1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCSymbol.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <cstring> 105 #include <iterator> 106 #include <limits> 107 #include <numeric> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 Optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 165 const SDValue *Parts, unsigned NumParts, 166 MVT PartVT, EVT ValueVT, const Value *V, 167 Optional<CallingConv::ID> CC = None, 168 Optional<ISD::NodeType> AssertOp = None) { 169 // Let the target assemble the parts if it wants to 170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 172 PartVT, ValueVT, CC)) 173 return Val; 174 175 if (ValueVT.isVector()) 176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 177 CC); 178 179 assert(NumParts > 0 && "No parts to assemble!"); 180 SDValue Val = Parts[0]; 181 182 if (NumParts > 1) { 183 // Assemble the value from multiple parts. 184 if (ValueVT.isInteger()) { 185 unsigned PartBits = PartVT.getSizeInBits(); 186 unsigned ValueBits = ValueVT.getSizeInBits(); 187 188 // Assemble the power of 2 part. 189 unsigned RoundParts = 190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 200 PartVT, HalfVT, V); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 202 RoundParts / 2, PartVT, HalfVT, V); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = 227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getPointerTy(DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 249 } 250 } 251 252 // There is now one part, held in Val. Correct it to match ValueVT. 253 // PartEVT is the type of the register class that holds the value. 254 // ValueVT is the type of the inline asm operation. 255 EVT PartEVT = Val.getValueType(); 256 257 if (PartEVT == ValueVT) 258 return Val; 259 260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 261 ValueVT.bitsLT(PartEVT)) { 262 // For an FP value in an integer part, we need to truncate to the right 263 // width first. 264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 266 } 267 268 // Handle types that have the same size. 269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 271 272 // Handle types with different sizes. 273 if (PartEVT.isInteger() && ValueVT.isInteger()) { 274 if (ValueVT.bitsLT(PartEVT)) { 275 // For a truncate, see if we have any information to 276 // indicate whether the truncated bits will always be 277 // zero or sign-extension. 278 if (AssertOp.hasValue()) 279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 280 DAG.getValueType(ValueVT)); 281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 282 } 283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 284 } 285 286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 287 // FP_ROUND's are always exact here. 288 if (ValueVT.bitsLT(Val.getValueType())) 289 return DAG.getNode( 290 ISD::FP_ROUND, DL, ValueVT, Val, 291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 292 293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 294 } 295 296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 297 // then truncating. 298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 299 ValueVT.bitsLT(PartEVT)) { 300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 302 } 303 304 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 305 } 306 307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 308 const Twine &ErrMsg) { 309 const Instruction *I = dyn_cast_or_null<Instruction>(V); 310 if (!V) 311 return Ctx.emitError(ErrMsg); 312 313 const char *AsmError = ", possible invalid constraint for vector type"; 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) 315 if (CI->isInlineAsm()) 316 return Ctx.emitError(I, ErrMsg + AsmError); 317 318 return Ctx.emitError(I, ErrMsg); 319 } 320 321 /// getCopyFromPartsVector - Create a value that contains the specified legal 322 /// parts combined into the value they represent. If the parts combine to a 323 /// type larger than ValueVT then AssertOp can be used to specify whether the 324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 325 /// ValueVT (ISD::AssertSext). 326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 327 const SDValue *Parts, unsigned NumParts, 328 MVT PartVT, EVT ValueVT, const Value *V, 329 Optional<CallingConv::ID> CallConv) { 330 assert(ValueVT.isVector() && "Not a vector value"); 331 assert(NumParts > 0 && "No parts to assemble!"); 332 const bool IsABIRegCopy = CallConv.hasValue(); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 SDValue Val = Parts[0]; 336 337 // Handle a multi-element vector. 338 if (NumParts > 1) { 339 EVT IntermediateVT; 340 MVT RegisterVT; 341 unsigned NumIntermediates; 342 unsigned NumRegs; 343 344 if (IsABIRegCopy) { 345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 347 NumIntermediates, RegisterVT); 348 } else { 349 NumRegs = 350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 351 NumIntermediates, RegisterVT); 352 } 353 354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 355 NumParts = NumRegs; // Silence a compiler warning. 356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 357 assert(RegisterVT.getSizeInBits() == 358 Parts[0].getSimpleValueType().getSizeInBits() && 359 "Part type sizes don't match!"); 360 361 // Assemble the parts into intermediate operands. 362 SmallVector<SDValue, 8> Ops(NumIntermediates); 363 if (NumIntermediates == NumParts) { 364 // If the register was not expanded, truncate or copy the value, 365 // as appropriate. 366 for (unsigned i = 0; i != NumParts; ++i) 367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 368 PartVT, IntermediateVT, V, CallConv); 369 } else if (NumParts > 0) { 370 // If the intermediate type was expanded, build the intermediate 371 // operands from the parts. 372 assert(NumParts % NumIntermediates == 0 && 373 "Must expand into a divisible number of parts!"); 374 unsigned Factor = NumParts / NumIntermediates; 375 for (unsigned i = 0; i != NumIntermediates; ++i) 376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 377 PartVT, IntermediateVT, V, CallConv); 378 } 379 380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 381 // intermediate operands. 382 EVT BuiltVectorTy = 383 IntermediateVT.isVector() 384 ? EVT::getVectorVT( 385 *DAG.getContext(), IntermediateVT.getScalarType(), 386 IntermediateVT.getVectorElementCount() * NumParts) 387 : EVT::getVectorVT(*DAG.getContext(), 388 IntermediateVT.getScalarType(), 389 NumIntermediates); 390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 391 : ISD::BUILD_VECTOR, 392 DL, BuiltVectorTy, Ops); 393 } 394 395 // There is now one part, held in Val. Correct it to match ValueVT. 396 EVT PartEVT = Val.getValueType(); 397 398 if (PartEVT == ValueVT) 399 return Val; 400 401 if (PartEVT.isVector()) { 402 // If the element type of the source/dest vectors are the same, but the 403 // parts vector has more elements than the value vector, then we have a 404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 405 // elements we want. 406 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.bitsLT(PartEVT)) { 439 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 440 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 441 // Drop the extra bits. 442 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 443 return DAG.getBitcast(ValueVT, Val); 444 } 445 446 diagnosePossiblyInvalidConstraint( 447 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 448 return DAG.getUNDEF(ValueVT); 449 } 450 451 // Handle cases such as i8 -> <1 x i1> 452 EVT ValueSVT = ValueVT.getVectorElementType(); 453 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 454 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 455 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 456 else 457 Val = ValueVT.isFloatingPoint() 458 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 459 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 460 } 461 462 return DAG.getBuildVector(ValueVT, DL, Val); 463 } 464 465 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 466 SDValue Val, SDValue *Parts, unsigned NumParts, 467 MVT PartVT, const Value *V, 468 Optional<CallingConv::ID> CallConv); 469 470 /// getCopyToParts - Create a series of nodes that contain the specified value 471 /// split into legal parts. If the parts contain more bits than Val, then, for 472 /// integers, ExtendKind can be used to specify how to generate the extra bits. 473 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 474 SDValue *Parts, unsigned NumParts, MVT PartVT, 475 const Value *V, 476 Optional<CallingConv::ID> CallConv = None, 477 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 478 // Let the target split the parts if it wants to 479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 480 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 481 CallConv)) 482 return; 483 EVT ValueVT = Val.getValueType(); 484 485 // Handle the vector case separately. 486 if (ValueVT.isVector()) 487 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 488 CallConv); 489 490 unsigned PartBits = PartVT.getSizeInBits(); 491 unsigned OrigNumParts = NumParts; 492 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 493 "Copying to an illegal type!"); 494 495 if (NumParts == 0) 496 return; 497 498 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 499 EVT PartEVT = PartVT; 500 if (PartEVT == ValueVT) { 501 assert(NumParts == 1 && "No-op copy with multiple parts!"); 502 Parts[0] = Val; 503 return; 504 } 505 506 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 507 // If the parts cover more bits than the value has, promote the value. 508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 509 assert(NumParts == 1 && "Do not know what to promote to!"); 510 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 511 } else { 512 if (ValueVT.isFloatingPoint()) { 513 // FP values need to be bitcast, then extended if they are being put 514 // into a larger container. 515 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 516 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 517 } 518 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 519 ValueVT.isInteger() && 520 "Unknown mismatch!"); 521 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 522 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 523 if (PartVT == MVT::x86mmx) 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } 526 } else if (PartBits == ValueVT.getSizeInBits()) { 527 // Different types of the same size. 528 assert(NumParts == 1 && PartEVT != ValueVT); 529 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 530 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 531 // If the parts cover less bits than value has, truncate the value. 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 541 // The value may have changed - recompute ValueVT. 542 ValueVT = Val.getValueType(); 543 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 544 "Failed to tile the value with PartVT!"); 545 546 if (NumParts == 1) { 547 if (PartEVT != ValueVT) { 548 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 549 "scalar-to-vector conversion failed"); 550 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 551 } 552 553 Parts[0] = Val; 554 return; 555 } 556 557 // Expand the value into multiple parts. 558 if (NumParts & (NumParts - 1)) { 559 // The number of parts is not a power of 2. Split off and copy the tail. 560 assert(PartVT.isInteger() && ValueVT.isInteger() && 561 "Do not know what to expand to!"); 562 unsigned RoundParts = 1 << Log2_32(NumParts); 563 unsigned RoundBits = RoundParts * PartBits; 564 unsigned OddParts = NumParts - RoundParts; 565 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 566 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 567 568 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 569 CallConv); 570 571 if (DAG.getDataLayout().isBigEndian()) 572 // The odd parts were reversed by getCopyToParts - unreverse them. 573 std::reverse(Parts + RoundParts, Parts + NumParts); 574 575 NumParts = RoundParts; 576 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 577 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 578 } 579 580 // The number of parts is a power of 2. Repeatedly bisect the value using 581 // EXTRACT_ELEMENT. 582 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 583 EVT::getIntegerVT(*DAG.getContext(), 584 ValueVT.getSizeInBits()), 585 Val); 586 587 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 588 for (unsigned i = 0; i < NumParts; i += StepSize) { 589 unsigned ThisBits = StepSize * PartBits / 2; 590 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 591 SDValue &Part0 = Parts[i]; 592 SDValue &Part1 = Parts[i+StepSize/2]; 593 594 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 595 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 596 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 597 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 598 599 if (ThisBits == PartBits && ThisVT != PartVT) { 600 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 601 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 602 } 603 } 604 } 605 606 if (DAG.getDataLayout().isBigEndian()) 607 std::reverse(Parts, Parts + OrigNumParts); 608 } 609 610 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 611 const SDLoc &DL, EVT PartVT) { 612 if (!PartVT.isVector()) 613 return SDValue(); 614 615 EVT ValueVT = Val.getValueType(); 616 ElementCount PartNumElts = PartVT.getVectorElementCount(); 617 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 618 619 // We only support widening vectors with equivalent element types and 620 // fixed/scalable properties. If a target needs to widen a fixed-length type 621 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 622 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 623 PartNumElts.isScalable() != ValueNumElts.isScalable() || 624 PartVT.getVectorElementType() != ValueVT.getVectorElementType()) 625 return SDValue(); 626 627 // Widening a scalable vector to another scalable vector is done by inserting 628 // the vector into a larger undef one. 629 if (PartNumElts.isScalable()) 630 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 631 Val, DAG.getVectorIdxConstant(0, DL)); 632 633 EVT ElementVT = PartVT.getVectorElementType(); 634 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 635 // undef elements. 636 SmallVector<SDValue, 16> Ops; 637 DAG.ExtractVectorElements(Val, Ops); 638 SDValue EltUndef = DAG.getUNDEF(ElementVT); 639 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 640 641 // FIXME: Use CONCAT for 2x -> 4x. 642 return DAG.getBuildVector(PartVT, DL, Ops); 643 } 644 645 /// getCopyToPartsVector - Create a series of nodes that contain the specified 646 /// value split into legal parts. 647 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 648 SDValue Val, SDValue *Parts, unsigned NumParts, 649 MVT PartVT, const Value *V, 650 Optional<CallingConv::ID> CallConv) { 651 EVT ValueVT = Val.getValueType(); 652 assert(ValueVT.isVector() && "Not a vector"); 653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 654 const bool IsABIRegCopy = CallConv.hasValue(); 655 656 if (NumParts == 1) { 657 EVT PartEVT = PartVT; 658 if (PartEVT == ValueVT) { 659 // Nothing to do. 660 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 661 // Bitconvert vector->vector case. 662 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 663 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 664 Val = Widened; 665 } else if (PartVT.isVector() && 666 PartEVT.getVectorElementType().bitsGE( 667 ValueVT.getVectorElementType()) && 668 PartEVT.getVectorElementCount() == 669 ValueVT.getVectorElementCount()) { 670 671 // Promoted vector extract 672 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 673 } else { 674 if (ValueVT.getVectorElementCount().isScalar()) { 675 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 676 DAG.getVectorIdxConstant(0, DL)); 677 } else { 678 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 679 assert(PartVT.getFixedSizeInBits() > ValueSize && 680 "lossy conversion of vector to scalar type"); 681 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 682 Val = DAG.getBitcast(IntermediateType, Val); 683 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 684 } 685 } 686 687 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 688 Parts[0] = Val; 689 return; 690 } 691 692 // Handle a multi-element vector. 693 EVT IntermediateVT; 694 MVT RegisterVT; 695 unsigned NumIntermediates; 696 unsigned NumRegs; 697 if (IsABIRegCopy) { 698 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 699 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 700 NumIntermediates, RegisterVT); 701 } else { 702 NumRegs = 703 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 704 NumIntermediates, RegisterVT); 705 } 706 707 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 708 NumParts = NumRegs; // Silence a compiler warning. 709 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 710 711 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 712 "Mixing scalable and fixed vectors when copying in parts"); 713 714 Optional<ElementCount> DestEltCnt; 715 716 if (IntermediateVT.isVector()) 717 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 718 else 719 DestEltCnt = ElementCount::getFixed(NumIntermediates); 720 721 EVT BuiltVectorTy = EVT::getVectorVT( 722 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 723 724 if (ValueVT == BuiltVectorTy) { 725 // Nothing to do. 726 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 727 // Bitconvert vector->vector case. 728 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 729 } else if (SDValue Widened = 730 widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 731 Val = Widened; 732 } else if (BuiltVectorTy.getVectorElementType().bitsGE( 733 ValueVT.getVectorElementType()) && 734 BuiltVectorTy.getVectorElementCount() == 735 ValueVT.getVectorElementCount()) { 736 // Promoted vector extract 737 Val = DAG.getAnyExtOrTrunc(Val, DL, BuiltVectorTy); 738 } 739 740 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 741 742 // Split the vector into intermediate operands. 743 SmallVector<SDValue, 8> Ops(NumIntermediates); 744 for (unsigned i = 0; i != NumIntermediates; ++i) { 745 if (IntermediateVT.isVector()) { 746 // This does something sensible for scalable vectors - see the 747 // definition of EXTRACT_SUBVECTOR for further details. 748 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 749 Ops[i] = 750 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 751 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 752 } else { 753 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 754 DAG.getVectorIdxConstant(i, DL)); 755 } 756 } 757 758 // Split the intermediate operands into legal parts. 759 if (NumParts == NumIntermediates) { 760 // If the register was not expanded, promote or copy the value, 761 // as appropriate. 762 for (unsigned i = 0; i != NumParts; ++i) 763 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 764 } else if (NumParts > 0) { 765 // If the intermediate type was expanded, split each the value into 766 // legal parts. 767 assert(NumIntermediates != 0 && "division by zero"); 768 assert(NumParts % NumIntermediates == 0 && 769 "Must expand into a divisible number of parts!"); 770 unsigned Factor = NumParts / NumIntermediates; 771 for (unsigned i = 0; i != NumIntermediates; ++i) 772 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 773 CallConv); 774 } 775 } 776 777 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 778 EVT valuevt, Optional<CallingConv::ID> CC) 779 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 780 RegCount(1, regs.size()), CallConv(CC) {} 781 782 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 783 const DataLayout &DL, unsigned Reg, Type *Ty, 784 Optional<CallingConv::ID> CC) { 785 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 786 787 CallConv = CC; 788 789 for (EVT ValueVT : ValueVTs) { 790 unsigned NumRegs = 791 isABIMangled() 792 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 793 : TLI.getNumRegisters(Context, ValueVT); 794 MVT RegisterVT = 795 isABIMangled() 796 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 797 : TLI.getRegisterType(Context, ValueVT); 798 for (unsigned i = 0; i != NumRegs; ++i) 799 Regs.push_back(Reg + i); 800 RegVTs.push_back(RegisterVT); 801 RegCount.push_back(NumRegs); 802 Reg += NumRegs; 803 } 804 } 805 806 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 807 FunctionLoweringInfo &FuncInfo, 808 const SDLoc &dl, SDValue &Chain, 809 SDValue *Flag, const Value *V) const { 810 // A Value with type {} or [0 x %t] needs no registers. 811 if (ValueVTs.empty()) 812 return SDValue(); 813 814 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 815 816 // Assemble the legal parts into the final values. 817 SmallVector<SDValue, 4> Values(ValueVTs.size()); 818 SmallVector<SDValue, 8> Parts; 819 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 820 // Copy the legal parts from the registers. 821 EVT ValueVT = ValueVTs[Value]; 822 unsigned NumRegs = RegCount[Value]; 823 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 824 *DAG.getContext(), 825 CallConv.getValue(), RegVTs[Value]) 826 : RegVTs[Value]; 827 828 Parts.resize(NumRegs); 829 for (unsigned i = 0; i != NumRegs; ++i) { 830 SDValue P; 831 if (!Flag) { 832 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 833 } else { 834 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 835 *Flag = P.getValue(2); 836 } 837 838 Chain = P.getValue(1); 839 Parts[i] = P; 840 841 // If the source register was virtual and if we know something about it, 842 // add an assert node. 843 if (!Register::isVirtualRegister(Regs[Part + i]) || 844 !RegisterVT.isInteger()) 845 continue; 846 847 const FunctionLoweringInfo::LiveOutInfo *LOI = 848 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 849 if (!LOI) 850 continue; 851 852 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 853 unsigned NumSignBits = LOI->NumSignBits; 854 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 855 856 if (NumZeroBits == RegSize) { 857 // The current value is a zero. 858 // Explicitly express that as it would be easier for 859 // optimizations to kick in. 860 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 861 continue; 862 } 863 864 // FIXME: We capture more information than the dag can represent. For 865 // now, just use the tightest assertzext/assertsext possible. 866 bool isSExt; 867 EVT FromVT(MVT::Other); 868 if (NumZeroBits) { 869 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 870 isSExt = false; 871 } else if (NumSignBits > 1) { 872 FromVT = 873 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 874 isSExt = true; 875 } else { 876 continue; 877 } 878 // Add an assertion node. 879 assert(FromVT != MVT::Other); 880 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 881 RegisterVT, P, DAG.getValueType(FromVT)); 882 } 883 884 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 885 RegisterVT, ValueVT, V, CallConv); 886 Part += NumRegs; 887 Parts.clear(); 888 } 889 890 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 891 } 892 893 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 894 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 895 const Value *V, 896 ISD::NodeType PreferredExtendType) const { 897 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 898 ISD::NodeType ExtendKind = PreferredExtendType; 899 900 // Get the list of the values's legal parts. 901 unsigned NumRegs = Regs.size(); 902 SmallVector<SDValue, 8> Parts(NumRegs); 903 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 904 unsigned NumParts = RegCount[Value]; 905 906 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 907 *DAG.getContext(), 908 CallConv.getValue(), RegVTs[Value]) 909 : RegVTs[Value]; 910 911 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 912 ExtendKind = ISD::ZERO_EXTEND; 913 914 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 915 NumParts, RegisterVT, V, CallConv, ExtendKind); 916 Part += NumParts; 917 } 918 919 // Copy the parts into the registers. 920 SmallVector<SDValue, 8> Chains(NumRegs); 921 for (unsigned i = 0; i != NumRegs; ++i) { 922 SDValue Part; 923 if (!Flag) { 924 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 925 } else { 926 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 927 *Flag = Part.getValue(1); 928 } 929 930 Chains[i] = Part.getValue(0); 931 } 932 933 if (NumRegs == 1 || Flag) 934 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 935 // flagged to it. That is the CopyToReg nodes and the user are considered 936 // a single scheduling unit. If we create a TokenFactor and return it as 937 // chain, then the TokenFactor is both a predecessor (operand) of the 938 // user as well as a successor (the TF operands are flagged to the user). 939 // c1, f1 = CopyToReg 940 // c2, f2 = CopyToReg 941 // c3 = TokenFactor c1, c2 942 // ... 943 // = op c3, ..., f2 944 Chain = Chains[NumRegs-1]; 945 else 946 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 947 } 948 949 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 950 unsigned MatchingIdx, const SDLoc &dl, 951 SelectionDAG &DAG, 952 std::vector<SDValue> &Ops) const { 953 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 954 955 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 956 if (HasMatching) 957 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 958 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 959 // Put the register class of the virtual registers in the flag word. That 960 // way, later passes can recompute register class constraints for inline 961 // assembly as well as normal instructions. 962 // Don't do this for tied operands that can use the regclass information 963 // from the def. 964 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 965 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 966 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 967 } 968 969 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 970 Ops.push_back(Res); 971 972 if (Code == InlineAsm::Kind_Clobber) { 973 // Clobbers should always have a 1:1 mapping with registers, and may 974 // reference registers that have illegal (e.g. vector) types. Hence, we 975 // shouldn't try to apply any sort of splitting logic to them. 976 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 977 "No 1:1 mapping from clobbers to regs?"); 978 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 979 (void)SP; 980 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 981 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 982 assert( 983 (Regs[I] != SP || 984 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 985 "If we clobbered the stack pointer, MFI should know about it."); 986 } 987 return; 988 } 989 990 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 991 MVT RegisterVT = RegVTs[Value]; 992 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 993 RegisterVT); 994 for (unsigned i = 0; i != NumRegs; ++i) { 995 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 996 unsigned TheReg = Regs[Reg++]; 997 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 998 } 999 } 1000 } 1001 1002 SmallVector<std::pair<unsigned, TypeSize>, 4> 1003 RegsForValue::getRegsAndSizes() const { 1004 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1005 unsigned I = 0; 1006 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1007 unsigned RegCount = std::get<0>(CountAndVT); 1008 MVT RegisterVT = std::get<1>(CountAndVT); 1009 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1010 for (unsigned E = I + RegCount; I != E; ++I) 1011 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1012 } 1013 return OutVec; 1014 } 1015 1016 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1017 const TargetLibraryInfo *li) { 1018 AA = aa; 1019 GFI = gfi; 1020 LibInfo = li; 1021 DL = &DAG.getDataLayout(); 1022 Context = DAG.getContext(); 1023 LPadToCallSiteMap.clear(); 1024 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1025 } 1026 1027 void SelectionDAGBuilder::clear() { 1028 NodeMap.clear(); 1029 UnusedArgNodeMap.clear(); 1030 PendingLoads.clear(); 1031 PendingExports.clear(); 1032 PendingConstrainedFP.clear(); 1033 PendingConstrainedFPStrict.clear(); 1034 CurInst = nullptr; 1035 HasTailCall = false; 1036 SDNodeOrder = LowestSDNodeOrder; 1037 StatepointLowering.clear(); 1038 } 1039 1040 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1041 DanglingDebugInfoMap.clear(); 1042 } 1043 1044 // Update DAG root to include dependencies on Pending chains. 1045 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1046 SDValue Root = DAG.getRoot(); 1047 1048 if (Pending.empty()) 1049 return Root; 1050 1051 // Add current root to PendingChains, unless we already indirectly 1052 // depend on it. 1053 if (Root.getOpcode() != ISD::EntryToken) { 1054 unsigned i = 0, e = Pending.size(); 1055 for (; i != e; ++i) { 1056 assert(Pending[i].getNode()->getNumOperands() > 1); 1057 if (Pending[i].getNode()->getOperand(0) == Root) 1058 break; // Don't add the root if we already indirectly depend on it. 1059 } 1060 1061 if (i == e) 1062 Pending.push_back(Root); 1063 } 1064 1065 if (Pending.size() == 1) 1066 Root = Pending[0]; 1067 else 1068 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1069 1070 DAG.setRoot(Root); 1071 Pending.clear(); 1072 return Root; 1073 } 1074 1075 SDValue SelectionDAGBuilder::getMemoryRoot() { 1076 return updateRoot(PendingLoads); 1077 } 1078 1079 SDValue SelectionDAGBuilder::getRoot() { 1080 // Chain up all pending constrained intrinsics together with all 1081 // pending loads, by simply appending them to PendingLoads and 1082 // then calling getMemoryRoot(). 1083 PendingLoads.reserve(PendingLoads.size() + 1084 PendingConstrainedFP.size() + 1085 PendingConstrainedFPStrict.size()); 1086 PendingLoads.append(PendingConstrainedFP.begin(), 1087 PendingConstrainedFP.end()); 1088 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1089 PendingConstrainedFPStrict.end()); 1090 PendingConstrainedFP.clear(); 1091 PendingConstrainedFPStrict.clear(); 1092 return getMemoryRoot(); 1093 } 1094 1095 SDValue SelectionDAGBuilder::getControlRoot() { 1096 // We need to emit pending fpexcept.strict constrained intrinsics, 1097 // so append them to the PendingExports list. 1098 PendingExports.append(PendingConstrainedFPStrict.begin(), 1099 PendingConstrainedFPStrict.end()); 1100 PendingConstrainedFPStrict.clear(); 1101 return updateRoot(PendingExports); 1102 } 1103 1104 void SelectionDAGBuilder::visit(const Instruction &I) { 1105 // Set up outgoing PHI node register values before emitting the terminator. 1106 if (I.isTerminator()) { 1107 HandlePHINodesInSuccessorBlocks(I.getParent()); 1108 } 1109 1110 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1111 if (!isa<DbgInfoIntrinsic>(I)) 1112 ++SDNodeOrder; 1113 1114 CurInst = &I; 1115 1116 visit(I.getOpcode(), I); 1117 1118 if (!I.isTerminator() && !HasTailCall && 1119 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1120 CopyToExportRegsIfNeeded(&I); 1121 1122 CurInst = nullptr; 1123 } 1124 1125 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1126 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1127 } 1128 1129 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1130 // Note: this doesn't use InstVisitor, because it has to work with 1131 // ConstantExpr's in addition to instructions. 1132 switch (Opcode) { 1133 default: llvm_unreachable("Unknown instruction type encountered!"); 1134 // Build the switch statement using the Instruction.def file. 1135 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1136 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1137 #include "llvm/IR/Instruction.def" 1138 } 1139 } 1140 1141 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1142 DebugLoc DL, unsigned Order) { 1143 // We treat variadic dbg_values differently at this stage. 1144 if (DI->hasArgList()) { 1145 // For variadic dbg_values we will now insert an undef. 1146 // FIXME: We can potentially recover these! 1147 SmallVector<SDDbgOperand, 2> Locs; 1148 for (const Value *V : DI->getValues()) { 1149 auto Undef = UndefValue::get(V->getType()); 1150 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1151 } 1152 SDDbgValue *SDV = DAG.getDbgValueList( 1153 DI->getVariable(), DI->getExpression(), Locs, {}, 1154 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1155 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1156 } else { 1157 // TODO: Dangling debug info will eventually either be resolved or produce 1158 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1159 // between the original dbg.value location and its resolved DBG_VALUE, 1160 // which we should ideally fill with an extra Undef DBG_VALUE. 1161 assert(DI->getNumVariableLocationOps() == 1 && 1162 "DbgValueInst without an ArgList should have a single location " 1163 "operand."); 1164 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1165 } 1166 } 1167 1168 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1169 const DIExpression *Expr) { 1170 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1171 const DbgValueInst *DI = DDI.getDI(); 1172 DIVariable *DanglingVariable = DI->getVariable(); 1173 DIExpression *DanglingExpr = DI->getExpression(); 1174 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1175 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1176 return true; 1177 } 1178 return false; 1179 }; 1180 1181 for (auto &DDIMI : DanglingDebugInfoMap) { 1182 DanglingDebugInfoVector &DDIV = DDIMI.second; 1183 1184 // If debug info is to be dropped, run it through final checks to see 1185 // whether it can be salvaged. 1186 for (auto &DDI : DDIV) 1187 if (isMatchingDbgValue(DDI)) 1188 salvageUnresolvedDbgValue(DDI); 1189 1190 erase_if(DDIV, isMatchingDbgValue); 1191 } 1192 } 1193 1194 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1195 // generate the debug data structures now that we've seen its definition. 1196 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1197 SDValue Val) { 1198 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1199 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1200 return; 1201 1202 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1203 for (auto &DDI : DDIV) { 1204 const DbgValueInst *DI = DDI.getDI(); 1205 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1206 assert(DI && "Ill-formed DanglingDebugInfo"); 1207 DebugLoc dl = DDI.getdl(); 1208 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1209 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1210 DILocalVariable *Variable = DI->getVariable(); 1211 DIExpression *Expr = DI->getExpression(); 1212 assert(Variable->isValidLocationForIntrinsic(dl) && 1213 "Expected inlined-at fields to agree"); 1214 SDDbgValue *SDV; 1215 if (Val.getNode()) { 1216 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1217 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1218 // we couldn't resolve it directly when examining the DbgValue intrinsic 1219 // in the first place we should not be more successful here). Unless we 1220 // have some test case that prove this to be correct we should avoid 1221 // calling EmitFuncArgumentDbgValue here. 1222 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1223 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1224 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1225 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1226 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1227 // inserted after the definition of Val when emitting the instructions 1228 // after ISel. An alternative could be to teach 1229 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1230 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1231 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1232 << ValSDNodeOrder << "\n"); 1233 SDV = getDbgValue(Val, Variable, Expr, dl, 1234 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1235 DAG.AddDbgValue(SDV, false); 1236 } else 1237 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1238 << "in EmitFuncArgumentDbgValue\n"); 1239 } else { 1240 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1241 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1242 auto SDV = 1243 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1244 DAG.AddDbgValue(SDV, false); 1245 } 1246 } 1247 DDIV.clear(); 1248 } 1249 1250 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1251 // TODO: For the variadic implementation, instead of only checking the fail 1252 // state of `handleDebugValue`, we need know specifically which values were 1253 // invalid, so that we attempt to salvage only those values when processing 1254 // a DIArgList. 1255 assert(!DDI.getDI()->hasArgList() && 1256 "Not implemented for variadic dbg_values"); 1257 Value *V = DDI.getDI()->getValue(0); 1258 DILocalVariable *Var = DDI.getDI()->getVariable(); 1259 DIExpression *Expr = DDI.getDI()->getExpression(); 1260 DebugLoc DL = DDI.getdl(); 1261 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1262 unsigned SDOrder = DDI.getSDNodeOrder(); 1263 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1264 // that DW_OP_stack_value is desired. 1265 assert(isa<DbgValueInst>(DDI.getDI())); 1266 bool StackValue = true; 1267 1268 // Can this Value can be encoded without any further work? 1269 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1270 return; 1271 1272 // Attempt to salvage back through as many instructions as possible. Bail if 1273 // a non-instruction is seen, such as a constant expression or global 1274 // variable. FIXME: Further work could recover those too. 1275 while (isa<Instruction>(V)) { 1276 Instruction &VAsInst = *cast<Instruction>(V); 1277 // Temporary "0", awaiting real implementation. 1278 SmallVector<Value *, 4> AdditionalValues; 1279 DIExpression *SalvagedExpr = 1280 salvageDebugInfoImpl(VAsInst, Expr, StackValue, 0, AdditionalValues); 1281 1282 // If we cannot salvage any further, and haven't yet found a suitable debug 1283 // expression, bail out. 1284 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1285 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1286 // here for variadic dbg_values, remove that condition. 1287 if (!SalvagedExpr || !AdditionalValues.empty()) 1288 break; 1289 1290 // New value and expr now represent this debuginfo. 1291 V = VAsInst.getOperand(0); 1292 Expr = SalvagedExpr; 1293 1294 // Some kind of simplification occurred: check whether the operand of the 1295 // salvaged debug expression can be encoded in this DAG. 1296 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1297 /*IsVariadic=*/false)) { 1298 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1299 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1300 return; 1301 } 1302 } 1303 1304 // This was the final opportunity to salvage this debug information, and it 1305 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1306 // any earlier variable location. 1307 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1308 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1309 DAG.AddDbgValue(SDV, false); 1310 1311 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1312 << "\n"); 1313 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1314 << "\n"); 1315 } 1316 1317 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1318 DILocalVariable *Var, 1319 DIExpression *Expr, DebugLoc dl, 1320 DebugLoc InstDL, unsigned Order, 1321 bool IsVariadic) { 1322 if (Values.empty()) 1323 return true; 1324 SmallVector<SDDbgOperand> LocationOps; 1325 SmallVector<SDNode *> Dependencies; 1326 for (const Value *V : Values) { 1327 // Constant value. 1328 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1329 isa<ConstantPointerNull>(V)) { 1330 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1331 continue; 1332 } 1333 1334 // If the Value is a frame index, we can create a FrameIndex debug value 1335 // without relying on the DAG at all. 1336 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1337 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1338 if (SI != FuncInfo.StaticAllocaMap.end()) { 1339 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1340 continue; 1341 } 1342 } 1343 1344 // Do not use getValue() in here; we don't want to generate code at 1345 // this point if it hasn't been done yet. 1346 SDValue N = NodeMap[V]; 1347 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1348 N = UnusedArgNodeMap[V]; 1349 if (N.getNode()) { 1350 // Only emit func arg dbg value for non-variadic dbg.values for now. 1351 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1352 return true; 1353 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1354 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1355 // describe stack slot locations. 1356 // 1357 // Consider "int x = 0; int *px = &x;". There are two kinds of 1358 // interesting debug values here after optimization: 1359 // 1360 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1361 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1362 // 1363 // Both describe the direct values of their associated variables. 1364 Dependencies.push_back(N.getNode()); 1365 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1366 continue; 1367 } 1368 LocationOps.emplace_back( 1369 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1370 continue; 1371 } 1372 1373 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1374 // Special rules apply for the first dbg.values of parameter variables in a 1375 // function. Identify them by the fact they reference Argument Values, that 1376 // they're parameters, and they are parameters of the current function. We 1377 // need to let them dangle until they get an SDNode. 1378 bool IsParamOfFunc = 1379 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1380 if (IsParamOfFunc) 1381 return false; 1382 1383 // The value is not used in this block yet (or it would have an SDNode). 1384 // We still want the value to appear for the user if possible -- if it has 1385 // an associated VReg, we can refer to that instead. 1386 auto VMI = FuncInfo.ValueMap.find(V); 1387 if (VMI != FuncInfo.ValueMap.end()) { 1388 unsigned Reg = VMI->second; 1389 // If this is a PHI node, it may be split up into several MI PHI nodes 1390 // (in FunctionLoweringInfo::set). 1391 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1392 V->getType(), None); 1393 if (RFV.occupiesMultipleRegs()) { 1394 // FIXME: We could potentially support variadic dbg_values here. 1395 if (IsVariadic) 1396 return false; 1397 unsigned Offset = 0; 1398 unsigned BitsToDescribe = 0; 1399 if (auto VarSize = Var->getSizeInBits()) 1400 BitsToDescribe = *VarSize; 1401 if (auto Fragment = Expr->getFragmentInfo()) 1402 BitsToDescribe = Fragment->SizeInBits; 1403 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1404 // Bail out if all bits are described already. 1405 if (Offset >= BitsToDescribe) 1406 break; 1407 // TODO: handle scalable vectors. 1408 unsigned RegisterSize = RegAndSize.second; 1409 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1410 ? BitsToDescribe - Offset 1411 : RegisterSize; 1412 auto FragmentExpr = DIExpression::createFragmentExpression( 1413 Expr, Offset, FragmentSize); 1414 if (!FragmentExpr) 1415 continue; 1416 SDDbgValue *SDV = DAG.getVRegDbgValue( 1417 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1418 DAG.AddDbgValue(SDV, false); 1419 Offset += RegisterSize; 1420 } 1421 return true; 1422 } 1423 // We can use simple vreg locations for variadic dbg_values as well. 1424 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1425 continue; 1426 } 1427 // We failed to create a SDDbgOperand for V. 1428 return false; 1429 } 1430 1431 // We have created a SDDbgOperand for each Value in Values. 1432 // Should use Order instead of SDNodeOrder? 1433 assert(!LocationOps.empty()); 1434 SDDbgValue *SDV = 1435 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1436 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1437 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1438 return true; 1439 } 1440 1441 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1442 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1443 for (auto &Pair : DanglingDebugInfoMap) 1444 for (auto &DDI : Pair.second) 1445 salvageUnresolvedDbgValue(DDI); 1446 clearDanglingDebugInfo(); 1447 } 1448 1449 /// getCopyFromRegs - If there was virtual register allocated for the value V 1450 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1451 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1452 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1453 SDValue Result; 1454 1455 if (It != FuncInfo.ValueMap.end()) { 1456 Register InReg = It->second; 1457 1458 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1459 DAG.getDataLayout(), InReg, Ty, 1460 None); // This is not an ABI copy. 1461 SDValue Chain = DAG.getEntryNode(); 1462 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1463 V); 1464 resolveDanglingDebugInfo(V, Result); 1465 } 1466 1467 return Result; 1468 } 1469 1470 /// getValue - Return an SDValue for the given Value. 1471 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1472 // If we already have an SDValue for this value, use it. It's important 1473 // to do this first, so that we don't create a CopyFromReg if we already 1474 // have a regular SDValue. 1475 SDValue &N = NodeMap[V]; 1476 if (N.getNode()) return N; 1477 1478 // If there's a virtual register allocated and initialized for this 1479 // value, use it. 1480 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1481 return copyFromReg; 1482 1483 // Otherwise create a new SDValue and remember it. 1484 SDValue Val = getValueImpl(V); 1485 NodeMap[V] = Val; 1486 resolveDanglingDebugInfo(V, Val); 1487 return Val; 1488 } 1489 1490 /// getNonRegisterValue - Return an SDValue for the given Value, but 1491 /// don't look in FuncInfo.ValueMap for a virtual register. 1492 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1493 // If we already have an SDValue for this value, use it. 1494 SDValue &N = NodeMap[V]; 1495 if (N.getNode()) { 1496 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1497 // Remove the debug location from the node as the node is about to be used 1498 // in a location which may differ from the original debug location. This 1499 // is relevant to Constant and ConstantFP nodes because they can appear 1500 // as constant expressions inside PHI nodes. 1501 N->setDebugLoc(DebugLoc()); 1502 } 1503 return N; 1504 } 1505 1506 // Otherwise create a new SDValue and remember it. 1507 SDValue Val = getValueImpl(V); 1508 NodeMap[V] = Val; 1509 resolveDanglingDebugInfo(V, Val); 1510 return Val; 1511 } 1512 1513 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1514 /// Create an SDValue for the given value. 1515 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1516 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1517 1518 if (const Constant *C = dyn_cast<Constant>(V)) { 1519 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1520 1521 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1522 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1523 1524 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1525 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1526 1527 if (isa<ConstantPointerNull>(C)) { 1528 unsigned AS = V->getType()->getPointerAddressSpace(); 1529 return DAG.getConstant(0, getCurSDLoc(), 1530 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1531 } 1532 1533 if (match(C, m_VScale(DAG.getDataLayout()))) 1534 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1535 1536 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1537 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1538 1539 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1540 return DAG.getUNDEF(VT); 1541 1542 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1543 visit(CE->getOpcode(), *CE); 1544 SDValue N1 = NodeMap[V]; 1545 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1546 return N1; 1547 } 1548 1549 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1550 SmallVector<SDValue, 4> Constants; 1551 for (const Use &U : C->operands()) { 1552 SDNode *Val = getValue(U).getNode(); 1553 // If the operand is an empty aggregate, there are no values. 1554 if (!Val) continue; 1555 // Add each leaf value from the operand to the Constants list 1556 // to form a flattened list of all the values. 1557 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1558 Constants.push_back(SDValue(Val, i)); 1559 } 1560 1561 return DAG.getMergeValues(Constants, getCurSDLoc()); 1562 } 1563 1564 if (const ConstantDataSequential *CDS = 1565 dyn_cast<ConstantDataSequential>(C)) { 1566 SmallVector<SDValue, 4> Ops; 1567 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1568 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1569 // Add each leaf value from the operand to the Constants list 1570 // to form a flattened list of all the values. 1571 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1572 Ops.push_back(SDValue(Val, i)); 1573 } 1574 1575 if (isa<ArrayType>(CDS->getType())) 1576 return DAG.getMergeValues(Ops, getCurSDLoc()); 1577 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1578 } 1579 1580 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1581 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1582 "Unknown struct or array constant!"); 1583 1584 SmallVector<EVT, 4> ValueVTs; 1585 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1586 unsigned NumElts = ValueVTs.size(); 1587 if (NumElts == 0) 1588 return SDValue(); // empty struct 1589 SmallVector<SDValue, 4> Constants(NumElts); 1590 for (unsigned i = 0; i != NumElts; ++i) { 1591 EVT EltVT = ValueVTs[i]; 1592 if (isa<UndefValue>(C)) 1593 Constants[i] = DAG.getUNDEF(EltVT); 1594 else if (EltVT.isFloatingPoint()) 1595 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1596 else 1597 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1598 } 1599 1600 return DAG.getMergeValues(Constants, getCurSDLoc()); 1601 } 1602 1603 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1604 return DAG.getBlockAddress(BA, VT); 1605 1606 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1607 return getValue(Equiv->getGlobalValue()); 1608 1609 VectorType *VecTy = cast<VectorType>(V->getType()); 1610 1611 // Now that we know the number and type of the elements, get that number of 1612 // elements into the Ops array based on what kind of constant it is. 1613 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1614 SmallVector<SDValue, 16> Ops; 1615 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1616 for (unsigned i = 0; i != NumElements; ++i) 1617 Ops.push_back(getValue(CV->getOperand(i))); 1618 1619 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1620 } else if (isa<ConstantAggregateZero>(C)) { 1621 EVT EltVT = 1622 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1623 1624 SDValue Op; 1625 if (EltVT.isFloatingPoint()) 1626 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1627 else 1628 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1629 1630 if (isa<ScalableVectorType>(VecTy)) 1631 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1632 else { 1633 SmallVector<SDValue, 16> Ops; 1634 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1635 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1636 } 1637 } 1638 llvm_unreachable("Unknown vector constant"); 1639 } 1640 1641 // If this is a static alloca, generate it as the frameindex instead of 1642 // computation. 1643 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1644 DenseMap<const AllocaInst*, int>::iterator SI = 1645 FuncInfo.StaticAllocaMap.find(AI); 1646 if (SI != FuncInfo.StaticAllocaMap.end()) 1647 return DAG.getFrameIndex(SI->second, 1648 TLI.getFrameIndexTy(DAG.getDataLayout())); 1649 } 1650 1651 // If this is an instruction which fast-isel has deferred, select it now. 1652 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1653 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1654 1655 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1656 Inst->getType(), None); 1657 SDValue Chain = DAG.getEntryNode(); 1658 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1659 } 1660 1661 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1662 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1663 } 1664 llvm_unreachable("Can't get register for value!"); 1665 } 1666 1667 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1668 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1669 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1670 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1671 bool IsSEH = isAsynchronousEHPersonality(Pers); 1672 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1673 if (!IsSEH) 1674 CatchPadMBB->setIsEHScopeEntry(); 1675 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1676 if (IsMSVCCXX || IsCoreCLR) 1677 CatchPadMBB->setIsEHFuncletEntry(); 1678 } 1679 1680 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1681 // Update machine-CFG edge. 1682 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1683 FuncInfo.MBB->addSuccessor(TargetMBB); 1684 TargetMBB->setIsEHCatchretTarget(true); 1685 DAG.getMachineFunction().setHasEHCatchret(true); 1686 1687 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1688 bool IsSEH = isAsynchronousEHPersonality(Pers); 1689 if (IsSEH) { 1690 // If this is not a fall-through branch or optimizations are switched off, 1691 // emit the branch. 1692 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1693 TM.getOptLevel() == CodeGenOpt::None) 1694 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1695 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1696 return; 1697 } 1698 1699 // Figure out the funclet membership for the catchret's successor. 1700 // This will be used by the FuncletLayout pass to determine how to order the 1701 // BB's. 1702 // A 'catchret' returns to the outer scope's color. 1703 Value *ParentPad = I.getCatchSwitchParentPad(); 1704 const BasicBlock *SuccessorColor; 1705 if (isa<ConstantTokenNone>(ParentPad)) 1706 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1707 else 1708 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1709 assert(SuccessorColor && "No parent funclet for catchret!"); 1710 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1711 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1712 1713 // Create the terminator node. 1714 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1715 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1716 DAG.getBasicBlock(SuccessorColorMBB)); 1717 DAG.setRoot(Ret); 1718 } 1719 1720 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1721 // Don't emit any special code for the cleanuppad instruction. It just marks 1722 // the start of an EH scope/funclet. 1723 FuncInfo.MBB->setIsEHScopeEntry(); 1724 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1725 if (Pers != EHPersonality::Wasm_CXX) { 1726 FuncInfo.MBB->setIsEHFuncletEntry(); 1727 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1728 } 1729 } 1730 1731 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1732 // not match, it is OK to add only the first unwind destination catchpad to the 1733 // successors, because there will be at least one invoke instruction within the 1734 // catch scope that points to the next unwind destination, if one exists, so 1735 // CFGSort cannot mess up with BB sorting order. 1736 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1737 // call within them, and catchpads only consisting of 'catch (...)' have a 1738 // '__cxa_end_catch' call within them, both of which generate invokes in case 1739 // the next unwind destination exists, i.e., the next unwind destination is not 1740 // the caller.) 1741 // 1742 // Having at most one EH pad successor is also simpler and helps later 1743 // transformations. 1744 // 1745 // For example, 1746 // current: 1747 // invoke void @foo to ... unwind label %catch.dispatch 1748 // catch.dispatch: 1749 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1750 // catch.start: 1751 // ... 1752 // ... in this BB or some other child BB dominated by this BB there will be an 1753 // invoke that points to 'next' BB as an unwind destination 1754 // 1755 // next: ; We don't need to add this to 'current' BB's successor 1756 // ... 1757 static void findWasmUnwindDestinations( 1758 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1759 BranchProbability Prob, 1760 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1761 &UnwindDests) { 1762 while (EHPadBB) { 1763 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1764 if (isa<CleanupPadInst>(Pad)) { 1765 // Stop on cleanup pads. 1766 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1767 UnwindDests.back().first->setIsEHScopeEntry(); 1768 break; 1769 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1770 // Add the catchpad handlers to the possible destinations. We don't 1771 // continue to the unwind destination of the catchswitch for wasm. 1772 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1773 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1774 UnwindDests.back().first->setIsEHScopeEntry(); 1775 } 1776 break; 1777 } else { 1778 continue; 1779 } 1780 } 1781 } 1782 1783 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1784 /// many places it could ultimately go. In the IR, we have a single unwind 1785 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1786 /// This function skips over imaginary basic blocks that hold catchswitch 1787 /// instructions, and finds all the "real" machine 1788 /// basic block destinations. As those destinations may not be successors of 1789 /// EHPadBB, here we also calculate the edge probability to those destinations. 1790 /// The passed-in Prob is the edge probability to EHPadBB. 1791 static void findUnwindDestinations( 1792 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1793 BranchProbability Prob, 1794 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1795 &UnwindDests) { 1796 EHPersonality Personality = 1797 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1798 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1799 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1800 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1801 bool IsSEH = isAsynchronousEHPersonality(Personality); 1802 1803 if (IsWasmCXX) { 1804 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1805 assert(UnwindDests.size() <= 1 && 1806 "There should be at most one unwind destination for wasm"); 1807 return; 1808 } 1809 1810 while (EHPadBB) { 1811 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1812 BasicBlock *NewEHPadBB = nullptr; 1813 if (isa<LandingPadInst>(Pad)) { 1814 // Stop on landingpads. They are not funclets. 1815 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1816 break; 1817 } else if (isa<CleanupPadInst>(Pad)) { 1818 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1819 // personalities. 1820 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1821 UnwindDests.back().first->setIsEHScopeEntry(); 1822 UnwindDests.back().first->setIsEHFuncletEntry(); 1823 break; 1824 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1825 // Add the catchpad handlers to the possible destinations. 1826 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1827 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1828 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1829 if (IsMSVCCXX || IsCoreCLR) 1830 UnwindDests.back().first->setIsEHFuncletEntry(); 1831 if (!IsSEH) 1832 UnwindDests.back().first->setIsEHScopeEntry(); 1833 } 1834 NewEHPadBB = CatchSwitch->getUnwindDest(); 1835 } else { 1836 continue; 1837 } 1838 1839 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1840 if (BPI && NewEHPadBB) 1841 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1842 EHPadBB = NewEHPadBB; 1843 } 1844 } 1845 1846 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1847 // Update successor info. 1848 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1849 auto UnwindDest = I.getUnwindDest(); 1850 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1851 BranchProbability UnwindDestProb = 1852 (BPI && UnwindDest) 1853 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1854 : BranchProbability::getZero(); 1855 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1856 for (auto &UnwindDest : UnwindDests) { 1857 UnwindDest.first->setIsEHPad(); 1858 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1859 } 1860 FuncInfo.MBB->normalizeSuccProbs(); 1861 1862 // Create the terminator node. 1863 SDValue Ret = 1864 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1865 DAG.setRoot(Ret); 1866 } 1867 1868 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1869 report_fatal_error("visitCatchSwitch not yet implemented!"); 1870 } 1871 1872 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1874 auto &DL = DAG.getDataLayout(); 1875 SDValue Chain = getControlRoot(); 1876 SmallVector<ISD::OutputArg, 8> Outs; 1877 SmallVector<SDValue, 8> OutVals; 1878 1879 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1880 // lower 1881 // 1882 // %val = call <ty> @llvm.experimental.deoptimize() 1883 // ret <ty> %val 1884 // 1885 // differently. 1886 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1887 LowerDeoptimizingReturn(); 1888 return; 1889 } 1890 1891 if (!FuncInfo.CanLowerReturn) { 1892 unsigned DemoteReg = FuncInfo.DemoteRegister; 1893 const Function *F = I.getParent()->getParent(); 1894 1895 // Emit a store of the return value through the virtual register. 1896 // Leave Outs empty so that LowerReturn won't try to load return 1897 // registers the usual way. 1898 SmallVector<EVT, 1> PtrValueVTs; 1899 ComputeValueVTs(TLI, DL, 1900 F->getReturnType()->getPointerTo( 1901 DAG.getDataLayout().getAllocaAddrSpace()), 1902 PtrValueVTs); 1903 1904 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1905 DemoteReg, PtrValueVTs[0]); 1906 SDValue RetOp = getValue(I.getOperand(0)); 1907 1908 SmallVector<EVT, 4> ValueVTs, MemVTs; 1909 SmallVector<uint64_t, 4> Offsets; 1910 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1911 &Offsets); 1912 unsigned NumValues = ValueVTs.size(); 1913 1914 SmallVector<SDValue, 4> Chains(NumValues); 1915 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1916 for (unsigned i = 0; i != NumValues; ++i) { 1917 // An aggregate return value cannot wrap around the address space, so 1918 // offsets to its parts don't wrap either. 1919 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1920 TypeSize::Fixed(Offsets[i])); 1921 1922 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1923 if (MemVTs[i] != ValueVTs[i]) 1924 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1925 Chains[i] = DAG.getStore( 1926 Chain, getCurSDLoc(), Val, 1927 // FIXME: better loc info would be nice. 1928 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1929 commonAlignment(BaseAlign, Offsets[i])); 1930 } 1931 1932 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1933 MVT::Other, Chains); 1934 } else if (I.getNumOperands() != 0) { 1935 SmallVector<EVT, 4> ValueVTs; 1936 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1937 unsigned NumValues = ValueVTs.size(); 1938 if (NumValues) { 1939 SDValue RetOp = getValue(I.getOperand(0)); 1940 1941 const Function *F = I.getParent()->getParent(); 1942 1943 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1944 I.getOperand(0)->getType(), F->getCallingConv(), 1945 /*IsVarArg*/ false, DL); 1946 1947 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1948 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1949 Attribute::SExt)) 1950 ExtendKind = ISD::SIGN_EXTEND; 1951 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1952 Attribute::ZExt)) 1953 ExtendKind = ISD::ZERO_EXTEND; 1954 1955 LLVMContext &Context = F->getContext(); 1956 bool RetInReg = F->getAttributes().hasAttribute( 1957 AttributeList::ReturnIndex, Attribute::InReg); 1958 1959 for (unsigned j = 0; j != NumValues; ++j) { 1960 EVT VT = ValueVTs[j]; 1961 1962 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1963 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1964 1965 CallingConv::ID CC = F->getCallingConv(); 1966 1967 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1968 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1969 SmallVector<SDValue, 4> Parts(NumParts); 1970 getCopyToParts(DAG, getCurSDLoc(), 1971 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1972 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1973 1974 // 'inreg' on function refers to return value 1975 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1976 if (RetInReg) 1977 Flags.setInReg(); 1978 1979 if (I.getOperand(0)->getType()->isPointerTy()) { 1980 Flags.setPointer(); 1981 Flags.setPointerAddrSpace( 1982 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1983 } 1984 1985 if (NeedsRegBlock) { 1986 Flags.setInConsecutiveRegs(); 1987 if (j == NumValues - 1) 1988 Flags.setInConsecutiveRegsLast(); 1989 } 1990 1991 // Propagate extension type if any 1992 if (ExtendKind == ISD::SIGN_EXTEND) 1993 Flags.setSExt(); 1994 else if (ExtendKind == ISD::ZERO_EXTEND) 1995 Flags.setZExt(); 1996 1997 for (unsigned i = 0; i < NumParts; ++i) { 1998 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1999 VT, /*isfixed=*/true, 0, 0)); 2000 OutVals.push_back(Parts[i]); 2001 } 2002 } 2003 } 2004 } 2005 2006 // Push in swifterror virtual register as the last element of Outs. This makes 2007 // sure swifterror virtual register will be returned in the swifterror 2008 // physical register. 2009 const Function *F = I.getParent()->getParent(); 2010 if (TLI.supportSwiftError() && 2011 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2012 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2013 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2014 Flags.setSwiftError(); 2015 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 2016 EVT(TLI.getPointerTy(DL)) /*argvt*/, 2017 true /*isfixed*/, 1 /*origidx*/, 2018 0 /*partOffs*/)); 2019 // Create SDNode for the swifterror virtual register. 2020 OutVals.push_back( 2021 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2022 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2023 EVT(TLI.getPointerTy(DL)))); 2024 } 2025 2026 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2027 CallingConv::ID CallConv = 2028 DAG.getMachineFunction().getFunction().getCallingConv(); 2029 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2030 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2031 2032 // Verify that the target's LowerReturn behaved as expected. 2033 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2034 "LowerReturn didn't return a valid chain!"); 2035 2036 // Update the DAG with the new chain value resulting from return lowering. 2037 DAG.setRoot(Chain); 2038 } 2039 2040 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2041 /// created for it, emit nodes to copy the value into the virtual 2042 /// registers. 2043 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2044 // Skip empty types 2045 if (V->getType()->isEmptyTy()) 2046 return; 2047 2048 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2049 if (VMI != FuncInfo.ValueMap.end()) { 2050 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2051 CopyValueToVirtualRegister(V, VMI->second); 2052 } 2053 } 2054 2055 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2056 /// the current basic block, add it to ValueMap now so that we'll get a 2057 /// CopyTo/FromReg. 2058 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2059 // No need to export constants. 2060 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2061 2062 // Already exported? 2063 if (FuncInfo.isExportedInst(V)) return; 2064 2065 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2066 CopyValueToVirtualRegister(V, Reg); 2067 } 2068 2069 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2070 const BasicBlock *FromBB) { 2071 // The operands of the setcc have to be in this block. We don't know 2072 // how to export them from some other block. 2073 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2074 // Can export from current BB. 2075 if (VI->getParent() == FromBB) 2076 return true; 2077 2078 // Is already exported, noop. 2079 return FuncInfo.isExportedInst(V); 2080 } 2081 2082 // If this is an argument, we can export it if the BB is the entry block or 2083 // if it is already exported. 2084 if (isa<Argument>(V)) { 2085 if (FromBB->isEntryBlock()) 2086 return true; 2087 2088 // Otherwise, can only export this if it is already exported. 2089 return FuncInfo.isExportedInst(V); 2090 } 2091 2092 // Otherwise, constants can always be exported. 2093 return true; 2094 } 2095 2096 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2097 BranchProbability 2098 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2099 const MachineBasicBlock *Dst) const { 2100 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2101 const BasicBlock *SrcBB = Src->getBasicBlock(); 2102 const BasicBlock *DstBB = Dst->getBasicBlock(); 2103 if (!BPI) { 2104 // If BPI is not available, set the default probability as 1 / N, where N is 2105 // the number of successors. 2106 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2107 return BranchProbability(1, SuccSize); 2108 } 2109 return BPI->getEdgeProbability(SrcBB, DstBB); 2110 } 2111 2112 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2113 MachineBasicBlock *Dst, 2114 BranchProbability Prob) { 2115 if (!FuncInfo.BPI) 2116 Src->addSuccessorWithoutProb(Dst); 2117 else { 2118 if (Prob.isUnknown()) 2119 Prob = getEdgeProbability(Src, Dst); 2120 Src->addSuccessor(Dst, Prob); 2121 } 2122 } 2123 2124 static bool InBlock(const Value *V, const BasicBlock *BB) { 2125 if (const Instruction *I = dyn_cast<Instruction>(V)) 2126 return I->getParent() == BB; 2127 return true; 2128 } 2129 2130 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2131 /// This function emits a branch and is used at the leaves of an OR or an 2132 /// AND operator tree. 2133 void 2134 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2135 MachineBasicBlock *TBB, 2136 MachineBasicBlock *FBB, 2137 MachineBasicBlock *CurBB, 2138 MachineBasicBlock *SwitchBB, 2139 BranchProbability TProb, 2140 BranchProbability FProb, 2141 bool InvertCond) { 2142 const BasicBlock *BB = CurBB->getBasicBlock(); 2143 2144 // If the leaf of the tree is a comparison, merge the condition into 2145 // the caseblock. 2146 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2147 // The operands of the cmp have to be in this block. We don't know 2148 // how to export them from some other block. If this is the first block 2149 // of the sequence, no exporting is needed. 2150 if (CurBB == SwitchBB || 2151 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2152 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2153 ISD::CondCode Condition; 2154 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2155 ICmpInst::Predicate Pred = 2156 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2157 Condition = getICmpCondCode(Pred); 2158 } else { 2159 const FCmpInst *FC = cast<FCmpInst>(Cond); 2160 FCmpInst::Predicate Pred = 2161 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2162 Condition = getFCmpCondCode(Pred); 2163 if (TM.Options.NoNaNsFPMath) 2164 Condition = getFCmpCodeWithoutNaN(Condition); 2165 } 2166 2167 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2168 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2169 SL->SwitchCases.push_back(CB); 2170 return; 2171 } 2172 } 2173 2174 // Create a CaseBlock record representing this branch. 2175 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2176 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2177 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2178 SL->SwitchCases.push_back(CB); 2179 } 2180 2181 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2182 MachineBasicBlock *TBB, 2183 MachineBasicBlock *FBB, 2184 MachineBasicBlock *CurBB, 2185 MachineBasicBlock *SwitchBB, 2186 Instruction::BinaryOps Opc, 2187 BranchProbability TProb, 2188 BranchProbability FProb, 2189 bool InvertCond) { 2190 // Skip over not part of the tree and remember to invert op and operands at 2191 // next level. 2192 Value *NotCond; 2193 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2194 InBlock(NotCond, CurBB->getBasicBlock())) { 2195 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2196 !InvertCond); 2197 return; 2198 } 2199 2200 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2201 const Value *BOpOp0, *BOpOp1; 2202 // Compute the effective opcode for Cond, taking into account whether it needs 2203 // to be inverted, e.g. 2204 // and (not (or A, B)), C 2205 // gets lowered as 2206 // and (and (not A, not B), C) 2207 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2208 if (BOp) { 2209 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2210 ? Instruction::And 2211 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2212 ? Instruction::Or 2213 : (Instruction::BinaryOps)0); 2214 if (InvertCond) { 2215 if (BOpc == Instruction::And) 2216 BOpc = Instruction::Or; 2217 else if (BOpc == Instruction::Or) 2218 BOpc = Instruction::And; 2219 } 2220 } 2221 2222 // If this node is not part of the or/and tree, emit it as a branch. 2223 // Note that all nodes in the tree should have same opcode. 2224 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2225 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2226 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2227 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2228 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2229 TProb, FProb, InvertCond); 2230 return; 2231 } 2232 2233 // Create TmpBB after CurBB. 2234 MachineFunction::iterator BBI(CurBB); 2235 MachineFunction &MF = DAG.getMachineFunction(); 2236 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2237 CurBB->getParent()->insert(++BBI, TmpBB); 2238 2239 if (Opc == Instruction::Or) { 2240 // Codegen X | Y as: 2241 // BB1: 2242 // jmp_if_X TBB 2243 // jmp TmpBB 2244 // TmpBB: 2245 // jmp_if_Y TBB 2246 // jmp FBB 2247 // 2248 2249 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2250 // The requirement is that 2251 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2252 // = TrueProb for original BB. 2253 // Assuming the original probabilities are A and B, one choice is to set 2254 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2255 // A/(1+B) and 2B/(1+B). This choice assumes that 2256 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2257 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2258 // TmpBB, but the math is more complicated. 2259 2260 auto NewTrueProb = TProb / 2; 2261 auto NewFalseProb = TProb / 2 + FProb; 2262 // Emit the LHS condition. 2263 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2264 NewFalseProb, InvertCond); 2265 2266 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2267 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2268 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2269 // Emit the RHS condition into TmpBB. 2270 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2271 Probs[1], InvertCond); 2272 } else { 2273 assert(Opc == Instruction::And && "Unknown merge op!"); 2274 // Codegen X & Y as: 2275 // BB1: 2276 // jmp_if_X TmpBB 2277 // jmp FBB 2278 // TmpBB: 2279 // jmp_if_Y TBB 2280 // jmp FBB 2281 // 2282 // This requires creation of TmpBB after CurBB. 2283 2284 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2285 // The requirement is that 2286 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2287 // = FalseProb for original BB. 2288 // Assuming the original probabilities are A and B, one choice is to set 2289 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2290 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2291 // TrueProb for BB1 * FalseProb for TmpBB. 2292 2293 auto NewTrueProb = TProb + FProb / 2; 2294 auto NewFalseProb = FProb / 2; 2295 // Emit the LHS condition. 2296 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2297 NewFalseProb, InvertCond); 2298 2299 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2300 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2301 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2302 // Emit the RHS condition into TmpBB. 2303 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2304 Probs[1], InvertCond); 2305 } 2306 } 2307 2308 /// If the set of cases should be emitted as a series of branches, return true. 2309 /// If we should emit this as a bunch of and/or'd together conditions, return 2310 /// false. 2311 bool 2312 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2313 if (Cases.size() != 2) return true; 2314 2315 // If this is two comparisons of the same values or'd or and'd together, they 2316 // will get folded into a single comparison, so don't emit two blocks. 2317 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2318 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2319 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2320 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2321 return false; 2322 } 2323 2324 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2325 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2326 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2327 Cases[0].CC == Cases[1].CC && 2328 isa<Constant>(Cases[0].CmpRHS) && 2329 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2330 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2331 return false; 2332 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2333 return false; 2334 } 2335 2336 return true; 2337 } 2338 2339 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2340 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2341 2342 // Update machine-CFG edges. 2343 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2344 2345 if (I.isUnconditional()) { 2346 // Update machine-CFG edges. 2347 BrMBB->addSuccessor(Succ0MBB); 2348 2349 // If this is not a fall-through branch or optimizations are switched off, 2350 // emit the branch. 2351 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2352 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2353 MVT::Other, getControlRoot(), 2354 DAG.getBasicBlock(Succ0MBB))); 2355 2356 return; 2357 } 2358 2359 // If this condition is one of the special cases we handle, do special stuff 2360 // now. 2361 const Value *CondVal = I.getCondition(); 2362 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2363 2364 // If this is a series of conditions that are or'd or and'd together, emit 2365 // this as a sequence of branches instead of setcc's with and/or operations. 2366 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2367 // unpredictable branches, and vector extracts because those jumps are likely 2368 // expensive for any target), this should improve performance. 2369 // For example, instead of something like: 2370 // cmp A, B 2371 // C = seteq 2372 // cmp D, E 2373 // F = setle 2374 // or C, F 2375 // jnz foo 2376 // Emit: 2377 // cmp A, B 2378 // je foo 2379 // cmp D, E 2380 // jle foo 2381 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2382 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2383 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2384 Value *Vec; 2385 const Value *BOp0, *BOp1; 2386 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2387 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2388 Opcode = Instruction::And; 2389 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2390 Opcode = Instruction::Or; 2391 2392 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2393 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2394 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2395 getEdgeProbability(BrMBB, Succ0MBB), 2396 getEdgeProbability(BrMBB, Succ1MBB), 2397 /*InvertCond=*/false); 2398 // If the compares in later blocks need to use values not currently 2399 // exported from this block, export them now. This block should always 2400 // be the first entry. 2401 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2402 2403 // Allow some cases to be rejected. 2404 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2405 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2406 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2407 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2408 } 2409 2410 // Emit the branch for this block. 2411 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2412 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2413 return; 2414 } 2415 2416 // Okay, we decided not to do this, remove any inserted MBB's and clear 2417 // SwitchCases. 2418 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2419 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2420 2421 SL->SwitchCases.clear(); 2422 } 2423 } 2424 2425 // Create a CaseBlock record representing this branch. 2426 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2427 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2428 2429 // Use visitSwitchCase to actually insert the fast branch sequence for this 2430 // cond branch. 2431 visitSwitchCase(CB, BrMBB); 2432 } 2433 2434 /// visitSwitchCase - Emits the necessary code to represent a single node in 2435 /// the binary search tree resulting from lowering a switch instruction. 2436 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2437 MachineBasicBlock *SwitchBB) { 2438 SDValue Cond; 2439 SDValue CondLHS = getValue(CB.CmpLHS); 2440 SDLoc dl = CB.DL; 2441 2442 if (CB.CC == ISD::SETTRUE) { 2443 // Branch or fall through to TrueBB. 2444 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2445 SwitchBB->normalizeSuccProbs(); 2446 if (CB.TrueBB != NextBlock(SwitchBB)) { 2447 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2448 DAG.getBasicBlock(CB.TrueBB))); 2449 } 2450 return; 2451 } 2452 2453 auto &TLI = DAG.getTargetLoweringInfo(); 2454 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2455 2456 // Build the setcc now. 2457 if (!CB.CmpMHS) { 2458 // Fold "(X == true)" to X and "(X == false)" to !X to 2459 // handle common cases produced by branch lowering. 2460 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2461 CB.CC == ISD::SETEQ) 2462 Cond = CondLHS; 2463 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2464 CB.CC == ISD::SETEQ) { 2465 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2466 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2467 } else { 2468 SDValue CondRHS = getValue(CB.CmpRHS); 2469 2470 // If a pointer's DAG type is larger than its memory type then the DAG 2471 // values are zero-extended. This breaks signed comparisons so truncate 2472 // back to the underlying type before doing the compare. 2473 if (CondLHS.getValueType() != MemVT) { 2474 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2475 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2476 } 2477 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2478 } 2479 } else { 2480 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2481 2482 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2483 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2484 2485 SDValue CmpOp = getValue(CB.CmpMHS); 2486 EVT VT = CmpOp.getValueType(); 2487 2488 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2489 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2490 ISD::SETLE); 2491 } else { 2492 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2493 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2494 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2495 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2496 } 2497 } 2498 2499 // Update successor info 2500 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2501 // TrueBB and FalseBB are always different unless the incoming IR is 2502 // degenerate. This only happens when running llc on weird IR. 2503 if (CB.TrueBB != CB.FalseBB) 2504 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2505 SwitchBB->normalizeSuccProbs(); 2506 2507 // If the lhs block is the next block, invert the condition so that we can 2508 // fall through to the lhs instead of the rhs block. 2509 if (CB.TrueBB == NextBlock(SwitchBB)) { 2510 std::swap(CB.TrueBB, CB.FalseBB); 2511 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2512 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2513 } 2514 2515 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2516 MVT::Other, getControlRoot(), Cond, 2517 DAG.getBasicBlock(CB.TrueBB)); 2518 2519 // Insert the false branch. Do this even if it's a fall through branch, 2520 // this makes it easier to do DAG optimizations which require inverting 2521 // the branch condition. 2522 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2523 DAG.getBasicBlock(CB.FalseBB)); 2524 2525 DAG.setRoot(BrCond); 2526 } 2527 2528 /// visitJumpTable - Emit JumpTable node in the current MBB 2529 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2530 // Emit the code for the jump table 2531 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2532 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2533 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2534 JT.Reg, PTy); 2535 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2536 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2537 MVT::Other, Index.getValue(1), 2538 Table, Index); 2539 DAG.setRoot(BrJumpTable); 2540 } 2541 2542 /// visitJumpTableHeader - This function emits necessary code to produce index 2543 /// in the JumpTable from switch case. 2544 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2545 JumpTableHeader &JTH, 2546 MachineBasicBlock *SwitchBB) { 2547 SDLoc dl = getCurSDLoc(); 2548 2549 // Subtract the lowest switch case value from the value being switched on. 2550 SDValue SwitchOp = getValue(JTH.SValue); 2551 EVT VT = SwitchOp.getValueType(); 2552 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2553 DAG.getConstant(JTH.First, dl, VT)); 2554 2555 // The SDNode we just created, which holds the value being switched on minus 2556 // the smallest case value, needs to be copied to a virtual register so it 2557 // can be used as an index into the jump table in a subsequent basic block. 2558 // This value may be smaller or larger than the target's pointer type, and 2559 // therefore require extension or truncating. 2560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2561 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2562 2563 unsigned JumpTableReg = 2564 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2565 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2566 JumpTableReg, SwitchOp); 2567 JT.Reg = JumpTableReg; 2568 2569 if (!JTH.OmitRangeCheck) { 2570 // Emit the range check for the jump table, and branch to the default block 2571 // for the switch statement if the value being switched on exceeds the 2572 // largest case in the switch. 2573 SDValue CMP = DAG.getSetCC( 2574 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2575 Sub.getValueType()), 2576 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2577 2578 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2579 MVT::Other, CopyTo, CMP, 2580 DAG.getBasicBlock(JT.Default)); 2581 2582 // Avoid emitting unnecessary branches to the next block. 2583 if (JT.MBB != NextBlock(SwitchBB)) 2584 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2585 DAG.getBasicBlock(JT.MBB)); 2586 2587 DAG.setRoot(BrCond); 2588 } else { 2589 // Avoid emitting unnecessary branches to the next block. 2590 if (JT.MBB != NextBlock(SwitchBB)) 2591 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2592 DAG.getBasicBlock(JT.MBB))); 2593 else 2594 DAG.setRoot(CopyTo); 2595 } 2596 } 2597 2598 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2599 /// variable if there exists one. 2600 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2601 SDValue &Chain) { 2602 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2603 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2604 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2605 MachineFunction &MF = DAG.getMachineFunction(); 2606 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2607 MachineSDNode *Node = 2608 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2609 if (Global) { 2610 MachinePointerInfo MPInfo(Global); 2611 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2612 MachineMemOperand::MODereferenceable; 2613 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2614 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2615 DAG.setNodeMemRefs(Node, {MemRef}); 2616 } 2617 if (PtrTy != PtrMemTy) 2618 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2619 return SDValue(Node, 0); 2620 } 2621 2622 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2623 /// tail spliced into a stack protector check success bb. 2624 /// 2625 /// For a high level explanation of how this fits into the stack protector 2626 /// generation see the comment on the declaration of class 2627 /// StackProtectorDescriptor. 2628 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2629 MachineBasicBlock *ParentBB) { 2630 2631 // First create the loads to the guard/stack slot for the comparison. 2632 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2633 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2634 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2635 2636 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2637 int FI = MFI.getStackProtectorIndex(); 2638 2639 SDValue Guard; 2640 SDLoc dl = getCurSDLoc(); 2641 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2642 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2643 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2644 2645 // Generate code to load the content of the guard slot. 2646 SDValue GuardVal = DAG.getLoad( 2647 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2648 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2649 MachineMemOperand::MOVolatile); 2650 2651 if (TLI.useStackGuardXorFP()) 2652 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2653 2654 // Retrieve guard check function, nullptr if instrumentation is inlined. 2655 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2656 // The target provides a guard check function to validate the guard value. 2657 // Generate a call to that function with the content of the guard slot as 2658 // argument. 2659 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2660 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2661 2662 TargetLowering::ArgListTy Args; 2663 TargetLowering::ArgListEntry Entry; 2664 Entry.Node = GuardVal; 2665 Entry.Ty = FnTy->getParamType(0); 2666 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2667 Entry.IsInReg = true; 2668 Args.push_back(Entry); 2669 2670 TargetLowering::CallLoweringInfo CLI(DAG); 2671 CLI.setDebugLoc(getCurSDLoc()) 2672 .setChain(DAG.getEntryNode()) 2673 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2674 getValue(GuardCheckFn), std::move(Args)); 2675 2676 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2677 DAG.setRoot(Result.second); 2678 return; 2679 } 2680 2681 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2682 // Otherwise, emit a volatile load to retrieve the stack guard value. 2683 SDValue Chain = DAG.getEntryNode(); 2684 if (TLI.useLoadStackGuardNode()) { 2685 Guard = getLoadStackGuard(DAG, dl, Chain); 2686 } else { 2687 const Value *IRGuard = TLI.getSDagStackGuard(M); 2688 SDValue GuardPtr = getValue(IRGuard); 2689 2690 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2691 MachinePointerInfo(IRGuard, 0), Align, 2692 MachineMemOperand::MOVolatile); 2693 } 2694 2695 // Perform the comparison via a getsetcc. 2696 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2697 *DAG.getContext(), 2698 Guard.getValueType()), 2699 Guard, GuardVal, ISD::SETNE); 2700 2701 // If the guard/stackslot do not equal, branch to failure MBB. 2702 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2703 MVT::Other, GuardVal.getOperand(0), 2704 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2705 // Otherwise branch to success MBB. 2706 SDValue Br = DAG.getNode(ISD::BR, dl, 2707 MVT::Other, BrCond, 2708 DAG.getBasicBlock(SPD.getSuccessMBB())); 2709 2710 DAG.setRoot(Br); 2711 } 2712 2713 /// Codegen the failure basic block for a stack protector check. 2714 /// 2715 /// A failure stack protector machine basic block consists simply of a call to 2716 /// __stack_chk_fail(). 2717 /// 2718 /// For a high level explanation of how this fits into the stack protector 2719 /// generation see the comment on the declaration of class 2720 /// StackProtectorDescriptor. 2721 void 2722 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2723 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2724 TargetLowering::MakeLibCallOptions CallOptions; 2725 CallOptions.setDiscardResult(true); 2726 SDValue Chain = 2727 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2728 None, CallOptions, getCurSDLoc()).second; 2729 // On PS4, the "return address" must still be within the calling function, 2730 // even if it's at the very end, so emit an explicit TRAP here. 2731 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2732 if (TM.getTargetTriple().isPS4CPU()) 2733 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2734 // WebAssembly needs an unreachable instruction after a non-returning call, 2735 // because the function return type can be different from __stack_chk_fail's 2736 // return type (void). 2737 if (TM.getTargetTriple().isWasm()) 2738 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2739 2740 DAG.setRoot(Chain); 2741 } 2742 2743 /// visitBitTestHeader - This function emits necessary code to produce value 2744 /// suitable for "bit tests" 2745 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2746 MachineBasicBlock *SwitchBB) { 2747 SDLoc dl = getCurSDLoc(); 2748 2749 // Subtract the minimum value. 2750 SDValue SwitchOp = getValue(B.SValue); 2751 EVT VT = SwitchOp.getValueType(); 2752 SDValue RangeSub = 2753 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2754 2755 // Determine the type of the test operands. 2756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2757 bool UsePtrType = false; 2758 if (!TLI.isTypeLegal(VT)) { 2759 UsePtrType = true; 2760 } else { 2761 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2762 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2763 // Switch table case range are encoded into series of masks. 2764 // Just use pointer type, it's guaranteed to fit. 2765 UsePtrType = true; 2766 break; 2767 } 2768 } 2769 SDValue Sub = RangeSub; 2770 if (UsePtrType) { 2771 VT = TLI.getPointerTy(DAG.getDataLayout()); 2772 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2773 } 2774 2775 B.RegVT = VT.getSimpleVT(); 2776 B.Reg = FuncInfo.CreateReg(B.RegVT); 2777 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2778 2779 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2780 2781 if (!B.OmitRangeCheck) 2782 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2783 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2784 SwitchBB->normalizeSuccProbs(); 2785 2786 SDValue Root = CopyTo; 2787 if (!B.OmitRangeCheck) { 2788 // Conditional branch to the default block. 2789 SDValue RangeCmp = DAG.getSetCC(dl, 2790 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2791 RangeSub.getValueType()), 2792 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2793 ISD::SETUGT); 2794 2795 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2796 DAG.getBasicBlock(B.Default)); 2797 } 2798 2799 // Avoid emitting unnecessary branches to the next block. 2800 if (MBB != NextBlock(SwitchBB)) 2801 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2802 2803 DAG.setRoot(Root); 2804 } 2805 2806 /// visitBitTestCase - this function produces one "bit test" 2807 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2808 MachineBasicBlock* NextMBB, 2809 BranchProbability BranchProbToNext, 2810 unsigned Reg, 2811 BitTestCase &B, 2812 MachineBasicBlock *SwitchBB) { 2813 SDLoc dl = getCurSDLoc(); 2814 MVT VT = BB.RegVT; 2815 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2816 SDValue Cmp; 2817 unsigned PopCount = countPopulation(B.Mask); 2818 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2819 if (PopCount == 1) { 2820 // Testing for a single bit; just compare the shift count with what it 2821 // would need to be to shift a 1 bit in that position. 2822 Cmp = DAG.getSetCC( 2823 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2824 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2825 ISD::SETEQ); 2826 } else if (PopCount == BB.Range) { 2827 // There is only one zero bit in the range, test for it directly. 2828 Cmp = DAG.getSetCC( 2829 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2830 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2831 ISD::SETNE); 2832 } else { 2833 // Make desired shift 2834 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2835 DAG.getConstant(1, dl, VT), ShiftOp); 2836 2837 // Emit bit tests and jumps 2838 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2839 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2840 Cmp = DAG.getSetCC( 2841 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2842 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2843 } 2844 2845 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2846 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2847 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2848 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2849 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2850 // one as they are relative probabilities (and thus work more like weights), 2851 // and hence we need to normalize them to let the sum of them become one. 2852 SwitchBB->normalizeSuccProbs(); 2853 2854 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2855 MVT::Other, getControlRoot(), 2856 Cmp, DAG.getBasicBlock(B.TargetBB)); 2857 2858 // Avoid emitting unnecessary branches to the next block. 2859 if (NextMBB != NextBlock(SwitchBB)) 2860 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2861 DAG.getBasicBlock(NextMBB)); 2862 2863 DAG.setRoot(BrAnd); 2864 } 2865 2866 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2867 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2868 2869 // Retrieve successors. Look through artificial IR level blocks like 2870 // catchswitch for successors. 2871 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2872 const BasicBlock *EHPadBB = I.getSuccessor(1); 2873 2874 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2875 // have to do anything here to lower funclet bundles. 2876 assert(!I.hasOperandBundlesOtherThan( 2877 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2878 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2879 LLVMContext::OB_cfguardtarget, 2880 LLVMContext::OB_clang_arc_attachedcall}) && 2881 "Cannot lower invokes with arbitrary operand bundles yet!"); 2882 2883 const Value *Callee(I.getCalledOperand()); 2884 const Function *Fn = dyn_cast<Function>(Callee); 2885 if (isa<InlineAsm>(Callee)) 2886 visitInlineAsm(I, EHPadBB); 2887 else if (Fn && Fn->isIntrinsic()) { 2888 switch (Fn->getIntrinsicID()) { 2889 default: 2890 llvm_unreachable("Cannot invoke this intrinsic"); 2891 case Intrinsic::donothing: 2892 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2893 case Intrinsic::seh_try_begin: 2894 case Intrinsic::seh_scope_begin: 2895 case Intrinsic::seh_try_end: 2896 case Intrinsic::seh_scope_end: 2897 break; 2898 case Intrinsic::experimental_patchpoint_void: 2899 case Intrinsic::experimental_patchpoint_i64: 2900 visitPatchpoint(I, EHPadBB); 2901 break; 2902 case Intrinsic::experimental_gc_statepoint: 2903 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2904 break; 2905 case Intrinsic::wasm_rethrow: { 2906 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2907 // special because it can be invoked, so we manually lower it to a DAG 2908 // node here. 2909 SmallVector<SDValue, 8> Ops; 2910 Ops.push_back(getRoot()); // inchain 2911 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2912 Ops.push_back( 2913 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2914 TLI.getPointerTy(DAG.getDataLayout()))); 2915 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2916 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2917 break; 2918 } 2919 } 2920 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2921 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2922 // Eventually we will support lowering the @llvm.experimental.deoptimize 2923 // intrinsic, and right now there are no plans to support other intrinsics 2924 // with deopt state. 2925 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2926 } else { 2927 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 2928 } 2929 2930 // If the value of the invoke is used outside of its defining block, make it 2931 // available as a virtual register. 2932 // We already took care of the exported value for the statepoint instruction 2933 // during call to the LowerStatepoint. 2934 if (!isa<GCStatepointInst>(I)) { 2935 CopyToExportRegsIfNeeded(&I); 2936 } 2937 2938 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2939 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2940 BranchProbability EHPadBBProb = 2941 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2942 : BranchProbability::getZero(); 2943 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2944 2945 // Update successor info. 2946 addSuccessorWithProb(InvokeMBB, Return); 2947 for (auto &UnwindDest : UnwindDests) { 2948 UnwindDest.first->setIsEHPad(); 2949 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2950 } 2951 InvokeMBB->normalizeSuccProbs(); 2952 2953 // Drop into normal successor. 2954 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2955 DAG.getBasicBlock(Return))); 2956 } 2957 2958 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2959 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2960 2961 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2962 // have to do anything here to lower funclet bundles. 2963 assert(!I.hasOperandBundlesOtherThan( 2964 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2965 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2966 2967 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2968 visitInlineAsm(I); 2969 CopyToExportRegsIfNeeded(&I); 2970 2971 // Retrieve successors. 2972 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2973 2974 // Update successor info. 2975 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2976 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2977 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2978 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2979 Target->setIsInlineAsmBrIndirectTarget(); 2980 } 2981 CallBrMBB->normalizeSuccProbs(); 2982 2983 // Drop into default successor. 2984 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2985 MVT::Other, getControlRoot(), 2986 DAG.getBasicBlock(Return))); 2987 } 2988 2989 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2990 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2991 } 2992 2993 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2994 assert(FuncInfo.MBB->isEHPad() && 2995 "Call to landingpad not in landing pad!"); 2996 2997 // If there aren't registers to copy the values into (e.g., during SjLj 2998 // exceptions), then don't bother to create these DAG nodes. 2999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3000 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3001 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3002 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3003 return; 3004 3005 // If landingpad's return type is token type, we don't create DAG nodes 3006 // for its exception pointer and selector value. The extraction of exception 3007 // pointer or selector value from token type landingpads is not currently 3008 // supported. 3009 if (LP.getType()->isTokenTy()) 3010 return; 3011 3012 SmallVector<EVT, 2> ValueVTs; 3013 SDLoc dl = getCurSDLoc(); 3014 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3015 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3016 3017 // Get the two live-in registers as SDValues. The physregs have already been 3018 // copied into virtual registers. 3019 SDValue Ops[2]; 3020 if (FuncInfo.ExceptionPointerVirtReg) { 3021 Ops[0] = DAG.getZExtOrTrunc( 3022 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3023 FuncInfo.ExceptionPointerVirtReg, 3024 TLI.getPointerTy(DAG.getDataLayout())), 3025 dl, ValueVTs[0]); 3026 } else { 3027 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3028 } 3029 Ops[1] = DAG.getZExtOrTrunc( 3030 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3031 FuncInfo.ExceptionSelectorVirtReg, 3032 TLI.getPointerTy(DAG.getDataLayout())), 3033 dl, ValueVTs[1]); 3034 3035 // Merge into one. 3036 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3037 DAG.getVTList(ValueVTs), Ops); 3038 setValue(&LP, Res); 3039 } 3040 3041 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3042 MachineBasicBlock *Last) { 3043 // Update JTCases. 3044 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 3045 if (SL->JTCases[i].first.HeaderBB == First) 3046 SL->JTCases[i].first.HeaderBB = Last; 3047 3048 // Update BitTestCases. 3049 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 3050 if (SL->BitTestCases[i].Parent == First) 3051 SL->BitTestCases[i].Parent = Last; 3052 } 3053 3054 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3055 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3056 3057 // Update machine-CFG edges with unique successors. 3058 SmallSet<BasicBlock*, 32> Done; 3059 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3060 BasicBlock *BB = I.getSuccessor(i); 3061 bool Inserted = Done.insert(BB).second; 3062 if (!Inserted) 3063 continue; 3064 3065 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3066 addSuccessorWithProb(IndirectBrMBB, Succ); 3067 } 3068 IndirectBrMBB->normalizeSuccProbs(); 3069 3070 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3071 MVT::Other, getControlRoot(), 3072 getValue(I.getAddress()))); 3073 } 3074 3075 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3076 if (!DAG.getTarget().Options.TrapUnreachable) 3077 return; 3078 3079 // We may be able to ignore unreachable behind a noreturn call. 3080 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3081 const BasicBlock &BB = *I.getParent(); 3082 if (&I != &BB.front()) { 3083 BasicBlock::const_iterator PredI = 3084 std::prev(BasicBlock::const_iterator(&I)); 3085 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3086 if (Call->doesNotReturn()) 3087 return; 3088 } 3089 } 3090 } 3091 3092 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3093 } 3094 3095 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3096 SDNodeFlags Flags; 3097 3098 SDValue Op = getValue(I.getOperand(0)); 3099 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3100 Op, Flags); 3101 setValue(&I, UnNodeValue); 3102 } 3103 3104 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3105 SDNodeFlags Flags; 3106 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3107 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3108 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3109 } 3110 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3111 Flags.setExact(ExactOp->isExact()); 3112 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3113 Flags.copyFMF(*FPOp); 3114 3115 SDValue Op1 = getValue(I.getOperand(0)); 3116 SDValue Op2 = getValue(I.getOperand(1)); 3117 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3118 Op1, Op2, Flags); 3119 setValue(&I, BinNodeValue); 3120 } 3121 3122 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3123 SDValue Op1 = getValue(I.getOperand(0)); 3124 SDValue Op2 = getValue(I.getOperand(1)); 3125 3126 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3127 Op1.getValueType(), DAG.getDataLayout()); 3128 3129 // Coerce the shift amount to the right type if we can. 3130 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3131 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3132 unsigned Op2Size = Op2.getValueSizeInBits(); 3133 SDLoc DL = getCurSDLoc(); 3134 3135 // If the operand is smaller than the shift count type, promote it. 3136 if (ShiftSize > Op2Size) 3137 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3138 3139 // If the operand is larger than the shift count type but the shift 3140 // count type has enough bits to represent any shift value, truncate 3141 // it now. This is a common case and it exposes the truncate to 3142 // optimization early. 3143 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3144 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3145 // Otherwise we'll need to temporarily settle for some other convenient 3146 // type. Type legalization will make adjustments once the shiftee is split. 3147 else 3148 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3149 } 3150 3151 bool nuw = false; 3152 bool nsw = false; 3153 bool exact = false; 3154 3155 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3156 3157 if (const OverflowingBinaryOperator *OFBinOp = 3158 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3159 nuw = OFBinOp->hasNoUnsignedWrap(); 3160 nsw = OFBinOp->hasNoSignedWrap(); 3161 } 3162 if (const PossiblyExactOperator *ExactOp = 3163 dyn_cast<const PossiblyExactOperator>(&I)) 3164 exact = ExactOp->isExact(); 3165 } 3166 SDNodeFlags Flags; 3167 Flags.setExact(exact); 3168 Flags.setNoSignedWrap(nsw); 3169 Flags.setNoUnsignedWrap(nuw); 3170 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3171 Flags); 3172 setValue(&I, Res); 3173 } 3174 3175 void SelectionDAGBuilder::visitSDiv(const User &I) { 3176 SDValue Op1 = getValue(I.getOperand(0)); 3177 SDValue Op2 = getValue(I.getOperand(1)); 3178 3179 SDNodeFlags Flags; 3180 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3181 cast<PossiblyExactOperator>(&I)->isExact()); 3182 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3183 Op2, Flags)); 3184 } 3185 3186 void SelectionDAGBuilder::visitICmp(const User &I) { 3187 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3188 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3189 predicate = IC->getPredicate(); 3190 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3191 predicate = ICmpInst::Predicate(IC->getPredicate()); 3192 SDValue Op1 = getValue(I.getOperand(0)); 3193 SDValue Op2 = getValue(I.getOperand(1)); 3194 ISD::CondCode Opcode = getICmpCondCode(predicate); 3195 3196 auto &TLI = DAG.getTargetLoweringInfo(); 3197 EVT MemVT = 3198 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3199 3200 // If a pointer's DAG type is larger than its memory type then the DAG values 3201 // are zero-extended. This breaks signed comparisons so truncate back to the 3202 // underlying type before doing the compare. 3203 if (Op1.getValueType() != MemVT) { 3204 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3205 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3206 } 3207 3208 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3209 I.getType()); 3210 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3211 } 3212 3213 void SelectionDAGBuilder::visitFCmp(const User &I) { 3214 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3215 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3216 predicate = FC->getPredicate(); 3217 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3218 predicate = FCmpInst::Predicate(FC->getPredicate()); 3219 SDValue Op1 = getValue(I.getOperand(0)); 3220 SDValue Op2 = getValue(I.getOperand(1)); 3221 3222 ISD::CondCode Condition = getFCmpCondCode(predicate); 3223 auto *FPMO = cast<FPMathOperator>(&I); 3224 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3225 Condition = getFCmpCodeWithoutNaN(Condition); 3226 3227 SDNodeFlags Flags; 3228 Flags.copyFMF(*FPMO); 3229 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3230 3231 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3232 I.getType()); 3233 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3234 } 3235 3236 // Check if the condition of the select has one use or two users that are both 3237 // selects with the same condition. 3238 static bool hasOnlySelectUsers(const Value *Cond) { 3239 return llvm::all_of(Cond->users(), [](const Value *V) { 3240 return isa<SelectInst>(V); 3241 }); 3242 } 3243 3244 void SelectionDAGBuilder::visitSelect(const User &I) { 3245 SmallVector<EVT, 4> ValueVTs; 3246 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3247 ValueVTs); 3248 unsigned NumValues = ValueVTs.size(); 3249 if (NumValues == 0) return; 3250 3251 SmallVector<SDValue, 4> Values(NumValues); 3252 SDValue Cond = getValue(I.getOperand(0)); 3253 SDValue LHSVal = getValue(I.getOperand(1)); 3254 SDValue RHSVal = getValue(I.getOperand(2)); 3255 SmallVector<SDValue, 1> BaseOps(1, Cond); 3256 ISD::NodeType OpCode = 3257 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3258 3259 bool IsUnaryAbs = false; 3260 bool Negate = false; 3261 3262 SDNodeFlags Flags; 3263 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3264 Flags.copyFMF(*FPOp); 3265 3266 // Min/max matching is only viable if all output VTs are the same. 3267 if (is_splat(ValueVTs)) { 3268 EVT VT = ValueVTs[0]; 3269 LLVMContext &Ctx = *DAG.getContext(); 3270 auto &TLI = DAG.getTargetLoweringInfo(); 3271 3272 // We care about the legality of the operation after it has been type 3273 // legalized. 3274 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3275 VT = TLI.getTypeToTransformTo(Ctx, VT); 3276 3277 // If the vselect is legal, assume we want to leave this as a vector setcc + 3278 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3279 // min/max is legal on the scalar type. 3280 bool UseScalarMinMax = VT.isVector() && 3281 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3282 3283 Value *LHS, *RHS; 3284 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3285 ISD::NodeType Opc = ISD::DELETED_NODE; 3286 switch (SPR.Flavor) { 3287 case SPF_UMAX: Opc = ISD::UMAX; break; 3288 case SPF_UMIN: Opc = ISD::UMIN; break; 3289 case SPF_SMAX: Opc = ISD::SMAX; break; 3290 case SPF_SMIN: Opc = ISD::SMIN; break; 3291 case SPF_FMINNUM: 3292 switch (SPR.NaNBehavior) { 3293 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3294 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3295 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3296 case SPNB_RETURNS_ANY: { 3297 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3298 Opc = ISD::FMINNUM; 3299 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3300 Opc = ISD::FMINIMUM; 3301 else if (UseScalarMinMax) 3302 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3303 ISD::FMINNUM : ISD::FMINIMUM; 3304 break; 3305 } 3306 } 3307 break; 3308 case SPF_FMAXNUM: 3309 switch (SPR.NaNBehavior) { 3310 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3311 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3312 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3313 case SPNB_RETURNS_ANY: 3314 3315 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3316 Opc = ISD::FMAXNUM; 3317 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3318 Opc = ISD::FMAXIMUM; 3319 else if (UseScalarMinMax) 3320 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3321 ISD::FMAXNUM : ISD::FMAXIMUM; 3322 break; 3323 } 3324 break; 3325 case SPF_NABS: 3326 Negate = true; 3327 LLVM_FALLTHROUGH; 3328 case SPF_ABS: 3329 IsUnaryAbs = true; 3330 Opc = ISD::ABS; 3331 break; 3332 default: break; 3333 } 3334 3335 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3336 (TLI.isOperationLegalOrCustom(Opc, VT) || 3337 (UseScalarMinMax && 3338 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3339 // If the underlying comparison instruction is used by any other 3340 // instruction, the consumed instructions won't be destroyed, so it is 3341 // not profitable to convert to a min/max. 3342 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3343 OpCode = Opc; 3344 LHSVal = getValue(LHS); 3345 RHSVal = getValue(RHS); 3346 BaseOps.clear(); 3347 } 3348 3349 if (IsUnaryAbs) { 3350 OpCode = Opc; 3351 LHSVal = getValue(LHS); 3352 BaseOps.clear(); 3353 } 3354 } 3355 3356 if (IsUnaryAbs) { 3357 for (unsigned i = 0; i != NumValues; ++i) { 3358 SDLoc dl = getCurSDLoc(); 3359 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3360 Values[i] = 3361 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3362 if (Negate) 3363 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3364 Values[i]); 3365 } 3366 } else { 3367 for (unsigned i = 0; i != NumValues; ++i) { 3368 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3369 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3370 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3371 Values[i] = DAG.getNode( 3372 OpCode, getCurSDLoc(), 3373 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3374 } 3375 } 3376 3377 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3378 DAG.getVTList(ValueVTs), Values)); 3379 } 3380 3381 void SelectionDAGBuilder::visitTrunc(const User &I) { 3382 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3383 SDValue N = getValue(I.getOperand(0)); 3384 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3385 I.getType()); 3386 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3387 } 3388 3389 void SelectionDAGBuilder::visitZExt(const User &I) { 3390 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3391 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3392 SDValue N = getValue(I.getOperand(0)); 3393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3394 I.getType()); 3395 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3396 } 3397 3398 void SelectionDAGBuilder::visitSExt(const User &I) { 3399 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3400 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3401 SDValue N = getValue(I.getOperand(0)); 3402 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3403 I.getType()); 3404 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3405 } 3406 3407 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3408 // FPTrunc is never a no-op cast, no need to check 3409 SDValue N = getValue(I.getOperand(0)); 3410 SDLoc dl = getCurSDLoc(); 3411 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3412 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3413 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3414 DAG.getTargetConstant( 3415 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3416 } 3417 3418 void SelectionDAGBuilder::visitFPExt(const User &I) { 3419 // FPExt is never a no-op cast, no need to check 3420 SDValue N = getValue(I.getOperand(0)); 3421 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3422 I.getType()); 3423 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3424 } 3425 3426 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3427 // FPToUI is never a no-op cast, no need to check 3428 SDValue N = getValue(I.getOperand(0)); 3429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3430 I.getType()); 3431 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3432 } 3433 3434 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3435 // FPToSI is never a no-op cast, no need to check 3436 SDValue N = getValue(I.getOperand(0)); 3437 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3438 I.getType()); 3439 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3440 } 3441 3442 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3443 // UIToFP is never a no-op cast, no need to check 3444 SDValue N = getValue(I.getOperand(0)); 3445 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3446 I.getType()); 3447 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3448 } 3449 3450 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3451 // SIToFP is never a no-op cast, no need to check 3452 SDValue N = getValue(I.getOperand(0)); 3453 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3454 I.getType()); 3455 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3456 } 3457 3458 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3459 // What to do depends on the size of the integer and the size of the pointer. 3460 // We can either truncate, zero extend, or no-op, accordingly. 3461 SDValue N = getValue(I.getOperand(0)); 3462 auto &TLI = DAG.getTargetLoweringInfo(); 3463 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3464 I.getType()); 3465 EVT PtrMemVT = 3466 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3467 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3468 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3469 setValue(&I, N); 3470 } 3471 3472 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3473 // What to do depends on the size of the integer and the size of the pointer. 3474 // We can either truncate, zero extend, or no-op, accordingly. 3475 SDValue N = getValue(I.getOperand(0)); 3476 auto &TLI = DAG.getTargetLoweringInfo(); 3477 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3478 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3479 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3480 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3481 setValue(&I, N); 3482 } 3483 3484 void SelectionDAGBuilder::visitBitCast(const User &I) { 3485 SDValue N = getValue(I.getOperand(0)); 3486 SDLoc dl = getCurSDLoc(); 3487 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3488 I.getType()); 3489 3490 // BitCast assures us that source and destination are the same size so this is 3491 // either a BITCAST or a no-op. 3492 if (DestVT != N.getValueType()) 3493 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3494 DestVT, N)); // convert types. 3495 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3496 // might fold any kind of constant expression to an integer constant and that 3497 // is not what we are looking for. Only recognize a bitcast of a genuine 3498 // constant integer as an opaque constant. 3499 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3500 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3501 /*isOpaque*/true)); 3502 else 3503 setValue(&I, N); // noop cast. 3504 } 3505 3506 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3508 const Value *SV = I.getOperand(0); 3509 SDValue N = getValue(SV); 3510 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3511 3512 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3513 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3514 3515 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3516 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3517 3518 setValue(&I, N); 3519 } 3520 3521 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3522 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3523 SDValue InVec = getValue(I.getOperand(0)); 3524 SDValue InVal = getValue(I.getOperand(1)); 3525 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3526 TLI.getVectorIdxTy(DAG.getDataLayout())); 3527 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3528 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3529 InVec, InVal, InIdx)); 3530 } 3531 3532 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3533 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3534 SDValue InVec = getValue(I.getOperand(0)); 3535 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3536 TLI.getVectorIdxTy(DAG.getDataLayout())); 3537 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3538 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3539 InVec, InIdx)); 3540 } 3541 3542 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3543 SDValue Src1 = getValue(I.getOperand(0)); 3544 SDValue Src2 = getValue(I.getOperand(1)); 3545 ArrayRef<int> Mask; 3546 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3547 Mask = SVI->getShuffleMask(); 3548 else 3549 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3550 SDLoc DL = getCurSDLoc(); 3551 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3552 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3553 EVT SrcVT = Src1.getValueType(); 3554 3555 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3556 VT.isScalableVector()) { 3557 // Canonical splat form of first element of first input vector. 3558 SDValue FirstElt = 3559 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3560 DAG.getVectorIdxConstant(0, DL)); 3561 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3562 return; 3563 } 3564 3565 // For now, we only handle splats for scalable vectors. 3566 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3567 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3568 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3569 3570 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3571 unsigned MaskNumElts = Mask.size(); 3572 3573 if (SrcNumElts == MaskNumElts) { 3574 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3575 return; 3576 } 3577 3578 // Normalize the shuffle vector since mask and vector length don't match. 3579 if (SrcNumElts < MaskNumElts) { 3580 // Mask is longer than the source vectors. We can use concatenate vector to 3581 // make the mask and vectors lengths match. 3582 3583 if (MaskNumElts % SrcNumElts == 0) { 3584 // Mask length is a multiple of the source vector length. 3585 // Check if the shuffle is some kind of concatenation of the input 3586 // vectors. 3587 unsigned NumConcat = MaskNumElts / SrcNumElts; 3588 bool IsConcat = true; 3589 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3590 for (unsigned i = 0; i != MaskNumElts; ++i) { 3591 int Idx = Mask[i]; 3592 if (Idx < 0) 3593 continue; 3594 // Ensure the indices in each SrcVT sized piece are sequential and that 3595 // the same source is used for the whole piece. 3596 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3597 (ConcatSrcs[i / SrcNumElts] >= 0 && 3598 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3599 IsConcat = false; 3600 break; 3601 } 3602 // Remember which source this index came from. 3603 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3604 } 3605 3606 // The shuffle is concatenating multiple vectors together. Just emit 3607 // a CONCAT_VECTORS operation. 3608 if (IsConcat) { 3609 SmallVector<SDValue, 8> ConcatOps; 3610 for (auto Src : ConcatSrcs) { 3611 if (Src < 0) 3612 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3613 else if (Src == 0) 3614 ConcatOps.push_back(Src1); 3615 else 3616 ConcatOps.push_back(Src2); 3617 } 3618 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3619 return; 3620 } 3621 } 3622 3623 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3624 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3625 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3626 PaddedMaskNumElts); 3627 3628 // Pad both vectors with undefs to make them the same length as the mask. 3629 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3630 3631 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3632 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3633 MOps1[0] = Src1; 3634 MOps2[0] = Src2; 3635 3636 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3637 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3638 3639 // Readjust mask for new input vector length. 3640 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3641 for (unsigned i = 0; i != MaskNumElts; ++i) { 3642 int Idx = Mask[i]; 3643 if (Idx >= (int)SrcNumElts) 3644 Idx -= SrcNumElts - PaddedMaskNumElts; 3645 MappedOps[i] = Idx; 3646 } 3647 3648 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3649 3650 // If the concatenated vector was padded, extract a subvector with the 3651 // correct number of elements. 3652 if (MaskNumElts != PaddedMaskNumElts) 3653 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3654 DAG.getVectorIdxConstant(0, DL)); 3655 3656 setValue(&I, Result); 3657 return; 3658 } 3659 3660 if (SrcNumElts > MaskNumElts) { 3661 // Analyze the access pattern of the vector to see if we can extract 3662 // two subvectors and do the shuffle. 3663 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3664 bool CanExtract = true; 3665 for (int Idx : Mask) { 3666 unsigned Input = 0; 3667 if (Idx < 0) 3668 continue; 3669 3670 if (Idx >= (int)SrcNumElts) { 3671 Input = 1; 3672 Idx -= SrcNumElts; 3673 } 3674 3675 // If all the indices come from the same MaskNumElts sized portion of 3676 // the sources we can use extract. Also make sure the extract wouldn't 3677 // extract past the end of the source. 3678 int NewStartIdx = alignDown(Idx, MaskNumElts); 3679 if (NewStartIdx + MaskNumElts > SrcNumElts || 3680 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3681 CanExtract = false; 3682 // Make sure we always update StartIdx as we use it to track if all 3683 // elements are undef. 3684 StartIdx[Input] = NewStartIdx; 3685 } 3686 3687 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3688 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3689 return; 3690 } 3691 if (CanExtract) { 3692 // Extract appropriate subvector and generate a vector shuffle 3693 for (unsigned Input = 0; Input < 2; ++Input) { 3694 SDValue &Src = Input == 0 ? Src1 : Src2; 3695 if (StartIdx[Input] < 0) 3696 Src = DAG.getUNDEF(VT); 3697 else { 3698 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3699 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3700 } 3701 } 3702 3703 // Calculate new mask. 3704 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3705 for (int &Idx : MappedOps) { 3706 if (Idx >= (int)SrcNumElts) 3707 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3708 else if (Idx >= 0) 3709 Idx -= StartIdx[0]; 3710 } 3711 3712 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3713 return; 3714 } 3715 } 3716 3717 // We can't use either concat vectors or extract subvectors so fall back to 3718 // replacing the shuffle with extract and build vector. 3719 // to insert and build vector. 3720 EVT EltVT = VT.getVectorElementType(); 3721 SmallVector<SDValue,8> Ops; 3722 for (int Idx : Mask) { 3723 SDValue Res; 3724 3725 if (Idx < 0) { 3726 Res = DAG.getUNDEF(EltVT); 3727 } else { 3728 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3729 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3730 3731 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3732 DAG.getVectorIdxConstant(Idx, DL)); 3733 } 3734 3735 Ops.push_back(Res); 3736 } 3737 3738 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3739 } 3740 3741 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3742 ArrayRef<unsigned> Indices; 3743 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3744 Indices = IV->getIndices(); 3745 else 3746 Indices = cast<ConstantExpr>(&I)->getIndices(); 3747 3748 const Value *Op0 = I.getOperand(0); 3749 const Value *Op1 = I.getOperand(1); 3750 Type *AggTy = I.getType(); 3751 Type *ValTy = Op1->getType(); 3752 bool IntoUndef = isa<UndefValue>(Op0); 3753 bool FromUndef = isa<UndefValue>(Op1); 3754 3755 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3756 3757 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3758 SmallVector<EVT, 4> AggValueVTs; 3759 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3760 SmallVector<EVT, 4> ValValueVTs; 3761 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3762 3763 unsigned NumAggValues = AggValueVTs.size(); 3764 unsigned NumValValues = ValValueVTs.size(); 3765 SmallVector<SDValue, 4> Values(NumAggValues); 3766 3767 // Ignore an insertvalue that produces an empty object 3768 if (!NumAggValues) { 3769 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3770 return; 3771 } 3772 3773 SDValue Agg = getValue(Op0); 3774 unsigned i = 0; 3775 // Copy the beginning value(s) from the original aggregate. 3776 for (; i != LinearIndex; ++i) 3777 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3778 SDValue(Agg.getNode(), Agg.getResNo() + i); 3779 // Copy values from the inserted value(s). 3780 if (NumValValues) { 3781 SDValue Val = getValue(Op1); 3782 for (; i != LinearIndex + NumValValues; ++i) 3783 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3784 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3785 } 3786 // Copy remaining value(s) from the original aggregate. 3787 for (; i != NumAggValues; ++i) 3788 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3789 SDValue(Agg.getNode(), Agg.getResNo() + i); 3790 3791 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3792 DAG.getVTList(AggValueVTs), Values)); 3793 } 3794 3795 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3796 ArrayRef<unsigned> Indices; 3797 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3798 Indices = EV->getIndices(); 3799 else 3800 Indices = cast<ConstantExpr>(&I)->getIndices(); 3801 3802 const Value *Op0 = I.getOperand(0); 3803 Type *AggTy = Op0->getType(); 3804 Type *ValTy = I.getType(); 3805 bool OutOfUndef = isa<UndefValue>(Op0); 3806 3807 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3808 3809 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3810 SmallVector<EVT, 4> ValValueVTs; 3811 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3812 3813 unsigned NumValValues = ValValueVTs.size(); 3814 3815 // Ignore a extractvalue that produces an empty object 3816 if (!NumValValues) { 3817 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3818 return; 3819 } 3820 3821 SmallVector<SDValue, 4> Values(NumValValues); 3822 3823 SDValue Agg = getValue(Op0); 3824 // Copy out the selected value(s). 3825 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3826 Values[i - LinearIndex] = 3827 OutOfUndef ? 3828 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3829 SDValue(Agg.getNode(), Agg.getResNo() + i); 3830 3831 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3832 DAG.getVTList(ValValueVTs), Values)); 3833 } 3834 3835 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3836 Value *Op0 = I.getOperand(0); 3837 // Note that the pointer operand may be a vector of pointers. Take the scalar 3838 // element which holds a pointer. 3839 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3840 SDValue N = getValue(Op0); 3841 SDLoc dl = getCurSDLoc(); 3842 auto &TLI = DAG.getTargetLoweringInfo(); 3843 3844 // Normalize Vector GEP - all scalar operands should be converted to the 3845 // splat vector. 3846 bool IsVectorGEP = I.getType()->isVectorTy(); 3847 ElementCount VectorElementCount = 3848 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3849 : ElementCount::getFixed(0); 3850 3851 if (IsVectorGEP && !N.getValueType().isVector()) { 3852 LLVMContext &Context = *DAG.getContext(); 3853 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3854 if (VectorElementCount.isScalable()) 3855 N = DAG.getSplatVector(VT, dl, N); 3856 else 3857 N = DAG.getSplatBuildVector(VT, dl, N); 3858 } 3859 3860 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3861 GTI != E; ++GTI) { 3862 const Value *Idx = GTI.getOperand(); 3863 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3864 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3865 if (Field) { 3866 // N = N + Offset 3867 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3868 3869 // In an inbounds GEP with an offset that is nonnegative even when 3870 // interpreted as signed, assume there is no unsigned overflow. 3871 SDNodeFlags Flags; 3872 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3873 Flags.setNoUnsignedWrap(true); 3874 3875 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3876 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3877 } 3878 } else { 3879 // IdxSize is the width of the arithmetic according to IR semantics. 3880 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3881 // (and fix up the result later). 3882 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3883 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3884 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3885 // We intentionally mask away the high bits here; ElementSize may not 3886 // fit in IdxTy. 3887 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3888 bool ElementScalable = ElementSize.isScalable(); 3889 3890 // If this is a scalar constant or a splat vector of constants, 3891 // handle it quickly. 3892 const auto *C = dyn_cast<Constant>(Idx); 3893 if (C && isa<VectorType>(C->getType())) 3894 C = C->getSplatValue(); 3895 3896 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3897 if (CI && CI->isZero()) 3898 continue; 3899 if (CI && !ElementScalable) { 3900 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3901 LLVMContext &Context = *DAG.getContext(); 3902 SDValue OffsVal; 3903 if (IsVectorGEP) 3904 OffsVal = DAG.getConstant( 3905 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3906 else 3907 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3908 3909 // In an inbounds GEP with an offset that is nonnegative even when 3910 // interpreted as signed, assume there is no unsigned overflow. 3911 SDNodeFlags Flags; 3912 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3913 Flags.setNoUnsignedWrap(true); 3914 3915 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3916 3917 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3918 continue; 3919 } 3920 3921 // N = N + Idx * ElementMul; 3922 SDValue IdxN = getValue(Idx); 3923 3924 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3925 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3926 VectorElementCount); 3927 if (VectorElementCount.isScalable()) 3928 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3929 else 3930 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3931 } 3932 3933 // If the index is smaller or larger than intptr_t, truncate or extend 3934 // it. 3935 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3936 3937 if (ElementScalable) { 3938 EVT VScaleTy = N.getValueType().getScalarType(); 3939 SDValue VScale = DAG.getNode( 3940 ISD::VSCALE, dl, VScaleTy, 3941 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3942 if (IsVectorGEP) 3943 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3944 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3945 } else { 3946 // If this is a multiply by a power of two, turn it into a shl 3947 // immediately. This is a very common case. 3948 if (ElementMul != 1) { 3949 if (ElementMul.isPowerOf2()) { 3950 unsigned Amt = ElementMul.logBase2(); 3951 IdxN = DAG.getNode(ISD::SHL, dl, 3952 N.getValueType(), IdxN, 3953 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3954 } else { 3955 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3956 IdxN.getValueType()); 3957 IdxN = DAG.getNode(ISD::MUL, dl, 3958 N.getValueType(), IdxN, Scale); 3959 } 3960 } 3961 } 3962 3963 N = DAG.getNode(ISD::ADD, dl, 3964 N.getValueType(), N, IdxN); 3965 } 3966 } 3967 3968 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3969 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3970 if (IsVectorGEP) { 3971 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3972 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3973 } 3974 3975 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3976 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3977 3978 setValue(&I, N); 3979 } 3980 3981 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3982 // If this is a fixed sized alloca in the entry block of the function, 3983 // allocate it statically on the stack. 3984 if (FuncInfo.StaticAllocaMap.count(&I)) 3985 return; // getValue will auto-populate this. 3986 3987 SDLoc dl = getCurSDLoc(); 3988 Type *Ty = I.getAllocatedType(); 3989 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3990 auto &DL = DAG.getDataLayout(); 3991 uint64_t TySize = DL.getTypeAllocSize(Ty); 3992 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3993 3994 SDValue AllocSize = getValue(I.getArraySize()); 3995 3996 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3997 if (AllocSize.getValueType() != IntPtr) 3998 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3999 4000 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 4001 AllocSize, 4002 DAG.getConstant(TySize, dl, IntPtr)); 4003 4004 // Handle alignment. If the requested alignment is less than or equal to 4005 // the stack alignment, ignore it. If the size is greater than or equal to 4006 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4007 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4008 if (*Alignment <= StackAlign) 4009 Alignment = None; 4010 4011 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4012 // Round the size of the allocation up to the stack alignment size 4013 // by add SA-1 to the size. This doesn't overflow because we're computing 4014 // an address inside an alloca. 4015 SDNodeFlags Flags; 4016 Flags.setNoUnsignedWrap(true); 4017 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4018 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4019 4020 // Mask out the low bits for alignment purposes. 4021 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4022 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4023 4024 SDValue Ops[] = { 4025 getRoot(), AllocSize, 4026 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4027 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4028 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4029 setValue(&I, DSA); 4030 DAG.setRoot(DSA.getValue(1)); 4031 4032 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4033 } 4034 4035 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4036 if (I.isAtomic()) 4037 return visitAtomicLoad(I); 4038 4039 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4040 const Value *SV = I.getOperand(0); 4041 if (TLI.supportSwiftError()) { 4042 // Swifterror values can come from either a function parameter with 4043 // swifterror attribute or an alloca with swifterror attribute. 4044 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4045 if (Arg->hasSwiftErrorAttr()) 4046 return visitLoadFromSwiftError(I); 4047 } 4048 4049 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4050 if (Alloca->isSwiftError()) 4051 return visitLoadFromSwiftError(I); 4052 } 4053 } 4054 4055 SDValue Ptr = getValue(SV); 4056 4057 Type *Ty = I.getType(); 4058 Align Alignment = I.getAlign(); 4059 4060 AAMDNodes AAInfo; 4061 I.getAAMetadata(AAInfo); 4062 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4063 4064 SmallVector<EVT, 4> ValueVTs, MemVTs; 4065 SmallVector<uint64_t, 4> Offsets; 4066 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4067 unsigned NumValues = ValueVTs.size(); 4068 if (NumValues == 0) 4069 return; 4070 4071 bool isVolatile = I.isVolatile(); 4072 4073 SDValue Root; 4074 bool ConstantMemory = false; 4075 if (isVolatile) 4076 // Serialize volatile loads with other side effects. 4077 Root = getRoot(); 4078 else if (NumValues > MaxParallelChains) 4079 Root = getMemoryRoot(); 4080 else if (AA && 4081 AA->pointsToConstantMemory(MemoryLocation( 4082 SV, 4083 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4084 AAInfo))) { 4085 // Do not serialize (non-volatile) loads of constant memory with anything. 4086 Root = DAG.getEntryNode(); 4087 ConstantMemory = true; 4088 } else { 4089 // Do not serialize non-volatile loads against each other. 4090 Root = DAG.getRoot(); 4091 } 4092 4093 SDLoc dl = getCurSDLoc(); 4094 4095 if (isVolatile) 4096 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4097 4098 // An aggregate load cannot wrap around the address space, so offsets to its 4099 // parts don't wrap either. 4100 SDNodeFlags Flags; 4101 Flags.setNoUnsignedWrap(true); 4102 4103 SmallVector<SDValue, 4> Values(NumValues); 4104 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4105 EVT PtrVT = Ptr.getValueType(); 4106 4107 MachineMemOperand::Flags MMOFlags 4108 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4109 4110 unsigned ChainI = 0; 4111 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4112 // Serializing loads here may result in excessive register pressure, and 4113 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4114 // could recover a bit by hoisting nodes upward in the chain by recognizing 4115 // they are side-effect free or do not alias. The optimizer should really 4116 // avoid this case by converting large object/array copies to llvm.memcpy 4117 // (MaxParallelChains should always remain as failsafe). 4118 if (ChainI == MaxParallelChains) { 4119 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4120 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4121 makeArrayRef(Chains.data(), ChainI)); 4122 Root = Chain; 4123 ChainI = 0; 4124 } 4125 SDValue A = DAG.getNode(ISD::ADD, dl, 4126 PtrVT, Ptr, 4127 DAG.getConstant(Offsets[i], dl, PtrVT), 4128 Flags); 4129 4130 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4131 MachinePointerInfo(SV, Offsets[i]), Alignment, 4132 MMOFlags, AAInfo, Ranges); 4133 Chains[ChainI] = L.getValue(1); 4134 4135 if (MemVTs[i] != ValueVTs[i]) 4136 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4137 4138 Values[i] = L; 4139 } 4140 4141 if (!ConstantMemory) { 4142 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4143 makeArrayRef(Chains.data(), ChainI)); 4144 if (isVolatile) 4145 DAG.setRoot(Chain); 4146 else 4147 PendingLoads.push_back(Chain); 4148 } 4149 4150 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4151 DAG.getVTList(ValueVTs), Values)); 4152 } 4153 4154 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4155 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4156 "call visitStoreToSwiftError when backend supports swifterror"); 4157 4158 SmallVector<EVT, 4> ValueVTs; 4159 SmallVector<uint64_t, 4> Offsets; 4160 const Value *SrcV = I.getOperand(0); 4161 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4162 SrcV->getType(), ValueVTs, &Offsets); 4163 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4164 "expect a single EVT for swifterror"); 4165 4166 SDValue Src = getValue(SrcV); 4167 // Create a virtual register, then update the virtual register. 4168 Register VReg = 4169 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4170 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4171 // Chain can be getRoot or getControlRoot. 4172 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4173 SDValue(Src.getNode(), Src.getResNo())); 4174 DAG.setRoot(CopyNode); 4175 } 4176 4177 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4178 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4179 "call visitLoadFromSwiftError when backend supports swifterror"); 4180 4181 assert(!I.isVolatile() && 4182 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4183 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4184 "Support volatile, non temporal, invariant for load_from_swift_error"); 4185 4186 const Value *SV = I.getOperand(0); 4187 Type *Ty = I.getType(); 4188 AAMDNodes AAInfo; 4189 I.getAAMetadata(AAInfo); 4190 assert( 4191 (!AA || 4192 !AA->pointsToConstantMemory(MemoryLocation( 4193 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4194 AAInfo))) && 4195 "load_from_swift_error should not be constant memory"); 4196 4197 SmallVector<EVT, 4> ValueVTs; 4198 SmallVector<uint64_t, 4> Offsets; 4199 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4200 ValueVTs, &Offsets); 4201 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4202 "expect a single EVT for swifterror"); 4203 4204 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4205 SDValue L = DAG.getCopyFromReg( 4206 getRoot(), getCurSDLoc(), 4207 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4208 4209 setValue(&I, L); 4210 } 4211 4212 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4213 if (I.isAtomic()) 4214 return visitAtomicStore(I); 4215 4216 const Value *SrcV = I.getOperand(0); 4217 const Value *PtrV = I.getOperand(1); 4218 4219 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4220 if (TLI.supportSwiftError()) { 4221 // Swifterror values can come from either a function parameter with 4222 // swifterror attribute or an alloca with swifterror attribute. 4223 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4224 if (Arg->hasSwiftErrorAttr()) 4225 return visitStoreToSwiftError(I); 4226 } 4227 4228 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4229 if (Alloca->isSwiftError()) 4230 return visitStoreToSwiftError(I); 4231 } 4232 } 4233 4234 SmallVector<EVT, 4> ValueVTs, MemVTs; 4235 SmallVector<uint64_t, 4> Offsets; 4236 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4237 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4238 unsigned NumValues = ValueVTs.size(); 4239 if (NumValues == 0) 4240 return; 4241 4242 // Get the lowered operands. Note that we do this after 4243 // checking if NumResults is zero, because with zero results 4244 // the operands won't have values in the map. 4245 SDValue Src = getValue(SrcV); 4246 SDValue Ptr = getValue(PtrV); 4247 4248 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4249 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4250 SDLoc dl = getCurSDLoc(); 4251 Align Alignment = I.getAlign(); 4252 AAMDNodes AAInfo; 4253 I.getAAMetadata(AAInfo); 4254 4255 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4256 4257 // An aggregate load cannot wrap around the address space, so offsets to its 4258 // parts don't wrap either. 4259 SDNodeFlags Flags; 4260 Flags.setNoUnsignedWrap(true); 4261 4262 unsigned ChainI = 0; 4263 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4264 // See visitLoad comments. 4265 if (ChainI == MaxParallelChains) { 4266 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4267 makeArrayRef(Chains.data(), ChainI)); 4268 Root = Chain; 4269 ChainI = 0; 4270 } 4271 SDValue Add = 4272 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4273 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4274 if (MemVTs[i] != ValueVTs[i]) 4275 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4276 SDValue St = 4277 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4278 Alignment, MMOFlags, AAInfo); 4279 Chains[ChainI] = St; 4280 } 4281 4282 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4283 makeArrayRef(Chains.data(), ChainI)); 4284 DAG.setRoot(StoreNode); 4285 } 4286 4287 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4288 bool IsCompressing) { 4289 SDLoc sdl = getCurSDLoc(); 4290 4291 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4292 MaybeAlign &Alignment) { 4293 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4294 Src0 = I.getArgOperand(0); 4295 Ptr = I.getArgOperand(1); 4296 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4297 Mask = I.getArgOperand(3); 4298 }; 4299 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4300 MaybeAlign &Alignment) { 4301 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4302 Src0 = I.getArgOperand(0); 4303 Ptr = I.getArgOperand(1); 4304 Mask = I.getArgOperand(2); 4305 Alignment = None; 4306 }; 4307 4308 Value *PtrOperand, *MaskOperand, *Src0Operand; 4309 MaybeAlign Alignment; 4310 if (IsCompressing) 4311 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4312 else 4313 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4314 4315 SDValue Ptr = getValue(PtrOperand); 4316 SDValue Src0 = getValue(Src0Operand); 4317 SDValue Mask = getValue(MaskOperand); 4318 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4319 4320 EVT VT = Src0.getValueType(); 4321 if (!Alignment) 4322 Alignment = DAG.getEVTAlign(VT); 4323 4324 AAMDNodes AAInfo; 4325 I.getAAMetadata(AAInfo); 4326 4327 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4328 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4329 // TODO: Make MachineMemOperands aware of scalable 4330 // vectors. 4331 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4332 SDValue StoreNode = 4333 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4334 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4335 DAG.setRoot(StoreNode); 4336 setValue(&I, StoreNode); 4337 } 4338 4339 // Get a uniform base for the Gather/Scatter intrinsic. 4340 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4341 // We try to represent it as a base pointer + vector of indices. 4342 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4343 // The first operand of the GEP may be a single pointer or a vector of pointers 4344 // Example: 4345 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4346 // or 4347 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4348 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4349 // 4350 // When the first GEP operand is a single pointer - it is the uniform base we 4351 // are looking for. If first operand of the GEP is a splat vector - we 4352 // extract the splat value and use it as a uniform base. 4353 // In all other cases the function returns 'false'. 4354 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4355 ISD::MemIndexType &IndexType, SDValue &Scale, 4356 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4357 SelectionDAG& DAG = SDB->DAG; 4358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4359 const DataLayout &DL = DAG.getDataLayout(); 4360 4361 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4362 4363 // Handle splat constant pointer. 4364 if (auto *C = dyn_cast<Constant>(Ptr)) { 4365 C = C->getSplatValue(); 4366 if (!C) 4367 return false; 4368 4369 Base = SDB->getValue(C); 4370 4371 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4372 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4373 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4374 IndexType = ISD::SIGNED_SCALED; 4375 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4376 return true; 4377 } 4378 4379 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4380 if (!GEP || GEP->getParent() != CurBB) 4381 return false; 4382 4383 if (GEP->getNumOperands() != 2) 4384 return false; 4385 4386 const Value *BasePtr = GEP->getPointerOperand(); 4387 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4388 4389 // Make sure the base is scalar and the index is a vector. 4390 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4391 return false; 4392 4393 Base = SDB->getValue(BasePtr); 4394 Index = SDB->getValue(IndexVal); 4395 IndexType = ISD::SIGNED_SCALED; 4396 Scale = DAG.getTargetConstant( 4397 DL.getTypeAllocSize(GEP->getResultElementType()), 4398 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4399 return true; 4400 } 4401 4402 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4403 SDLoc sdl = getCurSDLoc(); 4404 4405 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4406 const Value *Ptr = I.getArgOperand(1); 4407 SDValue Src0 = getValue(I.getArgOperand(0)); 4408 SDValue Mask = getValue(I.getArgOperand(3)); 4409 EVT VT = Src0.getValueType(); 4410 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4411 ->getMaybeAlignValue() 4412 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4413 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4414 4415 AAMDNodes AAInfo; 4416 I.getAAMetadata(AAInfo); 4417 4418 SDValue Base; 4419 SDValue Index; 4420 ISD::MemIndexType IndexType; 4421 SDValue Scale; 4422 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4423 I.getParent()); 4424 4425 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4426 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4427 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4428 // TODO: Make MachineMemOperands aware of scalable 4429 // vectors. 4430 MemoryLocation::UnknownSize, Alignment, AAInfo); 4431 if (!UniformBase) { 4432 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4433 Index = getValue(Ptr); 4434 IndexType = ISD::SIGNED_UNSCALED; 4435 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4436 } 4437 4438 EVT IdxVT = Index.getValueType(); 4439 EVT EltTy = IdxVT.getVectorElementType(); 4440 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4441 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4442 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4443 } 4444 4445 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4446 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4447 Ops, MMO, IndexType, false); 4448 DAG.setRoot(Scatter); 4449 setValue(&I, Scatter); 4450 } 4451 4452 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4453 SDLoc sdl = getCurSDLoc(); 4454 4455 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4456 MaybeAlign &Alignment) { 4457 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4458 Ptr = I.getArgOperand(0); 4459 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4460 Mask = I.getArgOperand(2); 4461 Src0 = I.getArgOperand(3); 4462 }; 4463 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4464 MaybeAlign &Alignment) { 4465 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4466 Ptr = I.getArgOperand(0); 4467 Alignment = None; 4468 Mask = I.getArgOperand(1); 4469 Src0 = I.getArgOperand(2); 4470 }; 4471 4472 Value *PtrOperand, *MaskOperand, *Src0Operand; 4473 MaybeAlign Alignment; 4474 if (IsExpanding) 4475 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4476 else 4477 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4478 4479 SDValue Ptr = getValue(PtrOperand); 4480 SDValue Src0 = getValue(Src0Operand); 4481 SDValue Mask = getValue(MaskOperand); 4482 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4483 4484 EVT VT = Src0.getValueType(); 4485 if (!Alignment) 4486 Alignment = DAG.getEVTAlign(VT); 4487 4488 AAMDNodes AAInfo; 4489 I.getAAMetadata(AAInfo); 4490 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4491 4492 // Do not serialize masked loads of constant memory with anything. 4493 MemoryLocation ML; 4494 if (VT.isScalableVector()) 4495 ML = MemoryLocation::getAfter(PtrOperand); 4496 else 4497 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4498 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4499 AAInfo); 4500 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4501 4502 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4503 4504 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4505 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4506 // TODO: Make MachineMemOperands aware of scalable 4507 // vectors. 4508 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4509 4510 SDValue Load = 4511 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4512 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4513 if (AddToChain) 4514 PendingLoads.push_back(Load.getValue(1)); 4515 setValue(&I, Load); 4516 } 4517 4518 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4519 SDLoc sdl = getCurSDLoc(); 4520 4521 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4522 const Value *Ptr = I.getArgOperand(0); 4523 SDValue Src0 = getValue(I.getArgOperand(3)); 4524 SDValue Mask = getValue(I.getArgOperand(2)); 4525 4526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4527 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4528 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4529 ->getMaybeAlignValue() 4530 .getValueOr(DAG.getEVTAlign(VT.getScalarType())); 4531 4532 AAMDNodes AAInfo; 4533 I.getAAMetadata(AAInfo); 4534 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4535 4536 SDValue Root = DAG.getRoot(); 4537 SDValue Base; 4538 SDValue Index; 4539 ISD::MemIndexType IndexType; 4540 SDValue Scale; 4541 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4542 I.getParent()); 4543 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4544 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4545 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4546 // TODO: Make MachineMemOperands aware of scalable 4547 // vectors. 4548 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4549 4550 if (!UniformBase) { 4551 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4552 Index = getValue(Ptr); 4553 IndexType = ISD::SIGNED_UNSCALED; 4554 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4555 } 4556 4557 EVT IdxVT = Index.getValueType(); 4558 EVT EltTy = IdxVT.getVectorElementType(); 4559 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4560 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4561 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4562 } 4563 4564 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4565 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4566 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4567 4568 PendingLoads.push_back(Gather.getValue(1)); 4569 setValue(&I, Gather); 4570 } 4571 4572 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4573 SDLoc dl = getCurSDLoc(); 4574 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4575 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4576 SyncScope::ID SSID = I.getSyncScopeID(); 4577 4578 SDValue InChain = getRoot(); 4579 4580 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4581 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4582 4583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4584 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4585 4586 MachineFunction &MF = DAG.getMachineFunction(); 4587 MachineMemOperand *MMO = MF.getMachineMemOperand( 4588 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4589 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4590 FailureOrdering); 4591 4592 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4593 dl, MemVT, VTs, InChain, 4594 getValue(I.getPointerOperand()), 4595 getValue(I.getCompareOperand()), 4596 getValue(I.getNewValOperand()), MMO); 4597 4598 SDValue OutChain = L.getValue(2); 4599 4600 setValue(&I, L); 4601 DAG.setRoot(OutChain); 4602 } 4603 4604 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4605 SDLoc dl = getCurSDLoc(); 4606 ISD::NodeType NT; 4607 switch (I.getOperation()) { 4608 default: llvm_unreachable("Unknown atomicrmw operation"); 4609 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4610 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4611 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4612 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4613 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4614 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4615 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4616 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4617 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4618 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4619 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4620 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4621 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4622 } 4623 AtomicOrdering Ordering = I.getOrdering(); 4624 SyncScope::ID SSID = I.getSyncScopeID(); 4625 4626 SDValue InChain = getRoot(); 4627 4628 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4630 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4631 4632 MachineFunction &MF = DAG.getMachineFunction(); 4633 MachineMemOperand *MMO = MF.getMachineMemOperand( 4634 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4635 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4636 4637 SDValue L = 4638 DAG.getAtomic(NT, dl, MemVT, InChain, 4639 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4640 MMO); 4641 4642 SDValue OutChain = L.getValue(1); 4643 4644 setValue(&I, L); 4645 DAG.setRoot(OutChain); 4646 } 4647 4648 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4649 SDLoc dl = getCurSDLoc(); 4650 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4651 SDValue Ops[3]; 4652 Ops[0] = getRoot(); 4653 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4654 TLI.getFenceOperandTy(DAG.getDataLayout())); 4655 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4656 TLI.getFenceOperandTy(DAG.getDataLayout())); 4657 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4658 } 4659 4660 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4661 SDLoc dl = getCurSDLoc(); 4662 AtomicOrdering Order = I.getOrdering(); 4663 SyncScope::ID SSID = I.getSyncScopeID(); 4664 4665 SDValue InChain = getRoot(); 4666 4667 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4668 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4669 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4670 4671 if (!TLI.supportsUnalignedAtomics() && 4672 I.getAlignment() < MemVT.getSizeInBits() / 8) 4673 report_fatal_error("Cannot generate unaligned atomic load"); 4674 4675 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4676 4677 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4678 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4679 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4680 4681 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4682 4683 SDValue Ptr = getValue(I.getPointerOperand()); 4684 4685 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4686 // TODO: Once this is better exercised by tests, it should be merged with 4687 // the normal path for loads to prevent future divergence. 4688 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4689 if (MemVT != VT) 4690 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4691 4692 setValue(&I, L); 4693 SDValue OutChain = L.getValue(1); 4694 if (!I.isUnordered()) 4695 DAG.setRoot(OutChain); 4696 else 4697 PendingLoads.push_back(OutChain); 4698 return; 4699 } 4700 4701 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4702 Ptr, MMO); 4703 4704 SDValue OutChain = L.getValue(1); 4705 if (MemVT != VT) 4706 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4707 4708 setValue(&I, L); 4709 DAG.setRoot(OutChain); 4710 } 4711 4712 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4713 SDLoc dl = getCurSDLoc(); 4714 4715 AtomicOrdering Ordering = I.getOrdering(); 4716 SyncScope::ID SSID = I.getSyncScopeID(); 4717 4718 SDValue InChain = getRoot(); 4719 4720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4721 EVT MemVT = 4722 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4723 4724 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4725 report_fatal_error("Cannot generate unaligned atomic store"); 4726 4727 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4728 4729 MachineFunction &MF = DAG.getMachineFunction(); 4730 MachineMemOperand *MMO = MF.getMachineMemOperand( 4731 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4732 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4733 4734 SDValue Val = getValue(I.getValueOperand()); 4735 if (Val.getValueType() != MemVT) 4736 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4737 SDValue Ptr = getValue(I.getPointerOperand()); 4738 4739 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4740 // TODO: Once this is better exercised by tests, it should be merged with 4741 // the normal path for stores to prevent future divergence. 4742 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4743 DAG.setRoot(S); 4744 return; 4745 } 4746 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4747 Ptr, Val, MMO); 4748 4749 4750 DAG.setRoot(OutChain); 4751 } 4752 4753 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4754 /// node. 4755 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4756 unsigned Intrinsic) { 4757 // Ignore the callsite's attributes. A specific call site may be marked with 4758 // readnone, but the lowering code will expect the chain based on the 4759 // definition. 4760 const Function *F = I.getCalledFunction(); 4761 bool HasChain = !F->doesNotAccessMemory(); 4762 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4763 4764 // Build the operand list. 4765 SmallVector<SDValue, 8> Ops; 4766 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4767 if (OnlyLoad) { 4768 // We don't need to serialize loads against other loads. 4769 Ops.push_back(DAG.getRoot()); 4770 } else { 4771 Ops.push_back(getRoot()); 4772 } 4773 } 4774 4775 // Info is set by getTgtMemInstrinsic 4776 TargetLowering::IntrinsicInfo Info; 4777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4778 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4779 DAG.getMachineFunction(), 4780 Intrinsic); 4781 4782 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4783 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4784 Info.opc == ISD::INTRINSIC_W_CHAIN) 4785 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4786 TLI.getPointerTy(DAG.getDataLayout()))); 4787 4788 // Add all operands of the call to the operand list. 4789 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4790 const Value *Arg = I.getArgOperand(i); 4791 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4792 Ops.push_back(getValue(Arg)); 4793 continue; 4794 } 4795 4796 // Use TargetConstant instead of a regular constant for immarg. 4797 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4798 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4799 assert(CI->getBitWidth() <= 64 && 4800 "large intrinsic immediates not handled"); 4801 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4802 } else { 4803 Ops.push_back( 4804 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4805 } 4806 } 4807 4808 SmallVector<EVT, 4> ValueVTs; 4809 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4810 4811 if (HasChain) 4812 ValueVTs.push_back(MVT::Other); 4813 4814 SDVTList VTs = DAG.getVTList(ValueVTs); 4815 4816 // Propagate fast-math-flags from IR to node(s). 4817 SDNodeFlags Flags; 4818 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4819 Flags.copyFMF(*FPMO); 4820 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4821 4822 // Create the node. 4823 SDValue Result; 4824 if (IsTgtIntrinsic) { 4825 // This is target intrinsic that touches memory 4826 AAMDNodes AAInfo; 4827 I.getAAMetadata(AAInfo); 4828 Result = 4829 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4830 MachinePointerInfo(Info.ptrVal, Info.offset), 4831 Info.align, Info.flags, Info.size, AAInfo); 4832 } else if (!HasChain) { 4833 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4834 } else if (!I.getType()->isVoidTy()) { 4835 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4836 } else { 4837 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4838 } 4839 4840 if (HasChain) { 4841 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4842 if (OnlyLoad) 4843 PendingLoads.push_back(Chain); 4844 else 4845 DAG.setRoot(Chain); 4846 } 4847 4848 if (!I.getType()->isVoidTy()) { 4849 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4850 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4851 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4852 } else 4853 Result = lowerRangeToAssertZExt(DAG, I, Result); 4854 4855 MaybeAlign Alignment = I.getRetAlign(); 4856 if (!Alignment) 4857 Alignment = F->getAttributes().getRetAlignment(); 4858 // Insert `assertalign` node if there's an alignment. 4859 if (InsertAssertAlign && Alignment) { 4860 Result = 4861 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4862 } 4863 4864 setValue(&I, Result); 4865 } 4866 } 4867 4868 /// GetSignificand - Get the significand and build it into a floating-point 4869 /// number with exponent of 1: 4870 /// 4871 /// Op = (Op & 0x007fffff) | 0x3f800000; 4872 /// 4873 /// where Op is the hexadecimal representation of floating point value. 4874 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4875 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4876 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4877 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4878 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4879 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4880 } 4881 4882 /// GetExponent - Get the exponent: 4883 /// 4884 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4885 /// 4886 /// where Op is the hexadecimal representation of floating point value. 4887 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4888 const TargetLowering &TLI, const SDLoc &dl) { 4889 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4890 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4891 SDValue t1 = DAG.getNode( 4892 ISD::SRL, dl, MVT::i32, t0, 4893 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4894 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4895 DAG.getConstant(127, dl, MVT::i32)); 4896 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4897 } 4898 4899 /// getF32Constant - Get 32-bit floating point constant. 4900 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4901 const SDLoc &dl) { 4902 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4903 MVT::f32); 4904 } 4905 4906 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4907 SelectionDAG &DAG) { 4908 // TODO: What fast-math-flags should be set on the floating-point nodes? 4909 4910 // IntegerPartOfX = ((int32_t)(t0); 4911 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4912 4913 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4914 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4915 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4916 4917 // IntegerPartOfX <<= 23; 4918 IntegerPartOfX = DAG.getNode( 4919 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4920 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4921 DAG.getDataLayout()))); 4922 4923 SDValue TwoToFractionalPartOfX; 4924 if (LimitFloatPrecision <= 6) { 4925 // For floating-point precision of 6: 4926 // 4927 // TwoToFractionalPartOfX = 4928 // 0.997535578f + 4929 // (0.735607626f + 0.252464424f * x) * x; 4930 // 4931 // error 0.0144103317, which is 6 bits 4932 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4933 getF32Constant(DAG, 0x3e814304, dl)); 4934 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4935 getF32Constant(DAG, 0x3f3c50c8, dl)); 4936 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4937 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4938 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4939 } else if (LimitFloatPrecision <= 12) { 4940 // For floating-point precision of 12: 4941 // 4942 // TwoToFractionalPartOfX = 4943 // 0.999892986f + 4944 // (0.696457318f + 4945 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4946 // 4947 // error 0.000107046256, which is 13 to 14 bits 4948 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4949 getF32Constant(DAG, 0x3da235e3, dl)); 4950 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4951 getF32Constant(DAG, 0x3e65b8f3, dl)); 4952 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4953 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4954 getF32Constant(DAG, 0x3f324b07, dl)); 4955 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4956 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4957 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4958 } else { // LimitFloatPrecision <= 18 4959 // For floating-point precision of 18: 4960 // 4961 // TwoToFractionalPartOfX = 4962 // 0.999999982f + 4963 // (0.693148872f + 4964 // (0.240227044f + 4965 // (0.554906021e-1f + 4966 // (0.961591928e-2f + 4967 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4968 // error 2.47208000*10^(-7), which is better than 18 bits 4969 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4970 getF32Constant(DAG, 0x3924b03e, dl)); 4971 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4972 getF32Constant(DAG, 0x3ab24b87, dl)); 4973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4975 getF32Constant(DAG, 0x3c1d8c17, dl)); 4976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4977 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4978 getF32Constant(DAG, 0x3d634a1d, dl)); 4979 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4980 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4981 getF32Constant(DAG, 0x3e75fe14, dl)); 4982 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4983 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4984 getF32Constant(DAG, 0x3f317234, dl)); 4985 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4986 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4987 getF32Constant(DAG, 0x3f800000, dl)); 4988 } 4989 4990 // Add the exponent into the result in integer domain. 4991 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4992 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4993 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4994 } 4995 4996 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4997 /// limited-precision mode. 4998 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4999 const TargetLowering &TLI, SDNodeFlags Flags) { 5000 if (Op.getValueType() == MVT::f32 && 5001 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5002 5003 // Put the exponent in the right bit position for later addition to the 5004 // final result: 5005 // 5006 // t0 = Op * log2(e) 5007 5008 // TODO: What fast-math-flags should be set here? 5009 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5010 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5011 return getLimitedPrecisionExp2(t0, dl, DAG); 5012 } 5013 5014 // No special expansion. 5015 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5016 } 5017 5018 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5019 /// limited-precision mode. 5020 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5021 const TargetLowering &TLI, SDNodeFlags Flags) { 5022 // TODO: What fast-math-flags should be set on the floating-point nodes? 5023 5024 if (Op.getValueType() == MVT::f32 && 5025 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5026 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5027 5028 // Scale the exponent by log(2). 5029 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5030 SDValue LogOfExponent = 5031 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5032 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5033 5034 // Get the significand and build it into a floating-point number with 5035 // exponent of 1. 5036 SDValue X = GetSignificand(DAG, Op1, dl); 5037 5038 SDValue LogOfMantissa; 5039 if (LimitFloatPrecision <= 6) { 5040 // For floating-point precision of 6: 5041 // 5042 // LogofMantissa = 5043 // -1.1609546f + 5044 // (1.4034025f - 0.23903021f * x) * x; 5045 // 5046 // error 0.0034276066, which is better than 8 bits 5047 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5048 getF32Constant(DAG, 0xbe74c456, dl)); 5049 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5050 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5051 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5052 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5053 getF32Constant(DAG, 0x3f949a29, dl)); 5054 } else if (LimitFloatPrecision <= 12) { 5055 // For floating-point precision of 12: 5056 // 5057 // LogOfMantissa = 5058 // -1.7417939f + 5059 // (2.8212026f + 5060 // (-1.4699568f + 5061 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5062 // 5063 // error 0.000061011436, which is 14 bits 5064 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5065 getF32Constant(DAG, 0xbd67b6d6, dl)); 5066 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5067 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5068 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5069 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5070 getF32Constant(DAG, 0x3fbc278b, dl)); 5071 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5072 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5073 getF32Constant(DAG, 0x40348e95, dl)); 5074 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5075 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5076 getF32Constant(DAG, 0x3fdef31a, dl)); 5077 } else { // LimitFloatPrecision <= 18 5078 // For floating-point precision of 18: 5079 // 5080 // LogOfMantissa = 5081 // -2.1072184f + 5082 // (4.2372794f + 5083 // (-3.7029485f + 5084 // (2.2781945f + 5085 // (-0.87823314f + 5086 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5087 // 5088 // error 0.0000023660568, which is better than 18 bits 5089 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5090 getF32Constant(DAG, 0xbc91e5ac, dl)); 5091 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5092 getF32Constant(DAG, 0x3e4350aa, dl)); 5093 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5094 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5095 getF32Constant(DAG, 0x3f60d3e3, dl)); 5096 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5097 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5098 getF32Constant(DAG, 0x4011cdf0, dl)); 5099 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5100 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5101 getF32Constant(DAG, 0x406cfd1c, dl)); 5102 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5103 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5104 getF32Constant(DAG, 0x408797cb, dl)); 5105 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5106 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5107 getF32Constant(DAG, 0x4006dcab, dl)); 5108 } 5109 5110 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5111 } 5112 5113 // No special expansion. 5114 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5115 } 5116 5117 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5118 /// limited-precision mode. 5119 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5120 const TargetLowering &TLI, SDNodeFlags Flags) { 5121 // TODO: What fast-math-flags should be set on the floating-point nodes? 5122 5123 if (Op.getValueType() == MVT::f32 && 5124 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5125 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5126 5127 // Get the exponent. 5128 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5129 5130 // Get the significand and build it into a floating-point number with 5131 // exponent of 1. 5132 SDValue X = GetSignificand(DAG, Op1, dl); 5133 5134 // Different possible minimax approximations of significand in 5135 // floating-point for various degrees of accuracy over [1,2]. 5136 SDValue Log2ofMantissa; 5137 if (LimitFloatPrecision <= 6) { 5138 // For floating-point precision of 6: 5139 // 5140 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5141 // 5142 // error 0.0049451742, which is more than 7 bits 5143 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5144 getF32Constant(DAG, 0xbeb08fe0, dl)); 5145 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5146 getF32Constant(DAG, 0x40019463, dl)); 5147 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5148 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5149 getF32Constant(DAG, 0x3fd6633d, dl)); 5150 } else if (LimitFloatPrecision <= 12) { 5151 // For floating-point precision of 12: 5152 // 5153 // Log2ofMantissa = 5154 // -2.51285454f + 5155 // (4.07009056f + 5156 // (-2.12067489f + 5157 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5158 // 5159 // error 0.0000876136000, which is better than 13 bits 5160 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5161 getF32Constant(DAG, 0xbda7262e, dl)); 5162 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5163 getF32Constant(DAG, 0x3f25280b, dl)); 5164 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5165 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5166 getF32Constant(DAG, 0x4007b923, dl)); 5167 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5168 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5169 getF32Constant(DAG, 0x40823e2f, dl)); 5170 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5171 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5172 getF32Constant(DAG, 0x4020d29c, dl)); 5173 } else { // LimitFloatPrecision <= 18 5174 // For floating-point precision of 18: 5175 // 5176 // Log2ofMantissa = 5177 // -3.0400495f + 5178 // (6.1129976f + 5179 // (-5.3420409f + 5180 // (3.2865683f + 5181 // (-1.2669343f + 5182 // (0.27515199f - 5183 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5184 // 5185 // error 0.0000018516, which is better than 18 bits 5186 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5187 getF32Constant(DAG, 0xbcd2769e, dl)); 5188 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5189 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5190 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5191 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5192 getF32Constant(DAG, 0x3fa22ae7, dl)); 5193 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5194 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5195 getF32Constant(DAG, 0x40525723, dl)); 5196 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5197 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5198 getF32Constant(DAG, 0x40aaf200, dl)); 5199 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5200 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5201 getF32Constant(DAG, 0x40c39dad, dl)); 5202 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5203 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5204 getF32Constant(DAG, 0x4042902c, dl)); 5205 } 5206 5207 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5208 } 5209 5210 // No special expansion. 5211 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5212 } 5213 5214 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5215 /// limited-precision mode. 5216 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5217 const TargetLowering &TLI, SDNodeFlags Flags) { 5218 // TODO: What fast-math-flags should be set on the floating-point nodes? 5219 5220 if (Op.getValueType() == MVT::f32 && 5221 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5222 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5223 5224 // Scale the exponent by log10(2) [0.30102999f]. 5225 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5226 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5227 getF32Constant(DAG, 0x3e9a209a, dl)); 5228 5229 // Get the significand and build it into a floating-point number with 5230 // exponent of 1. 5231 SDValue X = GetSignificand(DAG, Op1, dl); 5232 5233 SDValue Log10ofMantissa; 5234 if (LimitFloatPrecision <= 6) { 5235 // For floating-point precision of 6: 5236 // 5237 // Log10ofMantissa = 5238 // -0.50419619f + 5239 // (0.60948995f - 0.10380950f * x) * x; 5240 // 5241 // error 0.0014886165, which is 6 bits 5242 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5243 getF32Constant(DAG, 0xbdd49a13, dl)); 5244 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5245 getF32Constant(DAG, 0x3f1c0789, dl)); 5246 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5247 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5248 getF32Constant(DAG, 0x3f011300, dl)); 5249 } else if (LimitFloatPrecision <= 12) { 5250 // For floating-point precision of 12: 5251 // 5252 // Log10ofMantissa = 5253 // -0.64831180f + 5254 // (0.91751397f + 5255 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5256 // 5257 // error 0.00019228036, which is better than 12 bits 5258 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5259 getF32Constant(DAG, 0x3d431f31, dl)); 5260 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5261 getF32Constant(DAG, 0x3ea21fb2, dl)); 5262 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5263 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5264 getF32Constant(DAG, 0x3f6ae232, dl)); 5265 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5266 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5267 getF32Constant(DAG, 0x3f25f7c3, dl)); 5268 } else { // LimitFloatPrecision <= 18 5269 // For floating-point precision of 18: 5270 // 5271 // Log10ofMantissa = 5272 // -0.84299375f + 5273 // (1.5327582f + 5274 // (-1.0688956f + 5275 // (0.49102474f + 5276 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5277 // 5278 // error 0.0000037995730, which is better than 18 bits 5279 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5280 getF32Constant(DAG, 0x3c5d51ce, dl)); 5281 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5282 getF32Constant(DAG, 0x3e00685a, dl)); 5283 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5284 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5285 getF32Constant(DAG, 0x3efb6798, dl)); 5286 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5287 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5288 getF32Constant(DAG, 0x3f88d192, dl)); 5289 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5290 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5291 getF32Constant(DAG, 0x3fc4316c, dl)); 5292 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5293 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5294 getF32Constant(DAG, 0x3f57ce70, dl)); 5295 } 5296 5297 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5298 } 5299 5300 // No special expansion. 5301 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5302 } 5303 5304 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5305 /// limited-precision mode. 5306 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5307 const TargetLowering &TLI, SDNodeFlags Flags) { 5308 if (Op.getValueType() == MVT::f32 && 5309 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5310 return getLimitedPrecisionExp2(Op, dl, DAG); 5311 5312 // No special expansion. 5313 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5314 } 5315 5316 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5317 /// limited-precision mode with x == 10.0f. 5318 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5319 SelectionDAG &DAG, const TargetLowering &TLI, 5320 SDNodeFlags Flags) { 5321 bool IsExp10 = false; 5322 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5323 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5324 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5325 APFloat Ten(10.0f); 5326 IsExp10 = LHSC->isExactlyValue(Ten); 5327 } 5328 } 5329 5330 // TODO: What fast-math-flags should be set on the FMUL node? 5331 if (IsExp10) { 5332 // Put the exponent in the right bit position for later addition to the 5333 // final result: 5334 // 5335 // #define LOG2OF10 3.3219281f 5336 // t0 = Op * LOG2OF10; 5337 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5338 getF32Constant(DAG, 0x40549a78, dl)); 5339 return getLimitedPrecisionExp2(t0, dl, DAG); 5340 } 5341 5342 // No special expansion. 5343 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5344 } 5345 5346 /// ExpandPowI - Expand a llvm.powi intrinsic. 5347 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5348 SelectionDAG &DAG) { 5349 // If RHS is a constant, we can expand this out to a multiplication tree, 5350 // otherwise we end up lowering to a call to __powidf2 (for example). When 5351 // optimizing for size, we only want to do this if the expansion would produce 5352 // a small number of multiplies, otherwise we do the full expansion. 5353 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5354 // Get the exponent as a positive value. 5355 unsigned Val = RHSC->getSExtValue(); 5356 if ((int)Val < 0) Val = -Val; 5357 5358 // powi(x, 0) -> 1.0 5359 if (Val == 0) 5360 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5361 5362 bool OptForSize = DAG.shouldOptForSize(); 5363 if (!OptForSize || 5364 // If optimizing for size, don't insert too many multiplies. 5365 // This inserts up to 5 multiplies. 5366 countPopulation(Val) + Log2_32(Val) < 7) { 5367 // We use the simple binary decomposition method to generate the multiply 5368 // sequence. There are more optimal ways to do this (for example, 5369 // powi(x,15) generates one more multiply than it should), but this has 5370 // the benefit of being both really simple and much better than a libcall. 5371 SDValue Res; // Logically starts equal to 1.0 5372 SDValue CurSquare = LHS; 5373 // TODO: Intrinsics should have fast-math-flags that propagate to these 5374 // nodes. 5375 while (Val) { 5376 if (Val & 1) { 5377 if (Res.getNode()) 5378 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5379 else 5380 Res = CurSquare; // 1.0*CurSquare. 5381 } 5382 5383 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5384 CurSquare, CurSquare); 5385 Val >>= 1; 5386 } 5387 5388 // If the original was negative, invert the result, producing 1/(x*x*x). 5389 if (RHSC->getSExtValue() < 0) 5390 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5391 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5392 return Res; 5393 } 5394 } 5395 5396 // Otherwise, expand to a libcall. 5397 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5398 } 5399 5400 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5401 SDValue LHS, SDValue RHS, SDValue Scale, 5402 SelectionDAG &DAG, const TargetLowering &TLI) { 5403 EVT VT = LHS.getValueType(); 5404 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5405 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5406 LLVMContext &Ctx = *DAG.getContext(); 5407 5408 // If the type is legal but the operation isn't, this node might survive all 5409 // the way to operation legalization. If we end up there and we do not have 5410 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5411 // node. 5412 5413 // Coax the legalizer into expanding the node during type legalization instead 5414 // by bumping the size by one bit. This will force it to Promote, enabling the 5415 // early expansion and avoiding the need to expand later. 5416 5417 // We don't have to do this if Scale is 0; that can always be expanded, unless 5418 // it's a saturating signed operation. Those can experience true integer 5419 // division overflow, a case which we must avoid. 5420 5421 // FIXME: We wouldn't have to do this (or any of the early 5422 // expansion/promotion) if it was possible to expand a libcall of an 5423 // illegal type during operation legalization. But it's not, so things 5424 // get a bit hacky. 5425 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5426 if ((ScaleInt > 0 || (Saturating && Signed)) && 5427 (TLI.isTypeLegal(VT) || 5428 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5429 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5430 Opcode, VT, ScaleInt); 5431 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5432 EVT PromVT; 5433 if (VT.isScalarInteger()) 5434 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5435 else if (VT.isVector()) { 5436 PromVT = VT.getVectorElementType(); 5437 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5438 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5439 } else 5440 llvm_unreachable("Wrong VT for DIVFIX?"); 5441 if (Signed) { 5442 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5443 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5444 } else { 5445 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5446 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5447 } 5448 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5449 // For saturating operations, we need to shift up the LHS to get the 5450 // proper saturation width, and then shift down again afterwards. 5451 if (Saturating) 5452 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5453 DAG.getConstant(1, DL, ShiftTy)); 5454 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5455 if (Saturating) 5456 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5457 DAG.getConstant(1, DL, ShiftTy)); 5458 return DAG.getZExtOrTrunc(Res, DL, VT); 5459 } 5460 } 5461 5462 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5463 } 5464 5465 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5466 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5467 static void 5468 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5469 const SDValue &N) { 5470 switch (N.getOpcode()) { 5471 case ISD::CopyFromReg: { 5472 SDValue Op = N.getOperand(1); 5473 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5474 Op.getValueType().getSizeInBits()); 5475 return; 5476 } 5477 case ISD::BITCAST: 5478 case ISD::AssertZext: 5479 case ISD::AssertSext: 5480 case ISD::TRUNCATE: 5481 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5482 return; 5483 case ISD::BUILD_PAIR: 5484 case ISD::BUILD_VECTOR: 5485 case ISD::CONCAT_VECTORS: 5486 for (SDValue Op : N->op_values()) 5487 getUnderlyingArgRegs(Regs, Op); 5488 return; 5489 default: 5490 return; 5491 } 5492 } 5493 5494 /// If the DbgValueInst is a dbg_value of a function argument, create the 5495 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5496 /// instruction selection, they will be inserted to the entry BB. 5497 /// We don't currently support this for variadic dbg_values, as they shouldn't 5498 /// appear for function arguments or in the prologue. 5499 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5500 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5501 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5502 const Argument *Arg = dyn_cast<Argument>(V); 5503 if (!Arg) 5504 return false; 5505 5506 if (!IsDbgDeclare) { 5507 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5508 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5509 // the entry block. 5510 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5511 if (!IsInEntryBlock) 5512 return false; 5513 5514 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5515 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5516 // variable that also is a param. 5517 // 5518 // Although, if we are at the top of the entry block already, we can still 5519 // emit using ArgDbgValue. This might catch some situations when the 5520 // dbg.value refers to an argument that isn't used in the entry block, so 5521 // any CopyToReg node would be optimized out and the only way to express 5522 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5523 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5524 // we should only emit as ArgDbgValue if the Variable is an argument to the 5525 // current function, and the dbg.value intrinsic is found in the entry 5526 // block. 5527 bool VariableIsFunctionInputArg = Variable->isParameter() && 5528 !DL->getInlinedAt(); 5529 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5530 if (!IsInPrologue && !VariableIsFunctionInputArg) 5531 return false; 5532 5533 // Here we assume that a function argument on IR level only can be used to 5534 // describe one input parameter on source level. If we for example have 5535 // source code like this 5536 // 5537 // struct A { long x, y; }; 5538 // void foo(struct A a, long b) { 5539 // ... 5540 // b = a.x; 5541 // ... 5542 // } 5543 // 5544 // and IR like this 5545 // 5546 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5547 // entry: 5548 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5549 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5550 // call void @llvm.dbg.value(metadata i32 %b, "b", 5551 // ... 5552 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5553 // ... 5554 // 5555 // then the last dbg.value is describing a parameter "b" using a value that 5556 // is an argument. But since we already has used %a1 to describe a parameter 5557 // we should not handle that last dbg.value here (that would result in an 5558 // incorrect hoisting of the DBG_VALUE to the function entry). 5559 // Notice that we allow one dbg.value per IR level argument, to accommodate 5560 // for the situation with fragments above. 5561 if (VariableIsFunctionInputArg) { 5562 unsigned ArgNo = Arg->getArgNo(); 5563 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5564 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5565 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5566 return false; 5567 FuncInfo.DescribedArgs.set(ArgNo); 5568 } 5569 } 5570 5571 MachineFunction &MF = DAG.getMachineFunction(); 5572 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5573 5574 bool IsIndirect = false; 5575 Optional<MachineOperand> Op; 5576 // Some arguments' frame index is recorded during argument lowering. 5577 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5578 if (FI != std::numeric_limits<int>::max()) 5579 Op = MachineOperand::CreateFI(FI); 5580 5581 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5582 if (!Op && N.getNode()) { 5583 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5584 Register Reg; 5585 if (ArgRegsAndSizes.size() == 1) 5586 Reg = ArgRegsAndSizes.front().first; 5587 5588 if (Reg && Reg.isVirtual()) { 5589 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5590 Register PR = RegInfo.getLiveInPhysReg(Reg); 5591 if (PR) 5592 Reg = PR; 5593 } 5594 if (Reg) { 5595 Op = MachineOperand::CreateReg(Reg, false); 5596 IsIndirect = IsDbgDeclare; 5597 } 5598 } 5599 5600 if (!Op && N.getNode()) { 5601 // Check if frame index is available. 5602 SDValue LCandidate = peekThroughBitcasts(N); 5603 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5604 if (FrameIndexSDNode *FINode = 5605 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5606 Op = MachineOperand::CreateFI(FINode->getIndex()); 5607 } 5608 5609 if (!Op) { 5610 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5611 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5612 SplitRegs) { 5613 unsigned Offset = 0; 5614 for (auto RegAndSize : SplitRegs) { 5615 // If the expression is already a fragment, the current register 5616 // offset+size might extend beyond the fragment. In this case, only 5617 // the register bits that are inside the fragment are relevant. 5618 int RegFragmentSizeInBits = RegAndSize.second; 5619 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5620 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5621 // The register is entirely outside the expression fragment, 5622 // so is irrelevant for debug info. 5623 if (Offset >= ExprFragmentSizeInBits) 5624 break; 5625 // The register is partially outside the expression fragment, only 5626 // the low bits within the fragment are relevant for debug info. 5627 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5628 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5629 } 5630 } 5631 5632 auto FragmentExpr = DIExpression::createFragmentExpression( 5633 Expr, Offset, RegFragmentSizeInBits); 5634 Offset += RegAndSize.second; 5635 // If a valid fragment expression cannot be created, the variable's 5636 // correct value cannot be determined and so it is set as Undef. 5637 if (!FragmentExpr) { 5638 SDDbgValue *SDV = DAG.getConstantDbgValue( 5639 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5640 DAG.AddDbgValue(SDV, false); 5641 continue; 5642 } 5643 FuncInfo.ArgDbgValues.push_back( 5644 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5645 RegAndSize.first, Variable, *FragmentExpr)); 5646 } 5647 }; 5648 5649 // Check if ValueMap has reg number. 5650 DenseMap<const Value *, Register>::const_iterator 5651 VMI = FuncInfo.ValueMap.find(V); 5652 if (VMI != FuncInfo.ValueMap.end()) { 5653 const auto &TLI = DAG.getTargetLoweringInfo(); 5654 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5655 V->getType(), None); 5656 if (RFV.occupiesMultipleRegs()) { 5657 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5658 return true; 5659 } 5660 5661 Op = MachineOperand::CreateReg(VMI->second, false); 5662 IsIndirect = IsDbgDeclare; 5663 } else if (ArgRegsAndSizes.size() > 1) { 5664 // This was split due to the calling convention, and no virtual register 5665 // mapping exists for the value. 5666 splitMultiRegDbgValue(ArgRegsAndSizes); 5667 return true; 5668 } 5669 } 5670 5671 if (!Op) 5672 return false; 5673 5674 assert(Variable->isValidLocationForIntrinsic(DL) && 5675 "Expected inlined-at fields to agree"); 5676 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5677 FuncInfo.ArgDbgValues.push_back( 5678 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5679 *Op, Variable, Expr)); 5680 5681 return true; 5682 } 5683 5684 /// Return the appropriate SDDbgValue based on N. 5685 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5686 DILocalVariable *Variable, 5687 DIExpression *Expr, 5688 const DebugLoc &dl, 5689 unsigned DbgSDNodeOrder) { 5690 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5691 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5692 // stack slot locations. 5693 // 5694 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5695 // debug values here after optimization: 5696 // 5697 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5698 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5699 // 5700 // Both describe the direct values of their associated variables. 5701 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5702 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5703 } 5704 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5705 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5706 } 5707 5708 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5709 switch (Intrinsic) { 5710 case Intrinsic::smul_fix: 5711 return ISD::SMULFIX; 5712 case Intrinsic::umul_fix: 5713 return ISD::UMULFIX; 5714 case Intrinsic::smul_fix_sat: 5715 return ISD::SMULFIXSAT; 5716 case Intrinsic::umul_fix_sat: 5717 return ISD::UMULFIXSAT; 5718 case Intrinsic::sdiv_fix: 5719 return ISD::SDIVFIX; 5720 case Intrinsic::udiv_fix: 5721 return ISD::UDIVFIX; 5722 case Intrinsic::sdiv_fix_sat: 5723 return ISD::SDIVFIXSAT; 5724 case Intrinsic::udiv_fix_sat: 5725 return ISD::UDIVFIXSAT; 5726 default: 5727 llvm_unreachable("Unhandled fixed point intrinsic"); 5728 } 5729 } 5730 5731 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5732 const char *FunctionName) { 5733 assert(FunctionName && "FunctionName must not be nullptr"); 5734 SDValue Callee = DAG.getExternalSymbol( 5735 FunctionName, 5736 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5737 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5738 } 5739 5740 /// Given a @llvm.call.preallocated.setup, return the corresponding 5741 /// preallocated call. 5742 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5743 assert(cast<CallBase>(PreallocatedSetup) 5744 ->getCalledFunction() 5745 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5746 "expected call_preallocated_setup Value"); 5747 for (auto *U : PreallocatedSetup->users()) { 5748 auto *UseCall = cast<CallBase>(U); 5749 const Function *Fn = UseCall->getCalledFunction(); 5750 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5751 return UseCall; 5752 } 5753 } 5754 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5755 } 5756 5757 /// Lower the call to the specified intrinsic function. 5758 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5759 unsigned Intrinsic) { 5760 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5761 SDLoc sdl = getCurSDLoc(); 5762 DebugLoc dl = getCurDebugLoc(); 5763 SDValue Res; 5764 5765 SDNodeFlags Flags; 5766 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5767 Flags.copyFMF(*FPOp); 5768 5769 switch (Intrinsic) { 5770 default: 5771 // By default, turn this into a target intrinsic node. 5772 visitTargetIntrinsic(I, Intrinsic); 5773 return; 5774 case Intrinsic::vscale: { 5775 match(&I, m_VScale(DAG.getDataLayout())); 5776 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5777 setValue(&I, 5778 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5779 return; 5780 } 5781 case Intrinsic::vastart: visitVAStart(I); return; 5782 case Intrinsic::vaend: visitVAEnd(I); return; 5783 case Intrinsic::vacopy: visitVACopy(I); return; 5784 case Intrinsic::returnaddress: 5785 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5786 TLI.getPointerTy(DAG.getDataLayout()), 5787 getValue(I.getArgOperand(0)))); 5788 return; 5789 case Intrinsic::addressofreturnaddress: 5790 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5791 TLI.getPointerTy(DAG.getDataLayout()))); 5792 return; 5793 case Intrinsic::sponentry: 5794 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5795 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5796 return; 5797 case Intrinsic::frameaddress: 5798 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5799 TLI.getFrameIndexTy(DAG.getDataLayout()), 5800 getValue(I.getArgOperand(0)))); 5801 return; 5802 case Intrinsic::read_volatile_register: 5803 case Intrinsic::read_register: { 5804 Value *Reg = I.getArgOperand(0); 5805 SDValue Chain = getRoot(); 5806 SDValue RegName = 5807 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5808 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5809 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5810 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5811 setValue(&I, Res); 5812 DAG.setRoot(Res.getValue(1)); 5813 return; 5814 } 5815 case Intrinsic::write_register: { 5816 Value *Reg = I.getArgOperand(0); 5817 Value *RegValue = I.getArgOperand(1); 5818 SDValue Chain = getRoot(); 5819 SDValue RegName = 5820 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5821 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5822 RegName, getValue(RegValue))); 5823 return; 5824 } 5825 case Intrinsic::memcpy: { 5826 const auto &MCI = cast<MemCpyInst>(I); 5827 SDValue Op1 = getValue(I.getArgOperand(0)); 5828 SDValue Op2 = getValue(I.getArgOperand(1)); 5829 SDValue Op3 = getValue(I.getArgOperand(2)); 5830 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5831 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5832 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5833 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5834 bool isVol = MCI.isVolatile(); 5835 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5836 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5837 // node. 5838 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5839 AAMDNodes AAInfo; 5840 I.getAAMetadata(AAInfo); 5841 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5842 /* AlwaysInline */ false, isTC, 5843 MachinePointerInfo(I.getArgOperand(0)), 5844 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 5845 updateDAGForMaybeTailCall(MC); 5846 return; 5847 } 5848 case Intrinsic::memcpy_inline: { 5849 const auto &MCI = cast<MemCpyInlineInst>(I); 5850 SDValue Dst = getValue(I.getArgOperand(0)); 5851 SDValue Src = getValue(I.getArgOperand(1)); 5852 SDValue Size = getValue(I.getArgOperand(2)); 5853 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5854 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5855 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5856 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5857 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5858 bool isVol = MCI.isVolatile(); 5859 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5860 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5861 // node. 5862 AAMDNodes AAInfo; 5863 I.getAAMetadata(AAInfo); 5864 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5865 /* AlwaysInline */ true, isTC, 5866 MachinePointerInfo(I.getArgOperand(0)), 5867 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 5868 updateDAGForMaybeTailCall(MC); 5869 return; 5870 } 5871 case Intrinsic::memset: { 5872 const auto &MSI = cast<MemSetInst>(I); 5873 SDValue Op1 = getValue(I.getArgOperand(0)); 5874 SDValue Op2 = getValue(I.getArgOperand(1)); 5875 SDValue Op3 = getValue(I.getArgOperand(2)); 5876 // @llvm.memset defines 0 and 1 to both mean no alignment. 5877 Align Alignment = MSI.getDestAlign().valueOrOne(); 5878 bool isVol = MSI.isVolatile(); 5879 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5880 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5881 AAMDNodes AAInfo; 5882 I.getAAMetadata(AAInfo); 5883 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5884 MachinePointerInfo(I.getArgOperand(0)), AAInfo); 5885 updateDAGForMaybeTailCall(MS); 5886 return; 5887 } 5888 case Intrinsic::memmove: { 5889 const auto &MMI = cast<MemMoveInst>(I); 5890 SDValue Op1 = getValue(I.getArgOperand(0)); 5891 SDValue Op2 = getValue(I.getArgOperand(1)); 5892 SDValue Op3 = getValue(I.getArgOperand(2)); 5893 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5894 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5895 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5896 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5897 bool isVol = MMI.isVolatile(); 5898 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5899 // FIXME: Support passing different dest/src alignments to the memmove DAG 5900 // node. 5901 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5902 AAMDNodes AAInfo; 5903 I.getAAMetadata(AAInfo); 5904 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5905 isTC, MachinePointerInfo(I.getArgOperand(0)), 5906 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 5907 updateDAGForMaybeTailCall(MM); 5908 return; 5909 } 5910 case Intrinsic::memcpy_element_unordered_atomic: { 5911 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5912 SDValue Dst = getValue(MI.getRawDest()); 5913 SDValue Src = getValue(MI.getRawSource()); 5914 SDValue Length = getValue(MI.getLength()); 5915 5916 unsigned DstAlign = MI.getDestAlignment(); 5917 unsigned SrcAlign = MI.getSourceAlignment(); 5918 Type *LengthTy = MI.getLength()->getType(); 5919 unsigned ElemSz = MI.getElementSizeInBytes(); 5920 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5921 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5922 SrcAlign, Length, LengthTy, ElemSz, isTC, 5923 MachinePointerInfo(MI.getRawDest()), 5924 MachinePointerInfo(MI.getRawSource())); 5925 updateDAGForMaybeTailCall(MC); 5926 return; 5927 } 5928 case Intrinsic::memmove_element_unordered_atomic: { 5929 auto &MI = cast<AtomicMemMoveInst>(I); 5930 SDValue Dst = getValue(MI.getRawDest()); 5931 SDValue Src = getValue(MI.getRawSource()); 5932 SDValue Length = getValue(MI.getLength()); 5933 5934 unsigned DstAlign = MI.getDestAlignment(); 5935 unsigned SrcAlign = MI.getSourceAlignment(); 5936 Type *LengthTy = MI.getLength()->getType(); 5937 unsigned ElemSz = MI.getElementSizeInBytes(); 5938 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5939 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5940 SrcAlign, Length, LengthTy, ElemSz, isTC, 5941 MachinePointerInfo(MI.getRawDest()), 5942 MachinePointerInfo(MI.getRawSource())); 5943 updateDAGForMaybeTailCall(MC); 5944 return; 5945 } 5946 case Intrinsic::memset_element_unordered_atomic: { 5947 auto &MI = cast<AtomicMemSetInst>(I); 5948 SDValue Dst = getValue(MI.getRawDest()); 5949 SDValue Val = getValue(MI.getValue()); 5950 SDValue Length = getValue(MI.getLength()); 5951 5952 unsigned DstAlign = MI.getDestAlignment(); 5953 Type *LengthTy = MI.getLength()->getType(); 5954 unsigned ElemSz = MI.getElementSizeInBytes(); 5955 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5956 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5957 LengthTy, ElemSz, isTC, 5958 MachinePointerInfo(MI.getRawDest())); 5959 updateDAGForMaybeTailCall(MC); 5960 return; 5961 } 5962 case Intrinsic::call_preallocated_setup: { 5963 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5964 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5965 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5966 getRoot(), SrcValue); 5967 setValue(&I, Res); 5968 DAG.setRoot(Res); 5969 return; 5970 } 5971 case Intrinsic::call_preallocated_arg: { 5972 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5973 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5974 SDValue Ops[3]; 5975 Ops[0] = getRoot(); 5976 Ops[1] = SrcValue; 5977 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5978 MVT::i32); // arg index 5979 SDValue Res = DAG.getNode( 5980 ISD::PREALLOCATED_ARG, sdl, 5981 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5982 setValue(&I, Res); 5983 DAG.setRoot(Res.getValue(1)); 5984 return; 5985 } 5986 case Intrinsic::dbg_addr: 5987 case Intrinsic::dbg_declare: { 5988 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 5989 // they are non-variadic. 5990 const auto &DI = cast<DbgVariableIntrinsic>(I); 5991 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 5992 DILocalVariable *Variable = DI.getVariable(); 5993 DIExpression *Expression = DI.getExpression(); 5994 dropDanglingDebugInfo(Variable, Expression); 5995 assert(Variable && "Missing variable"); 5996 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5997 << "\n"); 5998 // Check if address has undef value. 5999 const Value *Address = DI.getVariableLocationOp(0); 6000 if (!Address || isa<UndefValue>(Address) || 6001 (Address->use_empty() && !isa<Argument>(Address))) { 6002 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6003 << " (bad/undef/unused-arg address)\n"); 6004 return; 6005 } 6006 6007 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6008 6009 // Check if this variable can be described by a frame index, typically 6010 // either as a static alloca or a byval parameter. 6011 int FI = std::numeric_limits<int>::max(); 6012 if (const auto *AI = 6013 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 6014 if (AI->isStaticAlloca()) { 6015 auto I = FuncInfo.StaticAllocaMap.find(AI); 6016 if (I != FuncInfo.StaticAllocaMap.end()) 6017 FI = I->second; 6018 } 6019 } else if (const auto *Arg = dyn_cast<Argument>( 6020 Address->stripInBoundsConstantOffsets())) { 6021 FI = FuncInfo.getArgumentFrameIndex(Arg); 6022 } 6023 6024 // llvm.dbg.addr is control dependent and always generates indirect 6025 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 6026 // the MachineFunction variable table. 6027 if (FI != std::numeric_limits<int>::max()) { 6028 if (Intrinsic == Intrinsic::dbg_addr) { 6029 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 6030 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 6031 dl, SDNodeOrder); 6032 DAG.AddDbgValue(SDV, isParameter); 6033 } else { 6034 LLVM_DEBUG(dbgs() << "Skipping " << DI 6035 << " (variable info stashed in MF side table)\n"); 6036 } 6037 return; 6038 } 6039 6040 SDValue &N = NodeMap[Address]; 6041 if (!N.getNode() && isa<Argument>(Address)) 6042 // Check unused arguments map. 6043 N = UnusedArgNodeMap[Address]; 6044 SDDbgValue *SDV; 6045 if (N.getNode()) { 6046 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6047 Address = BCI->getOperand(0); 6048 // Parameters are handled specially. 6049 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6050 if (isParameter && FINode) { 6051 // Byval parameter. We have a frame index at this point. 6052 SDV = 6053 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6054 /*IsIndirect*/ true, dl, SDNodeOrder); 6055 } else if (isa<Argument>(Address)) { 6056 // Address is an argument, so try to emit its dbg value using 6057 // virtual register info from the FuncInfo.ValueMap. 6058 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6059 return; 6060 } else { 6061 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6062 true, dl, SDNodeOrder); 6063 } 6064 DAG.AddDbgValue(SDV, isParameter); 6065 } else { 6066 // If Address is an argument then try to emit its dbg value using 6067 // virtual register info from the FuncInfo.ValueMap. 6068 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6069 N)) { 6070 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6071 << " (could not emit func-arg dbg_value)\n"); 6072 } 6073 } 6074 return; 6075 } 6076 case Intrinsic::dbg_label: { 6077 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6078 DILabel *Label = DI.getLabel(); 6079 assert(Label && "Missing label"); 6080 6081 SDDbgLabel *SDV; 6082 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6083 DAG.AddDbgLabel(SDV); 6084 return; 6085 } 6086 case Intrinsic::dbg_value: { 6087 const DbgValueInst &DI = cast<DbgValueInst>(I); 6088 assert(DI.getVariable() && "Missing variable"); 6089 6090 DILocalVariable *Variable = DI.getVariable(); 6091 DIExpression *Expression = DI.getExpression(); 6092 dropDanglingDebugInfo(Variable, Expression); 6093 SmallVector<Value *, 4> Values(DI.getValues()); 6094 if (Values.empty()) 6095 return; 6096 6097 if (std::count(Values.begin(), Values.end(), nullptr)) 6098 return; 6099 6100 bool IsVariadic = DI.hasArgList(); 6101 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6102 SDNodeOrder, IsVariadic)) 6103 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6104 return; 6105 } 6106 6107 case Intrinsic::eh_typeid_for: { 6108 // Find the type id for the given typeinfo. 6109 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6110 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6111 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6112 setValue(&I, Res); 6113 return; 6114 } 6115 6116 case Intrinsic::eh_return_i32: 6117 case Intrinsic::eh_return_i64: 6118 DAG.getMachineFunction().setCallsEHReturn(true); 6119 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6120 MVT::Other, 6121 getControlRoot(), 6122 getValue(I.getArgOperand(0)), 6123 getValue(I.getArgOperand(1)))); 6124 return; 6125 case Intrinsic::eh_unwind_init: 6126 DAG.getMachineFunction().setCallsUnwindInit(true); 6127 return; 6128 case Intrinsic::eh_dwarf_cfa: 6129 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6130 TLI.getPointerTy(DAG.getDataLayout()), 6131 getValue(I.getArgOperand(0)))); 6132 return; 6133 case Intrinsic::eh_sjlj_callsite: { 6134 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6135 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6136 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6137 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6138 6139 MMI.setCurrentCallSite(CI->getZExtValue()); 6140 return; 6141 } 6142 case Intrinsic::eh_sjlj_functioncontext: { 6143 // Get and store the index of the function context. 6144 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6145 AllocaInst *FnCtx = 6146 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6147 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6148 MFI.setFunctionContextIndex(FI); 6149 return; 6150 } 6151 case Intrinsic::eh_sjlj_setjmp: { 6152 SDValue Ops[2]; 6153 Ops[0] = getRoot(); 6154 Ops[1] = getValue(I.getArgOperand(0)); 6155 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6156 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6157 setValue(&I, Op.getValue(0)); 6158 DAG.setRoot(Op.getValue(1)); 6159 return; 6160 } 6161 case Intrinsic::eh_sjlj_longjmp: 6162 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6163 getRoot(), getValue(I.getArgOperand(0)))); 6164 return; 6165 case Intrinsic::eh_sjlj_setup_dispatch: 6166 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6167 getRoot())); 6168 return; 6169 case Intrinsic::masked_gather: 6170 visitMaskedGather(I); 6171 return; 6172 case Intrinsic::masked_load: 6173 visitMaskedLoad(I); 6174 return; 6175 case Intrinsic::masked_scatter: 6176 visitMaskedScatter(I); 6177 return; 6178 case Intrinsic::masked_store: 6179 visitMaskedStore(I); 6180 return; 6181 case Intrinsic::masked_expandload: 6182 visitMaskedLoad(I, true /* IsExpanding */); 6183 return; 6184 case Intrinsic::masked_compressstore: 6185 visitMaskedStore(I, true /* IsCompressing */); 6186 return; 6187 case Intrinsic::powi: 6188 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6189 getValue(I.getArgOperand(1)), DAG)); 6190 return; 6191 case Intrinsic::log: 6192 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6193 return; 6194 case Intrinsic::log2: 6195 setValue(&I, 6196 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6197 return; 6198 case Intrinsic::log10: 6199 setValue(&I, 6200 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6201 return; 6202 case Intrinsic::exp: 6203 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6204 return; 6205 case Intrinsic::exp2: 6206 setValue(&I, 6207 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6208 return; 6209 case Intrinsic::pow: 6210 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6211 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6212 return; 6213 case Intrinsic::sqrt: 6214 case Intrinsic::fabs: 6215 case Intrinsic::sin: 6216 case Intrinsic::cos: 6217 case Intrinsic::floor: 6218 case Intrinsic::ceil: 6219 case Intrinsic::trunc: 6220 case Intrinsic::rint: 6221 case Intrinsic::nearbyint: 6222 case Intrinsic::round: 6223 case Intrinsic::roundeven: 6224 case Intrinsic::canonicalize: { 6225 unsigned Opcode; 6226 switch (Intrinsic) { 6227 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6228 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6229 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6230 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6231 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6232 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6233 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6234 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6235 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6236 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6237 case Intrinsic::round: Opcode = ISD::FROUND; break; 6238 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6239 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6240 } 6241 6242 setValue(&I, DAG.getNode(Opcode, sdl, 6243 getValue(I.getArgOperand(0)).getValueType(), 6244 getValue(I.getArgOperand(0)), Flags)); 6245 return; 6246 } 6247 case Intrinsic::lround: 6248 case Intrinsic::llround: 6249 case Intrinsic::lrint: 6250 case Intrinsic::llrint: { 6251 unsigned Opcode; 6252 switch (Intrinsic) { 6253 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6254 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6255 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6256 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6257 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6258 } 6259 6260 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6261 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6262 getValue(I.getArgOperand(0)))); 6263 return; 6264 } 6265 case Intrinsic::minnum: 6266 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6267 getValue(I.getArgOperand(0)).getValueType(), 6268 getValue(I.getArgOperand(0)), 6269 getValue(I.getArgOperand(1)), Flags)); 6270 return; 6271 case Intrinsic::maxnum: 6272 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6273 getValue(I.getArgOperand(0)).getValueType(), 6274 getValue(I.getArgOperand(0)), 6275 getValue(I.getArgOperand(1)), Flags)); 6276 return; 6277 case Intrinsic::minimum: 6278 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6279 getValue(I.getArgOperand(0)).getValueType(), 6280 getValue(I.getArgOperand(0)), 6281 getValue(I.getArgOperand(1)), Flags)); 6282 return; 6283 case Intrinsic::maximum: 6284 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6285 getValue(I.getArgOperand(0)).getValueType(), 6286 getValue(I.getArgOperand(0)), 6287 getValue(I.getArgOperand(1)), Flags)); 6288 return; 6289 case Intrinsic::copysign: 6290 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6291 getValue(I.getArgOperand(0)).getValueType(), 6292 getValue(I.getArgOperand(0)), 6293 getValue(I.getArgOperand(1)), Flags)); 6294 return; 6295 case Intrinsic::arithmetic_fence: { 6296 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6297 getValue(I.getArgOperand(0)).getValueType(), 6298 getValue(I.getArgOperand(0)), Flags)); 6299 return; 6300 } 6301 case Intrinsic::fma: 6302 setValue(&I, DAG.getNode( 6303 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6304 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6305 getValue(I.getArgOperand(2)), Flags)); 6306 return; 6307 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6308 case Intrinsic::INTRINSIC: 6309 #include "llvm/IR/ConstrainedOps.def" 6310 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6311 return; 6312 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6313 #include "llvm/IR/VPIntrinsics.def" 6314 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6315 return; 6316 case Intrinsic::fmuladd: { 6317 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6318 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6319 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6320 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6321 getValue(I.getArgOperand(0)).getValueType(), 6322 getValue(I.getArgOperand(0)), 6323 getValue(I.getArgOperand(1)), 6324 getValue(I.getArgOperand(2)), Flags)); 6325 } else { 6326 // TODO: Intrinsic calls should have fast-math-flags. 6327 SDValue Mul = DAG.getNode( 6328 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6329 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6330 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6331 getValue(I.getArgOperand(0)).getValueType(), 6332 Mul, getValue(I.getArgOperand(2)), Flags); 6333 setValue(&I, Add); 6334 } 6335 return; 6336 } 6337 case Intrinsic::convert_to_fp16: 6338 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6339 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6340 getValue(I.getArgOperand(0)), 6341 DAG.getTargetConstant(0, sdl, 6342 MVT::i32)))); 6343 return; 6344 case Intrinsic::convert_from_fp16: 6345 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6346 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6347 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6348 getValue(I.getArgOperand(0))))); 6349 return; 6350 case Intrinsic::fptosi_sat: { 6351 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6352 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6353 getValue(I.getArgOperand(0)), 6354 DAG.getValueType(VT.getScalarType()))); 6355 return; 6356 } 6357 case Intrinsic::fptoui_sat: { 6358 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6359 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6360 getValue(I.getArgOperand(0)), 6361 DAG.getValueType(VT.getScalarType()))); 6362 return; 6363 } 6364 case Intrinsic::set_rounding: 6365 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6366 {getRoot(), getValue(I.getArgOperand(0))}); 6367 setValue(&I, Res); 6368 DAG.setRoot(Res.getValue(0)); 6369 return; 6370 case Intrinsic::pcmarker: { 6371 SDValue Tmp = getValue(I.getArgOperand(0)); 6372 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6373 return; 6374 } 6375 case Intrinsic::readcyclecounter: { 6376 SDValue Op = getRoot(); 6377 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6378 DAG.getVTList(MVT::i64, MVT::Other), Op); 6379 setValue(&I, Res); 6380 DAG.setRoot(Res.getValue(1)); 6381 return; 6382 } 6383 case Intrinsic::bitreverse: 6384 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6385 getValue(I.getArgOperand(0)).getValueType(), 6386 getValue(I.getArgOperand(0)))); 6387 return; 6388 case Intrinsic::bswap: 6389 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6390 getValue(I.getArgOperand(0)).getValueType(), 6391 getValue(I.getArgOperand(0)))); 6392 return; 6393 case Intrinsic::cttz: { 6394 SDValue Arg = getValue(I.getArgOperand(0)); 6395 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6396 EVT Ty = Arg.getValueType(); 6397 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6398 sdl, Ty, Arg)); 6399 return; 6400 } 6401 case Intrinsic::ctlz: { 6402 SDValue Arg = getValue(I.getArgOperand(0)); 6403 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6404 EVT Ty = Arg.getValueType(); 6405 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6406 sdl, Ty, Arg)); 6407 return; 6408 } 6409 case Intrinsic::ctpop: { 6410 SDValue Arg = getValue(I.getArgOperand(0)); 6411 EVT Ty = Arg.getValueType(); 6412 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6413 return; 6414 } 6415 case Intrinsic::fshl: 6416 case Intrinsic::fshr: { 6417 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6418 SDValue X = getValue(I.getArgOperand(0)); 6419 SDValue Y = getValue(I.getArgOperand(1)); 6420 SDValue Z = getValue(I.getArgOperand(2)); 6421 EVT VT = X.getValueType(); 6422 6423 if (X == Y) { 6424 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6425 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6426 } else { 6427 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6428 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6429 } 6430 return; 6431 } 6432 case Intrinsic::sadd_sat: { 6433 SDValue Op1 = getValue(I.getArgOperand(0)); 6434 SDValue Op2 = getValue(I.getArgOperand(1)); 6435 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6436 return; 6437 } 6438 case Intrinsic::uadd_sat: { 6439 SDValue Op1 = getValue(I.getArgOperand(0)); 6440 SDValue Op2 = getValue(I.getArgOperand(1)); 6441 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6442 return; 6443 } 6444 case Intrinsic::ssub_sat: { 6445 SDValue Op1 = getValue(I.getArgOperand(0)); 6446 SDValue Op2 = getValue(I.getArgOperand(1)); 6447 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6448 return; 6449 } 6450 case Intrinsic::usub_sat: { 6451 SDValue Op1 = getValue(I.getArgOperand(0)); 6452 SDValue Op2 = getValue(I.getArgOperand(1)); 6453 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6454 return; 6455 } 6456 case Intrinsic::sshl_sat: { 6457 SDValue Op1 = getValue(I.getArgOperand(0)); 6458 SDValue Op2 = getValue(I.getArgOperand(1)); 6459 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6460 return; 6461 } 6462 case Intrinsic::ushl_sat: { 6463 SDValue Op1 = getValue(I.getArgOperand(0)); 6464 SDValue Op2 = getValue(I.getArgOperand(1)); 6465 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6466 return; 6467 } 6468 case Intrinsic::smul_fix: 6469 case Intrinsic::umul_fix: 6470 case Intrinsic::smul_fix_sat: 6471 case Intrinsic::umul_fix_sat: { 6472 SDValue Op1 = getValue(I.getArgOperand(0)); 6473 SDValue Op2 = getValue(I.getArgOperand(1)); 6474 SDValue Op3 = getValue(I.getArgOperand(2)); 6475 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6476 Op1.getValueType(), Op1, Op2, Op3)); 6477 return; 6478 } 6479 case Intrinsic::sdiv_fix: 6480 case Intrinsic::udiv_fix: 6481 case Intrinsic::sdiv_fix_sat: 6482 case Intrinsic::udiv_fix_sat: { 6483 SDValue Op1 = getValue(I.getArgOperand(0)); 6484 SDValue Op2 = getValue(I.getArgOperand(1)); 6485 SDValue Op3 = getValue(I.getArgOperand(2)); 6486 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6487 Op1, Op2, Op3, DAG, TLI)); 6488 return; 6489 } 6490 case Intrinsic::smax: { 6491 SDValue Op1 = getValue(I.getArgOperand(0)); 6492 SDValue Op2 = getValue(I.getArgOperand(1)); 6493 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6494 return; 6495 } 6496 case Intrinsic::smin: { 6497 SDValue Op1 = getValue(I.getArgOperand(0)); 6498 SDValue Op2 = getValue(I.getArgOperand(1)); 6499 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6500 return; 6501 } 6502 case Intrinsic::umax: { 6503 SDValue Op1 = getValue(I.getArgOperand(0)); 6504 SDValue Op2 = getValue(I.getArgOperand(1)); 6505 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6506 return; 6507 } 6508 case Intrinsic::umin: { 6509 SDValue Op1 = getValue(I.getArgOperand(0)); 6510 SDValue Op2 = getValue(I.getArgOperand(1)); 6511 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6512 return; 6513 } 6514 case Intrinsic::abs: { 6515 // TODO: Preserve "int min is poison" arg in SDAG? 6516 SDValue Op1 = getValue(I.getArgOperand(0)); 6517 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6518 return; 6519 } 6520 case Intrinsic::stacksave: { 6521 SDValue Op = getRoot(); 6522 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6523 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6524 setValue(&I, Res); 6525 DAG.setRoot(Res.getValue(1)); 6526 return; 6527 } 6528 case Intrinsic::stackrestore: 6529 Res = getValue(I.getArgOperand(0)); 6530 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6531 return; 6532 case Intrinsic::get_dynamic_area_offset: { 6533 SDValue Op = getRoot(); 6534 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6535 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6536 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6537 // target. 6538 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6539 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6540 " intrinsic!"); 6541 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6542 Op); 6543 DAG.setRoot(Op); 6544 setValue(&I, Res); 6545 return; 6546 } 6547 case Intrinsic::stackguard: { 6548 MachineFunction &MF = DAG.getMachineFunction(); 6549 const Module &M = *MF.getFunction().getParent(); 6550 SDValue Chain = getRoot(); 6551 if (TLI.useLoadStackGuardNode()) { 6552 Res = getLoadStackGuard(DAG, sdl, Chain); 6553 } else { 6554 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6555 const Value *Global = TLI.getSDagStackGuard(M); 6556 Align Align = DL->getPrefTypeAlign(Global->getType()); 6557 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6558 MachinePointerInfo(Global, 0), Align, 6559 MachineMemOperand::MOVolatile); 6560 } 6561 if (TLI.useStackGuardXorFP()) 6562 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6563 DAG.setRoot(Chain); 6564 setValue(&I, Res); 6565 return; 6566 } 6567 case Intrinsic::stackprotector: { 6568 // Emit code into the DAG to store the stack guard onto the stack. 6569 MachineFunction &MF = DAG.getMachineFunction(); 6570 MachineFrameInfo &MFI = MF.getFrameInfo(); 6571 SDValue Src, Chain = getRoot(); 6572 6573 if (TLI.useLoadStackGuardNode()) 6574 Src = getLoadStackGuard(DAG, sdl, Chain); 6575 else 6576 Src = getValue(I.getArgOperand(0)); // The guard's value. 6577 6578 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6579 6580 int FI = FuncInfo.StaticAllocaMap[Slot]; 6581 MFI.setStackProtectorIndex(FI); 6582 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6583 6584 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6585 6586 // Store the stack protector onto the stack. 6587 Res = DAG.getStore( 6588 Chain, sdl, Src, FIN, 6589 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6590 MaybeAlign(), MachineMemOperand::MOVolatile); 6591 setValue(&I, Res); 6592 DAG.setRoot(Res); 6593 return; 6594 } 6595 case Intrinsic::objectsize: 6596 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6597 6598 case Intrinsic::is_constant: 6599 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6600 6601 case Intrinsic::annotation: 6602 case Intrinsic::ptr_annotation: 6603 case Intrinsic::launder_invariant_group: 6604 case Intrinsic::strip_invariant_group: 6605 // Drop the intrinsic, but forward the value 6606 setValue(&I, getValue(I.getOperand(0))); 6607 return; 6608 6609 case Intrinsic::assume: 6610 case Intrinsic::experimental_noalias_scope_decl: 6611 case Intrinsic::var_annotation: 6612 case Intrinsic::sideeffect: 6613 // Discard annotate attributes, noalias scope declarations, assumptions, and 6614 // artificial side-effects. 6615 return; 6616 6617 case Intrinsic::codeview_annotation: { 6618 // Emit a label associated with this metadata. 6619 MachineFunction &MF = DAG.getMachineFunction(); 6620 MCSymbol *Label = 6621 MF.getMMI().getContext().createTempSymbol("annotation", true); 6622 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6623 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6624 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6625 DAG.setRoot(Res); 6626 return; 6627 } 6628 6629 case Intrinsic::init_trampoline: { 6630 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6631 6632 SDValue Ops[6]; 6633 Ops[0] = getRoot(); 6634 Ops[1] = getValue(I.getArgOperand(0)); 6635 Ops[2] = getValue(I.getArgOperand(1)); 6636 Ops[3] = getValue(I.getArgOperand(2)); 6637 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6638 Ops[5] = DAG.getSrcValue(F); 6639 6640 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6641 6642 DAG.setRoot(Res); 6643 return; 6644 } 6645 case Intrinsic::adjust_trampoline: 6646 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6647 TLI.getPointerTy(DAG.getDataLayout()), 6648 getValue(I.getArgOperand(0)))); 6649 return; 6650 case Intrinsic::gcroot: { 6651 assert(DAG.getMachineFunction().getFunction().hasGC() && 6652 "only valid in functions with gc specified, enforced by Verifier"); 6653 assert(GFI && "implied by previous"); 6654 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6655 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6656 6657 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6658 GFI->addStackRoot(FI->getIndex(), TypeMap); 6659 return; 6660 } 6661 case Intrinsic::gcread: 6662 case Intrinsic::gcwrite: 6663 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6664 case Intrinsic::flt_rounds: 6665 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6666 setValue(&I, Res); 6667 DAG.setRoot(Res.getValue(1)); 6668 return; 6669 6670 case Intrinsic::expect: 6671 // Just replace __builtin_expect(exp, c) with EXP. 6672 setValue(&I, getValue(I.getArgOperand(0))); 6673 return; 6674 6675 case Intrinsic::ubsantrap: 6676 case Intrinsic::debugtrap: 6677 case Intrinsic::trap: { 6678 StringRef TrapFuncName = 6679 I.getAttributes() 6680 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6681 .getValueAsString(); 6682 if (TrapFuncName.empty()) { 6683 switch (Intrinsic) { 6684 case Intrinsic::trap: 6685 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6686 break; 6687 case Intrinsic::debugtrap: 6688 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6689 break; 6690 case Intrinsic::ubsantrap: 6691 DAG.setRoot(DAG.getNode( 6692 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6693 DAG.getTargetConstant( 6694 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6695 MVT::i32))); 6696 break; 6697 default: llvm_unreachable("unknown trap intrinsic"); 6698 } 6699 return; 6700 } 6701 TargetLowering::ArgListTy Args; 6702 if (Intrinsic == Intrinsic::ubsantrap) { 6703 Args.push_back(TargetLoweringBase::ArgListEntry()); 6704 Args[0].Val = I.getArgOperand(0); 6705 Args[0].Node = getValue(Args[0].Val); 6706 Args[0].Ty = Args[0].Val->getType(); 6707 } 6708 6709 TargetLowering::CallLoweringInfo CLI(DAG); 6710 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6711 CallingConv::C, I.getType(), 6712 DAG.getExternalSymbol(TrapFuncName.data(), 6713 TLI.getPointerTy(DAG.getDataLayout())), 6714 std::move(Args)); 6715 6716 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6717 DAG.setRoot(Result.second); 6718 return; 6719 } 6720 6721 case Intrinsic::uadd_with_overflow: 6722 case Intrinsic::sadd_with_overflow: 6723 case Intrinsic::usub_with_overflow: 6724 case Intrinsic::ssub_with_overflow: 6725 case Intrinsic::umul_with_overflow: 6726 case Intrinsic::smul_with_overflow: { 6727 ISD::NodeType Op; 6728 switch (Intrinsic) { 6729 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6730 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6731 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6732 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6733 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6734 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6735 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6736 } 6737 SDValue Op1 = getValue(I.getArgOperand(0)); 6738 SDValue Op2 = getValue(I.getArgOperand(1)); 6739 6740 EVT ResultVT = Op1.getValueType(); 6741 EVT OverflowVT = MVT::i1; 6742 if (ResultVT.isVector()) 6743 OverflowVT = EVT::getVectorVT( 6744 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6745 6746 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6747 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6748 return; 6749 } 6750 case Intrinsic::prefetch: { 6751 SDValue Ops[5]; 6752 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6753 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6754 Ops[0] = DAG.getRoot(); 6755 Ops[1] = getValue(I.getArgOperand(0)); 6756 Ops[2] = getValue(I.getArgOperand(1)); 6757 Ops[3] = getValue(I.getArgOperand(2)); 6758 Ops[4] = getValue(I.getArgOperand(3)); 6759 SDValue Result = DAG.getMemIntrinsicNode( 6760 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6761 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6762 /* align */ None, Flags); 6763 6764 // Chain the prefetch in parallell with any pending loads, to stay out of 6765 // the way of later optimizations. 6766 PendingLoads.push_back(Result); 6767 Result = getRoot(); 6768 DAG.setRoot(Result); 6769 return; 6770 } 6771 case Intrinsic::lifetime_start: 6772 case Intrinsic::lifetime_end: { 6773 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6774 // Stack coloring is not enabled in O0, discard region information. 6775 if (TM.getOptLevel() == CodeGenOpt::None) 6776 return; 6777 6778 const int64_t ObjectSize = 6779 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6780 Value *const ObjectPtr = I.getArgOperand(1); 6781 SmallVector<const Value *, 4> Allocas; 6782 getUnderlyingObjects(ObjectPtr, Allocas); 6783 6784 for (const Value *Alloca : Allocas) { 6785 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6786 6787 // Could not find an Alloca. 6788 if (!LifetimeObject) 6789 continue; 6790 6791 // First check that the Alloca is static, otherwise it won't have a 6792 // valid frame index. 6793 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6794 if (SI == FuncInfo.StaticAllocaMap.end()) 6795 return; 6796 6797 const int FrameIndex = SI->second; 6798 int64_t Offset; 6799 if (GetPointerBaseWithConstantOffset( 6800 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6801 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6802 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6803 Offset); 6804 DAG.setRoot(Res); 6805 } 6806 return; 6807 } 6808 case Intrinsic::pseudoprobe: { 6809 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6810 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6811 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6812 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6813 DAG.setRoot(Res); 6814 return; 6815 } 6816 case Intrinsic::invariant_start: 6817 // Discard region information. 6818 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6819 return; 6820 case Intrinsic::invariant_end: 6821 // Discard region information. 6822 return; 6823 case Intrinsic::clear_cache: 6824 /// FunctionName may be null. 6825 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6826 lowerCallToExternalSymbol(I, FunctionName); 6827 return; 6828 case Intrinsic::donothing: 6829 case Intrinsic::seh_try_begin: 6830 case Intrinsic::seh_scope_begin: 6831 case Intrinsic::seh_try_end: 6832 case Intrinsic::seh_scope_end: 6833 // ignore 6834 return; 6835 case Intrinsic::experimental_stackmap: 6836 visitStackmap(I); 6837 return; 6838 case Intrinsic::experimental_patchpoint_void: 6839 case Intrinsic::experimental_patchpoint_i64: 6840 visitPatchpoint(I); 6841 return; 6842 case Intrinsic::experimental_gc_statepoint: 6843 LowerStatepoint(cast<GCStatepointInst>(I)); 6844 return; 6845 case Intrinsic::experimental_gc_result: 6846 visitGCResult(cast<GCResultInst>(I)); 6847 return; 6848 case Intrinsic::experimental_gc_relocate: 6849 visitGCRelocate(cast<GCRelocateInst>(I)); 6850 return; 6851 case Intrinsic::instrprof_increment: 6852 llvm_unreachable("instrprof failed to lower an increment"); 6853 case Intrinsic::instrprof_value_profile: 6854 llvm_unreachable("instrprof failed to lower a value profiling call"); 6855 case Intrinsic::localescape: { 6856 MachineFunction &MF = DAG.getMachineFunction(); 6857 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6858 6859 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6860 // is the same on all targets. 6861 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6862 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6863 if (isa<ConstantPointerNull>(Arg)) 6864 continue; // Skip null pointers. They represent a hole in index space. 6865 AllocaInst *Slot = cast<AllocaInst>(Arg); 6866 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6867 "can only escape static allocas"); 6868 int FI = FuncInfo.StaticAllocaMap[Slot]; 6869 MCSymbol *FrameAllocSym = 6870 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6871 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6872 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6873 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6874 .addSym(FrameAllocSym) 6875 .addFrameIndex(FI); 6876 } 6877 6878 return; 6879 } 6880 6881 case Intrinsic::localrecover: { 6882 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6883 MachineFunction &MF = DAG.getMachineFunction(); 6884 6885 // Get the symbol that defines the frame offset. 6886 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6887 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6888 unsigned IdxVal = 6889 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6890 MCSymbol *FrameAllocSym = 6891 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6892 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6893 6894 Value *FP = I.getArgOperand(1); 6895 SDValue FPVal = getValue(FP); 6896 EVT PtrVT = FPVal.getValueType(); 6897 6898 // Create a MCSymbol for the label to avoid any target lowering 6899 // that would make this PC relative. 6900 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6901 SDValue OffsetVal = 6902 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6903 6904 // Add the offset to the FP. 6905 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6906 setValue(&I, Add); 6907 6908 return; 6909 } 6910 6911 case Intrinsic::eh_exceptionpointer: 6912 case Intrinsic::eh_exceptioncode: { 6913 // Get the exception pointer vreg, copy from it, and resize it to fit. 6914 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6915 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6916 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6917 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6918 SDValue N = 6919 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6920 if (Intrinsic == Intrinsic::eh_exceptioncode) 6921 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6922 setValue(&I, N); 6923 return; 6924 } 6925 case Intrinsic::xray_customevent: { 6926 // Here we want to make sure that the intrinsic behaves as if it has a 6927 // specific calling convention, and only for x86_64. 6928 // FIXME: Support other platforms later. 6929 const auto &Triple = DAG.getTarget().getTargetTriple(); 6930 if (Triple.getArch() != Triple::x86_64) 6931 return; 6932 6933 SDLoc DL = getCurSDLoc(); 6934 SmallVector<SDValue, 8> Ops; 6935 6936 // We want to say that we always want the arguments in registers. 6937 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6938 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6939 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6940 SDValue Chain = getRoot(); 6941 Ops.push_back(LogEntryVal); 6942 Ops.push_back(StrSizeVal); 6943 Ops.push_back(Chain); 6944 6945 // We need to enforce the calling convention for the callsite, so that 6946 // argument ordering is enforced correctly, and that register allocation can 6947 // see that some registers may be assumed clobbered and have to preserve 6948 // them across calls to the intrinsic. 6949 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6950 DL, NodeTys, Ops); 6951 SDValue patchableNode = SDValue(MN, 0); 6952 DAG.setRoot(patchableNode); 6953 setValue(&I, patchableNode); 6954 return; 6955 } 6956 case Intrinsic::xray_typedevent: { 6957 // Here we want to make sure that the intrinsic behaves as if it has a 6958 // specific calling convention, and only for x86_64. 6959 // FIXME: Support other platforms later. 6960 const auto &Triple = DAG.getTarget().getTargetTriple(); 6961 if (Triple.getArch() != Triple::x86_64) 6962 return; 6963 6964 SDLoc DL = getCurSDLoc(); 6965 SmallVector<SDValue, 8> Ops; 6966 6967 // We want to say that we always want the arguments in registers. 6968 // It's unclear to me how manipulating the selection DAG here forces callers 6969 // to provide arguments in registers instead of on the stack. 6970 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6971 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6972 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6973 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6974 SDValue Chain = getRoot(); 6975 Ops.push_back(LogTypeId); 6976 Ops.push_back(LogEntryVal); 6977 Ops.push_back(StrSizeVal); 6978 Ops.push_back(Chain); 6979 6980 // We need to enforce the calling convention for the callsite, so that 6981 // argument ordering is enforced correctly, and that register allocation can 6982 // see that some registers may be assumed clobbered and have to preserve 6983 // them across calls to the intrinsic. 6984 MachineSDNode *MN = DAG.getMachineNode( 6985 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6986 SDValue patchableNode = SDValue(MN, 0); 6987 DAG.setRoot(patchableNode); 6988 setValue(&I, patchableNode); 6989 return; 6990 } 6991 case Intrinsic::experimental_deoptimize: 6992 LowerDeoptimizeCall(&I); 6993 return; 6994 case Intrinsic::experimental_stepvector: 6995 visitStepVector(I); 6996 return; 6997 case Intrinsic::vector_reduce_fadd: 6998 case Intrinsic::vector_reduce_fmul: 6999 case Intrinsic::vector_reduce_add: 7000 case Intrinsic::vector_reduce_mul: 7001 case Intrinsic::vector_reduce_and: 7002 case Intrinsic::vector_reduce_or: 7003 case Intrinsic::vector_reduce_xor: 7004 case Intrinsic::vector_reduce_smax: 7005 case Intrinsic::vector_reduce_smin: 7006 case Intrinsic::vector_reduce_umax: 7007 case Intrinsic::vector_reduce_umin: 7008 case Intrinsic::vector_reduce_fmax: 7009 case Intrinsic::vector_reduce_fmin: 7010 visitVectorReduce(I, Intrinsic); 7011 return; 7012 7013 case Intrinsic::icall_branch_funnel: { 7014 SmallVector<SDValue, 16> Ops; 7015 Ops.push_back(getValue(I.getArgOperand(0))); 7016 7017 int64_t Offset; 7018 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7019 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7020 if (!Base) 7021 report_fatal_error( 7022 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7023 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 7024 7025 struct BranchFunnelTarget { 7026 int64_t Offset; 7027 SDValue Target; 7028 }; 7029 SmallVector<BranchFunnelTarget, 8> Targets; 7030 7031 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 7032 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7033 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7034 if (ElemBase != Base) 7035 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7036 "to the same GlobalValue"); 7037 7038 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7039 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7040 if (!GA) 7041 report_fatal_error( 7042 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7043 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7044 GA->getGlobal(), getCurSDLoc(), 7045 Val.getValueType(), GA->getOffset())}); 7046 } 7047 llvm::sort(Targets, 7048 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7049 return T1.Offset < T2.Offset; 7050 }); 7051 7052 for (auto &T : Targets) { 7053 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 7054 Ops.push_back(T.Target); 7055 } 7056 7057 Ops.push_back(DAG.getRoot()); // Chain 7058 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 7059 getCurSDLoc(), MVT::Other, Ops), 7060 0); 7061 DAG.setRoot(N); 7062 setValue(&I, N); 7063 HasTailCall = true; 7064 return; 7065 } 7066 7067 case Intrinsic::wasm_landingpad_index: 7068 // Information this intrinsic contained has been transferred to 7069 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7070 // delete it now. 7071 return; 7072 7073 case Intrinsic::aarch64_settag: 7074 case Intrinsic::aarch64_settag_zero: { 7075 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7076 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7077 SDValue Val = TSI.EmitTargetCodeForSetTag( 7078 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 7079 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7080 ZeroMemory); 7081 DAG.setRoot(Val); 7082 setValue(&I, Val); 7083 return; 7084 } 7085 case Intrinsic::ptrmask: { 7086 SDValue Ptr = getValue(I.getOperand(0)); 7087 SDValue Const = getValue(I.getOperand(1)); 7088 7089 EVT PtrVT = Ptr.getValueType(); 7090 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 7091 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 7092 return; 7093 } 7094 case Intrinsic::get_active_lane_mask: { 7095 auto DL = getCurSDLoc(); 7096 SDValue Index = getValue(I.getOperand(0)); 7097 SDValue TripCount = getValue(I.getOperand(1)); 7098 Type *ElementTy = I.getOperand(0)->getType(); 7099 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7100 unsigned VecWidth = VT.getVectorNumElements(); 7101 7102 SmallVector<SDValue, 16> OpsTripCount; 7103 SmallVector<SDValue, 16> OpsIndex; 7104 SmallVector<SDValue, 16> OpsStepConstants; 7105 for (unsigned i = 0; i < VecWidth; i++) { 7106 OpsTripCount.push_back(TripCount); 7107 OpsIndex.push_back(Index); 7108 OpsStepConstants.push_back( 7109 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 7110 } 7111 7112 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 7113 7114 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 7115 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 7116 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 7117 SDValue VectorInduction = DAG.getNode( 7118 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 7119 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 7120 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 7121 VectorTripCount, ISD::CondCode::SETULT); 7122 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 7123 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 7124 SetCC)); 7125 return; 7126 } 7127 case Intrinsic::experimental_vector_insert: { 7128 auto DL = getCurSDLoc(); 7129 7130 SDValue Vec = getValue(I.getOperand(0)); 7131 SDValue SubVec = getValue(I.getOperand(1)); 7132 SDValue Index = getValue(I.getOperand(2)); 7133 7134 // The intrinsic's index type is i64, but the SDNode requires an index type 7135 // suitable for the target. Convert the index as required. 7136 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7137 if (Index.getValueType() != VectorIdxTy) 7138 Index = DAG.getVectorIdxConstant( 7139 cast<ConstantSDNode>(Index)->getZExtValue(), DL); 7140 7141 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7142 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec, 7143 Index)); 7144 return; 7145 } 7146 case Intrinsic::experimental_vector_extract: { 7147 auto DL = getCurSDLoc(); 7148 7149 SDValue Vec = getValue(I.getOperand(0)); 7150 SDValue Index = getValue(I.getOperand(1)); 7151 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7152 7153 // The intrinsic's index type is i64, but the SDNode requires an index type 7154 // suitable for the target. Convert the index as required. 7155 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7156 if (Index.getValueType() != VectorIdxTy) 7157 Index = DAG.getVectorIdxConstant( 7158 cast<ConstantSDNode>(Index)->getZExtValue(), DL); 7159 7160 setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index)); 7161 return; 7162 } 7163 case Intrinsic::experimental_vector_reverse: 7164 visitVectorReverse(I); 7165 return; 7166 case Intrinsic::experimental_vector_splice: 7167 visitVectorSplice(I); 7168 return; 7169 } 7170 } 7171 7172 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7173 const ConstrainedFPIntrinsic &FPI) { 7174 SDLoc sdl = getCurSDLoc(); 7175 7176 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7177 SmallVector<EVT, 4> ValueVTs; 7178 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7179 ValueVTs.push_back(MVT::Other); // Out chain 7180 7181 // We do not need to serialize constrained FP intrinsics against 7182 // each other or against (nonvolatile) loads, so they can be 7183 // chained like loads. 7184 SDValue Chain = DAG.getRoot(); 7185 SmallVector<SDValue, 4> Opers; 7186 Opers.push_back(Chain); 7187 if (FPI.isUnaryOp()) { 7188 Opers.push_back(getValue(FPI.getArgOperand(0))); 7189 } else if (FPI.isTernaryOp()) { 7190 Opers.push_back(getValue(FPI.getArgOperand(0))); 7191 Opers.push_back(getValue(FPI.getArgOperand(1))); 7192 Opers.push_back(getValue(FPI.getArgOperand(2))); 7193 } else { 7194 Opers.push_back(getValue(FPI.getArgOperand(0))); 7195 Opers.push_back(getValue(FPI.getArgOperand(1))); 7196 } 7197 7198 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7199 assert(Result.getNode()->getNumValues() == 2); 7200 7201 // Push node to the appropriate list so that future instructions can be 7202 // chained up correctly. 7203 SDValue OutChain = Result.getValue(1); 7204 switch (EB) { 7205 case fp::ExceptionBehavior::ebIgnore: 7206 // The only reason why ebIgnore nodes still need to be chained is that 7207 // they might depend on the current rounding mode, and therefore must 7208 // not be moved across instruction that may change that mode. 7209 LLVM_FALLTHROUGH; 7210 case fp::ExceptionBehavior::ebMayTrap: 7211 // These must not be moved across calls or instructions that may change 7212 // floating-point exception masks. 7213 PendingConstrainedFP.push_back(OutChain); 7214 break; 7215 case fp::ExceptionBehavior::ebStrict: 7216 // These must not be moved across calls or instructions that may change 7217 // floating-point exception masks or read floating-point exception flags. 7218 // In addition, they cannot be optimized out even if unused. 7219 PendingConstrainedFPStrict.push_back(OutChain); 7220 break; 7221 } 7222 }; 7223 7224 SDVTList VTs = DAG.getVTList(ValueVTs); 7225 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7226 7227 SDNodeFlags Flags; 7228 if (EB == fp::ExceptionBehavior::ebIgnore) 7229 Flags.setNoFPExcept(true); 7230 7231 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7232 Flags.copyFMF(*FPOp); 7233 7234 unsigned Opcode; 7235 switch (FPI.getIntrinsicID()) { 7236 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7237 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7238 case Intrinsic::INTRINSIC: \ 7239 Opcode = ISD::STRICT_##DAGN; \ 7240 break; 7241 #include "llvm/IR/ConstrainedOps.def" 7242 case Intrinsic::experimental_constrained_fmuladd: { 7243 Opcode = ISD::STRICT_FMA; 7244 // Break fmuladd into fmul and fadd. 7245 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7246 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7247 ValueVTs[0])) { 7248 Opers.pop_back(); 7249 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7250 pushOutChain(Mul, EB); 7251 Opcode = ISD::STRICT_FADD; 7252 Opers.clear(); 7253 Opers.push_back(Mul.getValue(1)); 7254 Opers.push_back(Mul.getValue(0)); 7255 Opers.push_back(getValue(FPI.getArgOperand(2))); 7256 } 7257 break; 7258 } 7259 } 7260 7261 // A few strict DAG nodes carry additional operands that are not 7262 // set up by the default code above. 7263 switch (Opcode) { 7264 default: break; 7265 case ISD::STRICT_FP_ROUND: 7266 Opers.push_back( 7267 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7268 break; 7269 case ISD::STRICT_FSETCC: 7270 case ISD::STRICT_FSETCCS: { 7271 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7272 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7273 if (TM.Options.NoNaNsFPMath) 7274 Condition = getFCmpCodeWithoutNaN(Condition); 7275 Opers.push_back(DAG.getCondCode(Condition)); 7276 break; 7277 } 7278 } 7279 7280 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7281 pushOutChain(Result, EB); 7282 7283 SDValue FPResult = Result.getValue(0); 7284 setValue(&FPI, FPResult); 7285 } 7286 7287 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7288 Optional<unsigned> ResOPC; 7289 switch (VPIntrin.getIntrinsicID()) { 7290 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN: 7291 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID; 7292 #define END_REGISTER_VP_INTRINSIC(...) break; 7293 #include "llvm/IR/VPIntrinsics.def" 7294 } 7295 7296 if (!ResOPC.hasValue()) 7297 llvm_unreachable( 7298 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7299 7300 return ResOPC.getValue(); 7301 } 7302 7303 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7304 const VPIntrinsic &VPIntrin) { 7305 SDLoc DL = getCurSDLoc(); 7306 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7307 7308 SmallVector<EVT, 4> ValueVTs; 7309 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7310 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7311 SDVTList VTs = DAG.getVTList(ValueVTs); 7312 7313 auto EVLParamPos = 7314 VPIntrinsic::getVectorLengthParamPos(VPIntrin.getIntrinsicID()); 7315 7316 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7317 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7318 "Unexpected target EVL type"); 7319 7320 // Request operands. 7321 SmallVector<SDValue, 7> OpValues; 7322 for (unsigned I = 0; I < VPIntrin.getNumArgOperands(); ++I) { 7323 auto Op = getValue(VPIntrin.getArgOperand(I)); 7324 if (I == EVLParamPos) 7325 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 7326 OpValues.push_back(Op); 7327 } 7328 7329 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7330 setValue(&VPIntrin, Result); 7331 } 7332 7333 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 7334 const BasicBlock *EHPadBB, 7335 MCSymbol *&BeginLabel) { 7336 MachineFunction &MF = DAG.getMachineFunction(); 7337 MachineModuleInfo &MMI = MF.getMMI(); 7338 7339 // Insert a label before the invoke call to mark the try range. This can be 7340 // used to detect deletion of the invoke via the MachineModuleInfo. 7341 BeginLabel = MMI.getContext().createTempSymbol(); 7342 7343 // For SjLj, keep track of which landing pads go with which invokes 7344 // so as to maintain the ordering of pads in the LSDA. 7345 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7346 if (CallSiteIndex) { 7347 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7348 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7349 7350 // Now that the call site is handled, stop tracking it. 7351 MMI.setCurrentCallSite(0); 7352 } 7353 7354 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 7355 } 7356 7357 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 7358 const BasicBlock *EHPadBB, 7359 MCSymbol *BeginLabel) { 7360 assert(BeginLabel && "BeginLabel should've been set"); 7361 7362 MachineFunction &MF = DAG.getMachineFunction(); 7363 MachineModuleInfo &MMI = MF.getMMI(); 7364 7365 // Insert a label at the end of the invoke call to mark the try range. This 7366 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7367 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7368 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 7369 7370 // Inform MachineModuleInfo of range. 7371 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7372 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7373 // actually use outlined funclets and their LSDA info style. 7374 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7375 assert(II && "II should've been set"); 7376 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 7377 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 7378 } else if (!isScopedEHPersonality(Pers)) { 7379 assert(EHPadBB); 7380 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7381 } 7382 7383 return Chain; 7384 } 7385 7386 std::pair<SDValue, SDValue> 7387 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7388 const BasicBlock *EHPadBB) { 7389 MCSymbol *BeginLabel = nullptr; 7390 7391 if (EHPadBB) { 7392 // Both PendingLoads and PendingExports must be flushed here; 7393 // this call might not return. 7394 (void)getRoot(); 7395 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 7396 CLI.setChain(getRoot()); 7397 } 7398 7399 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7400 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7401 7402 assert((CLI.IsTailCall || Result.second.getNode()) && 7403 "Non-null chain expected with non-tail call!"); 7404 assert((Result.second.getNode() || !Result.first.getNode()) && 7405 "Null value expected with tail call!"); 7406 7407 if (!Result.second.getNode()) { 7408 // As a special case, a null chain means that a tail call has been emitted 7409 // and the DAG root is already updated. 7410 HasTailCall = true; 7411 7412 // Since there's no actual continuation from this block, nothing can be 7413 // relying on us setting vregs for them. 7414 PendingExports.clear(); 7415 } else { 7416 DAG.setRoot(Result.second); 7417 } 7418 7419 if (EHPadBB) { 7420 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 7421 BeginLabel)); 7422 } 7423 7424 return Result; 7425 } 7426 7427 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7428 bool isTailCall, 7429 bool isMustTailCall, 7430 const BasicBlock *EHPadBB) { 7431 auto &DL = DAG.getDataLayout(); 7432 FunctionType *FTy = CB.getFunctionType(); 7433 Type *RetTy = CB.getType(); 7434 7435 TargetLowering::ArgListTy Args; 7436 Args.reserve(CB.arg_size()); 7437 7438 const Value *SwiftErrorVal = nullptr; 7439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7440 7441 if (isTailCall) { 7442 // Avoid emitting tail calls in functions with the disable-tail-calls 7443 // attribute. 7444 auto *Caller = CB.getParent()->getParent(); 7445 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7446 "true" && !isMustTailCall) 7447 isTailCall = false; 7448 7449 // We can't tail call inside a function with a swifterror argument. Lowering 7450 // does not support this yet. It would have to move into the swifterror 7451 // register before the call. 7452 if (TLI.supportSwiftError() && 7453 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7454 isTailCall = false; 7455 } 7456 7457 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7458 TargetLowering::ArgListEntry Entry; 7459 const Value *V = *I; 7460 7461 // Skip empty types 7462 if (V->getType()->isEmptyTy()) 7463 continue; 7464 7465 SDValue ArgNode = getValue(V); 7466 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7467 7468 Entry.setAttributes(&CB, I - CB.arg_begin()); 7469 7470 // Use swifterror virtual register as input to the call. 7471 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7472 SwiftErrorVal = V; 7473 // We find the virtual register for the actual swifterror argument. 7474 // Instead of using the Value, we use the virtual register instead. 7475 Entry.Node = 7476 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7477 EVT(TLI.getPointerTy(DL))); 7478 } 7479 7480 Args.push_back(Entry); 7481 7482 // If we have an explicit sret argument that is an Instruction, (i.e., it 7483 // might point to function-local memory), we can't meaningfully tail-call. 7484 if (Entry.IsSRet && isa<Instruction>(V)) 7485 isTailCall = false; 7486 } 7487 7488 // If call site has a cfguardtarget operand bundle, create and add an 7489 // additional ArgListEntry. 7490 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7491 TargetLowering::ArgListEntry Entry; 7492 Value *V = Bundle->Inputs[0]; 7493 SDValue ArgNode = getValue(V); 7494 Entry.Node = ArgNode; 7495 Entry.Ty = V->getType(); 7496 Entry.IsCFGuardTarget = true; 7497 Args.push_back(Entry); 7498 } 7499 7500 // Check if target-independent constraints permit a tail call here. 7501 // Target-dependent constraints are checked within TLI->LowerCallTo. 7502 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7503 isTailCall = false; 7504 7505 // Disable tail calls if there is an swifterror argument. Targets have not 7506 // been updated to support tail calls. 7507 if (TLI.supportSwiftError() && SwiftErrorVal) 7508 isTailCall = false; 7509 7510 TargetLowering::CallLoweringInfo CLI(DAG); 7511 CLI.setDebugLoc(getCurSDLoc()) 7512 .setChain(getRoot()) 7513 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7514 .setTailCall(isTailCall) 7515 .setConvergent(CB.isConvergent()) 7516 .setIsPreallocated( 7517 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7518 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7519 7520 if (Result.first.getNode()) { 7521 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7522 setValue(&CB, Result.first); 7523 } 7524 7525 // The last element of CLI.InVals has the SDValue for swifterror return. 7526 // Here we copy it to a virtual register and update SwiftErrorMap for 7527 // book-keeping. 7528 if (SwiftErrorVal && TLI.supportSwiftError()) { 7529 // Get the last element of InVals. 7530 SDValue Src = CLI.InVals.back(); 7531 Register VReg = 7532 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7533 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7534 DAG.setRoot(CopyNode); 7535 } 7536 } 7537 7538 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7539 SelectionDAGBuilder &Builder) { 7540 // Check to see if this load can be trivially constant folded, e.g. if the 7541 // input is from a string literal. 7542 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7543 // Cast pointer to the type we really want to load. 7544 Type *LoadTy = 7545 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7546 if (LoadVT.isVector()) 7547 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7548 7549 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7550 PointerType::getUnqual(LoadTy)); 7551 7552 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7553 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7554 return Builder.getValue(LoadCst); 7555 } 7556 7557 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7558 // still constant memory, the input chain can be the entry node. 7559 SDValue Root; 7560 bool ConstantMemory = false; 7561 7562 // Do not serialize (non-volatile) loads of constant memory with anything. 7563 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7564 Root = Builder.DAG.getEntryNode(); 7565 ConstantMemory = true; 7566 } else { 7567 // Do not serialize non-volatile loads against each other. 7568 Root = Builder.DAG.getRoot(); 7569 } 7570 7571 SDValue Ptr = Builder.getValue(PtrVal); 7572 SDValue LoadVal = 7573 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7574 MachinePointerInfo(PtrVal), Align(1)); 7575 7576 if (!ConstantMemory) 7577 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7578 return LoadVal; 7579 } 7580 7581 /// Record the value for an instruction that produces an integer result, 7582 /// converting the type where necessary. 7583 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7584 SDValue Value, 7585 bool IsSigned) { 7586 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7587 I.getType(), true); 7588 if (IsSigned) 7589 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7590 else 7591 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7592 setValue(&I, Value); 7593 } 7594 7595 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7596 /// true and lower it. Otherwise return false, and it will be lowered like a 7597 /// normal call. 7598 /// The caller already checked that \p I calls the appropriate LibFunc with a 7599 /// correct prototype. 7600 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7601 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7602 const Value *Size = I.getArgOperand(2); 7603 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7604 if (CSize && CSize->getZExtValue() == 0) { 7605 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7606 I.getType(), true); 7607 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7608 return true; 7609 } 7610 7611 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7612 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7613 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7614 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7615 if (Res.first.getNode()) { 7616 processIntegerCallValue(I, Res.first, true); 7617 PendingLoads.push_back(Res.second); 7618 return true; 7619 } 7620 7621 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7622 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7623 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7624 return false; 7625 7626 // If the target has a fast compare for the given size, it will return a 7627 // preferred load type for that size. Require that the load VT is legal and 7628 // that the target supports unaligned loads of that type. Otherwise, return 7629 // INVALID. 7630 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7631 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7632 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7633 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7634 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7635 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7636 // TODO: Check alignment of src and dest ptrs. 7637 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7638 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7639 if (!TLI.isTypeLegal(LVT) || 7640 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7641 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7642 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7643 } 7644 7645 return LVT; 7646 }; 7647 7648 // This turns into unaligned loads. We only do this if the target natively 7649 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7650 // we'll only produce a small number of byte loads. 7651 MVT LoadVT; 7652 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7653 switch (NumBitsToCompare) { 7654 default: 7655 return false; 7656 case 16: 7657 LoadVT = MVT::i16; 7658 break; 7659 case 32: 7660 LoadVT = MVT::i32; 7661 break; 7662 case 64: 7663 case 128: 7664 case 256: 7665 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7666 break; 7667 } 7668 7669 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7670 return false; 7671 7672 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7673 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7674 7675 // Bitcast to a wide integer type if the loads are vectors. 7676 if (LoadVT.isVector()) { 7677 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7678 LoadL = DAG.getBitcast(CmpVT, LoadL); 7679 LoadR = DAG.getBitcast(CmpVT, LoadR); 7680 } 7681 7682 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7683 processIntegerCallValue(I, Cmp, false); 7684 return true; 7685 } 7686 7687 /// See if we can lower a memchr call into an optimized form. If so, return 7688 /// true and lower it. Otherwise return false, and it will be lowered like a 7689 /// normal call. 7690 /// The caller already checked that \p I calls the appropriate LibFunc with a 7691 /// correct prototype. 7692 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7693 const Value *Src = I.getArgOperand(0); 7694 const Value *Char = I.getArgOperand(1); 7695 const Value *Length = I.getArgOperand(2); 7696 7697 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7698 std::pair<SDValue, SDValue> Res = 7699 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7700 getValue(Src), getValue(Char), getValue(Length), 7701 MachinePointerInfo(Src)); 7702 if (Res.first.getNode()) { 7703 setValue(&I, Res.first); 7704 PendingLoads.push_back(Res.second); 7705 return true; 7706 } 7707 7708 return false; 7709 } 7710 7711 /// See if we can lower a mempcpy call into an optimized form. If so, return 7712 /// true and lower it. Otherwise return false, and it will be lowered like a 7713 /// normal call. 7714 /// The caller already checked that \p I calls the appropriate LibFunc with a 7715 /// correct prototype. 7716 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7717 SDValue Dst = getValue(I.getArgOperand(0)); 7718 SDValue Src = getValue(I.getArgOperand(1)); 7719 SDValue Size = getValue(I.getArgOperand(2)); 7720 7721 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7722 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7723 // DAG::getMemcpy needs Alignment to be defined. 7724 Align Alignment = std::min(DstAlign, SrcAlign); 7725 7726 bool isVol = false; 7727 SDLoc sdl = getCurSDLoc(); 7728 7729 // In the mempcpy context we need to pass in a false value for isTailCall 7730 // because the return pointer needs to be adjusted by the size of 7731 // the copied memory. 7732 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7733 AAMDNodes AAInfo; 7734 I.getAAMetadata(AAInfo); 7735 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7736 /*isTailCall=*/false, 7737 MachinePointerInfo(I.getArgOperand(0)), 7738 MachinePointerInfo(I.getArgOperand(1)), AAInfo); 7739 assert(MC.getNode() != nullptr && 7740 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7741 DAG.setRoot(MC); 7742 7743 // Check if Size needs to be truncated or extended. 7744 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7745 7746 // Adjust return pointer to point just past the last dst byte. 7747 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7748 Dst, Size); 7749 setValue(&I, DstPlusSize); 7750 return true; 7751 } 7752 7753 /// See if we can lower a strcpy call into an optimized form. If so, return 7754 /// true and lower it, otherwise return false and it will be lowered like a 7755 /// normal call. 7756 /// The caller already checked that \p I calls the appropriate LibFunc with a 7757 /// correct prototype. 7758 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7759 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7760 7761 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7762 std::pair<SDValue, SDValue> Res = 7763 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7764 getValue(Arg0), getValue(Arg1), 7765 MachinePointerInfo(Arg0), 7766 MachinePointerInfo(Arg1), isStpcpy); 7767 if (Res.first.getNode()) { 7768 setValue(&I, Res.first); 7769 DAG.setRoot(Res.second); 7770 return true; 7771 } 7772 7773 return false; 7774 } 7775 7776 /// See if we can lower a strcmp call into an optimized form. If so, return 7777 /// true and lower it, otherwise return false and it will be lowered like a 7778 /// normal call. 7779 /// The caller already checked that \p I calls the appropriate LibFunc with a 7780 /// correct prototype. 7781 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7782 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7783 7784 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7785 std::pair<SDValue, SDValue> Res = 7786 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7787 getValue(Arg0), getValue(Arg1), 7788 MachinePointerInfo(Arg0), 7789 MachinePointerInfo(Arg1)); 7790 if (Res.first.getNode()) { 7791 processIntegerCallValue(I, Res.first, true); 7792 PendingLoads.push_back(Res.second); 7793 return true; 7794 } 7795 7796 return false; 7797 } 7798 7799 /// See if we can lower a strlen call into an optimized form. If so, return 7800 /// true and lower it, otherwise return false and it will be lowered like a 7801 /// normal call. 7802 /// The caller already checked that \p I calls the appropriate LibFunc with a 7803 /// correct prototype. 7804 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7805 const Value *Arg0 = I.getArgOperand(0); 7806 7807 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7808 std::pair<SDValue, SDValue> Res = 7809 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7810 getValue(Arg0), MachinePointerInfo(Arg0)); 7811 if (Res.first.getNode()) { 7812 processIntegerCallValue(I, Res.first, false); 7813 PendingLoads.push_back(Res.second); 7814 return true; 7815 } 7816 7817 return false; 7818 } 7819 7820 /// See if we can lower a strnlen call into an optimized form. If so, return 7821 /// true and lower it, otherwise return false and it will be lowered like a 7822 /// normal call. 7823 /// The caller already checked that \p I calls the appropriate LibFunc with a 7824 /// correct prototype. 7825 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7826 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7827 7828 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7829 std::pair<SDValue, SDValue> Res = 7830 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7831 getValue(Arg0), getValue(Arg1), 7832 MachinePointerInfo(Arg0)); 7833 if (Res.first.getNode()) { 7834 processIntegerCallValue(I, Res.first, false); 7835 PendingLoads.push_back(Res.second); 7836 return true; 7837 } 7838 7839 return false; 7840 } 7841 7842 /// See if we can lower a unary floating-point operation into an SDNode with 7843 /// the specified Opcode. If so, return true and lower it, otherwise return 7844 /// false and it will be lowered like a normal call. 7845 /// The caller already checked that \p I calls the appropriate LibFunc with a 7846 /// correct prototype. 7847 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7848 unsigned Opcode) { 7849 // We already checked this call's prototype; verify it doesn't modify errno. 7850 if (!I.onlyReadsMemory()) 7851 return false; 7852 7853 SDNodeFlags Flags; 7854 Flags.copyFMF(cast<FPMathOperator>(I)); 7855 7856 SDValue Tmp = getValue(I.getArgOperand(0)); 7857 setValue(&I, 7858 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7859 return true; 7860 } 7861 7862 /// See if we can lower a binary floating-point operation into an SDNode with 7863 /// the specified Opcode. If so, return true and lower it. Otherwise return 7864 /// false, and it will be lowered like a normal call. 7865 /// The caller already checked that \p I calls the appropriate LibFunc with a 7866 /// correct prototype. 7867 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7868 unsigned Opcode) { 7869 // We already checked this call's prototype; verify it doesn't modify errno. 7870 if (!I.onlyReadsMemory()) 7871 return false; 7872 7873 SDNodeFlags Flags; 7874 Flags.copyFMF(cast<FPMathOperator>(I)); 7875 7876 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7877 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7878 EVT VT = Tmp0.getValueType(); 7879 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 7880 return true; 7881 } 7882 7883 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7884 // Handle inline assembly differently. 7885 if (I.isInlineAsm()) { 7886 visitInlineAsm(I); 7887 return; 7888 } 7889 7890 if (Function *F = I.getCalledFunction()) { 7891 if (F->isDeclaration()) { 7892 // Is this an LLVM intrinsic or a target-specific intrinsic? 7893 unsigned IID = F->getIntrinsicID(); 7894 if (!IID) 7895 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7896 IID = II->getIntrinsicID(F); 7897 7898 if (IID) { 7899 visitIntrinsicCall(I, IID); 7900 return; 7901 } 7902 } 7903 7904 // Check for well-known libc/libm calls. If the function is internal, it 7905 // can't be a library call. Don't do the check if marked as nobuiltin for 7906 // some reason or the call site requires strict floating point semantics. 7907 LibFunc Func; 7908 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7909 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7910 LibInfo->hasOptimizedCodeGen(Func)) { 7911 switch (Func) { 7912 default: break; 7913 case LibFunc_bcmp: 7914 if (visitMemCmpBCmpCall(I)) 7915 return; 7916 break; 7917 case LibFunc_copysign: 7918 case LibFunc_copysignf: 7919 case LibFunc_copysignl: 7920 // We already checked this call's prototype; verify it doesn't modify 7921 // errno. 7922 if (I.onlyReadsMemory()) { 7923 SDValue LHS = getValue(I.getArgOperand(0)); 7924 SDValue RHS = getValue(I.getArgOperand(1)); 7925 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7926 LHS.getValueType(), LHS, RHS)); 7927 return; 7928 } 7929 break; 7930 case LibFunc_fabs: 7931 case LibFunc_fabsf: 7932 case LibFunc_fabsl: 7933 if (visitUnaryFloatCall(I, ISD::FABS)) 7934 return; 7935 break; 7936 case LibFunc_fmin: 7937 case LibFunc_fminf: 7938 case LibFunc_fminl: 7939 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7940 return; 7941 break; 7942 case LibFunc_fmax: 7943 case LibFunc_fmaxf: 7944 case LibFunc_fmaxl: 7945 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7946 return; 7947 break; 7948 case LibFunc_sin: 7949 case LibFunc_sinf: 7950 case LibFunc_sinl: 7951 if (visitUnaryFloatCall(I, ISD::FSIN)) 7952 return; 7953 break; 7954 case LibFunc_cos: 7955 case LibFunc_cosf: 7956 case LibFunc_cosl: 7957 if (visitUnaryFloatCall(I, ISD::FCOS)) 7958 return; 7959 break; 7960 case LibFunc_sqrt: 7961 case LibFunc_sqrtf: 7962 case LibFunc_sqrtl: 7963 case LibFunc_sqrt_finite: 7964 case LibFunc_sqrtf_finite: 7965 case LibFunc_sqrtl_finite: 7966 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7967 return; 7968 break; 7969 case LibFunc_floor: 7970 case LibFunc_floorf: 7971 case LibFunc_floorl: 7972 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7973 return; 7974 break; 7975 case LibFunc_nearbyint: 7976 case LibFunc_nearbyintf: 7977 case LibFunc_nearbyintl: 7978 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7979 return; 7980 break; 7981 case LibFunc_ceil: 7982 case LibFunc_ceilf: 7983 case LibFunc_ceill: 7984 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7985 return; 7986 break; 7987 case LibFunc_rint: 7988 case LibFunc_rintf: 7989 case LibFunc_rintl: 7990 if (visitUnaryFloatCall(I, ISD::FRINT)) 7991 return; 7992 break; 7993 case LibFunc_round: 7994 case LibFunc_roundf: 7995 case LibFunc_roundl: 7996 if (visitUnaryFloatCall(I, ISD::FROUND)) 7997 return; 7998 break; 7999 case LibFunc_trunc: 8000 case LibFunc_truncf: 8001 case LibFunc_truncl: 8002 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8003 return; 8004 break; 8005 case LibFunc_log2: 8006 case LibFunc_log2f: 8007 case LibFunc_log2l: 8008 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8009 return; 8010 break; 8011 case LibFunc_exp2: 8012 case LibFunc_exp2f: 8013 case LibFunc_exp2l: 8014 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8015 return; 8016 break; 8017 case LibFunc_memcmp: 8018 if (visitMemCmpBCmpCall(I)) 8019 return; 8020 break; 8021 case LibFunc_mempcpy: 8022 if (visitMemPCpyCall(I)) 8023 return; 8024 break; 8025 case LibFunc_memchr: 8026 if (visitMemChrCall(I)) 8027 return; 8028 break; 8029 case LibFunc_strcpy: 8030 if (visitStrCpyCall(I, false)) 8031 return; 8032 break; 8033 case LibFunc_stpcpy: 8034 if (visitStrCpyCall(I, true)) 8035 return; 8036 break; 8037 case LibFunc_strcmp: 8038 if (visitStrCmpCall(I)) 8039 return; 8040 break; 8041 case LibFunc_strlen: 8042 if (visitStrLenCall(I)) 8043 return; 8044 break; 8045 case LibFunc_strnlen: 8046 if (visitStrNLenCall(I)) 8047 return; 8048 break; 8049 } 8050 } 8051 } 8052 8053 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8054 // have to do anything here to lower funclet bundles. 8055 // CFGuardTarget bundles are lowered in LowerCallTo. 8056 assert(!I.hasOperandBundlesOtherThan( 8057 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8058 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8059 LLVMContext::OB_clang_arc_attachedcall}) && 8060 "Cannot lower calls with arbitrary operand bundles!"); 8061 8062 SDValue Callee = getValue(I.getCalledOperand()); 8063 8064 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8065 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8066 else 8067 // Check if we can potentially perform a tail call. More detailed checking 8068 // is be done within LowerCallTo, after more information about the call is 8069 // known. 8070 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8071 } 8072 8073 namespace { 8074 8075 /// AsmOperandInfo - This contains information for each constraint that we are 8076 /// lowering. 8077 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8078 public: 8079 /// CallOperand - If this is the result output operand or a clobber 8080 /// this is null, otherwise it is the incoming operand to the CallInst. 8081 /// This gets modified as the asm is processed. 8082 SDValue CallOperand; 8083 8084 /// AssignedRegs - If this is a register or register class operand, this 8085 /// contains the set of register corresponding to the operand. 8086 RegsForValue AssignedRegs; 8087 8088 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8089 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8090 } 8091 8092 /// Whether or not this operand accesses memory 8093 bool hasMemory(const TargetLowering &TLI) const { 8094 // Indirect operand accesses access memory. 8095 if (isIndirect) 8096 return true; 8097 8098 for (const auto &Code : Codes) 8099 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8100 return true; 8101 8102 return false; 8103 } 8104 8105 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8106 /// corresponds to. If there is no Value* for this operand, it returns 8107 /// MVT::Other. 8108 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8109 const DataLayout &DL) const { 8110 if (!CallOperandVal) return MVT::Other; 8111 8112 if (isa<BasicBlock>(CallOperandVal)) 8113 return TLI.getProgramPointerTy(DL); 8114 8115 llvm::Type *OpTy = CallOperandVal->getType(); 8116 8117 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8118 // If this is an indirect operand, the operand is a pointer to the 8119 // accessed type. 8120 if (isIndirect) { 8121 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 8122 if (!PtrTy) 8123 report_fatal_error("Indirect operand for inline asm not a pointer!"); 8124 OpTy = PtrTy->getElementType(); 8125 } 8126 8127 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8128 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8129 if (STy->getNumElements() == 1) 8130 OpTy = STy->getElementType(0); 8131 8132 // If OpTy is not a single value, it may be a struct/union that we 8133 // can tile with integers. 8134 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8135 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8136 switch (BitSize) { 8137 default: break; 8138 case 1: 8139 case 8: 8140 case 16: 8141 case 32: 8142 case 64: 8143 case 128: 8144 OpTy = IntegerType::get(Context, BitSize); 8145 break; 8146 } 8147 } 8148 8149 return TLI.getValueType(DL, OpTy, true); 8150 } 8151 }; 8152 8153 8154 } // end anonymous namespace 8155 8156 /// Make sure that the output operand \p OpInfo and its corresponding input 8157 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8158 /// out). 8159 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8160 SDISelAsmOperandInfo &MatchingOpInfo, 8161 SelectionDAG &DAG) { 8162 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8163 return; 8164 8165 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8166 const auto &TLI = DAG.getTargetLoweringInfo(); 8167 8168 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8169 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8170 OpInfo.ConstraintVT); 8171 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8172 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8173 MatchingOpInfo.ConstraintVT); 8174 if ((OpInfo.ConstraintVT.isInteger() != 8175 MatchingOpInfo.ConstraintVT.isInteger()) || 8176 (MatchRC.second != InputRC.second)) { 8177 // FIXME: error out in a more elegant fashion 8178 report_fatal_error("Unsupported asm: input constraint" 8179 " with a matching output constraint of" 8180 " incompatible type!"); 8181 } 8182 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8183 } 8184 8185 /// Get a direct memory input to behave well as an indirect operand. 8186 /// This may introduce stores, hence the need for a \p Chain. 8187 /// \return The (possibly updated) chain. 8188 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8189 SDISelAsmOperandInfo &OpInfo, 8190 SelectionDAG &DAG) { 8191 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8192 8193 // If we don't have an indirect input, put it in the constpool if we can, 8194 // otherwise spill it to a stack slot. 8195 // TODO: This isn't quite right. We need to handle these according to 8196 // the addressing mode that the constraint wants. Also, this may take 8197 // an additional register for the computation and we don't want that 8198 // either. 8199 8200 // If the operand is a float, integer, or vector constant, spill to a 8201 // constant pool entry to get its address. 8202 const Value *OpVal = OpInfo.CallOperandVal; 8203 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8204 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8205 OpInfo.CallOperand = DAG.getConstantPool( 8206 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8207 return Chain; 8208 } 8209 8210 // Otherwise, create a stack slot and emit a store to it before the asm. 8211 Type *Ty = OpVal->getType(); 8212 auto &DL = DAG.getDataLayout(); 8213 uint64_t TySize = DL.getTypeAllocSize(Ty); 8214 MachineFunction &MF = DAG.getMachineFunction(); 8215 int SSFI = MF.getFrameInfo().CreateStackObject( 8216 TySize, DL.getPrefTypeAlign(Ty), false); 8217 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8218 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8219 MachinePointerInfo::getFixedStack(MF, SSFI), 8220 TLI.getMemValueType(DL, Ty)); 8221 OpInfo.CallOperand = StackSlot; 8222 8223 return Chain; 8224 } 8225 8226 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8227 /// specified operand. We prefer to assign virtual registers, to allow the 8228 /// register allocator to handle the assignment process. However, if the asm 8229 /// uses features that we can't model on machineinstrs, we have SDISel do the 8230 /// allocation. This produces generally horrible, but correct, code. 8231 /// 8232 /// OpInfo describes the operand 8233 /// RefOpInfo describes the matching operand if any, the operand otherwise 8234 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8235 SDISelAsmOperandInfo &OpInfo, 8236 SDISelAsmOperandInfo &RefOpInfo) { 8237 LLVMContext &Context = *DAG.getContext(); 8238 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8239 8240 MachineFunction &MF = DAG.getMachineFunction(); 8241 SmallVector<unsigned, 4> Regs; 8242 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8243 8244 // No work to do for memory operations. 8245 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8246 return; 8247 8248 // If this is a constraint for a single physreg, or a constraint for a 8249 // register class, find it. 8250 unsigned AssignedReg; 8251 const TargetRegisterClass *RC; 8252 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8253 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8254 // RC is unset only on failure. Return immediately. 8255 if (!RC) 8256 return; 8257 8258 // Get the actual register value type. This is important, because the user 8259 // may have asked for (e.g.) the AX register in i32 type. We need to 8260 // remember that AX is actually i16 to get the right extension. 8261 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8262 8263 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 8264 // If this is an FP operand in an integer register (or visa versa), or more 8265 // generally if the operand value disagrees with the register class we plan 8266 // to stick it in, fix the operand type. 8267 // 8268 // If this is an input value, the bitcast to the new type is done now. 8269 // Bitcast for output value is done at the end of visitInlineAsm(). 8270 if ((OpInfo.Type == InlineAsm::isOutput || 8271 OpInfo.Type == InlineAsm::isInput) && 8272 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8273 // Try to convert to the first EVT that the reg class contains. If the 8274 // types are identical size, use a bitcast to convert (e.g. two differing 8275 // vector types). Note: output bitcast is done at the end of 8276 // visitInlineAsm(). 8277 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8278 // Exclude indirect inputs while they are unsupported because the code 8279 // to perform the load is missing and thus OpInfo.CallOperand still 8280 // refers to the input address rather than the pointed-to value. 8281 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8282 OpInfo.CallOperand = 8283 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8284 OpInfo.ConstraintVT = RegVT; 8285 // If the operand is an FP value and we want it in integer registers, 8286 // use the corresponding integer type. This turns an f64 value into 8287 // i64, which can be passed with two i32 values on a 32-bit machine. 8288 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8289 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8290 if (OpInfo.Type == InlineAsm::isInput) 8291 OpInfo.CallOperand = 8292 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8293 OpInfo.ConstraintVT = VT; 8294 } 8295 } 8296 } 8297 8298 // No need to allocate a matching input constraint since the constraint it's 8299 // matching to has already been allocated. 8300 if (OpInfo.isMatchingInputConstraint()) 8301 return; 8302 8303 EVT ValueVT = OpInfo.ConstraintVT; 8304 if (OpInfo.ConstraintVT == MVT::Other) 8305 ValueVT = RegVT; 8306 8307 // Initialize NumRegs. 8308 unsigned NumRegs = 1; 8309 if (OpInfo.ConstraintVT != MVT::Other) 8310 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 8311 8312 // If this is a constraint for a specific physical register, like {r17}, 8313 // assign it now. 8314 8315 // If this associated to a specific register, initialize iterator to correct 8316 // place. If virtual, make sure we have enough registers 8317 8318 // Initialize iterator if necessary 8319 TargetRegisterClass::iterator I = RC->begin(); 8320 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8321 8322 // Do not check for single registers. 8323 if (AssignedReg) { 8324 for (; *I != AssignedReg; ++I) 8325 assert(I != RC->end() && "AssignedReg should be member of RC"); 8326 } 8327 8328 for (; NumRegs; --NumRegs, ++I) { 8329 assert(I != RC->end() && "Ran out of registers to allocate!"); 8330 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8331 Regs.push_back(R); 8332 } 8333 8334 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8335 } 8336 8337 static unsigned 8338 findMatchingInlineAsmOperand(unsigned OperandNo, 8339 const std::vector<SDValue> &AsmNodeOperands) { 8340 // Scan until we find the definition we already emitted of this operand. 8341 unsigned CurOp = InlineAsm::Op_FirstOperand; 8342 for (; OperandNo; --OperandNo) { 8343 // Advance to the next operand. 8344 unsigned OpFlag = 8345 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8346 assert((InlineAsm::isRegDefKind(OpFlag) || 8347 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8348 InlineAsm::isMemKind(OpFlag)) && 8349 "Skipped past definitions?"); 8350 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8351 } 8352 return CurOp; 8353 } 8354 8355 namespace { 8356 8357 class ExtraFlags { 8358 unsigned Flags = 0; 8359 8360 public: 8361 explicit ExtraFlags(const CallBase &Call) { 8362 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8363 if (IA->hasSideEffects()) 8364 Flags |= InlineAsm::Extra_HasSideEffects; 8365 if (IA->isAlignStack()) 8366 Flags |= InlineAsm::Extra_IsAlignStack; 8367 if (Call.isConvergent()) 8368 Flags |= InlineAsm::Extra_IsConvergent; 8369 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8370 } 8371 8372 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8373 // Ideally, we would only check against memory constraints. However, the 8374 // meaning of an Other constraint can be target-specific and we can't easily 8375 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8376 // for Other constraints as well. 8377 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8378 OpInfo.ConstraintType == TargetLowering::C_Other) { 8379 if (OpInfo.Type == InlineAsm::isInput) 8380 Flags |= InlineAsm::Extra_MayLoad; 8381 else if (OpInfo.Type == InlineAsm::isOutput) 8382 Flags |= InlineAsm::Extra_MayStore; 8383 else if (OpInfo.Type == InlineAsm::isClobber) 8384 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8385 } 8386 } 8387 8388 unsigned get() const { return Flags; } 8389 }; 8390 8391 } // end anonymous namespace 8392 8393 /// visitInlineAsm - Handle a call to an InlineAsm object. 8394 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 8395 const BasicBlock *EHPadBB) { 8396 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8397 8398 /// ConstraintOperands - Information about all of the constraints. 8399 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8400 8401 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8402 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8403 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8404 8405 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8406 // AsmDialect, MayLoad, MayStore). 8407 bool HasSideEffect = IA->hasSideEffects(); 8408 ExtraFlags ExtraInfo(Call); 8409 8410 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8411 unsigned ResNo = 0; // ResNo - The result number of the next output. 8412 unsigned NumMatchingOps = 0; 8413 for (auto &T : TargetConstraints) { 8414 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8415 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8416 8417 // Compute the value type for each operand. 8418 if (OpInfo.Type == InlineAsm::isInput || 8419 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8420 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8421 8422 // Process the call argument. BasicBlocks are labels, currently appearing 8423 // only in asm's. 8424 if (isa<CallBrInst>(Call) && 8425 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8426 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8427 NumMatchingOps) && 8428 (NumMatchingOps == 0 || 8429 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8430 NumMatchingOps))) { 8431 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8432 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8433 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8434 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8435 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8436 } else { 8437 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8438 } 8439 8440 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8441 DAG.getDataLayout()); 8442 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8443 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8444 // The return value of the call is this value. As such, there is no 8445 // corresponding argument. 8446 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8447 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8448 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8449 DAG.getDataLayout(), STy->getElementType(ResNo)); 8450 } else { 8451 assert(ResNo == 0 && "Asm only has one result!"); 8452 OpInfo.ConstraintVT = 8453 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8454 } 8455 ++ResNo; 8456 } else { 8457 OpInfo.ConstraintVT = MVT::Other; 8458 } 8459 8460 if (OpInfo.hasMatchingInput()) 8461 ++NumMatchingOps; 8462 8463 if (!HasSideEffect) 8464 HasSideEffect = OpInfo.hasMemory(TLI); 8465 8466 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8467 // FIXME: Could we compute this on OpInfo rather than T? 8468 8469 // Compute the constraint code and ConstraintType to use. 8470 TLI.ComputeConstraintToUse(T, SDValue()); 8471 8472 if (T.ConstraintType == TargetLowering::C_Immediate && 8473 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8474 // We've delayed emitting a diagnostic like the "n" constraint because 8475 // inlining could cause an integer showing up. 8476 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8477 "' expects an integer constant " 8478 "expression"); 8479 8480 ExtraInfo.update(T); 8481 } 8482 8483 // We won't need to flush pending loads if this asm doesn't touch 8484 // memory and is nonvolatile. 8485 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8486 8487 bool EmitEHLabels = isa<InvokeInst>(Call) && IA->canThrow(); 8488 if (EmitEHLabels) { 8489 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 8490 } 8491 bool IsCallBr = isa<CallBrInst>(Call); 8492 8493 if (IsCallBr || EmitEHLabels) { 8494 // If this is a callbr or invoke we need to flush pending exports since 8495 // inlineasm_br and invoke are terminators. 8496 // We need to do this before nodes are glued to the inlineasm_br node. 8497 Chain = getControlRoot(); 8498 } 8499 8500 MCSymbol *BeginLabel = nullptr; 8501 if (EmitEHLabels) { 8502 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 8503 } 8504 8505 // Second pass over the constraints: compute which constraint option to use. 8506 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8507 // If this is an output operand with a matching input operand, look up the 8508 // matching input. If their types mismatch, e.g. one is an integer, the 8509 // other is floating point, or their sizes are different, flag it as an 8510 // error. 8511 if (OpInfo.hasMatchingInput()) { 8512 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8513 patchMatchingInput(OpInfo, Input, DAG); 8514 } 8515 8516 // Compute the constraint code and ConstraintType to use. 8517 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8518 8519 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8520 OpInfo.Type == InlineAsm::isClobber) 8521 continue; 8522 8523 // If this is a memory input, and if the operand is not indirect, do what we 8524 // need to provide an address for the memory input. 8525 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8526 !OpInfo.isIndirect) { 8527 assert((OpInfo.isMultipleAlternative || 8528 (OpInfo.Type == InlineAsm::isInput)) && 8529 "Can only indirectify direct input operands!"); 8530 8531 // Memory operands really want the address of the value. 8532 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8533 8534 // There is no longer a Value* corresponding to this operand. 8535 OpInfo.CallOperandVal = nullptr; 8536 8537 // It is now an indirect operand. 8538 OpInfo.isIndirect = true; 8539 } 8540 8541 } 8542 8543 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8544 std::vector<SDValue> AsmNodeOperands; 8545 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8546 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8547 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8548 8549 // If we have a !srcloc metadata node associated with it, we want to attach 8550 // this to the ultimately generated inline asm machineinstr. To do this, we 8551 // pass in the third operand as this (potentially null) inline asm MDNode. 8552 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8553 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8554 8555 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8556 // bits as operand 3. 8557 AsmNodeOperands.push_back(DAG.getTargetConstant( 8558 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8559 8560 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8561 // this, assign virtual and physical registers for inputs and otput. 8562 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8563 // Assign Registers. 8564 SDISelAsmOperandInfo &RefOpInfo = 8565 OpInfo.isMatchingInputConstraint() 8566 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8567 : OpInfo; 8568 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8569 8570 auto DetectWriteToReservedRegister = [&]() { 8571 const MachineFunction &MF = DAG.getMachineFunction(); 8572 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8573 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8574 if (Register::isPhysicalRegister(Reg) && 8575 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8576 const char *RegName = TRI.getName(Reg); 8577 emitInlineAsmError(Call, "write to reserved register '" + 8578 Twine(RegName) + "'"); 8579 return true; 8580 } 8581 } 8582 return false; 8583 }; 8584 8585 switch (OpInfo.Type) { 8586 case InlineAsm::isOutput: 8587 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8588 unsigned ConstraintID = 8589 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8590 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8591 "Failed to convert memory constraint code to constraint id."); 8592 8593 // Add information to the INLINEASM node to know about this output. 8594 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8595 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8596 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8597 MVT::i32)); 8598 AsmNodeOperands.push_back(OpInfo.CallOperand); 8599 } else { 8600 // Otherwise, this outputs to a register (directly for C_Register / 8601 // C_RegisterClass, and a target-defined fashion for 8602 // C_Immediate/C_Other). Find a register that we can use. 8603 if (OpInfo.AssignedRegs.Regs.empty()) { 8604 emitInlineAsmError( 8605 Call, "couldn't allocate output register for constraint '" + 8606 Twine(OpInfo.ConstraintCode) + "'"); 8607 return; 8608 } 8609 8610 if (DetectWriteToReservedRegister()) 8611 return; 8612 8613 // Add information to the INLINEASM node to know that this register is 8614 // set. 8615 OpInfo.AssignedRegs.AddInlineAsmOperands( 8616 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8617 : InlineAsm::Kind_RegDef, 8618 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8619 } 8620 break; 8621 8622 case InlineAsm::isInput: { 8623 SDValue InOperandVal = OpInfo.CallOperand; 8624 8625 if (OpInfo.isMatchingInputConstraint()) { 8626 // If this is required to match an output register we have already set, 8627 // just use its register. 8628 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8629 AsmNodeOperands); 8630 unsigned OpFlag = 8631 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8632 if (InlineAsm::isRegDefKind(OpFlag) || 8633 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8634 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8635 if (OpInfo.isIndirect) { 8636 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8637 emitInlineAsmError(Call, "inline asm not supported yet: " 8638 "don't know how to handle tied " 8639 "indirect register inputs"); 8640 return; 8641 } 8642 8643 SmallVector<unsigned, 4> Regs; 8644 MachineFunction &MF = DAG.getMachineFunction(); 8645 MachineRegisterInfo &MRI = MF.getRegInfo(); 8646 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8647 RegisterSDNode *R = dyn_cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 8648 Register TiedReg = R->getReg(); 8649 MVT RegVT = R->getSimpleValueType(0); 8650 const TargetRegisterClass *RC = TiedReg.isVirtual() ? 8651 MRI.getRegClass(TiedReg) : TRI.getMinimalPhysRegClass(TiedReg); 8652 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8653 for (unsigned i = 0; i != NumRegs; ++i) 8654 Regs.push_back(MRI.createVirtualRegister(RC)); 8655 8656 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8657 8658 SDLoc dl = getCurSDLoc(); 8659 // Use the produced MatchedRegs object to 8660 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8661 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8662 true, OpInfo.getMatchedOperand(), dl, 8663 DAG, AsmNodeOperands); 8664 break; 8665 } 8666 8667 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8668 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8669 "Unexpected number of operands"); 8670 // Add information to the INLINEASM node to know about this input. 8671 // See InlineAsm.h isUseOperandTiedToDef. 8672 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8673 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8674 OpInfo.getMatchedOperand()); 8675 AsmNodeOperands.push_back(DAG.getTargetConstant( 8676 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8677 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8678 break; 8679 } 8680 8681 // Treat indirect 'X' constraint as memory. 8682 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8683 OpInfo.isIndirect) 8684 OpInfo.ConstraintType = TargetLowering::C_Memory; 8685 8686 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8687 OpInfo.ConstraintType == TargetLowering::C_Other) { 8688 std::vector<SDValue> Ops; 8689 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8690 Ops, DAG); 8691 if (Ops.empty()) { 8692 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8693 if (isa<ConstantSDNode>(InOperandVal)) { 8694 emitInlineAsmError(Call, "value out of range for constraint '" + 8695 Twine(OpInfo.ConstraintCode) + "'"); 8696 return; 8697 } 8698 8699 emitInlineAsmError(Call, 8700 "invalid operand for inline asm constraint '" + 8701 Twine(OpInfo.ConstraintCode) + "'"); 8702 return; 8703 } 8704 8705 // Add information to the INLINEASM node to know about this input. 8706 unsigned ResOpType = 8707 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8708 AsmNodeOperands.push_back(DAG.getTargetConstant( 8709 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8710 llvm::append_range(AsmNodeOperands, Ops); 8711 break; 8712 } 8713 8714 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8715 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8716 assert(InOperandVal.getValueType() == 8717 TLI.getPointerTy(DAG.getDataLayout()) && 8718 "Memory operands expect pointer values"); 8719 8720 unsigned ConstraintID = 8721 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8722 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8723 "Failed to convert memory constraint code to constraint id."); 8724 8725 // Add information to the INLINEASM node to know about this input. 8726 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8727 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8728 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8729 getCurSDLoc(), 8730 MVT::i32)); 8731 AsmNodeOperands.push_back(InOperandVal); 8732 break; 8733 } 8734 8735 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8736 OpInfo.ConstraintType == TargetLowering::C_Register) && 8737 "Unknown constraint type!"); 8738 8739 // TODO: Support this. 8740 if (OpInfo.isIndirect) { 8741 emitInlineAsmError( 8742 Call, "Don't know how to handle indirect register inputs yet " 8743 "for constraint '" + 8744 Twine(OpInfo.ConstraintCode) + "'"); 8745 return; 8746 } 8747 8748 // Copy the input into the appropriate registers. 8749 if (OpInfo.AssignedRegs.Regs.empty()) { 8750 emitInlineAsmError(Call, 8751 "couldn't allocate input reg for constraint '" + 8752 Twine(OpInfo.ConstraintCode) + "'"); 8753 return; 8754 } 8755 8756 if (DetectWriteToReservedRegister()) 8757 return; 8758 8759 SDLoc dl = getCurSDLoc(); 8760 8761 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8762 &Call); 8763 8764 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8765 dl, DAG, AsmNodeOperands); 8766 break; 8767 } 8768 case InlineAsm::isClobber: 8769 // Add the clobbered value to the operand list, so that the register 8770 // allocator is aware that the physreg got clobbered. 8771 if (!OpInfo.AssignedRegs.Regs.empty()) 8772 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8773 false, 0, getCurSDLoc(), DAG, 8774 AsmNodeOperands); 8775 break; 8776 } 8777 } 8778 8779 // Finish up input operands. Set the input chain and add the flag last. 8780 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8781 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8782 8783 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8784 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8785 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8786 Flag = Chain.getValue(1); 8787 8788 // Do additional work to generate outputs. 8789 8790 SmallVector<EVT, 1> ResultVTs; 8791 SmallVector<SDValue, 1> ResultValues; 8792 SmallVector<SDValue, 8> OutChains; 8793 8794 llvm::Type *CallResultType = Call.getType(); 8795 ArrayRef<Type *> ResultTypes; 8796 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8797 ResultTypes = StructResult->elements(); 8798 else if (!CallResultType->isVoidTy()) 8799 ResultTypes = makeArrayRef(CallResultType); 8800 8801 auto CurResultType = ResultTypes.begin(); 8802 auto handleRegAssign = [&](SDValue V) { 8803 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8804 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8805 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8806 ++CurResultType; 8807 // If the type of the inline asm call site return value is different but has 8808 // same size as the type of the asm output bitcast it. One example of this 8809 // is for vectors with different width / number of elements. This can 8810 // happen for register classes that can contain multiple different value 8811 // types. The preg or vreg allocated may not have the same VT as was 8812 // expected. 8813 // 8814 // This can also happen for a return value that disagrees with the register 8815 // class it is put in, eg. a double in a general-purpose register on a 8816 // 32-bit machine. 8817 if (ResultVT != V.getValueType() && 8818 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8819 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8820 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8821 V.getValueType().isInteger()) { 8822 // If a result value was tied to an input value, the computed result 8823 // may have a wider width than the expected result. Extract the 8824 // relevant portion. 8825 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8826 } 8827 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8828 ResultVTs.push_back(ResultVT); 8829 ResultValues.push_back(V); 8830 }; 8831 8832 // Deal with output operands. 8833 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8834 if (OpInfo.Type == InlineAsm::isOutput) { 8835 SDValue Val; 8836 // Skip trivial output operands. 8837 if (OpInfo.AssignedRegs.Regs.empty()) 8838 continue; 8839 8840 switch (OpInfo.ConstraintType) { 8841 case TargetLowering::C_Register: 8842 case TargetLowering::C_RegisterClass: 8843 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8844 Chain, &Flag, &Call); 8845 break; 8846 case TargetLowering::C_Immediate: 8847 case TargetLowering::C_Other: 8848 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8849 OpInfo, DAG); 8850 break; 8851 case TargetLowering::C_Memory: 8852 break; // Already handled. 8853 case TargetLowering::C_Unknown: 8854 assert(false && "Unexpected unknown constraint"); 8855 } 8856 8857 // Indirect output manifest as stores. Record output chains. 8858 if (OpInfo.isIndirect) { 8859 const Value *Ptr = OpInfo.CallOperandVal; 8860 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8861 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8862 MachinePointerInfo(Ptr)); 8863 OutChains.push_back(Store); 8864 } else { 8865 // generate CopyFromRegs to associated registers. 8866 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8867 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8868 for (const SDValue &V : Val->op_values()) 8869 handleRegAssign(V); 8870 } else 8871 handleRegAssign(Val); 8872 } 8873 } 8874 } 8875 8876 // Set results. 8877 if (!ResultValues.empty()) { 8878 assert(CurResultType == ResultTypes.end() && 8879 "Mismatch in number of ResultTypes"); 8880 assert(ResultValues.size() == ResultTypes.size() && 8881 "Mismatch in number of output operands in asm result"); 8882 8883 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8884 DAG.getVTList(ResultVTs), ResultValues); 8885 setValue(&Call, V); 8886 } 8887 8888 // Collect store chains. 8889 if (!OutChains.empty()) 8890 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8891 8892 if (EmitEHLabels) { 8893 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 8894 } 8895 8896 // Only Update Root if inline assembly has a memory effect. 8897 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 8898 EmitEHLabels) 8899 DAG.setRoot(Chain); 8900 } 8901 8902 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8903 const Twine &Message) { 8904 LLVMContext &Ctx = *DAG.getContext(); 8905 Ctx.emitError(&Call, Message); 8906 8907 // Make sure we leave the DAG in a valid state 8908 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8909 SmallVector<EVT, 1> ValueVTs; 8910 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8911 8912 if (ValueVTs.empty()) 8913 return; 8914 8915 SmallVector<SDValue, 1> Ops; 8916 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8917 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8918 8919 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8920 } 8921 8922 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8923 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8924 MVT::Other, getRoot(), 8925 getValue(I.getArgOperand(0)), 8926 DAG.getSrcValue(I.getArgOperand(0)))); 8927 } 8928 8929 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8930 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8931 const DataLayout &DL = DAG.getDataLayout(); 8932 SDValue V = DAG.getVAArg( 8933 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8934 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8935 DL.getABITypeAlign(I.getType()).value()); 8936 DAG.setRoot(V.getValue(1)); 8937 8938 if (I.getType()->isPointerTy()) 8939 V = DAG.getPtrExtOrTrunc( 8940 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8941 setValue(&I, V); 8942 } 8943 8944 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8945 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8946 MVT::Other, getRoot(), 8947 getValue(I.getArgOperand(0)), 8948 DAG.getSrcValue(I.getArgOperand(0)))); 8949 } 8950 8951 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8952 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8953 MVT::Other, getRoot(), 8954 getValue(I.getArgOperand(0)), 8955 getValue(I.getArgOperand(1)), 8956 DAG.getSrcValue(I.getArgOperand(0)), 8957 DAG.getSrcValue(I.getArgOperand(1)))); 8958 } 8959 8960 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8961 const Instruction &I, 8962 SDValue Op) { 8963 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8964 if (!Range) 8965 return Op; 8966 8967 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8968 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8969 return Op; 8970 8971 APInt Lo = CR.getUnsignedMin(); 8972 if (!Lo.isMinValue()) 8973 return Op; 8974 8975 APInt Hi = CR.getUnsignedMax(); 8976 unsigned Bits = std::max(Hi.getActiveBits(), 8977 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8978 8979 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8980 8981 SDLoc SL = getCurSDLoc(); 8982 8983 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8984 DAG.getValueType(SmallVT)); 8985 unsigned NumVals = Op.getNode()->getNumValues(); 8986 if (NumVals == 1) 8987 return ZExt; 8988 8989 SmallVector<SDValue, 4> Ops; 8990 8991 Ops.push_back(ZExt); 8992 for (unsigned I = 1; I != NumVals; ++I) 8993 Ops.push_back(Op.getValue(I)); 8994 8995 return DAG.getMergeValues(Ops, SL); 8996 } 8997 8998 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8999 /// the call being lowered. 9000 /// 9001 /// This is a helper for lowering intrinsics that follow a target calling 9002 /// convention or require stack pointer adjustment. Only a subset of the 9003 /// intrinsic's operands need to participate in the calling convention. 9004 void SelectionDAGBuilder::populateCallLoweringInfo( 9005 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9006 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9007 bool IsPatchPoint) { 9008 TargetLowering::ArgListTy Args; 9009 Args.reserve(NumArgs); 9010 9011 // Populate the argument list. 9012 // Attributes for args start at offset 1, after the return attribute. 9013 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9014 ArgI != ArgE; ++ArgI) { 9015 const Value *V = Call->getOperand(ArgI); 9016 9017 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9018 9019 TargetLowering::ArgListEntry Entry; 9020 Entry.Node = getValue(V); 9021 Entry.Ty = V->getType(); 9022 Entry.setAttributes(Call, ArgI); 9023 Args.push_back(Entry); 9024 } 9025 9026 CLI.setDebugLoc(getCurSDLoc()) 9027 .setChain(getRoot()) 9028 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 9029 .setDiscardResult(Call->use_empty()) 9030 .setIsPatchPoint(IsPatchPoint) 9031 .setIsPreallocated( 9032 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9033 } 9034 9035 /// Add a stack map intrinsic call's live variable operands to a stackmap 9036 /// or patchpoint target node's operand list. 9037 /// 9038 /// Constants are converted to TargetConstants purely as an optimization to 9039 /// avoid constant materialization and register allocation. 9040 /// 9041 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9042 /// generate addess computation nodes, and so FinalizeISel can convert the 9043 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9044 /// address materialization and register allocation, but may also be required 9045 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9046 /// alloca in the entry block, then the runtime may assume that the alloca's 9047 /// StackMap location can be read immediately after compilation and that the 9048 /// location is valid at any point during execution (this is similar to the 9049 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9050 /// only available in a register, then the runtime would need to trap when 9051 /// execution reaches the StackMap in order to read the alloca's location. 9052 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9053 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9054 SelectionDAGBuilder &Builder) { 9055 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 9056 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 9057 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 9058 Ops.push_back( 9059 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 9060 Ops.push_back( 9061 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 9062 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 9063 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 9064 Ops.push_back(Builder.DAG.getTargetFrameIndex( 9065 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 9066 } else 9067 Ops.push_back(OpVal); 9068 } 9069 } 9070 9071 /// Lower llvm.experimental.stackmap directly to its target opcode. 9072 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9073 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 9074 // [live variables...]) 9075 9076 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9077 9078 SDValue Chain, InFlag, Callee, NullPtr; 9079 SmallVector<SDValue, 32> Ops; 9080 9081 SDLoc DL = getCurSDLoc(); 9082 Callee = getValue(CI.getCalledOperand()); 9083 NullPtr = DAG.getIntPtrConstant(0, DL, true); 9084 9085 // The stackmap intrinsic only records the live variables (the arguments 9086 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9087 // intrinsic, this won't be lowered to a function call. This means we don't 9088 // have to worry about calling conventions and target specific lowering code. 9089 // Instead we perform the call lowering right here. 9090 // 9091 // chain, flag = CALLSEQ_START(chain, 0, 0) 9092 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9093 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9094 // 9095 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9096 InFlag = Chain.getValue(1); 9097 9098 // Add the <id> and <numBytes> constants. 9099 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9100 Ops.push_back(DAG.getTargetConstant( 9101 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9102 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9103 Ops.push_back(DAG.getTargetConstant( 9104 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9105 MVT::i32)); 9106 9107 // Push live variables for the stack map. 9108 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9109 9110 // We are not pushing any register mask info here on the operands list, 9111 // because the stackmap doesn't clobber anything. 9112 9113 // Push the chain and the glue flag. 9114 Ops.push_back(Chain); 9115 Ops.push_back(InFlag); 9116 9117 // Create the STACKMAP node. 9118 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9119 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9120 Chain = SDValue(SM, 0); 9121 InFlag = Chain.getValue(1); 9122 9123 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9124 9125 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9126 9127 // Set the root to the target-lowered call chain. 9128 DAG.setRoot(Chain); 9129 9130 // Inform the Frame Information that we have a stackmap in this function. 9131 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9132 } 9133 9134 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9135 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9136 const BasicBlock *EHPadBB) { 9137 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9138 // i32 <numBytes>, 9139 // i8* <target>, 9140 // i32 <numArgs>, 9141 // [Args...], 9142 // [live variables...]) 9143 9144 CallingConv::ID CC = CB.getCallingConv(); 9145 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9146 bool HasDef = !CB.getType()->isVoidTy(); 9147 SDLoc dl = getCurSDLoc(); 9148 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9149 9150 // Handle immediate and symbolic callees. 9151 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9152 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9153 /*isTarget=*/true); 9154 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9155 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9156 SDLoc(SymbolicCallee), 9157 SymbolicCallee->getValueType(0)); 9158 9159 // Get the real number of arguments participating in the call <numArgs> 9160 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9161 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9162 9163 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9164 // Intrinsics include all meta-operands up to but not including CC. 9165 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9166 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9167 "Not enough arguments provided to the patchpoint intrinsic"); 9168 9169 // For AnyRegCC the arguments are lowered later on manually. 9170 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9171 Type *ReturnTy = 9172 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9173 9174 TargetLowering::CallLoweringInfo CLI(DAG); 9175 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9176 ReturnTy, true); 9177 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9178 9179 SDNode *CallEnd = Result.second.getNode(); 9180 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9181 CallEnd = CallEnd->getOperand(0).getNode(); 9182 9183 /// Get a call instruction from the call sequence chain. 9184 /// Tail calls are not allowed. 9185 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9186 "Expected a callseq node."); 9187 SDNode *Call = CallEnd->getOperand(0).getNode(); 9188 bool HasGlue = Call->getGluedNode(); 9189 9190 // Replace the target specific call node with the patchable intrinsic. 9191 SmallVector<SDValue, 8> Ops; 9192 9193 // Add the <id> and <numBytes> constants. 9194 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9195 Ops.push_back(DAG.getTargetConstant( 9196 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9197 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9198 Ops.push_back(DAG.getTargetConstant( 9199 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9200 MVT::i32)); 9201 9202 // Add the callee. 9203 Ops.push_back(Callee); 9204 9205 // Adjust <numArgs> to account for any arguments that have been passed on the 9206 // stack instead. 9207 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9208 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9209 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9210 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9211 9212 // Add the calling convention 9213 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9214 9215 // Add the arguments we omitted previously. The register allocator should 9216 // place these in any free register. 9217 if (IsAnyRegCC) 9218 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9219 Ops.push_back(getValue(CB.getArgOperand(i))); 9220 9221 // Push the arguments from the call instruction up to the register mask. 9222 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9223 Ops.append(Call->op_begin() + 2, e); 9224 9225 // Push live variables for the stack map. 9226 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9227 9228 // Push the register mask info. 9229 if (HasGlue) 9230 Ops.push_back(*(Call->op_end()-2)); 9231 else 9232 Ops.push_back(*(Call->op_end()-1)); 9233 9234 // Push the chain (this is originally the first operand of the call, but 9235 // becomes now the last or second to last operand). 9236 Ops.push_back(*(Call->op_begin())); 9237 9238 // Push the glue flag (last operand). 9239 if (HasGlue) 9240 Ops.push_back(*(Call->op_end()-1)); 9241 9242 SDVTList NodeTys; 9243 if (IsAnyRegCC && HasDef) { 9244 // Create the return types based on the intrinsic definition 9245 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9246 SmallVector<EVT, 3> ValueVTs; 9247 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9248 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9249 9250 // There is always a chain and a glue type at the end 9251 ValueVTs.push_back(MVT::Other); 9252 ValueVTs.push_back(MVT::Glue); 9253 NodeTys = DAG.getVTList(ValueVTs); 9254 } else 9255 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9256 9257 // Replace the target specific call node with a PATCHPOINT node. 9258 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9259 dl, NodeTys, Ops); 9260 9261 // Update the NodeMap. 9262 if (HasDef) { 9263 if (IsAnyRegCC) 9264 setValue(&CB, SDValue(MN, 0)); 9265 else 9266 setValue(&CB, Result.first); 9267 } 9268 9269 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9270 // call sequence. Furthermore the location of the chain and glue can change 9271 // when the AnyReg calling convention is used and the intrinsic returns a 9272 // value. 9273 if (IsAnyRegCC && HasDef) { 9274 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9275 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9276 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9277 } else 9278 DAG.ReplaceAllUsesWith(Call, MN); 9279 DAG.DeleteNode(Call); 9280 9281 // Inform the Frame Information that we have a patchpoint in this function. 9282 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9283 } 9284 9285 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9286 unsigned Intrinsic) { 9287 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9288 SDValue Op1 = getValue(I.getArgOperand(0)); 9289 SDValue Op2; 9290 if (I.getNumArgOperands() > 1) 9291 Op2 = getValue(I.getArgOperand(1)); 9292 SDLoc dl = getCurSDLoc(); 9293 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9294 SDValue Res; 9295 SDNodeFlags SDFlags; 9296 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9297 SDFlags.copyFMF(*FPMO); 9298 9299 switch (Intrinsic) { 9300 case Intrinsic::vector_reduce_fadd: 9301 if (SDFlags.hasAllowReassociation()) 9302 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9303 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9304 SDFlags); 9305 else 9306 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9307 break; 9308 case Intrinsic::vector_reduce_fmul: 9309 if (SDFlags.hasAllowReassociation()) 9310 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9311 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9312 SDFlags); 9313 else 9314 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9315 break; 9316 case Intrinsic::vector_reduce_add: 9317 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9318 break; 9319 case Intrinsic::vector_reduce_mul: 9320 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9321 break; 9322 case Intrinsic::vector_reduce_and: 9323 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9324 break; 9325 case Intrinsic::vector_reduce_or: 9326 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9327 break; 9328 case Intrinsic::vector_reduce_xor: 9329 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9330 break; 9331 case Intrinsic::vector_reduce_smax: 9332 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9333 break; 9334 case Intrinsic::vector_reduce_smin: 9335 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9336 break; 9337 case Intrinsic::vector_reduce_umax: 9338 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9339 break; 9340 case Intrinsic::vector_reduce_umin: 9341 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9342 break; 9343 case Intrinsic::vector_reduce_fmax: 9344 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9345 break; 9346 case Intrinsic::vector_reduce_fmin: 9347 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9348 break; 9349 default: 9350 llvm_unreachable("Unhandled vector reduce intrinsic"); 9351 } 9352 setValue(&I, Res); 9353 } 9354 9355 /// Returns an AttributeList representing the attributes applied to the return 9356 /// value of the given call. 9357 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9358 SmallVector<Attribute::AttrKind, 2> Attrs; 9359 if (CLI.RetSExt) 9360 Attrs.push_back(Attribute::SExt); 9361 if (CLI.RetZExt) 9362 Attrs.push_back(Attribute::ZExt); 9363 if (CLI.IsInReg) 9364 Attrs.push_back(Attribute::InReg); 9365 9366 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9367 Attrs); 9368 } 9369 9370 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9371 /// implementation, which just calls LowerCall. 9372 /// FIXME: When all targets are 9373 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9374 std::pair<SDValue, SDValue> 9375 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9376 // Handle the incoming return values from the call. 9377 CLI.Ins.clear(); 9378 Type *OrigRetTy = CLI.RetTy; 9379 SmallVector<EVT, 4> RetTys; 9380 SmallVector<uint64_t, 4> Offsets; 9381 auto &DL = CLI.DAG.getDataLayout(); 9382 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9383 9384 if (CLI.IsPostTypeLegalization) { 9385 // If we are lowering a libcall after legalization, split the return type. 9386 SmallVector<EVT, 4> OldRetTys; 9387 SmallVector<uint64_t, 4> OldOffsets; 9388 RetTys.swap(OldRetTys); 9389 Offsets.swap(OldOffsets); 9390 9391 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9392 EVT RetVT = OldRetTys[i]; 9393 uint64_t Offset = OldOffsets[i]; 9394 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9395 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9396 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9397 RetTys.append(NumRegs, RegisterVT); 9398 for (unsigned j = 0; j != NumRegs; ++j) 9399 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9400 } 9401 } 9402 9403 SmallVector<ISD::OutputArg, 4> Outs; 9404 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9405 9406 bool CanLowerReturn = 9407 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9408 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9409 9410 SDValue DemoteStackSlot; 9411 int DemoteStackIdx = -100; 9412 if (!CanLowerReturn) { 9413 // FIXME: equivalent assert? 9414 // assert(!CS.hasInAllocaArgument() && 9415 // "sret demotion is incompatible with inalloca"); 9416 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9417 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9418 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9419 DemoteStackIdx = 9420 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9421 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9422 DL.getAllocaAddrSpace()); 9423 9424 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9425 ArgListEntry Entry; 9426 Entry.Node = DemoteStackSlot; 9427 Entry.Ty = StackSlotPtrType; 9428 Entry.IsSExt = false; 9429 Entry.IsZExt = false; 9430 Entry.IsInReg = false; 9431 Entry.IsSRet = true; 9432 Entry.IsNest = false; 9433 Entry.IsByVal = false; 9434 Entry.IsByRef = false; 9435 Entry.IsReturned = false; 9436 Entry.IsSwiftSelf = false; 9437 Entry.IsSwiftAsync = false; 9438 Entry.IsSwiftError = false; 9439 Entry.IsCFGuardTarget = false; 9440 Entry.Alignment = Alignment; 9441 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9442 CLI.NumFixedArgs += 1; 9443 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9444 9445 // sret demotion isn't compatible with tail-calls, since the sret argument 9446 // points into the callers stack frame. 9447 CLI.IsTailCall = false; 9448 } else { 9449 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9450 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 9451 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9452 ISD::ArgFlagsTy Flags; 9453 if (NeedsRegBlock) { 9454 Flags.setInConsecutiveRegs(); 9455 if (I == RetTys.size() - 1) 9456 Flags.setInConsecutiveRegsLast(); 9457 } 9458 EVT VT = RetTys[I]; 9459 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9460 CLI.CallConv, VT); 9461 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9462 CLI.CallConv, VT); 9463 for (unsigned i = 0; i != NumRegs; ++i) { 9464 ISD::InputArg MyFlags; 9465 MyFlags.Flags = Flags; 9466 MyFlags.VT = RegisterVT; 9467 MyFlags.ArgVT = VT; 9468 MyFlags.Used = CLI.IsReturnValueUsed; 9469 if (CLI.RetTy->isPointerTy()) { 9470 MyFlags.Flags.setPointer(); 9471 MyFlags.Flags.setPointerAddrSpace( 9472 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9473 } 9474 if (CLI.RetSExt) 9475 MyFlags.Flags.setSExt(); 9476 if (CLI.RetZExt) 9477 MyFlags.Flags.setZExt(); 9478 if (CLI.IsInReg) 9479 MyFlags.Flags.setInReg(); 9480 CLI.Ins.push_back(MyFlags); 9481 } 9482 } 9483 } 9484 9485 // We push in swifterror return as the last element of CLI.Ins. 9486 ArgListTy &Args = CLI.getArgs(); 9487 if (supportSwiftError()) { 9488 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9489 if (Args[i].IsSwiftError) { 9490 ISD::InputArg MyFlags; 9491 MyFlags.VT = getPointerTy(DL); 9492 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9493 MyFlags.Flags.setSwiftError(); 9494 CLI.Ins.push_back(MyFlags); 9495 } 9496 } 9497 } 9498 9499 // Handle all of the outgoing arguments. 9500 CLI.Outs.clear(); 9501 CLI.OutVals.clear(); 9502 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9503 SmallVector<EVT, 4> ValueVTs; 9504 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9505 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9506 Type *FinalType = Args[i].Ty; 9507 if (Args[i].IsByVal) 9508 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9509 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9510 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 9511 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9512 ++Value) { 9513 EVT VT = ValueVTs[Value]; 9514 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9515 SDValue Op = SDValue(Args[i].Node.getNode(), 9516 Args[i].Node.getResNo() + Value); 9517 ISD::ArgFlagsTy Flags; 9518 9519 // Certain targets (such as MIPS), may have a different ABI alignment 9520 // for a type depending on the context. Give the target a chance to 9521 // specify the alignment it wants. 9522 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9523 Flags.setOrigAlign(OriginalAlignment); 9524 9525 if (Args[i].Ty->isPointerTy()) { 9526 Flags.setPointer(); 9527 Flags.setPointerAddrSpace( 9528 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9529 } 9530 if (Args[i].IsZExt) 9531 Flags.setZExt(); 9532 if (Args[i].IsSExt) 9533 Flags.setSExt(); 9534 if (Args[i].IsInReg) { 9535 // If we are using vectorcall calling convention, a structure that is 9536 // passed InReg - is surely an HVA 9537 if (CLI.CallConv == CallingConv::X86_VectorCall && 9538 isa<StructType>(FinalType)) { 9539 // The first value of a structure is marked 9540 if (0 == Value) 9541 Flags.setHvaStart(); 9542 Flags.setHva(); 9543 } 9544 // Set InReg Flag 9545 Flags.setInReg(); 9546 } 9547 if (Args[i].IsSRet) 9548 Flags.setSRet(); 9549 if (Args[i].IsSwiftSelf) 9550 Flags.setSwiftSelf(); 9551 if (Args[i].IsSwiftAsync) 9552 Flags.setSwiftAsync(); 9553 if (Args[i].IsSwiftError) 9554 Flags.setSwiftError(); 9555 if (Args[i].IsCFGuardTarget) 9556 Flags.setCFGuardTarget(); 9557 if (Args[i].IsByVal) 9558 Flags.setByVal(); 9559 if (Args[i].IsByRef) 9560 Flags.setByRef(); 9561 if (Args[i].IsPreallocated) { 9562 Flags.setPreallocated(); 9563 // Set the byval flag for CCAssignFn callbacks that don't know about 9564 // preallocated. This way we can know how many bytes we should've 9565 // allocated and how many bytes a callee cleanup function will pop. If 9566 // we port preallocated to more targets, we'll have to add custom 9567 // preallocated handling in the various CC lowering callbacks. 9568 Flags.setByVal(); 9569 } 9570 if (Args[i].IsInAlloca) { 9571 Flags.setInAlloca(); 9572 // Set the byval flag for CCAssignFn callbacks that don't know about 9573 // inalloca. This way we can know how many bytes we should've allocated 9574 // and how many bytes a callee cleanup function will pop. If we port 9575 // inalloca to more targets, we'll have to add custom inalloca handling 9576 // in the various CC lowering callbacks. 9577 Flags.setByVal(); 9578 } 9579 Align MemAlign; 9580 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9581 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9582 Type *ElementTy = Ty->getElementType(); 9583 9584 unsigned FrameSize = DL.getTypeAllocSize( 9585 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9586 Flags.setByValSize(FrameSize); 9587 9588 // info is not there but there are cases it cannot get right. 9589 if (auto MA = Args[i].Alignment) 9590 MemAlign = *MA; 9591 else 9592 MemAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9593 } else if (auto MA = Args[i].Alignment) { 9594 MemAlign = *MA; 9595 } else { 9596 MemAlign = OriginalAlignment; 9597 } 9598 Flags.setMemAlign(MemAlign); 9599 if (Args[i].IsNest) 9600 Flags.setNest(); 9601 if (NeedsRegBlock) 9602 Flags.setInConsecutiveRegs(); 9603 9604 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9605 CLI.CallConv, VT); 9606 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9607 CLI.CallConv, VT); 9608 SmallVector<SDValue, 4> Parts(NumParts); 9609 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9610 9611 if (Args[i].IsSExt) 9612 ExtendKind = ISD::SIGN_EXTEND; 9613 else if (Args[i].IsZExt) 9614 ExtendKind = ISD::ZERO_EXTEND; 9615 9616 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9617 // for now. 9618 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9619 CanLowerReturn) { 9620 assert((CLI.RetTy == Args[i].Ty || 9621 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9622 CLI.RetTy->getPointerAddressSpace() == 9623 Args[i].Ty->getPointerAddressSpace())) && 9624 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9625 // Before passing 'returned' to the target lowering code, ensure that 9626 // either the register MVT and the actual EVT are the same size or that 9627 // the return value and argument are extended in the same way; in these 9628 // cases it's safe to pass the argument register value unchanged as the 9629 // return register value (although it's at the target's option whether 9630 // to do so) 9631 // TODO: allow code generation to take advantage of partially preserved 9632 // registers rather than clobbering the entire register when the 9633 // parameter extension method is not compatible with the return 9634 // extension method 9635 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9636 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9637 CLI.RetZExt == Args[i].IsZExt)) 9638 Flags.setReturned(); 9639 } 9640 9641 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9642 CLI.CallConv, ExtendKind); 9643 9644 for (unsigned j = 0; j != NumParts; ++j) { 9645 // if it isn't first piece, alignment must be 1 9646 // For scalable vectors the scalable part is currently handled 9647 // by individual targets, so we just use the known minimum size here. 9648 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9649 i < CLI.NumFixedArgs, i, 9650 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9651 if (NumParts > 1 && j == 0) 9652 MyFlags.Flags.setSplit(); 9653 else if (j != 0) { 9654 MyFlags.Flags.setOrigAlign(Align(1)); 9655 if (j == NumParts - 1) 9656 MyFlags.Flags.setSplitEnd(); 9657 } 9658 9659 CLI.Outs.push_back(MyFlags); 9660 CLI.OutVals.push_back(Parts[j]); 9661 } 9662 9663 if (NeedsRegBlock && Value == NumValues - 1) 9664 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9665 } 9666 } 9667 9668 SmallVector<SDValue, 4> InVals; 9669 CLI.Chain = LowerCall(CLI, InVals); 9670 9671 // Update CLI.InVals to use outside of this function. 9672 CLI.InVals = InVals; 9673 9674 // Verify that the target's LowerCall behaved as expected. 9675 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9676 "LowerCall didn't return a valid chain!"); 9677 assert((!CLI.IsTailCall || InVals.empty()) && 9678 "LowerCall emitted a return value for a tail call!"); 9679 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9680 "LowerCall didn't emit the correct number of values!"); 9681 9682 // For a tail call, the return value is merely live-out and there aren't 9683 // any nodes in the DAG representing it. Return a special value to 9684 // indicate that a tail call has been emitted and no more Instructions 9685 // should be processed in the current block. 9686 if (CLI.IsTailCall) { 9687 CLI.DAG.setRoot(CLI.Chain); 9688 return std::make_pair(SDValue(), SDValue()); 9689 } 9690 9691 #ifndef NDEBUG 9692 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9693 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9694 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9695 "LowerCall emitted a value with the wrong type!"); 9696 } 9697 #endif 9698 9699 SmallVector<SDValue, 4> ReturnValues; 9700 if (!CanLowerReturn) { 9701 // The instruction result is the result of loading from the 9702 // hidden sret parameter. 9703 SmallVector<EVT, 1> PVTs; 9704 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9705 9706 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9707 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9708 EVT PtrVT = PVTs[0]; 9709 9710 unsigned NumValues = RetTys.size(); 9711 ReturnValues.resize(NumValues); 9712 SmallVector<SDValue, 4> Chains(NumValues); 9713 9714 // An aggregate return value cannot wrap around the address space, so 9715 // offsets to its parts don't wrap either. 9716 SDNodeFlags Flags; 9717 Flags.setNoUnsignedWrap(true); 9718 9719 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9720 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9721 for (unsigned i = 0; i < NumValues; ++i) { 9722 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9723 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9724 PtrVT), Flags); 9725 SDValue L = CLI.DAG.getLoad( 9726 RetTys[i], CLI.DL, CLI.Chain, Add, 9727 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9728 DemoteStackIdx, Offsets[i]), 9729 HiddenSRetAlign); 9730 ReturnValues[i] = L; 9731 Chains[i] = L.getValue(1); 9732 } 9733 9734 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9735 } else { 9736 // Collect the legal value parts into potentially illegal values 9737 // that correspond to the original function's return values. 9738 Optional<ISD::NodeType> AssertOp; 9739 if (CLI.RetSExt) 9740 AssertOp = ISD::AssertSext; 9741 else if (CLI.RetZExt) 9742 AssertOp = ISD::AssertZext; 9743 unsigned CurReg = 0; 9744 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9745 EVT VT = RetTys[I]; 9746 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9747 CLI.CallConv, VT); 9748 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9749 CLI.CallConv, VT); 9750 9751 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9752 NumRegs, RegisterVT, VT, nullptr, 9753 CLI.CallConv, AssertOp)); 9754 CurReg += NumRegs; 9755 } 9756 9757 // For a function returning void, there is no return value. We can't create 9758 // such a node, so we just return a null return value in that case. In 9759 // that case, nothing will actually look at the value. 9760 if (ReturnValues.empty()) 9761 return std::make_pair(SDValue(), CLI.Chain); 9762 } 9763 9764 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9765 CLI.DAG.getVTList(RetTys), ReturnValues); 9766 return std::make_pair(Res, CLI.Chain); 9767 } 9768 9769 /// Places new result values for the node in Results (their number 9770 /// and types must exactly match those of the original return values of 9771 /// the node), or leaves Results empty, which indicates that the node is not 9772 /// to be custom lowered after all. 9773 void TargetLowering::LowerOperationWrapper(SDNode *N, 9774 SmallVectorImpl<SDValue> &Results, 9775 SelectionDAG &DAG) const { 9776 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9777 9778 if (!Res.getNode()) 9779 return; 9780 9781 // If the original node has one result, take the return value from 9782 // LowerOperation as is. It might not be result number 0. 9783 if (N->getNumValues() == 1) { 9784 Results.push_back(Res); 9785 return; 9786 } 9787 9788 // If the original node has multiple results, then the return node should 9789 // have the same number of results. 9790 assert((N->getNumValues() == Res->getNumValues()) && 9791 "Lowering returned the wrong number of results!"); 9792 9793 // Places new result values base on N result number. 9794 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9795 Results.push_back(Res.getValue(I)); 9796 } 9797 9798 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9799 llvm_unreachable("LowerOperation not implemented for this target!"); 9800 } 9801 9802 void 9803 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9804 SDValue Op = getNonRegisterValue(V); 9805 assert((Op.getOpcode() != ISD::CopyFromReg || 9806 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9807 "Copy from a reg to the same reg!"); 9808 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9809 9810 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9811 // If this is an InlineAsm we have to match the registers required, not the 9812 // notional registers required by the type. 9813 9814 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9815 None); // This is not an ABI copy. 9816 SDValue Chain = DAG.getEntryNode(); 9817 9818 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9819 FuncInfo.PreferredExtendType.end()) 9820 ? ISD::ANY_EXTEND 9821 : FuncInfo.PreferredExtendType[V]; 9822 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9823 PendingExports.push_back(Chain); 9824 } 9825 9826 #include "llvm/CodeGen/SelectionDAGISel.h" 9827 9828 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9829 /// entry block, return true. This includes arguments used by switches, since 9830 /// the switch may expand into multiple basic blocks. 9831 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9832 // With FastISel active, we may be splitting blocks, so force creation 9833 // of virtual registers for all non-dead arguments. 9834 if (FastISel) 9835 return A->use_empty(); 9836 9837 const BasicBlock &Entry = A->getParent()->front(); 9838 for (const User *U : A->users()) 9839 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9840 return false; // Use not in entry block. 9841 9842 return true; 9843 } 9844 9845 using ArgCopyElisionMapTy = 9846 DenseMap<const Argument *, 9847 std::pair<const AllocaInst *, const StoreInst *>>; 9848 9849 /// Scan the entry block of the function in FuncInfo for arguments that look 9850 /// like copies into a local alloca. Record any copied arguments in 9851 /// ArgCopyElisionCandidates. 9852 static void 9853 findArgumentCopyElisionCandidates(const DataLayout &DL, 9854 FunctionLoweringInfo *FuncInfo, 9855 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9856 // Record the state of every static alloca used in the entry block. Argument 9857 // allocas are all used in the entry block, so we need approximately as many 9858 // entries as we have arguments. 9859 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9860 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9861 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9862 StaticAllocas.reserve(NumArgs * 2); 9863 9864 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9865 if (!V) 9866 return nullptr; 9867 V = V->stripPointerCasts(); 9868 const auto *AI = dyn_cast<AllocaInst>(V); 9869 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9870 return nullptr; 9871 auto Iter = StaticAllocas.insert({AI, Unknown}); 9872 return &Iter.first->second; 9873 }; 9874 9875 // Look for stores of arguments to static allocas. Look through bitcasts and 9876 // GEPs to handle type coercions, as long as the alloca is fully initialized 9877 // by the store. Any non-store use of an alloca escapes it and any subsequent 9878 // unanalyzed store might write it. 9879 // FIXME: Handle structs initialized with multiple stores. 9880 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9881 // Look for stores, and handle non-store uses conservatively. 9882 const auto *SI = dyn_cast<StoreInst>(&I); 9883 if (!SI) { 9884 // We will look through cast uses, so ignore them completely. 9885 if (I.isCast()) 9886 continue; 9887 // Ignore debug info and pseudo op intrinsics, they don't escape or store 9888 // to allocas. 9889 if (I.isDebugOrPseudoInst()) 9890 continue; 9891 // This is an unknown instruction. Assume it escapes or writes to all 9892 // static alloca operands. 9893 for (const Use &U : I.operands()) { 9894 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9895 *Info = StaticAllocaInfo::Clobbered; 9896 } 9897 continue; 9898 } 9899 9900 // If the stored value is a static alloca, mark it as escaped. 9901 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9902 *Info = StaticAllocaInfo::Clobbered; 9903 9904 // Check if the destination is a static alloca. 9905 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9906 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9907 if (!Info) 9908 continue; 9909 const AllocaInst *AI = cast<AllocaInst>(Dst); 9910 9911 // Skip allocas that have been initialized or clobbered. 9912 if (*Info != StaticAllocaInfo::Unknown) 9913 continue; 9914 9915 // Check if the stored value is an argument, and that this store fully 9916 // initializes the alloca. 9917 // If the argument type has padding bits we can't directly forward a pointer 9918 // as the upper bits may contain garbage. 9919 // Don't elide copies from the same argument twice. 9920 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9921 const auto *Arg = dyn_cast<Argument>(Val); 9922 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9923 Arg->getType()->isEmptyTy() || 9924 DL.getTypeStoreSize(Arg->getType()) != 9925 DL.getTypeAllocSize(AI->getAllocatedType()) || 9926 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 9927 ArgCopyElisionCandidates.count(Arg)) { 9928 *Info = StaticAllocaInfo::Clobbered; 9929 continue; 9930 } 9931 9932 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9933 << '\n'); 9934 9935 // Mark this alloca and store for argument copy elision. 9936 *Info = StaticAllocaInfo::Elidable; 9937 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9938 9939 // Stop scanning if we've seen all arguments. This will happen early in -O0 9940 // builds, which is useful, because -O0 builds have large entry blocks and 9941 // many allocas. 9942 if (ArgCopyElisionCandidates.size() == NumArgs) 9943 break; 9944 } 9945 } 9946 9947 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9948 /// ArgVal is a load from a suitable fixed stack object. 9949 static void tryToElideArgumentCopy( 9950 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9951 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9952 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9953 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9954 SDValue ArgVal, bool &ArgHasUses) { 9955 // Check if this is a load from a fixed stack object. 9956 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9957 if (!LNode) 9958 return; 9959 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9960 if (!FINode) 9961 return; 9962 9963 // Check that the fixed stack object is the right size and alignment. 9964 // Look at the alignment that the user wrote on the alloca instead of looking 9965 // at the stack object. 9966 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9967 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9968 const AllocaInst *AI = ArgCopyIter->second.first; 9969 int FixedIndex = FINode->getIndex(); 9970 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9971 int OldIndex = AllocaIndex; 9972 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9973 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9974 LLVM_DEBUG( 9975 dbgs() << " argument copy elision failed due to bad fixed stack " 9976 "object size\n"); 9977 return; 9978 } 9979 Align RequiredAlignment = AI->getAlign(); 9980 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9981 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9982 "greater than stack argument alignment (" 9983 << DebugStr(RequiredAlignment) << " vs " 9984 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9985 return; 9986 } 9987 9988 // Perform the elision. Delete the old stack object and replace its only use 9989 // in the variable info map. Mark the stack object as mutable. 9990 LLVM_DEBUG({ 9991 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9992 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9993 << '\n'; 9994 }); 9995 MFI.RemoveStackObject(OldIndex); 9996 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9997 AllocaIndex = FixedIndex; 9998 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9999 Chains.push_back(ArgVal.getValue(1)); 10000 10001 // Avoid emitting code for the store implementing the copy. 10002 const StoreInst *SI = ArgCopyIter->second.second; 10003 ElidedArgCopyInstrs.insert(SI); 10004 10005 // Check for uses of the argument again so that we can avoid exporting ArgVal 10006 // if it is't used by anything other than the store. 10007 for (const Value *U : Arg.users()) { 10008 if (U != SI) { 10009 ArgHasUses = true; 10010 break; 10011 } 10012 } 10013 } 10014 10015 void SelectionDAGISel::LowerArguments(const Function &F) { 10016 SelectionDAG &DAG = SDB->DAG; 10017 SDLoc dl = SDB->getCurSDLoc(); 10018 const DataLayout &DL = DAG.getDataLayout(); 10019 SmallVector<ISD::InputArg, 16> Ins; 10020 10021 // In Naked functions we aren't going to save any registers. 10022 if (F.hasFnAttribute(Attribute::Naked)) 10023 return; 10024 10025 if (!FuncInfo->CanLowerReturn) { 10026 // Put in an sret pointer parameter before all the other parameters. 10027 SmallVector<EVT, 1> ValueVTs; 10028 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10029 F.getReturnType()->getPointerTo( 10030 DAG.getDataLayout().getAllocaAddrSpace()), 10031 ValueVTs); 10032 10033 // NOTE: Assuming that a pointer will never break down to more than one VT 10034 // or one register. 10035 ISD::ArgFlagsTy Flags; 10036 Flags.setSRet(); 10037 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10038 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10039 ISD::InputArg::NoArgIndex, 0); 10040 Ins.push_back(RetArg); 10041 } 10042 10043 // Look for stores of arguments to static allocas. Mark such arguments with a 10044 // flag to ask the target to give us the memory location of that argument if 10045 // available. 10046 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10047 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10048 ArgCopyElisionCandidates); 10049 10050 // Set up the incoming argument description vector. 10051 for (const Argument &Arg : F.args()) { 10052 unsigned ArgNo = Arg.getArgNo(); 10053 SmallVector<EVT, 4> ValueVTs; 10054 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10055 bool isArgValueUsed = !Arg.use_empty(); 10056 unsigned PartBase = 0; 10057 Type *FinalType = Arg.getType(); 10058 if (Arg.hasAttribute(Attribute::ByVal)) 10059 FinalType = Arg.getParamByValType(); 10060 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10061 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10062 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10063 Value != NumValues; ++Value) { 10064 EVT VT = ValueVTs[Value]; 10065 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10066 ISD::ArgFlagsTy Flags; 10067 10068 10069 if (Arg.getType()->isPointerTy()) { 10070 Flags.setPointer(); 10071 Flags.setPointerAddrSpace( 10072 cast<PointerType>(Arg.getType())->getAddressSpace()); 10073 } 10074 if (Arg.hasAttribute(Attribute::ZExt)) 10075 Flags.setZExt(); 10076 if (Arg.hasAttribute(Attribute::SExt)) 10077 Flags.setSExt(); 10078 if (Arg.hasAttribute(Attribute::InReg)) { 10079 // If we are using vectorcall calling convention, a structure that is 10080 // passed InReg - is surely an HVA 10081 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10082 isa<StructType>(Arg.getType())) { 10083 // The first value of a structure is marked 10084 if (0 == Value) 10085 Flags.setHvaStart(); 10086 Flags.setHva(); 10087 } 10088 // Set InReg Flag 10089 Flags.setInReg(); 10090 } 10091 if (Arg.hasAttribute(Attribute::StructRet)) 10092 Flags.setSRet(); 10093 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10094 Flags.setSwiftSelf(); 10095 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10096 Flags.setSwiftAsync(); 10097 if (Arg.hasAttribute(Attribute::SwiftError)) 10098 Flags.setSwiftError(); 10099 if (Arg.hasAttribute(Attribute::ByVal)) 10100 Flags.setByVal(); 10101 if (Arg.hasAttribute(Attribute::ByRef)) 10102 Flags.setByRef(); 10103 if (Arg.hasAttribute(Attribute::InAlloca)) { 10104 Flags.setInAlloca(); 10105 // Set the byval flag for CCAssignFn callbacks that don't know about 10106 // inalloca. This way we can know how many bytes we should've allocated 10107 // and how many bytes a callee cleanup function will pop. If we port 10108 // inalloca to more targets, we'll have to add custom inalloca handling 10109 // in the various CC lowering callbacks. 10110 Flags.setByVal(); 10111 } 10112 if (Arg.hasAttribute(Attribute::Preallocated)) { 10113 Flags.setPreallocated(); 10114 // Set the byval flag for CCAssignFn callbacks that don't know about 10115 // preallocated. This way we can know how many bytes we should've 10116 // allocated and how many bytes a callee cleanup function will pop. If 10117 // we port preallocated to more targets, we'll have to add custom 10118 // preallocated handling in the various CC lowering callbacks. 10119 Flags.setByVal(); 10120 } 10121 10122 // Certain targets (such as MIPS), may have a different ABI alignment 10123 // for a type depending on the context. Give the target a chance to 10124 // specify the alignment it wants. 10125 const Align OriginalAlignment( 10126 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10127 Flags.setOrigAlign(OriginalAlignment); 10128 10129 Align MemAlign; 10130 Type *ArgMemTy = nullptr; 10131 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10132 Flags.isByRef()) { 10133 if (!ArgMemTy) 10134 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10135 10136 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10137 10138 // For in-memory arguments, size and alignment should be passed from FE. 10139 // BE will guess if this info is not there but there are cases it cannot 10140 // get right. 10141 if (auto ParamAlign = Arg.getParamStackAlign()) 10142 MemAlign = *ParamAlign; 10143 else if ((ParamAlign = Arg.getParamAlign())) 10144 MemAlign = *ParamAlign; 10145 else 10146 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10147 if (Flags.isByRef()) 10148 Flags.setByRefSize(MemSize); 10149 else 10150 Flags.setByValSize(MemSize); 10151 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10152 MemAlign = *ParamAlign; 10153 } else { 10154 MemAlign = OriginalAlignment; 10155 } 10156 Flags.setMemAlign(MemAlign); 10157 10158 if (Arg.hasAttribute(Attribute::Nest)) 10159 Flags.setNest(); 10160 if (NeedsRegBlock) 10161 Flags.setInConsecutiveRegs(); 10162 if (ArgCopyElisionCandidates.count(&Arg)) 10163 Flags.setCopyElisionCandidate(); 10164 if (Arg.hasAttribute(Attribute::Returned)) 10165 Flags.setReturned(); 10166 10167 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10168 *CurDAG->getContext(), F.getCallingConv(), VT); 10169 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10170 *CurDAG->getContext(), F.getCallingConv(), VT); 10171 for (unsigned i = 0; i != NumRegs; ++i) { 10172 // For scalable vectors, use the minimum size; individual targets 10173 // are responsible for handling scalable vector arguments and 10174 // return values. 10175 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10176 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10177 if (NumRegs > 1 && i == 0) 10178 MyFlags.Flags.setSplit(); 10179 // if it isn't first piece, alignment must be 1 10180 else if (i > 0) { 10181 MyFlags.Flags.setOrigAlign(Align(1)); 10182 if (i == NumRegs - 1) 10183 MyFlags.Flags.setSplitEnd(); 10184 } 10185 Ins.push_back(MyFlags); 10186 } 10187 if (NeedsRegBlock && Value == NumValues - 1) 10188 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10189 PartBase += VT.getStoreSize().getKnownMinSize(); 10190 } 10191 } 10192 10193 // Call the target to set up the argument values. 10194 SmallVector<SDValue, 8> InVals; 10195 SDValue NewRoot = TLI->LowerFormalArguments( 10196 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10197 10198 // Verify that the target's LowerFormalArguments behaved as expected. 10199 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10200 "LowerFormalArguments didn't return a valid chain!"); 10201 assert(InVals.size() == Ins.size() && 10202 "LowerFormalArguments didn't emit the correct number of values!"); 10203 LLVM_DEBUG({ 10204 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10205 assert(InVals[i].getNode() && 10206 "LowerFormalArguments emitted a null value!"); 10207 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10208 "LowerFormalArguments emitted a value with the wrong type!"); 10209 } 10210 }); 10211 10212 // Update the DAG with the new chain value resulting from argument lowering. 10213 DAG.setRoot(NewRoot); 10214 10215 // Set up the argument values. 10216 unsigned i = 0; 10217 if (!FuncInfo->CanLowerReturn) { 10218 // Create a virtual register for the sret pointer, and put in a copy 10219 // from the sret argument into it. 10220 SmallVector<EVT, 1> ValueVTs; 10221 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10222 F.getReturnType()->getPointerTo( 10223 DAG.getDataLayout().getAllocaAddrSpace()), 10224 ValueVTs); 10225 MVT VT = ValueVTs[0].getSimpleVT(); 10226 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10227 Optional<ISD::NodeType> AssertOp = None; 10228 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10229 nullptr, F.getCallingConv(), AssertOp); 10230 10231 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10232 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10233 Register SRetReg = 10234 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10235 FuncInfo->DemoteRegister = SRetReg; 10236 NewRoot = 10237 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10238 DAG.setRoot(NewRoot); 10239 10240 // i indexes lowered arguments. Bump it past the hidden sret argument. 10241 ++i; 10242 } 10243 10244 SmallVector<SDValue, 4> Chains; 10245 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10246 for (const Argument &Arg : F.args()) { 10247 SmallVector<SDValue, 4> ArgValues; 10248 SmallVector<EVT, 4> ValueVTs; 10249 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10250 unsigned NumValues = ValueVTs.size(); 10251 if (NumValues == 0) 10252 continue; 10253 10254 bool ArgHasUses = !Arg.use_empty(); 10255 10256 // Elide the copying store if the target loaded this argument from a 10257 // suitable fixed stack object. 10258 if (Ins[i].Flags.isCopyElisionCandidate()) { 10259 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10260 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10261 InVals[i], ArgHasUses); 10262 } 10263 10264 // If this argument is unused then remember its value. It is used to generate 10265 // debugging information. 10266 bool isSwiftErrorArg = 10267 TLI->supportSwiftError() && 10268 Arg.hasAttribute(Attribute::SwiftError); 10269 if (!ArgHasUses && !isSwiftErrorArg) { 10270 SDB->setUnusedArgValue(&Arg, InVals[i]); 10271 10272 // Also remember any frame index for use in FastISel. 10273 if (FrameIndexSDNode *FI = 10274 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10275 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10276 } 10277 10278 for (unsigned Val = 0; Val != NumValues; ++Val) { 10279 EVT VT = ValueVTs[Val]; 10280 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10281 F.getCallingConv(), VT); 10282 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10283 *CurDAG->getContext(), F.getCallingConv(), VT); 10284 10285 // Even an apparent 'unused' swifterror argument needs to be returned. So 10286 // we do generate a copy for it that can be used on return from the 10287 // function. 10288 if (ArgHasUses || isSwiftErrorArg) { 10289 Optional<ISD::NodeType> AssertOp; 10290 if (Arg.hasAttribute(Attribute::SExt)) 10291 AssertOp = ISD::AssertSext; 10292 else if (Arg.hasAttribute(Attribute::ZExt)) 10293 AssertOp = ISD::AssertZext; 10294 10295 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10296 PartVT, VT, nullptr, 10297 F.getCallingConv(), AssertOp)); 10298 } 10299 10300 i += NumParts; 10301 } 10302 10303 // We don't need to do anything else for unused arguments. 10304 if (ArgValues.empty()) 10305 continue; 10306 10307 // Note down frame index. 10308 if (FrameIndexSDNode *FI = 10309 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10310 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10311 10312 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10313 SDB->getCurSDLoc()); 10314 10315 SDB->setValue(&Arg, Res); 10316 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10317 // We want to associate the argument with the frame index, among 10318 // involved operands, that correspond to the lowest address. The 10319 // getCopyFromParts function, called earlier, is swapping the order of 10320 // the operands to BUILD_PAIR depending on endianness. The result of 10321 // that swapping is that the least significant bits of the argument will 10322 // be in the first operand of the BUILD_PAIR node, and the most 10323 // significant bits will be in the second operand. 10324 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10325 if (LoadSDNode *LNode = 10326 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10327 if (FrameIndexSDNode *FI = 10328 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10329 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10330 } 10331 10332 // Analyses past this point are naive and don't expect an assertion. 10333 if (Res.getOpcode() == ISD::AssertZext) 10334 Res = Res.getOperand(0); 10335 10336 // Update the SwiftErrorVRegDefMap. 10337 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10338 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10339 if (Register::isVirtualRegister(Reg)) 10340 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10341 Reg); 10342 } 10343 10344 // If this argument is live outside of the entry block, insert a copy from 10345 // wherever we got it to the vreg that other BB's will reference it as. 10346 if (Res.getOpcode() == ISD::CopyFromReg) { 10347 // If we can, though, try to skip creating an unnecessary vreg. 10348 // FIXME: This isn't very clean... it would be nice to make this more 10349 // general. 10350 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10351 if (Register::isVirtualRegister(Reg)) { 10352 FuncInfo->ValueMap[&Arg] = Reg; 10353 continue; 10354 } 10355 } 10356 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10357 FuncInfo->InitializeRegForValue(&Arg); 10358 SDB->CopyToExportRegsIfNeeded(&Arg); 10359 } 10360 } 10361 10362 if (!Chains.empty()) { 10363 Chains.push_back(NewRoot); 10364 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10365 } 10366 10367 DAG.setRoot(NewRoot); 10368 10369 assert(i == InVals.size() && "Argument register count mismatch!"); 10370 10371 // If any argument copy elisions occurred and we have debug info, update the 10372 // stale frame indices used in the dbg.declare variable info table. 10373 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10374 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10375 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10376 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10377 if (I != ArgCopyElisionFrameIndexMap.end()) 10378 VI.Slot = I->second; 10379 } 10380 } 10381 10382 // Finally, if the target has anything special to do, allow it to do so. 10383 emitFunctionEntryCode(); 10384 } 10385 10386 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10387 /// ensure constants are generated when needed. Remember the virtual registers 10388 /// that need to be added to the Machine PHI nodes as input. We cannot just 10389 /// directly add them, because expansion might result in multiple MBB's for one 10390 /// BB. As such, the start of the BB might correspond to a different MBB than 10391 /// the end. 10392 void 10393 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10394 const Instruction *TI = LLVMBB->getTerminator(); 10395 10396 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10397 10398 // Check PHI nodes in successors that expect a value to be available from this 10399 // block. 10400 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10401 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10402 if (!isa<PHINode>(SuccBB->begin())) continue; 10403 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10404 10405 // If this terminator has multiple identical successors (common for 10406 // switches), only handle each succ once. 10407 if (!SuccsHandled.insert(SuccMBB).second) 10408 continue; 10409 10410 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10411 10412 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10413 // nodes and Machine PHI nodes, but the incoming operands have not been 10414 // emitted yet. 10415 for (const PHINode &PN : SuccBB->phis()) { 10416 // Ignore dead phi's. 10417 if (PN.use_empty()) 10418 continue; 10419 10420 // Skip empty types 10421 if (PN.getType()->isEmptyTy()) 10422 continue; 10423 10424 unsigned Reg; 10425 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10426 10427 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10428 unsigned &RegOut = ConstantsOut[C]; 10429 if (RegOut == 0) { 10430 RegOut = FuncInfo.CreateRegs(C); 10431 CopyValueToVirtualRegister(C, RegOut); 10432 } 10433 Reg = RegOut; 10434 } else { 10435 DenseMap<const Value *, Register>::iterator I = 10436 FuncInfo.ValueMap.find(PHIOp); 10437 if (I != FuncInfo.ValueMap.end()) 10438 Reg = I->second; 10439 else { 10440 assert(isa<AllocaInst>(PHIOp) && 10441 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10442 "Didn't codegen value into a register!??"); 10443 Reg = FuncInfo.CreateRegs(PHIOp); 10444 CopyValueToVirtualRegister(PHIOp, Reg); 10445 } 10446 } 10447 10448 // Remember that this register needs to added to the machine PHI node as 10449 // the input for this MBB. 10450 SmallVector<EVT, 4> ValueVTs; 10451 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10452 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10453 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10454 EVT VT = ValueVTs[vti]; 10455 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10456 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10457 FuncInfo.PHINodesToUpdate.push_back( 10458 std::make_pair(&*MBBI++, Reg + i)); 10459 Reg += NumRegisters; 10460 } 10461 } 10462 } 10463 10464 ConstantsOut.clear(); 10465 } 10466 10467 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10468 /// is 0. 10469 MachineBasicBlock * 10470 SelectionDAGBuilder::StackProtectorDescriptor:: 10471 AddSuccessorMBB(const BasicBlock *BB, 10472 MachineBasicBlock *ParentMBB, 10473 bool IsLikely, 10474 MachineBasicBlock *SuccMBB) { 10475 // If SuccBB has not been created yet, create it. 10476 if (!SuccMBB) { 10477 MachineFunction *MF = ParentMBB->getParent(); 10478 MachineFunction::iterator BBI(ParentMBB); 10479 SuccMBB = MF->CreateMachineBasicBlock(BB); 10480 MF->insert(++BBI, SuccMBB); 10481 } 10482 // Add it as a successor of ParentMBB. 10483 ParentMBB->addSuccessor( 10484 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10485 return SuccMBB; 10486 } 10487 10488 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10489 MachineFunction::iterator I(MBB); 10490 if (++I == FuncInfo.MF->end()) 10491 return nullptr; 10492 return &*I; 10493 } 10494 10495 /// During lowering new call nodes can be created (such as memset, etc.). 10496 /// Those will become new roots of the current DAG, but complications arise 10497 /// when they are tail calls. In such cases, the call lowering will update 10498 /// the root, but the builder still needs to know that a tail call has been 10499 /// lowered in order to avoid generating an additional return. 10500 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10501 // If the node is null, we do have a tail call. 10502 if (MaybeTC.getNode() != nullptr) 10503 DAG.setRoot(MaybeTC); 10504 else 10505 HasTailCall = true; 10506 } 10507 10508 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10509 MachineBasicBlock *SwitchMBB, 10510 MachineBasicBlock *DefaultMBB) { 10511 MachineFunction *CurMF = FuncInfo.MF; 10512 MachineBasicBlock *NextMBB = nullptr; 10513 MachineFunction::iterator BBI(W.MBB); 10514 if (++BBI != FuncInfo.MF->end()) 10515 NextMBB = &*BBI; 10516 10517 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10518 10519 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10520 10521 if (Size == 2 && W.MBB == SwitchMBB) { 10522 // If any two of the cases has the same destination, and if one value 10523 // is the same as the other, but has one bit unset that the other has set, 10524 // use bit manipulation to do two compares at once. For example: 10525 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10526 // TODO: This could be extended to merge any 2 cases in switches with 3 10527 // cases. 10528 // TODO: Handle cases where W.CaseBB != SwitchBB. 10529 CaseCluster &Small = *W.FirstCluster; 10530 CaseCluster &Big = *W.LastCluster; 10531 10532 if (Small.Low == Small.High && Big.Low == Big.High && 10533 Small.MBB == Big.MBB) { 10534 const APInt &SmallValue = Small.Low->getValue(); 10535 const APInt &BigValue = Big.Low->getValue(); 10536 10537 // Check that there is only one bit different. 10538 APInt CommonBit = BigValue ^ SmallValue; 10539 if (CommonBit.isPowerOf2()) { 10540 SDValue CondLHS = getValue(Cond); 10541 EVT VT = CondLHS.getValueType(); 10542 SDLoc DL = getCurSDLoc(); 10543 10544 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10545 DAG.getConstant(CommonBit, DL, VT)); 10546 SDValue Cond = DAG.getSetCC( 10547 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10548 ISD::SETEQ); 10549 10550 // Update successor info. 10551 // Both Small and Big will jump to Small.BB, so we sum up the 10552 // probabilities. 10553 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10554 if (BPI) 10555 addSuccessorWithProb( 10556 SwitchMBB, DefaultMBB, 10557 // The default destination is the first successor in IR. 10558 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10559 else 10560 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10561 10562 // Insert the true branch. 10563 SDValue BrCond = 10564 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10565 DAG.getBasicBlock(Small.MBB)); 10566 // Insert the false branch. 10567 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10568 DAG.getBasicBlock(DefaultMBB)); 10569 10570 DAG.setRoot(BrCond); 10571 return; 10572 } 10573 } 10574 } 10575 10576 if (TM.getOptLevel() != CodeGenOpt::None) { 10577 // Here, we order cases by probability so the most likely case will be 10578 // checked first. However, two clusters can have the same probability in 10579 // which case their relative ordering is non-deterministic. So we use Low 10580 // as a tie-breaker as clusters are guaranteed to never overlap. 10581 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10582 [](const CaseCluster &a, const CaseCluster &b) { 10583 return a.Prob != b.Prob ? 10584 a.Prob > b.Prob : 10585 a.Low->getValue().slt(b.Low->getValue()); 10586 }); 10587 10588 // Rearrange the case blocks so that the last one falls through if possible 10589 // without changing the order of probabilities. 10590 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10591 --I; 10592 if (I->Prob > W.LastCluster->Prob) 10593 break; 10594 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10595 std::swap(*I, *W.LastCluster); 10596 break; 10597 } 10598 } 10599 } 10600 10601 // Compute total probability. 10602 BranchProbability DefaultProb = W.DefaultProb; 10603 BranchProbability UnhandledProbs = DefaultProb; 10604 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10605 UnhandledProbs += I->Prob; 10606 10607 MachineBasicBlock *CurMBB = W.MBB; 10608 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10609 bool FallthroughUnreachable = false; 10610 MachineBasicBlock *Fallthrough; 10611 if (I == W.LastCluster) { 10612 // For the last cluster, fall through to the default destination. 10613 Fallthrough = DefaultMBB; 10614 FallthroughUnreachable = isa<UnreachableInst>( 10615 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10616 } else { 10617 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10618 CurMF->insert(BBI, Fallthrough); 10619 // Put Cond in a virtual register to make it available from the new blocks. 10620 ExportFromCurrentBlock(Cond); 10621 } 10622 UnhandledProbs -= I->Prob; 10623 10624 switch (I->Kind) { 10625 case CC_JumpTable: { 10626 // FIXME: Optimize away range check based on pivot comparisons. 10627 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10628 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10629 10630 // The jump block hasn't been inserted yet; insert it here. 10631 MachineBasicBlock *JumpMBB = JT->MBB; 10632 CurMF->insert(BBI, JumpMBB); 10633 10634 auto JumpProb = I->Prob; 10635 auto FallthroughProb = UnhandledProbs; 10636 10637 // If the default statement is a target of the jump table, we evenly 10638 // distribute the default probability to successors of CurMBB. Also 10639 // update the probability on the edge from JumpMBB to Fallthrough. 10640 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10641 SE = JumpMBB->succ_end(); 10642 SI != SE; ++SI) { 10643 if (*SI == DefaultMBB) { 10644 JumpProb += DefaultProb / 2; 10645 FallthroughProb -= DefaultProb / 2; 10646 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10647 JumpMBB->normalizeSuccProbs(); 10648 break; 10649 } 10650 } 10651 10652 if (FallthroughUnreachable) { 10653 // Skip the range check if the fallthrough block is unreachable. 10654 JTH->OmitRangeCheck = true; 10655 } 10656 10657 if (!JTH->OmitRangeCheck) 10658 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10659 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10660 CurMBB->normalizeSuccProbs(); 10661 10662 // The jump table header will be inserted in our current block, do the 10663 // range check, and fall through to our fallthrough block. 10664 JTH->HeaderBB = CurMBB; 10665 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10666 10667 // If we're in the right place, emit the jump table header right now. 10668 if (CurMBB == SwitchMBB) { 10669 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10670 JTH->Emitted = true; 10671 } 10672 break; 10673 } 10674 case CC_BitTests: { 10675 // FIXME: Optimize away range check based on pivot comparisons. 10676 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10677 10678 // The bit test blocks haven't been inserted yet; insert them here. 10679 for (BitTestCase &BTC : BTB->Cases) 10680 CurMF->insert(BBI, BTC.ThisBB); 10681 10682 // Fill in fields of the BitTestBlock. 10683 BTB->Parent = CurMBB; 10684 BTB->Default = Fallthrough; 10685 10686 BTB->DefaultProb = UnhandledProbs; 10687 // If the cases in bit test don't form a contiguous range, we evenly 10688 // distribute the probability on the edge to Fallthrough to two 10689 // successors of CurMBB. 10690 if (!BTB->ContiguousRange) { 10691 BTB->Prob += DefaultProb / 2; 10692 BTB->DefaultProb -= DefaultProb / 2; 10693 } 10694 10695 if (FallthroughUnreachable) { 10696 // Skip the range check if the fallthrough block is unreachable. 10697 BTB->OmitRangeCheck = true; 10698 } 10699 10700 // If we're in the right place, emit the bit test header right now. 10701 if (CurMBB == SwitchMBB) { 10702 visitBitTestHeader(*BTB, SwitchMBB); 10703 BTB->Emitted = true; 10704 } 10705 break; 10706 } 10707 case CC_Range: { 10708 const Value *RHS, *LHS, *MHS; 10709 ISD::CondCode CC; 10710 if (I->Low == I->High) { 10711 // Check Cond == I->Low. 10712 CC = ISD::SETEQ; 10713 LHS = Cond; 10714 RHS=I->Low; 10715 MHS = nullptr; 10716 } else { 10717 // Check I->Low <= Cond <= I->High. 10718 CC = ISD::SETLE; 10719 LHS = I->Low; 10720 MHS = Cond; 10721 RHS = I->High; 10722 } 10723 10724 // If Fallthrough is unreachable, fold away the comparison. 10725 if (FallthroughUnreachable) 10726 CC = ISD::SETTRUE; 10727 10728 // The false probability is the sum of all unhandled cases. 10729 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10730 getCurSDLoc(), I->Prob, UnhandledProbs); 10731 10732 if (CurMBB == SwitchMBB) 10733 visitSwitchCase(CB, SwitchMBB); 10734 else 10735 SL->SwitchCases.push_back(CB); 10736 10737 break; 10738 } 10739 } 10740 CurMBB = Fallthrough; 10741 } 10742 } 10743 10744 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10745 CaseClusterIt First, 10746 CaseClusterIt Last) { 10747 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10748 if (X.Prob != CC.Prob) 10749 return X.Prob > CC.Prob; 10750 10751 // Ties are broken by comparing the case value. 10752 return X.Low->getValue().slt(CC.Low->getValue()); 10753 }); 10754 } 10755 10756 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10757 const SwitchWorkListItem &W, 10758 Value *Cond, 10759 MachineBasicBlock *SwitchMBB) { 10760 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10761 "Clusters not sorted?"); 10762 10763 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10764 10765 // Balance the tree based on branch probabilities to create a near-optimal (in 10766 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10767 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10768 CaseClusterIt LastLeft = W.FirstCluster; 10769 CaseClusterIt FirstRight = W.LastCluster; 10770 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10771 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10772 10773 // Move LastLeft and FirstRight towards each other from opposite directions to 10774 // find a partitioning of the clusters which balances the probability on both 10775 // sides. If LeftProb and RightProb are equal, alternate which side is 10776 // taken to ensure 0-probability nodes are distributed evenly. 10777 unsigned I = 0; 10778 while (LastLeft + 1 < FirstRight) { 10779 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10780 LeftProb += (++LastLeft)->Prob; 10781 else 10782 RightProb += (--FirstRight)->Prob; 10783 I++; 10784 } 10785 10786 while (true) { 10787 // Our binary search tree differs from a typical BST in that ours can have up 10788 // to three values in each leaf. The pivot selection above doesn't take that 10789 // into account, which means the tree might require more nodes and be less 10790 // efficient. We compensate for this here. 10791 10792 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10793 unsigned NumRight = W.LastCluster - FirstRight + 1; 10794 10795 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10796 // If one side has less than 3 clusters, and the other has more than 3, 10797 // consider taking a cluster from the other side. 10798 10799 if (NumLeft < NumRight) { 10800 // Consider moving the first cluster on the right to the left side. 10801 CaseCluster &CC = *FirstRight; 10802 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10803 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10804 if (LeftSideRank <= RightSideRank) { 10805 // Moving the cluster to the left does not demote it. 10806 ++LastLeft; 10807 ++FirstRight; 10808 continue; 10809 } 10810 } else { 10811 assert(NumRight < NumLeft); 10812 // Consider moving the last element on the left to the right side. 10813 CaseCluster &CC = *LastLeft; 10814 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10815 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10816 if (RightSideRank <= LeftSideRank) { 10817 // Moving the cluster to the right does not demot it. 10818 --LastLeft; 10819 --FirstRight; 10820 continue; 10821 } 10822 } 10823 } 10824 break; 10825 } 10826 10827 assert(LastLeft + 1 == FirstRight); 10828 assert(LastLeft >= W.FirstCluster); 10829 assert(FirstRight <= W.LastCluster); 10830 10831 // Use the first element on the right as pivot since we will make less-than 10832 // comparisons against it. 10833 CaseClusterIt PivotCluster = FirstRight; 10834 assert(PivotCluster > W.FirstCluster); 10835 assert(PivotCluster <= W.LastCluster); 10836 10837 CaseClusterIt FirstLeft = W.FirstCluster; 10838 CaseClusterIt LastRight = W.LastCluster; 10839 10840 const ConstantInt *Pivot = PivotCluster->Low; 10841 10842 // New blocks will be inserted immediately after the current one. 10843 MachineFunction::iterator BBI(W.MBB); 10844 ++BBI; 10845 10846 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10847 // we can branch to its destination directly if it's squeezed exactly in 10848 // between the known lower bound and Pivot - 1. 10849 MachineBasicBlock *LeftMBB; 10850 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10851 FirstLeft->Low == W.GE && 10852 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10853 LeftMBB = FirstLeft->MBB; 10854 } else { 10855 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10856 FuncInfo.MF->insert(BBI, LeftMBB); 10857 WorkList.push_back( 10858 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10859 // Put Cond in a virtual register to make it available from the new blocks. 10860 ExportFromCurrentBlock(Cond); 10861 } 10862 10863 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10864 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10865 // directly if RHS.High equals the current upper bound. 10866 MachineBasicBlock *RightMBB; 10867 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10868 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10869 RightMBB = FirstRight->MBB; 10870 } else { 10871 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10872 FuncInfo.MF->insert(BBI, RightMBB); 10873 WorkList.push_back( 10874 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10875 // Put Cond in a virtual register to make it available from the new blocks. 10876 ExportFromCurrentBlock(Cond); 10877 } 10878 10879 // Create the CaseBlock record that will be used to lower the branch. 10880 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10881 getCurSDLoc(), LeftProb, RightProb); 10882 10883 if (W.MBB == SwitchMBB) 10884 visitSwitchCase(CB, SwitchMBB); 10885 else 10886 SL->SwitchCases.push_back(CB); 10887 } 10888 10889 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10890 // from the swith statement. 10891 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10892 BranchProbability PeeledCaseProb) { 10893 if (PeeledCaseProb == BranchProbability::getOne()) 10894 return BranchProbability::getZero(); 10895 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10896 10897 uint32_t Numerator = CaseProb.getNumerator(); 10898 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10899 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10900 } 10901 10902 // Try to peel the top probability case if it exceeds the threshold. 10903 // Return current MachineBasicBlock for the switch statement if the peeling 10904 // does not occur. 10905 // If the peeling is performed, return the newly created MachineBasicBlock 10906 // for the peeled switch statement. Also update Clusters to remove the peeled 10907 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10908 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10909 const SwitchInst &SI, CaseClusterVector &Clusters, 10910 BranchProbability &PeeledCaseProb) { 10911 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10912 // Don't perform if there is only one cluster or optimizing for size. 10913 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10914 TM.getOptLevel() == CodeGenOpt::None || 10915 SwitchMBB->getParent()->getFunction().hasMinSize()) 10916 return SwitchMBB; 10917 10918 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10919 unsigned PeeledCaseIndex = 0; 10920 bool SwitchPeeled = false; 10921 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10922 CaseCluster &CC = Clusters[Index]; 10923 if (CC.Prob < TopCaseProb) 10924 continue; 10925 TopCaseProb = CC.Prob; 10926 PeeledCaseIndex = Index; 10927 SwitchPeeled = true; 10928 } 10929 if (!SwitchPeeled) 10930 return SwitchMBB; 10931 10932 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10933 << TopCaseProb << "\n"); 10934 10935 // Record the MBB for the peeled switch statement. 10936 MachineFunction::iterator BBI(SwitchMBB); 10937 ++BBI; 10938 MachineBasicBlock *PeeledSwitchMBB = 10939 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10940 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10941 10942 ExportFromCurrentBlock(SI.getCondition()); 10943 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10944 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10945 nullptr, nullptr, TopCaseProb.getCompl()}; 10946 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10947 10948 Clusters.erase(PeeledCaseIt); 10949 for (CaseCluster &CC : Clusters) { 10950 LLVM_DEBUG( 10951 dbgs() << "Scale the probablity for one cluster, before scaling: " 10952 << CC.Prob << "\n"); 10953 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10954 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10955 } 10956 PeeledCaseProb = TopCaseProb; 10957 return PeeledSwitchMBB; 10958 } 10959 10960 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10961 // Extract cases from the switch. 10962 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10963 CaseClusterVector Clusters; 10964 Clusters.reserve(SI.getNumCases()); 10965 for (auto I : SI.cases()) { 10966 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10967 const ConstantInt *CaseVal = I.getCaseValue(); 10968 BranchProbability Prob = 10969 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10970 : BranchProbability(1, SI.getNumCases() + 1); 10971 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10972 } 10973 10974 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10975 10976 // Cluster adjacent cases with the same destination. We do this at all 10977 // optimization levels because it's cheap to do and will make codegen faster 10978 // if there are many clusters. 10979 sortAndRangeify(Clusters); 10980 10981 // The branch probablity of the peeled case. 10982 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10983 MachineBasicBlock *PeeledSwitchMBB = 10984 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10985 10986 // If there is only the default destination, jump there directly. 10987 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10988 if (Clusters.empty()) { 10989 assert(PeeledSwitchMBB == SwitchMBB); 10990 SwitchMBB->addSuccessor(DefaultMBB); 10991 if (DefaultMBB != NextBlock(SwitchMBB)) { 10992 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10993 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10994 } 10995 return; 10996 } 10997 10998 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10999 SL->findBitTestClusters(Clusters, &SI); 11000 11001 LLVM_DEBUG({ 11002 dbgs() << "Case clusters: "; 11003 for (const CaseCluster &C : Clusters) { 11004 if (C.Kind == CC_JumpTable) 11005 dbgs() << "JT:"; 11006 if (C.Kind == CC_BitTests) 11007 dbgs() << "BT:"; 11008 11009 C.Low->getValue().print(dbgs(), true); 11010 if (C.Low != C.High) { 11011 dbgs() << '-'; 11012 C.High->getValue().print(dbgs(), true); 11013 } 11014 dbgs() << ' '; 11015 } 11016 dbgs() << '\n'; 11017 }); 11018 11019 assert(!Clusters.empty()); 11020 SwitchWorkList WorkList; 11021 CaseClusterIt First = Clusters.begin(); 11022 CaseClusterIt Last = Clusters.end() - 1; 11023 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11024 // Scale the branchprobability for DefaultMBB if the peel occurs and 11025 // DefaultMBB is not replaced. 11026 if (PeeledCaseProb != BranchProbability::getZero() && 11027 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11028 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11029 WorkList.push_back( 11030 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11031 11032 while (!WorkList.empty()) { 11033 SwitchWorkListItem W = WorkList.pop_back_val(); 11034 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11035 11036 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 11037 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11038 // For optimized builds, lower large range as a balanced binary tree. 11039 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11040 continue; 11041 } 11042 11043 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11044 } 11045 } 11046 11047 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11048 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11049 auto DL = getCurSDLoc(); 11050 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11051 EVT OpVT = 11052 TLI.getTypeToTransformTo(*DAG.getContext(), ResultVT.getScalarType()); 11053 SDValue Step = DAG.getConstant(1, DL, OpVT); 11054 setValue(&I, DAG.getStepVector(DL, ResultVT, Step)); 11055 } 11056 11057 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11059 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11060 11061 SDLoc DL = getCurSDLoc(); 11062 SDValue V = getValue(I.getOperand(0)); 11063 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11064 11065 if (VT.isScalableVector()) { 11066 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11067 return; 11068 } 11069 11070 // Use VECTOR_SHUFFLE for the fixed-length vector 11071 // to maintain existing behavior. 11072 SmallVector<int, 8> Mask; 11073 unsigned NumElts = VT.getVectorMinNumElements(); 11074 for (unsigned i = 0; i != NumElts; ++i) 11075 Mask.push_back(NumElts - 1 - i); 11076 11077 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11078 } 11079 11080 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11081 SmallVector<EVT, 4> ValueVTs; 11082 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11083 ValueVTs); 11084 unsigned NumValues = ValueVTs.size(); 11085 if (NumValues == 0) return; 11086 11087 SmallVector<SDValue, 4> Values(NumValues); 11088 SDValue Op = getValue(I.getOperand(0)); 11089 11090 for (unsigned i = 0; i != NumValues; ++i) 11091 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11092 SDValue(Op.getNode(), Op.getResNo() + i)); 11093 11094 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11095 DAG.getVTList(ValueVTs), Values)); 11096 } 11097 11098 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11099 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11100 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11101 11102 SDLoc DL = getCurSDLoc(); 11103 SDValue V1 = getValue(I.getOperand(0)); 11104 SDValue V2 = getValue(I.getOperand(1)); 11105 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11106 11107 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11108 if (VT.isScalableVector()) { 11109 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11110 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11111 DAG.getConstant(Imm, DL, IdxVT))); 11112 return; 11113 } 11114 11115 unsigned NumElts = VT.getVectorNumElements(); 11116 11117 if ((-Imm > NumElts) || (Imm >= NumElts)) { 11118 // Result is undefined if immediate is out-of-bounds. 11119 setValue(&I, DAG.getUNDEF(VT)); 11120 return; 11121 } 11122 11123 uint64_t Idx = (NumElts + Imm) % NumElts; 11124 11125 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11126 SmallVector<int, 8> Mask; 11127 for (unsigned i = 0; i < NumElts; ++i) 11128 Mask.push_back(Idx + i); 11129 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11130 } 11131