1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/IR/CallingConv.h" 39 #include "llvm/IR/Constants.h" 40 #include "llvm/IR/DataLayout.h" 41 #include "llvm/IR/DebugInfo.h" 42 #include "llvm/IR/DerivedTypes.h" 43 #include "llvm/IR/Function.h" 44 #include "llvm/IR/GlobalVariable.h" 45 #include "llvm/IR/InlineAsm.h" 46 #include "llvm/IR/Instructions.h" 47 #include "llvm/IR/IntrinsicInst.h" 48 #include "llvm/IR/Intrinsics.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/IR/Module.h" 51 #include "llvm/IR/Statepoint.h" 52 #include "llvm/MC/MCSymbol.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetFrameLowering.h" 59 #include "llvm/Target/TargetInstrInfo.h" 60 #include "llvm/Target/TargetIntrinsicInfo.h" 61 #include "llvm/Target/TargetLowering.h" 62 #include "llvm/Target/TargetOptions.h" 63 #include "llvm/Target/TargetSelectionDAGInfo.h" 64 #include "llvm/Target/TargetSubtargetInfo.h" 65 #include <algorithm> 66 using namespace llvm; 67 68 #define DEBUG_TYPE "isel" 69 70 /// LimitFloatPrecision - Generate low-precision inline sequences for 71 /// some float libcalls (6, 8 or 12 bits). 72 static unsigned LimitFloatPrecision; 73 74 static cl::opt<unsigned, true> 75 LimitFPPrecision("limit-float-precision", 76 cl::desc("Generate low-precision inline sequences " 77 "for some float libcalls"), 78 cl::location(LimitFloatPrecision), 79 cl::init(0)); 80 81 // Limit the width of DAG chains. This is important in general to prevent 82 // prevent DAG-based analysis from blowing up. For example, alias analysis and 83 // load clustering may not complete in reasonable time. It is difficult to 84 // recognize and avoid this situation within each individual analysis, and 85 // future analyses are likely to have the same behavior. Limiting DAG width is 86 // the safe approach, and will be especially important with global DAGs. 87 // 88 // MaxParallelChains default is arbitrarily high to avoid affecting 89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 90 // sequence over this should have been converted to llvm.memcpy by the 91 // frontend. It easy to induce this behavior with .ll code such as: 92 // %buffer = alloca [4096 x i8] 93 // %data = load [4096 x i8]* %argPtr 94 // store [4096 x i8] %data, [4096 x i8]* %buffer 95 static const unsigned MaxParallelChains = 64; 96 97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 98 const SDValue *Parts, unsigned NumParts, 99 MVT PartVT, EVT ValueVT, const Value *V); 100 101 /// getCopyFromParts - Create a value that contains the specified legal parts 102 /// combined into the value they represent. If the parts combine to a type 103 /// larger then ValueVT then AssertOp can be used to specify whether the extra 104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 105 /// (ISD::AssertSext). 106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 107 const SDValue *Parts, 108 unsigned NumParts, MVT PartVT, EVT ValueVT, 109 const Value *V, 110 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 111 if (ValueVT.isVector()) 112 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 113 PartVT, ValueVT, V); 114 115 assert(NumParts > 0 && "No parts to assemble!"); 116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 117 SDValue Val = Parts[0]; 118 119 if (NumParts > 1) { 120 // Assemble the value from multiple parts. 121 if (ValueVT.isInteger()) { 122 unsigned PartBits = PartVT.getSizeInBits(); 123 unsigned ValueBits = ValueVT.getSizeInBits(); 124 125 // Assemble the power of 2 part. 126 unsigned RoundParts = NumParts & (NumParts - 1) ? 127 1 << Log2_32(NumParts) : NumParts; 128 unsigned RoundBits = PartBits * RoundParts; 129 EVT RoundVT = RoundBits == ValueBits ? 130 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 131 SDValue Lo, Hi; 132 133 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 134 135 if (RoundParts > 2) { 136 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 137 PartVT, HalfVT, V); 138 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 139 RoundParts / 2, PartVT, HalfVT, V); 140 } else { 141 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 142 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 143 } 144 145 if (TLI.isBigEndian()) 146 std::swap(Lo, Hi); 147 148 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 149 150 if (RoundParts < NumParts) { 151 // Assemble the trailing non-power-of-2 part. 152 unsigned OddParts = NumParts - RoundParts; 153 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 154 Hi = getCopyFromParts(DAG, DL, 155 Parts + RoundParts, OddParts, PartVT, OddVT, V); 156 157 // Combine the round and odd parts. 158 Lo = Val; 159 if (TLI.isBigEndian()) 160 std::swap(Lo, Hi); 161 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 162 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 163 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 164 DAG.getConstant(Lo.getValueType().getSizeInBits(), 165 TLI.getPointerTy())); 166 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 167 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 168 } 169 } else if (PartVT.isFloatingPoint()) { 170 // FP split into multiple FP parts (for ppcf128) 171 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 172 "Unexpected split"); 173 SDValue Lo, Hi; 174 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 175 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 176 if (TLI.hasBigEndianPartOrdering(ValueVT)) 177 std::swap(Lo, Hi); 178 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 179 } else { 180 // FP split into integer parts (soft fp) 181 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 182 !PartVT.isVector() && "Unexpected split"); 183 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 184 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 185 } 186 } 187 188 // There is now one part, held in Val. Correct it to match ValueVT. 189 EVT PartEVT = Val.getValueType(); 190 191 if (PartEVT == ValueVT) 192 return Val; 193 194 if (PartEVT.isInteger() && ValueVT.isInteger()) { 195 if (ValueVT.bitsLT(PartEVT)) { 196 // For a truncate, see if we have any information to 197 // indicate whether the truncated bits will always be 198 // zero or sign-extension. 199 if (AssertOp != ISD::DELETED_NODE) 200 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 201 DAG.getValueType(ValueVT)); 202 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 203 } 204 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 205 } 206 207 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 208 // FP_ROUND's are always exact here. 209 if (ValueVT.bitsLT(Val.getValueType())) 210 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 211 DAG.getTargetConstant(1, TLI.getPointerTy())); 212 213 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 214 } 215 216 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 217 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 218 219 llvm_unreachable("Unknown mismatch!"); 220 } 221 222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 223 const Twine &ErrMsg) { 224 const Instruction *I = dyn_cast_or_null<Instruction>(V); 225 if (!V) 226 return Ctx.emitError(ErrMsg); 227 228 const char *AsmError = ", possible invalid constraint for vector type"; 229 if (const CallInst *CI = dyn_cast<CallInst>(I)) 230 if (isa<InlineAsm>(CI->getCalledValue())) 231 return Ctx.emitError(I, ErrMsg + AsmError); 232 233 return Ctx.emitError(I, ErrMsg); 234 } 235 236 /// getCopyFromPartsVector - Create a value that contains the specified legal 237 /// parts combined into the value they represent. If the parts combine to a 238 /// type larger then ValueVT then AssertOp can be used to specify whether the 239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 240 /// ValueVT (ISD::AssertSext). 241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 242 const SDValue *Parts, unsigned NumParts, 243 MVT PartVT, EVT ValueVT, const Value *V) { 244 assert(ValueVT.isVector() && "Not a vector value"); 245 assert(NumParts > 0 && "No parts to assemble!"); 246 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 247 SDValue Val = Parts[0]; 248 249 // Handle a multi-element vector. 250 if (NumParts > 1) { 251 EVT IntermediateVT; 252 MVT RegisterVT; 253 unsigned NumIntermediates; 254 unsigned NumRegs = 255 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 256 NumIntermediates, RegisterVT); 257 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 258 NumParts = NumRegs; // Silence a compiler warning. 259 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 260 assert(RegisterVT == Parts[0].getSimpleValueType() && 261 "Part type doesn't match part!"); 262 263 // Assemble the parts into intermediate operands. 264 SmallVector<SDValue, 8> Ops(NumIntermediates); 265 if (NumIntermediates == NumParts) { 266 // If the register was not expanded, truncate or copy the value, 267 // as appropriate. 268 for (unsigned i = 0; i != NumParts; ++i) 269 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 270 PartVT, IntermediateVT, V); 271 } else if (NumParts > 0) { 272 // If the intermediate type was expanded, build the intermediate 273 // operands from the parts. 274 assert(NumParts % NumIntermediates == 0 && 275 "Must expand into a divisible number of parts!"); 276 unsigned Factor = NumParts / NumIntermediates; 277 for (unsigned i = 0; i != NumIntermediates; ++i) 278 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 279 PartVT, IntermediateVT, V); 280 } 281 282 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 283 // intermediate operands. 284 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 285 : ISD::BUILD_VECTOR, 286 DL, ValueVT, Ops); 287 } 288 289 // There is now one part, held in Val. Correct it to match ValueVT. 290 EVT PartEVT = Val.getValueType(); 291 292 if (PartEVT == ValueVT) 293 return Val; 294 295 if (PartEVT.isVector()) { 296 // If the element type of the source/dest vectors are the same, but the 297 // parts vector has more elements than the value vector, then we have a 298 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 299 // elements we want. 300 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 301 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 302 "Cannot narrow, it would be a lossy transformation"); 303 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 304 DAG.getConstant(0, TLI.getVectorIdxTy())); 305 } 306 307 // Vector/Vector bitcast. 308 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 309 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 310 311 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 312 "Cannot handle this kind of promotion"); 313 // Promoted vector extract 314 bool Smaller = ValueVT.bitsLE(PartEVT); 315 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 316 DL, ValueVT, Val); 317 318 } 319 320 // Trivial bitcast if the types are the same size and the destination 321 // vector type is legal. 322 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 323 TLI.isTypeLegal(ValueVT)) 324 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 325 326 // Handle cases such as i8 -> <1 x i1> 327 if (ValueVT.getVectorNumElements() != 1) { 328 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 329 "non-trivial scalar-to-vector conversion"); 330 return DAG.getUNDEF(ValueVT); 331 } 332 333 if (ValueVT.getVectorNumElements() == 1 && 334 ValueVT.getVectorElementType() != PartEVT) { 335 bool Smaller = ValueVT.bitsLE(PartEVT); 336 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 337 DL, ValueVT.getScalarType(), Val); 338 } 339 340 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 341 } 342 343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 344 SDValue Val, SDValue *Parts, unsigned NumParts, 345 MVT PartVT, const Value *V); 346 347 /// getCopyToParts - Create a series of nodes that contain the specified value 348 /// split into legal parts. If the parts contain more bits than Val, then, for 349 /// integers, ExtendKind can be used to specify how to generate the extra bits. 350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 351 SDValue Val, SDValue *Parts, unsigned NumParts, 352 MVT PartVT, const Value *V, 353 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 354 EVT ValueVT = Val.getValueType(); 355 356 // Handle the vector case separately. 357 if (ValueVT.isVector()) 358 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 359 360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 361 unsigned PartBits = PartVT.getSizeInBits(); 362 unsigned OrigNumParts = NumParts; 363 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 364 365 if (NumParts == 0) 366 return; 367 368 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 369 EVT PartEVT = PartVT; 370 if (PartEVT == ValueVT) { 371 assert(NumParts == 1 && "No-op copy with multiple parts!"); 372 Parts[0] = Val; 373 return; 374 } 375 376 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 377 // If the parts cover more bits than the value has, promote the value. 378 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 379 assert(NumParts == 1 && "Do not know what to promote to!"); 380 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 381 } else { 382 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 383 ValueVT.isInteger() && 384 "Unknown mismatch!"); 385 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 386 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 387 if (PartVT == MVT::x86mmx) 388 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 389 } 390 } else if (PartBits == ValueVT.getSizeInBits()) { 391 // Different types of the same size. 392 assert(NumParts == 1 && PartEVT != ValueVT); 393 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 394 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 395 // If the parts cover less bits than value has, truncate the value. 396 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 397 ValueVT.isInteger() && 398 "Unknown mismatch!"); 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 400 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 401 if (PartVT == MVT::x86mmx) 402 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 403 } 404 405 // The value may have changed - recompute ValueVT. 406 ValueVT = Val.getValueType(); 407 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 408 "Failed to tile the value with PartVT!"); 409 410 if (NumParts == 1) { 411 if (PartEVT != ValueVT) 412 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 413 "scalar-to-vector conversion failed"); 414 415 Parts[0] = Val; 416 return; 417 } 418 419 // Expand the value into multiple parts. 420 if (NumParts & (NumParts - 1)) { 421 // The number of parts is not a power of 2. Split off and copy the tail. 422 assert(PartVT.isInteger() && ValueVT.isInteger() && 423 "Do not know what to expand to!"); 424 unsigned RoundParts = 1 << Log2_32(NumParts); 425 unsigned RoundBits = RoundParts * PartBits; 426 unsigned OddParts = NumParts - RoundParts; 427 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 428 DAG.getIntPtrConstant(RoundBits)); 429 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 430 431 if (TLI.isBigEndian()) 432 // The odd parts were reversed by getCopyToParts - unreverse them. 433 std::reverse(Parts + RoundParts, Parts + NumParts); 434 435 NumParts = RoundParts; 436 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 437 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 438 } 439 440 // The number of parts is a power of 2. Repeatedly bisect the value using 441 // EXTRACT_ELEMENT. 442 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 443 EVT::getIntegerVT(*DAG.getContext(), 444 ValueVT.getSizeInBits()), 445 Val); 446 447 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 448 for (unsigned i = 0; i < NumParts; i += StepSize) { 449 unsigned ThisBits = StepSize * PartBits / 2; 450 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 451 SDValue &Part0 = Parts[i]; 452 SDValue &Part1 = Parts[i+StepSize/2]; 453 454 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 455 ThisVT, Part0, DAG.getIntPtrConstant(1)); 456 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 457 ThisVT, Part0, DAG.getIntPtrConstant(0)); 458 459 if (ThisBits == PartBits && ThisVT != PartVT) { 460 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 461 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 462 } 463 } 464 } 465 466 if (TLI.isBigEndian()) 467 std::reverse(Parts, Parts + OrigNumParts); 468 } 469 470 471 /// getCopyToPartsVector - Create a series of nodes that contain the specified 472 /// value split into legal parts. 473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 474 SDValue Val, SDValue *Parts, unsigned NumParts, 475 MVT PartVT, const Value *V) { 476 EVT ValueVT = Val.getValueType(); 477 assert(ValueVT.isVector() && "Not a vector"); 478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 479 480 if (NumParts == 1) { 481 EVT PartEVT = PartVT; 482 if (PartEVT == ValueVT) { 483 // Nothing to do. 484 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 485 // Bitconvert vector->vector case. 486 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 487 } else if (PartVT.isVector() && 488 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 489 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 490 EVT ElementVT = PartVT.getVectorElementType(); 491 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 492 // undef elements. 493 SmallVector<SDValue, 16> Ops; 494 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 495 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 496 ElementVT, Val, DAG.getConstant(i, 497 TLI.getVectorIdxTy()))); 498 499 for (unsigned i = ValueVT.getVectorNumElements(), 500 e = PartVT.getVectorNumElements(); i != e; ++i) 501 Ops.push_back(DAG.getUNDEF(ElementVT)); 502 503 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 504 505 // FIXME: Use CONCAT for 2x -> 4x. 506 507 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 508 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 509 } else if (PartVT.isVector() && 510 PartEVT.getVectorElementType().bitsGE( 511 ValueVT.getVectorElementType()) && 512 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 513 514 // Promoted vector extract 515 bool Smaller = PartEVT.bitsLE(ValueVT); 516 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 517 DL, PartVT, Val); 518 } else{ 519 // Vector -> scalar conversion. 520 assert(ValueVT.getVectorNumElements() == 1 && 521 "Only trivial vector-to-scalar conversions should get here!"); 522 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 523 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 524 525 bool Smaller = ValueVT.bitsLE(PartVT); 526 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 527 DL, PartVT, Val); 528 } 529 530 Parts[0] = Val; 531 return; 532 } 533 534 // Handle a multi-element vector. 535 EVT IntermediateVT; 536 MVT RegisterVT; 537 unsigned NumIntermediates; 538 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 539 IntermediateVT, 540 NumIntermediates, RegisterVT); 541 unsigned NumElements = ValueVT.getVectorNumElements(); 542 543 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 544 NumParts = NumRegs; // Silence a compiler warning. 545 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 546 547 // Split the vector into intermediate operands. 548 SmallVector<SDValue, 8> Ops(NumIntermediates); 549 for (unsigned i = 0; i != NumIntermediates; ++i) { 550 if (IntermediateVT.isVector()) 551 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 552 IntermediateVT, Val, 553 DAG.getConstant(i * (NumElements / NumIntermediates), 554 TLI.getVectorIdxTy())); 555 else 556 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 557 IntermediateVT, Val, 558 DAG.getConstant(i, TLI.getVectorIdxTy())); 559 } 560 561 // Split the intermediate operands into legal parts. 562 if (NumParts == NumIntermediates) { 563 // If the register was not expanded, promote or copy the value, 564 // as appropriate. 565 for (unsigned i = 0; i != NumParts; ++i) 566 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 567 } else if (NumParts > 0) { 568 // If the intermediate type was expanded, split each the value into 569 // legal parts. 570 assert(NumIntermediates != 0 && "division by zero"); 571 assert(NumParts % NumIntermediates == 0 && 572 "Must expand into a divisible number of parts!"); 573 unsigned Factor = NumParts / NumIntermediates; 574 for (unsigned i = 0; i != NumIntermediates; ++i) 575 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 576 } 577 } 578 579 namespace { 580 /// RegsForValue - This struct represents the registers (physical or virtual) 581 /// that a particular set of values is assigned, and the type information 582 /// about the value. The most common situation is to represent one value at a 583 /// time, but struct or array values are handled element-wise as multiple 584 /// values. The splitting of aggregates is performed recursively, so that we 585 /// never have aggregate-typed registers. The values at this point do not 586 /// necessarily have legal types, so each value may require one or more 587 /// registers of some legal type. 588 /// 589 struct RegsForValue { 590 /// ValueVTs - The value types of the values, which may not be legal, and 591 /// may need be promoted or synthesized from one or more registers. 592 /// 593 SmallVector<EVT, 4> ValueVTs; 594 595 /// RegVTs - The value types of the registers. This is the same size as 596 /// ValueVTs and it records, for each value, what the type of the assigned 597 /// register or registers are. (Individual values are never synthesized 598 /// from more than one type of register.) 599 /// 600 /// With virtual registers, the contents of RegVTs is redundant with TLI's 601 /// getRegisterType member function, however when with physical registers 602 /// it is necessary to have a separate record of the types. 603 /// 604 SmallVector<MVT, 4> RegVTs; 605 606 /// Regs - This list holds the registers assigned to the values. 607 /// Each legal or promoted value requires one register, and each 608 /// expanded value requires multiple registers. 609 /// 610 SmallVector<unsigned, 4> Regs; 611 612 RegsForValue() {} 613 614 RegsForValue(const SmallVector<unsigned, 4> ®s, 615 MVT regvt, EVT valuevt) 616 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 617 618 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 619 unsigned Reg, Type *Ty) { 620 ComputeValueVTs(tli, Ty, ValueVTs); 621 622 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 623 EVT ValueVT = ValueVTs[Value]; 624 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 625 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 626 for (unsigned i = 0; i != NumRegs; ++i) 627 Regs.push_back(Reg + i); 628 RegVTs.push_back(RegisterVT); 629 Reg += NumRegs; 630 } 631 } 632 633 /// append - Add the specified values to this one. 634 void append(const RegsForValue &RHS) { 635 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 636 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 637 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 638 } 639 640 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 641 /// this value and returns the result as a ValueVTs value. This uses 642 /// Chain/Flag as the input and updates them for the output Chain/Flag. 643 /// If the Flag pointer is NULL, no flag is used. 644 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 645 SDLoc dl, 646 SDValue &Chain, SDValue *Flag, 647 const Value *V = nullptr) const; 648 649 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 650 /// specified value into the registers specified by this object. This uses 651 /// Chain/Flag as the input and updates them for the output Chain/Flag. 652 /// If the Flag pointer is NULL, no flag is used. 653 void 654 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 655 SDValue *Flag, const Value *V, 656 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 657 658 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 659 /// operand list. This adds the code marker, matching input operand index 660 /// (if applicable), and includes the number of values added into it. 661 void AddInlineAsmOperands(unsigned Kind, 662 bool HasMatching, unsigned MatchingIdx, 663 SelectionDAG &DAG, 664 std::vector<SDValue> &Ops) const; 665 }; 666 } 667 668 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 669 /// this value and returns the result as a ValueVT value. This uses 670 /// Chain/Flag as the input and updates them for the output Chain/Flag. 671 /// If the Flag pointer is NULL, no flag is used. 672 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 673 FunctionLoweringInfo &FuncInfo, 674 SDLoc dl, 675 SDValue &Chain, SDValue *Flag, 676 const Value *V) const { 677 // A Value with type {} or [0 x %t] needs no registers. 678 if (ValueVTs.empty()) 679 return SDValue(); 680 681 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 682 683 // Assemble the legal parts into the final values. 684 SmallVector<SDValue, 4> Values(ValueVTs.size()); 685 SmallVector<SDValue, 8> Parts; 686 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 687 // Copy the legal parts from the registers. 688 EVT ValueVT = ValueVTs[Value]; 689 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 690 MVT RegisterVT = RegVTs[Value]; 691 692 Parts.resize(NumRegs); 693 for (unsigned i = 0; i != NumRegs; ++i) { 694 SDValue P; 695 if (!Flag) { 696 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 697 } else { 698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 699 *Flag = P.getValue(2); 700 } 701 702 Chain = P.getValue(1); 703 Parts[i] = P; 704 705 // If the source register was virtual and if we know something about it, 706 // add an assert node. 707 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 708 !RegisterVT.isInteger() || RegisterVT.isVector()) 709 continue; 710 711 const FunctionLoweringInfo::LiveOutInfo *LOI = 712 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 713 if (!LOI) 714 continue; 715 716 unsigned RegSize = RegisterVT.getSizeInBits(); 717 unsigned NumSignBits = LOI->NumSignBits; 718 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 719 720 if (NumZeroBits == RegSize) { 721 // The current value is a zero. 722 // Explicitly express that as it would be easier for 723 // optimizations to kick in. 724 Parts[i] = DAG.getConstant(0, RegisterVT); 725 continue; 726 } 727 728 // FIXME: We capture more information than the dag can represent. For 729 // now, just use the tightest assertzext/assertsext possible. 730 bool isSExt = true; 731 EVT FromVT(MVT::Other); 732 if (NumSignBits == RegSize) 733 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 734 else if (NumZeroBits >= RegSize-1) 735 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 736 else if (NumSignBits > RegSize-8) 737 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 738 else if (NumZeroBits >= RegSize-8) 739 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 740 else if (NumSignBits > RegSize-16) 741 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 742 else if (NumZeroBits >= RegSize-16) 743 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 744 else if (NumSignBits > RegSize-32) 745 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 746 else if (NumZeroBits >= RegSize-32) 747 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 748 else 749 continue; 750 751 // Add an assertion node. 752 assert(FromVT != MVT::Other); 753 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 754 RegisterVT, P, DAG.getValueType(FromVT)); 755 } 756 757 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 758 NumRegs, RegisterVT, ValueVT, V); 759 Part += NumRegs; 760 Parts.clear(); 761 } 762 763 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 764 } 765 766 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 767 /// specified value into the registers specified by this object. This uses 768 /// Chain/Flag as the input and updates them for the output Chain/Flag. 769 /// If the Flag pointer is NULL, no flag is used. 770 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 771 SDValue &Chain, SDValue *Flag, const Value *V, 772 ISD::NodeType PreferredExtendType) const { 773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 774 ISD::NodeType ExtendKind = PreferredExtendType; 775 776 // Get the list of the values's legal parts. 777 unsigned NumRegs = Regs.size(); 778 SmallVector<SDValue, 8> Parts(NumRegs); 779 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 780 EVT ValueVT = ValueVTs[Value]; 781 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 782 MVT RegisterVT = RegVTs[Value]; 783 784 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 785 ExtendKind = ISD::ZERO_EXTEND; 786 787 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 788 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 789 Part += NumParts; 790 } 791 792 // Copy the parts into the registers. 793 SmallVector<SDValue, 8> Chains(NumRegs); 794 for (unsigned i = 0; i != NumRegs; ++i) { 795 SDValue Part; 796 if (!Flag) { 797 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 798 } else { 799 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 800 *Flag = Part.getValue(1); 801 } 802 803 Chains[i] = Part.getValue(0); 804 } 805 806 if (NumRegs == 1 || Flag) 807 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 808 // flagged to it. That is the CopyToReg nodes and the user are considered 809 // a single scheduling unit. If we create a TokenFactor and return it as 810 // chain, then the TokenFactor is both a predecessor (operand) of the 811 // user as well as a successor (the TF operands are flagged to the user). 812 // c1, f1 = CopyToReg 813 // c2, f2 = CopyToReg 814 // c3 = TokenFactor c1, c2 815 // ... 816 // = op c3, ..., f2 817 Chain = Chains[NumRegs-1]; 818 else 819 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 820 } 821 822 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 823 /// operand list. This adds the code marker and includes the number of 824 /// values added into it. 825 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 826 unsigned MatchingIdx, 827 SelectionDAG &DAG, 828 std::vector<SDValue> &Ops) const { 829 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 830 831 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 832 if (HasMatching) 833 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 834 else if (!Regs.empty() && 835 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 836 // Put the register class of the virtual registers in the flag word. That 837 // way, later passes can recompute register class constraints for inline 838 // assembly as well as normal instructions. 839 // Don't do this for tied operands that can use the regclass information 840 // from the def. 841 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 842 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 843 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 844 } 845 846 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 847 Ops.push_back(Res); 848 849 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 850 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 851 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 852 MVT RegisterVT = RegVTs[Value]; 853 for (unsigned i = 0; i != NumRegs; ++i) { 854 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 855 unsigned TheReg = Regs[Reg++]; 856 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 857 858 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 859 // If we clobbered the stack pointer, MFI should know about it. 860 assert(DAG.getMachineFunction().getFrameInfo()-> 861 hasInlineAsmWithSPAdjust()); 862 } 863 } 864 } 865 } 866 867 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 868 const TargetLibraryInfo *li) { 869 AA = &aa; 870 GFI = gfi; 871 LibInfo = li; 872 DL = DAG.getTarget().getDataLayout(); 873 Context = DAG.getContext(); 874 LPadToCallSiteMap.clear(); 875 } 876 877 /// clear - Clear out the current SelectionDAG and the associated 878 /// state and prepare this SelectionDAGBuilder object to be used 879 /// for a new block. This doesn't clear out information about 880 /// additional blocks that are needed to complete switch lowering 881 /// or PHI node updating; that information is cleared out as it is 882 /// consumed. 883 void SelectionDAGBuilder::clear() { 884 NodeMap.clear(); 885 UnusedArgNodeMap.clear(); 886 PendingLoads.clear(); 887 PendingExports.clear(); 888 CurInst = nullptr; 889 HasTailCall = false; 890 SDNodeOrder = LowestSDNodeOrder; 891 StatepointLowering.clear(); 892 } 893 894 /// clearDanglingDebugInfo - Clear the dangling debug information 895 /// map. This function is separated from the clear so that debug 896 /// information that is dangling in a basic block can be properly 897 /// resolved in a different basic block. This allows the 898 /// SelectionDAG to resolve dangling debug information attached 899 /// to PHI nodes. 900 void SelectionDAGBuilder::clearDanglingDebugInfo() { 901 DanglingDebugInfoMap.clear(); 902 } 903 904 /// getRoot - Return the current virtual root of the Selection DAG, 905 /// flushing any PendingLoad items. This must be done before emitting 906 /// a store or any other node that may need to be ordered after any 907 /// prior load instructions. 908 /// 909 SDValue SelectionDAGBuilder::getRoot() { 910 if (PendingLoads.empty()) 911 return DAG.getRoot(); 912 913 if (PendingLoads.size() == 1) { 914 SDValue Root = PendingLoads[0]; 915 DAG.setRoot(Root); 916 PendingLoads.clear(); 917 return Root; 918 } 919 920 // Otherwise, we have to make a token factor node. 921 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 922 PendingLoads); 923 PendingLoads.clear(); 924 DAG.setRoot(Root); 925 return Root; 926 } 927 928 /// getControlRoot - Similar to getRoot, but instead of flushing all the 929 /// PendingLoad items, flush all the PendingExports items. It is necessary 930 /// to do this before emitting a terminator instruction. 931 /// 932 SDValue SelectionDAGBuilder::getControlRoot() { 933 SDValue Root = DAG.getRoot(); 934 935 if (PendingExports.empty()) 936 return Root; 937 938 // Turn all of the CopyToReg chains into one factored node. 939 if (Root.getOpcode() != ISD::EntryToken) { 940 unsigned i = 0, e = PendingExports.size(); 941 for (; i != e; ++i) { 942 assert(PendingExports[i].getNode()->getNumOperands() > 1); 943 if (PendingExports[i].getNode()->getOperand(0) == Root) 944 break; // Don't add the root if we already indirectly depend on it. 945 } 946 947 if (i == e) 948 PendingExports.push_back(Root); 949 } 950 951 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 952 PendingExports); 953 PendingExports.clear(); 954 DAG.setRoot(Root); 955 return Root; 956 } 957 958 void SelectionDAGBuilder::visit(const Instruction &I) { 959 // Set up outgoing PHI node register values before emitting the terminator. 960 if (isa<TerminatorInst>(&I)) 961 HandlePHINodesInSuccessorBlocks(I.getParent()); 962 963 ++SDNodeOrder; 964 965 CurInst = &I; 966 967 visit(I.getOpcode(), I); 968 969 if (!isa<TerminatorInst>(&I) && !HasTailCall) 970 CopyToExportRegsIfNeeded(&I); 971 972 CurInst = nullptr; 973 } 974 975 void SelectionDAGBuilder::visitPHI(const PHINode &) { 976 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 977 } 978 979 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 980 // Note: this doesn't use InstVisitor, because it has to work with 981 // ConstantExpr's in addition to instructions. 982 switch (Opcode) { 983 default: llvm_unreachable("Unknown instruction type encountered!"); 984 // Build the switch statement using the Instruction.def file. 985 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 986 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 987 #include "llvm/IR/Instruction.def" 988 } 989 } 990 991 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 992 // generate the debug data structures now that we've seen its definition. 993 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 994 SDValue Val) { 995 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 996 if (DDI.getDI()) { 997 const DbgValueInst *DI = DDI.getDI(); 998 DebugLoc dl = DDI.getdl(); 999 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1000 MDNode *Variable = DI->getVariable(); 1001 MDNode *Expr = DI->getExpression(); 1002 uint64_t Offset = DI->getOffset(); 1003 // A dbg.value for an alloca is always indirect. 1004 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1005 SDDbgValue *SDV; 1006 if (Val.getNode()) { 1007 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1008 Val)) { 1009 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1010 IsIndirect, Offset, dl, DbgSDNodeOrder); 1011 DAG.AddDbgValue(SDV, Val.getNode(), false); 1012 } 1013 } else 1014 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1015 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1016 } 1017 } 1018 1019 /// getValue - Return an SDValue for the given Value. 1020 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1021 // If we already have an SDValue for this value, use it. It's important 1022 // to do this first, so that we don't create a CopyFromReg if we already 1023 // have a regular SDValue. 1024 SDValue &N = NodeMap[V]; 1025 if (N.getNode()) return N; 1026 1027 // If there's a virtual register allocated and initialized for this 1028 // value, use it. 1029 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1030 if (It != FuncInfo.ValueMap.end()) { 1031 unsigned InReg = It->second; 1032 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1033 V->getType()); 1034 SDValue Chain = DAG.getEntryNode(); 1035 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1036 resolveDanglingDebugInfo(V, N); 1037 return N; 1038 } 1039 1040 // Otherwise create a new SDValue and remember it. 1041 SDValue Val = getValueImpl(V); 1042 NodeMap[V] = Val; 1043 resolveDanglingDebugInfo(V, Val); 1044 return Val; 1045 } 1046 1047 /// getNonRegisterValue - Return an SDValue for the given Value, but 1048 /// don't look in FuncInfo.ValueMap for a virtual register. 1049 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1050 // If we already have an SDValue for this value, use it. 1051 SDValue &N = NodeMap[V]; 1052 if (N.getNode()) return N; 1053 1054 // Otherwise create a new SDValue and remember it. 1055 SDValue Val = getValueImpl(V); 1056 NodeMap[V] = Val; 1057 resolveDanglingDebugInfo(V, Val); 1058 return Val; 1059 } 1060 1061 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1062 /// Create an SDValue for the given value. 1063 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1065 1066 if (const Constant *C = dyn_cast<Constant>(V)) { 1067 EVT VT = TLI.getValueType(V->getType(), true); 1068 1069 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1070 return DAG.getConstant(*CI, VT); 1071 1072 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1073 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1074 1075 if (isa<ConstantPointerNull>(C)) { 1076 unsigned AS = V->getType()->getPointerAddressSpace(); 1077 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1078 } 1079 1080 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1081 return DAG.getConstantFP(*CFP, VT); 1082 1083 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1084 return DAG.getUNDEF(VT); 1085 1086 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1087 visit(CE->getOpcode(), *CE); 1088 SDValue N1 = NodeMap[V]; 1089 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1090 return N1; 1091 } 1092 1093 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1094 SmallVector<SDValue, 4> Constants; 1095 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1096 OI != OE; ++OI) { 1097 SDNode *Val = getValue(*OI).getNode(); 1098 // If the operand is an empty aggregate, there are no values. 1099 if (!Val) continue; 1100 // Add each leaf value from the operand to the Constants list 1101 // to form a flattened list of all the values. 1102 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1103 Constants.push_back(SDValue(Val, i)); 1104 } 1105 1106 return DAG.getMergeValues(Constants, getCurSDLoc()); 1107 } 1108 1109 if (const ConstantDataSequential *CDS = 1110 dyn_cast<ConstantDataSequential>(C)) { 1111 SmallVector<SDValue, 4> Ops; 1112 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1113 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1114 // Add each leaf value from the operand to the Constants list 1115 // to form a flattened list of all the values. 1116 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1117 Ops.push_back(SDValue(Val, i)); 1118 } 1119 1120 if (isa<ArrayType>(CDS->getType())) 1121 return DAG.getMergeValues(Ops, getCurSDLoc()); 1122 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1123 VT, Ops); 1124 } 1125 1126 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1127 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1128 "Unknown struct or array constant!"); 1129 1130 SmallVector<EVT, 4> ValueVTs; 1131 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1132 unsigned NumElts = ValueVTs.size(); 1133 if (NumElts == 0) 1134 return SDValue(); // empty struct 1135 SmallVector<SDValue, 4> Constants(NumElts); 1136 for (unsigned i = 0; i != NumElts; ++i) { 1137 EVT EltVT = ValueVTs[i]; 1138 if (isa<UndefValue>(C)) 1139 Constants[i] = DAG.getUNDEF(EltVT); 1140 else if (EltVT.isFloatingPoint()) 1141 Constants[i] = DAG.getConstantFP(0, EltVT); 1142 else 1143 Constants[i] = DAG.getConstant(0, EltVT); 1144 } 1145 1146 return DAG.getMergeValues(Constants, getCurSDLoc()); 1147 } 1148 1149 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1150 return DAG.getBlockAddress(BA, VT); 1151 1152 VectorType *VecTy = cast<VectorType>(V->getType()); 1153 unsigned NumElements = VecTy->getNumElements(); 1154 1155 // Now that we know the number and type of the elements, get that number of 1156 // elements into the Ops array based on what kind of constant it is. 1157 SmallVector<SDValue, 16> Ops; 1158 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1159 for (unsigned i = 0; i != NumElements; ++i) 1160 Ops.push_back(getValue(CV->getOperand(i))); 1161 } else { 1162 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1163 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1164 1165 SDValue Op; 1166 if (EltVT.isFloatingPoint()) 1167 Op = DAG.getConstantFP(0, EltVT); 1168 else 1169 Op = DAG.getConstant(0, EltVT); 1170 Ops.assign(NumElements, Op); 1171 } 1172 1173 // Create a BUILD_VECTOR node. 1174 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1175 } 1176 1177 // If this is a static alloca, generate it as the frameindex instead of 1178 // computation. 1179 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1180 DenseMap<const AllocaInst*, int>::iterator SI = 1181 FuncInfo.StaticAllocaMap.find(AI); 1182 if (SI != FuncInfo.StaticAllocaMap.end()) 1183 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1184 } 1185 1186 // If this is an instruction which fast-isel has deferred, select it now. 1187 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1188 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1189 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1190 SDValue Chain = DAG.getEntryNode(); 1191 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1192 } 1193 1194 llvm_unreachable("Can't get register for value!"); 1195 } 1196 1197 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1198 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1199 SDValue Chain = getControlRoot(); 1200 SmallVector<ISD::OutputArg, 8> Outs; 1201 SmallVector<SDValue, 8> OutVals; 1202 1203 if (!FuncInfo.CanLowerReturn) { 1204 unsigned DemoteReg = FuncInfo.DemoteRegister; 1205 const Function *F = I.getParent()->getParent(); 1206 1207 // Emit a store of the return value through the virtual register. 1208 // Leave Outs empty so that LowerReturn won't try to load return 1209 // registers the usual way. 1210 SmallVector<EVT, 1> PtrValueVTs; 1211 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1212 PtrValueVTs); 1213 1214 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1215 SDValue RetOp = getValue(I.getOperand(0)); 1216 1217 SmallVector<EVT, 4> ValueVTs; 1218 SmallVector<uint64_t, 4> Offsets; 1219 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1220 unsigned NumValues = ValueVTs.size(); 1221 1222 SmallVector<SDValue, 4> Chains(NumValues); 1223 for (unsigned i = 0; i != NumValues; ++i) { 1224 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1225 RetPtr.getValueType(), RetPtr, 1226 DAG.getIntPtrConstant(Offsets[i])); 1227 Chains[i] = 1228 DAG.getStore(Chain, getCurSDLoc(), 1229 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1230 // FIXME: better loc info would be nice. 1231 Add, MachinePointerInfo(), false, false, 0); 1232 } 1233 1234 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1235 MVT::Other, Chains); 1236 } else if (I.getNumOperands() != 0) { 1237 SmallVector<EVT, 4> ValueVTs; 1238 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1239 unsigned NumValues = ValueVTs.size(); 1240 if (NumValues) { 1241 SDValue RetOp = getValue(I.getOperand(0)); 1242 1243 const Function *F = I.getParent()->getParent(); 1244 1245 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1246 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::SExt)) 1248 ExtendKind = ISD::SIGN_EXTEND; 1249 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1250 Attribute::ZExt)) 1251 ExtendKind = ISD::ZERO_EXTEND; 1252 1253 LLVMContext &Context = F->getContext(); 1254 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1255 Attribute::InReg); 1256 1257 for (unsigned j = 0; j != NumValues; ++j) { 1258 EVT VT = ValueVTs[j]; 1259 1260 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1261 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1262 1263 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1264 MVT PartVT = TLI.getRegisterType(Context, VT); 1265 SmallVector<SDValue, 4> Parts(NumParts); 1266 getCopyToParts(DAG, getCurSDLoc(), 1267 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1268 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1269 1270 // 'inreg' on function refers to return value 1271 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1272 if (RetInReg) 1273 Flags.setInReg(); 1274 1275 // Propagate extension type if any 1276 if (ExtendKind == ISD::SIGN_EXTEND) 1277 Flags.setSExt(); 1278 else if (ExtendKind == ISD::ZERO_EXTEND) 1279 Flags.setZExt(); 1280 1281 for (unsigned i = 0; i < NumParts; ++i) { 1282 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1283 VT, /*isfixed=*/true, 0, 0)); 1284 OutVals.push_back(Parts[i]); 1285 } 1286 } 1287 } 1288 } 1289 1290 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1291 CallingConv::ID CallConv = 1292 DAG.getMachineFunction().getFunction()->getCallingConv(); 1293 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1294 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1295 1296 // Verify that the target's LowerReturn behaved as expected. 1297 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1298 "LowerReturn didn't return a valid chain!"); 1299 1300 // Update the DAG with the new chain value resulting from return lowering. 1301 DAG.setRoot(Chain); 1302 } 1303 1304 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1305 /// created for it, emit nodes to copy the value into the virtual 1306 /// registers. 1307 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1308 // Skip empty types 1309 if (V->getType()->isEmptyTy()) 1310 return; 1311 1312 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1313 if (VMI != FuncInfo.ValueMap.end()) { 1314 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1315 CopyValueToVirtualRegister(V, VMI->second); 1316 } 1317 } 1318 1319 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1320 /// the current basic block, add it to ValueMap now so that we'll get a 1321 /// CopyTo/FromReg. 1322 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1323 // No need to export constants. 1324 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1325 1326 // Already exported? 1327 if (FuncInfo.isExportedInst(V)) return; 1328 1329 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1330 CopyValueToVirtualRegister(V, Reg); 1331 } 1332 1333 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1334 const BasicBlock *FromBB) { 1335 // The operands of the setcc have to be in this block. We don't know 1336 // how to export them from some other block. 1337 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1338 // Can export from current BB. 1339 if (VI->getParent() == FromBB) 1340 return true; 1341 1342 // Is already exported, noop. 1343 return FuncInfo.isExportedInst(V); 1344 } 1345 1346 // If this is an argument, we can export it if the BB is the entry block or 1347 // if it is already exported. 1348 if (isa<Argument>(V)) { 1349 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1350 return true; 1351 1352 // Otherwise, can only export this if it is already exported. 1353 return FuncInfo.isExportedInst(V); 1354 } 1355 1356 // Otherwise, constants can always be exported. 1357 return true; 1358 } 1359 1360 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1361 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1362 const MachineBasicBlock *Dst) const { 1363 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1364 if (!BPI) 1365 return 0; 1366 const BasicBlock *SrcBB = Src->getBasicBlock(); 1367 const BasicBlock *DstBB = Dst->getBasicBlock(); 1368 return BPI->getEdgeWeight(SrcBB, DstBB); 1369 } 1370 1371 void SelectionDAGBuilder:: 1372 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1373 uint32_t Weight /* = 0 */) { 1374 if (!Weight) 1375 Weight = getEdgeWeight(Src, Dst); 1376 Src->addSuccessor(Dst, Weight); 1377 } 1378 1379 1380 static bool InBlock(const Value *V, const BasicBlock *BB) { 1381 if (const Instruction *I = dyn_cast<Instruction>(V)) 1382 return I->getParent() == BB; 1383 return true; 1384 } 1385 1386 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1387 /// This function emits a branch and is used at the leaves of an OR or an 1388 /// AND operator tree. 1389 /// 1390 void 1391 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1392 MachineBasicBlock *TBB, 1393 MachineBasicBlock *FBB, 1394 MachineBasicBlock *CurBB, 1395 MachineBasicBlock *SwitchBB, 1396 uint32_t TWeight, 1397 uint32_t FWeight) { 1398 const BasicBlock *BB = CurBB->getBasicBlock(); 1399 1400 // If the leaf of the tree is a comparison, merge the condition into 1401 // the caseblock. 1402 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1403 // The operands of the cmp have to be in this block. We don't know 1404 // how to export them from some other block. If this is the first block 1405 // of the sequence, no exporting is needed. 1406 if (CurBB == SwitchBB || 1407 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1408 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1409 ISD::CondCode Condition; 1410 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1411 Condition = getICmpCondCode(IC->getPredicate()); 1412 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1413 Condition = getFCmpCondCode(FC->getPredicate()); 1414 if (TM.Options.NoNaNsFPMath) 1415 Condition = getFCmpCodeWithoutNaN(Condition); 1416 } else { 1417 (void)Condition; // silence warning. 1418 llvm_unreachable("Unknown compare instruction"); 1419 } 1420 1421 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1422 TBB, FBB, CurBB, TWeight, FWeight); 1423 SwitchCases.push_back(CB); 1424 return; 1425 } 1426 } 1427 1428 // Create a CaseBlock record representing this branch. 1429 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1430 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1431 SwitchCases.push_back(CB); 1432 } 1433 1434 /// Scale down both weights to fit into uint32_t. 1435 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1436 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1437 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1438 NewTrue = NewTrue / Scale; 1439 NewFalse = NewFalse / Scale; 1440 } 1441 1442 /// FindMergedConditions - If Cond is an expression like 1443 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1444 MachineBasicBlock *TBB, 1445 MachineBasicBlock *FBB, 1446 MachineBasicBlock *CurBB, 1447 MachineBasicBlock *SwitchBB, 1448 unsigned Opc, uint32_t TWeight, 1449 uint32_t FWeight) { 1450 // If this node is not part of the or/and tree, emit it as a branch. 1451 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1452 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1453 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1454 BOp->getParent() != CurBB->getBasicBlock() || 1455 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1456 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1457 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1458 TWeight, FWeight); 1459 return; 1460 } 1461 1462 // Create TmpBB after CurBB. 1463 MachineFunction::iterator BBI = CurBB; 1464 MachineFunction &MF = DAG.getMachineFunction(); 1465 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1466 CurBB->getParent()->insert(++BBI, TmpBB); 1467 1468 if (Opc == Instruction::Or) { 1469 // Codegen X | Y as: 1470 // BB1: 1471 // jmp_if_X TBB 1472 // jmp TmpBB 1473 // TmpBB: 1474 // jmp_if_Y TBB 1475 // jmp FBB 1476 // 1477 1478 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1479 // The requirement is that 1480 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1481 // = TrueProb for orignal BB. 1482 // Assuming the orignal weights are A and B, one choice is to set BB1's 1483 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1484 // assumes that 1485 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1486 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1487 // TmpBB, but the math is more complicated. 1488 1489 uint64_t NewTrueWeight = TWeight; 1490 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1491 ScaleWeights(NewTrueWeight, NewFalseWeight); 1492 // Emit the LHS condition. 1493 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1494 NewTrueWeight, NewFalseWeight); 1495 1496 NewTrueWeight = TWeight; 1497 NewFalseWeight = 2 * (uint64_t)FWeight; 1498 ScaleWeights(NewTrueWeight, NewFalseWeight); 1499 // Emit the RHS condition into TmpBB. 1500 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1501 NewTrueWeight, NewFalseWeight); 1502 } else { 1503 assert(Opc == Instruction::And && "Unknown merge op!"); 1504 // Codegen X & Y as: 1505 // BB1: 1506 // jmp_if_X TmpBB 1507 // jmp FBB 1508 // TmpBB: 1509 // jmp_if_Y TBB 1510 // jmp FBB 1511 // 1512 // This requires creation of TmpBB after CurBB. 1513 1514 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1515 // The requirement is that 1516 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1517 // = FalseProb for orignal BB. 1518 // Assuming the orignal weights are A and B, one choice is to set BB1's 1519 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1520 // assumes that 1521 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1522 1523 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1524 uint64_t NewFalseWeight = FWeight; 1525 ScaleWeights(NewTrueWeight, NewFalseWeight); 1526 // Emit the LHS condition. 1527 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1528 NewTrueWeight, NewFalseWeight); 1529 1530 NewTrueWeight = 2 * (uint64_t)TWeight; 1531 NewFalseWeight = FWeight; 1532 ScaleWeights(NewTrueWeight, NewFalseWeight); 1533 // Emit the RHS condition into TmpBB. 1534 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1535 NewTrueWeight, NewFalseWeight); 1536 } 1537 } 1538 1539 /// If the set of cases should be emitted as a series of branches, return true. 1540 /// If we should emit this as a bunch of and/or'd together conditions, return 1541 /// false. 1542 bool 1543 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1544 if (Cases.size() != 2) return true; 1545 1546 // If this is two comparisons of the same values or'd or and'd together, they 1547 // will get folded into a single comparison, so don't emit two blocks. 1548 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1549 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1550 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1551 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1552 return false; 1553 } 1554 1555 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1556 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1557 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1558 Cases[0].CC == Cases[1].CC && 1559 isa<Constant>(Cases[0].CmpRHS) && 1560 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1561 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1562 return false; 1563 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1564 return false; 1565 } 1566 1567 return true; 1568 } 1569 1570 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1571 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1572 1573 // Update machine-CFG edges. 1574 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1575 1576 // Figure out which block is immediately after the current one. 1577 MachineBasicBlock *NextBlock = nullptr; 1578 MachineFunction::iterator BBI = BrMBB; 1579 if (++BBI != FuncInfo.MF->end()) 1580 NextBlock = BBI; 1581 1582 if (I.isUnconditional()) { 1583 // Update machine-CFG edges. 1584 BrMBB->addSuccessor(Succ0MBB); 1585 1586 // If this is not a fall-through branch or optimizations are switched off, 1587 // emit the branch. 1588 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1589 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1590 MVT::Other, getControlRoot(), 1591 DAG.getBasicBlock(Succ0MBB))); 1592 1593 return; 1594 } 1595 1596 // If this condition is one of the special cases we handle, do special stuff 1597 // now. 1598 const Value *CondVal = I.getCondition(); 1599 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1600 1601 // If this is a series of conditions that are or'd or and'd together, emit 1602 // this as a sequence of branches instead of setcc's with and/or operations. 1603 // As long as jumps are not expensive, this should improve performance. 1604 // For example, instead of something like: 1605 // cmp A, B 1606 // C = seteq 1607 // cmp D, E 1608 // F = setle 1609 // or C, F 1610 // jnz foo 1611 // Emit: 1612 // cmp A, B 1613 // je foo 1614 // cmp D, E 1615 // jle foo 1616 // 1617 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1618 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1619 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1620 BOp->getOpcode() == Instruction::Or)) { 1621 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1622 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1623 getEdgeWeight(BrMBB, Succ1MBB)); 1624 // If the compares in later blocks need to use values not currently 1625 // exported from this block, export them now. This block should always 1626 // be the first entry. 1627 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1628 1629 // Allow some cases to be rejected. 1630 if (ShouldEmitAsBranches(SwitchCases)) { 1631 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1632 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1633 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1634 } 1635 1636 // Emit the branch for this block. 1637 visitSwitchCase(SwitchCases[0], BrMBB); 1638 SwitchCases.erase(SwitchCases.begin()); 1639 return; 1640 } 1641 1642 // Okay, we decided not to do this, remove any inserted MBB's and clear 1643 // SwitchCases. 1644 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1645 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1646 1647 SwitchCases.clear(); 1648 } 1649 } 1650 1651 // Create a CaseBlock record representing this branch. 1652 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1653 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1654 1655 // Use visitSwitchCase to actually insert the fast branch sequence for this 1656 // cond branch. 1657 visitSwitchCase(CB, BrMBB); 1658 } 1659 1660 /// visitSwitchCase - Emits the necessary code to represent a single node in 1661 /// the binary search tree resulting from lowering a switch instruction. 1662 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1663 MachineBasicBlock *SwitchBB) { 1664 SDValue Cond; 1665 SDValue CondLHS = getValue(CB.CmpLHS); 1666 SDLoc dl = getCurSDLoc(); 1667 1668 // Build the setcc now. 1669 if (!CB.CmpMHS) { 1670 // Fold "(X == true)" to X and "(X == false)" to !X to 1671 // handle common cases produced by branch lowering. 1672 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1673 CB.CC == ISD::SETEQ) 1674 Cond = CondLHS; 1675 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1676 CB.CC == ISD::SETEQ) { 1677 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1678 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1679 } else 1680 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1681 } else { 1682 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1683 1684 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1685 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1686 1687 SDValue CmpOp = getValue(CB.CmpMHS); 1688 EVT VT = CmpOp.getValueType(); 1689 1690 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1691 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1692 ISD::SETLE); 1693 } else { 1694 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1695 VT, CmpOp, DAG.getConstant(Low, VT)); 1696 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1697 DAG.getConstant(High-Low, VT), ISD::SETULE); 1698 } 1699 } 1700 1701 // Update successor info 1702 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1703 // TrueBB and FalseBB are always different unless the incoming IR is 1704 // degenerate. This only happens when running llc on weird IR. 1705 if (CB.TrueBB != CB.FalseBB) 1706 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1707 1708 // Set NextBlock to be the MBB immediately after the current one, if any. 1709 // This is used to avoid emitting unnecessary branches to the next block. 1710 MachineBasicBlock *NextBlock = nullptr; 1711 MachineFunction::iterator BBI = SwitchBB; 1712 if (++BBI != FuncInfo.MF->end()) 1713 NextBlock = BBI; 1714 1715 // If the lhs block is the next block, invert the condition so that we can 1716 // fall through to the lhs instead of the rhs block. 1717 if (CB.TrueBB == NextBlock) { 1718 std::swap(CB.TrueBB, CB.FalseBB); 1719 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1720 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1721 } 1722 1723 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1724 MVT::Other, getControlRoot(), Cond, 1725 DAG.getBasicBlock(CB.TrueBB)); 1726 1727 // Insert the false branch. Do this even if it's a fall through branch, 1728 // this makes it easier to do DAG optimizations which require inverting 1729 // the branch condition. 1730 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1731 DAG.getBasicBlock(CB.FalseBB)); 1732 1733 DAG.setRoot(BrCond); 1734 } 1735 1736 /// visitJumpTable - Emit JumpTable node in the current MBB 1737 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1738 // Emit the code for the jump table 1739 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1740 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1741 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1742 JT.Reg, PTy); 1743 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1744 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1745 MVT::Other, Index.getValue(1), 1746 Table, Index); 1747 DAG.setRoot(BrJumpTable); 1748 } 1749 1750 /// visitJumpTableHeader - This function emits necessary code to produce index 1751 /// in the JumpTable from switch case. 1752 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1753 JumpTableHeader &JTH, 1754 MachineBasicBlock *SwitchBB) { 1755 // Subtract the lowest switch case value from the value being switched on and 1756 // conditional branch to default mbb if the result is greater than the 1757 // difference between smallest and largest cases. 1758 SDValue SwitchOp = getValue(JTH.SValue); 1759 EVT VT = SwitchOp.getValueType(); 1760 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1761 DAG.getConstant(JTH.First, VT)); 1762 1763 // The SDNode we just created, which holds the value being switched on minus 1764 // the smallest case value, needs to be copied to a virtual register so it 1765 // can be used as an index into the jump table in a subsequent basic block. 1766 // This value may be smaller or larger than the target's pointer type, and 1767 // therefore require extension or truncating. 1768 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1769 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1770 1771 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1772 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1773 JumpTableReg, SwitchOp); 1774 JT.Reg = JumpTableReg; 1775 1776 // Emit the range check for the jump table, and branch to the default block 1777 // for the switch statement if the value being switched on exceeds the largest 1778 // case in the switch. 1779 SDValue CMP = 1780 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1781 Sub.getValueType()), 1782 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1783 1784 // Set NextBlock to be the MBB immediately after the current one, if any. 1785 // This is used to avoid emitting unnecessary branches to the next block. 1786 MachineBasicBlock *NextBlock = nullptr; 1787 MachineFunction::iterator BBI = SwitchBB; 1788 1789 if (++BBI != FuncInfo.MF->end()) 1790 NextBlock = BBI; 1791 1792 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1793 MVT::Other, CopyTo, CMP, 1794 DAG.getBasicBlock(JT.Default)); 1795 1796 if (JT.MBB != NextBlock) 1797 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1798 DAG.getBasicBlock(JT.MBB)); 1799 1800 DAG.setRoot(BrCond); 1801 } 1802 1803 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1804 /// tail spliced into a stack protector check success bb. 1805 /// 1806 /// For a high level explanation of how this fits into the stack protector 1807 /// generation see the comment on the declaration of class 1808 /// StackProtectorDescriptor. 1809 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1810 MachineBasicBlock *ParentBB) { 1811 1812 // First create the loads to the guard/stack slot for the comparison. 1813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1814 EVT PtrTy = TLI.getPointerTy(); 1815 1816 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1817 int FI = MFI->getStackProtectorIndex(); 1818 1819 const Value *IRGuard = SPD.getGuard(); 1820 SDValue GuardPtr = getValue(IRGuard); 1821 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1822 1823 unsigned Align = 1824 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1825 1826 SDValue Guard; 1827 1828 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1829 // guard value from the virtual register holding the value. Otherwise, emit a 1830 // volatile load to retrieve the stack guard value. 1831 unsigned GuardReg = SPD.getGuardReg(); 1832 1833 if (GuardReg && TLI.useLoadStackGuardNode()) 1834 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1835 PtrTy); 1836 else 1837 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1838 GuardPtr, MachinePointerInfo(IRGuard, 0), 1839 true, false, false, Align); 1840 1841 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1842 StackSlotPtr, 1843 MachinePointerInfo::getFixedStack(FI), 1844 true, false, false, Align); 1845 1846 // Perform the comparison via a subtract/getsetcc. 1847 EVT VT = Guard.getValueType(); 1848 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1849 1850 SDValue Cmp = 1851 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1852 Sub.getValueType()), 1853 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1854 1855 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1856 // branch to failure MBB. 1857 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1858 MVT::Other, StackSlot.getOperand(0), 1859 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1860 // Otherwise branch to success MBB. 1861 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1862 MVT::Other, BrCond, 1863 DAG.getBasicBlock(SPD.getSuccessMBB())); 1864 1865 DAG.setRoot(Br); 1866 } 1867 1868 /// Codegen the failure basic block for a stack protector check. 1869 /// 1870 /// A failure stack protector machine basic block consists simply of a call to 1871 /// __stack_chk_fail(). 1872 /// 1873 /// For a high level explanation of how this fits into the stack protector 1874 /// generation see the comment on the declaration of class 1875 /// StackProtectorDescriptor. 1876 void 1877 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1878 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1879 SDValue Chain = 1880 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1881 nullptr, 0, false, getCurSDLoc(), false, false).second; 1882 DAG.setRoot(Chain); 1883 } 1884 1885 /// visitBitTestHeader - This function emits necessary code to produce value 1886 /// suitable for "bit tests" 1887 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1888 MachineBasicBlock *SwitchBB) { 1889 // Subtract the minimum value 1890 SDValue SwitchOp = getValue(B.SValue); 1891 EVT VT = SwitchOp.getValueType(); 1892 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1893 DAG.getConstant(B.First, VT)); 1894 1895 // Check range 1896 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1897 SDValue RangeCmp = 1898 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1899 Sub.getValueType()), 1900 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1901 1902 // Determine the type of the test operands. 1903 bool UsePtrType = false; 1904 if (!TLI.isTypeLegal(VT)) 1905 UsePtrType = true; 1906 else { 1907 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1908 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1909 // Switch table case range are encoded into series of masks. 1910 // Just use pointer type, it's guaranteed to fit. 1911 UsePtrType = true; 1912 break; 1913 } 1914 } 1915 if (UsePtrType) { 1916 VT = TLI.getPointerTy(); 1917 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1918 } 1919 1920 B.RegVT = VT.getSimpleVT(); 1921 B.Reg = FuncInfo.CreateReg(B.RegVT); 1922 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1923 B.Reg, Sub); 1924 1925 // Set NextBlock to be the MBB immediately after the current one, if any. 1926 // This is used to avoid emitting unnecessary branches to the next block. 1927 MachineBasicBlock *NextBlock = nullptr; 1928 MachineFunction::iterator BBI = SwitchBB; 1929 if (++BBI != FuncInfo.MF->end()) 1930 NextBlock = BBI; 1931 1932 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1933 1934 addSuccessorWithWeight(SwitchBB, B.Default); 1935 addSuccessorWithWeight(SwitchBB, MBB); 1936 1937 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1938 MVT::Other, CopyTo, RangeCmp, 1939 DAG.getBasicBlock(B.Default)); 1940 1941 if (MBB != NextBlock) 1942 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1943 DAG.getBasicBlock(MBB)); 1944 1945 DAG.setRoot(BrRange); 1946 } 1947 1948 /// visitBitTestCase - this function produces one "bit test" 1949 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1950 MachineBasicBlock* NextMBB, 1951 uint32_t BranchWeightToNext, 1952 unsigned Reg, 1953 BitTestCase &B, 1954 MachineBasicBlock *SwitchBB) { 1955 MVT VT = BB.RegVT; 1956 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1957 Reg, VT); 1958 SDValue Cmp; 1959 unsigned PopCount = CountPopulation_64(B.Mask); 1960 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1961 if (PopCount == 1) { 1962 // Testing for a single bit; just compare the shift count with what it 1963 // would need to be to shift a 1 bit in that position. 1964 Cmp = DAG.getSetCC( 1965 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1966 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1967 } else if (PopCount == BB.Range) { 1968 // There is only one zero bit in the range, test for it directly. 1969 Cmp = DAG.getSetCC( 1970 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1971 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); 1972 } else { 1973 // Make desired shift 1974 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1975 DAG.getConstant(1, VT), ShiftOp); 1976 1977 // Emit bit tests and jumps 1978 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1979 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1980 Cmp = DAG.getSetCC(getCurSDLoc(), 1981 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1982 DAG.getConstant(0, VT), ISD::SETNE); 1983 } 1984 1985 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1986 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1987 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1988 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1989 1990 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1991 MVT::Other, getControlRoot(), 1992 Cmp, DAG.getBasicBlock(B.TargetBB)); 1993 1994 // Set NextBlock to be the MBB immediately after the current one, if any. 1995 // This is used to avoid emitting unnecessary branches to the next block. 1996 MachineBasicBlock *NextBlock = nullptr; 1997 MachineFunction::iterator BBI = SwitchBB; 1998 if (++BBI != FuncInfo.MF->end()) 1999 NextBlock = BBI; 2000 2001 if (NextMBB != NextBlock) 2002 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 2003 DAG.getBasicBlock(NextMBB)); 2004 2005 DAG.setRoot(BrAnd); 2006 } 2007 2008 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2009 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2010 2011 // Retrieve successors. 2012 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2013 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2014 2015 const Value *Callee(I.getCalledValue()); 2016 const Function *Fn = dyn_cast<Function>(Callee); 2017 if (isa<InlineAsm>(Callee)) 2018 visitInlineAsm(&I); 2019 else if (Fn && Fn->isIntrinsic()) { 2020 switch (Fn->getIntrinsicID()) { 2021 default: 2022 llvm_unreachable("Cannot invoke this intrinsic"); 2023 case Intrinsic::donothing: 2024 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2025 break; 2026 case Intrinsic::experimental_patchpoint_void: 2027 case Intrinsic::experimental_patchpoint_i64: 2028 visitPatchpoint(&I, LandingPad); 2029 break; 2030 } 2031 } else 2032 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2033 2034 // If the value of the invoke is used outside of its defining block, make it 2035 // available as a virtual register. 2036 CopyToExportRegsIfNeeded(&I); 2037 2038 // Update successor info 2039 addSuccessorWithWeight(InvokeMBB, Return); 2040 addSuccessorWithWeight(InvokeMBB, LandingPad); 2041 2042 // Drop into normal successor. 2043 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2044 MVT::Other, getControlRoot(), 2045 DAG.getBasicBlock(Return))); 2046 } 2047 2048 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2049 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2050 } 2051 2052 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2053 assert(FuncInfo.MBB->isLandingPad() && 2054 "Call to landingpad not in landing pad!"); 2055 2056 MachineBasicBlock *MBB = FuncInfo.MBB; 2057 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2058 AddLandingPadInfo(LP, MMI, MBB); 2059 2060 // If there aren't registers to copy the values into (e.g., during SjLj 2061 // exceptions), then don't bother to create these DAG nodes. 2062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2063 if (TLI.getExceptionPointerRegister() == 0 && 2064 TLI.getExceptionSelectorRegister() == 0) 2065 return; 2066 2067 SmallVector<EVT, 2> ValueVTs; 2068 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2069 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2070 2071 // Get the two live-in registers as SDValues. The physregs have already been 2072 // copied into virtual registers. 2073 SDValue Ops[2]; 2074 if (FuncInfo.ExceptionPointerVirtReg) { 2075 Ops[0] = DAG.getZExtOrTrunc( 2076 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2077 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2078 getCurSDLoc(), ValueVTs[0]); 2079 } else { 2080 Ops[0] = DAG.getConstant(0, TLI.getPointerTy()); 2081 } 2082 Ops[1] = DAG.getZExtOrTrunc( 2083 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2084 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2085 getCurSDLoc(), ValueVTs[1]); 2086 2087 // Merge into one. 2088 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2089 DAG.getVTList(ValueVTs), Ops); 2090 setValue(&LP, Res); 2091 } 2092 2093 unsigned 2094 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2095 MachineBasicBlock *LPadBB) { 2096 SDValue Chain = getControlRoot(); 2097 2098 // Get the typeid that we will dispatch on later. 2099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2100 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2101 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2102 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2103 SDValue Sel = DAG.getConstant(TypeID, TLI.getPointerTy()); 2104 Chain = DAG.getCopyToReg(Chain, getCurSDLoc(), VReg, Sel); 2105 2106 // Branch to the main landing pad block. 2107 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2108 ClauseMBB->addSuccessor(LPadBB); 2109 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, Chain, 2110 DAG.getBasicBlock(LPadBB))); 2111 return VReg; 2112 } 2113 2114 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2115 /// small case ranges). 2116 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2117 CaseRecVector& WorkList, 2118 const Value* SV, 2119 MachineBasicBlock *Default, 2120 MachineBasicBlock *SwitchBB) { 2121 // Size is the number of Cases represented by this range. 2122 size_t Size = CR.Range.second - CR.Range.first; 2123 if (Size > 3) 2124 return false; 2125 2126 // Get the MachineFunction which holds the current MBB. This is used when 2127 // inserting any additional MBBs necessary to represent the switch. 2128 MachineFunction *CurMF = FuncInfo.MF; 2129 2130 // Figure out which block is immediately after the current one. 2131 MachineBasicBlock *NextBlock = nullptr; 2132 MachineFunction::iterator BBI = CR.CaseBB; 2133 2134 if (++BBI != FuncInfo.MF->end()) 2135 NextBlock = BBI; 2136 2137 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2138 // If any two of the cases has the same destination, and if one value 2139 // is the same as the other, but has one bit unset that the other has set, 2140 // use bit manipulation to do two compares at once. For example: 2141 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2142 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2143 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2144 if (Size == 2 && CR.CaseBB == SwitchBB) { 2145 Case &Small = *CR.Range.first; 2146 Case &Big = *(CR.Range.second-1); 2147 2148 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2149 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2150 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2151 2152 // Check that there is only one bit different. 2153 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2154 (SmallValue | BigValue) == BigValue) { 2155 // Isolate the common bit. 2156 APInt CommonBit = BigValue & ~SmallValue; 2157 assert((SmallValue | CommonBit) == BigValue && 2158 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2159 2160 SDValue CondLHS = getValue(SV); 2161 EVT VT = CondLHS.getValueType(); 2162 SDLoc DL = getCurSDLoc(); 2163 2164 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2165 DAG.getConstant(CommonBit, VT)); 2166 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2167 Or, DAG.getConstant(BigValue, VT), 2168 ISD::SETEQ); 2169 2170 // Update successor info. 2171 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2172 addSuccessorWithWeight(SwitchBB, Small.BB, 2173 Small.ExtraWeight + Big.ExtraWeight); 2174 addSuccessorWithWeight(SwitchBB, Default, 2175 // The default destination is the first successor in IR. 2176 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2177 2178 // Insert the true branch. 2179 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2180 getControlRoot(), Cond, 2181 DAG.getBasicBlock(Small.BB)); 2182 2183 // Insert the false branch. 2184 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2185 DAG.getBasicBlock(Default)); 2186 2187 DAG.setRoot(BrCond); 2188 return true; 2189 } 2190 } 2191 } 2192 2193 // Order cases by weight so the most likely case will be checked first. 2194 uint32_t UnhandledWeights = 0; 2195 if (BPI) { 2196 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2197 uint32_t IWeight = I->ExtraWeight; 2198 UnhandledWeights += IWeight; 2199 for (CaseItr J = CR.Range.first; J < I; ++J) { 2200 uint32_t JWeight = J->ExtraWeight; 2201 if (IWeight > JWeight) 2202 std::swap(*I, *J); 2203 } 2204 } 2205 } 2206 // Rearrange the case blocks so that the last one falls through if possible. 2207 Case &BackCase = *(CR.Range.second-1); 2208 if (Size > 1 && 2209 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2210 // The last case block won't fall through into 'NextBlock' if we emit the 2211 // branches in this order. See if rearranging a case value would help. 2212 // We start at the bottom as it's the case with the least weight. 2213 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2214 if (I->BB == NextBlock) { 2215 std::swap(*I, BackCase); 2216 break; 2217 } 2218 } 2219 2220 // Create a CaseBlock record representing a conditional branch to 2221 // the Case's target mbb if the value being switched on SV is equal 2222 // to C. 2223 MachineBasicBlock *CurBlock = CR.CaseBB; 2224 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2225 MachineBasicBlock *FallThrough; 2226 if (I != E-1) { 2227 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2228 CurMF->insert(BBI, FallThrough); 2229 2230 // Put SV in a virtual register to make it available from the new blocks. 2231 ExportFromCurrentBlock(SV); 2232 } else { 2233 // If the last case doesn't match, go to the default block. 2234 FallThrough = Default; 2235 } 2236 2237 const Value *RHS, *LHS, *MHS; 2238 ISD::CondCode CC; 2239 if (I->High == I->Low) { 2240 // This is just small small case range :) containing exactly 1 case 2241 CC = ISD::SETEQ; 2242 LHS = SV; RHS = I->High; MHS = nullptr; 2243 } else { 2244 CC = ISD::SETLE; 2245 LHS = I->Low; MHS = SV; RHS = I->High; 2246 } 2247 2248 // The false weight should be sum of all un-handled cases. 2249 UnhandledWeights -= I->ExtraWeight; 2250 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2251 /* me */ CurBlock, 2252 /* trueweight */ I->ExtraWeight, 2253 /* falseweight */ UnhandledWeights); 2254 2255 // If emitting the first comparison, just call visitSwitchCase to emit the 2256 // code into the current block. Otherwise, push the CaseBlock onto the 2257 // vector to be later processed by SDISel, and insert the node's MBB 2258 // before the next MBB. 2259 if (CurBlock == SwitchBB) 2260 visitSwitchCase(CB, SwitchBB); 2261 else 2262 SwitchCases.push_back(CB); 2263 2264 CurBlock = FallThrough; 2265 } 2266 2267 return true; 2268 } 2269 2270 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2271 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2272 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2273 } 2274 2275 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2276 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2277 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2278 return (LastExt - FirstExt + 1ULL); 2279 } 2280 2281 /// handleJTSwitchCase - Emit jumptable for current switch case range 2282 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2283 CaseRecVector &WorkList, 2284 const Value *SV, 2285 MachineBasicBlock *Default, 2286 MachineBasicBlock *SwitchBB) { 2287 Case& FrontCase = *CR.Range.first; 2288 Case& BackCase = *(CR.Range.second-1); 2289 2290 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2291 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2292 2293 APInt TSize(First.getBitWidth(), 0); 2294 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2295 TSize += I->size(); 2296 2297 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2298 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2299 return false; 2300 2301 APInt Range = ComputeRange(First, Last); 2302 // The density is TSize / Range. Require at least 40%. 2303 // It should not be possible for IntTSize to saturate for sane code, but make 2304 // sure we handle Range saturation correctly. 2305 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2306 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2307 if (IntTSize * 10 < IntRange * 4) 2308 return false; 2309 2310 DEBUG(dbgs() << "Lowering jump table\n" 2311 << "First entry: " << First << ". Last entry: " << Last << '\n' 2312 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2313 2314 // Get the MachineFunction which holds the current MBB. This is used when 2315 // inserting any additional MBBs necessary to represent the switch. 2316 MachineFunction *CurMF = FuncInfo.MF; 2317 2318 // Figure out which block is immediately after the current one. 2319 MachineFunction::iterator BBI = CR.CaseBB; 2320 ++BBI; 2321 2322 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2323 2324 // Create a new basic block to hold the code for loading the address 2325 // of the jump table, and jumping to it. Update successor information; 2326 // we will either branch to the default case for the switch, or the jump 2327 // table. 2328 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2329 CurMF->insert(BBI, JumpTableBB); 2330 2331 addSuccessorWithWeight(CR.CaseBB, Default); 2332 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2333 2334 // Build a vector of destination BBs, corresponding to each target 2335 // of the jump table. If the value of the jump table slot corresponds to 2336 // a case statement, push the case's BB onto the vector, otherwise, push 2337 // the default BB. 2338 std::vector<MachineBasicBlock*> DestBBs; 2339 APInt TEI = First; 2340 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2341 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2342 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2343 2344 if (Low.sle(TEI) && TEI.sle(High)) { 2345 DestBBs.push_back(I->BB); 2346 if (TEI==High) 2347 ++I; 2348 } else { 2349 DestBBs.push_back(Default); 2350 } 2351 } 2352 2353 // Calculate weight for each unique destination in CR. 2354 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2355 if (FuncInfo.BPI) 2356 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2357 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2358 DestWeights.find(I->BB); 2359 if (Itr != DestWeights.end()) 2360 Itr->second += I->ExtraWeight; 2361 else 2362 DestWeights[I->BB] = I->ExtraWeight; 2363 } 2364 2365 // Update successor info. Add one edge to each unique successor. 2366 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2367 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2368 E = DestBBs.end(); I != E; ++I) { 2369 if (!SuccsHandled[(*I)->getNumber()]) { 2370 SuccsHandled[(*I)->getNumber()] = true; 2371 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2372 DestWeights.find(*I); 2373 addSuccessorWithWeight(JumpTableBB, *I, 2374 Itr != DestWeights.end() ? Itr->second : 0); 2375 } 2376 } 2377 2378 // Create a jump table index for this jump table. 2379 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2380 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2381 ->createJumpTableIndex(DestBBs); 2382 2383 // Set the jump table information so that we can codegen it as a second 2384 // MachineBasicBlock 2385 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2386 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2387 if (CR.CaseBB == SwitchBB) 2388 visitJumpTableHeader(JT, JTH, SwitchBB); 2389 2390 JTCases.push_back(JumpTableBlock(JTH, JT)); 2391 return true; 2392 } 2393 2394 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2395 /// 2 subtrees. 2396 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2397 CaseRecVector& WorkList, 2398 const Value* SV, 2399 MachineBasicBlock* SwitchBB) { 2400 Case& FrontCase = *CR.Range.first; 2401 Case& BackCase = *(CR.Range.second-1); 2402 2403 // Size is the number of Cases represented by this range. 2404 unsigned Size = CR.Range.second - CR.Range.first; 2405 2406 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2407 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2408 double FMetric = 0; 2409 CaseItr Pivot = CR.Range.first + Size/2; 2410 2411 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2412 // (heuristically) allow us to emit JumpTable's later. 2413 APInt TSize(First.getBitWidth(), 0); 2414 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2415 I!=E; ++I) 2416 TSize += I->size(); 2417 2418 APInt LSize = FrontCase.size(); 2419 APInt RSize = TSize-LSize; 2420 DEBUG(dbgs() << "Selecting best pivot: \n" 2421 << "First: " << First << ", Last: " << Last <<'\n' 2422 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2423 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2424 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2425 J!=E; ++I, ++J) { 2426 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2427 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2428 APInt Range = ComputeRange(LEnd, RBegin); 2429 assert((Range - 2ULL).isNonNegative() && 2430 "Invalid case distance"); 2431 // Use volatile double here to avoid excess precision issues on some hosts, 2432 // e.g. that use 80-bit X87 registers. 2433 // Only consider the density of sub-ranges that actually have sufficient 2434 // entries to be lowered as a jump table. 2435 volatile double LDensity = 2436 LSize.ult(TLI.getMinimumJumpTableEntries()) 2437 ? 0.0 2438 : LSize.roundToDouble() / (LEnd - First + 1ULL).roundToDouble(); 2439 volatile double RDensity = 2440 RSize.ult(TLI.getMinimumJumpTableEntries()) 2441 ? 0.0 2442 : RSize.roundToDouble() / (Last - RBegin + 1ULL).roundToDouble(); 2443 volatile double Metric = Range.logBase2() * (LDensity + RDensity); 2444 // Should always split in some non-trivial place 2445 DEBUG(dbgs() <<"=>Step\n" 2446 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2447 << "LDensity: " << LDensity 2448 << ", RDensity: " << RDensity << '\n' 2449 << "Metric: " << Metric << '\n'); 2450 if (FMetric < Metric) { 2451 Pivot = J; 2452 FMetric = Metric; 2453 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2454 } 2455 2456 LSize += J->size(); 2457 RSize -= J->size(); 2458 } 2459 2460 if (FMetric == 0 || !areJTsAllowed(TLI)) 2461 Pivot = CR.Range.first + Size/2; 2462 splitSwitchCase(CR, Pivot, WorkList, SV, SwitchBB); 2463 return true; 2464 } 2465 2466 void SelectionDAGBuilder::splitSwitchCase(CaseRec &CR, CaseItr Pivot, 2467 CaseRecVector &WorkList, 2468 const Value *SV, 2469 MachineBasicBlock *SwitchBB) { 2470 // Get the MachineFunction which holds the current MBB. This is used when 2471 // inserting any additional MBBs necessary to represent the switch. 2472 MachineFunction *CurMF = FuncInfo.MF; 2473 2474 // Figure out which block is immediately after the current one. 2475 MachineFunction::iterator BBI = CR.CaseBB; 2476 ++BBI; 2477 2478 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2479 2480 CaseRange LHSR(CR.Range.first, Pivot); 2481 CaseRange RHSR(Pivot, CR.Range.second); 2482 const Constant *C = Pivot->Low; 2483 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2484 2485 // We know that we branch to the LHS if the Value being switched on is 2486 // less than the Pivot value, C. We use this to optimize our binary 2487 // tree a bit, by recognizing that if SV is greater than or equal to the 2488 // LHS's Case Value, and that Case Value is exactly one less than the 2489 // Pivot's Value, then we can branch directly to the LHS's Target, 2490 // rather than creating a leaf node for it. 2491 if ((LHSR.second - LHSR.first) == 1 && LHSR.first->High == CR.GE && 2492 cast<ConstantInt>(C)->getValue() == 2493 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2494 TrueBB = LHSR.first->BB; 2495 } else { 2496 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2497 CurMF->insert(BBI, TrueBB); 2498 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2499 2500 // Put SV in a virtual register to make it available from the new blocks. 2501 ExportFromCurrentBlock(SV); 2502 } 2503 2504 // Similar to the optimization above, if the Value being switched on is 2505 // known to be less than the Constant CR.LT, and the current Case Value 2506 // is CR.LT - 1, then we can branch directly to the target block for 2507 // the current Case Value, rather than emitting a RHS leaf node for it. 2508 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2509 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2510 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2511 FalseBB = RHSR.first->BB; 2512 } else { 2513 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2514 CurMF->insert(BBI, FalseBB); 2515 WorkList.push_back(CaseRec(FalseBB, CR.LT, C, RHSR)); 2516 2517 // Put SV in a virtual register to make it available from the new blocks. 2518 ExportFromCurrentBlock(SV); 2519 } 2520 2521 // Create a CaseBlock record representing a conditional branch to 2522 // the LHS node if the value being switched on SV is less than C. 2523 // Otherwise, branch to LHS. 2524 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2525 2526 if (CR.CaseBB == SwitchBB) 2527 visitSwitchCase(CB, SwitchBB); 2528 else 2529 SwitchCases.push_back(CB); 2530 } 2531 2532 /// handleBitTestsSwitchCase - if current case range has few destination and 2533 /// range span less, than machine word bitwidth, encode case range into series 2534 /// of masks and emit bit tests with these masks. 2535 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2536 CaseRecVector& WorkList, 2537 const Value* SV, 2538 MachineBasicBlock* Default, 2539 MachineBasicBlock* SwitchBB) { 2540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2541 EVT PTy = TLI.getPointerTy(); 2542 unsigned IntPtrBits = PTy.getSizeInBits(); 2543 2544 Case& FrontCase = *CR.Range.first; 2545 Case& BackCase = *(CR.Range.second-1); 2546 2547 // Get the MachineFunction which holds the current MBB. This is used when 2548 // inserting any additional MBBs necessary to represent the switch. 2549 MachineFunction *CurMF = FuncInfo.MF; 2550 2551 // If target does not have legal shift left, do not emit bit tests at all. 2552 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2553 return false; 2554 2555 size_t numCmps = 0; 2556 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2557 // Single case counts one, case range - two. 2558 numCmps += (I->Low == I->High ? 1 : 2); 2559 } 2560 2561 // Count unique destinations 2562 SmallSet<MachineBasicBlock*, 4> Dests; 2563 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2564 Dests.insert(I->BB); 2565 if (Dests.size() > 3) 2566 // Don't bother the code below, if there are too much unique destinations 2567 return false; 2568 } 2569 DEBUG(dbgs() << "Total number of unique destinations: " 2570 << Dests.size() << '\n' 2571 << "Total number of comparisons: " << numCmps << '\n'); 2572 2573 // Compute span of values. 2574 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2575 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2576 APInt cmpRange = maxValue - minValue; 2577 2578 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2579 << "Low bound: " << minValue << '\n' 2580 << "High bound: " << maxValue << '\n'); 2581 2582 if (cmpRange.uge(IntPtrBits) || 2583 (!(Dests.size() == 1 && numCmps >= 3) && 2584 !(Dests.size() == 2 && numCmps >= 5) && 2585 !(Dests.size() >= 3 && numCmps >= 6))) 2586 return false; 2587 2588 DEBUG(dbgs() << "Emitting bit tests\n"); 2589 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2590 2591 // Optimize the case where all the case values fit in a 2592 // word without having to subtract minValue. In this case, 2593 // we can optimize away the subtraction. 2594 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2595 cmpRange = maxValue; 2596 } else { 2597 lowBound = minValue; 2598 } 2599 2600 CaseBitsVector CasesBits; 2601 unsigned i, count = 0; 2602 2603 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2604 MachineBasicBlock* Dest = I->BB; 2605 for (i = 0; i < count; ++i) 2606 if (Dest == CasesBits[i].BB) 2607 break; 2608 2609 if (i == count) { 2610 assert((count < 3) && "Too much destinations to test!"); 2611 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2612 count++; 2613 } 2614 2615 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2616 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2617 2618 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2619 uint64_t hi = (highValue - lowBound).getZExtValue(); 2620 CasesBits[i].ExtraWeight += I->ExtraWeight; 2621 2622 for (uint64_t j = lo; j <= hi; j++) { 2623 CasesBits[i].Mask |= 1ULL << j; 2624 CasesBits[i].Bits++; 2625 } 2626 2627 } 2628 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2629 2630 BitTestInfo BTC; 2631 2632 // Figure out which block is immediately after the current one. 2633 MachineFunction::iterator BBI = CR.CaseBB; 2634 ++BBI; 2635 2636 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2637 2638 DEBUG(dbgs() << "Cases:\n"); 2639 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2640 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2641 << ", Bits: " << CasesBits[i].Bits 2642 << ", BB: " << CasesBits[i].BB << '\n'); 2643 2644 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2645 CurMF->insert(BBI, CaseBB); 2646 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2647 CaseBB, 2648 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2649 2650 // Put SV in a virtual register to make it available from the new blocks. 2651 ExportFromCurrentBlock(SV); 2652 } 2653 2654 BitTestBlock BTB(lowBound, cmpRange, SV, 2655 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2656 CR.CaseBB, Default, std::move(BTC)); 2657 2658 if (CR.CaseBB == SwitchBB) 2659 visitBitTestHeader(BTB, SwitchBB); 2660 2661 BitTestCases.push_back(std::move(BTB)); 2662 2663 return true; 2664 } 2665 2666 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2667 void SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2668 const SwitchInst& SI) { 2669 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2670 // Start with "simple" cases. 2671 for (SwitchInst::ConstCaseIt i : SI.cases()) { 2672 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2673 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2674 2675 uint32_t ExtraWeight = 2676 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2677 2678 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2679 SMBB, ExtraWeight)); 2680 } 2681 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2682 2683 // Merge case into clusters 2684 if (Cases.size() >= 2) 2685 // Must recompute end() each iteration because it may be 2686 // invalidated by erase if we hold on to it 2687 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2688 J != Cases.end(); ) { 2689 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2690 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2691 MachineBasicBlock* nextBB = J->BB; 2692 MachineBasicBlock* currentBB = I->BB; 2693 2694 // If the two neighboring cases go to the same destination, merge them 2695 // into a single case. 2696 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2697 I->High = J->High; 2698 I->ExtraWeight += J->ExtraWeight; 2699 J = Cases.erase(J); 2700 } else { 2701 I = J++; 2702 } 2703 } 2704 2705 DEBUG({ 2706 size_t numCmps = 0; 2707 for (auto &I : Cases) 2708 // A range counts double, since it requires two compares. 2709 numCmps += I.Low != I.High ? 2 : 1; 2710 2711 dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2712 << ". Total compares: " << numCmps << '\n'; 2713 }); 2714 } 2715 2716 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2717 MachineBasicBlock *Last) { 2718 // Update JTCases. 2719 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2720 if (JTCases[i].first.HeaderBB == First) 2721 JTCases[i].first.HeaderBB = Last; 2722 2723 // Update BitTestCases. 2724 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2725 if (BitTestCases[i].Parent == First) 2726 BitTestCases[i].Parent = Last; 2727 } 2728 2729 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2730 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2731 2732 // Figure out which block is immediately after the current one. 2733 MachineBasicBlock *NextBlock = nullptr; 2734 if (SwitchMBB + 1 != FuncInfo.MF->end()) 2735 NextBlock = SwitchMBB + 1; 2736 2737 2738 // Create a vector of Cases, sorted so that we can efficiently create a binary 2739 // search tree from them. 2740 CaseVector Cases; 2741 Clusterify(Cases, SI); 2742 2743 // Get the default destination MBB. 2744 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2745 2746 if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) && 2747 !Cases.empty()) { 2748 // Replace an unreachable default destination with the most popular case 2749 // destination. 2750 DenseMap<const BasicBlock *, unsigned> Popularity; 2751 unsigned MaxPop = 0; 2752 const BasicBlock *MaxBB = nullptr; 2753 for (auto I : SI.cases()) { 2754 const BasicBlock *BB = I.getCaseSuccessor(); 2755 if (++Popularity[BB] > MaxPop) { 2756 MaxPop = Popularity[BB]; 2757 MaxBB = BB; 2758 } 2759 } 2760 2761 // Set new default. 2762 assert(MaxPop > 0); 2763 assert(MaxBB); 2764 Default = FuncInfo.MBBMap[MaxBB]; 2765 2766 // Remove cases that were pointing to the destination that is now the default. 2767 Cases.erase(std::remove_if(Cases.begin(), Cases.end(), 2768 [&](const Case &C) { return C.BB == Default; }), 2769 Cases.end()); 2770 } 2771 2772 // If there is only the default destination, go there directly. 2773 if (Cases.empty()) { 2774 // Update machine-CFG edges. 2775 SwitchMBB->addSuccessor(Default); 2776 2777 // If this is not a fall-through branch, emit the branch. 2778 if (Default != NextBlock) { 2779 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2780 getControlRoot(), DAG.getBasicBlock(Default))); 2781 } 2782 return; 2783 } 2784 2785 // Get the Value to be switched on. 2786 const Value *SV = SI.getCondition(); 2787 2788 // Push the initial CaseRec onto the worklist 2789 CaseRecVector WorkList; 2790 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2791 CaseRange(Cases.begin(),Cases.end()))); 2792 2793 while (!WorkList.empty()) { 2794 // Grab a record representing a case range to process off the worklist 2795 CaseRec CR = WorkList.back(); 2796 WorkList.pop_back(); 2797 2798 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2799 continue; 2800 2801 // If the range has few cases (two or less) emit a series of specific 2802 // tests. 2803 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2804 continue; 2805 2806 // If the switch has more than N blocks, and is at least 40% dense, and the 2807 // target supports indirect branches, then emit a jump table rather than 2808 // lowering the switch to a binary tree of conditional branches. 2809 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2810 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2811 continue; 2812 2813 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2814 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2815 handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB); 2816 } 2817 } 2818 2819 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2820 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2821 2822 // Update machine-CFG edges with unique successors. 2823 SmallSet<BasicBlock*, 32> Done; 2824 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2825 BasicBlock *BB = I.getSuccessor(i); 2826 bool Inserted = Done.insert(BB).second; 2827 if (!Inserted) 2828 continue; 2829 2830 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2831 addSuccessorWithWeight(IndirectBrMBB, Succ); 2832 } 2833 2834 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2835 MVT::Other, getControlRoot(), 2836 getValue(I.getAddress()))); 2837 } 2838 2839 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2840 if (DAG.getTarget().Options.TrapUnreachable) 2841 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2842 } 2843 2844 void SelectionDAGBuilder::visitFSub(const User &I) { 2845 // -0.0 - X --> fneg 2846 Type *Ty = I.getType(); 2847 if (isa<Constant>(I.getOperand(0)) && 2848 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2849 SDValue Op2 = getValue(I.getOperand(1)); 2850 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2851 Op2.getValueType(), Op2)); 2852 return; 2853 } 2854 2855 visitBinary(I, ISD::FSUB); 2856 } 2857 2858 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2859 SDValue Op1 = getValue(I.getOperand(0)); 2860 SDValue Op2 = getValue(I.getOperand(1)); 2861 2862 bool nuw = false; 2863 bool nsw = false; 2864 bool exact = false; 2865 if (const OverflowingBinaryOperator *OFBinOp = 2866 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2867 nuw = OFBinOp->hasNoUnsignedWrap(); 2868 nsw = OFBinOp->hasNoSignedWrap(); 2869 } 2870 if (const PossiblyExactOperator *ExactOp = 2871 dyn_cast<const PossiblyExactOperator>(&I)) 2872 exact = ExactOp->isExact(); 2873 2874 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2875 Op1, Op2, nuw, nsw, exact); 2876 setValue(&I, BinNodeValue); 2877 } 2878 2879 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2880 SDValue Op1 = getValue(I.getOperand(0)); 2881 SDValue Op2 = getValue(I.getOperand(1)); 2882 2883 EVT ShiftTy = 2884 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2885 2886 // Coerce the shift amount to the right type if we can. 2887 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2888 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2889 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2890 SDLoc DL = getCurSDLoc(); 2891 2892 // If the operand is smaller than the shift count type, promote it. 2893 if (ShiftSize > Op2Size) 2894 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2895 2896 // If the operand is larger than the shift count type but the shift 2897 // count type has enough bits to represent any shift value, truncate 2898 // it now. This is a common case and it exposes the truncate to 2899 // optimization early. 2900 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2901 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2902 // Otherwise we'll need to temporarily settle for some other convenient 2903 // type. Type legalization will make adjustments once the shiftee is split. 2904 else 2905 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2906 } 2907 2908 bool nuw = false; 2909 bool nsw = false; 2910 bool exact = false; 2911 2912 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2913 2914 if (const OverflowingBinaryOperator *OFBinOp = 2915 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2916 nuw = OFBinOp->hasNoUnsignedWrap(); 2917 nsw = OFBinOp->hasNoSignedWrap(); 2918 } 2919 if (const PossiblyExactOperator *ExactOp = 2920 dyn_cast<const PossiblyExactOperator>(&I)) 2921 exact = ExactOp->isExact(); 2922 } 2923 2924 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2925 nuw, nsw, exact); 2926 setValue(&I, Res); 2927 } 2928 2929 void SelectionDAGBuilder::visitSDiv(const User &I) { 2930 SDValue Op1 = getValue(I.getOperand(0)); 2931 SDValue Op2 = getValue(I.getOperand(1)); 2932 2933 // Turn exact SDivs into multiplications. 2934 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2935 // exact bit. 2936 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2937 !isa<ConstantSDNode>(Op1) && 2938 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2939 setValue(&I, DAG.getTargetLoweringInfo() 2940 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2941 else 2942 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2943 Op1, Op2)); 2944 } 2945 2946 void SelectionDAGBuilder::visitICmp(const User &I) { 2947 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2948 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2949 predicate = IC->getPredicate(); 2950 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2951 predicate = ICmpInst::Predicate(IC->getPredicate()); 2952 SDValue Op1 = getValue(I.getOperand(0)); 2953 SDValue Op2 = getValue(I.getOperand(1)); 2954 ISD::CondCode Opcode = getICmpCondCode(predicate); 2955 2956 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2957 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2958 } 2959 2960 void SelectionDAGBuilder::visitFCmp(const User &I) { 2961 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2962 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2963 predicate = FC->getPredicate(); 2964 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2965 predicate = FCmpInst::Predicate(FC->getPredicate()); 2966 SDValue Op1 = getValue(I.getOperand(0)); 2967 SDValue Op2 = getValue(I.getOperand(1)); 2968 ISD::CondCode Condition = getFCmpCondCode(predicate); 2969 if (TM.Options.NoNaNsFPMath) 2970 Condition = getFCmpCodeWithoutNaN(Condition); 2971 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2972 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2973 } 2974 2975 void SelectionDAGBuilder::visitSelect(const User &I) { 2976 SmallVector<EVT, 4> ValueVTs; 2977 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2978 unsigned NumValues = ValueVTs.size(); 2979 if (NumValues == 0) return; 2980 2981 SmallVector<SDValue, 4> Values(NumValues); 2982 SDValue Cond = getValue(I.getOperand(0)); 2983 SDValue TrueVal = getValue(I.getOperand(1)); 2984 SDValue FalseVal = getValue(I.getOperand(2)); 2985 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2986 ISD::VSELECT : ISD::SELECT; 2987 2988 for (unsigned i = 0; i != NumValues; ++i) 2989 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2990 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2991 Cond, 2992 SDValue(TrueVal.getNode(), 2993 TrueVal.getResNo() + i), 2994 SDValue(FalseVal.getNode(), 2995 FalseVal.getResNo() + i)); 2996 2997 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2998 DAG.getVTList(ValueVTs), Values)); 2999 } 3000 3001 void SelectionDAGBuilder::visitTrunc(const User &I) { 3002 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3003 SDValue N = getValue(I.getOperand(0)); 3004 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3005 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3006 } 3007 3008 void SelectionDAGBuilder::visitZExt(const User &I) { 3009 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3010 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3011 SDValue N = getValue(I.getOperand(0)); 3012 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3013 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3014 } 3015 3016 void SelectionDAGBuilder::visitSExt(const User &I) { 3017 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3018 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3019 SDValue N = getValue(I.getOperand(0)); 3020 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3021 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3022 } 3023 3024 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3025 // FPTrunc is never a no-op cast, no need to check 3026 SDValue N = getValue(I.getOperand(0)); 3027 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3028 EVT DestVT = TLI.getValueType(I.getType()); 3029 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 3030 DAG.getTargetConstant(0, TLI.getPointerTy()))); 3031 } 3032 3033 void SelectionDAGBuilder::visitFPExt(const User &I) { 3034 // FPExt is never a no-op cast, no need to check 3035 SDValue N = getValue(I.getOperand(0)); 3036 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3037 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3038 } 3039 3040 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3041 // FPToUI is never a no-op cast, no need to check 3042 SDValue N = getValue(I.getOperand(0)); 3043 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3044 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3045 } 3046 3047 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3048 // FPToSI is never a no-op cast, no need to check 3049 SDValue N = getValue(I.getOperand(0)); 3050 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3051 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3052 } 3053 3054 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3055 // UIToFP is never a no-op cast, no need to check 3056 SDValue N = getValue(I.getOperand(0)); 3057 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3058 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3059 } 3060 3061 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3062 // SIToFP is never a no-op cast, no need to check 3063 SDValue N = getValue(I.getOperand(0)); 3064 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3065 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3066 } 3067 3068 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3069 // What to do depends on the size of the integer and the size of the pointer. 3070 // We can either truncate, zero extend, or no-op, accordingly. 3071 SDValue N = getValue(I.getOperand(0)); 3072 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3073 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3074 } 3075 3076 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3077 // What to do depends on the size of the integer and the size of the pointer. 3078 // We can either truncate, zero extend, or no-op, accordingly. 3079 SDValue N = getValue(I.getOperand(0)); 3080 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3081 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3082 } 3083 3084 void SelectionDAGBuilder::visitBitCast(const User &I) { 3085 SDValue N = getValue(I.getOperand(0)); 3086 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3087 3088 // BitCast assures us that source and destination are the same size so this is 3089 // either a BITCAST or a no-op. 3090 if (DestVT != N.getValueType()) 3091 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3092 DestVT, N)); // convert types. 3093 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3094 // might fold any kind of constant expression to an integer constant and that 3095 // is not what we are looking for. Only regcognize a bitcast of a genuine 3096 // constant integer as an opaque constant. 3097 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3098 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3099 /*isOpaque*/true)); 3100 else 3101 setValue(&I, N); // noop cast. 3102 } 3103 3104 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3106 const Value *SV = I.getOperand(0); 3107 SDValue N = getValue(SV); 3108 EVT DestVT = TLI.getValueType(I.getType()); 3109 3110 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3111 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3112 3113 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3114 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3115 3116 setValue(&I, N); 3117 } 3118 3119 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3121 SDValue InVec = getValue(I.getOperand(0)); 3122 SDValue InVal = getValue(I.getOperand(1)); 3123 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3124 getCurSDLoc(), TLI.getVectorIdxTy()); 3125 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3126 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3127 } 3128 3129 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3130 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3131 SDValue InVec = getValue(I.getOperand(0)); 3132 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3133 getCurSDLoc(), TLI.getVectorIdxTy()); 3134 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3135 TLI.getValueType(I.getType()), InVec, InIdx)); 3136 } 3137 3138 // Utility for visitShuffleVector - Return true if every element in Mask, 3139 // beginning from position Pos and ending in Pos+Size, falls within the 3140 // specified sequential range [L, L+Pos). or is undef. 3141 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3142 unsigned Pos, unsigned Size, int Low) { 3143 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3144 if (Mask[i] >= 0 && Mask[i] != Low) 3145 return false; 3146 return true; 3147 } 3148 3149 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3150 SDValue Src1 = getValue(I.getOperand(0)); 3151 SDValue Src2 = getValue(I.getOperand(1)); 3152 3153 SmallVector<int, 8> Mask; 3154 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3155 unsigned MaskNumElts = Mask.size(); 3156 3157 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3158 EVT VT = TLI.getValueType(I.getType()); 3159 EVT SrcVT = Src1.getValueType(); 3160 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3161 3162 if (SrcNumElts == MaskNumElts) { 3163 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3164 &Mask[0])); 3165 return; 3166 } 3167 3168 // Normalize the shuffle vector since mask and vector length don't match. 3169 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3170 // Mask is longer than the source vectors and is a multiple of the source 3171 // vectors. We can use concatenate vector to make the mask and vectors 3172 // lengths match. 3173 if (SrcNumElts*2 == MaskNumElts) { 3174 // First check for Src1 in low and Src2 in high 3175 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3176 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3177 // The shuffle is concatenating two vectors together. 3178 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3179 VT, Src1, Src2)); 3180 return; 3181 } 3182 // Then check for Src2 in low and Src1 in high 3183 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3184 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3185 // The shuffle is concatenating two vectors together. 3186 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3187 VT, Src2, Src1)); 3188 return; 3189 } 3190 } 3191 3192 // Pad both vectors with undefs to make them the same length as the mask. 3193 unsigned NumConcat = MaskNumElts / SrcNumElts; 3194 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3195 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3196 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3197 3198 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3199 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3200 MOps1[0] = Src1; 3201 MOps2[0] = Src2; 3202 3203 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3204 getCurSDLoc(), VT, MOps1); 3205 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3206 getCurSDLoc(), VT, MOps2); 3207 3208 // Readjust mask for new input vector length. 3209 SmallVector<int, 8> MappedOps; 3210 for (unsigned i = 0; i != MaskNumElts; ++i) { 3211 int Idx = Mask[i]; 3212 if (Idx >= (int)SrcNumElts) 3213 Idx -= SrcNumElts - MaskNumElts; 3214 MappedOps.push_back(Idx); 3215 } 3216 3217 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3218 &MappedOps[0])); 3219 return; 3220 } 3221 3222 if (SrcNumElts > MaskNumElts) { 3223 // Analyze the access pattern of the vector to see if we can extract 3224 // two subvectors and do the shuffle. The analysis is done by calculating 3225 // the range of elements the mask access on both vectors. 3226 int MinRange[2] = { static_cast<int>(SrcNumElts), 3227 static_cast<int>(SrcNumElts)}; 3228 int MaxRange[2] = {-1, -1}; 3229 3230 for (unsigned i = 0; i != MaskNumElts; ++i) { 3231 int Idx = Mask[i]; 3232 unsigned Input = 0; 3233 if (Idx < 0) 3234 continue; 3235 3236 if (Idx >= (int)SrcNumElts) { 3237 Input = 1; 3238 Idx -= SrcNumElts; 3239 } 3240 if (Idx > MaxRange[Input]) 3241 MaxRange[Input] = Idx; 3242 if (Idx < MinRange[Input]) 3243 MinRange[Input] = Idx; 3244 } 3245 3246 // Check if the access is smaller than the vector size and can we find 3247 // a reasonable extract index. 3248 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3249 // Extract. 3250 int StartIdx[2]; // StartIdx to extract from 3251 for (unsigned Input = 0; Input < 2; ++Input) { 3252 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3253 RangeUse[Input] = 0; // Unused 3254 StartIdx[Input] = 0; 3255 continue; 3256 } 3257 3258 // Find a good start index that is a multiple of the mask length. Then 3259 // see if the rest of the elements are in range. 3260 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3261 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3262 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3263 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3264 } 3265 3266 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3267 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3268 return; 3269 } 3270 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3271 // Extract appropriate subvector and generate a vector shuffle 3272 for (unsigned Input = 0; Input < 2; ++Input) { 3273 SDValue &Src = Input == 0 ? Src1 : Src2; 3274 if (RangeUse[Input] == 0) 3275 Src = DAG.getUNDEF(VT); 3276 else 3277 Src = DAG.getNode( 3278 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3279 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3280 } 3281 3282 // Calculate new mask. 3283 SmallVector<int, 8> MappedOps; 3284 for (unsigned i = 0; i != MaskNumElts; ++i) { 3285 int Idx = Mask[i]; 3286 if (Idx >= 0) { 3287 if (Idx < (int)SrcNumElts) 3288 Idx -= StartIdx[0]; 3289 else 3290 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3291 } 3292 MappedOps.push_back(Idx); 3293 } 3294 3295 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3296 &MappedOps[0])); 3297 return; 3298 } 3299 } 3300 3301 // We can't use either concat vectors or extract subvectors so fall back to 3302 // replacing the shuffle with extract and build vector. 3303 // to insert and build vector. 3304 EVT EltVT = VT.getVectorElementType(); 3305 EVT IdxVT = TLI.getVectorIdxTy(); 3306 SmallVector<SDValue,8> Ops; 3307 for (unsigned i = 0; i != MaskNumElts; ++i) { 3308 int Idx = Mask[i]; 3309 SDValue Res; 3310 3311 if (Idx < 0) { 3312 Res = DAG.getUNDEF(EltVT); 3313 } else { 3314 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3315 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3316 3317 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3318 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3319 } 3320 3321 Ops.push_back(Res); 3322 } 3323 3324 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3325 } 3326 3327 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3328 const Value *Op0 = I.getOperand(0); 3329 const Value *Op1 = I.getOperand(1); 3330 Type *AggTy = I.getType(); 3331 Type *ValTy = Op1->getType(); 3332 bool IntoUndef = isa<UndefValue>(Op0); 3333 bool FromUndef = isa<UndefValue>(Op1); 3334 3335 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3336 3337 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3338 SmallVector<EVT, 4> AggValueVTs; 3339 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3340 SmallVector<EVT, 4> ValValueVTs; 3341 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3342 3343 unsigned NumAggValues = AggValueVTs.size(); 3344 unsigned NumValValues = ValValueVTs.size(); 3345 SmallVector<SDValue, 4> Values(NumAggValues); 3346 3347 // Ignore an insertvalue that produces an empty object 3348 if (!NumAggValues) { 3349 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3350 return; 3351 } 3352 3353 SDValue Agg = getValue(Op0); 3354 unsigned i = 0; 3355 // Copy the beginning value(s) from the original aggregate. 3356 for (; i != LinearIndex; ++i) 3357 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3358 SDValue(Agg.getNode(), Agg.getResNo() + i); 3359 // Copy values from the inserted value(s). 3360 if (NumValValues) { 3361 SDValue Val = getValue(Op1); 3362 for (; i != LinearIndex + NumValValues; ++i) 3363 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3364 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3365 } 3366 // Copy remaining value(s) from the original aggregate. 3367 for (; i != NumAggValues; ++i) 3368 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3369 SDValue(Agg.getNode(), Agg.getResNo() + i); 3370 3371 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3372 DAG.getVTList(AggValueVTs), Values)); 3373 } 3374 3375 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3376 const Value *Op0 = I.getOperand(0); 3377 Type *AggTy = Op0->getType(); 3378 Type *ValTy = I.getType(); 3379 bool OutOfUndef = isa<UndefValue>(Op0); 3380 3381 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3382 3383 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3384 SmallVector<EVT, 4> ValValueVTs; 3385 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3386 3387 unsigned NumValValues = ValValueVTs.size(); 3388 3389 // Ignore a extractvalue that produces an empty object 3390 if (!NumValValues) { 3391 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3392 return; 3393 } 3394 3395 SmallVector<SDValue, 4> Values(NumValValues); 3396 3397 SDValue Agg = getValue(Op0); 3398 // Copy out the selected value(s). 3399 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3400 Values[i - LinearIndex] = 3401 OutOfUndef ? 3402 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3403 SDValue(Agg.getNode(), Agg.getResNo() + i); 3404 3405 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3406 DAG.getVTList(ValValueVTs), Values)); 3407 } 3408 3409 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3410 Value *Op0 = I.getOperand(0); 3411 // Note that the pointer operand may be a vector of pointers. Take the scalar 3412 // element which holds a pointer. 3413 Type *Ty = Op0->getType()->getScalarType(); 3414 unsigned AS = Ty->getPointerAddressSpace(); 3415 SDValue N = getValue(Op0); 3416 3417 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3418 OI != E; ++OI) { 3419 const Value *Idx = *OI; 3420 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3421 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3422 if (Field) { 3423 // N = N + Offset 3424 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3425 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3426 DAG.getConstant(Offset, N.getValueType())); 3427 } 3428 3429 Ty = StTy->getElementType(Field); 3430 } else { 3431 Ty = cast<SequentialType>(Ty)->getElementType(); 3432 3433 // If this is a constant subscript, handle it quickly. 3434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3435 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3436 if (CI->isZero()) continue; 3437 uint64_t Offs = 3438 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3439 SDValue OffsVal; 3440 EVT PTy = TLI.getPointerTy(AS); 3441 unsigned PtrBits = PTy.getSizeInBits(); 3442 if (PtrBits < 64) 3443 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3444 DAG.getConstant(Offs, MVT::i64)); 3445 else 3446 OffsVal = DAG.getConstant(Offs, PTy); 3447 3448 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3449 OffsVal); 3450 continue; 3451 } 3452 3453 // N = N + Idx * ElementSize; 3454 APInt ElementSize = 3455 APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty)); 3456 SDValue IdxN = getValue(Idx); 3457 3458 // If the index is smaller or larger than intptr_t, truncate or extend 3459 // it. 3460 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3461 3462 // If this is a multiply by a power of two, turn it into a shl 3463 // immediately. This is a very common case. 3464 if (ElementSize != 1) { 3465 if (ElementSize.isPowerOf2()) { 3466 unsigned Amt = ElementSize.logBase2(); 3467 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3468 N.getValueType(), IdxN, 3469 DAG.getConstant(Amt, IdxN.getValueType())); 3470 } else { 3471 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3472 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3473 N.getValueType(), IdxN, Scale); 3474 } 3475 } 3476 3477 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3478 N.getValueType(), N, IdxN); 3479 } 3480 } 3481 3482 setValue(&I, N); 3483 } 3484 3485 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3486 // If this is a fixed sized alloca in the entry block of the function, 3487 // allocate it statically on the stack. 3488 if (FuncInfo.StaticAllocaMap.count(&I)) 3489 return; // getValue will auto-populate this. 3490 3491 Type *Ty = I.getAllocatedType(); 3492 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3493 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3494 unsigned Align = 3495 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3496 I.getAlignment()); 3497 3498 SDValue AllocSize = getValue(I.getArraySize()); 3499 3500 EVT IntPtr = TLI.getPointerTy(); 3501 if (AllocSize.getValueType() != IntPtr) 3502 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3503 3504 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3505 AllocSize, 3506 DAG.getConstant(TySize, IntPtr)); 3507 3508 // Handle alignment. If the requested alignment is less than or equal to 3509 // the stack alignment, ignore it. If the size is greater than or equal to 3510 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3511 unsigned StackAlign = 3512 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3513 if (Align <= StackAlign) 3514 Align = 0; 3515 3516 // Round the size of the allocation up to the stack alignment size 3517 // by add SA-1 to the size. 3518 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3519 AllocSize.getValueType(), AllocSize, 3520 DAG.getIntPtrConstant(StackAlign-1)); 3521 3522 // Mask out the low bits for alignment purposes. 3523 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3524 AllocSize.getValueType(), AllocSize, 3525 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3526 3527 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3528 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3529 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3530 setValue(&I, DSA); 3531 DAG.setRoot(DSA.getValue(1)); 3532 3533 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3534 } 3535 3536 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3537 if (I.isAtomic()) 3538 return visitAtomicLoad(I); 3539 3540 const Value *SV = I.getOperand(0); 3541 SDValue Ptr = getValue(SV); 3542 3543 Type *Ty = I.getType(); 3544 3545 bool isVolatile = I.isVolatile(); 3546 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3547 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3548 unsigned Alignment = I.getAlignment(); 3549 3550 AAMDNodes AAInfo; 3551 I.getAAMetadata(AAInfo); 3552 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3553 3554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3555 SmallVector<EVT, 4> ValueVTs; 3556 SmallVector<uint64_t, 4> Offsets; 3557 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3558 unsigned NumValues = ValueVTs.size(); 3559 if (NumValues == 0) 3560 return; 3561 3562 SDValue Root; 3563 bool ConstantMemory = false; 3564 if (isVolatile || NumValues > MaxParallelChains) 3565 // Serialize volatile loads with other side effects. 3566 Root = getRoot(); 3567 else if (AA->pointsToConstantMemory( 3568 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3569 // Do not serialize (non-volatile) loads of constant memory with anything. 3570 Root = DAG.getEntryNode(); 3571 ConstantMemory = true; 3572 } else { 3573 // Do not serialize non-volatile loads against each other. 3574 Root = DAG.getRoot(); 3575 } 3576 3577 if (isVolatile) 3578 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3579 3580 SmallVector<SDValue, 4> Values(NumValues); 3581 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3582 NumValues)); 3583 EVT PtrVT = Ptr.getValueType(); 3584 unsigned ChainI = 0; 3585 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3586 // Serializing loads here may result in excessive register pressure, and 3587 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3588 // could recover a bit by hoisting nodes upward in the chain by recognizing 3589 // they are side-effect free or do not alias. The optimizer should really 3590 // avoid this case by converting large object/array copies to llvm.memcpy 3591 // (MaxParallelChains should always remain as failsafe). 3592 if (ChainI == MaxParallelChains) { 3593 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3594 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3595 makeArrayRef(Chains.data(), ChainI)); 3596 Root = Chain; 3597 ChainI = 0; 3598 } 3599 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3600 PtrVT, Ptr, 3601 DAG.getConstant(Offsets[i], PtrVT)); 3602 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3603 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3604 isNonTemporal, isInvariant, Alignment, AAInfo, 3605 Ranges); 3606 3607 Values[i] = L; 3608 Chains[ChainI] = L.getValue(1); 3609 } 3610 3611 if (!ConstantMemory) { 3612 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3613 makeArrayRef(Chains.data(), ChainI)); 3614 if (isVolatile) 3615 DAG.setRoot(Chain); 3616 else 3617 PendingLoads.push_back(Chain); 3618 } 3619 3620 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3621 DAG.getVTList(ValueVTs), Values)); 3622 } 3623 3624 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3625 if (I.isAtomic()) 3626 return visitAtomicStore(I); 3627 3628 const Value *SrcV = I.getOperand(0); 3629 const Value *PtrV = I.getOperand(1); 3630 3631 SmallVector<EVT, 4> ValueVTs; 3632 SmallVector<uint64_t, 4> Offsets; 3633 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3634 ValueVTs, &Offsets); 3635 unsigned NumValues = ValueVTs.size(); 3636 if (NumValues == 0) 3637 return; 3638 3639 // Get the lowered operands. Note that we do this after 3640 // checking if NumResults is zero, because with zero results 3641 // the operands won't have values in the map. 3642 SDValue Src = getValue(SrcV); 3643 SDValue Ptr = getValue(PtrV); 3644 3645 SDValue Root = getRoot(); 3646 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3647 NumValues)); 3648 EVT PtrVT = Ptr.getValueType(); 3649 bool isVolatile = I.isVolatile(); 3650 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3651 unsigned Alignment = I.getAlignment(); 3652 3653 AAMDNodes AAInfo; 3654 I.getAAMetadata(AAInfo); 3655 3656 unsigned ChainI = 0; 3657 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3658 // See visitLoad comments. 3659 if (ChainI == MaxParallelChains) { 3660 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3661 makeArrayRef(Chains.data(), ChainI)); 3662 Root = Chain; 3663 ChainI = 0; 3664 } 3665 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3666 DAG.getConstant(Offsets[i], PtrVT)); 3667 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3668 SDValue(Src.getNode(), Src.getResNo() + i), 3669 Add, MachinePointerInfo(PtrV, Offsets[i]), 3670 isVolatile, isNonTemporal, Alignment, AAInfo); 3671 Chains[ChainI] = St; 3672 } 3673 3674 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3675 makeArrayRef(Chains.data(), ChainI)); 3676 DAG.setRoot(StoreNode); 3677 } 3678 3679 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3680 SDLoc sdl = getCurSDLoc(); 3681 3682 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3683 Value *PtrOperand = I.getArgOperand(1); 3684 SDValue Ptr = getValue(PtrOperand); 3685 SDValue Src0 = getValue(I.getArgOperand(0)); 3686 SDValue Mask = getValue(I.getArgOperand(3)); 3687 EVT VT = Src0.getValueType(); 3688 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3689 if (!Alignment) 3690 Alignment = DAG.getEVTAlignment(VT); 3691 3692 AAMDNodes AAInfo; 3693 I.getAAMetadata(AAInfo); 3694 3695 MachineMemOperand *MMO = 3696 DAG.getMachineFunction(). 3697 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3698 MachineMemOperand::MOStore, VT.getStoreSize(), 3699 Alignment, AAInfo); 3700 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3701 MMO, false); 3702 DAG.setRoot(StoreNode); 3703 setValue(&I, StoreNode); 3704 } 3705 3706 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3707 SDLoc sdl = getCurSDLoc(); 3708 3709 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3710 Value *PtrOperand = I.getArgOperand(0); 3711 SDValue Ptr = getValue(PtrOperand); 3712 SDValue Src0 = getValue(I.getArgOperand(3)); 3713 SDValue Mask = getValue(I.getArgOperand(2)); 3714 3715 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3716 EVT VT = TLI.getValueType(I.getType()); 3717 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3718 if (!Alignment) 3719 Alignment = DAG.getEVTAlignment(VT); 3720 3721 AAMDNodes AAInfo; 3722 I.getAAMetadata(AAInfo); 3723 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3724 3725 SDValue InChain = DAG.getRoot(); 3726 if (AA->pointsToConstantMemory( 3727 AliasAnalysis::Location(PtrOperand, 3728 AA->getTypeStoreSize(I.getType()), 3729 AAInfo))) { 3730 // Do not serialize (non-volatile) loads of constant memory with anything. 3731 InChain = DAG.getEntryNode(); 3732 } 3733 3734 MachineMemOperand *MMO = 3735 DAG.getMachineFunction(). 3736 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3737 MachineMemOperand::MOLoad, VT.getStoreSize(), 3738 Alignment, AAInfo, Ranges); 3739 3740 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3741 ISD::NON_EXTLOAD); 3742 SDValue OutChain = Load.getValue(1); 3743 DAG.setRoot(OutChain); 3744 setValue(&I, Load); 3745 } 3746 3747 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3748 SDLoc dl = getCurSDLoc(); 3749 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3750 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3751 SynchronizationScope Scope = I.getSynchScope(); 3752 3753 SDValue InChain = getRoot(); 3754 3755 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3756 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3757 SDValue L = DAG.getAtomicCmpSwap( 3758 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3759 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3760 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3761 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3762 3763 SDValue OutChain = L.getValue(2); 3764 3765 setValue(&I, L); 3766 DAG.setRoot(OutChain); 3767 } 3768 3769 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3770 SDLoc dl = getCurSDLoc(); 3771 ISD::NodeType NT; 3772 switch (I.getOperation()) { 3773 default: llvm_unreachable("Unknown atomicrmw operation"); 3774 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3775 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3776 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3777 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3778 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3779 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3780 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3781 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3782 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3783 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3784 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3785 } 3786 AtomicOrdering Order = I.getOrdering(); 3787 SynchronizationScope Scope = I.getSynchScope(); 3788 3789 SDValue InChain = getRoot(); 3790 3791 SDValue L = 3792 DAG.getAtomic(NT, dl, 3793 getValue(I.getValOperand()).getSimpleValueType(), 3794 InChain, 3795 getValue(I.getPointerOperand()), 3796 getValue(I.getValOperand()), 3797 I.getPointerOperand(), 3798 /* Alignment=*/ 0, Order, Scope); 3799 3800 SDValue OutChain = L.getValue(1); 3801 3802 setValue(&I, L); 3803 DAG.setRoot(OutChain); 3804 } 3805 3806 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3807 SDLoc dl = getCurSDLoc(); 3808 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3809 SDValue Ops[3]; 3810 Ops[0] = getRoot(); 3811 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3812 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3813 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3814 } 3815 3816 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3817 SDLoc dl = getCurSDLoc(); 3818 AtomicOrdering Order = I.getOrdering(); 3819 SynchronizationScope Scope = I.getSynchScope(); 3820 3821 SDValue InChain = getRoot(); 3822 3823 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3824 EVT VT = TLI.getValueType(I.getType()); 3825 3826 if (I.getAlignment() < VT.getSizeInBits() / 8) 3827 report_fatal_error("Cannot generate unaligned atomic load"); 3828 3829 MachineMemOperand *MMO = 3830 DAG.getMachineFunction(). 3831 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3832 MachineMemOperand::MOVolatile | 3833 MachineMemOperand::MOLoad, 3834 VT.getStoreSize(), 3835 I.getAlignment() ? I.getAlignment() : 3836 DAG.getEVTAlignment(VT)); 3837 3838 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3839 SDValue L = 3840 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3841 getValue(I.getPointerOperand()), MMO, 3842 Order, Scope); 3843 3844 SDValue OutChain = L.getValue(1); 3845 3846 setValue(&I, L); 3847 DAG.setRoot(OutChain); 3848 } 3849 3850 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3851 SDLoc dl = getCurSDLoc(); 3852 3853 AtomicOrdering Order = I.getOrdering(); 3854 SynchronizationScope Scope = I.getSynchScope(); 3855 3856 SDValue InChain = getRoot(); 3857 3858 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3859 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3860 3861 if (I.getAlignment() < VT.getSizeInBits() / 8) 3862 report_fatal_error("Cannot generate unaligned atomic store"); 3863 3864 SDValue OutChain = 3865 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3866 InChain, 3867 getValue(I.getPointerOperand()), 3868 getValue(I.getValueOperand()), 3869 I.getPointerOperand(), I.getAlignment(), 3870 Order, Scope); 3871 3872 DAG.setRoot(OutChain); 3873 } 3874 3875 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3876 /// node. 3877 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3878 unsigned Intrinsic) { 3879 bool HasChain = !I.doesNotAccessMemory(); 3880 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3881 3882 // Build the operand list. 3883 SmallVector<SDValue, 8> Ops; 3884 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3885 if (OnlyLoad) { 3886 // We don't need to serialize loads against other loads. 3887 Ops.push_back(DAG.getRoot()); 3888 } else { 3889 Ops.push_back(getRoot()); 3890 } 3891 } 3892 3893 // Info is set by getTgtMemInstrinsic 3894 TargetLowering::IntrinsicInfo Info; 3895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3896 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3897 3898 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3899 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3900 Info.opc == ISD::INTRINSIC_W_CHAIN) 3901 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3902 3903 // Add all operands of the call to the operand list. 3904 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3905 SDValue Op = getValue(I.getArgOperand(i)); 3906 Ops.push_back(Op); 3907 } 3908 3909 SmallVector<EVT, 4> ValueVTs; 3910 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3911 3912 if (HasChain) 3913 ValueVTs.push_back(MVT::Other); 3914 3915 SDVTList VTs = DAG.getVTList(ValueVTs); 3916 3917 // Create the node. 3918 SDValue Result; 3919 if (IsTgtIntrinsic) { 3920 // This is target intrinsic that touches memory 3921 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3922 VTs, Ops, Info.memVT, 3923 MachinePointerInfo(Info.ptrVal, Info.offset), 3924 Info.align, Info.vol, 3925 Info.readMem, Info.writeMem, Info.size); 3926 } else if (!HasChain) { 3927 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3928 } else if (!I.getType()->isVoidTy()) { 3929 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3930 } else { 3931 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3932 } 3933 3934 if (HasChain) { 3935 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3936 if (OnlyLoad) 3937 PendingLoads.push_back(Chain); 3938 else 3939 DAG.setRoot(Chain); 3940 } 3941 3942 if (!I.getType()->isVoidTy()) { 3943 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3944 EVT VT = TLI.getValueType(PTy); 3945 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3946 } 3947 3948 setValue(&I, Result); 3949 } 3950 } 3951 3952 /// GetSignificand - Get the significand and build it into a floating-point 3953 /// number with exponent of 1: 3954 /// 3955 /// Op = (Op & 0x007fffff) | 0x3f800000; 3956 /// 3957 /// where Op is the hexadecimal representation of floating point value. 3958 static SDValue 3959 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3960 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3961 DAG.getConstant(0x007fffff, MVT::i32)); 3962 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3963 DAG.getConstant(0x3f800000, MVT::i32)); 3964 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3965 } 3966 3967 /// GetExponent - Get the exponent: 3968 /// 3969 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3970 /// 3971 /// where Op is the hexadecimal representation of floating point value. 3972 static SDValue 3973 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3974 SDLoc dl) { 3975 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3976 DAG.getConstant(0x7f800000, MVT::i32)); 3977 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3978 DAG.getConstant(23, TLI.getPointerTy())); 3979 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3980 DAG.getConstant(127, MVT::i32)); 3981 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3982 } 3983 3984 /// getF32Constant - Get 32-bit floating point constant. 3985 static SDValue 3986 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3987 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3988 MVT::f32); 3989 } 3990 3991 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3992 /// limited-precision mode. 3993 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3994 const TargetLowering &TLI) { 3995 if (Op.getValueType() == MVT::f32 && 3996 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3997 3998 // Put the exponent in the right bit position for later addition to the 3999 // final result: 4000 // 4001 // #define LOG2OFe 1.4426950f 4002 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 4003 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4004 getF32Constant(DAG, 0x3fb8aa3b)); 4005 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4006 4007 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 4008 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4009 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4010 4011 // IntegerPartOfX <<= 23; 4012 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4013 DAG.getConstant(23, TLI.getPointerTy())); 4014 4015 SDValue TwoToFracPartOfX; 4016 if (LimitFloatPrecision <= 6) { 4017 // For floating-point precision of 6: 4018 // 4019 // TwoToFractionalPartOfX = 4020 // 0.997535578f + 4021 // (0.735607626f + 0.252464424f * x) * x; 4022 // 4023 // error 0.0144103317, which is 6 bits 4024 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4025 getF32Constant(DAG, 0x3e814304)); 4026 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4027 getF32Constant(DAG, 0x3f3c50c8)); 4028 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4029 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4030 getF32Constant(DAG, 0x3f7f5e7e)); 4031 } else if (LimitFloatPrecision <= 12) { 4032 // For floating-point precision of 12: 4033 // 4034 // TwoToFractionalPartOfX = 4035 // 0.999892986f + 4036 // (0.696457318f + 4037 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4038 // 4039 // 0.000107046256 error, which is 13 to 14 bits 4040 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4041 getF32Constant(DAG, 0x3da235e3)); 4042 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4043 getF32Constant(DAG, 0x3e65b8f3)); 4044 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4045 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4046 getF32Constant(DAG, 0x3f324b07)); 4047 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4048 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4049 getF32Constant(DAG, 0x3f7ff8fd)); 4050 } else { // LimitFloatPrecision <= 18 4051 // For floating-point precision of 18: 4052 // 4053 // TwoToFractionalPartOfX = 4054 // 0.999999982f + 4055 // (0.693148872f + 4056 // (0.240227044f + 4057 // (0.554906021e-1f + 4058 // (0.961591928e-2f + 4059 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4060 // 4061 // error 2.47208000*10^(-7), which is better than 18 bits 4062 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4063 getF32Constant(DAG, 0x3924b03e)); 4064 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4065 getF32Constant(DAG, 0x3ab24b87)); 4066 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4067 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4068 getF32Constant(DAG, 0x3c1d8c17)); 4069 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4070 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4071 getF32Constant(DAG, 0x3d634a1d)); 4072 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4073 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4074 getF32Constant(DAG, 0x3e75fe14)); 4075 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4076 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4077 getF32Constant(DAG, 0x3f317234)); 4078 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4079 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4080 getF32Constant(DAG, 0x3f800000)); 4081 } 4082 4083 // Add the exponent into the result in integer domain. 4084 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4085 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4086 DAG.getNode(ISD::ADD, dl, MVT::i32, 4087 t13, IntegerPartOfX)); 4088 } 4089 4090 // No special expansion. 4091 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4092 } 4093 4094 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4095 /// limited-precision mode. 4096 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4097 const TargetLowering &TLI) { 4098 if (Op.getValueType() == MVT::f32 && 4099 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4100 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4101 4102 // Scale the exponent by log(2) [0.69314718f]. 4103 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4104 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4105 getF32Constant(DAG, 0x3f317218)); 4106 4107 // Get the significand and build it into a floating-point number with 4108 // exponent of 1. 4109 SDValue X = GetSignificand(DAG, Op1, dl); 4110 4111 SDValue LogOfMantissa; 4112 if (LimitFloatPrecision <= 6) { 4113 // For floating-point precision of 6: 4114 // 4115 // LogofMantissa = 4116 // -1.1609546f + 4117 // (1.4034025f - 0.23903021f * x) * x; 4118 // 4119 // error 0.0034276066, which is better than 8 bits 4120 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4121 getF32Constant(DAG, 0xbe74c456)); 4122 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4123 getF32Constant(DAG, 0x3fb3a2b1)); 4124 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4125 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4126 getF32Constant(DAG, 0x3f949a29)); 4127 } else if (LimitFloatPrecision <= 12) { 4128 // For floating-point precision of 12: 4129 // 4130 // LogOfMantissa = 4131 // -1.7417939f + 4132 // (2.8212026f + 4133 // (-1.4699568f + 4134 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4135 // 4136 // error 0.000061011436, which is 14 bits 4137 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4138 getF32Constant(DAG, 0xbd67b6d6)); 4139 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4140 getF32Constant(DAG, 0x3ee4f4b8)); 4141 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4142 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4143 getF32Constant(DAG, 0x3fbc278b)); 4144 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4145 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4146 getF32Constant(DAG, 0x40348e95)); 4147 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4148 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4149 getF32Constant(DAG, 0x3fdef31a)); 4150 } else { // LimitFloatPrecision <= 18 4151 // For floating-point precision of 18: 4152 // 4153 // LogOfMantissa = 4154 // -2.1072184f + 4155 // (4.2372794f + 4156 // (-3.7029485f + 4157 // (2.2781945f + 4158 // (-0.87823314f + 4159 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4160 // 4161 // error 0.0000023660568, which is better than 18 bits 4162 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4163 getF32Constant(DAG, 0xbc91e5ac)); 4164 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4165 getF32Constant(DAG, 0x3e4350aa)); 4166 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4167 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4168 getF32Constant(DAG, 0x3f60d3e3)); 4169 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4170 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4171 getF32Constant(DAG, 0x4011cdf0)); 4172 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4173 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4174 getF32Constant(DAG, 0x406cfd1c)); 4175 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4176 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4177 getF32Constant(DAG, 0x408797cb)); 4178 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4179 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4180 getF32Constant(DAG, 0x4006dcab)); 4181 } 4182 4183 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4184 } 4185 4186 // No special expansion. 4187 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4188 } 4189 4190 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4191 /// limited-precision mode. 4192 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4193 const TargetLowering &TLI) { 4194 if (Op.getValueType() == MVT::f32 && 4195 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4196 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4197 4198 // Get the exponent. 4199 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4200 4201 // Get the significand and build it into a floating-point number with 4202 // exponent of 1. 4203 SDValue X = GetSignificand(DAG, Op1, dl); 4204 4205 // Different possible minimax approximations of significand in 4206 // floating-point for various degrees of accuracy over [1,2]. 4207 SDValue Log2ofMantissa; 4208 if (LimitFloatPrecision <= 6) { 4209 // For floating-point precision of 6: 4210 // 4211 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4212 // 4213 // error 0.0049451742, which is more than 7 bits 4214 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4215 getF32Constant(DAG, 0xbeb08fe0)); 4216 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4217 getF32Constant(DAG, 0x40019463)); 4218 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4219 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4220 getF32Constant(DAG, 0x3fd6633d)); 4221 } else if (LimitFloatPrecision <= 12) { 4222 // For floating-point precision of 12: 4223 // 4224 // Log2ofMantissa = 4225 // -2.51285454f + 4226 // (4.07009056f + 4227 // (-2.12067489f + 4228 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4229 // 4230 // error 0.0000876136000, which is better than 13 bits 4231 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4232 getF32Constant(DAG, 0xbda7262e)); 4233 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4234 getF32Constant(DAG, 0x3f25280b)); 4235 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4236 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4237 getF32Constant(DAG, 0x4007b923)); 4238 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4239 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4240 getF32Constant(DAG, 0x40823e2f)); 4241 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4242 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4243 getF32Constant(DAG, 0x4020d29c)); 4244 } else { // LimitFloatPrecision <= 18 4245 // For floating-point precision of 18: 4246 // 4247 // Log2ofMantissa = 4248 // -3.0400495f + 4249 // (6.1129976f + 4250 // (-5.3420409f + 4251 // (3.2865683f + 4252 // (-1.2669343f + 4253 // (0.27515199f - 4254 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4255 // 4256 // error 0.0000018516, which is better than 18 bits 4257 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4258 getF32Constant(DAG, 0xbcd2769e)); 4259 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4260 getF32Constant(DAG, 0x3e8ce0b9)); 4261 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4262 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4263 getF32Constant(DAG, 0x3fa22ae7)); 4264 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4265 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4266 getF32Constant(DAG, 0x40525723)); 4267 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4268 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4269 getF32Constant(DAG, 0x40aaf200)); 4270 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4271 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4272 getF32Constant(DAG, 0x40c39dad)); 4273 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4274 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4275 getF32Constant(DAG, 0x4042902c)); 4276 } 4277 4278 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4279 } 4280 4281 // No special expansion. 4282 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4283 } 4284 4285 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4286 /// limited-precision mode. 4287 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4288 const TargetLowering &TLI) { 4289 if (Op.getValueType() == MVT::f32 && 4290 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4291 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4292 4293 // Scale the exponent by log10(2) [0.30102999f]. 4294 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4295 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4296 getF32Constant(DAG, 0x3e9a209a)); 4297 4298 // Get the significand and build it into a floating-point number with 4299 // exponent of 1. 4300 SDValue X = GetSignificand(DAG, Op1, dl); 4301 4302 SDValue Log10ofMantissa; 4303 if (LimitFloatPrecision <= 6) { 4304 // For floating-point precision of 6: 4305 // 4306 // Log10ofMantissa = 4307 // -0.50419619f + 4308 // (0.60948995f - 0.10380950f * x) * x; 4309 // 4310 // error 0.0014886165, which is 6 bits 4311 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4312 getF32Constant(DAG, 0xbdd49a13)); 4313 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4314 getF32Constant(DAG, 0x3f1c0789)); 4315 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4316 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4317 getF32Constant(DAG, 0x3f011300)); 4318 } else if (LimitFloatPrecision <= 12) { 4319 // For floating-point precision of 12: 4320 // 4321 // Log10ofMantissa = 4322 // -0.64831180f + 4323 // (0.91751397f + 4324 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4325 // 4326 // error 0.00019228036, which is better than 12 bits 4327 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4328 getF32Constant(DAG, 0x3d431f31)); 4329 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4330 getF32Constant(DAG, 0x3ea21fb2)); 4331 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4332 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4333 getF32Constant(DAG, 0x3f6ae232)); 4334 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4335 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4336 getF32Constant(DAG, 0x3f25f7c3)); 4337 } else { // LimitFloatPrecision <= 18 4338 // For floating-point precision of 18: 4339 // 4340 // Log10ofMantissa = 4341 // -0.84299375f + 4342 // (1.5327582f + 4343 // (-1.0688956f + 4344 // (0.49102474f + 4345 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4346 // 4347 // error 0.0000037995730, which is better than 18 bits 4348 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4349 getF32Constant(DAG, 0x3c5d51ce)); 4350 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4351 getF32Constant(DAG, 0x3e00685a)); 4352 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4353 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4354 getF32Constant(DAG, 0x3efb6798)); 4355 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4356 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4357 getF32Constant(DAG, 0x3f88d192)); 4358 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4359 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4360 getF32Constant(DAG, 0x3fc4316c)); 4361 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4362 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4363 getF32Constant(DAG, 0x3f57ce70)); 4364 } 4365 4366 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4367 } 4368 4369 // No special expansion. 4370 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4371 } 4372 4373 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4374 /// limited-precision mode. 4375 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4376 const TargetLowering &TLI) { 4377 if (Op.getValueType() == MVT::f32 && 4378 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4379 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4380 4381 // FractionalPartOfX = x - (float)IntegerPartOfX; 4382 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4383 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4384 4385 // IntegerPartOfX <<= 23; 4386 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4387 DAG.getConstant(23, TLI.getPointerTy())); 4388 4389 SDValue TwoToFractionalPartOfX; 4390 if (LimitFloatPrecision <= 6) { 4391 // For floating-point precision of 6: 4392 // 4393 // TwoToFractionalPartOfX = 4394 // 0.997535578f + 4395 // (0.735607626f + 0.252464424f * x) * x; 4396 // 4397 // error 0.0144103317, which is 6 bits 4398 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4399 getF32Constant(DAG, 0x3e814304)); 4400 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4401 getF32Constant(DAG, 0x3f3c50c8)); 4402 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4403 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4404 getF32Constant(DAG, 0x3f7f5e7e)); 4405 } else if (LimitFloatPrecision <= 12) { 4406 // For floating-point precision of 12: 4407 // 4408 // TwoToFractionalPartOfX = 4409 // 0.999892986f + 4410 // (0.696457318f + 4411 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4412 // 4413 // error 0.000107046256, which is 13 to 14 bits 4414 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4415 getF32Constant(DAG, 0x3da235e3)); 4416 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4417 getF32Constant(DAG, 0x3e65b8f3)); 4418 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4419 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4420 getF32Constant(DAG, 0x3f324b07)); 4421 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4422 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4423 getF32Constant(DAG, 0x3f7ff8fd)); 4424 } else { // LimitFloatPrecision <= 18 4425 // For floating-point precision of 18: 4426 // 4427 // TwoToFractionalPartOfX = 4428 // 0.999999982f + 4429 // (0.693148872f + 4430 // (0.240227044f + 4431 // (0.554906021e-1f + 4432 // (0.961591928e-2f + 4433 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4434 // error 2.47208000*10^(-7), which is better than 18 bits 4435 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4436 getF32Constant(DAG, 0x3924b03e)); 4437 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4438 getF32Constant(DAG, 0x3ab24b87)); 4439 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4440 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4441 getF32Constant(DAG, 0x3c1d8c17)); 4442 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4443 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4444 getF32Constant(DAG, 0x3d634a1d)); 4445 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4446 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4447 getF32Constant(DAG, 0x3e75fe14)); 4448 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4449 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4450 getF32Constant(DAG, 0x3f317234)); 4451 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4452 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4453 getF32Constant(DAG, 0x3f800000)); 4454 } 4455 4456 // Add the exponent into the result in integer domain. 4457 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4458 TwoToFractionalPartOfX); 4459 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4460 DAG.getNode(ISD::ADD, dl, MVT::i32, 4461 t13, IntegerPartOfX)); 4462 } 4463 4464 // No special expansion. 4465 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4466 } 4467 4468 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4469 /// limited-precision mode with x == 10.0f. 4470 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4471 SelectionDAG &DAG, const TargetLowering &TLI) { 4472 bool IsExp10 = false; 4473 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4474 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4475 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4476 APFloat Ten(10.0f); 4477 IsExp10 = LHSC->isExactlyValue(Ten); 4478 } 4479 } 4480 4481 if (IsExp10) { 4482 // Put the exponent in the right bit position for later addition to the 4483 // final result: 4484 // 4485 // #define LOG2OF10 3.3219281f 4486 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4487 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4488 getF32Constant(DAG, 0x40549a78)); 4489 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4490 4491 // FractionalPartOfX = x - (float)IntegerPartOfX; 4492 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4493 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4494 4495 // IntegerPartOfX <<= 23; 4496 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4497 DAG.getConstant(23, TLI.getPointerTy())); 4498 4499 SDValue TwoToFractionalPartOfX; 4500 if (LimitFloatPrecision <= 6) { 4501 // For floating-point precision of 6: 4502 // 4503 // twoToFractionalPartOfX = 4504 // 0.997535578f + 4505 // (0.735607626f + 0.252464424f * x) * x; 4506 // 4507 // error 0.0144103317, which is 6 bits 4508 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4509 getF32Constant(DAG, 0x3e814304)); 4510 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4511 getF32Constant(DAG, 0x3f3c50c8)); 4512 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4513 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4514 getF32Constant(DAG, 0x3f7f5e7e)); 4515 } else if (LimitFloatPrecision <= 12) { 4516 // For floating-point precision of 12: 4517 // 4518 // TwoToFractionalPartOfX = 4519 // 0.999892986f + 4520 // (0.696457318f + 4521 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4522 // 4523 // error 0.000107046256, which is 13 to 14 bits 4524 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4525 getF32Constant(DAG, 0x3da235e3)); 4526 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4527 getF32Constant(DAG, 0x3e65b8f3)); 4528 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4529 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4530 getF32Constant(DAG, 0x3f324b07)); 4531 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4532 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4533 getF32Constant(DAG, 0x3f7ff8fd)); 4534 } else { // LimitFloatPrecision <= 18 4535 // For floating-point precision of 18: 4536 // 4537 // TwoToFractionalPartOfX = 4538 // 0.999999982f + 4539 // (0.693148872f + 4540 // (0.240227044f + 4541 // (0.554906021e-1f + 4542 // (0.961591928e-2f + 4543 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4544 // error 2.47208000*10^(-7), which is better than 18 bits 4545 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4546 getF32Constant(DAG, 0x3924b03e)); 4547 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4548 getF32Constant(DAG, 0x3ab24b87)); 4549 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4550 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4551 getF32Constant(DAG, 0x3c1d8c17)); 4552 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4553 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4554 getF32Constant(DAG, 0x3d634a1d)); 4555 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4556 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4557 getF32Constant(DAG, 0x3e75fe14)); 4558 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4559 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4560 getF32Constant(DAG, 0x3f317234)); 4561 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4562 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4563 getF32Constant(DAG, 0x3f800000)); 4564 } 4565 4566 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4567 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4568 DAG.getNode(ISD::ADD, dl, MVT::i32, 4569 t13, IntegerPartOfX)); 4570 } 4571 4572 // No special expansion. 4573 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4574 } 4575 4576 4577 /// ExpandPowI - Expand a llvm.powi intrinsic. 4578 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4579 SelectionDAG &DAG) { 4580 // If RHS is a constant, we can expand this out to a multiplication tree, 4581 // otherwise we end up lowering to a call to __powidf2 (for example). When 4582 // optimizing for size, we only want to do this if the expansion would produce 4583 // a small number of multiplies, otherwise we do the full expansion. 4584 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4585 // Get the exponent as a positive value. 4586 unsigned Val = RHSC->getSExtValue(); 4587 if ((int)Val < 0) Val = -Val; 4588 4589 // powi(x, 0) -> 1.0 4590 if (Val == 0) 4591 return DAG.getConstantFP(1.0, LHS.getValueType()); 4592 4593 const Function *F = DAG.getMachineFunction().getFunction(); 4594 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4595 Attribute::OptimizeForSize) || 4596 // If optimizing for size, don't insert too many multiplies. This 4597 // inserts up to 5 multiplies. 4598 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4599 // We use the simple binary decomposition method to generate the multiply 4600 // sequence. There are more optimal ways to do this (for example, 4601 // powi(x,15) generates one more multiply than it should), but this has 4602 // the benefit of being both really simple and much better than a libcall. 4603 SDValue Res; // Logically starts equal to 1.0 4604 SDValue CurSquare = LHS; 4605 while (Val) { 4606 if (Val & 1) { 4607 if (Res.getNode()) 4608 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4609 else 4610 Res = CurSquare; // 1.0*CurSquare. 4611 } 4612 4613 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4614 CurSquare, CurSquare); 4615 Val >>= 1; 4616 } 4617 4618 // If the original was negative, invert the result, producing 1/(x*x*x). 4619 if (RHSC->getSExtValue() < 0) 4620 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4621 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4622 return Res; 4623 } 4624 } 4625 4626 // Otherwise, expand to a libcall. 4627 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4628 } 4629 4630 // getTruncatedArgReg - Find underlying register used for an truncated 4631 // argument. 4632 static unsigned getTruncatedArgReg(const SDValue &N) { 4633 if (N.getOpcode() != ISD::TRUNCATE) 4634 return 0; 4635 4636 const SDValue &Ext = N.getOperand(0); 4637 if (Ext.getOpcode() == ISD::AssertZext || 4638 Ext.getOpcode() == ISD::AssertSext) { 4639 const SDValue &CFR = Ext.getOperand(0); 4640 if (CFR.getOpcode() == ISD::CopyFromReg) 4641 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4642 if (CFR.getOpcode() == ISD::TRUNCATE) 4643 return getTruncatedArgReg(CFR); 4644 } 4645 return 0; 4646 } 4647 4648 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4649 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4650 /// At the end of instruction selection, they will be inserted to the entry BB. 4651 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4652 MDNode *Variable, 4653 MDNode *Expr, int64_t Offset, 4654 bool IsIndirect, 4655 const SDValue &N) { 4656 const Argument *Arg = dyn_cast<Argument>(V); 4657 if (!Arg) 4658 return false; 4659 4660 MachineFunction &MF = DAG.getMachineFunction(); 4661 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4662 4663 // Ignore inlined function arguments here. 4664 DIVariable DV(Variable); 4665 if (DV.isInlinedFnArgument(MF.getFunction())) 4666 return false; 4667 4668 Optional<MachineOperand> Op; 4669 // Some arguments' frame index is recorded during argument lowering. 4670 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4671 Op = MachineOperand::CreateFI(FI); 4672 4673 if (!Op && N.getNode()) { 4674 unsigned Reg; 4675 if (N.getOpcode() == ISD::CopyFromReg) 4676 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4677 else 4678 Reg = getTruncatedArgReg(N); 4679 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4680 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4681 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4682 if (PR) 4683 Reg = PR; 4684 } 4685 if (Reg) 4686 Op = MachineOperand::CreateReg(Reg, false); 4687 } 4688 4689 if (!Op) { 4690 // Check if ValueMap has reg number. 4691 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4692 if (VMI != FuncInfo.ValueMap.end()) 4693 Op = MachineOperand::CreateReg(VMI->second, false); 4694 } 4695 4696 if (!Op && N.getNode()) 4697 // Check if frame index is available. 4698 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4699 if (FrameIndexSDNode *FINode = 4700 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4701 Op = MachineOperand::CreateFI(FINode->getIndex()); 4702 4703 if (!Op) 4704 return false; 4705 4706 if (Op->isReg()) 4707 FuncInfo.ArgDbgValues.push_back( 4708 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4709 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4710 else 4711 FuncInfo.ArgDbgValues.push_back( 4712 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4713 .addOperand(*Op) 4714 .addImm(Offset) 4715 .addMetadata(Variable) 4716 .addMetadata(Expr)); 4717 4718 return true; 4719 } 4720 4721 // VisualStudio defines setjmp as _setjmp 4722 #if defined(_MSC_VER) && defined(setjmp) && \ 4723 !defined(setjmp_undefined_for_msvc) 4724 # pragma push_macro("setjmp") 4725 # undef setjmp 4726 # define setjmp_undefined_for_msvc 4727 #endif 4728 4729 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4730 /// we want to emit this as a call to a named external function, return the name 4731 /// otherwise lower it and return null. 4732 const char * 4733 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4735 SDLoc sdl = getCurSDLoc(); 4736 DebugLoc dl = getCurDebugLoc(); 4737 SDValue Res; 4738 4739 switch (Intrinsic) { 4740 default: 4741 // By default, turn this into a target intrinsic node. 4742 visitTargetIntrinsic(I, Intrinsic); 4743 return nullptr; 4744 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4745 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4746 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4747 case Intrinsic::returnaddress: 4748 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4749 getValue(I.getArgOperand(0)))); 4750 return nullptr; 4751 case Intrinsic::frameaddress: 4752 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4753 getValue(I.getArgOperand(0)))); 4754 return nullptr; 4755 case Intrinsic::read_register: { 4756 Value *Reg = I.getArgOperand(0); 4757 SDValue RegName = 4758 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4759 EVT VT = TLI.getValueType(I.getType()); 4760 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4761 return nullptr; 4762 } 4763 case Intrinsic::write_register: { 4764 Value *Reg = I.getArgOperand(0); 4765 Value *RegValue = I.getArgOperand(1); 4766 SDValue Chain = getValue(RegValue).getOperand(0); 4767 SDValue RegName = 4768 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4769 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4770 RegName, getValue(RegValue))); 4771 return nullptr; 4772 } 4773 case Intrinsic::setjmp: 4774 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4775 case Intrinsic::longjmp: 4776 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4777 case Intrinsic::memcpy: { 4778 // Assert for address < 256 since we support only user defined address 4779 // spaces. 4780 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4781 < 256 && 4782 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4783 < 256 && 4784 "Unknown address space"); 4785 SDValue Op1 = getValue(I.getArgOperand(0)); 4786 SDValue Op2 = getValue(I.getArgOperand(1)); 4787 SDValue Op3 = getValue(I.getArgOperand(2)); 4788 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4789 if (!Align) 4790 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4791 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4792 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4793 MachinePointerInfo(I.getArgOperand(0)), 4794 MachinePointerInfo(I.getArgOperand(1)))); 4795 return nullptr; 4796 } 4797 case Intrinsic::memset: { 4798 // Assert for address < 256 since we support only user defined address 4799 // spaces. 4800 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4801 < 256 && 4802 "Unknown address space"); 4803 SDValue Op1 = getValue(I.getArgOperand(0)); 4804 SDValue Op2 = getValue(I.getArgOperand(1)); 4805 SDValue Op3 = getValue(I.getArgOperand(2)); 4806 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4807 if (!Align) 4808 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4809 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4810 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4811 MachinePointerInfo(I.getArgOperand(0)))); 4812 return nullptr; 4813 } 4814 case Intrinsic::memmove: { 4815 // Assert for address < 256 since we support only user defined address 4816 // spaces. 4817 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4818 < 256 && 4819 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4820 < 256 && 4821 "Unknown address space"); 4822 SDValue Op1 = getValue(I.getArgOperand(0)); 4823 SDValue Op2 = getValue(I.getArgOperand(1)); 4824 SDValue Op3 = getValue(I.getArgOperand(2)); 4825 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4826 if (!Align) 4827 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4828 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4829 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4830 MachinePointerInfo(I.getArgOperand(0)), 4831 MachinePointerInfo(I.getArgOperand(1)))); 4832 return nullptr; 4833 } 4834 case Intrinsic::dbg_declare: { 4835 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4836 MDNode *Variable = DI.getVariable(); 4837 MDNode *Expression = DI.getExpression(); 4838 const Value *Address = DI.getAddress(); 4839 DIVariable DIVar(Variable); 4840 assert((!DIVar || DIVar.isVariable()) && 4841 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4842 if (!Address || !DIVar) { 4843 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4844 return nullptr; 4845 } 4846 4847 // Check if address has undef value. 4848 if (isa<UndefValue>(Address) || 4849 (Address->use_empty() && !isa<Argument>(Address))) { 4850 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4851 return nullptr; 4852 } 4853 4854 SDValue &N = NodeMap[Address]; 4855 if (!N.getNode() && isa<Argument>(Address)) 4856 // Check unused arguments map. 4857 N = UnusedArgNodeMap[Address]; 4858 SDDbgValue *SDV; 4859 if (N.getNode()) { 4860 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4861 Address = BCI->getOperand(0); 4862 // Parameters are handled specially. 4863 bool isParameter = 4864 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4865 isa<Argument>(Address)); 4866 4867 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4868 4869 if (isParameter && !AI) { 4870 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4871 if (FINode) 4872 // Byval parameter. We have a frame index at this point. 4873 SDV = DAG.getFrameIndexDbgValue( 4874 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4875 else { 4876 // Address is an argument, so try to emit its dbg value using 4877 // virtual register info from the FuncInfo.ValueMap. 4878 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4879 return nullptr; 4880 } 4881 } else if (AI) 4882 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4883 true, 0, dl, SDNodeOrder); 4884 else { 4885 // Can't do anything with other non-AI cases yet. 4886 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4887 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4888 DEBUG(Address->dump()); 4889 return nullptr; 4890 } 4891 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4892 } else { 4893 // If Address is an argument then try to emit its dbg value using 4894 // virtual register info from the FuncInfo.ValueMap. 4895 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4896 N)) { 4897 // If variable is pinned by a alloca in dominating bb then 4898 // use StaticAllocaMap. 4899 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4900 if (AI->getParent() != DI.getParent()) { 4901 DenseMap<const AllocaInst*, int>::iterator SI = 4902 FuncInfo.StaticAllocaMap.find(AI); 4903 if (SI != FuncInfo.StaticAllocaMap.end()) { 4904 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4905 0, dl, SDNodeOrder); 4906 DAG.AddDbgValue(SDV, nullptr, false); 4907 return nullptr; 4908 } 4909 } 4910 } 4911 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4912 } 4913 } 4914 return nullptr; 4915 } 4916 case Intrinsic::dbg_value: { 4917 const DbgValueInst &DI = cast<DbgValueInst>(I); 4918 DIVariable DIVar(DI.getVariable()); 4919 assert((!DIVar || DIVar.isVariable()) && 4920 "Variable in DbgValueInst should be either null or a DIVariable."); 4921 if (!DIVar) 4922 return nullptr; 4923 4924 MDNode *Variable = DI.getVariable(); 4925 MDNode *Expression = DI.getExpression(); 4926 uint64_t Offset = DI.getOffset(); 4927 const Value *V = DI.getValue(); 4928 if (!V) 4929 return nullptr; 4930 4931 SDDbgValue *SDV; 4932 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4933 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4934 SDNodeOrder); 4935 DAG.AddDbgValue(SDV, nullptr, false); 4936 } else { 4937 // Do not use getValue() in here; we don't want to generate code at 4938 // this point if it hasn't been done yet. 4939 SDValue N = NodeMap[V]; 4940 if (!N.getNode() && isa<Argument>(V)) 4941 // Check unused arguments map. 4942 N = UnusedArgNodeMap[V]; 4943 if (N.getNode()) { 4944 // A dbg.value for an alloca is always indirect. 4945 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4946 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4947 IsIndirect, N)) { 4948 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4949 IsIndirect, Offset, dl, SDNodeOrder); 4950 DAG.AddDbgValue(SDV, N.getNode(), false); 4951 } 4952 } else if (!V->use_empty() ) { 4953 // Do not call getValue(V) yet, as we don't want to generate code. 4954 // Remember it for later. 4955 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4956 DanglingDebugInfoMap[V] = DDI; 4957 } else { 4958 // We may expand this to cover more cases. One case where we have no 4959 // data available is an unreferenced parameter. 4960 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4961 } 4962 } 4963 4964 // Build a debug info table entry. 4965 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4966 V = BCI->getOperand(0); 4967 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4968 // Don't handle byval struct arguments or VLAs, for example. 4969 if (!AI) { 4970 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4971 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4972 return nullptr; 4973 } 4974 DenseMap<const AllocaInst*, int>::iterator SI = 4975 FuncInfo.StaticAllocaMap.find(AI); 4976 if (SI == FuncInfo.StaticAllocaMap.end()) 4977 return nullptr; // VLAs. 4978 return nullptr; 4979 } 4980 4981 case Intrinsic::eh_typeid_for: { 4982 // Find the type id for the given typeinfo. 4983 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4984 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4985 Res = DAG.getConstant(TypeID, MVT::i32); 4986 setValue(&I, Res); 4987 return nullptr; 4988 } 4989 4990 case Intrinsic::eh_return_i32: 4991 case Intrinsic::eh_return_i64: 4992 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4993 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4994 MVT::Other, 4995 getControlRoot(), 4996 getValue(I.getArgOperand(0)), 4997 getValue(I.getArgOperand(1)))); 4998 return nullptr; 4999 case Intrinsic::eh_unwind_init: 5000 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 5001 return nullptr; 5002 case Intrinsic::eh_dwarf_cfa: { 5003 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 5004 TLI.getPointerTy()); 5005 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 5006 CfaArg.getValueType(), 5007 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 5008 CfaArg.getValueType()), 5009 CfaArg); 5010 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 5011 DAG.getConstant(0, TLI.getPointerTy())); 5012 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 5013 FA, Offset)); 5014 return nullptr; 5015 } 5016 case Intrinsic::eh_sjlj_callsite: { 5017 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5018 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5019 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5020 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5021 5022 MMI.setCurrentCallSite(CI->getZExtValue()); 5023 return nullptr; 5024 } 5025 case Intrinsic::eh_sjlj_functioncontext: { 5026 // Get and store the index of the function context. 5027 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 5028 AllocaInst *FnCtx = 5029 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5030 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5031 MFI->setFunctionContextIndex(FI); 5032 return nullptr; 5033 } 5034 case Intrinsic::eh_sjlj_setjmp: { 5035 SDValue Ops[2]; 5036 Ops[0] = getRoot(); 5037 Ops[1] = getValue(I.getArgOperand(0)); 5038 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5039 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5040 setValue(&I, Op.getValue(0)); 5041 DAG.setRoot(Op.getValue(1)); 5042 return nullptr; 5043 } 5044 case Intrinsic::eh_sjlj_longjmp: { 5045 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5046 getRoot(), getValue(I.getArgOperand(0)))); 5047 return nullptr; 5048 } 5049 5050 case Intrinsic::masked_load: 5051 visitMaskedLoad(I); 5052 return nullptr; 5053 case Intrinsic::masked_store: 5054 visitMaskedStore(I); 5055 return nullptr; 5056 case Intrinsic::x86_mmx_pslli_w: 5057 case Intrinsic::x86_mmx_pslli_d: 5058 case Intrinsic::x86_mmx_pslli_q: 5059 case Intrinsic::x86_mmx_psrli_w: 5060 case Intrinsic::x86_mmx_psrli_d: 5061 case Intrinsic::x86_mmx_psrli_q: 5062 case Intrinsic::x86_mmx_psrai_w: 5063 case Intrinsic::x86_mmx_psrai_d: { 5064 SDValue ShAmt = getValue(I.getArgOperand(1)); 5065 if (isa<ConstantSDNode>(ShAmt)) { 5066 visitTargetIntrinsic(I, Intrinsic); 5067 return nullptr; 5068 } 5069 unsigned NewIntrinsic = 0; 5070 EVT ShAmtVT = MVT::v2i32; 5071 switch (Intrinsic) { 5072 case Intrinsic::x86_mmx_pslli_w: 5073 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5074 break; 5075 case Intrinsic::x86_mmx_pslli_d: 5076 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5077 break; 5078 case Intrinsic::x86_mmx_pslli_q: 5079 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5080 break; 5081 case Intrinsic::x86_mmx_psrli_w: 5082 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5083 break; 5084 case Intrinsic::x86_mmx_psrli_d: 5085 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5086 break; 5087 case Intrinsic::x86_mmx_psrli_q: 5088 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5089 break; 5090 case Intrinsic::x86_mmx_psrai_w: 5091 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5092 break; 5093 case Intrinsic::x86_mmx_psrai_d: 5094 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5095 break; 5096 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5097 } 5098 5099 // The vector shift intrinsics with scalars uses 32b shift amounts but 5100 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5101 // to be zero. 5102 // We must do this early because v2i32 is not a legal type. 5103 SDValue ShOps[2]; 5104 ShOps[0] = ShAmt; 5105 ShOps[1] = DAG.getConstant(0, MVT::i32); 5106 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5107 EVT DestVT = TLI.getValueType(I.getType()); 5108 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5109 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5110 DAG.getConstant(NewIntrinsic, MVT::i32), 5111 getValue(I.getArgOperand(0)), ShAmt); 5112 setValue(&I, Res); 5113 return nullptr; 5114 } 5115 case Intrinsic::x86_avx_vinsertf128_pd_256: 5116 case Intrinsic::x86_avx_vinsertf128_ps_256: 5117 case Intrinsic::x86_avx_vinsertf128_si_256: 5118 case Intrinsic::x86_avx2_vinserti128: { 5119 EVT DestVT = TLI.getValueType(I.getType()); 5120 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 5121 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5122 ElVT.getVectorNumElements(); 5123 Res = 5124 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5125 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 5126 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5127 setValue(&I, Res); 5128 return nullptr; 5129 } 5130 case Intrinsic::x86_avx_vextractf128_pd_256: 5131 case Intrinsic::x86_avx_vextractf128_ps_256: 5132 case Intrinsic::x86_avx_vextractf128_si_256: 5133 case Intrinsic::x86_avx2_vextracti128: { 5134 EVT DestVT = TLI.getValueType(I.getType()); 5135 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5136 DestVT.getVectorNumElements(); 5137 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5138 getValue(I.getArgOperand(0)), 5139 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5140 setValue(&I, Res); 5141 return nullptr; 5142 } 5143 case Intrinsic::convertff: 5144 case Intrinsic::convertfsi: 5145 case Intrinsic::convertfui: 5146 case Intrinsic::convertsif: 5147 case Intrinsic::convertuif: 5148 case Intrinsic::convertss: 5149 case Intrinsic::convertsu: 5150 case Intrinsic::convertus: 5151 case Intrinsic::convertuu: { 5152 ISD::CvtCode Code = ISD::CVT_INVALID; 5153 switch (Intrinsic) { 5154 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5155 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5156 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5157 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5158 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5159 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5160 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5161 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5162 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5163 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5164 } 5165 EVT DestVT = TLI.getValueType(I.getType()); 5166 const Value *Op1 = I.getArgOperand(0); 5167 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5168 DAG.getValueType(DestVT), 5169 DAG.getValueType(getValue(Op1).getValueType()), 5170 getValue(I.getArgOperand(1)), 5171 getValue(I.getArgOperand(2)), 5172 Code); 5173 setValue(&I, Res); 5174 return nullptr; 5175 } 5176 case Intrinsic::powi: 5177 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5178 getValue(I.getArgOperand(1)), DAG)); 5179 return nullptr; 5180 case Intrinsic::log: 5181 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5182 return nullptr; 5183 case Intrinsic::log2: 5184 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5185 return nullptr; 5186 case Intrinsic::log10: 5187 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5188 return nullptr; 5189 case Intrinsic::exp: 5190 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5191 return nullptr; 5192 case Intrinsic::exp2: 5193 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5194 return nullptr; 5195 case Intrinsic::pow: 5196 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5197 getValue(I.getArgOperand(1)), DAG, TLI)); 5198 return nullptr; 5199 case Intrinsic::sqrt: 5200 case Intrinsic::fabs: 5201 case Intrinsic::sin: 5202 case Intrinsic::cos: 5203 case Intrinsic::floor: 5204 case Intrinsic::ceil: 5205 case Intrinsic::trunc: 5206 case Intrinsic::rint: 5207 case Intrinsic::nearbyint: 5208 case Intrinsic::round: { 5209 unsigned Opcode; 5210 switch (Intrinsic) { 5211 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5212 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5213 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5214 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5215 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5216 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5217 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5218 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5219 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5220 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5221 case Intrinsic::round: Opcode = ISD::FROUND; break; 5222 } 5223 5224 setValue(&I, DAG.getNode(Opcode, sdl, 5225 getValue(I.getArgOperand(0)).getValueType(), 5226 getValue(I.getArgOperand(0)))); 5227 return nullptr; 5228 } 5229 case Intrinsic::minnum: 5230 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 5231 getValue(I.getArgOperand(0)).getValueType(), 5232 getValue(I.getArgOperand(0)), 5233 getValue(I.getArgOperand(1)))); 5234 return nullptr; 5235 case Intrinsic::maxnum: 5236 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 5237 getValue(I.getArgOperand(0)).getValueType(), 5238 getValue(I.getArgOperand(0)), 5239 getValue(I.getArgOperand(1)))); 5240 return nullptr; 5241 case Intrinsic::copysign: 5242 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5243 getValue(I.getArgOperand(0)).getValueType(), 5244 getValue(I.getArgOperand(0)), 5245 getValue(I.getArgOperand(1)))); 5246 return nullptr; 5247 case Intrinsic::fma: 5248 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5249 getValue(I.getArgOperand(0)).getValueType(), 5250 getValue(I.getArgOperand(0)), 5251 getValue(I.getArgOperand(1)), 5252 getValue(I.getArgOperand(2)))); 5253 return nullptr; 5254 case Intrinsic::fmuladd: { 5255 EVT VT = TLI.getValueType(I.getType()); 5256 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5257 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5258 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5259 getValue(I.getArgOperand(0)).getValueType(), 5260 getValue(I.getArgOperand(0)), 5261 getValue(I.getArgOperand(1)), 5262 getValue(I.getArgOperand(2)))); 5263 } else { 5264 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5265 getValue(I.getArgOperand(0)).getValueType(), 5266 getValue(I.getArgOperand(0)), 5267 getValue(I.getArgOperand(1))); 5268 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5269 getValue(I.getArgOperand(0)).getValueType(), 5270 Mul, 5271 getValue(I.getArgOperand(2))); 5272 setValue(&I, Add); 5273 } 5274 return nullptr; 5275 } 5276 case Intrinsic::convert_to_fp16: 5277 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5278 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5279 getValue(I.getArgOperand(0)), 5280 DAG.getTargetConstant(0, MVT::i32)))); 5281 return nullptr; 5282 case Intrinsic::convert_from_fp16: 5283 setValue(&I, 5284 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5285 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5286 getValue(I.getArgOperand(0))))); 5287 return nullptr; 5288 case Intrinsic::pcmarker: { 5289 SDValue Tmp = getValue(I.getArgOperand(0)); 5290 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5291 return nullptr; 5292 } 5293 case Intrinsic::readcyclecounter: { 5294 SDValue Op = getRoot(); 5295 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5296 DAG.getVTList(MVT::i64, MVT::Other), Op); 5297 setValue(&I, Res); 5298 DAG.setRoot(Res.getValue(1)); 5299 return nullptr; 5300 } 5301 case Intrinsic::bswap: 5302 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5303 getValue(I.getArgOperand(0)).getValueType(), 5304 getValue(I.getArgOperand(0)))); 5305 return nullptr; 5306 case Intrinsic::cttz: { 5307 SDValue Arg = getValue(I.getArgOperand(0)); 5308 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5309 EVT Ty = Arg.getValueType(); 5310 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5311 sdl, Ty, Arg)); 5312 return nullptr; 5313 } 5314 case Intrinsic::ctlz: { 5315 SDValue Arg = getValue(I.getArgOperand(0)); 5316 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5317 EVT Ty = Arg.getValueType(); 5318 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5319 sdl, Ty, Arg)); 5320 return nullptr; 5321 } 5322 case Intrinsic::ctpop: { 5323 SDValue Arg = getValue(I.getArgOperand(0)); 5324 EVT Ty = Arg.getValueType(); 5325 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5326 return nullptr; 5327 } 5328 case Intrinsic::stacksave: { 5329 SDValue Op = getRoot(); 5330 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5331 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5332 setValue(&I, Res); 5333 DAG.setRoot(Res.getValue(1)); 5334 return nullptr; 5335 } 5336 case Intrinsic::stackrestore: { 5337 Res = getValue(I.getArgOperand(0)); 5338 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5339 return nullptr; 5340 } 5341 case Intrinsic::stackprotector: { 5342 // Emit code into the DAG to store the stack guard onto the stack. 5343 MachineFunction &MF = DAG.getMachineFunction(); 5344 MachineFrameInfo *MFI = MF.getFrameInfo(); 5345 EVT PtrTy = TLI.getPointerTy(); 5346 SDValue Src, Chain = getRoot(); 5347 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5348 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5349 5350 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5351 // global variable __stack_chk_guard. 5352 if (!GV) 5353 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5354 if (BC->getOpcode() == Instruction::BitCast) 5355 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5356 5357 if (GV && TLI.useLoadStackGuardNode()) { 5358 // Emit a LOAD_STACK_GUARD node. 5359 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5360 sdl, PtrTy, Chain); 5361 MachinePointerInfo MPInfo(GV); 5362 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5363 unsigned Flags = MachineMemOperand::MOLoad | 5364 MachineMemOperand::MOInvariant; 5365 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5366 PtrTy.getSizeInBits() / 8, 5367 DAG.getEVTAlignment(PtrTy)); 5368 Node->setMemRefs(MemRefs, MemRefs + 1); 5369 5370 // Copy the guard value to a virtual register so that it can be 5371 // retrieved in the epilogue. 5372 Src = SDValue(Node, 0); 5373 const TargetRegisterClass *RC = 5374 TLI.getRegClassFor(Src.getSimpleValueType()); 5375 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5376 5377 SPDescriptor.setGuardReg(Reg); 5378 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5379 } else { 5380 Src = getValue(I.getArgOperand(0)); // The guard's value. 5381 } 5382 5383 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5384 5385 int FI = FuncInfo.StaticAllocaMap[Slot]; 5386 MFI->setStackProtectorIndex(FI); 5387 5388 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5389 5390 // Store the stack protector onto the stack. 5391 Res = DAG.getStore(Chain, sdl, Src, FIN, 5392 MachinePointerInfo::getFixedStack(FI), 5393 true, false, 0); 5394 setValue(&I, Res); 5395 DAG.setRoot(Res); 5396 return nullptr; 5397 } 5398 case Intrinsic::objectsize: { 5399 // If we don't know by now, we're never going to know. 5400 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5401 5402 assert(CI && "Non-constant type in __builtin_object_size?"); 5403 5404 SDValue Arg = getValue(I.getCalledValue()); 5405 EVT Ty = Arg.getValueType(); 5406 5407 if (CI->isZero()) 5408 Res = DAG.getConstant(-1ULL, Ty); 5409 else 5410 Res = DAG.getConstant(0, Ty); 5411 5412 setValue(&I, Res); 5413 return nullptr; 5414 } 5415 case Intrinsic::annotation: 5416 case Intrinsic::ptr_annotation: 5417 // Drop the intrinsic, but forward the value 5418 setValue(&I, getValue(I.getOperand(0))); 5419 return nullptr; 5420 case Intrinsic::assume: 5421 case Intrinsic::var_annotation: 5422 // Discard annotate attributes and assumptions 5423 return nullptr; 5424 5425 case Intrinsic::init_trampoline: { 5426 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5427 5428 SDValue Ops[6]; 5429 Ops[0] = getRoot(); 5430 Ops[1] = getValue(I.getArgOperand(0)); 5431 Ops[2] = getValue(I.getArgOperand(1)); 5432 Ops[3] = getValue(I.getArgOperand(2)); 5433 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5434 Ops[5] = DAG.getSrcValue(F); 5435 5436 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5437 5438 DAG.setRoot(Res); 5439 return nullptr; 5440 } 5441 case Intrinsic::adjust_trampoline: { 5442 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5443 TLI.getPointerTy(), 5444 getValue(I.getArgOperand(0)))); 5445 return nullptr; 5446 } 5447 case Intrinsic::gcroot: 5448 if (GFI) { 5449 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5450 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5451 5452 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5453 GFI->addStackRoot(FI->getIndex(), TypeMap); 5454 } 5455 return nullptr; 5456 case Intrinsic::gcread: 5457 case Intrinsic::gcwrite: 5458 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5459 case Intrinsic::flt_rounds: 5460 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5461 return nullptr; 5462 5463 case Intrinsic::expect: { 5464 // Just replace __builtin_expect(exp, c) with EXP. 5465 setValue(&I, getValue(I.getArgOperand(0))); 5466 return nullptr; 5467 } 5468 5469 case Intrinsic::debugtrap: 5470 case Intrinsic::trap: { 5471 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5472 if (TrapFuncName.empty()) { 5473 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5474 ISD::TRAP : ISD::DEBUGTRAP; 5475 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5476 return nullptr; 5477 } 5478 TargetLowering::ArgListTy Args; 5479 5480 TargetLowering::CallLoweringInfo CLI(DAG); 5481 CLI.setDebugLoc(sdl).setChain(getRoot()) 5482 .setCallee(CallingConv::C, I.getType(), 5483 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5484 std::move(Args), 0); 5485 5486 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5487 DAG.setRoot(Result.second); 5488 return nullptr; 5489 } 5490 5491 case Intrinsic::uadd_with_overflow: 5492 case Intrinsic::sadd_with_overflow: 5493 case Intrinsic::usub_with_overflow: 5494 case Intrinsic::ssub_with_overflow: 5495 case Intrinsic::umul_with_overflow: 5496 case Intrinsic::smul_with_overflow: { 5497 ISD::NodeType Op; 5498 switch (Intrinsic) { 5499 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5500 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5501 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5502 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5503 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5504 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5505 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5506 } 5507 SDValue Op1 = getValue(I.getArgOperand(0)); 5508 SDValue Op2 = getValue(I.getArgOperand(1)); 5509 5510 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5511 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5512 return nullptr; 5513 } 5514 case Intrinsic::prefetch: { 5515 SDValue Ops[5]; 5516 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5517 Ops[0] = getRoot(); 5518 Ops[1] = getValue(I.getArgOperand(0)); 5519 Ops[2] = getValue(I.getArgOperand(1)); 5520 Ops[3] = getValue(I.getArgOperand(2)); 5521 Ops[4] = getValue(I.getArgOperand(3)); 5522 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5523 DAG.getVTList(MVT::Other), Ops, 5524 EVT::getIntegerVT(*Context, 8), 5525 MachinePointerInfo(I.getArgOperand(0)), 5526 0, /* align */ 5527 false, /* volatile */ 5528 rw==0, /* read */ 5529 rw==1)); /* write */ 5530 return nullptr; 5531 } 5532 case Intrinsic::lifetime_start: 5533 case Intrinsic::lifetime_end: { 5534 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5535 // Stack coloring is not enabled in O0, discard region information. 5536 if (TM.getOptLevel() == CodeGenOpt::None) 5537 return nullptr; 5538 5539 SmallVector<Value *, 4> Allocas; 5540 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5541 5542 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5543 E = Allocas.end(); Object != E; ++Object) { 5544 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5545 5546 // Could not find an Alloca. 5547 if (!LifetimeObject) 5548 continue; 5549 5550 // First check that the Alloca is static, otherwise it won't have a 5551 // valid frame index. 5552 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5553 if (SI == FuncInfo.StaticAllocaMap.end()) 5554 return nullptr; 5555 5556 int FI = SI->second; 5557 5558 SDValue Ops[2]; 5559 Ops[0] = getRoot(); 5560 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5561 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5562 5563 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5564 DAG.setRoot(Res); 5565 } 5566 return nullptr; 5567 } 5568 case Intrinsic::invariant_start: 5569 // Discard region information. 5570 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5571 return nullptr; 5572 case Intrinsic::invariant_end: 5573 // Discard region information. 5574 return nullptr; 5575 case Intrinsic::stackprotectorcheck: { 5576 // Do not actually emit anything for this basic block. Instead we initialize 5577 // the stack protector descriptor and export the guard variable so we can 5578 // access it in FinishBasicBlock. 5579 const BasicBlock *BB = I.getParent(); 5580 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5581 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5582 5583 // Flush our exports since we are going to process a terminator. 5584 (void)getControlRoot(); 5585 return nullptr; 5586 } 5587 case Intrinsic::clear_cache: 5588 return TLI.getClearCacheBuiltinName(); 5589 case Intrinsic::donothing: 5590 // ignore 5591 return nullptr; 5592 case Intrinsic::experimental_stackmap: { 5593 visitStackmap(I); 5594 return nullptr; 5595 } 5596 case Intrinsic::experimental_patchpoint_void: 5597 case Intrinsic::experimental_patchpoint_i64: { 5598 visitPatchpoint(&I); 5599 return nullptr; 5600 } 5601 case Intrinsic::experimental_gc_statepoint: { 5602 visitStatepoint(I); 5603 return nullptr; 5604 } 5605 case Intrinsic::experimental_gc_result_int: 5606 case Intrinsic::experimental_gc_result_float: 5607 case Intrinsic::experimental_gc_result_ptr: 5608 case Intrinsic::experimental_gc_result: { 5609 visitGCResult(I); 5610 return nullptr; 5611 } 5612 case Intrinsic::experimental_gc_relocate: { 5613 visitGCRelocate(I); 5614 return nullptr; 5615 } 5616 case Intrinsic::instrprof_increment: 5617 llvm_unreachable("instrprof failed to lower an increment"); 5618 5619 case Intrinsic::frameallocate: { 5620 MachineFunction &MF = DAG.getMachineFunction(); 5621 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5622 5623 // Do the allocation and map it as a normal value. 5624 // FIXME: Maybe we should add this to the alloca map so that we don't have 5625 // to register allocate it? 5626 uint64_t Size = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 5627 int Alloc = MF.getFrameInfo()->CreateFrameAllocation(Size); 5628 MVT PtrVT = TLI.getPointerTy(0); 5629 SDValue FIVal = DAG.getFrameIndex(Alloc, PtrVT); 5630 setValue(&I, FIVal); 5631 5632 // Directly emit a FRAME_ALLOC machine instr. Label assignment emission is 5633 // the same on all targets. 5634 MCSymbol *FrameAllocSym = 5635 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName()); 5636 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5637 TII->get(TargetOpcode::FRAME_ALLOC)) 5638 .addSym(FrameAllocSym) 5639 .addFrameIndex(Alloc); 5640 5641 return nullptr; 5642 } 5643 5644 case Intrinsic::framerecover: { 5645 // i8* @llvm.framerecover(i8* %fn, i8* %fp) 5646 MachineFunction &MF = DAG.getMachineFunction(); 5647 MVT PtrVT = TLI.getPointerTy(0); 5648 5649 // Get the symbol that defines the frame offset. 5650 Function *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5651 MCSymbol *FrameAllocSym = 5652 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName()); 5653 5654 // Create a TargetExternalSymbol for the label to avoid any target lowering 5655 // that would make this PC relative. 5656 StringRef Name = FrameAllocSym->getName(); 5657 assert(Name.size() == strlen(Name.data()) && "not null terminated"); 5658 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 5659 SDValue OffsetVal = 5660 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 5661 5662 // Add the offset to the FP. 5663 Value *FP = I.getArgOperand(1); 5664 SDValue FPVal = getValue(FP); 5665 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5666 setValue(&I, Add); 5667 5668 return nullptr; 5669 } 5670 } 5671 } 5672 5673 std::pair<SDValue, SDValue> 5674 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5675 MachineBasicBlock *LandingPad) { 5676 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5677 MCSymbol *BeginLabel = nullptr; 5678 5679 if (LandingPad) { 5680 // Insert a label before the invoke call to mark the try range. This can be 5681 // used to detect deletion of the invoke via the MachineModuleInfo. 5682 BeginLabel = MMI.getContext().CreateTempSymbol(); 5683 5684 // For SjLj, keep track of which landing pads go with which invokes 5685 // so as to maintain the ordering of pads in the LSDA. 5686 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5687 if (CallSiteIndex) { 5688 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5689 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5690 5691 // Now that the call site is handled, stop tracking it. 5692 MMI.setCurrentCallSite(0); 5693 } 5694 5695 // Both PendingLoads and PendingExports must be flushed here; 5696 // this call might not return. 5697 (void)getRoot(); 5698 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5699 5700 CLI.setChain(getRoot()); 5701 } 5702 5703 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5704 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5705 5706 assert((CLI.IsTailCall || Result.second.getNode()) && 5707 "Non-null chain expected with non-tail call!"); 5708 assert((Result.second.getNode() || !Result.first.getNode()) && 5709 "Null value expected with tail call!"); 5710 5711 if (!Result.second.getNode()) { 5712 // As a special case, a null chain means that a tail call has been emitted 5713 // and the DAG root is already updated. 5714 HasTailCall = true; 5715 5716 // Since there's no actual continuation from this block, nothing can be 5717 // relying on us setting vregs for them. 5718 PendingExports.clear(); 5719 } else { 5720 DAG.setRoot(Result.second); 5721 } 5722 5723 if (LandingPad) { 5724 // Insert a label at the end of the invoke call to mark the try range. This 5725 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5726 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5727 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5728 5729 // Inform MachineModuleInfo of range. 5730 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5731 } 5732 5733 return Result; 5734 } 5735 5736 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5737 bool isTailCall, 5738 MachineBasicBlock *LandingPad) { 5739 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5740 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5741 Type *RetTy = FTy->getReturnType(); 5742 5743 TargetLowering::ArgListTy Args; 5744 TargetLowering::ArgListEntry Entry; 5745 Args.reserve(CS.arg_size()); 5746 5747 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5748 i != e; ++i) { 5749 const Value *V = *i; 5750 5751 // Skip empty types 5752 if (V->getType()->isEmptyTy()) 5753 continue; 5754 5755 SDValue ArgNode = getValue(V); 5756 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5757 5758 // Skip the first return-type Attribute to get to params. 5759 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5760 Args.push_back(Entry); 5761 } 5762 5763 // Check if target-independent constraints permit a tail call here. 5764 // Target-dependent constraints are checked within TLI->LowerCallTo. 5765 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5766 isTailCall = false; 5767 5768 TargetLowering::CallLoweringInfo CLI(DAG); 5769 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5770 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5771 .setTailCall(isTailCall); 5772 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5773 5774 if (Result.first.getNode()) 5775 setValue(CS.getInstruction(), Result.first); 5776 } 5777 5778 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5779 /// value is equal or not-equal to zero. 5780 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5781 for (const User *U : V->users()) { 5782 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5783 if (IC->isEquality()) 5784 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5785 if (C->isNullValue()) 5786 continue; 5787 // Unknown instruction. 5788 return false; 5789 } 5790 return true; 5791 } 5792 5793 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5794 Type *LoadTy, 5795 SelectionDAGBuilder &Builder) { 5796 5797 // Check to see if this load can be trivially constant folded, e.g. if the 5798 // input is from a string literal. 5799 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5800 // Cast pointer to the type we really want to load. 5801 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5802 PointerType::getUnqual(LoadTy)); 5803 5804 if (const Constant *LoadCst = 5805 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5806 Builder.DL)) 5807 return Builder.getValue(LoadCst); 5808 } 5809 5810 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5811 // still constant memory, the input chain can be the entry node. 5812 SDValue Root; 5813 bool ConstantMemory = false; 5814 5815 // Do not serialize (non-volatile) loads of constant memory with anything. 5816 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5817 Root = Builder.DAG.getEntryNode(); 5818 ConstantMemory = true; 5819 } else { 5820 // Do not serialize non-volatile loads against each other. 5821 Root = Builder.DAG.getRoot(); 5822 } 5823 5824 SDValue Ptr = Builder.getValue(PtrVal); 5825 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5826 Ptr, MachinePointerInfo(PtrVal), 5827 false /*volatile*/, 5828 false /*nontemporal*/, 5829 false /*isinvariant*/, 1 /* align=1 */); 5830 5831 if (!ConstantMemory) 5832 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5833 return LoadVal; 5834 } 5835 5836 /// processIntegerCallValue - Record the value for an instruction that 5837 /// produces an integer result, converting the type where necessary. 5838 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5839 SDValue Value, 5840 bool IsSigned) { 5841 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5842 if (IsSigned) 5843 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5844 else 5845 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5846 setValue(&I, Value); 5847 } 5848 5849 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5850 /// If so, return true and lower it, otherwise return false and it will be 5851 /// lowered like a normal call. 5852 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5853 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5854 if (I.getNumArgOperands() != 3) 5855 return false; 5856 5857 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5858 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5859 !I.getArgOperand(2)->getType()->isIntegerTy() || 5860 !I.getType()->isIntegerTy()) 5861 return false; 5862 5863 const Value *Size = I.getArgOperand(2); 5864 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5865 if (CSize && CSize->getZExtValue() == 0) { 5866 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5867 setValue(&I, DAG.getConstant(0, CallVT)); 5868 return true; 5869 } 5870 5871 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5872 std::pair<SDValue, SDValue> Res = 5873 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5874 getValue(LHS), getValue(RHS), getValue(Size), 5875 MachinePointerInfo(LHS), 5876 MachinePointerInfo(RHS)); 5877 if (Res.first.getNode()) { 5878 processIntegerCallValue(I, Res.first, true); 5879 PendingLoads.push_back(Res.second); 5880 return true; 5881 } 5882 5883 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5884 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5885 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5886 bool ActuallyDoIt = true; 5887 MVT LoadVT; 5888 Type *LoadTy; 5889 switch (CSize->getZExtValue()) { 5890 default: 5891 LoadVT = MVT::Other; 5892 LoadTy = nullptr; 5893 ActuallyDoIt = false; 5894 break; 5895 case 2: 5896 LoadVT = MVT::i16; 5897 LoadTy = Type::getInt16Ty(CSize->getContext()); 5898 break; 5899 case 4: 5900 LoadVT = MVT::i32; 5901 LoadTy = Type::getInt32Ty(CSize->getContext()); 5902 break; 5903 case 8: 5904 LoadVT = MVT::i64; 5905 LoadTy = Type::getInt64Ty(CSize->getContext()); 5906 break; 5907 /* 5908 case 16: 5909 LoadVT = MVT::v4i32; 5910 LoadTy = Type::getInt32Ty(CSize->getContext()); 5911 LoadTy = VectorType::get(LoadTy, 4); 5912 break; 5913 */ 5914 } 5915 5916 // This turns into unaligned loads. We only do this if the target natively 5917 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5918 // we'll only produce a small number of byte loads. 5919 5920 // Require that we can find a legal MVT, and only do this if the target 5921 // supports unaligned loads of that type. Expanding into byte loads would 5922 // bloat the code. 5923 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5924 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5925 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5926 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5927 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5928 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5929 // TODO: Check alignment of src and dest ptrs. 5930 if (!TLI.isTypeLegal(LoadVT) || 5931 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5932 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5933 ActuallyDoIt = false; 5934 } 5935 5936 if (ActuallyDoIt) { 5937 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5938 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5939 5940 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5941 ISD::SETNE); 5942 processIntegerCallValue(I, Res, false); 5943 return true; 5944 } 5945 } 5946 5947 5948 return false; 5949 } 5950 5951 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5952 /// form. If so, return true and lower it, otherwise return false and it 5953 /// will be lowered like a normal call. 5954 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5955 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5956 if (I.getNumArgOperands() != 3) 5957 return false; 5958 5959 const Value *Src = I.getArgOperand(0); 5960 const Value *Char = I.getArgOperand(1); 5961 const Value *Length = I.getArgOperand(2); 5962 if (!Src->getType()->isPointerTy() || 5963 !Char->getType()->isIntegerTy() || 5964 !Length->getType()->isIntegerTy() || 5965 !I.getType()->isPointerTy()) 5966 return false; 5967 5968 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5969 std::pair<SDValue, SDValue> Res = 5970 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5971 getValue(Src), getValue(Char), getValue(Length), 5972 MachinePointerInfo(Src)); 5973 if (Res.first.getNode()) { 5974 setValue(&I, Res.first); 5975 PendingLoads.push_back(Res.second); 5976 return true; 5977 } 5978 5979 return false; 5980 } 5981 5982 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5983 /// optimized form. If so, return true and lower it, otherwise return false 5984 /// and it will be lowered like a normal call. 5985 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5986 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5987 if (I.getNumArgOperands() != 2) 5988 return false; 5989 5990 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5991 if (!Arg0->getType()->isPointerTy() || 5992 !Arg1->getType()->isPointerTy() || 5993 !I.getType()->isPointerTy()) 5994 return false; 5995 5996 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5997 std::pair<SDValue, SDValue> Res = 5998 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5999 getValue(Arg0), getValue(Arg1), 6000 MachinePointerInfo(Arg0), 6001 MachinePointerInfo(Arg1), isStpcpy); 6002 if (Res.first.getNode()) { 6003 setValue(&I, Res.first); 6004 DAG.setRoot(Res.second); 6005 return true; 6006 } 6007 6008 return false; 6009 } 6010 6011 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 6012 /// If so, return true and lower it, otherwise return false and it will be 6013 /// lowered like a normal call. 6014 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6015 // Verify that the prototype makes sense. int strcmp(void*,void*) 6016 if (I.getNumArgOperands() != 2) 6017 return false; 6018 6019 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6020 if (!Arg0->getType()->isPointerTy() || 6021 !Arg1->getType()->isPointerTy() || 6022 !I.getType()->isIntegerTy()) 6023 return false; 6024 6025 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 6026 std::pair<SDValue, SDValue> Res = 6027 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6028 getValue(Arg0), getValue(Arg1), 6029 MachinePointerInfo(Arg0), 6030 MachinePointerInfo(Arg1)); 6031 if (Res.first.getNode()) { 6032 processIntegerCallValue(I, Res.first, true); 6033 PendingLoads.push_back(Res.second); 6034 return true; 6035 } 6036 6037 return false; 6038 } 6039 6040 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 6041 /// form. If so, return true and lower it, otherwise return false and it 6042 /// will be lowered like a normal call. 6043 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6044 // Verify that the prototype makes sense. size_t strlen(char *) 6045 if (I.getNumArgOperands() != 1) 6046 return false; 6047 6048 const Value *Arg0 = I.getArgOperand(0); 6049 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 6050 return false; 6051 6052 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 6053 std::pair<SDValue, SDValue> Res = 6054 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6055 getValue(Arg0), MachinePointerInfo(Arg0)); 6056 if (Res.first.getNode()) { 6057 processIntegerCallValue(I, Res.first, false); 6058 PendingLoads.push_back(Res.second); 6059 return true; 6060 } 6061 6062 return false; 6063 } 6064 6065 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 6066 /// form. If so, return true and lower it, otherwise return false and it 6067 /// will be lowered like a normal call. 6068 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6069 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 6070 if (I.getNumArgOperands() != 2) 6071 return false; 6072 6073 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6074 if (!Arg0->getType()->isPointerTy() || 6075 !Arg1->getType()->isIntegerTy() || 6076 !I.getType()->isIntegerTy()) 6077 return false; 6078 6079 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 6080 std::pair<SDValue, SDValue> Res = 6081 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6082 getValue(Arg0), getValue(Arg1), 6083 MachinePointerInfo(Arg0)); 6084 if (Res.first.getNode()) { 6085 processIntegerCallValue(I, Res.first, false); 6086 PendingLoads.push_back(Res.second); 6087 return true; 6088 } 6089 6090 return false; 6091 } 6092 6093 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 6094 /// operation (as expected), translate it to an SDNode with the specified opcode 6095 /// and return true. 6096 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6097 unsigned Opcode) { 6098 // Sanity check that it really is a unary floating-point call. 6099 if (I.getNumArgOperands() != 1 || 6100 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6101 I.getType() != I.getArgOperand(0)->getType() || 6102 !I.onlyReadsMemory()) 6103 return false; 6104 6105 SDValue Tmp = getValue(I.getArgOperand(0)); 6106 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6107 return true; 6108 } 6109 6110 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 6111 /// operation (as expected), translate it to an SDNode with the specified opcode 6112 /// and return true. 6113 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6114 unsigned Opcode) { 6115 // Sanity check that it really is a binary floating-point call. 6116 if (I.getNumArgOperands() != 2 || 6117 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 6118 I.getType() != I.getArgOperand(0)->getType() || 6119 I.getType() != I.getArgOperand(1)->getType() || 6120 !I.onlyReadsMemory()) 6121 return false; 6122 6123 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6124 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6125 EVT VT = Tmp0.getValueType(); 6126 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6127 return true; 6128 } 6129 6130 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6131 // Handle inline assembly differently. 6132 if (isa<InlineAsm>(I.getCalledValue())) { 6133 visitInlineAsm(&I); 6134 return; 6135 } 6136 6137 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6138 ComputeUsesVAFloatArgument(I, &MMI); 6139 6140 const char *RenameFn = nullptr; 6141 if (Function *F = I.getCalledFunction()) { 6142 if (F->isDeclaration()) { 6143 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6144 if (unsigned IID = II->getIntrinsicID(F)) { 6145 RenameFn = visitIntrinsicCall(I, IID); 6146 if (!RenameFn) 6147 return; 6148 } 6149 } 6150 if (unsigned IID = F->getIntrinsicID()) { 6151 RenameFn = visitIntrinsicCall(I, IID); 6152 if (!RenameFn) 6153 return; 6154 } 6155 } 6156 6157 // Check for well-known libc/libm calls. If the function is internal, it 6158 // can't be a library call. 6159 LibFunc::Func Func; 6160 if (!F->hasLocalLinkage() && F->hasName() && 6161 LibInfo->getLibFunc(F->getName(), Func) && 6162 LibInfo->hasOptimizedCodeGen(Func)) { 6163 switch (Func) { 6164 default: break; 6165 case LibFunc::copysign: 6166 case LibFunc::copysignf: 6167 case LibFunc::copysignl: 6168 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6169 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6170 I.getType() == I.getArgOperand(0)->getType() && 6171 I.getType() == I.getArgOperand(1)->getType() && 6172 I.onlyReadsMemory()) { 6173 SDValue LHS = getValue(I.getArgOperand(0)); 6174 SDValue RHS = getValue(I.getArgOperand(1)); 6175 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6176 LHS.getValueType(), LHS, RHS)); 6177 return; 6178 } 6179 break; 6180 case LibFunc::fabs: 6181 case LibFunc::fabsf: 6182 case LibFunc::fabsl: 6183 if (visitUnaryFloatCall(I, ISD::FABS)) 6184 return; 6185 break; 6186 case LibFunc::fmin: 6187 case LibFunc::fminf: 6188 case LibFunc::fminl: 6189 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6190 return; 6191 break; 6192 case LibFunc::fmax: 6193 case LibFunc::fmaxf: 6194 case LibFunc::fmaxl: 6195 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6196 return; 6197 break; 6198 case LibFunc::sin: 6199 case LibFunc::sinf: 6200 case LibFunc::sinl: 6201 if (visitUnaryFloatCall(I, ISD::FSIN)) 6202 return; 6203 break; 6204 case LibFunc::cos: 6205 case LibFunc::cosf: 6206 case LibFunc::cosl: 6207 if (visitUnaryFloatCall(I, ISD::FCOS)) 6208 return; 6209 break; 6210 case LibFunc::sqrt: 6211 case LibFunc::sqrtf: 6212 case LibFunc::sqrtl: 6213 case LibFunc::sqrt_finite: 6214 case LibFunc::sqrtf_finite: 6215 case LibFunc::sqrtl_finite: 6216 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6217 return; 6218 break; 6219 case LibFunc::floor: 6220 case LibFunc::floorf: 6221 case LibFunc::floorl: 6222 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6223 return; 6224 break; 6225 case LibFunc::nearbyint: 6226 case LibFunc::nearbyintf: 6227 case LibFunc::nearbyintl: 6228 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6229 return; 6230 break; 6231 case LibFunc::ceil: 6232 case LibFunc::ceilf: 6233 case LibFunc::ceill: 6234 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6235 return; 6236 break; 6237 case LibFunc::rint: 6238 case LibFunc::rintf: 6239 case LibFunc::rintl: 6240 if (visitUnaryFloatCall(I, ISD::FRINT)) 6241 return; 6242 break; 6243 case LibFunc::round: 6244 case LibFunc::roundf: 6245 case LibFunc::roundl: 6246 if (visitUnaryFloatCall(I, ISD::FROUND)) 6247 return; 6248 break; 6249 case LibFunc::trunc: 6250 case LibFunc::truncf: 6251 case LibFunc::truncl: 6252 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6253 return; 6254 break; 6255 case LibFunc::log2: 6256 case LibFunc::log2f: 6257 case LibFunc::log2l: 6258 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6259 return; 6260 break; 6261 case LibFunc::exp2: 6262 case LibFunc::exp2f: 6263 case LibFunc::exp2l: 6264 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6265 return; 6266 break; 6267 case LibFunc::memcmp: 6268 if (visitMemCmpCall(I)) 6269 return; 6270 break; 6271 case LibFunc::memchr: 6272 if (visitMemChrCall(I)) 6273 return; 6274 break; 6275 case LibFunc::strcpy: 6276 if (visitStrCpyCall(I, false)) 6277 return; 6278 break; 6279 case LibFunc::stpcpy: 6280 if (visitStrCpyCall(I, true)) 6281 return; 6282 break; 6283 case LibFunc::strcmp: 6284 if (visitStrCmpCall(I)) 6285 return; 6286 break; 6287 case LibFunc::strlen: 6288 if (visitStrLenCall(I)) 6289 return; 6290 break; 6291 case LibFunc::strnlen: 6292 if (visitStrNLenCall(I)) 6293 return; 6294 break; 6295 } 6296 } 6297 } 6298 6299 SDValue Callee; 6300 if (!RenameFn) 6301 Callee = getValue(I.getCalledValue()); 6302 else 6303 Callee = DAG.getExternalSymbol(RenameFn, 6304 DAG.getTargetLoweringInfo().getPointerTy()); 6305 6306 // Check if we can potentially perform a tail call. More detailed checking is 6307 // be done within LowerCallTo, after more information about the call is known. 6308 LowerCallTo(&I, Callee, I.isTailCall()); 6309 } 6310 6311 namespace { 6312 6313 /// AsmOperandInfo - This contains information for each constraint that we are 6314 /// lowering. 6315 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6316 public: 6317 /// CallOperand - If this is the result output operand or a clobber 6318 /// this is null, otherwise it is the incoming operand to the CallInst. 6319 /// This gets modified as the asm is processed. 6320 SDValue CallOperand; 6321 6322 /// AssignedRegs - If this is a register or register class operand, this 6323 /// contains the set of register corresponding to the operand. 6324 RegsForValue AssignedRegs; 6325 6326 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6327 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6328 } 6329 6330 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6331 /// corresponds to. If there is no Value* for this operand, it returns 6332 /// MVT::Other. 6333 EVT getCallOperandValEVT(LLVMContext &Context, 6334 const TargetLowering &TLI, 6335 const DataLayout *DL) const { 6336 if (!CallOperandVal) return MVT::Other; 6337 6338 if (isa<BasicBlock>(CallOperandVal)) 6339 return TLI.getPointerTy(); 6340 6341 llvm::Type *OpTy = CallOperandVal->getType(); 6342 6343 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6344 // If this is an indirect operand, the operand is a pointer to the 6345 // accessed type. 6346 if (isIndirect) { 6347 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6348 if (!PtrTy) 6349 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6350 OpTy = PtrTy->getElementType(); 6351 } 6352 6353 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6354 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6355 if (STy->getNumElements() == 1) 6356 OpTy = STy->getElementType(0); 6357 6358 // If OpTy is not a single value, it may be a struct/union that we 6359 // can tile with integers. 6360 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6361 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6362 switch (BitSize) { 6363 default: break; 6364 case 1: 6365 case 8: 6366 case 16: 6367 case 32: 6368 case 64: 6369 case 128: 6370 OpTy = IntegerType::get(Context, BitSize); 6371 break; 6372 } 6373 } 6374 6375 return TLI.getValueType(OpTy, true); 6376 } 6377 }; 6378 6379 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6380 6381 } // end anonymous namespace 6382 6383 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6384 /// specified operand. We prefer to assign virtual registers, to allow the 6385 /// register allocator to handle the assignment process. However, if the asm 6386 /// uses features that we can't model on machineinstrs, we have SDISel do the 6387 /// allocation. This produces generally horrible, but correct, code. 6388 /// 6389 /// OpInfo describes the operand. 6390 /// 6391 static void GetRegistersForValue(SelectionDAG &DAG, 6392 const TargetLowering &TLI, 6393 SDLoc DL, 6394 SDISelAsmOperandInfo &OpInfo) { 6395 LLVMContext &Context = *DAG.getContext(); 6396 6397 MachineFunction &MF = DAG.getMachineFunction(); 6398 SmallVector<unsigned, 4> Regs; 6399 6400 // If this is a constraint for a single physreg, or a constraint for a 6401 // register class, find it. 6402 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6403 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6404 OpInfo.ConstraintVT); 6405 6406 unsigned NumRegs = 1; 6407 if (OpInfo.ConstraintVT != MVT::Other) { 6408 // If this is a FP input in an integer register (or visa versa) insert a bit 6409 // cast of the input value. More generally, handle any case where the input 6410 // value disagrees with the register class we plan to stick this in. 6411 if (OpInfo.Type == InlineAsm::isInput && 6412 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6413 // Try to convert to the first EVT that the reg class contains. If the 6414 // types are identical size, use a bitcast to convert (e.g. two differing 6415 // vector types). 6416 MVT RegVT = *PhysReg.second->vt_begin(); 6417 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6418 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6419 RegVT, OpInfo.CallOperand); 6420 OpInfo.ConstraintVT = RegVT; 6421 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6422 // If the input is a FP value and we want it in FP registers, do a 6423 // bitcast to the corresponding integer type. This turns an f64 value 6424 // into i64, which can be passed with two i32 values on a 32-bit 6425 // machine. 6426 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6427 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6428 RegVT, OpInfo.CallOperand); 6429 OpInfo.ConstraintVT = RegVT; 6430 } 6431 } 6432 6433 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6434 } 6435 6436 MVT RegVT; 6437 EVT ValueVT = OpInfo.ConstraintVT; 6438 6439 // If this is a constraint for a specific physical register, like {r17}, 6440 // assign it now. 6441 if (unsigned AssignedReg = PhysReg.first) { 6442 const TargetRegisterClass *RC = PhysReg.second; 6443 if (OpInfo.ConstraintVT == MVT::Other) 6444 ValueVT = *RC->vt_begin(); 6445 6446 // Get the actual register value type. This is important, because the user 6447 // may have asked for (e.g.) the AX register in i32 type. We need to 6448 // remember that AX is actually i16 to get the right extension. 6449 RegVT = *RC->vt_begin(); 6450 6451 // This is a explicit reference to a physical register. 6452 Regs.push_back(AssignedReg); 6453 6454 // If this is an expanded reference, add the rest of the regs to Regs. 6455 if (NumRegs != 1) { 6456 TargetRegisterClass::iterator I = RC->begin(); 6457 for (; *I != AssignedReg; ++I) 6458 assert(I != RC->end() && "Didn't find reg!"); 6459 6460 // Already added the first reg. 6461 --NumRegs; ++I; 6462 for (; NumRegs; --NumRegs, ++I) { 6463 assert(I != RC->end() && "Ran out of registers to allocate!"); 6464 Regs.push_back(*I); 6465 } 6466 } 6467 6468 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6469 return; 6470 } 6471 6472 // Otherwise, if this was a reference to an LLVM register class, create vregs 6473 // for this reference. 6474 if (const TargetRegisterClass *RC = PhysReg.second) { 6475 RegVT = *RC->vt_begin(); 6476 if (OpInfo.ConstraintVT == MVT::Other) 6477 ValueVT = RegVT; 6478 6479 // Create the appropriate number of virtual registers. 6480 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6481 for (; NumRegs; --NumRegs) 6482 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6483 6484 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6485 return; 6486 } 6487 6488 // Otherwise, we couldn't allocate enough registers for this. 6489 } 6490 6491 /// visitInlineAsm - Handle a call to an InlineAsm object. 6492 /// 6493 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6494 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6495 6496 /// ConstraintOperands - Information about all of the constraints. 6497 SDISelAsmOperandInfoVector ConstraintOperands; 6498 6499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6500 TargetLowering::AsmOperandInfoVector 6501 TargetConstraints = TLI.ParseConstraints(CS); 6502 6503 bool hasMemory = false; 6504 6505 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6506 unsigned ResNo = 0; // ResNo - The result number of the next output. 6507 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6508 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6509 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6510 6511 MVT OpVT = MVT::Other; 6512 6513 // Compute the value type for each operand. 6514 switch (OpInfo.Type) { 6515 case InlineAsm::isOutput: 6516 // Indirect outputs just consume an argument. 6517 if (OpInfo.isIndirect) { 6518 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6519 break; 6520 } 6521 6522 // The return value of the call is this value. As such, there is no 6523 // corresponding argument. 6524 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6525 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6526 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6527 } else { 6528 assert(ResNo == 0 && "Asm only has one result!"); 6529 OpVT = TLI.getSimpleValueType(CS.getType()); 6530 } 6531 ++ResNo; 6532 break; 6533 case InlineAsm::isInput: 6534 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6535 break; 6536 case InlineAsm::isClobber: 6537 // Nothing to do. 6538 break; 6539 } 6540 6541 // If this is an input or an indirect output, process the call argument. 6542 // BasicBlocks are labels, currently appearing only in asm's. 6543 if (OpInfo.CallOperandVal) { 6544 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6545 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6546 } else { 6547 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6548 } 6549 6550 OpVT = 6551 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6552 } 6553 6554 OpInfo.ConstraintVT = OpVT; 6555 6556 // Indirect operand accesses access memory. 6557 if (OpInfo.isIndirect) 6558 hasMemory = true; 6559 else { 6560 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6561 TargetLowering::ConstraintType 6562 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6563 if (CType == TargetLowering::C_Memory) { 6564 hasMemory = true; 6565 break; 6566 } 6567 } 6568 } 6569 } 6570 6571 SDValue Chain, Flag; 6572 6573 // We won't need to flush pending loads if this asm doesn't touch 6574 // memory and is nonvolatile. 6575 if (hasMemory || IA->hasSideEffects()) 6576 Chain = getRoot(); 6577 else 6578 Chain = DAG.getRoot(); 6579 6580 // Second pass over the constraints: compute which constraint option to use 6581 // and assign registers to constraints that want a specific physreg. 6582 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6583 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6584 6585 // If this is an output operand with a matching input operand, look up the 6586 // matching input. If their types mismatch, e.g. one is an integer, the 6587 // other is floating point, or their sizes are different, flag it as an 6588 // error. 6589 if (OpInfo.hasMatchingInput()) { 6590 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6591 6592 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6593 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6594 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6595 OpInfo.ConstraintVT); 6596 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6597 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6598 Input.ConstraintVT); 6599 if ((OpInfo.ConstraintVT.isInteger() != 6600 Input.ConstraintVT.isInteger()) || 6601 (MatchRC.second != InputRC.second)) { 6602 report_fatal_error("Unsupported asm: input constraint" 6603 " with a matching output constraint of" 6604 " incompatible type!"); 6605 } 6606 Input.ConstraintVT = OpInfo.ConstraintVT; 6607 } 6608 } 6609 6610 // Compute the constraint code and ConstraintType to use. 6611 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6612 6613 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6614 OpInfo.Type == InlineAsm::isClobber) 6615 continue; 6616 6617 // If this is a memory input, and if the operand is not indirect, do what we 6618 // need to to provide an address for the memory input. 6619 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6620 !OpInfo.isIndirect) { 6621 assert((OpInfo.isMultipleAlternative || 6622 (OpInfo.Type == InlineAsm::isInput)) && 6623 "Can only indirectify direct input operands!"); 6624 6625 // Memory operands really want the address of the value. If we don't have 6626 // an indirect input, put it in the constpool if we can, otherwise spill 6627 // it to a stack slot. 6628 // TODO: This isn't quite right. We need to handle these according to 6629 // the addressing mode that the constraint wants. Also, this may take 6630 // an additional register for the computation and we don't want that 6631 // either. 6632 6633 // If the operand is a float, integer, or vector constant, spill to a 6634 // constant pool entry to get its address. 6635 const Value *OpVal = OpInfo.CallOperandVal; 6636 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6637 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6638 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6639 TLI.getPointerTy()); 6640 } else { 6641 // Otherwise, create a stack slot and emit a store to it before the 6642 // asm. 6643 Type *Ty = OpVal->getType(); 6644 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6645 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6646 MachineFunction &MF = DAG.getMachineFunction(); 6647 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6648 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6649 Chain = DAG.getStore(Chain, getCurSDLoc(), 6650 OpInfo.CallOperand, StackSlot, 6651 MachinePointerInfo::getFixedStack(SSFI), 6652 false, false, 0); 6653 OpInfo.CallOperand = StackSlot; 6654 } 6655 6656 // There is no longer a Value* corresponding to this operand. 6657 OpInfo.CallOperandVal = nullptr; 6658 6659 // It is now an indirect operand. 6660 OpInfo.isIndirect = true; 6661 } 6662 6663 // If this constraint is for a specific register, allocate it before 6664 // anything else. 6665 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6666 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6667 } 6668 6669 // Second pass - Loop over all of the operands, assigning virtual or physregs 6670 // to register class operands. 6671 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6672 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6673 6674 // C_Register operands have already been allocated, Other/Memory don't need 6675 // to be. 6676 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6677 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6678 } 6679 6680 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6681 std::vector<SDValue> AsmNodeOperands; 6682 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6683 AsmNodeOperands.push_back( 6684 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6685 TLI.getPointerTy())); 6686 6687 // If we have a !srcloc metadata node associated with it, we want to attach 6688 // this to the ultimately generated inline asm machineinstr. To do this, we 6689 // pass in the third operand as this (potentially null) inline asm MDNode. 6690 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6691 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6692 6693 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6694 // bits as operand 3. 6695 unsigned ExtraInfo = 0; 6696 if (IA->hasSideEffects()) 6697 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6698 if (IA->isAlignStack()) 6699 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6700 // Set the asm dialect. 6701 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6702 6703 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6704 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6705 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6706 6707 // Compute the constraint code and ConstraintType to use. 6708 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6709 6710 // Ideally, we would only check against memory constraints. However, the 6711 // meaning of an other constraint can be target-specific and we can't easily 6712 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6713 // for other constriants as well. 6714 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6715 OpInfo.ConstraintType == TargetLowering::C_Other) { 6716 if (OpInfo.Type == InlineAsm::isInput) 6717 ExtraInfo |= InlineAsm::Extra_MayLoad; 6718 else if (OpInfo.Type == InlineAsm::isOutput) 6719 ExtraInfo |= InlineAsm::Extra_MayStore; 6720 else if (OpInfo.Type == InlineAsm::isClobber) 6721 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6722 } 6723 } 6724 6725 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6726 TLI.getPointerTy())); 6727 6728 // Loop over all of the inputs, copying the operand values into the 6729 // appropriate registers and processing the output regs. 6730 RegsForValue RetValRegs; 6731 6732 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6733 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6734 6735 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6736 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6737 6738 switch (OpInfo.Type) { 6739 case InlineAsm::isOutput: { 6740 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6741 OpInfo.ConstraintType != TargetLowering::C_Register) { 6742 // Memory output, or 'other' output (e.g. 'X' constraint). 6743 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6744 6745 // Add information to the INLINEASM node to know about this output. 6746 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6747 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6748 TLI.getPointerTy())); 6749 AsmNodeOperands.push_back(OpInfo.CallOperand); 6750 break; 6751 } 6752 6753 // Otherwise, this is a register or register class output. 6754 6755 // Copy the output from the appropriate register. Find a register that 6756 // we can use. 6757 if (OpInfo.AssignedRegs.Regs.empty()) { 6758 LLVMContext &Ctx = *DAG.getContext(); 6759 Ctx.emitError(CS.getInstruction(), 6760 "couldn't allocate output register for constraint '" + 6761 Twine(OpInfo.ConstraintCode) + "'"); 6762 return; 6763 } 6764 6765 // If this is an indirect operand, store through the pointer after the 6766 // asm. 6767 if (OpInfo.isIndirect) { 6768 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6769 OpInfo.CallOperandVal)); 6770 } else { 6771 // This is the result value of the call. 6772 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6773 // Concatenate this output onto the outputs list. 6774 RetValRegs.append(OpInfo.AssignedRegs); 6775 } 6776 6777 // Add information to the INLINEASM node to know that this register is 6778 // set. 6779 OpInfo.AssignedRegs 6780 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6781 ? InlineAsm::Kind_RegDefEarlyClobber 6782 : InlineAsm::Kind_RegDef, 6783 false, 0, DAG, AsmNodeOperands); 6784 break; 6785 } 6786 case InlineAsm::isInput: { 6787 SDValue InOperandVal = OpInfo.CallOperand; 6788 6789 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6790 // If this is required to match an output register we have already set, 6791 // just use its register. 6792 unsigned OperandNo = OpInfo.getMatchedOperand(); 6793 6794 // Scan until we find the definition we already emitted of this operand. 6795 // When we find it, create a RegsForValue operand. 6796 unsigned CurOp = InlineAsm::Op_FirstOperand; 6797 for (; OperandNo; --OperandNo) { 6798 // Advance to the next operand. 6799 unsigned OpFlag = 6800 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6801 assert((InlineAsm::isRegDefKind(OpFlag) || 6802 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6803 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6804 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6805 } 6806 6807 unsigned OpFlag = 6808 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6809 if (InlineAsm::isRegDefKind(OpFlag) || 6810 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6811 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6812 if (OpInfo.isIndirect) { 6813 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6814 LLVMContext &Ctx = *DAG.getContext(); 6815 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6816 " don't know how to handle tied " 6817 "indirect register inputs"); 6818 return; 6819 } 6820 6821 RegsForValue MatchedRegs; 6822 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6823 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6824 MatchedRegs.RegVTs.push_back(RegVT); 6825 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6826 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6827 i != e; ++i) { 6828 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6829 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6830 else { 6831 LLVMContext &Ctx = *DAG.getContext(); 6832 Ctx.emitError(CS.getInstruction(), 6833 "inline asm error: This value" 6834 " type register class is not natively supported!"); 6835 return; 6836 } 6837 } 6838 // Use the produced MatchedRegs object to 6839 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6840 Chain, &Flag, CS.getInstruction()); 6841 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6842 true, OpInfo.getMatchedOperand(), 6843 DAG, AsmNodeOperands); 6844 break; 6845 } 6846 6847 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6848 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6849 "Unexpected number of operands"); 6850 // Add information to the INLINEASM node to know about this input. 6851 // See InlineAsm.h isUseOperandTiedToDef. 6852 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6853 OpInfo.getMatchedOperand()); 6854 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6855 TLI.getPointerTy())); 6856 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6857 break; 6858 } 6859 6860 // Treat indirect 'X' constraint as memory. 6861 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6862 OpInfo.isIndirect) 6863 OpInfo.ConstraintType = TargetLowering::C_Memory; 6864 6865 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6866 std::vector<SDValue> Ops; 6867 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6868 Ops, DAG); 6869 if (Ops.empty()) { 6870 LLVMContext &Ctx = *DAG.getContext(); 6871 Ctx.emitError(CS.getInstruction(), 6872 "invalid operand for inline asm constraint '" + 6873 Twine(OpInfo.ConstraintCode) + "'"); 6874 return; 6875 } 6876 6877 // Add information to the INLINEASM node to know about this input. 6878 unsigned ResOpType = 6879 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6880 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6881 TLI.getPointerTy())); 6882 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6883 break; 6884 } 6885 6886 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6887 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6888 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6889 "Memory operands expect pointer values"); 6890 6891 // Add information to the INLINEASM node to know about this input. 6892 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6893 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6894 TLI.getPointerTy())); 6895 AsmNodeOperands.push_back(InOperandVal); 6896 break; 6897 } 6898 6899 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6900 OpInfo.ConstraintType == TargetLowering::C_Register) && 6901 "Unknown constraint type!"); 6902 6903 // TODO: Support this. 6904 if (OpInfo.isIndirect) { 6905 LLVMContext &Ctx = *DAG.getContext(); 6906 Ctx.emitError(CS.getInstruction(), 6907 "Don't know how to handle indirect register inputs yet " 6908 "for constraint '" + 6909 Twine(OpInfo.ConstraintCode) + "'"); 6910 return; 6911 } 6912 6913 // Copy the input into the appropriate registers. 6914 if (OpInfo.AssignedRegs.Regs.empty()) { 6915 LLVMContext &Ctx = *DAG.getContext(); 6916 Ctx.emitError(CS.getInstruction(), 6917 "couldn't allocate input reg for constraint '" + 6918 Twine(OpInfo.ConstraintCode) + "'"); 6919 return; 6920 } 6921 6922 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6923 Chain, &Flag, CS.getInstruction()); 6924 6925 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6926 DAG, AsmNodeOperands); 6927 break; 6928 } 6929 case InlineAsm::isClobber: { 6930 // Add the clobbered value to the operand list, so that the register 6931 // allocator is aware that the physreg got clobbered. 6932 if (!OpInfo.AssignedRegs.Regs.empty()) 6933 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6934 false, 0, DAG, 6935 AsmNodeOperands); 6936 break; 6937 } 6938 } 6939 } 6940 6941 // Finish up input operands. Set the input chain and add the flag last. 6942 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6943 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6944 6945 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6946 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6947 Flag = Chain.getValue(1); 6948 6949 // If this asm returns a register value, copy the result from that register 6950 // and set it as the value of the call. 6951 if (!RetValRegs.Regs.empty()) { 6952 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6953 Chain, &Flag, CS.getInstruction()); 6954 6955 // FIXME: Why don't we do this for inline asms with MRVs? 6956 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6957 EVT ResultType = TLI.getValueType(CS.getType()); 6958 6959 // If any of the results of the inline asm is a vector, it may have the 6960 // wrong width/num elts. This can happen for register classes that can 6961 // contain multiple different value types. The preg or vreg allocated may 6962 // not have the same VT as was expected. Convert it to the right type 6963 // with bit_convert. 6964 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6965 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6966 ResultType, Val); 6967 6968 } else if (ResultType != Val.getValueType() && 6969 ResultType.isInteger() && Val.getValueType().isInteger()) { 6970 // If a result value was tied to an input value, the computed result may 6971 // have a wider width than the expected result. Extract the relevant 6972 // portion. 6973 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6974 } 6975 6976 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6977 } 6978 6979 setValue(CS.getInstruction(), Val); 6980 // Don't need to use this as a chain in this case. 6981 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6982 return; 6983 } 6984 6985 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6986 6987 // Process indirect outputs, first output all of the flagged copies out of 6988 // physregs. 6989 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6990 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6991 const Value *Ptr = IndirectStoresToEmit[i].second; 6992 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6993 Chain, &Flag, IA); 6994 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6995 } 6996 6997 // Emit the non-flagged stores from the physregs. 6998 SmallVector<SDValue, 8> OutChains; 6999 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7000 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 7001 StoresToEmit[i].first, 7002 getValue(StoresToEmit[i].second), 7003 MachinePointerInfo(StoresToEmit[i].second), 7004 false, false, 0); 7005 OutChains.push_back(Val); 7006 } 7007 7008 if (!OutChains.empty()) 7009 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7010 7011 DAG.setRoot(Chain); 7012 } 7013 7014 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7015 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7016 MVT::Other, getRoot(), 7017 getValue(I.getArgOperand(0)), 7018 DAG.getSrcValue(I.getArgOperand(0)))); 7019 } 7020 7021 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7022 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7023 const DataLayout &DL = *TLI.getDataLayout(); 7024 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 7025 getRoot(), getValue(I.getOperand(0)), 7026 DAG.getSrcValue(I.getOperand(0)), 7027 DL.getABITypeAlignment(I.getType())); 7028 setValue(&I, V); 7029 DAG.setRoot(V.getValue(1)); 7030 } 7031 7032 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7033 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7034 MVT::Other, getRoot(), 7035 getValue(I.getArgOperand(0)), 7036 DAG.getSrcValue(I.getArgOperand(0)))); 7037 } 7038 7039 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7040 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7041 MVT::Other, getRoot(), 7042 getValue(I.getArgOperand(0)), 7043 getValue(I.getArgOperand(1)), 7044 DAG.getSrcValue(I.getArgOperand(0)), 7045 DAG.getSrcValue(I.getArgOperand(1)))); 7046 } 7047 7048 /// \brief Lower an argument list according to the target calling convention. 7049 /// 7050 /// \return A tuple of <return-value, token-chain> 7051 /// 7052 /// This is a helper for lowering intrinsics that follow a target calling 7053 /// convention or require stack pointer adjustment. Only a subset of the 7054 /// intrinsic's operands need to participate in the calling convention. 7055 std::pair<SDValue, SDValue> 7056 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 7057 unsigned NumArgs, SDValue Callee, 7058 bool UseVoidTy, 7059 MachineBasicBlock *LandingPad, 7060 bool IsPatchPoint) { 7061 TargetLowering::ArgListTy Args; 7062 Args.reserve(NumArgs); 7063 7064 // Populate the argument list. 7065 // Attributes for args start at offset 1, after the return attribute. 7066 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 7067 ArgI != ArgE; ++ArgI) { 7068 const Value *V = CS->getOperand(ArgI); 7069 7070 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7071 7072 TargetLowering::ArgListEntry Entry; 7073 Entry.Node = getValue(V); 7074 Entry.Ty = V->getType(); 7075 Entry.setAttributes(&CS, AttrI); 7076 Args.push_back(Entry); 7077 } 7078 7079 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7080 TargetLowering::CallLoweringInfo CLI(DAG); 7081 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 7082 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 7083 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 7084 7085 return lowerInvokable(CLI, LandingPad); 7086 } 7087 7088 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7089 /// or patchpoint target node's operand list. 7090 /// 7091 /// Constants are converted to TargetConstants purely as an optimization to 7092 /// avoid constant materialization and register allocation. 7093 /// 7094 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7095 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7096 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7097 /// address materialization and register allocation, but may also be required 7098 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7099 /// alloca in the entry block, then the runtime may assume that the alloca's 7100 /// StackMap location can be read immediately after compilation and that the 7101 /// location is valid at any point during execution (this is similar to the 7102 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7103 /// only available in a register, then the runtime would need to trap when 7104 /// execution reaches the StackMap in order to read the alloca's location. 7105 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7106 SmallVectorImpl<SDValue> &Ops, 7107 SelectionDAGBuilder &Builder) { 7108 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7109 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7110 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7111 Ops.push_back( 7112 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 7113 Ops.push_back( 7114 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 7115 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7116 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7117 Ops.push_back( 7118 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 7119 } else 7120 Ops.push_back(OpVal); 7121 } 7122 } 7123 7124 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7125 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7126 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7127 // [live variables...]) 7128 7129 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7130 7131 SDValue Chain, InFlag, Callee, NullPtr; 7132 SmallVector<SDValue, 32> Ops; 7133 7134 SDLoc DL = getCurSDLoc(); 7135 Callee = getValue(CI.getCalledValue()); 7136 NullPtr = DAG.getIntPtrConstant(0, true); 7137 7138 // The stackmap intrinsic only records the live variables (the arguemnts 7139 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7140 // intrinsic, this won't be lowered to a function call. This means we don't 7141 // have to worry about calling conventions and target specific lowering code. 7142 // Instead we perform the call lowering right here. 7143 // 7144 // chain, flag = CALLSEQ_START(chain, 0) 7145 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7146 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7147 // 7148 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 7149 InFlag = Chain.getValue(1); 7150 7151 // Add the <id> and <numBytes> constants. 7152 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7153 Ops.push_back(DAG.getTargetConstant( 7154 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7155 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7156 Ops.push_back(DAG.getTargetConstant( 7157 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7158 7159 // Push live variables for the stack map. 7160 addStackMapLiveVars(&CI, 2, Ops, *this); 7161 7162 // We are not pushing any register mask info here on the operands list, 7163 // because the stackmap doesn't clobber anything. 7164 7165 // Push the chain and the glue flag. 7166 Ops.push_back(Chain); 7167 Ops.push_back(InFlag); 7168 7169 // Create the STACKMAP node. 7170 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7171 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7172 Chain = SDValue(SM, 0); 7173 InFlag = Chain.getValue(1); 7174 7175 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7176 7177 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7178 7179 // Set the root to the target-lowered call chain. 7180 DAG.setRoot(Chain); 7181 7182 // Inform the Frame Information that we have a stackmap in this function. 7183 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7184 } 7185 7186 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7187 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7188 MachineBasicBlock *LandingPad) { 7189 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7190 // i32 <numBytes>, 7191 // i8* <target>, 7192 // i32 <numArgs>, 7193 // [Args...], 7194 // [live variables...]) 7195 7196 CallingConv::ID CC = CS.getCallingConv(); 7197 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7198 bool HasDef = !CS->getType()->isVoidTy(); 7199 SDValue Callee = getValue(CS->getOperand(2)); // <target> 7200 7201 // Get the real number of arguments participating in the call <numArgs> 7202 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7203 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7204 7205 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7206 // Intrinsics include all meta-operands up to but not including CC. 7207 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7208 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7209 "Not enough arguments provided to the patchpoint intrinsic"); 7210 7211 // For AnyRegCC the arguments are lowered later on manually. 7212 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7213 std::pair<SDValue, SDValue> Result = 7214 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 7215 LandingPad, true); 7216 7217 SDNode *CallEnd = Result.second.getNode(); 7218 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7219 CallEnd = CallEnd->getOperand(0).getNode(); 7220 7221 /// Get a call instruction from the call sequence chain. 7222 /// Tail calls are not allowed. 7223 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7224 "Expected a callseq node."); 7225 SDNode *Call = CallEnd->getOperand(0).getNode(); 7226 bool HasGlue = Call->getGluedNode(); 7227 7228 // Replace the target specific call node with the patchable intrinsic. 7229 SmallVector<SDValue, 8> Ops; 7230 7231 // Add the <id> and <numBytes> constants. 7232 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7233 Ops.push_back(DAG.getTargetConstant( 7234 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7235 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7236 Ops.push_back(DAG.getTargetConstant( 7237 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7238 7239 // Assume that the Callee is a constant address. 7240 // FIXME: handle function symbols in the future. 7241 Ops.push_back( 7242 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7243 /*isTarget=*/true)); 7244 7245 // Adjust <numArgs> to account for any arguments that have been passed on the 7246 // stack instead. 7247 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7248 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7249 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7250 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7251 7252 // Add the calling convention 7253 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7254 7255 // Add the arguments we omitted previously. The register allocator should 7256 // place these in any free register. 7257 if (IsAnyRegCC) 7258 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7259 Ops.push_back(getValue(CS.getArgument(i))); 7260 7261 // Push the arguments from the call instruction up to the register mask. 7262 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7263 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7264 Ops.push_back(*i); 7265 7266 // Push live variables for the stack map. 7267 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this); 7268 7269 // Push the register mask info. 7270 if (HasGlue) 7271 Ops.push_back(*(Call->op_end()-2)); 7272 else 7273 Ops.push_back(*(Call->op_end()-1)); 7274 7275 // Push the chain (this is originally the first operand of the call, but 7276 // becomes now the last or second to last operand). 7277 Ops.push_back(*(Call->op_begin())); 7278 7279 // Push the glue flag (last operand). 7280 if (HasGlue) 7281 Ops.push_back(*(Call->op_end()-1)); 7282 7283 SDVTList NodeTys; 7284 if (IsAnyRegCC && HasDef) { 7285 // Create the return types based on the intrinsic definition 7286 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7287 SmallVector<EVT, 3> ValueVTs; 7288 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 7289 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7290 7291 // There is always a chain and a glue type at the end 7292 ValueVTs.push_back(MVT::Other); 7293 ValueVTs.push_back(MVT::Glue); 7294 NodeTys = DAG.getVTList(ValueVTs); 7295 } else 7296 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7297 7298 // Replace the target specific call node with a PATCHPOINT node. 7299 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7300 getCurSDLoc(), NodeTys, Ops); 7301 7302 // Update the NodeMap. 7303 if (HasDef) { 7304 if (IsAnyRegCC) 7305 setValue(CS.getInstruction(), SDValue(MN, 0)); 7306 else 7307 setValue(CS.getInstruction(), Result.first); 7308 } 7309 7310 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7311 // call sequence. Furthermore the location of the chain and glue can change 7312 // when the AnyReg calling convention is used and the intrinsic returns a 7313 // value. 7314 if (IsAnyRegCC && HasDef) { 7315 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7316 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7317 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7318 } else 7319 DAG.ReplaceAllUsesWith(Call, MN); 7320 DAG.DeleteNode(Call); 7321 7322 // Inform the Frame Information that we have a patchpoint in this function. 7323 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7324 } 7325 7326 /// Returns an AttributeSet representing the attributes applied to the return 7327 /// value of the given call. 7328 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7329 SmallVector<Attribute::AttrKind, 2> Attrs; 7330 if (CLI.RetSExt) 7331 Attrs.push_back(Attribute::SExt); 7332 if (CLI.RetZExt) 7333 Attrs.push_back(Attribute::ZExt); 7334 if (CLI.IsInReg) 7335 Attrs.push_back(Attribute::InReg); 7336 7337 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7338 Attrs); 7339 } 7340 7341 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7342 /// implementation, which just calls LowerCall. 7343 /// FIXME: When all targets are 7344 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7345 std::pair<SDValue, SDValue> 7346 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7347 // Handle the incoming return values from the call. 7348 CLI.Ins.clear(); 7349 Type *OrigRetTy = CLI.RetTy; 7350 SmallVector<EVT, 4> RetTys; 7351 SmallVector<uint64_t, 4> Offsets; 7352 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7353 7354 SmallVector<ISD::OutputArg, 4> Outs; 7355 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7356 7357 bool CanLowerReturn = 7358 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7359 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7360 7361 SDValue DemoteStackSlot; 7362 int DemoteStackIdx = -100; 7363 if (!CanLowerReturn) { 7364 // FIXME: equivalent assert? 7365 // assert(!CS.hasInAllocaArgument() && 7366 // "sret demotion is incompatible with inalloca"); 7367 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7368 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7369 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7370 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7371 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7372 7373 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7374 ArgListEntry Entry; 7375 Entry.Node = DemoteStackSlot; 7376 Entry.Ty = StackSlotPtrType; 7377 Entry.isSExt = false; 7378 Entry.isZExt = false; 7379 Entry.isInReg = false; 7380 Entry.isSRet = true; 7381 Entry.isNest = false; 7382 Entry.isByVal = false; 7383 Entry.isReturned = false; 7384 Entry.Alignment = Align; 7385 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7386 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7387 } else { 7388 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7389 EVT VT = RetTys[I]; 7390 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7391 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7392 for (unsigned i = 0; i != NumRegs; ++i) { 7393 ISD::InputArg MyFlags; 7394 MyFlags.VT = RegisterVT; 7395 MyFlags.ArgVT = VT; 7396 MyFlags.Used = CLI.IsReturnValueUsed; 7397 if (CLI.RetSExt) 7398 MyFlags.Flags.setSExt(); 7399 if (CLI.RetZExt) 7400 MyFlags.Flags.setZExt(); 7401 if (CLI.IsInReg) 7402 MyFlags.Flags.setInReg(); 7403 CLI.Ins.push_back(MyFlags); 7404 } 7405 } 7406 } 7407 7408 // Handle all of the outgoing arguments. 7409 CLI.Outs.clear(); 7410 CLI.OutVals.clear(); 7411 ArgListTy &Args = CLI.getArgs(); 7412 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7413 SmallVector<EVT, 4> ValueVTs; 7414 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7415 Type *FinalType = Args[i].Ty; 7416 if (Args[i].isByVal) 7417 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7418 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7419 FinalType, CLI.CallConv, CLI.IsVarArg); 7420 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7421 ++Value) { 7422 EVT VT = ValueVTs[Value]; 7423 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7424 SDValue Op = SDValue(Args[i].Node.getNode(), 7425 Args[i].Node.getResNo() + Value); 7426 ISD::ArgFlagsTy Flags; 7427 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7428 7429 if (Args[i].isZExt) 7430 Flags.setZExt(); 7431 if (Args[i].isSExt) 7432 Flags.setSExt(); 7433 if (Args[i].isInReg) 7434 Flags.setInReg(); 7435 if (Args[i].isSRet) 7436 Flags.setSRet(); 7437 if (Args[i].isByVal) 7438 Flags.setByVal(); 7439 if (Args[i].isInAlloca) { 7440 Flags.setInAlloca(); 7441 // Set the byval flag for CCAssignFn callbacks that don't know about 7442 // inalloca. This way we can know how many bytes we should've allocated 7443 // and how many bytes a callee cleanup function will pop. If we port 7444 // inalloca to more targets, we'll have to add custom inalloca handling 7445 // in the various CC lowering callbacks. 7446 Flags.setByVal(); 7447 } 7448 if (Args[i].isByVal || Args[i].isInAlloca) { 7449 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7450 Type *ElementTy = Ty->getElementType(); 7451 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7452 // For ByVal, alignment should come from FE. BE will guess if this 7453 // info is not there but there are cases it cannot get right. 7454 unsigned FrameAlign; 7455 if (Args[i].Alignment) 7456 FrameAlign = Args[i].Alignment; 7457 else 7458 FrameAlign = getByValTypeAlignment(ElementTy); 7459 Flags.setByValAlign(FrameAlign); 7460 } 7461 if (Args[i].isNest) 7462 Flags.setNest(); 7463 if (NeedsRegBlock) { 7464 Flags.setInConsecutiveRegs(); 7465 if (Value == NumValues - 1) 7466 Flags.setInConsecutiveRegsLast(); 7467 } 7468 Flags.setOrigAlign(OriginalAlignment); 7469 7470 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7471 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7472 SmallVector<SDValue, 4> Parts(NumParts); 7473 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7474 7475 if (Args[i].isSExt) 7476 ExtendKind = ISD::SIGN_EXTEND; 7477 else if (Args[i].isZExt) 7478 ExtendKind = ISD::ZERO_EXTEND; 7479 7480 // Conservatively only handle 'returned' on non-vectors for now 7481 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7482 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7483 "unexpected use of 'returned'"); 7484 // Before passing 'returned' to the target lowering code, ensure that 7485 // either the register MVT and the actual EVT are the same size or that 7486 // the return value and argument are extended in the same way; in these 7487 // cases it's safe to pass the argument register value unchanged as the 7488 // return register value (although it's at the target's option whether 7489 // to do so) 7490 // TODO: allow code generation to take advantage of partially preserved 7491 // registers rather than clobbering the entire register when the 7492 // parameter extension method is not compatible with the return 7493 // extension method 7494 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7495 (ExtendKind != ISD::ANY_EXTEND && 7496 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7497 Flags.setReturned(); 7498 } 7499 7500 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7501 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7502 7503 for (unsigned j = 0; j != NumParts; ++j) { 7504 // if it isn't first piece, alignment must be 1 7505 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7506 i < CLI.NumFixedArgs, 7507 i, j*Parts[j].getValueType().getStoreSize()); 7508 if (NumParts > 1 && j == 0) 7509 MyFlags.Flags.setSplit(); 7510 else if (j != 0) 7511 MyFlags.Flags.setOrigAlign(1); 7512 7513 CLI.Outs.push_back(MyFlags); 7514 CLI.OutVals.push_back(Parts[j]); 7515 } 7516 } 7517 } 7518 7519 SmallVector<SDValue, 4> InVals; 7520 CLI.Chain = LowerCall(CLI, InVals); 7521 7522 // Verify that the target's LowerCall behaved as expected. 7523 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7524 "LowerCall didn't return a valid chain!"); 7525 assert((!CLI.IsTailCall || InVals.empty()) && 7526 "LowerCall emitted a return value for a tail call!"); 7527 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7528 "LowerCall didn't emit the correct number of values!"); 7529 7530 // For a tail call, the return value is merely live-out and there aren't 7531 // any nodes in the DAG representing it. Return a special value to 7532 // indicate that a tail call has been emitted and no more Instructions 7533 // should be processed in the current block. 7534 if (CLI.IsTailCall) { 7535 CLI.DAG.setRoot(CLI.Chain); 7536 return std::make_pair(SDValue(), SDValue()); 7537 } 7538 7539 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7540 assert(InVals[i].getNode() && 7541 "LowerCall emitted a null value!"); 7542 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7543 "LowerCall emitted a value with the wrong type!"); 7544 }); 7545 7546 SmallVector<SDValue, 4> ReturnValues; 7547 if (!CanLowerReturn) { 7548 // The instruction result is the result of loading from the 7549 // hidden sret parameter. 7550 SmallVector<EVT, 1> PVTs; 7551 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7552 7553 ComputeValueVTs(*this, PtrRetTy, PVTs); 7554 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7555 EVT PtrVT = PVTs[0]; 7556 7557 unsigned NumValues = RetTys.size(); 7558 ReturnValues.resize(NumValues); 7559 SmallVector<SDValue, 4> Chains(NumValues); 7560 7561 for (unsigned i = 0; i < NumValues; ++i) { 7562 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7563 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7564 SDValue L = CLI.DAG.getLoad( 7565 RetTys[i], CLI.DL, CLI.Chain, Add, 7566 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7567 false, false, 1); 7568 ReturnValues[i] = L; 7569 Chains[i] = L.getValue(1); 7570 } 7571 7572 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7573 } else { 7574 // Collect the legal value parts into potentially illegal values 7575 // that correspond to the original function's return values. 7576 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7577 if (CLI.RetSExt) 7578 AssertOp = ISD::AssertSext; 7579 else if (CLI.RetZExt) 7580 AssertOp = ISD::AssertZext; 7581 unsigned CurReg = 0; 7582 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7583 EVT VT = RetTys[I]; 7584 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7585 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7586 7587 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7588 NumRegs, RegisterVT, VT, nullptr, 7589 AssertOp)); 7590 CurReg += NumRegs; 7591 } 7592 7593 // For a function returning void, there is no return value. We can't create 7594 // such a node, so we just return a null return value in that case. In 7595 // that case, nothing will actually look at the value. 7596 if (ReturnValues.empty()) 7597 return std::make_pair(SDValue(), CLI.Chain); 7598 } 7599 7600 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7601 CLI.DAG.getVTList(RetTys), ReturnValues); 7602 return std::make_pair(Res, CLI.Chain); 7603 } 7604 7605 void TargetLowering::LowerOperationWrapper(SDNode *N, 7606 SmallVectorImpl<SDValue> &Results, 7607 SelectionDAG &DAG) const { 7608 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7609 if (Res.getNode()) 7610 Results.push_back(Res); 7611 } 7612 7613 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7614 llvm_unreachable("LowerOperation not implemented for this target!"); 7615 } 7616 7617 void 7618 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7619 SDValue Op = getNonRegisterValue(V); 7620 assert((Op.getOpcode() != ISD::CopyFromReg || 7621 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7622 "Copy from a reg to the same reg!"); 7623 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7624 7625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7626 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7627 SDValue Chain = DAG.getEntryNode(); 7628 7629 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7630 FuncInfo.PreferredExtendType.end()) 7631 ? ISD::ANY_EXTEND 7632 : FuncInfo.PreferredExtendType[V]; 7633 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7634 PendingExports.push_back(Chain); 7635 } 7636 7637 #include "llvm/CodeGen/SelectionDAGISel.h" 7638 7639 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7640 /// entry block, return true. This includes arguments used by switches, since 7641 /// the switch may expand into multiple basic blocks. 7642 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7643 // With FastISel active, we may be splitting blocks, so force creation 7644 // of virtual registers for all non-dead arguments. 7645 if (FastISel) 7646 return A->use_empty(); 7647 7648 const BasicBlock *Entry = A->getParent()->begin(); 7649 for (const User *U : A->users()) 7650 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7651 return false; // Use not in entry block. 7652 7653 return true; 7654 } 7655 7656 void SelectionDAGISel::LowerArguments(const Function &F) { 7657 SelectionDAG &DAG = SDB->DAG; 7658 SDLoc dl = SDB->getCurSDLoc(); 7659 const DataLayout *DL = TLI->getDataLayout(); 7660 SmallVector<ISD::InputArg, 16> Ins; 7661 7662 if (!FuncInfo->CanLowerReturn) { 7663 // Put in an sret pointer parameter before all the other parameters. 7664 SmallVector<EVT, 1> ValueVTs; 7665 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7666 7667 // NOTE: Assuming that a pointer will never break down to more than one VT 7668 // or one register. 7669 ISD::ArgFlagsTy Flags; 7670 Flags.setSRet(); 7671 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7672 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7673 Ins.push_back(RetArg); 7674 } 7675 7676 // Set up the incoming argument description vector. 7677 unsigned Idx = 1; 7678 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7679 I != E; ++I, ++Idx) { 7680 SmallVector<EVT, 4> ValueVTs; 7681 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7682 bool isArgValueUsed = !I->use_empty(); 7683 unsigned PartBase = 0; 7684 Type *FinalType = I->getType(); 7685 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7686 FinalType = cast<PointerType>(FinalType)->getElementType(); 7687 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7688 FinalType, F.getCallingConv(), F.isVarArg()); 7689 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7690 Value != NumValues; ++Value) { 7691 EVT VT = ValueVTs[Value]; 7692 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7693 ISD::ArgFlagsTy Flags; 7694 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7695 7696 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7697 Flags.setZExt(); 7698 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7699 Flags.setSExt(); 7700 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7701 Flags.setInReg(); 7702 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7703 Flags.setSRet(); 7704 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7705 Flags.setByVal(); 7706 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7707 Flags.setInAlloca(); 7708 // Set the byval flag for CCAssignFn callbacks that don't know about 7709 // inalloca. This way we can know how many bytes we should've allocated 7710 // and how many bytes a callee cleanup function will pop. If we port 7711 // inalloca to more targets, we'll have to add custom inalloca handling 7712 // in the various CC lowering callbacks. 7713 Flags.setByVal(); 7714 } 7715 if (Flags.isByVal() || Flags.isInAlloca()) { 7716 PointerType *Ty = cast<PointerType>(I->getType()); 7717 Type *ElementTy = Ty->getElementType(); 7718 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7719 // For ByVal, alignment should be passed from FE. BE will guess if 7720 // this info is not there but there are cases it cannot get right. 7721 unsigned FrameAlign; 7722 if (F.getParamAlignment(Idx)) 7723 FrameAlign = F.getParamAlignment(Idx); 7724 else 7725 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7726 Flags.setByValAlign(FrameAlign); 7727 } 7728 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7729 Flags.setNest(); 7730 if (NeedsRegBlock) { 7731 Flags.setInConsecutiveRegs(); 7732 if (Value == NumValues - 1) 7733 Flags.setInConsecutiveRegsLast(); 7734 } 7735 Flags.setOrigAlign(OriginalAlignment); 7736 7737 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7738 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7739 for (unsigned i = 0; i != NumRegs; ++i) { 7740 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7741 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7742 if (NumRegs > 1 && i == 0) 7743 MyFlags.Flags.setSplit(); 7744 // if it isn't first piece, alignment must be 1 7745 else if (i > 0) 7746 MyFlags.Flags.setOrigAlign(1); 7747 Ins.push_back(MyFlags); 7748 } 7749 PartBase += VT.getStoreSize(); 7750 } 7751 } 7752 7753 // Call the target to set up the argument values. 7754 SmallVector<SDValue, 8> InVals; 7755 SDValue NewRoot = TLI->LowerFormalArguments( 7756 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7757 7758 // Verify that the target's LowerFormalArguments behaved as expected. 7759 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7760 "LowerFormalArguments didn't return a valid chain!"); 7761 assert(InVals.size() == Ins.size() && 7762 "LowerFormalArguments didn't emit the correct number of values!"); 7763 DEBUG({ 7764 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7765 assert(InVals[i].getNode() && 7766 "LowerFormalArguments emitted a null value!"); 7767 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7768 "LowerFormalArguments emitted a value with the wrong type!"); 7769 } 7770 }); 7771 7772 // Update the DAG with the new chain value resulting from argument lowering. 7773 DAG.setRoot(NewRoot); 7774 7775 // Set up the argument values. 7776 unsigned i = 0; 7777 Idx = 1; 7778 if (!FuncInfo->CanLowerReturn) { 7779 // Create a virtual register for the sret pointer, and put in a copy 7780 // from the sret argument into it. 7781 SmallVector<EVT, 1> ValueVTs; 7782 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7783 MVT VT = ValueVTs[0].getSimpleVT(); 7784 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7785 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7786 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7787 RegVT, VT, nullptr, AssertOp); 7788 7789 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7790 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7791 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7792 FuncInfo->DemoteRegister = SRetReg; 7793 NewRoot = 7794 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7795 DAG.setRoot(NewRoot); 7796 7797 // i indexes lowered arguments. Bump it past the hidden sret argument. 7798 // Idx indexes LLVM arguments. Don't touch it. 7799 ++i; 7800 } 7801 7802 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7803 ++I, ++Idx) { 7804 SmallVector<SDValue, 4> ArgValues; 7805 SmallVector<EVT, 4> ValueVTs; 7806 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7807 unsigned NumValues = ValueVTs.size(); 7808 7809 // If this argument is unused then remember its value. It is used to generate 7810 // debugging information. 7811 if (I->use_empty() && NumValues) { 7812 SDB->setUnusedArgValue(I, InVals[i]); 7813 7814 // Also remember any frame index for use in FastISel. 7815 if (FrameIndexSDNode *FI = 7816 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7817 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7818 } 7819 7820 for (unsigned Val = 0; Val != NumValues; ++Val) { 7821 EVT VT = ValueVTs[Val]; 7822 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7823 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7824 7825 if (!I->use_empty()) { 7826 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7827 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7828 AssertOp = ISD::AssertSext; 7829 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7830 AssertOp = ISD::AssertZext; 7831 7832 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7833 NumParts, PartVT, VT, 7834 nullptr, AssertOp)); 7835 } 7836 7837 i += NumParts; 7838 } 7839 7840 // We don't need to do anything else for unused arguments. 7841 if (ArgValues.empty()) 7842 continue; 7843 7844 // Note down frame index. 7845 if (FrameIndexSDNode *FI = 7846 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7847 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7848 7849 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7850 SDB->getCurSDLoc()); 7851 7852 SDB->setValue(I, Res); 7853 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7854 if (LoadSDNode *LNode = 7855 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7856 if (FrameIndexSDNode *FI = 7857 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7858 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7859 } 7860 7861 // If this argument is live outside of the entry block, insert a copy from 7862 // wherever we got it to the vreg that other BB's will reference it as. 7863 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7864 // If we can, though, try to skip creating an unnecessary vreg. 7865 // FIXME: This isn't very clean... it would be nice to make this more 7866 // general. It's also subtly incompatible with the hacks FastISel 7867 // uses with vregs. 7868 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7869 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7870 FuncInfo->ValueMap[I] = Reg; 7871 continue; 7872 } 7873 } 7874 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7875 FuncInfo->InitializeRegForValue(I); 7876 SDB->CopyToExportRegsIfNeeded(I); 7877 } 7878 } 7879 7880 assert(i == InVals.size() && "Argument register count mismatch!"); 7881 7882 // Finally, if the target has anything special to do, allow it to do so. 7883 // FIXME: this should insert code into the DAG! 7884 EmitFunctionEntryCode(); 7885 } 7886 7887 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7888 /// ensure constants are generated when needed. Remember the virtual registers 7889 /// that need to be added to the Machine PHI nodes as input. We cannot just 7890 /// directly add them, because expansion might result in multiple MBB's for one 7891 /// BB. As such, the start of the BB might correspond to a different MBB than 7892 /// the end. 7893 /// 7894 void 7895 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7896 const TerminatorInst *TI = LLVMBB->getTerminator(); 7897 7898 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7899 7900 // Check successor nodes' PHI nodes that expect a constant to be available 7901 // from this block. 7902 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7903 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7904 if (!isa<PHINode>(SuccBB->begin())) continue; 7905 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7906 7907 // If this terminator has multiple identical successors (common for 7908 // switches), only handle each succ once. 7909 if (!SuccsHandled.insert(SuccMBB).second) 7910 continue; 7911 7912 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7913 7914 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7915 // nodes and Machine PHI nodes, but the incoming operands have not been 7916 // emitted yet. 7917 for (BasicBlock::const_iterator I = SuccBB->begin(); 7918 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7919 // Ignore dead phi's. 7920 if (PN->use_empty()) continue; 7921 7922 // Skip empty types 7923 if (PN->getType()->isEmptyTy()) 7924 continue; 7925 7926 unsigned Reg; 7927 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7928 7929 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7930 unsigned &RegOut = ConstantsOut[C]; 7931 if (RegOut == 0) { 7932 RegOut = FuncInfo.CreateRegs(C->getType()); 7933 CopyValueToVirtualRegister(C, RegOut); 7934 } 7935 Reg = RegOut; 7936 } else { 7937 DenseMap<const Value *, unsigned>::iterator I = 7938 FuncInfo.ValueMap.find(PHIOp); 7939 if (I != FuncInfo.ValueMap.end()) 7940 Reg = I->second; 7941 else { 7942 assert(isa<AllocaInst>(PHIOp) && 7943 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7944 "Didn't codegen value into a register!??"); 7945 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7946 CopyValueToVirtualRegister(PHIOp, Reg); 7947 } 7948 } 7949 7950 // Remember that this register needs to added to the machine PHI node as 7951 // the input for this MBB. 7952 SmallVector<EVT, 4> ValueVTs; 7953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7954 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7955 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7956 EVT VT = ValueVTs[vti]; 7957 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7958 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7959 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7960 Reg += NumRegisters; 7961 } 7962 } 7963 } 7964 7965 ConstantsOut.clear(); 7966 } 7967 7968 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7969 /// is 0. 7970 MachineBasicBlock * 7971 SelectionDAGBuilder::StackProtectorDescriptor:: 7972 AddSuccessorMBB(const BasicBlock *BB, 7973 MachineBasicBlock *ParentMBB, 7974 bool IsLikely, 7975 MachineBasicBlock *SuccMBB) { 7976 // If SuccBB has not been created yet, create it. 7977 if (!SuccMBB) { 7978 MachineFunction *MF = ParentMBB->getParent(); 7979 MachineFunction::iterator BBI = ParentMBB; 7980 SuccMBB = MF->CreateMachineBasicBlock(BB); 7981 MF->insert(++BBI, SuccMBB); 7982 } 7983 // Add it as a successor of ParentMBB. 7984 ParentMBB->addSuccessor( 7985 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7986 return SuccMBB; 7987 } 7988