1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 #include <utility> 68 using namespace llvm; 69 70 #define DEBUG_TYPE "isel" 71 72 /// LimitFloatPrecision - Generate low-precision inline sequences for 73 /// some float libcalls (6, 8 or 12 bits). 74 static unsigned LimitFloatPrecision; 75 76 static cl::opt<unsigned, true> 77 LimitFPPrecision("limit-float-precision", 78 cl::desc("Generate low-precision inline sequences " 79 "for some float libcalls"), 80 cl::location(LimitFloatPrecision), 81 cl::init(0)); 82 83 static cl::opt<bool> 84 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 85 cl::desc("Enable fast-math-flags for DAG nodes")); 86 87 // Limit the width of DAG chains. This is important in general to prevent 88 // DAG-based analysis from blowing up. For example, alias analysis and 89 // load clustering may not complete in reasonable time. It is difficult to 90 // recognize and avoid this situation within each individual analysis, and 91 // future analyses are likely to have the same behavior. Limiting DAG width is 92 // the safe approach and will be especially important with global DAGs. 93 // 94 // MaxParallelChains default is arbitrarily high to avoid affecting 95 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 96 // sequence over this should have been converted to llvm.memcpy by the 97 // frontend. It easy to induce this behavior with .ll code such as: 98 // %buffer = alloca [4096 x i8] 99 // %data = load [4096 x i8]* %argPtr 100 // store [4096 x i8] %data, [4096 x i8]* %buffer 101 static const unsigned MaxParallelChains = 64; 102 103 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, unsigned NumParts, 105 MVT PartVT, EVT ValueVT, const Value *V); 106 107 /// getCopyFromParts - Create a value that contains the specified legal parts 108 /// combined into the value they represent. If the parts combine to a type 109 /// larger then ValueVT then AssertOp can be used to specify whether the extra 110 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 111 /// (ISD::AssertSext). 112 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 113 const SDValue *Parts, 114 unsigned NumParts, MVT PartVT, EVT ValueVT, 115 const Value *V, 116 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 117 if (ValueVT.isVector()) 118 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 119 PartVT, ValueVT, V); 120 121 assert(NumParts > 0 && "No parts to assemble!"); 122 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 123 SDValue Val = Parts[0]; 124 125 if (NumParts > 1) { 126 // Assemble the value from multiple parts. 127 if (ValueVT.isInteger()) { 128 unsigned PartBits = PartVT.getSizeInBits(); 129 unsigned ValueBits = ValueVT.getSizeInBits(); 130 131 // Assemble the power of 2 part. 132 unsigned RoundParts = NumParts & (NumParts - 1) ? 133 1 << Log2_32(NumParts) : NumParts; 134 unsigned RoundBits = PartBits * RoundParts; 135 EVT RoundVT = RoundBits == ValueBits ? 136 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 137 SDValue Lo, Hi; 138 139 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 140 141 if (RoundParts > 2) { 142 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 143 PartVT, HalfVT, V); 144 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 145 RoundParts / 2, PartVT, HalfVT, V); 146 } else { 147 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 148 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 149 } 150 151 if (DAG.getDataLayout().isBigEndian()) 152 std::swap(Lo, Hi); 153 154 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 155 156 if (RoundParts < NumParts) { 157 // Assemble the trailing non-power-of-2 part. 158 unsigned OddParts = NumParts - RoundParts; 159 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 160 Hi = getCopyFromParts(DAG, DL, 161 Parts + RoundParts, OddParts, PartVT, OddVT, V); 162 163 // Combine the round and odd parts. 164 Lo = Val; 165 if (DAG.getDataLayout().isBigEndian()) 166 std::swap(Lo, Hi); 167 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 168 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 169 Hi = 170 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 171 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 172 TLI.getPointerTy(DAG.getDataLayout()))); 173 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 174 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 175 } 176 } else if (PartVT.isFloatingPoint()) { 177 // FP split into multiple FP parts (for ppcf128) 178 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 179 "Unexpected split"); 180 SDValue Lo, Hi; 181 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 182 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 183 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 184 std::swap(Lo, Hi); 185 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 186 } else { 187 // FP split into integer parts (soft fp) 188 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 189 !PartVT.isVector() && "Unexpected split"); 190 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 191 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 192 } 193 } 194 195 // There is now one part, held in Val. Correct it to match ValueVT. 196 EVT PartEVT = Val.getValueType(); 197 198 if (PartEVT == ValueVT) 199 return Val; 200 201 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 202 ValueVT.bitsLT(PartEVT)) { 203 // For an FP value in an integer part, we need to truncate to the right 204 // width first. 205 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 206 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 207 } 208 209 if (PartEVT.isInteger() && ValueVT.isInteger()) { 210 if (ValueVT.bitsLT(PartEVT)) { 211 // For a truncate, see if we have any information to 212 // indicate whether the truncated bits will always be 213 // zero or sign-extension. 214 if (AssertOp != ISD::DELETED_NODE) 215 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 216 DAG.getValueType(ValueVT)); 217 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 218 } 219 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 220 } 221 222 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 223 // FP_ROUND's are always exact here. 224 if (ValueVT.bitsLT(Val.getValueType())) 225 return DAG.getNode( 226 ISD::FP_ROUND, DL, ValueVT, Val, 227 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 228 229 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 230 } 231 232 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 233 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 234 235 llvm_unreachable("Unknown mismatch!"); 236 } 237 238 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 239 const Twine &ErrMsg) { 240 const Instruction *I = dyn_cast_or_null<Instruction>(V); 241 if (!V) 242 return Ctx.emitError(ErrMsg); 243 244 const char *AsmError = ", possible invalid constraint for vector type"; 245 if (const CallInst *CI = dyn_cast<CallInst>(I)) 246 if (isa<InlineAsm>(CI->getCalledValue())) 247 return Ctx.emitError(I, ErrMsg + AsmError); 248 249 return Ctx.emitError(I, ErrMsg); 250 } 251 252 /// getCopyFromPartsVector - Create a value that contains the specified legal 253 /// parts combined into the value they represent. If the parts combine to a 254 /// type larger then ValueVT then AssertOp can be used to specify whether the 255 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 256 /// ValueVT (ISD::AssertSext). 257 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 258 const SDValue *Parts, unsigned NumParts, 259 MVT PartVT, EVT ValueVT, const Value *V) { 260 assert(ValueVT.isVector() && "Not a vector value"); 261 assert(NumParts > 0 && "No parts to assemble!"); 262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 263 SDValue Val = Parts[0]; 264 265 // Handle a multi-element vector. 266 if (NumParts > 1) { 267 EVT IntermediateVT; 268 MVT RegisterVT; 269 unsigned NumIntermediates; 270 unsigned NumRegs = 271 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 272 NumIntermediates, RegisterVT); 273 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 274 NumParts = NumRegs; // Silence a compiler warning. 275 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 276 assert(RegisterVT.getSizeInBits() == 277 Parts[0].getSimpleValueType().getSizeInBits() && 278 "Part type sizes don't match!"); 279 280 // Assemble the parts into intermediate operands. 281 SmallVector<SDValue, 8> Ops(NumIntermediates); 282 if (NumIntermediates == NumParts) { 283 // If the register was not expanded, truncate or copy the value, 284 // as appropriate. 285 for (unsigned i = 0; i != NumParts; ++i) 286 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 287 PartVT, IntermediateVT, V); 288 } else if (NumParts > 0) { 289 // If the intermediate type was expanded, build the intermediate 290 // operands from the parts. 291 assert(NumParts % NumIntermediates == 0 && 292 "Must expand into a divisible number of parts!"); 293 unsigned Factor = NumParts / NumIntermediates; 294 for (unsigned i = 0; i != NumIntermediates; ++i) 295 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 296 PartVT, IntermediateVT, V); 297 } 298 299 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 300 // intermediate operands. 301 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 302 : ISD::BUILD_VECTOR, 303 DL, ValueVT, Ops); 304 } 305 306 // There is now one part, held in Val. Correct it to match ValueVT. 307 EVT PartEVT = Val.getValueType(); 308 309 if (PartEVT == ValueVT) 310 return Val; 311 312 if (PartEVT.isVector()) { 313 // If the element type of the source/dest vectors are the same, but the 314 // parts vector has more elements than the value vector, then we have a 315 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 316 // elements we want. 317 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 318 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 319 "Cannot narrow, it would be a lossy transformation"); 320 return DAG.getNode( 321 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 322 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 323 } 324 325 // Vector/Vector bitcast. 326 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 327 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 328 329 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 330 "Cannot handle this kind of promotion"); 331 // Promoted vector extract 332 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 333 334 } 335 336 // Trivial bitcast if the types are the same size and the destination 337 // vector type is legal. 338 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 339 TLI.isTypeLegal(ValueVT)) 340 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 341 342 // Handle cases such as i8 -> <1 x i1> 343 if (ValueVT.getVectorNumElements() != 1) { 344 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 345 "non-trivial scalar-to-vector conversion"); 346 return DAG.getUNDEF(ValueVT); 347 } 348 349 if (ValueVT.getVectorNumElements() == 1 && 350 ValueVT.getVectorElementType() != PartEVT) 351 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 352 353 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 354 } 355 356 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 357 SDValue Val, SDValue *Parts, unsigned NumParts, 358 MVT PartVT, const Value *V); 359 360 /// getCopyToParts - Create a series of nodes that contain the specified value 361 /// split into legal parts. If the parts contain more bits than Val, then, for 362 /// integers, ExtendKind can be used to specify how to generate the extra bits. 363 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 364 SDValue Val, SDValue *Parts, unsigned NumParts, 365 MVT PartVT, const Value *V, 366 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 367 EVT ValueVT = Val.getValueType(); 368 369 // Handle the vector case separately. 370 if (ValueVT.isVector()) 371 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 372 373 unsigned PartBits = PartVT.getSizeInBits(); 374 unsigned OrigNumParts = NumParts; 375 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 376 "Copying to an illegal type!"); 377 378 if (NumParts == 0) 379 return; 380 381 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 382 EVT PartEVT = PartVT; 383 if (PartEVT == ValueVT) { 384 assert(NumParts == 1 && "No-op copy with multiple parts!"); 385 Parts[0] = Val; 386 return; 387 } 388 389 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 390 // If the parts cover more bits than the value has, promote the value. 391 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 392 assert(NumParts == 1 && "Do not know what to promote to!"); 393 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 394 } else { 395 if (ValueVT.isFloatingPoint()) { 396 // FP values need to be bitcast, then extended if they are being put 397 // into a larger container. 398 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 399 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 400 } 401 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 402 ValueVT.isInteger() && 403 "Unknown mismatch!"); 404 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 405 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 406 if (PartVT == MVT::x86mmx) 407 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 408 } 409 } else if (PartBits == ValueVT.getSizeInBits()) { 410 // Different types of the same size. 411 assert(NumParts == 1 && PartEVT != ValueVT); 412 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 413 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 414 // If the parts cover less bits than value has, truncate the value. 415 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 416 ValueVT.isInteger() && 417 "Unknown mismatch!"); 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 if (PartVT == MVT::x86mmx) 421 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 422 } 423 424 // The value may have changed - recompute ValueVT. 425 ValueVT = Val.getValueType(); 426 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 427 "Failed to tile the value with PartVT!"); 428 429 if (NumParts == 1) { 430 if (PartEVT != ValueVT) 431 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 432 "scalar-to-vector conversion failed"); 433 434 Parts[0] = Val; 435 return; 436 } 437 438 // Expand the value into multiple parts. 439 if (NumParts & (NumParts - 1)) { 440 // The number of parts is not a power of 2. Split off and copy the tail. 441 assert(PartVT.isInteger() && ValueVT.isInteger() && 442 "Do not know what to expand to!"); 443 unsigned RoundParts = 1 << Log2_32(NumParts); 444 unsigned RoundBits = RoundParts * PartBits; 445 unsigned OddParts = NumParts - RoundParts; 446 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 447 DAG.getIntPtrConstant(RoundBits, DL)); 448 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 449 450 if (DAG.getDataLayout().isBigEndian()) 451 // The odd parts were reversed by getCopyToParts - unreverse them. 452 std::reverse(Parts + RoundParts, Parts + NumParts); 453 454 NumParts = RoundParts; 455 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 456 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 457 } 458 459 // The number of parts is a power of 2. Repeatedly bisect the value using 460 // EXTRACT_ELEMENT. 461 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 462 EVT::getIntegerVT(*DAG.getContext(), 463 ValueVT.getSizeInBits()), 464 Val); 465 466 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 467 for (unsigned i = 0; i < NumParts; i += StepSize) { 468 unsigned ThisBits = StepSize * PartBits / 2; 469 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 470 SDValue &Part0 = Parts[i]; 471 SDValue &Part1 = Parts[i+StepSize/2]; 472 473 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 474 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 475 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 476 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 477 478 if (ThisBits == PartBits && ThisVT != PartVT) { 479 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 480 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 481 } 482 } 483 } 484 485 if (DAG.getDataLayout().isBigEndian()) 486 std::reverse(Parts, Parts + OrigNumParts); 487 } 488 489 490 /// getCopyToPartsVector - Create a series of nodes that contain the specified 491 /// value split into legal parts. 492 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 493 SDValue Val, SDValue *Parts, unsigned NumParts, 494 MVT PartVT, const Value *V) { 495 EVT ValueVT = Val.getValueType(); 496 assert(ValueVT.isVector() && "Not a vector"); 497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 498 499 if (NumParts == 1) { 500 EVT PartEVT = PartVT; 501 if (PartEVT == ValueVT) { 502 // Nothing to do. 503 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 504 // Bitconvert vector->vector case. 505 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 508 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 509 EVT ElementVT = PartVT.getVectorElementType(); 510 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 511 // undef elements. 512 SmallVector<SDValue, 16> Ops; 513 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 514 Ops.push_back(DAG.getNode( 515 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 516 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 517 518 for (unsigned i = ValueVT.getVectorNumElements(), 519 e = PartVT.getVectorNumElements(); i != e; ++i) 520 Ops.push_back(DAG.getUNDEF(ElementVT)); 521 522 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 523 524 // FIXME: Use CONCAT for 2x -> 4x. 525 526 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 527 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 528 } else if (PartVT.isVector() && 529 PartEVT.getVectorElementType().bitsGE( 530 ValueVT.getVectorElementType()) && 531 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 532 533 // Promoted vector extract 534 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 535 } else{ 536 // Vector -> scalar conversion. 537 assert(ValueVT.getVectorNumElements() == 1 && 538 "Only trivial vector-to-scalar conversions should get here!"); 539 Val = DAG.getNode( 540 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 541 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 542 543 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 544 } 545 546 Parts[0] = Val; 547 return; 548 } 549 550 // Handle a multi-element vector. 551 EVT IntermediateVT; 552 MVT RegisterVT; 553 unsigned NumIntermediates; 554 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 555 IntermediateVT, 556 NumIntermediates, RegisterVT); 557 unsigned NumElements = ValueVT.getVectorNumElements(); 558 559 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 560 NumParts = NumRegs; // Silence a compiler warning. 561 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 562 563 // Split the vector into intermediate operands. 564 SmallVector<SDValue, 8> Ops(NumIntermediates); 565 for (unsigned i = 0; i != NumIntermediates; ++i) { 566 if (IntermediateVT.isVector()) 567 Ops[i] = 568 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 569 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 570 TLI.getVectorIdxTy(DAG.getDataLayout()))); 571 else 572 Ops[i] = DAG.getNode( 573 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 574 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 575 } 576 577 // Split the intermediate operands into legal parts. 578 if (NumParts == NumIntermediates) { 579 // If the register was not expanded, promote or copy the value, 580 // as appropriate. 581 for (unsigned i = 0; i != NumParts; ++i) 582 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 583 } else if (NumParts > 0) { 584 // If the intermediate type was expanded, split each the value into 585 // legal parts. 586 assert(NumIntermediates != 0 && "division by zero"); 587 assert(NumParts % NumIntermediates == 0 && 588 "Must expand into a divisible number of parts!"); 589 unsigned Factor = NumParts / NumIntermediates; 590 for (unsigned i = 0; i != NumIntermediates; ++i) 591 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 592 } 593 } 594 595 RegsForValue::RegsForValue() {} 596 597 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 598 EVT valuevt) 599 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 600 601 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 602 const DataLayout &DL, unsigned Reg, Type *Ty) { 603 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 604 605 for (EVT ValueVT : ValueVTs) { 606 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 607 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 608 for (unsigned i = 0; i != NumRegs; ++i) 609 Regs.push_back(Reg + i); 610 RegVTs.push_back(RegisterVT); 611 Reg += NumRegs; 612 } 613 } 614 615 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 616 /// this value and returns the result as a ValueVT value. This uses 617 /// Chain/Flag as the input and updates them for the output Chain/Flag. 618 /// If the Flag pointer is NULL, no flag is used. 619 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 620 FunctionLoweringInfo &FuncInfo, 621 SDLoc dl, 622 SDValue &Chain, SDValue *Flag, 623 const Value *V) const { 624 // A Value with type {} or [0 x %t] needs no registers. 625 if (ValueVTs.empty()) 626 return SDValue(); 627 628 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 629 630 // Assemble the legal parts into the final values. 631 SmallVector<SDValue, 4> Values(ValueVTs.size()); 632 SmallVector<SDValue, 8> Parts; 633 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 634 // Copy the legal parts from the registers. 635 EVT ValueVT = ValueVTs[Value]; 636 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 637 MVT RegisterVT = RegVTs[Value]; 638 639 Parts.resize(NumRegs); 640 for (unsigned i = 0; i != NumRegs; ++i) { 641 SDValue P; 642 if (!Flag) { 643 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 644 } else { 645 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 646 *Flag = P.getValue(2); 647 } 648 649 Chain = P.getValue(1); 650 Parts[i] = P; 651 652 // If the source register was virtual and if we know something about it, 653 // add an assert node. 654 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 655 !RegisterVT.isInteger() || RegisterVT.isVector()) 656 continue; 657 658 const FunctionLoweringInfo::LiveOutInfo *LOI = 659 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 660 if (!LOI) 661 continue; 662 663 unsigned RegSize = RegisterVT.getSizeInBits(); 664 unsigned NumSignBits = LOI->NumSignBits; 665 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 666 667 if (NumZeroBits == RegSize) { 668 // The current value is a zero. 669 // Explicitly express that as it would be easier for 670 // optimizations to kick in. 671 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 672 continue; 673 } 674 675 // FIXME: We capture more information than the dag can represent. For 676 // now, just use the tightest assertzext/assertsext possible. 677 bool isSExt = true; 678 EVT FromVT(MVT::Other); 679 if (NumSignBits == RegSize) 680 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 681 else if (NumZeroBits >= RegSize-1) 682 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 683 else if (NumSignBits > RegSize-8) 684 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 685 else if (NumZeroBits >= RegSize-8) 686 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 687 else if (NumSignBits > RegSize-16) 688 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 689 else if (NumZeroBits >= RegSize-16) 690 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 691 else if (NumSignBits > RegSize-32) 692 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 693 else if (NumZeroBits >= RegSize-32) 694 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 695 else 696 continue; 697 698 // Add an assertion node. 699 assert(FromVT != MVT::Other); 700 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 701 RegisterVT, P, DAG.getValueType(FromVT)); 702 } 703 704 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 705 NumRegs, RegisterVT, ValueVT, V); 706 Part += NumRegs; 707 Parts.clear(); 708 } 709 710 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 711 } 712 713 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 714 /// specified value into the registers specified by this object. This uses 715 /// Chain/Flag as the input and updates them for the output Chain/Flag. 716 /// If the Flag pointer is NULL, no flag is used. 717 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 718 SDValue &Chain, SDValue *Flag, const Value *V, 719 ISD::NodeType PreferredExtendType) const { 720 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 721 ISD::NodeType ExtendKind = PreferredExtendType; 722 723 // Get the list of the values's legal parts. 724 unsigned NumRegs = Regs.size(); 725 SmallVector<SDValue, 8> Parts(NumRegs); 726 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 727 EVT ValueVT = ValueVTs[Value]; 728 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 729 MVT RegisterVT = RegVTs[Value]; 730 731 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 732 ExtendKind = ISD::ZERO_EXTEND; 733 734 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 735 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 736 Part += NumParts; 737 } 738 739 // Copy the parts into the registers. 740 SmallVector<SDValue, 8> Chains(NumRegs); 741 for (unsigned i = 0; i != NumRegs; ++i) { 742 SDValue Part; 743 if (!Flag) { 744 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 745 } else { 746 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 747 *Flag = Part.getValue(1); 748 } 749 750 Chains[i] = Part.getValue(0); 751 } 752 753 if (NumRegs == 1 || Flag) 754 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 755 // flagged to it. That is the CopyToReg nodes and the user are considered 756 // a single scheduling unit. If we create a TokenFactor and return it as 757 // chain, then the TokenFactor is both a predecessor (operand) of the 758 // user as well as a successor (the TF operands are flagged to the user). 759 // c1, f1 = CopyToReg 760 // c2, f2 = CopyToReg 761 // c3 = TokenFactor c1, c2 762 // ... 763 // = op c3, ..., f2 764 Chain = Chains[NumRegs-1]; 765 else 766 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 767 } 768 769 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 770 /// operand list. This adds the code marker and includes the number of 771 /// values added into it. 772 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 773 unsigned MatchingIdx, SDLoc dl, 774 SelectionDAG &DAG, 775 std::vector<SDValue> &Ops) const { 776 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 777 778 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 779 if (HasMatching) 780 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 781 else if (!Regs.empty() && 782 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 783 // Put the register class of the virtual registers in the flag word. That 784 // way, later passes can recompute register class constraints for inline 785 // assembly as well as normal instructions. 786 // Don't do this for tied operands that can use the regclass information 787 // from the def. 788 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 789 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 790 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 791 } 792 793 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 794 Ops.push_back(Res); 795 796 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 797 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 798 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 799 MVT RegisterVT = RegVTs[Value]; 800 for (unsigned i = 0; i != NumRegs; ++i) { 801 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 802 unsigned TheReg = Regs[Reg++]; 803 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 804 805 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 806 // If we clobbered the stack pointer, MFI should know about it. 807 assert(DAG.getMachineFunction().getFrameInfo()-> 808 hasOpaqueSPAdjustment()); 809 } 810 } 811 } 812 } 813 814 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 815 const TargetLibraryInfo *li) { 816 AA = &aa; 817 GFI = gfi; 818 LibInfo = li; 819 DL = &DAG.getDataLayout(); 820 Context = DAG.getContext(); 821 LPadToCallSiteMap.clear(); 822 } 823 824 /// clear - Clear out the current SelectionDAG and the associated 825 /// state and prepare this SelectionDAGBuilder object to be used 826 /// for a new block. This doesn't clear out information about 827 /// additional blocks that are needed to complete switch lowering 828 /// or PHI node updating; that information is cleared out as it is 829 /// consumed. 830 void SelectionDAGBuilder::clear() { 831 NodeMap.clear(); 832 UnusedArgNodeMap.clear(); 833 PendingLoads.clear(); 834 PendingExports.clear(); 835 CurInst = nullptr; 836 HasTailCall = false; 837 SDNodeOrder = LowestSDNodeOrder; 838 StatepointLowering.clear(); 839 } 840 841 /// clearDanglingDebugInfo - Clear the dangling debug information 842 /// map. This function is separated from the clear so that debug 843 /// information that is dangling in a basic block can be properly 844 /// resolved in a different basic block. This allows the 845 /// SelectionDAG to resolve dangling debug information attached 846 /// to PHI nodes. 847 void SelectionDAGBuilder::clearDanglingDebugInfo() { 848 DanglingDebugInfoMap.clear(); 849 } 850 851 /// getRoot - Return the current virtual root of the Selection DAG, 852 /// flushing any PendingLoad items. This must be done before emitting 853 /// a store or any other node that may need to be ordered after any 854 /// prior load instructions. 855 /// 856 SDValue SelectionDAGBuilder::getRoot() { 857 if (PendingLoads.empty()) 858 return DAG.getRoot(); 859 860 if (PendingLoads.size() == 1) { 861 SDValue Root = PendingLoads[0]; 862 DAG.setRoot(Root); 863 PendingLoads.clear(); 864 return Root; 865 } 866 867 // Otherwise, we have to make a token factor node. 868 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 869 PendingLoads); 870 PendingLoads.clear(); 871 DAG.setRoot(Root); 872 return Root; 873 } 874 875 /// getControlRoot - Similar to getRoot, but instead of flushing all the 876 /// PendingLoad items, flush all the PendingExports items. It is necessary 877 /// to do this before emitting a terminator instruction. 878 /// 879 SDValue SelectionDAGBuilder::getControlRoot() { 880 SDValue Root = DAG.getRoot(); 881 882 if (PendingExports.empty()) 883 return Root; 884 885 // Turn all of the CopyToReg chains into one factored node. 886 if (Root.getOpcode() != ISD::EntryToken) { 887 unsigned i = 0, e = PendingExports.size(); 888 for (; i != e; ++i) { 889 assert(PendingExports[i].getNode()->getNumOperands() > 1); 890 if (PendingExports[i].getNode()->getOperand(0) == Root) 891 break; // Don't add the root if we already indirectly depend on it. 892 } 893 894 if (i == e) 895 PendingExports.push_back(Root); 896 } 897 898 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 899 PendingExports); 900 PendingExports.clear(); 901 DAG.setRoot(Root); 902 return Root; 903 } 904 905 void SelectionDAGBuilder::visit(const Instruction &I) { 906 // Set up outgoing PHI node register values before emitting the terminator. 907 if (isa<TerminatorInst>(&I)) 908 HandlePHINodesInSuccessorBlocks(I.getParent()); 909 910 ++SDNodeOrder; 911 912 CurInst = &I; 913 914 visit(I.getOpcode(), I); 915 916 if (!isa<TerminatorInst>(&I) && !HasTailCall && 917 !isStatepoint(&I)) // statepoints handle their exports internally 918 CopyToExportRegsIfNeeded(&I); 919 920 CurInst = nullptr; 921 } 922 923 void SelectionDAGBuilder::visitPHI(const PHINode &) { 924 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 925 } 926 927 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 928 // Note: this doesn't use InstVisitor, because it has to work with 929 // ConstantExpr's in addition to instructions. 930 switch (Opcode) { 931 default: llvm_unreachable("Unknown instruction type encountered!"); 932 // Build the switch statement using the Instruction.def file. 933 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 934 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 935 #include "llvm/IR/Instruction.def" 936 } 937 } 938 939 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 940 // generate the debug data structures now that we've seen its definition. 941 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 942 SDValue Val) { 943 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 944 if (DDI.getDI()) { 945 const DbgValueInst *DI = DDI.getDI(); 946 DebugLoc dl = DDI.getdl(); 947 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 948 DILocalVariable *Variable = DI->getVariable(); 949 DIExpression *Expr = DI->getExpression(); 950 assert(Variable->isValidLocationForIntrinsic(dl) && 951 "Expected inlined-at fields to agree"); 952 uint64_t Offset = DI->getOffset(); 953 // A dbg.value for an alloca is always indirect. 954 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 955 SDDbgValue *SDV; 956 if (Val.getNode()) { 957 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 958 Val)) { 959 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 960 IsIndirect, Offset, dl, DbgSDNodeOrder); 961 DAG.AddDbgValue(SDV, Val.getNode(), false); 962 } 963 } else 964 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 965 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 966 } 967 } 968 969 /// getCopyFromRegs - If there was virtual register allocated for the value V 970 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 971 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 972 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 973 SDValue Result; 974 975 if (It != FuncInfo.ValueMap.end()) { 976 unsigned InReg = It->second; 977 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 978 DAG.getDataLayout(), InReg, Ty); 979 SDValue Chain = DAG.getEntryNode(); 980 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 981 resolveDanglingDebugInfo(V, Result); 982 } 983 984 return Result; 985 } 986 987 /// getValue - Return an SDValue for the given Value. 988 SDValue SelectionDAGBuilder::getValue(const Value *V) { 989 // If we already have an SDValue for this value, use it. It's important 990 // to do this first, so that we don't create a CopyFromReg if we already 991 // have a regular SDValue. 992 SDValue &N = NodeMap[V]; 993 if (N.getNode()) return N; 994 995 // If there's a virtual register allocated and initialized for this 996 // value, use it. 997 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 998 if (copyFromReg.getNode()) { 999 return copyFromReg; 1000 } 1001 1002 // Otherwise create a new SDValue and remember it. 1003 SDValue Val = getValueImpl(V); 1004 NodeMap[V] = Val; 1005 resolveDanglingDebugInfo(V, Val); 1006 return Val; 1007 } 1008 1009 // Return true if SDValue exists for the given Value 1010 bool SelectionDAGBuilder::findValue(const Value *V) const { 1011 return (NodeMap.find(V) != NodeMap.end()) || 1012 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1013 } 1014 1015 /// getNonRegisterValue - Return an SDValue for the given Value, but 1016 /// don't look in FuncInfo.ValueMap for a virtual register. 1017 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1018 // If we already have an SDValue for this value, use it. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) { 1021 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1022 // Remove the debug location from the node as the node is about to be used 1023 // in a location which may differ from the original debug location. This 1024 // is relevant to Constant and ConstantFP nodes because they can appear 1025 // as constant expressions inside PHI nodes. 1026 N->setDebugLoc(DebugLoc()); 1027 } 1028 return N; 1029 } 1030 1031 // Otherwise create a new SDValue and remember it. 1032 SDValue Val = getValueImpl(V); 1033 NodeMap[V] = Val; 1034 resolveDanglingDebugInfo(V, Val); 1035 return Val; 1036 } 1037 1038 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1039 /// Create an SDValue for the given value. 1040 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1041 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1042 1043 if (const Constant *C = dyn_cast<Constant>(V)) { 1044 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1045 1046 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1047 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1048 1049 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1050 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1051 1052 if (isa<ConstantPointerNull>(C)) { 1053 unsigned AS = V->getType()->getPointerAddressSpace(); 1054 return DAG.getConstant(0, getCurSDLoc(), 1055 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1056 } 1057 1058 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1059 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1060 1061 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1062 return DAG.getUNDEF(VT); 1063 1064 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1065 visit(CE->getOpcode(), *CE); 1066 SDValue N1 = NodeMap[V]; 1067 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1068 return N1; 1069 } 1070 1071 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1072 SmallVector<SDValue, 4> Constants; 1073 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1074 OI != OE; ++OI) { 1075 SDNode *Val = getValue(*OI).getNode(); 1076 // If the operand is an empty aggregate, there are no values. 1077 if (!Val) continue; 1078 // Add each leaf value from the operand to the Constants list 1079 // to form a flattened list of all the values. 1080 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1081 Constants.push_back(SDValue(Val, i)); 1082 } 1083 1084 return DAG.getMergeValues(Constants, getCurSDLoc()); 1085 } 1086 1087 if (const ConstantDataSequential *CDS = 1088 dyn_cast<ConstantDataSequential>(C)) { 1089 SmallVector<SDValue, 4> Ops; 1090 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1091 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1092 // Add each leaf value from the operand to the Constants list 1093 // to form a flattened list of all the values. 1094 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1095 Ops.push_back(SDValue(Val, i)); 1096 } 1097 1098 if (isa<ArrayType>(CDS->getType())) 1099 return DAG.getMergeValues(Ops, getCurSDLoc()); 1100 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1101 VT, Ops); 1102 } 1103 1104 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1105 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1106 "Unknown struct or array constant!"); 1107 1108 SmallVector<EVT, 4> ValueVTs; 1109 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1110 unsigned NumElts = ValueVTs.size(); 1111 if (NumElts == 0) 1112 return SDValue(); // empty struct 1113 SmallVector<SDValue, 4> Constants(NumElts); 1114 for (unsigned i = 0; i != NumElts; ++i) { 1115 EVT EltVT = ValueVTs[i]; 1116 if (isa<UndefValue>(C)) 1117 Constants[i] = DAG.getUNDEF(EltVT); 1118 else if (EltVT.isFloatingPoint()) 1119 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1120 else 1121 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1122 } 1123 1124 return DAG.getMergeValues(Constants, getCurSDLoc()); 1125 } 1126 1127 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1128 return DAG.getBlockAddress(BA, VT); 1129 1130 VectorType *VecTy = cast<VectorType>(V->getType()); 1131 unsigned NumElements = VecTy->getNumElements(); 1132 1133 // Now that we know the number and type of the elements, get that number of 1134 // elements into the Ops array based on what kind of constant it is. 1135 SmallVector<SDValue, 16> Ops; 1136 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1137 for (unsigned i = 0; i != NumElements; ++i) 1138 Ops.push_back(getValue(CV->getOperand(i))); 1139 } else { 1140 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1141 EVT EltVT = 1142 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1143 1144 SDValue Op; 1145 if (EltVT.isFloatingPoint()) 1146 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1147 else 1148 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1149 Ops.assign(NumElements, Op); 1150 } 1151 1152 // Create a BUILD_VECTOR node. 1153 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1154 } 1155 1156 // If this is a static alloca, generate it as the frameindex instead of 1157 // computation. 1158 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1159 DenseMap<const AllocaInst*, int>::iterator SI = 1160 FuncInfo.StaticAllocaMap.find(AI); 1161 if (SI != FuncInfo.StaticAllocaMap.end()) 1162 return DAG.getFrameIndex(SI->second, 1163 TLI.getPointerTy(DAG.getDataLayout())); 1164 } 1165 1166 // If this is an instruction which fast-isel has deferred, select it now. 1167 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1168 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1169 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1170 Inst->getType()); 1171 SDValue Chain = DAG.getEntryNode(); 1172 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1173 } 1174 1175 llvm_unreachable("Can't get register for value!"); 1176 } 1177 1178 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1179 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1180 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1181 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1182 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1183 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1184 if (IsMSVCCXX || IsCoreCLR) 1185 CatchPadMBB->setIsEHFuncletEntry(); 1186 1187 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1188 } 1189 1190 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1191 // Update machine-CFG edge. 1192 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1193 FuncInfo.MBB->addSuccessor(TargetMBB); 1194 1195 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1196 bool IsSEH = isAsynchronousEHPersonality(Pers); 1197 if (IsSEH) { 1198 // If this is not a fall-through branch or optimizations are switched off, 1199 // emit the branch. 1200 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1201 TM.getOptLevel() == CodeGenOpt::None) 1202 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1203 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1204 return; 1205 } 1206 1207 // Figure out the funclet membership for the catchret's successor. 1208 // This will be used by the FuncletLayout pass to determine how to order the 1209 // BB's. 1210 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 1211 const BasicBlock *SuccessorColor = EHInfo->CatchRetSuccessorColorMap[&I]; 1212 assert(SuccessorColor && "No parent funclet for catchret!"); 1213 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1214 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1215 1216 // Create the terminator node. 1217 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1218 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1219 DAG.getBasicBlock(SuccessorColorMBB)); 1220 DAG.setRoot(Ret); 1221 } 1222 1223 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1224 // Don't emit any special code for the cleanuppad instruction. It just marks 1225 // the start of a funclet. 1226 FuncInfo.MBB->setIsEHFuncletEntry(); 1227 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1228 } 1229 1230 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1231 /// many places it could ultimately go. In the IR, we have a single unwind 1232 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1233 /// This function skips over imaginary basic blocks that hold catchswitch or 1234 /// terminatepad instructions, and finds all the "real" machine 1235 /// basic block destinations. As those destinations may not be successors of 1236 /// EHPadBB, here we also calculate the edge probability to those destinations. 1237 /// The passed-in Prob is the edge probability to EHPadBB. 1238 static void findUnwindDestinations( 1239 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1240 BranchProbability Prob, 1241 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1242 &UnwindDests) { 1243 EHPersonality Personality = 1244 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1245 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1246 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1247 1248 while (EHPadBB) { 1249 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1250 BasicBlock *NewEHPadBB = nullptr; 1251 if (isa<LandingPadInst>(Pad)) { 1252 // Stop on landingpads. They are not funclets. 1253 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1254 break; 1255 } else if (isa<CleanupPadInst>(Pad)) { 1256 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1257 // personalities. 1258 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1259 UnwindDests.back().first->setIsEHFuncletEntry(); 1260 break; 1261 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1262 // Add the catchpad handlers to the possible destinations. 1263 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1264 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1265 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1266 if (IsMSVCCXX || IsCoreCLR) 1267 UnwindDests.back().first->setIsEHFuncletEntry(); 1268 } 1269 NewEHPadBB = CatchSwitch->getUnwindDest(); 1270 } else { 1271 continue; 1272 } 1273 1274 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1275 if (BPI && NewEHPadBB) 1276 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1277 EHPadBB = NewEHPadBB; 1278 } 1279 } 1280 1281 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1282 // Update successor info. 1283 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1284 auto UnwindDest = I.getUnwindDest(); 1285 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1286 BranchProbability UnwindDestProb = 1287 (BPI && UnwindDest) 1288 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1289 : BranchProbability::getZero(); 1290 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1291 for (auto &UnwindDest : UnwindDests) { 1292 UnwindDest.first->setIsEHPad(); 1293 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1294 } 1295 FuncInfo.MBB->normalizeSuccProbs(); 1296 1297 // Create the terminator node. 1298 SDValue Ret = 1299 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1300 DAG.setRoot(Ret); 1301 } 1302 1303 void SelectionDAGBuilder::visitTerminatePad(const TerminatePadInst &TPI) { 1304 report_fatal_error("visitTerminatePad not yet implemented!"); 1305 } 1306 1307 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1308 report_fatal_error("visitCatchSwitch not yet implemented!"); 1309 } 1310 1311 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1312 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1313 auto &DL = DAG.getDataLayout(); 1314 SDValue Chain = getControlRoot(); 1315 SmallVector<ISD::OutputArg, 8> Outs; 1316 SmallVector<SDValue, 8> OutVals; 1317 1318 if (!FuncInfo.CanLowerReturn) { 1319 unsigned DemoteReg = FuncInfo.DemoteRegister; 1320 const Function *F = I.getParent()->getParent(); 1321 1322 // Emit a store of the return value through the virtual register. 1323 // Leave Outs empty so that LowerReturn won't try to load return 1324 // registers the usual way. 1325 SmallVector<EVT, 1> PtrValueVTs; 1326 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1327 PtrValueVTs); 1328 1329 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1330 DemoteReg, PtrValueVTs[0]); 1331 SDValue RetOp = getValue(I.getOperand(0)); 1332 1333 SmallVector<EVT, 4> ValueVTs; 1334 SmallVector<uint64_t, 4> Offsets; 1335 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1336 unsigned NumValues = ValueVTs.size(); 1337 1338 SmallVector<SDValue, 4> Chains(NumValues); 1339 for (unsigned i = 0; i != NumValues; ++i) { 1340 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1341 RetPtr.getValueType(), RetPtr, 1342 DAG.getIntPtrConstant(Offsets[i], 1343 getCurSDLoc())); 1344 Chains[i] = 1345 DAG.getStore(Chain, getCurSDLoc(), 1346 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1347 // FIXME: better loc info would be nice. 1348 Add, MachinePointerInfo(), false, false, 0); 1349 } 1350 1351 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1352 MVT::Other, Chains); 1353 } else if (I.getNumOperands() != 0) { 1354 SmallVector<EVT, 4> ValueVTs; 1355 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1356 unsigned NumValues = ValueVTs.size(); 1357 if (NumValues) { 1358 SDValue RetOp = getValue(I.getOperand(0)); 1359 1360 const Function *F = I.getParent()->getParent(); 1361 1362 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1363 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1364 Attribute::SExt)) 1365 ExtendKind = ISD::SIGN_EXTEND; 1366 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1367 Attribute::ZExt)) 1368 ExtendKind = ISD::ZERO_EXTEND; 1369 1370 LLVMContext &Context = F->getContext(); 1371 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1372 Attribute::InReg); 1373 1374 for (unsigned j = 0; j != NumValues; ++j) { 1375 EVT VT = ValueVTs[j]; 1376 1377 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1378 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1379 1380 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1381 MVT PartVT = TLI.getRegisterType(Context, VT); 1382 SmallVector<SDValue, 4> Parts(NumParts); 1383 getCopyToParts(DAG, getCurSDLoc(), 1384 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1385 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1386 1387 // 'inreg' on function refers to return value 1388 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1389 if (RetInReg) 1390 Flags.setInReg(); 1391 1392 // Propagate extension type if any 1393 if (ExtendKind == ISD::SIGN_EXTEND) 1394 Flags.setSExt(); 1395 else if (ExtendKind == ISD::ZERO_EXTEND) 1396 Flags.setZExt(); 1397 1398 for (unsigned i = 0; i < NumParts; ++i) { 1399 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1400 VT, /*isfixed=*/true, 0, 0)); 1401 OutVals.push_back(Parts[i]); 1402 } 1403 } 1404 } 1405 } 1406 1407 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1408 CallingConv::ID CallConv = 1409 DAG.getMachineFunction().getFunction()->getCallingConv(); 1410 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1411 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1412 1413 // Verify that the target's LowerReturn behaved as expected. 1414 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1415 "LowerReturn didn't return a valid chain!"); 1416 1417 // Update the DAG with the new chain value resulting from return lowering. 1418 DAG.setRoot(Chain); 1419 } 1420 1421 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1422 /// created for it, emit nodes to copy the value into the virtual 1423 /// registers. 1424 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1425 // Skip empty types 1426 if (V->getType()->isEmptyTy()) 1427 return; 1428 1429 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1430 if (VMI != FuncInfo.ValueMap.end()) { 1431 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1432 CopyValueToVirtualRegister(V, VMI->second); 1433 } 1434 } 1435 1436 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1437 /// the current basic block, add it to ValueMap now so that we'll get a 1438 /// CopyTo/FromReg. 1439 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1440 // No need to export constants. 1441 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1442 1443 // Already exported? 1444 if (FuncInfo.isExportedInst(V)) return; 1445 1446 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1447 CopyValueToVirtualRegister(V, Reg); 1448 } 1449 1450 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1451 const BasicBlock *FromBB) { 1452 // The operands of the setcc have to be in this block. We don't know 1453 // how to export them from some other block. 1454 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1455 // Can export from current BB. 1456 if (VI->getParent() == FromBB) 1457 return true; 1458 1459 // Is already exported, noop. 1460 return FuncInfo.isExportedInst(V); 1461 } 1462 1463 // If this is an argument, we can export it if the BB is the entry block or 1464 // if it is already exported. 1465 if (isa<Argument>(V)) { 1466 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1467 return true; 1468 1469 // Otherwise, can only export this if it is already exported. 1470 return FuncInfo.isExportedInst(V); 1471 } 1472 1473 // Otherwise, constants can always be exported. 1474 return true; 1475 } 1476 1477 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1478 BranchProbability 1479 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1480 const MachineBasicBlock *Dst) const { 1481 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1482 const BasicBlock *SrcBB = Src->getBasicBlock(); 1483 const BasicBlock *DstBB = Dst->getBasicBlock(); 1484 if (!BPI) { 1485 // If BPI is not available, set the default probability as 1 / N, where N is 1486 // the number of successors. 1487 auto SuccSize = std::max<uint32_t>( 1488 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1489 return BranchProbability(1, SuccSize); 1490 } 1491 return BPI->getEdgeProbability(SrcBB, DstBB); 1492 } 1493 1494 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1495 MachineBasicBlock *Dst, 1496 BranchProbability Prob) { 1497 if (!FuncInfo.BPI) 1498 Src->addSuccessorWithoutProb(Dst); 1499 else { 1500 if (Prob.isUnknown()) 1501 Prob = getEdgeProbability(Src, Dst); 1502 Src->addSuccessor(Dst, Prob); 1503 } 1504 } 1505 1506 static bool InBlock(const Value *V, const BasicBlock *BB) { 1507 if (const Instruction *I = dyn_cast<Instruction>(V)) 1508 return I->getParent() == BB; 1509 return true; 1510 } 1511 1512 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1513 /// This function emits a branch and is used at the leaves of an OR or an 1514 /// AND operator tree. 1515 /// 1516 void 1517 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1518 MachineBasicBlock *TBB, 1519 MachineBasicBlock *FBB, 1520 MachineBasicBlock *CurBB, 1521 MachineBasicBlock *SwitchBB, 1522 BranchProbability TProb, 1523 BranchProbability FProb) { 1524 const BasicBlock *BB = CurBB->getBasicBlock(); 1525 1526 // If the leaf of the tree is a comparison, merge the condition into 1527 // the caseblock. 1528 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1529 // The operands of the cmp have to be in this block. We don't know 1530 // how to export them from some other block. If this is the first block 1531 // of the sequence, no exporting is needed. 1532 if (CurBB == SwitchBB || 1533 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1534 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1535 ISD::CondCode Condition; 1536 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1537 Condition = getICmpCondCode(IC->getPredicate()); 1538 } else { 1539 const FCmpInst *FC = cast<FCmpInst>(Cond); 1540 Condition = getFCmpCondCode(FC->getPredicate()); 1541 if (TM.Options.NoNaNsFPMath) 1542 Condition = getFCmpCodeWithoutNaN(Condition); 1543 } 1544 1545 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1546 TBB, FBB, CurBB, TProb, FProb); 1547 SwitchCases.push_back(CB); 1548 return; 1549 } 1550 } 1551 1552 // Create a CaseBlock record representing this branch. 1553 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1554 nullptr, TBB, FBB, CurBB, TProb, FProb); 1555 SwitchCases.push_back(CB); 1556 } 1557 1558 /// FindMergedConditions - If Cond is an expression like 1559 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1560 MachineBasicBlock *TBB, 1561 MachineBasicBlock *FBB, 1562 MachineBasicBlock *CurBB, 1563 MachineBasicBlock *SwitchBB, 1564 Instruction::BinaryOps Opc, 1565 BranchProbability TProb, 1566 BranchProbability FProb) { 1567 // If this node is not part of the or/and tree, emit it as a branch. 1568 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1569 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1570 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1571 BOp->getParent() != CurBB->getBasicBlock() || 1572 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1573 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1574 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1575 TProb, FProb); 1576 return; 1577 } 1578 1579 // Create TmpBB after CurBB. 1580 MachineFunction::iterator BBI(CurBB); 1581 MachineFunction &MF = DAG.getMachineFunction(); 1582 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1583 CurBB->getParent()->insert(++BBI, TmpBB); 1584 1585 if (Opc == Instruction::Or) { 1586 // Codegen X | Y as: 1587 // BB1: 1588 // jmp_if_X TBB 1589 // jmp TmpBB 1590 // TmpBB: 1591 // jmp_if_Y TBB 1592 // jmp FBB 1593 // 1594 1595 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1596 // The requirement is that 1597 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1598 // = TrueProb for original BB. 1599 // Assuming the original probabilities are A and B, one choice is to set 1600 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1601 // A/(1+B) and 2B/(1+B). This choice assumes that 1602 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1603 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1604 // TmpBB, but the math is more complicated. 1605 1606 auto NewTrueProb = TProb / 2; 1607 auto NewFalseProb = TProb / 2 + FProb; 1608 // Emit the LHS condition. 1609 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1610 NewTrueProb, NewFalseProb); 1611 1612 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1613 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1614 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1615 // Emit the RHS condition into TmpBB. 1616 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1617 Probs[0], Probs[1]); 1618 } else { 1619 assert(Opc == Instruction::And && "Unknown merge op!"); 1620 // Codegen X & Y as: 1621 // BB1: 1622 // jmp_if_X TmpBB 1623 // jmp FBB 1624 // TmpBB: 1625 // jmp_if_Y TBB 1626 // jmp FBB 1627 // 1628 // This requires creation of TmpBB after CurBB. 1629 1630 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1631 // The requirement is that 1632 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1633 // = FalseProb for original BB. 1634 // Assuming the original probabilities are A and B, one choice is to set 1635 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1636 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1637 // TrueProb for BB1 * FalseProb for TmpBB. 1638 1639 auto NewTrueProb = TProb + FProb / 2; 1640 auto NewFalseProb = FProb / 2; 1641 // Emit the LHS condition. 1642 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1643 NewTrueProb, NewFalseProb); 1644 1645 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1646 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1647 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1648 // Emit the RHS condition into TmpBB. 1649 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1650 Probs[0], Probs[1]); 1651 } 1652 } 1653 1654 /// If the set of cases should be emitted as a series of branches, return true. 1655 /// If we should emit this as a bunch of and/or'd together conditions, return 1656 /// false. 1657 bool 1658 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1659 if (Cases.size() != 2) return true; 1660 1661 // If this is two comparisons of the same values or'd or and'd together, they 1662 // will get folded into a single comparison, so don't emit two blocks. 1663 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1664 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1665 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1666 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1667 return false; 1668 } 1669 1670 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1671 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1672 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1673 Cases[0].CC == Cases[1].CC && 1674 isa<Constant>(Cases[0].CmpRHS) && 1675 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1676 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1677 return false; 1678 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1679 return false; 1680 } 1681 1682 return true; 1683 } 1684 1685 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1686 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1687 1688 // Update machine-CFG edges. 1689 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1690 1691 if (I.isUnconditional()) { 1692 // Update machine-CFG edges. 1693 BrMBB->addSuccessor(Succ0MBB); 1694 1695 // If this is not a fall-through branch or optimizations are switched off, 1696 // emit the branch. 1697 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1698 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1699 MVT::Other, getControlRoot(), 1700 DAG.getBasicBlock(Succ0MBB))); 1701 1702 return; 1703 } 1704 1705 // If this condition is one of the special cases we handle, do special stuff 1706 // now. 1707 const Value *CondVal = I.getCondition(); 1708 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1709 1710 // If this is a series of conditions that are or'd or and'd together, emit 1711 // this as a sequence of branches instead of setcc's with and/or operations. 1712 // As long as jumps are not expensive, this should improve performance. 1713 // For example, instead of something like: 1714 // cmp A, B 1715 // C = seteq 1716 // cmp D, E 1717 // F = setle 1718 // or C, F 1719 // jnz foo 1720 // Emit: 1721 // cmp A, B 1722 // je foo 1723 // cmp D, E 1724 // jle foo 1725 // 1726 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1727 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1728 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1729 !I.getMetadata(LLVMContext::MD_unpredictable) && 1730 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1731 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1732 Opcode, 1733 getEdgeProbability(BrMBB, Succ0MBB), 1734 getEdgeProbability(BrMBB, Succ1MBB)); 1735 // If the compares in later blocks need to use values not currently 1736 // exported from this block, export them now. This block should always 1737 // be the first entry. 1738 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1739 1740 // Allow some cases to be rejected. 1741 if (ShouldEmitAsBranches(SwitchCases)) { 1742 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1743 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1744 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1745 } 1746 1747 // Emit the branch for this block. 1748 visitSwitchCase(SwitchCases[0], BrMBB); 1749 SwitchCases.erase(SwitchCases.begin()); 1750 return; 1751 } 1752 1753 // Okay, we decided not to do this, remove any inserted MBB's and clear 1754 // SwitchCases. 1755 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1756 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1757 1758 SwitchCases.clear(); 1759 } 1760 } 1761 1762 // Create a CaseBlock record representing this branch. 1763 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1764 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1765 1766 // Use visitSwitchCase to actually insert the fast branch sequence for this 1767 // cond branch. 1768 visitSwitchCase(CB, BrMBB); 1769 } 1770 1771 /// visitSwitchCase - Emits the necessary code to represent a single node in 1772 /// the binary search tree resulting from lowering a switch instruction. 1773 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1774 MachineBasicBlock *SwitchBB) { 1775 SDValue Cond; 1776 SDValue CondLHS = getValue(CB.CmpLHS); 1777 SDLoc dl = getCurSDLoc(); 1778 1779 // Build the setcc now. 1780 if (!CB.CmpMHS) { 1781 // Fold "(X == true)" to X and "(X == false)" to !X to 1782 // handle common cases produced by branch lowering. 1783 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1784 CB.CC == ISD::SETEQ) 1785 Cond = CondLHS; 1786 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1787 CB.CC == ISD::SETEQ) { 1788 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1789 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1790 } else 1791 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1792 } else { 1793 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1794 1795 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1796 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1797 1798 SDValue CmpOp = getValue(CB.CmpMHS); 1799 EVT VT = CmpOp.getValueType(); 1800 1801 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1802 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1803 ISD::SETLE); 1804 } else { 1805 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1806 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1807 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1808 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1809 } 1810 } 1811 1812 // Update successor info 1813 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1814 // TrueBB and FalseBB are always different unless the incoming IR is 1815 // degenerate. This only happens when running llc on weird IR. 1816 if (CB.TrueBB != CB.FalseBB) 1817 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1818 SwitchBB->normalizeSuccProbs(); 1819 1820 // If the lhs block is the next block, invert the condition so that we can 1821 // fall through to the lhs instead of the rhs block. 1822 if (CB.TrueBB == NextBlock(SwitchBB)) { 1823 std::swap(CB.TrueBB, CB.FalseBB); 1824 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1825 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1826 } 1827 1828 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1829 MVT::Other, getControlRoot(), Cond, 1830 DAG.getBasicBlock(CB.TrueBB)); 1831 1832 // Insert the false branch. Do this even if it's a fall through branch, 1833 // this makes it easier to do DAG optimizations which require inverting 1834 // the branch condition. 1835 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1836 DAG.getBasicBlock(CB.FalseBB)); 1837 1838 DAG.setRoot(BrCond); 1839 } 1840 1841 /// visitJumpTable - Emit JumpTable node in the current MBB 1842 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1843 // Emit the code for the jump table 1844 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1845 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1846 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1847 JT.Reg, PTy); 1848 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1849 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1850 MVT::Other, Index.getValue(1), 1851 Table, Index); 1852 DAG.setRoot(BrJumpTable); 1853 } 1854 1855 /// visitJumpTableHeader - This function emits necessary code to produce index 1856 /// in the JumpTable from switch case. 1857 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1858 JumpTableHeader &JTH, 1859 MachineBasicBlock *SwitchBB) { 1860 SDLoc dl = getCurSDLoc(); 1861 1862 // Subtract the lowest switch case value from the value being switched on and 1863 // conditional branch to default mbb if the result is greater than the 1864 // difference between smallest and largest cases. 1865 SDValue SwitchOp = getValue(JTH.SValue); 1866 EVT VT = SwitchOp.getValueType(); 1867 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1868 DAG.getConstant(JTH.First, dl, VT)); 1869 1870 // The SDNode we just created, which holds the value being switched on minus 1871 // the smallest case value, needs to be copied to a virtual register so it 1872 // can be used as an index into the jump table in a subsequent basic block. 1873 // This value may be smaller or larger than the target's pointer type, and 1874 // therefore require extension or truncating. 1875 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1876 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1877 1878 unsigned JumpTableReg = 1879 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1880 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1881 JumpTableReg, SwitchOp); 1882 JT.Reg = JumpTableReg; 1883 1884 // Emit the range check for the jump table, and branch to the default block 1885 // for the switch statement if the value being switched on exceeds the largest 1886 // case in the switch. 1887 SDValue CMP = DAG.getSetCC( 1888 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1889 Sub.getValueType()), 1890 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1891 1892 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1893 MVT::Other, CopyTo, CMP, 1894 DAG.getBasicBlock(JT.Default)); 1895 1896 // Avoid emitting unnecessary branches to the next block. 1897 if (JT.MBB != NextBlock(SwitchBB)) 1898 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1899 DAG.getBasicBlock(JT.MBB)); 1900 1901 DAG.setRoot(BrCond); 1902 } 1903 1904 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1905 /// tail spliced into a stack protector check success bb. 1906 /// 1907 /// For a high level explanation of how this fits into the stack protector 1908 /// generation see the comment on the declaration of class 1909 /// StackProtectorDescriptor. 1910 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1911 MachineBasicBlock *ParentBB) { 1912 1913 // First create the loads to the guard/stack slot for the comparison. 1914 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1915 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1916 1917 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1918 int FI = MFI->getStackProtectorIndex(); 1919 1920 const Value *IRGuard = SPD.getGuard(); 1921 SDValue GuardPtr = getValue(IRGuard); 1922 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1923 1924 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1925 1926 SDValue Guard; 1927 SDLoc dl = getCurSDLoc(); 1928 1929 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1930 // guard value from the virtual register holding the value. Otherwise, emit a 1931 // volatile load to retrieve the stack guard value. 1932 unsigned GuardReg = SPD.getGuardReg(); 1933 1934 if (GuardReg && TLI.useLoadStackGuardNode()) 1935 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1936 PtrTy); 1937 else 1938 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1939 GuardPtr, MachinePointerInfo(IRGuard, 0), 1940 true, false, false, Align); 1941 1942 SDValue StackSlot = DAG.getLoad( 1943 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1944 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1945 false, false, Align); 1946 1947 // Perform the comparison via a subtract/getsetcc. 1948 EVT VT = Guard.getValueType(); 1949 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1950 1951 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1952 *DAG.getContext(), 1953 Sub.getValueType()), 1954 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1955 1956 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1957 // branch to failure MBB. 1958 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1959 MVT::Other, StackSlot.getOperand(0), 1960 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1961 // Otherwise branch to success MBB. 1962 SDValue Br = DAG.getNode(ISD::BR, dl, 1963 MVT::Other, BrCond, 1964 DAG.getBasicBlock(SPD.getSuccessMBB())); 1965 1966 DAG.setRoot(Br); 1967 } 1968 1969 /// Codegen the failure basic block for a stack protector check. 1970 /// 1971 /// A failure stack protector machine basic block consists simply of a call to 1972 /// __stack_chk_fail(). 1973 /// 1974 /// For a high level explanation of how this fits into the stack protector 1975 /// generation see the comment on the declaration of class 1976 /// StackProtectorDescriptor. 1977 void 1978 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1979 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1980 SDValue Chain = 1981 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1982 None, false, getCurSDLoc(), false, false).second; 1983 DAG.setRoot(Chain); 1984 } 1985 1986 /// visitBitTestHeader - This function emits necessary code to produce value 1987 /// suitable for "bit tests" 1988 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1989 MachineBasicBlock *SwitchBB) { 1990 SDLoc dl = getCurSDLoc(); 1991 1992 // Subtract the minimum value 1993 SDValue SwitchOp = getValue(B.SValue); 1994 EVT VT = SwitchOp.getValueType(); 1995 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1996 DAG.getConstant(B.First, dl, VT)); 1997 1998 // Check range 1999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2000 SDValue RangeCmp = DAG.getSetCC( 2001 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2002 Sub.getValueType()), 2003 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2004 2005 // Determine the type of the test operands. 2006 bool UsePtrType = false; 2007 if (!TLI.isTypeLegal(VT)) 2008 UsePtrType = true; 2009 else { 2010 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2011 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2012 // Switch table case range are encoded into series of masks. 2013 // Just use pointer type, it's guaranteed to fit. 2014 UsePtrType = true; 2015 break; 2016 } 2017 } 2018 if (UsePtrType) { 2019 VT = TLI.getPointerTy(DAG.getDataLayout()); 2020 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2021 } 2022 2023 B.RegVT = VT.getSimpleVT(); 2024 B.Reg = FuncInfo.CreateReg(B.RegVT); 2025 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2026 2027 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2028 2029 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2030 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2031 SwitchBB->normalizeSuccProbs(); 2032 2033 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2034 MVT::Other, CopyTo, RangeCmp, 2035 DAG.getBasicBlock(B.Default)); 2036 2037 // Avoid emitting unnecessary branches to the next block. 2038 if (MBB != NextBlock(SwitchBB)) 2039 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2040 DAG.getBasicBlock(MBB)); 2041 2042 DAG.setRoot(BrRange); 2043 } 2044 2045 /// visitBitTestCase - this function produces one "bit test" 2046 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2047 MachineBasicBlock* NextMBB, 2048 BranchProbability BranchProbToNext, 2049 unsigned Reg, 2050 BitTestCase &B, 2051 MachineBasicBlock *SwitchBB) { 2052 SDLoc dl = getCurSDLoc(); 2053 MVT VT = BB.RegVT; 2054 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2055 SDValue Cmp; 2056 unsigned PopCount = countPopulation(B.Mask); 2057 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2058 if (PopCount == 1) { 2059 // Testing for a single bit; just compare the shift count with what it 2060 // would need to be to shift a 1 bit in that position. 2061 Cmp = DAG.getSetCC( 2062 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2063 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2064 ISD::SETEQ); 2065 } else if (PopCount == BB.Range) { 2066 // There is only one zero bit in the range, test for it directly. 2067 Cmp = DAG.getSetCC( 2068 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2069 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2070 ISD::SETNE); 2071 } else { 2072 // Make desired shift 2073 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2074 DAG.getConstant(1, dl, VT), ShiftOp); 2075 2076 // Emit bit tests and jumps 2077 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2078 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2079 Cmp = DAG.getSetCC( 2080 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2081 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2082 } 2083 2084 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2085 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2086 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2087 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2088 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2089 // one as they are relative probabilities (and thus work more like weights), 2090 // and hence we need to normalize them to let the sum of them become one. 2091 SwitchBB->normalizeSuccProbs(); 2092 2093 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2094 MVT::Other, getControlRoot(), 2095 Cmp, DAG.getBasicBlock(B.TargetBB)); 2096 2097 // Avoid emitting unnecessary branches to the next block. 2098 if (NextMBB != NextBlock(SwitchBB)) 2099 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2100 DAG.getBasicBlock(NextMBB)); 2101 2102 DAG.setRoot(BrAnd); 2103 } 2104 2105 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2106 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2107 2108 // Retrieve successors. Look through artificial IR level blocks like 2109 // catchswitch for successors. 2110 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2111 const BasicBlock *EHPadBB = I.getSuccessor(1); 2112 2113 const Value *Callee(I.getCalledValue()); 2114 const Function *Fn = dyn_cast<Function>(Callee); 2115 if (isa<InlineAsm>(Callee)) 2116 visitInlineAsm(&I); 2117 else if (Fn && Fn->isIntrinsic()) { 2118 switch (Fn->getIntrinsicID()) { 2119 default: 2120 llvm_unreachable("Cannot invoke this intrinsic"); 2121 case Intrinsic::donothing: 2122 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2123 break; 2124 case Intrinsic::experimental_patchpoint_void: 2125 case Intrinsic::experimental_patchpoint_i64: 2126 visitPatchpoint(&I, EHPadBB); 2127 break; 2128 case Intrinsic::experimental_gc_statepoint: 2129 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2130 break; 2131 } 2132 } else 2133 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2134 2135 // If the value of the invoke is used outside of its defining block, make it 2136 // available as a virtual register. 2137 // We already took care of the exported value for the statepoint instruction 2138 // during call to the LowerStatepoint. 2139 if (!isStatepoint(I)) { 2140 CopyToExportRegsIfNeeded(&I); 2141 } 2142 2143 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2144 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2145 BranchProbability EHPadBBProb = 2146 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2147 : BranchProbability::getZero(); 2148 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2149 2150 // Update successor info. 2151 addSuccessorWithProb(InvokeMBB, Return); 2152 for (auto &UnwindDest : UnwindDests) { 2153 UnwindDest.first->setIsEHPad(); 2154 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2155 } 2156 InvokeMBB->normalizeSuccProbs(); 2157 2158 // Drop into normal successor. 2159 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2160 MVT::Other, getControlRoot(), 2161 DAG.getBasicBlock(Return))); 2162 } 2163 2164 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2165 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2166 } 2167 2168 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2169 assert(FuncInfo.MBB->isEHPad() && 2170 "Call to landingpad not in landing pad!"); 2171 2172 MachineBasicBlock *MBB = FuncInfo.MBB; 2173 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2174 AddLandingPadInfo(LP, MMI, MBB); 2175 2176 // If there aren't registers to copy the values into (e.g., during SjLj 2177 // exceptions), then don't bother to create these DAG nodes. 2178 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2179 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2180 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2181 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2182 return; 2183 2184 SmallVector<EVT, 2> ValueVTs; 2185 SDLoc dl = getCurSDLoc(); 2186 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2187 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2188 2189 // Get the two live-in registers as SDValues. The physregs have already been 2190 // copied into virtual registers. 2191 SDValue Ops[2]; 2192 if (FuncInfo.ExceptionPointerVirtReg) { 2193 Ops[0] = DAG.getZExtOrTrunc( 2194 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2195 FuncInfo.ExceptionPointerVirtReg, 2196 TLI.getPointerTy(DAG.getDataLayout())), 2197 dl, ValueVTs[0]); 2198 } else { 2199 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2200 } 2201 Ops[1] = DAG.getZExtOrTrunc( 2202 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2203 FuncInfo.ExceptionSelectorVirtReg, 2204 TLI.getPointerTy(DAG.getDataLayout())), 2205 dl, ValueVTs[1]); 2206 2207 // Merge into one. 2208 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2209 DAG.getVTList(ValueVTs), Ops); 2210 setValue(&LP, Res); 2211 } 2212 2213 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2214 #ifndef NDEBUG 2215 for (const CaseCluster &CC : Clusters) 2216 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2217 #endif 2218 2219 std::sort(Clusters.begin(), Clusters.end(), 2220 [](const CaseCluster &a, const CaseCluster &b) { 2221 return a.Low->getValue().slt(b.Low->getValue()); 2222 }); 2223 2224 // Merge adjacent clusters with the same destination. 2225 const unsigned N = Clusters.size(); 2226 unsigned DstIndex = 0; 2227 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2228 CaseCluster &CC = Clusters[SrcIndex]; 2229 const ConstantInt *CaseVal = CC.Low; 2230 MachineBasicBlock *Succ = CC.MBB; 2231 2232 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2233 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2234 // If this case has the same successor and is a neighbour, merge it into 2235 // the previous cluster. 2236 Clusters[DstIndex - 1].High = CaseVal; 2237 Clusters[DstIndex - 1].Prob += CC.Prob; 2238 } else { 2239 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2240 sizeof(Clusters[SrcIndex])); 2241 } 2242 } 2243 Clusters.resize(DstIndex); 2244 } 2245 2246 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2247 MachineBasicBlock *Last) { 2248 // Update JTCases. 2249 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2250 if (JTCases[i].first.HeaderBB == First) 2251 JTCases[i].first.HeaderBB = Last; 2252 2253 // Update BitTestCases. 2254 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2255 if (BitTestCases[i].Parent == First) 2256 BitTestCases[i].Parent = Last; 2257 } 2258 2259 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2260 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2261 2262 // Update machine-CFG edges with unique successors. 2263 SmallSet<BasicBlock*, 32> Done; 2264 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2265 BasicBlock *BB = I.getSuccessor(i); 2266 bool Inserted = Done.insert(BB).second; 2267 if (!Inserted) 2268 continue; 2269 2270 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2271 addSuccessorWithProb(IndirectBrMBB, Succ); 2272 } 2273 2274 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2275 MVT::Other, getControlRoot(), 2276 getValue(I.getAddress()))); 2277 } 2278 2279 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2280 if (DAG.getTarget().Options.TrapUnreachable) 2281 DAG.setRoot( 2282 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2283 } 2284 2285 void SelectionDAGBuilder::visitFSub(const User &I) { 2286 // -0.0 - X --> fneg 2287 Type *Ty = I.getType(); 2288 if (isa<Constant>(I.getOperand(0)) && 2289 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2290 SDValue Op2 = getValue(I.getOperand(1)); 2291 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2292 Op2.getValueType(), Op2)); 2293 return; 2294 } 2295 2296 visitBinary(I, ISD::FSUB); 2297 } 2298 2299 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2300 SDValue Op1 = getValue(I.getOperand(0)); 2301 SDValue Op2 = getValue(I.getOperand(1)); 2302 2303 bool nuw = false; 2304 bool nsw = false; 2305 bool exact = false; 2306 FastMathFlags FMF; 2307 2308 if (const OverflowingBinaryOperator *OFBinOp = 2309 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2310 nuw = OFBinOp->hasNoUnsignedWrap(); 2311 nsw = OFBinOp->hasNoSignedWrap(); 2312 } 2313 if (const PossiblyExactOperator *ExactOp = 2314 dyn_cast<const PossiblyExactOperator>(&I)) 2315 exact = ExactOp->isExact(); 2316 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2317 FMF = FPOp->getFastMathFlags(); 2318 2319 SDNodeFlags Flags; 2320 Flags.setExact(exact); 2321 Flags.setNoSignedWrap(nsw); 2322 Flags.setNoUnsignedWrap(nuw); 2323 if (EnableFMFInDAG) { 2324 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2325 Flags.setNoInfs(FMF.noInfs()); 2326 Flags.setNoNaNs(FMF.noNaNs()); 2327 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2328 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2329 } 2330 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2331 Op1, Op2, &Flags); 2332 setValue(&I, BinNodeValue); 2333 } 2334 2335 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2336 SDValue Op1 = getValue(I.getOperand(0)); 2337 SDValue Op2 = getValue(I.getOperand(1)); 2338 2339 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2340 Op2.getValueType(), DAG.getDataLayout()); 2341 2342 // Coerce the shift amount to the right type if we can. 2343 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2344 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2345 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2346 SDLoc DL = getCurSDLoc(); 2347 2348 // If the operand is smaller than the shift count type, promote it. 2349 if (ShiftSize > Op2Size) 2350 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2351 2352 // If the operand is larger than the shift count type but the shift 2353 // count type has enough bits to represent any shift value, truncate 2354 // it now. This is a common case and it exposes the truncate to 2355 // optimization early. 2356 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2357 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2358 // Otherwise we'll need to temporarily settle for some other convenient 2359 // type. Type legalization will make adjustments once the shiftee is split. 2360 else 2361 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2362 } 2363 2364 bool nuw = false; 2365 bool nsw = false; 2366 bool exact = false; 2367 2368 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2369 2370 if (const OverflowingBinaryOperator *OFBinOp = 2371 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2372 nuw = OFBinOp->hasNoUnsignedWrap(); 2373 nsw = OFBinOp->hasNoSignedWrap(); 2374 } 2375 if (const PossiblyExactOperator *ExactOp = 2376 dyn_cast<const PossiblyExactOperator>(&I)) 2377 exact = ExactOp->isExact(); 2378 } 2379 SDNodeFlags Flags; 2380 Flags.setExact(exact); 2381 Flags.setNoSignedWrap(nsw); 2382 Flags.setNoUnsignedWrap(nuw); 2383 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2384 &Flags); 2385 setValue(&I, Res); 2386 } 2387 2388 void SelectionDAGBuilder::visitSDiv(const User &I) { 2389 SDValue Op1 = getValue(I.getOperand(0)); 2390 SDValue Op2 = getValue(I.getOperand(1)); 2391 2392 SDNodeFlags Flags; 2393 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2394 cast<PossiblyExactOperator>(&I)->isExact()); 2395 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2396 Op2, &Flags)); 2397 } 2398 2399 void SelectionDAGBuilder::visitICmp(const User &I) { 2400 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2401 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2402 predicate = IC->getPredicate(); 2403 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2404 predicate = ICmpInst::Predicate(IC->getPredicate()); 2405 SDValue Op1 = getValue(I.getOperand(0)); 2406 SDValue Op2 = getValue(I.getOperand(1)); 2407 ISD::CondCode Opcode = getICmpCondCode(predicate); 2408 2409 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2410 I.getType()); 2411 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2412 } 2413 2414 void SelectionDAGBuilder::visitFCmp(const User &I) { 2415 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2416 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2417 predicate = FC->getPredicate(); 2418 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2419 predicate = FCmpInst::Predicate(FC->getPredicate()); 2420 SDValue Op1 = getValue(I.getOperand(0)); 2421 SDValue Op2 = getValue(I.getOperand(1)); 2422 ISD::CondCode Condition = getFCmpCondCode(predicate); 2423 2424 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2425 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2426 // further optimization, but currently FMF is only applicable to binary nodes. 2427 if (TM.Options.NoNaNsFPMath) 2428 Condition = getFCmpCodeWithoutNaN(Condition); 2429 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2430 I.getType()); 2431 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2432 } 2433 2434 void SelectionDAGBuilder::visitSelect(const User &I) { 2435 SmallVector<EVT, 4> ValueVTs; 2436 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2437 ValueVTs); 2438 unsigned NumValues = ValueVTs.size(); 2439 if (NumValues == 0) return; 2440 2441 SmallVector<SDValue, 4> Values(NumValues); 2442 SDValue Cond = getValue(I.getOperand(0)); 2443 SDValue LHSVal = getValue(I.getOperand(1)); 2444 SDValue RHSVal = getValue(I.getOperand(2)); 2445 auto BaseOps = {Cond}; 2446 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2447 ISD::VSELECT : ISD::SELECT; 2448 2449 // Min/max matching is only viable if all output VTs are the same. 2450 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2451 EVT VT = ValueVTs[0]; 2452 LLVMContext &Ctx = *DAG.getContext(); 2453 auto &TLI = DAG.getTargetLoweringInfo(); 2454 2455 // We care about the legality of the operation after it has been type 2456 // legalized. 2457 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 2458 VT = TLI.getTypeToTransformTo(Ctx, VT); 2459 2460 // If the vselect is legal, assume we want to leave this as a vector setcc + 2461 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2462 // min/max is legal on the scalar type. 2463 bool UseScalarMinMax = VT.isVector() && 2464 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2465 2466 Value *LHS, *RHS; 2467 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2468 ISD::NodeType Opc = ISD::DELETED_NODE; 2469 switch (SPR.Flavor) { 2470 case SPF_UMAX: Opc = ISD::UMAX; break; 2471 case SPF_UMIN: Opc = ISD::UMIN; break; 2472 case SPF_SMAX: Opc = ISD::SMAX; break; 2473 case SPF_SMIN: Opc = ISD::SMIN; break; 2474 case SPF_FMINNUM: 2475 switch (SPR.NaNBehavior) { 2476 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2477 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2478 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2479 case SPNB_RETURNS_ANY: { 2480 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2481 Opc = ISD::FMINNUM; 2482 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2483 Opc = ISD::FMINNAN; 2484 else if (UseScalarMinMax) 2485 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2486 ISD::FMINNUM : ISD::FMINNAN; 2487 break; 2488 } 2489 } 2490 break; 2491 case SPF_FMAXNUM: 2492 switch (SPR.NaNBehavior) { 2493 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2494 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2495 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2496 case SPNB_RETURNS_ANY: 2497 2498 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2499 Opc = ISD::FMAXNUM; 2500 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2501 Opc = ISD::FMAXNAN; 2502 else if (UseScalarMinMax) 2503 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2504 ISD::FMAXNUM : ISD::FMAXNAN; 2505 break; 2506 } 2507 break; 2508 default: break; 2509 } 2510 2511 if (Opc != ISD::DELETED_NODE && 2512 (TLI.isOperationLegalOrCustom(Opc, VT) || 2513 (UseScalarMinMax && 2514 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2515 // If the underlying comparison instruction is used by any other 2516 // instruction, the consumed instructions won't be destroyed, so it is 2517 // not profitable to convert to a min/max. 2518 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2519 OpCode = Opc; 2520 LHSVal = getValue(LHS); 2521 RHSVal = getValue(RHS); 2522 BaseOps = {}; 2523 } 2524 } 2525 2526 for (unsigned i = 0; i != NumValues; ++i) { 2527 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2528 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2529 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2530 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2531 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2532 Ops); 2533 } 2534 2535 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2536 DAG.getVTList(ValueVTs), Values)); 2537 } 2538 2539 void SelectionDAGBuilder::visitTrunc(const User &I) { 2540 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2541 SDValue N = getValue(I.getOperand(0)); 2542 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2543 I.getType()); 2544 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2545 } 2546 2547 void SelectionDAGBuilder::visitZExt(const User &I) { 2548 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2549 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2550 SDValue N = getValue(I.getOperand(0)); 2551 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2552 I.getType()); 2553 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2554 } 2555 2556 void SelectionDAGBuilder::visitSExt(const User &I) { 2557 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2558 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2559 SDValue N = getValue(I.getOperand(0)); 2560 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2561 I.getType()); 2562 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2563 } 2564 2565 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2566 // FPTrunc is never a no-op cast, no need to check 2567 SDValue N = getValue(I.getOperand(0)); 2568 SDLoc dl = getCurSDLoc(); 2569 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2570 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2571 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2572 DAG.getTargetConstant( 2573 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2574 } 2575 2576 void SelectionDAGBuilder::visitFPExt(const User &I) { 2577 // FPExt is never a no-op cast, no need to check 2578 SDValue N = getValue(I.getOperand(0)); 2579 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2580 I.getType()); 2581 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2582 } 2583 2584 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2585 // FPToUI is never a no-op cast, no need to check 2586 SDValue N = getValue(I.getOperand(0)); 2587 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2588 I.getType()); 2589 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2590 } 2591 2592 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2593 // FPToSI is never a no-op cast, no need to check 2594 SDValue N = getValue(I.getOperand(0)); 2595 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2596 I.getType()); 2597 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2598 } 2599 2600 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2601 // UIToFP is never a no-op cast, no need to check 2602 SDValue N = getValue(I.getOperand(0)); 2603 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2604 I.getType()); 2605 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2606 } 2607 2608 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2609 // SIToFP is never a no-op cast, no need to check 2610 SDValue N = getValue(I.getOperand(0)); 2611 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2612 I.getType()); 2613 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2614 } 2615 2616 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2617 // What to do depends on the size of the integer and the size of the pointer. 2618 // We can either truncate, zero extend, or no-op, accordingly. 2619 SDValue N = getValue(I.getOperand(0)); 2620 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2621 I.getType()); 2622 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2623 } 2624 2625 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2626 // What to do depends on the size of the integer and the size of the pointer. 2627 // We can either truncate, zero extend, or no-op, accordingly. 2628 SDValue N = getValue(I.getOperand(0)); 2629 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2630 I.getType()); 2631 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2632 } 2633 2634 void SelectionDAGBuilder::visitBitCast(const User &I) { 2635 SDValue N = getValue(I.getOperand(0)); 2636 SDLoc dl = getCurSDLoc(); 2637 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2638 I.getType()); 2639 2640 // BitCast assures us that source and destination are the same size so this is 2641 // either a BITCAST or a no-op. 2642 if (DestVT != N.getValueType()) 2643 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2644 DestVT, N)); // convert types. 2645 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2646 // might fold any kind of constant expression to an integer constant and that 2647 // is not what we are looking for. Only regcognize a bitcast of a genuine 2648 // constant integer as an opaque constant. 2649 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2650 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2651 /*isOpaque*/true)); 2652 else 2653 setValue(&I, N); // noop cast. 2654 } 2655 2656 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2658 const Value *SV = I.getOperand(0); 2659 SDValue N = getValue(SV); 2660 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2661 2662 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2663 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2664 2665 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2666 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2667 2668 setValue(&I, N); 2669 } 2670 2671 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2672 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2673 SDValue InVec = getValue(I.getOperand(0)); 2674 SDValue InVal = getValue(I.getOperand(1)); 2675 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2676 TLI.getVectorIdxTy(DAG.getDataLayout())); 2677 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2678 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2679 InVec, InVal, InIdx)); 2680 } 2681 2682 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2684 SDValue InVec = getValue(I.getOperand(0)); 2685 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2686 TLI.getVectorIdxTy(DAG.getDataLayout())); 2687 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2688 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2689 InVec, InIdx)); 2690 } 2691 2692 // Utility for visitShuffleVector - Return true if every element in Mask, 2693 // beginning from position Pos and ending in Pos+Size, falls within the 2694 // specified sequential range [L, L+Pos). or is undef. 2695 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2696 unsigned Pos, unsigned Size, int Low) { 2697 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2698 if (Mask[i] >= 0 && Mask[i] != Low) 2699 return false; 2700 return true; 2701 } 2702 2703 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2704 SDValue Src1 = getValue(I.getOperand(0)); 2705 SDValue Src2 = getValue(I.getOperand(1)); 2706 2707 SmallVector<int, 8> Mask; 2708 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2709 unsigned MaskNumElts = Mask.size(); 2710 2711 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2712 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2713 EVT SrcVT = Src1.getValueType(); 2714 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2715 2716 if (SrcNumElts == MaskNumElts) { 2717 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2718 &Mask[0])); 2719 return; 2720 } 2721 2722 // Normalize the shuffle vector since mask and vector length don't match. 2723 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2724 // Mask is longer than the source vectors and is a multiple of the source 2725 // vectors. We can use concatenate vector to make the mask and vectors 2726 // lengths match. 2727 if (SrcNumElts*2 == MaskNumElts) { 2728 // First check for Src1 in low and Src2 in high 2729 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2730 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2731 // The shuffle is concatenating two vectors together. 2732 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2733 VT, Src1, Src2)); 2734 return; 2735 } 2736 // Then check for Src2 in low and Src1 in high 2737 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2738 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2739 // The shuffle is concatenating two vectors together. 2740 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2741 VT, Src2, Src1)); 2742 return; 2743 } 2744 } 2745 2746 // Pad both vectors with undefs to make them the same length as the mask. 2747 unsigned NumConcat = MaskNumElts / SrcNumElts; 2748 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2749 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2750 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2751 2752 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2753 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2754 MOps1[0] = Src1; 2755 MOps2[0] = Src2; 2756 2757 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2758 getCurSDLoc(), VT, MOps1); 2759 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2760 getCurSDLoc(), VT, MOps2); 2761 2762 // Readjust mask for new input vector length. 2763 SmallVector<int, 8> MappedOps; 2764 for (unsigned i = 0; i != MaskNumElts; ++i) { 2765 int Idx = Mask[i]; 2766 if (Idx >= (int)SrcNumElts) 2767 Idx -= SrcNumElts - MaskNumElts; 2768 MappedOps.push_back(Idx); 2769 } 2770 2771 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2772 &MappedOps[0])); 2773 return; 2774 } 2775 2776 if (SrcNumElts > MaskNumElts) { 2777 // Analyze the access pattern of the vector to see if we can extract 2778 // two subvectors and do the shuffle. The analysis is done by calculating 2779 // the range of elements the mask access on both vectors. 2780 int MinRange[2] = { static_cast<int>(SrcNumElts), 2781 static_cast<int>(SrcNumElts)}; 2782 int MaxRange[2] = {-1, -1}; 2783 2784 for (unsigned i = 0; i != MaskNumElts; ++i) { 2785 int Idx = Mask[i]; 2786 unsigned Input = 0; 2787 if (Idx < 0) 2788 continue; 2789 2790 if (Idx >= (int)SrcNumElts) { 2791 Input = 1; 2792 Idx -= SrcNumElts; 2793 } 2794 if (Idx > MaxRange[Input]) 2795 MaxRange[Input] = Idx; 2796 if (Idx < MinRange[Input]) 2797 MinRange[Input] = Idx; 2798 } 2799 2800 // Check if the access is smaller than the vector size and can we find 2801 // a reasonable extract index. 2802 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2803 // Extract. 2804 int StartIdx[2]; // StartIdx to extract from 2805 for (unsigned Input = 0; Input < 2; ++Input) { 2806 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2807 RangeUse[Input] = 0; // Unused 2808 StartIdx[Input] = 0; 2809 continue; 2810 } 2811 2812 // Find a good start index that is a multiple of the mask length. Then 2813 // see if the rest of the elements are in range. 2814 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2815 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2816 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2817 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2818 } 2819 2820 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2821 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2822 return; 2823 } 2824 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2825 // Extract appropriate subvector and generate a vector shuffle 2826 for (unsigned Input = 0; Input < 2; ++Input) { 2827 SDValue &Src = Input == 0 ? Src1 : Src2; 2828 if (RangeUse[Input] == 0) 2829 Src = DAG.getUNDEF(VT); 2830 else { 2831 SDLoc dl = getCurSDLoc(); 2832 Src = DAG.getNode( 2833 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2834 DAG.getConstant(StartIdx[Input], dl, 2835 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2836 } 2837 } 2838 2839 // Calculate new mask. 2840 SmallVector<int, 8> MappedOps; 2841 for (unsigned i = 0; i != MaskNumElts; ++i) { 2842 int Idx = Mask[i]; 2843 if (Idx >= 0) { 2844 if (Idx < (int)SrcNumElts) 2845 Idx -= StartIdx[0]; 2846 else 2847 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2848 } 2849 MappedOps.push_back(Idx); 2850 } 2851 2852 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2853 &MappedOps[0])); 2854 return; 2855 } 2856 } 2857 2858 // We can't use either concat vectors or extract subvectors so fall back to 2859 // replacing the shuffle with extract and build vector. 2860 // to insert and build vector. 2861 EVT EltVT = VT.getVectorElementType(); 2862 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2863 SDLoc dl = getCurSDLoc(); 2864 SmallVector<SDValue,8> Ops; 2865 for (unsigned i = 0; i != MaskNumElts; ++i) { 2866 int Idx = Mask[i]; 2867 SDValue Res; 2868 2869 if (Idx < 0) { 2870 Res = DAG.getUNDEF(EltVT); 2871 } else { 2872 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2873 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2874 2875 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2876 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2877 } 2878 2879 Ops.push_back(Res); 2880 } 2881 2882 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2883 } 2884 2885 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2886 const Value *Op0 = I.getOperand(0); 2887 const Value *Op1 = I.getOperand(1); 2888 Type *AggTy = I.getType(); 2889 Type *ValTy = Op1->getType(); 2890 bool IntoUndef = isa<UndefValue>(Op0); 2891 bool FromUndef = isa<UndefValue>(Op1); 2892 2893 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2894 2895 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2896 SmallVector<EVT, 4> AggValueVTs; 2897 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2898 SmallVector<EVT, 4> ValValueVTs; 2899 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2900 2901 unsigned NumAggValues = AggValueVTs.size(); 2902 unsigned NumValValues = ValValueVTs.size(); 2903 SmallVector<SDValue, 4> Values(NumAggValues); 2904 2905 // Ignore an insertvalue that produces an empty object 2906 if (!NumAggValues) { 2907 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2908 return; 2909 } 2910 2911 SDValue Agg = getValue(Op0); 2912 unsigned i = 0; 2913 // Copy the beginning value(s) from the original aggregate. 2914 for (; i != LinearIndex; ++i) 2915 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2916 SDValue(Agg.getNode(), Agg.getResNo() + i); 2917 // Copy values from the inserted value(s). 2918 if (NumValValues) { 2919 SDValue Val = getValue(Op1); 2920 for (; i != LinearIndex + NumValValues; ++i) 2921 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2922 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2923 } 2924 // Copy remaining value(s) from the original aggregate. 2925 for (; i != NumAggValues; ++i) 2926 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2927 SDValue(Agg.getNode(), Agg.getResNo() + i); 2928 2929 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2930 DAG.getVTList(AggValueVTs), Values)); 2931 } 2932 2933 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2934 const Value *Op0 = I.getOperand(0); 2935 Type *AggTy = Op0->getType(); 2936 Type *ValTy = I.getType(); 2937 bool OutOfUndef = isa<UndefValue>(Op0); 2938 2939 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2940 2941 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2942 SmallVector<EVT, 4> ValValueVTs; 2943 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2944 2945 unsigned NumValValues = ValValueVTs.size(); 2946 2947 // Ignore a extractvalue that produces an empty object 2948 if (!NumValValues) { 2949 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2950 return; 2951 } 2952 2953 SmallVector<SDValue, 4> Values(NumValValues); 2954 2955 SDValue Agg = getValue(Op0); 2956 // Copy out the selected value(s). 2957 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2958 Values[i - LinearIndex] = 2959 OutOfUndef ? 2960 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2961 SDValue(Agg.getNode(), Agg.getResNo() + i); 2962 2963 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2964 DAG.getVTList(ValValueVTs), Values)); 2965 } 2966 2967 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2968 Value *Op0 = I.getOperand(0); 2969 // Note that the pointer operand may be a vector of pointers. Take the scalar 2970 // element which holds a pointer. 2971 Type *Ty = Op0->getType()->getScalarType(); 2972 unsigned AS = Ty->getPointerAddressSpace(); 2973 SDValue N = getValue(Op0); 2974 SDLoc dl = getCurSDLoc(); 2975 2976 // Normalize Vector GEP - all scalar operands should be converted to the 2977 // splat vector. 2978 unsigned VectorWidth = I.getType()->isVectorTy() ? 2979 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2980 2981 if (VectorWidth && !N.getValueType().isVector()) { 2982 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2983 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2984 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2985 } 2986 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2987 OI != E; ++OI) { 2988 const Value *Idx = *OI; 2989 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2990 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2991 if (Field) { 2992 // N = N + Offset 2993 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2994 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2995 DAG.getConstant(Offset, dl, N.getValueType())); 2996 } 2997 2998 Ty = StTy->getElementType(Field); 2999 } else { 3000 Ty = cast<SequentialType>(Ty)->getElementType(); 3001 MVT PtrTy = 3002 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3003 unsigned PtrSize = PtrTy.getSizeInBits(); 3004 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 3005 3006 // If this is a scalar constant or a splat vector of constants, 3007 // handle it quickly. 3008 const auto *CI = dyn_cast<ConstantInt>(Idx); 3009 if (!CI && isa<ConstantDataVector>(Idx) && 3010 cast<ConstantDataVector>(Idx)->getSplatValue()) 3011 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3012 3013 if (CI) { 3014 if (CI->isZero()) 3015 continue; 3016 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3017 SDValue OffsVal = VectorWidth ? 3018 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3019 DAG.getConstant(Offs, dl, PtrTy); 3020 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 3021 continue; 3022 } 3023 3024 // N = N + Idx * ElementSize; 3025 SDValue IdxN = getValue(Idx); 3026 3027 if (!IdxN.getValueType().isVector() && VectorWidth) { 3028 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3029 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3030 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3031 } 3032 // If the index is smaller or larger than intptr_t, truncate or extend 3033 // it. 3034 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3035 3036 // If this is a multiply by a power of two, turn it into a shl 3037 // immediately. This is a very common case. 3038 if (ElementSize != 1) { 3039 if (ElementSize.isPowerOf2()) { 3040 unsigned Amt = ElementSize.logBase2(); 3041 IdxN = DAG.getNode(ISD::SHL, dl, 3042 N.getValueType(), IdxN, 3043 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3044 } else { 3045 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3046 IdxN = DAG.getNode(ISD::MUL, dl, 3047 N.getValueType(), IdxN, Scale); 3048 } 3049 } 3050 3051 N = DAG.getNode(ISD::ADD, dl, 3052 N.getValueType(), N, IdxN); 3053 } 3054 } 3055 3056 setValue(&I, N); 3057 } 3058 3059 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3060 // If this is a fixed sized alloca in the entry block of the function, 3061 // allocate it statically on the stack. 3062 if (FuncInfo.StaticAllocaMap.count(&I)) 3063 return; // getValue will auto-populate this. 3064 3065 SDLoc dl = getCurSDLoc(); 3066 Type *Ty = I.getAllocatedType(); 3067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3068 auto &DL = DAG.getDataLayout(); 3069 uint64_t TySize = DL.getTypeAllocSize(Ty); 3070 unsigned Align = 3071 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3072 3073 SDValue AllocSize = getValue(I.getArraySize()); 3074 3075 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3076 if (AllocSize.getValueType() != IntPtr) 3077 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3078 3079 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3080 AllocSize, 3081 DAG.getConstant(TySize, dl, IntPtr)); 3082 3083 // Handle alignment. If the requested alignment is less than or equal to 3084 // the stack alignment, ignore it. If the size is greater than or equal to 3085 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3086 unsigned StackAlign = 3087 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3088 if (Align <= StackAlign) 3089 Align = 0; 3090 3091 // Round the size of the allocation up to the stack alignment size 3092 // by add SA-1 to the size. 3093 AllocSize = DAG.getNode(ISD::ADD, dl, 3094 AllocSize.getValueType(), AllocSize, 3095 DAG.getIntPtrConstant(StackAlign - 1, dl)); 3096 3097 // Mask out the low bits for alignment purposes. 3098 AllocSize = DAG.getNode(ISD::AND, dl, 3099 AllocSize.getValueType(), AllocSize, 3100 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3101 dl)); 3102 3103 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3104 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3105 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3106 setValue(&I, DSA); 3107 DAG.setRoot(DSA.getValue(1)); 3108 3109 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3110 } 3111 3112 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3113 if (I.isAtomic()) 3114 return visitAtomicLoad(I); 3115 3116 const Value *SV = I.getOperand(0); 3117 SDValue Ptr = getValue(SV); 3118 3119 Type *Ty = I.getType(); 3120 3121 bool isVolatile = I.isVolatile(); 3122 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3123 3124 // The IR notion of invariant_load only guarantees that all *non-faulting* 3125 // invariant loads result in the same value. The MI notion of invariant load 3126 // guarantees that the load can be legally moved to any location within its 3127 // containing function. The MI notion of invariant_load is stronger than the 3128 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3129 // with a guarantee that the location being loaded from is dereferenceable 3130 // throughout the function's lifetime. 3131 3132 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3133 isDereferenceablePointer(SV, DAG.getDataLayout()); 3134 unsigned Alignment = I.getAlignment(); 3135 3136 AAMDNodes AAInfo; 3137 I.getAAMetadata(AAInfo); 3138 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3139 3140 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3141 SmallVector<EVT, 4> ValueVTs; 3142 SmallVector<uint64_t, 4> Offsets; 3143 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3144 unsigned NumValues = ValueVTs.size(); 3145 if (NumValues == 0) 3146 return; 3147 3148 SDValue Root; 3149 bool ConstantMemory = false; 3150 if (isVolatile || NumValues > MaxParallelChains) 3151 // Serialize volatile loads with other side effects. 3152 Root = getRoot(); 3153 else if (AA->pointsToConstantMemory(MemoryLocation( 3154 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3155 // Do not serialize (non-volatile) loads of constant memory with anything. 3156 Root = DAG.getEntryNode(); 3157 ConstantMemory = true; 3158 } else { 3159 // Do not serialize non-volatile loads against each other. 3160 Root = DAG.getRoot(); 3161 } 3162 3163 SDLoc dl = getCurSDLoc(); 3164 3165 if (isVolatile) 3166 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3167 3168 SmallVector<SDValue, 4> Values(NumValues); 3169 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3170 EVT PtrVT = Ptr.getValueType(); 3171 unsigned ChainI = 0; 3172 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3173 // Serializing loads here may result in excessive register pressure, and 3174 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3175 // could recover a bit by hoisting nodes upward in the chain by recognizing 3176 // they are side-effect free or do not alias. The optimizer should really 3177 // avoid this case by converting large object/array copies to llvm.memcpy 3178 // (MaxParallelChains should always remain as failsafe). 3179 if (ChainI == MaxParallelChains) { 3180 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3181 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3182 makeArrayRef(Chains.data(), ChainI)); 3183 Root = Chain; 3184 ChainI = 0; 3185 } 3186 SDValue A = DAG.getNode(ISD::ADD, dl, 3187 PtrVT, Ptr, 3188 DAG.getConstant(Offsets[i], dl, PtrVT)); 3189 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3190 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3191 isNonTemporal, isInvariant, Alignment, AAInfo, 3192 Ranges); 3193 3194 Values[i] = L; 3195 Chains[ChainI] = L.getValue(1); 3196 } 3197 3198 if (!ConstantMemory) { 3199 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3200 makeArrayRef(Chains.data(), ChainI)); 3201 if (isVolatile) 3202 DAG.setRoot(Chain); 3203 else 3204 PendingLoads.push_back(Chain); 3205 } 3206 3207 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3208 DAG.getVTList(ValueVTs), Values)); 3209 } 3210 3211 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3212 if (I.isAtomic()) 3213 return visitAtomicStore(I); 3214 3215 const Value *SrcV = I.getOperand(0); 3216 const Value *PtrV = I.getOperand(1); 3217 3218 SmallVector<EVT, 4> ValueVTs; 3219 SmallVector<uint64_t, 4> Offsets; 3220 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3221 SrcV->getType(), ValueVTs, &Offsets); 3222 unsigned NumValues = ValueVTs.size(); 3223 if (NumValues == 0) 3224 return; 3225 3226 // Get the lowered operands. Note that we do this after 3227 // checking if NumResults is zero, because with zero results 3228 // the operands won't have values in the map. 3229 SDValue Src = getValue(SrcV); 3230 SDValue Ptr = getValue(PtrV); 3231 3232 SDValue Root = getRoot(); 3233 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3234 EVT PtrVT = Ptr.getValueType(); 3235 bool isVolatile = I.isVolatile(); 3236 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3237 unsigned Alignment = I.getAlignment(); 3238 SDLoc dl = getCurSDLoc(); 3239 3240 AAMDNodes AAInfo; 3241 I.getAAMetadata(AAInfo); 3242 3243 unsigned ChainI = 0; 3244 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3245 // See visitLoad comments. 3246 if (ChainI == MaxParallelChains) { 3247 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3248 makeArrayRef(Chains.data(), ChainI)); 3249 Root = Chain; 3250 ChainI = 0; 3251 } 3252 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3253 DAG.getConstant(Offsets[i], dl, PtrVT)); 3254 SDValue St = DAG.getStore(Root, dl, 3255 SDValue(Src.getNode(), Src.getResNo() + i), 3256 Add, MachinePointerInfo(PtrV, Offsets[i]), 3257 isVolatile, isNonTemporal, Alignment, AAInfo); 3258 Chains[ChainI] = St; 3259 } 3260 3261 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3262 makeArrayRef(Chains.data(), ChainI)); 3263 DAG.setRoot(StoreNode); 3264 } 3265 3266 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3267 SDLoc sdl = getCurSDLoc(); 3268 3269 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3270 Value *PtrOperand = I.getArgOperand(1); 3271 SDValue Ptr = getValue(PtrOperand); 3272 SDValue Src0 = getValue(I.getArgOperand(0)); 3273 SDValue Mask = getValue(I.getArgOperand(3)); 3274 EVT VT = Src0.getValueType(); 3275 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3276 if (!Alignment) 3277 Alignment = DAG.getEVTAlignment(VT); 3278 3279 AAMDNodes AAInfo; 3280 I.getAAMetadata(AAInfo); 3281 3282 MachineMemOperand *MMO = 3283 DAG.getMachineFunction(). 3284 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3285 MachineMemOperand::MOStore, VT.getStoreSize(), 3286 Alignment, AAInfo); 3287 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3288 MMO, false); 3289 DAG.setRoot(StoreNode); 3290 setValue(&I, StoreNode); 3291 } 3292 3293 // Get a uniform base for the Gather/Scatter intrinsic. 3294 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3295 // We try to represent it as a base pointer + vector of indices. 3296 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3297 // The first operand of the GEP may be a single pointer or a vector of pointers 3298 // Example: 3299 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3300 // or 3301 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3302 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3303 // 3304 // When the first GEP operand is a single pointer - it is the uniform base we 3305 // are looking for. If first operand of the GEP is a splat vector - we 3306 // extract the spalt value and use it as a uniform base. 3307 // In all other cases the function returns 'false'. 3308 // 3309 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3310 SelectionDAGBuilder* SDB) { 3311 3312 SelectionDAG& DAG = SDB->DAG; 3313 LLVMContext &Context = *DAG.getContext(); 3314 3315 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3316 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3317 if (!GEP || GEP->getNumOperands() > 2) 3318 return false; 3319 3320 const Value *GEPPtr = GEP->getPointerOperand(); 3321 if (!GEPPtr->getType()->isVectorTy()) 3322 Ptr = GEPPtr; 3323 else if (!(Ptr = getSplatValue(GEPPtr))) 3324 return false; 3325 3326 Value *IndexVal = GEP->getOperand(1); 3327 3328 // The operands of the GEP may be defined in another basic block. 3329 // In this case we'll not find nodes for the operands. 3330 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3331 return false; 3332 3333 Base = SDB->getValue(Ptr); 3334 Index = SDB->getValue(IndexVal); 3335 3336 // Suppress sign extension. 3337 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3338 if (SDB->findValue(Sext->getOperand(0))) { 3339 IndexVal = Sext->getOperand(0); 3340 Index = SDB->getValue(IndexVal); 3341 } 3342 } 3343 if (!Index.getValueType().isVector()) { 3344 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3345 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3346 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3347 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3348 } 3349 return true; 3350 } 3351 3352 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3353 SDLoc sdl = getCurSDLoc(); 3354 3355 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3356 const Value *Ptr = I.getArgOperand(1); 3357 SDValue Src0 = getValue(I.getArgOperand(0)); 3358 SDValue Mask = getValue(I.getArgOperand(3)); 3359 EVT VT = Src0.getValueType(); 3360 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3361 if (!Alignment) 3362 Alignment = DAG.getEVTAlignment(VT); 3363 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3364 3365 AAMDNodes AAInfo; 3366 I.getAAMetadata(AAInfo); 3367 3368 SDValue Base; 3369 SDValue Index; 3370 const Value *BasePtr = Ptr; 3371 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3372 3373 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3374 MachineMemOperand *MMO = DAG.getMachineFunction(). 3375 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3376 MachineMemOperand::MOStore, VT.getStoreSize(), 3377 Alignment, AAInfo); 3378 if (!UniformBase) { 3379 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3380 Index = getValue(Ptr); 3381 } 3382 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3383 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3384 Ops, MMO); 3385 DAG.setRoot(Scatter); 3386 setValue(&I, Scatter); 3387 } 3388 3389 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3390 SDLoc sdl = getCurSDLoc(); 3391 3392 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3393 Value *PtrOperand = I.getArgOperand(0); 3394 SDValue Ptr = getValue(PtrOperand); 3395 SDValue Src0 = getValue(I.getArgOperand(3)); 3396 SDValue Mask = getValue(I.getArgOperand(2)); 3397 3398 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3399 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3400 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3401 if (!Alignment) 3402 Alignment = DAG.getEVTAlignment(VT); 3403 3404 AAMDNodes AAInfo; 3405 I.getAAMetadata(AAInfo); 3406 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3407 3408 SDValue InChain = DAG.getRoot(); 3409 if (AA->pointsToConstantMemory(MemoryLocation( 3410 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3411 AAInfo))) { 3412 // Do not serialize (non-volatile) loads of constant memory with anything. 3413 InChain = DAG.getEntryNode(); 3414 } 3415 3416 MachineMemOperand *MMO = 3417 DAG.getMachineFunction(). 3418 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3419 MachineMemOperand::MOLoad, VT.getStoreSize(), 3420 Alignment, AAInfo, Ranges); 3421 3422 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3423 ISD::NON_EXTLOAD); 3424 SDValue OutChain = Load.getValue(1); 3425 DAG.setRoot(OutChain); 3426 setValue(&I, Load); 3427 } 3428 3429 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3430 SDLoc sdl = getCurSDLoc(); 3431 3432 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3433 const Value *Ptr = I.getArgOperand(0); 3434 SDValue Src0 = getValue(I.getArgOperand(3)); 3435 SDValue Mask = getValue(I.getArgOperand(2)); 3436 3437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3438 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3439 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3440 if (!Alignment) 3441 Alignment = DAG.getEVTAlignment(VT); 3442 3443 AAMDNodes AAInfo; 3444 I.getAAMetadata(AAInfo); 3445 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3446 3447 SDValue Root = DAG.getRoot(); 3448 SDValue Base; 3449 SDValue Index; 3450 const Value *BasePtr = Ptr; 3451 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3452 bool ConstantMemory = false; 3453 if (UniformBase && 3454 AA->pointsToConstantMemory(MemoryLocation( 3455 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3456 AAInfo))) { 3457 // Do not serialize (non-volatile) loads of constant memory with anything. 3458 Root = DAG.getEntryNode(); 3459 ConstantMemory = true; 3460 } 3461 3462 MachineMemOperand *MMO = 3463 DAG.getMachineFunction(). 3464 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3465 MachineMemOperand::MOLoad, VT.getStoreSize(), 3466 Alignment, AAInfo, Ranges); 3467 3468 if (!UniformBase) { 3469 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3470 Index = getValue(Ptr); 3471 } 3472 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3473 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3474 Ops, MMO); 3475 3476 SDValue OutChain = Gather.getValue(1); 3477 if (!ConstantMemory) 3478 PendingLoads.push_back(OutChain); 3479 setValue(&I, Gather); 3480 } 3481 3482 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3483 SDLoc dl = getCurSDLoc(); 3484 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3485 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3486 SynchronizationScope Scope = I.getSynchScope(); 3487 3488 SDValue InChain = getRoot(); 3489 3490 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3491 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3492 SDValue L = DAG.getAtomicCmpSwap( 3493 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3494 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3495 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3496 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3497 3498 SDValue OutChain = L.getValue(2); 3499 3500 setValue(&I, L); 3501 DAG.setRoot(OutChain); 3502 } 3503 3504 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3505 SDLoc dl = getCurSDLoc(); 3506 ISD::NodeType NT; 3507 switch (I.getOperation()) { 3508 default: llvm_unreachable("Unknown atomicrmw operation"); 3509 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3510 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3511 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3512 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3513 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3514 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3515 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3516 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3517 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3518 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3519 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3520 } 3521 AtomicOrdering Order = I.getOrdering(); 3522 SynchronizationScope Scope = I.getSynchScope(); 3523 3524 SDValue InChain = getRoot(); 3525 3526 SDValue L = 3527 DAG.getAtomic(NT, dl, 3528 getValue(I.getValOperand()).getSimpleValueType(), 3529 InChain, 3530 getValue(I.getPointerOperand()), 3531 getValue(I.getValOperand()), 3532 I.getPointerOperand(), 3533 /* Alignment=*/ 0, Order, Scope); 3534 3535 SDValue OutChain = L.getValue(1); 3536 3537 setValue(&I, L); 3538 DAG.setRoot(OutChain); 3539 } 3540 3541 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3542 SDLoc dl = getCurSDLoc(); 3543 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3544 SDValue Ops[3]; 3545 Ops[0] = getRoot(); 3546 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3547 TLI.getPointerTy(DAG.getDataLayout())); 3548 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3549 TLI.getPointerTy(DAG.getDataLayout())); 3550 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3551 } 3552 3553 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3554 SDLoc dl = getCurSDLoc(); 3555 AtomicOrdering Order = I.getOrdering(); 3556 SynchronizationScope Scope = I.getSynchScope(); 3557 3558 SDValue InChain = getRoot(); 3559 3560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3561 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3562 3563 if (I.getAlignment() < VT.getSizeInBits() / 8) 3564 report_fatal_error("Cannot generate unaligned atomic load"); 3565 3566 MachineMemOperand *MMO = 3567 DAG.getMachineFunction(). 3568 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3569 MachineMemOperand::MOVolatile | 3570 MachineMemOperand::MOLoad, 3571 VT.getStoreSize(), 3572 I.getAlignment() ? I.getAlignment() : 3573 DAG.getEVTAlignment(VT)); 3574 3575 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3576 SDValue L = 3577 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3578 getValue(I.getPointerOperand()), MMO, 3579 Order, Scope); 3580 3581 SDValue OutChain = L.getValue(1); 3582 3583 setValue(&I, L); 3584 DAG.setRoot(OutChain); 3585 } 3586 3587 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3588 SDLoc dl = getCurSDLoc(); 3589 3590 AtomicOrdering Order = I.getOrdering(); 3591 SynchronizationScope Scope = I.getSynchScope(); 3592 3593 SDValue InChain = getRoot(); 3594 3595 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3596 EVT VT = 3597 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3598 3599 if (I.getAlignment() < VT.getSizeInBits() / 8) 3600 report_fatal_error("Cannot generate unaligned atomic store"); 3601 3602 SDValue OutChain = 3603 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3604 InChain, 3605 getValue(I.getPointerOperand()), 3606 getValue(I.getValueOperand()), 3607 I.getPointerOperand(), I.getAlignment(), 3608 Order, Scope); 3609 3610 DAG.setRoot(OutChain); 3611 } 3612 3613 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3614 /// node. 3615 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3616 unsigned Intrinsic) { 3617 bool HasChain = !I.doesNotAccessMemory(); 3618 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3619 3620 // Build the operand list. 3621 SmallVector<SDValue, 8> Ops; 3622 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3623 if (OnlyLoad) { 3624 // We don't need to serialize loads against other loads. 3625 Ops.push_back(DAG.getRoot()); 3626 } else { 3627 Ops.push_back(getRoot()); 3628 } 3629 } 3630 3631 // Info is set by getTgtMemInstrinsic 3632 TargetLowering::IntrinsicInfo Info; 3633 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3634 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3635 3636 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3637 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3638 Info.opc == ISD::INTRINSIC_W_CHAIN) 3639 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3640 TLI.getPointerTy(DAG.getDataLayout()))); 3641 3642 // Add all operands of the call to the operand list. 3643 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3644 SDValue Op = getValue(I.getArgOperand(i)); 3645 Ops.push_back(Op); 3646 } 3647 3648 SmallVector<EVT, 4> ValueVTs; 3649 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3650 3651 if (HasChain) 3652 ValueVTs.push_back(MVT::Other); 3653 3654 SDVTList VTs = DAG.getVTList(ValueVTs); 3655 3656 // Create the node. 3657 SDValue Result; 3658 if (IsTgtIntrinsic) { 3659 // This is target intrinsic that touches memory 3660 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3661 VTs, Ops, Info.memVT, 3662 MachinePointerInfo(Info.ptrVal, Info.offset), 3663 Info.align, Info.vol, 3664 Info.readMem, Info.writeMem, Info.size); 3665 } else if (!HasChain) { 3666 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3667 } else if (!I.getType()->isVoidTy()) { 3668 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3669 } else { 3670 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3671 } 3672 3673 if (HasChain) { 3674 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3675 if (OnlyLoad) 3676 PendingLoads.push_back(Chain); 3677 else 3678 DAG.setRoot(Chain); 3679 } 3680 3681 if (!I.getType()->isVoidTy()) { 3682 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3683 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3684 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3685 } 3686 3687 setValue(&I, Result); 3688 } 3689 } 3690 3691 /// GetSignificand - Get the significand and build it into a floating-point 3692 /// number with exponent of 1: 3693 /// 3694 /// Op = (Op & 0x007fffff) | 0x3f800000; 3695 /// 3696 /// where Op is the hexadecimal representation of floating point value. 3697 static SDValue 3698 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3699 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3700 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3701 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3702 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3703 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3704 } 3705 3706 /// GetExponent - Get the exponent: 3707 /// 3708 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3709 /// 3710 /// where Op is the hexadecimal representation of floating point value. 3711 static SDValue 3712 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3713 SDLoc dl) { 3714 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3715 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3716 SDValue t1 = DAG.getNode( 3717 ISD::SRL, dl, MVT::i32, t0, 3718 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3719 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3720 DAG.getConstant(127, dl, MVT::i32)); 3721 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3722 } 3723 3724 /// getF32Constant - Get 32-bit floating point constant. 3725 static SDValue 3726 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3727 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3728 MVT::f32); 3729 } 3730 3731 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3732 SelectionDAG &DAG) { 3733 // TODO: What fast-math-flags should be set on the floating-point nodes? 3734 3735 // IntegerPartOfX = ((int32_t)(t0); 3736 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3737 3738 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3739 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3740 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3741 3742 // IntegerPartOfX <<= 23; 3743 IntegerPartOfX = DAG.getNode( 3744 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3745 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3746 DAG.getDataLayout()))); 3747 3748 SDValue TwoToFractionalPartOfX; 3749 if (LimitFloatPrecision <= 6) { 3750 // For floating-point precision of 6: 3751 // 3752 // TwoToFractionalPartOfX = 3753 // 0.997535578f + 3754 // (0.735607626f + 0.252464424f * x) * x; 3755 // 3756 // error 0.0144103317, which is 6 bits 3757 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3758 getF32Constant(DAG, 0x3e814304, dl)); 3759 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3760 getF32Constant(DAG, 0x3f3c50c8, dl)); 3761 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3762 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3763 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3764 } else if (LimitFloatPrecision <= 12) { 3765 // For floating-point precision of 12: 3766 // 3767 // TwoToFractionalPartOfX = 3768 // 0.999892986f + 3769 // (0.696457318f + 3770 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3771 // 3772 // error 0.000107046256, which is 13 to 14 bits 3773 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3774 getF32Constant(DAG, 0x3da235e3, dl)); 3775 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3776 getF32Constant(DAG, 0x3e65b8f3, dl)); 3777 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3778 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3779 getF32Constant(DAG, 0x3f324b07, dl)); 3780 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3781 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3782 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3783 } else { // LimitFloatPrecision <= 18 3784 // For floating-point precision of 18: 3785 // 3786 // TwoToFractionalPartOfX = 3787 // 0.999999982f + 3788 // (0.693148872f + 3789 // (0.240227044f + 3790 // (0.554906021e-1f + 3791 // (0.961591928e-2f + 3792 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3793 // error 2.47208000*10^(-7), which is better than 18 bits 3794 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3795 getF32Constant(DAG, 0x3924b03e, dl)); 3796 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3797 getF32Constant(DAG, 0x3ab24b87, dl)); 3798 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3799 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3800 getF32Constant(DAG, 0x3c1d8c17, dl)); 3801 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3802 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3803 getF32Constant(DAG, 0x3d634a1d, dl)); 3804 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3805 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3806 getF32Constant(DAG, 0x3e75fe14, dl)); 3807 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3808 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3809 getF32Constant(DAG, 0x3f317234, dl)); 3810 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3811 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3812 getF32Constant(DAG, 0x3f800000, dl)); 3813 } 3814 3815 // Add the exponent into the result in integer domain. 3816 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3817 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3818 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3819 } 3820 3821 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3822 /// limited-precision mode. 3823 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3824 const TargetLowering &TLI) { 3825 if (Op.getValueType() == MVT::f32 && 3826 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3827 3828 // Put the exponent in the right bit position for later addition to the 3829 // final result: 3830 // 3831 // #define LOG2OFe 1.4426950f 3832 // t0 = Op * LOG2OFe 3833 3834 // TODO: What fast-math-flags should be set here? 3835 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3836 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3837 return getLimitedPrecisionExp2(t0, dl, DAG); 3838 } 3839 3840 // No special expansion. 3841 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3842 } 3843 3844 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3845 /// limited-precision mode. 3846 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3847 const TargetLowering &TLI) { 3848 3849 // TODO: What fast-math-flags should be set on the floating-point nodes? 3850 3851 if (Op.getValueType() == MVT::f32 && 3852 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3853 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3854 3855 // Scale the exponent by log(2) [0.69314718f]. 3856 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3857 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3858 getF32Constant(DAG, 0x3f317218, dl)); 3859 3860 // Get the significand and build it into a floating-point number with 3861 // exponent of 1. 3862 SDValue X = GetSignificand(DAG, Op1, dl); 3863 3864 SDValue LogOfMantissa; 3865 if (LimitFloatPrecision <= 6) { 3866 // For floating-point precision of 6: 3867 // 3868 // LogofMantissa = 3869 // -1.1609546f + 3870 // (1.4034025f - 0.23903021f * x) * x; 3871 // 3872 // error 0.0034276066, which is better than 8 bits 3873 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3874 getF32Constant(DAG, 0xbe74c456, dl)); 3875 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3876 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3877 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3878 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3879 getF32Constant(DAG, 0x3f949a29, dl)); 3880 } else if (LimitFloatPrecision <= 12) { 3881 // For floating-point precision of 12: 3882 // 3883 // LogOfMantissa = 3884 // -1.7417939f + 3885 // (2.8212026f + 3886 // (-1.4699568f + 3887 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3888 // 3889 // error 0.000061011436, which is 14 bits 3890 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3891 getF32Constant(DAG, 0xbd67b6d6, dl)); 3892 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3893 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3894 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3895 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3896 getF32Constant(DAG, 0x3fbc278b, dl)); 3897 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3898 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3899 getF32Constant(DAG, 0x40348e95, dl)); 3900 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3901 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3902 getF32Constant(DAG, 0x3fdef31a, dl)); 3903 } else { // LimitFloatPrecision <= 18 3904 // For floating-point precision of 18: 3905 // 3906 // LogOfMantissa = 3907 // -2.1072184f + 3908 // (4.2372794f + 3909 // (-3.7029485f + 3910 // (2.2781945f + 3911 // (-0.87823314f + 3912 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3913 // 3914 // error 0.0000023660568, which is better than 18 bits 3915 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3916 getF32Constant(DAG, 0xbc91e5ac, dl)); 3917 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3918 getF32Constant(DAG, 0x3e4350aa, dl)); 3919 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3920 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3921 getF32Constant(DAG, 0x3f60d3e3, dl)); 3922 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3923 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3924 getF32Constant(DAG, 0x4011cdf0, dl)); 3925 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3926 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3927 getF32Constant(DAG, 0x406cfd1c, dl)); 3928 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3929 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3930 getF32Constant(DAG, 0x408797cb, dl)); 3931 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3932 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3933 getF32Constant(DAG, 0x4006dcab, dl)); 3934 } 3935 3936 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3937 } 3938 3939 // No special expansion. 3940 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3941 } 3942 3943 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3944 /// limited-precision mode. 3945 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3946 const TargetLowering &TLI) { 3947 3948 // TODO: What fast-math-flags should be set on the floating-point nodes? 3949 3950 if (Op.getValueType() == MVT::f32 && 3951 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3952 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3953 3954 // Get the exponent. 3955 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3956 3957 // Get the significand and build it into a floating-point number with 3958 // exponent of 1. 3959 SDValue X = GetSignificand(DAG, Op1, dl); 3960 3961 // Different possible minimax approximations of significand in 3962 // floating-point for various degrees of accuracy over [1,2]. 3963 SDValue Log2ofMantissa; 3964 if (LimitFloatPrecision <= 6) { 3965 // For floating-point precision of 6: 3966 // 3967 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3968 // 3969 // error 0.0049451742, which is more than 7 bits 3970 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3971 getF32Constant(DAG, 0xbeb08fe0, dl)); 3972 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3973 getF32Constant(DAG, 0x40019463, dl)); 3974 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3975 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3976 getF32Constant(DAG, 0x3fd6633d, dl)); 3977 } else if (LimitFloatPrecision <= 12) { 3978 // For floating-point precision of 12: 3979 // 3980 // Log2ofMantissa = 3981 // -2.51285454f + 3982 // (4.07009056f + 3983 // (-2.12067489f + 3984 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3985 // 3986 // error 0.0000876136000, which is better than 13 bits 3987 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3988 getF32Constant(DAG, 0xbda7262e, dl)); 3989 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3990 getF32Constant(DAG, 0x3f25280b, dl)); 3991 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3992 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3993 getF32Constant(DAG, 0x4007b923, dl)); 3994 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3995 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3996 getF32Constant(DAG, 0x40823e2f, dl)); 3997 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3998 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3999 getF32Constant(DAG, 0x4020d29c, dl)); 4000 } else { // LimitFloatPrecision <= 18 4001 // For floating-point precision of 18: 4002 // 4003 // Log2ofMantissa = 4004 // -3.0400495f + 4005 // (6.1129976f + 4006 // (-5.3420409f + 4007 // (3.2865683f + 4008 // (-1.2669343f + 4009 // (0.27515199f - 4010 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4011 // 4012 // error 0.0000018516, which is better than 18 bits 4013 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4014 getF32Constant(DAG, 0xbcd2769e, dl)); 4015 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4016 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4017 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4018 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4019 getF32Constant(DAG, 0x3fa22ae7, dl)); 4020 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4021 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4022 getF32Constant(DAG, 0x40525723, dl)); 4023 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4024 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4025 getF32Constant(DAG, 0x40aaf200, dl)); 4026 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4027 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4028 getF32Constant(DAG, 0x40c39dad, dl)); 4029 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4030 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4031 getF32Constant(DAG, 0x4042902c, dl)); 4032 } 4033 4034 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4035 } 4036 4037 // No special expansion. 4038 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4039 } 4040 4041 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4042 /// limited-precision mode. 4043 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4044 const TargetLowering &TLI) { 4045 4046 // TODO: What fast-math-flags should be set on the floating-point nodes? 4047 4048 if (Op.getValueType() == MVT::f32 && 4049 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4050 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4051 4052 // Scale the exponent by log10(2) [0.30102999f]. 4053 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4054 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4055 getF32Constant(DAG, 0x3e9a209a, dl)); 4056 4057 // Get the significand and build it into a floating-point number with 4058 // exponent of 1. 4059 SDValue X = GetSignificand(DAG, Op1, dl); 4060 4061 SDValue Log10ofMantissa; 4062 if (LimitFloatPrecision <= 6) { 4063 // For floating-point precision of 6: 4064 // 4065 // Log10ofMantissa = 4066 // -0.50419619f + 4067 // (0.60948995f - 0.10380950f * x) * x; 4068 // 4069 // error 0.0014886165, which is 6 bits 4070 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4071 getF32Constant(DAG, 0xbdd49a13, dl)); 4072 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4073 getF32Constant(DAG, 0x3f1c0789, dl)); 4074 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4075 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4076 getF32Constant(DAG, 0x3f011300, dl)); 4077 } else if (LimitFloatPrecision <= 12) { 4078 // For floating-point precision of 12: 4079 // 4080 // Log10ofMantissa = 4081 // -0.64831180f + 4082 // (0.91751397f + 4083 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4084 // 4085 // error 0.00019228036, which is better than 12 bits 4086 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4087 getF32Constant(DAG, 0x3d431f31, dl)); 4088 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4089 getF32Constant(DAG, 0x3ea21fb2, dl)); 4090 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4091 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4092 getF32Constant(DAG, 0x3f6ae232, dl)); 4093 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4094 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4095 getF32Constant(DAG, 0x3f25f7c3, dl)); 4096 } else { // LimitFloatPrecision <= 18 4097 // For floating-point precision of 18: 4098 // 4099 // Log10ofMantissa = 4100 // -0.84299375f + 4101 // (1.5327582f + 4102 // (-1.0688956f + 4103 // (0.49102474f + 4104 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4105 // 4106 // error 0.0000037995730, which is better than 18 bits 4107 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4108 getF32Constant(DAG, 0x3c5d51ce, dl)); 4109 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4110 getF32Constant(DAG, 0x3e00685a, dl)); 4111 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4112 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4113 getF32Constant(DAG, 0x3efb6798, dl)); 4114 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4115 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4116 getF32Constant(DAG, 0x3f88d192, dl)); 4117 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4118 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4119 getF32Constant(DAG, 0x3fc4316c, dl)); 4120 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4121 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4122 getF32Constant(DAG, 0x3f57ce70, dl)); 4123 } 4124 4125 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4126 } 4127 4128 // No special expansion. 4129 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4130 } 4131 4132 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4133 /// limited-precision mode. 4134 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4135 const TargetLowering &TLI) { 4136 if (Op.getValueType() == MVT::f32 && 4137 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4138 return getLimitedPrecisionExp2(Op, dl, DAG); 4139 4140 // No special expansion. 4141 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4142 } 4143 4144 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4145 /// limited-precision mode with x == 10.0f. 4146 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4147 SelectionDAG &DAG, const TargetLowering &TLI) { 4148 bool IsExp10 = false; 4149 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4150 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4151 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4152 APFloat Ten(10.0f); 4153 IsExp10 = LHSC->isExactlyValue(Ten); 4154 } 4155 } 4156 4157 // TODO: What fast-math-flags should be set on the FMUL node? 4158 if (IsExp10) { 4159 // Put the exponent in the right bit position for later addition to the 4160 // final result: 4161 // 4162 // #define LOG2OF10 3.3219281f 4163 // t0 = Op * LOG2OF10; 4164 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4165 getF32Constant(DAG, 0x40549a78, dl)); 4166 return getLimitedPrecisionExp2(t0, dl, DAG); 4167 } 4168 4169 // No special expansion. 4170 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4171 } 4172 4173 4174 /// ExpandPowI - Expand a llvm.powi intrinsic. 4175 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4176 SelectionDAG &DAG) { 4177 // If RHS is a constant, we can expand this out to a multiplication tree, 4178 // otherwise we end up lowering to a call to __powidf2 (for example). When 4179 // optimizing for size, we only want to do this if the expansion would produce 4180 // a small number of multiplies, otherwise we do the full expansion. 4181 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4182 // Get the exponent as a positive value. 4183 unsigned Val = RHSC->getSExtValue(); 4184 if ((int)Val < 0) Val = -Val; 4185 4186 // powi(x, 0) -> 1.0 4187 if (Val == 0) 4188 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4189 4190 const Function *F = DAG.getMachineFunction().getFunction(); 4191 if (!F->optForSize() || 4192 // If optimizing for size, don't insert too many multiplies. 4193 // This inserts up to 5 multiplies. 4194 countPopulation(Val) + Log2_32(Val) < 7) { 4195 // We use the simple binary decomposition method to generate the multiply 4196 // sequence. There are more optimal ways to do this (for example, 4197 // powi(x,15) generates one more multiply than it should), but this has 4198 // the benefit of being both really simple and much better than a libcall. 4199 SDValue Res; // Logically starts equal to 1.0 4200 SDValue CurSquare = LHS; 4201 // TODO: Intrinsics should have fast-math-flags that propagate to these 4202 // nodes. 4203 while (Val) { 4204 if (Val & 1) { 4205 if (Res.getNode()) 4206 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4207 else 4208 Res = CurSquare; // 1.0*CurSquare. 4209 } 4210 4211 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4212 CurSquare, CurSquare); 4213 Val >>= 1; 4214 } 4215 4216 // If the original was negative, invert the result, producing 1/(x*x*x). 4217 if (RHSC->getSExtValue() < 0) 4218 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4219 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4220 return Res; 4221 } 4222 } 4223 4224 // Otherwise, expand to a libcall. 4225 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4226 } 4227 4228 // getUnderlyingArgReg - Find underlying register used for a truncated or 4229 // bitcasted argument. 4230 static unsigned getUnderlyingArgReg(const SDValue &N) { 4231 switch (N.getOpcode()) { 4232 case ISD::CopyFromReg: 4233 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4234 case ISD::BITCAST: 4235 case ISD::AssertZext: 4236 case ISD::AssertSext: 4237 case ISD::TRUNCATE: 4238 return getUnderlyingArgReg(N.getOperand(0)); 4239 default: 4240 return 0; 4241 } 4242 } 4243 4244 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4245 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4246 /// At the end of instruction selection, they will be inserted to the entry BB. 4247 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4248 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4249 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4250 const Argument *Arg = dyn_cast<Argument>(V); 4251 if (!Arg) 4252 return false; 4253 4254 MachineFunction &MF = DAG.getMachineFunction(); 4255 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4256 4257 // Ignore inlined function arguments here. 4258 // 4259 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4260 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4261 return false; 4262 4263 Optional<MachineOperand> Op; 4264 // Some arguments' frame index is recorded during argument lowering. 4265 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4266 Op = MachineOperand::CreateFI(FI); 4267 4268 if (!Op && N.getNode()) { 4269 unsigned Reg = getUnderlyingArgReg(N); 4270 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4271 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4272 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4273 if (PR) 4274 Reg = PR; 4275 } 4276 if (Reg) 4277 Op = MachineOperand::CreateReg(Reg, false); 4278 } 4279 4280 if (!Op) { 4281 // Check if ValueMap has reg number. 4282 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4283 if (VMI != FuncInfo.ValueMap.end()) 4284 Op = MachineOperand::CreateReg(VMI->second, false); 4285 } 4286 4287 if (!Op && N.getNode()) 4288 // Check if frame index is available. 4289 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4290 if (FrameIndexSDNode *FINode = 4291 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4292 Op = MachineOperand::CreateFI(FINode->getIndex()); 4293 4294 if (!Op) 4295 return false; 4296 4297 assert(Variable->isValidLocationForIntrinsic(DL) && 4298 "Expected inlined-at fields to agree"); 4299 if (Op->isReg()) 4300 FuncInfo.ArgDbgValues.push_back( 4301 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4302 Op->getReg(), Offset, Variable, Expr)); 4303 else 4304 FuncInfo.ArgDbgValues.push_back( 4305 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4306 .addOperand(*Op) 4307 .addImm(Offset) 4308 .addMetadata(Variable) 4309 .addMetadata(Expr)); 4310 4311 return true; 4312 } 4313 4314 // VisualStudio defines setjmp as _setjmp 4315 #if defined(_MSC_VER) && defined(setjmp) && \ 4316 !defined(setjmp_undefined_for_msvc) 4317 # pragma push_macro("setjmp") 4318 # undef setjmp 4319 # define setjmp_undefined_for_msvc 4320 #endif 4321 4322 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4323 /// we want to emit this as a call to a named external function, return the name 4324 /// otherwise lower it and return null. 4325 const char * 4326 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4328 SDLoc sdl = getCurSDLoc(); 4329 DebugLoc dl = getCurDebugLoc(); 4330 SDValue Res; 4331 4332 switch (Intrinsic) { 4333 default: 4334 // By default, turn this into a target intrinsic node. 4335 visitTargetIntrinsic(I, Intrinsic); 4336 return nullptr; 4337 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4338 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4339 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4340 case Intrinsic::returnaddress: 4341 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4342 TLI.getPointerTy(DAG.getDataLayout()), 4343 getValue(I.getArgOperand(0)))); 4344 return nullptr; 4345 case Intrinsic::frameaddress: 4346 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4347 TLI.getPointerTy(DAG.getDataLayout()), 4348 getValue(I.getArgOperand(0)))); 4349 return nullptr; 4350 case Intrinsic::read_register: { 4351 Value *Reg = I.getArgOperand(0); 4352 SDValue Chain = getRoot(); 4353 SDValue RegName = 4354 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4355 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4356 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4357 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4358 setValue(&I, Res); 4359 DAG.setRoot(Res.getValue(1)); 4360 return nullptr; 4361 } 4362 case Intrinsic::write_register: { 4363 Value *Reg = I.getArgOperand(0); 4364 Value *RegValue = I.getArgOperand(1); 4365 SDValue Chain = getRoot(); 4366 SDValue RegName = 4367 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4368 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4369 RegName, getValue(RegValue))); 4370 return nullptr; 4371 } 4372 case Intrinsic::setjmp: 4373 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4374 case Intrinsic::longjmp: 4375 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4376 case Intrinsic::memcpy: { 4377 // FIXME: this definition of "user defined address space" is x86-specific 4378 // Assert for address < 256 since we support only user defined address 4379 // spaces. 4380 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4381 < 256 && 4382 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4383 < 256 && 4384 "Unknown address space"); 4385 SDValue Op1 = getValue(I.getArgOperand(0)); 4386 SDValue Op2 = getValue(I.getArgOperand(1)); 4387 SDValue Op3 = getValue(I.getArgOperand(2)); 4388 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4389 if (!Align) 4390 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4391 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4392 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4393 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4394 false, isTC, 4395 MachinePointerInfo(I.getArgOperand(0)), 4396 MachinePointerInfo(I.getArgOperand(1))); 4397 updateDAGForMaybeTailCall(MC); 4398 return nullptr; 4399 } 4400 case Intrinsic::memset: { 4401 // FIXME: this definition of "user defined address space" is x86-specific 4402 // Assert for address < 256 since we support only user defined address 4403 // spaces. 4404 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4405 < 256 && 4406 "Unknown address space"); 4407 SDValue Op1 = getValue(I.getArgOperand(0)); 4408 SDValue Op2 = getValue(I.getArgOperand(1)); 4409 SDValue Op3 = getValue(I.getArgOperand(2)); 4410 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4411 if (!Align) 4412 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4413 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4414 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4415 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4416 isTC, MachinePointerInfo(I.getArgOperand(0))); 4417 updateDAGForMaybeTailCall(MS); 4418 return nullptr; 4419 } 4420 case Intrinsic::memmove: { 4421 // FIXME: this definition of "user defined address space" is x86-specific 4422 // Assert for address < 256 since we support only user defined address 4423 // spaces. 4424 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4425 < 256 && 4426 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4427 < 256 && 4428 "Unknown address space"); 4429 SDValue Op1 = getValue(I.getArgOperand(0)); 4430 SDValue Op2 = getValue(I.getArgOperand(1)); 4431 SDValue Op3 = getValue(I.getArgOperand(2)); 4432 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4433 if (!Align) 4434 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4435 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4436 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4437 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4438 isTC, MachinePointerInfo(I.getArgOperand(0)), 4439 MachinePointerInfo(I.getArgOperand(1))); 4440 updateDAGForMaybeTailCall(MM); 4441 return nullptr; 4442 } 4443 case Intrinsic::dbg_declare: { 4444 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4445 DILocalVariable *Variable = DI.getVariable(); 4446 DIExpression *Expression = DI.getExpression(); 4447 const Value *Address = DI.getAddress(); 4448 assert(Variable && "Missing variable"); 4449 if (!Address) { 4450 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4451 return nullptr; 4452 } 4453 4454 // Check if address has undef value. 4455 if (isa<UndefValue>(Address) || 4456 (Address->use_empty() && !isa<Argument>(Address))) { 4457 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4458 return nullptr; 4459 } 4460 4461 SDValue &N = NodeMap[Address]; 4462 if (!N.getNode() && isa<Argument>(Address)) 4463 // Check unused arguments map. 4464 N = UnusedArgNodeMap[Address]; 4465 SDDbgValue *SDV; 4466 if (N.getNode()) { 4467 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4468 Address = BCI->getOperand(0); 4469 // Parameters are handled specially. 4470 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4471 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4472 if (isParameter && FINode) { 4473 // Byval parameter. We have a frame index at this point. 4474 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4475 FINode->getIndex(), 0, dl, SDNodeOrder); 4476 } else if (isa<Argument>(Address)) { 4477 // Address is an argument, so try to emit its dbg value using 4478 // virtual register info from the FuncInfo.ValueMap. 4479 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4480 N); 4481 return nullptr; 4482 } else { 4483 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4484 true, 0, dl, SDNodeOrder); 4485 } 4486 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4487 } else { 4488 // If Address is an argument then try to emit its dbg value using 4489 // virtual register info from the FuncInfo.ValueMap. 4490 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4491 N)) { 4492 // If variable is pinned by a alloca in dominating bb then 4493 // use StaticAllocaMap. 4494 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4495 if (AI->getParent() != DI.getParent()) { 4496 DenseMap<const AllocaInst*, int>::iterator SI = 4497 FuncInfo.StaticAllocaMap.find(AI); 4498 if (SI != FuncInfo.StaticAllocaMap.end()) { 4499 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4500 0, dl, SDNodeOrder); 4501 DAG.AddDbgValue(SDV, nullptr, false); 4502 return nullptr; 4503 } 4504 } 4505 } 4506 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4507 } 4508 } 4509 return nullptr; 4510 } 4511 case Intrinsic::dbg_value: { 4512 const DbgValueInst &DI = cast<DbgValueInst>(I); 4513 assert(DI.getVariable() && "Missing variable"); 4514 4515 DILocalVariable *Variable = DI.getVariable(); 4516 DIExpression *Expression = DI.getExpression(); 4517 uint64_t Offset = DI.getOffset(); 4518 const Value *V = DI.getValue(); 4519 if (!V) 4520 return nullptr; 4521 4522 SDDbgValue *SDV; 4523 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4524 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4525 SDNodeOrder); 4526 DAG.AddDbgValue(SDV, nullptr, false); 4527 } else { 4528 // Do not use getValue() in here; we don't want to generate code at 4529 // this point if it hasn't been done yet. 4530 SDValue N = NodeMap[V]; 4531 if (!N.getNode() && isa<Argument>(V)) 4532 // Check unused arguments map. 4533 N = UnusedArgNodeMap[V]; 4534 if (N.getNode()) { 4535 // A dbg.value for an alloca is always indirect. 4536 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4537 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4538 IsIndirect, N)) { 4539 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4540 IsIndirect, Offset, dl, SDNodeOrder); 4541 DAG.AddDbgValue(SDV, N.getNode(), false); 4542 } 4543 } else if (!V->use_empty() ) { 4544 // Do not call getValue(V) yet, as we don't want to generate code. 4545 // Remember it for later. 4546 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4547 DanglingDebugInfoMap[V] = DDI; 4548 } else { 4549 // We may expand this to cover more cases. One case where we have no 4550 // data available is an unreferenced parameter. 4551 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4552 } 4553 } 4554 4555 // Build a debug info table entry. 4556 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4557 V = BCI->getOperand(0); 4558 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4559 // Don't handle byval struct arguments or VLAs, for example. 4560 if (!AI) { 4561 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4562 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4563 return nullptr; 4564 } 4565 DenseMap<const AllocaInst*, int>::iterator SI = 4566 FuncInfo.StaticAllocaMap.find(AI); 4567 if (SI == FuncInfo.StaticAllocaMap.end()) 4568 return nullptr; // VLAs. 4569 return nullptr; 4570 } 4571 4572 case Intrinsic::eh_typeid_for: { 4573 // Find the type id for the given typeinfo. 4574 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4575 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4576 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4577 setValue(&I, Res); 4578 return nullptr; 4579 } 4580 4581 case Intrinsic::eh_return_i32: 4582 case Intrinsic::eh_return_i64: 4583 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4584 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4585 MVT::Other, 4586 getControlRoot(), 4587 getValue(I.getArgOperand(0)), 4588 getValue(I.getArgOperand(1)))); 4589 return nullptr; 4590 case Intrinsic::eh_unwind_init: 4591 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4592 return nullptr; 4593 case Intrinsic::eh_dwarf_cfa: { 4594 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4595 TLI.getPointerTy(DAG.getDataLayout())); 4596 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4597 CfaArg.getValueType(), 4598 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4599 CfaArg.getValueType()), 4600 CfaArg); 4601 SDValue FA = DAG.getNode( 4602 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4603 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4604 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4605 FA, Offset)); 4606 return nullptr; 4607 } 4608 case Intrinsic::eh_sjlj_callsite: { 4609 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4610 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4611 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4612 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4613 4614 MMI.setCurrentCallSite(CI->getZExtValue()); 4615 return nullptr; 4616 } 4617 case Intrinsic::eh_sjlj_functioncontext: { 4618 // Get and store the index of the function context. 4619 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4620 AllocaInst *FnCtx = 4621 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4622 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4623 MFI->setFunctionContextIndex(FI); 4624 return nullptr; 4625 } 4626 case Intrinsic::eh_sjlj_setjmp: { 4627 SDValue Ops[2]; 4628 Ops[0] = getRoot(); 4629 Ops[1] = getValue(I.getArgOperand(0)); 4630 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4631 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4632 setValue(&I, Op.getValue(0)); 4633 DAG.setRoot(Op.getValue(1)); 4634 return nullptr; 4635 } 4636 case Intrinsic::eh_sjlj_longjmp: { 4637 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4638 getRoot(), getValue(I.getArgOperand(0)))); 4639 return nullptr; 4640 } 4641 case Intrinsic::eh_sjlj_setup_dispatch: { 4642 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4643 getRoot())); 4644 return nullptr; 4645 } 4646 4647 case Intrinsic::masked_gather: 4648 visitMaskedGather(I); 4649 return nullptr; 4650 case Intrinsic::masked_load: 4651 visitMaskedLoad(I); 4652 return nullptr; 4653 case Intrinsic::masked_scatter: 4654 visitMaskedScatter(I); 4655 return nullptr; 4656 case Intrinsic::masked_store: 4657 visitMaskedStore(I); 4658 return nullptr; 4659 case Intrinsic::x86_mmx_pslli_w: 4660 case Intrinsic::x86_mmx_pslli_d: 4661 case Intrinsic::x86_mmx_pslli_q: 4662 case Intrinsic::x86_mmx_psrli_w: 4663 case Intrinsic::x86_mmx_psrli_d: 4664 case Intrinsic::x86_mmx_psrli_q: 4665 case Intrinsic::x86_mmx_psrai_w: 4666 case Intrinsic::x86_mmx_psrai_d: { 4667 SDValue ShAmt = getValue(I.getArgOperand(1)); 4668 if (isa<ConstantSDNode>(ShAmt)) { 4669 visitTargetIntrinsic(I, Intrinsic); 4670 return nullptr; 4671 } 4672 unsigned NewIntrinsic = 0; 4673 EVT ShAmtVT = MVT::v2i32; 4674 switch (Intrinsic) { 4675 case Intrinsic::x86_mmx_pslli_w: 4676 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4677 break; 4678 case Intrinsic::x86_mmx_pslli_d: 4679 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4680 break; 4681 case Intrinsic::x86_mmx_pslli_q: 4682 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4683 break; 4684 case Intrinsic::x86_mmx_psrli_w: 4685 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4686 break; 4687 case Intrinsic::x86_mmx_psrli_d: 4688 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4689 break; 4690 case Intrinsic::x86_mmx_psrli_q: 4691 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4692 break; 4693 case Intrinsic::x86_mmx_psrai_w: 4694 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4695 break; 4696 case Intrinsic::x86_mmx_psrai_d: 4697 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4698 break; 4699 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4700 } 4701 4702 // The vector shift intrinsics with scalars uses 32b shift amounts but 4703 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4704 // to be zero. 4705 // We must do this early because v2i32 is not a legal type. 4706 SDValue ShOps[2]; 4707 ShOps[0] = ShAmt; 4708 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4709 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4710 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4711 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4712 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4713 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4714 getValue(I.getArgOperand(0)), ShAmt); 4715 setValue(&I, Res); 4716 return nullptr; 4717 } 4718 case Intrinsic::convertff: 4719 case Intrinsic::convertfsi: 4720 case Intrinsic::convertfui: 4721 case Intrinsic::convertsif: 4722 case Intrinsic::convertuif: 4723 case Intrinsic::convertss: 4724 case Intrinsic::convertsu: 4725 case Intrinsic::convertus: 4726 case Intrinsic::convertuu: { 4727 ISD::CvtCode Code = ISD::CVT_INVALID; 4728 switch (Intrinsic) { 4729 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4730 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4731 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4732 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4733 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4734 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4735 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4736 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4737 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4738 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4739 } 4740 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4741 const Value *Op1 = I.getArgOperand(0); 4742 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4743 DAG.getValueType(DestVT), 4744 DAG.getValueType(getValue(Op1).getValueType()), 4745 getValue(I.getArgOperand(1)), 4746 getValue(I.getArgOperand(2)), 4747 Code); 4748 setValue(&I, Res); 4749 return nullptr; 4750 } 4751 case Intrinsic::powi: 4752 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4753 getValue(I.getArgOperand(1)), DAG)); 4754 return nullptr; 4755 case Intrinsic::log: 4756 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4757 return nullptr; 4758 case Intrinsic::log2: 4759 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4760 return nullptr; 4761 case Intrinsic::log10: 4762 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4763 return nullptr; 4764 case Intrinsic::exp: 4765 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4766 return nullptr; 4767 case Intrinsic::exp2: 4768 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4769 return nullptr; 4770 case Intrinsic::pow: 4771 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4772 getValue(I.getArgOperand(1)), DAG, TLI)); 4773 return nullptr; 4774 case Intrinsic::sqrt: 4775 case Intrinsic::fabs: 4776 case Intrinsic::sin: 4777 case Intrinsic::cos: 4778 case Intrinsic::floor: 4779 case Intrinsic::ceil: 4780 case Intrinsic::trunc: 4781 case Intrinsic::rint: 4782 case Intrinsic::nearbyint: 4783 case Intrinsic::round: { 4784 unsigned Opcode; 4785 switch (Intrinsic) { 4786 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4787 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4788 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4789 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4790 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4791 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4792 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4793 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4794 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4795 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4796 case Intrinsic::round: Opcode = ISD::FROUND; break; 4797 } 4798 4799 setValue(&I, DAG.getNode(Opcode, sdl, 4800 getValue(I.getArgOperand(0)).getValueType(), 4801 getValue(I.getArgOperand(0)))); 4802 return nullptr; 4803 } 4804 case Intrinsic::minnum: 4805 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4806 getValue(I.getArgOperand(0)).getValueType(), 4807 getValue(I.getArgOperand(0)), 4808 getValue(I.getArgOperand(1)))); 4809 return nullptr; 4810 case Intrinsic::maxnum: 4811 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4812 getValue(I.getArgOperand(0)).getValueType(), 4813 getValue(I.getArgOperand(0)), 4814 getValue(I.getArgOperand(1)))); 4815 return nullptr; 4816 case Intrinsic::copysign: 4817 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4818 getValue(I.getArgOperand(0)).getValueType(), 4819 getValue(I.getArgOperand(0)), 4820 getValue(I.getArgOperand(1)))); 4821 return nullptr; 4822 case Intrinsic::fma: 4823 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4824 getValue(I.getArgOperand(0)).getValueType(), 4825 getValue(I.getArgOperand(0)), 4826 getValue(I.getArgOperand(1)), 4827 getValue(I.getArgOperand(2)))); 4828 return nullptr; 4829 case Intrinsic::fmuladd: { 4830 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4831 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4832 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4833 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4834 getValue(I.getArgOperand(0)).getValueType(), 4835 getValue(I.getArgOperand(0)), 4836 getValue(I.getArgOperand(1)), 4837 getValue(I.getArgOperand(2)))); 4838 } else { 4839 // TODO: Intrinsic calls should have fast-math-flags. 4840 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4841 getValue(I.getArgOperand(0)).getValueType(), 4842 getValue(I.getArgOperand(0)), 4843 getValue(I.getArgOperand(1))); 4844 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4845 getValue(I.getArgOperand(0)).getValueType(), 4846 Mul, 4847 getValue(I.getArgOperand(2))); 4848 setValue(&I, Add); 4849 } 4850 return nullptr; 4851 } 4852 case Intrinsic::convert_to_fp16: 4853 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4854 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4855 getValue(I.getArgOperand(0)), 4856 DAG.getTargetConstant(0, sdl, 4857 MVT::i32)))); 4858 return nullptr; 4859 case Intrinsic::convert_from_fp16: 4860 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4861 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4862 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4863 getValue(I.getArgOperand(0))))); 4864 return nullptr; 4865 case Intrinsic::pcmarker: { 4866 SDValue Tmp = getValue(I.getArgOperand(0)); 4867 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4868 return nullptr; 4869 } 4870 case Intrinsic::readcyclecounter: { 4871 SDValue Op = getRoot(); 4872 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4873 DAG.getVTList(MVT::i64, MVT::Other), Op); 4874 setValue(&I, Res); 4875 DAG.setRoot(Res.getValue(1)); 4876 return nullptr; 4877 } 4878 case Intrinsic::bitreverse: 4879 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4880 getValue(I.getArgOperand(0)).getValueType(), 4881 getValue(I.getArgOperand(0)))); 4882 return nullptr; 4883 case Intrinsic::bswap: 4884 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4885 getValue(I.getArgOperand(0)).getValueType(), 4886 getValue(I.getArgOperand(0)))); 4887 return nullptr; 4888 case Intrinsic::cttz: { 4889 SDValue Arg = getValue(I.getArgOperand(0)); 4890 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4891 EVT Ty = Arg.getValueType(); 4892 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4893 sdl, Ty, Arg)); 4894 return nullptr; 4895 } 4896 case Intrinsic::ctlz: { 4897 SDValue Arg = getValue(I.getArgOperand(0)); 4898 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4899 EVT Ty = Arg.getValueType(); 4900 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4901 sdl, Ty, Arg)); 4902 return nullptr; 4903 } 4904 case Intrinsic::ctpop: { 4905 SDValue Arg = getValue(I.getArgOperand(0)); 4906 EVT Ty = Arg.getValueType(); 4907 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4908 return nullptr; 4909 } 4910 case Intrinsic::stacksave: { 4911 SDValue Op = getRoot(); 4912 Res = DAG.getNode( 4913 ISD::STACKSAVE, sdl, 4914 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4915 setValue(&I, Res); 4916 DAG.setRoot(Res.getValue(1)); 4917 return nullptr; 4918 } 4919 case Intrinsic::stackrestore: { 4920 Res = getValue(I.getArgOperand(0)); 4921 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4922 return nullptr; 4923 } 4924 case Intrinsic::get_dynamic_area_offset: { 4925 SDValue Op = getRoot(); 4926 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4927 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4928 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4929 // target. 4930 if (PtrTy != ResTy) 4931 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4932 " intrinsic!"); 4933 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4934 Op); 4935 DAG.setRoot(Op); 4936 setValue(&I, Res); 4937 return nullptr; 4938 } 4939 case Intrinsic::stackprotector: { 4940 // Emit code into the DAG to store the stack guard onto the stack. 4941 MachineFunction &MF = DAG.getMachineFunction(); 4942 MachineFrameInfo *MFI = MF.getFrameInfo(); 4943 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4944 SDValue Src, Chain = getRoot(); 4945 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4946 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4947 4948 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4949 // global variable __stack_chk_guard. 4950 if (!GV) 4951 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4952 if (BC->getOpcode() == Instruction::BitCast) 4953 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4954 4955 if (GV && TLI.useLoadStackGuardNode()) { 4956 // Emit a LOAD_STACK_GUARD node. 4957 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4958 sdl, PtrTy, Chain); 4959 MachinePointerInfo MPInfo(GV); 4960 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4961 unsigned Flags = MachineMemOperand::MOLoad | 4962 MachineMemOperand::MOInvariant; 4963 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4964 PtrTy.getSizeInBits() / 8, 4965 DAG.getEVTAlignment(PtrTy)); 4966 Node->setMemRefs(MemRefs, MemRefs + 1); 4967 4968 // Copy the guard value to a virtual register so that it can be 4969 // retrieved in the epilogue. 4970 Src = SDValue(Node, 0); 4971 const TargetRegisterClass *RC = 4972 TLI.getRegClassFor(Src.getSimpleValueType()); 4973 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4974 4975 SPDescriptor.setGuardReg(Reg); 4976 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4977 } else { 4978 Src = getValue(I.getArgOperand(0)); // The guard's value. 4979 } 4980 4981 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4982 4983 int FI = FuncInfo.StaticAllocaMap[Slot]; 4984 MFI->setStackProtectorIndex(FI); 4985 4986 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4987 4988 // Store the stack protector onto the stack. 4989 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 4990 DAG.getMachineFunction(), FI), 4991 true, false, 0); 4992 setValue(&I, Res); 4993 DAG.setRoot(Res); 4994 return nullptr; 4995 } 4996 case Intrinsic::objectsize: { 4997 // If we don't know by now, we're never going to know. 4998 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4999 5000 assert(CI && "Non-constant type in __builtin_object_size?"); 5001 5002 SDValue Arg = getValue(I.getCalledValue()); 5003 EVT Ty = Arg.getValueType(); 5004 5005 if (CI->isZero()) 5006 Res = DAG.getConstant(-1ULL, sdl, Ty); 5007 else 5008 Res = DAG.getConstant(0, sdl, Ty); 5009 5010 setValue(&I, Res); 5011 return nullptr; 5012 } 5013 case Intrinsic::annotation: 5014 case Intrinsic::ptr_annotation: 5015 // Drop the intrinsic, but forward the value 5016 setValue(&I, getValue(I.getOperand(0))); 5017 return nullptr; 5018 case Intrinsic::assume: 5019 case Intrinsic::var_annotation: 5020 // Discard annotate attributes and assumptions 5021 return nullptr; 5022 5023 case Intrinsic::init_trampoline: { 5024 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5025 5026 SDValue Ops[6]; 5027 Ops[0] = getRoot(); 5028 Ops[1] = getValue(I.getArgOperand(0)); 5029 Ops[2] = getValue(I.getArgOperand(1)); 5030 Ops[3] = getValue(I.getArgOperand(2)); 5031 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5032 Ops[5] = DAG.getSrcValue(F); 5033 5034 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5035 5036 DAG.setRoot(Res); 5037 return nullptr; 5038 } 5039 case Intrinsic::adjust_trampoline: { 5040 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5041 TLI.getPointerTy(DAG.getDataLayout()), 5042 getValue(I.getArgOperand(0)))); 5043 return nullptr; 5044 } 5045 case Intrinsic::gcroot: 5046 if (GFI) { 5047 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5048 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5049 5050 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5051 GFI->addStackRoot(FI->getIndex(), TypeMap); 5052 } 5053 return nullptr; 5054 case Intrinsic::gcread: 5055 case Intrinsic::gcwrite: 5056 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5057 case Intrinsic::flt_rounds: 5058 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5059 return nullptr; 5060 5061 case Intrinsic::expect: { 5062 // Just replace __builtin_expect(exp, c) with EXP. 5063 setValue(&I, getValue(I.getArgOperand(0))); 5064 return nullptr; 5065 } 5066 5067 case Intrinsic::debugtrap: 5068 case Intrinsic::trap: { 5069 StringRef TrapFuncName = 5070 I.getAttributes() 5071 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5072 .getValueAsString(); 5073 if (TrapFuncName.empty()) { 5074 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5075 ISD::TRAP : ISD::DEBUGTRAP; 5076 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5077 return nullptr; 5078 } 5079 TargetLowering::ArgListTy Args; 5080 5081 TargetLowering::CallLoweringInfo CLI(DAG); 5082 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5083 CallingConv::C, I.getType(), 5084 DAG.getExternalSymbol(TrapFuncName.data(), 5085 TLI.getPointerTy(DAG.getDataLayout())), 5086 std::move(Args), 0); 5087 5088 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5089 DAG.setRoot(Result.second); 5090 return nullptr; 5091 } 5092 5093 case Intrinsic::uadd_with_overflow: 5094 case Intrinsic::sadd_with_overflow: 5095 case Intrinsic::usub_with_overflow: 5096 case Intrinsic::ssub_with_overflow: 5097 case Intrinsic::umul_with_overflow: 5098 case Intrinsic::smul_with_overflow: { 5099 ISD::NodeType Op; 5100 switch (Intrinsic) { 5101 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5102 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5103 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5104 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5105 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5106 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5107 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5108 } 5109 SDValue Op1 = getValue(I.getArgOperand(0)); 5110 SDValue Op2 = getValue(I.getArgOperand(1)); 5111 5112 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5113 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5114 return nullptr; 5115 } 5116 case Intrinsic::prefetch: { 5117 SDValue Ops[5]; 5118 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5119 Ops[0] = getRoot(); 5120 Ops[1] = getValue(I.getArgOperand(0)); 5121 Ops[2] = getValue(I.getArgOperand(1)); 5122 Ops[3] = getValue(I.getArgOperand(2)); 5123 Ops[4] = getValue(I.getArgOperand(3)); 5124 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5125 DAG.getVTList(MVT::Other), Ops, 5126 EVT::getIntegerVT(*Context, 8), 5127 MachinePointerInfo(I.getArgOperand(0)), 5128 0, /* align */ 5129 false, /* volatile */ 5130 rw==0, /* read */ 5131 rw==1)); /* write */ 5132 return nullptr; 5133 } 5134 case Intrinsic::lifetime_start: 5135 case Intrinsic::lifetime_end: { 5136 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5137 // Stack coloring is not enabled in O0, discard region information. 5138 if (TM.getOptLevel() == CodeGenOpt::None) 5139 return nullptr; 5140 5141 SmallVector<Value *, 4> Allocas; 5142 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5143 5144 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5145 E = Allocas.end(); Object != E; ++Object) { 5146 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5147 5148 // Could not find an Alloca. 5149 if (!LifetimeObject) 5150 continue; 5151 5152 // First check that the Alloca is static, otherwise it won't have a 5153 // valid frame index. 5154 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5155 if (SI == FuncInfo.StaticAllocaMap.end()) 5156 return nullptr; 5157 5158 int FI = SI->second; 5159 5160 SDValue Ops[2]; 5161 Ops[0] = getRoot(); 5162 Ops[1] = 5163 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5164 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5165 5166 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5167 DAG.setRoot(Res); 5168 } 5169 return nullptr; 5170 } 5171 case Intrinsic::invariant_start: 5172 // Discard region information. 5173 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5174 return nullptr; 5175 case Intrinsic::invariant_end: 5176 // Discard region information. 5177 return nullptr; 5178 case Intrinsic::stackprotectorcheck: { 5179 // Do not actually emit anything for this basic block. Instead we initialize 5180 // the stack protector descriptor and export the guard variable so we can 5181 // access it in FinishBasicBlock. 5182 const BasicBlock *BB = I.getParent(); 5183 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5184 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5185 5186 // Flush our exports since we are going to process a terminator. 5187 (void)getControlRoot(); 5188 return nullptr; 5189 } 5190 case Intrinsic::clear_cache: 5191 return TLI.getClearCacheBuiltinName(); 5192 case Intrinsic::donothing: 5193 // ignore 5194 return nullptr; 5195 case Intrinsic::experimental_stackmap: { 5196 visitStackmap(I); 5197 return nullptr; 5198 } 5199 case Intrinsic::experimental_patchpoint_void: 5200 case Intrinsic::experimental_patchpoint_i64: { 5201 visitPatchpoint(&I); 5202 return nullptr; 5203 } 5204 case Intrinsic::experimental_gc_statepoint: { 5205 visitStatepoint(I); 5206 return nullptr; 5207 } 5208 case Intrinsic::experimental_gc_result_int: 5209 case Intrinsic::experimental_gc_result_float: 5210 case Intrinsic::experimental_gc_result_ptr: 5211 case Intrinsic::experimental_gc_result: { 5212 visitGCResult(I); 5213 return nullptr; 5214 } 5215 case Intrinsic::experimental_gc_relocate: { 5216 visitGCRelocate(I); 5217 return nullptr; 5218 } 5219 case Intrinsic::instrprof_increment: 5220 llvm_unreachable("instrprof failed to lower an increment"); 5221 case Intrinsic::instrprof_value_profile: 5222 llvm_unreachable("instrprof failed to lower a value profiling call"); 5223 case Intrinsic::localescape: { 5224 MachineFunction &MF = DAG.getMachineFunction(); 5225 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5226 5227 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5228 // is the same on all targets. 5229 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5230 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5231 if (isa<ConstantPointerNull>(Arg)) 5232 continue; // Skip null pointers. They represent a hole in index space. 5233 AllocaInst *Slot = cast<AllocaInst>(Arg); 5234 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5235 "can only escape static allocas"); 5236 int FI = FuncInfo.StaticAllocaMap[Slot]; 5237 MCSymbol *FrameAllocSym = 5238 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5239 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5240 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5241 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5242 .addSym(FrameAllocSym) 5243 .addFrameIndex(FI); 5244 } 5245 5246 return nullptr; 5247 } 5248 5249 case Intrinsic::localrecover: { 5250 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5251 MachineFunction &MF = DAG.getMachineFunction(); 5252 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5253 5254 // Get the symbol that defines the frame offset. 5255 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5256 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5257 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5258 MCSymbol *FrameAllocSym = 5259 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5260 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5261 5262 // Create a MCSymbol for the label to avoid any target lowering 5263 // that would make this PC relative. 5264 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5265 SDValue OffsetVal = 5266 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5267 5268 // Add the offset to the FP. 5269 Value *FP = I.getArgOperand(1); 5270 SDValue FPVal = getValue(FP); 5271 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5272 setValue(&I, Add); 5273 5274 return nullptr; 5275 } 5276 5277 case Intrinsic::eh_exceptionpointer: 5278 case Intrinsic::eh_exceptioncode: { 5279 // Get the exception pointer vreg, copy from it, and resize it to fit. 5280 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5281 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5282 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5283 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5284 SDValue N = 5285 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5286 if (Intrinsic == Intrinsic::eh_exceptioncode) 5287 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5288 setValue(&I, N); 5289 return nullptr; 5290 } 5291 } 5292 } 5293 5294 std::pair<SDValue, SDValue> 5295 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5296 const BasicBlock *EHPadBB) { 5297 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5298 MCSymbol *BeginLabel = nullptr; 5299 5300 if (EHPadBB) { 5301 // Insert a label before the invoke call to mark the try range. This can be 5302 // used to detect deletion of the invoke via the MachineModuleInfo. 5303 BeginLabel = MMI.getContext().createTempSymbol(); 5304 5305 // For SjLj, keep track of which landing pads go with which invokes 5306 // so as to maintain the ordering of pads in the LSDA. 5307 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5308 if (CallSiteIndex) { 5309 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5310 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5311 5312 // Now that the call site is handled, stop tracking it. 5313 MMI.setCurrentCallSite(0); 5314 } 5315 5316 // Both PendingLoads and PendingExports must be flushed here; 5317 // this call might not return. 5318 (void)getRoot(); 5319 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5320 5321 CLI.setChain(getRoot()); 5322 } 5323 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5324 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5325 5326 assert((CLI.IsTailCall || Result.second.getNode()) && 5327 "Non-null chain expected with non-tail call!"); 5328 assert((Result.second.getNode() || !Result.first.getNode()) && 5329 "Null value expected with tail call!"); 5330 5331 if (!Result.second.getNode()) { 5332 // As a special case, a null chain means that a tail call has been emitted 5333 // and the DAG root is already updated. 5334 HasTailCall = true; 5335 5336 // Since there's no actual continuation from this block, nothing can be 5337 // relying on us setting vregs for them. 5338 PendingExports.clear(); 5339 } else { 5340 DAG.setRoot(Result.second); 5341 } 5342 5343 if (EHPadBB) { 5344 // Insert a label at the end of the invoke call to mark the try range. This 5345 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5346 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5347 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5348 5349 // Inform MachineModuleInfo of range. 5350 if (MMI.hasEHFunclets()) { 5351 assert(CLI.CS); 5352 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5353 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5354 BeginLabel, EndLabel); 5355 } else { 5356 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5357 } 5358 } 5359 5360 return Result; 5361 } 5362 5363 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5364 bool isTailCall, 5365 const BasicBlock *EHPadBB) { 5366 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5367 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5368 Type *RetTy = FTy->getReturnType(); 5369 5370 TargetLowering::ArgListTy Args; 5371 TargetLowering::ArgListEntry Entry; 5372 Args.reserve(CS.arg_size()); 5373 5374 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5375 i != e; ++i) { 5376 const Value *V = *i; 5377 5378 // Skip empty types 5379 if (V->getType()->isEmptyTy()) 5380 continue; 5381 5382 SDValue ArgNode = getValue(V); 5383 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5384 5385 // Skip the first return-type Attribute to get to params. 5386 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5387 Args.push_back(Entry); 5388 5389 // If we have an explicit sret argument that is an Instruction, (i.e., it 5390 // might point to function-local memory), we can't meaningfully tail-call. 5391 if (Entry.isSRet && isa<Instruction>(V)) 5392 isTailCall = false; 5393 } 5394 5395 // Check if target-independent constraints permit a tail call here. 5396 // Target-dependent constraints are checked within TLI->LowerCallTo. 5397 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5398 isTailCall = false; 5399 5400 TargetLowering::CallLoweringInfo CLI(DAG); 5401 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5402 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5403 .setTailCall(isTailCall); 5404 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5405 5406 if (Result.first.getNode()) 5407 setValue(CS.getInstruction(), Result.first); 5408 } 5409 5410 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5411 /// value is equal or not-equal to zero. 5412 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5413 for (const User *U : V->users()) { 5414 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5415 if (IC->isEquality()) 5416 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5417 if (C->isNullValue()) 5418 continue; 5419 // Unknown instruction. 5420 return false; 5421 } 5422 return true; 5423 } 5424 5425 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5426 Type *LoadTy, 5427 SelectionDAGBuilder &Builder) { 5428 5429 // Check to see if this load can be trivially constant folded, e.g. if the 5430 // input is from a string literal. 5431 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5432 // Cast pointer to the type we really want to load. 5433 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5434 PointerType::getUnqual(LoadTy)); 5435 5436 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5437 const_cast<Constant *>(LoadInput), *Builder.DL)) 5438 return Builder.getValue(LoadCst); 5439 } 5440 5441 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5442 // still constant memory, the input chain can be the entry node. 5443 SDValue Root; 5444 bool ConstantMemory = false; 5445 5446 // Do not serialize (non-volatile) loads of constant memory with anything. 5447 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5448 Root = Builder.DAG.getEntryNode(); 5449 ConstantMemory = true; 5450 } else { 5451 // Do not serialize non-volatile loads against each other. 5452 Root = Builder.DAG.getRoot(); 5453 } 5454 5455 SDValue Ptr = Builder.getValue(PtrVal); 5456 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5457 Ptr, MachinePointerInfo(PtrVal), 5458 false /*volatile*/, 5459 false /*nontemporal*/, 5460 false /*isinvariant*/, 1 /* align=1 */); 5461 5462 if (!ConstantMemory) 5463 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5464 return LoadVal; 5465 } 5466 5467 /// processIntegerCallValue - Record the value for an instruction that 5468 /// produces an integer result, converting the type where necessary. 5469 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5470 SDValue Value, 5471 bool IsSigned) { 5472 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5473 I.getType(), true); 5474 if (IsSigned) 5475 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5476 else 5477 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5478 setValue(&I, Value); 5479 } 5480 5481 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5482 /// If so, return true and lower it, otherwise return false and it will be 5483 /// lowered like a normal call. 5484 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5485 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5486 if (I.getNumArgOperands() != 3) 5487 return false; 5488 5489 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5490 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5491 !I.getArgOperand(2)->getType()->isIntegerTy() || 5492 !I.getType()->isIntegerTy()) 5493 return false; 5494 5495 const Value *Size = I.getArgOperand(2); 5496 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5497 if (CSize && CSize->getZExtValue() == 0) { 5498 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5499 I.getType(), true); 5500 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5501 return true; 5502 } 5503 5504 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5505 std::pair<SDValue, SDValue> Res = 5506 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5507 getValue(LHS), getValue(RHS), getValue(Size), 5508 MachinePointerInfo(LHS), 5509 MachinePointerInfo(RHS)); 5510 if (Res.first.getNode()) { 5511 processIntegerCallValue(I, Res.first, true); 5512 PendingLoads.push_back(Res.second); 5513 return true; 5514 } 5515 5516 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5517 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5518 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5519 bool ActuallyDoIt = true; 5520 MVT LoadVT; 5521 Type *LoadTy; 5522 switch (CSize->getZExtValue()) { 5523 default: 5524 LoadVT = MVT::Other; 5525 LoadTy = nullptr; 5526 ActuallyDoIt = false; 5527 break; 5528 case 2: 5529 LoadVT = MVT::i16; 5530 LoadTy = Type::getInt16Ty(CSize->getContext()); 5531 break; 5532 case 4: 5533 LoadVT = MVT::i32; 5534 LoadTy = Type::getInt32Ty(CSize->getContext()); 5535 break; 5536 case 8: 5537 LoadVT = MVT::i64; 5538 LoadTy = Type::getInt64Ty(CSize->getContext()); 5539 break; 5540 /* 5541 case 16: 5542 LoadVT = MVT::v4i32; 5543 LoadTy = Type::getInt32Ty(CSize->getContext()); 5544 LoadTy = VectorType::get(LoadTy, 4); 5545 break; 5546 */ 5547 } 5548 5549 // This turns into unaligned loads. We only do this if the target natively 5550 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5551 // we'll only produce a small number of byte loads. 5552 5553 // Require that we can find a legal MVT, and only do this if the target 5554 // supports unaligned loads of that type. Expanding into byte loads would 5555 // bloat the code. 5556 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5557 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5558 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5559 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5560 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5561 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5562 // TODO: Check alignment of src and dest ptrs. 5563 if (!TLI.isTypeLegal(LoadVT) || 5564 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5565 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5566 ActuallyDoIt = false; 5567 } 5568 5569 if (ActuallyDoIt) { 5570 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5571 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5572 5573 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5574 ISD::SETNE); 5575 processIntegerCallValue(I, Res, false); 5576 return true; 5577 } 5578 } 5579 5580 5581 return false; 5582 } 5583 5584 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5585 /// form. If so, return true and lower it, otherwise return false and it 5586 /// will be lowered like a normal call. 5587 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5588 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5589 if (I.getNumArgOperands() != 3) 5590 return false; 5591 5592 const Value *Src = I.getArgOperand(0); 5593 const Value *Char = I.getArgOperand(1); 5594 const Value *Length = I.getArgOperand(2); 5595 if (!Src->getType()->isPointerTy() || 5596 !Char->getType()->isIntegerTy() || 5597 !Length->getType()->isIntegerTy() || 5598 !I.getType()->isPointerTy()) 5599 return false; 5600 5601 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5602 std::pair<SDValue, SDValue> Res = 5603 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5604 getValue(Src), getValue(Char), getValue(Length), 5605 MachinePointerInfo(Src)); 5606 if (Res.first.getNode()) { 5607 setValue(&I, Res.first); 5608 PendingLoads.push_back(Res.second); 5609 return true; 5610 } 5611 5612 return false; 5613 } 5614 5615 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5616 /// optimized form. If so, return true and lower it, otherwise return false 5617 /// and it will be lowered like a normal call. 5618 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5619 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5620 if (I.getNumArgOperands() != 2) 5621 return false; 5622 5623 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5624 if (!Arg0->getType()->isPointerTy() || 5625 !Arg1->getType()->isPointerTy() || 5626 !I.getType()->isPointerTy()) 5627 return false; 5628 5629 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5630 std::pair<SDValue, SDValue> Res = 5631 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5632 getValue(Arg0), getValue(Arg1), 5633 MachinePointerInfo(Arg0), 5634 MachinePointerInfo(Arg1), isStpcpy); 5635 if (Res.first.getNode()) { 5636 setValue(&I, Res.first); 5637 DAG.setRoot(Res.second); 5638 return true; 5639 } 5640 5641 return false; 5642 } 5643 5644 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5645 /// If so, return true and lower it, otherwise return false and it will be 5646 /// lowered like a normal call. 5647 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5648 // Verify that the prototype makes sense. int strcmp(void*,void*) 5649 if (I.getNumArgOperands() != 2) 5650 return false; 5651 5652 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5653 if (!Arg0->getType()->isPointerTy() || 5654 !Arg1->getType()->isPointerTy() || 5655 !I.getType()->isIntegerTy()) 5656 return false; 5657 5658 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5659 std::pair<SDValue, SDValue> Res = 5660 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5661 getValue(Arg0), getValue(Arg1), 5662 MachinePointerInfo(Arg0), 5663 MachinePointerInfo(Arg1)); 5664 if (Res.first.getNode()) { 5665 processIntegerCallValue(I, Res.first, true); 5666 PendingLoads.push_back(Res.second); 5667 return true; 5668 } 5669 5670 return false; 5671 } 5672 5673 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5674 /// form. If so, return true and lower it, otherwise return false and it 5675 /// will be lowered like a normal call. 5676 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5677 // Verify that the prototype makes sense. size_t strlen(char *) 5678 if (I.getNumArgOperands() != 1) 5679 return false; 5680 5681 const Value *Arg0 = I.getArgOperand(0); 5682 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5683 return false; 5684 5685 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5686 std::pair<SDValue, SDValue> Res = 5687 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5688 getValue(Arg0), MachinePointerInfo(Arg0)); 5689 if (Res.first.getNode()) { 5690 processIntegerCallValue(I, Res.first, false); 5691 PendingLoads.push_back(Res.second); 5692 return true; 5693 } 5694 5695 return false; 5696 } 5697 5698 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5699 /// form. If so, return true and lower it, otherwise return false and it 5700 /// will be lowered like a normal call. 5701 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5702 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5703 if (I.getNumArgOperands() != 2) 5704 return false; 5705 5706 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5707 if (!Arg0->getType()->isPointerTy() || 5708 !Arg1->getType()->isIntegerTy() || 5709 !I.getType()->isIntegerTy()) 5710 return false; 5711 5712 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5713 std::pair<SDValue, SDValue> Res = 5714 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5715 getValue(Arg0), getValue(Arg1), 5716 MachinePointerInfo(Arg0)); 5717 if (Res.first.getNode()) { 5718 processIntegerCallValue(I, Res.first, false); 5719 PendingLoads.push_back(Res.second); 5720 return true; 5721 } 5722 5723 return false; 5724 } 5725 5726 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5727 /// operation (as expected), translate it to an SDNode with the specified opcode 5728 /// and return true. 5729 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5730 unsigned Opcode) { 5731 // Sanity check that it really is a unary floating-point call. 5732 if (I.getNumArgOperands() != 1 || 5733 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5734 I.getType() != I.getArgOperand(0)->getType() || 5735 !I.onlyReadsMemory()) 5736 return false; 5737 5738 SDValue Tmp = getValue(I.getArgOperand(0)); 5739 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5740 return true; 5741 } 5742 5743 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5744 /// operation (as expected), translate it to an SDNode with the specified opcode 5745 /// and return true. 5746 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5747 unsigned Opcode) { 5748 // Sanity check that it really is a binary floating-point call. 5749 if (I.getNumArgOperands() != 2 || 5750 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5751 I.getType() != I.getArgOperand(0)->getType() || 5752 I.getType() != I.getArgOperand(1)->getType() || 5753 !I.onlyReadsMemory()) 5754 return false; 5755 5756 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5757 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5758 EVT VT = Tmp0.getValueType(); 5759 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5760 return true; 5761 } 5762 5763 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5764 // Handle inline assembly differently. 5765 if (isa<InlineAsm>(I.getCalledValue())) { 5766 visitInlineAsm(&I); 5767 return; 5768 } 5769 5770 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5771 ComputeUsesVAFloatArgument(I, &MMI); 5772 5773 const char *RenameFn = nullptr; 5774 if (Function *F = I.getCalledFunction()) { 5775 if (F->isDeclaration()) { 5776 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5777 if (unsigned IID = II->getIntrinsicID(F)) { 5778 RenameFn = visitIntrinsicCall(I, IID); 5779 if (!RenameFn) 5780 return; 5781 } 5782 } 5783 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5784 RenameFn = visitIntrinsicCall(I, IID); 5785 if (!RenameFn) 5786 return; 5787 } 5788 } 5789 5790 // Check for well-known libc/libm calls. If the function is internal, it 5791 // can't be a library call. 5792 LibFunc::Func Func; 5793 if (!F->hasLocalLinkage() && F->hasName() && 5794 LibInfo->getLibFunc(F->getName(), Func) && 5795 LibInfo->hasOptimizedCodeGen(Func)) { 5796 switch (Func) { 5797 default: break; 5798 case LibFunc::copysign: 5799 case LibFunc::copysignf: 5800 case LibFunc::copysignl: 5801 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5802 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5803 I.getType() == I.getArgOperand(0)->getType() && 5804 I.getType() == I.getArgOperand(1)->getType() && 5805 I.onlyReadsMemory()) { 5806 SDValue LHS = getValue(I.getArgOperand(0)); 5807 SDValue RHS = getValue(I.getArgOperand(1)); 5808 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5809 LHS.getValueType(), LHS, RHS)); 5810 return; 5811 } 5812 break; 5813 case LibFunc::fabs: 5814 case LibFunc::fabsf: 5815 case LibFunc::fabsl: 5816 if (visitUnaryFloatCall(I, ISD::FABS)) 5817 return; 5818 break; 5819 case LibFunc::fmin: 5820 case LibFunc::fminf: 5821 case LibFunc::fminl: 5822 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5823 return; 5824 break; 5825 case LibFunc::fmax: 5826 case LibFunc::fmaxf: 5827 case LibFunc::fmaxl: 5828 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5829 return; 5830 break; 5831 case LibFunc::sin: 5832 case LibFunc::sinf: 5833 case LibFunc::sinl: 5834 if (visitUnaryFloatCall(I, ISD::FSIN)) 5835 return; 5836 break; 5837 case LibFunc::cos: 5838 case LibFunc::cosf: 5839 case LibFunc::cosl: 5840 if (visitUnaryFloatCall(I, ISD::FCOS)) 5841 return; 5842 break; 5843 case LibFunc::sqrt: 5844 case LibFunc::sqrtf: 5845 case LibFunc::sqrtl: 5846 case LibFunc::sqrt_finite: 5847 case LibFunc::sqrtf_finite: 5848 case LibFunc::sqrtl_finite: 5849 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5850 return; 5851 break; 5852 case LibFunc::floor: 5853 case LibFunc::floorf: 5854 case LibFunc::floorl: 5855 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5856 return; 5857 break; 5858 case LibFunc::nearbyint: 5859 case LibFunc::nearbyintf: 5860 case LibFunc::nearbyintl: 5861 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5862 return; 5863 break; 5864 case LibFunc::ceil: 5865 case LibFunc::ceilf: 5866 case LibFunc::ceill: 5867 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5868 return; 5869 break; 5870 case LibFunc::rint: 5871 case LibFunc::rintf: 5872 case LibFunc::rintl: 5873 if (visitUnaryFloatCall(I, ISD::FRINT)) 5874 return; 5875 break; 5876 case LibFunc::round: 5877 case LibFunc::roundf: 5878 case LibFunc::roundl: 5879 if (visitUnaryFloatCall(I, ISD::FROUND)) 5880 return; 5881 break; 5882 case LibFunc::trunc: 5883 case LibFunc::truncf: 5884 case LibFunc::truncl: 5885 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5886 return; 5887 break; 5888 case LibFunc::log2: 5889 case LibFunc::log2f: 5890 case LibFunc::log2l: 5891 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5892 return; 5893 break; 5894 case LibFunc::exp2: 5895 case LibFunc::exp2f: 5896 case LibFunc::exp2l: 5897 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5898 return; 5899 break; 5900 case LibFunc::memcmp: 5901 if (visitMemCmpCall(I)) 5902 return; 5903 break; 5904 case LibFunc::memchr: 5905 if (visitMemChrCall(I)) 5906 return; 5907 break; 5908 case LibFunc::strcpy: 5909 if (visitStrCpyCall(I, false)) 5910 return; 5911 break; 5912 case LibFunc::stpcpy: 5913 if (visitStrCpyCall(I, true)) 5914 return; 5915 break; 5916 case LibFunc::strcmp: 5917 if (visitStrCmpCall(I)) 5918 return; 5919 break; 5920 case LibFunc::strlen: 5921 if (visitStrLenCall(I)) 5922 return; 5923 break; 5924 case LibFunc::strnlen: 5925 if (visitStrNLenCall(I)) 5926 return; 5927 break; 5928 } 5929 } 5930 } 5931 5932 SDValue Callee; 5933 if (!RenameFn) 5934 Callee = getValue(I.getCalledValue()); 5935 else 5936 Callee = DAG.getExternalSymbol( 5937 RenameFn, 5938 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5939 5940 // Check if we can potentially perform a tail call. More detailed checking is 5941 // be done within LowerCallTo, after more information about the call is known. 5942 LowerCallTo(&I, Callee, I.isTailCall()); 5943 } 5944 5945 namespace { 5946 5947 /// AsmOperandInfo - This contains information for each constraint that we are 5948 /// lowering. 5949 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5950 public: 5951 /// CallOperand - If this is the result output operand or a clobber 5952 /// this is null, otherwise it is the incoming operand to the CallInst. 5953 /// This gets modified as the asm is processed. 5954 SDValue CallOperand; 5955 5956 /// AssignedRegs - If this is a register or register class operand, this 5957 /// contains the set of register corresponding to the operand. 5958 RegsForValue AssignedRegs; 5959 5960 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5961 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5962 } 5963 5964 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5965 /// corresponds to. If there is no Value* for this operand, it returns 5966 /// MVT::Other. 5967 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5968 const DataLayout &DL) const { 5969 if (!CallOperandVal) return MVT::Other; 5970 5971 if (isa<BasicBlock>(CallOperandVal)) 5972 return TLI.getPointerTy(DL); 5973 5974 llvm::Type *OpTy = CallOperandVal->getType(); 5975 5976 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5977 // If this is an indirect operand, the operand is a pointer to the 5978 // accessed type. 5979 if (isIndirect) { 5980 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5981 if (!PtrTy) 5982 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5983 OpTy = PtrTy->getElementType(); 5984 } 5985 5986 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5987 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5988 if (STy->getNumElements() == 1) 5989 OpTy = STy->getElementType(0); 5990 5991 // If OpTy is not a single value, it may be a struct/union that we 5992 // can tile with integers. 5993 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5994 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 5995 switch (BitSize) { 5996 default: break; 5997 case 1: 5998 case 8: 5999 case 16: 6000 case 32: 6001 case 64: 6002 case 128: 6003 OpTy = IntegerType::get(Context, BitSize); 6004 break; 6005 } 6006 } 6007 6008 return TLI.getValueType(DL, OpTy, true); 6009 } 6010 }; 6011 6012 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6013 6014 } // end anonymous namespace 6015 6016 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6017 /// specified operand. We prefer to assign virtual registers, to allow the 6018 /// register allocator to handle the assignment process. However, if the asm 6019 /// uses features that we can't model on machineinstrs, we have SDISel do the 6020 /// allocation. This produces generally horrible, but correct, code. 6021 /// 6022 /// OpInfo describes the operand. 6023 /// 6024 static void GetRegistersForValue(SelectionDAG &DAG, 6025 const TargetLowering &TLI, 6026 SDLoc DL, 6027 SDISelAsmOperandInfo &OpInfo) { 6028 LLVMContext &Context = *DAG.getContext(); 6029 6030 MachineFunction &MF = DAG.getMachineFunction(); 6031 SmallVector<unsigned, 4> Regs; 6032 6033 // If this is a constraint for a single physreg, or a constraint for a 6034 // register class, find it. 6035 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6036 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6037 OpInfo.ConstraintCode, 6038 OpInfo.ConstraintVT); 6039 6040 unsigned NumRegs = 1; 6041 if (OpInfo.ConstraintVT != MVT::Other) { 6042 // If this is a FP input in an integer register (or visa versa) insert a bit 6043 // cast of the input value. More generally, handle any case where the input 6044 // value disagrees with the register class we plan to stick this in. 6045 if (OpInfo.Type == InlineAsm::isInput && 6046 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6047 // Try to convert to the first EVT that the reg class contains. If the 6048 // types are identical size, use a bitcast to convert (e.g. two differing 6049 // vector types). 6050 MVT RegVT = *PhysReg.second->vt_begin(); 6051 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6052 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6053 RegVT, OpInfo.CallOperand); 6054 OpInfo.ConstraintVT = RegVT; 6055 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6056 // If the input is a FP value and we want it in FP registers, do a 6057 // bitcast to the corresponding integer type. This turns an f64 value 6058 // into i64, which can be passed with two i32 values on a 32-bit 6059 // machine. 6060 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6061 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6062 RegVT, OpInfo.CallOperand); 6063 OpInfo.ConstraintVT = RegVT; 6064 } 6065 } 6066 6067 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6068 } 6069 6070 MVT RegVT; 6071 EVT ValueVT = OpInfo.ConstraintVT; 6072 6073 // If this is a constraint for a specific physical register, like {r17}, 6074 // assign it now. 6075 if (unsigned AssignedReg = PhysReg.first) { 6076 const TargetRegisterClass *RC = PhysReg.second; 6077 if (OpInfo.ConstraintVT == MVT::Other) 6078 ValueVT = *RC->vt_begin(); 6079 6080 // Get the actual register value type. This is important, because the user 6081 // may have asked for (e.g.) the AX register in i32 type. We need to 6082 // remember that AX is actually i16 to get the right extension. 6083 RegVT = *RC->vt_begin(); 6084 6085 // This is a explicit reference to a physical register. 6086 Regs.push_back(AssignedReg); 6087 6088 // If this is an expanded reference, add the rest of the regs to Regs. 6089 if (NumRegs != 1) { 6090 TargetRegisterClass::iterator I = RC->begin(); 6091 for (; *I != AssignedReg; ++I) 6092 assert(I != RC->end() && "Didn't find reg!"); 6093 6094 // Already added the first reg. 6095 --NumRegs; ++I; 6096 for (; NumRegs; --NumRegs, ++I) { 6097 assert(I != RC->end() && "Ran out of registers to allocate!"); 6098 Regs.push_back(*I); 6099 } 6100 } 6101 6102 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6103 return; 6104 } 6105 6106 // Otherwise, if this was a reference to an LLVM register class, create vregs 6107 // for this reference. 6108 if (const TargetRegisterClass *RC = PhysReg.second) { 6109 RegVT = *RC->vt_begin(); 6110 if (OpInfo.ConstraintVT == MVT::Other) 6111 ValueVT = RegVT; 6112 6113 // Create the appropriate number of virtual registers. 6114 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6115 for (; NumRegs; --NumRegs) 6116 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6117 6118 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6119 return; 6120 } 6121 6122 // Otherwise, we couldn't allocate enough registers for this. 6123 } 6124 6125 /// visitInlineAsm - Handle a call to an InlineAsm object. 6126 /// 6127 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6128 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6129 6130 /// ConstraintOperands - Information about all of the constraints. 6131 SDISelAsmOperandInfoVector ConstraintOperands; 6132 6133 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6134 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6135 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6136 6137 bool hasMemory = false; 6138 6139 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6140 unsigned ResNo = 0; // ResNo - The result number of the next output. 6141 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6142 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6143 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6144 6145 MVT OpVT = MVT::Other; 6146 6147 // Compute the value type for each operand. 6148 switch (OpInfo.Type) { 6149 case InlineAsm::isOutput: 6150 // Indirect outputs just consume an argument. 6151 if (OpInfo.isIndirect) { 6152 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6153 break; 6154 } 6155 6156 // The return value of the call is this value. As such, there is no 6157 // corresponding argument. 6158 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6159 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6160 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6161 STy->getElementType(ResNo)); 6162 } else { 6163 assert(ResNo == 0 && "Asm only has one result!"); 6164 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6165 } 6166 ++ResNo; 6167 break; 6168 case InlineAsm::isInput: 6169 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6170 break; 6171 case InlineAsm::isClobber: 6172 // Nothing to do. 6173 break; 6174 } 6175 6176 // If this is an input or an indirect output, process the call argument. 6177 // BasicBlocks are labels, currently appearing only in asm's. 6178 if (OpInfo.CallOperandVal) { 6179 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6180 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6181 } else { 6182 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6183 } 6184 6185 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6186 DAG.getDataLayout()).getSimpleVT(); 6187 } 6188 6189 OpInfo.ConstraintVT = OpVT; 6190 6191 // Indirect operand accesses access memory. 6192 if (OpInfo.isIndirect) 6193 hasMemory = true; 6194 else { 6195 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6196 TargetLowering::ConstraintType 6197 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6198 if (CType == TargetLowering::C_Memory) { 6199 hasMemory = true; 6200 break; 6201 } 6202 } 6203 } 6204 } 6205 6206 SDValue Chain, Flag; 6207 6208 // We won't need to flush pending loads if this asm doesn't touch 6209 // memory and is nonvolatile. 6210 if (hasMemory || IA->hasSideEffects()) 6211 Chain = getRoot(); 6212 else 6213 Chain = DAG.getRoot(); 6214 6215 // Second pass over the constraints: compute which constraint option to use 6216 // and assign registers to constraints that want a specific physreg. 6217 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6218 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6219 6220 // If this is an output operand with a matching input operand, look up the 6221 // matching input. If their types mismatch, e.g. one is an integer, the 6222 // other is floating point, or their sizes are different, flag it as an 6223 // error. 6224 if (OpInfo.hasMatchingInput()) { 6225 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6226 6227 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6228 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6229 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6230 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6231 OpInfo.ConstraintVT); 6232 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6233 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6234 Input.ConstraintVT); 6235 if ((OpInfo.ConstraintVT.isInteger() != 6236 Input.ConstraintVT.isInteger()) || 6237 (MatchRC.second != InputRC.second)) { 6238 report_fatal_error("Unsupported asm: input constraint" 6239 " with a matching output constraint of" 6240 " incompatible type!"); 6241 } 6242 Input.ConstraintVT = OpInfo.ConstraintVT; 6243 } 6244 } 6245 6246 // Compute the constraint code and ConstraintType to use. 6247 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6248 6249 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6250 OpInfo.Type == InlineAsm::isClobber) 6251 continue; 6252 6253 // If this is a memory input, and if the operand is not indirect, do what we 6254 // need to to provide an address for the memory input. 6255 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6256 !OpInfo.isIndirect) { 6257 assert((OpInfo.isMultipleAlternative || 6258 (OpInfo.Type == InlineAsm::isInput)) && 6259 "Can only indirectify direct input operands!"); 6260 6261 // Memory operands really want the address of the value. If we don't have 6262 // an indirect input, put it in the constpool if we can, otherwise spill 6263 // it to a stack slot. 6264 // TODO: This isn't quite right. We need to handle these according to 6265 // the addressing mode that the constraint wants. Also, this may take 6266 // an additional register for the computation and we don't want that 6267 // either. 6268 6269 // If the operand is a float, integer, or vector constant, spill to a 6270 // constant pool entry to get its address. 6271 const Value *OpVal = OpInfo.CallOperandVal; 6272 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6273 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6274 OpInfo.CallOperand = DAG.getConstantPool( 6275 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6276 } else { 6277 // Otherwise, create a stack slot and emit a store to it before the 6278 // asm. 6279 Type *Ty = OpVal->getType(); 6280 auto &DL = DAG.getDataLayout(); 6281 uint64_t TySize = DL.getTypeAllocSize(Ty); 6282 unsigned Align = DL.getPrefTypeAlignment(Ty); 6283 MachineFunction &MF = DAG.getMachineFunction(); 6284 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6285 SDValue StackSlot = 6286 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6287 Chain = DAG.getStore( 6288 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6289 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6290 false, false, 0); 6291 OpInfo.CallOperand = StackSlot; 6292 } 6293 6294 // There is no longer a Value* corresponding to this operand. 6295 OpInfo.CallOperandVal = nullptr; 6296 6297 // It is now an indirect operand. 6298 OpInfo.isIndirect = true; 6299 } 6300 6301 // If this constraint is for a specific register, allocate it before 6302 // anything else. 6303 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6304 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6305 } 6306 6307 // Second pass - Loop over all of the operands, assigning virtual or physregs 6308 // to register class operands. 6309 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6310 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6311 6312 // C_Register operands have already been allocated, Other/Memory don't need 6313 // to be. 6314 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6315 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6316 } 6317 6318 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6319 std::vector<SDValue> AsmNodeOperands; 6320 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6321 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6322 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6323 6324 // If we have a !srcloc metadata node associated with it, we want to attach 6325 // this to the ultimately generated inline asm machineinstr. To do this, we 6326 // pass in the third operand as this (potentially null) inline asm MDNode. 6327 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6328 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6329 6330 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6331 // bits as operand 3. 6332 unsigned ExtraInfo = 0; 6333 if (IA->hasSideEffects()) 6334 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6335 if (IA->isAlignStack()) 6336 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6337 // Set the asm dialect. 6338 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6339 6340 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6341 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6342 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6343 6344 // Compute the constraint code and ConstraintType to use. 6345 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6346 6347 // Ideally, we would only check against memory constraints. However, the 6348 // meaning of an other constraint can be target-specific and we can't easily 6349 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6350 // for other constriants as well. 6351 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6352 OpInfo.ConstraintType == TargetLowering::C_Other) { 6353 if (OpInfo.Type == InlineAsm::isInput) 6354 ExtraInfo |= InlineAsm::Extra_MayLoad; 6355 else if (OpInfo.Type == InlineAsm::isOutput) 6356 ExtraInfo |= InlineAsm::Extra_MayStore; 6357 else if (OpInfo.Type == InlineAsm::isClobber) 6358 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6359 } 6360 } 6361 6362 AsmNodeOperands.push_back(DAG.getTargetConstant( 6363 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6364 6365 // Loop over all of the inputs, copying the operand values into the 6366 // appropriate registers and processing the output regs. 6367 RegsForValue RetValRegs; 6368 6369 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6370 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6371 6372 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6373 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6374 6375 switch (OpInfo.Type) { 6376 case InlineAsm::isOutput: { 6377 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6378 OpInfo.ConstraintType != TargetLowering::C_Register) { 6379 // Memory output, or 'other' output (e.g. 'X' constraint). 6380 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6381 6382 unsigned ConstraintID = 6383 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6384 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6385 "Failed to convert memory constraint code to constraint id."); 6386 6387 // Add information to the INLINEASM node to know about this output. 6388 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6389 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6390 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6391 MVT::i32)); 6392 AsmNodeOperands.push_back(OpInfo.CallOperand); 6393 break; 6394 } 6395 6396 // Otherwise, this is a register or register class output. 6397 6398 // Copy the output from the appropriate register. Find a register that 6399 // we can use. 6400 if (OpInfo.AssignedRegs.Regs.empty()) { 6401 LLVMContext &Ctx = *DAG.getContext(); 6402 Ctx.emitError(CS.getInstruction(), 6403 "couldn't allocate output register for constraint '" + 6404 Twine(OpInfo.ConstraintCode) + "'"); 6405 return; 6406 } 6407 6408 // If this is an indirect operand, store through the pointer after the 6409 // asm. 6410 if (OpInfo.isIndirect) { 6411 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6412 OpInfo.CallOperandVal)); 6413 } else { 6414 // This is the result value of the call. 6415 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6416 // Concatenate this output onto the outputs list. 6417 RetValRegs.append(OpInfo.AssignedRegs); 6418 } 6419 6420 // Add information to the INLINEASM node to know that this register is 6421 // set. 6422 OpInfo.AssignedRegs 6423 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6424 ? InlineAsm::Kind_RegDefEarlyClobber 6425 : InlineAsm::Kind_RegDef, 6426 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6427 break; 6428 } 6429 case InlineAsm::isInput: { 6430 SDValue InOperandVal = OpInfo.CallOperand; 6431 6432 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6433 // If this is required to match an output register we have already set, 6434 // just use its register. 6435 unsigned OperandNo = OpInfo.getMatchedOperand(); 6436 6437 // Scan until we find the definition we already emitted of this operand. 6438 // When we find it, create a RegsForValue operand. 6439 unsigned CurOp = InlineAsm::Op_FirstOperand; 6440 for (; OperandNo; --OperandNo) { 6441 // Advance to the next operand. 6442 unsigned OpFlag = 6443 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6444 assert((InlineAsm::isRegDefKind(OpFlag) || 6445 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6446 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6447 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6448 } 6449 6450 unsigned OpFlag = 6451 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6452 if (InlineAsm::isRegDefKind(OpFlag) || 6453 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6454 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6455 if (OpInfo.isIndirect) { 6456 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6457 LLVMContext &Ctx = *DAG.getContext(); 6458 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6459 " don't know how to handle tied " 6460 "indirect register inputs"); 6461 return; 6462 } 6463 6464 RegsForValue MatchedRegs; 6465 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6466 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6467 MatchedRegs.RegVTs.push_back(RegVT); 6468 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6469 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6470 i != e; ++i) { 6471 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6472 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6473 else { 6474 LLVMContext &Ctx = *DAG.getContext(); 6475 Ctx.emitError(CS.getInstruction(), 6476 "inline asm error: This value" 6477 " type register class is not natively supported!"); 6478 return; 6479 } 6480 } 6481 SDLoc dl = getCurSDLoc(); 6482 // Use the produced MatchedRegs object to 6483 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6484 Chain, &Flag, CS.getInstruction()); 6485 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6486 true, OpInfo.getMatchedOperand(), dl, 6487 DAG, AsmNodeOperands); 6488 break; 6489 } 6490 6491 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6492 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6493 "Unexpected number of operands"); 6494 // Add information to the INLINEASM node to know about this input. 6495 // See InlineAsm.h isUseOperandTiedToDef. 6496 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6497 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6498 OpInfo.getMatchedOperand()); 6499 AsmNodeOperands.push_back(DAG.getTargetConstant( 6500 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6501 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6502 break; 6503 } 6504 6505 // Treat indirect 'X' constraint as memory. 6506 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6507 OpInfo.isIndirect) 6508 OpInfo.ConstraintType = TargetLowering::C_Memory; 6509 6510 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6511 std::vector<SDValue> Ops; 6512 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6513 Ops, DAG); 6514 if (Ops.empty()) { 6515 LLVMContext &Ctx = *DAG.getContext(); 6516 Ctx.emitError(CS.getInstruction(), 6517 "invalid operand for inline asm constraint '" + 6518 Twine(OpInfo.ConstraintCode) + "'"); 6519 return; 6520 } 6521 6522 // Add information to the INLINEASM node to know about this input. 6523 unsigned ResOpType = 6524 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6525 AsmNodeOperands.push_back(DAG.getTargetConstant( 6526 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6527 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6528 break; 6529 } 6530 6531 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6532 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6533 assert(InOperandVal.getValueType() == 6534 TLI.getPointerTy(DAG.getDataLayout()) && 6535 "Memory operands expect pointer values"); 6536 6537 unsigned ConstraintID = 6538 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6539 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6540 "Failed to convert memory constraint code to constraint id."); 6541 6542 // Add information to the INLINEASM node to know about this input. 6543 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6544 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6545 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6546 getCurSDLoc(), 6547 MVT::i32)); 6548 AsmNodeOperands.push_back(InOperandVal); 6549 break; 6550 } 6551 6552 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6553 OpInfo.ConstraintType == TargetLowering::C_Register) && 6554 "Unknown constraint type!"); 6555 6556 // TODO: Support this. 6557 if (OpInfo.isIndirect) { 6558 LLVMContext &Ctx = *DAG.getContext(); 6559 Ctx.emitError(CS.getInstruction(), 6560 "Don't know how to handle indirect register inputs yet " 6561 "for constraint '" + 6562 Twine(OpInfo.ConstraintCode) + "'"); 6563 return; 6564 } 6565 6566 // Copy the input into the appropriate registers. 6567 if (OpInfo.AssignedRegs.Regs.empty()) { 6568 LLVMContext &Ctx = *DAG.getContext(); 6569 Ctx.emitError(CS.getInstruction(), 6570 "couldn't allocate input reg for constraint '" + 6571 Twine(OpInfo.ConstraintCode) + "'"); 6572 return; 6573 } 6574 6575 SDLoc dl = getCurSDLoc(); 6576 6577 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6578 Chain, &Flag, CS.getInstruction()); 6579 6580 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6581 dl, DAG, AsmNodeOperands); 6582 break; 6583 } 6584 case InlineAsm::isClobber: { 6585 // Add the clobbered value to the operand list, so that the register 6586 // allocator is aware that the physreg got clobbered. 6587 if (!OpInfo.AssignedRegs.Regs.empty()) 6588 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6589 false, 0, getCurSDLoc(), DAG, 6590 AsmNodeOperands); 6591 break; 6592 } 6593 } 6594 } 6595 6596 // Finish up input operands. Set the input chain and add the flag last. 6597 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6598 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6599 6600 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6601 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6602 Flag = Chain.getValue(1); 6603 6604 // If this asm returns a register value, copy the result from that register 6605 // and set it as the value of the call. 6606 if (!RetValRegs.Regs.empty()) { 6607 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6608 Chain, &Flag, CS.getInstruction()); 6609 6610 // FIXME: Why don't we do this for inline asms with MRVs? 6611 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6612 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6613 6614 // If any of the results of the inline asm is a vector, it may have the 6615 // wrong width/num elts. This can happen for register classes that can 6616 // contain multiple different value types. The preg or vreg allocated may 6617 // not have the same VT as was expected. Convert it to the right type 6618 // with bit_convert. 6619 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6620 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6621 ResultType, Val); 6622 6623 } else if (ResultType != Val.getValueType() && 6624 ResultType.isInteger() && Val.getValueType().isInteger()) { 6625 // If a result value was tied to an input value, the computed result may 6626 // have a wider width than the expected result. Extract the relevant 6627 // portion. 6628 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6629 } 6630 6631 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6632 } 6633 6634 setValue(CS.getInstruction(), Val); 6635 // Don't need to use this as a chain in this case. 6636 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6637 return; 6638 } 6639 6640 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6641 6642 // Process indirect outputs, first output all of the flagged copies out of 6643 // physregs. 6644 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6645 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6646 const Value *Ptr = IndirectStoresToEmit[i].second; 6647 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6648 Chain, &Flag, IA); 6649 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6650 } 6651 6652 // Emit the non-flagged stores from the physregs. 6653 SmallVector<SDValue, 8> OutChains; 6654 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6655 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6656 StoresToEmit[i].first, 6657 getValue(StoresToEmit[i].second), 6658 MachinePointerInfo(StoresToEmit[i].second), 6659 false, false, 0); 6660 OutChains.push_back(Val); 6661 } 6662 6663 if (!OutChains.empty()) 6664 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6665 6666 DAG.setRoot(Chain); 6667 } 6668 6669 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6670 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6671 MVT::Other, getRoot(), 6672 getValue(I.getArgOperand(0)), 6673 DAG.getSrcValue(I.getArgOperand(0)))); 6674 } 6675 6676 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6678 const DataLayout &DL = DAG.getDataLayout(); 6679 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6680 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6681 DAG.getSrcValue(I.getOperand(0)), 6682 DL.getABITypeAlignment(I.getType())); 6683 setValue(&I, V); 6684 DAG.setRoot(V.getValue(1)); 6685 } 6686 6687 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6688 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6689 MVT::Other, getRoot(), 6690 getValue(I.getArgOperand(0)), 6691 DAG.getSrcValue(I.getArgOperand(0)))); 6692 } 6693 6694 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6695 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6696 MVT::Other, getRoot(), 6697 getValue(I.getArgOperand(0)), 6698 getValue(I.getArgOperand(1)), 6699 DAG.getSrcValue(I.getArgOperand(0)), 6700 DAG.getSrcValue(I.getArgOperand(1)))); 6701 } 6702 6703 /// \brief Lower an argument list according to the target calling convention. 6704 /// 6705 /// \return A tuple of <return-value, token-chain> 6706 /// 6707 /// This is a helper for lowering intrinsics that follow a target calling 6708 /// convention or require stack pointer adjustment. Only a subset of the 6709 /// intrinsic's operands need to participate in the calling convention. 6710 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6711 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6712 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6713 TargetLowering::ArgListTy Args; 6714 Args.reserve(NumArgs); 6715 6716 // Populate the argument list. 6717 // Attributes for args start at offset 1, after the return attribute. 6718 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6719 ArgI != ArgE; ++ArgI) { 6720 const Value *V = CS->getOperand(ArgI); 6721 6722 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6723 6724 TargetLowering::ArgListEntry Entry; 6725 Entry.Node = getValue(V); 6726 Entry.Ty = V->getType(); 6727 Entry.setAttributes(&CS, AttrI); 6728 Args.push_back(Entry); 6729 } 6730 6731 TargetLowering::CallLoweringInfo CLI(DAG); 6732 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6733 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6734 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6735 6736 return lowerInvokable(CLI, EHPadBB); 6737 } 6738 6739 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6740 /// or patchpoint target node's operand list. 6741 /// 6742 /// Constants are converted to TargetConstants purely as an optimization to 6743 /// avoid constant materialization and register allocation. 6744 /// 6745 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6746 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6747 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6748 /// address materialization and register allocation, but may also be required 6749 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6750 /// alloca in the entry block, then the runtime may assume that the alloca's 6751 /// StackMap location can be read immediately after compilation and that the 6752 /// location is valid at any point during execution (this is similar to the 6753 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6754 /// only available in a register, then the runtime would need to trap when 6755 /// execution reaches the StackMap in order to read the alloca's location. 6756 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6757 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6758 SelectionDAGBuilder &Builder) { 6759 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6760 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6761 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6762 Ops.push_back( 6763 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6764 Ops.push_back( 6765 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6766 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6767 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6768 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6769 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6770 } else 6771 Ops.push_back(OpVal); 6772 } 6773 } 6774 6775 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6776 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6777 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6778 // [live variables...]) 6779 6780 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6781 6782 SDValue Chain, InFlag, Callee, NullPtr; 6783 SmallVector<SDValue, 32> Ops; 6784 6785 SDLoc DL = getCurSDLoc(); 6786 Callee = getValue(CI.getCalledValue()); 6787 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6788 6789 // The stackmap intrinsic only records the live variables (the arguemnts 6790 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6791 // intrinsic, this won't be lowered to a function call. This means we don't 6792 // have to worry about calling conventions and target specific lowering code. 6793 // Instead we perform the call lowering right here. 6794 // 6795 // chain, flag = CALLSEQ_START(chain, 0) 6796 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6797 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6798 // 6799 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6800 InFlag = Chain.getValue(1); 6801 6802 // Add the <id> and <numBytes> constants. 6803 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6804 Ops.push_back(DAG.getTargetConstant( 6805 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6806 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6807 Ops.push_back(DAG.getTargetConstant( 6808 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6809 MVT::i32)); 6810 6811 // Push live variables for the stack map. 6812 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6813 6814 // We are not pushing any register mask info here on the operands list, 6815 // because the stackmap doesn't clobber anything. 6816 6817 // Push the chain and the glue flag. 6818 Ops.push_back(Chain); 6819 Ops.push_back(InFlag); 6820 6821 // Create the STACKMAP node. 6822 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6823 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6824 Chain = SDValue(SM, 0); 6825 InFlag = Chain.getValue(1); 6826 6827 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6828 6829 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6830 6831 // Set the root to the target-lowered call chain. 6832 DAG.setRoot(Chain); 6833 6834 // Inform the Frame Information that we have a stackmap in this function. 6835 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6836 } 6837 6838 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6839 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6840 const BasicBlock *EHPadBB) { 6841 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6842 // i32 <numBytes>, 6843 // i8* <target>, 6844 // i32 <numArgs>, 6845 // [Args...], 6846 // [live variables...]) 6847 6848 CallingConv::ID CC = CS.getCallingConv(); 6849 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6850 bool HasDef = !CS->getType()->isVoidTy(); 6851 SDLoc dl = getCurSDLoc(); 6852 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6853 6854 // Handle immediate and symbolic callees. 6855 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6856 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6857 /*isTarget=*/true); 6858 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6859 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6860 SDLoc(SymbolicCallee), 6861 SymbolicCallee->getValueType(0)); 6862 6863 // Get the real number of arguments participating in the call <numArgs> 6864 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6865 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6866 6867 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6868 // Intrinsics include all meta-operands up to but not including CC. 6869 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6870 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6871 "Not enough arguments provided to the patchpoint intrinsic"); 6872 6873 // For AnyRegCC the arguments are lowered later on manually. 6874 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6875 Type *ReturnTy = 6876 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6877 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6878 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6879 6880 SDNode *CallEnd = Result.second.getNode(); 6881 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6882 CallEnd = CallEnd->getOperand(0).getNode(); 6883 6884 /// Get a call instruction from the call sequence chain. 6885 /// Tail calls are not allowed. 6886 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6887 "Expected a callseq node."); 6888 SDNode *Call = CallEnd->getOperand(0).getNode(); 6889 bool HasGlue = Call->getGluedNode(); 6890 6891 // Replace the target specific call node with the patchable intrinsic. 6892 SmallVector<SDValue, 8> Ops; 6893 6894 // Add the <id> and <numBytes> constants. 6895 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6896 Ops.push_back(DAG.getTargetConstant( 6897 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6898 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6899 Ops.push_back(DAG.getTargetConstant( 6900 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6901 MVT::i32)); 6902 6903 // Add the callee. 6904 Ops.push_back(Callee); 6905 6906 // Adjust <numArgs> to account for any arguments that have been passed on the 6907 // stack instead. 6908 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6909 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6910 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6911 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6912 6913 // Add the calling convention 6914 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6915 6916 // Add the arguments we omitted previously. The register allocator should 6917 // place these in any free register. 6918 if (IsAnyRegCC) 6919 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6920 Ops.push_back(getValue(CS.getArgument(i))); 6921 6922 // Push the arguments from the call instruction up to the register mask. 6923 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6924 Ops.append(Call->op_begin() + 2, e); 6925 6926 // Push live variables for the stack map. 6927 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6928 6929 // Push the register mask info. 6930 if (HasGlue) 6931 Ops.push_back(*(Call->op_end()-2)); 6932 else 6933 Ops.push_back(*(Call->op_end()-1)); 6934 6935 // Push the chain (this is originally the first operand of the call, but 6936 // becomes now the last or second to last operand). 6937 Ops.push_back(*(Call->op_begin())); 6938 6939 // Push the glue flag (last operand). 6940 if (HasGlue) 6941 Ops.push_back(*(Call->op_end()-1)); 6942 6943 SDVTList NodeTys; 6944 if (IsAnyRegCC && HasDef) { 6945 // Create the return types based on the intrinsic definition 6946 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6947 SmallVector<EVT, 3> ValueVTs; 6948 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 6949 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6950 6951 // There is always a chain and a glue type at the end 6952 ValueVTs.push_back(MVT::Other); 6953 ValueVTs.push_back(MVT::Glue); 6954 NodeTys = DAG.getVTList(ValueVTs); 6955 } else 6956 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6957 6958 // Replace the target specific call node with a PATCHPOINT node. 6959 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6960 dl, NodeTys, Ops); 6961 6962 // Update the NodeMap. 6963 if (HasDef) { 6964 if (IsAnyRegCC) 6965 setValue(CS.getInstruction(), SDValue(MN, 0)); 6966 else 6967 setValue(CS.getInstruction(), Result.first); 6968 } 6969 6970 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6971 // call sequence. Furthermore the location of the chain and glue can change 6972 // when the AnyReg calling convention is used and the intrinsic returns a 6973 // value. 6974 if (IsAnyRegCC && HasDef) { 6975 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6976 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6977 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6978 } else 6979 DAG.ReplaceAllUsesWith(Call, MN); 6980 DAG.DeleteNode(Call); 6981 6982 // Inform the Frame Information that we have a patchpoint in this function. 6983 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6984 } 6985 6986 /// Returns an AttributeSet representing the attributes applied to the return 6987 /// value of the given call. 6988 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6989 SmallVector<Attribute::AttrKind, 2> Attrs; 6990 if (CLI.RetSExt) 6991 Attrs.push_back(Attribute::SExt); 6992 if (CLI.RetZExt) 6993 Attrs.push_back(Attribute::ZExt); 6994 if (CLI.IsInReg) 6995 Attrs.push_back(Attribute::InReg); 6996 6997 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6998 Attrs); 6999 } 7000 7001 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7002 /// implementation, which just calls LowerCall. 7003 /// FIXME: When all targets are 7004 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7005 std::pair<SDValue, SDValue> 7006 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7007 // Handle the incoming return values from the call. 7008 CLI.Ins.clear(); 7009 Type *OrigRetTy = CLI.RetTy; 7010 SmallVector<EVT, 4> RetTys; 7011 SmallVector<uint64_t, 4> Offsets; 7012 auto &DL = CLI.DAG.getDataLayout(); 7013 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7014 7015 SmallVector<ISD::OutputArg, 4> Outs; 7016 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7017 7018 bool CanLowerReturn = 7019 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7020 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7021 7022 SDValue DemoteStackSlot; 7023 int DemoteStackIdx = -100; 7024 if (!CanLowerReturn) { 7025 // FIXME: equivalent assert? 7026 // assert(!CS.hasInAllocaArgument() && 7027 // "sret demotion is incompatible with inalloca"); 7028 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7029 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7030 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7031 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7032 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7033 7034 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7035 ArgListEntry Entry; 7036 Entry.Node = DemoteStackSlot; 7037 Entry.Ty = StackSlotPtrType; 7038 Entry.isSExt = false; 7039 Entry.isZExt = false; 7040 Entry.isInReg = false; 7041 Entry.isSRet = true; 7042 Entry.isNest = false; 7043 Entry.isByVal = false; 7044 Entry.isReturned = false; 7045 Entry.Alignment = Align; 7046 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7047 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7048 7049 // sret demotion isn't compatible with tail-calls, since the sret argument 7050 // points into the callers stack frame. 7051 CLI.IsTailCall = false; 7052 } else { 7053 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7054 EVT VT = RetTys[I]; 7055 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7056 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7057 for (unsigned i = 0; i != NumRegs; ++i) { 7058 ISD::InputArg MyFlags; 7059 MyFlags.VT = RegisterVT; 7060 MyFlags.ArgVT = VT; 7061 MyFlags.Used = CLI.IsReturnValueUsed; 7062 if (CLI.RetSExt) 7063 MyFlags.Flags.setSExt(); 7064 if (CLI.RetZExt) 7065 MyFlags.Flags.setZExt(); 7066 if (CLI.IsInReg) 7067 MyFlags.Flags.setInReg(); 7068 CLI.Ins.push_back(MyFlags); 7069 } 7070 } 7071 } 7072 7073 // Handle all of the outgoing arguments. 7074 CLI.Outs.clear(); 7075 CLI.OutVals.clear(); 7076 ArgListTy &Args = CLI.getArgs(); 7077 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7078 SmallVector<EVT, 4> ValueVTs; 7079 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7080 Type *FinalType = Args[i].Ty; 7081 if (Args[i].isByVal) 7082 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7083 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7084 FinalType, CLI.CallConv, CLI.IsVarArg); 7085 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7086 ++Value) { 7087 EVT VT = ValueVTs[Value]; 7088 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7089 SDValue Op = SDValue(Args[i].Node.getNode(), 7090 Args[i].Node.getResNo() + Value); 7091 ISD::ArgFlagsTy Flags; 7092 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7093 7094 if (Args[i].isZExt) 7095 Flags.setZExt(); 7096 if (Args[i].isSExt) 7097 Flags.setSExt(); 7098 if (Args[i].isInReg) 7099 Flags.setInReg(); 7100 if (Args[i].isSRet) 7101 Flags.setSRet(); 7102 if (Args[i].isByVal) 7103 Flags.setByVal(); 7104 if (Args[i].isInAlloca) { 7105 Flags.setInAlloca(); 7106 // Set the byval flag for CCAssignFn callbacks that don't know about 7107 // inalloca. This way we can know how many bytes we should've allocated 7108 // and how many bytes a callee cleanup function will pop. If we port 7109 // inalloca to more targets, we'll have to add custom inalloca handling 7110 // in the various CC lowering callbacks. 7111 Flags.setByVal(); 7112 } 7113 if (Args[i].isByVal || Args[i].isInAlloca) { 7114 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7115 Type *ElementTy = Ty->getElementType(); 7116 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7117 // For ByVal, alignment should come from FE. BE will guess if this 7118 // info is not there but there are cases it cannot get right. 7119 unsigned FrameAlign; 7120 if (Args[i].Alignment) 7121 FrameAlign = Args[i].Alignment; 7122 else 7123 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7124 Flags.setByValAlign(FrameAlign); 7125 } 7126 if (Args[i].isNest) 7127 Flags.setNest(); 7128 if (NeedsRegBlock) 7129 Flags.setInConsecutiveRegs(); 7130 Flags.setOrigAlign(OriginalAlignment); 7131 7132 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7133 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7134 SmallVector<SDValue, 4> Parts(NumParts); 7135 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7136 7137 if (Args[i].isSExt) 7138 ExtendKind = ISD::SIGN_EXTEND; 7139 else if (Args[i].isZExt) 7140 ExtendKind = ISD::ZERO_EXTEND; 7141 7142 // Conservatively only handle 'returned' on non-vectors for now 7143 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7144 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7145 "unexpected use of 'returned'"); 7146 // Before passing 'returned' to the target lowering code, ensure that 7147 // either the register MVT and the actual EVT are the same size or that 7148 // the return value and argument are extended in the same way; in these 7149 // cases it's safe to pass the argument register value unchanged as the 7150 // return register value (although it's at the target's option whether 7151 // to do so) 7152 // TODO: allow code generation to take advantage of partially preserved 7153 // registers rather than clobbering the entire register when the 7154 // parameter extension method is not compatible with the return 7155 // extension method 7156 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7157 (ExtendKind != ISD::ANY_EXTEND && 7158 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7159 Flags.setReturned(); 7160 } 7161 7162 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7163 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7164 7165 for (unsigned j = 0; j != NumParts; ++j) { 7166 // if it isn't first piece, alignment must be 1 7167 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7168 i < CLI.NumFixedArgs, 7169 i, j*Parts[j].getValueType().getStoreSize()); 7170 if (NumParts > 1 && j == 0) 7171 MyFlags.Flags.setSplit(); 7172 else if (j != 0) 7173 MyFlags.Flags.setOrigAlign(1); 7174 7175 CLI.Outs.push_back(MyFlags); 7176 CLI.OutVals.push_back(Parts[j]); 7177 } 7178 7179 if (NeedsRegBlock && Value == NumValues - 1) 7180 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7181 } 7182 } 7183 7184 SmallVector<SDValue, 4> InVals; 7185 CLI.Chain = LowerCall(CLI, InVals); 7186 7187 // Verify that the target's LowerCall behaved as expected. 7188 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7189 "LowerCall didn't return a valid chain!"); 7190 assert((!CLI.IsTailCall || InVals.empty()) && 7191 "LowerCall emitted a return value for a tail call!"); 7192 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7193 "LowerCall didn't emit the correct number of values!"); 7194 7195 // For a tail call, the return value is merely live-out and there aren't 7196 // any nodes in the DAG representing it. Return a special value to 7197 // indicate that a tail call has been emitted and no more Instructions 7198 // should be processed in the current block. 7199 if (CLI.IsTailCall) { 7200 CLI.DAG.setRoot(CLI.Chain); 7201 return std::make_pair(SDValue(), SDValue()); 7202 } 7203 7204 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7205 assert(InVals[i].getNode() && 7206 "LowerCall emitted a null value!"); 7207 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7208 "LowerCall emitted a value with the wrong type!"); 7209 }); 7210 7211 SmallVector<SDValue, 4> ReturnValues; 7212 if (!CanLowerReturn) { 7213 // The instruction result is the result of loading from the 7214 // hidden sret parameter. 7215 SmallVector<EVT, 1> PVTs; 7216 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7217 7218 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7219 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7220 EVT PtrVT = PVTs[0]; 7221 7222 unsigned NumValues = RetTys.size(); 7223 ReturnValues.resize(NumValues); 7224 SmallVector<SDValue, 4> Chains(NumValues); 7225 7226 for (unsigned i = 0; i < NumValues; ++i) { 7227 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7228 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7229 PtrVT)); 7230 SDValue L = CLI.DAG.getLoad( 7231 RetTys[i], CLI.DL, CLI.Chain, Add, 7232 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7233 DemoteStackIdx, Offsets[i]), 7234 false, false, false, 1); 7235 ReturnValues[i] = L; 7236 Chains[i] = L.getValue(1); 7237 } 7238 7239 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7240 } else { 7241 // Collect the legal value parts into potentially illegal values 7242 // that correspond to the original function's return values. 7243 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7244 if (CLI.RetSExt) 7245 AssertOp = ISD::AssertSext; 7246 else if (CLI.RetZExt) 7247 AssertOp = ISD::AssertZext; 7248 unsigned CurReg = 0; 7249 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7250 EVT VT = RetTys[I]; 7251 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7252 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7253 7254 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7255 NumRegs, RegisterVT, VT, nullptr, 7256 AssertOp)); 7257 CurReg += NumRegs; 7258 } 7259 7260 // For a function returning void, there is no return value. We can't create 7261 // such a node, so we just return a null return value in that case. In 7262 // that case, nothing will actually look at the value. 7263 if (ReturnValues.empty()) 7264 return std::make_pair(SDValue(), CLI.Chain); 7265 } 7266 7267 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7268 CLI.DAG.getVTList(RetTys), ReturnValues); 7269 return std::make_pair(Res, CLI.Chain); 7270 } 7271 7272 void TargetLowering::LowerOperationWrapper(SDNode *N, 7273 SmallVectorImpl<SDValue> &Results, 7274 SelectionDAG &DAG) const { 7275 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7276 if (Res.getNode()) 7277 Results.push_back(Res); 7278 } 7279 7280 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7281 llvm_unreachable("LowerOperation not implemented for this target!"); 7282 } 7283 7284 void 7285 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7286 SDValue Op = getNonRegisterValue(V); 7287 assert((Op.getOpcode() != ISD::CopyFromReg || 7288 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7289 "Copy from a reg to the same reg!"); 7290 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7291 7292 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7293 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7294 V->getType()); 7295 SDValue Chain = DAG.getEntryNode(); 7296 7297 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7298 FuncInfo.PreferredExtendType.end()) 7299 ? ISD::ANY_EXTEND 7300 : FuncInfo.PreferredExtendType[V]; 7301 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7302 PendingExports.push_back(Chain); 7303 } 7304 7305 #include "llvm/CodeGen/SelectionDAGISel.h" 7306 7307 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7308 /// entry block, return true. This includes arguments used by switches, since 7309 /// the switch may expand into multiple basic blocks. 7310 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7311 // With FastISel active, we may be splitting blocks, so force creation 7312 // of virtual registers for all non-dead arguments. 7313 if (FastISel) 7314 return A->use_empty(); 7315 7316 const BasicBlock &Entry = A->getParent()->front(); 7317 for (const User *U : A->users()) 7318 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7319 return false; // Use not in entry block. 7320 7321 return true; 7322 } 7323 7324 void SelectionDAGISel::LowerArguments(const Function &F) { 7325 SelectionDAG &DAG = SDB->DAG; 7326 SDLoc dl = SDB->getCurSDLoc(); 7327 const DataLayout &DL = DAG.getDataLayout(); 7328 SmallVector<ISD::InputArg, 16> Ins; 7329 7330 if (!FuncInfo->CanLowerReturn) { 7331 // Put in an sret pointer parameter before all the other parameters. 7332 SmallVector<EVT, 1> ValueVTs; 7333 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7334 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7335 7336 // NOTE: Assuming that a pointer will never break down to more than one VT 7337 // or one register. 7338 ISD::ArgFlagsTy Flags; 7339 Flags.setSRet(); 7340 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7341 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7342 ISD::InputArg::NoArgIndex, 0); 7343 Ins.push_back(RetArg); 7344 } 7345 7346 // Set up the incoming argument description vector. 7347 unsigned Idx = 1; 7348 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7349 I != E; ++I, ++Idx) { 7350 SmallVector<EVT, 4> ValueVTs; 7351 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7352 bool isArgValueUsed = !I->use_empty(); 7353 unsigned PartBase = 0; 7354 Type *FinalType = I->getType(); 7355 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7356 FinalType = cast<PointerType>(FinalType)->getElementType(); 7357 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7358 FinalType, F.getCallingConv(), F.isVarArg()); 7359 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7360 Value != NumValues; ++Value) { 7361 EVT VT = ValueVTs[Value]; 7362 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7363 ISD::ArgFlagsTy Flags; 7364 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7365 7366 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7367 Flags.setZExt(); 7368 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7369 Flags.setSExt(); 7370 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7371 Flags.setInReg(); 7372 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7373 Flags.setSRet(); 7374 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7375 Flags.setByVal(); 7376 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7377 Flags.setInAlloca(); 7378 // Set the byval flag for CCAssignFn callbacks that don't know about 7379 // inalloca. This way we can know how many bytes we should've allocated 7380 // and how many bytes a callee cleanup function will pop. If we port 7381 // inalloca to more targets, we'll have to add custom inalloca handling 7382 // in the various CC lowering callbacks. 7383 Flags.setByVal(); 7384 } 7385 if (Flags.isByVal() || Flags.isInAlloca()) { 7386 PointerType *Ty = cast<PointerType>(I->getType()); 7387 Type *ElementTy = Ty->getElementType(); 7388 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7389 // For ByVal, alignment should be passed from FE. BE will guess if 7390 // this info is not there but there are cases it cannot get right. 7391 unsigned FrameAlign; 7392 if (F.getParamAlignment(Idx)) 7393 FrameAlign = F.getParamAlignment(Idx); 7394 else 7395 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7396 Flags.setByValAlign(FrameAlign); 7397 } 7398 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7399 Flags.setNest(); 7400 if (NeedsRegBlock) 7401 Flags.setInConsecutiveRegs(); 7402 Flags.setOrigAlign(OriginalAlignment); 7403 7404 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7405 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7406 for (unsigned i = 0; i != NumRegs; ++i) { 7407 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7408 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7409 if (NumRegs > 1 && i == 0) 7410 MyFlags.Flags.setSplit(); 7411 // if it isn't first piece, alignment must be 1 7412 else if (i > 0) 7413 MyFlags.Flags.setOrigAlign(1); 7414 Ins.push_back(MyFlags); 7415 } 7416 if (NeedsRegBlock && Value == NumValues - 1) 7417 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7418 PartBase += VT.getStoreSize(); 7419 } 7420 } 7421 7422 // Call the target to set up the argument values. 7423 SmallVector<SDValue, 8> InVals; 7424 SDValue NewRoot = TLI->LowerFormalArguments( 7425 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7426 7427 // Verify that the target's LowerFormalArguments behaved as expected. 7428 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7429 "LowerFormalArguments didn't return a valid chain!"); 7430 assert(InVals.size() == Ins.size() && 7431 "LowerFormalArguments didn't emit the correct number of values!"); 7432 DEBUG({ 7433 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7434 assert(InVals[i].getNode() && 7435 "LowerFormalArguments emitted a null value!"); 7436 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7437 "LowerFormalArguments emitted a value with the wrong type!"); 7438 } 7439 }); 7440 7441 // Update the DAG with the new chain value resulting from argument lowering. 7442 DAG.setRoot(NewRoot); 7443 7444 // Set up the argument values. 7445 unsigned i = 0; 7446 Idx = 1; 7447 if (!FuncInfo->CanLowerReturn) { 7448 // Create a virtual register for the sret pointer, and put in a copy 7449 // from the sret argument into it. 7450 SmallVector<EVT, 1> ValueVTs; 7451 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7452 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7453 MVT VT = ValueVTs[0].getSimpleVT(); 7454 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7455 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7456 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7457 RegVT, VT, nullptr, AssertOp); 7458 7459 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7460 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7461 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7462 FuncInfo->DemoteRegister = SRetReg; 7463 NewRoot = 7464 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7465 DAG.setRoot(NewRoot); 7466 7467 // i indexes lowered arguments. Bump it past the hidden sret argument. 7468 // Idx indexes LLVM arguments. Don't touch it. 7469 ++i; 7470 } 7471 7472 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7473 ++I, ++Idx) { 7474 SmallVector<SDValue, 4> ArgValues; 7475 SmallVector<EVT, 4> ValueVTs; 7476 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7477 unsigned NumValues = ValueVTs.size(); 7478 7479 // If this argument is unused then remember its value. It is used to generate 7480 // debugging information. 7481 if (I->use_empty() && NumValues) { 7482 SDB->setUnusedArgValue(&*I, InVals[i]); 7483 7484 // Also remember any frame index for use in FastISel. 7485 if (FrameIndexSDNode *FI = 7486 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7487 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7488 } 7489 7490 for (unsigned Val = 0; Val != NumValues; ++Val) { 7491 EVT VT = ValueVTs[Val]; 7492 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7493 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7494 7495 if (!I->use_empty()) { 7496 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7497 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7498 AssertOp = ISD::AssertSext; 7499 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7500 AssertOp = ISD::AssertZext; 7501 7502 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7503 NumParts, PartVT, VT, 7504 nullptr, AssertOp)); 7505 } 7506 7507 i += NumParts; 7508 } 7509 7510 // We don't need to do anything else for unused arguments. 7511 if (ArgValues.empty()) 7512 continue; 7513 7514 // Note down frame index. 7515 if (FrameIndexSDNode *FI = 7516 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7517 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7518 7519 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7520 SDB->getCurSDLoc()); 7521 7522 SDB->setValue(&*I, Res); 7523 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7524 if (LoadSDNode *LNode = 7525 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7526 if (FrameIndexSDNode *FI = 7527 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7528 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7529 } 7530 7531 // If this argument is live outside of the entry block, insert a copy from 7532 // wherever we got it to the vreg that other BB's will reference it as. 7533 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7534 // If we can, though, try to skip creating an unnecessary vreg. 7535 // FIXME: This isn't very clean... it would be nice to make this more 7536 // general. It's also subtly incompatible with the hacks FastISel 7537 // uses with vregs. 7538 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7539 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7540 FuncInfo->ValueMap[&*I] = Reg; 7541 continue; 7542 } 7543 } 7544 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7545 FuncInfo->InitializeRegForValue(&*I); 7546 SDB->CopyToExportRegsIfNeeded(&*I); 7547 } 7548 } 7549 7550 assert(i == InVals.size() && "Argument register count mismatch!"); 7551 7552 // Finally, if the target has anything special to do, allow it to do so. 7553 EmitFunctionEntryCode(); 7554 } 7555 7556 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7557 /// ensure constants are generated when needed. Remember the virtual registers 7558 /// that need to be added to the Machine PHI nodes as input. We cannot just 7559 /// directly add them, because expansion might result in multiple MBB's for one 7560 /// BB. As such, the start of the BB might correspond to a different MBB than 7561 /// the end. 7562 /// 7563 void 7564 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7565 const TerminatorInst *TI = LLVMBB->getTerminator(); 7566 7567 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7568 7569 // Check PHI nodes in successors that expect a value to be available from this 7570 // block. 7571 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7572 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7573 if (!isa<PHINode>(SuccBB->begin())) continue; 7574 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7575 7576 // If this terminator has multiple identical successors (common for 7577 // switches), only handle each succ once. 7578 if (!SuccsHandled.insert(SuccMBB).second) 7579 continue; 7580 7581 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7582 7583 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7584 // nodes and Machine PHI nodes, but the incoming operands have not been 7585 // emitted yet. 7586 for (BasicBlock::const_iterator I = SuccBB->begin(); 7587 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7588 // Ignore dead phi's. 7589 if (PN->use_empty()) continue; 7590 7591 // Skip empty types 7592 if (PN->getType()->isEmptyTy()) 7593 continue; 7594 7595 unsigned Reg; 7596 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7597 7598 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7599 unsigned &RegOut = ConstantsOut[C]; 7600 if (RegOut == 0) { 7601 RegOut = FuncInfo.CreateRegs(C->getType()); 7602 CopyValueToVirtualRegister(C, RegOut); 7603 } 7604 Reg = RegOut; 7605 } else { 7606 DenseMap<const Value *, unsigned>::iterator I = 7607 FuncInfo.ValueMap.find(PHIOp); 7608 if (I != FuncInfo.ValueMap.end()) 7609 Reg = I->second; 7610 else { 7611 assert(isa<AllocaInst>(PHIOp) && 7612 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7613 "Didn't codegen value into a register!??"); 7614 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7615 CopyValueToVirtualRegister(PHIOp, Reg); 7616 } 7617 } 7618 7619 // Remember that this register needs to added to the machine PHI node as 7620 // the input for this MBB. 7621 SmallVector<EVT, 4> ValueVTs; 7622 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7623 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7624 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7625 EVT VT = ValueVTs[vti]; 7626 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7627 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7628 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7629 Reg += NumRegisters; 7630 } 7631 } 7632 } 7633 7634 ConstantsOut.clear(); 7635 } 7636 7637 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7638 /// is 0. 7639 MachineBasicBlock * 7640 SelectionDAGBuilder::StackProtectorDescriptor:: 7641 AddSuccessorMBB(const BasicBlock *BB, 7642 MachineBasicBlock *ParentMBB, 7643 bool IsLikely, 7644 MachineBasicBlock *SuccMBB) { 7645 // If SuccBB has not been created yet, create it. 7646 if (!SuccMBB) { 7647 MachineFunction *MF = ParentMBB->getParent(); 7648 MachineFunction::iterator BBI(ParentMBB); 7649 SuccMBB = MF->CreateMachineBasicBlock(BB); 7650 MF->insert(++BBI, SuccMBB); 7651 } 7652 // Add it as a successor of ParentMBB. 7653 ParentMBB->addSuccessor( 7654 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7655 return SuccMBB; 7656 } 7657 7658 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7659 MachineFunction::iterator I(MBB); 7660 if (++I == FuncInfo.MF->end()) 7661 return nullptr; 7662 return &*I; 7663 } 7664 7665 /// During lowering new call nodes can be created (such as memset, etc.). 7666 /// Those will become new roots of the current DAG, but complications arise 7667 /// when they are tail calls. In such cases, the call lowering will update 7668 /// the root, but the builder still needs to know that a tail call has been 7669 /// lowered in order to avoid generating an additional return. 7670 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7671 // If the node is null, we do have a tail call. 7672 if (MaybeTC.getNode() != nullptr) 7673 DAG.setRoot(MaybeTC); 7674 else 7675 HasTailCall = true; 7676 } 7677 7678 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7679 unsigned *TotalCases, unsigned First, 7680 unsigned Last) { 7681 assert(Last >= First); 7682 assert(TotalCases[Last] >= TotalCases[First]); 7683 7684 APInt LowCase = Clusters[First].Low->getValue(); 7685 APInt HighCase = Clusters[Last].High->getValue(); 7686 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7687 7688 // FIXME: A range of consecutive cases has 100% density, but only requires one 7689 // comparison to lower. We should discriminate against such consecutive ranges 7690 // in jump tables. 7691 7692 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7693 uint64_t Range = Diff + 1; 7694 7695 uint64_t NumCases = 7696 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7697 7698 assert(NumCases < UINT64_MAX / 100); 7699 assert(Range >= NumCases); 7700 7701 return NumCases * 100 >= Range * MinJumpTableDensity; 7702 } 7703 7704 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7705 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7706 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7707 } 7708 7709 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7710 unsigned First, unsigned Last, 7711 const SwitchInst *SI, 7712 MachineBasicBlock *DefaultMBB, 7713 CaseCluster &JTCluster) { 7714 assert(First <= Last); 7715 7716 auto Prob = BranchProbability::getZero(); 7717 unsigned NumCmps = 0; 7718 std::vector<MachineBasicBlock*> Table; 7719 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7720 7721 // Initialize probabilities in JTProbs. 7722 for (unsigned I = First; I <= Last; ++I) 7723 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7724 7725 for (unsigned I = First; I <= Last; ++I) { 7726 assert(Clusters[I].Kind == CC_Range); 7727 Prob += Clusters[I].Prob; 7728 APInt Low = Clusters[I].Low->getValue(); 7729 APInt High = Clusters[I].High->getValue(); 7730 NumCmps += (Low == High) ? 1 : 2; 7731 if (I != First) { 7732 // Fill the gap between this and the previous cluster. 7733 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7734 assert(PreviousHigh.slt(Low)); 7735 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7736 for (uint64_t J = 0; J < Gap; J++) 7737 Table.push_back(DefaultMBB); 7738 } 7739 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7740 for (uint64_t J = 0; J < ClusterSize; ++J) 7741 Table.push_back(Clusters[I].MBB); 7742 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7743 } 7744 7745 unsigned NumDests = JTProbs.size(); 7746 if (isSuitableForBitTests(NumDests, NumCmps, 7747 Clusters[First].Low->getValue(), 7748 Clusters[Last].High->getValue())) { 7749 // Clusters[First..Last] should be lowered as bit tests instead. 7750 return false; 7751 } 7752 7753 // Create the MBB that will load from and jump through the table. 7754 // Note: We create it here, but it's not inserted into the function yet. 7755 MachineFunction *CurMF = FuncInfo.MF; 7756 MachineBasicBlock *JumpTableMBB = 7757 CurMF->CreateMachineBasicBlock(SI->getParent()); 7758 7759 // Add successors. Note: use table order for determinism. 7760 SmallPtrSet<MachineBasicBlock *, 8> Done; 7761 for (MachineBasicBlock *Succ : Table) { 7762 if (Done.count(Succ)) 7763 continue; 7764 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7765 Done.insert(Succ); 7766 } 7767 JumpTableMBB->normalizeSuccProbs(); 7768 7769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7770 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7771 ->createJumpTableIndex(Table); 7772 7773 // Set up the jump table info. 7774 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7775 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7776 Clusters[Last].High->getValue(), SI->getCondition(), 7777 nullptr, false); 7778 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7779 7780 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7781 JTCases.size() - 1, Prob); 7782 return true; 7783 } 7784 7785 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7786 const SwitchInst *SI, 7787 MachineBasicBlock *DefaultMBB) { 7788 #ifndef NDEBUG 7789 // Clusters must be non-empty, sorted, and only contain Range clusters. 7790 assert(!Clusters.empty()); 7791 for (CaseCluster &C : Clusters) 7792 assert(C.Kind == CC_Range); 7793 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7794 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7795 #endif 7796 7797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7798 if (!areJTsAllowed(TLI)) 7799 return; 7800 7801 const int64_t N = Clusters.size(); 7802 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7803 7804 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7805 SmallVector<unsigned, 8> TotalCases(N); 7806 7807 for (unsigned i = 0; i < N; ++i) { 7808 APInt Hi = Clusters[i].High->getValue(); 7809 APInt Lo = Clusters[i].Low->getValue(); 7810 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7811 if (i != 0) 7812 TotalCases[i] += TotalCases[i - 1]; 7813 } 7814 7815 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7816 // Cheap case: the whole range might be suitable for jump table. 7817 CaseCluster JTCluster; 7818 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7819 Clusters[0] = JTCluster; 7820 Clusters.resize(1); 7821 return; 7822 } 7823 } 7824 7825 // The algorithm below is not suitable for -O0. 7826 if (TM.getOptLevel() == CodeGenOpt::None) 7827 return; 7828 7829 // Split Clusters into minimum number of dense partitions. The algorithm uses 7830 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7831 // for the Case Statement'" (1994), but builds the MinPartitions array in 7832 // reverse order to make it easier to reconstruct the partitions in ascending 7833 // order. In the choice between two optimal partitionings, it picks the one 7834 // which yields more jump tables. 7835 7836 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7837 SmallVector<unsigned, 8> MinPartitions(N); 7838 // LastElement[i] is the last element of the partition starting at i. 7839 SmallVector<unsigned, 8> LastElement(N); 7840 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7841 SmallVector<unsigned, 8> NumTables(N); 7842 7843 // Base case: There is only one way to partition Clusters[N-1]. 7844 MinPartitions[N - 1] = 1; 7845 LastElement[N - 1] = N - 1; 7846 assert(MinJumpTableSize > 1); 7847 NumTables[N - 1] = 0; 7848 7849 // Note: loop indexes are signed to avoid underflow. 7850 for (int64_t i = N - 2; i >= 0; i--) { 7851 // Find optimal partitioning of Clusters[i..N-1]. 7852 // Baseline: Put Clusters[i] into a partition on its own. 7853 MinPartitions[i] = MinPartitions[i + 1] + 1; 7854 LastElement[i] = i; 7855 NumTables[i] = NumTables[i + 1]; 7856 7857 // Search for a solution that results in fewer partitions. 7858 for (int64_t j = N - 1; j > i; j--) { 7859 // Try building a partition from Clusters[i..j]. 7860 if (isDense(Clusters, &TotalCases[0], i, j)) { 7861 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7862 bool IsTable = j - i + 1 >= MinJumpTableSize; 7863 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7864 7865 // If this j leads to fewer partitions, or same number of partitions 7866 // with more lookup tables, it is a better partitioning. 7867 if (NumPartitions < MinPartitions[i] || 7868 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7869 MinPartitions[i] = NumPartitions; 7870 LastElement[i] = j; 7871 NumTables[i] = Tables; 7872 } 7873 } 7874 } 7875 } 7876 7877 // Iterate over the partitions, replacing some with jump tables in-place. 7878 unsigned DstIndex = 0; 7879 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7880 Last = LastElement[First]; 7881 assert(Last >= First); 7882 assert(DstIndex <= First); 7883 unsigned NumClusters = Last - First + 1; 7884 7885 CaseCluster JTCluster; 7886 if (NumClusters >= MinJumpTableSize && 7887 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7888 Clusters[DstIndex++] = JTCluster; 7889 } else { 7890 for (unsigned I = First; I <= Last; ++I) 7891 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7892 } 7893 } 7894 Clusters.resize(DstIndex); 7895 } 7896 7897 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7898 // FIXME: Using the pointer type doesn't seem ideal. 7899 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7900 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7901 return Range <= BW; 7902 } 7903 7904 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7905 unsigned NumCmps, 7906 const APInt &Low, 7907 const APInt &High) { 7908 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7909 // range of cases both require only one branch to lower. Just looking at the 7910 // number of clusters and destinations should be enough to decide whether to 7911 // build bit tests. 7912 7913 // To lower a range with bit tests, the range must fit the bitwidth of a 7914 // machine word. 7915 if (!rangeFitsInWord(Low, High)) 7916 return false; 7917 7918 // Decide whether it's profitable to lower this range with bit tests. Each 7919 // destination requires a bit test and branch, and there is an overall range 7920 // check branch. For a small number of clusters, separate comparisons might be 7921 // cheaper, and for many destinations, splitting the range might be better. 7922 return (NumDests == 1 && NumCmps >= 3) || 7923 (NumDests == 2 && NumCmps >= 5) || 7924 (NumDests == 3 && NumCmps >= 6); 7925 } 7926 7927 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7928 unsigned First, unsigned Last, 7929 const SwitchInst *SI, 7930 CaseCluster &BTCluster) { 7931 assert(First <= Last); 7932 if (First == Last) 7933 return false; 7934 7935 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7936 unsigned NumCmps = 0; 7937 for (int64_t I = First; I <= Last; ++I) { 7938 assert(Clusters[I].Kind == CC_Range); 7939 Dests.set(Clusters[I].MBB->getNumber()); 7940 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7941 } 7942 unsigned NumDests = Dests.count(); 7943 7944 APInt Low = Clusters[First].Low->getValue(); 7945 APInt High = Clusters[Last].High->getValue(); 7946 assert(Low.slt(High)); 7947 7948 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7949 return false; 7950 7951 APInt LowBound; 7952 APInt CmpRange; 7953 7954 const int BitWidth = DAG.getTargetLoweringInfo() 7955 .getPointerTy(DAG.getDataLayout()) 7956 .getSizeInBits(); 7957 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 7958 7959 // Check if the clusters cover a contiguous range such that no value in the 7960 // range will jump to the default statement. 7961 bool ContiguousRange = true; 7962 for (int64_t I = First + 1; I <= Last; ++I) { 7963 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 7964 ContiguousRange = false; 7965 break; 7966 } 7967 } 7968 7969 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 7970 // Optimize the case where all the case values fit in a word without having 7971 // to subtract minValue. In this case, we can optimize away the subtraction. 7972 LowBound = APInt::getNullValue(Low.getBitWidth()); 7973 CmpRange = High; 7974 ContiguousRange = false; 7975 } else { 7976 LowBound = Low; 7977 CmpRange = High - Low; 7978 } 7979 7980 CaseBitsVector CBV; 7981 auto TotalProb = BranchProbability::getZero(); 7982 for (unsigned i = First; i <= Last; ++i) { 7983 // Find the CaseBits for this destination. 7984 unsigned j; 7985 for (j = 0; j < CBV.size(); ++j) 7986 if (CBV[j].BB == Clusters[i].MBB) 7987 break; 7988 if (j == CBV.size()) 7989 CBV.push_back( 7990 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 7991 CaseBits *CB = &CBV[j]; 7992 7993 // Update Mask, Bits and ExtraProb. 7994 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7995 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7996 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 7997 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 7998 CB->Bits += Hi - Lo + 1; 7999 CB->ExtraProb += Clusters[i].Prob; 8000 TotalProb += Clusters[i].Prob; 8001 } 8002 8003 BitTestInfo BTI; 8004 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8005 // Sort by probability first, number of bits second. 8006 if (a.ExtraProb != b.ExtraProb) 8007 return a.ExtraProb > b.ExtraProb; 8008 return a.Bits > b.Bits; 8009 }); 8010 8011 for (auto &CB : CBV) { 8012 MachineBasicBlock *BitTestBB = 8013 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8014 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8015 } 8016 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8017 SI->getCondition(), -1U, MVT::Other, false, 8018 ContiguousRange, nullptr, nullptr, std::move(BTI), 8019 TotalProb); 8020 8021 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8022 BitTestCases.size() - 1, TotalProb); 8023 return true; 8024 } 8025 8026 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8027 const SwitchInst *SI) { 8028 // Partition Clusters into as few subsets as possible, where each subset has a 8029 // range that fits in a machine word and has <= 3 unique destinations. 8030 8031 #ifndef NDEBUG 8032 // Clusters must be sorted and contain Range or JumpTable clusters. 8033 assert(!Clusters.empty()); 8034 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8035 for (const CaseCluster &C : Clusters) 8036 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8037 for (unsigned i = 1; i < Clusters.size(); ++i) 8038 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8039 #endif 8040 8041 // The algorithm below is not suitable for -O0. 8042 if (TM.getOptLevel() == CodeGenOpt::None) 8043 return; 8044 8045 // If target does not have legal shift left, do not emit bit tests at all. 8046 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8047 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8048 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8049 return; 8050 8051 int BitWidth = PTy.getSizeInBits(); 8052 const int64_t N = Clusters.size(); 8053 8054 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8055 SmallVector<unsigned, 8> MinPartitions(N); 8056 // LastElement[i] is the last element of the partition starting at i. 8057 SmallVector<unsigned, 8> LastElement(N); 8058 8059 // FIXME: This might not be the best algorithm for finding bit test clusters. 8060 8061 // Base case: There is only one way to partition Clusters[N-1]. 8062 MinPartitions[N - 1] = 1; 8063 LastElement[N - 1] = N - 1; 8064 8065 // Note: loop indexes are signed to avoid underflow. 8066 for (int64_t i = N - 2; i >= 0; --i) { 8067 // Find optimal partitioning of Clusters[i..N-1]. 8068 // Baseline: Put Clusters[i] into a partition on its own. 8069 MinPartitions[i] = MinPartitions[i + 1] + 1; 8070 LastElement[i] = i; 8071 8072 // Search for a solution that results in fewer partitions. 8073 // Note: the search is limited by BitWidth, reducing time complexity. 8074 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8075 // Try building a partition from Clusters[i..j]. 8076 8077 // Check the range. 8078 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8079 Clusters[j].High->getValue())) 8080 continue; 8081 8082 // Check nbr of destinations and cluster types. 8083 // FIXME: This works, but doesn't seem very efficient. 8084 bool RangesOnly = true; 8085 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8086 for (int64_t k = i; k <= j; k++) { 8087 if (Clusters[k].Kind != CC_Range) { 8088 RangesOnly = false; 8089 break; 8090 } 8091 Dests.set(Clusters[k].MBB->getNumber()); 8092 } 8093 if (!RangesOnly || Dests.count() > 3) 8094 break; 8095 8096 // Check if it's a better partition. 8097 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8098 if (NumPartitions < MinPartitions[i]) { 8099 // Found a better partition. 8100 MinPartitions[i] = NumPartitions; 8101 LastElement[i] = j; 8102 } 8103 } 8104 } 8105 8106 // Iterate over the partitions, replacing with bit-test clusters in-place. 8107 unsigned DstIndex = 0; 8108 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8109 Last = LastElement[First]; 8110 assert(First <= Last); 8111 assert(DstIndex <= First); 8112 8113 CaseCluster BitTestCluster; 8114 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8115 Clusters[DstIndex++] = BitTestCluster; 8116 } else { 8117 size_t NumClusters = Last - First + 1; 8118 std::memmove(&Clusters[DstIndex], &Clusters[First], 8119 sizeof(Clusters[0]) * NumClusters); 8120 DstIndex += NumClusters; 8121 } 8122 } 8123 Clusters.resize(DstIndex); 8124 } 8125 8126 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8127 MachineBasicBlock *SwitchMBB, 8128 MachineBasicBlock *DefaultMBB) { 8129 MachineFunction *CurMF = FuncInfo.MF; 8130 MachineBasicBlock *NextMBB = nullptr; 8131 MachineFunction::iterator BBI(W.MBB); 8132 if (++BBI != FuncInfo.MF->end()) 8133 NextMBB = &*BBI; 8134 8135 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8136 8137 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8138 8139 if (Size == 2 && W.MBB == SwitchMBB) { 8140 // If any two of the cases has the same destination, and if one value 8141 // is the same as the other, but has one bit unset that the other has set, 8142 // use bit manipulation to do two compares at once. For example: 8143 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8144 // TODO: This could be extended to merge any 2 cases in switches with 3 8145 // cases. 8146 // TODO: Handle cases where W.CaseBB != SwitchBB. 8147 CaseCluster &Small = *W.FirstCluster; 8148 CaseCluster &Big = *W.LastCluster; 8149 8150 if (Small.Low == Small.High && Big.Low == Big.High && 8151 Small.MBB == Big.MBB) { 8152 const APInt &SmallValue = Small.Low->getValue(); 8153 const APInt &BigValue = Big.Low->getValue(); 8154 8155 // Check that there is only one bit different. 8156 APInt CommonBit = BigValue ^ SmallValue; 8157 if (CommonBit.isPowerOf2()) { 8158 SDValue CondLHS = getValue(Cond); 8159 EVT VT = CondLHS.getValueType(); 8160 SDLoc DL = getCurSDLoc(); 8161 8162 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8163 DAG.getConstant(CommonBit, DL, VT)); 8164 SDValue Cond = DAG.getSetCC( 8165 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8166 ISD::SETEQ); 8167 8168 // Update successor info. 8169 // Both Small and Big will jump to Small.BB, so we sum up the 8170 // probabilities. 8171 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8172 if (BPI) 8173 addSuccessorWithProb( 8174 SwitchMBB, DefaultMBB, 8175 // The default destination is the first successor in IR. 8176 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8177 else 8178 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8179 8180 // Insert the true branch. 8181 SDValue BrCond = 8182 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8183 DAG.getBasicBlock(Small.MBB)); 8184 // Insert the false branch. 8185 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8186 DAG.getBasicBlock(DefaultMBB)); 8187 8188 DAG.setRoot(BrCond); 8189 return; 8190 } 8191 } 8192 } 8193 8194 if (TM.getOptLevel() != CodeGenOpt::None) { 8195 // Order cases by probability so the most likely case will be checked first. 8196 std::sort(W.FirstCluster, W.LastCluster + 1, 8197 [](const CaseCluster &a, const CaseCluster &b) { 8198 return a.Prob > b.Prob; 8199 }); 8200 8201 // Rearrange the case blocks so that the last one falls through if possible 8202 // without without changing the order of probabilities. 8203 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8204 --I; 8205 if (I->Prob > W.LastCluster->Prob) 8206 break; 8207 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8208 std::swap(*I, *W.LastCluster); 8209 break; 8210 } 8211 } 8212 } 8213 8214 // Compute total probability. 8215 BranchProbability DefaultProb = W.DefaultProb; 8216 BranchProbability UnhandledProbs = DefaultProb; 8217 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8218 UnhandledProbs += I->Prob; 8219 8220 MachineBasicBlock *CurMBB = W.MBB; 8221 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8222 MachineBasicBlock *Fallthrough; 8223 if (I == W.LastCluster) { 8224 // For the last cluster, fall through to the default destination. 8225 Fallthrough = DefaultMBB; 8226 } else { 8227 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8228 CurMF->insert(BBI, Fallthrough); 8229 // Put Cond in a virtual register to make it available from the new blocks. 8230 ExportFromCurrentBlock(Cond); 8231 } 8232 UnhandledProbs -= I->Prob; 8233 8234 switch (I->Kind) { 8235 case CC_JumpTable: { 8236 // FIXME: Optimize away range check based on pivot comparisons. 8237 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8238 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8239 8240 // The jump block hasn't been inserted yet; insert it here. 8241 MachineBasicBlock *JumpMBB = JT->MBB; 8242 CurMF->insert(BBI, JumpMBB); 8243 8244 auto JumpProb = I->Prob; 8245 auto FallthroughProb = UnhandledProbs; 8246 8247 // If the default statement is a target of the jump table, we evenly 8248 // distribute the default probability to successors of CurMBB. Also 8249 // update the probability on the edge from JumpMBB to Fallthrough. 8250 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8251 SE = JumpMBB->succ_end(); 8252 SI != SE; ++SI) { 8253 if (*SI == DefaultMBB) { 8254 JumpProb += DefaultProb / 2; 8255 FallthroughProb -= DefaultProb / 2; 8256 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8257 JumpMBB->normalizeSuccProbs(); 8258 break; 8259 } 8260 } 8261 8262 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8263 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8264 CurMBB->normalizeSuccProbs(); 8265 8266 // The jump table header will be inserted in our current block, do the 8267 // range check, and fall through to our fallthrough block. 8268 JTH->HeaderBB = CurMBB; 8269 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8270 8271 // If we're in the right place, emit the jump table header right now. 8272 if (CurMBB == SwitchMBB) { 8273 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8274 JTH->Emitted = true; 8275 } 8276 break; 8277 } 8278 case CC_BitTests: { 8279 // FIXME: Optimize away range check based on pivot comparisons. 8280 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8281 8282 // The bit test blocks haven't been inserted yet; insert them here. 8283 for (BitTestCase &BTC : BTB->Cases) 8284 CurMF->insert(BBI, BTC.ThisBB); 8285 8286 // Fill in fields of the BitTestBlock. 8287 BTB->Parent = CurMBB; 8288 BTB->Default = Fallthrough; 8289 8290 BTB->DefaultProb = UnhandledProbs; 8291 // If the cases in bit test don't form a contiguous range, we evenly 8292 // distribute the probability on the edge to Fallthrough to two 8293 // successors of CurMBB. 8294 if (!BTB->ContiguousRange) { 8295 BTB->Prob += DefaultProb / 2; 8296 BTB->DefaultProb -= DefaultProb / 2; 8297 } 8298 8299 // If we're in the right place, emit the bit test header right now. 8300 if (CurMBB == SwitchMBB) { 8301 visitBitTestHeader(*BTB, SwitchMBB); 8302 BTB->Emitted = true; 8303 } 8304 break; 8305 } 8306 case CC_Range: { 8307 const Value *RHS, *LHS, *MHS; 8308 ISD::CondCode CC; 8309 if (I->Low == I->High) { 8310 // Check Cond == I->Low. 8311 CC = ISD::SETEQ; 8312 LHS = Cond; 8313 RHS=I->Low; 8314 MHS = nullptr; 8315 } else { 8316 // Check I->Low <= Cond <= I->High. 8317 CC = ISD::SETLE; 8318 LHS = I->Low; 8319 MHS = Cond; 8320 RHS = I->High; 8321 } 8322 8323 // The false probability is the sum of all unhandled cases. 8324 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8325 UnhandledProbs); 8326 8327 if (CurMBB == SwitchMBB) 8328 visitSwitchCase(CB, SwitchMBB); 8329 else 8330 SwitchCases.push_back(CB); 8331 8332 break; 8333 } 8334 } 8335 CurMBB = Fallthrough; 8336 } 8337 } 8338 8339 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8340 CaseClusterIt First, 8341 CaseClusterIt Last) { 8342 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8343 if (X.Prob != CC.Prob) 8344 return X.Prob > CC.Prob; 8345 8346 // Ties are broken by comparing the case value. 8347 return X.Low->getValue().slt(CC.Low->getValue()); 8348 }); 8349 } 8350 8351 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8352 const SwitchWorkListItem &W, 8353 Value *Cond, 8354 MachineBasicBlock *SwitchMBB) { 8355 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8356 "Clusters not sorted?"); 8357 8358 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8359 8360 // Balance the tree based on branch probabilities to create a near-optimal (in 8361 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8362 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8363 CaseClusterIt LastLeft = W.FirstCluster; 8364 CaseClusterIt FirstRight = W.LastCluster; 8365 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8366 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8367 8368 // Move LastLeft and FirstRight towards each other from opposite directions to 8369 // find a partitioning of the clusters which balances the probability on both 8370 // sides. If LeftProb and RightProb are equal, alternate which side is 8371 // taken to ensure 0-probability nodes are distributed evenly. 8372 unsigned I = 0; 8373 while (LastLeft + 1 < FirstRight) { 8374 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8375 LeftProb += (++LastLeft)->Prob; 8376 else 8377 RightProb += (--FirstRight)->Prob; 8378 I++; 8379 } 8380 8381 for (;;) { 8382 // Our binary search tree differs from a typical BST in that ours can have up 8383 // to three values in each leaf. The pivot selection above doesn't take that 8384 // into account, which means the tree might require more nodes and be less 8385 // efficient. We compensate for this here. 8386 8387 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8388 unsigned NumRight = W.LastCluster - FirstRight + 1; 8389 8390 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8391 // If one side has less than 3 clusters, and the other has more than 3, 8392 // consider taking a cluster from the other side. 8393 8394 if (NumLeft < NumRight) { 8395 // Consider moving the first cluster on the right to the left side. 8396 CaseCluster &CC = *FirstRight; 8397 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8398 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8399 if (LeftSideRank <= RightSideRank) { 8400 // Moving the cluster to the left does not demote it. 8401 ++LastLeft; 8402 ++FirstRight; 8403 continue; 8404 } 8405 } else { 8406 assert(NumRight < NumLeft); 8407 // Consider moving the last element on the left to the right side. 8408 CaseCluster &CC = *LastLeft; 8409 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8410 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8411 if (RightSideRank <= LeftSideRank) { 8412 // Moving the cluster to the right does not demot it. 8413 --LastLeft; 8414 --FirstRight; 8415 continue; 8416 } 8417 } 8418 } 8419 break; 8420 } 8421 8422 assert(LastLeft + 1 == FirstRight); 8423 assert(LastLeft >= W.FirstCluster); 8424 assert(FirstRight <= W.LastCluster); 8425 8426 // Use the first element on the right as pivot since we will make less-than 8427 // comparisons against it. 8428 CaseClusterIt PivotCluster = FirstRight; 8429 assert(PivotCluster > W.FirstCluster); 8430 assert(PivotCluster <= W.LastCluster); 8431 8432 CaseClusterIt FirstLeft = W.FirstCluster; 8433 CaseClusterIt LastRight = W.LastCluster; 8434 8435 const ConstantInt *Pivot = PivotCluster->Low; 8436 8437 // New blocks will be inserted immediately after the current one. 8438 MachineFunction::iterator BBI(W.MBB); 8439 ++BBI; 8440 8441 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8442 // we can branch to its destination directly if it's squeezed exactly in 8443 // between the known lower bound and Pivot - 1. 8444 MachineBasicBlock *LeftMBB; 8445 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8446 FirstLeft->Low == W.GE && 8447 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8448 LeftMBB = FirstLeft->MBB; 8449 } else { 8450 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8451 FuncInfo.MF->insert(BBI, LeftMBB); 8452 WorkList.push_back( 8453 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8454 // Put Cond in a virtual register to make it available from the new blocks. 8455 ExportFromCurrentBlock(Cond); 8456 } 8457 8458 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8459 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8460 // directly if RHS.High equals the current upper bound. 8461 MachineBasicBlock *RightMBB; 8462 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8463 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8464 RightMBB = FirstRight->MBB; 8465 } else { 8466 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8467 FuncInfo.MF->insert(BBI, RightMBB); 8468 WorkList.push_back( 8469 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8470 // Put Cond in a virtual register to make it available from the new blocks. 8471 ExportFromCurrentBlock(Cond); 8472 } 8473 8474 // Create the CaseBlock record that will be used to lower the branch. 8475 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8476 LeftProb, RightProb); 8477 8478 if (W.MBB == SwitchMBB) 8479 visitSwitchCase(CB, SwitchMBB); 8480 else 8481 SwitchCases.push_back(CB); 8482 } 8483 8484 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8485 // Extract cases from the switch. 8486 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8487 CaseClusterVector Clusters; 8488 Clusters.reserve(SI.getNumCases()); 8489 for (auto I : SI.cases()) { 8490 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8491 const ConstantInt *CaseVal = I.getCaseValue(); 8492 BranchProbability Prob = 8493 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8494 : BranchProbability(1, SI.getNumCases() + 1); 8495 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8496 } 8497 8498 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8499 8500 // Cluster adjacent cases with the same destination. We do this at all 8501 // optimization levels because it's cheap to do and will make codegen faster 8502 // if there are many clusters. 8503 sortAndRangeify(Clusters); 8504 8505 if (TM.getOptLevel() != CodeGenOpt::None) { 8506 // Replace an unreachable default with the most popular destination. 8507 // FIXME: Exploit unreachable default more aggressively. 8508 bool UnreachableDefault = 8509 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8510 if (UnreachableDefault && !Clusters.empty()) { 8511 DenseMap<const BasicBlock *, unsigned> Popularity; 8512 unsigned MaxPop = 0; 8513 const BasicBlock *MaxBB = nullptr; 8514 for (auto I : SI.cases()) { 8515 const BasicBlock *BB = I.getCaseSuccessor(); 8516 if (++Popularity[BB] > MaxPop) { 8517 MaxPop = Popularity[BB]; 8518 MaxBB = BB; 8519 } 8520 } 8521 // Set new default. 8522 assert(MaxPop > 0 && MaxBB); 8523 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8524 8525 // Remove cases that were pointing to the destination that is now the 8526 // default. 8527 CaseClusterVector New; 8528 New.reserve(Clusters.size()); 8529 for (CaseCluster &CC : Clusters) { 8530 if (CC.MBB != DefaultMBB) 8531 New.push_back(CC); 8532 } 8533 Clusters = std::move(New); 8534 } 8535 } 8536 8537 // If there is only the default destination, jump there directly. 8538 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8539 if (Clusters.empty()) { 8540 SwitchMBB->addSuccessor(DefaultMBB); 8541 if (DefaultMBB != NextBlock(SwitchMBB)) { 8542 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8543 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8544 } 8545 return; 8546 } 8547 8548 findJumpTables(Clusters, &SI, DefaultMBB); 8549 findBitTestClusters(Clusters, &SI); 8550 8551 DEBUG({ 8552 dbgs() << "Case clusters: "; 8553 for (const CaseCluster &C : Clusters) { 8554 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8555 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8556 8557 C.Low->getValue().print(dbgs(), true); 8558 if (C.Low != C.High) { 8559 dbgs() << '-'; 8560 C.High->getValue().print(dbgs(), true); 8561 } 8562 dbgs() << ' '; 8563 } 8564 dbgs() << '\n'; 8565 }); 8566 8567 assert(!Clusters.empty()); 8568 SwitchWorkList WorkList; 8569 CaseClusterIt First = Clusters.begin(); 8570 CaseClusterIt Last = Clusters.end() - 1; 8571 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8572 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8573 8574 while (!WorkList.empty()) { 8575 SwitchWorkListItem W = WorkList.back(); 8576 WorkList.pop_back(); 8577 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8578 8579 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8580 // For optimized builds, lower large range as a balanced binary tree. 8581 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8582 continue; 8583 } 8584 8585 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8586 } 8587 } 8588