I->getParent() == BB; 2376 return true; 2377 } 2378 2379 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2380 /// This function emits a branch and is used at the leaves of an OR or an 2381 /// AND operator tree. 2382 void 2383 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2384 MachineBasicBlock *TBB, 2385 MachineBasicBlock *FBB, 2386 MachineBasicBlock *CurBB, 2387 MachineBasicBlock *SwitchBB, 2388 BranchProbability TProb, 2389 BranchProbability FProb, 2390 bool InvertCond) { 2391 const BasicBlock *BB = CurBB->getBasicBlock(); 2392 2393 // If the leaf of the tree is a comparison, merge the condition into 2394 // the caseblock. 2395 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2396 // The operands of the cmp have to be in this block. We don't know 2397 // how to export them from some other block. If this is the first block 2398 // of the sequence, no exporting is needed. 2399 if (CurBB == SwitchBB || 2400 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2401 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2402 ISD::CondCode Condition; 2403 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2404 ICmpInst::Predicate Pred = 2405 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2406 Condition = getICmpCondCode(Pred); 2407 } else { 2408 const FCmpInst *FC = cast<FCmpInst>(Cond); 2409 FCmpInst::Predicate Pred = 2410 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2411 Condition = getFCmpCondCode(Pred); 2412 if (TM.Options.NoNaNsFPMath) 2413 Condition = getFCmpCodeWithoutNaN(Condition); 2414 } 2415 2416 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2417 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2418 SL->SwitchCases.push_back(CB); 2419 return; 2420 } 2421 } 2422 2423 // Create a CaseBlock record representing this branch. 2424 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2425 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2426 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2427 SL->SwitchCases.push_back(CB); 2428 } 2429 2430 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2431 MachineBasicBlock *TBB, 2432 MachineBasicBlock *FBB, 2433 MachineBasicBlock *CurBB, 2434 MachineBasicBlock *SwitchBB, 2435 Instruction::BinaryOps Opc, 2436 BranchProbability TProb, 2437 BranchProbability FProb, 2438 bool InvertCond) { 2439 // Skip over not part of the tree and remember to invert op and operands at 2440 // next level. 2441 Value *NotCond; 2442 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2443 InBlock(NotCond, CurBB->getBasicBlock())) { 2444 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2445 !InvertCond); 2446 return; 2447 } 2448 2449 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2450 const Value *BOpOp0, *BOpOp1; 2451 // Compute the effective opcode for Cond, taking into account whether it needs 2452 // to be inverted, e.g. 2453 // and (not (or A, B)), C 2454 // gets lowered as 2455 // and (and (not A, not B), C) 2456 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2457 if (BOp) { 2458 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2459 ? Instruction::And 2460 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2461 ? Instruction::Or 2462 : (Instruction::BinaryOps)0); 2463 if (InvertCond) { 2464 if (BOpc == Instruction::And) 2465 BOpc = Instruction::Or; 2466 else if (BOpc == Instruction::Or) 2467 BOpc = Instruction::And; 2468 } 2469 } 2470 2471 // If this node is not part of the or/and tree, emit it as a branch. 2472 // Note that all nodes in the tree should have same opcode. 2473 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2474 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2475 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2476 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2477 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2478 TProb, FProb, InvertCond); 2479 return; 2480 } 2481 2482 // Create TmpBB after CurBB. 2483 MachineFunction::iterator BBI(CurBB); 2484 MachineFunction &MF = DAG.getMachineFunction(); 2485 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2486 CurBB->getParent()->insert(++BBI, TmpBB); 2487 2488 if (Opc == Instruction::Or) { 2489 // Codegen X | Y as: 2490 // BB1: 2491 // jmp_if_X TBB 2492 // jmp TmpBB 2493 // TmpBB: 2494 // jmp_if_Y TBB 2495 // jmp FBB 2496 // 2497 2498 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2499 // The requirement is that 2500 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2501 // = TrueProb for original BB. 2502 // Assuming the original probabilities are A and B, one choice is to set 2503 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2504 // A/(1+B) and 2B/(1+B). This choice assumes that 2505 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2506 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2507 // TmpBB, but the math is more complicated. 2508 2509 auto NewTrueProb = TProb / 2; 2510 auto NewFalseProb = TProb / 2 + FProb; 2511 // Emit the LHS condition. 2512 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2513 NewFalseProb, InvertCond); 2514 2515 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2516 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2517 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2518 // Emit the RHS condition into TmpBB. 2519 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2520 Probs[1], InvertCond); 2521 } else { 2522 assert(Opc == Instruction::And && "Unknown merge op!"); 2523 // Codegen X & Y as: 2524 // BB1: 2525 // jmp_if_X TmpBB 2526 // jmp FBB 2527 // TmpBB: 2528 // jmp_if_Y TBB 2529 // jmp FBB 2530 // 2531 // This requires creation of TmpBB after CurBB. 2532 2533 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2534 // The requirement is that 2535 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2536 // = FalseProb for original BB. 2537 // Assuming the original probabilities are A and B, one choice is to set 2538 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2539 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2540 // TrueProb for BB1 * FalseProb for TmpBB. 2541 2542 auto NewTrueProb = TProb + FProb / 2; 2543 auto NewFalseProb = FProb / 2; 2544 // Emit the LHS condition. 2545 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2546 NewFalseProb, InvertCond); 2547 2548 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2549 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2550 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2551 // Emit the RHS condition into TmpBB. 2552 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2553 Probs[1], InvertCond); 2554 } 2555 } 2556 2557 /// If the set of cases should be emitted as a series of branches, return true. 2558 /// If we should emit this as a bunch of and/or'd together conditions, return 2559 /// false. 2560 bool 2561 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2562 if (Cases.size() != 2) return true; 2563 2564 // If this is two comparisons of the same values or'd or and'd together, they 2565 // will get folded into a single comparison, so don't emit two blocks. 2566 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2567 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2568 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2569 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2570 return false; 2571 } 2572 2573 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2574 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2575 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2576 Cases[0].CC == Cases[1].CC && 2577 isa<Constant>(Cases[0].CmpRHS) && 2578 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2579 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2580 return false; 2581 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2582 return false; 2583 } 2584 2585 return true; 2586 } 2587 2588 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2589 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2590 2591 // Update machine-CFG edges. 2592 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2593 2594 if (I.isUnconditional()) { 2595 // Update machine-CFG edges. 2596 BrMBB->addSuccessor(Succ0MBB); 2597 2598 // If this is not a fall-through branch or optimizations are switched off, 2599 // emit the branch. 2600 if (Succ0MBB != NextBlock(BrMBB) || 2601 TM.getOptLevel() == CodeGenOptLevel::None) { 2602 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2603 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2604 setValue(&I, Br); 2605 DAG.setRoot(Br); 2606 } 2607 2608 return; 2609 } 2610 2611 // If this condition is one of the special cases we handle, do special stuff 2612 // now. 2613 const Value *CondVal = I.getCondition(); 2614 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2615 2616 // If this is a series of conditions that are or'd or and'd together, emit 2617 // this as a sequence of branches instead of setcc's with and/or operations. 2618 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2619 // unpredictable branches, and vector extracts because those jumps are likely 2620 // expensive for any target), this should improve performance. 2621 // For example, instead of something like: 2622 // cmp A, B 2623 // C = seteq 2624 // cmp D, E 2625 // F = setle 2626 // or C, F 2627 // jnz foo 2628 // Emit: 2629 // cmp A, B 2630 // je foo 2631 // cmp D, E 2632 // jle foo 2633 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2634 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2635 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2636 Value *Vec; 2637 const Value *BOp0, *BOp1; 2638 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2639 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2640 Opcode = Instruction::And; 2641 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2642 Opcode = Instruction::Or; 2643 2644 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2645 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2646 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2647 getEdgeProbability(BrMBB, Succ0MBB), 2648 getEdgeProbability(BrMBB, Succ1MBB), 2649 /*InvertCond=*/false); 2650 // If the compares in later blocks need to use values not currently 2651 // exported from this block, export them now. This block should always 2652 // be the first entry. 2653 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2654 2655 // Allow some cases to be rejected. 2656 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2657 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2658 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2659 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2660 } 2661 2662 // Emit the branch for this block. 2663 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2664 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2665 return; 2666 } 2667 2668 // Okay, we decided not to do this, remove any inserted MBB's and clear 2669 // SwitchCases. 2670 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2671 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2672 2673 SL->SwitchCases.clear(); 2674 } 2675 } 2676 2677 // Create a CaseBlock record representing this branch. 2678 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2679 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2680 2681 // Use visitSwitchCase to actually insert the fast branch sequence for this 2682 // cond branch. 2683 visitSwitchCase(CB, BrMBB); 2684 } 2685 2686 /// visitSwitchCase - Emits the necessary code to represent a single node in 2687 /// the binary search tree resulting from lowering a switch instruction. 2688 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2689 MachineBasicBlock *SwitchBB) { 2690 SDValue Cond; 2691 SDValue CondLHS = getValue(CB.CmpLHS); 2692 SDLoc dl = CB.DL; 2693 2694 if (CB.CC == ISD::SETTRUE) { 2695 // Branch or fall through to TrueBB. 2696 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2697 SwitchBB->normalizeSuccProbs(); 2698 if (CB.TrueBB != NextBlock(SwitchBB)) { 2699 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2700 DAG.getBasicBlock(CB.TrueBB))); 2701 } 2702 return; 2703 } 2704 2705 auto &TLI = DAG.getTargetLoweringInfo(); 2706 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2707 2708 // Build the setcc now. 2709 if (!CB.CmpMHS) { 2710 // Fold "(X == true)" to X and "(X == false)" to !X to 2711 // handle common cases produced by branch lowering. 2712 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2713 CB.CC == ISD::SETEQ) 2714 Cond = CondLHS; 2715 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2716 CB.CC == ISD::SETEQ) { 2717 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2718 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2719 } else { 2720 SDValue CondRHS = getValue(CB.CmpRHS); 2721 2722 // If a pointer's DAG type is larger than its memory type then the DAG 2723 // values are zero-extended. This breaks signed comparisons so truncate 2724 // back to the underlying type before doing the compare. 2725 if (CondLHS.getValueType() != MemVT) { 2726 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2727 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2728 } 2729 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2730 } 2731 } else { 2732 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2733 2734 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2735 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2736 2737 SDValue CmpOp = getValue(CB.CmpMHS); 2738 EVT VT = CmpOp.getValueType(); 2739 2740 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2741 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2742 ISD::SETLE); 2743 } else { 2744 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2745 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2746 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2747 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2748 } 2749 } 2750 2751 // Update successor info 2752 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2753 // TrueBB and FalseBB are always different unless the incoming IR is 2754 // degenerate. This only happens when running llc on weird IR. 2755 if (CB.TrueBB != CB.FalseBB) 2756 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2757 SwitchBB->normalizeSuccProbs(); 2758 2759 // If the lhs block is the next block, invert the condition so that we can 2760 // fall through to the lhs instead of the rhs block. 2761 if (CB.TrueBB == NextBlock(SwitchBB)) { 2762 std::swap(CB.TrueBB, CB.FalseBB); 2763 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2764 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2765 } 2766 2767 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2768 MVT::Other, getControlRoot(), Cond, 2769 DAG.getBasicBlock(CB.TrueBB)); 2770 2771 setValue(CurInst, BrCond); 2772 2773 // Insert the false branch. Do this even if it's a fall through branch, 2774 // this makes it easier to do DAG optimizations which require inverting 2775 // the branch condition. 2776 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2777 DAG.getBasicBlock(CB.FalseBB)); 2778 2779 DAG.setRoot(BrCond); 2780 } 2781 2782 /// visitJumpTable - Emit JumpTable node in the current MBB 2783 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2784 // Emit the code for the jump table 2785 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2786 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2787 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2788 SDValue Index = DAG.getCopyFromReg(getControlRoot(), *JT.SL, JT.Reg, PTy); 2789 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2790 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, *JT.SL, MVT::Other, 2791 Index.getValue(1), Table, Index); 2792 DAG.setRoot(BrJumpTable); 2793 } 2794 2795 /// visitJumpTableHeader - This function emits necessary code to produce index 2796 /// in the JumpTable from switch case. 2797 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2798 JumpTableHeader &JTH, 2799 MachineBasicBlock *SwitchBB) { 2800 assert(JT.SL && "Should set SDLoc for SelectionDAG!"); 2801 const SDLoc &dl = *JT.SL; 2802 2803 // Subtract the lowest switch case value from the value being switched on. 2804 SDValue SwitchOp = getValue(JTH.SValue); 2805 EVT VT = SwitchOp.getValueType(); 2806 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2807 DAG.getConstant(JTH.First, dl, VT)); 2808 2809 // The SDNode we just created, which holds the value being switched on minus 2810 // the smallest case value, needs to be copied to a virtual register so it 2811 // can be used as an index into the jump table in a subsequent basic block. 2812 // This value may be smaller or larger than the target's pointer type, and 2813 // therefore require extension or truncating. 2814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2815 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2816 2817 unsigned JumpTableReg = 2818 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2819 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2820 JumpTableReg, SwitchOp); 2821 JT.Reg = JumpTableReg; 2822 2823 if (!JTH.FallthroughUnreachable) { 2824 // Emit the range check for the jump table, and branch to the default block 2825 // for the switch statement if the value being switched on exceeds the 2826 // largest case in the switch. 2827 SDValue CMP = DAG.getSetCC( 2828 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2829 Sub.getValueType()), 2830 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2831 2832 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2833 MVT::Other, CopyTo, CMP, 2834 DAG.getBasicBlock(JT.Default)); 2835 2836 // Avoid emitting unnecessary branches to the next block. 2837 if (JT.MBB != NextBlock(SwitchBB)) 2838 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2839 DAG.getBasicBlock(JT.MBB)); 2840 2841 DAG.setRoot(BrCond); 2842 } else { 2843 // Avoid emitting unnecessary branches to the next block. 2844 if (JT.MBB != NextBlock(SwitchBB)) 2845 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2846 DAG.getBasicBlock(JT.MBB))); 2847 else 2848 DAG.setRoot(CopyTo); 2849 } 2850 } 2851 2852 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2853 /// variable if there exists one. 2854 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2855 SDValue &Chain) { 2856 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2857 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2858 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2859 MachineFunction &MF = DAG.getMachineFunction(); 2860 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2861 MachineSDNode *Node = 2862 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2863 if (Global) { 2864 MachinePointerInfo MPInfo(Global); 2865 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2866 MachineMemOperand::MODereferenceable; 2867 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2868 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2869 DAG.setNodeMemRefs(Node, {MemRef}); 2870 } 2871 if (PtrTy != PtrMemTy) 2872 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2873 return SDValue(Node, 0); 2874 } 2875 2876 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2877 /// tail spliced into a stack protector check success bb. 2878 /// 2879 /// For a high level explanation of how this fits into the stack protector 2880 /// generation see the comment on the declaration of class 2881 /// StackProtectorDescriptor. 2882 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2883 MachineBasicBlock *ParentBB) { 2884 2885 // First create the loads to the guard/stack slot for the comparison. 2886 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2887 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2888 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2889 2890 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2891 int FI = MFI.getStackProtectorIndex(); 2892 2893 SDValue Guard; 2894 SDLoc dl = getCurSDLoc(); 2895 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2896 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2897 Align Align = 2898 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2899 2900 // Generate code to load the content of the guard slot. 2901 SDValue GuardVal = DAG.getLoad( 2902 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2903 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2904 MachineMemOperand::MOVolatile); 2905 2906 if (TLI.useStackGuardXorFP()) 2907 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2908 2909 // Retrieve guard check function, nullptr if instrumentation is inlined. 2910 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2911 // The target provides a guard check function to validate the guard value. 2912 // Generate a call to that function with the content of the guard slot as 2913 // argument. 2914 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2915 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2916 2917 TargetLowering::ArgListTy Args; 2918 TargetLowering::ArgListEntry Entry; 2919 Entry.Node = GuardVal; 2920 Entry.Ty = FnTy->getParamType(0); 2921 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2922 Entry.IsInReg = true; 2923 Args.push_back(Entry); 2924 2925 TargetLowering::CallLoweringInfo CLI(DAG); 2926 CLI.setDebugLoc(getCurSDLoc()) 2927 .setChain(DAG.getEntryNode()) 2928 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2929 getValue(GuardCheckFn), std::move(Args)); 2930 2931 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2932 DAG.setRoot(Result.second); 2933 return; 2934 } 2935 2936 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2937 // Otherwise, emit a volatile load to retrieve the stack guard value. 2938 SDValue Chain = DAG.getEntryNode(); 2939 if (TLI.useLoadStackGuardNode()) { 2940 Guard = getLoadStackGuard(DAG, dl, Chain); 2941 } else { 2942 const Value *IRGuard = TLI.getSDagStackGuard(M); 2943 SDValue GuardPtr = getValue(IRGuard); 2944 2945 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2946 MachinePointerInfo(IRGuard, 0), Align, 2947 MachineMemOperand::MOVolatile); 2948 } 2949 2950 // Perform the comparison via a getsetcc. 2951 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2952 *DAG.getContext(), 2953 Guard.getValueType()), 2954 Guard, GuardVal, ISD::SETNE); 2955 2956 // If the guard/stackslot do not equal, branch to failure MBB. 2957 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2958 MVT::Other, GuardVal.getOperand(0), 2959 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2960 // Otherwise branch to success MBB. 2961 SDValue Br = DAG.getNode(ISD::BR, dl, 2962 MVT::Other, BrCond, 2963 DAG.getBasicBlock(SPD.getSuccessMBB())); 2964 2965 DAG.setRoot(Br); 2966 } 2967 2968 /// Codegen the failure basic block for a stack protector check. 2969 /// 2970 /// A failure stack protector machine basic block consists simply of a call to 2971 /// __stack_chk_fail(). 2972 /// 2973 /// For a high level explanation of how this fits into the stack protector 2974 /// generation see the comment on the declaration of class 2975 /// StackProtectorDescriptor. 2976 void 2977 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2979 TargetLowering::MakeLibCallOptions CallOptions; 2980 CallOptions.setDiscardResult(true); 2981 SDValue Chain = 2982 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2983 std::nullopt, CallOptions, getCurSDLoc()) 2984 .second; 2985 // On PS4/PS5, the "return address" must still be within the calling 2986 // function, even if it's at the very end, so emit an explicit TRAP here. 2987 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2988 if (TM.getTargetTriple().isPS()) 2989 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2990 // WebAssembly needs an unreachable instruction after a non-returning call, 2991 // because the function return type can be different from __stack_chk_fail's 2992 // return type (void). 2993 if (TM.getTargetTriple().isWasm()) 2994 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2995 2996 DAG.setRoot(Chain); 2997 } 2998 2999 /// visitBitTestHeader - This function emits necessary code to produce value 3000 /// suitable for "bit tests" 3001 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 3002 MachineBasicBlock *SwitchBB) { 3003 SDLoc dl = getCurSDLoc(); 3004 3005 // Subtract the minimum value. 3006 SDValue SwitchOp = getValue(B.SValue); 3007 EVT VT = SwitchOp.getValueType(); 3008 SDValue RangeSub = 3009 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 3010 3011 // Determine the type of the test operands. 3012 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3013 bool UsePtrType = false; 3014 if (!TLI.isTypeLegal(VT)) { 3015 UsePtrType = true; 3016 } else { 3017 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 3018 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 3019 // Switch table case range are encoded into series of masks. 3020 // Just use pointer type, it's guaranteed to fit. 3021 UsePtrType = true; 3022 break; 3023 } 3024 } 3025 SDValue Sub = RangeSub; 3026 if (UsePtrType) { 3027 VT = TLI.getPointerTy(DAG.getDataLayout()); 3028 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 3029 } 3030 3031 B.RegVT = VT.getSimpleVT(); 3032 B.Reg = FuncInfo.CreateReg(B.RegVT); 3033 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 3034 3035 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 3036 3037 if (!B.FallthroughUnreachable) 3038 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 3039 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 3040 SwitchBB->normalizeSuccProbs(); 3041 3042 SDValue Root = CopyTo; 3043 if (!B.FallthroughUnreachable) { 3044 // Conditional branch to the default block. 3045 SDValue RangeCmp = DAG.getSetCC(dl, 3046 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 3047 RangeSub.getValueType()), 3048 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 3049 ISD::SETUGT); 3050 3051 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 3052 DAG.getBasicBlock(B.Default)); 3053 } 3054 3055 // Avoid emitting unnecessary branches to the next block. 3056 if (MBB != NextBlock(SwitchBB)) 3057 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 3058 3059 DAG.setRoot(Root); 3060 } 3061 3062 /// visitBitTestCase - this function produces one "bit test" 3063 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 3064 MachineBasicBlock* NextMBB, 3065 BranchProbability BranchProbToNext, 3066 unsigned Reg, 3067 BitTestCase &B, 3068 MachineBasicBlock *SwitchBB) { 3069 SDLoc dl = getCurSDLoc(); 3070 MVT VT = BB.RegVT; 3071 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 3072 SDValue Cmp; 3073 unsigned PopCount = llvm::popcount(B.Mask); 3074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3075 if (PopCount == 1) { 3076 // Testing for a single bit; just compare the shift count with what it 3077 // would need to be to shift a 1 bit in that position. 3078 Cmp = DAG.getSetCC( 3079 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3080 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 3081 ISD::SETEQ); 3082 } else if (PopCount == BB.Range) { 3083 // There is only one zero bit in the range, test for it directly. 3084 Cmp = DAG.getSetCC( 3085 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3086 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 3087 } else { 3088 // Make desired shift 3089 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 3090 DAG.getConstant(1, dl, VT), ShiftOp); 3091 3092 // Emit bit tests and jumps 3093 SDValue AndOp = DAG.getNode(ISD::AND, dl, 3094 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 3095 Cmp = DAG.getSetCC( 3096 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 3097 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 3098 } 3099 3100 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 3101 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 3102 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 3103 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 3104 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 3105 // one as they are relative probabilities (and thus work more like weights), 3106 // and hence we need to normalize them to let the sum of them become one. 3107 SwitchBB->normalizeSuccProbs(); 3108 3109 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 3110 MVT::Other, getControlRoot(), 3111 Cmp, DAG.getBasicBlock(B.TargetBB)); 3112 3113 // Avoid emitting unnecessary branches to the next block. 3114 if (NextMBB != NextBlock(SwitchBB)) 3115 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3116 DAG.getBasicBlock(NextMBB)); 3117 3118 DAG.setRoot(BrAnd); 3119 } 3120 3121 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3122 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3123 3124 // Retrieve successors. Look through artificial IR level blocks like 3125 // catchswitch for successors. 3126 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3127 const BasicBlock *EHPadBB = I.getSuccessor(1); 3128 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3129 3130 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3131 // have to do anything here to lower funclet bundles. 3132 assert(!I.hasOperandBundlesOtherThan( 3133 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3134 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3135 LLVMContext::OB_cfguardtarget, 3136 LLVMContext::OB_clang_arc_attachedcall}) && 3137 "Cannot lower invokes with arbitrary operand bundles yet!"); 3138 3139 const Value *Callee(I.getCalledOperand()); 3140 const Function *Fn = dyn_cast<Function>(Callee); 3141 if (isa<InlineAsm>(Callee)) 3142 visitInlineAsm(I, EHPadBB); 3143 else if (Fn && Fn->isIntrinsic()) { 3144 switch (Fn->getIntrinsicID()) { 3145 default: 3146 llvm_unreachable("Cannot invoke this intrinsic"); 3147 case Intrinsic::donothing: 3148 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3149 case Intrinsic::seh_try_begin: 3150 case Intrinsic::seh_scope_begin: 3151 case Intrinsic::seh_try_end: 3152 case Intrinsic::seh_scope_end: 3153 if (EHPadMBB) 3154 // a block referenced by EH table 3155 // so dtor-funclet not removed by opts 3156 EHPadMBB->setMachineBlockAddressTaken(); 3157 break; 3158 case Intrinsic::experimental_patchpoint_void: 3159 case Intrinsic::experimental_patchpoint_i64: 3160 visitPatchpoint(I, EHPadBB); 3161 break; 3162 case Intrinsic::experimental_gc_statepoint: 3163 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3164 break; 3165 case Intrinsic::wasm_rethrow: { 3166 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3167 // special because it can be invoked, so we manually lower it to a DAG 3168 // node here. 3169 SmallVector<SDValue, 8> Ops; 3170 Ops.push_back(getRoot()); // inchain 3171 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3172 Ops.push_back( 3173 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3174 TLI.getPointerTy(DAG.getDataLayout()))); 3175 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3176 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3177 break; 3178 } 3179 } 3180 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3181 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3182 // Eventually we will support lowering the @llvm.experimental.deoptimize 3183 // intrinsic, and right now there are no plans to support other intrinsics 3184 // with deopt state. 3185 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3186 } else { 3187 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3188 } 3189 3190 // If the value of the invoke is used outside of its defining block, make it 3191 // available as a virtual register. 3192 // We already took care of the exported value for the statepoint instruction 3193 // during call to the LowerStatepoint. 3194 if (!isa<GCStatepointInst>(I)) { 3195 CopyToExportRegsIfNeeded(&I); 3196 } 3197 3198 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3199 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3200 BranchProbability EHPadBBProb = 3201 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3202 : BranchProbability::getZero(); 3203 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3204 3205 // Update successor info. 3206 addSuccessorWithProb(InvokeMBB, Return); 3207 for (auto &UnwindDest : UnwindDests) { 3208 UnwindDest.first->setIsEHPad(); 3209 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3210 } 3211 InvokeMBB->normalizeSuccProbs(); 3212 3213 // Drop into normal successor. 3214 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3215 DAG.getBasicBlock(Return))); 3216 } 3217 3218 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3219 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3220 3221 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3222 // have to do anything here to lower funclet bundles. 3223 assert(!I.hasOperandBundlesOtherThan( 3224 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3225 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3226 3227 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3228 visitInlineAsm(I); 3229 CopyToExportRegsIfNeeded(&I); 3230 3231 // Retrieve successors. 3232 SmallPtrSet<BasicBlock *, 8> Dests; 3233 Dests.insert(I.getDefaultDest()); 3234 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3235 3236 // Update successor info. 3237 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3238 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3239 BasicBlock *Dest = I.getIndirectDest(i); 3240 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3241 Target->setIsInlineAsmBrIndirectTarget(); 3242 Target->setMachineBlockAddressTaken(); 3243 Target->setLabelMustBeEmitted(); 3244 // Don't add duplicate machine successors. 3245 if (Dests.insert(Dest).second) 3246 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3247 } 3248 CallBrMBB->normalizeSuccProbs(); 3249 3250 // Drop into default successor. 3251 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3252 MVT::Other, getControlRoot(), 3253 DAG.getBasicBlock(Return))); 3254 } 3255 3256 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3257 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3258 } 3259 3260 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3261 assert(FuncInfo.MBB->isEHPad() && 3262 "Call to landingpad not in landing pad!"); 3263 3264 // If there aren't registers to copy the values into (e.g., during SjLj 3265 // exceptions), then don't bother to create these DAG nodes. 3266 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3267 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3268 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3269 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3270 return; 3271 3272 // If landingpad's return type is token type, we don't create DAG nodes 3273 // for its exception pointer and selector value. The extraction of exception 3274 // pointer or selector value from token type landingpads is not currently 3275 // supported. 3276 if (LP.getType()->isTokenTy()) 3277 return; 3278 3279 SmallVector<EVT, 2> ValueVTs; 3280 SDLoc dl = getCurSDLoc(); 3281 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3282 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3283 3284 // Get the two live-in registers as SDValues. The physregs have already been 3285 // copied into virtual registers. 3286 SDValue Ops[2]; 3287 if (FuncInfo.ExceptionPointerVirtReg) { 3288 Ops[0] = DAG.getZExtOrTrunc( 3289 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3290 FuncInfo.ExceptionPointerVirtReg, 3291 TLI.getPointerTy(DAG.getDataLayout())), 3292 dl, ValueVTs[0]); 3293 } else { 3294 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3295 } 3296 Ops[1] = DAG.getZExtOrTrunc( 3297 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3298 FuncInfo.ExceptionSelectorVirtReg, 3299 TLI.getPointerTy(DAG.getDataLayout())), 3300 dl, ValueVTs[1]); 3301 3302 // Merge into one. 3303 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3304 DAG.getVTList(ValueVTs), Ops); 3305 setValue(&LP, Res); 3306 } 3307 3308 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3309 MachineBasicBlock *Last) { 3310 // Update JTCases. 3311 for (JumpTableBlock &JTB : SL->JTCases) 3312 if (JTB.first.HeaderBB == First) 3313 JTB.first.HeaderBB = Last; 3314 3315 // Update BitTestCases. 3316 for (BitTestBlock &BTB : SL->BitTestCases) 3317 if (BTB.Parent == First) 3318 BTB.Parent = Last; 3319 } 3320 3321 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3322 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3323 3324 // Update machine-CFG edges with unique successors. 3325 SmallSet<BasicBlock*, 32> Done; 3326 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3327 BasicBlock *BB = I.getSuccessor(i); 3328 bool Inserted = Done.insert(BB).second; 3329 if (!Inserted) 3330 continue; 3331 3332 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3333 addSuccessorWithProb(IndirectBrMBB, Succ); 3334 } 3335 IndirectBrMBB->normalizeSuccProbs(); 3336 3337 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3338 MVT::Other, getControlRoot(), 3339 getValue(I.getAddress()))); 3340 } 3341 3342 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3343 if (!DAG.getTarget().Options.TrapUnreachable) 3344 return; 3345 3346 // We may be able to ignore unreachable behind a noreturn call. 3347 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3348 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3349 if (Call->doesNotReturn()) 3350 return; 3351 } 3352 } 3353 3354 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3355 } 3356 3357 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3358 SDNodeFlags Flags; 3359 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3360 Flags.copyFMF(*FPOp); 3361 3362 SDValue Op = getValue(I.getOperand(0)); 3363 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3364 Op, Flags); 3365 setValue(&I, UnNodeValue); 3366 } 3367 3368 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3369 SDNodeFlags Flags; 3370 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3371 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3372 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3373 } 3374 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3375 Flags.setExact(ExactOp->isExact()); 3376 if (auto *DisjointOp = dyn_cast<PossiblyDisjointInst>(&I)) 3377 Flags.setDisjoint(DisjointOp->isDisjoint()); 3378 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3379 Flags.copyFMF(*FPOp); 3380 3381 SDValue Op1 = getValue(I.getOperand(0)); 3382 SDValue Op2 = getValue(I.getOperand(1)); 3383 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3384 Op1, Op2, Flags); 3385 setValue(&I, BinNodeValue); 3386 } 3387 3388 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3389 SDValue Op1 = getValue(I.getOperand(0)); 3390 SDValue Op2 = getValue(I.getOperand(1)); 3391 3392 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3393 Op1.getValueType(), DAG.getDataLayout()); 3394 3395 // Coerce the shift amount to the right type if we can. This exposes the 3396 // truncate or zext to optimization early. 3397 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3398 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3399 "Unexpected shift type"); 3400 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3401 } 3402 3403 bool nuw = false; 3404 bool nsw = false; 3405 bool exact = false; 3406 3407 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3408 3409 if (const OverflowingBinaryOperator *OFBinOp = 3410 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3411 nuw = OFBinOp->hasNoUnsignedWrap(); 3412 nsw = OFBinOp->hasNoSignedWrap(); 3413 } 3414 if (const PossiblyExactOperator *ExactOp = 3415 dyn_cast<const PossiblyExactOperator>(&I)) 3416 exact = ExactOp->isExact(); 3417 } 3418 SDNodeFlags Flags; 3419 Flags.setExact(exact); 3420 Flags.setNoSignedWrap(nsw); 3421 Flags.setNoUnsignedWrap(nuw); 3422 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3423 Flags); 3424 setValue(&I, Res); 3425 } 3426 3427 void SelectionDAGBuilder::visitSDiv(const User &I) { 3428 SDValue Op1 = getValue(I.getOperand(0)); 3429 SDValue Op2 = getValue(I.getOperand(1)); 3430 3431 SDNodeFlags Flags; 3432 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3433 cast<PossiblyExactOperator>(&I)->isExact()); 3434 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3435 Op2, Flags)); 3436 } 3437 3438 void SelectionDAGBuilder::visitICmp(const User &I) { 3439 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3440 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3441 predicate = IC->getPredicate(); 3442 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3443 predicate = ICmpInst::Predicate(IC->getPredicate()); 3444 SDValue Op1 = getValue(I.getOperand(0)); 3445 SDValue Op2 = getValue(I.getOperand(1)); 3446 ISD::CondCode Opcode = getICmpCondCode(predicate); 3447 3448 auto &TLI = DAG.getTargetLoweringInfo(); 3449 EVT MemVT = 3450 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3451 3452 // If a pointer's DAG type is larger than its memory type then the DAG values 3453 // are zero-extended. This breaks signed comparisons so truncate back to the 3454 // underlying type before doing the compare. 3455 if (Op1.getValueType() != MemVT) { 3456 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3457 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3458 } 3459 3460 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3461 I.getType()); 3462 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3463 } 3464 3465 void SelectionDAGBuilder::visitFCmp(const User &I) { 3466 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3467 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3468 predicate = FC->getPredicate(); 3469 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3470 predicate = FCmpInst::Predicate(FC->getPredicate()); 3471 SDValue Op1 = getValue(I.getOperand(0)); 3472 SDValue Op2 = getValue(I.getOperand(1)); 3473 3474 ISD::CondCode Condition = getFCmpCondCode(predicate); 3475 auto *FPMO = cast<FPMathOperator>(&I); 3476 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3477 Condition = getFCmpCodeWithoutNaN(Condition); 3478 3479 SDNodeFlags Flags; 3480 Flags.copyFMF(*FPMO); 3481 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3482 3483 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3484 I.getType()); 3485 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3486 } 3487 3488 // Check if the condition of the select has one use or two users that are both 3489 // selects with the same condition. 3490 static bool hasOnlySelectUsers(const Value *Cond) { 3491 return llvm::all_of(Cond->users(), [](const Value *V) { 3492 return isa<SelectInst>(V); 3493 }); 3494 } 3495 3496 void SelectionDAGBuilder::visitSelect(const User &I) { 3497 SmallVector<EVT, 4> ValueVTs; 3498 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3499 ValueVTs); 3500 unsigned NumValues = ValueVTs.size(); 3501 if (NumValues == 0) return; 3502 3503 SmallVector<SDValue, 4> Values(NumValues); 3504 SDValue Cond = getValue(I.getOperand(0)); 3505 SDValue LHSVal = getValue(I.getOperand(1)); 3506 SDValue RHSVal = getValue(I.getOperand(2)); 3507 SmallVector<SDValue, 1> BaseOps(1, Cond); 3508 ISD::NodeType OpCode = 3509 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3510 3511 bool IsUnaryAbs = false; 3512 bool Negate = false; 3513 3514 SDNodeFlags Flags; 3515 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3516 Flags.copyFMF(*FPOp); 3517 3518 Flags.setUnpredictable( 3519 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3520 3521 // Min/max matching is only viable if all output VTs are the same. 3522 if (all_equal(ValueVTs)) { 3523 EVT VT = ValueVTs[0]; 3524 LLVMContext &Ctx = *DAG.getContext(); 3525 auto &TLI = DAG.getTargetLoweringInfo(); 3526 3527 // We care about the legality of the operation after it has been type 3528 // legalized. 3529 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3530 VT = TLI.getTypeToTransformTo(Ctx, VT); 3531 3532 // If the vselect is legal, assume we want to leave this as a vector setcc + 3533 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3534 // min/max is legal on the scalar type. 3535 bool UseScalarMinMax = VT.isVector() && 3536 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3537 3538 // ValueTracking's select pattern matching does not account for -0.0, 3539 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3540 // -0.0 is less than +0.0. 3541 Value *LHS, *RHS; 3542 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3543 ISD::NodeType Opc = ISD::DELETED_NODE; 3544 switch (SPR.Flavor) { 3545 case SPF_UMAX: Opc = ISD::UMAX; break; 3546 case SPF_UMIN: Opc = ISD::UMIN; break; 3547 case SPF_SMAX: Opc = ISD::SMAX; break; 3548 case SPF_SMIN: Opc = ISD::SMIN; break; 3549 case SPF_FMINNUM: 3550 switch (SPR.NaNBehavior) { 3551 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3552 case SPNB_RETURNS_NAN: break; 3553 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3554 case SPNB_RETURNS_ANY: 3555 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3556 (UseScalarMinMax && 3557 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3558 Opc = ISD::FMINNUM; 3559 break; 3560 } 3561 break; 3562 case SPF_FMAXNUM: 3563 switch (SPR.NaNBehavior) { 3564 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3565 case SPNB_RETURNS_NAN: break; 3566 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3567 case SPNB_RETURNS_ANY: 3568 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3569 (UseScalarMinMax && 3570 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3571 Opc = ISD::FMAXNUM; 3572 break; 3573 } 3574 break; 3575 case SPF_NABS: 3576 Negate = true; 3577 [[fallthrough]]; 3578 case SPF_ABS: 3579 IsUnaryAbs = true; 3580 Opc = ISD::ABS; 3581 break; 3582 default: break; 3583 } 3584 3585 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3586 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3587 (UseScalarMinMax && 3588 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3589 // If the underlying comparison instruction is used by any other 3590 // instruction, the consumed instructions won't be destroyed, so it is 3591 // not profitable to convert to a min/max. 3592 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3593 OpCode = Opc; 3594 LHSVal = getValue(LHS); 3595 RHSVal = getValue(RHS); 3596 BaseOps.clear(); 3597 } 3598 3599 if (IsUnaryAbs) { 3600 OpCode = Opc; 3601 LHSVal = getValue(LHS); 3602 BaseOps.clear(); 3603 } 3604 } 3605 3606 if (IsUnaryAbs) { 3607 for (unsigned i = 0; i != NumValues; ++i) { 3608 SDLoc dl = getCurSDLoc(); 3609 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3610 Values[i] = 3611 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3612 if (Negate) 3613 Values[i] = DAG.getNegative(Values[i], dl, VT); 3614 } 3615 } else { 3616 for (unsigned i = 0; i != NumValues; ++i) { 3617 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3618 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3619 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3620 Values[i] = DAG.getNode( 3621 OpCode, getCurSDLoc(), 3622 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3623 } 3624 } 3625 3626 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3627 DAG.getVTList(ValueVTs), Values)); 3628 } 3629 3630 void SelectionDAGBuilder::visitTrunc(const User &I) { 3631 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3632 SDValue N = getValue(I.getOperand(0)); 3633 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3634 I.getType()); 3635 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3636 } 3637 3638 void SelectionDAGBuilder::visitZExt(const User &I) { 3639 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3640 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3641 SDValue N = getValue(I.getOperand(0)); 3642 auto &TLI = DAG.getTargetLoweringInfo(); 3643 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3644 3645 SDNodeFlags Flags; 3646 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I)) 3647 Flags.setNonNeg(PNI->hasNonNeg()); 3648 3649 // Eagerly use nonneg information to canonicalize towards sign_extend if 3650 // that is the target's preference. 3651 // TODO: Let the target do this later. 3652 if (Flags.hasNonNeg() && 3653 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3654 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3655 return; 3656 } 3657 3658 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N, Flags)); 3659 } 3660 3661 void SelectionDAGBuilder::visitSExt(const User &I) { 3662 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3663 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3664 SDValue N = getValue(I.getOperand(0)); 3665 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3666 I.getType()); 3667 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3668 } 3669 3670 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3671 // FPTrunc is never a no-op cast, no need to check 3672 SDValue N = getValue(I.getOperand(0)); 3673 SDLoc dl = getCurSDLoc(); 3674 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3675 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3676 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3677 DAG.getTargetConstant( 3678 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3679 } 3680 3681 void SelectionDAGBuilder::visitFPExt(const User &I) { 3682 // FPExt is never a no-op cast, no need to check 3683 SDValue N = getValue(I.getOperand(0)); 3684 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3685 I.getType()); 3686 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3687 } 3688 3689 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3690 // FPToUI is never a no-op cast, no need to check 3691 SDValue N = getValue(I.getOperand(0)); 3692 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3693 I.getType()); 3694 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3695 } 3696 3697 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3698 // FPToSI is never a no-op cast, no need to check 3699 SDValue N = getValue(I.getOperand(0)); 3700 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3701 I.getType()); 3702 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3703 } 3704 3705 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3706 // UIToFP is never a no-op cast, no need to check 3707 SDValue N = getValue(I.getOperand(0)); 3708 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3709 I.getType()); 3710 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3711 } 3712 3713 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3714 // SIToFP is never a no-op cast, no need to check 3715 SDValue N = getValue(I.getOperand(0)); 3716 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3717 I.getType()); 3718 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3719 } 3720 3721 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3722 // What to do depends on the size of the integer and the size of the pointer. 3723 // We can either truncate, zero extend, or no-op, accordingly. 3724 SDValue N = getValue(I.getOperand(0)); 3725 auto &TLI = DAG.getTargetLoweringInfo(); 3726 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3727 I.getType()); 3728 EVT PtrMemVT = 3729 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3730 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3731 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3732 setValue(&I, N); 3733 } 3734 3735 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3736 // What to do depends on the size of the integer and the size of the pointer. 3737 // We can either truncate, zero extend, or no-op, accordingly. 3738 SDValue N = getValue(I.getOperand(0)); 3739 auto &TLI = DAG.getTargetLoweringInfo(); 3740 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3741 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3742 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3743 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3744 setValue(&I, N); 3745 } 3746 3747 void SelectionDAGBuilder::visitBitCast(const User &I) { 3748 SDValue N = getValue(I.getOperand(0)); 3749 SDLoc dl = getCurSDLoc(); 3750 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3751 I.getType()); 3752 3753 // BitCast assures us that source and destination are the same size so this is 3754 // either a BITCAST or a no-op. 3755 if (DestVT != N.getValueType()) 3756 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3757 DestVT, N)); // convert types. 3758 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3759 // might fold any kind of constant expression to an integer constant and that 3760 // is not what we are looking for. Only recognize a bitcast of a genuine 3761 // constant integer as an opaque constant. 3762 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3763 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3764 /*isOpaque*/true)); 3765 else 3766 setValue(&I, N); // noop cast. 3767 } 3768 3769 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3770 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3771 const Value *SV = I.getOperand(0); 3772 SDValue N = getValue(SV); 3773 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3774 3775 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3776 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3777 3778 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3779 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3780 3781 setValue(&I, N); 3782 } 3783 3784 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3785 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3786 SDValue InVec = getValue(I.getOperand(0)); 3787 SDValue InVal = getValue(I.getOperand(1)); 3788 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3789 TLI.getVectorIdxTy(DAG.getDataLayout())); 3790 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3791 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3792 InVec, InVal, InIdx)); 3793 } 3794 3795 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3796 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3797 SDValue InVec = getValue(I.getOperand(0)); 3798 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3799 TLI.getVectorIdxTy(DAG.getDataLayout())); 3800 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3801 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3802 InVec, InIdx)); 3803 } 3804 3805 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3806 SDValue Src1 = getValue(I.getOperand(0)); 3807 SDValue Src2 = getValue(I.getOperand(1)); 3808 ArrayRef<int> Mask; 3809 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3810 Mask = SVI->getShuffleMask(); 3811 else 3812 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3813 SDLoc DL = getCurSDLoc(); 3814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3815 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3816 EVT SrcVT = Src1.getValueType(); 3817 3818 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3819 VT.isScalableVector()) { 3820 // Canonical splat form of first element of first input vector. 3821 SDValue FirstElt = 3822 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3823 DAG.getVectorIdxConstant(0, DL)); 3824 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3825 return; 3826 } 3827 3828 // For now, we only handle splats for scalable vectors. 3829 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3830 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3831 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3832 3833 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3834 unsigned MaskNumElts = Mask.size(); 3835 3836 if (SrcNumElts == MaskNumElts) { 3837 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3838 return; 3839 } 3840 3841 // Normalize the shuffle vector since mask and vector length don't match. 3842 if (SrcNumElts < MaskNumElts) { 3843 // Mask is longer than the source vectors. We can use concatenate vector to 3844 // make the mask and vectors lengths match. 3845 3846 if (MaskNumElts % SrcNumElts == 0) { 3847 // Mask length is a multiple of the source vector length. 3848 // Check if the shuffle is some kind of concatenation of the input 3849 // vectors. 3850 unsigned NumConcat = MaskNumElts / SrcNumElts; 3851 bool IsConcat = true; 3852 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3853 for (unsigned i = 0; i != MaskNumElts; ++i) { 3854 int Idx = Mask[i]; 3855 if (Idx < 0) 3856 continue; 3857 // Ensure the indices in each SrcVT sized piece are sequential and that 3858 // the same source is used for the whole piece. 3859 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3860 (ConcatSrcs[i / SrcNumElts] >= 0 && 3861 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3862 IsConcat = false; 3863 break; 3864 } 3865 // Remember which source this index came from. 3866 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3867 } 3868 3869 // The shuffle is concatenating multiple vectors together. Just emit 3870 // a CONCAT_VECTORS operation. 3871 if (IsConcat) { 3872 SmallVector<SDValue, 8> ConcatOps; 3873 for (auto Src : ConcatSrcs) { 3874 if (Src < 0) 3875 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3876 else if (Src == 0) 3877 ConcatOps.push_back(Src1); 3878 else 3879 ConcatOps.push_back(Src2); 3880 } 3881 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3882 return; 3883 } 3884 } 3885 3886 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3887 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3888 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3889 PaddedMaskNumElts); 3890 3891 // Pad both vectors with undefs to make them the same length as the mask. 3892 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3893 3894 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3895 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3896 MOps1[0] = Src1; 3897 MOps2[0] = Src2; 3898 3899 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3900 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3901 3902 // Readjust mask for new input vector length. 3903 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3904 for (unsigned i = 0; i != MaskNumElts; ++i) { 3905 int Idx = Mask[i]; 3906 if (Idx >= (int)SrcNumElts) 3907 Idx -= SrcNumElts - PaddedMaskNumElts; 3908 MappedOps[i] = Idx; 3909 } 3910 3911 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3912 3913 // If the concatenated vector was padded, extract a subvector with the 3914 // correct number of elements. 3915 if (MaskNumElts != PaddedMaskNumElts) 3916 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3917 DAG.getVectorIdxConstant(0, DL)); 3918 3919 setValue(&I, Result); 3920 return; 3921 } 3922 3923 if (SrcNumElts > MaskNumElts) { 3924 // Analyze the access pattern of the vector to see if we can extract 3925 // two subvectors and do the shuffle. 3926 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3927 bool CanExtract = true; 3928 for (int Idx : Mask) { 3929 unsigned Input = 0; 3930 if (Idx < 0) 3931 continue; 3932 3933 if (Idx >= (int)SrcNumElts) { 3934 Input = 1; 3935 Idx -= SrcNumElts; 3936 } 3937 3938 // If all the indices come from the same MaskNumElts sized portion of 3939 // the sources we can use extract. Also make sure the extract wouldn't 3940 // extract past the end of the source. 3941 int NewStartIdx = alignDown(Idx, MaskNumElts); 3942 if (NewStartIdx + MaskNumElts > SrcNumElts || 3943 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3944 CanExtract = false; 3945 // Make sure we always update StartIdx as we use it to track if all 3946 // elements are undef. 3947 StartIdx[Input] = NewStartIdx; 3948 } 3949 3950 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3951 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3952 return; 3953 } 3954 if (CanExtract) { 3955 // Extract appropriate subvector and generate a vector shuffle 3956 for (unsigned Input = 0; Input < 2; ++Input) { 3957 SDValue &Src = Input == 0 ? Src1 : Src2; 3958 if (StartIdx[Input] < 0) 3959 Src = DAG.getUNDEF(VT); 3960 else { 3961 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3962 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3963 } 3964 } 3965 3966 // Calculate new mask. 3967 SmallVector<int, 8> MappedOps(Mask); 3968 for (int &Idx : MappedOps) { 3969 if (Idx >= (int)SrcNumElts) 3970 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3971 else if (Idx >= 0) 3972 Idx -= StartIdx[0]; 3973 } 3974 3975 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3976 return; 3977 } 3978 } 3979 3980 // We can't use either concat vectors or extract subvectors so fall back to 3981 // replacing the shuffle with extract and build vector. 3982 // to insert and build vector. 3983 EVT EltVT = VT.getVectorElementType(); 3984 SmallVector<SDValue,8> Ops; 3985 for (int Idx : Mask) { 3986 SDValue Res; 3987 3988 if (Idx < 0) { 3989 Res = DAG.getUNDEF(EltVT); 3990 } else { 3991 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3992 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3993 3994 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3995 DAG.getVectorIdxConstant(Idx, DL)); 3996 } 3997 3998 Ops.push_back(Res); 3999 } 4000 4001 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 4002 } 4003 4004 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 4005 ArrayRef<unsigned> Indices = I.getIndices(); 4006 const Value *Op0 = I.getOperand(0); 4007 const Value *Op1 = I.getOperand(1); 4008 Type *AggTy = I.getType(); 4009 Type *ValTy = Op1->getType(); 4010 bool IntoUndef = isa<UndefValue>(Op0); 4011 bool FromUndef = isa<UndefValue>(Op1); 4012 4013 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4014 4015 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4016 SmallVector<EVT, 4> AggValueVTs; 4017 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 4018 SmallVector<EVT, 4> ValValueVTs; 4019 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4020 4021 unsigned NumAggValues = AggValueVTs.size(); 4022 unsigned NumValValues = ValValueVTs.size(); 4023 SmallVector<SDValue, 4> Values(NumAggValues); 4024 4025 // Ignore an insertvalue that produces an empty object 4026 if (!NumAggValues) { 4027 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4028 return; 4029 } 4030 4031 SDValue Agg = getValue(Op0); 4032 unsigned i = 0; 4033 // Copy the beginning value(s) from the original aggregate. 4034 for (; i != LinearIndex; ++i) 4035 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4036 SDValue(Agg.getNode(), Agg.getResNo() + i); 4037 // Copy values from the inserted value(s). 4038 if (NumValValues) { 4039 SDValue Val = getValue(Op1); 4040 for (; i != LinearIndex + NumValValues; ++i) 4041 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4042 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 4043 } 4044 // Copy remaining value(s) from the original aggregate. 4045 for (; i != NumAggValues; ++i) 4046 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 4047 SDValue(Agg.getNode(), Agg.getResNo() + i); 4048 4049 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4050 DAG.getVTList(AggValueVTs), Values)); 4051 } 4052 4053 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 4054 ArrayRef<unsigned> Indices = I.getIndices(); 4055 const Value *Op0 = I.getOperand(0); 4056 Type *AggTy = Op0->getType(); 4057 Type *ValTy = I.getType(); 4058 bool OutOfUndef = isa<UndefValue>(Op0); 4059 4060 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 4061 4062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4063 SmallVector<EVT, 4> ValValueVTs; 4064 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 4065 4066 unsigned NumValValues = ValValueVTs.size(); 4067 4068 // Ignore a extractvalue that produces an empty object 4069 if (!NumValValues) { 4070 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 4071 return; 4072 } 4073 4074 SmallVector<SDValue, 4> Values(NumValValues); 4075 4076 SDValue Agg = getValue(Op0); 4077 // Copy out the selected value(s). 4078 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 4079 Values[i - LinearIndex] = 4080 OutOfUndef ? 4081 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 4082 SDValue(Agg.getNode(), Agg.getResNo() + i); 4083 4084 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 4085 DAG.getVTList(ValValueVTs), Values)); 4086 } 4087 4088 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 4089 Value *Op0 = I.getOperand(0); 4090 // Note that the pointer operand may be a vector of pointers. Take the scalar 4091 // element which holds a pointer. 4092 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 4093 SDValue N = getValue(Op0); 4094 SDLoc dl = getCurSDLoc(); 4095 auto &TLI = DAG.getTargetLoweringInfo(); 4096 4097 // Normalize Vector GEP - all scalar operands should be converted to the 4098 // splat vector. 4099 bool IsVectorGEP = I.getType()->isVectorTy(); 4100 ElementCount VectorElementCount = 4101 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 4102 : ElementCount::getFixed(0); 4103 4104 if (IsVectorGEP && !N.getValueType().isVector()) { 4105 LLVMContext &Context = *DAG.getContext(); 4106 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 4107 N = DAG.getSplat(VT, dl, N); 4108 } 4109 4110 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 4111 GTI != E; ++GTI) { 4112 const Value *Idx = GTI.getOperand(); 4113 if (StructType *StTy = GTI.getStructTypeOrNull()) { 4114 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 4115 if (Field) { 4116 // N = N + Offset 4117 uint64_t Offset = 4118 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4119 4120 // In an inbounds GEP with an offset that is nonnegative even when 4121 // interpreted as signed, assume there is no unsigned overflow. 4122 SDNodeFlags Flags; 4123 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4124 Flags.setNoUnsignedWrap(true); 4125 4126 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4127 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4128 } 4129 } else { 4130 // IdxSize is the width of the arithmetic according to IR semantics. 4131 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4132 // (and fix up the result later). 4133 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4134 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4135 TypeSize ElementSize = 4136 GTI.getSequentialElementStride(DAG.getDataLayout()); 4137 // We intentionally mask away the high bits here; ElementSize may not 4138 // fit in IdxTy. 4139 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4140 bool ElementScalable = ElementSize.isScalable(); 4141 4142 // If this is a scalar constant or a splat vector of constants, 4143 // handle it quickly. 4144 const auto *C = dyn_cast<Constant>(Idx); 4145 if (C && isa<VectorType>(C->getType())) 4146 C = C->getSplatValue(); 4147 4148 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4149 if (CI && CI->isZero()) 4150 continue; 4151 if (CI && !ElementScalable) { 4152 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4153 LLVMContext &Context = *DAG.getContext(); 4154 SDValue OffsVal; 4155 if (IsVectorGEP) 4156 OffsVal = DAG.getConstant( 4157 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4158 else 4159 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4160 4161 // In an inbounds GEP with an offset that is nonnegative even when 4162 // interpreted as signed, assume there is no unsigned overflow. 4163 SDNodeFlags Flags; 4164 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4165 Flags.setNoUnsignedWrap(true); 4166 4167 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4168 4169 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4170 continue; 4171 } 4172 4173 // N = N + Idx * ElementMul; 4174 SDValue IdxN = getValue(Idx); 4175 4176 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4177 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4178 VectorElementCount); 4179 IdxN = DAG.getSplat(VT, dl, IdxN); 4180 } 4181 4182 // If the index is smaller or larger than intptr_t, truncate or extend 4183 // it. 4184 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4185 4186 if (ElementScalable) { 4187 EVT VScaleTy = N.getValueType().getScalarType(); 4188 SDValue VScale = DAG.getNode( 4189 ISD::VSCALE, dl, VScaleTy, 4190 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4191 if (IsVectorGEP) 4192 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4193 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4194 } else { 4195 // If this is a multiply by a power of two, turn it into a shl 4196 // immediately. This is a very common case. 4197 if (ElementMul != 1) { 4198 if (ElementMul.isPowerOf2()) { 4199 unsigned Amt = ElementMul.logBase2(); 4200 IdxN = DAG.getNode(ISD::SHL, dl, 4201 N.getValueType(), IdxN, 4202 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4203 } else { 4204 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4205 IdxN.getValueType()); 4206 IdxN = DAG.getNode(ISD::MUL, dl, 4207 N.getValueType(), IdxN, Scale); 4208 } 4209 } 4210 } 4211 4212 N = DAG.getNode(ISD::ADD, dl, 4213 N.getValueType(), N, IdxN); 4214 } 4215 } 4216 4217 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4218 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4219 if (IsVectorGEP) { 4220 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4221 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4222 } 4223 4224 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4225 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4226 4227 setValue(&I, N); 4228 } 4229 4230 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4231 // If this is a fixed sized alloca in the entry block of the function, 4232 // allocate it statically on the stack. 4233 if (FuncInfo.StaticAllocaMap.count(&I)) 4234 return; // getValue will auto-populate this. 4235 4236 SDLoc dl = getCurSDLoc(); 4237 Type *Ty = I.getAllocatedType(); 4238 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4239 auto &DL = DAG.getDataLayout(); 4240 TypeSize TySize = DL.getTypeAllocSize(Ty); 4241 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4242 4243 SDValue AllocSize = getValue(I.getArraySize()); 4244 4245 EVT IntPtr = TLI.getPointerTy(DL, I.getAddressSpace()); 4246 if (AllocSize.getValueType() != IntPtr) 4247 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4248 4249 if (TySize.isScalable()) 4250 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4251 DAG.getVScale(dl, IntPtr, 4252 APInt(IntPtr.getScalarSizeInBits(), 4253 TySize.getKnownMinValue()))); 4254 else { 4255 SDValue TySizeValue = 4256 DAG.getConstant(TySize.getFixedValue(), dl, MVT::getIntegerVT(64)); 4257 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4258 DAG.getZExtOrTrunc(TySizeValue, dl, IntPtr)); 4259 } 4260 4261 // Handle alignment. If the requested alignment is less than or equal to 4262 // the stack alignment, ignore it. If the size is greater than or equal to 4263 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4264 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4265 if (*Alignment <= StackAlign) 4266 Alignment = std::nullopt; 4267 4268 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4269 // Round the size of the allocation up to the stack alignment size 4270 // by add SA-1 to the size. This doesn't overflow because we're computing 4271 // an address inside an alloca. 4272 SDNodeFlags Flags; 4273 Flags.setNoUnsignedWrap(true); 4274 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4275 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4276 4277 // Mask out the low bits for alignment purposes. 4278 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4279 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4280 4281 SDValue Ops[] = { 4282 getRoot(), AllocSize, 4283 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4284 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4285 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4286 setValue(&I, DSA); 4287 DAG.setRoot(DSA.getValue(1)); 4288 4289 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4290 } 4291 4292 static const MDNode *getRangeMetadata(const Instruction &I) { 4293 // If !noundef is not present, then !range violation results in a poison 4294 // value rather than immediate undefined behavior. In theory, transferring 4295 // these annotations to SDAG is fine, but in practice there are key SDAG 4296 // transforms that are known not to be poison-safe, such as folding logical 4297 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4298 // also present. 4299 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4300 return nullptr; 4301 return I.getMetadata(LLVMContext::MD_range); 4302 } 4303 4304 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4305 if (I.isAtomic()) 4306 return visitAtomicLoad(I); 4307 4308 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4309 const Value *SV = I.getOperand(0); 4310 if (TLI.supportSwiftError()) { 4311 // Swifterror values can come from either a function parameter with 4312 // swifterror attribute or an alloca with swifterror attribute. 4313 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4314 if (Arg->hasSwiftErrorAttr()) 4315 return visitLoadFromSwiftError(I); 4316 } 4317 4318 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4319 if (Alloca->isSwiftError()) 4320 return visitLoadFromSwiftError(I); 4321 } 4322 } 4323 4324 SDValue Ptr = getValue(SV); 4325 4326 Type *Ty = I.getType(); 4327 SmallVector<EVT, 4> ValueVTs, MemVTs; 4328 SmallVector<TypeSize, 4> Offsets; 4329 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4330 unsigned NumValues = ValueVTs.size(); 4331 if (NumValues == 0) 4332 return; 4333 4334 Align Alignment = I.getAlign(); 4335 AAMDNodes AAInfo = I.getAAMetadata(); 4336 const MDNode *Ranges = getRangeMetadata(I); 4337 bool isVolatile = I.isVolatile(); 4338 MachineMemOperand::Flags MMOFlags = 4339 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4340 4341 SDValue Root; 4342 bool ConstantMemory = false; 4343 if (isVolatile) 4344 // Serialize volatile loads with other side effects. 4345 Root = getRoot(); 4346 else if (NumValues > MaxParallelChains) 4347 Root = getMemoryRoot(); 4348 else if (AA && 4349 AA->pointsToConstantMemory(MemoryLocation( 4350 SV, 4351 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4352 AAInfo))) { 4353 // Do not serialize (non-volatile) loads of constant memory with anything. 4354 Root = DAG.getEntryNode(); 4355 ConstantMemory = true; 4356 MMOFlags |= MachineMemOperand::MOInvariant; 4357 } else { 4358 // Do not serialize non-volatile loads against each other. 4359 Root = DAG.getRoot(); 4360 } 4361 4362 SDLoc dl = getCurSDLoc(); 4363 4364 if (isVolatile) 4365 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4366 4367 SmallVector<SDValue, 4> Values(NumValues); 4368 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4369 4370 unsigned ChainI = 0; 4371 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4372 // Serializing loads here may result in excessive register pressure, and 4373 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4374 // could recover a bit by hoisting nodes upward in the chain by recognizing 4375 // they are side-effect free or do not alias. The optimizer should really 4376 // avoid this case by converting large object/array copies to llvm.memcpy 4377 // (MaxParallelChains should always remain as failsafe). 4378 if (ChainI == MaxParallelChains) { 4379 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4380 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4381 ArrayRef(Chains.data(), ChainI)); 4382 Root = Chain; 4383 ChainI = 0; 4384 } 4385 4386 // TODO: MachinePointerInfo only supports a fixed length offset. 4387 MachinePointerInfo PtrInfo = 4388 !Offsets[i].isScalable() || Offsets[i].isZero() 4389 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4390 : MachinePointerInfo(); 4391 4392 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4393 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4394 MMOFlags, AAInfo, Ranges); 4395 Chains[ChainI] = L.getValue(1); 4396 4397 if (MemVTs[i] != ValueVTs[i]) 4398 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4399 4400 Values[i] = L; 4401 } 4402 4403 if (!ConstantMemory) { 4404 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4405 ArrayRef(Chains.data(), ChainI)); 4406 if (isVolatile) 4407 DAG.setRoot(Chain); 4408 else 4409 PendingLoads.push_back(Chain); 4410 } 4411 4412 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4413 DAG.getVTList(ValueVTs), Values)); 4414 } 4415 4416 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4417 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4418 "call visitStoreToSwiftError when backend supports swifterror"); 4419 4420 SmallVector<EVT, 4> ValueVTs; 4421 SmallVector<uint64_t, 4> Offsets; 4422 const Value *SrcV = I.getOperand(0); 4423 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4424 SrcV->getType(), ValueVTs, &Offsets, 0); 4425 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4426 "expect a single EVT for swifterror"); 4427 4428 SDValue Src = getValue(SrcV); 4429 // Create a virtual register, then update the virtual register. 4430 Register VReg = 4431 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4432 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4433 // Chain can be getRoot or getControlRoot. 4434 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4435 SDValue(Src.getNode(), Src.getResNo())); 4436 DAG.setRoot(CopyNode); 4437 } 4438 4439 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4440 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4441 "call visitLoadFromSwiftError when backend supports swifterror"); 4442 4443 assert(!I.isVolatile() && 4444 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4445 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4446 "Support volatile, non temporal, invariant for load_from_swift_error"); 4447 4448 const Value *SV = I.getOperand(0); 4449 Type *Ty = I.getType(); 4450 assert( 4451 (!AA || 4452 !AA->pointsToConstantMemory(MemoryLocation( 4453 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4454 I.getAAMetadata()))) && 4455 "load_from_swift_error should not be constant memory"); 4456 4457 SmallVector<EVT, 4> ValueVTs; 4458 SmallVector<uint64_t, 4> Offsets; 4459 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4460 ValueVTs, &Offsets, 0); 4461 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4462 "expect a single EVT for swifterror"); 4463 4464 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4465 SDValue L = DAG.getCopyFromReg( 4466 getRoot(), getCurSDLoc(), 4467 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4468 4469 setValue(&I, L); 4470 } 4471 4472 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4473 if (I.isAtomic()) 4474 return visitAtomicStore(I); 4475 4476 const Value *SrcV = I.getOperand(0); 4477 const Value *PtrV = I.getOperand(1); 4478 4479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4480 if (TLI.supportSwiftError()) { 4481 // Swifterror values can come from either a function parameter with 4482 // swifterror attribute or an alloca with swifterror attribute. 4483 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4484 if (Arg->hasSwiftErrorAttr()) 4485 return visitStoreToSwiftError(I); 4486 } 4487 4488 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4489 if (Alloca->isSwiftError()) 4490 return visitStoreToSwiftError(I); 4491 } 4492 } 4493 4494 SmallVector<EVT, 4> ValueVTs, MemVTs; 4495 SmallVector<TypeSize, 4> Offsets; 4496 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4497 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4498 unsigned NumValues = ValueVTs.size(); 4499 if (NumValues == 0) 4500 return; 4501 4502 // Get the lowered operands. Note that we do this after 4503 // checking if NumResults is zero, because with zero results 4504 // the operands won't have values in the map. 4505 SDValue Src = getValue(SrcV); 4506 SDValue Ptr = getValue(PtrV); 4507 4508 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4509 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4510 SDLoc dl = getCurSDLoc(); 4511 Align Alignment = I.getAlign(); 4512 AAMDNodes AAInfo = I.getAAMetadata(); 4513 4514 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4515 4516 unsigned ChainI = 0; 4517 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4518 // See visitLoad comments. 4519 if (ChainI == MaxParallelChains) { 4520 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4521 ArrayRef(Chains.data(), ChainI)); 4522 Root = Chain; 4523 ChainI = 0; 4524 } 4525 4526 // TODO: MachinePointerInfo only supports a fixed length offset. 4527 MachinePointerInfo PtrInfo = 4528 !Offsets[i].isScalable() || Offsets[i].isZero() 4529 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4530 : MachinePointerInfo(); 4531 4532 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4533 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4534 if (MemVTs[i] != ValueVTs[i]) 4535 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4536 SDValue St = 4537 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4538 Chains[ChainI] = St; 4539 } 4540 4541 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4542 ArrayRef(Chains.data(), ChainI)); 4543 setValue(&I, StoreNode); 4544 DAG.setRoot(StoreNode); 4545 } 4546 4547 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4548 bool IsCompressing) { 4549 SDLoc sdl = getCurSDLoc(); 4550 4551 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4552 MaybeAlign &Alignment) { 4553 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4554 Src0 = I.getArgOperand(0); 4555 Ptr = I.getArgOperand(1); 4556 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4557 Mask = I.getArgOperand(3); 4558 }; 4559 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4560 MaybeAlign &Alignment) { 4561 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4562 Src0 = I.getArgOperand(0); 4563 Ptr = I.getArgOperand(1); 4564 Mask = I.getArgOperand(2); 4565 Alignment = std::nullopt; 4566 }; 4567 4568 Value *PtrOperand, *MaskOperand, *Src0Operand; 4569 MaybeAlign Alignment; 4570 if (IsCompressing) 4571 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4572 else 4573 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4574 4575 SDValue Ptr = getValue(PtrOperand); 4576 SDValue Src0 = getValue(Src0Operand); 4577 SDValue Mask = getValue(MaskOperand); 4578 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4579 4580 EVT VT = Src0.getValueType(); 4581 if (!Alignment) 4582 Alignment = DAG.getEVTAlign(VT); 4583 4584 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4585 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4586 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4587 SDValue StoreNode = 4588 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4589 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4590 DAG.setRoot(StoreNode); 4591 setValue(&I, StoreNode); 4592 } 4593 4594 // Get a uniform base for the Gather/Scatter intrinsic. 4595 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4596 // We try to represent it as a base pointer + vector of indices. 4597 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4598 // The first operand of the GEP may be a single pointer or a vector of pointers 4599 // Example: 4600 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4601 // or 4602 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4603 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4604 // 4605 // When the first GEP operand is a single pointer - it is the uniform base we 4606 // are looking for. If first operand of the GEP is a splat vector - we 4607 // extract the splat value and use it as a uniform base. 4608 // In all other cases the function returns 'false'. 4609 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4610 ISD::MemIndexType &IndexType, SDValue &Scale, 4611 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4612 uint64_t ElemSize) { 4613 SelectionDAG& DAG = SDB->DAG; 4614 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4615 const DataLayout &DL = DAG.getDataLayout(); 4616 4617 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4618 4619 // Handle splat constant pointer. 4620 if (auto *C = dyn_cast<Constant>(Ptr)) { 4621 C = C->getSplatValue(); 4622 if (!C) 4623 return false; 4624 4625 Base = SDB->getValue(C); 4626 4627 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4628 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4629 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4630 IndexType = ISD::SIGNED_SCALED; 4631 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4632 return true; 4633 } 4634 4635 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4636 if (!GEP || GEP->getParent() != CurBB) 4637 return false; 4638 4639 if (GEP->getNumOperands() != 2) 4640 return false; 4641 4642 const Value *BasePtr = GEP->getPointerOperand(); 4643 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4644 4645 // Make sure the base is scalar and the index is a vector. 4646 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4647 return false; 4648 4649 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4650 if (ScaleVal.isScalable()) 4651 return false; 4652 4653 // Target may not support the required addressing mode. 4654 if (ScaleVal != 1 && 4655 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4656 return false; 4657 4658 Base = SDB->getValue(BasePtr); 4659 Index = SDB->getValue(IndexVal); 4660 IndexType = ISD::SIGNED_SCALED; 4661 4662 Scale = 4663 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4664 return true; 4665 } 4666 4667 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4668 SDLoc sdl = getCurSDLoc(); 4669 4670 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4671 const Value *Ptr = I.getArgOperand(1); 4672 SDValue Src0 = getValue(I.getArgOperand(0)); 4673 SDValue Mask = getValue(I.getArgOperand(3)); 4674 EVT VT = Src0.getValueType(); 4675 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4676 ->getMaybeAlignValue() 4677 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4679 4680 SDValue Base; 4681 SDValue Index; 4682 ISD::MemIndexType IndexType; 4683 SDValue Scale; 4684 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4685 I.getParent(), VT.getScalarStoreSize()); 4686 4687 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4688 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4689 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4690 // TODO: Make MachineMemOperands aware of scalable 4691 // vectors. 4692 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4693 if (!UniformBase) { 4694 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4695 Index = getValue(Ptr); 4696 IndexType = ISD::SIGNED_SCALED; 4697 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4698 } 4699 4700 EVT IdxVT = Index.getValueType(); 4701 EVT EltTy = IdxVT.getVectorElementType(); 4702 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4703 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4704 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4705 } 4706 4707 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4708 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4709 Ops, MMO, IndexType, false); 4710 DAG.setRoot(Scatter); 4711 setValue(&I, Scatter); 4712 } 4713 4714 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4715 SDLoc sdl = getCurSDLoc(); 4716 4717 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4718 MaybeAlign &Alignment) { 4719 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4720 Ptr = I.getArgOperand(0); 4721 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4722 Mask = I.getArgOperand(2); 4723 Src0 = I.getArgOperand(3); 4724 }; 4725 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4726 MaybeAlign &Alignment) { 4727 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4728 Ptr = I.getArgOperand(0); 4729 Alignment = std::nullopt; 4730 Mask = I.getArgOperand(1); 4731 Src0 = I.getArgOperand(2); 4732 }; 4733 4734 Value *PtrOperand, *MaskOperand, *Src0Operand; 4735 MaybeAlign Alignment; 4736 if (IsExpanding) 4737 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4738 else 4739 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4740 4741 SDValue Ptr = getValue(PtrOperand); 4742 SDValue Src0 = getValue(Src0Operand); 4743 SDValue Mask = getValue(MaskOperand); 4744 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4745 4746 EVT VT = Src0.getValueType(); 4747 if (!Alignment) 4748 Alignment = DAG.getEVTAlign(VT); 4749 4750 AAMDNodes AAInfo = I.getAAMetadata(); 4751 const MDNode *Ranges = getRangeMetadata(I); 4752 4753 // Do not serialize masked loads of constant memory with anything. 4754 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4755 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4756 4757 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4758 4759 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4760 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4761 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4762 4763 SDValue Load = 4764 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4765 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4766 if (AddToChain) 4767 PendingLoads.push_back(Load.getValue(1)); 4768 setValue(&I, Load); 4769 } 4770 4771 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4772 SDLoc sdl = getCurSDLoc(); 4773 4774 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4775 const Value *Ptr = I.getArgOperand(0); 4776 SDValue Src0 = getValue(I.getArgOperand(3)); 4777 SDValue Mask = getValue(I.getArgOperand(2)); 4778 4779 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4780 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4781 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4782 ->getMaybeAlignValue() 4783 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4784 4785 const MDNode *Ranges = getRangeMetadata(I); 4786 4787 SDValue Root = DAG.getRoot(); 4788 SDValue Base; 4789 SDValue Index; 4790 ISD::MemIndexType IndexType; 4791 SDValue Scale; 4792 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4793 I.getParent(), VT.getScalarStoreSize()); 4794 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4795 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4796 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4797 // TODO: Make MachineMemOperands aware of scalable 4798 // vectors. 4799 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4800 4801 if (!UniformBase) { 4802 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4803 Index = getValue(Ptr); 4804 IndexType = ISD::SIGNED_SCALED; 4805 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4806 } 4807 4808 EVT IdxVT = Index.getValueType(); 4809 EVT EltTy = IdxVT.getVectorElementType(); 4810 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4811 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4812 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4813 } 4814 4815 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4816 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4817 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4818 4819 PendingLoads.push_back(Gather.getValue(1)); 4820 setValue(&I, Gather); 4821 } 4822 4823 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4824 SDLoc dl = getCurSDLoc(); 4825 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4826 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4827 SyncScope::ID SSID = I.getSyncScopeID(); 4828 4829 SDValue InChain = getRoot(); 4830 4831 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4832 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4833 4834 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4835 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4836 4837 MachineFunction &MF = DAG.getMachineFunction(); 4838 MachineMemOperand *MMO = MF.getMachineMemOperand( 4839 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4840 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4841 FailureOrdering); 4842 4843 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4844 dl, MemVT, VTs, InChain, 4845 getValue(I.getPointerOperand()), 4846 getValue(I.getCompareOperand()), 4847 getValue(I.getNewValOperand()), MMO); 4848 4849 SDValue OutChain = L.getValue(2); 4850 4851 setValue(&I, L); 4852 DAG.setRoot(OutChain); 4853 } 4854 4855 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4856 SDLoc dl = getCurSDLoc(); 4857 ISD::NodeType NT; 4858 switch (I.getOperation()) { 4859 default: llvm_unreachable("Unknown atomicrmw operation"); 4860 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4861 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4862 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4863 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4864 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4865 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4866 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4867 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4868 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4869 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4870 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4871 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4872 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4873 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4874 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4875 case AtomicRMWInst::UIncWrap: 4876 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4877 break; 4878 case AtomicRMWInst::UDecWrap: 4879 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4880 break; 4881 } 4882 AtomicOrdering Ordering = I.getOrdering(); 4883 SyncScope::ID SSID = I.getSyncScopeID(); 4884 4885 SDValue InChain = getRoot(); 4886 4887 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4889 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4890 4891 MachineFunction &MF = DAG.getMachineFunction(); 4892 MachineMemOperand *MMO = MF.getMachineMemOperand( 4893 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4894 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4895 4896 SDValue L = 4897 DAG.getAtomic(NT, dl, MemVT, InChain, 4898 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4899 MMO); 4900 4901 SDValue OutChain = L.getValue(1); 4902 4903 setValue(&I, L); 4904 DAG.setRoot(OutChain); 4905 } 4906 4907 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4908 SDLoc dl = getCurSDLoc(); 4909 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4910 SDValue Ops[3]; 4911 Ops[0] = getRoot(); 4912 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4913 TLI.getFenceOperandTy(DAG.getDataLayout())); 4914 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4915 TLI.getFenceOperandTy(DAG.getDataLayout())); 4916 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4917 setValue(&I, N); 4918 DAG.setRoot(N); 4919 } 4920 4921 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4922 SDLoc dl = getCurSDLoc(); 4923 AtomicOrdering Order = I.getOrdering(); 4924 SyncScope::ID SSID = I.getSyncScopeID(); 4925 4926 SDValue InChain = getRoot(); 4927 4928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4929 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4930 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4931 4932 if (!TLI.supportsUnalignedAtomics() && 4933 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4934 report_fatal_error("Cannot generate unaligned atomic load"); 4935 4936 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4937 4938 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4939 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4940 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4941 4942 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4943 4944 SDValue Ptr = getValue(I.getPointerOperand()); 4945 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4946 Ptr, MMO); 4947 4948 SDValue OutChain = L.getValue(1); 4949 if (MemVT != VT) 4950 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4951 4952 setValue(&I, L); 4953 DAG.setRoot(OutChain); 4954 } 4955 4956 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4957 SDLoc dl = getCurSDLoc(); 4958 4959 AtomicOrdering Ordering = I.getOrdering(); 4960 SyncScope::ID SSID = I.getSyncScopeID(); 4961 4962 SDValue InChain = getRoot(); 4963 4964 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4965 EVT MemVT = 4966 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4967 4968 if (!TLI.supportsUnalignedAtomics() && 4969 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4970 report_fatal_error("Cannot generate unaligned atomic store"); 4971 4972 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4973 4974 MachineFunction &MF = DAG.getMachineFunction(); 4975 MachineMemOperand *MMO = MF.getMachineMemOperand( 4976 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4977 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4978 4979 SDValue Val = getValue(I.getValueOperand()); 4980 if (Val.getValueType() != MemVT) 4981 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4982 SDValue Ptr = getValue(I.getPointerOperand()); 4983 4984 SDValue OutChain = 4985 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 4986 4987 setValue(&I, OutChain); 4988 DAG.setRoot(OutChain); 4989 } 4990 4991 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4992 /// node. 4993 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4994 unsigned Intrinsic) { 4995 // Ignore the callsite's attributes. A specific call site may be marked with 4996 // readnone, but the lowering code will expect the chain based on the 4997 // definition. 4998 const Function *F = I.getCalledFunction(); 4999 bool HasChain = !F->doesNotAccessMemory(); 5000 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 5001 5002 // Build the operand list. 5003 SmallVector<SDValue, 8> Ops; 5004 if (HasChain) { // If this intrinsic has side-effects, chainify it. 5005 if (OnlyLoad) { 5006 // We don't need to serialize loads against other loads. 5007 Ops.push_back(DAG.getRoot()); 5008 } else { 5009 Ops.push_back(getRoot()); 5010 } 5011 } 5012 5013 // Info is set by getTgtMemIntrinsic 5014 TargetLowering::IntrinsicInfo Info; 5015 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5016 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 5017 DAG.getMachineFunction(), 5018 Intrinsic); 5019 5020 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 5021 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 5022 Info.opc == ISD::INTRINSIC_W_CHAIN) 5023 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 5024 TLI.getPointerTy(DAG.getDataLayout()))); 5025 5026 // Add all operands of the call to the operand list. 5027 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 5028 const Value *Arg = I.getArgOperand(i); 5029 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 5030 Ops.push_back(getValue(Arg)); 5031 continue; 5032 } 5033 5034 // Use TargetConstant instead of a regular constant for immarg. 5035 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 5036 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 5037 assert(CI->getBitWidth() <= 64 && 5038 "large intrinsic immediates not handled"); 5039 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 5040 } else { 5041 Ops.push_back( 5042 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 5043 } 5044 } 5045 5046 SmallVector<EVT, 4> ValueVTs; 5047 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 5048 5049 if (HasChain) 5050 ValueVTs.push_back(MVT::Other); 5051 5052 SDVTList VTs = DAG.getVTList(ValueVTs); 5053 5054 // Propagate fast-math-flags from IR to node(s). 5055 SDNodeFlags Flags; 5056 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 5057 Flags.copyFMF(*FPMO); 5058 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 5059 5060 // Create the node. 5061 SDValue Result; 5062 // In some cases, custom collection of operands from CallInst I may be needed. 5063 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 5064 if (IsTgtIntrinsic) { 5065 // This is target intrinsic that touches memory 5066 // 5067 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 5068 // didn't yield anything useful. 5069 MachinePointerInfo MPI; 5070 if (Info.ptrVal) 5071 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 5072 else if (Info.fallbackAddressSpace) 5073 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 5074 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 5075 Info.memVT, MPI, Info.align, Info.flags, 5076 Info.size, I.getAAMetadata()); 5077 } else if (!HasChain) { 5078 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 5079 } else if (!I.getType()->isVoidTy()) { 5080 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 5081 } else { 5082 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 5083 } 5084 5085 if (HasChain) { 5086 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 5087 if (OnlyLoad) 5088 PendingLoads.push_back(Chain); 5089 else 5090 DAG.setRoot(Chain); 5091 } 5092 5093 if (!I.getType()->isVoidTy()) { 5094 if (!isa<VectorType>(I.getType())) 5095 Result = lowerRangeToAssertZExt(DAG, I, Result); 5096 5097 MaybeAlign Alignment = I.getRetAlign(); 5098 5099 // Insert `assertalign` node if there's an alignment. 5100 if (InsertAssertAlign && Alignment) { 5101 Result = 5102 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5103 } 5104 5105 setValue(&I, Result); 5106 } 5107 } 5108 5109 /// GetSignificand - Get the significand and build it into a floating-point 5110 /// number with exponent of 1: 5111 /// 5112 /// Op = (Op & 0x007fffff) | 0x3f800000; 5113 /// 5114 /// where Op is the hexadecimal representation of floating point value. 5115 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5116 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5117 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5118 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5119 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5120 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5121 } 5122 5123 /// GetExponent - Get the exponent: 5124 /// 5125 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5126 /// 5127 /// where Op is the hexadecimal representation of floating point value. 5128 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5129 const TargetLowering &TLI, const SDLoc &dl) { 5130 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5131 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5132 SDValue t1 = DAG.getNode( 5133 ISD::SRL, dl, MVT::i32, t0, 5134 DAG.getConstant(23, dl, 5135 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5136 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5137 DAG.getConstant(127, dl, MVT::i32)); 5138 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5139 } 5140 5141 /// getF32Constant - Get 32-bit floating point constant. 5142 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5143 const SDLoc &dl) { 5144 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5145 MVT::f32); 5146 } 5147 5148 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5149 SelectionDAG &DAG) { 5150 // TODO: What fast-math-flags should be set on the floating-point nodes? 5151 5152 // IntegerPartOfX = ((int32_t)(t0); 5153 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5154 5155 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5156 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5157 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5158 5159 // IntegerPartOfX <<= 23; 5160 IntegerPartOfX = 5161 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5162 DAG.getConstant(23, dl, 5163 DAG.getTargetLoweringInfo().getShiftAmountTy( 5164 MVT::i32, DAG.getDataLayout()))); 5165 5166 SDValue TwoToFractionalPartOfX; 5167 if (LimitFloatPrecision <= 6) { 5168 // For floating-point precision of 6: 5169 // 5170 // TwoToFractionalPartOfX = 5171 // 0.997535578f + 5172 // (0.735607626f + 0.252464424f * x) * x; 5173 // 5174 // error 0.0144103317, which is 6 bits 5175 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5176 getF32Constant(DAG, 0x3e814304, dl)); 5177 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5178 getF32Constant(DAG, 0x3f3c50c8, dl)); 5179 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5180 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5181 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5182 } else if (LimitFloatPrecision <= 12) { 5183 // For floating-point precision of 12: 5184 // 5185 // TwoToFractionalPartOfX = 5186 // 0.999892986f + 5187 // (0.696457318f + 5188 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5189 // 5190 // error 0.000107046256, which is 13 to 14 bits 5191 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5192 getF32Constant(DAG, 0x3da235e3, dl)); 5193 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5194 getF32Constant(DAG, 0x3e65b8f3, dl)); 5195 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5196 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5197 getF32Constant(DAG, 0x3f324b07, dl)); 5198 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5199 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5200 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5201 } else { // LimitFloatPrecision <= 18 5202 // For floating-point precision of 18: 5203 // 5204 // TwoToFractionalPartOfX = 5205 // 0.999999982f + 5206 // (0.693148872f + 5207 // (0.240227044f + 5208 // (0.554906021e-1f + 5209 // (0.961591928e-2f + 5210 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5211 // error 2.47208000*10^(-7), which is better than 18 bits 5212 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5213 getF32Constant(DAG, 0x3924b03e, dl)); 5214 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5215 getF32Constant(DAG, 0x3ab24b87, dl)); 5216 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5217 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5218 getF32Constant(DAG, 0x3c1d8c17, dl)); 5219 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5220 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5221 getF32Constant(DAG, 0x3d634a1d, dl)); 5222 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5223 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5224 getF32Constant(DAG, 0x3e75fe14, dl)); 5225 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5226 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5227 getF32Constant(DAG, 0x3f317234, dl)); 5228 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5229 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5230 getF32Constant(DAG, 0x3f800000, dl)); 5231 } 5232 5233 // Add the exponent into the result in integer domain. 5234 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5235 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5236 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5237 } 5238 5239 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5240 /// limited-precision mode. 5241 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5242 const TargetLowering &TLI, SDNodeFlags Flags) { 5243 if (Op.getValueType() == MVT::f32 && 5244 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5245 5246 // Put the exponent in the right bit position for later addition to the 5247 // final result: 5248 // 5249 // t0 = Op * log2(e) 5250 5251 // TODO: What fast-math-flags should be set here? 5252 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5253 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5254 return getLimitedPrecisionExp2(t0, dl, DAG); 5255 } 5256 5257 // No special expansion. 5258 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5259 } 5260 5261 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5262 /// limited-precision mode. 5263 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5264 const TargetLowering &TLI, SDNodeFlags Flags) { 5265 // TODO: What fast-math-flags should be set on the floating-point nodes? 5266 5267 if (Op.getValueType() == MVT::f32 && 5268 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5269 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5270 5271 // Scale the exponent by log(2). 5272 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5273 SDValue LogOfExponent = 5274 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5275 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5276 5277 // Get the significand and build it into a floating-point number with 5278 // exponent of 1. 5279 SDValue X = GetSignificand(DAG, Op1, dl); 5280 5281 SDValue LogOfMantissa; 5282 if (LimitFloatPrecision <= 6) { 5283 // For floating-point precision of 6: 5284 // 5285 // LogofMantissa = 5286 // -1.1609546f + 5287 // (1.4034025f - 0.23903021f * x) * x; 5288 // 5289 // error 0.0034276066, which is better than 8 bits 5290 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5291 getF32Constant(DAG, 0xbe74c456, dl)); 5292 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5293 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5294 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5295 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5296 getF32Constant(DAG, 0x3f949a29, dl)); 5297 } else if (LimitFloatPrecision <= 12) { 5298 // For floating-point precision of 12: 5299 // 5300 // LogOfMantissa = 5301 // -1.7417939f + 5302 // (2.8212026f + 5303 // (-1.4699568f + 5304 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5305 // 5306 // error 0.000061011436, which is 14 bits 5307 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5308 getF32Constant(DAG, 0xbd67b6d6, dl)); 5309 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5310 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5311 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5312 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5313 getF32Constant(DAG, 0x3fbc278b, dl)); 5314 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5315 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5316 getF32Constant(DAG, 0x40348e95, dl)); 5317 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5318 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5319 getF32Constant(DAG, 0x3fdef31a, dl)); 5320 } else { // LimitFloatPrecision <= 18 5321 // For floating-point precision of 18: 5322 // 5323 // LogOfMantissa = 5324 // -2.1072184f + 5325 // (4.2372794f + 5326 // (-3.7029485f + 5327 // (2.2781945f + 5328 // (-0.87823314f + 5329 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5330 // 5331 // error 0.0000023660568, which is better than 18 bits 5332 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5333 getF32Constant(DAG, 0xbc91e5ac, dl)); 5334 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5335 getF32Constant(DAG, 0x3e4350aa, dl)); 5336 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5337 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5338 getF32Constant(DAG, 0x3f60d3e3, dl)); 5339 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5340 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5341 getF32Constant(DAG, 0x4011cdf0, dl)); 5342 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5343 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5344 getF32Constant(DAG, 0x406cfd1c, dl)); 5345 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5346 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5347 getF32Constant(DAG, 0x408797cb, dl)); 5348 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5349 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5350 getF32Constant(DAG, 0x4006dcab, dl)); 5351 } 5352 5353 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5354 } 5355 5356 // No special expansion. 5357 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5358 } 5359 5360 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5361 /// limited-precision mode. 5362 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5363 const TargetLowering &TLI, SDNodeFlags Flags) { 5364 // TODO: What fast-math-flags should be set on the floating-point nodes? 5365 5366 if (Op.getValueType() == MVT::f32 && 5367 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5368 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5369 5370 // Get the exponent. 5371 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5372 5373 // Get the significand and build it into a floating-point number with 5374 // exponent of 1. 5375 SDValue X = GetSignificand(DAG, Op1, dl); 5376 5377 // Different possible minimax approximations of significand in 5378 // floating-point for various degrees of accuracy over [1,2]. 5379 SDValue Log2ofMantissa; 5380 if (LimitFloatPrecision <= 6) { 5381 // For floating-point precision of 6: 5382 // 5383 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5384 // 5385 // error 0.0049451742, which is more than 7 bits 5386 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5387 getF32Constant(DAG, 0xbeb08fe0, dl)); 5388 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5389 getF32Constant(DAG, 0x40019463, dl)); 5390 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5391 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5392 getF32Constant(DAG, 0x3fd6633d, dl)); 5393 } else if (LimitFloatPrecision <= 12) { 5394 // For floating-point precision of 12: 5395 // 5396 // Log2ofMantissa = 5397 // -2.51285454f + 5398 // (4.07009056f + 5399 // (-2.12067489f + 5400 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5401 // 5402 // error 0.0000876136000, which is better than 13 bits 5403 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5404 getF32Constant(DAG, 0xbda7262e, dl)); 5405 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5406 getF32Constant(DAG, 0x3f25280b, dl)); 5407 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5408 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5409 getF32Constant(DAG, 0x4007b923, dl)); 5410 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5411 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5412 getF32Constant(DAG, 0x40823e2f, dl)); 5413 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5414 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5415 getF32Constant(DAG, 0x4020d29c, dl)); 5416 } else { // LimitFloatPrecision <= 18 5417 // For floating-point precision of 18: 5418 // 5419 // Log2ofMantissa = 5420 // -3.0400495f + 5421 // (6.1129976f + 5422 // (-5.3420409f + 5423 // (3.2865683f + 5424 // (-1.2669343f + 5425 // (0.27515199f - 5426 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5427 // 5428 // error 0.0000018516, which is better than 18 bits 5429 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5430 getF32Constant(DAG, 0xbcd2769e, dl)); 5431 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5432 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5433 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5434 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5435 getF32Constant(DAG, 0x3fa22ae7, dl)); 5436 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5437 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5438 getF32Constant(DAG, 0x40525723, dl)); 5439 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5440 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5441 getF32Constant(DAG, 0x40aaf200, dl)); 5442 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5443 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5444 getF32Constant(DAG, 0x40c39dad, dl)); 5445 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5446 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5447 getF32Constant(DAG, 0x4042902c, dl)); 5448 } 5449 5450 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5451 } 5452 5453 // No special expansion. 5454 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5455 } 5456 5457 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5458 /// limited-precision mode. 5459 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5460 const TargetLowering &TLI, SDNodeFlags Flags) { 5461 // TODO: What fast-math-flags should be set on the floating-point nodes? 5462 5463 if (Op.getValueType() == MVT::f32 && 5464 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5465 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5466 5467 // Scale the exponent by log10(2) [0.30102999f]. 5468 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5469 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5470 getF32Constant(DAG, 0x3e9a209a, dl)); 5471 5472 // Get the significand and build it into a floating-point number with 5473 // exponent of 1. 5474 SDValue X = GetSignificand(DAG, Op1, dl); 5475 5476 SDValue Log10ofMantissa; 5477 if (LimitFloatPrecision <= 6) { 5478 // For floating-point precision of 6: 5479 // 5480 // Log10ofMantissa = 5481 // -0.50419619f + 5482 // (0.60948995f - 0.10380950f * x) * x; 5483 // 5484 // error 0.0014886165, which is 6 bits 5485 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5486 getF32Constant(DAG, 0xbdd49a13, dl)); 5487 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5488 getF32Constant(DAG, 0x3f1c0789, dl)); 5489 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5490 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5491 getF32Constant(DAG, 0x3f011300, dl)); 5492 } else if (LimitFloatPrecision <= 12) { 5493 // For floating-point precision of 12: 5494 // 5495 // Log10ofMantissa = 5496 // -0.64831180f + 5497 // (0.91751397f + 5498 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5499 // 5500 // error 0.00019228036, which is better than 12 bits 5501 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5502 getF32Constant(DAG, 0x3d431f31, dl)); 5503 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5504 getF32Constant(DAG, 0x3ea21fb2, dl)); 5505 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5506 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5507 getF32Constant(DAG, 0x3f6ae232, dl)); 5508 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5509 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5510 getF32Constant(DAG, 0x3f25f7c3, dl)); 5511 } else { // LimitFloatPrecision <= 18 5512 // For floating-point precision of 18: 5513 // 5514 // Log10ofMantissa = 5515 // -0.84299375f + 5516 // (1.5327582f + 5517 // (-1.0688956f + 5518 // (0.49102474f + 5519 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5520 // 5521 // error 0.0000037995730, which is better than 18 bits 5522 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5523 getF32Constant(DAG, 0x3c5d51ce, dl)); 5524 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5525 getF32Constant(DAG, 0x3e00685a, dl)); 5526 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5527 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5528 getF32Constant(DAG, 0x3efb6798, dl)); 5529 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5530 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5531 getF32Constant(DAG, 0x3f88d192, dl)); 5532 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5533 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5534 getF32Constant(DAG, 0x3fc4316c, dl)); 5535 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5536 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5537 getF32Constant(DAG, 0x3f57ce70, dl)); 5538 } 5539 5540 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5541 } 5542 5543 // No special expansion. 5544 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5545 } 5546 5547 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5548 /// limited-precision mode. 5549 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5550 const TargetLowering &TLI, SDNodeFlags Flags) { 5551 if (Op.getValueType() == MVT::f32 && 5552 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5553 return getLimitedPrecisionExp2(Op, dl, DAG); 5554 5555 // No special expansion. 5556 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5557 } 5558 5559 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5560 /// limited-precision mode with x == 10.0f. 5561 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5562 SelectionDAG &DAG, const TargetLowering &TLI, 5563 SDNodeFlags Flags) { 5564 bool IsExp10 = false; 5565 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5566 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5567 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5568 APFloat Ten(10.0f); 5569 IsExp10 = LHSC->isExactlyValue(Ten); 5570 } 5571 } 5572 5573 // TODO: What fast-math-flags should be set on the FMUL node? 5574 if (IsExp10) { 5575 // Put the exponent in the right bit position for later addition to the 5576 // final result: 5577 // 5578 // #define LOG2OF10 3.3219281f 5579 // t0 = Op * LOG2OF10; 5580 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5581 getF32Constant(DAG, 0x40549a78, dl)); 5582 return getLimitedPrecisionExp2(t0, dl, DAG); 5583 } 5584 5585 // No special expansion. 5586 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5587 } 5588 5589 /// ExpandPowI - Expand a llvm.powi intrinsic. 5590 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5591 SelectionDAG &DAG) { 5592 // If RHS is a constant, we can expand this out to a multiplication tree if 5593 // it's beneficial on the target, otherwise we end up lowering to a call to 5594 // __powidf2 (for example). 5595 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5596 unsigned Val = RHSC->getSExtValue(); 5597 5598 // powi(x, 0) -> 1.0 5599 if (Val == 0) 5600 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5601 5602 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5603 Val, DAG.shouldOptForSize())) { 5604 // Get the exponent as a positive value. 5605 if ((int)Val < 0) 5606 Val = -Val; 5607 // We use the simple binary decomposition method to generate the multiply 5608 // sequence. There are more optimal ways to do this (for example, 5609 // powi(x,15) generates one more multiply than it should), but this has 5610 // the benefit of being both really simple and much better than a libcall. 5611 SDValue Res; // Logically starts equal to 1.0 5612 SDValue CurSquare = LHS; 5613 // TODO: Intrinsics should have fast-math-flags that propagate to these 5614 // nodes. 5615 while (Val) { 5616 if (Val & 1) { 5617 if (Res.getNode()) 5618 Res = 5619 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5620 else 5621 Res = CurSquare; // 1.0*CurSquare. 5622 } 5623 5624 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5625 CurSquare, CurSquare); 5626 Val >>= 1; 5627 } 5628 5629 // If the original was negative, invert the result, producing 1/(x*x*x). 5630 if (RHSC->getSExtValue() < 0) 5631 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5632 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5633 return Res; 5634 } 5635 } 5636 5637 // Otherwise, expand to a libcall. 5638 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5639 } 5640 5641 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5642 SDValue LHS, SDValue RHS, SDValue Scale, 5643 SelectionDAG &DAG, const TargetLowering &TLI) { 5644 EVT VT = LHS.getValueType(); 5645 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5646 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5647 LLVMContext &Ctx = *DAG.getContext(); 5648 5649 // If the type is legal but the operation isn't, this node might survive all 5650 // the way to operation legalization. If we end up there and we do not have 5651 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5652 // node. 5653 5654 // Coax the legalizer into expanding the node during type legalization instead 5655 // by bumping the size by one bit. This will force it to Promote, enabling the 5656 // early expansion and avoiding the need to expand later. 5657 5658 // We don't have to do this if Scale is 0; that can always be expanded, unless 5659 // it's a saturating signed operation. Those can experience true integer 5660 // division overflow, a case which we must avoid. 5661 5662 // FIXME: We wouldn't have to do this (or any of the early 5663 // expansion/promotion) if it was possible to expand a libcall of an 5664 // illegal type during operation legalization. But it's not, so things 5665 // get a bit hacky. 5666 unsigned ScaleInt = Scale->getAsZExtVal(); 5667 if ((ScaleInt > 0 || (Saturating && Signed)) && 5668 (TLI.isTypeLegal(VT) || 5669 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5670 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5671 Opcode, VT, ScaleInt); 5672 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5673 EVT PromVT; 5674 if (VT.isScalarInteger()) 5675 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5676 else if (VT.isVector()) { 5677 PromVT = VT.getVectorElementType(); 5678 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5679 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5680 } else 5681 llvm_unreachable("Wrong VT for DIVFIX?"); 5682 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5683 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5684 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5685 // For saturating operations, we need to shift up the LHS to get the 5686 // proper saturation width, and then shift down again afterwards. 5687 if (Saturating) 5688 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5689 DAG.getConstant(1, DL, ShiftTy)); 5690 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5691 if (Saturating) 5692 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5693 DAG.getConstant(1, DL, ShiftTy)); 5694 return DAG.getZExtOrTrunc(Res, DL, VT); 5695 } 5696 } 5697 5698 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5699 } 5700 5701 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5702 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5703 static void 5704 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5705 const SDValue &N) { 5706 switch (N.getOpcode()) { 5707 case ISD::CopyFromReg: { 5708 SDValue Op = N.getOperand(1); 5709 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5710 Op.getValueType().getSizeInBits()); 5711 return; 5712 } 5713 case ISD::BITCAST: 5714 case ISD::AssertZext: 5715 case ISD::AssertSext: 5716 case ISD::TRUNCATE: 5717 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5718 return; 5719 case ISD::BUILD_PAIR: 5720 case ISD::BUILD_VECTOR: 5721 case ISD::CONCAT_VECTORS: 5722 for (SDValue Op : N->op_values()) 5723 getUnderlyingArgRegs(Regs, Op); 5724 return; 5725 default: 5726 return; 5727 } 5728 } 5729 5730 /// If the DbgValueInst is a dbg_value of a function argument, create the 5731 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5732 /// instruction selection, they will be inserted to the entry BB. 5733 /// We don't currently support this for variadic dbg_values, as they shouldn't 5734 /// appear for function arguments or in the prologue. 5735 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5736 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5737 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5738 const Argument *Arg = dyn_cast<Argument>(V); 5739 if (!Arg) 5740 return false; 5741 5742 MachineFunction &MF = DAG.getMachineFunction(); 5743 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5744 5745 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5746 // we've been asked to pursue. 5747 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5748 bool Indirect) { 5749 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5750 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5751 // pointing at the VReg, which will be patched up later. 5752 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5753 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5754 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5755 /* isKill */ false, /* isDead */ false, 5756 /* isUndef */ false, /* isEarlyClobber */ false, 5757 /* SubReg */ 0, /* isDebug */ true)}); 5758 5759 auto *NewDIExpr = FragExpr; 5760 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5761 // the DIExpression. 5762 if (Indirect) 5763 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5764 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5765 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5766 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5767 } else { 5768 // Create a completely standard DBG_VALUE. 5769 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5770 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5771 } 5772 }; 5773 5774 if (Kind == FuncArgumentDbgValueKind::Value) { 5775 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5776 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5777 // the entry block. 5778 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5779 if (!IsInEntryBlock) 5780 return false; 5781 5782 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5783 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5784 // variable that also is a param. 5785 // 5786 // Although, if we are at the top of the entry block already, we can still 5787 // emit using ArgDbgValue. This might catch some situations when the 5788 // dbg.value refers to an argument that isn't used in the entry block, so 5789 // any CopyToReg node would be optimized out and the only way to express 5790 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5791 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5792 // we should only emit as ArgDbgValue if the Variable is an argument to the 5793 // current function, and the dbg.value intrinsic is found in the entry 5794 // block. 5795 bool VariableIsFunctionInputArg = Variable->isParameter() && 5796 !DL->getInlinedAt(); 5797 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5798 if (!IsInPrologue && !VariableIsFunctionInputArg) 5799 return false; 5800 5801 // Here we assume that a function argument on IR level only can be used to 5802 // describe one input parameter on source level. If we for example have 5803 // source code like this 5804 // 5805 // struct A { long x, y; }; 5806 // void foo(struct A a, long b) { 5807 // ... 5808 // b = a.x; 5809 // ... 5810 // } 5811 // 5812 // and IR like this 5813 // 5814 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5815 // entry: 5816 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5817 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5818 // call void @llvm.dbg.value(metadata i32 %b, "b", 5819 // ... 5820 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5821 // ... 5822 // 5823 // then the last dbg.value is describing a parameter "b" using a value that 5824 // is an argument. But since we already has used %a1 to describe a parameter 5825 // we should not handle that last dbg.value here (that would result in an 5826 // incorrect hoisting of the DBG_VALUE to the function entry). 5827 // Notice that we allow one dbg.value per IR level argument, to accommodate 5828 // for the situation with fragments above. 5829 if (VariableIsFunctionInputArg) { 5830 unsigned ArgNo = Arg->getArgNo(); 5831 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5832 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5833 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5834 return false; 5835 FuncInfo.DescribedArgs.set(ArgNo); 5836 } 5837 } 5838 5839 bool IsIndirect = false; 5840 std::optional<MachineOperand> Op; 5841 // Some arguments' frame index is recorded during argument lowering. 5842 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5843 if (FI != std::numeric_limits<int>::max()) 5844 Op = MachineOperand::CreateFI(FI); 5845 5846 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5847 if (!Op && N.getNode()) { 5848 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5849 Register Reg; 5850 if (ArgRegsAndSizes.size() == 1) 5851 Reg = ArgRegsAndSizes.front().first; 5852 5853 if (Reg && Reg.isVirtual()) { 5854 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5855 Register PR = RegInfo.getLiveInPhysReg(Reg); 5856 if (PR) 5857 Reg = PR; 5858 } 5859 if (Reg) { 5860 Op = MachineOperand::CreateReg(Reg, false); 5861 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5862 } 5863 } 5864 5865 if (!Op && N.getNode()) { 5866 // Check if frame index is available. 5867 SDValue LCandidate = peekThroughBitcasts(N); 5868 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5869 if (FrameIndexSDNode *FINode = 5870 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5871 Op = MachineOperand::CreateFI(FINode->getIndex()); 5872 } 5873 5874 if (!Op) { 5875 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5876 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5877 SplitRegs) { 5878 unsigned Offset = 0; 5879 for (const auto &RegAndSize : SplitRegs) { 5880 // If the expression is already a fragment, the current register 5881 // offset+size might extend beyond the fragment. In this case, only 5882 // the register bits that are inside the fragment are relevant. 5883 int RegFragmentSizeInBits = RegAndSize.second; 5884 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5885 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5886 // The register is entirely outside the expression fragment, 5887 // so is irrelevant for debug info. 5888 if (Offset >= ExprFragmentSizeInBits) 5889 break; 5890 // The register is partially outside the expression fragment, only 5891 // the low bits within the fragment are relevant for debug info. 5892 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5893 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5894 } 5895 } 5896 5897 auto FragmentExpr = DIExpression::createFragmentExpression( 5898 Expr, Offset, RegFragmentSizeInBits); 5899 Offset += RegAndSize.second; 5900 // If a valid fragment expression cannot be created, the variable's 5901 // correct value cannot be determined and so it is set as Undef. 5902 if (!FragmentExpr) { 5903 SDDbgValue *SDV = DAG.getConstantDbgValue( 5904 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5905 DAG.AddDbgValue(SDV, false); 5906 continue; 5907 } 5908 MachineInstr *NewMI = 5909 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5910 Kind != FuncArgumentDbgValueKind::Value); 5911 FuncInfo.ArgDbgValues.push_back(NewMI); 5912 } 5913 }; 5914 5915 // Check if ValueMap has reg number. 5916 DenseMap<const Value *, Register>::const_iterator 5917 VMI = FuncInfo.ValueMap.find(V); 5918 if (VMI != FuncInfo.ValueMap.end()) { 5919 const auto &TLI = DAG.getTargetLoweringInfo(); 5920 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5921 V->getType(), std::nullopt); 5922 if (RFV.occupiesMultipleRegs()) { 5923 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5924 return true; 5925 } 5926 5927 Op = MachineOperand::CreateReg(VMI->second, false); 5928 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5929 } else if (ArgRegsAndSizes.size() > 1) { 5930 // This was split due to the calling convention, and no virtual register 5931 // mapping exists for the value. 5932 splitMultiRegDbgValue(ArgRegsAndSizes); 5933 return true; 5934 } 5935 } 5936 5937 if (!Op) 5938 return false; 5939 5940 assert(Variable->isValidLocationForIntrinsic(DL) && 5941 "Expected inlined-at fields to agree"); 5942 MachineInstr *NewMI = nullptr; 5943 5944 if (Op->isReg()) 5945 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5946 else 5947 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5948 Variable, Expr); 5949 5950 // Otherwise, use ArgDbgValues. 5951 FuncInfo.ArgDbgValues.push_back(NewMI); 5952 return true; 5953 } 5954 5955 /// Return the appropriate SDDbgValue based on N. 5956 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5957 DILocalVariable *Variable, 5958 DIExpression *Expr, 5959 const DebugLoc &dl, 5960 unsigned DbgSDNodeOrder) { 5961 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5962 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5963 // stack slot locations. 5964 // 5965 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5966 // debug values here after optimization: 5967 // 5968 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5969 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5970 // 5971 // Both describe the direct values of their associated variables. 5972 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5973 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5974 } 5975 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5976 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5977 } 5978 5979 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5980 switch (Intrinsic) { 5981 case Intrinsic::smul_fix: 5982 return ISD::SMULFIX; 5983 case Intrinsic::umul_fix: 5984 return ISD::UMULFIX; 5985 case Intrinsic::smul_fix_sat: 5986 return ISD::SMULFIXSAT; 5987 case Intrinsic::umul_fix_sat: 5988 return ISD::UMULFIXSAT; 5989 case Intrinsic::sdiv_fix: 5990 return ISD::SDIVFIX; 5991 case Intrinsic::udiv_fix: 5992 return ISD::UDIVFIX; 5993 case Intrinsic::sdiv_fix_sat: 5994 return ISD::SDIVFIXSAT; 5995 case Intrinsic::udiv_fix_sat: 5996 return ISD::UDIVFIXSAT; 5997 default: 5998 llvm_unreachable("Unhandled fixed point intrinsic"); 5999 } 6000 } 6001 6002 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 6003 const char *FunctionName) { 6004 assert(FunctionName && "FunctionName must not be nullptr"); 6005 SDValue Callee = DAG.getExternalSymbol( 6006 FunctionName, 6007 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6008 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 6009 } 6010 6011 /// Given a @llvm.call.preallocated.setup, return the corresponding 6012 /// preallocated call. 6013 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 6014 assert(cast<CallBase>(PreallocatedSetup) 6015 ->getCalledFunction() 6016 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 6017 "expected call_preallocated_setup Value"); 6018 for (const auto *U : PreallocatedSetup->users()) { 6019 auto *UseCall = cast<CallBase>(U); 6020 const Function *Fn = UseCall->getCalledFunction(); 6021 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 6022 return UseCall; 6023 } 6024 } 6025 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 6026 } 6027 6028 /// If DI is a debug value with an EntryValue expression, lower it using the 6029 /// corresponding physical register of the associated Argument value 6030 /// (guaranteed to exist by the verifier). 6031 bool SelectionDAGBuilder::visitEntryValueDbgValue( 6032 ArrayRef<const Value *> Values, DILocalVariable *Variable, 6033 DIExpression *Expr, DebugLoc DbgLoc) { 6034 if (!Expr->isEntryValue() || !hasSingleElement(Values)) 6035 return false; 6036 6037 // These properties are guaranteed by the verifier. 6038 const Argument *Arg = cast<Argument>(Values[0]); 6039 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 6040 6041 auto ArgIt = FuncInfo.ValueMap.find(Arg); 6042 if (ArgIt == FuncInfo.ValueMap.end()) { 6043 LLVM_DEBUG( 6044 dbgs() << "Dropping dbg.value: expression is entry_value but " 6045 "couldn't find an associated register for the Argument\n"); 6046 return true; 6047 } 6048 Register ArgVReg = ArgIt->getSecond(); 6049 6050 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 6051 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 6052 SDDbgValue *SDV = DAG.getVRegDbgValue( 6053 Variable, Expr, PhysReg, false /*IsIndidrect*/, DbgLoc, SDNodeOrder); 6054 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 6055 return true; 6056 } 6057 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 6058 "couldn't find a physical register\n"); 6059 return true; 6060 } 6061 6062 /// Lower the call to the specified intrinsic function. 6063 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 6064 unsigned Intrinsic) { 6065 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6066 SDLoc sdl = getCurSDLoc(); 6067 DebugLoc dl = getCurDebugLoc(); 6068 SDValue Res; 6069 6070 SDNodeFlags Flags; 6071 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 6072 Flags.copyFMF(*FPOp); 6073 6074 switch (Intrinsic) { 6075 default: 6076 // By default, turn this into a target intrinsic node. 6077 visitTargetIntrinsic(I, Intrinsic); 6078 return; 6079 case Intrinsic::vscale: { 6080 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6081 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 6082 return; 6083 } 6084 case Intrinsic::vastart: visitVAStart(I); return; 6085 case Intrinsic::vaend: visitVAEnd(I); return; 6086 case Intrinsic::vacopy: visitVACopy(I); return; 6087 case Intrinsic::returnaddress: 6088 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 6089 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6090 getValue(I.getArgOperand(0)))); 6091 return; 6092 case Intrinsic::addressofreturnaddress: 6093 setValue(&I, 6094 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6095 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6096 return; 6097 case Intrinsic::sponentry: 6098 setValue(&I, 6099 DAG.getNode(ISD::SPONENTRY, sdl, 6100 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6101 return; 6102 case Intrinsic::frameaddress: 6103 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6104 TLI.getFrameIndexTy(DAG.getDataLayout()), 6105 getValue(I.getArgOperand(0)))); 6106 return; 6107 case Intrinsic::read_volatile_register: 6108 case Intrinsic::read_register: { 6109 Value *Reg = I.getArgOperand(0); 6110 SDValue Chain = getRoot(); 6111 SDValue RegName = 6112 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6113 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6114 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6115 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6116 setValue(&I, Res); 6117 DAG.setRoot(Res.getValue(1)); 6118 return; 6119 } 6120 case Intrinsic::write_register: { 6121 Value *Reg = I.getArgOperand(0); 6122 Value *RegValue = I.getArgOperand(1); 6123 SDValue Chain = getRoot(); 6124 SDValue RegName = 6125 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6126 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6127 RegName, getValue(RegValue))); 6128 return; 6129 } 6130 case Intrinsic::memcpy: { 6131 const auto &MCI = cast<MemCpyInst>(I); 6132 SDValue Op1 = getValue(I.getArgOperand(0)); 6133 SDValue Op2 = getValue(I.getArgOperand(1)); 6134 SDValue Op3 = getValue(I.getArgOperand(2)); 6135 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6136 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6137 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6138 Align Alignment = std::min(DstAlign, SrcAlign); 6139 bool isVol = MCI.isVolatile(); 6140 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6141 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6142 // node. 6143 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6144 SDValue MC = DAG.getMemcpy( 6145 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6146 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6147 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6148 updateDAGForMaybeTailCall(MC); 6149 return; 6150 } 6151 case Intrinsic::memcpy_inline: { 6152 const auto &MCI = cast<MemCpyInlineInst>(I); 6153 SDValue Dst = getValue(I.getArgOperand(0)); 6154 SDValue Src = getValue(I.getArgOperand(1)); 6155 SDValue Size = getValue(I.getArgOperand(2)); 6156 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6157 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6158 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6159 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6160 Align Alignment = std::min(DstAlign, SrcAlign); 6161 bool isVol = MCI.isVolatile(); 6162 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6163 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6164 // node. 6165 SDValue MC = DAG.getMemcpy( 6166 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6167 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6168 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6169 updateDAGForMaybeTailCall(MC); 6170 return; 6171 } 6172 case Intrinsic::memset: { 6173 const auto &MSI = cast<MemSetInst>(I); 6174 SDValue Op1 = getValue(I.getArgOperand(0)); 6175 SDValue Op2 = getValue(I.getArgOperand(1)); 6176 SDValue Op3 = getValue(I.getArgOperand(2)); 6177 // @llvm.memset defines 0 and 1 to both mean no alignment. 6178 Align Alignment = MSI.getDestAlign().valueOrOne(); 6179 bool isVol = MSI.isVolatile(); 6180 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6181 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6182 SDValue MS = DAG.getMemset( 6183 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6184 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6185 updateDAGForMaybeTailCall(MS); 6186 return; 6187 } 6188 case Intrinsic::memset_inline: { 6189 const auto &MSII = cast<MemSetInlineInst>(I); 6190 SDValue Dst = getValue(I.getArgOperand(0)); 6191 SDValue Value = getValue(I.getArgOperand(1)); 6192 SDValue Size = getValue(I.getArgOperand(2)); 6193 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6194 // @llvm.memset defines 0 and 1 to both mean no alignment. 6195 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6196 bool isVol = MSII.isVolatile(); 6197 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6198 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6199 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6200 /* AlwaysInline */ true, isTC, 6201 MachinePointerInfo(I.getArgOperand(0)), 6202 I.getAAMetadata()); 6203 updateDAGForMaybeTailCall(MC); 6204 return; 6205 } 6206 case Intrinsic::memmove: { 6207 const auto &MMI = cast<MemMoveInst>(I); 6208 SDValue Op1 = getValue(I.getArgOperand(0)); 6209 SDValue Op2 = getValue(I.getArgOperand(1)); 6210 SDValue Op3 = getValue(I.getArgOperand(2)); 6211 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6212 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6213 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6214 Align Alignment = std::min(DstAlign, SrcAlign); 6215 bool isVol = MMI.isVolatile(); 6216 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6217 // FIXME: Support passing different dest/src alignments to the memmove DAG 6218 // node. 6219 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6220 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6221 isTC, MachinePointerInfo(I.getArgOperand(0)), 6222 MachinePointerInfo(I.getArgOperand(1)), 6223 I.getAAMetadata(), AA); 6224 updateDAGForMaybeTailCall(MM); 6225 return; 6226 } 6227 case Intrinsic::memcpy_element_unordered_atomic: { 6228 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6229 SDValue Dst = getValue(MI.getRawDest()); 6230 SDValue Src = getValue(MI.getRawSource()); 6231 SDValue Length = getValue(MI.getLength()); 6232 6233 Type *LengthTy = MI.getLength()->getType(); 6234 unsigned ElemSz = MI.getElementSizeInBytes(); 6235 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6236 SDValue MC = 6237 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6238 isTC, MachinePointerInfo(MI.getRawDest()), 6239 MachinePointerInfo(MI.getRawSource())); 6240 updateDAGForMaybeTailCall(MC); 6241 return; 6242 } 6243 case Intrinsic::memmove_element_unordered_atomic: { 6244 auto &MI = cast<AtomicMemMoveInst>(I); 6245 SDValue Dst = getValue(MI.getRawDest()); 6246 SDValue Src = getValue(MI.getRawSource()); 6247 SDValue Length = getValue(MI.getLength()); 6248 6249 Type *LengthTy = MI.getLength()->getType(); 6250 unsigned ElemSz = MI.getElementSizeInBytes(); 6251 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6252 SDValue MC = 6253 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6254 isTC, MachinePointerInfo(MI.getRawDest()), 6255 MachinePointerInfo(MI.getRawSource())); 6256 updateDAGForMaybeTailCall(MC); 6257 return; 6258 } 6259 case Intrinsic::memset_element_unordered_atomic: { 6260 auto &MI = cast<AtomicMemSetInst>(I); 6261 SDValue Dst = getValue(MI.getRawDest()); 6262 SDValue Val = getValue(MI.getValue()); 6263 SDValue Length = getValue(MI.getLength()); 6264 6265 Type *LengthTy = MI.getLength()->getType(); 6266 unsigned ElemSz = MI.getElementSizeInBytes(); 6267 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6268 SDValue MC = 6269 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6270 isTC, MachinePointerInfo(MI.getRawDest())); 6271 updateDAGForMaybeTailCall(MC); 6272 return; 6273 } 6274 case Intrinsic::call_preallocated_setup: { 6275 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6276 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6277 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6278 getRoot(), SrcValue); 6279 setValue(&I, Res); 6280 DAG.setRoot(Res); 6281 return; 6282 } 6283 case Intrinsic::call_preallocated_arg: { 6284 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6285 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6286 SDValue Ops[3]; 6287 Ops[0] = getRoot(); 6288 Ops[1] = SrcValue; 6289 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6290 MVT::i32); // arg index 6291 SDValue Res = DAG.getNode( 6292 ISD::PREALLOCATED_ARG, sdl, 6293 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6294 setValue(&I, Res); 6295 DAG.setRoot(Res.getValue(1)); 6296 return; 6297 } 6298 case Intrinsic::dbg_declare: { 6299 const auto &DI = cast<DbgDeclareInst>(I); 6300 // Debug intrinsics are handled separately in assignment tracking mode. 6301 // Some intrinsics are handled right after Argument lowering. 6302 if (AssignmentTrackingEnabled || 6303 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6304 return; 6305 LLVM_DEBUG(dbgs() << "SelectionDAG visiting dbg_declare: " << DI << "\n"); 6306 DILocalVariable *Variable = DI.getVariable(); 6307 DIExpression *Expression = DI.getExpression(); 6308 dropDanglingDebugInfo(Variable, Expression); 6309 // Assume dbg.declare can not currently use DIArgList, i.e. 6310 // it is non-variadic. 6311 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6312 handleDebugDeclare(DI.getVariableLocationOp(0), Variable, Expression, 6313 DI.getDebugLoc()); 6314 return; 6315 } 6316 case Intrinsic::dbg_label: { 6317 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6318 DILabel *Label = DI.getLabel(); 6319 assert(Label && "Missing label"); 6320 6321 SDDbgLabel *SDV; 6322 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6323 DAG.AddDbgLabel(SDV); 6324 return; 6325 } 6326 case Intrinsic::dbg_assign: { 6327 // Debug intrinsics are handled seperately in assignment tracking mode. 6328 if (AssignmentTrackingEnabled) 6329 return; 6330 // If assignment tracking hasn't been enabled then fall through and treat 6331 // the dbg.assign as a dbg.value. 6332 [[fallthrough]]; 6333 } 6334 case Intrinsic::dbg_value: { 6335 // Debug intrinsics are handled seperately in assignment tracking mode. 6336 if (AssignmentTrackingEnabled) 6337 return; 6338 const DbgValueInst &DI = cast<DbgValueInst>(I); 6339 assert(DI.getVariable() && "Missing variable"); 6340 6341 DILocalVariable *Variable = DI.getVariable(); 6342 DIExpression *Expression = DI.getExpression(); 6343 dropDanglingDebugInfo(Variable, Expression); 6344 6345 if (DI.isKillLocation()) { 6346 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6347 return; 6348 } 6349 6350 SmallVector<Value *, 4> Values(DI.getValues()); 6351 if (Values.empty()) 6352 return; 6353 6354 bool IsVariadic = DI.hasArgList(); 6355 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6356 SDNodeOrder, IsVariadic)) 6357 addDanglingDebugInfo(Values, Variable, Expression, IsVariadic, 6358 DI.getDebugLoc(), SDNodeOrder); 6359 return; 6360 } 6361 6362 case Intrinsic::eh_typeid_for: { 6363 // Find the type id for the given typeinfo. 6364 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6365 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6366 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6367 setValue(&I, Res); 6368 return; 6369 } 6370 6371 case Intrinsic::eh_return_i32: 6372 case Intrinsic::eh_return_i64: 6373 DAG.getMachineFunction().setCallsEHReturn(true); 6374 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6375 MVT::Other, 6376 getControlRoot(), 6377 getValue(I.getArgOperand(0)), 6378 getValue(I.getArgOperand(1)))); 6379 return; 6380 case Intrinsic::eh_unwind_init: 6381 DAG.getMachineFunction().setCallsUnwindInit(true); 6382 return; 6383 case Intrinsic::eh_dwarf_cfa: 6384 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6385 TLI.getPointerTy(DAG.getDataLayout()), 6386 getValue(I.getArgOperand(0)))); 6387 return; 6388 case Intrinsic::eh_sjlj_callsite: { 6389 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6390 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6391 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6392 6393 MMI.setCurrentCallSite(CI->getZExtValue()); 6394 return; 6395 } 6396 case Intrinsic::eh_sjlj_functioncontext: { 6397 // Get and store the index of the function context. 6398 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6399 AllocaInst *FnCtx = 6400 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6401 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6402 MFI.setFunctionContextIndex(FI); 6403 return; 6404 } 6405 case Intrinsic::eh_sjlj_setjmp: { 6406 SDValue Ops[2]; 6407 Ops[0] = getRoot(); 6408 Ops[1] = getValue(I.getArgOperand(0)); 6409 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6410 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6411 setValue(&I, Op.getValue(0)); 6412 DAG.setRoot(Op.getValue(1)); 6413 return; 6414 } 6415 case Intrinsic::eh_sjlj_longjmp: 6416 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6417 getRoot(), getValue(I.getArgOperand(0)))); 6418 return; 6419 case Intrinsic::eh_sjlj_setup_dispatch: 6420 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6421 getRoot())); 6422 return; 6423 case Intrinsic::masked_gather: 6424 visitMaskedGather(I); 6425 return; 6426 case Intrinsic::masked_load: 6427 visitMaskedLoad(I); 6428 return; 6429 case Intrinsic::masked_scatter: 6430 visitMaskedScatter(I); 6431 return; 6432 case Intrinsic::masked_store: 6433 visitMaskedStore(I); 6434 return; 6435 case Intrinsic::masked_expandload: 6436 visitMaskedLoad(I, true /* IsExpanding */); 6437 return; 6438 case Intrinsic::masked_compressstore: 6439 visitMaskedStore(I, true /* IsCompressing */); 6440 return; 6441 case Intrinsic::powi: 6442 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6443 getValue(I.getArgOperand(1)), DAG)); 6444 return; 6445 case Intrinsic::log: 6446 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6447 return; 6448 case Intrinsic::log2: 6449 setValue(&I, 6450 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6451 return; 6452 case Intrinsic::log10: 6453 setValue(&I, 6454 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6455 return; 6456 case Intrinsic::exp: 6457 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6458 return; 6459 case Intrinsic::exp2: 6460 setValue(&I, 6461 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6462 return; 6463 case Intrinsic::pow: 6464 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6465 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6466 return; 6467 case Intrinsic::sqrt: 6468 case Intrinsic::fabs: 6469 case Intrinsic::sin: 6470 case Intrinsic::cos: 6471 case Intrinsic::exp10: 6472 case Intrinsic::floor: 6473 case Intrinsic::ceil: 6474 case Intrinsic::trunc: 6475 case Intrinsic::rint: 6476 case Intrinsic::nearbyint: 6477 case Intrinsic::round: 6478 case Intrinsic::roundeven: 6479 case Intrinsic::canonicalize: { 6480 unsigned Opcode; 6481 switch (Intrinsic) { 6482 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6483 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6484 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6485 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6486 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6487 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6488 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6489 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6490 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6491 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6492 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6493 case Intrinsic::round: Opcode = ISD::FROUND; break; 6494 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6495 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6496 } 6497 6498 setValue(&I, DAG.getNode(Opcode, sdl, 6499 getValue(I.getArgOperand(0)).getValueType(), 6500 getValue(I.getArgOperand(0)), Flags)); 6501 return; 6502 } 6503 case Intrinsic::lround: 6504 case Intrinsic::llround: 6505 case Intrinsic::lrint: 6506 case Intrinsic::llrint: { 6507 unsigned Opcode; 6508 switch (Intrinsic) { 6509 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6510 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6511 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6512 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6513 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6514 } 6515 6516 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6517 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6518 getValue(I.getArgOperand(0)))); 6519 return; 6520 } 6521 case Intrinsic::minnum: 6522 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6523 getValue(I.getArgOperand(0)).getValueType(), 6524 getValue(I.getArgOperand(0)), 6525 getValue(I.getArgOperand(1)), Flags)); 6526 return; 6527 case Intrinsic::maxnum: 6528 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6529 getValue(I.getArgOperand(0)).getValueType(), 6530 getValue(I.getArgOperand(0)), 6531 getValue(I.getArgOperand(1)), Flags)); 6532 return; 6533 case Intrinsic::minimum: 6534 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6535 getValue(I.getArgOperand(0)).getValueType(), 6536 getValue(I.getArgOperand(0)), 6537 getValue(I.getArgOperand(1)), Flags)); 6538 return; 6539 case Intrinsic::maximum: 6540 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6541 getValue(I.getArgOperand(0)).getValueType(), 6542 getValue(I.getArgOperand(0)), 6543 getValue(I.getArgOperand(1)), Flags)); 6544 return; 6545 case Intrinsic::copysign: 6546 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6547 getValue(I.getArgOperand(0)).getValueType(), 6548 getValue(I.getArgOperand(0)), 6549 getValue(I.getArgOperand(1)), Flags)); 6550 return; 6551 case Intrinsic::ldexp: 6552 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6553 getValue(I.getArgOperand(0)).getValueType(), 6554 getValue(I.getArgOperand(0)), 6555 getValue(I.getArgOperand(1)), Flags)); 6556 return; 6557 case Intrinsic::frexp: { 6558 SmallVector<EVT, 2> ValueVTs; 6559 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6560 SDVTList VTs = DAG.getVTList(ValueVTs); 6561 setValue(&I, 6562 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6563 return; 6564 } 6565 case Intrinsic::arithmetic_fence: { 6566 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6567 getValue(I.getArgOperand(0)).getValueType(), 6568 getValue(I.getArgOperand(0)), Flags)); 6569 return; 6570 } 6571 case Intrinsic::fma: 6572 setValue(&I, DAG.getNode( 6573 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6574 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6575 getValue(I.getArgOperand(2)), Flags)); 6576 return; 6577 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6578 case Intrinsic::INTRINSIC: 6579 #include "llvm/IR/ConstrainedOps.def" 6580 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6581 return; 6582 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6583 #include "llvm/IR/VPIntrinsics.def" 6584 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6585 return; 6586 case Intrinsic::fptrunc_round: { 6587 // Get the last argument, the metadata and convert it to an integer in the 6588 // call 6589 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6590 std::optional<RoundingMode> RoundMode = 6591 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6592 6593 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6594 6595 // Propagate fast-math-flags from IR to node(s). 6596 SDNodeFlags Flags; 6597 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6598 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6599 6600 SDValue Result; 6601 Result = DAG.getNode( 6602 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6603 DAG.getTargetConstant((int)*RoundMode, sdl, 6604 TLI.getPointerTy(DAG.getDataLayout()))); 6605 setValue(&I, Result); 6606 6607 return; 6608 } 6609 case Intrinsic::fmuladd: { 6610 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6611 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6612 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6613 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6614 getValue(I.getArgOperand(0)).getValueType(), 6615 getValue(I.getArgOperand(0)), 6616 getValue(I.getArgOperand(1)), 6617 getValue(I.getArgOperand(2)), Flags)); 6618 } else { 6619 // TODO: Intrinsic calls should have fast-math-flags. 6620 SDValue Mul = DAG.getNode( 6621 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6622 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6623 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6624 getValue(I.getArgOperand(0)).getValueType(), 6625 Mul, getValue(I.getArgOperand(2)), Flags); 6626 setValue(&I, Add); 6627 } 6628 return; 6629 } 6630 case Intrinsic::convert_to_fp16: 6631 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6632 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6633 getValue(I.getArgOperand(0)), 6634 DAG.getTargetConstant(0, sdl, 6635 MVT::i32)))); 6636 return; 6637 case Intrinsic::convert_from_fp16: 6638 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6639 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6640 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6641 getValue(I.getArgOperand(0))))); 6642 return; 6643 case Intrinsic::fptosi_sat: { 6644 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6645 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6646 getValue(I.getArgOperand(0)), 6647 DAG.getValueType(VT.getScalarType()))); 6648 return; 6649 } 6650 case Intrinsic::fptoui_sat: { 6651 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6652 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6653 getValue(I.getArgOperand(0)), 6654 DAG.getValueType(VT.getScalarType()))); 6655 return; 6656 } 6657 case Intrinsic::set_rounding: 6658 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6659 {getRoot(), getValue(I.getArgOperand(0))}); 6660 setValue(&I, Res); 6661 DAG.setRoot(Res.getValue(0)); 6662 return; 6663 case Intrinsic::is_fpclass: { 6664 const DataLayout DLayout = DAG.getDataLayout(); 6665 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6666 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6667 FPClassTest Test = static_cast<FPClassTest>( 6668 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6669 MachineFunction &MF = DAG.getMachineFunction(); 6670 const Function &F = MF.getFunction(); 6671 SDValue Op = getValue(I.getArgOperand(0)); 6672 SDNodeFlags Flags; 6673 Flags.setNoFPExcept( 6674 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6675 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6676 // expansion can use illegal types. Making expansion early allows 6677 // legalizing these types prior to selection. 6678 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6679 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6680 setValue(&I, Result); 6681 return; 6682 } 6683 6684 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6685 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6686 setValue(&I, V); 6687 return; 6688 } 6689 case Intrinsic::get_fpenv: { 6690 const DataLayout DLayout = DAG.getDataLayout(); 6691 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6692 Align TempAlign = DAG.getEVTAlign(EnvVT); 6693 SDValue Chain = getRoot(); 6694 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6695 // and temporary storage in stack. 6696 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6697 Res = DAG.getNode( 6698 ISD::GET_FPENV, sdl, 6699 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6700 MVT::Other), 6701 Chain); 6702 } else { 6703 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6704 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6705 auto MPI = 6706 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6707 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6708 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6709 TempAlign); 6710 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6711 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6712 } 6713 setValue(&I, Res); 6714 DAG.setRoot(Res.getValue(1)); 6715 return; 6716 } 6717 case Intrinsic::set_fpenv: { 6718 const DataLayout DLayout = DAG.getDataLayout(); 6719 SDValue Env = getValue(I.getArgOperand(0)); 6720 EVT EnvVT = Env.getValueType(); 6721 Align TempAlign = DAG.getEVTAlign(EnvVT); 6722 SDValue Chain = getRoot(); 6723 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6724 // environment from memory. 6725 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6726 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6727 } else { 6728 // Allocate space in stack, copy environment bits into it and use this 6729 // memory in SET_FPENV_MEM. 6730 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6731 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6732 auto MPI = 6733 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6734 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6735 MachineMemOperand::MOStore); 6736 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6737 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6738 TempAlign); 6739 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6740 } 6741 DAG.setRoot(Chain); 6742 return; 6743 } 6744 case Intrinsic::reset_fpenv: 6745 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6746 return; 6747 case Intrinsic::get_fpmode: 6748 Res = DAG.getNode( 6749 ISD::GET_FPMODE, sdl, 6750 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6751 MVT::Other), 6752 DAG.getRoot()); 6753 setValue(&I, Res); 6754 DAG.setRoot(Res.getValue(1)); 6755 return; 6756 case Intrinsic::set_fpmode: 6757 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6758 getValue(I.getArgOperand(0))); 6759 DAG.setRoot(Res); 6760 return; 6761 case Intrinsic::reset_fpmode: { 6762 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6763 DAG.setRoot(Res); 6764 return; 6765 } 6766 case Intrinsic::pcmarker: { 6767 SDValue Tmp = getValue(I.getArgOperand(0)); 6768 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6769 return; 6770 } 6771 case Intrinsic::readcyclecounter: { 6772 SDValue Op = getRoot(); 6773 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6774 DAG.getVTList(MVT::i64, MVT::Other), Op); 6775 setValue(&I, Res); 6776 DAG.setRoot(Res.getValue(1)); 6777 return; 6778 } 6779 case Intrinsic::bitreverse: 6780 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6781 getValue(I.getArgOperand(0)).getValueType(), 6782 getValue(I.getArgOperand(0)))); 6783 return; 6784 case Intrinsic::bswap: 6785 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6786 getValue(I.getArgOperand(0)).getValueType(), 6787 getValue(I.getArgOperand(0)))); 6788 return; 6789 case Intrinsic::cttz: { 6790 SDValue Arg = getValue(I.getArgOperand(0)); 6791 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6792 EVT Ty = Arg.getValueType(); 6793 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6794 sdl, Ty, Arg)); 6795 return; 6796 } 6797 case Intrinsic::ctlz: { 6798 SDValue Arg = getValue(I.getArgOperand(0)); 6799 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6800 EVT Ty = Arg.getValueType(); 6801 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6802 sdl, Ty, Arg)); 6803 return; 6804 } 6805 case Intrinsic::ctpop: { 6806 SDValue Arg = getValue(I.getArgOperand(0)); 6807 EVT Ty = Arg.getValueType(); 6808 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6809 return; 6810 } 6811 case Intrinsic::fshl: 6812 case Intrinsic::fshr: { 6813 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6814 SDValue X = getValue(I.getArgOperand(0)); 6815 SDValue Y = getValue(I.getArgOperand(1)); 6816 SDValue Z = getValue(I.getArgOperand(2)); 6817 EVT VT = X.getValueType(); 6818 6819 if (X == Y) { 6820 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6821 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6822 } else { 6823 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6824 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6825 } 6826 return; 6827 } 6828 case Intrinsic::sadd_sat: { 6829 SDValue Op1 = getValue(I.getArgOperand(0)); 6830 SDValue Op2 = getValue(I.getArgOperand(1)); 6831 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6832 return; 6833 } 6834 case Intrinsic::uadd_sat: { 6835 SDValue Op1 = getValue(I.getArgOperand(0)); 6836 SDValue Op2 = getValue(I.getArgOperand(1)); 6837 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6838 return; 6839 } 6840 case Intrinsic::ssub_sat: { 6841 SDValue Op1 = getValue(I.getArgOperand(0)); 6842 SDValue Op2 = getValue(I.getArgOperand(1)); 6843 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6844 return; 6845 } 6846 case Intrinsic::usub_sat: { 6847 SDValue Op1 = getValue(I.getArgOperand(0)); 6848 SDValue Op2 = getValue(I.getArgOperand(1)); 6849 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6850 return; 6851 } 6852 case Intrinsic::sshl_sat: { 6853 SDValue Op1 = getValue(I.getArgOperand(0)); 6854 SDValue Op2 = getValue(I.getArgOperand(1)); 6855 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6856 return; 6857 } 6858 case Intrinsic::ushl_sat: { 6859 SDValue Op1 = getValue(I.getArgOperand(0)); 6860 SDValue Op2 = getValue(I.getArgOperand(1)); 6861 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6862 return; 6863 } 6864 case Intrinsic::smul_fix: 6865 case Intrinsic::umul_fix: 6866 case Intrinsic::smul_fix_sat: 6867 case Intrinsic::umul_fix_sat: { 6868 SDValue Op1 = getValue(I.getArgOperand(0)); 6869 SDValue Op2 = getValue(I.getArgOperand(1)); 6870 SDValue Op3 = getValue(I.getArgOperand(2)); 6871 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6872 Op1.getValueType(), Op1, Op2, Op3)); 6873 return; 6874 } 6875 case Intrinsic::sdiv_fix: 6876 case Intrinsic::udiv_fix: 6877 case Intrinsic::sdiv_fix_sat: 6878 case Intrinsic::udiv_fix_sat: { 6879 SDValue Op1 = getValue(I.getArgOperand(0)); 6880 SDValue Op2 = getValue(I.getArgOperand(1)); 6881 SDValue Op3 = getValue(I.getArgOperand(2)); 6882 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6883 Op1, Op2, Op3, DAG, TLI)); 6884 return; 6885 } 6886 case Intrinsic::smax: { 6887 SDValue Op1 = getValue(I.getArgOperand(0)); 6888 SDValue Op2 = getValue(I.getArgOperand(1)); 6889 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6890 return; 6891 } 6892 case Intrinsic::smin: { 6893 SDValue Op1 = getValue(I.getArgOperand(0)); 6894 SDValue Op2 = getValue(I.getArgOperand(1)); 6895 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6896 return; 6897 } 6898 case Intrinsic::umax: { 6899 SDValue Op1 = getValue(I.getArgOperand(0)); 6900 SDValue Op2 = getValue(I.getArgOperand(1)); 6901 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6902 return; 6903 } 6904 case Intrinsic::umin: { 6905 SDValue Op1 = getValue(I.getArgOperand(0)); 6906 SDValue Op2 = getValue(I.getArgOperand(1)); 6907 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6908 return; 6909 } 6910 case Intrinsic::abs: { 6911 // TODO: Preserve "int min is poison" arg in SDAG? 6912 SDValue Op1 = getValue(I.getArgOperand(0)); 6913 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6914 return; 6915 } 6916 case Intrinsic::stacksave: { 6917 SDValue Op = getRoot(); 6918 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6919 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6920 setValue(&I, Res); 6921 DAG.setRoot(Res.getValue(1)); 6922 return; 6923 } 6924 case Intrinsic::stackrestore: 6925 Res = getValue(I.getArgOperand(0)); 6926 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6927 return; 6928 case Intrinsic::get_dynamic_area_offset: { 6929 SDValue Op = getRoot(); 6930 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6931 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6932 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6933 // target. 6934 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6935 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6936 " intrinsic!"); 6937 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6938 Op); 6939 DAG.setRoot(Op); 6940 setValue(&I, Res); 6941 return; 6942 } 6943 case Intrinsic::stackguard: { 6944 MachineFunction &MF = DAG.getMachineFunction(); 6945 const Module &M = *MF.getFunction().getParent(); 6946 SDValue Chain = getRoot(); 6947 if (TLI.useLoadStackGuardNode()) { 6948 Res = getLoadStackGuard(DAG, sdl, Chain); 6949 } else { 6950 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6951 const Value *Global = TLI.getSDagStackGuard(M); 6952 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6953 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6954 MachinePointerInfo(Global, 0), Align, 6955 MachineMemOperand::MOVolatile); 6956 } 6957 if (TLI.useStackGuardXorFP()) 6958 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6959 DAG.setRoot(Chain); 6960 setValue(&I, Res); 6961 return; 6962 } 6963 case Intrinsic::stackprotector: { 6964 // Emit code into the DAG to store the stack guard onto the stack. 6965 MachineFunction &MF = DAG.getMachineFunction(); 6966 MachineFrameInfo &MFI = MF.getFrameInfo(); 6967 SDValue Src, Chain = getRoot(); 6968 6969 if (TLI.useLoadStackGuardNode()) 6970 Src = getLoadStackGuard(DAG, sdl, Chain); 6971 else 6972 Src = getValue(I.getArgOperand(0)); // The guard's value. 6973 6974 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6975 6976 int FI = FuncInfo.StaticAllocaMap[Slot]; 6977 MFI.setStackProtectorIndex(FI); 6978 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6979 6980 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6981 6982 // Store the stack protector onto the stack. 6983 Res = DAG.getStore( 6984 Chain, sdl, Src, FIN, 6985 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6986 MaybeAlign(), MachineMemOperand::MOVolatile); 6987 setValue(&I, Res); 6988 DAG.setRoot(Res); 6989 return; 6990 } 6991 case Intrinsic::objectsize: 6992 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6993 6994 case Intrinsic::is_constant: 6995 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6996 6997 case Intrinsic::annotation: 6998 case Intrinsic::ptr_annotation: 6999 case Intrinsic::launder_invariant_group: 7000 case Intrinsic::strip_invariant_group: 7001 // Drop the intrinsic, but forward the value 7002 setValue(&I, getValue(I.getOperand(0))); 7003 return; 7004 7005 case Intrinsic::assume: 7006 case Intrinsic::experimental_noalias_scope_decl: 7007 case Intrinsic::var_annotation: 7008 case Intrinsic::sideeffect: 7009 // Discard annotate attributes, noalias scope declarations, assumptions, and 7010 // artificial side-effects. 7011 return; 7012 7013 case Intrinsic::codeview_annotation: { 7014 // Emit a label associated with this metadata. 7015 MachineFunction &MF = DAG.getMachineFunction(); 7016 MCSymbol *Label = 7017 MF.getMMI().getContext().createTempSymbol("annotation", true); 7018 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 7019 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 7020 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 7021 DAG.setRoot(Res); 7022 return; 7023 } 7024 7025 case Intrinsic::init_trampoline: { 7026 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 7027 7028 SDValue Ops[6]; 7029 Ops[0] = getRoot(); 7030 Ops[1] = getValue(I.getArgOperand(0)); 7031 Ops[2] = getValue(I.getArgOperand(1)); 7032 Ops[3] = getValue(I.getArgOperand(2)); 7033 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 7034 Ops[5] = DAG.getSrcValue(F); 7035 7036 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 7037 7038 DAG.setRoot(Res); 7039 return; 7040 } 7041 case Intrinsic::adjust_trampoline: 7042 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 7043 TLI.getPointerTy(DAG.getDataLayout()), 7044 getValue(I.getArgOperand(0)))); 7045 return; 7046 case Intrinsic::gcroot: { 7047 assert(DAG.getMachineFunction().getFunction().hasGC() && 7048 "only valid in functions with gc specified, enforced by Verifier"); 7049 assert(GFI && "implied by previous"); 7050 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7051 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7052 7053 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7054 GFI->addStackRoot(FI->getIndex(), TypeMap); 7055 return; 7056 } 7057 case Intrinsic::gcread: 7058 case Intrinsic::gcwrite: 7059 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7060 case Intrinsic::get_rounding: 7061 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7062 setValue(&I, Res); 7063 DAG.setRoot(Res.getValue(1)); 7064 return; 7065 7066 case Intrinsic::expect: 7067 // Just replace __builtin_expect(exp, c) with EXP. 7068 setValue(&I, getValue(I.getArgOperand(0))); 7069 return; 7070 7071 case Intrinsic::ubsantrap: 7072 case Intrinsic::debugtrap: 7073 case Intrinsic::trap: { 7074 StringRef TrapFuncName = 7075 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7076 if (TrapFuncName.empty()) { 7077 switch (Intrinsic) { 7078 case Intrinsic::trap: 7079 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7080 break; 7081 case Intrinsic::debugtrap: 7082 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7083 break; 7084 case Intrinsic::ubsantrap: 7085 DAG.setRoot(DAG.getNode( 7086 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7087 DAG.getTargetConstant( 7088 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7089 MVT::i32))); 7090 break; 7091 default: llvm_unreachable("unknown trap intrinsic"); 7092 } 7093 return; 7094 } 7095 TargetLowering::ArgListTy Args; 7096 if (Intrinsic == Intrinsic::ubsantrap) { 7097 Args.push_back(TargetLoweringBase::ArgListEntry()); 7098 Args[0].Val = I.getArgOperand(0); 7099 Args[0].Node = getValue(Args[0].Val); 7100 Args[0].Ty = Args[0].Val->getType(); 7101 } 7102 7103 TargetLowering::CallLoweringInfo CLI(DAG); 7104 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7105 CallingConv::C, I.getType(), 7106 DAG.getExternalSymbol(TrapFuncName.data(), 7107 TLI.getPointerTy(DAG.getDataLayout())), 7108 std::move(Args)); 7109 7110 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7111 DAG.setRoot(Result.second); 7112 return; 7113 } 7114 7115 case Intrinsic::uadd_with_overflow: 7116 case Intrinsic::sadd_with_overflow: 7117 case Intrinsic::usub_with_overflow: 7118 case Intrinsic::ssub_with_overflow: 7119 case Intrinsic::umul_with_overflow: 7120 case Intrinsic::smul_with_overflow: { 7121 ISD::NodeType Op; 7122 switch (Intrinsic) { 7123 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7124 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7125 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7126 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7127 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7128 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7129 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7130 } 7131 SDValue Op1 = getValue(I.getArgOperand(0)); 7132 SDValue Op2 = getValue(I.getArgOperand(1)); 7133 7134 EVT ResultVT = Op1.getValueType(); 7135 EVT OverflowVT = MVT::i1; 7136 if (ResultVT.isVector()) 7137 OverflowVT = EVT::getVectorVT( 7138 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7139 7140 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7141 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7142 return; 7143 } 7144 case Intrinsic::prefetch: { 7145 SDValue Ops[5]; 7146 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7147 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7148 Ops[0] = DAG.getRoot(); 7149 Ops[1] = getValue(I.getArgOperand(0)); 7150 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7151 MVT::i32); 7152 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7153 MVT::i32); 7154 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7155 MVT::i32); 7156 SDValue Result = DAG.getMemIntrinsicNode( 7157 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7158 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7159 /* align */ std::nullopt, Flags); 7160 7161 // Chain the prefetch in parallel with any pending loads, to stay out of 7162 // the way of later optimizations. 7163 PendingLoads.push_back(Result); 7164 Result = getRoot(); 7165 DAG.setRoot(Result); 7166 return; 7167 } 7168 case Intrinsic::lifetime_start: 7169 case Intrinsic::lifetime_end: { 7170 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7171 // Stack coloring is not enabled in O0, discard region information. 7172 if (TM.getOptLevel() == CodeGenOptLevel::None) 7173 return; 7174 7175 const int64_t ObjectSize = 7176 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7177 Value *const ObjectPtr = I.getArgOperand(1); 7178 SmallVector<const Value *, 4> Allocas; 7179 getUnderlyingObjects(ObjectPtr, Allocas); 7180 7181 for (const Value *Alloca : Allocas) { 7182 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7183 7184 // Could not find an Alloca. 7185 if (!LifetimeObject) 7186 continue; 7187 7188 // First check that the Alloca is static, otherwise it won't have a 7189 // valid frame index. 7190 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7191 if (SI == FuncInfo.StaticAllocaMap.end()) 7192 return; 7193 7194 const int FrameIndex = SI->second; 7195 int64_t Offset; 7196 if (GetPointerBaseWithConstantOffset( 7197 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7198 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7199 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7200 Offset); 7201 DAG.setRoot(Res); 7202 } 7203 return; 7204 } 7205 case Intrinsic::pseudoprobe: { 7206 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7207 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7208 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7209 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7210 DAG.setRoot(Res); 7211 return; 7212 } 7213 case Intrinsic::invariant_start: 7214 // Discard region information. 7215 setValue(&I, 7216 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7217 return; 7218 case Intrinsic::invariant_end: 7219 // Discard region information. 7220 return; 7221 case Intrinsic::clear_cache: 7222 /// FunctionName may be null. 7223 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7224 lowerCallToExternalSymbol(I, FunctionName); 7225 return; 7226 case Intrinsic::donothing: 7227 case Intrinsic::seh_try_begin: 7228 case Intrinsic::seh_scope_begin: 7229 case Intrinsic::seh_try_end: 7230 case Intrinsic::seh_scope_end: 7231 // ignore 7232 return; 7233 case Intrinsic::experimental_stackmap: 7234 visitStackmap(I); 7235 return; 7236 case Intrinsic::experimental_patchpoint_void: 7237 case Intrinsic::experimental_patchpoint_i64: 7238 visitPatchpoint(I); 7239 return; 7240 case Intrinsic::experimental_gc_statepoint: 7241 LowerStatepoint(cast<GCStatepointInst>(I)); 7242 return; 7243 case Intrinsic::experimental_gc_result: 7244 visitGCResult(cast<GCResultInst>(I)); 7245 return; 7246 case Intrinsic::experimental_gc_relocate: 7247 visitGCRelocate(cast<GCRelocateInst>(I)); 7248 return; 7249 case Intrinsic::instrprof_cover: 7250 llvm_unreachable("instrprof failed to lower a cover"); 7251 case Intrinsic::instrprof_increment: 7252 llvm_unreachable("instrprof failed to lower an increment"); 7253 case Intrinsic::instrprof_timestamp: 7254 llvm_unreachable("instrprof failed to lower a timestamp"); 7255 case Intrinsic::instrprof_value_profile: 7256 llvm_unreachable("instrprof failed to lower a value profiling call"); 7257 case Intrinsic::instrprof_mcdc_parameters: 7258 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7259 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7260 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7261 case Intrinsic::instrprof_mcdc_condbitmap_update: 7262 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7263 case Intrinsic::localescape: { 7264 MachineFunction &MF = DAG.getMachineFunction(); 7265 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7266 7267 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7268 // is the same on all targets. 7269 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7270 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7271 if (isa<ConstantPointerNull>(Arg)) 7272 continue; // Skip null pointers. They represent a hole in index space. 7273 AllocaInst *Slot = cast<AllocaInst>(Arg); 7274 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7275 "can only escape static allocas"); 7276 int FI = FuncInfo.StaticAllocaMap[Slot]; 7277 MCSymbol *FrameAllocSym = 7278 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7279 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7280 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7281 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7282 .addSym(FrameAllocSym) 7283 .addFrameIndex(FI); 7284 } 7285 7286 return; 7287 } 7288 7289 case Intrinsic::localrecover: { 7290 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7291 MachineFunction &MF = DAG.getMachineFunction(); 7292 7293 // Get the symbol that defines the frame offset. 7294 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7295 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7296 unsigned IdxVal = 7297 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7298 MCSymbol *FrameAllocSym = 7299 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7300 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7301 7302 Value *FP = I.getArgOperand(1); 7303 SDValue FPVal = getValue(FP); 7304 EVT PtrVT = FPVal.getValueType(); 7305 7306 // Create a MCSymbol for the label to avoid any target lowering 7307 // that would make this PC relative. 7308 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7309 SDValue OffsetVal = 7310 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7311 7312 // Add the offset to the FP. 7313 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7314 setValue(&I, Add); 7315 7316 return; 7317 } 7318 7319 case Intrinsic::eh_exceptionpointer: 7320 case Intrinsic::eh_exceptioncode: { 7321 // Get the exception pointer vreg, copy from it, and resize it to fit. 7322 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7323 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7324 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7325 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7326 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7327 if (Intrinsic == Intrinsic::eh_exceptioncode) 7328 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7329 setValue(&I, N); 7330 return; 7331 } 7332 case Intrinsic::xray_customevent: { 7333 // Here we want to make sure that the intrinsic behaves as if it has a 7334 // specific calling convention. 7335 const auto &Triple = DAG.getTarget().getTargetTriple(); 7336 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7337 return; 7338 7339 SmallVector<SDValue, 8> Ops; 7340 7341 // We want to say that we always want the arguments in registers. 7342 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7343 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7344 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7345 SDValue Chain = getRoot(); 7346 Ops.push_back(LogEntryVal); 7347 Ops.push_back(StrSizeVal); 7348 Ops.push_back(Chain); 7349 7350 // We need to enforce the calling convention for the callsite, so that 7351 // argument ordering is enforced correctly, and that register allocation can 7352 // see that some registers may be assumed clobbered and have to preserve 7353 // them across calls to the intrinsic. 7354 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7355 sdl, NodeTys, Ops); 7356 SDValue patchableNode = SDValue(MN, 0); 7357 DAG.setRoot(patchableNode); 7358 setValue(&I, patchableNode); 7359 return; 7360 } 7361 case Intrinsic::xray_typedevent: { 7362 // Here we want to make sure that the intrinsic behaves as if it has a 7363 // specific calling convention. 7364 const auto &Triple = DAG.getTarget().getTargetTriple(); 7365 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7366 return; 7367 7368 SmallVector<SDValue, 8> Ops; 7369 7370 // We want to say that we always want the arguments in registers. 7371 // It's unclear to me how manipulating the selection DAG here forces callers 7372 // to provide arguments in registers instead of on the stack. 7373 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7374 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7375 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7376 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7377 SDValue Chain = getRoot(); 7378 Ops.push_back(LogTypeId); 7379 Ops.push_back(LogEntryVal); 7380 Ops.push_back(StrSizeVal); 7381 Ops.push_back(Chain); 7382 7383 // We need to enforce the calling convention for the callsite, so that 7384 // argument ordering is enforced correctly, and that register allocation can 7385 // see that some registers may be assumed clobbered and have to preserve 7386 // them across calls to the intrinsic. 7387 MachineSDNode *MN = DAG.getMachineNode( 7388 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7389 SDValue patchableNode = SDValue(MN, 0); 7390 DAG.setRoot(patchableNode); 7391 setValue(&I, patchableNode); 7392 return; 7393 } 7394 case Intrinsic::experimental_deoptimize: 7395 LowerDeoptimizeCall(&I); 7396 return; 7397 case Intrinsic::experimental_stepvector: 7398 visitStepVector(I); 7399 return; 7400 case Intrinsic::vector_reduce_fadd: 7401 case Intrinsic::vector_reduce_fmul: 7402 case Intrinsic::vector_reduce_add: 7403 case Intrinsic::vector_reduce_mul: 7404 case Intrinsic::vector_reduce_and: 7405 case Intrinsic::vector_reduce_or: 7406 case Intrinsic::vector_reduce_xor: 7407 case Intrinsic::vector_reduce_smax: 7408 case Intrinsic::vector_reduce_smin: 7409 case Intrinsic::vector_reduce_umax: 7410 case Intrinsic::vector_reduce_umin: 7411 case Intrinsic::vector_reduce_fmax: 7412 case Intrinsic::vector_reduce_fmin: 7413 case Intrinsic::vector_reduce_fmaximum: 7414 case Intrinsic::vector_reduce_fminimum: 7415 visitVectorReduce(I, Intrinsic); 7416 return; 7417 7418 case Intrinsic::icall_branch_funnel: { 7419 SmallVector<SDValue, 16> Ops; 7420 Ops.push_back(getValue(I.getArgOperand(0))); 7421 7422 int64_t Offset; 7423 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7424 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7425 if (!Base) 7426 report_fatal_error( 7427 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7428 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7429 7430 struct BranchFunnelTarget { 7431 int64_t Offset; 7432 SDValue Target; 7433 }; 7434 SmallVector<BranchFunnelTarget, 8> Targets; 7435 7436 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7437 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7438 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7439 if (ElemBase != Base) 7440 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7441 "to the same GlobalValue"); 7442 7443 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7444 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7445 if (!GA) 7446 report_fatal_error( 7447 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7448 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7449 GA->getGlobal(), sdl, Val.getValueType(), 7450 GA->getOffset())}); 7451 } 7452 llvm::sort(Targets, 7453 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7454 return T1.Offset < T2.Offset; 7455 }); 7456 7457 for (auto &T : Targets) { 7458 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7459 Ops.push_back(T.Target); 7460 } 7461 7462 Ops.push_back(DAG.getRoot()); // Chain 7463 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7464 MVT::Other, Ops), 7465 0); 7466 DAG.setRoot(N); 7467 setValue(&I, N); 7468 HasTailCall = true; 7469 return; 7470 } 7471 7472 case Intrinsic::wasm_landingpad_index: 7473 // Information this intrinsic contained has been transferred to 7474 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7475 // delete it now. 7476 return; 7477 7478 case Intrinsic::aarch64_settag: 7479 case Intrinsic::aarch64_settag_zero: { 7480 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7481 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7482 SDValue Val = TSI.EmitTargetCodeForSetTag( 7483 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7484 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7485 ZeroMemory); 7486 DAG.setRoot(Val); 7487 setValue(&I, Val); 7488 return; 7489 } 7490 case Intrinsic::amdgcn_cs_chain: { 7491 assert(I.arg_size() == 5 && "Additional args not supported yet"); 7492 assert(cast<ConstantInt>(I.getOperand(4))->isZero() && 7493 "Non-zero flags not supported yet"); 7494 7495 // At this point we don't care if it's amdgpu_cs_chain or 7496 // amdgpu_cs_chain_preserve. 7497 CallingConv::ID CC = CallingConv::AMDGPU_CS_Chain; 7498 7499 Type *RetTy = I.getType(); 7500 assert(RetTy->isVoidTy() && "Should not return"); 7501 7502 SDValue Callee = getValue(I.getOperand(0)); 7503 7504 // We only have 2 actual args: one for the SGPRs and one for the VGPRs. 7505 // We'll also tack the value of the EXEC mask at the end. 7506 TargetLowering::ArgListTy Args; 7507 Args.reserve(3); 7508 7509 for (unsigned Idx : {2, 3, 1}) { 7510 TargetLowering::ArgListEntry Arg; 7511 Arg.Node = getValue(I.getOperand(Idx)); 7512 Arg.Ty = I.getOperand(Idx)->getType(); 7513 Arg.setAttributes(&I, Idx); 7514 Args.push_back(Arg); 7515 } 7516 7517 assert(Args[0].IsInReg && "SGPR args should be marked inreg"); 7518 assert(!Args[1].IsInReg && "VGPR args should not be marked inreg"); 7519 Args[2].IsInReg = true; // EXEC should be inreg 7520 7521 TargetLowering::CallLoweringInfo CLI(DAG); 7522 CLI.setDebugLoc(getCurSDLoc()) 7523 .setChain(getRoot()) 7524 .setCallee(CC, RetTy, Callee, std::move(Args)) 7525 .setNoReturn(true) 7526 .setTailCall(true) 7527 .setConvergent(I.isConvergent()); 7528 CLI.CB = &I; 7529 std::pair<SDValue, SDValue> Result = 7530 lowerInvokable(CLI, /*EHPadBB*/ nullptr); 7531 (void)Result; 7532 assert(!Result.first.getNode() && !Result.second.getNode() && 7533 "Should've lowered as tail call"); 7534 7535 HasTailCall = true; 7536 return; 7537 } 7538 case Intrinsic::ptrmask: { 7539 SDValue Ptr = getValue(I.getOperand(0)); 7540 SDValue Mask = getValue(I.getOperand(1)); 7541 7542 EVT PtrVT = Ptr.getValueType(); 7543 assert(PtrVT == Mask.getValueType() && 7544 "Pointers with different index type are not supported by SDAG"); 7545 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7546 return; 7547 } 7548 case Intrinsic::threadlocal_address: { 7549 setValue(&I, getValue(I.getOperand(0))); 7550 return; 7551 } 7552 case Intrinsic::get_active_lane_mask: { 7553 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7554 SDValue Index = getValue(I.getOperand(0)); 7555 EVT ElementVT = Index.getValueType(); 7556 7557 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7558 visitTargetIntrinsic(I, Intrinsic); 7559 return; 7560 } 7561 7562 SDValue TripCount = getValue(I.getOperand(1)); 7563 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7564 CCVT.getVectorElementCount()); 7565 7566 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7567 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7568 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7569 SDValue VectorInduction = DAG.getNode( 7570 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7571 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7572 VectorTripCount, ISD::CondCode::SETULT); 7573 setValue(&I, SetCC); 7574 return; 7575 } 7576 case Intrinsic::experimental_get_vector_length: { 7577 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7578 "Expected positive VF"); 7579 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7580 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7581 7582 SDValue Count = getValue(I.getOperand(0)); 7583 EVT CountVT = Count.getValueType(); 7584 7585 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7586 visitTargetIntrinsic(I, Intrinsic); 7587 return; 7588 } 7589 7590 // Expand to a umin between the trip count and the maximum elements the type 7591 // can hold. 7592 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7593 7594 // Extend the trip count to at least the result VT. 7595 if (CountVT.bitsLT(VT)) { 7596 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7597 CountVT = VT; 7598 } 7599 7600 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7601 ElementCount::get(VF, IsScalable)); 7602 7603 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7604 // Clip to the result type if needed. 7605 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7606 7607 setValue(&I, Trunc); 7608 return; 7609 } 7610 case Intrinsic::experimental_cttz_elts: { 7611 auto DL = getCurSDLoc(); 7612 SDValue Op = getValue(I.getOperand(0)); 7613 EVT OpVT = Op.getValueType(); 7614 7615 if (!TLI.shouldExpandCttzElements(OpVT)) { 7616 visitTargetIntrinsic(I, Intrinsic); 7617 return; 7618 } 7619 7620 if (OpVT.getScalarType() != MVT::i1) { 7621 // Compare the input vector elements to zero & use to count trailing zeros 7622 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7623 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7624 OpVT.getVectorElementCount()); 7625 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7626 } 7627 7628 // Find the smallest "sensible" element type to use for the expansion. 7629 ConstantRange CR( 7630 APInt(64, OpVT.getVectorElementCount().getKnownMinValue())); 7631 if (OpVT.isScalableVT()) 7632 CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64)); 7633 7634 // If the zero-is-poison flag is set, we can assume the upper limit 7635 // of the result is VF-1. 7636 if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero()) 7637 CR = CR.subtract(APInt(64, 1)); 7638 7639 unsigned EltWidth = I.getType()->getScalarSizeInBits(); 7640 EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits()); 7641 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8); 7642 7643 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7644 7645 // Create the new vector type & get the vector length 7646 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7647 OpVT.getVectorElementCount()); 7648 7649 SDValue VL = 7650 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7651 7652 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7653 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7654 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7655 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7656 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7657 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7658 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7659 7660 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7661 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7662 7663 setValue(&I, Ret); 7664 return; 7665 } 7666 case Intrinsic::vector_insert: { 7667 SDValue Vec = getValue(I.getOperand(0)); 7668 SDValue SubVec = getValue(I.getOperand(1)); 7669 SDValue Index = getValue(I.getOperand(2)); 7670 7671 // The intrinsic's index type is i64, but the SDNode requires an index type 7672 // suitable for the target. Convert the index as required. 7673 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7674 if (Index.getValueType() != VectorIdxTy) 7675 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7676 7677 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7678 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7679 Index)); 7680 return; 7681 } 7682 case Intrinsic::vector_extract: { 7683 SDValue Vec = getValue(I.getOperand(0)); 7684 SDValue Index = getValue(I.getOperand(1)); 7685 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7686 7687 // The intrinsic's index type is i64, but the SDNode requires an index type 7688 // suitable for the target. Convert the index as required. 7689 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7690 if (Index.getValueType() != VectorIdxTy) 7691 Index = DAG.getVectorIdxConstant(Index->getAsZExtVal(), sdl); 7692 7693 setValue(&I, 7694 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7695 return; 7696 } 7697 case Intrinsic::experimental_vector_reverse: 7698 visitVectorReverse(I); 7699 return; 7700 case Intrinsic::experimental_vector_splice: 7701 visitVectorSplice(I); 7702 return; 7703 case Intrinsic::callbr_landingpad: 7704 visitCallBrLandingPad(I); 7705 return; 7706 case Intrinsic::experimental_vector_interleave2: 7707 visitVectorInterleave(I); 7708 return; 7709 case Intrinsic::experimental_vector_deinterleave2: 7710 visitVectorDeinterleave(I); 7711 return; 7712 } 7713 } 7714 7715 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7716 const ConstrainedFPIntrinsic &FPI) { 7717 SDLoc sdl = getCurSDLoc(); 7718 7719 // We do not need to serialize constrained FP intrinsics against 7720 // each other or against (nonvolatile) loads, so they can be 7721 // chained like loads. 7722 SDValue Chain = DAG.getRoot(); 7723 SmallVector<SDValue, 4> Opers; 7724 Opers.push_back(Chain); 7725 if (FPI.isUnaryOp()) { 7726 Opers.push_back(getValue(FPI.getArgOperand(0))); 7727 } else if (FPI.isTernaryOp()) { 7728 Opers.push_back(getValue(FPI.getArgOperand(0))); 7729 Opers.push_back(getValue(FPI.getArgOperand(1))); 7730 Opers.push_back(getValue(FPI.getArgOperand(2))); 7731 } else { 7732 Opers.push_back(getValue(FPI.getArgOperand(0))); 7733 Opers.push_back(getValue(FPI.getArgOperand(1))); 7734 } 7735 7736 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7737 assert(Result.getNode()->getNumValues() == 2); 7738 7739 // Push node to the appropriate list so that future instructions can be 7740 // chained up correctly. 7741 SDValue OutChain = Result.getValue(1); 7742 switch (EB) { 7743 case fp::ExceptionBehavior::ebIgnore: 7744 // The only reason why ebIgnore nodes still need to be chained is that 7745 // they might depend on the current rounding mode, and therefore must 7746 // not be moved across instruction that may change that mode. 7747 [[fallthrough]]; 7748 case fp::ExceptionBehavior::ebMayTrap: 7749 // These must not be moved across calls or instructions that may change 7750 // floating-point exception masks. 7751 PendingConstrainedFP.push_back(OutChain); 7752 break; 7753 case fp::ExceptionBehavior::ebStrict: 7754 // These must not be moved across calls or instructions that may change 7755 // floating-point exception masks or read floating-point exception flags. 7756 // In addition, they cannot be optimized out even if unused. 7757 PendingConstrainedFPStrict.push_back(OutChain); 7758 break; 7759 } 7760 }; 7761 7762 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7763 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7764 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7765 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7766 7767 SDNodeFlags Flags; 7768 if (EB == fp::ExceptionBehavior::ebIgnore) 7769 Flags.setNoFPExcept(true); 7770 7771 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7772 Flags.copyFMF(*FPOp); 7773 7774 unsigned Opcode; 7775 switch (FPI.getIntrinsicID()) { 7776 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7777 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7778 case Intrinsic::INTRINSIC: \ 7779 Opcode = ISD::STRICT_##DAGN; \ 7780 break; 7781 #include "llvm/IR/ConstrainedOps.def" 7782 case Intrinsic::experimental_constrained_fmuladd: { 7783 Opcode = ISD::STRICT_FMA; 7784 // Break fmuladd into fmul and fadd. 7785 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7786 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7787 Opers.pop_back(); 7788 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7789 pushOutChain(Mul, EB); 7790 Opcode = ISD::STRICT_FADD; 7791 Opers.clear(); 7792 Opers.push_back(Mul.getValue(1)); 7793 Opers.push_back(Mul.getValue(0)); 7794 Opers.push_back(getValue(FPI.getArgOperand(2))); 7795 } 7796 break; 7797 } 7798 } 7799 7800 // A few strict DAG nodes carry additional operands that are not 7801 // set up by the default code above. 7802 switch (Opcode) { 7803 default: break; 7804 case ISD::STRICT_FP_ROUND: 7805 Opers.push_back( 7806 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7807 break; 7808 case ISD::STRICT_FSETCC: 7809 case ISD::STRICT_FSETCCS: { 7810 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7811 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7812 if (TM.Options.NoNaNsFPMath) 7813 Condition = getFCmpCodeWithoutNaN(Condition); 7814 Opers.push_back(DAG.getCondCode(Condition)); 7815 break; 7816 } 7817 } 7818 7819 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7820 pushOutChain(Result, EB); 7821 7822 SDValue FPResult = Result.getValue(0); 7823 setValue(&FPI, FPResult); 7824 } 7825 7826 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7827 std::optional<unsigned> ResOPC; 7828 switch (VPIntrin.getIntrinsicID()) { 7829 case Intrinsic::vp_ctlz: { 7830 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7831 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7832 break; 7833 } 7834 case Intrinsic::vp_cttz: { 7835 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7836 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7837 break; 7838 } 7839 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7840 case Intrinsic::VPID: \ 7841 ResOPC = ISD::VPSD; \ 7842 break; 7843 #include "llvm/IR/VPIntrinsics.def" 7844 } 7845 7846 if (!ResOPC) 7847 llvm_unreachable( 7848 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7849 7850 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7851 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7852 if (VPIntrin.getFastMathFlags().allowReassoc()) 7853 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7854 : ISD::VP_REDUCE_FMUL; 7855 } 7856 7857 return *ResOPC; 7858 } 7859 7860 void SelectionDAGBuilder::visitVPLoad( 7861 const VPIntrinsic &VPIntrin, EVT VT, 7862 const SmallVectorImpl<SDValue> &OpValues) { 7863 SDLoc DL = getCurSDLoc(); 7864 Value *PtrOperand = VPIntrin.getArgOperand(0); 7865 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7866 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7867 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7868 SDValue LD; 7869 // Do not serialize variable-length loads of constant memory with 7870 // anything. 7871 if (!Alignment) 7872 Alignment = DAG.getEVTAlign(VT); 7873 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7874 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7875 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7876 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7877 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7878 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7879 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7880 MMO, false /*IsExpanding */); 7881 if (AddToChain) 7882 PendingLoads.push_back(LD.getValue(1)); 7883 setValue(&VPIntrin, LD); 7884 } 7885 7886 void SelectionDAGBuilder::visitVPGather( 7887 const VPIntrinsic &VPIntrin, EVT VT, 7888 const SmallVectorImpl<SDValue> &OpValues) { 7889 SDLoc DL = getCurSDLoc(); 7890 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7891 Value *PtrOperand = VPIntrin.getArgOperand(0); 7892 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7893 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7894 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7895 SDValue LD; 7896 if (!Alignment) 7897 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7898 unsigned AS = 7899 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7900 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7901 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7902 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7903 SDValue Base, Index, Scale; 7904 ISD::MemIndexType IndexType; 7905 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7906 this, VPIntrin.getParent(), 7907 VT.getScalarStoreSize()); 7908 if (!UniformBase) { 7909 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7910 Index = getValue(PtrOperand); 7911 IndexType = ISD::SIGNED_SCALED; 7912 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7913 } 7914 EVT IdxVT = Index.getValueType(); 7915 EVT EltTy = IdxVT.getVectorElementType(); 7916 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7917 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7918 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7919 } 7920 LD = DAG.getGatherVP( 7921 DAG.getVTList(VT, MVT::Other), VT, DL, 7922 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7923 IndexType); 7924 PendingLoads.push_back(LD.getValue(1)); 7925 setValue(&VPIntrin, LD); 7926 } 7927 7928 void SelectionDAGBuilder::visitVPStore( 7929 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7930 SDLoc DL = getCurSDLoc(); 7931 Value *PtrOperand = VPIntrin.getArgOperand(1); 7932 EVT VT = OpValues[0].getValueType(); 7933 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7934 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7935 SDValue ST; 7936 if (!Alignment) 7937 Alignment = DAG.getEVTAlign(VT); 7938 SDValue Ptr = OpValues[1]; 7939 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7940 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7941 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7942 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7943 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7944 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7945 /* IsTruncating */ false, /*IsCompressing*/ false); 7946 DAG.setRoot(ST); 7947 setValue(&VPIntrin, ST); 7948 } 7949 7950 void SelectionDAGBuilder::visitVPScatter( 7951 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7952 SDLoc DL = getCurSDLoc(); 7953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7954 Value *PtrOperand = VPIntrin.getArgOperand(1); 7955 EVT VT = OpValues[0].getValueType(); 7956 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7957 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7958 SDValue ST; 7959 if (!Alignment) 7960 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7961 unsigned AS = 7962 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7963 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7964 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7965 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7966 SDValue Base, Index, Scale; 7967 ISD::MemIndexType IndexType; 7968 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7969 this, VPIntrin.getParent(), 7970 VT.getScalarStoreSize()); 7971 if (!UniformBase) { 7972 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7973 Index = getValue(PtrOperand); 7974 IndexType = ISD::SIGNED_SCALED; 7975 Scale = 7976 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7977 } 7978 EVT IdxVT = Index.getValueType(); 7979 EVT EltTy = IdxVT.getVectorElementType(); 7980 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7981 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7982 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7983 } 7984 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7985 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7986 OpValues[2], OpValues[3]}, 7987 MMO, IndexType); 7988 DAG.setRoot(ST); 7989 setValue(&VPIntrin, ST); 7990 } 7991 7992 void SelectionDAGBuilder::visitVPStridedLoad( 7993 const VPIntrinsic &VPIntrin, EVT VT, 7994 const SmallVectorImpl<SDValue> &OpValues) { 7995 SDLoc DL = getCurSDLoc(); 7996 Value *PtrOperand = VPIntrin.getArgOperand(0); 7997 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7998 if (!Alignment) 7999 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8000 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8001 const MDNode *Ranges = getRangeMetadata(VPIntrin); 8002 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 8003 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 8004 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 8005 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8006 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 8007 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 8008 8009 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 8010 OpValues[2], OpValues[3], MMO, 8011 false /*IsExpanding*/); 8012 8013 if (AddToChain) 8014 PendingLoads.push_back(LD.getValue(1)); 8015 setValue(&VPIntrin, LD); 8016 } 8017 8018 void SelectionDAGBuilder::visitVPStridedStore( 8019 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 8020 SDLoc DL = getCurSDLoc(); 8021 Value *PtrOperand = VPIntrin.getArgOperand(1); 8022 EVT VT = OpValues[0].getValueType(); 8023 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 8024 if (!Alignment) 8025 Alignment = DAG.getEVTAlign(VT.getScalarType()); 8026 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 8027 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 8028 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 8029 MemoryLocation::UnknownSize, *Alignment, AAInfo); 8030 8031 SDValue ST = DAG.getStridedStoreVP( 8032 getMemoryRoot(), DL, OpValues[0], OpValues[1], 8033 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 8034 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 8035 /*IsCompressing*/ false); 8036 8037 DAG.setRoot(ST); 8038 setValue(&VPIntrin, ST); 8039 } 8040 8041 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 8042 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8043 SDLoc DL = getCurSDLoc(); 8044 8045 ISD::CondCode Condition; 8046 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 8047 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 8048 if (IsFP) { 8049 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 8050 // flags, but calls that don't return floating-point types can't be 8051 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 8052 Condition = getFCmpCondCode(CondCode); 8053 if (TM.Options.NoNaNsFPMath) 8054 Condition = getFCmpCodeWithoutNaN(Condition); 8055 } else { 8056 Condition = getICmpCondCode(CondCode); 8057 } 8058 8059 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 8060 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 8061 // #2 is the condition code 8062 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 8063 SDValue EVL = getValue(VPIntrin.getOperand(4)); 8064 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8065 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8066 "Unexpected target EVL type"); 8067 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 8068 8069 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8070 VPIntrin.getType()); 8071 setValue(&VPIntrin, 8072 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 8073 } 8074 8075 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 8076 const VPIntrinsic &VPIntrin) { 8077 SDLoc DL = getCurSDLoc(); 8078 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 8079 8080 auto IID = VPIntrin.getIntrinsicID(); 8081 8082 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 8083 return visitVPCmp(*CmpI); 8084 8085 SmallVector<EVT, 4> ValueVTs; 8086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8087 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 8088 SDVTList VTs = DAG.getVTList(ValueVTs); 8089 8090 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8091 8092 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8093 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8094 "Unexpected target EVL type"); 8095 8096 // Request operands. 8097 SmallVector<SDValue, 7> OpValues; 8098 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8099 auto Op = getValue(VPIntrin.getArgOperand(I)); 8100 if (I == EVLParamPos) 8101 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8102 OpValues.push_back(Op); 8103 } 8104 8105 switch (Opcode) { 8106 default: { 8107 SDNodeFlags SDFlags; 8108 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8109 SDFlags.copyFMF(*FPMO); 8110 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8111 setValue(&VPIntrin, Result); 8112 break; 8113 } 8114 case ISD::VP_LOAD: 8115 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8116 break; 8117 case ISD::VP_GATHER: 8118 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8119 break; 8120 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8121 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8122 break; 8123 case ISD::VP_STORE: 8124 visitVPStore(VPIntrin, OpValues); 8125 break; 8126 case ISD::VP_SCATTER: 8127 visitVPScatter(VPIntrin, OpValues); 8128 break; 8129 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8130 visitVPStridedStore(VPIntrin, OpValues); 8131 break; 8132 case ISD::VP_FMULADD: { 8133 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8134 SDNodeFlags SDFlags; 8135 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8136 SDFlags.copyFMF(*FPMO); 8137 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8138 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8139 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8140 } else { 8141 SDValue Mul = DAG.getNode( 8142 ISD::VP_FMUL, DL, VTs, 8143 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8144 SDValue Add = 8145 DAG.getNode(ISD::VP_FADD, DL, VTs, 8146 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8147 setValue(&VPIntrin, Add); 8148 } 8149 break; 8150 } 8151 case ISD::VP_IS_FPCLASS: { 8152 const DataLayout DLayout = DAG.getDataLayout(); 8153 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8154 auto Constant = OpValues[1]->getAsZExtVal(); 8155 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8156 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8157 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8158 setValue(&VPIntrin, V); 8159 return; 8160 } 8161 case ISD::VP_INTTOPTR: { 8162 SDValue N = OpValues[0]; 8163 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8164 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8165 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8166 OpValues[2]); 8167 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8168 OpValues[2]); 8169 setValue(&VPIntrin, N); 8170 break; 8171 } 8172 case ISD::VP_PTRTOINT: { 8173 SDValue N = OpValues[0]; 8174 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8175 VPIntrin.getType()); 8176 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8177 VPIntrin.getOperand(0)->getType()); 8178 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8179 OpValues[2]); 8180 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8181 OpValues[2]); 8182 setValue(&VPIntrin, N); 8183 break; 8184 } 8185 case ISD::VP_ABS: 8186 case ISD::VP_CTLZ: 8187 case ISD::VP_CTLZ_ZERO_UNDEF: 8188 case ISD::VP_CTTZ: 8189 case ISD::VP_CTTZ_ZERO_UNDEF: { 8190 SDValue Result = 8191 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8192 setValue(&VPIntrin, Result); 8193 break; 8194 } 8195 } 8196 } 8197 8198 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8199 const BasicBlock *EHPadBB, 8200 MCSymbol *&BeginLabel) { 8201 MachineFunction &MF = DAG.getMachineFunction(); 8202 MachineModuleInfo &MMI = MF.getMMI(); 8203 8204 // Insert a label before the invoke call to mark the try range. This can be 8205 // used to detect deletion of the invoke via the MachineModuleInfo. 8206 BeginLabel = MMI.getContext().createTempSymbol(); 8207 8208 // For SjLj, keep track of which landing pads go with which invokes 8209 // so as to maintain the ordering of pads in the LSDA. 8210 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8211 if (CallSiteIndex) { 8212 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8213 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8214 8215 // Now that the call site is handled, stop tracking it. 8216 MMI.setCurrentCallSite(0); 8217 } 8218 8219 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8220 } 8221 8222 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8223 const BasicBlock *EHPadBB, 8224 MCSymbol *BeginLabel) { 8225 assert(BeginLabel && "BeginLabel should've been set"); 8226 8227 MachineFunction &MF = DAG.getMachineFunction(); 8228 MachineModuleInfo &MMI = MF.getMMI(); 8229 8230 // Insert a label at the end of the invoke call to mark the try range. This 8231 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8232 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8233 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8234 8235 // Inform MachineModuleInfo of range. 8236 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8237 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8238 // actually use outlined funclets and their LSDA info style. 8239 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8240 assert(II && "II should've been set"); 8241 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8242 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8243 } else if (!isScopedEHPersonality(Pers)) { 8244 assert(EHPadBB); 8245 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8246 } 8247 8248 return Chain; 8249 } 8250 8251 std::pair<SDValue, SDValue> 8252 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8253 const BasicBlock *EHPadBB) { 8254 MCSymbol *BeginLabel = nullptr; 8255 8256 if (EHPadBB) { 8257 // Both PendingLoads and PendingExports must be flushed here; 8258 // this call might not return. 8259 (void)getRoot(); 8260 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8261 CLI.setChain(getRoot()); 8262 } 8263 8264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8265 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8266 8267 assert((CLI.IsTailCall || Result.second.getNode()) && 8268 "Non-null chain expected with non-tail call!"); 8269 assert((Result.second.getNode() || !Result.first.getNode()) && 8270 "Null value expected with tail call!"); 8271 8272 if (!Result.second.getNode()) { 8273 // As a special case, a null chain means that a tail call has been emitted 8274 // and the DAG root is already updated. 8275 HasTailCall = true; 8276 8277 // Since there's no actual continuation from this block, nothing can be 8278 // relying on us setting vregs for them. 8279 PendingExports.clear(); 8280 } else { 8281 DAG.setRoot(Result.second); 8282 } 8283 8284 if (EHPadBB) { 8285 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8286 BeginLabel)); 8287 } 8288 8289 return Result; 8290 } 8291 8292 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8293 bool isTailCall, 8294 bool isMustTailCall, 8295 const BasicBlock *EHPadBB) { 8296 auto &DL = DAG.getDataLayout(); 8297 FunctionType *FTy = CB.getFunctionType(); 8298 Type *RetTy = CB.getType(); 8299 8300 TargetLowering::ArgListTy Args; 8301 Args.reserve(CB.arg_size()); 8302 8303 const Value *SwiftErrorVal = nullptr; 8304 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8305 8306 if (isTailCall) { 8307 // Avoid emitting tail calls in functions with the disable-tail-calls 8308 // attribute. 8309 auto *Caller = CB.getParent()->getParent(); 8310 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8311 "true" && !isMustTailCall) 8312 isTailCall = false; 8313 8314 // We can't tail call inside a function with a swifterror argument. Lowering 8315 // does not support this yet. It would have to move into the swifterror 8316 // register before the call. 8317 if (TLI.supportSwiftError() && 8318 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8319 isTailCall = false; 8320 } 8321 8322 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8323 TargetLowering::ArgListEntry Entry; 8324 const Value *V = *I; 8325 8326 // Skip empty types 8327 if (V->getType()->isEmptyTy()) 8328 continue; 8329 8330 SDValue ArgNode = getValue(V); 8331 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8332 8333 Entry.setAttributes(&CB, I - CB.arg_begin()); 8334 8335 // Use swifterror virtual register as input to the call. 8336 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8337 SwiftErrorVal = V; 8338 // We find the virtual register for the actual swifterror argument. 8339 // Instead of using the Value, we use the virtual register instead. 8340 Entry.Node = 8341 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8342 EVT(TLI.getPointerTy(DL))); 8343 } 8344 8345 Args.push_back(Entry); 8346 8347 // If we have an explicit sret argument that is an Instruction, (i.e., it 8348 // might point to function-local memory), we can't meaningfully tail-call. 8349 if (Entry.IsSRet && isa<Instruction>(V)) 8350 isTailCall = false; 8351 } 8352 8353 // If call site has a cfguardtarget operand bundle, create and add an 8354 // additional ArgListEntry. 8355 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8356 TargetLowering::ArgListEntry Entry; 8357 Value *V = Bundle->Inputs[0]; 8358 SDValue ArgNode = getValue(V); 8359 Entry.Node = ArgNode; 8360 Entry.Ty = V->getType(); 8361 Entry.IsCFGuardTarget = true; 8362 Args.push_back(Entry); 8363 } 8364 8365 // Check if target-independent constraints permit a tail call here. 8366 // Target-dependent constraints are checked within TLI->LowerCallTo. 8367 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8368 isTailCall = false; 8369 8370 // Disable tail calls if there is an swifterror argument. Targets have not 8371 // been updated to support tail calls. 8372 if (TLI.supportSwiftError() && SwiftErrorVal) 8373 isTailCall = false; 8374 8375 ConstantInt *CFIType = nullptr; 8376 if (CB.isIndirectCall()) { 8377 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8378 if (!TLI.supportKCFIBundles()) 8379 report_fatal_error( 8380 "Target doesn't support calls with kcfi operand bundles."); 8381 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8382 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8383 } 8384 } 8385 8386 TargetLowering::CallLoweringInfo CLI(DAG); 8387 CLI.setDebugLoc(getCurSDLoc()) 8388 .setChain(getRoot()) 8389 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8390 .setTailCall(isTailCall) 8391 .setConvergent(CB.isConvergent()) 8392 .setIsPreallocated( 8393 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8394 .setCFIType(CFIType); 8395 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8396 8397 if (Result.first.getNode()) { 8398 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8399 setValue(&CB, Result.first); 8400 } 8401 8402 // The last element of CLI.InVals has the SDValue for swifterror return. 8403 // Here we copy it to a virtual register and update SwiftErrorMap for 8404 // book-keeping. 8405 if (SwiftErrorVal && TLI.supportSwiftError()) { 8406 // Get the last element of InVals. 8407 SDValue Src = CLI.InVals.back(); 8408 Register VReg = 8409 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8410 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8411 DAG.setRoot(CopyNode); 8412 } 8413 } 8414 8415 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8416 SelectionDAGBuilder &Builder) { 8417 // Check to see if this load can be trivially constant folded, e.g. if the 8418 // input is from a string literal. 8419 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8420 // Cast pointer to the type we really want to load. 8421 Type *LoadTy = 8422 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8423 if (LoadVT.isVector()) 8424 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8425 8426 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8427 PointerType::getUnqual(LoadTy)); 8428 8429 if (const Constant *LoadCst = 8430 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8431 LoadTy, Builder.DAG.getDataLayout())) 8432 return Builder.getValue(LoadCst); 8433 } 8434 8435 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8436 // still constant memory, the input chain can be the entry node. 8437 SDValue Root; 8438 bool ConstantMemory = false; 8439 8440 // Do not serialize (non-volatile) loads of constant memory with anything. 8441 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8442 Root = Builder.DAG.getEntryNode(); 8443 ConstantMemory = true; 8444 } else { 8445 // Do not serialize non-volatile loads against each other. 8446 Root = Builder.DAG.getRoot(); 8447 } 8448 8449 SDValue Ptr = Builder.getValue(PtrVal); 8450 SDValue LoadVal = 8451 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8452 MachinePointerInfo(PtrVal), Align(1)); 8453 8454 if (!ConstantMemory) 8455 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8456 return LoadVal; 8457 } 8458 8459 /// Record the value for an instruction that produces an integer result, 8460 /// converting the type where necessary. 8461 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8462 SDValue Value, 8463 bool IsSigned) { 8464 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8465 I.getType(), true); 8466 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8467 setValue(&I, Value); 8468 } 8469 8470 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8471 /// true and lower it. Otherwise return false, and it will be lowered like a 8472 /// normal call. 8473 /// The caller already checked that \p I calls the appropriate LibFunc with a 8474 /// correct prototype. 8475 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8476 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8477 const Value *Size = I.getArgOperand(2); 8478 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8479 if (CSize && CSize->getZExtValue() == 0) { 8480 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8481 I.getType(), true); 8482 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8483 return true; 8484 } 8485 8486 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8487 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8488 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8489 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8490 if (Res.first.getNode()) { 8491 processIntegerCallValue(I, Res.first, true); 8492 PendingLoads.push_back(Res.second); 8493 return true; 8494 } 8495 8496 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8497 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8498 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8499 return false; 8500 8501 // If the target has a fast compare for the given size, it will return a 8502 // preferred load type for that size. Require that the load VT is legal and 8503 // that the target supports unaligned loads of that type. Otherwise, return 8504 // INVALID. 8505 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8506 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8507 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8508 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8509 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8510 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8511 // TODO: Check alignment of src and dest ptrs. 8512 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8513 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8514 if (!TLI.isTypeLegal(LVT) || 8515 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8516 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8517 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8518 } 8519 8520 return LVT; 8521 }; 8522 8523 // This turns into unaligned loads. We only do this if the target natively 8524 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8525 // we'll only produce a small number of byte loads. 8526 MVT LoadVT; 8527 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8528 switch (NumBitsToCompare) { 8529 default: 8530 return false; 8531 case 16: 8532 LoadVT = MVT::i16; 8533 break; 8534 case 32: 8535 LoadVT = MVT::i32; 8536 break; 8537 case 64: 8538 case 128: 8539 case 256: 8540 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8541 break; 8542 } 8543 8544 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8545 return false; 8546 8547 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8548 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8549 8550 // Bitcast to a wide integer type if the loads are vectors. 8551 if (LoadVT.isVector()) { 8552 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8553 LoadL = DAG.getBitcast(CmpVT, LoadL); 8554 LoadR = DAG.getBitcast(CmpVT, LoadR); 8555 } 8556 8557 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8558 processIntegerCallValue(I, Cmp, false); 8559 return true; 8560 } 8561 8562 /// See if we can lower a memchr call into an optimized form. If so, return 8563 /// true and lower it. Otherwise return false, and it will be lowered like a 8564 /// normal call. 8565 /// The caller already checked that \p I calls the appropriate LibFunc with a 8566 /// correct prototype. 8567 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8568 const Value *Src = I.getArgOperand(0); 8569 const Value *Char = I.getArgOperand(1); 8570 const Value *Length = I.getArgOperand(2); 8571 8572 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8573 std::pair<SDValue, SDValue> Res = 8574 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8575 getValue(Src), getValue(Char), getValue(Length), 8576 MachinePointerInfo(Src)); 8577 if (Res.first.getNode()) { 8578 setValue(&I, Res.first); 8579 PendingLoads.push_back(Res.second); 8580 return true; 8581 } 8582 8583 return false; 8584 } 8585 8586 /// See if we can lower a mempcpy call into an optimized form. If so, return 8587 /// true and lower it. Otherwise return false, and it will be lowered like a 8588 /// normal call. 8589 /// The caller already checked that \p I calls the appropriate LibFunc with a 8590 /// correct prototype. 8591 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8592 SDValue Dst = getValue(I.getArgOperand(0)); 8593 SDValue Src = getValue(I.getArgOperand(1)); 8594 SDValue Size = getValue(I.getArgOperand(2)); 8595 8596 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8597 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8598 // DAG::getMemcpy needs Alignment to be defined. 8599 Align Alignment = std::min(DstAlign, SrcAlign); 8600 8601 SDLoc sdl = getCurSDLoc(); 8602 8603 // In the mempcpy context we need to pass in a false value for isTailCall 8604 // because the return pointer needs to be adjusted by the size of 8605 // the copied memory. 8606 SDValue Root = getMemoryRoot(); 8607 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8608 /*isTailCall=*/false, 8609 MachinePointerInfo(I.getArgOperand(0)), 8610 MachinePointerInfo(I.getArgOperand(1)), 8611 I.getAAMetadata()); 8612 assert(MC.getNode() != nullptr && 8613 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8614 DAG.setRoot(MC); 8615 8616 // Check if Size needs to be truncated or extended. 8617 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8618 8619 // Adjust return pointer to point just past the last dst byte. 8620 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8621 Dst, Size); 8622 setValue(&I, DstPlusSize); 8623 return true; 8624 } 8625 8626 /// See if we can lower a strcpy call into an optimized form. If so, return 8627 /// true and lower it, otherwise return false and it will be lowered like a 8628 /// normal call. 8629 /// The caller already checked that \p I calls the appropriate LibFunc with a 8630 /// correct prototype. 8631 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8632 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8633 8634 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8635 std::pair<SDValue, SDValue> Res = 8636 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8637 getValue(Arg0), getValue(Arg1), 8638 MachinePointerInfo(Arg0), 8639 MachinePointerInfo(Arg1), isStpcpy); 8640 if (Res.first.getNode()) { 8641 setValue(&I, Res.first); 8642 DAG.setRoot(Res.second); 8643 return true; 8644 } 8645 8646 return false; 8647 } 8648 8649 /// See if we can lower a strcmp call into an optimized form. If so, return 8650 /// true and lower it, otherwise return false and it will be lowered like a 8651 /// normal call. 8652 /// The caller already checked that \p I calls the appropriate LibFunc with a 8653 /// correct prototype. 8654 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8655 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8656 8657 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8658 std::pair<SDValue, SDValue> Res = 8659 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8660 getValue(Arg0), getValue(Arg1), 8661 MachinePointerInfo(Arg0), 8662 MachinePointerInfo(Arg1)); 8663 if (Res.first.getNode()) { 8664 processIntegerCallValue(I, Res.first, true); 8665 PendingLoads.push_back(Res.second); 8666 return true; 8667 } 8668 8669 return false; 8670 } 8671 8672 /// See if we can lower a strlen call into an optimized form. If so, return 8673 /// true and lower it, otherwise return false and it will be lowered like a 8674 /// normal call. 8675 /// The caller already checked that \p I calls the appropriate LibFunc with a 8676 /// correct prototype. 8677 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8678 const Value *Arg0 = I.getArgOperand(0); 8679 8680 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8681 std::pair<SDValue, SDValue> Res = 8682 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8683 getValue(Arg0), MachinePointerInfo(Arg0)); 8684 if (Res.first.getNode()) { 8685 processIntegerCallValue(I, Res.first, false); 8686 PendingLoads.push_back(Res.second); 8687 return true; 8688 } 8689 8690 return false; 8691 } 8692 8693 /// See if we can lower a strnlen call into an optimized form. If so, return 8694 /// true and lower it, otherwise return false and it will be lowered like a 8695 /// normal call. 8696 /// The caller already checked that \p I calls the appropriate LibFunc with a 8697 /// correct prototype. 8698 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8699 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8700 8701 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8702 std::pair<SDValue, SDValue> Res = 8703 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8704 getValue(Arg0), getValue(Arg1), 8705 MachinePointerInfo(Arg0)); 8706 if (Res.first.getNode()) { 8707 processIntegerCallValue(I, Res.first, false); 8708 PendingLoads.push_back(Res.second); 8709 return true; 8710 } 8711 8712 return false; 8713 } 8714 8715 /// See if we can lower a unary floating-point operation into an SDNode with 8716 /// the specified Opcode. If so, return true and lower it, otherwise return 8717 /// false and it will be lowered like a normal call. 8718 /// The caller already checked that \p I calls the appropriate LibFunc with a 8719 /// correct prototype. 8720 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8721 unsigned Opcode) { 8722 // We already checked this call's prototype; verify it doesn't modify errno. 8723 if (!I.onlyReadsMemory()) 8724 return false; 8725 8726 SDNodeFlags Flags; 8727 Flags.copyFMF(cast<FPMathOperator>(I)); 8728 8729 SDValue Tmp = getValue(I.getArgOperand(0)); 8730 setValue(&I, 8731 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8732 return true; 8733 } 8734 8735 /// See if we can lower a binary floating-point operation into an SDNode with 8736 /// the specified Opcode. If so, return true and lower it. Otherwise return 8737 /// false, and it will be lowered like a normal call. 8738 /// The caller already checked that \p I calls the appropriate LibFunc with a 8739 /// correct prototype. 8740 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8741 unsigned Opcode) { 8742 // We already checked this call's prototype; verify it doesn't modify errno. 8743 if (!I.onlyReadsMemory()) 8744 return false; 8745 8746 SDNodeFlags Flags; 8747 Flags.copyFMF(cast<FPMathOperator>(I)); 8748 8749 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8750 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8751 EVT VT = Tmp0.getValueType(); 8752 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8753 return true; 8754 } 8755 8756 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8757 // Handle inline assembly differently. 8758 if (I.isInlineAsm()) { 8759 visitInlineAsm(I); 8760 return; 8761 } 8762 8763 diagnoseDontCall(I); 8764 8765 if (Function *F = I.getCalledFunction()) { 8766 if (F->isDeclaration()) { 8767 // Is this an LLVM intrinsic or a target-specific intrinsic? 8768 unsigned IID = F->getIntrinsicID(); 8769 if (!IID) 8770 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8771 IID = II->getIntrinsicID(F); 8772 8773 if (IID) { 8774 visitIntrinsicCall(I, IID); 8775 return; 8776 } 8777 } 8778 8779 // Check for well-known libc/libm calls. If the function is internal, it 8780 // can't be a library call. Don't do the check if marked as nobuiltin for 8781 // some reason or the call site requires strict floating point semantics. 8782 LibFunc Func; 8783 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8784 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8785 LibInfo->hasOptimizedCodeGen(Func)) { 8786 switch (Func) { 8787 default: break; 8788 case LibFunc_bcmp: 8789 if (visitMemCmpBCmpCall(I)) 8790 return; 8791 break; 8792 case LibFunc_copysign: 8793 case LibFunc_copysignf: 8794 case LibFunc_copysignl: 8795 // We already checked this call's prototype; verify it doesn't modify 8796 // errno. 8797 if (I.onlyReadsMemory()) { 8798 SDValue LHS = getValue(I.getArgOperand(0)); 8799 SDValue RHS = getValue(I.getArgOperand(1)); 8800 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8801 LHS.getValueType(), LHS, RHS)); 8802 return; 8803 } 8804 break; 8805 case LibFunc_fabs: 8806 case LibFunc_fabsf: 8807 case LibFunc_fabsl: 8808 if (visitUnaryFloatCall(I, ISD::FABS)) 8809 return; 8810 break; 8811 case LibFunc_fmin: 8812 case LibFunc_fminf: 8813 case LibFunc_fminl: 8814 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8815 return; 8816 break; 8817 case LibFunc_fmax: 8818 case LibFunc_fmaxf: 8819 case LibFunc_fmaxl: 8820 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8821 return; 8822 break; 8823 case LibFunc_sin: 8824 case LibFunc_sinf: 8825 case LibFunc_sinl: 8826 if (visitUnaryFloatCall(I, ISD::FSIN)) 8827 return; 8828 break; 8829 case LibFunc_cos: 8830 case LibFunc_cosf: 8831 case LibFunc_cosl: 8832 if (visitUnaryFloatCall(I, ISD::FCOS)) 8833 return; 8834 break; 8835 case LibFunc_sqrt: 8836 case LibFunc_sqrtf: 8837 case LibFunc_sqrtl: 8838 case LibFunc_sqrt_finite: 8839 case LibFunc_sqrtf_finite: 8840 case LibFunc_sqrtl_finite: 8841 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8842 return; 8843 break; 8844 case LibFunc_floor: 8845 case LibFunc_floorf: 8846 case LibFunc_floorl: 8847 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8848 return; 8849 break; 8850 case LibFunc_nearbyint: 8851 case LibFunc_nearbyintf: 8852 case LibFunc_nearbyintl: 8853 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8854 return; 8855 break; 8856 case LibFunc_ceil: 8857 case LibFunc_ceilf: 8858 case LibFunc_ceill: 8859 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8860 return; 8861 break; 8862 case LibFunc_rint: 8863 case LibFunc_rintf: 8864 case LibFunc_rintl: 8865 if (visitUnaryFloatCall(I, ISD::FRINT)) 8866 return; 8867 break; 8868 case LibFunc_round: 8869 case LibFunc_roundf: 8870 case LibFunc_roundl: 8871 if (visitUnaryFloatCall(I, ISD::FROUND)) 8872 return; 8873 break; 8874 case LibFunc_trunc: 8875 case LibFunc_truncf: 8876 case LibFunc_truncl: 8877 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8878 return; 8879 break; 8880 case LibFunc_log2: 8881 case LibFunc_log2f: 8882 case LibFunc_log2l: 8883 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8884 return; 8885 break; 8886 case LibFunc_exp2: 8887 case LibFunc_exp2f: 8888 case LibFunc_exp2l: 8889 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8890 return; 8891 break; 8892 case LibFunc_exp10: 8893 case LibFunc_exp10f: 8894 case LibFunc_exp10l: 8895 if (visitUnaryFloatCall(I, ISD::FEXP10)) 8896 return; 8897 break; 8898 case LibFunc_ldexp: 8899 case LibFunc_ldexpf: 8900 case LibFunc_ldexpl: 8901 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8902 return; 8903 break; 8904 case LibFunc_memcmp: 8905 if (visitMemCmpBCmpCall(I)) 8906 return; 8907 break; 8908 case LibFunc_mempcpy: 8909 if (visitMemPCpyCall(I)) 8910 return; 8911 break; 8912 case LibFunc_memchr: 8913 if (visitMemChrCall(I)) 8914 return; 8915 break; 8916 case LibFunc_strcpy: 8917 if (visitStrCpyCall(I, false)) 8918 return; 8919 break; 8920 case LibFunc_stpcpy: 8921 if (visitStrCpyCall(I, true)) 8922 return; 8923 break; 8924 case LibFunc_strcmp: 8925 if (visitStrCmpCall(I)) 8926 return; 8927 break; 8928 case LibFunc_strlen: 8929 if (visitStrLenCall(I)) 8930 return; 8931 break; 8932 case LibFunc_strnlen: 8933 if (visitStrNLenCall(I)) 8934 return; 8935 break; 8936 } 8937 } 8938 } 8939 8940 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8941 // have to do anything here to lower funclet bundles. 8942 // CFGuardTarget bundles are lowered in LowerCallTo. 8943 assert(!I.hasOperandBundlesOtherThan( 8944 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8945 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8946 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8947 "Cannot lower calls with arbitrary operand bundles!"); 8948 8949 SDValue Callee = getValue(I.getCalledOperand()); 8950 8951 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8952 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8953 else 8954 // Check if we can potentially perform a tail call. More detailed checking 8955 // is be done within LowerCallTo, after more information about the call is 8956 // known. 8957 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8958 } 8959 8960 namespace { 8961 8962 /// AsmOperandInfo - This contains information for each constraint that we are 8963 /// lowering. 8964 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8965 public: 8966 /// CallOperand - If this is the result output operand or a clobber 8967 /// this is null, otherwise it is the incoming operand to the CallInst. 8968 /// This gets modified as the asm is processed. 8969 SDValue CallOperand; 8970 8971 /// AssignedRegs - If this is a register or register class operand, this 8972 /// contains the set of register corresponding to the operand. 8973 RegsForValue AssignedRegs; 8974 8975 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8976 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8977 } 8978 8979 /// Whether or not this operand accesses memory 8980 bool hasMemory(const TargetLowering &TLI) const { 8981 // Indirect operand accesses access memory. 8982 if (isIndirect) 8983 return true; 8984 8985 for (const auto &Code : Codes) 8986 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8987 return true; 8988 8989 return false; 8990 } 8991 }; 8992 8993 8994 } // end anonymous namespace 8995 8996 /// Make sure that the output operand \p OpInfo and its corresponding input 8997 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8998 /// out). 8999 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 9000 SDISelAsmOperandInfo &MatchingOpInfo, 9001 SelectionDAG &DAG) { 9002 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 9003 return; 9004 9005 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 9006 const auto &TLI = DAG.getTargetLoweringInfo(); 9007 9008 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 9009 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 9010 OpInfo.ConstraintVT); 9011 std::pair<unsigned, const TargetRegisterClass *> InputRC = 9012 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 9013 MatchingOpInfo.ConstraintVT); 9014 if ((OpInfo.ConstraintVT.isInteger() != 9015 MatchingOpInfo.ConstraintVT.isInteger()) || 9016 (MatchRC.second != InputRC.second)) { 9017 // FIXME: error out in a more elegant fashion 9018 report_fatal_error("Unsupported asm: input constraint" 9019 " with a matching output constraint of" 9020 " incompatible type!"); 9021 } 9022 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 9023 } 9024 9025 /// Get a direct memory input to behave well as an indirect operand. 9026 /// This may introduce stores, hence the need for a \p Chain. 9027 /// \return The (possibly updated) chain. 9028 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 9029 SDISelAsmOperandInfo &OpInfo, 9030 SelectionDAG &DAG) { 9031 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9032 9033 // If we don't have an indirect input, put it in the constpool if we can, 9034 // otherwise spill it to a stack slot. 9035 // TODO: This isn't quite right. We need to handle these according to 9036 // the addressing mode that the constraint wants. Also, this may take 9037 // an additional register for the computation and we don't want that 9038 // either. 9039 9040 // If the operand is a float, integer, or vector constant, spill to a 9041 // constant pool entry to get its address. 9042 const Value *OpVal = OpInfo.CallOperandVal; 9043 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 9044 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 9045 OpInfo.CallOperand = DAG.getConstantPool( 9046 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 9047 return Chain; 9048 } 9049 9050 // Otherwise, create a stack slot and emit a store to it before the asm. 9051 Type *Ty = OpVal->getType(); 9052 auto &DL = DAG.getDataLayout(); 9053 uint64_t TySize = DL.getTypeAllocSize(Ty); 9054 MachineFunction &MF = DAG.getMachineFunction(); 9055 int SSFI = MF.getFrameInfo().CreateStackObject( 9056 TySize, DL.getPrefTypeAlign(Ty), false); 9057 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 9058 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 9059 MachinePointerInfo::getFixedStack(MF, SSFI), 9060 TLI.getMemValueType(DL, Ty)); 9061 OpInfo.CallOperand = StackSlot; 9062 9063 return Chain; 9064 } 9065 9066 /// GetRegistersForValue - Assign registers (virtual or physical) for the 9067 /// specified operand. We prefer to assign virtual registers, to allow the 9068 /// register allocator to handle the assignment process. However, if the asm 9069 /// uses features that we can't model on machineinstrs, we have SDISel do the 9070 /// allocation. This produces generally horrible, but correct, code. 9071 /// 9072 /// OpInfo describes the operand 9073 /// RefOpInfo describes the matching operand if any, the operand otherwise 9074 static std::optional<unsigned> 9075 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 9076 SDISelAsmOperandInfo &OpInfo, 9077 SDISelAsmOperandInfo &RefOpInfo) { 9078 LLVMContext &Context = *DAG.getContext(); 9079 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9080 9081 MachineFunction &MF = DAG.getMachineFunction(); 9082 SmallVector<unsigned, 4> Regs; 9083 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9084 9085 // No work to do for memory/address operands. 9086 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9087 OpInfo.ConstraintType == TargetLowering::C_Address) 9088 return std::nullopt; 9089 9090 // If this is a constraint for a single physreg, or a constraint for a 9091 // register class, find it. 9092 unsigned AssignedReg; 9093 const TargetRegisterClass *RC; 9094 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9095 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9096 // RC is unset only on failure. Return immediately. 9097 if (!RC) 9098 return std::nullopt; 9099 9100 // Get the actual register value type. This is important, because the user 9101 // may have asked for (e.g.) the AX register in i32 type. We need to 9102 // remember that AX is actually i16 to get the right extension. 9103 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9104 9105 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9106 // If this is an FP operand in an integer register (or visa versa), or more 9107 // generally if the operand value disagrees with the register class we plan 9108 // to stick it in, fix the operand type. 9109 // 9110 // If this is an input value, the bitcast to the new type is done now. 9111 // Bitcast for output value is done at the end of visitInlineAsm(). 9112 if ((OpInfo.Type == InlineAsm::isOutput || 9113 OpInfo.Type == InlineAsm::isInput) && 9114 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9115 // Try to convert to the first EVT that the reg class contains. If the 9116 // types are identical size, use a bitcast to convert (e.g. two differing 9117 // vector types). Note: output bitcast is done at the end of 9118 // visitInlineAsm(). 9119 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9120 // Exclude indirect inputs while they are unsupported because the code 9121 // to perform the load is missing and thus OpInfo.CallOperand still 9122 // refers to the input address rather than the pointed-to value. 9123 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9124 OpInfo.CallOperand = 9125 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9126 OpInfo.ConstraintVT = RegVT; 9127 // If the operand is an FP value and we want it in integer registers, 9128 // use the corresponding integer type. This turns an f64 value into 9129 // i64, which can be passed with two i32 values on a 32-bit machine. 9130 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9131 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9132 if (OpInfo.Type == InlineAsm::isInput) 9133 OpInfo.CallOperand = 9134 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9135 OpInfo.ConstraintVT = VT; 9136 } 9137 } 9138 } 9139 9140 // No need to allocate a matching input constraint since the constraint it's 9141 // matching to has already been allocated. 9142 if (OpInfo.isMatchingInputConstraint()) 9143 return std::nullopt; 9144 9145 EVT ValueVT = OpInfo.ConstraintVT; 9146 if (OpInfo.ConstraintVT == MVT::Other) 9147 ValueVT = RegVT; 9148 9149 // Initialize NumRegs. 9150 unsigned NumRegs = 1; 9151 if (OpInfo.ConstraintVT != MVT::Other) 9152 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9153 9154 // If this is a constraint for a specific physical register, like {r17}, 9155 // assign it now. 9156 9157 // If this associated to a specific register, initialize iterator to correct 9158 // place. If virtual, make sure we have enough registers 9159 9160 // Initialize iterator if necessary 9161 TargetRegisterClass::iterator I = RC->begin(); 9162 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9163 9164 // Do not check for single registers. 9165 if (AssignedReg) { 9166 I = std::find(I, RC->end(), AssignedReg); 9167 if (I == RC->end()) { 9168 // RC does not contain the selected register, which indicates a 9169 // mismatch between the register and the required type/bitwidth. 9170 return {AssignedReg}; 9171 } 9172 } 9173 9174 for (; NumRegs; --NumRegs, ++I) { 9175 assert(I != RC->end() && "Ran out of registers to allocate!"); 9176 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9177 Regs.push_back(R); 9178 } 9179 9180 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9181 return std::nullopt; 9182 } 9183 9184 static unsigned 9185 findMatchingInlineAsmOperand(unsigned OperandNo, 9186 const std::vector<SDValue> &AsmNodeOperands) { 9187 // Scan until we find the definition we already emitted of this operand. 9188 unsigned CurOp = InlineAsm::Op_FirstOperand; 9189 for (; OperandNo; --OperandNo) { 9190 // Advance to the next operand. 9191 unsigned OpFlag = AsmNodeOperands[CurOp]->getAsZExtVal(); 9192 const InlineAsm::Flag F(OpFlag); 9193 assert( 9194 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9195 "Skipped past definitions?"); 9196 CurOp += F.getNumOperandRegisters() + 1; 9197 } 9198 return CurOp; 9199 } 9200 9201 namespace { 9202 9203 class ExtraFlags { 9204 unsigned Flags = 0; 9205 9206 public: 9207 explicit ExtraFlags(const CallBase &Call) { 9208 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9209 if (IA->hasSideEffects()) 9210 Flags |= InlineAsm::Extra_HasSideEffects; 9211 if (IA->isAlignStack()) 9212 Flags |= InlineAsm::Extra_IsAlignStack; 9213 if (Call.isConvergent()) 9214 Flags |= InlineAsm::Extra_IsConvergent; 9215 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9216 } 9217 9218 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9219 // Ideally, we would only check against memory constraints. However, the 9220 // meaning of an Other constraint can be target-specific and we can't easily 9221 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9222 // for Other constraints as well. 9223 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9224 OpInfo.ConstraintType == TargetLowering::C_Other) { 9225 if (OpInfo.Type == InlineAsm::isInput) 9226 Flags |= InlineAsm::Extra_MayLoad; 9227 else if (OpInfo.Type == InlineAsm::isOutput) 9228 Flags |= InlineAsm::Extra_MayStore; 9229 else if (OpInfo.Type == InlineAsm::isClobber) 9230 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9231 } 9232 } 9233 9234 unsigned get() const { return Flags; } 9235 }; 9236 9237 } // end anonymous namespace 9238 9239 static bool isFunction(SDValue Op) { 9240 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9241 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9242 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9243 9244 // In normal "call dllimport func" instruction (non-inlineasm) it force 9245 // indirect access by specifing call opcode. And usually specially print 9246 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9247 // not do in this way now. (In fact, this is similar with "Data Access" 9248 // action). So here we ignore dllimport function. 9249 if (Fn && !Fn->hasDLLImportStorageClass()) 9250 return true; 9251 } 9252 } 9253 return false; 9254 } 9255 9256 /// visitInlineAsm - Handle a call to an InlineAsm object. 9257 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9258 const BasicBlock *EHPadBB) { 9259 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9260 9261 /// ConstraintOperands - Information about all of the constraints. 9262 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9263 9264 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9265 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9266 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9267 9268 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9269 // AsmDialect, MayLoad, MayStore). 9270 bool HasSideEffect = IA->hasSideEffects(); 9271 ExtraFlags ExtraInfo(Call); 9272 9273 for (auto &T : TargetConstraints) { 9274 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9275 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9276 9277 if (OpInfo.CallOperandVal) 9278 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9279 9280 if (!HasSideEffect) 9281 HasSideEffect = OpInfo.hasMemory(TLI); 9282 9283 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9284 // FIXME: Could we compute this on OpInfo rather than T? 9285 9286 // Compute the constraint code and ConstraintType to use. 9287 TLI.ComputeConstraintToUse(T, SDValue()); 9288 9289 if (T.ConstraintType == TargetLowering::C_Immediate && 9290 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9291 // We've delayed emitting a diagnostic like the "n" constraint because 9292 // inlining could cause an integer showing up. 9293 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9294 "' expects an integer constant " 9295 "expression"); 9296 9297 ExtraInfo.update(T); 9298 } 9299 9300 // We won't need to flush pending loads if this asm doesn't touch 9301 // memory and is nonvolatile. 9302 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9303 9304 bool EmitEHLabels = isa<InvokeInst>(Call); 9305 if (EmitEHLabels) { 9306 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9307 } 9308 bool IsCallBr = isa<CallBrInst>(Call); 9309 9310 if (IsCallBr || EmitEHLabels) { 9311 // If this is a callbr or invoke we need to flush pending exports since 9312 // inlineasm_br and invoke are terminators. 9313 // We need to do this before nodes are glued to the inlineasm_br node. 9314 Chain = getControlRoot(); 9315 } 9316 9317 MCSymbol *BeginLabel = nullptr; 9318 if (EmitEHLabels) { 9319 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9320 } 9321 9322 int OpNo = -1; 9323 SmallVector<StringRef> AsmStrs; 9324 IA->collectAsmStrs(AsmStrs); 9325 9326 // Second pass over the constraints: compute which constraint option to use. 9327 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9328 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9329 OpNo++; 9330 9331 // If this is an output operand with a matching input operand, look up the 9332 // matching input. If their types mismatch, e.g. one is an integer, the 9333 // other is floating point, or their sizes are different, flag it as an 9334 // error. 9335 if (OpInfo.hasMatchingInput()) { 9336 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9337 patchMatchingInput(OpInfo, Input, DAG); 9338 } 9339 9340 // Compute the constraint code and ConstraintType to use. 9341 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9342 9343 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9344 OpInfo.Type == InlineAsm::isClobber) || 9345 OpInfo.ConstraintType == TargetLowering::C_Address) 9346 continue; 9347 9348 // In Linux PIC model, there are 4 cases about value/label addressing: 9349 // 9350 // 1: Function call or Label jmp inside the module. 9351 // 2: Data access (such as global variable, static variable) inside module. 9352 // 3: Function call or Label jmp outside the module. 9353 // 4: Data access (such as global variable) outside the module. 9354 // 9355 // Due to current llvm inline asm architecture designed to not "recognize" 9356 // the asm code, there are quite troubles for us to treat mem addressing 9357 // differently for same value/adress used in different instuctions. 9358 // For example, in pic model, call a func may in plt way or direclty 9359 // pc-related, but lea/mov a function adress may use got. 9360 // 9361 // Here we try to "recognize" function call for the case 1 and case 3 in 9362 // inline asm. And try to adjust the constraint for them. 9363 // 9364 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9365 // label, so here we don't handle jmp function label now, but we need to 9366 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9367 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9368 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9369 TM.getCodeModel() != CodeModel::Large) { 9370 OpInfo.isIndirect = false; 9371 OpInfo.ConstraintType = TargetLowering::C_Address; 9372 } 9373 9374 // If this is a memory input, and if the operand is not indirect, do what we 9375 // need to provide an address for the memory input. 9376 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9377 !OpInfo.isIndirect) { 9378 assert((OpInfo.isMultipleAlternative || 9379 (OpInfo.Type == InlineAsm::isInput)) && 9380 "Can only indirectify direct input operands!"); 9381 9382 // Memory operands really want the address of the value. 9383 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9384 9385 // There is no longer a Value* corresponding to this operand. 9386 OpInfo.CallOperandVal = nullptr; 9387 9388 // It is now an indirect operand. 9389 OpInfo.isIndirect = true; 9390 } 9391 9392 } 9393 9394 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9395 std::vector<SDValue> AsmNodeOperands; 9396 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9397 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9398 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9399 9400 // If we have a !srcloc metadata node associated with it, we want to attach 9401 // this to the ultimately generated inline asm machineinstr. To do this, we 9402 // pass in the third operand as this (potentially null) inline asm MDNode. 9403 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9404 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9405 9406 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9407 // bits as operand 3. 9408 AsmNodeOperands.push_back(DAG.getTargetConstant( 9409 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9410 9411 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9412 // this, assign virtual and physical registers for inputs and otput. 9413 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9414 // Assign Registers. 9415 SDISelAsmOperandInfo &RefOpInfo = 9416 OpInfo.isMatchingInputConstraint() 9417 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9418 : OpInfo; 9419 const auto RegError = 9420 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9421 if (RegError) { 9422 const MachineFunction &MF = DAG.getMachineFunction(); 9423 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9424 const char *RegName = TRI.getName(*RegError); 9425 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9426 "' allocated for constraint '" + 9427 Twine(OpInfo.ConstraintCode) + 9428 "' does not match required type"); 9429 return; 9430 } 9431 9432 auto DetectWriteToReservedRegister = [&]() { 9433 const MachineFunction &MF = DAG.getMachineFunction(); 9434 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9435 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9436 if (Register::isPhysicalRegister(Reg) && 9437 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9438 const char *RegName = TRI.getName(Reg); 9439 emitInlineAsmError(Call, "write to reserved register '" + 9440 Twine(RegName) + "'"); 9441 return true; 9442 } 9443 } 9444 return false; 9445 }; 9446 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9447 (OpInfo.Type == InlineAsm::isInput && 9448 !OpInfo.isMatchingInputConstraint())) && 9449 "Only address as input operand is allowed."); 9450 9451 switch (OpInfo.Type) { 9452 case InlineAsm::isOutput: 9453 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9454 const InlineAsm::ConstraintCode ConstraintID = 9455 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9456 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9457 "Failed to convert memory constraint code to constraint id."); 9458 9459 // Add information to the INLINEASM node to know about this output. 9460 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9461 OpFlags.setMemConstraint(ConstraintID); 9462 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9463 MVT::i32)); 9464 AsmNodeOperands.push_back(OpInfo.CallOperand); 9465 } else { 9466 // Otherwise, this outputs to a register (directly for C_Register / 9467 // C_RegisterClass, and a target-defined fashion for 9468 // C_Immediate/C_Other). Find a register that we can use. 9469 if (OpInfo.AssignedRegs.Regs.empty()) { 9470 emitInlineAsmError( 9471 Call, "couldn't allocate output register for constraint '" + 9472 Twine(OpInfo.ConstraintCode) + "'"); 9473 return; 9474 } 9475 9476 if (DetectWriteToReservedRegister()) 9477 return; 9478 9479 // Add information to the INLINEASM node to know that this register is 9480 // set. 9481 OpInfo.AssignedRegs.AddInlineAsmOperands( 9482 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9483 : InlineAsm::Kind::RegDef, 9484 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9485 } 9486 break; 9487 9488 case InlineAsm::isInput: 9489 case InlineAsm::isLabel: { 9490 SDValue InOperandVal = OpInfo.CallOperand; 9491 9492 if (OpInfo.isMatchingInputConstraint()) { 9493 // If this is required to match an output register we have already set, 9494 // just use its register. 9495 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9496 AsmNodeOperands); 9497 InlineAsm::Flag Flag(AsmNodeOperands[CurOp]->getAsZExtVal()); 9498 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9499 if (OpInfo.isIndirect) { 9500 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9501 emitInlineAsmError(Call, "inline asm not supported yet: " 9502 "don't know how to handle tied " 9503 "indirect register inputs"); 9504 return; 9505 } 9506 9507 SmallVector<unsigned, 4> Regs; 9508 MachineFunction &MF = DAG.getMachineFunction(); 9509 MachineRegisterInfo &MRI = MF.getRegInfo(); 9510 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9511 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9512 Register TiedReg = R->getReg(); 9513 MVT RegVT = R->getSimpleValueType(0); 9514 const TargetRegisterClass *RC = 9515 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9516 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9517 : TRI.getMinimalPhysRegClass(TiedReg); 9518 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9519 Regs.push_back(MRI.createVirtualRegister(RC)); 9520 9521 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9522 9523 SDLoc dl = getCurSDLoc(); 9524 // Use the produced MatchedRegs object to 9525 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9526 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9527 OpInfo.getMatchedOperand(), dl, DAG, 9528 AsmNodeOperands); 9529 break; 9530 } 9531 9532 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9533 assert(Flag.getNumOperandRegisters() == 1 && 9534 "Unexpected number of operands"); 9535 // Add information to the INLINEASM node to know about this input. 9536 // See InlineAsm.h isUseOperandTiedToDef. 9537 Flag.clearMemConstraint(); 9538 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9539 AsmNodeOperands.push_back(DAG.getTargetConstant( 9540 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9541 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9542 break; 9543 } 9544 9545 // Treat indirect 'X' constraint as memory. 9546 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9547 OpInfo.isIndirect) 9548 OpInfo.ConstraintType = TargetLowering::C_Memory; 9549 9550 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9551 OpInfo.ConstraintType == TargetLowering::C_Other) { 9552 std::vector<SDValue> Ops; 9553 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9554 Ops, DAG); 9555 if (Ops.empty()) { 9556 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9557 if (isa<ConstantSDNode>(InOperandVal)) { 9558 emitInlineAsmError(Call, "value out of range for constraint '" + 9559 Twine(OpInfo.ConstraintCode) + "'"); 9560 return; 9561 } 9562 9563 emitInlineAsmError(Call, 9564 "invalid operand for inline asm constraint '" + 9565 Twine(OpInfo.ConstraintCode) + "'"); 9566 return; 9567 } 9568 9569 // Add information to the INLINEASM node to know about this input. 9570 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9571 AsmNodeOperands.push_back(DAG.getTargetConstant( 9572 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9573 llvm::append_range(AsmNodeOperands, Ops); 9574 break; 9575 } 9576 9577 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9578 assert((OpInfo.isIndirect || 9579 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9580 "Operand must be indirect to be a mem!"); 9581 assert(InOperandVal.getValueType() == 9582 TLI.getPointerTy(DAG.getDataLayout()) && 9583 "Memory operands expect pointer values"); 9584 9585 const InlineAsm::ConstraintCode ConstraintID = 9586 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9587 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9588 "Failed to convert memory constraint code to constraint id."); 9589 9590 // Add information to the INLINEASM node to know about this input. 9591 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9592 ResOpType.setMemConstraint(ConstraintID); 9593 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9594 getCurSDLoc(), 9595 MVT::i32)); 9596 AsmNodeOperands.push_back(InOperandVal); 9597 break; 9598 } 9599 9600 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9601 const InlineAsm::ConstraintCode ConstraintID = 9602 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9603 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9604 "Failed to convert memory constraint code to constraint id."); 9605 9606 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9607 9608 SDValue AsmOp = InOperandVal; 9609 if (isFunction(InOperandVal)) { 9610 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9611 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9612 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9613 InOperandVal.getValueType(), 9614 GA->getOffset()); 9615 } 9616 9617 // Add information to the INLINEASM node to know about this input. 9618 ResOpType.setMemConstraint(ConstraintID); 9619 9620 AsmNodeOperands.push_back( 9621 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9622 9623 AsmNodeOperands.push_back(AsmOp); 9624 break; 9625 } 9626 9627 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9628 OpInfo.ConstraintType == TargetLowering::C_Register) && 9629 "Unknown constraint type!"); 9630 9631 // TODO: Support this. 9632 if (OpInfo.isIndirect) { 9633 emitInlineAsmError( 9634 Call, "Don't know how to handle indirect register inputs yet " 9635 "for constraint '" + 9636 Twine(OpInfo.ConstraintCode) + "'"); 9637 return; 9638 } 9639 9640 // Copy the input into the appropriate registers. 9641 if (OpInfo.AssignedRegs.Regs.empty()) { 9642 emitInlineAsmError(Call, 9643 "couldn't allocate input reg for constraint '" + 9644 Twine(OpInfo.ConstraintCode) + "'"); 9645 return; 9646 } 9647 9648 if (DetectWriteToReservedRegister()) 9649 return; 9650 9651 SDLoc dl = getCurSDLoc(); 9652 9653 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9654 &Call); 9655 9656 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9657 0, dl, DAG, AsmNodeOperands); 9658 break; 9659 } 9660 case InlineAsm::isClobber: 9661 // Add the clobbered value to the operand list, so that the register 9662 // allocator is aware that the physreg got clobbered. 9663 if (!OpInfo.AssignedRegs.Regs.empty()) 9664 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9665 false, 0, getCurSDLoc(), DAG, 9666 AsmNodeOperands); 9667 break; 9668 } 9669 } 9670 9671 // Finish up input operands. Set the input chain and add the flag last. 9672 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9673 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9674 9675 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9676 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9677 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9678 Glue = Chain.getValue(1); 9679 9680 // Do additional work to generate outputs. 9681 9682 SmallVector<EVT, 1> ResultVTs; 9683 SmallVector<SDValue, 1> ResultValues; 9684 SmallVector<SDValue, 8> OutChains; 9685 9686 llvm::Type *CallResultType = Call.getType(); 9687 ArrayRef<Type *> ResultTypes; 9688 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9689 ResultTypes = StructResult->elements(); 9690 else if (!CallResultType->isVoidTy()) 9691 ResultTypes = ArrayRef(CallResultType); 9692 9693 auto CurResultType = ResultTypes.begin(); 9694 auto handleRegAssign = [&](SDValue V) { 9695 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9696 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9697 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9698 ++CurResultType; 9699 // If the type of the inline asm call site return value is different but has 9700 // same size as the type of the asm output bitcast it. One example of this 9701 // is for vectors with different width / number of elements. This can 9702 // happen for register classes that can contain multiple different value 9703 // types. The preg or vreg allocated may not have the same VT as was 9704 // expected. 9705 // 9706 // This can also happen for a return value that disagrees with the register 9707 // class it is put in, eg. a double in a general-purpose register on a 9708 // 32-bit machine. 9709 if (ResultVT != V.getValueType() && 9710 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9711 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9712 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9713 V.getValueType().isInteger()) { 9714 // If a result value was tied to an input value, the computed result 9715 // may have a wider width than the expected result. Extract the 9716 // relevant portion. 9717 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9718 } 9719 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9720 ResultVTs.push_back(ResultVT); 9721 ResultValues.push_back(V); 9722 }; 9723 9724 // Deal with output operands. 9725 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9726 if (OpInfo.Type == InlineAsm::isOutput) { 9727 SDValue Val; 9728 // Skip trivial output operands. 9729 if (OpInfo.AssignedRegs.Regs.empty()) 9730 continue; 9731 9732 switch (OpInfo.ConstraintType) { 9733 case TargetLowering::C_Register: 9734 case TargetLowering::C_RegisterClass: 9735 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9736 Chain, &Glue, &Call); 9737 break; 9738 case TargetLowering::C_Immediate: 9739 case TargetLowering::C_Other: 9740 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9741 OpInfo, DAG); 9742 break; 9743 case TargetLowering::C_Memory: 9744 break; // Already handled. 9745 case TargetLowering::C_Address: 9746 break; // Silence warning. 9747 case TargetLowering::C_Unknown: 9748 assert(false && "Unexpected unknown constraint"); 9749 } 9750 9751 // Indirect output manifest as stores. Record output chains. 9752 if (OpInfo.isIndirect) { 9753 const Value *Ptr = OpInfo.CallOperandVal; 9754 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9755 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9756 MachinePointerInfo(Ptr)); 9757 OutChains.push_back(Store); 9758 } else { 9759 // generate CopyFromRegs to associated registers. 9760 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9761 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9762 for (const SDValue &V : Val->op_values()) 9763 handleRegAssign(V); 9764 } else 9765 handleRegAssign(Val); 9766 } 9767 } 9768 } 9769 9770 // Set results. 9771 if (!ResultValues.empty()) { 9772 assert(CurResultType == ResultTypes.end() && 9773 "Mismatch in number of ResultTypes"); 9774 assert(ResultValues.size() == ResultTypes.size() && 9775 "Mismatch in number of output operands in asm result"); 9776 9777 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9778 DAG.getVTList(ResultVTs), ResultValues); 9779 setValue(&Call, V); 9780 } 9781 9782 // Collect store chains. 9783 if (!OutChains.empty()) 9784 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9785 9786 if (EmitEHLabels) { 9787 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9788 } 9789 9790 // Only Update Root if inline assembly has a memory effect. 9791 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9792 EmitEHLabels) 9793 DAG.setRoot(Chain); 9794 } 9795 9796 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9797 const Twine &Message) { 9798 LLVMContext &Ctx = *DAG.getContext(); 9799 Ctx.emitError(&Call, Message); 9800 9801 // Make sure we leave the DAG in a valid state 9802 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9803 SmallVector<EVT, 1> ValueVTs; 9804 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9805 9806 if (ValueVTs.empty()) 9807 return; 9808 9809 SmallVector<SDValue, 1> Ops; 9810 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9811 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9812 9813 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9814 } 9815 9816 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9817 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9818 MVT::Other, getRoot(), 9819 getValue(I.getArgOperand(0)), 9820 DAG.getSrcValue(I.getArgOperand(0)))); 9821 } 9822 9823 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9824 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9825 const DataLayout &DL = DAG.getDataLayout(); 9826 SDValue V = DAG.getVAArg( 9827 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9828 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9829 DL.getABITypeAlign(I.getType()).value()); 9830 DAG.setRoot(V.getValue(1)); 9831 9832 if (I.getType()->isPointerTy()) 9833 V = DAG.getPtrExtOrTrunc( 9834 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9835 setValue(&I, V); 9836 } 9837 9838 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9839 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9840 MVT::Other, getRoot(), 9841 getValue(I.getArgOperand(0)), 9842 DAG.getSrcValue(I.getArgOperand(0)))); 9843 } 9844 9845 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9846 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9847 MVT::Other, getRoot(), 9848 getValue(I.getArgOperand(0)), 9849 getValue(I.getArgOperand(1)), 9850 DAG.getSrcValue(I.getArgOperand(0)), 9851 DAG.getSrcValue(I.getArgOperand(1)))); 9852 } 9853 9854 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9855 const Instruction &I, 9856 SDValue Op) { 9857 const MDNode *Range = getRangeMetadata(I); 9858 if (!Range) 9859 return Op; 9860 9861 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9862 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9863 return Op; 9864 9865 APInt Lo = CR.getUnsignedMin(); 9866 if (!Lo.isMinValue()) 9867 return Op; 9868 9869 APInt Hi = CR.getUnsignedMax(); 9870 unsigned Bits = std::max(Hi.getActiveBits(), 9871 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9872 9873 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9874 9875 SDLoc SL = getCurSDLoc(); 9876 9877 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9878 DAG.getValueType(SmallVT)); 9879 unsigned NumVals = Op.getNode()->getNumValues(); 9880 if (NumVals == 1) 9881 return ZExt; 9882 9883 SmallVector<SDValue, 4> Ops; 9884 9885 Ops.push_back(ZExt); 9886 for (unsigned I = 1; I != NumVals; ++I) 9887 Ops.push_back(Op.getValue(I)); 9888 9889 return DAG.getMergeValues(Ops, SL); 9890 } 9891 9892 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9893 /// the call being lowered. 9894 /// 9895 /// This is a helper for lowering intrinsics that follow a target calling 9896 /// convention or require stack pointer adjustment. Only a subset of the 9897 /// intrinsic's operands need to participate in the calling convention. 9898 void SelectionDAGBuilder::populateCallLoweringInfo( 9899 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9900 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9901 AttributeSet RetAttrs, bool IsPatchPoint) { 9902 TargetLowering::ArgListTy Args; 9903 Args.reserve(NumArgs); 9904 9905 // Populate the argument list. 9906 // Attributes for args start at offset 1, after the return attribute. 9907 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9908 ArgI != ArgE; ++ArgI) { 9909 const Value *V = Call->getOperand(ArgI); 9910 9911 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9912 9913 TargetLowering::ArgListEntry Entry; 9914 Entry.Node = getValue(V); 9915 Entry.Ty = V->getType(); 9916 Entry.setAttributes(Call, ArgI); 9917 Args.push_back(Entry); 9918 } 9919 9920 CLI.setDebugLoc(getCurSDLoc()) 9921 .setChain(getRoot()) 9922 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 9923 RetAttrs) 9924 .setDiscardResult(Call->use_empty()) 9925 .setIsPatchPoint(IsPatchPoint) 9926 .setIsPreallocated( 9927 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9928 } 9929 9930 /// Add a stack map intrinsic call's live variable operands to a stackmap 9931 /// or patchpoint target node's operand list. 9932 /// 9933 /// Constants are converted to TargetConstants purely as an optimization to 9934 /// avoid constant materialization and register allocation. 9935 /// 9936 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9937 /// generate addess computation nodes, and so FinalizeISel can convert the 9938 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9939 /// address materialization and register allocation, but may also be required 9940 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9941 /// alloca in the entry block, then the runtime may assume that the alloca's 9942 /// StackMap location can be read immediately after compilation and that the 9943 /// location is valid at any point during execution (this is similar to the 9944 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9945 /// only available in a register, then the runtime would need to trap when 9946 /// execution reaches the StackMap in order to read the alloca's location. 9947 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9948 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9949 SelectionDAGBuilder &Builder) { 9950 SelectionDAG &DAG = Builder.DAG; 9951 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9952 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9953 9954 // Things on the stack are pointer-typed, meaning that they are already 9955 // legal and can be emitted directly to target nodes. 9956 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9957 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9958 } else { 9959 // Otherwise emit a target independent node to be legalised. 9960 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9961 } 9962 } 9963 } 9964 9965 /// Lower llvm.experimental.stackmap. 9966 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9967 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9968 // [live variables...]) 9969 9970 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9971 9972 SDValue Chain, InGlue, Callee; 9973 SmallVector<SDValue, 32> Ops; 9974 9975 SDLoc DL = getCurSDLoc(); 9976 Callee = getValue(CI.getCalledOperand()); 9977 9978 // The stackmap intrinsic only records the live variables (the arguments 9979 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9980 // intrinsic, this won't be lowered to a function call. This means we don't 9981 // have to worry about calling conventions and target specific lowering code. 9982 // Instead we perform the call lowering right here. 9983 // 9984 // chain, flag = CALLSEQ_START(chain, 0, 0) 9985 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9986 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9987 // 9988 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9989 InGlue = Chain.getValue(1); 9990 9991 // Add the STACKMAP operands, starting with DAG house-keeping. 9992 Ops.push_back(Chain); 9993 Ops.push_back(InGlue); 9994 9995 // Add the <id>, <numShadowBytes> operands. 9996 // 9997 // These do not require legalisation, and can be emitted directly to target 9998 // constant nodes. 9999 SDValue ID = getValue(CI.getArgOperand(0)); 10000 assert(ID.getValueType() == MVT::i64); 10001 SDValue IDConst = 10002 DAG.getTargetConstant(ID->getAsZExtVal(), DL, ID.getValueType()); 10003 Ops.push_back(IDConst); 10004 10005 SDValue Shad = getValue(CI.getArgOperand(1)); 10006 assert(Shad.getValueType() == MVT::i32); 10007 SDValue ShadConst = 10008 DAG.getTargetConstant(Shad->getAsZExtVal(), DL, Shad.getValueType()); 10009 Ops.push_back(ShadConst); 10010 10011 // Add the live variables. 10012 addStackMapLiveVars(CI, 2, DL, Ops, *this); 10013 10014 // Create the STACKMAP node. 10015 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10016 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 10017 InGlue = Chain.getValue(1); 10018 10019 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 10020 10021 // Stackmaps don't generate values, so nothing goes into the NodeMap. 10022 10023 // Set the root to the target-lowered call chain. 10024 DAG.setRoot(Chain); 10025 10026 // Inform the Frame Information that we have a stackmap in this function. 10027 FuncInfo.MF->getFrameInfo().setHasStackMap(); 10028 } 10029 10030 /// Lower llvm.experimental.patchpoint directly to its target opcode. 10031 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 10032 const BasicBlock *EHPadBB) { 10033 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 10034 // i32 <numBytes>, 10035 // i8* <target>, 10036 // i32 <numArgs>, 10037 // [Args...], 10038 // [live variables...]) 10039 10040 CallingConv::ID CC = CB.getCallingConv(); 10041 bool IsAnyRegCC = CC == CallingConv::AnyReg; 10042 bool HasDef = !CB.getType()->isVoidTy(); 10043 SDLoc dl = getCurSDLoc(); 10044 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 10045 10046 // Handle immediate and symbolic callees. 10047 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 10048 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 10049 /*isTarget=*/true); 10050 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 10051 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 10052 SDLoc(SymbolicCallee), 10053 SymbolicCallee->getValueType(0)); 10054 10055 // Get the real number of arguments participating in the call <numArgs> 10056 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 10057 unsigned NumArgs = NArgVal->getAsZExtVal(); 10058 10059 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 10060 // Intrinsics include all meta-operands up to but not including CC. 10061 unsigned NumMetaOpers = PatchPointOpers::CCPos; 10062 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 10063 "Not enough arguments provided to the patchpoint intrinsic"); 10064 10065 // For AnyRegCC the arguments are lowered later on manually. 10066 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 10067 Type *ReturnTy = 10068 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 10069 10070 TargetLowering::CallLoweringInfo CLI(DAG); 10071 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 10072 ReturnTy, CB.getAttributes().getRetAttrs(), true); 10073 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 10074 10075 SDNode *CallEnd = Result.second.getNode(); 10076 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 10077 CallEnd = CallEnd->getOperand(0).getNode(); 10078 10079 /// Get a call instruction from the call sequence chain. 10080 /// Tail calls are not allowed. 10081 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 10082 "Expected a callseq node."); 10083 SDNode *Call = CallEnd->getOperand(0).getNode(); 10084 bool HasGlue = Call->getGluedNode(); 10085 10086 // Replace the target specific call node with the patchable intrinsic. 10087 SmallVector<SDValue, 8> Ops; 10088 10089 // Push the chain. 10090 Ops.push_back(*(Call->op_begin())); 10091 10092 // Optionally, push the glue (if any). 10093 if (HasGlue) 10094 Ops.push_back(*(Call->op_end() - 1)); 10095 10096 // Push the register mask info. 10097 if (HasGlue) 10098 Ops.push_back(*(Call->op_end() - 2)); 10099 else 10100 Ops.push_back(*(Call->op_end() - 1)); 10101 10102 // Add the <id> and <numBytes> constants. 10103 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10104 Ops.push_back(DAG.getTargetConstant(IDVal->getAsZExtVal(), dl, MVT::i64)); 10105 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10106 Ops.push_back(DAG.getTargetConstant(NBytesVal->getAsZExtVal(), dl, MVT::i32)); 10107 10108 // Add the callee. 10109 Ops.push_back(Callee); 10110 10111 // Adjust <numArgs> to account for any arguments that have been passed on the 10112 // stack instead. 10113 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10114 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10115 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10116 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10117 10118 // Add the calling convention 10119 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10120 10121 // Add the arguments we omitted previously. The register allocator should 10122 // place these in any free register. 10123 if (IsAnyRegCC) 10124 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10125 Ops.push_back(getValue(CB.getArgOperand(i))); 10126 10127 // Push the arguments from the call instruction. 10128 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10129 Ops.append(Call->op_begin() + 2, e); 10130 10131 // Push live variables for the stack map. 10132 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10133 10134 SDVTList NodeTys; 10135 if (IsAnyRegCC && HasDef) { 10136 // Create the return types based on the intrinsic definition 10137 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10138 SmallVector<EVT, 3> ValueVTs; 10139 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10140 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10141 10142 // There is always a chain and a glue type at the end 10143 ValueVTs.push_back(MVT::Other); 10144 ValueVTs.push_back(MVT::Glue); 10145 NodeTys = DAG.getVTList(ValueVTs); 10146 } else 10147 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10148 10149 // Replace the target specific call node with a PATCHPOINT node. 10150 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10151 10152 // Update the NodeMap. 10153 if (HasDef) { 10154 if (IsAnyRegCC) 10155 setValue(&CB, SDValue(PPV.getNode(), 0)); 10156 else 10157 setValue(&CB, Result.first); 10158 } 10159 10160 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10161 // call sequence. Furthermore the location of the chain and glue can change 10162 // when the AnyReg calling convention is used and the intrinsic returns a 10163 // value. 10164 if (IsAnyRegCC && HasDef) { 10165 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10166 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10167 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10168 } else 10169 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10170 DAG.DeleteNode(Call); 10171 10172 // Inform the Frame Information that we have a patchpoint in this function. 10173 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10174 } 10175 10176 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10177 unsigned Intrinsic) { 10178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10179 SDValue Op1 = getValue(I.getArgOperand(0)); 10180 SDValue Op2; 10181 if (I.arg_size() > 1) 10182 Op2 = getValue(I.getArgOperand(1)); 10183 SDLoc dl = getCurSDLoc(); 10184 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10185 SDValue Res; 10186 SDNodeFlags SDFlags; 10187 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10188 SDFlags.copyFMF(*FPMO); 10189 10190 switch (Intrinsic) { 10191 case Intrinsic::vector_reduce_fadd: 10192 if (SDFlags.hasAllowReassociation()) 10193 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10194 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10195 SDFlags); 10196 else 10197 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10198 break; 10199 case Intrinsic::vector_reduce_fmul: 10200 if (SDFlags.hasAllowReassociation()) 10201 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10202 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10203 SDFlags); 10204 else 10205 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10206 break; 10207 case Intrinsic::vector_reduce_add: 10208 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10209 break; 10210 case Intrinsic::vector_reduce_mul: 10211 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10212 break; 10213 case Intrinsic::vector_reduce_and: 10214 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10215 break; 10216 case Intrinsic::vector_reduce_or: 10217 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10218 break; 10219 case Intrinsic::vector_reduce_xor: 10220 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10221 break; 10222 case Intrinsic::vector_reduce_smax: 10223 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10224 break; 10225 case Intrinsic::vector_reduce_smin: 10226 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10227 break; 10228 case Intrinsic::vector_reduce_umax: 10229 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10230 break; 10231 case Intrinsic::vector_reduce_umin: 10232 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10233 break; 10234 case Intrinsic::vector_reduce_fmax: 10235 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10236 break; 10237 case Intrinsic::vector_reduce_fmin: 10238 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10239 break; 10240 case Intrinsic::vector_reduce_fmaximum: 10241 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10242 break; 10243 case Intrinsic::vector_reduce_fminimum: 10244 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10245 break; 10246 default: 10247 llvm_unreachable("Unhandled vector reduce intrinsic"); 10248 } 10249 setValue(&I, Res); 10250 } 10251 10252 /// Returns an AttributeList representing the attributes applied to the return 10253 /// value of the given call. 10254 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10255 SmallVector<Attribute::AttrKind, 2> Attrs; 10256 if (CLI.RetSExt) 10257 Attrs.push_back(Attribute::SExt); 10258 if (CLI.RetZExt) 10259 Attrs.push_back(Attribute::ZExt); 10260 if (CLI.IsInReg) 10261 Attrs.push_back(Attribute::InReg); 10262 10263 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10264 Attrs); 10265 } 10266 10267 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10268 /// implementation, which just calls LowerCall. 10269 /// FIXME: When all targets are 10270 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10271 std::pair<SDValue, SDValue> 10272 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10273 // Handle the incoming return values from the call. 10274 CLI.Ins.clear(); 10275 Type *OrigRetTy = CLI.RetTy; 10276 SmallVector<EVT, 4> RetTys; 10277 SmallVector<uint64_t, 4> Offsets; 10278 auto &DL = CLI.DAG.getDataLayout(); 10279 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10280 10281 if (CLI.IsPostTypeLegalization) { 10282 // If we are lowering a libcall after legalization, split the return type. 10283 SmallVector<EVT, 4> OldRetTys; 10284 SmallVector<uint64_t, 4> OldOffsets; 10285 RetTys.swap(OldRetTys); 10286 Offsets.swap(OldOffsets); 10287 10288 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10289 EVT RetVT = OldRetTys[i]; 10290 uint64_t Offset = OldOffsets[i]; 10291 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10292 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10293 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10294 RetTys.append(NumRegs, RegisterVT); 10295 for (unsigned j = 0; j != NumRegs; ++j) 10296 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10297 } 10298 } 10299 10300 SmallVector<ISD::OutputArg, 4> Outs; 10301 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10302 10303 bool CanLowerReturn = 10304 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10305 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10306 10307 SDValue DemoteStackSlot; 10308 int DemoteStackIdx = -100; 10309 if (!CanLowerReturn) { 10310 // FIXME: equivalent assert? 10311 // assert(!CS.hasInAllocaArgument() && 10312 // "sret demotion is incompatible with inalloca"); 10313 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10314 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10315 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10316 DemoteStackIdx = 10317 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10318 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10319 DL.getAllocaAddrSpace()); 10320 10321 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10322 ArgListEntry Entry; 10323 Entry.Node = DemoteStackSlot; 10324 Entry.Ty = StackSlotPtrType; 10325 Entry.IsSExt = false; 10326 Entry.IsZExt = false; 10327 Entry.IsInReg = false; 10328 Entry.IsSRet = true; 10329 Entry.IsNest = false; 10330 Entry.IsByVal = false; 10331 Entry.IsByRef = false; 10332 Entry.IsReturned = false; 10333 Entry.IsSwiftSelf = false; 10334 Entry.IsSwiftAsync = false; 10335 Entry.IsSwiftError = false; 10336 Entry.IsCFGuardTarget = false; 10337 Entry.Alignment = Alignment; 10338 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10339 CLI.NumFixedArgs += 1; 10340 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10341 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10342 10343 // sret demotion isn't compatible with tail-calls, since the sret argument 10344 // points into the callers stack frame. 10345 CLI.IsTailCall = false; 10346 } else { 10347 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10348 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10349 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10350 ISD::ArgFlagsTy Flags; 10351 if (NeedsRegBlock) { 10352 Flags.setInConsecutiveRegs(); 10353 if (I == RetTys.size() - 1) 10354 Flags.setInConsecutiveRegsLast(); 10355 } 10356 EVT VT = RetTys[I]; 10357 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10358 CLI.CallConv, VT); 10359 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10360 CLI.CallConv, VT); 10361 for (unsigned i = 0; i != NumRegs; ++i) { 10362 ISD::InputArg MyFlags; 10363 MyFlags.Flags = Flags; 10364 MyFlags.VT = RegisterVT; 10365 MyFlags.ArgVT = VT; 10366 MyFlags.Used = CLI.IsReturnValueUsed; 10367 if (CLI.RetTy->isPointerTy()) { 10368 MyFlags.Flags.setPointer(); 10369 MyFlags.Flags.setPointerAddrSpace( 10370 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10371 } 10372 if (CLI.RetSExt) 10373 MyFlags.Flags.setSExt(); 10374 if (CLI.RetZExt) 10375 MyFlags.Flags.setZExt(); 10376 if (CLI.IsInReg) 10377 MyFlags.Flags.setInReg(); 10378 CLI.Ins.push_back(MyFlags); 10379 } 10380 } 10381 } 10382 10383 // We push in swifterror return as the last element of CLI.Ins. 10384 ArgListTy &Args = CLI.getArgs(); 10385 if (supportSwiftError()) { 10386 for (const ArgListEntry &Arg : Args) { 10387 if (Arg.IsSwiftError) { 10388 ISD::InputArg MyFlags; 10389 MyFlags.VT = getPointerTy(DL); 10390 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10391 MyFlags.Flags.setSwiftError(); 10392 CLI.Ins.push_back(MyFlags); 10393 } 10394 } 10395 } 10396 10397 // Handle all of the outgoing arguments. 10398 CLI.Outs.clear(); 10399 CLI.OutVals.clear(); 10400 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10401 SmallVector<EVT, 4> ValueVTs; 10402 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10403 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10404 Type *FinalType = Args[i].Ty; 10405 if (Args[i].IsByVal) 10406 FinalType = Args[i].IndirectType; 10407 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10408 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10409 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10410 ++Value) { 10411 EVT VT = ValueVTs[Value]; 10412 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10413 SDValue Op = SDValue(Args[i].Node.getNode(), 10414 Args[i].Node.getResNo() + Value); 10415 ISD::ArgFlagsTy Flags; 10416 10417 // Certain targets (such as MIPS), may have a different ABI alignment 10418 // for a type depending on the context. Give the target a chance to 10419 // specify the alignment it wants. 10420 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10421 Flags.setOrigAlign(OriginalAlignment); 10422 10423 if (Args[i].Ty->isPointerTy()) { 10424 Flags.setPointer(); 10425 Flags.setPointerAddrSpace( 10426 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10427 } 10428 if (Args[i].IsZExt) 10429 Flags.setZExt(); 10430 if (Args[i].IsSExt) 10431 Flags.setSExt(); 10432 if (Args[i].IsInReg) { 10433 // If we are using vectorcall calling convention, a structure that is 10434 // passed InReg - is surely an HVA 10435 if (CLI.CallConv == CallingConv::X86_VectorCall && 10436 isa<StructType>(FinalType)) { 10437 // The first value of a structure is marked 10438 if (0 == Value) 10439 Flags.setHvaStart(); 10440 Flags.setHva(); 10441 } 10442 // Set InReg Flag 10443 Flags.setInReg(); 10444 } 10445 if (Args[i].IsSRet) 10446 Flags.setSRet(); 10447 if (Args[i].IsSwiftSelf) 10448 Flags.setSwiftSelf(); 10449 if (Args[i].IsSwiftAsync) 10450 Flags.setSwiftAsync(); 10451 if (Args[i].IsSwiftError) 10452 Flags.setSwiftError(); 10453 if (Args[i].IsCFGuardTarget) 10454 Flags.setCFGuardTarget(); 10455 if (Args[i].IsByVal) 10456 Flags.setByVal(); 10457 if (Args[i].IsByRef) 10458 Flags.setByRef(); 10459 if (Args[i].IsPreallocated) { 10460 Flags.setPreallocated(); 10461 // Set the byval flag for CCAssignFn callbacks that don't know about 10462 // preallocated. This way we can know how many bytes we should've 10463 // allocated and how many bytes a callee cleanup function will pop. If 10464 // we port preallocated to more targets, we'll have to add custom 10465 // preallocated handling in the various CC lowering callbacks. 10466 Flags.setByVal(); 10467 } 10468 if (Args[i].IsInAlloca) { 10469 Flags.setInAlloca(); 10470 // Set the byval flag for CCAssignFn callbacks that don't know about 10471 // inalloca. This way we can know how many bytes we should've allocated 10472 // and how many bytes a callee cleanup function will pop. If we port 10473 // inalloca to more targets, we'll have to add custom inalloca handling 10474 // in the various CC lowering callbacks. 10475 Flags.setByVal(); 10476 } 10477 Align MemAlign; 10478 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10479 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10480 Flags.setByValSize(FrameSize); 10481 10482 // info is not there but there are cases it cannot get right. 10483 if (auto MA = Args[i].Alignment) 10484 MemAlign = *MA; 10485 else 10486 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10487 } else if (auto MA = Args[i].Alignment) { 10488 MemAlign = *MA; 10489 } else { 10490 MemAlign = OriginalAlignment; 10491 } 10492 Flags.setMemAlign(MemAlign); 10493 if (Args[i].IsNest) 10494 Flags.setNest(); 10495 if (NeedsRegBlock) 10496 Flags.setInConsecutiveRegs(); 10497 10498 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10499 CLI.CallConv, VT); 10500 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10501 CLI.CallConv, VT); 10502 SmallVector<SDValue, 4> Parts(NumParts); 10503 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10504 10505 if (Args[i].IsSExt) 10506 ExtendKind = ISD::SIGN_EXTEND; 10507 else if (Args[i].IsZExt) 10508 ExtendKind = ISD::ZERO_EXTEND; 10509 10510 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10511 // for now. 10512 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10513 CanLowerReturn) { 10514 assert((CLI.RetTy == Args[i].Ty || 10515 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10516 CLI.RetTy->getPointerAddressSpace() == 10517 Args[i].Ty->getPointerAddressSpace())) && 10518 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10519 // Before passing 'returned' to the target lowering code, ensure that 10520 // either the register MVT and the actual EVT are the same size or that 10521 // the return value and argument are extended in the same way; in these 10522 // cases it's safe to pass the argument register value unchanged as the 10523 // return register value (although it's at the target's option whether 10524 // to do so) 10525 // TODO: allow code generation to take advantage of partially preserved 10526 // registers rather than clobbering the entire register when the 10527 // parameter extension method is not compatible with the return 10528 // extension method 10529 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10530 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10531 CLI.RetZExt == Args[i].IsZExt)) 10532 Flags.setReturned(); 10533 } 10534 10535 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10536 CLI.CallConv, ExtendKind); 10537 10538 for (unsigned j = 0; j != NumParts; ++j) { 10539 // if it isn't first piece, alignment must be 1 10540 // For scalable vectors the scalable part is currently handled 10541 // by individual targets, so we just use the known minimum size here. 10542 ISD::OutputArg MyFlags( 10543 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10544 i < CLI.NumFixedArgs, i, 10545 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10546 if (NumParts > 1 && j == 0) 10547 MyFlags.Flags.setSplit(); 10548 else if (j != 0) { 10549 MyFlags.Flags.setOrigAlign(Align(1)); 10550 if (j == NumParts - 1) 10551 MyFlags.Flags.setSplitEnd(); 10552 } 10553 10554 CLI.Outs.push_back(MyFlags); 10555 CLI.OutVals.push_back(Parts[j]); 10556 } 10557 10558 if (NeedsRegBlock && Value == NumValues - 1) 10559 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10560 } 10561 } 10562 10563 SmallVector<SDValue, 4> InVals; 10564 CLI.Chain = LowerCall(CLI, InVals); 10565 10566 // Update CLI.InVals to use outside of this function. 10567 CLI.InVals = InVals; 10568 10569 // Verify that the target's LowerCall behaved as expected. 10570 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10571 "LowerCall didn't return a valid chain!"); 10572 assert((!CLI.IsTailCall || InVals.empty()) && 10573 "LowerCall emitted a return value for a tail call!"); 10574 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10575 "LowerCall didn't emit the correct number of values!"); 10576 10577 // For a tail call, the return value is merely live-out and there aren't 10578 // any nodes in the DAG representing it. Return a special value to 10579 // indicate that a tail call has been emitted and no more Instructions 10580 // should be processed in the current block. 10581 if (CLI.IsTailCall) { 10582 CLI.DAG.setRoot(CLI.Chain); 10583 return std::make_pair(SDValue(), SDValue()); 10584 } 10585 10586 #ifndef NDEBUG 10587 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10588 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10589 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10590 "LowerCall emitted a value with the wrong type!"); 10591 } 10592 #endif 10593 10594 SmallVector<SDValue, 4> ReturnValues; 10595 if (!CanLowerReturn) { 10596 // The instruction result is the result of loading from the 10597 // hidden sret parameter. 10598 SmallVector<EVT, 1> PVTs; 10599 Type *PtrRetTy = 10600 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10601 10602 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10603 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10604 EVT PtrVT = PVTs[0]; 10605 10606 unsigned NumValues = RetTys.size(); 10607 ReturnValues.resize(NumValues); 10608 SmallVector<SDValue, 4> Chains(NumValues); 10609 10610 // An aggregate return value cannot wrap around the address space, so 10611 // offsets to its parts don't wrap either. 10612 SDNodeFlags Flags; 10613 Flags.setNoUnsignedWrap(true); 10614 10615 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10616 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10617 for (unsigned i = 0; i < NumValues; ++i) { 10618 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10619 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10620 PtrVT), Flags); 10621 SDValue L = CLI.DAG.getLoad( 10622 RetTys[i], CLI.DL, CLI.Chain, Add, 10623 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10624 DemoteStackIdx, Offsets[i]), 10625 HiddenSRetAlign); 10626 ReturnValues[i] = L; 10627 Chains[i] = L.getValue(1); 10628 } 10629 10630 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10631 } else { 10632 // Collect the legal value parts into potentially illegal values 10633 // that correspond to the original function's return values. 10634 std::optional<ISD::NodeType> AssertOp; 10635 if (CLI.RetSExt) 10636 AssertOp = ISD::AssertSext; 10637 else if (CLI.RetZExt) 10638 AssertOp = ISD::AssertZext; 10639 unsigned CurReg = 0; 10640 for (EVT VT : RetTys) { 10641 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10642 CLI.CallConv, VT); 10643 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10644 CLI.CallConv, VT); 10645 10646 ReturnValues.push_back(getCopyFromParts( 10647 CLI.DAG, CLI.DL, &InVals[CurReg], NumRegs, RegisterVT, VT, nullptr, 10648 CLI.Chain, CLI.CallConv, AssertOp)); 10649 CurReg += NumRegs; 10650 } 10651 10652 // For a function returning void, there is no return value. We can't create 10653 // such a node, so we just return a null return value in that case. In 10654 // that case, nothing will actually look at the value. 10655 if (ReturnValues.empty()) 10656 return std::make_pair(SDValue(), CLI.Chain); 10657 } 10658 10659 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10660 CLI.DAG.getVTList(RetTys), ReturnValues); 10661 return std::make_pair(Res, CLI.Chain); 10662 } 10663 10664 /// Places new result values for the node in Results (their number 10665 /// and types must exactly match those of the original return values of 10666 /// the node), or leaves Results empty, which indicates that the node is not 10667 /// to be custom lowered after all. 10668 void TargetLowering::LowerOperationWrapper(SDNode *N, 10669 SmallVectorImpl<SDValue> &Results, 10670 SelectionDAG &DAG) const { 10671 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10672 10673 if (!Res.getNode()) 10674 return; 10675 10676 // If the original node has one result, take the return value from 10677 // LowerOperation as is. It might not be result number 0. 10678 if (N->getNumValues() == 1) { 10679 Results.push_back(Res); 10680 return; 10681 } 10682 10683 // If the original node has multiple results, then the return node should 10684 // have the same number of results. 10685 assert((N->getNumValues() == Res->getNumValues()) && 10686 "Lowering returned the wrong number of results!"); 10687 10688 // Places new result values base on N result number. 10689 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10690 Results.push_back(Res.getValue(I)); 10691 } 10692 10693 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10694 llvm_unreachable("LowerOperation not implemented for this target!"); 10695 } 10696 10697 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10698 unsigned Reg, 10699 ISD::NodeType ExtendType) { 10700 SDValue Op = getNonRegisterValue(V); 10701 assert((Op.getOpcode() != ISD::CopyFromReg || 10702 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10703 "Copy from a reg to the same reg!"); 10704 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10705 10706 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10707 // If this is an InlineAsm we have to match the registers required, not the 10708 // notional registers required by the type. 10709 10710 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10711 std::nullopt); // This is not an ABI copy. 10712 SDValue Chain = DAG.getEntryNode(); 10713 10714 if (ExtendType == ISD::ANY_EXTEND) { 10715 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10716 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10717 ExtendType = PreferredExtendIt->second; 10718 } 10719 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10720 PendingExports.push_back(Chain); 10721 } 10722 10723 #include "llvm/CodeGen/SelectionDAGISel.h" 10724 10725 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10726 /// entry block, return true. This includes arguments used by switches, since 10727 /// the switch may expand into multiple basic blocks. 10728 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10729 // With FastISel active, we may be splitting blocks, so force creation 10730 // of virtual registers for all non-dead arguments. 10731 if (FastISel) 10732 return A->use_empty(); 10733 10734 const BasicBlock &Entry = A->getParent()->front(); 10735 for (const User *U : A->users()) 10736 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10737 return false; // Use not in entry block. 10738 10739 return true; 10740 } 10741 10742 using ArgCopyElisionMapTy = 10743 DenseMap<const Argument *, 10744 std::pair<const AllocaInst *, const StoreInst *>>; 10745 10746 /// Scan the entry block of the function in FuncInfo for arguments that look 10747 /// like copies into a local alloca. Record any copied arguments in 10748 /// ArgCopyElisionCandidates. 10749 static void 10750 findArgumentCopyElisionCandidates(const DataLayout &DL, 10751 FunctionLoweringInfo *FuncInfo, 10752 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10753 // Record the state of every static alloca used in the entry block. Argument 10754 // allocas are all used in the entry block, so we need approximately as many 10755 // entries as we have arguments. 10756 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10757 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10758 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10759 StaticAllocas.reserve(NumArgs * 2); 10760 10761 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10762 if (!V) 10763 return nullptr; 10764 V = V->stripPointerCasts(); 10765 const auto *AI = dyn_cast<AllocaInst>(V); 10766 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10767 return nullptr; 10768 auto Iter = StaticAllocas.insert({AI, Unknown}); 10769 return &Iter.first->second; 10770 }; 10771 10772 // Look for stores of arguments to static allocas. Look through bitcasts and 10773 // GEPs to handle type coercions, as long as the alloca is fully initialized 10774 // by the store. Any non-store use of an alloca escapes it and any subsequent 10775 // unanalyzed store might write it. 10776 // FIXME: Handle structs initialized with multiple stores. 10777 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10778 // Look for stores, and handle non-store uses conservatively. 10779 const auto *SI = dyn_cast<StoreInst>(&I); 10780 if (!SI) { 10781 // We will look through cast uses, so ignore them completely. 10782 if (I.isCast()) 10783 continue; 10784 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10785 // to allocas. 10786 if (I.isDebugOrPseudoInst()) 10787 continue; 10788 // This is an unknown instruction. Assume it escapes or writes to all 10789 // static alloca operands. 10790 for (const Use &U : I.operands()) { 10791 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10792 *Info = StaticAllocaInfo::Clobbered; 10793 } 10794 continue; 10795 } 10796 10797 // If the stored value is a static alloca, mark it as escaped. 10798 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10799 *Info = StaticAllocaInfo::Clobbered; 10800 10801 // Check if the destination is a static alloca. 10802 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10803 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10804 if (!Info) 10805 continue; 10806 const AllocaInst *AI = cast<AllocaInst>(Dst); 10807 10808 // Skip allocas that have been initialized or clobbered. 10809 if (*Info != StaticAllocaInfo::Unknown) 10810 continue; 10811 10812 // Check if the stored value is an argument, and that this store fully 10813 // initializes the alloca. 10814 // If the argument type has padding bits we can't directly forward a pointer 10815 // as the upper bits may contain garbage. 10816 // Don't elide copies from the same argument twice. 10817 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10818 const auto *Arg = dyn_cast<Argument>(Val); 10819 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10820 Arg->getType()->isEmptyTy() || 10821 DL.getTypeStoreSize(Arg->getType()) != 10822 DL.getTypeAllocSize(AI->getAllocatedType()) || 10823 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10824 ArgCopyElisionCandidates.count(Arg)) { 10825 *Info = StaticAllocaInfo::Clobbered; 10826 continue; 10827 } 10828 10829 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10830 << '\n'); 10831 10832 // Mark this alloca and store for argument copy elision. 10833 *Info = StaticAllocaInfo::Elidable; 10834 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10835 10836 // Stop scanning if we've seen all arguments. This will happen early in -O0 10837 // builds, which is useful, because -O0 builds have large entry blocks and 10838 // many allocas. 10839 if (ArgCopyElisionCandidates.size() == NumArgs) 10840 break; 10841 } 10842 } 10843 10844 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10845 /// ArgVal is a load from a suitable fixed stack object. 10846 static void tryToElideArgumentCopy( 10847 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10848 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10849 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10850 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10851 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10852 // Check if this is a load from a fixed stack object. 10853 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10854 if (!LNode) 10855 return; 10856 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10857 if (!FINode) 10858 return; 10859 10860 // Check that the fixed stack object is the right size and alignment. 10861 // Look at the alignment that the user wrote on the alloca instead of looking 10862 // at the stack object. 10863 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10864 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10865 const AllocaInst *AI = ArgCopyIter->second.first; 10866 int FixedIndex = FINode->getIndex(); 10867 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10868 int OldIndex = AllocaIndex; 10869 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10870 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10871 LLVM_DEBUG( 10872 dbgs() << " argument copy elision failed due to bad fixed stack " 10873 "object size\n"); 10874 return; 10875 } 10876 Align RequiredAlignment = AI->getAlign(); 10877 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10878 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10879 "greater than stack argument alignment (" 10880 << DebugStr(RequiredAlignment) << " vs " 10881 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10882 return; 10883 } 10884 10885 // Perform the elision. Delete the old stack object and replace its only use 10886 // in the variable info map. Mark the stack object as mutable. 10887 LLVM_DEBUG({ 10888 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10889 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10890 << '\n'; 10891 }); 10892 MFI.RemoveStackObject(OldIndex); 10893 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10894 AllocaIndex = FixedIndex; 10895 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10896 for (SDValue ArgVal : ArgVals) 10897 Chains.push_back(ArgVal.getValue(1)); 10898 10899 // Avoid emitting code for the store implementing the copy. 10900 const StoreInst *SI = ArgCopyIter->second.second; 10901 ElidedArgCopyInstrs.insert(SI); 10902 10903 // Check for uses of the argument again so that we can avoid exporting ArgVal 10904 // if it is't used by anything other than the store. 10905 for (const Value *U : Arg.users()) { 10906 if (U != SI) { 10907 ArgHasUses = true; 10908 break; 10909 } 10910 } 10911 } 10912 10913 void SelectionDAGISel::LowerArguments(const Function &F) { 10914 SelectionDAG &DAG = SDB->DAG; 10915 SDLoc dl = SDB->getCurSDLoc(); 10916 const DataLayout &DL = DAG.getDataLayout(); 10917 SmallVector<ISD::InputArg, 16> Ins; 10918 10919 // In Naked functions we aren't going to save any registers. 10920 if (F.hasFnAttribute(Attribute::Naked)) 10921 return; 10922 10923 if (!FuncInfo->CanLowerReturn) { 10924 // Put in an sret pointer parameter before all the other parameters. 10925 SmallVector<EVT, 1> ValueVTs; 10926 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10927 PointerType::get(F.getContext(), 10928 DAG.getDataLayout().getAllocaAddrSpace()), 10929 ValueVTs); 10930 10931 // NOTE: Assuming that a pointer will never break down to more than one VT 10932 // or one register. 10933 ISD::ArgFlagsTy Flags; 10934 Flags.setSRet(); 10935 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10936 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10937 ISD::InputArg::NoArgIndex, 0); 10938 Ins.push_back(RetArg); 10939 } 10940 10941 // Look for stores of arguments to static allocas. Mark such arguments with a 10942 // flag to ask the target to give us the memory location of that argument if 10943 // available. 10944 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10945 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10946 ArgCopyElisionCandidates); 10947 10948 // Set up the incoming argument description vector. 10949 for (const Argument &Arg : F.args()) { 10950 unsigned ArgNo = Arg.getArgNo(); 10951 SmallVector<EVT, 4> ValueVTs; 10952 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10953 bool isArgValueUsed = !Arg.use_empty(); 10954 unsigned PartBase = 0; 10955 Type *FinalType = Arg.getType(); 10956 if (Arg.hasAttribute(Attribute::ByVal)) 10957 FinalType = Arg.getParamByValType(); 10958 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10959 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10960 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10961 Value != NumValues; ++Value) { 10962 EVT VT = ValueVTs[Value]; 10963 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10964 ISD::ArgFlagsTy Flags; 10965 10966 10967 if (Arg.getType()->isPointerTy()) { 10968 Flags.setPointer(); 10969 Flags.setPointerAddrSpace( 10970 cast<PointerType>(Arg.getType())->getAddressSpace()); 10971 } 10972 if (Arg.hasAttribute(Attribute::ZExt)) 10973 Flags.setZExt(); 10974 if (Arg.hasAttribute(Attribute::SExt)) 10975 Flags.setSExt(); 10976 if (Arg.hasAttribute(Attribute::InReg)) { 10977 // If we are using vectorcall calling convention, a structure that is 10978 // passed InReg - is surely an HVA 10979 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10980 isa<StructType>(Arg.getType())) { 10981 // The first value of a structure is marked 10982 if (0 == Value) 10983 Flags.setHvaStart(); 10984 Flags.setHva(); 10985 } 10986 // Set InReg Flag 10987 Flags.setInReg(); 10988 } 10989 if (Arg.hasAttribute(Attribute::StructRet)) 10990 Flags.setSRet(); 10991 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10992 Flags.setSwiftSelf(); 10993 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10994 Flags.setSwiftAsync(); 10995 if (Arg.hasAttribute(Attribute::SwiftError)) 10996 Flags.setSwiftError(); 10997 if (Arg.hasAttribute(Attribute::ByVal)) 10998 Flags.setByVal(); 10999 if (Arg.hasAttribute(Attribute::ByRef)) 11000 Flags.setByRef(); 11001 if (Arg.hasAttribute(Attribute::InAlloca)) { 11002 Flags.setInAlloca(); 11003 // Set the byval flag for CCAssignFn callbacks that don't know about 11004 // inalloca. This way we can know how many bytes we should've allocated 11005 // and how many bytes a callee cleanup function will pop. If we port 11006 // inalloca to more targets, we'll have to add custom inalloca handling 11007 // in the various CC lowering callbacks. 11008 Flags.setByVal(); 11009 } 11010 if (Arg.hasAttribute(Attribute::Preallocated)) { 11011 Flags.setPreallocated(); 11012 // Set the byval flag for CCAssignFn callbacks that don't know about 11013 // preallocated. This way we can know how many bytes we should've 11014 // allocated and how many bytes a callee cleanup function will pop. If 11015 // we port preallocated to more targets, we'll have to add custom 11016 // preallocated handling in the various CC lowering callbacks. 11017 Flags.setByVal(); 11018 } 11019 11020 // Certain targets (such as MIPS), may have a different ABI alignment 11021 // for a type depending on the context. Give the target a chance to 11022 // specify the alignment it wants. 11023 const Align OriginalAlignment( 11024 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 11025 Flags.setOrigAlign(OriginalAlignment); 11026 11027 Align MemAlign; 11028 Type *ArgMemTy = nullptr; 11029 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 11030 Flags.isByRef()) { 11031 if (!ArgMemTy) 11032 ArgMemTy = Arg.getPointeeInMemoryValueType(); 11033 11034 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 11035 11036 // For in-memory arguments, size and alignment should be passed from FE. 11037 // BE will guess if this info is not there but there are cases it cannot 11038 // get right. 11039 if (auto ParamAlign = Arg.getParamStackAlign()) 11040 MemAlign = *ParamAlign; 11041 else if ((ParamAlign = Arg.getParamAlign())) 11042 MemAlign = *ParamAlign; 11043 else 11044 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 11045 if (Flags.isByRef()) 11046 Flags.setByRefSize(MemSize); 11047 else 11048 Flags.setByValSize(MemSize); 11049 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 11050 MemAlign = *ParamAlign; 11051 } else { 11052 MemAlign = OriginalAlignment; 11053 } 11054 Flags.setMemAlign(MemAlign); 11055 11056 if (Arg.hasAttribute(Attribute::Nest)) 11057 Flags.setNest(); 11058 if (NeedsRegBlock) 11059 Flags.setInConsecutiveRegs(); 11060 if (ArgCopyElisionCandidates.count(&Arg)) 11061 Flags.setCopyElisionCandidate(); 11062 if (Arg.hasAttribute(Attribute::Returned)) 11063 Flags.setReturned(); 11064 11065 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 11066 *CurDAG->getContext(), F.getCallingConv(), VT); 11067 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 11068 *CurDAG->getContext(), F.getCallingConv(), VT); 11069 for (unsigned i = 0; i != NumRegs; ++i) { 11070 // For scalable vectors, use the minimum size; individual targets 11071 // are responsible for handling scalable vector arguments and 11072 // return values. 11073 ISD::InputArg MyFlags( 11074 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 11075 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 11076 if (NumRegs > 1 && i == 0) 11077 MyFlags.Flags.setSplit(); 11078 // if it isn't first piece, alignment must be 1 11079 else if (i > 0) { 11080 MyFlags.Flags.setOrigAlign(Align(1)); 11081 if (i == NumRegs - 1) 11082 MyFlags.Flags.setSplitEnd(); 11083 } 11084 Ins.push_back(MyFlags); 11085 } 11086 if (NeedsRegBlock && Value == NumValues - 1) 11087 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11088 PartBase += VT.getStoreSize().getKnownMinValue(); 11089 } 11090 } 11091 11092 // Call the target to set up the argument values. 11093 SmallVector<SDValue, 8> InVals; 11094 SDValue NewRoot = TLI->LowerFormalArguments( 11095 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11096 11097 // Verify that the target's LowerFormalArguments behaved as expected. 11098 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11099 "LowerFormalArguments didn't return a valid chain!"); 11100 assert(InVals.size() == Ins.size() && 11101 "LowerFormalArguments didn't emit the correct number of values!"); 11102 LLVM_DEBUG({ 11103 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11104 assert(InVals[i].getNode() && 11105 "LowerFormalArguments emitted a null value!"); 11106 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11107 "LowerFormalArguments emitted a value with the wrong type!"); 11108 } 11109 }); 11110 11111 // Update the DAG with the new chain value resulting from argument lowering. 11112 DAG.setRoot(NewRoot); 11113 11114 // Set up the argument values. 11115 unsigned i = 0; 11116 if (!FuncInfo->CanLowerReturn) { 11117 // Create a virtual register for the sret pointer, and put in a copy 11118 // from the sret argument into it. 11119 SmallVector<EVT, 1> ValueVTs; 11120 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11121 PointerType::get(F.getContext(), 11122 DAG.getDataLayout().getAllocaAddrSpace()), 11123 ValueVTs); 11124 MVT VT = ValueVTs[0].getSimpleVT(); 11125 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11126 std::optional<ISD::NodeType> AssertOp; 11127 SDValue ArgValue = 11128 getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, nullptr, NewRoot, 11129 F.getCallingConv(), AssertOp); 11130 11131 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11132 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11133 Register SRetReg = 11134 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11135 FuncInfo->DemoteRegister = SRetReg; 11136 NewRoot = 11137 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11138 DAG.setRoot(NewRoot); 11139 11140 // i indexes lowered arguments. Bump it past the hidden sret argument. 11141 ++i; 11142 } 11143 11144 SmallVector<SDValue, 4> Chains; 11145 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11146 for (const Argument &Arg : F.args()) { 11147 SmallVector<SDValue, 4> ArgValues; 11148 SmallVector<EVT, 4> ValueVTs; 11149 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11150 unsigned NumValues = ValueVTs.size(); 11151 if (NumValues == 0) 11152 continue; 11153 11154 bool ArgHasUses = !Arg.use_empty(); 11155 11156 // Elide the copying store if the target loaded this argument from a 11157 // suitable fixed stack object. 11158 if (Ins[i].Flags.isCopyElisionCandidate()) { 11159 unsigned NumParts = 0; 11160 for (EVT VT : ValueVTs) 11161 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11162 F.getCallingConv(), VT); 11163 11164 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11165 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11166 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11167 } 11168 11169 // If this argument is unused then remember its value. It is used to generate 11170 // debugging information. 11171 bool isSwiftErrorArg = 11172 TLI->supportSwiftError() && 11173 Arg.hasAttribute(Attribute::SwiftError); 11174 if (!ArgHasUses && !isSwiftErrorArg) { 11175 SDB->setUnusedArgValue(&Arg, InVals[i]); 11176 11177 // Also remember any frame index for use in FastISel. 11178 if (FrameIndexSDNode *FI = 11179 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11180 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11181 } 11182 11183 for (unsigned Val = 0; Val != NumValues; ++Val) { 11184 EVT VT = ValueVTs[Val]; 11185 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11186 F.getCallingConv(), VT); 11187 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11188 *CurDAG->getContext(), F.getCallingConv(), VT); 11189 11190 // Even an apparent 'unused' swifterror argument needs to be returned. So 11191 // we do generate a copy for it that can be used on return from the 11192 // function. 11193 if (ArgHasUses || isSwiftErrorArg) { 11194 std::optional<ISD::NodeType> AssertOp; 11195 if (Arg.hasAttribute(Attribute::SExt)) 11196 AssertOp = ISD::AssertSext; 11197 else if (Arg.hasAttribute(Attribute::ZExt)) 11198 AssertOp = ISD::AssertZext; 11199 11200 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11201 PartVT, VT, nullptr, NewRoot, 11202 F.getCallingConv(), AssertOp)); 11203 } 11204 11205 i += NumParts; 11206 } 11207 11208 // We don't need to do anything else for unused arguments. 11209 if (ArgValues.empty()) 11210 continue; 11211 11212 // Note down frame index. 11213 if (FrameIndexSDNode *FI = 11214 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11215 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11216 11217 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11218 SDB->getCurSDLoc()); 11219 11220 SDB->setValue(&Arg, Res); 11221 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11222 // We want to associate the argument with the frame index, among 11223 // involved operands, that correspond to the lowest address. The 11224 // getCopyFromParts function, called earlier, is swapping the order of 11225 // the operands to BUILD_PAIR depending on endianness. The result of 11226 // that swapping is that the least significant bits of the argument will 11227 // be in the first operand of the BUILD_PAIR node, and the most 11228 // significant bits will be in the second operand. 11229 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11230 if (LoadSDNode *LNode = 11231 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11232 if (FrameIndexSDNode *FI = 11233 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11234 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11235 } 11236 11237 // Analyses past this point are naive and don't expect an assertion. 11238 if (Res.getOpcode() == ISD::AssertZext) 11239 Res = Res.getOperand(0); 11240 11241 // Update the SwiftErrorVRegDefMap. 11242 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11243 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11244 if (Register::isVirtualRegister(Reg)) 11245 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11246 Reg); 11247 } 11248 11249 // If this argument is live outside of the entry block, insert a copy from 11250 // wherever we got it to the vreg that other BB's will reference it as. 11251 if (Res.getOpcode() == ISD::CopyFromReg) { 11252 // If we can, though, try to skip creating an unnecessary vreg. 11253 // FIXME: This isn't very clean... it would be nice to make this more 11254 // general. 11255 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11256 if (Register::isVirtualRegister(Reg)) { 11257 FuncInfo->ValueMap[&Arg] = Reg; 11258 continue; 11259 } 11260 } 11261 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11262 FuncInfo->InitializeRegForValue(&Arg); 11263 SDB->CopyToExportRegsIfNeeded(&Arg); 11264 } 11265 } 11266 11267 if (!Chains.empty()) { 11268 Chains.push_back(NewRoot); 11269 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11270 } 11271 11272 DAG.setRoot(NewRoot); 11273 11274 assert(i == InVals.size() && "Argument register count mismatch!"); 11275 11276 // If any argument copy elisions occurred and we have debug info, update the 11277 // stale frame indices used in the dbg.declare variable info table. 11278 if (!ArgCopyElisionFrameIndexMap.empty()) { 11279 for (MachineFunction::VariableDbgInfo &VI : 11280 MF->getInStackSlotVariableDbgInfo()) { 11281 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11282 if (I != ArgCopyElisionFrameIndexMap.end()) 11283 VI.updateStackSlot(I->second); 11284 } 11285 } 11286 11287 // Finally, if the target has anything special to do, allow it to do so. 11288 emitFunctionEntryCode(); 11289 } 11290 11291 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11292 /// ensure constants are generated when needed. Remember the virtual registers 11293 /// that need to be added to the Machine PHI nodes as input. We cannot just 11294 /// directly add them, because expansion might result in multiple MBB's for one 11295 /// BB. As such, the start of the BB might correspond to a different MBB than 11296 /// the end. 11297 void 11298 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11299 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11300 11301 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11302 11303 // Check PHI nodes in successors that expect a value to be available from this 11304 // block. 11305 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11306 if (!isa<PHINode>(SuccBB->begin())) continue; 11307 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11308 11309 // If this terminator has multiple identical successors (common for 11310 // switches), only handle each succ once. 11311 if (!SuccsHandled.insert(SuccMBB).second) 11312 continue; 11313 11314 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11315 11316 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11317 // nodes and Machine PHI nodes, but the incoming operands have not been 11318 // emitted yet. 11319 for (const PHINode &PN : SuccBB->phis()) { 11320 // Ignore dead phi's. 11321 if (PN.use_empty()) 11322 continue; 11323 11324 // Skip empty types 11325 if (PN.getType()->isEmptyTy()) 11326 continue; 11327 11328 unsigned Reg; 11329 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11330 11331 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11332 unsigned &RegOut = ConstantsOut[C]; 11333 if (RegOut == 0) { 11334 RegOut = FuncInfo.CreateRegs(C); 11335 // We need to zero/sign extend ConstantInt phi operands to match 11336 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11337 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11338 if (auto *CI = dyn_cast<ConstantInt>(C)) 11339 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11340 : ISD::ZERO_EXTEND; 11341 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11342 } 11343 Reg = RegOut; 11344 } else { 11345 DenseMap<const Value *, Register>::iterator I = 11346 FuncInfo.ValueMap.find(PHIOp); 11347 if (I != FuncInfo.ValueMap.end()) 11348 Reg = I->second; 11349 else { 11350 assert(isa<AllocaInst>(PHIOp) && 11351 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11352 "Didn't codegen value into a register!??"); 11353 Reg = FuncInfo.CreateRegs(PHIOp); 11354 CopyValueToVirtualRegister(PHIOp, Reg); 11355 } 11356 } 11357 11358 // Remember that this register needs to added to the machine PHI node as 11359 // the input for this MBB. 11360 SmallVector<EVT, 4> ValueVTs; 11361 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11362 for (EVT VT : ValueVTs) { 11363 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11364 for (unsigned i = 0; i != NumRegisters; ++i) 11365 FuncInfo.PHINodesToUpdate.push_back( 11366 std::make_pair(&*MBBI++, Reg + i)); 11367 Reg += NumRegisters; 11368 } 11369 } 11370 } 11371 11372 ConstantsOut.clear(); 11373 } 11374 11375 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11376 MachineFunction::iterator I(MBB); 11377 if (++I == FuncInfo.MF->end()) 11378 return nullptr; 11379 return &*I; 11380 } 11381 11382 /// During lowering new call nodes can be created (such as memset, etc.). 11383 /// Those will become new roots of the current DAG, but complications arise 11384 /// when they are tail calls. In such cases, the call lowering will update 11385 /// the root, but the builder still needs to know that a tail call has been 11386 /// lowered in order to avoid generating an additional return. 11387 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11388 // If the node is null, we do have a tail call. 11389 if (MaybeTC.getNode() != nullptr) 11390 DAG.setRoot(MaybeTC); 11391 else 11392 HasTailCall = true; 11393 } 11394 11395 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11396 MachineBasicBlock *SwitchMBB, 11397 MachineBasicBlock *DefaultMBB) { 11398 MachineFunction *CurMF = FuncInfo.MF; 11399 MachineBasicBlock *NextMBB = nullptr; 11400 MachineFunction::iterator BBI(W.MBB); 11401 if (++BBI != FuncInfo.MF->end()) 11402 NextMBB = &*BBI; 11403 11404 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11405 11406 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11407 11408 if (Size == 2 && W.MBB == SwitchMBB) { 11409 // If any two of the cases has the same destination, and if one value 11410 // is the same as the other, but has one bit unset that the other has set, 11411 // use bit manipulation to do two compares at once. For example: 11412 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11413 // TODO: This could be extended to merge any 2 cases in switches with 3 11414 // cases. 11415 // TODO: Handle cases where W.CaseBB != SwitchBB. 11416 CaseCluster &Small = *W.FirstCluster; 11417 CaseCluster &Big = *W.LastCluster; 11418 11419 if (Small.Low == Small.High && Big.Low == Big.High && 11420 Small.MBB == Big.MBB) { 11421 const APInt &SmallValue = Small.Low->getValue(); 11422 const APInt &BigValue = Big.Low->getValue(); 11423 11424 // Check that there is only one bit different. 11425 APInt CommonBit = BigValue ^ SmallValue; 11426 if (CommonBit.isPowerOf2()) { 11427 SDValue CondLHS = getValue(Cond); 11428 EVT VT = CondLHS.getValueType(); 11429 SDLoc DL = getCurSDLoc(); 11430 11431 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11432 DAG.getConstant(CommonBit, DL, VT)); 11433 SDValue Cond = DAG.getSetCC( 11434 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11435 ISD::SETEQ); 11436 11437 // Update successor info. 11438 // Both Small and Big will jump to Small.BB, so we sum up the 11439 // probabilities. 11440 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11441 if (BPI) 11442 addSuccessorWithProb( 11443 SwitchMBB, DefaultMBB, 11444 // The default destination is the first successor in IR. 11445 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11446 else 11447 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11448 11449 // Insert the true branch. 11450 SDValue BrCond = 11451 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11452 DAG.getBasicBlock(Small.MBB)); 11453 // Insert the false branch. 11454 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11455 DAG.getBasicBlock(DefaultMBB)); 11456 11457 DAG.setRoot(BrCond); 11458 return; 11459 } 11460 } 11461 } 11462 11463 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11464 // Here, we order cases by probability so the most likely case will be 11465 // checked first. However, two clusters can have the same probability in 11466 // which case their relative ordering is non-deterministic. So we use Low 11467 // as a tie-breaker as clusters are guaranteed to never overlap. 11468 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11469 [](const CaseCluster &a, const CaseCluster &b) { 11470 return a.Prob != b.Prob ? 11471 a.Prob > b.Prob : 11472 a.Low->getValue().slt(b.Low->getValue()); 11473 }); 11474 11475 // Rearrange the case blocks so that the last one falls through if possible 11476 // without changing the order of probabilities. 11477 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11478 --I; 11479 if (I->Prob > W.LastCluster->Prob) 11480 break; 11481 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11482 std::swap(*I, *W.LastCluster); 11483 break; 11484 } 11485 } 11486 } 11487 11488 // Compute total probability. 11489 BranchProbability DefaultProb = W.DefaultProb; 11490 BranchProbability UnhandledProbs = DefaultProb; 11491 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11492 UnhandledProbs += I->Prob; 11493 11494 MachineBasicBlock *CurMBB = W.MBB; 11495 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11496 bool FallthroughUnreachable = false; 11497 MachineBasicBlock *Fallthrough; 11498 if (I == W.LastCluster) { 11499 // For the last cluster, fall through to the default destination. 11500 Fallthrough = DefaultMBB; 11501 FallthroughUnreachable = isa<UnreachableInst>( 11502 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11503 } else { 11504 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11505 CurMF->insert(BBI, Fallthrough); 11506 // Put Cond in a virtual register to make it available from the new blocks. 11507 ExportFromCurrentBlock(Cond); 11508 } 11509 UnhandledProbs -= I->Prob; 11510 11511 switch (I->Kind) { 11512 case CC_JumpTable: { 11513 // FIXME: Optimize away range check based on pivot comparisons. 11514 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11515 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11516 11517 // The jump block hasn't been inserted yet; insert it here. 11518 MachineBasicBlock *JumpMBB = JT->MBB; 11519 CurMF->insert(BBI, JumpMBB); 11520 11521 auto JumpProb = I->Prob; 11522 auto FallthroughProb = UnhandledProbs; 11523 11524 // If the default statement is a target of the jump table, we evenly 11525 // distribute the default probability to successors of CurMBB. Also 11526 // update the probability on the edge from JumpMBB to Fallthrough. 11527 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11528 SE = JumpMBB->succ_end(); 11529 SI != SE; ++SI) { 11530 if (*SI == DefaultMBB) { 11531 JumpProb += DefaultProb / 2; 11532 FallthroughProb -= DefaultProb / 2; 11533 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11534 JumpMBB->normalizeSuccProbs(); 11535 break; 11536 } 11537 } 11538 11539 // If the default clause is unreachable, propagate that knowledge into 11540 // JTH->FallthroughUnreachable which will use it to suppress the range 11541 // check. 11542 // 11543 // However, don't do this if we're doing branch target enforcement, 11544 // because a table branch _without_ a range check can be a tempting JOP 11545 // gadget - out-of-bounds inputs that are impossible in correct 11546 // execution become possible again if an attacker can influence the 11547 // control flow. So if an attacker doesn't already have a BTI bypass 11548 // available, we don't want them to be able to get one out of this 11549 // table branch. 11550 if (FallthroughUnreachable) { 11551 Function &CurFunc = CurMF->getFunction(); 11552 bool HasBranchTargetEnforcement = false; 11553 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11554 HasBranchTargetEnforcement = 11555 CurFunc.getFnAttribute("branch-target-enforcement") 11556 .getValueAsBool(); 11557 } else { 11558 HasBranchTargetEnforcement = 11559 CurMF->getMMI().getModule()->getModuleFlag( 11560 "branch-target-enforcement"); 11561 } 11562 if (!HasBranchTargetEnforcement) 11563 JTH->FallthroughUnreachable = true; 11564 } 11565 11566 if (!JTH->FallthroughUnreachable) 11567 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11568 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11569 CurMBB->normalizeSuccProbs(); 11570 11571 // The jump table header will be inserted in our current block, do the 11572 // range check, and fall through to our fallthrough block. 11573 JTH->HeaderBB = CurMBB; 11574 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11575 11576 // If we're in the right place, emit the jump table header right now. 11577 if (CurMBB == SwitchMBB) { 11578 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11579 JTH->Emitted = true; 11580 } 11581 break; 11582 } 11583 case CC_BitTests: { 11584 // FIXME: Optimize away range check based on pivot comparisons. 11585 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11586 11587 // The bit test blocks haven't been inserted yet; insert them here. 11588 for (BitTestCase &BTC : BTB->Cases) 11589 CurMF->insert(BBI, BTC.ThisBB); 11590 11591 // Fill in fields of the BitTestBlock. 11592 BTB->Parent = CurMBB; 11593 BTB->Default = Fallthrough; 11594 11595 BTB->DefaultProb = UnhandledProbs; 11596 // If the cases in bit test don't form a contiguous range, we evenly 11597 // distribute the probability on the edge to Fallthrough to two 11598 // successors of CurMBB. 11599 if (!BTB->ContiguousRange) { 11600 BTB->Prob += DefaultProb / 2; 11601 BTB->DefaultProb -= DefaultProb / 2; 11602 } 11603 11604 if (FallthroughUnreachable) 11605 BTB->FallthroughUnreachable = true; 11606 11607 // If we're in the right place, emit the bit test header right now. 11608 if (CurMBB == SwitchMBB) { 11609 visitBitTestHeader(*BTB, SwitchMBB); 11610 BTB->Emitted = true; 11611 } 11612 break; 11613 } 11614 case CC_Range: { 11615 const Value *RHS, *LHS, *MHS; 11616 ISD::CondCode CC; 11617 if (I->Low == I->High) { 11618 // Check Cond == I->Low. 11619 CC = ISD::SETEQ; 11620 LHS = Cond; 11621 RHS=I->Low; 11622 MHS = nullptr; 11623 } else { 11624 // Check I->Low <= Cond <= I->High. 11625 CC = ISD::SETLE; 11626 LHS = I->Low; 11627 MHS = Cond; 11628 RHS = I->High; 11629 } 11630 11631 // If Fallthrough is unreachable, fold away the comparison. 11632 if (FallthroughUnreachable) 11633 CC = ISD::SETTRUE; 11634 11635 // The false probability is the sum of all unhandled cases. 11636 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11637 getCurSDLoc(), I->Prob, UnhandledProbs); 11638 11639 if (CurMBB == SwitchMBB) 11640 visitSwitchCase(CB, SwitchMBB); 11641 else 11642 SL->SwitchCases.push_back(CB); 11643 11644 break; 11645 } 11646 } 11647 CurMBB = Fallthrough; 11648 } 11649 } 11650 11651 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11652 const SwitchWorkListItem &W, 11653 Value *Cond, 11654 MachineBasicBlock *SwitchMBB) { 11655 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11656 "Clusters not sorted?"); 11657 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11658 11659 auto [LastLeft, FirstRight, LeftProb, RightProb] = 11660 SL->computeSplitWorkItemInfo(W); 11661 11662 // Use the first element on the right as pivot since we will make less-than 11663 // comparisons against it. 11664 CaseClusterIt PivotCluster = FirstRight; 11665 assert(PivotCluster > W.FirstCluster); 11666 assert(PivotCluster <= W.LastCluster); 11667 11668 CaseClusterIt FirstLeft = W.FirstCluster; 11669 CaseClusterIt LastRight = W.LastCluster; 11670 11671 const ConstantInt *Pivot = PivotCluster->Low; 11672 11673 // New blocks will be inserted immediately after the current one. 11674 MachineFunction::iterator BBI(W.MBB); 11675 ++BBI; 11676 11677 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11678 // we can branch to its destination directly if it's squeezed exactly in 11679 // between the known lower bound and Pivot - 1. 11680 MachineBasicBlock *LeftMBB; 11681 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11682 FirstLeft->Low == W.GE && 11683 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11684 LeftMBB = FirstLeft->MBB; 11685 } else { 11686 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11687 FuncInfo.MF->insert(BBI, LeftMBB); 11688 WorkList.push_back( 11689 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11690 // Put Cond in a virtual register to make it available from the new blocks. 11691 ExportFromCurrentBlock(Cond); 11692 } 11693 11694 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11695 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11696 // directly if RHS.High equals the current upper bound. 11697 MachineBasicBlock *RightMBB; 11698 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11699 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11700 RightMBB = FirstRight->MBB; 11701 } else { 11702 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11703 FuncInfo.MF->insert(BBI, RightMBB); 11704 WorkList.push_back( 11705 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11706 // Put Cond in a virtual register to make it available from the new blocks. 11707 ExportFromCurrentBlock(Cond); 11708 } 11709 11710 // Create the CaseBlock record that will be used to lower the branch. 11711 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11712 getCurSDLoc(), LeftProb, RightProb); 11713 11714 if (W.MBB == SwitchMBB) 11715 visitSwitchCase(CB, SwitchMBB); 11716 else 11717 SL->SwitchCases.push_back(CB); 11718 } 11719 11720 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11721 // from the swith statement. 11722 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11723 BranchProbability PeeledCaseProb) { 11724 if (PeeledCaseProb == BranchProbability::getOne()) 11725 return BranchProbability::getZero(); 11726 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11727 11728 uint32_t Numerator = CaseProb.getNumerator(); 11729 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11730 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11731 } 11732 11733 // Try to peel the top probability case if it exceeds the threshold. 11734 // Return current MachineBasicBlock for the switch statement if the peeling 11735 // does not occur. 11736 // If the peeling is performed, return the newly created MachineBasicBlock 11737 // for the peeled switch statement. Also update Clusters to remove the peeled 11738 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11739 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11740 const SwitchInst &SI, CaseClusterVector &Clusters, 11741 BranchProbability &PeeledCaseProb) { 11742 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11743 // Don't perform if there is only one cluster or optimizing for size. 11744 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11745 TM.getOptLevel() == CodeGenOptLevel::None || 11746 SwitchMBB->getParent()->getFunction().hasMinSize()) 11747 return SwitchMBB; 11748 11749 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11750 unsigned PeeledCaseIndex = 0; 11751 bool SwitchPeeled = false; 11752 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11753 CaseCluster &CC = Clusters[Index]; 11754 if (CC.Prob < TopCaseProb) 11755 continue; 11756 TopCaseProb = CC.Prob; 11757 PeeledCaseIndex = Index; 11758 SwitchPeeled = true; 11759 } 11760 if (!SwitchPeeled) 11761 return SwitchMBB; 11762 11763 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11764 << TopCaseProb << "\n"); 11765 11766 // Record the MBB for the peeled switch statement. 11767 MachineFunction::iterator BBI(SwitchMBB); 11768 ++BBI; 11769 MachineBasicBlock *PeeledSwitchMBB = 11770 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11771 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11772 11773 ExportFromCurrentBlock(SI.getCondition()); 11774 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11775 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11776 nullptr, nullptr, TopCaseProb.getCompl()}; 11777 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11778 11779 Clusters.erase(PeeledCaseIt); 11780 for (CaseCluster &CC : Clusters) { 11781 LLVM_DEBUG( 11782 dbgs() << "Scale the probablity for one cluster, before scaling: " 11783 << CC.Prob << "\n"); 11784 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11785 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11786 } 11787 PeeledCaseProb = TopCaseProb; 11788 return PeeledSwitchMBB; 11789 } 11790 11791 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11792 // Extract cases from the switch. 11793 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11794 CaseClusterVector Clusters; 11795 Clusters.reserve(SI.getNumCases()); 11796 for (auto I : SI.cases()) { 11797 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11798 const ConstantInt *CaseVal = I.getCaseValue(); 11799 BranchProbability Prob = 11800 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11801 : BranchProbability(1, SI.getNumCases() + 1); 11802 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11803 } 11804 11805 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11806 11807 // Cluster adjacent cases with the same destination. We do this at all 11808 // optimization levels because it's cheap to do and will make codegen faster 11809 // if there are many clusters. 11810 sortAndRangeify(Clusters); 11811 11812 // The branch probablity of the peeled case. 11813 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11814 MachineBasicBlock *PeeledSwitchMBB = 11815 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11816 11817 // If there is only the default destination, jump there directly. 11818 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11819 if (Clusters.empty()) { 11820 assert(PeeledSwitchMBB == SwitchMBB); 11821 SwitchMBB->addSuccessor(DefaultMBB); 11822 if (DefaultMBB != NextBlock(SwitchMBB)) { 11823 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11824 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11825 } 11826 return; 11827 } 11828 11829 SL->findJumpTables(Clusters, &SI, getCurSDLoc(), DefaultMBB, DAG.getPSI(), 11830 DAG.getBFI()); 11831 SL->findBitTestClusters(Clusters, &SI); 11832 11833 LLVM_DEBUG({ 11834 dbgs() << "Case clusters: "; 11835 for (const CaseCluster &C : Clusters) { 11836 if (C.Kind == CC_JumpTable) 11837 dbgs() << "JT:"; 11838 if (C.Kind == CC_BitTests) 11839 dbgs() << "BT:"; 11840 11841 C.Low->getValue().print(dbgs(), true); 11842 if (C.Low != C.High) { 11843 dbgs() << '-'; 11844 C.High->getValue().print(dbgs(), true); 11845 } 11846 dbgs() << ' '; 11847 } 11848 dbgs() << '\n'; 11849 }); 11850 11851 assert(!Clusters.empty()); 11852 SwitchWorkList WorkList; 11853 CaseClusterIt First = Clusters.begin(); 11854 CaseClusterIt Last = Clusters.end() - 1; 11855 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11856 // Scale the branchprobability for DefaultMBB if the peel occurs and 11857 // DefaultMBB is not replaced. 11858 if (PeeledCaseProb != BranchProbability::getZero() && 11859 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11860 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11861 WorkList.push_back( 11862 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11863 11864 while (!WorkList.empty()) { 11865 SwitchWorkListItem W = WorkList.pop_back_val(); 11866 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11867 11868 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 11869 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11870 // For optimized builds, lower large range as a balanced binary tree. 11871 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11872 continue; 11873 } 11874 11875 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11876 } 11877 } 11878 11879 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11881 auto DL = getCurSDLoc(); 11882 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11883 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11884 } 11885 11886 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11888 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11889 11890 SDLoc DL = getCurSDLoc(); 11891 SDValue V = getValue(I.getOperand(0)); 11892 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11893 11894 if (VT.isScalableVector()) { 11895 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11896 return; 11897 } 11898 11899 // Use VECTOR_SHUFFLE for the fixed-length vector 11900 // to maintain existing behavior. 11901 SmallVector<int, 8> Mask; 11902 unsigned NumElts = VT.getVectorMinNumElements(); 11903 for (unsigned i = 0; i != NumElts; ++i) 11904 Mask.push_back(NumElts - 1 - i); 11905 11906 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11907 } 11908 11909 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11910 auto DL = getCurSDLoc(); 11911 SDValue InVec = getValue(I.getOperand(0)); 11912 EVT OutVT = 11913 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11914 11915 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11916 11917 // ISD Node needs the input vectors split into two equal parts 11918 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11919 DAG.getVectorIdxConstant(0, DL)); 11920 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11921 DAG.getVectorIdxConstant(OutNumElts, DL)); 11922 11923 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11924 // legalisation and combines. 11925 if (OutVT.isFixedLengthVector()) { 11926 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11927 createStrideMask(0, 2, OutNumElts)); 11928 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11929 createStrideMask(1, 2, OutNumElts)); 11930 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11931 setValue(&I, Res); 11932 return; 11933 } 11934 11935 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11936 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11937 setValue(&I, Res); 11938 } 11939 11940 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11941 auto DL = getCurSDLoc(); 11942 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11943 SDValue InVec0 = getValue(I.getOperand(0)); 11944 SDValue InVec1 = getValue(I.getOperand(1)); 11945 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11946 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11947 11948 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11949 // legalisation and combines. 11950 if (OutVT.isFixedLengthVector()) { 11951 unsigned NumElts = InVT.getVectorMinNumElements(); 11952 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11953 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11954 createInterleaveMask(NumElts, 2))); 11955 return; 11956 } 11957 11958 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 11959 DAG.getVTList(InVT, InVT), InVec0, InVec1); 11960 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 11961 Res.getValue(1)); 11962 setValue(&I, Res); 11963 } 11964 11965 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11966 SmallVector<EVT, 4> ValueVTs; 11967 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11968 ValueVTs); 11969 unsigned NumValues = ValueVTs.size(); 11970 if (NumValues == 0) return; 11971 11972 SmallVector<SDValue, 4> Values(NumValues); 11973 SDValue Op = getValue(I.getOperand(0)); 11974 11975 for (unsigned i = 0; i != NumValues; ++i) 11976 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11977 SDValue(Op.getNode(), Op.getResNo() + i)); 11978 11979 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11980 DAG.getVTList(ValueVTs), Values)); 11981 } 11982 11983 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11984 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11985 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11986 11987 SDLoc DL = getCurSDLoc(); 11988 SDValue V1 = getValue(I.getOperand(0)); 11989 SDValue V2 = getValue(I.getOperand(1)); 11990 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11991 11992 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11993 if (VT.isScalableVector()) { 11994 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11995 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11996 DAG.getConstant(Imm, DL, IdxVT))); 11997 return; 11998 } 11999 12000 unsigned NumElts = VT.getVectorNumElements(); 12001 12002 uint64_t Idx = (NumElts + Imm) % NumElts; 12003 12004 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 12005 SmallVector<int, 8> Mask; 12006 for (unsigned i = 0; i < NumElts; ++i) 12007 Mask.push_back(Idx + i); 12008 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 12009 } 12010 12011 // Consider the following MIR after SelectionDAG, which produces output in 12012 // phyregs in the first case or virtregs in the second case. 12013 // 12014 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12015 // %5:gr32 = COPY $ebx 12016 // %6:gr32 = COPY $edx 12017 // %1:gr32 = COPY %6:gr32 12018 // %0:gr32 = COPY %5:gr32 12019 // 12020 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12021 // %1:gr32 = COPY %6:gr32 12022 // %0:gr32 = COPY %5:gr32 12023 // 12024 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12025 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12026 // 12027 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12028 // to a single virtreg (such as %0). The remaining outputs monotonically 12029 // increase in virtreg number from there. If a callbr has no outputs, then it 12030 // should not have a corresponding callbr landingpad; in fact, the callbr 12031 // landingpad would not even be able to refer to such a callbr. 12032 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12033 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12034 // There is definitely at least one copy. 12035 assert(MI->getOpcode() == TargetOpcode::COPY && 12036 "start of copy chain MUST be COPY"); 12037 Reg = MI->getOperand(1).getReg(); 12038 MI = MRI.def_begin(Reg)->getParent(); 12039 // There may be an optional second copy. 12040 if (MI->getOpcode() == TargetOpcode::COPY) { 12041 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12042 Reg = MI->getOperand(1).getReg(); 12043 assert(Reg.isPhysical() && "expected COPY of physical register"); 12044 MI = MRI.def_begin(Reg)->getParent(); 12045 } 12046 // The start of the chain must be an INLINEASM_BR. 12047 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12048 "end of copy chain MUST be INLINEASM_BR"); 12049 return Reg; 12050 } 12051 12052 // We must do this walk rather than the simpler 12053 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12054 // otherwise we will end up with copies of virtregs only valid along direct 12055 // edges. 12056 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12057 SmallVector<EVT, 8> ResultVTs; 12058 SmallVector<SDValue, 8> ResultValues; 12059 const auto *CBR = 12060 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12061 12062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12063 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12064 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12065 12066 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12067 SDValue Chain = DAG.getRoot(); 12068 12069 // Re-parse the asm constraints string. 12070 TargetLowering::AsmOperandInfoVector TargetConstraints = 12071 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12072 for (auto &T : TargetConstraints) { 12073 SDISelAsmOperandInfo OpInfo(T); 12074 if (OpInfo.Type != InlineAsm::isOutput) 12075 continue; 12076 12077 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12078 // individual constraint. 12079 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12080 12081 switch (OpInfo.ConstraintType) { 12082 case TargetLowering::C_Register: 12083 case TargetLowering::C_RegisterClass: { 12084 // Fill in OpInfo.AssignedRegs.Regs. 12085 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12086 12087 // getRegistersForValue may produce 1 to many registers based on whether 12088 // the OpInfo.ConstraintVT is legal on the target or not. 12089 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12090 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12091 if (Register::isPhysicalRegister(OriginalDef)) 12092 FuncInfo.MBB->addLiveIn(OriginalDef); 12093 // Update the assigned registers to use the original defs. 12094 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12095 } 12096 12097 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12098 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12099 ResultValues.push_back(V); 12100 ResultVTs.push_back(OpInfo.ConstraintVT); 12101 break; 12102 } 12103 case TargetLowering::C_Other: { 12104 SDValue Flag; 12105 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12106 OpInfo, DAG); 12107 ++InitialDef; 12108 ResultValues.push_back(V); 12109 ResultVTs.push_back(OpInfo.ConstraintVT); 12110 break; 12111 } 12112 default: 12113 break; 12114 } 12115 } 12116 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12117 DAG.getVTList(ResultVTs), ResultValues); 12118 setValue(&I, V); 12119 } 12120