1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/Loads.h" 24 #include "llvm/Analysis/TargetLibraryInfo.h" 25 #include "llvm/Analysis/ValueTracking.h" 26 #include "llvm/Analysis/VectorUtils.h" 27 #include "llvm/CodeGen/Analysis.h" 28 #include "llvm/CodeGen/FastISel.h" 29 #include "llvm/CodeGen/FunctionLoweringInfo.h" 30 #include "llvm/CodeGen/GCMetadata.h" 31 #include "llvm/CodeGen/GCStrategy.h" 32 #include "llvm/CodeGen/MachineFrameInfo.h" 33 #include "llvm/CodeGen/MachineFunction.h" 34 #include "llvm/CodeGen/MachineInstrBuilder.h" 35 #include "llvm/CodeGen/MachineJumpTableInfo.h" 36 #include "llvm/CodeGen/MachineModuleInfo.h" 37 #include "llvm/CodeGen/MachineRegisterInfo.h" 38 #include "llvm/CodeGen/SelectionDAG.h" 39 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 40 #include "llvm/CodeGen/StackMaps.h" 41 #include "llvm/CodeGen/WinEHFuncInfo.h" 42 #include "llvm/IR/CallingConv.h" 43 #include "llvm/IR/ConstantRange.h" 44 #include "llvm/IR/Constants.h" 45 #include "llvm/IR/DataLayout.h" 46 #include "llvm/IR/DebugInfo.h" 47 #include "llvm/IR/DerivedTypes.h" 48 #include "llvm/IR/Function.h" 49 #include "llvm/IR/GetElementPtrTypeIterator.h" 50 #include "llvm/IR/GlobalVariable.h" 51 #include "llvm/IR/InlineAsm.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/IntrinsicInst.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Statepoint.h" 58 #include "llvm/MC/MCSymbol.h" 59 #include "llvm/Support/CommandLine.h" 60 #include "llvm/Support/Debug.h" 61 #include "llvm/Support/ErrorHandling.h" 62 #include "llvm/Support/MathExtras.h" 63 #include "llvm/Support/raw_ostream.h" 64 #include "llvm/Target/TargetFrameLowering.h" 65 #include "llvm/Target/TargetInstrInfo.h" 66 #include "llvm/Target/TargetIntrinsicInfo.h" 67 #include "llvm/Target/TargetLowering.h" 68 #include "llvm/Target/TargetOptions.h" 69 #include "llvm/Target/TargetSubtargetInfo.h" 70 #include <algorithm> 71 #include <utility> 72 using namespace llvm; 73 74 #define DEBUG_TYPE "isel" 75 76 /// LimitFloatPrecision - Generate low-precision inline sequences for 77 /// some float libcalls (6, 8 or 12 bits). 78 static unsigned LimitFloatPrecision; 79 80 static cl::opt<unsigned, true> 81 LimitFPPrecision("limit-float-precision", 82 cl::desc("Generate low-precision inline sequences " 83 "for some float libcalls"), 84 cl::location(LimitFloatPrecision), 85 cl::init(0)); 86 // Limit the width of DAG chains. This is important in general to prevent 87 // DAG-based analysis from blowing up. For example, alias analysis and 88 // load clustering may not complete in reasonable time. It is difficult to 89 // recognize and avoid this situation within each individual analysis, and 90 // future analyses are likely to have the same behavior. Limiting DAG width is 91 // the safe approach and will be especially important with global DAGs. 92 // 93 // MaxParallelChains default is arbitrarily high to avoid affecting 94 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 95 // sequence over this should have been converted to llvm.memcpy by the 96 // frontend. It is easy to induce this behavior with .ll code such as: 97 // %buffer = alloca [4096 x i8] 98 // %data = load [4096 x i8]* %argPtr 99 // store [4096 x i8] %data, [4096 x i8]* %buffer 100 static const unsigned MaxParallelChains = 64; 101 102 // True if the Value passed requires ABI mangling as it is a parameter to a 103 // function or a return value from a function which is not an intrinsic. 104 static bool isABIRegCopy(const Value * V) { 105 const bool IsRetInst = V && isa<ReturnInst>(V); 106 const bool IsCallInst = V && isa<CallInst>(V); 107 const bool IsInLineAsm = 108 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 109 const bool IsIndirectFunctionCall = 110 IsCallInst && !IsInLineAsm && 111 !static_cast<const CallInst *>(V)->getCalledFunction(); 112 // It is possible that the call instruction is an inline asm statement or an 113 // indirect function call in which case the return value of 114 // getCalledFunction() would be nullptr. 115 const bool IsInstrinsicCall = 116 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 117 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 118 Intrinsic::not_intrinsic; 119 120 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 121 } 122 123 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 124 const SDValue *Parts, unsigned NumParts, 125 MVT PartVT, EVT ValueVT, const Value *V, 126 bool IsABIRegCopy); 127 128 /// getCopyFromParts - Create a value that contains the specified legal parts 129 /// combined into the value they represent. If the parts combine to a type 130 /// larger than ValueVT then AssertOp can be used to specify whether the extra 131 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 132 /// (ISD::AssertSext). 133 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 134 const SDValue *Parts, unsigned NumParts, 135 MVT PartVT, EVT ValueVT, const Value *V, 136 Optional<ISD::NodeType> AssertOp = None, 137 bool IsABIRegCopy = false) { 138 if (ValueVT.isVector()) 139 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 140 PartVT, ValueVT, V, IsABIRegCopy); 141 142 assert(NumParts > 0 && "No parts to assemble!"); 143 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 144 SDValue Val = Parts[0]; 145 146 if (NumParts > 1) { 147 // Assemble the value from multiple parts. 148 if (ValueVT.isInteger()) { 149 unsigned PartBits = PartVT.getSizeInBits(); 150 unsigned ValueBits = ValueVT.getSizeInBits(); 151 152 // Assemble the power of 2 part. 153 unsigned RoundParts = NumParts & (NumParts - 1) ? 154 1 << Log2_32(NumParts) : NumParts; 155 unsigned RoundBits = PartBits * RoundParts; 156 EVT RoundVT = RoundBits == ValueBits ? 157 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 158 SDValue Lo, Hi; 159 160 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 161 162 if (RoundParts > 2) { 163 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 164 PartVT, HalfVT, V); 165 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 166 RoundParts / 2, PartVT, HalfVT, V); 167 } else { 168 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 169 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 170 } 171 172 if (DAG.getDataLayout().isBigEndian()) 173 std::swap(Lo, Hi); 174 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 176 177 if (RoundParts < NumParts) { 178 // Assemble the trailing non-power-of-2 part. 179 unsigned OddParts = NumParts - RoundParts; 180 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 181 Hi = getCopyFromParts(DAG, DL, 182 Parts + RoundParts, OddParts, PartVT, OddVT, V); 183 184 // Combine the round and odd parts. 185 Lo = Val; 186 if (DAG.getDataLayout().isBigEndian()) 187 std::swap(Lo, Hi); 188 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 189 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 190 Hi = 191 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 192 DAG.getConstant(Lo.getValueSizeInBits(), DL, 193 TLI.getPointerTy(DAG.getDataLayout()))); 194 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 195 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 196 } 197 } else if (PartVT.isFloatingPoint()) { 198 // FP split into multiple FP parts (for ppcf128) 199 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 200 "Unexpected split"); 201 SDValue Lo, Hi; 202 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 203 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 204 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 205 std::swap(Lo, Hi); 206 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 207 } else { 208 // FP split into integer parts (soft fp) 209 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 210 !PartVT.isVector() && "Unexpected split"); 211 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 212 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 213 } 214 } 215 216 // There is now one part, held in Val. Correct it to match ValueVT. 217 // PartEVT is the type of the register class that holds the value. 218 // ValueVT is the type of the inline asm operation. 219 EVT PartEVT = Val.getValueType(); 220 221 if (PartEVT == ValueVT) 222 return Val; 223 224 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 225 ValueVT.bitsLT(PartEVT)) { 226 // For an FP value in an integer part, we need to truncate to the right 227 // width first. 228 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 229 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 230 } 231 232 // Handle types that have the same size. 233 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 234 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 235 236 // Handle types with different sizes. 237 if (PartEVT.isInteger() && ValueVT.isInteger()) { 238 if (ValueVT.bitsLT(PartEVT)) { 239 // For a truncate, see if we have any information to 240 // indicate whether the truncated bits will always be 241 // zero or sign-extension. 242 if (AssertOp.hasValue()) 243 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 244 DAG.getValueType(ValueVT)); 245 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 246 } 247 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 248 } 249 250 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 251 // FP_ROUND's are always exact here. 252 if (ValueVT.bitsLT(Val.getValueType())) 253 return DAG.getNode( 254 ISD::FP_ROUND, DL, ValueVT, Val, 255 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 256 257 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 258 } 259 260 llvm_unreachable("Unknown mismatch!"); 261 } 262 263 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 264 const Twine &ErrMsg) { 265 const Instruction *I = dyn_cast_or_null<Instruction>(V); 266 if (!V) 267 return Ctx.emitError(ErrMsg); 268 269 const char *AsmError = ", possible invalid constraint for vector type"; 270 if (const CallInst *CI = dyn_cast<CallInst>(I)) 271 if (isa<InlineAsm>(CI->getCalledValue())) 272 return Ctx.emitError(I, ErrMsg + AsmError); 273 274 return Ctx.emitError(I, ErrMsg); 275 } 276 277 /// getCopyFromPartsVector - Create a value that contains the specified legal 278 /// parts combined into the value they represent. If the parts combine to a 279 /// type larger than ValueVT then AssertOp can be used to specify whether the 280 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 281 /// ValueVT (ISD::AssertSext). 282 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 283 const SDValue *Parts, unsigned NumParts, 284 MVT PartVT, EVT ValueVT, const Value *V, 285 bool IsABIRegCopy) { 286 assert(ValueVT.isVector() && "Not a vector value"); 287 assert(NumParts > 0 && "No parts to assemble!"); 288 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 289 SDValue Val = Parts[0]; 290 291 // Handle a multi-element vector. 292 if (NumParts > 1) { 293 EVT IntermediateVT; 294 MVT RegisterVT; 295 unsigned NumIntermediates; 296 unsigned NumRegs; 297 298 if (IsABIRegCopy) { 299 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 300 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 301 RegisterVT); 302 } else { 303 NumRegs = 304 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 305 NumIntermediates, RegisterVT); 306 } 307 308 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 309 NumParts = NumRegs; // Silence a compiler warning. 310 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 311 assert(RegisterVT.getSizeInBits() == 312 Parts[0].getSimpleValueType().getSizeInBits() && 313 "Part type sizes don't match!"); 314 315 // Assemble the parts into intermediate operands. 316 SmallVector<SDValue, 8> Ops(NumIntermediates); 317 if (NumIntermediates == NumParts) { 318 // If the register was not expanded, truncate or copy the value, 319 // as appropriate. 320 for (unsigned i = 0; i != NumParts; ++i) 321 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 322 PartVT, IntermediateVT, V); 323 } else if (NumParts > 0) { 324 // If the intermediate type was expanded, build the intermediate 325 // operands from the parts. 326 assert(NumParts % NumIntermediates == 0 && 327 "Must expand into a divisible number of parts!"); 328 unsigned Factor = NumParts / NumIntermediates; 329 for (unsigned i = 0; i != NumIntermediates; ++i) 330 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 331 PartVT, IntermediateVT, V); 332 } 333 334 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 335 // intermediate operands. 336 EVT BuiltVectorTy = 337 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 338 (IntermediateVT.isVector() 339 ? IntermediateVT.getVectorNumElements() * NumParts 340 : NumIntermediates)); 341 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 342 : ISD::BUILD_VECTOR, 343 DL, BuiltVectorTy, Ops); 344 } 345 346 // There is now one part, held in Val. Correct it to match ValueVT. 347 EVT PartEVT = Val.getValueType(); 348 349 if (PartEVT == ValueVT) 350 return Val; 351 352 if (PartEVT.isVector()) { 353 // If the element type of the source/dest vectors are the same, but the 354 // parts vector has more elements than the value vector, then we have a 355 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 356 // elements we want. 357 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 358 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 359 "Cannot narrow, it would be a lossy transformation"); 360 return DAG.getNode( 361 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 362 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 363 } 364 365 // Vector/Vector bitcast. 366 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 367 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 368 369 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 370 "Cannot handle this kind of promotion"); 371 // Promoted vector extract 372 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 373 374 } 375 376 // Trivial bitcast if the types are the same size and the destination 377 // vector type is legal. 378 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 379 TLI.isTypeLegal(ValueVT)) 380 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 381 382 if (ValueVT.getVectorNumElements() != 1) { 383 // Certain ABIs require that vectors are passed as integers. For vectors 384 // are the same size, this is an obvious bitcast. 385 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 386 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 387 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 388 // Bitcast Val back the original type and extract the corresponding 389 // vector we want. 390 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 391 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 392 ValueVT.getVectorElementType(), Elts); 393 Val = DAG.getBitcast(WiderVecType, Val); 394 return DAG.getNode( 395 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 396 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 397 } 398 399 diagnosePossiblyInvalidConstraint( 400 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 401 return DAG.getUNDEF(ValueVT); 402 } 403 404 // Handle cases such as i8 -> <1 x i1> 405 EVT ValueSVT = ValueVT.getVectorElementType(); 406 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 407 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 408 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 409 410 return DAG.getBuildVector(ValueVT, DL, Val); 411 } 412 413 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 414 SDValue Val, SDValue *Parts, unsigned NumParts, 415 MVT PartVT, const Value *V, bool IsABIRegCopy); 416 417 /// getCopyToParts - Create a series of nodes that contain the specified value 418 /// split into legal parts. If the parts contain more bits than Val, then, for 419 /// integers, ExtendKind can be used to specify how to generate the extra bits. 420 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 421 SDValue *Parts, unsigned NumParts, MVT PartVT, 422 const Value *V, 423 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 424 bool IsABIRegCopy = false) { 425 EVT ValueVT = Val.getValueType(); 426 427 // Handle the vector case separately. 428 if (ValueVT.isVector()) 429 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 430 IsABIRegCopy); 431 432 unsigned PartBits = PartVT.getSizeInBits(); 433 unsigned OrigNumParts = NumParts; 434 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 435 "Copying to an illegal type!"); 436 437 if (NumParts == 0) 438 return; 439 440 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 441 EVT PartEVT = PartVT; 442 if (PartEVT == ValueVT) { 443 assert(NumParts == 1 && "No-op copy with multiple parts!"); 444 Parts[0] = Val; 445 return; 446 } 447 448 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 449 // If the parts cover more bits than the value has, promote the value. 450 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 451 assert(NumParts == 1 && "Do not know what to promote to!"); 452 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 453 } else { 454 if (ValueVT.isFloatingPoint()) { 455 // FP values need to be bitcast, then extended if they are being put 456 // into a larger container. 457 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 458 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 459 } 460 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 461 ValueVT.isInteger() && 462 "Unknown mismatch!"); 463 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 464 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 465 if (PartVT == MVT::x86mmx) 466 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 467 } 468 } else if (PartBits == ValueVT.getSizeInBits()) { 469 // Different types of the same size. 470 assert(NumParts == 1 && PartEVT != ValueVT); 471 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 472 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 473 // If the parts cover less bits than value has, truncate the value. 474 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 475 ValueVT.isInteger() && 476 "Unknown mismatch!"); 477 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 478 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 479 if (PartVT == MVT::x86mmx) 480 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 481 } 482 483 // The value may have changed - recompute ValueVT. 484 ValueVT = Val.getValueType(); 485 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 486 "Failed to tile the value with PartVT!"); 487 488 if (NumParts == 1) { 489 if (PartEVT != ValueVT) { 490 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 491 "scalar-to-vector conversion failed"); 492 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 493 } 494 495 Parts[0] = Val; 496 return; 497 } 498 499 // Expand the value into multiple parts. 500 if (NumParts & (NumParts - 1)) { 501 // The number of parts is not a power of 2. Split off and copy the tail. 502 assert(PartVT.isInteger() && ValueVT.isInteger() && 503 "Do not know what to expand to!"); 504 unsigned RoundParts = 1 << Log2_32(NumParts); 505 unsigned RoundBits = RoundParts * PartBits; 506 unsigned OddParts = NumParts - RoundParts; 507 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 508 DAG.getIntPtrConstant(RoundBits, DL)); 509 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 510 511 if (DAG.getDataLayout().isBigEndian()) 512 // The odd parts were reversed by getCopyToParts - unreverse them. 513 std::reverse(Parts + RoundParts, Parts + NumParts); 514 515 NumParts = RoundParts; 516 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 517 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 518 } 519 520 // The number of parts is a power of 2. Repeatedly bisect the value using 521 // EXTRACT_ELEMENT. 522 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 523 EVT::getIntegerVT(*DAG.getContext(), 524 ValueVT.getSizeInBits()), 525 Val); 526 527 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 528 for (unsigned i = 0; i < NumParts; i += StepSize) { 529 unsigned ThisBits = StepSize * PartBits / 2; 530 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 531 SDValue &Part0 = Parts[i]; 532 SDValue &Part1 = Parts[i+StepSize/2]; 533 534 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 535 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 536 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 537 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 538 539 if (ThisBits == PartBits && ThisVT != PartVT) { 540 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 541 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 542 } 543 } 544 } 545 546 if (DAG.getDataLayout().isBigEndian()) 547 std::reverse(Parts, Parts + OrigNumParts); 548 } 549 550 551 /// getCopyToPartsVector - Create a series of nodes that contain the specified 552 /// value split into legal parts. 553 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 554 SDValue Val, SDValue *Parts, unsigned NumParts, 555 MVT PartVT, const Value *V, 556 bool IsABIRegCopy) { 557 558 EVT ValueVT = Val.getValueType(); 559 assert(ValueVT.isVector() && "Not a vector"); 560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 561 562 if (NumParts == 1) { 563 EVT PartEVT = PartVT; 564 if (PartEVT == ValueVT) { 565 // Nothing to do. 566 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 567 // Bitconvert vector->vector case. 568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 569 } else if (PartVT.isVector() && 570 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 571 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 572 EVT ElementVT = PartVT.getVectorElementType(); 573 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 574 // undef elements. 575 SmallVector<SDValue, 16> Ops; 576 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 577 Ops.push_back(DAG.getNode( 578 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 579 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 580 581 for (unsigned i = ValueVT.getVectorNumElements(), 582 e = PartVT.getVectorNumElements(); i != e; ++i) 583 Ops.push_back(DAG.getUNDEF(ElementVT)); 584 585 Val = DAG.getBuildVector(PartVT, DL, Ops); 586 587 // FIXME: Use CONCAT for 2x -> 4x. 588 589 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 590 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 591 } else if (PartVT.isVector() && 592 PartEVT.getVectorElementType().bitsGE( 593 ValueVT.getVectorElementType()) && 594 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 595 596 // Promoted vector extract 597 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 598 } else { 599 if (ValueVT.getVectorNumElements() == 1) { 600 Val = DAG.getNode( 601 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 602 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 603 604 } else { 605 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 606 "lossy conversion of vector to scalar type"); 607 EVT IntermediateType = 608 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 609 Val = DAG.getBitcast(IntermediateType, Val); 610 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 611 } 612 } 613 614 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 615 Parts[0] = Val; 616 return; 617 } 618 619 // Handle a multi-element vector. 620 EVT IntermediateVT; 621 MVT RegisterVT; 622 unsigned NumIntermediates; 623 unsigned NumRegs; 624 if (IsABIRegCopy) { 625 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 626 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 627 RegisterVT); 628 } else { 629 NumRegs = 630 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 631 NumIntermediates, RegisterVT); 632 } 633 unsigned NumElements = ValueVT.getVectorNumElements(); 634 635 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 636 NumParts = NumRegs; // Silence a compiler warning. 637 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 638 639 // Convert the vector to the appropiate type if necessary. 640 unsigned DestVectorNoElts = 641 NumIntermediates * 642 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 643 EVT BuiltVectorTy = EVT::getVectorVT( 644 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 645 if (Val.getValueType() != BuiltVectorTy) 646 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 647 648 // Split the vector into intermediate operands. 649 SmallVector<SDValue, 8> Ops(NumIntermediates); 650 for (unsigned i = 0; i != NumIntermediates; ++i) { 651 if (IntermediateVT.isVector()) 652 Ops[i] = 653 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 654 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 655 TLI.getVectorIdxTy(DAG.getDataLayout()))); 656 else 657 Ops[i] = DAG.getNode( 658 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 659 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 660 } 661 662 // Split the intermediate operands into legal parts. 663 if (NumParts == NumIntermediates) { 664 // If the register was not expanded, promote or copy the value, 665 // as appropriate. 666 for (unsigned i = 0; i != NumParts; ++i) 667 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 668 } else if (NumParts > 0) { 669 // If the intermediate type was expanded, split each the value into 670 // legal parts. 671 assert(NumIntermediates != 0 && "division by zero"); 672 assert(NumParts % NumIntermediates == 0 && 673 "Must expand into a divisible number of parts!"); 674 unsigned Factor = NumParts / NumIntermediates; 675 for (unsigned i = 0; i != NumIntermediates; ++i) 676 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 677 } 678 } 679 680 RegsForValue::RegsForValue() { IsABIMangled = false; } 681 682 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 683 EVT valuevt, bool IsABIMangledValue) 684 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 685 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 686 687 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 688 const DataLayout &DL, unsigned Reg, Type *Ty, 689 bool IsABIMangledValue) { 690 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 691 692 IsABIMangled = IsABIMangledValue; 693 694 for (EVT ValueVT : ValueVTs) { 695 unsigned NumRegs = IsABIMangledValue 696 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 697 : TLI.getNumRegisters(Context, ValueVT); 698 MVT RegisterVT = IsABIMangledValue 699 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 700 : TLI.getRegisterType(Context, ValueVT); 701 for (unsigned i = 0; i != NumRegs; ++i) 702 Regs.push_back(Reg + i); 703 RegVTs.push_back(RegisterVT); 704 RegCount.push_back(NumRegs); 705 Reg += NumRegs; 706 } 707 } 708 709 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 710 FunctionLoweringInfo &FuncInfo, 711 const SDLoc &dl, SDValue &Chain, 712 SDValue *Flag, const Value *V) const { 713 // A Value with type {} or [0 x %t] needs no registers. 714 if (ValueVTs.empty()) 715 return SDValue(); 716 717 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 718 719 // Assemble the legal parts into the final values. 720 SmallVector<SDValue, 4> Values(ValueVTs.size()); 721 SmallVector<SDValue, 8> Parts; 722 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 723 // Copy the legal parts from the registers. 724 EVT ValueVT = ValueVTs[Value]; 725 unsigned NumRegs = RegCount[Value]; 726 MVT RegisterVT = IsABIMangled 727 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 728 : RegVTs[Value]; 729 730 Parts.resize(NumRegs); 731 for (unsigned i = 0; i != NumRegs; ++i) { 732 SDValue P; 733 if (!Flag) { 734 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 735 } else { 736 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 737 *Flag = P.getValue(2); 738 } 739 740 Chain = P.getValue(1); 741 Parts[i] = P; 742 743 // If the source register was virtual and if we know something about it, 744 // add an assert node. 745 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 746 !RegisterVT.isInteger() || RegisterVT.isVector()) 747 continue; 748 749 const FunctionLoweringInfo::LiveOutInfo *LOI = 750 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 751 if (!LOI) 752 continue; 753 754 unsigned RegSize = RegisterVT.getSizeInBits(); 755 unsigned NumSignBits = LOI->NumSignBits; 756 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 757 758 if (NumZeroBits == RegSize) { 759 // The current value is a zero. 760 // Explicitly express that as it would be easier for 761 // optimizations to kick in. 762 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 763 continue; 764 } 765 766 // FIXME: We capture more information than the dag can represent. For 767 // now, just use the tightest assertzext/assertsext possible. 768 bool isSExt = true; 769 EVT FromVT(MVT::Other); 770 if (NumSignBits == RegSize) { 771 isSExt = true; // ASSERT SEXT 1 772 FromVT = MVT::i1; 773 } else if (NumZeroBits >= RegSize - 1) { 774 isSExt = false; // ASSERT ZEXT 1 775 FromVT = MVT::i1; 776 } else if (NumSignBits > RegSize - 8) { 777 isSExt = true; // ASSERT SEXT 8 778 FromVT = MVT::i8; 779 } else if (NumZeroBits >= RegSize - 8) { 780 isSExt = false; // ASSERT ZEXT 8 781 FromVT = MVT::i8; 782 } else if (NumSignBits > RegSize - 16) { 783 isSExt = true; // ASSERT SEXT 16 784 FromVT = MVT::i16; 785 } else if (NumZeroBits >= RegSize - 16) { 786 isSExt = false; // ASSERT ZEXT 16 787 FromVT = MVT::i16; 788 } else if (NumSignBits > RegSize - 32) { 789 isSExt = true; // ASSERT SEXT 32 790 FromVT = MVT::i32; 791 } else if (NumZeroBits >= RegSize - 32) { 792 isSExt = false; // ASSERT ZEXT 32 793 FromVT = MVT::i32; 794 } else { 795 continue; 796 } 797 // Add an assertion node. 798 assert(FromVT != MVT::Other); 799 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 800 RegisterVT, P, DAG.getValueType(FromVT)); 801 } 802 803 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 804 NumRegs, RegisterVT, ValueVT, V); 805 Part += NumRegs; 806 Parts.clear(); 807 } 808 809 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 810 } 811 812 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 813 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 814 const Value *V, 815 ISD::NodeType PreferredExtendType) const { 816 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 817 ISD::NodeType ExtendKind = PreferredExtendType; 818 819 // Get the list of the values's legal parts. 820 unsigned NumRegs = Regs.size(); 821 SmallVector<SDValue, 8> Parts(NumRegs); 822 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 823 unsigned NumParts = RegCount[Value]; 824 825 MVT RegisterVT = IsABIMangled 826 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 827 : RegVTs[Value]; 828 829 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 830 ExtendKind = ISD::ZERO_EXTEND; 831 832 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 833 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 834 Part += NumParts; 835 } 836 837 // Copy the parts into the registers. 838 SmallVector<SDValue, 8> Chains(NumRegs); 839 for (unsigned i = 0; i != NumRegs; ++i) { 840 SDValue Part; 841 if (!Flag) { 842 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 843 } else { 844 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 845 *Flag = Part.getValue(1); 846 } 847 848 Chains[i] = Part.getValue(0); 849 } 850 851 if (NumRegs == 1 || Flag) 852 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 853 // flagged to it. That is the CopyToReg nodes and the user are considered 854 // a single scheduling unit. If we create a TokenFactor and return it as 855 // chain, then the TokenFactor is both a predecessor (operand) of the 856 // user as well as a successor (the TF operands are flagged to the user). 857 // c1, f1 = CopyToReg 858 // c2, f2 = CopyToReg 859 // c3 = TokenFactor c1, c2 860 // ... 861 // = op c3, ..., f2 862 Chain = Chains[NumRegs-1]; 863 else 864 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 865 } 866 867 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 868 unsigned MatchingIdx, const SDLoc &dl, 869 SelectionDAG &DAG, 870 std::vector<SDValue> &Ops) const { 871 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 872 873 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 874 if (HasMatching) 875 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 876 else if (!Regs.empty() && 877 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 878 // Put the register class of the virtual registers in the flag word. That 879 // way, later passes can recompute register class constraints for inline 880 // assembly as well as normal instructions. 881 // Don't do this for tied operands that can use the regclass information 882 // from the def. 883 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 884 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 885 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 886 } 887 888 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 889 Ops.push_back(Res); 890 891 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 892 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 893 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 894 MVT RegisterVT = RegVTs[Value]; 895 for (unsigned i = 0; i != NumRegs; ++i) { 896 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 897 unsigned TheReg = Regs[Reg++]; 898 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 899 900 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 901 // If we clobbered the stack pointer, MFI should know about it. 902 assert(DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()); 903 } 904 } 905 } 906 } 907 908 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 909 const TargetLibraryInfo *li) { 910 AA = aa; 911 GFI = gfi; 912 LibInfo = li; 913 DL = &DAG.getDataLayout(); 914 Context = DAG.getContext(); 915 LPadToCallSiteMap.clear(); 916 } 917 918 void SelectionDAGBuilder::clear() { 919 NodeMap.clear(); 920 UnusedArgNodeMap.clear(); 921 PendingLoads.clear(); 922 PendingExports.clear(); 923 CurInst = nullptr; 924 HasTailCall = false; 925 SDNodeOrder = LowestSDNodeOrder; 926 StatepointLowering.clear(); 927 } 928 929 void SelectionDAGBuilder::clearDanglingDebugInfo() { 930 DanglingDebugInfoMap.clear(); 931 } 932 933 SDValue SelectionDAGBuilder::getRoot() { 934 if (PendingLoads.empty()) 935 return DAG.getRoot(); 936 937 if (PendingLoads.size() == 1) { 938 SDValue Root = PendingLoads[0]; 939 DAG.setRoot(Root); 940 PendingLoads.clear(); 941 return Root; 942 } 943 944 // Otherwise, we have to make a token factor node. 945 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 946 PendingLoads); 947 PendingLoads.clear(); 948 DAG.setRoot(Root); 949 return Root; 950 } 951 952 SDValue SelectionDAGBuilder::getControlRoot() { 953 SDValue Root = DAG.getRoot(); 954 955 if (PendingExports.empty()) 956 return Root; 957 958 // Turn all of the CopyToReg chains into one factored node. 959 if (Root.getOpcode() != ISD::EntryToken) { 960 unsigned i = 0, e = PendingExports.size(); 961 for (; i != e; ++i) { 962 assert(PendingExports[i].getNode()->getNumOperands() > 1); 963 if (PendingExports[i].getNode()->getOperand(0) == Root) 964 break; // Don't add the root if we already indirectly depend on it. 965 } 966 967 if (i == e) 968 PendingExports.push_back(Root); 969 } 970 971 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 972 PendingExports); 973 PendingExports.clear(); 974 DAG.setRoot(Root); 975 return Root; 976 } 977 978 void SelectionDAGBuilder::visit(const Instruction &I) { 979 // Set up outgoing PHI node register values before emitting the terminator. 980 if (isa<TerminatorInst>(&I)) { 981 HandlePHINodesInSuccessorBlocks(I.getParent()); 982 } 983 984 // Increase the SDNodeOrder if dealing with a non-debug instruction. 985 if (!isa<DbgInfoIntrinsic>(I)) 986 ++SDNodeOrder; 987 988 CurInst = &I; 989 990 visit(I.getOpcode(), I); 991 992 if (!isa<TerminatorInst>(&I) && !HasTailCall && 993 !isStatepoint(&I)) // statepoints handle their exports internally 994 CopyToExportRegsIfNeeded(&I); 995 996 CurInst = nullptr; 997 } 998 999 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1000 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1001 } 1002 1003 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1004 // Note: this doesn't use InstVisitor, because it has to work with 1005 // ConstantExpr's in addition to instructions. 1006 switch (Opcode) { 1007 default: llvm_unreachable("Unknown instruction type encountered!"); 1008 // Build the switch statement using the Instruction.def file. 1009 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1010 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1011 #include "llvm/IR/Instruction.def" 1012 } 1013 } 1014 1015 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1016 // generate the debug data structures now that we've seen its definition. 1017 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1018 SDValue Val) { 1019 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 1020 if (DDI.getDI()) { 1021 const DbgValueInst *DI = DDI.getDI(); 1022 DebugLoc dl = DDI.getdl(); 1023 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1024 DILocalVariable *Variable = DI->getVariable(); 1025 DIExpression *Expr = DI->getExpression(); 1026 assert(Variable->isValidLocationForIntrinsic(dl) && 1027 "Expected inlined-at fields to agree"); 1028 SDDbgValue *SDV; 1029 if (Val.getNode()) { 1030 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1031 SDV = getDbgValue(Val, Variable, Expr, dl, DbgSDNodeOrder); 1032 DAG.AddDbgValue(SDV, Val.getNode(), false); 1033 } 1034 } else 1035 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1036 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1037 } 1038 } 1039 1040 /// getCopyFromRegs - If there was virtual register allocated for the value V 1041 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1042 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1043 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1044 SDValue Result; 1045 1046 if (It != FuncInfo.ValueMap.end()) { 1047 unsigned InReg = It->second; 1048 1049 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1050 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1051 SDValue Chain = DAG.getEntryNode(); 1052 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1053 V); 1054 resolveDanglingDebugInfo(V, Result); 1055 } 1056 1057 return Result; 1058 } 1059 1060 /// getValue - Return an SDValue for the given Value. 1061 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1062 // If we already have an SDValue for this value, use it. It's important 1063 // to do this first, so that we don't create a CopyFromReg if we already 1064 // have a regular SDValue. 1065 SDValue &N = NodeMap[V]; 1066 if (N.getNode()) return N; 1067 1068 // If there's a virtual register allocated and initialized for this 1069 // value, use it. 1070 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1071 return copyFromReg; 1072 1073 // Otherwise create a new SDValue and remember it. 1074 SDValue Val = getValueImpl(V); 1075 NodeMap[V] = Val; 1076 resolveDanglingDebugInfo(V, Val); 1077 return Val; 1078 } 1079 1080 // Return true if SDValue exists for the given Value 1081 bool SelectionDAGBuilder::findValue(const Value *V) const { 1082 return (NodeMap.find(V) != NodeMap.end()) || 1083 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1084 } 1085 1086 /// getNonRegisterValue - Return an SDValue for the given Value, but 1087 /// don't look in FuncInfo.ValueMap for a virtual register. 1088 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1089 // If we already have an SDValue for this value, use it. 1090 SDValue &N = NodeMap[V]; 1091 if (N.getNode()) { 1092 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1093 // Remove the debug location from the node as the node is about to be used 1094 // in a location which may differ from the original debug location. This 1095 // is relevant to Constant and ConstantFP nodes because they can appear 1096 // as constant expressions inside PHI nodes. 1097 N->setDebugLoc(DebugLoc()); 1098 } 1099 return N; 1100 } 1101 1102 // Otherwise create a new SDValue and remember it. 1103 SDValue Val = getValueImpl(V); 1104 NodeMap[V] = Val; 1105 resolveDanglingDebugInfo(V, Val); 1106 return Val; 1107 } 1108 1109 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1110 /// Create an SDValue for the given value. 1111 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1112 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1113 1114 if (const Constant *C = dyn_cast<Constant>(V)) { 1115 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1116 1117 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1118 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1119 1120 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1121 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1122 1123 if (isa<ConstantPointerNull>(C)) { 1124 unsigned AS = V->getType()->getPointerAddressSpace(); 1125 return DAG.getConstant(0, getCurSDLoc(), 1126 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1127 } 1128 1129 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1130 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1131 1132 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1133 return DAG.getUNDEF(VT); 1134 1135 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1136 visit(CE->getOpcode(), *CE); 1137 SDValue N1 = NodeMap[V]; 1138 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1139 return N1; 1140 } 1141 1142 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1143 SmallVector<SDValue, 4> Constants; 1144 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1145 OI != OE; ++OI) { 1146 SDNode *Val = getValue(*OI).getNode(); 1147 // If the operand is an empty aggregate, there are no values. 1148 if (!Val) continue; 1149 // Add each leaf value from the operand to the Constants list 1150 // to form a flattened list of all the values. 1151 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1152 Constants.push_back(SDValue(Val, i)); 1153 } 1154 1155 return DAG.getMergeValues(Constants, getCurSDLoc()); 1156 } 1157 1158 if (const ConstantDataSequential *CDS = 1159 dyn_cast<ConstantDataSequential>(C)) { 1160 SmallVector<SDValue, 4> Ops; 1161 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1162 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1163 // Add each leaf value from the operand to the Constants list 1164 // to form a flattened list of all the values. 1165 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1166 Ops.push_back(SDValue(Val, i)); 1167 } 1168 1169 if (isa<ArrayType>(CDS->getType())) 1170 return DAG.getMergeValues(Ops, getCurSDLoc()); 1171 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1172 } 1173 1174 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1175 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1176 "Unknown struct or array constant!"); 1177 1178 SmallVector<EVT, 4> ValueVTs; 1179 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1180 unsigned NumElts = ValueVTs.size(); 1181 if (NumElts == 0) 1182 return SDValue(); // empty struct 1183 SmallVector<SDValue, 4> Constants(NumElts); 1184 for (unsigned i = 0; i != NumElts; ++i) { 1185 EVT EltVT = ValueVTs[i]; 1186 if (isa<UndefValue>(C)) 1187 Constants[i] = DAG.getUNDEF(EltVT); 1188 else if (EltVT.isFloatingPoint()) 1189 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1190 else 1191 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1192 } 1193 1194 return DAG.getMergeValues(Constants, getCurSDLoc()); 1195 } 1196 1197 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1198 return DAG.getBlockAddress(BA, VT); 1199 1200 VectorType *VecTy = cast<VectorType>(V->getType()); 1201 unsigned NumElements = VecTy->getNumElements(); 1202 1203 // Now that we know the number and type of the elements, get that number of 1204 // elements into the Ops array based on what kind of constant it is. 1205 SmallVector<SDValue, 16> Ops; 1206 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1207 for (unsigned i = 0; i != NumElements; ++i) 1208 Ops.push_back(getValue(CV->getOperand(i))); 1209 } else { 1210 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1211 EVT EltVT = 1212 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1213 1214 SDValue Op; 1215 if (EltVT.isFloatingPoint()) 1216 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1217 else 1218 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1219 Ops.assign(NumElements, Op); 1220 } 1221 1222 // Create a BUILD_VECTOR node. 1223 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1224 } 1225 1226 // If this is a static alloca, generate it as the frameindex instead of 1227 // computation. 1228 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1229 DenseMap<const AllocaInst*, int>::iterator SI = 1230 FuncInfo.StaticAllocaMap.find(AI); 1231 if (SI != FuncInfo.StaticAllocaMap.end()) 1232 return DAG.getFrameIndex(SI->second, 1233 TLI.getFrameIndexTy(DAG.getDataLayout())); 1234 } 1235 1236 // If this is an instruction which fast-isel has deferred, select it now. 1237 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1238 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1239 1240 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1241 Inst->getType(), isABIRegCopy(V)); 1242 SDValue Chain = DAG.getEntryNode(); 1243 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1244 } 1245 1246 llvm_unreachable("Can't get register for value!"); 1247 } 1248 1249 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1250 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1251 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1252 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1253 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1254 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1255 if (IsMSVCCXX || IsCoreCLR) 1256 CatchPadMBB->setIsEHFuncletEntry(); 1257 1258 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1259 } 1260 1261 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1262 // Update machine-CFG edge. 1263 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1264 FuncInfo.MBB->addSuccessor(TargetMBB); 1265 1266 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1267 bool IsSEH = isAsynchronousEHPersonality(Pers); 1268 if (IsSEH) { 1269 // If this is not a fall-through branch or optimizations are switched off, 1270 // emit the branch. 1271 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1272 TM.getOptLevel() == CodeGenOpt::None) 1273 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1274 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1275 return; 1276 } 1277 1278 // Figure out the funclet membership for the catchret's successor. 1279 // This will be used by the FuncletLayout pass to determine how to order the 1280 // BB's. 1281 // A 'catchret' returns to the outer scope's color. 1282 Value *ParentPad = I.getCatchSwitchParentPad(); 1283 const BasicBlock *SuccessorColor; 1284 if (isa<ConstantTokenNone>(ParentPad)) 1285 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1286 else 1287 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1288 assert(SuccessorColor && "No parent funclet for catchret!"); 1289 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1290 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1291 1292 // Create the terminator node. 1293 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1294 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1295 DAG.getBasicBlock(SuccessorColorMBB)); 1296 DAG.setRoot(Ret); 1297 } 1298 1299 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1300 // Don't emit any special code for the cleanuppad instruction. It just marks 1301 // the start of a funclet. 1302 FuncInfo.MBB->setIsEHFuncletEntry(); 1303 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1304 } 1305 1306 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1307 /// many places it could ultimately go. In the IR, we have a single unwind 1308 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1309 /// This function skips over imaginary basic blocks that hold catchswitch 1310 /// instructions, and finds all the "real" machine 1311 /// basic block destinations. As those destinations may not be successors of 1312 /// EHPadBB, here we also calculate the edge probability to those destinations. 1313 /// The passed-in Prob is the edge probability to EHPadBB. 1314 static void findUnwindDestinations( 1315 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1316 BranchProbability Prob, 1317 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1318 &UnwindDests) { 1319 EHPersonality Personality = 1320 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1321 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1322 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1323 1324 while (EHPadBB) { 1325 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1326 BasicBlock *NewEHPadBB = nullptr; 1327 if (isa<LandingPadInst>(Pad)) { 1328 // Stop on landingpads. They are not funclets. 1329 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1330 break; 1331 } else if (isa<CleanupPadInst>(Pad)) { 1332 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1333 // personalities. 1334 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1335 UnwindDests.back().first->setIsEHFuncletEntry(); 1336 break; 1337 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1338 // Add the catchpad handlers to the possible destinations. 1339 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1340 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1341 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1342 if (IsMSVCCXX || IsCoreCLR) 1343 UnwindDests.back().first->setIsEHFuncletEntry(); 1344 } 1345 NewEHPadBB = CatchSwitch->getUnwindDest(); 1346 } else { 1347 continue; 1348 } 1349 1350 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1351 if (BPI && NewEHPadBB) 1352 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1353 EHPadBB = NewEHPadBB; 1354 } 1355 } 1356 1357 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1358 // Update successor info. 1359 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1360 auto UnwindDest = I.getUnwindDest(); 1361 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1362 BranchProbability UnwindDestProb = 1363 (BPI && UnwindDest) 1364 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1365 : BranchProbability::getZero(); 1366 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1367 for (auto &UnwindDest : UnwindDests) { 1368 UnwindDest.first->setIsEHPad(); 1369 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1370 } 1371 FuncInfo.MBB->normalizeSuccProbs(); 1372 1373 // Create the terminator node. 1374 SDValue Ret = 1375 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1376 DAG.setRoot(Ret); 1377 } 1378 1379 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1380 report_fatal_error("visitCatchSwitch not yet implemented!"); 1381 } 1382 1383 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1384 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1385 auto &DL = DAG.getDataLayout(); 1386 SDValue Chain = getControlRoot(); 1387 SmallVector<ISD::OutputArg, 8> Outs; 1388 SmallVector<SDValue, 8> OutVals; 1389 1390 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1391 // lower 1392 // 1393 // %val = call <ty> @llvm.experimental.deoptimize() 1394 // ret <ty> %val 1395 // 1396 // differently. 1397 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1398 LowerDeoptimizingReturn(); 1399 return; 1400 } 1401 1402 if (!FuncInfo.CanLowerReturn) { 1403 unsigned DemoteReg = FuncInfo.DemoteRegister; 1404 const Function *F = I.getParent()->getParent(); 1405 1406 // Emit a store of the return value through the virtual register. 1407 // Leave Outs empty so that LowerReturn won't try to load return 1408 // registers the usual way. 1409 SmallVector<EVT, 1> PtrValueVTs; 1410 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1411 PtrValueVTs); 1412 1413 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1414 DemoteReg, PtrValueVTs[0]); 1415 SDValue RetOp = getValue(I.getOperand(0)); 1416 1417 SmallVector<EVT, 4> ValueVTs; 1418 SmallVector<uint64_t, 4> Offsets; 1419 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1420 unsigned NumValues = ValueVTs.size(); 1421 1422 // An aggregate return value cannot wrap around the address space, so 1423 // offsets to its parts don't wrap either. 1424 SDNodeFlags Flags; 1425 Flags.setNoUnsignedWrap(true); 1426 1427 SmallVector<SDValue, 4> Chains(NumValues); 1428 for (unsigned i = 0; i != NumValues; ++i) { 1429 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1430 RetPtr.getValueType(), RetPtr, 1431 DAG.getIntPtrConstant(Offsets[i], 1432 getCurSDLoc()), 1433 Flags); 1434 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), 1435 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1436 // FIXME: better loc info would be nice. 1437 Add, MachinePointerInfo()); 1438 } 1439 1440 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1441 MVT::Other, Chains); 1442 } else if (I.getNumOperands() != 0) { 1443 SmallVector<EVT, 4> ValueVTs; 1444 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1445 unsigned NumValues = ValueVTs.size(); 1446 if (NumValues) { 1447 SDValue RetOp = getValue(I.getOperand(0)); 1448 1449 const Function *F = I.getParent()->getParent(); 1450 1451 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1452 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1453 Attribute::SExt)) 1454 ExtendKind = ISD::SIGN_EXTEND; 1455 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1456 Attribute::ZExt)) 1457 ExtendKind = ISD::ZERO_EXTEND; 1458 1459 LLVMContext &Context = F->getContext(); 1460 bool RetInReg = F->getAttributes().hasAttribute( 1461 AttributeList::ReturnIndex, Attribute::InReg); 1462 1463 for (unsigned j = 0; j != NumValues; ++j) { 1464 EVT VT = ValueVTs[j]; 1465 1466 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1467 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1468 1469 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1470 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1471 SmallVector<SDValue, 4> Parts(NumParts); 1472 getCopyToParts(DAG, getCurSDLoc(), 1473 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1474 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1475 1476 // 'inreg' on function refers to return value 1477 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1478 if (RetInReg) 1479 Flags.setInReg(); 1480 1481 // Propagate extension type if any 1482 if (ExtendKind == ISD::SIGN_EXTEND) 1483 Flags.setSExt(); 1484 else if (ExtendKind == ISD::ZERO_EXTEND) 1485 Flags.setZExt(); 1486 1487 for (unsigned i = 0; i < NumParts; ++i) { 1488 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1489 VT, /*isfixed=*/true, 0, 0)); 1490 OutVals.push_back(Parts[i]); 1491 } 1492 } 1493 } 1494 } 1495 1496 // Push in swifterror virtual register as the last element of Outs. This makes 1497 // sure swifterror virtual register will be returned in the swifterror 1498 // physical register. 1499 const Function *F = I.getParent()->getParent(); 1500 if (TLI.supportSwiftError() && 1501 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1502 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1503 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1504 Flags.setSwiftError(); 1505 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1506 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1507 true /*isfixed*/, 1 /*origidx*/, 1508 0 /*partOffs*/)); 1509 // Create SDNode for the swifterror virtual register. 1510 OutVals.push_back( 1511 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1512 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1513 EVT(TLI.getPointerTy(DL)))); 1514 } 1515 1516 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1517 CallingConv::ID CallConv = 1518 DAG.getMachineFunction().getFunction()->getCallingConv(); 1519 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1520 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1521 1522 // Verify that the target's LowerReturn behaved as expected. 1523 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1524 "LowerReturn didn't return a valid chain!"); 1525 1526 // Update the DAG with the new chain value resulting from return lowering. 1527 DAG.setRoot(Chain); 1528 } 1529 1530 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1531 /// created for it, emit nodes to copy the value into the virtual 1532 /// registers. 1533 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1534 // Skip empty types 1535 if (V->getType()->isEmptyTy()) 1536 return; 1537 1538 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1539 if (VMI != FuncInfo.ValueMap.end()) { 1540 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1541 CopyValueToVirtualRegister(V, VMI->second); 1542 } 1543 } 1544 1545 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1546 /// the current basic block, add it to ValueMap now so that we'll get a 1547 /// CopyTo/FromReg. 1548 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1549 // No need to export constants. 1550 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1551 1552 // Already exported? 1553 if (FuncInfo.isExportedInst(V)) return; 1554 1555 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1556 CopyValueToVirtualRegister(V, Reg); 1557 } 1558 1559 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1560 const BasicBlock *FromBB) { 1561 // The operands of the setcc have to be in this block. We don't know 1562 // how to export them from some other block. 1563 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1564 // Can export from current BB. 1565 if (VI->getParent() == FromBB) 1566 return true; 1567 1568 // Is already exported, noop. 1569 return FuncInfo.isExportedInst(V); 1570 } 1571 1572 // If this is an argument, we can export it if the BB is the entry block or 1573 // if it is already exported. 1574 if (isa<Argument>(V)) { 1575 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1576 return true; 1577 1578 // Otherwise, can only export this if it is already exported. 1579 return FuncInfo.isExportedInst(V); 1580 } 1581 1582 // Otherwise, constants can always be exported. 1583 return true; 1584 } 1585 1586 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1587 BranchProbability 1588 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1589 const MachineBasicBlock *Dst) const { 1590 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1591 const BasicBlock *SrcBB = Src->getBasicBlock(); 1592 const BasicBlock *DstBB = Dst->getBasicBlock(); 1593 if (!BPI) { 1594 // If BPI is not available, set the default probability as 1 / N, where N is 1595 // the number of successors. 1596 auto SuccSize = std::max<uint32_t>( 1597 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1598 return BranchProbability(1, SuccSize); 1599 } 1600 return BPI->getEdgeProbability(SrcBB, DstBB); 1601 } 1602 1603 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1604 MachineBasicBlock *Dst, 1605 BranchProbability Prob) { 1606 if (!FuncInfo.BPI) 1607 Src->addSuccessorWithoutProb(Dst); 1608 else { 1609 if (Prob.isUnknown()) 1610 Prob = getEdgeProbability(Src, Dst); 1611 Src->addSuccessor(Dst, Prob); 1612 } 1613 } 1614 1615 static bool InBlock(const Value *V, const BasicBlock *BB) { 1616 if (const Instruction *I = dyn_cast<Instruction>(V)) 1617 return I->getParent() == BB; 1618 return true; 1619 } 1620 1621 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1622 /// This function emits a branch and is used at the leaves of an OR or an 1623 /// AND operator tree. 1624 /// 1625 void 1626 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1627 MachineBasicBlock *TBB, 1628 MachineBasicBlock *FBB, 1629 MachineBasicBlock *CurBB, 1630 MachineBasicBlock *SwitchBB, 1631 BranchProbability TProb, 1632 BranchProbability FProb, 1633 bool InvertCond) { 1634 const BasicBlock *BB = CurBB->getBasicBlock(); 1635 1636 // If the leaf of the tree is a comparison, merge the condition into 1637 // the caseblock. 1638 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1639 // The operands of the cmp have to be in this block. We don't know 1640 // how to export them from some other block. If this is the first block 1641 // of the sequence, no exporting is needed. 1642 if (CurBB == SwitchBB || 1643 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1644 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1645 ISD::CondCode Condition; 1646 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1647 ICmpInst::Predicate Pred = 1648 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1649 Condition = getICmpCondCode(Pred); 1650 } else { 1651 const FCmpInst *FC = cast<FCmpInst>(Cond); 1652 FCmpInst::Predicate Pred = 1653 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1654 Condition = getFCmpCondCode(Pred); 1655 if (TM.Options.NoNaNsFPMath) 1656 Condition = getFCmpCodeWithoutNaN(Condition); 1657 } 1658 1659 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1660 TBB, FBB, CurBB, TProb, FProb); 1661 SwitchCases.push_back(CB); 1662 return; 1663 } 1664 } 1665 1666 // Create a CaseBlock record representing this branch. 1667 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1668 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1669 nullptr, TBB, FBB, CurBB, TProb, FProb); 1670 SwitchCases.push_back(CB); 1671 } 1672 1673 /// FindMergedConditions - If Cond is an expression like 1674 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1675 MachineBasicBlock *TBB, 1676 MachineBasicBlock *FBB, 1677 MachineBasicBlock *CurBB, 1678 MachineBasicBlock *SwitchBB, 1679 Instruction::BinaryOps Opc, 1680 BranchProbability TProb, 1681 BranchProbability FProb, 1682 bool InvertCond) { 1683 // Skip over not part of the tree and remember to invert op and operands at 1684 // next level. 1685 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1686 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1687 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1688 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1689 !InvertCond); 1690 return; 1691 } 1692 } 1693 1694 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1695 // Compute the effective opcode for Cond, taking into account whether it needs 1696 // to be inverted, e.g. 1697 // and (not (or A, B)), C 1698 // gets lowered as 1699 // and (and (not A, not B), C) 1700 unsigned BOpc = 0; 1701 if (BOp) { 1702 BOpc = BOp->getOpcode(); 1703 if (InvertCond) { 1704 if (BOpc == Instruction::And) 1705 BOpc = Instruction::Or; 1706 else if (BOpc == Instruction::Or) 1707 BOpc = Instruction::And; 1708 } 1709 } 1710 1711 // If this node is not part of the or/and tree, emit it as a branch. 1712 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1713 BOpc != Opc || !BOp->hasOneUse() || 1714 BOp->getParent() != CurBB->getBasicBlock() || 1715 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1716 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1717 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1718 TProb, FProb, InvertCond); 1719 return; 1720 } 1721 1722 // Create TmpBB after CurBB. 1723 MachineFunction::iterator BBI(CurBB); 1724 MachineFunction &MF = DAG.getMachineFunction(); 1725 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1726 CurBB->getParent()->insert(++BBI, TmpBB); 1727 1728 if (Opc == Instruction::Or) { 1729 // Codegen X | Y as: 1730 // BB1: 1731 // jmp_if_X TBB 1732 // jmp TmpBB 1733 // TmpBB: 1734 // jmp_if_Y TBB 1735 // jmp FBB 1736 // 1737 1738 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1739 // The requirement is that 1740 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1741 // = TrueProb for original BB. 1742 // Assuming the original probabilities are A and B, one choice is to set 1743 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1744 // A/(1+B) and 2B/(1+B). This choice assumes that 1745 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1746 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1747 // TmpBB, but the math is more complicated. 1748 1749 auto NewTrueProb = TProb / 2; 1750 auto NewFalseProb = TProb / 2 + FProb; 1751 // Emit the LHS condition. 1752 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1753 NewTrueProb, NewFalseProb, InvertCond); 1754 1755 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1756 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1757 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1758 // Emit the RHS condition into TmpBB. 1759 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1760 Probs[0], Probs[1], InvertCond); 1761 } else { 1762 assert(Opc == Instruction::And && "Unknown merge op!"); 1763 // Codegen X & Y as: 1764 // BB1: 1765 // jmp_if_X TmpBB 1766 // jmp FBB 1767 // TmpBB: 1768 // jmp_if_Y TBB 1769 // jmp FBB 1770 // 1771 // This requires creation of TmpBB after CurBB. 1772 1773 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1774 // The requirement is that 1775 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1776 // = FalseProb for original BB. 1777 // Assuming the original probabilities are A and B, one choice is to set 1778 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1779 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1780 // TrueProb for BB1 * FalseProb for TmpBB. 1781 1782 auto NewTrueProb = TProb + FProb / 2; 1783 auto NewFalseProb = FProb / 2; 1784 // Emit the LHS condition. 1785 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1786 NewTrueProb, NewFalseProb, InvertCond); 1787 1788 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1789 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1790 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1791 // Emit the RHS condition into TmpBB. 1792 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1793 Probs[0], Probs[1], InvertCond); 1794 } 1795 } 1796 1797 /// If the set of cases should be emitted as a series of branches, return true. 1798 /// If we should emit this as a bunch of and/or'd together conditions, return 1799 /// false. 1800 bool 1801 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1802 if (Cases.size() != 2) return true; 1803 1804 // If this is two comparisons of the same values or'd or and'd together, they 1805 // will get folded into a single comparison, so don't emit two blocks. 1806 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1807 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1808 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1809 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1810 return false; 1811 } 1812 1813 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1814 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1815 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1816 Cases[0].CC == Cases[1].CC && 1817 isa<Constant>(Cases[0].CmpRHS) && 1818 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1819 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1820 return false; 1821 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1822 return false; 1823 } 1824 1825 return true; 1826 } 1827 1828 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1829 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1830 1831 // Update machine-CFG edges. 1832 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1833 1834 if (I.isUnconditional()) { 1835 // Update machine-CFG edges. 1836 BrMBB->addSuccessor(Succ0MBB); 1837 1838 // If this is not a fall-through branch or optimizations are switched off, 1839 // emit the branch. 1840 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1841 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1842 MVT::Other, getControlRoot(), 1843 DAG.getBasicBlock(Succ0MBB))); 1844 1845 return; 1846 } 1847 1848 // If this condition is one of the special cases we handle, do special stuff 1849 // now. 1850 const Value *CondVal = I.getCondition(); 1851 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1852 1853 // If this is a series of conditions that are or'd or and'd together, emit 1854 // this as a sequence of branches instead of setcc's with and/or operations. 1855 // As long as jumps are not expensive, this should improve performance. 1856 // For example, instead of something like: 1857 // cmp A, B 1858 // C = seteq 1859 // cmp D, E 1860 // F = setle 1861 // or C, F 1862 // jnz foo 1863 // Emit: 1864 // cmp A, B 1865 // je foo 1866 // cmp D, E 1867 // jle foo 1868 // 1869 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1870 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1871 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1872 !I.getMetadata(LLVMContext::MD_unpredictable) && 1873 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1874 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1875 Opcode, 1876 getEdgeProbability(BrMBB, Succ0MBB), 1877 getEdgeProbability(BrMBB, Succ1MBB), 1878 /*InvertCond=*/false); 1879 // If the compares in later blocks need to use values not currently 1880 // exported from this block, export them now. This block should always 1881 // be the first entry. 1882 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1883 1884 // Allow some cases to be rejected. 1885 if (ShouldEmitAsBranches(SwitchCases)) { 1886 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1887 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1888 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1889 } 1890 1891 // Emit the branch for this block. 1892 visitSwitchCase(SwitchCases[0], BrMBB); 1893 SwitchCases.erase(SwitchCases.begin()); 1894 return; 1895 } 1896 1897 // Okay, we decided not to do this, remove any inserted MBB's and clear 1898 // SwitchCases. 1899 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1900 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1901 1902 SwitchCases.clear(); 1903 } 1904 } 1905 1906 // Create a CaseBlock record representing this branch. 1907 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1908 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1909 1910 // Use visitSwitchCase to actually insert the fast branch sequence for this 1911 // cond branch. 1912 visitSwitchCase(CB, BrMBB); 1913 } 1914 1915 /// visitSwitchCase - Emits the necessary code to represent a single node in 1916 /// the binary search tree resulting from lowering a switch instruction. 1917 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1918 MachineBasicBlock *SwitchBB) { 1919 SDValue Cond; 1920 SDValue CondLHS = getValue(CB.CmpLHS); 1921 SDLoc dl = getCurSDLoc(); 1922 1923 // Build the setcc now. 1924 if (!CB.CmpMHS) { 1925 // Fold "(X == true)" to X and "(X == false)" to !X to 1926 // handle common cases produced by branch lowering. 1927 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1928 CB.CC == ISD::SETEQ) 1929 Cond = CondLHS; 1930 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1931 CB.CC == ISD::SETEQ) { 1932 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1933 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1934 } else 1935 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1936 } else { 1937 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1938 1939 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1940 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1941 1942 SDValue CmpOp = getValue(CB.CmpMHS); 1943 EVT VT = CmpOp.getValueType(); 1944 1945 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1946 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1947 ISD::SETLE); 1948 } else { 1949 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1950 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1951 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1952 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1953 } 1954 } 1955 1956 // Update successor info 1957 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1958 // TrueBB and FalseBB are always different unless the incoming IR is 1959 // degenerate. This only happens when running llc on weird IR. 1960 if (CB.TrueBB != CB.FalseBB) 1961 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1962 SwitchBB->normalizeSuccProbs(); 1963 1964 // If the lhs block is the next block, invert the condition so that we can 1965 // fall through to the lhs instead of the rhs block. 1966 if (CB.TrueBB == NextBlock(SwitchBB)) { 1967 std::swap(CB.TrueBB, CB.FalseBB); 1968 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1969 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1970 } 1971 1972 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1973 MVT::Other, getControlRoot(), Cond, 1974 DAG.getBasicBlock(CB.TrueBB)); 1975 1976 // Insert the false branch. Do this even if it's a fall through branch, 1977 // this makes it easier to do DAG optimizations which require inverting 1978 // the branch condition. 1979 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1980 DAG.getBasicBlock(CB.FalseBB)); 1981 1982 DAG.setRoot(BrCond); 1983 } 1984 1985 /// visitJumpTable - Emit JumpTable node in the current MBB 1986 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1987 // Emit the code for the jump table 1988 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1989 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1990 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1991 JT.Reg, PTy); 1992 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1993 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1994 MVT::Other, Index.getValue(1), 1995 Table, Index); 1996 DAG.setRoot(BrJumpTable); 1997 } 1998 1999 /// visitJumpTableHeader - This function emits necessary code to produce index 2000 /// in the JumpTable from switch case. 2001 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2002 JumpTableHeader &JTH, 2003 MachineBasicBlock *SwitchBB) { 2004 SDLoc dl = getCurSDLoc(); 2005 2006 // Subtract the lowest switch case value from the value being switched on and 2007 // conditional branch to default mbb if the result is greater than the 2008 // difference between smallest and largest cases. 2009 SDValue SwitchOp = getValue(JTH.SValue); 2010 EVT VT = SwitchOp.getValueType(); 2011 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2012 DAG.getConstant(JTH.First, dl, VT)); 2013 2014 // The SDNode we just created, which holds the value being switched on minus 2015 // the smallest case value, needs to be copied to a virtual register so it 2016 // can be used as an index into the jump table in a subsequent basic block. 2017 // This value may be smaller or larger than the target's pointer type, and 2018 // therefore require extension or truncating. 2019 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2020 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2021 2022 unsigned JumpTableReg = 2023 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2024 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2025 JumpTableReg, SwitchOp); 2026 JT.Reg = JumpTableReg; 2027 2028 // Emit the range check for the jump table, and branch to the default block 2029 // for the switch statement if the value being switched on exceeds the largest 2030 // case in the switch. 2031 SDValue CMP = DAG.getSetCC( 2032 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2033 Sub.getValueType()), 2034 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2035 2036 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2037 MVT::Other, CopyTo, CMP, 2038 DAG.getBasicBlock(JT.Default)); 2039 2040 // Avoid emitting unnecessary branches to the next block. 2041 if (JT.MBB != NextBlock(SwitchBB)) 2042 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2043 DAG.getBasicBlock(JT.MBB)); 2044 2045 DAG.setRoot(BrCond); 2046 } 2047 2048 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2049 /// variable if there exists one. 2050 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2051 SDValue &Chain) { 2052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2053 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2054 MachineFunction &MF = DAG.getMachineFunction(); 2055 Value *Global = TLI.getSDagStackGuard(*MF.getFunction()->getParent()); 2056 MachineSDNode *Node = 2057 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2058 if (Global) { 2059 MachinePointerInfo MPInfo(Global); 2060 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2061 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2062 MachineMemOperand::MODereferenceable; 2063 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2064 DAG.getEVTAlignment(PtrTy)); 2065 Node->setMemRefs(MemRefs, MemRefs + 1); 2066 } 2067 return SDValue(Node, 0); 2068 } 2069 2070 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2071 /// tail spliced into a stack protector check success bb. 2072 /// 2073 /// For a high level explanation of how this fits into the stack protector 2074 /// generation see the comment on the declaration of class 2075 /// StackProtectorDescriptor. 2076 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2077 MachineBasicBlock *ParentBB) { 2078 2079 // First create the loads to the guard/stack slot for the comparison. 2080 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2081 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2082 2083 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2084 int FI = MFI.getStackProtectorIndex(); 2085 2086 SDValue Guard; 2087 SDLoc dl = getCurSDLoc(); 2088 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2089 const Module &M = *ParentBB->getParent()->getFunction()->getParent(); 2090 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2091 2092 // Generate code to load the content of the guard slot. 2093 SDValue StackSlot = DAG.getLoad( 2094 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2095 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2096 MachineMemOperand::MOVolatile); 2097 2098 // Retrieve guard check function, nullptr if instrumentation is inlined. 2099 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2100 // The target provides a guard check function to validate the guard value. 2101 // Generate a call to that function with the content of the guard slot as 2102 // argument. 2103 auto *Fn = cast<Function>(GuardCheck); 2104 FunctionType *FnTy = Fn->getFunctionType(); 2105 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2106 2107 TargetLowering::ArgListTy Args; 2108 TargetLowering::ArgListEntry Entry; 2109 Entry.Node = StackSlot; 2110 Entry.Ty = FnTy->getParamType(0); 2111 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2112 Entry.IsInReg = true; 2113 Args.push_back(Entry); 2114 2115 TargetLowering::CallLoweringInfo CLI(DAG); 2116 CLI.setDebugLoc(getCurSDLoc()) 2117 .setChain(DAG.getEntryNode()) 2118 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2119 getValue(GuardCheck), std::move(Args)); 2120 2121 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2122 DAG.setRoot(Result.second); 2123 return; 2124 } 2125 2126 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2127 // Otherwise, emit a volatile load to retrieve the stack guard value. 2128 SDValue Chain = DAG.getEntryNode(); 2129 if (TLI.useLoadStackGuardNode()) { 2130 Guard = getLoadStackGuard(DAG, dl, Chain); 2131 } else { 2132 const Value *IRGuard = TLI.getSDagStackGuard(M); 2133 SDValue GuardPtr = getValue(IRGuard); 2134 2135 Guard = 2136 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2137 Align, MachineMemOperand::MOVolatile); 2138 } 2139 2140 // Perform the comparison via a subtract/getsetcc. 2141 EVT VT = Guard.getValueType(); 2142 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 2143 2144 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2145 *DAG.getContext(), 2146 Sub.getValueType()), 2147 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2148 2149 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2150 // branch to failure MBB. 2151 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2152 MVT::Other, StackSlot.getOperand(0), 2153 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2154 // Otherwise branch to success MBB. 2155 SDValue Br = DAG.getNode(ISD::BR, dl, 2156 MVT::Other, BrCond, 2157 DAG.getBasicBlock(SPD.getSuccessMBB())); 2158 2159 DAG.setRoot(Br); 2160 } 2161 2162 /// Codegen the failure basic block for a stack protector check. 2163 /// 2164 /// A failure stack protector machine basic block consists simply of a call to 2165 /// __stack_chk_fail(). 2166 /// 2167 /// For a high level explanation of how this fits into the stack protector 2168 /// generation see the comment on the declaration of class 2169 /// StackProtectorDescriptor. 2170 void 2171 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2172 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2173 SDValue Chain = 2174 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2175 None, false, getCurSDLoc(), false, false).second; 2176 DAG.setRoot(Chain); 2177 } 2178 2179 /// visitBitTestHeader - This function emits necessary code to produce value 2180 /// suitable for "bit tests" 2181 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2182 MachineBasicBlock *SwitchBB) { 2183 SDLoc dl = getCurSDLoc(); 2184 2185 // Subtract the minimum value 2186 SDValue SwitchOp = getValue(B.SValue); 2187 EVT VT = SwitchOp.getValueType(); 2188 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2189 DAG.getConstant(B.First, dl, VT)); 2190 2191 // Check range 2192 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2193 SDValue RangeCmp = DAG.getSetCC( 2194 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2195 Sub.getValueType()), 2196 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2197 2198 // Determine the type of the test operands. 2199 bool UsePtrType = false; 2200 if (!TLI.isTypeLegal(VT)) 2201 UsePtrType = true; 2202 else { 2203 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2204 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2205 // Switch table case range are encoded into series of masks. 2206 // Just use pointer type, it's guaranteed to fit. 2207 UsePtrType = true; 2208 break; 2209 } 2210 } 2211 if (UsePtrType) { 2212 VT = TLI.getPointerTy(DAG.getDataLayout()); 2213 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2214 } 2215 2216 B.RegVT = VT.getSimpleVT(); 2217 B.Reg = FuncInfo.CreateReg(B.RegVT); 2218 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2219 2220 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2221 2222 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2223 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2224 SwitchBB->normalizeSuccProbs(); 2225 2226 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2227 MVT::Other, CopyTo, RangeCmp, 2228 DAG.getBasicBlock(B.Default)); 2229 2230 // Avoid emitting unnecessary branches to the next block. 2231 if (MBB != NextBlock(SwitchBB)) 2232 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2233 DAG.getBasicBlock(MBB)); 2234 2235 DAG.setRoot(BrRange); 2236 } 2237 2238 /// visitBitTestCase - this function produces one "bit test" 2239 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2240 MachineBasicBlock* NextMBB, 2241 BranchProbability BranchProbToNext, 2242 unsigned Reg, 2243 BitTestCase &B, 2244 MachineBasicBlock *SwitchBB) { 2245 SDLoc dl = getCurSDLoc(); 2246 MVT VT = BB.RegVT; 2247 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2248 SDValue Cmp; 2249 unsigned PopCount = countPopulation(B.Mask); 2250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2251 if (PopCount == 1) { 2252 // Testing for a single bit; just compare the shift count with what it 2253 // would need to be to shift a 1 bit in that position. 2254 Cmp = DAG.getSetCC( 2255 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2256 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2257 ISD::SETEQ); 2258 } else if (PopCount == BB.Range) { 2259 // There is only one zero bit in the range, test for it directly. 2260 Cmp = DAG.getSetCC( 2261 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2262 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2263 ISD::SETNE); 2264 } else { 2265 // Make desired shift 2266 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2267 DAG.getConstant(1, dl, VT), ShiftOp); 2268 2269 // Emit bit tests and jumps 2270 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2271 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2272 Cmp = DAG.getSetCC( 2273 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2274 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2275 } 2276 2277 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2278 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2279 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2280 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2281 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2282 // one as they are relative probabilities (and thus work more like weights), 2283 // and hence we need to normalize them to let the sum of them become one. 2284 SwitchBB->normalizeSuccProbs(); 2285 2286 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2287 MVT::Other, getControlRoot(), 2288 Cmp, DAG.getBasicBlock(B.TargetBB)); 2289 2290 // Avoid emitting unnecessary branches to the next block. 2291 if (NextMBB != NextBlock(SwitchBB)) 2292 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2293 DAG.getBasicBlock(NextMBB)); 2294 2295 DAG.setRoot(BrAnd); 2296 } 2297 2298 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2299 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2300 2301 // Retrieve successors. Look through artificial IR level blocks like 2302 // catchswitch for successors. 2303 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2304 const BasicBlock *EHPadBB = I.getSuccessor(1); 2305 2306 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2307 // have to do anything here to lower funclet bundles. 2308 assert(!I.hasOperandBundlesOtherThan( 2309 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2310 "Cannot lower invokes with arbitrary operand bundles yet!"); 2311 2312 const Value *Callee(I.getCalledValue()); 2313 const Function *Fn = dyn_cast<Function>(Callee); 2314 if (isa<InlineAsm>(Callee)) 2315 visitInlineAsm(&I); 2316 else if (Fn && Fn->isIntrinsic()) { 2317 switch (Fn->getIntrinsicID()) { 2318 default: 2319 llvm_unreachable("Cannot invoke this intrinsic"); 2320 case Intrinsic::donothing: 2321 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2322 break; 2323 case Intrinsic::experimental_patchpoint_void: 2324 case Intrinsic::experimental_patchpoint_i64: 2325 visitPatchpoint(&I, EHPadBB); 2326 break; 2327 case Intrinsic::experimental_gc_statepoint: 2328 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2329 break; 2330 } 2331 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2332 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2333 // Eventually we will support lowering the @llvm.experimental.deoptimize 2334 // intrinsic, and right now there are no plans to support other intrinsics 2335 // with deopt state. 2336 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2337 } else { 2338 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2339 } 2340 2341 // If the value of the invoke is used outside of its defining block, make it 2342 // available as a virtual register. 2343 // We already took care of the exported value for the statepoint instruction 2344 // during call to the LowerStatepoint. 2345 if (!isStatepoint(I)) { 2346 CopyToExportRegsIfNeeded(&I); 2347 } 2348 2349 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2350 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2351 BranchProbability EHPadBBProb = 2352 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2353 : BranchProbability::getZero(); 2354 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2355 2356 // Update successor info. 2357 addSuccessorWithProb(InvokeMBB, Return); 2358 for (auto &UnwindDest : UnwindDests) { 2359 UnwindDest.first->setIsEHPad(); 2360 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2361 } 2362 InvokeMBB->normalizeSuccProbs(); 2363 2364 // Drop into normal successor. 2365 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2366 MVT::Other, getControlRoot(), 2367 DAG.getBasicBlock(Return))); 2368 } 2369 2370 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2371 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2372 } 2373 2374 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2375 assert(FuncInfo.MBB->isEHPad() && 2376 "Call to landingpad not in landing pad!"); 2377 2378 MachineBasicBlock *MBB = FuncInfo.MBB; 2379 addLandingPadInfo(LP, *MBB); 2380 2381 // If there aren't registers to copy the values into (e.g., during SjLj 2382 // exceptions), then don't bother to create these DAG nodes. 2383 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2384 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2385 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2386 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2387 return; 2388 2389 // If landingpad's return type is token type, we don't create DAG nodes 2390 // for its exception pointer and selector value. The extraction of exception 2391 // pointer or selector value from token type landingpads is not currently 2392 // supported. 2393 if (LP.getType()->isTokenTy()) 2394 return; 2395 2396 SmallVector<EVT, 2> ValueVTs; 2397 SDLoc dl = getCurSDLoc(); 2398 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2399 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2400 2401 // Get the two live-in registers as SDValues. The physregs have already been 2402 // copied into virtual registers. 2403 SDValue Ops[2]; 2404 if (FuncInfo.ExceptionPointerVirtReg) { 2405 Ops[0] = DAG.getZExtOrTrunc( 2406 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2407 FuncInfo.ExceptionPointerVirtReg, 2408 TLI.getPointerTy(DAG.getDataLayout())), 2409 dl, ValueVTs[0]); 2410 } else { 2411 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2412 } 2413 Ops[1] = DAG.getZExtOrTrunc( 2414 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2415 FuncInfo.ExceptionSelectorVirtReg, 2416 TLI.getPointerTy(DAG.getDataLayout())), 2417 dl, ValueVTs[1]); 2418 2419 // Merge into one. 2420 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2421 DAG.getVTList(ValueVTs), Ops); 2422 setValue(&LP, Res); 2423 } 2424 2425 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2426 #ifndef NDEBUG 2427 for (const CaseCluster &CC : Clusters) 2428 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2429 #endif 2430 2431 std::sort(Clusters.begin(), Clusters.end(), 2432 [](const CaseCluster &a, const CaseCluster &b) { 2433 return a.Low->getValue().slt(b.Low->getValue()); 2434 }); 2435 2436 // Merge adjacent clusters with the same destination. 2437 const unsigned N = Clusters.size(); 2438 unsigned DstIndex = 0; 2439 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2440 CaseCluster &CC = Clusters[SrcIndex]; 2441 const ConstantInt *CaseVal = CC.Low; 2442 MachineBasicBlock *Succ = CC.MBB; 2443 2444 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2445 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2446 // If this case has the same successor and is a neighbour, merge it into 2447 // the previous cluster. 2448 Clusters[DstIndex - 1].High = CaseVal; 2449 Clusters[DstIndex - 1].Prob += CC.Prob; 2450 } else { 2451 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2452 sizeof(Clusters[SrcIndex])); 2453 } 2454 } 2455 Clusters.resize(DstIndex); 2456 } 2457 2458 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2459 MachineBasicBlock *Last) { 2460 // Update JTCases. 2461 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2462 if (JTCases[i].first.HeaderBB == First) 2463 JTCases[i].first.HeaderBB = Last; 2464 2465 // Update BitTestCases. 2466 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2467 if (BitTestCases[i].Parent == First) 2468 BitTestCases[i].Parent = Last; 2469 } 2470 2471 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2472 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2473 2474 // Update machine-CFG edges with unique successors. 2475 SmallSet<BasicBlock*, 32> Done; 2476 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2477 BasicBlock *BB = I.getSuccessor(i); 2478 bool Inserted = Done.insert(BB).second; 2479 if (!Inserted) 2480 continue; 2481 2482 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2483 addSuccessorWithProb(IndirectBrMBB, Succ); 2484 } 2485 IndirectBrMBB->normalizeSuccProbs(); 2486 2487 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2488 MVT::Other, getControlRoot(), 2489 getValue(I.getAddress()))); 2490 } 2491 2492 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2493 if (DAG.getTarget().Options.TrapUnreachable) 2494 DAG.setRoot( 2495 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2496 } 2497 2498 void SelectionDAGBuilder::visitFSub(const User &I) { 2499 // -0.0 - X --> fneg 2500 Type *Ty = I.getType(); 2501 if (isa<Constant>(I.getOperand(0)) && 2502 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2503 SDValue Op2 = getValue(I.getOperand(1)); 2504 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2505 Op2.getValueType(), Op2)); 2506 return; 2507 } 2508 2509 visitBinary(I, ISD::FSUB); 2510 } 2511 2512 /// Checks if the given instruction performs a vector reduction, in which case 2513 /// we have the freedom to alter the elements in the result as long as the 2514 /// reduction of them stays unchanged. 2515 static bool isVectorReductionOp(const User *I) { 2516 const Instruction *Inst = dyn_cast<Instruction>(I); 2517 if (!Inst || !Inst->getType()->isVectorTy()) 2518 return false; 2519 2520 auto OpCode = Inst->getOpcode(); 2521 switch (OpCode) { 2522 case Instruction::Add: 2523 case Instruction::Mul: 2524 case Instruction::And: 2525 case Instruction::Or: 2526 case Instruction::Xor: 2527 break; 2528 case Instruction::FAdd: 2529 case Instruction::FMul: 2530 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2531 if (FPOp->getFastMathFlags().unsafeAlgebra()) 2532 break; 2533 LLVM_FALLTHROUGH; 2534 default: 2535 return false; 2536 } 2537 2538 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2539 unsigned ElemNumToReduce = ElemNum; 2540 2541 // Do DFS search on the def-use chain from the given instruction. We only 2542 // allow four kinds of operations during the search until we reach the 2543 // instruction that extracts the first element from the vector: 2544 // 2545 // 1. The reduction operation of the same opcode as the given instruction. 2546 // 2547 // 2. PHI node. 2548 // 2549 // 3. ShuffleVector instruction together with a reduction operation that 2550 // does a partial reduction. 2551 // 2552 // 4. ExtractElement that extracts the first element from the vector, and we 2553 // stop searching the def-use chain here. 2554 // 2555 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2556 // from 1-3 to the stack to continue the DFS. The given instruction is not 2557 // a reduction operation if we meet any other instructions other than those 2558 // listed above. 2559 2560 SmallVector<const User *, 16> UsersToVisit{Inst}; 2561 SmallPtrSet<const User *, 16> Visited; 2562 bool ReduxExtracted = false; 2563 2564 while (!UsersToVisit.empty()) { 2565 auto User = UsersToVisit.back(); 2566 UsersToVisit.pop_back(); 2567 if (!Visited.insert(User).second) 2568 continue; 2569 2570 for (const auto &U : User->users()) { 2571 auto Inst = dyn_cast<Instruction>(U); 2572 if (!Inst) 2573 return false; 2574 2575 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2576 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2577 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().unsafeAlgebra()) 2578 return false; 2579 UsersToVisit.push_back(U); 2580 } else if (const ShuffleVectorInst *ShufInst = 2581 dyn_cast<ShuffleVectorInst>(U)) { 2582 // Detect the following pattern: A ShuffleVector instruction together 2583 // with a reduction that do partial reduction on the first and second 2584 // ElemNumToReduce / 2 elements, and store the result in 2585 // ElemNumToReduce / 2 elements in another vector. 2586 2587 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2588 if (ResultElements < ElemNum) 2589 return false; 2590 2591 if (ElemNumToReduce == 1) 2592 return false; 2593 if (!isa<UndefValue>(U->getOperand(1))) 2594 return false; 2595 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2596 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2597 return false; 2598 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2599 if (ShufInst->getMaskValue(i) != -1) 2600 return false; 2601 2602 // There is only one user of this ShuffleVector instruction, which 2603 // must be a reduction operation. 2604 if (!U->hasOneUse()) 2605 return false; 2606 2607 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2608 if (!U2 || U2->getOpcode() != OpCode) 2609 return false; 2610 2611 // Check operands of the reduction operation. 2612 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2613 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2614 UsersToVisit.push_back(U2); 2615 ElemNumToReduce /= 2; 2616 } else 2617 return false; 2618 } else if (isa<ExtractElementInst>(U)) { 2619 // At this moment we should have reduced all elements in the vector. 2620 if (ElemNumToReduce != 1) 2621 return false; 2622 2623 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2624 if (!Val || Val->getZExtValue() != 0) 2625 return false; 2626 2627 ReduxExtracted = true; 2628 } else 2629 return false; 2630 } 2631 } 2632 return ReduxExtracted; 2633 } 2634 2635 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2636 SDValue Op1 = getValue(I.getOperand(0)); 2637 SDValue Op2 = getValue(I.getOperand(1)); 2638 2639 bool nuw = false; 2640 bool nsw = false; 2641 bool exact = false; 2642 bool vec_redux = false; 2643 FastMathFlags FMF; 2644 2645 if (const OverflowingBinaryOperator *OFBinOp = 2646 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2647 nuw = OFBinOp->hasNoUnsignedWrap(); 2648 nsw = OFBinOp->hasNoSignedWrap(); 2649 } 2650 if (const PossiblyExactOperator *ExactOp = 2651 dyn_cast<const PossiblyExactOperator>(&I)) 2652 exact = ExactOp->isExact(); 2653 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2654 FMF = FPOp->getFastMathFlags(); 2655 2656 if (isVectorReductionOp(&I)) { 2657 vec_redux = true; 2658 DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2659 } 2660 2661 SDNodeFlags Flags; 2662 Flags.setExact(exact); 2663 Flags.setNoSignedWrap(nsw); 2664 Flags.setNoUnsignedWrap(nuw); 2665 Flags.setVectorReduction(vec_redux); 2666 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2667 Flags.setAllowContract(FMF.allowContract()); 2668 Flags.setNoInfs(FMF.noInfs()); 2669 Flags.setNoNaNs(FMF.noNaNs()); 2670 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2671 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2672 2673 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2674 Op1, Op2, Flags); 2675 setValue(&I, BinNodeValue); 2676 } 2677 2678 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2679 SDValue Op1 = getValue(I.getOperand(0)); 2680 SDValue Op2 = getValue(I.getOperand(1)); 2681 2682 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2683 Op2.getValueType(), DAG.getDataLayout()); 2684 2685 // Coerce the shift amount to the right type if we can. 2686 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2687 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2688 unsigned Op2Size = Op2.getValueSizeInBits(); 2689 SDLoc DL = getCurSDLoc(); 2690 2691 // If the operand is smaller than the shift count type, promote it. 2692 if (ShiftSize > Op2Size) 2693 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2694 2695 // If the operand is larger than the shift count type but the shift 2696 // count type has enough bits to represent any shift value, truncate 2697 // it now. This is a common case and it exposes the truncate to 2698 // optimization early. 2699 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2700 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2701 // Otherwise we'll need to temporarily settle for some other convenient 2702 // type. Type legalization will make adjustments once the shiftee is split. 2703 else 2704 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2705 } 2706 2707 bool nuw = false; 2708 bool nsw = false; 2709 bool exact = false; 2710 2711 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2712 2713 if (const OverflowingBinaryOperator *OFBinOp = 2714 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2715 nuw = OFBinOp->hasNoUnsignedWrap(); 2716 nsw = OFBinOp->hasNoSignedWrap(); 2717 } 2718 if (const PossiblyExactOperator *ExactOp = 2719 dyn_cast<const PossiblyExactOperator>(&I)) 2720 exact = ExactOp->isExact(); 2721 } 2722 SDNodeFlags Flags; 2723 Flags.setExact(exact); 2724 Flags.setNoSignedWrap(nsw); 2725 Flags.setNoUnsignedWrap(nuw); 2726 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2727 Flags); 2728 setValue(&I, Res); 2729 } 2730 2731 void SelectionDAGBuilder::visitSDiv(const User &I) { 2732 SDValue Op1 = getValue(I.getOperand(0)); 2733 SDValue Op2 = getValue(I.getOperand(1)); 2734 2735 SDNodeFlags Flags; 2736 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2737 cast<PossiblyExactOperator>(&I)->isExact()); 2738 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2739 Op2, Flags)); 2740 } 2741 2742 void SelectionDAGBuilder::visitICmp(const User &I) { 2743 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2744 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2745 predicate = IC->getPredicate(); 2746 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2747 predicate = ICmpInst::Predicate(IC->getPredicate()); 2748 SDValue Op1 = getValue(I.getOperand(0)); 2749 SDValue Op2 = getValue(I.getOperand(1)); 2750 ISD::CondCode Opcode = getICmpCondCode(predicate); 2751 2752 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2753 I.getType()); 2754 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2755 } 2756 2757 void SelectionDAGBuilder::visitFCmp(const User &I) { 2758 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2759 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2760 predicate = FC->getPredicate(); 2761 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2762 predicate = FCmpInst::Predicate(FC->getPredicate()); 2763 SDValue Op1 = getValue(I.getOperand(0)); 2764 SDValue Op2 = getValue(I.getOperand(1)); 2765 ISD::CondCode Condition = getFCmpCondCode(predicate); 2766 2767 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2768 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2769 // further optimization, but currently FMF is only applicable to binary nodes. 2770 if (TM.Options.NoNaNsFPMath) 2771 Condition = getFCmpCodeWithoutNaN(Condition); 2772 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2773 I.getType()); 2774 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2775 } 2776 2777 // Check if the condition of the select has one use or two users that are both 2778 // selects with the same condition. 2779 static bool hasOnlySelectUsers(const Value *Cond) { 2780 return all_of(Cond->users(), [](const Value *V) { 2781 return isa<SelectInst>(V); 2782 }); 2783 } 2784 2785 void SelectionDAGBuilder::visitSelect(const User &I) { 2786 SmallVector<EVT, 4> ValueVTs; 2787 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2788 ValueVTs); 2789 unsigned NumValues = ValueVTs.size(); 2790 if (NumValues == 0) return; 2791 2792 SmallVector<SDValue, 4> Values(NumValues); 2793 SDValue Cond = getValue(I.getOperand(0)); 2794 SDValue LHSVal = getValue(I.getOperand(1)); 2795 SDValue RHSVal = getValue(I.getOperand(2)); 2796 auto BaseOps = {Cond}; 2797 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2798 ISD::VSELECT : ISD::SELECT; 2799 2800 // Min/max matching is only viable if all output VTs are the same. 2801 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2802 EVT VT = ValueVTs[0]; 2803 LLVMContext &Ctx = *DAG.getContext(); 2804 auto &TLI = DAG.getTargetLoweringInfo(); 2805 2806 // We care about the legality of the operation after it has been type 2807 // legalized. 2808 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2809 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2810 VT = TLI.getTypeToTransformTo(Ctx, VT); 2811 2812 // If the vselect is legal, assume we want to leave this as a vector setcc + 2813 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2814 // min/max is legal on the scalar type. 2815 bool UseScalarMinMax = VT.isVector() && 2816 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2817 2818 Value *LHS, *RHS; 2819 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2820 ISD::NodeType Opc = ISD::DELETED_NODE; 2821 switch (SPR.Flavor) { 2822 case SPF_UMAX: Opc = ISD::UMAX; break; 2823 case SPF_UMIN: Opc = ISD::UMIN; break; 2824 case SPF_SMAX: Opc = ISD::SMAX; break; 2825 case SPF_SMIN: Opc = ISD::SMIN; break; 2826 case SPF_FMINNUM: 2827 switch (SPR.NaNBehavior) { 2828 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2829 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2830 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2831 case SPNB_RETURNS_ANY: { 2832 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2833 Opc = ISD::FMINNUM; 2834 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2835 Opc = ISD::FMINNAN; 2836 else if (UseScalarMinMax) 2837 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2838 ISD::FMINNUM : ISD::FMINNAN; 2839 break; 2840 } 2841 } 2842 break; 2843 case SPF_FMAXNUM: 2844 switch (SPR.NaNBehavior) { 2845 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2846 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2847 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2848 case SPNB_RETURNS_ANY: 2849 2850 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2851 Opc = ISD::FMAXNUM; 2852 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2853 Opc = ISD::FMAXNAN; 2854 else if (UseScalarMinMax) 2855 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2856 ISD::FMAXNUM : ISD::FMAXNAN; 2857 break; 2858 } 2859 break; 2860 default: break; 2861 } 2862 2863 if (Opc != ISD::DELETED_NODE && 2864 (TLI.isOperationLegalOrCustom(Opc, VT) || 2865 (UseScalarMinMax && 2866 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2867 // If the underlying comparison instruction is used by any other 2868 // instruction, the consumed instructions won't be destroyed, so it is 2869 // not profitable to convert to a min/max. 2870 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2871 OpCode = Opc; 2872 LHSVal = getValue(LHS); 2873 RHSVal = getValue(RHS); 2874 BaseOps = {}; 2875 } 2876 } 2877 2878 for (unsigned i = 0; i != NumValues; ++i) { 2879 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2880 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2881 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2882 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2883 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2884 Ops); 2885 } 2886 2887 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2888 DAG.getVTList(ValueVTs), Values)); 2889 } 2890 2891 void SelectionDAGBuilder::visitTrunc(const User &I) { 2892 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2893 SDValue N = getValue(I.getOperand(0)); 2894 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2895 I.getType()); 2896 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2897 } 2898 2899 void SelectionDAGBuilder::visitZExt(const User &I) { 2900 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2901 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2902 SDValue N = getValue(I.getOperand(0)); 2903 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2904 I.getType()); 2905 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2906 } 2907 2908 void SelectionDAGBuilder::visitSExt(const User &I) { 2909 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2910 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2911 SDValue N = getValue(I.getOperand(0)); 2912 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2913 I.getType()); 2914 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2915 } 2916 2917 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2918 // FPTrunc is never a no-op cast, no need to check 2919 SDValue N = getValue(I.getOperand(0)); 2920 SDLoc dl = getCurSDLoc(); 2921 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2922 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2923 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2924 DAG.getTargetConstant( 2925 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2926 } 2927 2928 void SelectionDAGBuilder::visitFPExt(const User &I) { 2929 // FPExt is never a no-op cast, no need to check 2930 SDValue N = getValue(I.getOperand(0)); 2931 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2932 I.getType()); 2933 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2934 } 2935 2936 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2937 // FPToUI is never a no-op cast, no need to check 2938 SDValue N = getValue(I.getOperand(0)); 2939 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2940 I.getType()); 2941 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2942 } 2943 2944 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2945 // FPToSI is never a no-op cast, no need to check 2946 SDValue N = getValue(I.getOperand(0)); 2947 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2948 I.getType()); 2949 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2950 } 2951 2952 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2953 // UIToFP is never a no-op cast, no need to check 2954 SDValue N = getValue(I.getOperand(0)); 2955 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2956 I.getType()); 2957 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2958 } 2959 2960 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2961 // SIToFP is never a no-op cast, no need to check 2962 SDValue N = getValue(I.getOperand(0)); 2963 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2964 I.getType()); 2965 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2966 } 2967 2968 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2969 // What to do depends on the size of the integer and the size of the pointer. 2970 // We can either truncate, zero extend, or no-op, accordingly. 2971 SDValue N = getValue(I.getOperand(0)); 2972 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2973 I.getType()); 2974 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2975 } 2976 2977 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2978 // What to do depends on the size of the integer and the size of the pointer. 2979 // We can either truncate, zero extend, or no-op, accordingly. 2980 SDValue N = getValue(I.getOperand(0)); 2981 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2982 I.getType()); 2983 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2984 } 2985 2986 void SelectionDAGBuilder::visitBitCast(const User &I) { 2987 SDValue N = getValue(I.getOperand(0)); 2988 SDLoc dl = getCurSDLoc(); 2989 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2990 I.getType()); 2991 2992 // BitCast assures us that source and destination are the same size so this is 2993 // either a BITCAST or a no-op. 2994 if (DestVT != N.getValueType()) 2995 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2996 DestVT, N)); // convert types. 2997 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2998 // might fold any kind of constant expression to an integer constant and that 2999 // is not what we are looking for. Only recognize a bitcast of a genuine 3000 // constant integer as an opaque constant. 3001 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3002 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3003 /*isOpaque*/true)); 3004 else 3005 setValue(&I, N); // noop cast. 3006 } 3007 3008 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3009 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3010 const Value *SV = I.getOperand(0); 3011 SDValue N = getValue(SV); 3012 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3013 3014 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3015 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3016 3017 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3018 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3019 3020 setValue(&I, N); 3021 } 3022 3023 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3024 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3025 SDValue InVec = getValue(I.getOperand(0)); 3026 SDValue InVal = getValue(I.getOperand(1)); 3027 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3028 TLI.getVectorIdxTy(DAG.getDataLayout())); 3029 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3030 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3031 InVec, InVal, InIdx)); 3032 } 3033 3034 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3035 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3036 SDValue InVec = getValue(I.getOperand(0)); 3037 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3038 TLI.getVectorIdxTy(DAG.getDataLayout())); 3039 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3040 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3041 InVec, InIdx)); 3042 } 3043 3044 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3045 SDValue Src1 = getValue(I.getOperand(0)); 3046 SDValue Src2 = getValue(I.getOperand(1)); 3047 SDLoc DL = getCurSDLoc(); 3048 3049 SmallVector<int, 8> Mask; 3050 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3051 unsigned MaskNumElts = Mask.size(); 3052 3053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3054 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3055 EVT SrcVT = Src1.getValueType(); 3056 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3057 3058 if (SrcNumElts == MaskNumElts) { 3059 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3060 return; 3061 } 3062 3063 // Normalize the shuffle vector since mask and vector length don't match. 3064 if (SrcNumElts < MaskNumElts) { 3065 // Mask is longer than the source vectors. We can use concatenate vector to 3066 // make the mask and vectors lengths match. 3067 3068 if (MaskNumElts % SrcNumElts == 0) { 3069 // Mask length is a multiple of the source vector length. 3070 // Check if the shuffle is some kind of concatenation of the input 3071 // vectors. 3072 unsigned NumConcat = MaskNumElts / SrcNumElts; 3073 bool IsConcat = true; 3074 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3075 for (unsigned i = 0; i != MaskNumElts; ++i) { 3076 int Idx = Mask[i]; 3077 if (Idx < 0) 3078 continue; 3079 // Ensure the indices in each SrcVT sized piece are sequential and that 3080 // the same source is used for the whole piece. 3081 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3082 (ConcatSrcs[i / SrcNumElts] >= 0 && 3083 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3084 IsConcat = false; 3085 break; 3086 } 3087 // Remember which source this index came from. 3088 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3089 } 3090 3091 // The shuffle is concatenating multiple vectors together. Just emit 3092 // a CONCAT_VECTORS operation. 3093 if (IsConcat) { 3094 SmallVector<SDValue, 8> ConcatOps; 3095 for (auto Src : ConcatSrcs) { 3096 if (Src < 0) 3097 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3098 else if (Src == 0) 3099 ConcatOps.push_back(Src1); 3100 else 3101 ConcatOps.push_back(Src2); 3102 } 3103 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3104 return; 3105 } 3106 } 3107 3108 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3109 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3110 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3111 PaddedMaskNumElts); 3112 3113 // Pad both vectors with undefs to make them the same length as the mask. 3114 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3115 3116 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3117 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3118 MOps1[0] = Src1; 3119 MOps2[0] = Src2; 3120 3121 Src1 = Src1.isUndef() 3122 ? DAG.getUNDEF(PaddedVT) 3123 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3124 Src2 = Src2.isUndef() 3125 ? DAG.getUNDEF(PaddedVT) 3126 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3127 3128 // Readjust mask for new input vector length. 3129 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3130 for (unsigned i = 0; i != MaskNumElts; ++i) { 3131 int Idx = Mask[i]; 3132 if (Idx >= (int)SrcNumElts) 3133 Idx -= SrcNumElts - PaddedMaskNumElts; 3134 MappedOps[i] = Idx; 3135 } 3136 3137 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3138 3139 // If the concatenated vector was padded, extract a subvector with the 3140 // correct number of elements. 3141 if (MaskNumElts != PaddedMaskNumElts) 3142 Result = DAG.getNode( 3143 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3144 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3145 3146 setValue(&I, Result); 3147 return; 3148 } 3149 3150 if (SrcNumElts > MaskNumElts) { 3151 // Analyze the access pattern of the vector to see if we can extract 3152 // two subvectors and do the shuffle. 3153 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3154 bool CanExtract = true; 3155 for (int Idx : Mask) { 3156 unsigned Input = 0; 3157 if (Idx < 0) 3158 continue; 3159 3160 if (Idx >= (int)SrcNumElts) { 3161 Input = 1; 3162 Idx -= SrcNumElts; 3163 } 3164 3165 // If all the indices come from the same MaskNumElts sized portion of 3166 // the sources we can use extract. Also make sure the extract wouldn't 3167 // extract past the end of the source. 3168 int NewStartIdx = alignDown(Idx, MaskNumElts); 3169 if (NewStartIdx + MaskNumElts > SrcNumElts || 3170 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3171 CanExtract = false; 3172 // Make sure we always update StartIdx as we use it to track if all 3173 // elements are undef. 3174 StartIdx[Input] = NewStartIdx; 3175 } 3176 3177 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3178 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3179 return; 3180 } 3181 if (CanExtract) { 3182 // Extract appropriate subvector and generate a vector shuffle 3183 for (unsigned Input = 0; Input < 2; ++Input) { 3184 SDValue &Src = Input == 0 ? Src1 : Src2; 3185 if (StartIdx[Input] < 0) 3186 Src = DAG.getUNDEF(VT); 3187 else { 3188 Src = DAG.getNode( 3189 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3190 DAG.getConstant(StartIdx[Input], DL, 3191 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3192 } 3193 } 3194 3195 // Calculate new mask. 3196 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3197 for (int &Idx : MappedOps) { 3198 if (Idx >= (int)SrcNumElts) 3199 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3200 else if (Idx >= 0) 3201 Idx -= StartIdx[0]; 3202 } 3203 3204 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3205 return; 3206 } 3207 } 3208 3209 // We can't use either concat vectors or extract subvectors so fall back to 3210 // replacing the shuffle with extract and build vector. 3211 // to insert and build vector. 3212 EVT EltVT = VT.getVectorElementType(); 3213 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3214 SmallVector<SDValue,8> Ops; 3215 for (int Idx : Mask) { 3216 SDValue Res; 3217 3218 if (Idx < 0) { 3219 Res = DAG.getUNDEF(EltVT); 3220 } else { 3221 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3222 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3223 3224 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3225 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3226 } 3227 3228 Ops.push_back(Res); 3229 } 3230 3231 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3232 } 3233 3234 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3235 ArrayRef<unsigned> Indices; 3236 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3237 Indices = IV->getIndices(); 3238 else 3239 Indices = cast<ConstantExpr>(&I)->getIndices(); 3240 3241 const Value *Op0 = I.getOperand(0); 3242 const Value *Op1 = I.getOperand(1); 3243 Type *AggTy = I.getType(); 3244 Type *ValTy = Op1->getType(); 3245 bool IntoUndef = isa<UndefValue>(Op0); 3246 bool FromUndef = isa<UndefValue>(Op1); 3247 3248 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3249 3250 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3251 SmallVector<EVT, 4> AggValueVTs; 3252 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3253 SmallVector<EVT, 4> ValValueVTs; 3254 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3255 3256 unsigned NumAggValues = AggValueVTs.size(); 3257 unsigned NumValValues = ValValueVTs.size(); 3258 SmallVector<SDValue, 4> Values(NumAggValues); 3259 3260 // Ignore an insertvalue that produces an empty object 3261 if (!NumAggValues) { 3262 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3263 return; 3264 } 3265 3266 SDValue Agg = getValue(Op0); 3267 unsigned i = 0; 3268 // Copy the beginning value(s) from the original aggregate. 3269 for (; i != LinearIndex; ++i) 3270 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3271 SDValue(Agg.getNode(), Agg.getResNo() + i); 3272 // Copy values from the inserted value(s). 3273 if (NumValValues) { 3274 SDValue Val = getValue(Op1); 3275 for (; i != LinearIndex + NumValValues; ++i) 3276 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3277 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3278 } 3279 // Copy remaining value(s) from the original aggregate. 3280 for (; i != NumAggValues; ++i) 3281 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3282 SDValue(Agg.getNode(), Agg.getResNo() + i); 3283 3284 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3285 DAG.getVTList(AggValueVTs), Values)); 3286 } 3287 3288 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3289 ArrayRef<unsigned> Indices; 3290 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3291 Indices = EV->getIndices(); 3292 else 3293 Indices = cast<ConstantExpr>(&I)->getIndices(); 3294 3295 const Value *Op0 = I.getOperand(0); 3296 Type *AggTy = Op0->getType(); 3297 Type *ValTy = I.getType(); 3298 bool OutOfUndef = isa<UndefValue>(Op0); 3299 3300 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3301 3302 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3303 SmallVector<EVT, 4> ValValueVTs; 3304 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3305 3306 unsigned NumValValues = ValValueVTs.size(); 3307 3308 // Ignore a extractvalue that produces an empty object 3309 if (!NumValValues) { 3310 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3311 return; 3312 } 3313 3314 SmallVector<SDValue, 4> Values(NumValValues); 3315 3316 SDValue Agg = getValue(Op0); 3317 // Copy out the selected value(s). 3318 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3319 Values[i - LinearIndex] = 3320 OutOfUndef ? 3321 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3322 SDValue(Agg.getNode(), Agg.getResNo() + i); 3323 3324 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3325 DAG.getVTList(ValValueVTs), Values)); 3326 } 3327 3328 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3329 Value *Op0 = I.getOperand(0); 3330 // Note that the pointer operand may be a vector of pointers. Take the scalar 3331 // element which holds a pointer. 3332 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3333 SDValue N = getValue(Op0); 3334 SDLoc dl = getCurSDLoc(); 3335 3336 // Normalize Vector GEP - all scalar operands should be converted to the 3337 // splat vector. 3338 unsigned VectorWidth = I.getType()->isVectorTy() ? 3339 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3340 3341 if (VectorWidth && !N.getValueType().isVector()) { 3342 LLVMContext &Context = *DAG.getContext(); 3343 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3344 N = DAG.getSplatBuildVector(VT, dl, N); 3345 } 3346 3347 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3348 GTI != E; ++GTI) { 3349 const Value *Idx = GTI.getOperand(); 3350 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3351 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3352 if (Field) { 3353 // N = N + Offset 3354 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3355 3356 // In an inbounds GEP with an offset that is nonnegative even when 3357 // interpreted as signed, assume there is no unsigned overflow. 3358 SDNodeFlags Flags; 3359 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3360 Flags.setNoUnsignedWrap(true); 3361 3362 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3363 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3364 } 3365 } else { 3366 MVT PtrTy = 3367 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3368 unsigned PtrSize = PtrTy.getSizeInBits(); 3369 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3370 3371 // If this is a scalar constant or a splat vector of constants, 3372 // handle it quickly. 3373 const auto *CI = dyn_cast<ConstantInt>(Idx); 3374 if (!CI && isa<ConstantDataVector>(Idx) && 3375 cast<ConstantDataVector>(Idx)->getSplatValue()) 3376 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3377 3378 if (CI) { 3379 if (CI->isZero()) 3380 continue; 3381 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3382 LLVMContext &Context = *DAG.getContext(); 3383 SDValue OffsVal = VectorWidth ? 3384 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, PtrTy, VectorWidth)) : 3385 DAG.getConstant(Offs, dl, PtrTy); 3386 3387 // In an inbouds GEP with an offset that is nonnegative even when 3388 // interpreted as signed, assume there is no unsigned overflow. 3389 SDNodeFlags Flags; 3390 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3391 Flags.setNoUnsignedWrap(true); 3392 3393 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3394 continue; 3395 } 3396 3397 // N = N + Idx * ElementSize; 3398 SDValue IdxN = getValue(Idx); 3399 3400 if (!IdxN.getValueType().isVector() && VectorWidth) { 3401 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3402 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3403 } 3404 3405 // If the index is smaller or larger than intptr_t, truncate or extend 3406 // it. 3407 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3408 3409 // If this is a multiply by a power of two, turn it into a shl 3410 // immediately. This is a very common case. 3411 if (ElementSize != 1) { 3412 if (ElementSize.isPowerOf2()) { 3413 unsigned Amt = ElementSize.logBase2(); 3414 IdxN = DAG.getNode(ISD::SHL, dl, 3415 N.getValueType(), IdxN, 3416 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3417 } else { 3418 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3419 IdxN = DAG.getNode(ISD::MUL, dl, 3420 N.getValueType(), IdxN, Scale); 3421 } 3422 } 3423 3424 N = DAG.getNode(ISD::ADD, dl, 3425 N.getValueType(), N, IdxN); 3426 } 3427 } 3428 3429 setValue(&I, N); 3430 } 3431 3432 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3433 // If this is a fixed sized alloca in the entry block of the function, 3434 // allocate it statically on the stack. 3435 if (FuncInfo.StaticAllocaMap.count(&I)) 3436 return; // getValue will auto-populate this. 3437 3438 SDLoc dl = getCurSDLoc(); 3439 Type *Ty = I.getAllocatedType(); 3440 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3441 auto &DL = DAG.getDataLayout(); 3442 uint64_t TySize = DL.getTypeAllocSize(Ty); 3443 unsigned Align = 3444 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3445 3446 SDValue AllocSize = getValue(I.getArraySize()); 3447 3448 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3449 if (AllocSize.getValueType() != IntPtr) 3450 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3451 3452 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3453 AllocSize, 3454 DAG.getConstant(TySize, dl, IntPtr)); 3455 3456 // Handle alignment. If the requested alignment is less than or equal to 3457 // the stack alignment, ignore it. If the size is greater than or equal to 3458 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3459 unsigned StackAlign = 3460 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3461 if (Align <= StackAlign) 3462 Align = 0; 3463 3464 // Round the size of the allocation up to the stack alignment size 3465 // by add SA-1 to the size. This doesn't overflow because we're computing 3466 // an address inside an alloca. 3467 SDNodeFlags Flags; 3468 Flags.setNoUnsignedWrap(true); 3469 AllocSize = DAG.getNode(ISD::ADD, dl, 3470 AllocSize.getValueType(), AllocSize, 3471 DAG.getIntPtrConstant(StackAlign - 1, dl), Flags); 3472 3473 // Mask out the low bits for alignment purposes. 3474 AllocSize = DAG.getNode(ISD::AND, dl, 3475 AllocSize.getValueType(), AllocSize, 3476 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3477 dl)); 3478 3479 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3480 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3481 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3482 setValue(&I, DSA); 3483 DAG.setRoot(DSA.getValue(1)); 3484 3485 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3486 } 3487 3488 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3489 if (I.isAtomic()) 3490 return visitAtomicLoad(I); 3491 3492 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3493 const Value *SV = I.getOperand(0); 3494 if (TLI.supportSwiftError()) { 3495 // Swifterror values can come from either a function parameter with 3496 // swifterror attribute or an alloca with swifterror attribute. 3497 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3498 if (Arg->hasSwiftErrorAttr()) 3499 return visitLoadFromSwiftError(I); 3500 } 3501 3502 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3503 if (Alloca->isSwiftError()) 3504 return visitLoadFromSwiftError(I); 3505 } 3506 } 3507 3508 SDValue Ptr = getValue(SV); 3509 3510 Type *Ty = I.getType(); 3511 3512 bool isVolatile = I.isVolatile(); 3513 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3514 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3515 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3516 unsigned Alignment = I.getAlignment(); 3517 3518 AAMDNodes AAInfo; 3519 I.getAAMetadata(AAInfo); 3520 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3521 3522 SmallVector<EVT, 4> ValueVTs; 3523 SmallVector<uint64_t, 4> Offsets; 3524 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3525 unsigned NumValues = ValueVTs.size(); 3526 if (NumValues == 0) 3527 return; 3528 3529 SDValue Root; 3530 bool ConstantMemory = false; 3531 if (isVolatile || NumValues > MaxParallelChains) 3532 // Serialize volatile loads with other side effects. 3533 Root = getRoot(); 3534 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3535 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3536 // Do not serialize (non-volatile) loads of constant memory with anything. 3537 Root = DAG.getEntryNode(); 3538 ConstantMemory = true; 3539 } else { 3540 // Do not serialize non-volatile loads against each other. 3541 Root = DAG.getRoot(); 3542 } 3543 3544 SDLoc dl = getCurSDLoc(); 3545 3546 if (isVolatile) 3547 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3548 3549 // An aggregate load cannot wrap around the address space, so offsets to its 3550 // parts don't wrap either. 3551 SDNodeFlags Flags; 3552 Flags.setNoUnsignedWrap(true); 3553 3554 SmallVector<SDValue, 4> Values(NumValues); 3555 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3556 EVT PtrVT = Ptr.getValueType(); 3557 unsigned ChainI = 0; 3558 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3559 // Serializing loads here may result in excessive register pressure, and 3560 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3561 // could recover a bit by hoisting nodes upward in the chain by recognizing 3562 // they are side-effect free or do not alias. The optimizer should really 3563 // avoid this case by converting large object/array copies to llvm.memcpy 3564 // (MaxParallelChains should always remain as failsafe). 3565 if (ChainI == MaxParallelChains) { 3566 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3567 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3568 makeArrayRef(Chains.data(), ChainI)); 3569 Root = Chain; 3570 ChainI = 0; 3571 } 3572 SDValue A = DAG.getNode(ISD::ADD, dl, 3573 PtrVT, Ptr, 3574 DAG.getConstant(Offsets[i], dl, PtrVT), 3575 Flags); 3576 auto MMOFlags = MachineMemOperand::MONone; 3577 if (isVolatile) 3578 MMOFlags |= MachineMemOperand::MOVolatile; 3579 if (isNonTemporal) 3580 MMOFlags |= MachineMemOperand::MONonTemporal; 3581 if (isInvariant) 3582 MMOFlags |= MachineMemOperand::MOInvariant; 3583 if (isDereferenceable) 3584 MMOFlags |= MachineMemOperand::MODereferenceable; 3585 MMOFlags |= TLI.getMMOFlags(I); 3586 3587 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3588 MachinePointerInfo(SV, Offsets[i]), Alignment, 3589 MMOFlags, AAInfo, Ranges); 3590 3591 Values[i] = L; 3592 Chains[ChainI] = L.getValue(1); 3593 } 3594 3595 if (!ConstantMemory) { 3596 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3597 makeArrayRef(Chains.data(), ChainI)); 3598 if (isVolatile) 3599 DAG.setRoot(Chain); 3600 else 3601 PendingLoads.push_back(Chain); 3602 } 3603 3604 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3605 DAG.getVTList(ValueVTs), Values)); 3606 } 3607 3608 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3609 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3610 "call visitStoreToSwiftError when backend supports swifterror"); 3611 3612 SmallVector<EVT, 4> ValueVTs; 3613 SmallVector<uint64_t, 4> Offsets; 3614 const Value *SrcV = I.getOperand(0); 3615 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3616 SrcV->getType(), ValueVTs, &Offsets); 3617 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3618 "expect a single EVT for swifterror"); 3619 3620 SDValue Src = getValue(SrcV); 3621 // Create a virtual register, then update the virtual register. 3622 unsigned VReg; bool CreatedVReg; 3623 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3624 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3625 // Chain can be getRoot or getControlRoot. 3626 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3627 SDValue(Src.getNode(), Src.getResNo())); 3628 DAG.setRoot(CopyNode); 3629 if (CreatedVReg) 3630 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3631 } 3632 3633 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3634 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3635 "call visitLoadFromSwiftError when backend supports swifterror"); 3636 3637 assert(!I.isVolatile() && 3638 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3639 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3640 "Support volatile, non temporal, invariant for load_from_swift_error"); 3641 3642 const Value *SV = I.getOperand(0); 3643 Type *Ty = I.getType(); 3644 AAMDNodes AAInfo; 3645 I.getAAMetadata(AAInfo); 3646 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3647 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3648 "load_from_swift_error should not be constant memory"); 3649 3650 SmallVector<EVT, 4> ValueVTs; 3651 SmallVector<uint64_t, 4> Offsets; 3652 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3653 ValueVTs, &Offsets); 3654 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3655 "expect a single EVT for swifterror"); 3656 3657 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3658 SDValue L = DAG.getCopyFromReg( 3659 getRoot(), getCurSDLoc(), 3660 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3661 ValueVTs[0]); 3662 3663 setValue(&I, L); 3664 } 3665 3666 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3667 if (I.isAtomic()) 3668 return visitAtomicStore(I); 3669 3670 const Value *SrcV = I.getOperand(0); 3671 const Value *PtrV = I.getOperand(1); 3672 3673 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3674 if (TLI.supportSwiftError()) { 3675 // Swifterror values can come from either a function parameter with 3676 // swifterror attribute or an alloca with swifterror attribute. 3677 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3678 if (Arg->hasSwiftErrorAttr()) 3679 return visitStoreToSwiftError(I); 3680 } 3681 3682 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3683 if (Alloca->isSwiftError()) 3684 return visitStoreToSwiftError(I); 3685 } 3686 } 3687 3688 SmallVector<EVT, 4> ValueVTs; 3689 SmallVector<uint64_t, 4> Offsets; 3690 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3691 SrcV->getType(), ValueVTs, &Offsets); 3692 unsigned NumValues = ValueVTs.size(); 3693 if (NumValues == 0) 3694 return; 3695 3696 // Get the lowered operands. Note that we do this after 3697 // checking if NumResults is zero, because with zero results 3698 // the operands won't have values in the map. 3699 SDValue Src = getValue(SrcV); 3700 SDValue Ptr = getValue(PtrV); 3701 3702 SDValue Root = getRoot(); 3703 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3704 SDLoc dl = getCurSDLoc(); 3705 EVT PtrVT = Ptr.getValueType(); 3706 unsigned Alignment = I.getAlignment(); 3707 AAMDNodes AAInfo; 3708 I.getAAMetadata(AAInfo); 3709 3710 auto MMOFlags = MachineMemOperand::MONone; 3711 if (I.isVolatile()) 3712 MMOFlags |= MachineMemOperand::MOVolatile; 3713 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3714 MMOFlags |= MachineMemOperand::MONonTemporal; 3715 MMOFlags |= TLI.getMMOFlags(I); 3716 3717 // An aggregate load cannot wrap around the address space, so offsets to its 3718 // parts don't wrap either. 3719 SDNodeFlags Flags; 3720 Flags.setNoUnsignedWrap(true); 3721 3722 unsigned ChainI = 0; 3723 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3724 // See visitLoad comments. 3725 if (ChainI == MaxParallelChains) { 3726 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3727 makeArrayRef(Chains.data(), ChainI)); 3728 Root = Chain; 3729 ChainI = 0; 3730 } 3731 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3732 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3733 SDValue St = DAG.getStore( 3734 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3735 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3736 Chains[ChainI] = St; 3737 } 3738 3739 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3740 makeArrayRef(Chains.data(), ChainI)); 3741 DAG.setRoot(StoreNode); 3742 } 3743 3744 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3745 bool IsCompressing) { 3746 SDLoc sdl = getCurSDLoc(); 3747 3748 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3749 unsigned& Alignment) { 3750 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3751 Src0 = I.getArgOperand(0); 3752 Ptr = I.getArgOperand(1); 3753 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3754 Mask = I.getArgOperand(3); 3755 }; 3756 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3757 unsigned& Alignment) { 3758 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3759 Src0 = I.getArgOperand(0); 3760 Ptr = I.getArgOperand(1); 3761 Mask = I.getArgOperand(2); 3762 Alignment = 0; 3763 }; 3764 3765 Value *PtrOperand, *MaskOperand, *Src0Operand; 3766 unsigned Alignment; 3767 if (IsCompressing) 3768 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3769 else 3770 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3771 3772 SDValue Ptr = getValue(PtrOperand); 3773 SDValue Src0 = getValue(Src0Operand); 3774 SDValue Mask = getValue(MaskOperand); 3775 3776 EVT VT = Src0.getValueType(); 3777 if (!Alignment) 3778 Alignment = DAG.getEVTAlignment(VT); 3779 3780 AAMDNodes AAInfo; 3781 I.getAAMetadata(AAInfo); 3782 3783 MachineMemOperand *MMO = 3784 DAG.getMachineFunction(). 3785 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3786 MachineMemOperand::MOStore, VT.getStoreSize(), 3787 Alignment, AAInfo); 3788 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3789 MMO, false /* Truncating */, 3790 IsCompressing); 3791 DAG.setRoot(StoreNode); 3792 setValue(&I, StoreNode); 3793 } 3794 3795 // Get a uniform base for the Gather/Scatter intrinsic. 3796 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3797 // We try to represent it as a base pointer + vector of indices. 3798 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3799 // The first operand of the GEP may be a single pointer or a vector of pointers 3800 // Example: 3801 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3802 // or 3803 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3804 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3805 // 3806 // When the first GEP operand is a single pointer - it is the uniform base we 3807 // are looking for. If first operand of the GEP is a splat vector - we 3808 // extract the spalt value and use it as a uniform base. 3809 // In all other cases the function returns 'false'. 3810 // 3811 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3812 SelectionDAGBuilder* SDB) { 3813 3814 SelectionDAG& DAG = SDB->DAG; 3815 LLVMContext &Context = *DAG.getContext(); 3816 3817 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3818 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3819 if (!GEP || GEP->getNumOperands() > 2) 3820 return false; 3821 3822 const Value *GEPPtr = GEP->getPointerOperand(); 3823 if (!GEPPtr->getType()->isVectorTy()) 3824 Ptr = GEPPtr; 3825 else if (!(Ptr = getSplatValue(GEPPtr))) 3826 return false; 3827 3828 Value *IndexVal = GEP->getOperand(1); 3829 3830 // The operands of the GEP may be defined in another basic block. 3831 // In this case we'll not find nodes for the operands. 3832 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3833 return false; 3834 3835 Base = SDB->getValue(Ptr); 3836 Index = SDB->getValue(IndexVal); 3837 3838 // Suppress sign extension. 3839 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3840 if (SDB->findValue(Sext->getOperand(0))) { 3841 IndexVal = Sext->getOperand(0); 3842 Index = SDB->getValue(IndexVal); 3843 } 3844 } 3845 if (!Index.getValueType().isVector()) { 3846 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3847 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3848 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3849 } 3850 return true; 3851 } 3852 3853 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3854 SDLoc sdl = getCurSDLoc(); 3855 3856 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3857 const Value *Ptr = I.getArgOperand(1); 3858 SDValue Src0 = getValue(I.getArgOperand(0)); 3859 SDValue Mask = getValue(I.getArgOperand(3)); 3860 EVT VT = Src0.getValueType(); 3861 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3862 if (!Alignment) 3863 Alignment = DAG.getEVTAlignment(VT); 3864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3865 3866 AAMDNodes AAInfo; 3867 I.getAAMetadata(AAInfo); 3868 3869 SDValue Base; 3870 SDValue Index; 3871 const Value *BasePtr = Ptr; 3872 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3873 3874 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3875 MachineMemOperand *MMO = DAG.getMachineFunction(). 3876 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3877 MachineMemOperand::MOStore, VT.getStoreSize(), 3878 Alignment, AAInfo); 3879 if (!UniformBase) { 3880 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3881 Index = getValue(Ptr); 3882 } 3883 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3884 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3885 Ops, MMO); 3886 DAG.setRoot(Scatter); 3887 setValue(&I, Scatter); 3888 } 3889 3890 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3891 SDLoc sdl = getCurSDLoc(); 3892 3893 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3894 unsigned& Alignment) { 3895 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3896 Ptr = I.getArgOperand(0); 3897 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 3898 Mask = I.getArgOperand(2); 3899 Src0 = I.getArgOperand(3); 3900 }; 3901 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3902 unsigned& Alignment) { 3903 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 3904 Ptr = I.getArgOperand(0); 3905 Alignment = 0; 3906 Mask = I.getArgOperand(1); 3907 Src0 = I.getArgOperand(2); 3908 }; 3909 3910 Value *PtrOperand, *MaskOperand, *Src0Operand; 3911 unsigned Alignment; 3912 if (IsExpanding) 3913 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3914 else 3915 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3916 3917 SDValue Ptr = getValue(PtrOperand); 3918 SDValue Src0 = getValue(Src0Operand); 3919 SDValue Mask = getValue(MaskOperand); 3920 3921 EVT VT = Src0.getValueType(); 3922 if (!Alignment) 3923 Alignment = DAG.getEVTAlignment(VT); 3924 3925 AAMDNodes AAInfo; 3926 I.getAAMetadata(AAInfo); 3927 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3928 3929 // Do not serialize masked loads of constant memory with anything. 3930 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 3931 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 3932 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 3933 3934 MachineMemOperand *MMO = 3935 DAG.getMachineFunction(). 3936 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3937 MachineMemOperand::MOLoad, VT.getStoreSize(), 3938 Alignment, AAInfo, Ranges); 3939 3940 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3941 ISD::NON_EXTLOAD, IsExpanding); 3942 if (AddToChain) { 3943 SDValue OutChain = Load.getValue(1); 3944 DAG.setRoot(OutChain); 3945 } 3946 setValue(&I, Load); 3947 } 3948 3949 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3950 SDLoc sdl = getCurSDLoc(); 3951 3952 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3953 const Value *Ptr = I.getArgOperand(0); 3954 SDValue Src0 = getValue(I.getArgOperand(3)); 3955 SDValue Mask = getValue(I.getArgOperand(2)); 3956 3957 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3958 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3959 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3960 if (!Alignment) 3961 Alignment = DAG.getEVTAlignment(VT); 3962 3963 AAMDNodes AAInfo; 3964 I.getAAMetadata(AAInfo); 3965 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3966 3967 SDValue Root = DAG.getRoot(); 3968 SDValue Base; 3969 SDValue Index; 3970 const Value *BasePtr = Ptr; 3971 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3972 bool ConstantMemory = false; 3973 if (UniformBase && 3974 AA && AA->pointsToConstantMemory(MemoryLocation( 3975 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3976 AAInfo))) { 3977 // Do not serialize (non-volatile) loads of constant memory with anything. 3978 Root = DAG.getEntryNode(); 3979 ConstantMemory = true; 3980 } 3981 3982 MachineMemOperand *MMO = 3983 DAG.getMachineFunction(). 3984 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3985 MachineMemOperand::MOLoad, VT.getStoreSize(), 3986 Alignment, AAInfo, Ranges); 3987 3988 if (!UniformBase) { 3989 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3990 Index = getValue(Ptr); 3991 } 3992 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3993 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3994 Ops, MMO); 3995 3996 SDValue OutChain = Gather.getValue(1); 3997 if (!ConstantMemory) 3998 PendingLoads.push_back(OutChain); 3999 setValue(&I, Gather); 4000 } 4001 4002 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4003 SDLoc dl = getCurSDLoc(); 4004 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4005 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4006 SyncScope::ID SSID = I.getSyncScopeID(); 4007 4008 SDValue InChain = getRoot(); 4009 4010 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4011 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4012 SDValue L = DAG.getAtomicCmpSwap( 4013 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4014 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4015 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4016 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4017 4018 SDValue OutChain = L.getValue(2); 4019 4020 setValue(&I, L); 4021 DAG.setRoot(OutChain); 4022 } 4023 4024 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4025 SDLoc dl = getCurSDLoc(); 4026 ISD::NodeType NT; 4027 switch (I.getOperation()) { 4028 default: llvm_unreachable("Unknown atomicrmw operation"); 4029 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4030 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4031 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4032 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4033 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4034 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4035 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4036 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4037 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4038 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4039 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4040 } 4041 AtomicOrdering Order = I.getOrdering(); 4042 SyncScope::ID SSID = I.getSyncScopeID(); 4043 4044 SDValue InChain = getRoot(); 4045 4046 SDValue L = 4047 DAG.getAtomic(NT, dl, 4048 getValue(I.getValOperand()).getSimpleValueType(), 4049 InChain, 4050 getValue(I.getPointerOperand()), 4051 getValue(I.getValOperand()), 4052 I.getPointerOperand(), 4053 /* Alignment=*/ 0, Order, SSID); 4054 4055 SDValue OutChain = L.getValue(1); 4056 4057 setValue(&I, L); 4058 DAG.setRoot(OutChain); 4059 } 4060 4061 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4062 SDLoc dl = getCurSDLoc(); 4063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4064 SDValue Ops[3]; 4065 Ops[0] = getRoot(); 4066 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4067 TLI.getFenceOperandTy(DAG.getDataLayout())); 4068 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4069 TLI.getFenceOperandTy(DAG.getDataLayout())); 4070 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4071 } 4072 4073 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4074 SDLoc dl = getCurSDLoc(); 4075 AtomicOrdering Order = I.getOrdering(); 4076 SyncScope::ID SSID = I.getSyncScopeID(); 4077 4078 SDValue InChain = getRoot(); 4079 4080 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4081 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4082 4083 if (I.getAlignment() < VT.getSizeInBits() / 8) 4084 report_fatal_error("Cannot generate unaligned atomic load"); 4085 4086 MachineMemOperand *MMO = 4087 DAG.getMachineFunction(). 4088 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4089 MachineMemOperand::MOVolatile | 4090 MachineMemOperand::MOLoad, 4091 VT.getStoreSize(), 4092 I.getAlignment() ? I.getAlignment() : 4093 DAG.getEVTAlignment(VT), 4094 AAMDNodes(), nullptr, SSID, Order); 4095 4096 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4097 SDValue L = 4098 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4099 getValue(I.getPointerOperand()), MMO); 4100 4101 SDValue OutChain = L.getValue(1); 4102 4103 setValue(&I, L); 4104 DAG.setRoot(OutChain); 4105 } 4106 4107 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4108 SDLoc dl = getCurSDLoc(); 4109 4110 AtomicOrdering Order = I.getOrdering(); 4111 SyncScope::ID SSID = I.getSyncScopeID(); 4112 4113 SDValue InChain = getRoot(); 4114 4115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4116 EVT VT = 4117 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4118 4119 if (I.getAlignment() < VT.getSizeInBits() / 8) 4120 report_fatal_error("Cannot generate unaligned atomic store"); 4121 4122 SDValue OutChain = 4123 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4124 InChain, 4125 getValue(I.getPointerOperand()), 4126 getValue(I.getValueOperand()), 4127 I.getPointerOperand(), I.getAlignment(), 4128 Order, SSID); 4129 4130 DAG.setRoot(OutChain); 4131 } 4132 4133 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4134 /// node. 4135 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4136 unsigned Intrinsic) { 4137 // Ignore the callsite's attributes. A specific call site may be marked with 4138 // readnone, but the lowering code will expect the chain based on the 4139 // definition. 4140 const Function *F = I.getCalledFunction(); 4141 bool HasChain = !F->doesNotAccessMemory(); 4142 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4143 4144 // Build the operand list. 4145 SmallVector<SDValue, 8> Ops; 4146 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4147 if (OnlyLoad) { 4148 // We don't need to serialize loads against other loads. 4149 Ops.push_back(DAG.getRoot()); 4150 } else { 4151 Ops.push_back(getRoot()); 4152 } 4153 } 4154 4155 // Info is set by getTgtMemInstrinsic 4156 TargetLowering::IntrinsicInfo Info; 4157 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4158 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 4159 4160 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4161 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4162 Info.opc == ISD::INTRINSIC_W_CHAIN) 4163 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4164 TLI.getPointerTy(DAG.getDataLayout()))); 4165 4166 // Add all operands of the call to the operand list. 4167 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4168 SDValue Op = getValue(I.getArgOperand(i)); 4169 Ops.push_back(Op); 4170 } 4171 4172 SmallVector<EVT, 4> ValueVTs; 4173 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4174 4175 if (HasChain) 4176 ValueVTs.push_back(MVT::Other); 4177 4178 SDVTList VTs = DAG.getVTList(ValueVTs); 4179 4180 // Create the node. 4181 SDValue Result; 4182 if (IsTgtIntrinsic) { 4183 // This is target intrinsic that touches memory 4184 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 4185 VTs, Ops, Info.memVT, 4186 MachinePointerInfo(Info.ptrVal, Info.offset), 4187 Info.align, Info.vol, 4188 Info.readMem, Info.writeMem, Info.size); 4189 } else if (!HasChain) { 4190 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4191 } else if (!I.getType()->isVoidTy()) { 4192 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4193 } else { 4194 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4195 } 4196 4197 if (HasChain) { 4198 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4199 if (OnlyLoad) 4200 PendingLoads.push_back(Chain); 4201 else 4202 DAG.setRoot(Chain); 4203 } 4204 4205 if (!I.getType()->isVoidTy()) { 4206 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4207 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4208 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4209 } else 4210 Result = lowerRangeToAssertZExt(DAG, I, Result); 4211 4212 setValue(&I, Result); 4213 } 4214 } 4215 4216 /// GetSignificand - Get the significand and build it into a floating-point 4217 /// number with exponent of 1: 4218 /// 4219 /// Op = (Op & 0x007fffff) | 0x3f800000; 4220 /// 4221 /// where Op is the hexadecimal representation of floating point value. 4222 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4223 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4224 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4225 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4226 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4227 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4228 } 4229 4230 /// GetExponent - Get the exponent: 4231 /// 4232 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4233 /// 4234 /// where Op is the hexadecimal representation of floating point value. 4235 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4236 const TargetLowering &TLI, const SDLoc &dl) { 4237 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4238 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4239 SDValue t1 = DAG.getNode( 4240 ISD::SRL, dl, MVT::i32, t0, 4241 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4242 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4243 DAG.getConstant(127, dl, MVT::i32)); 4244 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4245 } 4246 4247 /// getF32Constant - Get 32-bit floating point constant. 4248 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4249 const SDLoc &dl) { 4250 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4251 MVT::f32); 4252 } 4253 4254 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4255 SelectionDAG &DAG) { 4256 // TODO: What fast-math-flags should be set on the floating-point nodes? 4257 4258 // IntegerPartOfX = ((int32_t)(t0); 4259 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4260 4261 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4262 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4263 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4264 4265 // IntegerPartOfX <<= 23; 4266 IntegerPartOfX = DAG.getNode( 4267 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4268 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4269 DAG.getDataLayout()))); 4270 4271 SDValue TwoToFractionalPartOfX; 4272 if (LimitFloatPrecision <= 6) { 4273 // For floating-point precision of 6: 4274 // 4275 // TwoToFractionalPartOfX = 4276 // 0.997535578f + 4277 // (0.735607626f + 0.252464424f * x) * x; 4278 // 4279 // error 0.0144103317, which is 6 bits 4280 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4281 getF32Constant(DAG, 0x3e814304, dl)); 4282 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4283 getF32Constant(DAG, 0x3f3c50c8, dl)); 4284 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4285 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4286 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4287 } else if (LimitFloatPrecision <= 12) { 4288 // For floating-point precision of 12: 4289 // 4290 // TwoToFractionalPartOfX = 4291 // 0.999892986f + 4292 // (0.696457318f + 4293 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4294 // 4295 // error 0.000107046256, which is 13 to 14 bits 4296 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4297 getF32Constant(DAG, 0x3da235e3, dl)); 4298 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4299 getF32Constant(DAG, 0x3e65b8f3, dl)); 4300 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4301 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4302 getF32Constant(DAG, 0x3f324b07, dl)); 4303 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4304 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4305 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4306 } else { // LimitFloatPrecision <= 18 4307 // For floating-point precision of 18: 4308 // 4309 // TwoToFractionalPartOfX = 4310 // 0.999999982f + 4311 // (0.693148872f + 4312 // (0.240227044f + 4313 // (0.554906021e-1f + 4314 // (0.961591928e-2f + 4315 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4316 // error 2.47208000*10^(-7), which is better than 18 bits 4317 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4318 getF32Constant(DAG, 0x3924b03e, dl)); 4319 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4320 getF32Constant(DAG, 0x3ab24b87, dl)); 4321 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4322 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4323 getF32Constant(DAG, 0x3c1d8c17, dl)); 4324 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4325 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4326 getF32Constant(DAG, 0x3d634a1d, dl)); 4327 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4328 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4329 getF32Constant(DAG, 0x3e75fe14, dl)); 4330 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4331 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4332 getF32Constant(DAG, 0x3f317234, dl)); 4333 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4334 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4335 getF32Constant(DAG, 0x3f800000, dl)); 4336 } 4337 4338 // Add the exponent into the result in integer domain. 4339 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4340 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4341 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4342 } 4343 4344 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4345 /// limited-precision mode. 4346 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4347 const TargetLowering &TLI) { 4348 if (Op.getValueType() == MVT::f32 && 4349 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4350 4351 // Put the exponent in the right bit position for later addition to the 4352 // final result: 4353 // 4354 // #define LOG2OFe 1.4426950f 4355 // t0 = Op * LOG2OFe 4356 4357 // TODO: What fast-math-flags should be set here? 4358 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4359 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4360 return getLimitedPrecisionExp2(t0, dl, DAG); 4361 } 4362 4363 // No special expansion. 4364 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4365 } 4366 4367 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4368 /// limited-precision mode. 4369 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4370 const TargetLowering &TLI) { 4371 4372 // TODO: What fast-math-flags should be set on the floating-point nodes? 4373 4374 if (Op.getValueType() == MVT::f32 && 4375 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4376 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4377 4378 // Scale the exponent by log(2) [0.69314718f]. 4379 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4380 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4381 getF32Constant(DAG, 0x3f317218, dl)); 4382 4383 // Get the significand and build it into a floating-point number with 4384 // exponent of 1. 4385 SDValue X = GetSignificand(DAG, Op1, dl); 4386 4387 SDValue LogOfMantissa; 4388 if (LimitFloatPrecision <= 6) { 4389 // For floating-point precision of 6: 4390 // 4391 // LogofMantissa = 4392 // -1.1609546f + 4393 // (1.4034025f - 0.23903021f * x) * x; 4394 // 4395 // error 0.0034276066, which is better than 8 bits 4396 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4397 getF32Constant(DAG, 0xbe74c456, dl)); 4398 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4399 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4400 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4401 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4402 getF32Constant(DAG, 0x3f949a29, dl)); 4403 } else if (LimitFloatPrecision <= 12) { 4404 // For floating-point precision of 12: 4405 // 4406 // LogOfMantissa = 4407 // -1.7417939f + 4408 // (2.8212026f + 4409 // (-1.4699568f + 4410 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4411 // 4412 // error 0.000061011436, which is 14 bits 4413 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4414 getF32Constant(DAG, 0xbd67b6d6, dl)); 4415 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4416 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4417 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4418 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4419 getF32Constant(DAG, 0x3fbc278b, dl)); 4420 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4421 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4422 getF32Constant(DAG, 0x40348e95, dl)); 4423 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4424 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4425 getF32Constant(DAG, 0x3fdef31a, dl)); 4426 } else { // LimitFloatPrecision <= 18 4427 // For floating-point precision of 18: 4428 // 4429 // LogOfMantissa = 4430 // -2.1072184f + 4431 // (4.2372794f + 4432 // (-3.7029485f + 4433 // (2.2781945f + 4434 // (-0.87823314f + 4435 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4436 // 4437 // error 0.0000023660568, which is better than 18 bits 4438 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4439 getF32Constant(DAG, 0xbc91e5ac, dl)); 4440 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4441 getF32Constant(DAG, 0x3e4350aa, dl)); 4442 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4443 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4444 getF32Constant(DAG, 0x3f60d3e3, dl)); 4445 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4446 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4447 getF32Constant(DAG, 0x4011cdf0, dl)); 4448 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4449 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4450 getF32Constant(DAG, 0x406cfd1c, dl)); 4451 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4452 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4453 getF32Constant(DAG, 0x408797cb, dl)); 4454 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4455 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4456 getF32Constant(DAG, 0x4006dcab, dl)); 4457 } 4458 4459 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4460 } 4461 4462 // No special expansion. 4463 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4464 } 4465 4466 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4467 /// limited-precision mode. 4468 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4469 const TargetLowering &TLI) { 4470 4471 // TODO: What fast-math-flags should be set on the floating-point nodes? 4472 4473 if (Op.getValueType() == MVT::f32 && 4474 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4475 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4476 4477 // Get the exponent. 4478 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4479 4480 // Get the significand and build it into a floating-point number with 4481 // exponent of 1. 4482 SDValue X = GetSignificand(DAG, Op1, dl); 4483 4484 // Different possible minimax approximations of significand in 4485 // floating-point for various degrees of accuracy over [1,2]. 4486 SDValue Log2ofMantissa; 4487 if (LimitFloatPrecision <= 6) { 4488 // For floating-point precision of 6: 4489 // 4490 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4491 // 4492 // error 0.0049451742, which is more than 7 bits 4493 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4494 getF32Constant(DAG, 0xbeb08fe0, dl)); 4495 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4496 getF32Constant(DAG, 0x40019463, dl)); 4497 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4498 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4499 getF32Constant(DAG, 0x3fd6633d, dl)); 4500 } else if (LimitFloatPrecision <= 12) { 4501 // For floating-point precision of 12: 4502 // 4503 // Log2ofMantissa = 4504 // -2.51285454f + 4505 // (4.07009056f + 4506 // (-2.12067489f + 4507 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4508 // 4509 // error 0.0000876136000, which is better than 13 bits 4510 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4511 getF32Constant(DAG, 0xbda7262e, dl)); 4512 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4513 getF32Constant(DAG, 0x3f25280b, dl)); 4514 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4515 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4516 getF32Constant(DAG, 0x4007b923, dl)); 4517 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4518 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4519 getF32Constant(DAG, 0x40823e2f, dl)); 4520 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4521 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4522 getF32Constant(DAG, 0x4020d29c, dl)); 4523 } else { // LimitFloatPrecision <= 18 4524 // For floating-point precision of 18: 4525 // 4526 // Log2ofMantissa = 4527 // -3.0400495f + 4528 // (6.1129976f + 4529 // (-5.3420409f + 4530 // (3.2865683f + 4531 // (-1.2669343f + 4532 // (0.27515199f - 4533 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4534 // 4535 // error 0.0000018516, which is better than 18 bits 4536 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4537 getF32Constant(DAG, 0xbcd2769e, dl)); 4538 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4539 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4540 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4541 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4542 getF32Constant(DAG, 0x3fa22ae7, dl)); 4543 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4544 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4545 getF32Constant(DAG, 0x40525723, dl)); 4546 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4547 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4548 getF32Constant(DAG, 0x40aaf200, dl)); 4549 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4550 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4551 getF32Constant(DAG, 0x40c39dad, dl)); 4552 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4553 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4554 getF32Constant(DAG, 0x4042902c, dl)); 4555 } 4556 4557 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4558 } 4559 4560 // No special expansion. 4561 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4562 } 4563 4564 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4565 /// limited-precision mode. 4566 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4567 const TargetLowering &TLI) { 4568 4569 // TODO: What fast-math-flags should be set on the floating-point nodes? 4570 4571 if (Op.getValueType() == MVT::f32 && 4572 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4573 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4574 4575 // Scale the exponent by log10(2) [0.30102999f]. 4576 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4577 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4578 getF32Constant(DAG, 0x3e9a209a, dl)); 4579 4580 // Get the significand and build it into a floating-point number with 4581 // exponent of 1. 4582 SDValue X = GetSignificand(DAG, Op1, dl); 4583 4584 SDValue Log10ofMantissa; 4585 if (LimitFloatPrecision <= 6) { 4586 // For floating-point precision of 6: 4587 // 4588 // Log10ofMantissa = 4589 // -0.50419619f + 4590 // (0.60948995f - 0.10380950f * x) * x; 4591 // 4592 // error 0.0014886165, which is 6 bits 4593 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4594 getF32Constant(DAG, 0xbdd49a13, dl)); 4595 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4596 getF32Constant(DAG, 0x3f1c0789, dl)); 4597 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4598 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4599 getF32Constant(DAG, 0x3f011300, dl)); 4600 } else if (LimitFloatPrecision <= 12) { 4601 // For floating-point precision of 12: 4602 // 4603 // Log10ofMantissa = 4604 // -0.64831180f + 4605 // (0.91751397f + 4606 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4607 // 4608 // error 0.00019228036, which is better than 12 bits 4609 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4610 getF32Constant(DAG, 0x3d431f31, dl)); 4611 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4612 getF32Constant(DAG, 0x3ea21fb2, dl)); 4613 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4614 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4615 getF32Constant(DAG, 0x3f6ae232, dl)); 4616 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4617 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4618 getF32Constant(DAG, 0x3f25f7c3, dl)); 4619 } else { // LimitFloatPrecision <= 18 4620 // For floating-point precision of 18: 4621 // 4622 // Log10ofMantissa = 4623 // -0.84299375f + 4624 // (1.5327582f + 4625 // (-1.0688956f + 4626 // (0.49102474f + 4627 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4628 // 4629 // error 0.0000037995730, which is better than 18 bits 4630 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4631 getF32Constant(DAG, 0x3c5d51ce, dl)); 4632 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4633 getF32Constant(DAG, 0x3e00685a, dl)); 4634 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4635 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4636 getF32Constant(DAG, 0x3efb6798, dl)); 4637 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4638 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4639 getF32Constant(DAG, 0x3f88d192, dl)); 4640 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4641 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4642 getF32Constant(DAG, 0x3fc4316c, dl)); 4643 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4644 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4645 getF32Constant(DAG, 0x3f57ce70, dl)); 4646 } 4647 4648 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4649 } 4650 4651 // No special expansion. 4652 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4653 } 4654 4655 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4656 /// limited-precision mode. 4657 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4658 const TargetLowering &TLI) { 4659 if (Op.getValueType() == MVT::f32 && 4660 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4661 return getLimitedPrecisionExp2(Op, dl, DAG); 4662 4663 // No special expansion. 4664 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4665 } 4666 4667 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4668 /// limited-precision mode with x == 10.0f. 4669 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4670 SelectionDAG &DAG, const TargetLowering &TLI) { 4671 bool IsExp10 = false; 4672 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4673 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4674 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4675 APFloat Ten(10.0f); 4676 IsExp10 = LHSC->isExactlyValue(Ten); 4677 } 4678 } 4679 4680 // TODO: What fast-math-flags should be set on the FMUL node? 4681 if (IsExp10) { 4682 // Put the exponent in the right bit position for later addition to the 4683 // final result: 4684 // 4685 // #define LOG2OF10 3.3219281f 4686 // t0 = Op * LOG2OF10; 4687 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4688 getF32Constant(DAG, 0x40549a78, dl)); 4689 return getLimitedPrecisionExp2(t0, dl, DAG); 4690 } 4691 4692 // No special expansion. 4693 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4694 } 4695 4696 4697 /// ExpandPowI - Expand a llvm.powi intrinsic. 4698 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4699 SelectionDAG &DAG) { 4700 // If RHS is a constant, we can expand this out to a multiplication tree, 4701 // otherwise we end up lowering to a call to __powidf2 (for example). When 4702 // optimizing for size, we only want to do this if the expansion would produce 4703 // a small number of multiplies, otherwise we do the full expansion. 4704 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4705 // Get the exponent as a positive value. 4706 unsigned Val = RHSC->getSExtValue(); 4707 if ((int)Val < 0) Val = -Val; 4708 4709 // powi(x, 0) -> 1.0 4710 if (Val == 0) 4711 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4712 4713 const Function *F = DAG.getMachineFunction().getFunction(); 4714 if (!F->optForSize() || 4715 // If optimizing for size, don't insert too many multiplies. 4716 // This inserts up to 5 multiplies. 4717 countPopulation(Val) + Log2_32(Val) < 7) { 4718 // We use the simple binary decomposition method to generate the multiply 4719 // sequence. There are more optimal ways to do this (for example, 4720 // powi(x,15) generates one more multiply than it should), but this has 4721 // the benefit of being both really simple and much better than a libcall. 4722 SDValue Res; // Logically starts equal to 1.0 4723 SDValue CurSquare = LHS; 4724 // TODO: Intrinsics should have fast-math-flags that propagate to these 4725 // nodes. 4726 while (Val) { 4727 if (Val & 1) { 4728 if (Res.getNode()) 4729 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4730 else 4731 Res = CurSquare; // 1.0*CurSquare. 4732 } 4733 4734 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4735 CurSquare, CurSquare); 4736 Val >>= 1; 4737 } 4738 4739 // If the original was negative, invert the result, producing 1/(x*x*x). 4740 if (RHSC->getSExtValue() < 0) 4741 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4742 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4743 return Res; 4744 } 4745 } 4746 4747 // Otherwise, expand to a libcall. 4748 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4749 } 4750 4751 // getUnderlyingArgReg - Find underlying register used for a truncated or 4752 // bitcasted argument. 4753 static unsigned getUnderlyingArgReg(const SDValue &N) { 4754 switch (N.getOpcode()) { 4755 case ISD::CopyFromReg: 4756 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4757 case ISD::BITCAST: 4758 case ISD::AssertZext: 4759 case ISD::AssertSext: 4760 case ISD::TRUNCATE: 4761 return getUnderlyingArgReg(N.getOperand(0)); 4762 default: 4763 return 0; 4764 } 4765 } 4766 4767 /// If the DbgValueInst is a dbg_value of a function argument, create the 4768 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4769 /// instruction selection, they will be inserted to the entry BB. 4770 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4771 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4772 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4773 const Argument *Arg = dyn_cast<Argument>(V); 4774 if (!Arg) 4775 return false; 4776 4777 MachineFunction &MF = DAG.getMachineFunction(); 4778 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4779 4780 // Ignore inlined function arguments here. 4781 // 4782 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4783 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4784 return false; 4785 4786 bool IsIndirect = false; 4787 Optional<MachineOperand> Op; 4788 // Some arguments' frame index is recorded during argument lowering. 4789 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4790 if (FI != INT_MAX) 4791 Op = MachineOperand::CreateFI(FI); 4792 4793 if (!Op && N.getNode()) { 4794 unsigned Reg = getUnderlyingArgReg(N); 4795 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4796 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4797 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4798 if (PR) 4799 Reg = PR; 4800 } 4801 if (Reg) { 4802 Op = MachineOperand::CreateReg(Reg, false); 4803 IsIndirect = IsDbgDeclare; 4804 } 4805 } 4806 4807 if (!Op) { 4808 // Check if ValueMap has reg number. 4809 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4810 if (VMI != FuncInfo.ValueMap.end()) { 4811 Op = MachineOperand::CreateReg(VMI->second, false); 4812 IsIndirect = IsDbgDeclare; 4813 } 4814 } 4815 4816 if (!Op && N.getNode()) 4817 // Check if frame index is available. 4818 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4819 if (FrameIndexSDNode *FINode = 4820 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4821 Op = MachineOperand::CreateFI(FINode->getIndex()); 4822 4823 if (!Op) 4824 return false; 4825 4826 assert(Variable->isValidLocationForIntrinsic(DL) && 4827 "Expected inlined-at fields to agree"); 4828 if (Op->isReg()) 4829 FuncInfo.ArgDbgValues.push_back( 4830 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4831 Op->getReg(), Variable, Expr)); 4832 else 4833 FuncInfo.ArgDbgValues.push_back( 4834 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4835 .add(*Op) 4836 .addImm(0) 4837 .addMetadata(Variable) 4838 .addMetadata(Expr)); 4839 4840 return true; 4841 } 4842 4843 /// Return the appropriate SDDbgValue based on N. 4844 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4845 DILocalVariable *Variable, 4846 DIExpression *Expr, 4847 const DebugLoc &dl, 4848 unsigned DbgSDNodeOrder) { 4849 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4850 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4851 // stack slot locations as such instead of as indirectly addressed 4852 // locations. 4853 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4854 DbgSDNodeOrder); 4855 } 4856 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4857 DbgSDNodeOrder); 4858 } 4859 4860 // VisualStudio defines setjmp as _setjmp 4861 #if defined(_MSC_VER) && defined(setjmp) && \ 4862 !defined(setjmp_undefined_for_msvc) 4863 # pragma push_macro("setjmp") 4864 # undef setjmp 4865 # define setjmp_undefined_for_msvc 4866 #endif 4867 4868 /// Lower the call to the specified intrinsic function. If we want to emit this 4869 /// as a call to a named external function, return the name. Otherwise, lower it 4870 /// and return null. 4871 const char * 4872 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4873 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4874 SDLoc sdl = getCurSDLoc(); 4875 DebugLoc dl = getCurDebugLoc(); 4876 SDValue Res; 4877 4878 switch (Intrinsic) { 4879 default: 4880 // By default, turn this into a target intrinsic node. 4881 visitTargetIntrinsic(I, Intrinsic); 4882 return nullptr; 4883 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4884 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4885 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4886 case Intrinsic::returnaddress: 4887 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4888 TLI.getPointerTy(DAG.getDataLayout()), 4889 getValue(I.getArgOperand(0)))); 4890 return nullptr; 4891 case Intrinsic::addressofreturnaddress: 4892 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 4893 TLI.getPointerTy(DAG.getDataLayout()))); 4894 return nullptr; 4895 case Intrinsic::frameaddress: 4896 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4897 TLI.getPointerTy(DAG.getDataLayout()), 4898 getValue(I.getArgOperand(0)))); 4899 return nullptr; 4900 case Intrinsic::read_register: { 4901 Value *Reg = I.getArgOperand(0); 4902 SDValue Chain = getRoot(); 4903 SDValue RegName = 4904 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4905 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4906 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4907 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4908 setValue(&I, Res); 4909 DAG.setRoot(Res.getValue(1)); 4910 return nullptr; 4911 } 4912 case Intrinsic::write_register: { 4913 Value *Reg = I.getArgOperand(0); 4914 Value *RegValue = I.getArgOperand(1); 4915 SDValue Chain = getRoot(); 4916 SDValue RegName = 4917 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4918 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4919 RegName, getValue(RegValue))); 4920 return nullptr; 4921 } 4922 case Intrinsic::setjmp: 4923 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4924 case Intrinsic::longjmp: 4925 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4926 case Intrinsic::memcpy: { 4927 SDValue Op1 = getValue(I.getArgOperand(0)); 4928 SDValue Op2 = getValue(I.getArgOperand(1)); 4929 SDValue Op3 = getValue(I.getArgOperand(2)); 4930 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4931 if (!Align) 4932 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4933 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4934 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4935 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4936 false, isTC, 4937 MachinePointerInfo(I.getArgOperand(0)), 4938 MachinePointerInfo(I.getArgOperand(1))); 4939 updateDAGForMaybeTailCall(MC); 4940 return nullptr; 4941 } 4942 case Intrinsic::memset: { 4943 SDValue Op1 = getValue(I.getArgOperand(0)); 4944 SDValue Op2 = getValue(I.getArgOperand(1)); 4945 SDValue Op3 = getValue(I.getArgOperand(2)); 4946 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4947 if (!Align) 4948 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4949 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4950 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4951 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4952 isTC, MachinePointerInfo(I.getArgOperand(0))); 4953 updateDAGForMaybeTailCall(MS); 4954 return nullptr; 4955 } 4956 case Intrinsic::memmove: { 4957 SDValue Op1 = getValue(I.getArgOperand(0)); 4958 SDValue Op2 = getValue(I.getArgOperand(1)); 4959 SDValue Op3 = getValue(I.getArgOperand(2)); 4960 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4961 if (!Align) 4962 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4963 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4964 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4965 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4966 isTC, MachinePointerInfo(I.getArgOperand(0)), 4967 MachinePointerInfo(I.getArgOperand(1))); 4968 updateDAGForMaybeTailCall(MM); 4969 return nullptr; 4970 } 4971 case Intrinsic::memcpy_element_unordered_atomic: { 4972 const ElementUnorderedAtomicMemCpyInst &MI = 4973 cast<ElementUnorderedAtomicMemCpyInst>(I); 4974 SDValue Dst = getValue(MI.getRawDest()); 4975 SDValue Src = getValue(MI.getRawSource()); 4976 SDValue Length = getValue(MI.getLength()); 4977 4978 // Emit a library call. 4979 TargetLowering::ArgListTy Args; 4980 TargetLowering::ArgListEntry Entry; 4981 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 4982 Entry.Node = Dst; 4983 Args.push_back(Entry); 4984 4985 Entry.Node = Src; 4986 Args.push_back(Entry); 4987 4988 Entry.Ty = MI.getLength()->getType(); 4989 Entry.Node = Length; 4990 Args.push_back(Entry); 4991 4992 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 4993 RTLIB::Libcall LibraryCall = 4994 RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 4995 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 4996 report_fatal_error("Unsupported element size"); 4997 4998 TargetLowering::CallLoweringInfo CLI(DAG); 4999 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5000 TLI.getLibcallCallingConv(LibraryCall), 5001 Type::getVoidTy(*DAG.getContext()), 5002 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5003 TLI.getPointerTy(DAG.getDataLayout())), 5004 std::move(Args)); 5005 5006 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5007 DAG.setRoot(CallResult.second); 5008 return nullptr; 5009 } 5010 case Intrinsic::memmove_element_unordered_atomic: { 5011 auto &MI = cast<ElementUnorderedAtomicMemMoveInst>(I); 5012 SDValue Dst = getValue(MI.getRawDest()); 5013 SDValue Src = getValue(MI.getRawSource()); 5014 SDValue Length = getValue(MI.getLength()); 5015 5016 // Emit a library call. 5017 TargetLowering::ArgListTy Args; 5018 TargetLowering::ArgListEntry Entry; 5019 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5020 Entry.Node = Dst; 5021 Args.push_back(Entry); 5022 5023 Entry.Node = Src; 5024 Args.push_back(Entry); 5025 5026 Entry.Ty = MI.getLength()->getType(); 5027 Entry.Node = Length; 5028 Args.push_back(Entry); 5029 5030 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5031 RTLIB::Libcall LibraryCall = 5032 RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5033 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5034 report_fatal_error("Unsupported element size"); 5035 5036 TargetLowering::CallLoweringInfo CLI(DAG); 5037 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5038 TLI.getLibcallCallingConv(LibraryCall), 5039 Type::getVoidTy(*DAG.getContext()), 5040 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5041 TLI.getPointerTy(DAG.getDataLayout())), 5042 std::move(Args)); 5043 5044 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5045 DAG.setRoot(CallResult.second); 5046 return nullptr; 5047 } 5048 case Intrinsic::memset_element_unordered_atomic: { 5049 auto &MI = cast<ElementUnorderedAtomicMemSetInst>(I); 5050 SDValue Dst = getValue(MI.getRawDest()); 5051 SDValue Val = getValue(MI.getValue()); 5052 SDValue Length = getValue(MI.getLength()); 5053 5054 // Emit a library call. 5055 TargetLowering::ArgListTy Args; 5056 TargetLowering::ArgListEntry Entry; 5057 Entry.Ty = DAG.getDataLayout().getIntPtrType(*DAG.getContext()); 5058 Entry.Node = Dst; 5059 Args.push_back(Entry); 5060 5061 Entry.Ty = Type::getInt8Ty(*DAG.getContext()); 5062 Entry.Node = Val; 5063 Args.push_back(Entry); 5064 5065 Entry.Ty = MI.getLength()->getType(); 5066 Entry.Node = Length; 5067 Args.push_back(Entry); 5068 5069 uint64_t ElementSizeConstant = MI.getElementSizeInBytes(); 5070 RTLIB::Libcall LibraryCall = 5071 RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(ElementSizeConstant); 5072 if (LibraryCall == RTLIB::UNKNOWN_LIBCALL) 5073 report_fatal_error("Unsupported element size"); 5074 5075 TargetLowering::CallLoweringInfo CLI(DAG); 5076 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5077 TLI.getLibcallCallingConv(LibraryCall), 5078 Type::getVoidTy(*DAG.getContext()), 5079 DAG.getExternalSymbol(TLI.getLibcallName(LibraryCall), 5080 TLI.getPointerTy(DAG.getDataLayout())), 5081 std::move(Args)); 5082 5083 std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI); 5084 DAG.setRoot(CallResult.second); 5085 return nullptr; 5086 } 5087 case Intrinsic::dbg_declare: { 5088 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 5089 DILocalVariable *Variable = DI.getVariable(); 5090 DIExpression *Expression = DI.getExpression(); 5091 const Value *Address = DI.getAddress(); 5092 assert(Variable && "Missing variable"); 5093 if (!Address) { 5094 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5095 return nullptr; 5096 } 5097 5098 // Check if address has undef value. 5099 if (isa<UndefValue>(Address) || 5100 (Address->use_empty() && !isa<Argument>(Address))) { 5101 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5102 return nullptr; 5103 } 5104 5105 // Byval arguments with frame indices were already handled after argument 5106 // lowering and before isel. 5107 const auto *Arg = 5108 dyn_cast<Argument>(Address->stripInBoundsConstantOffsets()); 5109 if (Arg && FuncInfo.getArgumentFrameIndex(Arg) != INT_MAX) 5110 return nullptr; 5111 5112 SDValue &N = NodeMap[Address]; 5113 if (!N.getNode() && isa<Argument>(Address)) 5114 // Check unused arguments map. 5115 N = UnusedArgNodeMap[Address]; 5116 SDDbgValue *SDV; 5117 if (N.getNode()) { 5118 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5119 Address = BCI->getOperand(0); 5120 // Parameters are handled specially. 5121 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5122 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5123 if (isParameter && FINode) { 5124 // Byval parameter. We have a frame index at this point. 5125 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5126 FINode->getIndex(), dl, SDNodeOrder); 5127 } else if (isa<Argument>(Address)) { 5128 // Address is an argument, so try to emit its dbg value using 5129 // virtual register info from the FuncInfo.ValueMap. 5130 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5131 return nullptr; 5132 } else { 5133 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5134 true, dl, SDNodeOrder); 5135 } 5136 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5137 } else { 5138 // If Address is an argument then try to emit its dbg value using 5139 // virtual register info from the FuncInfo.ValueMap. 5140 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5141 N)) { 5142 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5143 } 5144 } 5145 return nullptr; 5146 } 5147 case Intrinsic::dbg_value: { 5148 const DbgValueInst &DI = cast<DbgValueInst>(I); 5149 assert(DI.getVariable() && "Missing variable"); 5150 5151 DILocalVariable *Variable = DI.getVariable(); 5152 DIExpression *Expression = DI.getExpression(); 5153 const Value *V = DI.getValue(); 5154 if (!V) 5155 return nullptr; 5156 5157 SDDbgValue *SDV; 5158 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5159 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5160 DAG.AddDbgValue(SDV, nullptr, false); 5161 return nullptr; 5162 } 5163 5164 // Do not use getValue() in here; we don't want to generate code at 5165 // this point if it hasn't been done yet. 5166 SDValue N = NodeMap[V]; 5167 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5168 N = UnusedArgNodeMap[V]; 5169 if (N.getNode()) { 5170 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5171 return nullptr; 5172 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5173 DAG.AddDbgValue(SDV, N.getNode(), false); 5174 return nullptr; 5175 } 5176 5177 if (!V->use_empty() ) { 5178 // Do not call getValue(V) yet, as we don't want to generate code. 5179 // Remember it for later. 5180 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5181 DanglingDebugInfoMap[V] = DDI; 5182 return nullptr; 5183 } 5184 5185 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5186 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5187 return nullptr; 5188 } 5189 5190 case Intrinsic::eh_typeid_for: { 5191 // Find the type id for the given typeinfo. 5192 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5193 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5194 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5195 setValue(&I, Res); 5196 return nullptr; 5197 } 5198 5199 case Intrinsic::eh_return_i32: 5200 case Intrinsic::eh_return_i64: 5201 DAG.getMachineFunction().setCallsEHReturn(true); 5202 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5203 MVT::Other, 5204 getControlRoot(), 5205 getValue(I.getArgOperand(0)), 5206 getValue(I.getArgOperand(1)))); 5207 return nullptr; 5208 case Intrinsic::eh_unwind_init: 5209 DAG.getMachineFunction().setCallsUnwindInit(true); 5210 return nullptr; 5211 case Intrinsic::eh_dwarf_cfa: { 5212 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5213 TLI.getPointerTy(DAG.getDataLayout()), 5214 getValue(I.getArgOperand(0)))); 5215 return nullptr; 5216 } 5217 case Intrinsic::eh_sjlj_callsite: { 5218 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5219 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5220 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5221 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5222 5223 MMI.setCurrentCallSite(CI->getZExtValue()); 5224 return nullptr; 5225 } 5226 case Intrinsic::eh_sjlj_functioncontext: { 5227 // Get and store the index of the function context. 5228 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5229 AllocaInst *FnCtx = 5230 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5231 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5232 MFI.setFunctionContextIndex(FI); 5233 return nullptr; 5234 } 5235 case Intrinsic::eh_sjlj_setjmp: { 5236 SDValue Ops[2]; 5237 Ops[0] = getRoot(); 5238 Ops[1] = getValue(I.getArgOperand(0)); 5239 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5240 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5241 setValue(&I, Op.getValue(0)); 5242 DAG.setRoot(Op.getValue(1)); 5243 return nullptr; 5244 } 5245 case Intrinsic::eh_sjlj_longjmp: { 5246 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5247 getRoot(), getValue(I.getArgOperand(0)))); 5248 return nullptr; 5249 } 5250 case Intrinsic::eh_sjlj_setup_dispatch: { 5251 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5252 getRoot())); 5253 return nullptr; 5254 } 5255 5256 case Intrinsic::masked_gather: 5257 visitMaskedGather(I); 5258 return nullptr; 5259 case Intrinsic::masked_load: 5260 visitMaskedLoad(I); 5261 return nullptr; 5262 case Intrinsic::masked_scatter: 5263 visitMaskedScatter(I); 5264 return nullptr; 5265 case Intrinsic::masked_store: 5266 visitMaskedStore(I); 5267 return nullptr; 5268 case Intrinsic::masked_expandload: 5269 visitMaskedLoad(I, true /* IsExpanding */); 5270 return nullptr; 5271 case Intrinsic::masked_compressstore: 5272 visitMaskedStore(I, true /* IsCompressing */); 5273 return nullptr; 5274 case Intrinsic::x86_mmx_pslli_w: 5275 case Intrinsic::x86_mmx_pslli_d: 5276 case Intrinsic::x86_mmx_pslli_q: 5277 case Intrinsic::x86_mmx_psrli_w: 5278 case Intrinsic::x86_mmx_psrli_d: 5279 case Intrinsic::x86_mmx_psrli_q: 5280 case Intrinsic::x86_mmx_psrai_w: 5281 case Intrinsic::x86_mmx_psrai_d: { 5282 SDValue ShAmt = getValue(I.getArgOperand(1)); 5283 if (isa<ConstantSDNode>(ShAmt)) { 5284 visitTargetIntrinsic(I, Intrinsic); 5285 return nullptr; 5286 } 5287 unsigned NewIntrinsic = 0; 5288 EVT ShAmtVT = MVT::v2i32; 5289 switch (Intrinsic) { 5290 case Intrinsic::x86_mmx_pslli_w: 5291 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5292 break; 5293 case Intrinsic::x86_mmx_pslli_d: 5294 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5295 break; 5296 case Intrinsic::x86_mmx_pslli_q: 5297 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5298 break; 5299 case Intrinsic::x86_mmx_psrli_w: 5300 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5301 break; 5302 case Intrinsic::x86_mmx_psrli_d: 5303 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5304 break; 5305 case Intrinsic::x86_mmx_psrli_q: 5306 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5307 break; 5308 case Intrinsic::x86_mmx_psrai_w: 5309 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5310 break; 5311 case Intrinsic::x86_mmx_psrai_d: 5312 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5313 break; 5314 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5315 } 5316 5317 // The vector shift intrinsics with scalars uses 32b shift amounts but 5318 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5319 // to be zero. 5320 // We must do this early because v2i32 is not a legal type. 5321 SDValue ShOps[2]; 5322 ShOps[0] = ShAmt; 5323 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5324 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5325 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5326 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5327 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5328 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5329 getValue(I.getArgOperand(0)), ShAmt); 5330 setValue(&I, Res); 5331 return nullptr; 5332 } 5333 case Intrinsic::powi: 5334 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5335 getValue(I.getArgOperand(1)), DAG)); 5336 return nullptr; 5337 case Intrinsic::log: 5338 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5339 return nullptr; 5340 case Intrinsic::log2: 5341 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5342 return nullptr; 5343 case Intrinsic::log10: 5344 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5345 return nullptr; 5346 case Intrinsic::exp: 5347 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5348 return nullptr; 5349 case Intrinsic::exp2: 5350 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5351 return nullptr; 5352 case Intrinsic::pow: 5353 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5354 getValue(I.getArgOperand(1)), DAG, TLI)); 5355 return nullptr; 5356 case Intrinsic::sqrt: 5357 case Intrinsic::fabs: 5358 case Intrinsic::sin: 5359 case Intrinsic::cos: 5360 case Intrinsic::floor: 5361 case Intrinsic::ceil: 5362 case Intrinsic::trunc: 5363 case Intrinsic::rint: 5364 case Intrinsic::nearbyint: 5365 case Intrinsic::round: 5366 case Intrinsic::canonicalize: { 5367 unsigned Opcode; 5368 switch (Intrinsic) { 5369 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5370 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5371 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5372 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5373 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5374 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5375 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5376 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5377 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5378 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5379 case Intrinsic::round: Opcode = ISD::FROUND; break; 5380 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5381 } 5382 5383 setValue(&I, DAG.getNode(Opcode, sdl, 5384 getValue(I.getArgOperand(0)).getValueType(), 5385 getValue(I.getArgOperand(0)))); 5386 return nullptr; 5387 } 5388 case Intrinsic::minnum: { 5389 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5390 unsigned Opc = 5391 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5392 ? ISD::FMINNAN 5393 : ISD::FMINNUM; 5394 setValue(&I, DAG.getNode(Opc, sdl, VT, 5395 getValue(I.getArgOperand(0)), 5396 getValue(I.getArgOperand(1)))); 5397 return nullptr; 5398 } 5399 case Intrinsic::maxnum: { 5400 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5401 unsigned Opc = 5402 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5403 ? ISD::FMAXNAN 5404 : ISD::FMAXNUM; 5405 setValue(&I, DAG.getNode(Opc, sdl, VT, 5406 getValue(I.getArgOperand(0)), 5407 getValue(I.getArgOperand(1)))); 5408 return nullptr; 5409 } 5410 case Intrinsic::copysign: 5411 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5412 getValue(I.getArgOperand(0)).getValueType(), 5413 getValue(I.getArgOperand(0)), 5414 getValue(I.getArgOperand(1)))); 5415 return nullptr; 5416 case Intrinsic::fma: 5417 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5418 getValue(I.getArgOperand(0)).getValueType(), 5419 getValue(I.getArgOperand(0)), 5420 getValue(I.getArgOperand(1)), 5421 getValue(I.getArgOperand(2)))); 5422 return nullptr; 5423 case Intrinsic::experimental_constrained_fadd: 5424 case Intrinsic::experimental_constrained_fsub: 5425 case Intrinsic::experimental_constrained_fmul: 5426 case Intrinsic::experimental_constrained_fdiv: 5427 case Intrinsic::experimental_constrained_frem: 5428 case Intrinsic::experimental_constrained_sqrt: 5429 case Intrinsic::experimental_constrained_pow: 5430 case Intrinsic::experimental_constrained_powi: 5431 case Intrinsic::experimental_constrained_sin: 5432 case Intrinsic::experimental_constrained_cos: 5433 case Intrinsic::experimental_constrained_exp: 5434 case Intrinsic::experimental_constrained_exp2: 5435 case Intrinsic::experimental_constrained_log: 5436 case Intrinsic::experimental_constrained_log10: 5437 case Intrinsic::experimental_constrained_log2: 5438 case Intrinsic::experimental_constrained_rint: 5439 case Intrinsic::experimental_constrained_nearbyint: 5440 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5441 return nullptr; 5442 case Intrinsic::fmuladd: { 5443 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5444 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5445 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5446 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5447 getValue(I.getArgOperand(0)).getValueType(), 5448 getValue(I.getArgOperand(0)), 5449 getValue(I.getArgOperand(1)), 5450 getValue(I.getArgOperand(2)))); 5451 } else { 5452 // TODO: Intrinsic calls should have fast-math-flags. 5453 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5454 getValue(I.getArgOperand(0)).getValueType(), 5455 getValue(I.getArgOperand(0)), 5456 getValue(I.getArgOperand(1))); 5457 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5458 getValue(I.getArgOperand(0)).getValueType(), 5459 Mul, 5460 getValue(I.getArgOperand(2))); 5461 setValue(&I, Add); 5462 } 5463 return nullptr; 5464 } 5465 case Intrinsic::convert_to_fp16: 5466 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5467 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5468 getValue(I.getArgOperand(0)), 5469 DAG.getTargetConstant(0, sdl, 5470 MVT::i32)))); 5471 return nullptr; 5472 case Intrinsic::convert_from_fp16: 5473 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5474 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5475 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5476 getValue(I.getArgOperand(0))))); 5477 return nullptr; 5478 case Intrinsic::pcmarker: { 5479 SDValue Tmp = getValue(I.getArgOperand(0)); 5480 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5481 return nullptr; 5482 } 5483 case Intrinsic::readcyclecounter: { 5484 SDValue Op = getRoot(); 5485 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5486 DAG.getVTList(MVT::i64, MVT::Other), Op); 5487 setValue(&I, Res); 5488 DAG.setRoot(Res.getValue(1)); 5489 return nullptr; 5490 } 5491 case Intrinsic::bitreverse: 5492 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5493 getValue(I.getArgOperand(0)).getValueType(), 5494 getValue(I.getArgOperand(0)))); 5495 return nullptr; 5496 case Intrinsic::bswap: 5497 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5498 getValue(I.getArgOperand(0)).getValueType(), 5499 getValue(I.getArgOperand(0)))); 5500 return nullptr; 5501 case Intrinsic::cttz: { 5502 SDValue Arg = getValue(I.getArgOperand(0)); 5503 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5504 EVT Ty = Arg.getValueType(); 5505 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5506 sdl, Ty, Arg)); 5507 return nullptr; 5508 } 5509 case Intrinsic::ctlz: { 5510 SDValue Arg = getValue(I.getArgOperand(0)); 5511 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5512 EVT Ty = Arg.getValueType(); 5513 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5514 sdl, Ty, Arg)); 5515 return nullptr; 5516 } 5517 case Intrinsic::ctpop: { 5518 SDValue Arg = getValue(I.getArgOperand(0)); 5519 EVT Ty = Arg.getValueType(); 5520 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5521 return nullptr; 5522 } 5523 case Intrinsic::stacksave: { 5524 SDValue Op = getRoot(); 5525 Res = DAG.getNode( 5526 ISD::STACKSAVE, sdl, 5527 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5528 setValue(&I, Res); 5529 DAG.setRoot(Res.getValue(1)); 5530 return nullptr; 5531 } 5532 case Intrinsic::stackrestore: { 5533 Res = getValue(I.getArgOperand(0)); 5534 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5535 return nullptr; 5536 } 5537 case Intrinsic::get_dynamic_area_offset: { 5538 SDValue Op = getRoot(); 5539 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5540 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5541 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5542 // target. 5543 if (PtrTy != ResTy) 5544 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5545 " intrinsic!"); 5546 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5547 Op); 5548 DAG.setRoot(Op); 5549 setValue(&I, Res); 5550 return nullptr; 5551 } 5552 case Intrinsic::stackguard: { 5553 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5554 MachineFunction &MF = DAG.getMachineFunction(); 5555 const Module &M = *MF.getFunction()->getParent(); 5556 SDValue Chain = getRoot(); 5557 if (TLI.useLoadStackGuardNode()) { 5558 Res = getLoadStackGuard(DAG, sdl, Chain); 5559 } else { 5560 const Value *Global = TLI.getSDagStackGuard(M); 5561 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5562 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5563 MachinePointerInfo(Global, 0), Align, 5564 MachineMemOperand::MOVolatile); 5565 } 5566 DAG.setRoot(Chain); 5567 setValue(&I, Res); 5568 return nullptr; 5569 } 5570 case Intrinsic::stackprotector: { 5571 // Emit code into the DAG to store the stack guard onto the stack. 5572 MachineFunction &MF = DAG.getMachineFunction(); 5573 MachineFrameInfo &MFI = MF.getFrameInfo(); 5574 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5575 SDValue Src, Chain = getRoot(); 5576 5577 if (TLI.useLoadStackGuardNode()) 5578 Src = getLoadStackGuard(DAG, sdl, Chain); 5579 else 5580 Src = getValue(I.getArgOperand(0)); // The guard's value. 5581 5582 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5583 5584 int FI = FuncInfo.StaticAllocaMap[Slot]; 5585 MFI.setStackProtectorIndex(FI); 5586 5587 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5588 5589 // Store the stack protector onto the stack. 5590 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5591 DAG.getMachineFunction(), FI), 5592 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5593 setValue(&I, Res); 5594 DAG.setRoot(Res); 5595 return nullptr; 5596 } 5597 case Intrinsic::objectsize: { 5598 // If we don't know by now, we're never going to know. 5599 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5600 5601 assert(CI && "Non-constant type in __builtin_object_size?"); 5602 5603 SDValue Arg = getValue(I.getCalledValue()); 5604 EVT Ty = Arg.getValueType(); 5605 5606 if (CI->isZero()) 5607 Res = DAG.getConstant(-1ULL, sdl, Ty); 5608 else 5609 Res = DAG.getConstant(0, sdl, Ty); 5610 5611 setValue(&I, Res); 5612 return nullptr; 5613 } 5614 case Intrinsic::annotation: 5615 case Intrinsic::ptr_annotation: 5616 case Intrinsic::invariant_group_barrier: 5617 // Drop the intrinsic, but forward the value 5618 setValue(&I, getValue(I.getOperand(0))); 5619 return nullptr; 5620 case Intrinsic::assume: 5621 case Intrinsic::var_annotation: 5622 // Discard annotate attributes and assumptions 5623 return nullptr; 5624 5625 case Intrinsic::init_trampoline: { 5626 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5627 5628 SDValue Ops[6]; 5629 Ops[0] = getRoot(); 5630 Ops[1] = getValue(I.getArgOperand(0)); 5631 Ops[2] = getValue(I.getArgOperand(1)); 5632 Ops[3] = getValue(I.getArgOperand(2)); 5633 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5634 Ops[5] = DAG.getSrcValue(F); 5635 5636 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5637 5638 DAG.setRoot(Res); 5639 return nullptr; 5640 } 5641 case Intrinsic::adjust_trampoline: { 5642 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5643 TLI.getPointerTy(DAG.getDataLayout()), 5644 getValue(I.getArgOperand(0)))); 5645 return nullptr; 5646 } 5647 case Intrinsic::gcroot: { 5648 MachineFunction &MF = DAG.getMachineFunction(); 5649 const Function *F = MF.getFunction(); 5650 (void)F; 5651 assert(F->hasGC() && 5652 "only valid in functions with gc specified, enforced by Verifier"); 5653 assert(GFI && "implied by previous"); 5654 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5655 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5656 5657 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5658 GFI->addStackRoot(FI->getIndex(), TypeMap); 5659 return nullptr; 5660 } 5661 case Intrinsic::gcread: 5662 case Intrinsic::gcwrite: 5663 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5664 case Intrinsic::flt_rounds: 5665 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5666 return nullptr; 5667 5668 case Intrinsic::expect: { 5669 // Just replace __builtin_expect(exp, c) with EXP. 5670 setValue(&I, getValue(I.getArgOperand(0))); 5671 return nullptr; 5672 } 5673 5674 case Intrinsic::debugtrap: 5675 case Intrinsic::trap: { 5676 StringRef TrapFuncName = 5677 I.getAttributes() 5678 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5679 .getValueAsString(); 5680 if (TrapFuncName.empty()) { 5681 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5682 ISD::TRAP : ISD::DEBUGTRAP; 5683 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5684 return nullptr; 5685 } 5686 TargetLowering::ArgListTy Args; 5687 5688 TargetLowering::CallLoweringInfo CLI(DAG); 5689 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5690 CallingConv::C, I.getType(), 5691 DAG.getExternalSymbol(TrapFuncName.data(), 5692 TLI.getPointerTy(DAG.getDataLayout())), 5693 std::move(Args)); 5694 5695 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5696 DAG.setRoot(Result.second); 5697 return nullptr; 5698 } 5699 5700 case Intrinsic::uadd_with_overflow: 5701 case Intrinsic::sadd_with_overflow: 5702 case Intrinsic::usub_with_overflow: 5703 case Intrinsic::ssub_with_overflow: 5704 case Intrinsic::umul_with_overflow: 5705 case Intrinsic::smul_with_overflow: { 5706 ISD::NodeType Op; 5707 switch (Intrinsic) { 5708 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5709 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5710 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5711 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5712 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5713 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5714 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5715 } 5716 SDValue Op1 = getValue(I.getArgOperand(0)); 5717 SDValue Op2 = getValue(I.getArgOperand(1)); 5718 5719 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5720 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5721 return nullptr; 5722 } 5723 case Intrinsic::prefetch: { 5724 SDValue Ops[5]; 5725 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5726 Ops[0] = getRoot(); 5727 Ops[1] = getValue(I.getArgOperand(0)); 5728 Ops[2] = getValue(I.getArgOperand(1)); 5729 Ops[3] = getValue(I.getArgOperand(2)); 5730 Ops[4] = getValue(I.getArgOperand(3)); 5731 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5732 DAG.getVTList(MVT::Other), Ops, 5733 EVT::getIntegerVT(*Context, 8), 5734 MachinePointerInfo(I.getArgOperand(0)), 5735 0, /* align */ 5736 false, /* volatile */ 5737 rw==0, /* read */ 5738 rw==1)); /* write */ 5739 return nullptr; 5740 } 5741 case Intrinsic::lifetime_start: 5742 case Intrinsic::lifetime_end: { 5743 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5744 // Stack coloring is not enabled in O0, discard region information. 5745 if (TM.getOptLevel() == CodeGenOpt::None) 5746 return nullptr; 5747 5748 SmallVector<Value *, 4> Allocas; 5749 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5750 5751 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5752 E = Allocas.end(); Object != E; ++Object) { 5753 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5754 5755 // Could not find an Alloca. 5756 if (!LifetimeObject) 5757 continue; 5758 5759 // First check that the Alloca is static, otherwise it won't have a 5760 // valid frame index. 5761 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5762 if (SI == FuncInfo.StaticAllocaMap.end()) 5763 return nullptr; 5764 5765 int FI = SI->second; 5766 5767 SDValue Ops[2]; 5768 Ops[0] = getRoot(); 5769 Ops[1] = 5770 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5771 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5772 5773 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5774 DAG.setRoot(Res); 5775 } 5776 return nullptr; 5777 } 5778 case Intrinsic::invariant_start: 5779 // Discard region information. 5780 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5781 return nullptr; 5782 case Intrinsic::invariant_end: 5783 // Discard region information. 5784 return nullptr; 5785 case Intrinsic::clear_cache: 5786 return TLI.getClearCacheBuiltinName(); 5787 case Intrinsic::donothing: 5788 // ignore 5789 return nullptr; 5790 case Intrinsic::experimental_stackmap: { 5791 visitStackmap(I); 5792 return nullptr; 5793 } 5794 case Intrinsic::experimental_patchpoint_void: 5795 case Intrinsic::experimental_patchpoint_i64: { 5796 visitPatchpoint(&I); 5797 return nullptr; 5798 } 5799 case Intrinsic::experimental_gc_statepoint: { 5800 LowerStatepoint(ImmutableStatepoint(&I)); 5801 return nullptr; 5802 } 5803 case Intrinsic::experimental_gc_result: { 5804 visitGCResult(cast<GCResultInst>(I)); 5805 return nullptr; 5806 } 5807 case Intrinsic::experimental_gc_relocate: { 5808 visitGCRelocate(cast<GCRelocateInst>(I)); 5809 return nullptr; 5810 } 5811 case Intrinsic::instrprof_increment: 5812 llvm_unreachable("instrprof failed to lower an increment"); 5813 case Intrinsic::instrprof_value_profile: 5814 llvm_unreachable("instrprof failed to lower a value profiling call"); 5815 case Intrinsic::localescape: { 5816 MachineFunction &MF = DAG.getMachineFunction(); 5817 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5818 5819 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5820 // is the same on all targets. 5821 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5822 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5823 if (isa<ConstantPointerNull>(Arg)) 5824 continue; // Skip null pointers. They represent a hole in index space. 5825 AllocaInst *Slot = cast<AllocaInst>(Arg); 5826 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5827 "can only escape static allocas"); 5828 int FI = FuncInfo.StaticAllocaMap[Slot]; 5829 MCSymbol *FrameAllocSym = 5830 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5831 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5832 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5833 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5834 .addSym(FrameAllocSym) 5835 .addFrameIndex(FI); 5836 } 5837 5838 return nullptr; 5839 } 5840 5841 case Intrinsic::localrecover: { 5842 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5843 MachineFunction &MF = DAG.getMachineFunction(); 5844 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5845 5846 // Get the symbol that defines the frame offset. 5847 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5848 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5849 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5850 MCSymbol *FrameAllocSym = 5851 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5852 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 5853 5854 // Create a MCSymbol for the label to avoid any target lowering 5855 // that would make this PC relative. 5856 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5857 SDValue OffsetVal = 5858 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5859 5860 // Add the offset to the FP. 5861 Value *FP = I.getArgOperand(1); 5862 SDValue FPVal = getValue(FP); 5863 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5864 setValue(&I, Add); 5865 5866 return nullptr; 5867 } 5868 5869 case Intrinsic::eh_exceptionpointer: 5870 case Intrinsic::eh_exceptioncode: { 5871 // Get the exception pointer vreg, copy from it, and resize it to fit. 5872 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5873 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5874 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5875 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5876 SDValue N = 5877 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5878 if (Intrinsic == Intrinsic::eh_exceptioncode) 5879 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5880 setValue(&I, N); 5881 return nullptr; 5882 } 5883 case Intrinsic::xray_customevent: { 5884 // Here we want to make sure that the intrinsic behaves as if it has a 5885 // specific calling convention, and only for x86_64. 5886 // FIXME: Support other platforms later. 5887 const auto &Triple = DAG.getTarget().getTargetTriple(); 5888 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 5889 return nullptr; 5890 5891 SDLoc DL = getCurSDLoc(); 5892 SmallVector<SDValue, 8> Ops; 5893 5894 // We want to say that we always want the arguments in registers. 5895 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 5896 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 5897 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 5898 SDValue Chain = getRoot(); 5899 Ops.push_back(LogEntryVal); 5900 Ops.push_back(StrSizeVal); 5901 Ops.push_back(Chain); 5902 5903 // We need to enforce the calling convention for the callsite, so that 5904 // argument ordering is enforced correctly, and that register allocation can 5905 // see that some registers may be assumed clobbered and have to preserve 5906 // them across calls to the intrinsic. 5907 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 5908 DL, NodeTys, Ops); 5909 SDValue patchableNode = SDValue(MN, 0); 5910 DAG.setRoot(patchableNode); 5911 setValue(&I, patchableNode); 5912 return nullptr; 5913 } 5914 case Intrinsic::experimental_deoptimize: 5915 LowerDeoptimizeCall(&I); 5916 return nullptr; 5917 5918 case Intrinsic::experimental_vector_reduce_fadd: 5919 case Intrinsic::experimental_vector_reduce_fmul: 5920 case Intrinsic::experimental_vector_reduce_add: 5921 case Intrinsic::experimental_vector_reduce_mul: 5922 case Intrinsic::experimental_vector_reduce_and: 5923 case Intrinsic::experimental_vector_reduce_or: 5924 case Intrinsic::experimental_vector_reduce_xor: 5925 case Intrinsic::experimental_vector_reduce_smax: 5926 case Intrinsic::experimental_vector_reduce_smin: 5927 case Intrinsic::experimental_vector_reduce_umax: 5928 case Intrinsic::experimental_vector_reduce_umin: 5929 case Intrinsic::experimental_vector_reduce_fmax: 5930 case Intrinsic::experimental_vector_reduce_fmin: { 5931 visitVectorReduce(I, Intrinsic); 5932 return nullptr; 5933 } 5934 5935 } 5936 } 5937 5938 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 5939 const ConstrainedFPIntrinsic &FPI) { 5940 SDLoc sdl = getCurSDLoc(); 5941 unsigned Opcode; 5942 switch (FPI.getIntrinsicID()) { 5943 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5944 case Intrinsic::experimental_constrained_fadd: 5945 Opcode = ISD::STRICT_FADD; 5946 break; 5947 case Intrinsic::experimental_constrained_fsub: 5948 Opcode = ISD::STRICT_FSUB; 5949 break; 5950 case Intrinsic::experimental_constrained_fmul: 5951 Opcode = ISD::STRICT_FMUL; 5952 break; 5953 case Intrinsic::experimental_constrained_fdiv: 5954 Opcode = ISD::STRICT_FDIV; 5955 break; 5956 case Intrinsic::experimental_constrained_frem: 5957 Opcode = ISD::STRICT_FREM; 5958 break; 5959 case Intrinsic::experimental_constrained_sqrt: 5960 Opcode = ISD::STRICT_FSQRT; 5961 break; 5962 case Intrinsic::experimental_constrained_pow: 5963 Opcode = ISD::STRICT_FPOW; 5964 break; 5965 case Intrinsic::experimental_constrained_powi: 5966 Opcode = ISD::STRICT_FPOWI; 5967 break; 5968 case Intrinsic::experimental_constrained_sin: 5969 Opcode = ISD::STRICT_FSIN; 5970 break; 5971 case Intrinsic::experimental_constrained_cos: 5972 Opcode = ISD::STRICT_FCOS; 5973 break; 5974 case Intrinsic::experimental_constrained_exp: 5975 Opcode = ISD::STRICT_FEXP; 5976 break; 5977 case Intrinsic::experimental_constrained_exp2: 5978 Opcode = ISD::STRICT_FEXP2; 5979 break; 5980 case Intrinsic::experimental_constrained_log: 5981 Opcode = ISD::STRICT_FLOG; 5982 break; 5983 case Intrinsic::experimental_constrained_log10: 5984 Opcode = ISD::STRICT_FLOG10; 5985 break; 5986 case Intrinsic::experimental_constrained_log2: 5987 Opcode = ISD::STRICT_FLOG2; 5988 break; 5989 case Intrinsic::experimental_constrained_rint: 5990 Opcode = ISD::STRICT_FRINT; 5991 break; 5992 case Intrinsic::experimental_constrained_nearbyint: 5993 Opcode = ISD::STRICT_FNEARBYINT; 5994 break; 5995 } 5996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5997 SDValue Chain = getRoot(); 5998 SmallVector<EVT, 4> ValueVTs; 5999 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6000 ValueVTs.push_back(MVT::Other); // Out chain 6001 6002 SDVTList VTs = DAG.getVTList(ValueVTs); 6003 SDValue Result; 6004 if (FPI.isUnaryOp()) 6005 Result = DAG.getNode(Opcode, sdl, VTs, 6006 { Chain, getValue(FPI.getArgOperand(0)) }); 6007 else 6008 Result = DAG.getNode(Opcode, sdl, VTs, 6009 { Chain, getValue(FPI.getArgOperand(0)), 6010 getValue(FPI.getArgOperand(1)) }); 6011 6012 assert(Result.getNode()->getNumValues() == 2); 6013 SDValue OutChain = Result.getValue(1); 6014 DAG.setRoot(OutChain); 6015 SDValue FPResult = Result.getValue(0); 6016 setValue(&FPI, FPResult); 6017 } 6018 6019 std::pair<SDValue, SDValue> 6020 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6021 const BasicBlock *EHPadBB) { 6022 MachineFunction &MF = DAG.getMachineFunction(); 6023 MachineModuleInfo &MMI = MF.getMMI(); 6024 MCSymbol *BeginLabel = nullptr; 6025 6026 if (EHPadBB) { 6027 // Insert a label before the invoke call to mark the try range. This can be 6028 // used to detect deletion of the invoke via the MachineModuleInfo. 6029 BeginLabel = MMI.getContext().createTempSymbol(); 6030 6031 // For SjLj, keep track of which landing pads go with which invokes 6032 // so as to maintain the ordering of pads in the LSDA. 6033 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6034 if (CallSiteIndex) { 6035 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6036 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6037 6038 // Now that the call site is handled, stop tracking it. 6039 MMI.setCurrentCallSite(0); 6040 } 6041 6042 // Both PendingLoads and PendingExports must be flushed here; 6043 // this call might not return. 6044 (void)getRoot(); 6045 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6046 6047 CLI.setChain(getRoot()); 6048 } 6049 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6050 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6051 6052 assert((CLI.IsTailCall || Result.second.getNode()) && 6053 "Non-null chain expected with non-tail call!"); 6054 assert((Result.second.getNode() || !Result.first.getNode()) && 6055 "Null value expected with tail call!"); 6056 6057 if (!Result.second.getNode()) { 6058 // As a special case, a null chain means that a tail call has been emitted 6059 // and the DAG root is already updated. 6060 HasTailCall = true; 6061 6062 // Since there's no actual continuation from this block, nothing can be 6063 // relying on us setting vregs for them. 6064 PendingExports.clear(); 6065 } else { 6066 DAG.setRoot(Result.second); 6067 } 6068 6069 if (EHPadBB) { 6070 // Insert a label at the end of the invoke call to mark the try range. This 6071 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6072 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6073 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6074 6075 // Inform MachineModuleInfo of range. 6076 if (MF.hasEHFunclets()) { 6077 assert(CLI.CS); 6078 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6079 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6080 BeginLabel, EndLabel); 6081 } else { 6082 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6083 } 6084 } 6085 6086 return Result; 6087 } 6088 6089 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6090 bool isTailCall, 6091 const BasicBlock *EHPadBB) { 6092 auto &DL = DAG.getDataLayout(); 6093 FunctionType *FTy = CS.getFunctionType(); 6094 Type *RetTy = CS.getType(); 6095 6096 TargetLowering::ArgListTy Args; 6097 Args.reserve(CS.arg_size()); 6098 6099 const Value *SwiftErrorVal = nullptr; 6100 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6101 6102 // We can't tail call inside a function with a swifterror argument. Lowering 6103 // does not support this yet. It would have to move into the swifterror 6104 // register before the call. 6105 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6106 if (TLI.supportSwiftError() && 6107 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6108 isTailCall = false; 6109 6110 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6111 i != e; ++i) { 6112 TargetLowering::ArgListEntry Entry; 6113 const Value *V = *i; 6114 6115 // Skip empty types 6116 if (V->getType()->isEmptyTy()) 6117 continue; 6118 6119 SDValue ArgNode = getValue(V); 6120 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6121 6122 Entry.setAttributes(&CS, i - CS.arg_begin()); 6123 6124 // Use swifterror virtual register as input to the call. 6125 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6126 SwiftErrorVal = V; 6127 // We find the virtual register for the actual swifterror argument. 6128 // Instead of using the Value, we use the virtual register instead. 6129 Entry.Node = DAG.getRegister(FuncInfo 6130 .getOrCreateSwiftErrorVRegUseAt( 6131 CS.getInstruction(), FuncInfo.MBB, V) 6132 .first, 6133 EVT(TLI.getPointerTy(DL))); 6134 } 6135 6136 Args.push_back(Entry); 6137 6138 // If we have an explicit sret argument that is an Instruction, (i.e., it 6139 // might point to function-local memory), we can't meaningfully tail-call. 6140 if (Entry.IsSRet && isa<Instruction>(V)) 6141 isTailCall = false; 6142 } 6143 6144 // Check if target-independent constraints permit a tail call here. 6145 // Target-dependent constraints are checked within TLI->LowerCallTo. 6146 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6147 isTailCall = false; 6148 6149 // Disable tail calls if there is an swifterror argument. Targets have not 6150 // been updated to support tail calls. 6151 if (TLI.supportSwiftError() && SwiftErrorVal) 6152 isTailCall = false; 6153 6154 TargetLowering::CallLoweringInfo CLI(DAG); 6155 CLI.setDebugLoc(getCurSDLoc()) 6156 .setChain(getRoot()) 6157 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6158 .setTailCall(isTailCall) 6159 .setConvergent(CS.isConvergent()); 6160 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6161 6162 if (Result.first.getNode()) { 6163 const Instruction *Inst = CS.getInstruction(); 6164 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6165 setValue(Inst, Result.first); 6166 } 6167 6168 // The last element of CLI.InVals has the SDValue for swifterror return. 6169 // Here we copy it to a virtual register and update SwiftErrorMap for 6170 // book-keeping. 6171 if (SwiftErrorVal && TLI.supportSwiftError()) { 6172 // Get the last element of InVals. 6173 SDValue Src = CLI.InVals.back(); 6174 unsigned VReg; bool CreatedVReg; 6175 std::tie(VReg, CreatedVReg) = 6176 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6177 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6178 // We update the virtual register for the actual swifterror argument. 6179 if (CreatedVReg) 6180 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6181 DAG.setRoot(CopyNode); 6182 } 6183 } 6184 6185 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6186 SelectionDAGBuilder &Builder) { 6187 6188 // Check to see if this load can be trivially constant folded, e.g. if the 6189 // input is from a string literal. 6190 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6191 // Cast pointer to the type we really want to load. 6192 Type *LoadTy = 6193 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6194 if (LoadVT.isVector()) 6195 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6196 6197 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6198 PointerType::getUnqual(LoadTy)); 6199 6200 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6201 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6202 return Builder.getValue(LoadCst); 6203 } 6204 6205 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6206 // still constant memory, the input chain can be the entry node. 6207 SDValue Root; 6208 bool ConstantMemory = false; 6209 6210 // Do not serialize (non-volatile) loads of constant memory with anything. 6211 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6212 Root = Builder.DAG.getEntryNode(); 6213 ConstantMemory = true; 6214 } else { 6215 // Do not serialize non-volatile loads against each other. 6216 Root = Builder.DAG.getRoot(); 6217 } 6218 6219 SDValue Ptr = Builder.getValue(PtrVal); 6220 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6221 Ptr, MachinePointerInfo(PtrVal), 6222 /* Alignment = */ 1); 6223 6224 if (!ConstantMemory) 6225 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6226 return LoadVal; 6227 } 6228 6229 /// Record the value for an instruction that produces an integer result, 6230 /// converting the type where necessary. 6231 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6232 SDValue Value, 6233 bool IsSigned) { 6234 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6235 I.getType(), true); 6236 if (IsSigned) 6237 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6238 else 6239 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6240 setValue(&I, Value); 6241 } 6242 6243 /// See if we can lower a memcmp call into an optimized form. If so, return 6244 /// true and lower it. Otherwise return false, and it will be lowered like a 6245 /// normal call. 6246 /// The caller already checked that \p I calls the appropriate LibFunc with a 6247 /// correct prototype. 6248 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6249 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6250 const Value *Size = I.getArgOperand(2); 6251 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6252 if (CSize && CSize->getZExtValue() == 0) { 6253 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6254 I.getType(), true); 6255 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6256 return true; 6257 } 6258 6259 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6260 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6261 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6262 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6263 if (Res.first.getNode()) { 6264 processIntegerCallValue(I, Res.first, true); 6265 PendingLoads.push_back(Res.second); 6266 return true; 6267 } 6268 6269 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6270 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6271 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6272 return false; 6273 6274 // If the target has a fast compare for the given size, it will return a 6275 // preferred load type for that size. Require that the load VT is legal and 6276 // that the target supports unaligned loads of that type. Otherwise, return 6277 // INVALID. 6278 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6279 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6280 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6281 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6282 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6283 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6284 // TODO: Check alignment of src and dest ptrs. 6285 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6286 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6287 if (!TLI.isTypeLegal(LVT) || 6288 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6289 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6290 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6291 } 6292 6293 return LVT; 6294 }; 6295 6296 // This turns into unaligned loads. We only do this if the target natively 6297 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6298 // we'll only produce a small number of byte loads. 6299 MVT LoadVT; 6300 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6301 switch (NumBitsToCompare) { 6302 default: 6303 return false; 6304 case 16: 6305 LoadVT = MVT::i16; 6306 break; 6307 case 32: 6308 LoadVT = MVT::i32; 6309 break; 6310 case 64: 6311 case 128: 6312 case 256: 6313 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6314 break; 6315 } 6316 6317 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6318 return false; 6319 6320 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6321 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6322 6323 // Bitcast to a wide integer type if the loads are vectors. 6324 if (LoadVT.isVector()) { 6325 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6326 LoadL = DAG.getBitcast(CmpVT, LoadL); 6327 LoadR = DAG.getBitcast(CmpVT, LoadR); 6328 } 6329 6330 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6331 processIntegerCallValue(I, Cmp, false); 6332 return true; 6333 } 6334 6335 /// See if we can lower a memchr call into an optimized form. If so, return 6336 /// true and lower it. Otherwise return false, and it will be lowered like a 6337 /// normal call. 6338 /// The caller already checked that \p I calls the appropriate LibFunc with a 6339 /// correct prototype. 6340 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6341 const Value *Src = I.getArgOperand(0); 6342 const Value *Char = I.getArgOperand(1); 6343 const Value *Length = I.getArgOperand(2); 6344 6345 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6346 std::pair<SDValue, SDValue> Res = 6347 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6348 getValue(Src), getValue(Char), getValue(Length), 6349 MachinePointerInfo(Src)); 6350 if (Res.first.getNode()) { 6351 setValue(&I, Res.first); 6352 PendingLoads.push_back(Res.second); 6353 return true; 6354 } 6355 6356 return false; 6357 } 6358 6359 /// See if we can lower a mempcpy call into an optimized form. If so, return 6360 /// true and lower it. Otherwise return false, and it will be lowered like a 6361 /// normal call. 6362 /// The caller already checked that \p I calls the appropriate LibFunc with a 6363 /// correct prototype. 6364 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6365 SDValue Dst = getValue(I.getArgOperand(0)); 6366 SDValue Src = getValue(I.getArgOperand(1)); 6367 SDValue Size = getValue(I.getArgOperand(2)); 6368 6369 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6370 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6371 unsigned Align = std::min(DstAlign, SrcAlign); 6372 if (Align == 0) // Alignment of one or both could not be inferred. 6373 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6374 6375 bool isVol = false; 6376 SDLoc sdl = getCurSDLoc(); 6377 6378 // In the mempcpy context we need to pass in a false value for isTailCall 6379 // because the return pointer needs to be adjusted by the size of 6380 // the copied memory. 6381 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6382 false, /*isTailCall=*/false, 6383 MachinePointerInfo(I.getArgOperand(0)), 6384 MachinePointerInfo(I.getArgOperand(1))); 6385 assert(MC.getNode() != nullptr && 6386 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6387 DAG.setRoot(MC); 6388 6389 // Check if Size needs to be truncated or extended. 6390 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6391 6392 // Adjust return pointer to point just past the last dst byte. 6393 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6394 Dst, Size); 6395 setValue(&I, DstPlusSize); 6396 return true; 6397 } 6398 6399 /// See if we can lower a strcpy call into an optimized form. If so, return 6400 /// true and lower it, otherwise return false and it will be lowered like a 6401 /// normal call. 6402 /// The caller already checked that \p I calls the appropriate LibFunc with a 6403 /// correct prototype. 6404 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6405 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6406 6407 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6408 std::pair<SDValue, SDValue> Res = 6409 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6410 getValue(Arg0), getValue(Arg1), 6411 MachinePointerInfo(Arg0), 6412 MachinePointerInfo(Arg1), isStpcpy); 6413 if (Res.first.getNode()) { 6414 setValue(&I, Res.first); 6415 DAG.setRoot(Res.second); 6416 return true; 6417 } 6418 6419 return false; 6420 } 6421 6422 /// See if we can lower a strcmp call into an optimized form. If so, return 6423 /// true and lower it, otherwise return false and it will be lowered like a 6424 /// normal call. 6425 /// The caller already checked that \p I calls the appropriate LibFunc with a 6426 /// correct prototype. 6427 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6428 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6429 6430 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6431 std::pair<SDValue, SDValue> Res = 6432 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6433 getValue(Arg0), getValue(Arg1), 6434 MachinePointerInfo(Arg0), 6435 MachinePointerInfo(Arg1)); 6436 if (Res.first.getNode()) { 6437 processIntegerCallValue(I, Res.first, true); 6438 PendingLoads.push_back(Res.second); 6439 return true; 6440 } 6441 6442 return false; 6443 } 6444 6445 /// See if we can lower a strlen call into an optimized form. If so, return 6446 /// true and lower it, otherwise return false and it will be lowered like a 6447 /// normal call. 6448 /// The caller already checked that \p I calls the appropriate LibFunc with a 6449 /// correct prototype. 6450 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6451 const Value *Arg0 = I.getArgOperand(0); 6452 6453 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6454 std::pair<SDValue, SDValue> Res = 6455 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6456 getValue(Arg0), MachinePointerInfo(Arg0)); 6457 if (Res.first.getNode()) { 6458 processIntegerCallValue(I, Res.first, false); 6459 PendingLoads.push_back(Res.second); 6460 return true; 6461 } 6462 6463 return false; 6464 } 6465 6466 /// See if we can lower a strnlen call into an optimized form. If so, return 6467 /// true and lower it, otherwise return false and it will be lowered like a 6468 /// normal call. 6469 /// The caller already checked that \p I calls the appropriate LibFunc with a 6470 /// correct prototype. 6471 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6472 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6473 6474 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6475 std::pair<SDValue, SDValue> Res = 6476 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6477 getValue(Arg0), getValue(Arg1), 6478 MachinePointerInfo(Arg0)); 6479 if (Res.first.getNode()) { 6480 processIntegerCallValue(I, Res.first, false); 6481 PendingLoads.push_back(Res.second); 6482 return true; 6483 } 6484 6485 return false; 6486 } 6487 6488 /// See if we can lower a unary floating-point operation into an SDNode with 6489 /// the specified Opcode. If so, return true and lower it, otherwise return 6490 /// false and it will be lowered like a normal call. 6491 /// The caller already checked that \p I calls the appropriate LibFunc with a 6492 /// correct prototype. 6493 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6494 unsigned Opcode) { 6495 // We already checked this call's prototype; verify it doesn't modify errno. 6496 if (!I.onlyReadsMemory()) 6497 return false; 6498 6499 SDValue Tmp = getValue(I.getArgOperand(0)); 6500 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6501 return true; 6502 } 6503 6504 /// See if we can lower a binary floating-point operation into an SDNode with 6505 /// the specified Opcode. If so, return true and lower it. Otherwise return 6506 /// false, and it will be lowered like a normal call. 6507 /// The caller already checked that \p I calls the appropriate LibFunc with a 6508 /// correct prototype. 6509 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6510 unsigned Opcode) { 6511 // We already checked this call's prototype; verify it doesn't modify errno. 6512 if (!I.onlyReadsMemory()) 6513 return false; 6514 6515 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6516 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6517 EVT VT = Tmp0.getValueType(); 6518 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6519 return true; 6520 } 6521 6522 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6523 // Handle inline assembly differently. 6524 if (isa<InlineAsm>(I.getCalledValue())) { 6525 visitInlineAsm(&I); 6526 return; 6527 } 6528 6529 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6530 computeUsesVAFloatArgument(I, MMI); 6531 6532 const char *RenameFn = nullptr; 6533 if (Function *F = I.getCalledFunction()) { 6534 if (F->isDeclaration()) { 6535 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 6536 if (unsigned IID = II->getIntrinsicID(F)) { 6537 RenameFn = visitIntrinsicCall(I, IID); 6538 if (!RenameFn) 6539 return; 6540 } 6541 } 6542 if (Intrinsic::ID IID = F->getIntrinsicID()) { 6543 RenameFn = visitIntrinsicCall(I, IID); 6544 if (!RenameFn) 6545 return; 6546 } 6547 } 6548 6549 // Check for well-known libc/libm calls. If the function is internal, it 6550 // can't be a library call. Don't do the check if marked as nobuiltin for 6551 // some reason. 6552 LibFunc Func; 6553 if (!I.isNoBuiltin() && !F->hasLocalLinkage() && F->hasName() && 6554 LibInfo->getLibFunc(*F, Func) && 6555 LibInfo->hasOptimizedCodeGen(Func)) { 6556 switch (Func) { 6557 default: break; 6558 case LibFunc_copysign: 6559 case LibFunc_copysignf: 6560 case LibFunc_copysignl: 6561 // We already checked this call's prototype; verify it doesn't modify 6562 // errno. 6563 if (I.onlyReadsMemory()) { 6564 SDValue LHS = getValue(I.getArgOperand(0)); 6565 SDValue RHS = getValue(I.getArgOperand(1)); 6566 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6567 LHS.getValueType(), LHS, RHS)); 6568 return; 6569 } 6570 break; 6571 case LibFunc_fabs: 6572 case LibFunc_fabsf: 6573 case LibFunc_fabsl: 6574 if (visitUnaryFloatCall(I, ISD::FABS)) 6575 return; 6576 break; 6577 case LibFunc_fmin: 6578 case LibFunc_fminf: 6579 case LibFunc_fminl: 6580 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6581 return; 6582 break; 6583 case LibFunc_fmax: 6584 case LibFunc_fmaxf: 6585 case LibFunc_fmaxl: 6586 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6587 return; 6588 break; 6589 case LibFunc_sin: 6590 case LibFunc_sinf: 6591 case LibFunc_sinl: 6592 if (visitUnaryFloatCall(I, ISD::FSIN)) 6593 return; 6594 break; 6595 case LibFunc_cos: 6596 case LibFunc_cosf: 6597 case LibFunc_cosl: 6598 if (visitUnaryFloatCall(I, ISD::FCOS)) 6599 return; 6600 break; 6601 case LibFunc_sqrt: 6602 case LibFunc_sqrtf: 6603 case LibFunc_sqrtl: 6604 case LibFunc_sqrt_finite: 6605 case LibFunc_sqrtf_finite: 6606 case LibFunc_sqrtl_finite: 6607 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6608 return; 6609 break; 6610 case LibFunc_floor: 6611 case LibFunc_floorf: 6612 case LibFunc_floorl: 6613 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6614 return; 6615 break; 6616 case LibFunc_nearbyint: 6617 case LibFunc_nearbyintf: 6618 case LibFunc_nearbyintl: 6619 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6620 return; 6621 break; 6622 case LibFunc_ceil: 6623 case LibFunc_ceilf: 6624 case LibFunc_ceill: 6625 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6626 return; 6627 break; 6628 case LibFunc_rint: 6629 case LibFunc_rintf: 6630 case LibFunc_rintl: 6631 if (visitUnaryFloatCall(I, ISD::FRINT)) 6632 return; 6633 break; 6634 case LibFunc_round: 6635 case LibFunc_roundf: 6636 case LibFunc_roundl: 6637 if (visitUnaryFloatCall(I, ISD::FROUND)) 6638 return; 6639 break; 6640 case LibFunc_trunc: 6641 case LibFunc_truncf: 6642 case LibFunc_truncl: 6643 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6644 return; 6645 break; 6646 case LibFunc_log2: 6647 case LibFunc_log2f: 6648 case LibFunc_log2l: 6649 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6650 return; 6651 break; 6652 case LibFunc_exp2: 6653 case LibFunc_exp2f: 6654 case LibFunc_exp2l: 6655 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6656 return; 6657 break; 6658 case LibFunc_memcmp: 6659 if (visitMemCmpCall(I)) 6660 return; 6661 break; 6662 case LibFunc_mempcpy: 6663 if (visitMemPCpyCall(I)) 6664 return; 6665 break; 6666 case LibFunc_memchr: 6667 if (visitMemChrCall(I)) 6668 return; 6669 break; 6670 case LibFunc_strcpy: 6671 if (visitStrCpyCall(I, false)) 6672 return; 6673 break; 6674 case LibFunc_stpcpy: 6675 if (visitStrCpyCall(I, true)) 6676 return; 6677 break; 6678 case LibFunc_strcmp: 6679 if (visitStrCmpCall(I)) 6680 return; 6681 break; 6682 case LibFunc_strlen: 6683 if (visitStrLenCall(I)) 6684 return; 6685 break; 6686 case LibFunc_strnlen: 6687 if (visitStrNLenCall(I)) 6688 return; 6689 break; 6690 } 6691 } 6692 } 6693 6694 SDValue Callee; 6695 if (!RenameFn) 6696 Callee = getValue(I.getCalledValue()); 6697 else 6698 Callee = DAG.getExternalSymbol( 6699 RenameFn, 6700 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6701 6702 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6703 // have to do anything here to lower funclet bundles. 6704 assert(!I.hasOperandBundlesOtherThan( 6705 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6706 "Cannot lower calls with arbitrary operand bundles!"); 6707 6708 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6709 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6710 else 6711 // Check if we can potentially perform a tail call. More detailed checking 6712 // is be done within LowerCallTo, after more information about the call is 6713 // known. 6714 LowerCallTo(&I, Callee, I.isTailCall()); 6715 } 6716 6717 namespace { 6718 6719 /// AsmOperandInfo - This contains information for each constraint that we are 6720 /// lowering. 6721 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6722 public: 6723 /// CallOperand - If this is the result output operand or a clobber 6724 /// this is null, otherwise it is the incoming operand to the CallInst. 6725 /// This gets modified as the asm is processed. 6726 SDValue CallOperand; 6727 6728 /// AssignedRegs - If this is a register or register class operand, this 6729 /// contains the set of register corresponding to the operand. 6730 RegsForValue AssignedRegs; 6731 6732 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6733 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6734 } 6735 6736 /// Whether or not this operand accesses memory 6737 bool hasMemory(const TargetLowering &TLI) const { 6738 // Indirect operand accesses access memory. 6739 if (isIndirect) 6740 return true; 6741 6742 for (const auto &Code : Codes) 6743 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6744 return true; 6745 6746 return false; 6747 } 6748 6749 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6750 /// corresponds to. If there is no Value* for this operand, it returns 6751 /// MVT::Other. 6752 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6753 const DataLayout &DL) const { 6754 if (!CallOperandVal) return MVT::Other; 6755 6756 if (isa<BasicBlock>(CallOperandVal)) 6757 return TLI.getPointerTy(DL); 6758 6759 llvm::Type *OpTy = CallOperandVal->getType(); 6760 6761 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6762 // If this is an indirect operand, the operand is a pointer to the 6763 // accessed type. 6764 if (isIndirect) { 6765 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6766 if (!PtrTy) 6767 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6768 OpTy = PtrTy->getElementType(); 6769 } 6770 6771 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6772 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6773 if (STy->getNumElements() == 1) 6774 OpTy = STy->getElementType(0); 6775 6776 // If OpTy is not a single value, it may be a struct/union that we 6777 // can tile with integers. 6778 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6779 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6780 switch (BitSize) { 6781 default: break; 6782 case 1: 6783 case 8: 6784 case 16: 6785 case 32: 6786 case 64: 6787 case 128: 6788 OpTy = IntegerType::get(Context, BitSize); 6789 break; 6790 } 6791 } 6792 6793 return TLI.getValueType(DL, OpTy, true); 6794 } 6795 }; 6796 6797 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6798 6799 } // end anonymous namespace 6800 6801 /// Make sure that the output operand \p OpInfo and its corresponding input 6802 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 6803 /// out). 6804 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 6805 SDISelAsmOperandInfo &MatchingOpInfo, 6806 SelectionDAG &DAG) { 6807 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 6808 return; 6809 6810 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6811 const auto &TLI = DAG.getTargetLoweringInfo(); 6812 6813 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6814 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6815 OpInfo.ConstraintVT); 6816 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6817 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 6818 MatchingOpInfo.ConstraintVT); 6819 if ((OpInfo.ConstraintVT.isInteger() != 6820 MatchingOpInfo.ConstraintVT.isInteger()) || 6821 (MatchRC.second != InputRC.second)) { 6822 // FIXME: error out in a more elegant fashion 6823 report_fatal_error("Unsupported asm: input constraint" 6824 " with a matching output constraint of" 6825 " incompatible type!"); 6826 } 6827 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 6828 } 6829 6830 /// Get a direct memory input to behave well as an indirect operand. 6831 /// This may introduce stores, hence the need for a \p Chain. 6832 /// \return The (possibly updated) chain. 6833 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 6834 SDISelAsmOperandInfo &OpInfo, 6835 SelectionDAG &DAG) { 6836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6837 6838 // If we don't have an indirect input, put it in the constpool if we can, 6839 // otherwise spill it to a stack slot. 6840 // TODO: This isn't quite right. We need to handle these according to 6841 // the addressing mode that the constraint wants. Also, this may take 6842 // an additional register for the computation and we don't want that 6843 // either. 6844 6845 // If the operand is a float, integer, or vector constant, spill to a 6846 // constant pool entry to get its address. 6847 const Value *OpVal = OpInfo.CallOperandVal; 6848 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6849 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6850 OpInfo.CallOperand = DAG.getConstantPool( 6851 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6852 return Chain; 6853 } 6854 6855 // Otherwise, create a stack slot and emit a store to it before the asm. 6856 Type *Ty = OpVal->getType(); 6857 auto &DL = DAG.getDataLayout(); 6858 uint64_t TySize = DL.getTypeAllocSize(Ty); 6859 unsigned Align = DL.getPrefTypeAlignment(Ty); 6860 MachineFunction &MF = DAG.getMachineFunction(); 6861 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 6862 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 6863 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 6864 MachinePointerInfo::getFixedStack(MF, SSFI)); 6865 OpInfo.CallOperand = StackSlot; 6866 6867 return Chain; 6868 } 6869 6870 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6871 /// specified operand. We prefer to assign virtual registers, to allow the 6872 /// register allocator to handle the assignment process. However, if the asm 6873 /// uses features that we can't model on machineinstrs, we have SDISel do the 6874 /// allocation. This produces generally horrible, but correct, code. 6875 /// 6876 /// OpInfo describes the operand. 6877 /// 6878 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 6879 const SDLoc &DL, 6880 SDISelAsmOperandInfo &OpInfo) { 6881 LLVMContext &Context = *DAG.getContext(); 6882 6883 MachineFunction &MF = DAG.getMachineFunction(); 6884 SmallVector<unsigned, 4> Regs; 6885 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 6886 6887 // If this is a constraint for a single physreg, or a constraint for a 6888 // register class, find it. 6889 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6890 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 6891 OpInfo.ConstraintVT); 6892 6893 unsigned NumRegs = 1; 6894 if (OpInfo.ConstraintVT != MVT::Other) { 6895 // If this is a FP input in an integer register (or visa versa) insert a bit 6896 // cast of the input value. More generally, handle any case where the input 6897 // value disagrees with the register class we plan to stick this in. 6898 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 6899 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 6900 // Try to convert to the first EVT that the reg class contains. If the 6901 // types are identical size, use a bitcast to convert (e.g. two differing 6902 // vector types). 6903 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 6904 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6905 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6906 RegVT, OpInfo.CallOperand); 6907 OpInfo.ConstraintVT = RegVT; 6908 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6909 // If the input is a FP value and we want it in FP registers, do a 6910 // bitcast to the corresponding integer type. This turns an f64 value 6911 // into i64, which can be passed with two i32 values on a 32-bit 6912 // machine. 6913 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6914 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6915 RegVT, OpInfo.CallOperand); 6916 OpInfo.ConstraintVT = RegVT; 6917 } 6918 } 6919 6920 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6921 } 6922 6923 MVT RegVT; 6924 EVT ValueVT = OpInfo.ConstraintVT; 6925 6926 // If this is a constraint for a specific physical register, like {r17}, 6927 // assign it now. 6928 if (unsigned AssignedReg = PhysReg.first) { 6929 const TargetRegisterClass *RC = PhysReg.second; 6930 if (OpInfo.ConstraintVT == MVT::Other) 6931 ValueVT = *TRI.legalclasstypes_begin(*RC); 6932 6933 // Get the actual register value type. This is important, because the user 6934 // may have asked for (e.g.) the AX register in i32 type. We need to 6935 // remember that AX is actually i16 to get the right extension. 6936 RegVT = *TRI.legalclasstypes_begin(*RC); 6937 6938 // This is a explicit reference to a physical register. 6939 Regs.push_back(AssignedReg); 6940 6941 // If this is an expanded reference, add the rest of the regs to Regs. 6942 if (NumRegs != 1) { 6943 TargetRegisterClass::iterator I = RC->begin(); 6944 for (; *I != AssignedReg; ++I) 6945 assert(I != RC->end() && "Didn't find reg!"); 6946 6947 // Already added the first reg. 6948 --NumRegs; ++I; 6949 for (; NumRegs; --NumRegs, ++I) { 6950 assert(I != RC->end() && "Ran out of registers to allocate!"); 6951 Regs.push_back(*I); 6952 } 6953 } 6954 6955 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6956 return; 6957 } 6958 6959 // Otherwise, if this was a reference to an LLVM register class, create vregs 6960 // for this reference. 6961 if (const TargetRegisterClass *RC = PhysReg.second) { 6962 RegVT = *TRI.legalclasstypes_begin(*RC); 6963 if (OpInfo.ConstraintVT == MVT::Other) 6964 ValueVT = RegVT; 6965 6966 // Create the appropriate number of virtual registers. 6967 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6968 for (; NumRegs; --NumRegs) 6969 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6970 6971 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6972 return; 6973 } 6974 6975 // Otherwise, we couldn't allocate enough registers for this. 6976 } 6977 6978 static unsigned 6979 findMatchingInlineAsmOperand(unsigned OperandNo, 6980 const std::vector<SDValue> &AsmNodeOperands) { 6981 // Scan until we find the definition we already emitted of this operand. 6982 unsigned CurOp = InlineAsm::Op_FirstOperand; 6983 for (; OperandNo; --OperandNo) { 6984 // Advance to the next operand. 6985 unsigned OpFlag = 6986 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6987 assert((InlineAsm::isRegDefKind(OpFlag) || 6988 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6989 InlineAsm::isMemKind(OpFlag)) && 6990 "Skipped past definitions?"); 6991 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 6992 } 6993 return CurOp; 6994 } 6995 6996 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 6997 /// \return true if it has succeeded, false otherwise 6998 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 6999 MVT RegVT, SelectionDAG &DAG) { 7000 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7001 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7002 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7003 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7004 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7005 else 7006 return false; 7007 } 7008 return true; 7009 } 7010 7011 class ExtraFlags { 7012 unsigned Flags = 0; 7013 7014 public: 7015 explicit ExtraFlags(ImmutableCallSite CS) { 7016 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7017 if (IA->hasSideEffects()) 7018 Flags |= InlineAsm::Extra_HasSideEffects; 7019 if (IA->isAlignStack()) 7020 Flags |= InlineAsm::Extra_IsAlignStack; 7021 if (CS.isConvergent()) 7022 Flags |= InlineAsm::Extra_IsConvergent; 7023 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7024 } 7025 7026 void update(const llvm::TargetLowering::AsmOperandInfo &OpInfo) { 7027 // Ideally, we would only check against memory constraints. However, the 7028 // meaning of an Other constraint can be target-specific and we can't easily 7029 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7030 // for Other constraints as well. 7031 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7032 OpInfo.ConstraintType == TargetLowering::C_Other) { 7033 if (OpInfo.Type == InlineAsm::isInput) 7034 Flags |= InlineAsm::Extra_MayLoad; 7035 else if (OpInfo.Type == InlineAsm::isOutput) 7036 Flags |= InlineAsm::Extra_MayStore; 7037 else if (OpInfo.Type == InlineAsm::isClobber) 7038 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7039 } 7040 } 7041 7042 unsigned get() const { return Flags; } 7043 }; 7044 7045 /// visitInlineAsm - Handle a call to an InlineAsm object. 7046 /// 7047 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7048 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7049 7050 /// ConstraintOperands - Information about all of the constraints. 7051 SDISelAsmOperandInfoVector ConstraintOperands; 7052 7053 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7054 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7055 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7056 7057 bool hasMemory = false; 7058 7059 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7060 ExtraFlags ExtraInfo(CS); 7061 7062 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7063 unsigned ResNo = 0; // ResNo - The result number of the next output. 7064 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7065 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7066 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7067 7068 MVT OpVT = MVT::Other; 7069 7070 // Compute the value type for each operand. 7071 if (OpInfo.Type == InlineAsm::isInput || 7072 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7073 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7074 7075 // Process the call argument. BasicBlocks are labels, currently appearing 7076 // only in asm's. 7077 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7078 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7079 } else { 7080 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7081 } 7082 7083 OpVT = 7084 OpInfo 7085 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7086 .getSimpleVT(); 7087 } 7088 7089 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7090 // The return value of the call is this value. As such, there is no 7091 // corresponding argument. 7092 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7093 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7094 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7095 STy->getElementType(ResNo)); 7096 } else { 7097 assert(ResNo == 0 && "Asm only has one result!"); 7098 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7099 } 7100 ++ResNo; 7101 } 7102 7103 OpInfo.ConstraintVT = OpVT; 7104 7105 if (!hasMemory) 7106 hasMemory = OpInfo.hasMemory(TLI); 7107 7108 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7109 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7110 auto TargetConstraint = TargetConstraints[i]; 7111 7112 // Compute the constraint code and ConstraintType to use. 7113 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7114 7115 ExtraInfo.update(TargetConstraint); 7116 } 7117 7118 SDValue Chain, Flag; 7119 7120 // We won't need to flush pending loads if this asm doesn't touch 7121 // memory and is nonvolatile. 7122 if (hasMemory || IA->hasSideEffects()) 7123 Chain = getRoot(); 7124 else 7125 Chain = DAG.getRoot(); 7126 7127 // Second pass over the constraints: compute which constraint option to use 7128 // and assign registers to constraints that want a specific physreg. 7129 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7130 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7131 7132 // If this is an output operand with a matching input operand, look up the 7133 // matching input. If their types mismatch, e.g. one is an integer, the 7134 // other is floating point, or their sizes are different, flag it as an 7135 // error. 7136 if (OpInfo.hasMatchingInput()) { 7137 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7138 patchMatchingInput(OpInfo, Input, DAG); 7139 } 7140 7141 // Compute the constraint code and ConstraintType to use. 7142 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7143 7144 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7145 OpInfo.Type == InlineAsm::isClobber) 7146 continue; 7147 7148 // If this is a memory input, and if the operand is not indirect, do what we 7149 // need to to provide an address for the memory input. 7150 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7151 !OpInfo.isIndirect) { 7152 assert((OpInfo.isMultipleAlternative || 7153 (OpInfo.Type == InlineAsm::isInput)) && 7154 "Can only indirectify direct input operands!"); 7155 7156 // Memory operands really want the address of the value. 7157 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7158 7159 // There is no longer a Value* corresponding to this operand. 7160 OpInfo.CallOperandVal = nullptr; 7161 7162 // It is now an indirect operand. 7163 OpInfo.isIndirect = true; 7164 } 7165 7166 // If this constraint is for a specific register, allocate it before 7167 // anything else. 7168 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7169 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7170 } 7171 7172 // Third pass - Loop over all of the operands, assigning virtual or physregs 7173 // to register class operands. 7174 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7175 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7176 7177 // C_Register operands have already been allocated, Other/Memory don't need 7178 // to be. 7179 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7180 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7181 } 7182 7183 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7184 std::vector<SDValue> AsmNodeOperands; 7185 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7186 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7187 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7188 7189 // If we have a !srcloc metadata node associated with it, we want to attach 7190 // this to the ultimately generated inline asm machineinstr. To do this, we 7191 // pass in the third operand as this (potentially null) inline asm MDNode. 7192 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7193 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7194 7195 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7196 // bits as operand 3. 7197 AsmNodeOperands.push_back(DAG.getTargetConstant( 7198 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7199 7200 // Loop over all of the inputs, copying the operand values into the 7201 // appropriate registers and processing the output regs. 7202 RegsForValue RetValRegs; 7203 7204 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7205 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 7206 7207 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7208 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7209 7210 switch (OpInfo.Type) { 7211 case InlineAsm::isOutput: { 7212 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7213 OpInfo.ConstraintType != TargetLowering::C_Register) { 7214 // Memory output, or 'other' output (e.g. 'X' constraint). 7215 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7216 7217 unsigned ConstraintID = 7218 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7219 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7220 "Failed to convert memory constraint code to constraint id."); 7221 7222 // Add information to the INLINEASM node to know about this output. 7223 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7224 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7225 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7226 MVT::i32)); 7227 AsmNodeOperands.push_back(OpInfo.CallOperand); 7228 break; 7229 } 7230 7231 // Otherwise, this is a register or register class output. 7232 7233 // Copy the output from the appropriate register. Find a register that 7234 // we can use. 7235 if (OpInfo.AssignedRegs.Regs.empty()) { 7236 emitInlineAsmError( 7237 CS, "couldn't allocate output register for constraint '" + 7238 Twine(OpInfo.ConstraintCode) + "'"); 7239 return; 7240 } 7241 7242 // If this is an indirect operand, store through the pointer after the 7243 // asm. 7244 if (OpInfo.isIndirect) { 7245 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7246 OpInfo.CallOperandVal)); 7247 } else { 7248 // This is the result value of the call. 7249 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7250 // Concatenate this output onto the outputs list. 7251 RetValRegs.append(OpInfo.AssignedRegs); 7252 } 7253 7254 // Add information to the INLINEASM node to know that this register is 7255 // set. 7256 OpInfo.AssignedRegs 7257 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7258 ? InlineAsm::Kind_RegDefEarlyClobber 7259 : InlineAsm::Kind_RegDef, 7260 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7261 break; 7262 } 7263 case InlineAsm::isInput: { 7264 SDValue InOperandVal = OpInfo.CallOperand; 7265 7266 if (OpInfo.isMatchingInputConstraint()) { 7267 // If this is required to match an output register we have already set, 7268 // just use its register. 7269 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7270 AsmNodeOperands); 7271 unsigned OpFlag = 7272 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7273 if (InlineAsm::isRegDefKind(OpFlag) || 7274 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7275 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7276 if (OpInfo.isIndirect) { 7277 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7278 emitInlineAsmError(CS, "inline asm not supported yet:" 7279 " don't know how to handle tied " 7280 "indirect register inputs"); 7281 return; 7282 } 7283 7284 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7285 SmallVector<unsigned, 4> Regs; 7286 7287 if (!createVirtualRegs(Regs, 7288 InlineAsm::getNumOperandRegisters(OpFlag), 7289 RegVT, DAG)) { 7290 emitInlineAsmError(CS, "inline asm error: This value type register " 7291 "class is not natively supported!"); 7292 return; 7293 } 7294 7295 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7296 7297 SDLoc dl = getCurSDLoc(); 7298 // Use the produced MatchedRegs object to 7299 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7300 CS.getInstruction()); 7301 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7302 true, OpInfo.getMatchedOperand(), dl, 7303 DAG, AsmNodeOperands); 7304 break; 7305 } 7306 7307 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7308 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7309 "Unexpected number of operands"); 7310 // Add information to the INLINEASM node to know about this input. 7311 // See InlineAsm.h isUseOperandTiedToDef. 7312 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7313 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7314 OpInfo.getMatchedOperand()); 7315 AsmNodeOperands.push_back(DAG.getTargetConstant( 7316 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7317 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7318 break; 7319 } 7320 7321 // Treat indirect 'X' constraint as memory. 7322 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7323 OpInfo.isIndirect) 7324 OpInfo.ConstraintType = TargetLowering::C_Memory; 7325 7326 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7327 std::vector<SDValue> Ops; 7328 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7329 Ops, DAG); 7330 if (Ops.empty()) { 7331 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7332 Twine(OpInfo.ConstraintCode) + "'"); 7333 return; 7334 } 7335 7336 // Add information to the INLINEASM node to know about this input. 7337 unsigned ResOpType = 7338 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7339 AsmNodeOperands.push_back(DAG.getTargetConstant( 7340 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7341 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7342 break; 7343 } 7344 7345 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7346 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7347 assert(InOperandVal.getValueType() == 7348 TLI.getPointerTy(DAG.getDataLayout()) && 7349 "Memory operands expect pointer values"); 7350 7351 unsigned ConstraintID = 7352 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7353 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7354 "Failed to convert memory constraint code to constraint id."); 7355 7356 // Add information to the INLINEASM node to know about this input. 7357 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7358 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7359 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7360 getCurSDLoc(), 7361 MVT::i32)); 7362 AsmNodeOperands.push_back(InOperandVal); 7363 break; 7364 } 7365 7366 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7367 OpInfo.ConstraintType == TargetLowering::C_Register) && 7368 "Unknown constraint type!"); 7369 7370 // TODO: Support this. 7371 if (OpInfo.isIndirect) { 7372 emitInlineAsmError( 7373 CS, "Don't know how to handle indirect register inputs yet " 7374 "for constraint '" + 7375 Twine(OpInfo.ConstraintCode) + "'"); 7376 return; 7377 } 7378 7379 // Copy the input into the appropriate registers. 7380 if (OpInfo.AssignedRegs.Regs.empty()) { 7381 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7382 Twine(OpInfo.ConstraintCode) + "'"); 7383 return; 7384 } 7385 7386 SDLoc dl = getCurSDLoc(); 7387 7388 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7389 Chain, &Flag, CS.getInstruction()); 7390 7391 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7392 dl, DAG, AsmNodeOperands); 7393 break; 7394 } 7395 case InlineAsm::isClobber: { 7396 // Add the clobbered value to the operand list, so that the register 7397 // allocator is aware that the physreg got clobbered. 7398 if (!OpInfo.AssignedRegs.Regs.empty()) 7399 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7400 false, 0, getCurSDLoc(), DAG, 7401 AsmNodeOperands); 7402 break; 7403 } 7404 } 7405 } 7406 7407 // Finish up input operands. Set the input chain and add the flag last. 7408 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7409 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7410 7411 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7412 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7413 Flag = Chain.getValue(1); 7414 7415 // If this asm returns a register value, copy the result from that register 7416 // and set it as the value of the call. 7417 if (!RetValRegs.Regs.empty()) { 7418 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7419 Chain, &Flag, CS.getInstruction()); 7420 7421 // FIXME: Why don't we do this for inline asms with MRVs? 7422 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7423 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7424 7425 // If any of the results of the inline asm is a vector, it may have the 7426 // wrong width/num elts. This can happen for register classes that can 7427 // contain multiple different value types. The preg or vreg allocated may 7428 // not have the same VT as was expected. Convert it to the right type 7429 // with bit_convert. 7430 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7431 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7432 ResultType, Val); 7433 7434 } else if (ResultType != Val.getValueType() && 7435 ResultType.isInteger() && Val.getValueType().isInteger()) { 7436 // If a result value was tied to an input value, the computed result may 7437 // have a wider width than the expected result. Extract the relevant 7438 // portion. 7439 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7440 } 7441 7442 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7443 } 7444 7445 setValue(CS.getInstruction(), Val); 7446 // Don't need to use this as a chain in this case. 7447 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7448 return; 7449 } 7450 7451 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 7452 7453 // Process indirect outputs, first output all of the flagged copies out of 7454 // physregs. 7455 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7456 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7457 const Value *Ptr = IndirectStoresToEmit[i].second; 7458 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7459 Chain, &Flag, IA); 7460 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7461 } 7462 7463 // Emit the non-flagged stores from the physregs. 7464 SmallVector<SDValue, 8> OutChains; 7465 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7466 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7467 getValue(StoresToEmit[i].second), 7468 MachinePointerInfo(StoresToEmit[i].second)); 7469 OutChains.push_back(Val); 7470 } 7471 7472 if (!OutChains.empty()) 7473 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7474 7475 DAG.setRoot(Chain); 7476 } 7477 7478 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7479 const Twine &Message) { 7480 LLVMContext &Ctx = *DAG.getContext(); 7481 Ctx.emitError(CS.getInstruction(), Message); 7482 7483 // Make sure we leave the DAG in a valid state 7484 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7485 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7486 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7487 } 7488 7489 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7490 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7491 MVT::Other, getRoot(), 7492 getValue(I.getArgOperand(0)), 7493 DAG.getSrcValue(I.getArgOperand(0)))); 7494 } 7495 7496 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7498 const DataLayout &DL = DAG.getDataLayout(); 7499 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7500 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7501 DAG.getSrcValue(I.getOperand(0)), 7502 DL.getABITypeAlignment(I.getType())); 7503 setValue(&I, V); 7504 DAG.setRoot(V.getValue(1)); 7505 } 7506 7507 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7508 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7509 MVT::Other, getRoot(), 7510 getValue(I.getArgOperand(0)), 7511 DAG.getSrcValue(I.getArgOperand(0)))); 7512 } 7513 7514 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7515 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7516 MVT::Other, getRoot(), 7517 getValue(I.getArgOperand(0)), 7518 getValue(I.getArgOperand(1)), 7519 DAG.getSrcValue(I.getArgOperand(0)), 7520 DAG.getSrcValue(I.getArgOperand(1)))); 7521 } 7522 7523 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7524 const Instruction &I, 7525 SDValue Op) { 7526 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7527 if (!Range) 7528 return Op; 7529 7530 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7531 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7532 return Op; 7533 7534 APInt Lo = CR.getUnsignedMin(); 7535 if (!Lo.isMinValue()) 7536 return Op; 7537 7538 APInt Hi = CR.getUnsignedMax(); 7539 unsigned Bits = Hi.getActiveBits(); 7540 7541 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7542 7543 SDLoc SL = getCurSDLoc(); 7544 7545 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7546 DAG.getValueType(SmallVT)); 7547 unsigned NumVals = Op.getNode()->getNumValues(); 7548 if (NumVals == 1) 7549 return ZExt; 7550 7551 SmallVector<SDValue, 4> Ops; 7552 7553 Ops.push_back(ZExt); 7554 for (unsigned I = 1; I != NumVals; ++I) 7555 Ops.push_back(Op.getValue(I)); 7556 7557 return DAG.getMergeValues(Ops, SL); 7558 } 7559 7560 /// \brief Populate a CallLowerinInfo (into \p CLI) based on the properties of 7561 /// the call being lowered. 7562 /// 7563 /// This is a helper for lowering intrinsics that follow a target calling 7564 /// convention or require stack pointer adjustment. Only a subset of the 7565 /// intrinsic's operands need to participate in the calling convention. 7566 void SelectionDAGBuilder::populateCallLoweringInfo( 7567 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7568 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7569 bool IsPatchPoint) { 7570 TargetLowering::ArgListTy Args; 7571 Args.reserve(NumArgs); 7572 7573 // Populate the argument list. 7574 // Attributes for args start at offset 1, after the return attribute. 7575 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7576 ArgI != ArgE; ++ArgI) { 7577 const Value *V = CS->getOperand(ArgI); 7578 7579 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7580 7581 TargetLowering::ArgListEntry Entry; 7582 Entry.Node = getValue(V); 7583 Entry.Ty = V->getType(); 7584 Entry.setAttributes(&CS, ArgIdx); 7585 Args.push_back(Entry); 7586 } 7587 7588 CLI.setDebugLoc(getCurSDLoc()) 7589 .setChain(getRoot()) 7590 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7591 .setDiscardResult(CS->use_empty()) 7592 .setIsPatchPoint(IsPatchPoint); 7593 } 7594 7595 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 7596 /// or patchpoint target node's operand list. 7597 /// 7598 /// Constants are converted to TargetConstants purely as an optimization to 7599 /// avoid constant materialization and register allocation. 7600 /// 7601 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7602 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7603 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7604 /// address materialization and register allocation, but may also be required 7605 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7606 /// alloca in the entry block, then the runtime may assume that the alloca's 7607 /// StackMap location can be read immediately after compilation and that the 7608 /// location is valid at any point during execution (this is similar to the 7609 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7610 /// only available in a register, then the runtime would need to trap when 7611 /// execution reaches the StackMap in order to read the alloca's location. 7612 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7613 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7614 SelectionDAGBuilder &Builder) { 7615 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7616 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7617 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7618 Ops.push_back( 7619 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7620 Ops.push_back( 7621 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7622 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7623 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7624 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7625 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7626 } else 7627 Ops.push_back(OpVal); 7628 } 7629 } 7630 7631 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 7632 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7633 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7634 // [live variables...]) 7635 7636 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7637 7638 SDValue Chain, InFlag, Callee, NullPtr; 7639 SmallVector<SDValue, 32> Ops; 7640 7641 SDLoc DL = getCurSDLoc(); 7642 Callee = getValue(CI.getCalledValue()); 7643 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7644 7645 // The stackmap intrinsic only records the live variables (the arguemnts 7646 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7647 // intrinsic, this won't be lowered to a function call. This means we don't 7648 // have to worry about calling conventions and target specific lowering code. 7649 // Instead we perform the call lowering right here. 7650 // 7651 // chain, flag = CALLSEQ_START(chain, 0, 0) 7652 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7653 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7654 // 7655 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7656 InFlag = Chain.getValue(1); 7657 7658 // Add the <id> and <numBytes> constants. 7659 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7660 Ops.push_back(DAG.getTargetConstant( 7661 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7662 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7663 Ops.push_back(DAG.getTargetConstant( 7664 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7665 MVT::i32)); 7666 7667 // Push live variables for the stack map. 7668 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7669 7670 // We are not pushing any register mask info here on the operands list, 7671 // because the stackmap doesn't clobber anything. 7672 7673 // Push the chain and the glue flag. 7674 Ops.push_back(Chain); 7675 Ops.push_back(InFlag); 7676 7677 // Create the STACKMAP node. 7678 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7679 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7680 Chain = SDValue(SM, 0); 7681 InFlag = Chain.getValue(1); 7682 7683 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7684 7685 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7686 7687 // Set the root to the target-lowered call chain. 7688 DAG.setRoot(Chain); 7689 7690 // Inform the Frame Information that we have a stackmap in this function. 7691 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7692 } 7693 7694 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7695 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7696 const BasicBlock *EHPadBB) { 7697 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7698 // i32 <numBytes>, 7699 // i8* <target>, 7700 // i32 <numArgs>, 7701 // [Args...], 7702 // [live variables...]) 7703 7704 CallingConv::ID CC = CS.getCallingConv(); 7705 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7706 bool HasDef = !CS->getType()->isVoidTy(); 7707 SDLoc dl = getCurSDLoc(); 7708 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7709 7710 // Handle immediate and symbolic callees. 7711 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7712 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7713 /*isTarget=*/true); 7714 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7715 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7716 SDLoc(SymbolicCallee), 7717 SymbolicCallee->getValueType(0)); 7718 7719 // Get the real number of arguments participating in the call <numArgs> 7720 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7721 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7722 7723 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7724 // Intrinsics include all meta-operands up to but not including CC. 7725 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7726 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7727 "Not enough arguments provided to the patchpoint intrinsic"); 7728 7729 // For AnyRegCC the arguments are lowered later on manually. 7730 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7731 Type *ReturnTy = 7732 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7733 7734 TargetLowering::CallLoweringInfo CLI(DAG); 7735 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7736 true); 7737 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7738 7739 SDNode *CallEnd = Result.second.getNode(); 7740 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7741 CallEnd = CallEnd->getOperand(0).getNode(); 7742 7743 /// Get a call instruction from the call sequence chain. 7744 /// Tail calls are not allowed. 7745 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7746 "Expected a callseq node."); 7747 SDNode *Call = CallEnd->getOperand(0).getNode(); 7748 bool HasGlue = Call->getGluedNode(); 7749 7750 // Replace the target specific call node with the patchable intrinsic. 7751 SmallVector<SDValue, 8> Ops; 7752 7753 // Add the <id> and <numBytes> constants. 7754 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7755 Ops.push_back(DAG.getTargetConstant( 7756 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7757 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7758 Ops.push_back(DAG.getTargetConstant( 7759 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7760 MVT::i32)); 7761 7762 // Add the callee. 7763 Ops.push_back(Callee); 7764 7765 // Adjust <numArgs> to account for any arguments that have been passed on the 7766 // stack instead. 7767 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7768 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 7769 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 7770 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 7771 7772 // Add the calling convention 7773 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 7774 7775 // Add the arguments we omitted previously. The register allocator should 7776 // place these in any free register. 7777 if (IsAnyRegCC) 7778 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7779 Ops.push_back(getValue(CS.getArgument(i))); 7780 7781 // Push the arguments from the call instruction up to the register mask. 7782 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 7783 Ops.append(Call->op_begin() + 2, e); 7784 7785 // Push live variables for the stack map. 7786 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 7787 7788 // Push the register mask info. 7789 if (HasGlue) 7790 Ops.push_back(*(Call->op_end()-2)); 7791 else 7792 Ops.push_back(*(Call->op_end()-1)); 7793 7794 // Push the chain (this is originally the first operand of the call, but 7795 // becomes now the last or second to last operand). 7796 Ops.push_back(*(Call->op_begin())); 7797 7798 // Push the glue flag (last operand). 7799 if (HasGlue) 7800 Ops.push_back(*(Call->op_end()-1)); 7801 7802 SDVTList NodeTys; 7803 if (IsAnyRegCC && HasDef) { 7804 // Create the return types based on the intrinsic definition 7805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7806 SmallVector<EVT, 3> ValueVTs; 7807 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7808 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7809 7810 // There is always a chain and a glue type at the end 7811 ValueVTs.push_back(MVT::Other); 7812 ValueVTs.push_back(MVT::Glue); 7813 NodeTys = DAG.getVTList(ValueVTs); 7814 } else 7815 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7816 7817 // Replace the target specific call node with a PATCHPOINT node. 7818 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7819 dl, NodeTys, Ops); 7820 7821 // Update the NodeMap. 7822 if (HasDef) { 7823 if (IsAnyRegCC) 7824 setValue(CS.getInstruction(), SDValue(MN, 0)); 7825 else 7826 setValue(CS.getInstruction(), Result.first); 7827 } 7828 7829 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7830 // call sequence. Furthermore the location of the chain and glue can change 7831 // when the AnyReg calling convention is used and the intrinsic returns a 7832 // value. 7833 if (IsAnyRegCC && HasDef) { 7834 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7835 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7836 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7837 } else 7838 DAG.ReplaceAllUsesWith(Call, MN); 7839 DAG.DeleteNode(Call); 7840 7841 // Inform the Frame Information that we have a patchpoint in this function. 7842 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 7843 } 7844 7845 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 7846 unsigned Intrinsic) { 7847 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7848 SDValue Op1 = getValue(I.getArgOperand(0)); 7849 SDValue Op2; 7850 if (I.getNumArgOperands() > 1) 7851 Op2 = getValue(I.getArgOperand(1)); 7852 SDLoc dl = getCurSDLoc(); 7853 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7854 SDValue Res; 7855 FastMathFlags FMF; 7856 if (isa<FPMathOperator>(I)) 7857 FMF = I.getFastMathFlags(); 7858 SDNodeFlags SDFlags; 7859 SDFlags.setNoNaNs(FMF.noNaNs()); 7860 7861 switch (Intrinsic) { 7862 case Intrinsic::experimental_vector_reduce_fadd: 7863 if (FMF.unsafeAlgebra()) 7864 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 7865 else 7866 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 7867 break; 7868 case Intrinsic::experimental_vector_reduce_fmul: 7869 if (FMF.unsafeAlgebra()) 7870 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 7871 else 7872 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 7873 break; 7874 case Intrinsic::experimental_vector_reduce_add: 7875 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 7876 break; 7877 case Intrinsic::experimental_vector_reduce_mul: 7878 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 7879 break; 7880 case Intrinsic::experimental_vector_reduce_and: 7881 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 7882 break; 7883 case Intrinsic::experimental_vector_reduce_or: 7884 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 7885 break; 7886 case Intrinsic::experimental_vector_reduce_xor: 7887 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 7888 break; 7889 case Intrinsic::experimental_vector_reduce_smax: 7890 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 7891 break; 7892 case Intrinsic::experimental_vector_reduce_smin: 7893 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 7894 break; 7895 case Intrinsic::experimental_vector_reduce_umax: 7896 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 7897 break; 7898 case Intrinsic::experimental_vector_reduce_umin: 7899 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 7900 break; 7901 case Intrinsic::experimental_vector_reduce_fmax: { 7902 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 7903 break; 7904 } 7905 case Intrinsic::experimental_vector_reduce_fmin: { 7906 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 7907 break; 7908 } 7909 default: 7910 llvm_unreachable("Unhandled vector reduce intrinsic"); 7911 } 7912 setValue(&I, Res); 7913 } 7914 7915 /// Returns an AttributeList representing the attributes applied to the return 7916 /// value of the given call. 7917 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7918 SmallVector<Attribute::AttrKind, 2> Attrs; 7919 if (CLI.RetSExt) 7920 Attrs.push_back(Attribute::SExt); 7921 if (CLI.RetZExt) 7922 Attrs.push_back(Attribute::ZExt); 7923 if (CLI.IsInReg) 7924 Attrs.push_back(Attribute::InReg); 7925 7926 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 7927 Attrs); 7928 } 7929 7930 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7931 /// implementation, which just calls LowerCall. 7932 /// FIXME: When all targets are 7933 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7934 std::pair<SDValue, SDValue> 7935 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7936 // Handle the incoming return values from the call. 7937 CLI.Ins.clear(); 7938 Type *OrigRetTy = CLI.RetTy; 7939 SmallVector<EVT, 4> RetTys; 7940 SmallVector<uint64_t, 4> Offsets; 7941 auto &DL = CLI.DAG.getDataLayout(); 7942 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7943 7944 if (CLI.IsPostTypeLegalization) { 7945 // If we are lowering a libcall after legalization, split the return type. 7946 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 7947 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 7948 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 7949 EVT RetVT = OldRetTys[i]; 7950 uint64_t Offset = OldOffsets[i]; 7951 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 7952 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 7953 unsigned RegisterVTSize = RegisterVT.getSizeInBits(); 7954 RetTys.append(NumRegs, RegisterVT); 7955 for (unsigned j = 0; j != NumRegs; ++j) 7956 Offsets.push_back(Offset + j * RegisterVTSize); 7957 } 7958 } 7959 7960 SmallVector<ISD::OutputArg, 4> Outs; 7961 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7962 7963 bool CanLowerReturn = 7964 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7965 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7966 7967 SDValue DemoteStackSlot; 7968 int DemoteStackIdx = -100; 7969 if (!CanLowerReturn) { 7970 // FIXME: equivalent assert? 7971 // assert(!CS.hasInAllocaArgument() && 7972 // "sret demotion is incompatible with inalloca"); 7973 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7974 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7975 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7976 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7977 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7978 7979 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 7980 ArgListEntry Entry; 7981 Entry.Node = DemoteStackSlot; 7982 Entry.Ty = StackSlotPtrType; 7983 Entry.IsSExt = false; 7984 Entry.IsZExt = false; 7985 Entry.IsInReg = false; 7986 Entry.IsSRet = true; 7987 Entry.IsNest = false; 7988 Entry.IsByVal = false; 7989 Entry.IsReturned = false; 7990 Entry.IsSwiftSelf = false; 7991 Entry.IsSwiftError = false; 7992 Entry.Alignment = Align; 7993 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7994 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7995 7996 // sret demotion isn't compatible with tail-calls, since the sret argument 7997 // points into the callers stack frame. 7998 CLI.IsTailCall = false; 7999 } else { 8000 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8001 EVT VT = RetTys[I]; 8002 MVT RegisterVT = 8003 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8004 unsigned NumRegs = 8005 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8006 for (unsigned i = 0; i != NumRegs; ++i) { 8007 ISD::InputArg MyFlags; 8008 MyFlags.VT = RegisterVT; 8009 MyFlags.ArgVT = VT; 8010 MyFlags.Used = CLI.IsReturnValueUsed; 8011 if (CLI.RetSExt) 8012 MyFlags.Flags.setSExt(); 8013 if (CLI.RetZExt) 8014 MyFlags.Flags.setZExt(); 8015 if (CLI.IsInReg) 8016 MyFlags.Flags.setInReg(); 8017 CLI.Ins.push_back(MyFlags); 8018 } 8019 } 8020 } 8021 8022 // We push in swifterror return as the last element of CLI.Ins. 8023 ArgListTy &Args = CLI.getArgs(); 8024 if (supportSwiftError()) { 8025 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8026 if (Args[i].IsSwiftError) { 8027 ISD::InputArg MyFlags; 8028 MyFlags.VT = getPointerTy(DL); 8029 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8030 MyFlags.Flags.setSwiftError(); 8031 CLI.Ins.push_back(MyFlags); 8032 } 8033 } 8034 } 8035 8036 // Handle all of the outgoing arguments. 8037 CLI.Outs.clear(); 8038 CLI.OutVals.clear(); 8039 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8040 SmallVector<EVT, 4> ValueVTs; 8041 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8042 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8043 Type *FinalType = Args[i].Ty; 8044 if (Args[i].IsByVal) 8045 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8046 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8047 FinalType, CLI.CallConv, CLI.IsVarArg); 8048 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8049 ++Value) { 8050 EVT VT = ValueVTs[Value]; 8051 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8052 SDValue Op = SDValue(Args[i].Node.getNode(), 8053 Args[i].Node.getResNo() + Value); 8054 ISD::ArgFlagsTy Flags; 8055 8056 // Certain targets (such as MIPS), may have a different ABI alignment 8057 // for a type depending on the context. Give the target a chance to 8058 // specify the alignment it wants. 8059 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8060 8061 if (Args[i].IsZExt) 8062 Flags.setZExt(); 8063 if (Args[i].IsSExt) 8064 Flags.setSExt(); 8065 if (Args[i].IsInReg) { 8066 // If we are using vectorcall calling convention, a structure that is 8067 // passed InReg - is surely an HVA 8068 if (CLI.CallConv == CallingConv::X86_VectorCall && 8069 isa<StructType>(FinalType)) { 8070 // The first value of a structure is marked 8071 if (0 == Value) 8072 Flags.setHvaStart(); 8073 Flags.setHva(); 8074 } 8075 // Set InReg Flag 8076 Flags.setInReg(); 8077 } 8078 if (Args[i].IsSRet) 8079 Flags.setSRet(); 8080 if (Args[i].IsSwiftSelf) 8081 Flags.setSwiftSelf(); 8082 if (Args[i].IsSwiftError) 8083 Flags.setSwiftError(); 8084 if (Args[i].IsByVal) 8085 Flags.setByVal(); 8086 if (Args[i].IsInAlloca) { 8087 Flags.setInAlloca(); 8088 // Set the byval flag for CCAssignFn callbacks that don't know about 8089 // inalloca. This way we can know how many bytes we should've allocated 8090 // and how many bytes a callee cleanup function will pop. If we port 8091 // inalloca to more targets, we'll have to add custom inalloca handling 8092 // in the various CC lowering callbacks. 8093 Flags.setByVal(); 8094 } 8095 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8096 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8097 Type *ElementTy = Ty->getElementType(); 8098 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8099 // For ByVal, alignment should come from FE. BE will guess if this 8100 // info is not there but there are cases it cannot get right. 8101 unsigned FrameAlign; 8102 if (Args[i].Alignment) 8103 FrameAlign = Args[i].Alignment; 8104 else 8105 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8106 Flags.setByValAlign(FrameAlign); 8107 } 8108 if (Args[i].IsNest) 8109 Flags.setNest(); 8110 if (NeedsRegBlock) 8111 Flags.setInConsecutiveRegs(); 8112 Flags.setOrigAlign(OriginalAlignment); 8113 8114 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8115 unsigned NumParts = 8116 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8117 SmallVector<SDValue, 4> Parts(NumParts); 8118 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8119 8120 if (Args[i].IsSExt) 8121 ExtendKind = ISD::SIGN_EXTEND; 8122 else if (Args[i].IsZExt) 8123 ExtendKind = ISD::ZERO_EXTEND; 8124 8125 // Conservatively only handle 'returned' on non-vectors for now 8126 if (Args[i].IsReturned && !Op.getValueType().isVector()) { 8127 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8128 "unexpected use of 'returned'"); 8129 // Before passing 'returned' to the target lowering code, ensure that 8130 // either the register MVT and the actual EVT are the same size or that 8131 // the return value and argument are extended in the same way; in these 8132 // cases it's safe to pass the argument register value unchanged as the 8133 // return register value (although it's at the target's option whether 8134 // to do so) 8135 // TODO: allow code generation to take advantage of partially preserved 8136 // registers rather than clobbering the entire register when the 8137 // parameter extension method is not compatible with the return 8138 // extension method 8139 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8140 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8141 CLI.RetZExt == Args[i].IsZExt)) 8142 Flags.setReturned(); 8143 } 8144 8145 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8146 CLI.CS.getInstruction(), ExtendKind, true); 8147 8148 for (unsigned j = 0; j != NumParts; ++j) { 8149 // if it isn't first piece, alignment must be 1 8150 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8151 i < CLI.NumFixedArgs, 8152 i, j*Parts[j].getValueType().getStoreSize()); 8153 if (NumParts > 1 && j == 0) 8154 MyFlags.Flags.setSplit(); 8155 else if (j != 0) { 8156 MyFlags.Flags.setOrigAlign(1); 8157 if (j == NumParts - 1) 8158 MyFlags.Flags.setSplitEnd(); 8159 } 8160 8161 CLI.Outs.push_back(MyFlags); 8162 CLI.OutVals.push_back(Parts[j]); 8163 } 8164 8165 if (NeedsRegBlock && Value == NumValues - 1) 8166 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8167 } 8168 } 8169 8170 SmallVector<SDValue, 4> InVals; 8171 CLI.Chain = LowerCall(CLI, InVals); 8172 8173 // Update CLI.InVals to use outside of this function. 8174 CLI.InVals = InVals; 8175 8176 // Verify that the target's LowerCall behaved as expected. 8177 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8178 "LowerCall didn't return a valid chain!"); 8179 assert((!CLI.IsTailCall || InVals.empty()) && 8180 "LowerCall emitted a return value for a tail call!"); 8181 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8182 "LowerCall didn't emit the correct number of values!"); 8183 8184 // For a tail call, the return value is merely live-out and there aren't 8185 // any nodes in the DAG representing it. Return a special value to 8186 // indicate that a tail call has been emitted and no more Instructions 8187 // should be processed in the current block. 8188 if (CLI.IsTailCall) { 8189 CLI.DAG.setRoot(CLI.Chain); 8190 return std::make_pair(SDValue(), SDValue()); 8191 } 8192 8193 #ifndef NDEBUG 8194 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8195 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8196 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8197 "LowerCall emitted a value with the wrong type!"); 8198 } 8199 #endif 8200 8201 SmallVector<SDValue, 4> ReturnValues; 8202 if (!CanLowerReturn) { 8203 // The instruction result is the result of loading from the 8204 // hidden sret parameter. 8205 SmallVector<EVT, 1> PVTs; 8206 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 8207 8208 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8209 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8210 EVT PtrVT = PVTs[0]; 8211 8212 unsigned NumValues = RetTys.size(); 8213 ReturnValues.resize(NumValues); 8214 SmallVector<SDValue, 4> Chains(NumValues); 8215 8216 // An aggregate return value cannot wrap around the address space, so 8217 // offsets to its parts don't wrap either. 8218 SDNodeFlags Flags; 8219 Flags.setNoUnsignedWrap(true); 8220 8221 for (unsigned i = 0; i < NumValues; ++i) { 8222 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8223 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8224 PtrVT), Flags); 8225 SDValue L = CLI.DAG.getLoad( 8226 RetTys[i], CLI.DL, CLI.Chain, Add, 8227 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8228 DemoteStackIdx, Offsets[i]), 8229 /* Alignment = */ 1); 8230 ReturnValues[i] = L; 8231 Chains[i] = L.getValue(1); 8232 } 8233 8234 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8235 } else { 8236 // Collect the legal value parts into potentially illegal values 8237 // that correspond to the original function's return values. 8238 Optional<ISD::NodeType> AssertOp; 8239 if (CLI.RetSExt) 8240 AssertOp = ISD::AssertSext; 8241 else if (CLI.RetZExt) 8242 AssertOp = ISD::AssertZext; 8243 unsigned CurReg = 0; 8244 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8245 EVT VT = RetTys[I]; 8246 MVT RegisterVT = 8247 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8248 unsigned NumRegs = 8249 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8250 8251 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8252 NumRegs, RegisterVT, VT, nullptr, 8253 AssertOp, true)); 8254 CurReg += NumRegs; 8255 } 8256 8257 // For a function returning void, there is no return value. We can't create 8258 // such a node, so we just return a null return value in that case. In 8259 // that case, nothing will actually look at the value. 8260 if (ReturnValues.empty()) 8261 return std::make_pair(SDValue(), CLI.Chain); 8262 } 8263 8264 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8265 CLI.DAG.getVTList(RetTys), ReturnValues); 8266 return std::make_pair(Res, CLI.Chain); 8267 } 8268 8269 void TargetLowering::LowerOperationWrapper(SDNode *N, 8270 SmallVectorImpl<SDValue> &Results, 8271 SelectionDAG &DAG) const { 8272 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8273 Results.push_back(Res); 8274 } 8275 8276 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8277 llvm_unreachable("LowerOperation not implemented for this target!"); 8278 } 8279 8280 void 8281 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8282 SDValue Op = getNonRegisterValue(V); 8283 assert((Op.getOpcode() != ISD::CopyFromReg || 8284 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8285 "Copy from a reg to the same reg!"); 8286 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8287 8288 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8289 // If this is an InlineAsm we have to match the registers required, not the 8290 // notional registers required by the type. 8291 8292 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8293 V->getType(), isABIRegCopy(V)); 8294 SDValue Chain = DAG.getEntryNode(); 8295 8296 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8297 FuncInfo.PreferredExtendType.end()) 8298 ? ISD::ANY_EXTEND 8299 : FuncInfo.PreferredExtendType[V]; 8300 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8301 PendingExports.push_back(Chain); 8302 } 8303 8304 #include "llvm/CodeGen/SelectionDAGISel.h" 8305 8306 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8307 /// entry block, return true. This includes arguments used by switches, since 8308 /// the switch may expand into multiple basic blocks. 8309 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8310 // With FastISel active, we may be splitting blocks, so force creation 8311 // of virtual registers for all non-dead arguments. 8312 if (FastISel) 8313 return A->use_empty(); 8314 8315 const BasicBlock &Entry = A->getParent()->front(); 8316 for (const User *U : A->users()) 8317 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8318 return false; // Use not in entry block. 8319 8320 return true; 8321 } 8322 8323 typedef DenseMap<const Argument *, 8324 std::pair<const AllocaInst *, const StoreInst *>> 8325 ArgCopyElisionMapTy; 8326 8327 /// Scan the entry block of the function in FuncInfo for arguments that look 8328 /// like copies into a local alloca. Record any copied arguments in 8329 /// ArgCopyElisionCandidates. 8330 static void 8331 findArgumentCopyElisionCandidates(const DataLayout &DL, 8332 FunctionLoweringInfo *FuncInfo, 8333 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8334 // Record the state of every static alloca used in the entry block. Argument 8335 // allocas are all used in the entry block, so we need approximately as many 8336 // entries as we have arguments. 8337 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8338 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8339 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8340 StaticAllocas.reserve(NumArgs * 2); 8341 8342 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8343 if (!V) 8344 return nullptr; 8345 V = V->stripPointerCasts(); 8346 const auto *AI = dyn_cast<AllocaInst>(V); 8347 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8348 return nullptr; 8349 auto Iter = StaticAllocas.insert({AI, Unknown}); 8350 return &Iter.first->second; 8351 }; 8352 8353 // Look for stores of arguments to static allocas. Look through bitcasts and 8354 // GEPs to handle type coercions, as long as the alloca is fully initialized 8355 // by the store. Any non-store use of an alloca escapes it and any subsequent 8356 // unanalyzed store might write it. 8357 // FIXME: Handle structs initialized with multiple stores. 8358 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8359 // Look for stores, and handle non-store uses conservatively. 8360 const auto *SI = dyn_cast<StoreInst>(&I); 8361 if (!SI) { 8362 // We will look through cast uses, so ignore them completely. 8363 if (I.isCast()) 8364 continue; 8365 // Ignore debug info intrinsics, they don't escape or store to allocas. 8366 if (isa<DbgInfoIntrinsic>(I)) 8367 continue; 8368 // This is an unknown instruction. Assume it escapes or writes to all 8369 // static alloca operands. 8370 for (const Use &U : I.operands()) { 8371 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8372 *Info = StaticAllocaInfo::Clobbered; 8373 } 8374 continue; 8375 } 8376 8377 // If the stored value is a static alloca, mark it as escaped. 8378 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8379 *Info = StaticAllocaInfo::Clobbered; 8380 8381 // Check if the destination is a static alloca. 8382 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8383 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8384 if (!Info) 8385 continue; 8386 const AllocaInst *AI = cast<AllocaInst>(Dst); 8387 8388 // Skip allocas that have been initialized or clobbered. 8389 if (*Info != StaticAllocaInfo::Unknown) 8390 continue; 8391 8392 // Check if the stored value is an argument, and that this store fully 8393 // initializes the alloca. Don't elide copies from the same argument twice. 8394 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8395 const auto *Arg = dyn_cast<Argument>(Val); 8396 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8397 Arg->getType()->isEmptyTy() || 8398 DL.getTypeStoreSize(Arg->getType()) != 8399 DL.getTypeAllocSize(AI->getAllocatedType()) || 8400 ArgCopyElisionCandidates.count(Arg)) { 8401 *Info = StaticAllocaInfo::Clobbered; 8402 continue; 8403 } 8404 8405 DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI << '\n'); 8406 8407 // Mark this alloca and store for argument copy elision. 8408 *Info = StaticAllocaInfo::Elidable; 8409 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8410 8411 // Stop scanning if we've seen all arguments. This will happen early in -O0 8412 // builds, which is useful, because -O0 builds have large entry blocks and 8413 // many allocas. 8414 if (ArgCopyElisionCandidates.size() == NumArgs) 8415 break; 8416 } 8417 } 8418 8419 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8420 /// ArgVal is a load from a suitable fixed stack object. 8421 static void tryToElideArgumentCopy( 8422 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8423 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8424 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8425 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8426 SDValue ArgVal, bool &ArgHasUses) { 8427 // Check if this is a load from a fixed stack object. 8428 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8429 if (!LNode) 8430 return; 8431 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8432 if (!FINode) 8433 return; 8434 8435 // Check that the fixed stack object is the right size and alignment. 8436 // Look at the alignment that the user wrote on the alloca instead of looking 8437 // at the stack object. 8438 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8439 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8440 const AllocaInst *AI = ArgCopyIter->second.first; 8441 int FixedIndex = FINode->getIndex(); 8442 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8443 int OldIndex = AllocaIndex; 8444 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8445 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8446 DEBUG(dbgs() << " argument copy elision failed due to bad fixed stack " 8447 "object size\n"); 8448 return; 8449 } 8450 unsigned RequiredAlignment = AI->getAlignment(); 8451 if (!RequiredAlignment) { 8452 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8453 AI->getAllocatedType()); 8454 } 8455 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8456 DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8457 "greater than stack argument alignment (" 8458 << RequiredAlignment << " vs " 8459 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8460 return; 8461 } 8462 8463 // Perform the elision. Delete the old stack object and replace its only use 8464 // in the variable info map. Mark the stack object as mutable. 8465 DEBUG({ 8466 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8467 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8468 << '\n'; 8469 }); 8470 MFI.RemoveStackObject(OldIndex); 8471 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8472 AllocaIndex = FixedIndex; 8473 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8474 Chains.push_back(ArgVal.getValue(1)); 8475 8476 // Avoid emitting code for the store implementing the copy. 8477 const StoreInst *SI = ArgCopyIter->second.second; 8478 ElidedArgCopyInstrs.insert(SI); 8479 8480 // Check for uses of the argument again so that we can avoid exporting ArgVal 8481 // if it is't used by anything other than the store. 8482 for (const Value *U : Arg.users()) { 8483 if (U != SI) { 8484 ArgHasUses = true; 8485 break; 8486 } 8487 } 8488 } 8489 8490 void SelectionDAGISel::LowerArguments(const Function &F) { 8491 SelectionDAG &DAG = SDB->DAG; 8492 SDLoc dl = SDB->getCurSDLoc(); 8493 const DataLayout &DL = DAG.getDataLayout(); 8494 SmallVector<ISD::InputArg, 16> Ins; 8495 8496 if (!FuncInfo->CanLowerReturn) { 8497 // Put in an sret pointer parameter before all the other parameters. 8498 SmallVector<EVT, 1> ValueVTs; 8499 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8500 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8501 8502 // NOTE: Assuming that a pointer will never break down to more than one VT 8503 // or one register. 8504 ISD::ArgFlagsTy Flags; 8505 Flags.setSRet(); 8506 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8507 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8508 ISD::InputArg::NoArgIndex, 0); 8509 Ins.push_back(RetArg); 8510 } 8511 8512 // Look for stores of arguments to static allocas. Mark such arguments with a 8513 // flag to ask the target to give us the memory location of that argument if 8514 // available. 8515 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8516 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8517 8518 // Set up the incoming argument description vector. 8519 for (const Argument &Arg : F.args()) { 8520 unsigned ArgNo = Arg.getArgNo(); 8521 SmallVector<EVT, 4> ValueVTs; 8522 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8523 bool isArgValueUsed = !Arg.use_empty(); 8524 unsigned PartBase = 0; 8525 Type *FinalType = Arg.getType(); 8526 if (Arg.hasAttribute(Attribute::ByVal)) 8527 FinalType = cast<PointerType>(FinalType)->getElementType(); 8528 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8529 FinalType, F.getCallingConv(), F.isVarArg()); 8530 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8531 Value != NumValues; ++Value) { 8532 EVT VT = ValueVTs[Value]; 8533 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8534 ISD::ArgFlagsTy Flags; 8535 8536 // Certain targets (such as MIPS), may have a different ABI alignment 8537 // for a type depending on the context. Give the target a chance to 8538 // specify the alignment it wants. 8539 unsigned OriginalAlignment = 8540 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8541 8542 if (Arg.hasAttribute(Attribute::ZExt)) 8543 Flags.setZExt(); 8544 if (Arg.hasAttribute(Attribute::SExt)) 8545 Flags.setSExt(); 8546 if (Arg.hasAttribute(Attribute::InReg)) { 8547 // If we are using vectorcall calling convention, a structure that is 8548 // passed InReg - is surely an HVA 8549 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8550 isa<StructType>(Arg.getType())) { 8551 // The first value of a structure is marked 8552 if (0 == Value) 8553 Flags.setHvaStart(); 8554 Flags.setHva(); 8555 } 8556 // Set InReg Flag 8557 Flags.setInReg(); 8558 } 8559 if (Arg.hasAttribute(Attribute::StructRet)) 8560 Flags.setSRet(); 8561 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8562 Flags.setSwiftSelf(); 8563 if (Arg.hasAttribute(Attribute::SwiftError)) 8564 Flags.setSwiftError(); 8565 if (Arg.hasAttribute(Attribute::ByVal)) 8566 Flags.setByVal(); 8567 if (Arg.hasAttribute(Attribute::InAlloca)) { 8568 Flags.setInAlloca(); 8569 // Set the byval flag for CCAssignFn callbacks that don't know about 8570 // inalloca. This way we can know how many bytes we should've allocated 8571 // and how many bytes a callee cleanup function will pop. If we port 8572 // inalloca to more targets, we'll have to add custom inalloca handling 8573 // in the various CC lowering callbacks. 8574 Flags.setByVal(); 8575 } 8576 if (F.getCallingConv() == CallingConv::X86_INTR) { 8577 // IA Interrupt passes frame (1st parameter) by value in the stack. 8578 if (ArgNo == 0) 8579 Flags.setByVal(); 8580 } 8581 if (Flags.isByVal() || Flags.isInAlloca()) { 8582 PointerType *Ty = cast<PointerType>(Arg.getType()); 8583 Type *ElementTy = Ty->getElementType(); 8584 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8585 // For ByVal, alignment should be passed from FE. BE will guess if 8586 // this info is not there but there are cases it cannot get right. 8587 unsigned FrameAlign; 8588 if (Arg.getParamAlignment()) 8589 FrameAlign = Arg.getParamAlignment(); 8590 else 8591 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8592 Flags.setByValAlign(FrameAlign); 8593 } 8594 if (Arg.hasAttribute(Attribute::Nest)) 8595 Flags.setNest(); 8596 if (NeedsRegBlock) 8597 Flags.setInConsecutiveRegs(); 8598 Flags.setOrigAlign(OriginalAlignment); 8599 if (ArgCopyElisionCandidates.count(&Arg)) 8600 Flags.setCopyElisionCandidate(); 8601 8602 MVT RegisterVT = 8603 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8604 unsigned NumRegs = 8605 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8606 for (unsigned i = 0; i != NumRegs; ++i) { 8607 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8608 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8609 if (NumRegs > 1 && i == 0) 8610 MyFlags.Flags.setSplit(); 8611 // if it isn't first piece, alignment must be 1 8612 else if (i > 0) { 8613 MyFlags.Flags.setOrigAlign(1); 8614 if (i == NumRegs - 1) 8615 MyFlags.Flags.setSplitEnd(); 8616 } 8617 Ins.push_back(MyFlags); 8618 } 8619 if (NeedsRegBlock && Value == NumValues - 1) 8620 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8621 PartBase += VT.getStoreSize(); 8622 } 8623 } 8624 8625 // Call the target to set up the argument values. 8626 SmallVector<SDValue, 8> InVals; 8627 SDValue NewRoot = TLI->LowerFormalArguments( 8628 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8629 8630 // Verify that the target's LowerFormalArguments behaved as expected. 8631 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8632 "LowerFormalArguments didn't return a valid chain!"); 8633 assert(InVals.size() == Ins.size() && 8634 "LowerFormalArguments didn't emit the correct number of values!"); 8635 DEBUG({ 8636 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8637 assert(InVals[i].getNode() && 8638 "LowerFormalArguments emitted a null value!"); 8639 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8640 "LowerFormalArguments emitted a value with the wrong type!"); 8641 } 8642 }); 8643 8644 // Update the DAG with the new chain value resulting from argument lowering. 8645 DAG.setRoot(NewRoot); 8646 8647 // Set up the argument values. 8648 unsigned i = 0; 8649 if (!FuncInfo->CanLowerReturn) { 8650 // Create a virtual register for the sret pointer, and put in a copy 8651 // from the sret argument into it. 8652 SmallVector<EVT, 1> ValueVTs; 8653 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8654 PointerType::getUnqual(F.getReturnType()), ValueVTs); 8655 MVT VT = ValueVTs[0].getSimpleVT(); 8656 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8657 Optional<ISD::NodeType> AssertOp = None; 8658 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8659 RegVT, VT, nullptr, AssertOp); 8660 8661 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8662 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8663 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8664 FuncInfo->DemoteRegister = SRetReg; 8665 NewRoot = 8666 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8667 DAG.setRoot(NewRoot); 8668 8669 // i indexes lowered arguments. Bump it past the hidden sret argument. 8670 ++i; 8671 } 8672 8673 SmallVector<SDValue, 4> Chains; 8674 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8675 for (const Argument &Arg : F.args()) { 8676 SmallVector<SDValue, 4> ArgValues; 8677 SmallVector<EVT, 4> ValueVTs; 8678 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8679 unsigned NumValues = ValueVTs.size(); 8680 if (NumValues == 0) 8681 continue; 8682 8683 bool ArgHasUses = !Arg.use_empty(); 8684 8685 // Elide the copying store if the target loaded this argument from a 8686 // suitable fixed stack object. 8687 if (Ins[i].Flags.isCopyElisionCandidate()) { 8688 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8689 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8690 InVals[i], ArgHasUses); 8691 } 8692 8693 // If this argument is unused then remember its value. It is used to generate 8694 // debugging information. 8695 bool isSwiftErrorArg = 8696 TLI->supportSwiftError() && 8697 Arg.hasAttribute(Attribute::SwiftError); 8698 if (!ArgHasUses && !isSwiftErrorArg) { 8699 SDB->setUnusedArgValue(&Arg, InVals[i]); 8700 8701 // Also remember any frame index for use in FastISel. 8702 if (FrameIndexSDNode *FI = 8703 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8704 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8705 } 8706 8707 for (unsigned Val = 0; Val != NumValues; ++Val) { 8708 EVT VT = ValueVTs[Val]; 8709 MVT PartVT = 8710 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8711 unsigned NumParts = 8712 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8713 8714 // Even an apparant 'unused' swifterror argument needs to be returned. So 8715 // we do generate a copy for it that can be used on return from the 8716 // function. 8717 if (ArgHasUses || isSwiftErrorArg) { 8718 Optional<ISD::NodeType> AssertOp; 8719 if (Arg.hasAttribute(Attribute::SExt)) 8720 AssertOp = ISD::AssertSext; 8721 else if (Arg.hasAttribute(Attribute::ZExt)) 8722 AssertOp = ISD::AssertZext; 8723 8724 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8725 PartVT, VT, nullptr, AssertOp, 8726 true)); 8727 } 8728 8729 i += NumParts; 8730 } 8731 8732 // We don't need to do anything else for unused arguments. 8733 if (ArgValues.empty()) 8734 continue; 8735 8736 // Note down frame index. 8737 if (FrameIndexSDNode *FI = 8738 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8739 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8740 8741 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8742 SDB->getCurSDLoc()); 8743 8744 SDB->setValue(&Arg, Res); 8745 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8746 if (LoadSDNode *LNode = 8747 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 8748 if (FrameIndexSDNode *FI = 8749 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 8750 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8751 } 8752 8753 // Update the SwiftErrorVRegDefMap. 8754 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 8755 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8756 if (TargetRegisterInfo::isVirtualRegister(Reg)) 8757 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 8758 FuncInfo->SwiftErrorArg, Reg); 8759 } 8760 8761 // If this argument is live outside of the entry block, insert a copy from 8762 // wherever we got it to the vreg that other BB's will reference it as. 8763 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 8764 // If we can, though, try to skip creating an unnecessary vreg. 8765 // FIXME: This isn't very clean... it would be nice to make this more 8766 // general. It's also subtly incompatible with the hacks FastISel 8767 // uses with vregs. 8768 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 8769 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 8770 FuncInfo->ValueMap[&Arg] = Reg; 8771 continue; 8772 } 8773 } 8774 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 8775 FuncInfo->InitializeRegForValue(&Arg); 8776 SDB->CopyToExportRegsIfNeeded(&Arg); 8777 } 8778 } 8779 8780 if (!Chains.empty()) { 8781 Chains.push_back(NewRoot); 8782 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 8783 } 8784 8785 DAG.setRoot(NewRoot); 8786 8787 assert(i == InVals.size() && "Argument register count mismatch!"); 8788 8789 // If any argument copy elisions occurred and we have debug info, update the 8790 // stale frame indices used in the dbg.declare variable info table. 8791 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 8792 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 8793 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 8794 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 8795 if (I != ArgCopyElisionFrameIndexMap.end()) 8796 VI.Slot = I->second; 8797 } 8798 } 8799 8800 // Finally, if the target has anything special to do, allow it to do so. 8801 EmitFunctionEntryCode(); 8802 } 8803 8804 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 8805 /// ensure constants are generated when needed. Remember the virtual registers 8806 /// that need to be added to the Machine PHI nodes as input. We cannot just 8807 /// directly add them, because expansion might result in multiple MBB's for one 8808 /// BB. As such, the start of the BB might correspond to a different MBB than 8809 /// the end. 8810 /// 8811 void 8812 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 8813 const TerminatorInst *TI = LLVMBB->getTerminator(); 8814 8815 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 8816 8817 // Check PHI nodes in successors that expect a value to be available from this 8818 // block. 8819 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 8820 const BasicBlock *SuccBB = TI->getSuccessor(succ); 8821 if (!isa<PHINode>(SuccBB->begin())) continue; 8822 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 8823 8824 // If this terminator has multiple identical successors (common for 8825 // switches), only handle each succ once. 8826 if (!SuccsHandled.insert(SuccMBB).second) 8827 continue; 8828 8829 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 8830 8831 // At this point we know that there is a 1-1 correspondence between LLVM PHI 8832 // nodes and Machine PHI nodes, but the incoming operands have not been 8833 // emitted yet. 8834 for (BasicBlock::const_iterator I = SuccBB->begin(); 8835 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 8836 // Ignore dead phi's. 8837 if (PN->use_empty()) continue; 8838 8839 // Skip empty types 8840 if (PN->getType()->isEmptyTy()) 8841 continue; 8842 8843 unsigned Reg; 8844 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 8845 8846 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 8847 unsigned &RegOut = ConstantsOut[C]; 8848 if (RegOut == 0) { 8849 RegOut = FuncInfo.CreateRegs(C->getType()); 8850 CopyValueToVirtualRegister(C, RegOut); 8851 } 8852 Reg = RegOut; 8853 } else { 8854 DenseMap<const Value *, unsigned>::iterator I = 8855 FuncInfo.ValueMap.find(PHIOp); 8856 if (I != FuncInfo.ValueMap.end()) 8857 Reg = I->second; 8858 else { 8859 assert(isa<AllocaInst>(PHIOp) && 8860 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 8861 "Didn't codegen value into a register!??"); 8862 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 8863 CopyValueToVirtualRegister(PHIOp, Reg); 8864 } 8865 } 8866 8867 // Remember that this register needs to added to the machine PHI node as 8868 // the input for this MBB. 8869 SmallVector<EVT, 4> ValueVTs; 8870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8871 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 8872 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 8873 EVT VT = ValueVTs[vti]; 8874 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 8875 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 8876 FuncInfo.PHINodesToUpdate.push_back( 8877 std::make_pair(&*MBBI++, Reg + i)); 8878 Reg += NumRegisters; 8879 } 8880 } 8881 } 8882 8883 ConstantsOut.clear(); 8884 } 8885 8886 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 8887 /// is 0. 8888 MachineBasicBlock * 8889 SelectionDAGBuilder::StackProtectorDescriptor:: 8890 AddSuccessorMBB(const BasicBlock *BB, 8891 MachineBasicBlock *ParentMBB, 8892 bool IsLikely, 8893 MachineBasicBlock *SuccMBB) { 8894 // If SuccBB has not been created yet, create it. 8895 if (!SuccMBB) { 8896 MachineFunction *MF = ParentMBB->getParent(); 8897 MachineFunction::iterator BBI(ParentMBB); 8898 SuccMBB = MF->CreateMachineBasicBlock(BB); 8899 MF->insert(++BBI, SuccMBB); 8900 } 8901 // Add it as a successor of ParentMBB. 8902 ParentMBB->addSuccessor( 8903 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 8904 return SuccMBB; 8905 } 8906 8907 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 8908 MachineFunction::iterator I(MBB); 8909 if (++I == FuncInfo.MF->end()) 8910 return nullptr; 8911 return &*I; 8912 } 8913 8914 /// During lowering new call nodes can be created (such as memset, etc.). 8915 /// Those will become new roots of the current DAG, but complications arise 8916 /// when they are tail calls. In such cases, the call lowering will update 8917 /// the root, but the builder still needs to know that a tail call has been 8918 /// lowered in order to avoid generating an additional return. 8919 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 8920 // If the node is null, we do have a tail call. 8921 if (MaybeTC.getNode() != nullptr) 8922 DAG.setRoot(MaybeTC); 8923 else 8924 HasTailCall = true; 8925 } 8926 8927 uint64_t 8928 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 8929 unsigned First, unsigned Last) const { 8930 assert(Last >= First); 8931 const APInt &LowCase = Clusters[First].Low->getValue(); 8932 const APInt &HighCase = Clusters[Last].High->getValue(); 8933 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 8934 8935 // FIXME: A range of consecutive cases has 100% density, but only requires one 8936 // comparison to lower. We should discriminate against such consecutive ranges 8937 // in jump tables. 8938 8939 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 8940 } 8941 8942 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 8943 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 8944 unsigned Last) const { 8945 assert(Last >= First); 8946 assert(TotalCases[Last] >= TotalCases[First]); 8947 uint64_t NumCases = 8948 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 8949 return NumCases; 8950 } 8951 8952 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 8953 unsigned First, unsigned Last, 8954 const SwitchInst *SI, 8955 MachineBasicBlock *DefaultMBB, 8956 CaseCluster &JTCluster) { 8957 assert(First <= Last); 8958 8959 auto Prob = BranchProbability::getZero(); 8960 unsigned NumCmps = 0; 8961 std::vector<MachineBasicBlock*> Table; 8962 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 8963 8964 // Initialize probabilities in JTProbs. 8965 for (unsigned I = First; I <= Last; ++I) 8966 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 8967 8968 for (unsigned I = First; I <= Last; ++I) { 8969 assert(Clusters[I].Kind == CC_Range); 8970 Prob += Clusters[I].Prob; 8971 const APInt &Low = Clusters[I].Low->getValue(); 8972 const APInt &High = Clusters[I].High->getValue(); 8973 NumCmps += (Low == High) ? 1 : 2; 8974 if (I != First) { 8975 // Fill the gap between this and the previous cluster. 8976 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 8977 assert(PreviousHigh.slt(Low)); 8978 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 8979 for (uint64_t J = 0; J < Gap; J++) 8980 Table.push_back(DefaultMBB); 8981 } 8982 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 8983 for (uint64_t J = 0; J < ClusterSize; ++J) 8984 Table.push_back(Clusters[I].MBB); 8985 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 8986 } 8987 8988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8989 unsigned NumDests = JTProbs.size(); 8990 if (TLI.isSuitableForBitTests( 8991 NumDests, NumCmps, Clusters[First].Low->getValue(), 8992 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 8993 // Clusters[First..Last] should be lowered as bit tests instead. 8994 return false; 8995 } 8996 8997 // Create the MBB that will load from and jump through the table. 8998 // Note: We create it here, but it's not inserted into the function yet. 8999 MachineFunction *CurMF = FuncInfo.MF; 9000 MachineBasicBlock *JumpTableMBB = 9001 CurMF->CreateMachineBasicBlock(SI->getParent()); 9002 9003 // Add successors. Note: use table order for determinism. 9004 SmallPtrSet<MachineBasicBlock *, 8> Done; 9005 for (MachineBasicBlock *Succ : Table) { 9006 if (Done.count(Succ)) 9007 continue; 9008 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9009 Done.insert(Succ); 9010 } 9011 JumpTableMBB->normalizeSuccProbs(); 9012 9013 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9014 ->createJumpTableIndex(Table); 9015 9016 // Set up the jump table info. 9017 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9018 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9019 Clusters[Last].High->getValue(), SI->getCondition(), 9020 nullptr, false); 9021 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9022 9023 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9024 JTCases.size() - 1, Prob); 9025 return true; 9026 } 9027 9028 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9029 const SwitchInst *SI, 9030 MachineBasicBlock *DefaultMBB) { 9031 #ifndef NDEBUG 9032 // Clusters must be non-empty, sorted, and only contain Range clusters. 9033 assert(!Clusters.empty()); 9034 for (CaseCluster &C : Clusters) 9035 assert(C.Kind == CC_Range); 9036 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9037 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9038 #endif 9039 9040 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9041 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9042 return; 9043 9044 const int64_t N = Clusters.size(); 9045 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9046 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9047 9048 if (N < 2 || N < MinJumpTableEntries) 9049 return; 9050 9051 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9052 SmallVector<unsigned, 8> TotalCases(N); 9053 for (unsigned i = 0; i < N; ++i) { 9054 const APInt &Hi = Clusters[i].High->getValue(); 9055 const APInt &Lo = Clusters[i].Low->getValue(); 9056 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9057 if (i != 0) 9058 TotalCases[i] += TotalCases[i - 1]; 9059 } 9060 9061 // Cheap case: the whole range may be suitable for jump table. 9062 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9063 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9064 assert(NumCases < UINT64_MAX / 100); 9065 assert(Range >= NumCases); 9066 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9067 CaseCluster JTCluster; 9068 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9069 Clusters[0] = JTCluster; 9070 Clusters.resize(1); 9071 return; 9072 } 9073 } 9074 9075 // The algorithm below is not suitable for -O0. 9076 if (TM.getOptLevel() == CodeGenOpt::None) 9077 return; 9078 9079 // Split Clusters into minimum number of dense partitions. The algorithm uses 9080 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9081 // for the Case Statement'" (1994), but builds the MinPartitions array in 9082 // reverse order to make it easier to reconstruct the partitions in ascending 9083 // order. In the choice between two optimal partitionings, it picks the one 9084 // which yields more jump tables. 9085 9086 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9087 SmallVector<unsigned, 8> MinPartitions(N); 9088 // LastElement[i] is the last element of the partition starting at i. 9089 SmallVector<unsigned, 8> LastElement(N); 9090 // PartitionsScore[i] is used to break ties when choosing between two 9091 // partitionings resulting in the same number of partitions. 9092 SmallVector<unsigned, 8> PartitionsScore(N); 9093 // For PartitionsScore, a small number of comparisons is considered as good as 9094 // a jump table and a single comparison is considered better than a jump 9095 // table. 9096 enum PartitionScores : unsigned { 9097 NoTable = 0, 9098 Table = 1, 9099 FewCases = 1, 9100 SingleCase = 2 9101 }; 9102 9103 // Base case: There is only one way to partition Clusters[N-1]. 9104 MinPartitions[N - 1] = 1; 9105 LastElement[N - 1] = N - 1; 9106 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9107 9108 // Note: loop indexes are signed to avoid underflow. 9109 for (int64_t i = N - 2; i >= 0; i--) { 9110 // Find optimal partitioning of Clusters[i..N-1]. 9111 // Baseline: Put Clusters[i] into a partition on its own. 9112 MinPartitions[i] = MinPartitions[i + 1] + 1; 9113 LastElement[i] = i; 9114 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9115 9116 // Search for a solution that results in fewer partitions. 9117 for (int64_t j = N - 1; j > i; j--) { 9118 // Try building a partition from Clusters[i..j]. 9119 uint64_t Range = getJumpTableRange(Clusters, i, j); 9120 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9121 assert(NumCases < UINT64_MAX / 100); 9122 assert(Range >= NumCases); 9123 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9124 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9125 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9126 int64_t NumEntries = j - i + 1; 9127 9128 if (NumEntries == 1) 9129 Score += PartitionScores::SingleCase; 9130 else if (NumEntries <= SmallNumberOfEntries) 9131 Score += PartitionScores::FewCases; 9132 else if (NumEntries >= MinJumpTableEntries) 9133 Score += PartitionScores::Table; 9134 9135 // If this leads to fewer partitions, or to the same number of 9136 // partitions with better score, it is a better partitioning. 9137 if (NumPartitions < MinPartitions[i] || 9138 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9139 MinPartitions[i] = NumPartitions; 9140 LastElement[i] = j; 9141 PartitionsScore[i] = Score; 9142 } 9143 } 9144 } 9145 } 9146 9147 // Iterate over the partitions, replacing some with jump tables in-place. 9148 unsigned DstIndex = 0; 9149 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9150 Last = LastElement[First]; 9151 assert(Last >= First); 9152 assert(DstIndex <= First); 9153 unsigned NumClusters = Last - First + 1; 9154 9155 CaseCluster JTCluster; 9156 if (NumClusters >= MinJumpTableEntries && 9157 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9158 Clusters[DstIndex++] = JTCluster; 9159 } else { 9160 for (unsigned I = First; I <= Last; ++I) 9161 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9162 } 9163 } 9164 Clusters.resize(DstIndex); 9165 } 9166 9167 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9168 unsigned First, unsigned Last, 9169 const SwitchInst *SI, 9170 CaseCluster &BTCluster) { 9171 assert(First <= Last); 9172 if (First == Last) 9173 return false; 9174 9175 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9176 unsigned NumCmps = 0; 9177 for (int64_t I = First; I <= Last; ++I) { 9178 assert(Clusters[I].Kind == CC_Range); 9179 Dests.set(Clusters[I].MBB->getNumber()); 9180 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9181 } 9182 unsigned NumDests = Dests.count(); 9183 9184 APInt Low = Clusters[First].Low->getValue(); 9185 APInt High = Clusters[Last].High->getValue(); 9186 assert(Low.slt(High)); 9187 9188 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9189 const DataLayout &DL = DAG.getDataLayout(); 9190 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9191 return false; 9192 9193 APInt LowBound; 9194 APInt CmpRange; 9195 9196 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9197 assert(TLI.rangeFitsInWord(Low, High, DL) && 9198 "Case range must fit in bit mask!"); 9199 9200 // Check if the clusters cover a contiguous range such that no value in the 9201 // range will jump to the default statement. 9202 bool ContiguousRange = true; 9203 for (int64_t I = First + 1; I <= Last; ++I) { 9204 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9205 ContiguousRange = false; 9206 break; 9207 } 9208 } 9209 9210 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9211 // Optimize the case where all the case values fit in a word without having 9212 // to subtract minValue. In this case, we can optimize away the subtraction. 9213 LowBound = APInt::getNullValue(Low.getBitWidth()); 9214 CmpRange = High; 9215 ContiguousRange = false; 9216 } else { 9217 LowBound = Low; 9218 CmpRange = High - Low; 9219 } 9220 9221 CaseBitsVector CBV; 9222 auto TotalProb = BranchProbability::getZero(); 9223 for (unsigned i = First; i <= Last; ++i) { 9224 // Find the CaseBits for this destination. 9225 unsigned j; 9226 for (j = 0; j < CBV.size(); ++j) 9227 if (CBV[j].BB == Clusters[i].MBB) 9228 break; 9229 if (j == CBV.size()) 9230 CBV.push_back( 9231 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9232 CaseBits *CB = &CBV[j]; 9233 9234 // Update Mask, Bits and ExtraProb. 9235 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9236 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9237 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9238 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9239 CB->Bits += Hi - Lo + 1; 9240 CB->ExtraProb += Clusters[i].Prob; 9241 TotalProb += Clusters[i].Prob; 9242 } 9243 9244 BitTestInfo BTI; 9245 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9246 // Sort by probability first, number of bits second. 9247 if (a.ExtraProb != b.ExtraProb) 9248 return a.ExtraProb > b.ExtraProb; 9249 return a.Bits > b.Bits; 9250 }); 9251 9252 for (auto &CB : CBV) { 9253 MachineBasicBlock *BitTestBB = 9254 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9255 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9256 } 9257 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9258 SI->getCondition(), -1U, MVT::Other, false, 9259 ContiguousRange, nullptr, nullptr, std::move(BTI), 9260 TotalProb); 9261 9262 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9263 BitTestCases.size() - 1, TotalProb); 9264 return true; 9265 } 9266 9267 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9268 const SwitchInst *SI) { 9269 // Partition Clusters into as few subsets as possible, where each subset has a 9270 // range that fits in a machine word and has <= 3 unique destinations. 9271 9272 #ifndef NDEBUG 9273 // Clusters must be sorted and contain Range or JumpTable clusters. 9274 assert(!Clusters.empty()); 9275 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9276 for (const CaseCluster &C : Clusters) 9277 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9278 for (unsigned i = 1; i < Clusters.size(); ++i) 9279 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9280 #endif 9281 9282 // The algorithm below is not suitable for -O0. 9283 if (TM.getOptLevel() == CodeGenOpt::None) 9284 return; 9285 9286 // If target does not have legal shift left, do not emit bit tests at all. 9287 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9288 const DataLayout &DL = DAG.getDataLayout(); 9289 9290 EVT PTy = TLI.getPointerTy(DL); 9291 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9292 return; 9293 9294 int BitWidth = PTy.getSizeInBits(); 9295 const int64_t N = Clusters.size(); 9296 9297 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9298 SmallVector<unsigned, 8> MinPartitions(N); 9299 // LastElement[i] is the last element of the partition starting at i. 9300 SmallVector<unsigned, 8> LastElement(N); 9301 9302 // FIXME: This might not be the best algorithm for finding bit test clusters. 9303 9304 // Base case: There is only one way to partition Clusters[N-1]. 9305 MinPartitions[N - 1] = 1; 9306 LastElement[N - 1] = N - 1; 9307 9308 // Note: loop indexes are signed to avoid underflow. 9309 for (int64_t i = N - 2; i >= 0; --i) { 9310 // Find optimal partitioning of Clusters[i..N-1]. 9311 // Baseline: Put Clusters[i] into a partition on its own. 9312 MinPartitions[i] = MinPartitions[i + 1] + 1; 9313 LastElement[i] = i; 9314 9315 // Search for a solution that results in fewer partitions. 9316 // Note: the search is limited by BitWidth, reducing time complexity. 9317 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9318 // Try building a partition from Clusters[i..j]. 9319 9320 // Check the range. 9321 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9322 Clusters[j].High->getValue(), DL)) 9323 continue; 9324 9325 // Check nbr of destinations and cluster types. 9326 // FIXME: This works, but doesn't seem very efficient. 9327 bool RangesOnly = true; 9328 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9329 for (int64_t k = i; k <= j; k++) { 9330 if (Clusters[k].Kind != CC_Range) { 9331 RangesOnly = false; 9332 break; 9333 } 9334 Dests.set(Clusters[k].MBB->getNumber()); 9335 } 9336 if (!RangesOnly || Dests.count() > 3) 9337 break; 9338 9339 // Check if it's a better partition. 9340 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9341 if (NumPartitions < MinPartitions[i]) { 9342 // Found a better partition. 9343 MinPartitions[i] = NumPartitions; 9344 LastElement[i] = j; 9345 } 9346 } 9347 } 9348 9349 // Iterate over the partitions, replacing with bit-test clusters in-place. 9350 unsigned DstIndex = 0; 9351 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9352 Last = LastElement[First]; 9353 assert(First <= Last); 9354 assert(DstIndex <= First); 9355 9356 CaseCluster BitTestCluster; 9357 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9358 Clusters[DstIndex++] = BitTestCluster; 9359 } else { 9360 size_t NumClusters = Last - First + 1; 9361 std::memmove(&Clusters[DstIndex], &Clusters[First], 9362 sizeof(Clusters[0]) * NumClusters); 9363 DstIndex += NumClusters; 9364 } 9365 } 9366 Clusters.resize(DstIndex); 9367 } 9368 9369 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9370 MachineBasicBlock *SwitchMBB, 9371 MachineBasicBlock *DefaultMBB) { 9372 MachineFunction *CurMF = FuncInfo.MF; 9373 MachineBasicBlock *NextMBB = nullptr; 9374 MachineFunction::iterator BBI(W.MBB); 9375 if (++BBI != FuncInfo.MF->end()) 9376 NextMBB = &*BBI; 9377 9378 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9379 9380 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9381 9382 if (Size == 2 && W.MBB == SwitchMBB) { 9383 // If any two of the cases has the same destination, and if one value 9384 // is the same as the other, but has one bit unset that the other has set, 9385 // use bit manipulation to do two compares at once. For example: 9386 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9387 // TODO: This could be extended to merge any 2 cases in switches with 3 9388 // cases. 9389 // TODO: Handle cases where W.CaseBB != SwitchBB. 9390 CaseCluster &Small = *W.FirstCluster; 9391 CaseCluster &Big = *W.LastCluster; 9392 9393 if (Small.Low == Small.High && Big.Low == Big.High && 9394 Small.MBB == Big.MBB) { 9395 const APInt &SmallValue = Small.Low->getValue(); 9396 const APInt &BigValue = Big.Low->getValue(); 9397 9398 // Check that there is only one bit different. 9399 APInt CommonBit = BigValue ^ SmallValue; 9400 if (CommonBit.isPowerOf2()) { 9401 SDValue CondLHS = getValue(Cond); 9402 EVT VT = CondLHS.getValueType(); 9403 SDLoc DL = getCurSDLoc(); 9404 9405 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9406 DAG.getConstant(CommonBit, DL, VT)); 9407 SDValue Cond = DAG.getSetCC( 9408 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9409 ISD::SETEQ); 9410 9411 // Update successor info. 9412 // Both Small and Big will jump to Small.BB, so we sum up the 9413 // probabilities. 9414 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9415 if (BPI) 9416 addSuccessorWithProb( 9417 SwitchMBB, DefaultMBB, 9418 // The default destination is the first successor in IR. 9419 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9420 else 9421 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9422 9423 // Insert the true branch. 9424 SDValue BrCond = 9425 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9426 DAG.getBasicBlock(Small.MBB)); 9427 // Insert the false branch. 9428 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9429 DAG.getBasicBlock(DefaultMBB)); 9430 9431 DAG.setRoot(BrCond); 9432 return; 9433 } 9434 } 9435 } 9436 9437 if (TM.getOptLevel() != CodeGenOpt::None) { 9438 // Order cases by probability so the most likely case will be checked first. 9439 std::sort(W.FirstCluster, W.LastCluster + 1, 9440 [](const CaseCluster &a, const CaseCluster &b) { 9441 return a.Prob > b.Prob; 9442 }); 9443 9444 // Rearrange the case blocks so that the last one falls through if possible 9445 // without without changing the order of probabilities. 9446 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9447 --I; 9448 if (I->Prob > W.LastCluster->Prob) 9449 break; 9450 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9451 std::swap(*I, *W.LastCluster); 9452 break; 9453 } 9454 } 9455 } 9456 9457 // Compute total probability. 9458 BranchProbability DefaultProb = W.DefaultProb; 9459 BranchProbability UnhandledProbs = DefaultProb; 9460 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9461 UnhandledProbs += I->Prob; 9462 9463 MachineBasicBlock *CurMBB = W.MBB; 9464 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9465 MachineBasicBlock *Fallthrough; 9466 if (I == W.LastCluster) { 9467 // For the last cluster, fall through to the default destination. 9468 Fallthrough = DefaultMBB; 9469 } else { 9470 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9471 CurMF->insert(BBI, Fallthrough); 9472 // Put Cond in a virtual register to make it available from the new blocks. 9473 ExportFromCurrentBlock(Cond); 9474 } 9475 UnhandledProbs -= I->Prob; 9476 9477 switch (I->Kind) { 9478 case CC_JumpTable: { 9479 // FIXME: Optimize away range check based on pivot comparisons. 9480 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9481 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9482 9483 // The jump block hasn't been inserted yet; insert it here. 9484 MachineBasicBlock *JumpMBB = JT->MBB; 9485 CurMF->insert(BBI, JumpMBB); 9486 9487 auto JumpProb = I->Prob; 9488 auto FallthroughProb = UnhandledProbs; 9489 9490 // If the default statement is a target of the jump table, we evenly 9491 // distribute the default probability to successors of CurMBB. Also 9492 // update the probability on the edge from JumpMBB to Fallthrough. 9493 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9494 SE = JumpMBB->succ_end(); 9495 SI != SE; ++SI) { 9496 if (*SI == DefaultMBB) { 9497 JumpProb += DefaultProb / 2; 9498 FallthroughProb -= DefaultProb / 2; 9499 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9500 JumpMBB->normalizeSuccProbs(); 9501 break; 9502 } 9503 } 9504 9505 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9506 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9507 CurMBB->normalizeSuccProbs(); 9508 9509 // The jump table header will be inserted in our current block, do the 9510 // range check, and fall through to our fallthrough block. 9511 JTH->HeaderBB = CurMBB; 9512 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9513 9514 // If we're in the right place, emit the jump table header right now. 9515 if (CurMBB == SwitchMBB) { 9516 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9517 JTH->Emitted = true; 9518 } 9519 break; 9520 } 9521 case CC_BitTests: { 9522 // FIXME: Optimize away range check based on pivot comparisons. 9523 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9524 9525 // The bit test blocks haven't been inserted yet; insert them here. 9526 for (BitTestCase &BTC : BTB->Cases) 9527 CurMF->insert(BBI, BTC.ThisBB); 9528 9529 // Fill in fields of the BitTestBlock. 9530 BTB->Parent = CurMBB; 9531 BTB->Default = Fallthrough; 9532 9533 BTB->DefaultProb = UnhandledProbs; 9534 // If the cases in bit test don't form a contiguous range, we evenly 9535 // distribute the probability on the edge to Fallthrough to two 9536 // successors of CurMBB. 9537 if (!BTB->ContiguousRange) { 9538 BTB->Prob += DefaultProb / 2; 9539 BTB->DefaultProb -= DefaultProb / 2; 9540 } 9541 9542 // If we're in the right place, emit the bit test header right now. 9543 if (CurMBB == SwitchMBB) { 9544 visitBitTestHeader(*BTB, SwitchMBB); 9545 BTB->Emitted = true; 9546 } 9547 break; 9548 } 9549 case CC_Range: { 9550 const Value *RHS, *LHS, *MHS; 9551 ISD::CondCode CC; 9552 if (I->Low == I->High) { 9553 // Check Cond == I->Low. 9554 CC = ISD::SETEQ; 9555 LHS = Cond; 9556 RHS=I->Low; 9557 MHS = nullptr; 9558 } else { 9559 // Check I->Low <= Cond <= I->High. 9560 CC = ISD::SETLE; 9561 LHS = I->Low; 9562 MHS = Cond; 9563 RHS = I->High; 9564 } 9565 9566 // The false probability is the sum of all unhandled cases. 9567 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 9568 UnhandledProbs); 9569 9570 if (CurMBB == SwitchMBB) 9571 visitSwitchCase(CB, SwitchMBB); 9572 else 9573 SwitchCases.push_back(CB); 9574 9575 break; 9576 } 9577 } 9578 CurMBB = Fallthrough; 9579 } 9580 } 9581 9582 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9583 CaseClusterIt First, 9584 CaseClusterIt Last) { 9585 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9586 if (X.Prob != CC.Prob) 9587 return X.Prob > CC.Prob; 9588 9589 // Ties are broken by comparing the case value. 9590 return X.Low->getValue().slt(CC.Low->getValue()); 9591 }); 9592 } 9593 9594 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9595 const SwitchWorkListItem &W, 9596 Value *Cond, 9597 MachineBasicBlock *SwitchMBB) { 9598 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9599 "Clusters not sorted?"); 9600 9601 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9602 9603 // Balance the tree based on branch probabilities to create a near-optimal (in 9604 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9605 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9606 CaseClusterIt LastLeft = W.FirstCluster; 9607 CaseClusterIt FirstRight = W.LastCluster; 9608 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9609 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9610 9611 // Move LastLeft and FirstRight towards each other from opposite directions to 9612 // find a partitioning of the clusters which balances the probability on both 9613 // sides. If LeftProb and RightProb are equal, alternate which side is 9614 // taken to ensure 0-probability nodes are distributed evenly. 9615 unsigned I = 0; 9616 while (LastLeft + 1 < FirstRight) { 9617 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9618 LeftProb += (++LastLeft)->Prob; 9619 else 9620 RightProb += (--FirstRight)->Prob; 9621 I++; 9622 } 9623 9624 for (;;) { 9625 // Our binary search tree differs from a typical BST in that ours can have up 9626 // to three values in each leaf. The pivot selection above doesn't take that 9627 // into account, which means the tree might require more nodes and be less 9628 // efficient. We compensate for this here. 9629 9630 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9631 unsigned NumRight = W.LastCluster - FirstRight + 1; 9632 9633 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9634 // If one side has less than 3 clusters, and the other has more than 3, 9635 // consider taking a cluster from the other side. 9636 9637 if (NumLeft < NumRight) { 9638 // Consider moving the first cluster on the right to the left side. 9639 CaseCluster &CC = *FirstRight; 9640 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9641 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9642 if (LeftSideRank <= RightSideRank) { 9643 // Moving the cluster to the left does not demote it. 9644 ++LastLeft; 9645 ++FirstRight; 9646 continue; 9647 } 9648 } else { 9649 assert(NumRight < NumLeft); 9650 // Consider moving the last element on the left to the right side. 9651 CaseCluster &CC = *LastLeft; 9652 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9653 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9654 if (RightSideRank <= LeftSideRank) { 9655 // Moving the cluster to the right does not demot it. 9656 --LastLeft; 9657 --FirstRight; 9658 continue; 9659 } 9660 } 9661 } 9662 break; 9663 } 9664 9665 assert(LastLeft + 1 == FirstRight); 9666 assert(LastLeft >= W.FirstCluster); 9667 assert(FirstRight <= W.LastCluster); 9668 9669 // Use the first element on the right as pivot since we will make less-than 9670 // comparisons against it. 9671 CaseClusterIt PivotCluster = FirstRight; 9672 assert(PivotCluster > W.FirstCluster); 9673 assert(PivotCluster <= W.LastCluster); 9674 9675 CaseClusterIt FirstLeft = W.FirstCluster; 9676 CaseClusterIt LastRight = W.LastCluster; 9677 9678 const ConstantInt *Pivot = PivotCluster->Low; 9679 9680 // New blocks will be inserted immediately after the current one. 9681 MachineFunction::iterator BBI(W.MBB); 9682 ++BBI; 9683 9684 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9685 // we can branch to its destination directly if it's squeezed exactly in 9686 // between the known lower bound and Pivot - 1. 9687 MachineBasicBlock *LeftMBB; 9688 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9689 FirstLeft->Low == W.GE && 9690 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9691 LeftMBB = FirstLeft->MBB; 9692 } else { 9693 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9694 FuncInfo.MF->insert(BBI, LeftMBB); 9695 WorkList.push_back( 9696 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9697 // Put Cond in a virtual register to make it available from the new blocks. 9698 ExportFromCurrentBlock(Cond); 9699 } 9700 9701 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9702 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9703 // directly if RHS.High equals the current upper bound. 9704 MachineBasicBlock *RightMBB; 9705 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9706 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9707 RightMBB = FirstRight->MBB; 9708 } else { 9709 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9710 FuncInfo.MF->insert(BBI, RightMBB); 9711 WorkList.push_back( 9712 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9713 // Put Cond in a virtual register to make it available from the new blocks. 9714 ExportFromCurrentBlock(Cond); 9715 } 9716 9717 // Create the CaseBlock record that will be used to lower the branch. 9718 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9719 LeftProb, RightProb); 9720 9721 if (W.MBB == SwitchMBB) 9722 visitSwitchCase(CB, SwitchMBB); 9723 else 9724 SwitchCases.push_back(CB); 9725 } 9726 9727 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 9728 // Extract cases from the switch. 9729 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9730 CaseClusterVector Clusters; 9731 Clusters.reserve(SI.getNumCases()); 9732 for (auto I : SI.cases()) { 9733 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 9734 const ConstantInt *CaseVal = I.getCaseValue(); 9735 BranchProbability Prob = 9736 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 9737 : BranchProbability(1, SI.getNumCases() + 1); 9738 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 9739 } 9740 9741 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 9742 9743 // Cluster adjacent cases with the same destination. We do this at all 9744 // optimization levels because it's cheap to do and will make codegen faster 9745 // if there are many clusters. 9746 sortAndRangeify(Clusters); 9747 9748 if (TM.getOptLevel() != CodeGenOpt::None) { 9749 // Replace an unreachable default with the most popular destination. 9750 // FIXME: Exploit unreachable default more aggressively. 9751 bool UnreachableDefault = 9752 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 9753 if (UnreachableDefault && !Clusters.empty()) { 9754 DenseMap<const BasicBlock *, unsigned> Popularity; 9755 unsigned MaxPop = 0; 9756 const BasicBlock *MaxBB = nullptr; 9757 for (auto I : SI.cases()) { 9758 const BasicBlock *BB = I.getCaseSuccessor(); 9759 if (++Popularity[BB] > MaxPop) { 9760 MaxPop = Popularity[BB]; 9761 MaxBB = BB; 9762 } 9763 } 9764 // Set new default. 9765 assert(MaxPop > 0 && MaxBB); 9766 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 9767 9768 // Remove cases that were pointing to the destination that is now the 9769 // default. 9770 CaseClusterVector New; 9771 New.reserve(Clusters.size()); 9772 for (CaseCluster &CC : Clusters) { 9773 if (CC.MBB != DefaultMBB) 9774 New.push_back(CC); 9775 } 9776 Clusters = std::move(New); 9777 } 9778 } 9779 9780 // If there is only the default destination, jump there directly. 9781 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 9782 if (Clusters.empty()) { 9783 SwitchMBB->addSuccessor(DefaultMBB); 9784 if (DefaultMBB != NextBlock(SwitchMBB)) { 9785 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 9786 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 9787 } 9788 return; 9789 } 9790 9791 findJumpTables(Clusters, &SI, DefaultMBB); 9792 findBitTestClusters(Clusters, &SI); 9793 9794 DEBUG({ 9795 dbgs() << "Case clusters: "; 9796 for (const CaseCluster &C : Clusters) { 9797 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 9798 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 9799 9800 C.Low->getValue().print(dbgs(), true); 9801 if (C.Low != C.High) { 9802 dbgs() << '-'; 9803 C.High->getValue().print(dbgs(), true); 9804 } 9805 dbgs() << ' '; 9806 } 9807 dbgs() << '\n'; 9808 }); 9809 9810 assert(!Clusters.empty()); 9811 SwitchWorkList WorkList; 9812 CaseClusterIt First = Clusters.begin(); 9813 CaseClusterIt Last = Clusters.end() - 1; 9814 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 9815 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 9816 9817 while (!WorkList.empty()) { 9818 SwitchWorkListItem W = WorkList.back(); 9819 WorkList.pop_back(); 9820 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 9821 9822 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 9823 !DefaultMBB->getParent()->getFunction()->optForMinSize()) { 9824 // For optimized builds, lower large range as a balanced binary tree. 9825 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 9826 continue; 9827 } 9828 9829 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 9830 } 9831 } 9832