1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Analysis/BranchProbabilityInfo.h" 25 #include "llvm/Analysis/ConstantFolding.h" 26 #include "llvm/Analysis/Loads.h" 27 #include "llvm/Analysis/MemoryLocation.h" 28 #include "llvm/Analysis/TargetLibraryInfo.h" 29 #include "llvm/Analysis/ValueTracking.h" 30 #include "llvm/Analysis/VectorUtils.h" 31 #include "llvm/CodeGen/Analysis.h" 32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h" 33 #include "llvm/CodeGen/CodeGenCommonISel.h" 34 #include "llvm/CodeGen/FunctionLoweringInfo.h" 35 #include "llvm/CodeGen/GCMetadata.h" 36 #include "llvm/CodeGen/ISDOpcodes.h" 37 #include "llvm/CodeGen/MachineBasicBlock.h" 38 #include "llvm/CodeGen/MachineFrameInfo.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineInstrBundleIterator.h" 42 #include "llvm/CodeGen/MachineMemOperand.h" 43 #include "llvm/CodeGen/MachineModuleInfo.h" 44 #include "llvm/CodeGen/MachineOperand.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/RuntimeLibcalls.h" 47 #include "llvm/CodeGen/SelectionDAG.h" 48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 49 #include "llvm/CodeGen/StackMaps.h" 50 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 51 #include "llvm/CodeGen/TargetFrameLowering.h" 52 #include "llvm/CodeGen/TargetInstrInfo.h" 53 #include "llvm/CodeGen/TargetOpcodes.h" 54 #include "llvm/CodeGen/TargetRegisterInfo.h" 55 #include "llvm/CodeGen/TargetSubtargetInfo.h" 56 #include "llvm/CodeGen/WinEHFuncInfo.h" 57 #include "llvm/IR/Argument.h" 58 #include "llvm/IR/Attributes.h" 59 #include "llvm/IR/BasicBlock.h" 60 #include "llvm/IR/CFG.h" 61 #include "llvm/IR/CallingConv.h" 62 #include "llvm/IR/Constant.h" 63 #include "llvm/IR/ConstantRange.h" 64 #include "llvm/IR/Constants.h" 65 #include "llvm/IR/DataLayout.h" 66 #include "llvm/IR/DebugInfo.h" 67 #include "llvm/IR/DebugInfoMetadata.h" 68 #include "llvm/IR/DerivedTypes.h" 69 #include "llvm/IR/DiagnosticInfo.h" 70 #include "llvm/IR/EHPersonalities.h" 71 #include "llvm/IR/Function.h" 72 #include "llvm/IR/GetElementPtrTypeIterator.h" 73 #include "llvm/IR/InlineAsm.h" 74 #include "llvm/IR/InstrTypes.h" 75 #include "llvm/IR/Instructions.h" 76 #include "llvm/IR/IntrinsicInst.h" 77 #include "llvm/IR/Intrinsics.h" 78 #include "llvm/IR/IntrinsicsAArch64.h" 79 #include "llvm/IR/IntrinsicsWebAssembly.h" 80 #include "llvm/IR/LLVMContext.h" 81 #include "llvm/IR/Metadata.h" 82 #include "llvm/IR/Module.h" 83 #include "llvm/IR/Operator.h" 84 #include "llvm/IR/PatternMatch.h" 85 #include "llvm/IR/Statepoint.h" 86 #include "llvm/IR/Type.h" 87 #include "llvm/IR/User.h" 88 #include "llvm/IR/Value.h" 89 #include "llvm/MC/MCContext.h" 90 #include "llvm/Support/AtomicOrdering.h" 91 #include "llvm/Support/Casting.h" 92 #include "llvm/Support/CommandLine.h" 93 #include "llvm/Support/Compiler.h" 94 #include "llvm/Support/Debug.h" 95 #include "llvm/Support/MathExtras.h" 96 #include "llvm/Support/raw_ostream.h" 97 #include "llvm/Target/TargetIntrinsicInfo.h" 98 #include "llvm/Target/TargetMachine.h" 99 #include "llvm/Target/TargetOptions.h" 100 #include "llvm/TargetParser/Triple.h" 101 #include "llvm/Transforms/Utils/Local.h" 102 #include <cstddef> 103 #include <iterator> 104 #include <limits> 105 #include <optional> 106 #include <tuple> 107 108 using namespace llvm; 109 using namespace PatternMatch; 110 using namespace SwitchCG; 111 112 #define DEBUG_TYPE "isel" 113 114 /// LimitFloatPrecision - Generate low-precision inline sequences for 115 /// some float libcalls (6, 8 or 12 bits). 116 static unsigned LimitFloatPrecision; 117 118 static cl::opt<bool> 119 InsertAssertAlign("insert-assert-align", cl::init(true), 120 cl::desc("Insert the experimental `assertalign` node."), 121 cl::ReallyHidden); 122 123 static cl::opt<unsigned, true> 124 LimitFPPrecision("limit-float-precision", 125 cl::desc("Generate low-precision inline sequences " 126 "for some float libcalls"), 127 cl::location(LimitFloatPrecision), cl::Hidden, 128 cl::init(0)); 129 130 static cl::opt<unsigned> SwitchPeelThreshold( 131 "switch-peel-threshold", cl::Hidden, cl::init(66), 132 cl::desc("Set the case probability threshold for peeling the case from a " 133 "switch statement. A value greater than 100 will void this " 134 "optimization")); 135 136 // Limit the width of DAG chains. This is important in general to prevent 137 // DAG-based analysis from blowing up. For example, alias analysis and 138 // load clustering may not complete in reasonable time. It is difficult to 139 // recognize and avoid this situation within each individual analysis, and 140 // future analyses are likely to have the same behavior. Limiting DAG width is 141 // the safe approach and will be especially important with global DAGs. 142 // 143 // MaxParallelChains default is arbitrarily high to avoid affecting 144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 145 // sequence over this should have been converted to llvm.memcpy by the 146 // frontend. It is easy to induce this behavior with .ll code such as: 147 // %buffer = alloca [4096 x i8] 148 // %data = load [4096 x i8]* %argPtr 149 // store [4096 x i8] %data, [4096 x i8]* %buffer 150 static const unsigned MaxParallelChains = 64; 151 152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 153 const SDValue *Parts, unsigned NumParts, 154 MVT PartVT, EVT ValueVT, const Value *V, 155 std::optional<CallingConv::ID> CC); 156 157 /// getCopyFromParts - Create a value that contains the specified legal parts 158 /// combined into the value they represent. If the parts combine to a type 159 /// larger than ValueVT then AssertOp can be used to specify whether the extra 160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 161 /// (ISD::AssertSext). 162 static SDValue 163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, 164 unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V, 165 std::optional<CallingConv::ID> CC = std::nullopt, 166 std::optional<ISD::NodeType> AssertOp = std::nullopt) { 167 // Let the target assemble the parts if it wants to 168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 169 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 170 PartVT, ValueVT, CC)) 171 return Val; 172 173 if (ValueVT.isVector()) 174 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 175 CC); 176 177 assert(NumParts > 0 && "No parts to assemble!"); 178 SDValue Val = Parts[0]; 179 180 if (NumParts > 1) { 181 // Assemble the value from multiple parts. 182 if (ValueVT.isInteger()) { 183 unsigned PartBits = PartVT.getSizeInBits(); 184 unsigned ValueBits = ValueVT.getSizeInBits(); 185 186 // Assemble the power of 2 part. 187 unsigned RoundParts = llvm::bit_floor(NumParts); 188 unsigned RoundBits = PartBits * RoundParts; 189 EVT RoundVT = RoundBits == ValueBits ? 190 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 191 SDValue Lo, Hi; 192 193 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 194 195 if (RoundParts > 2) { 196 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 197 PartVT, HalfVT, V); 198 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 199 RoundParts / 2, PartVT, HalfVT, V); 200 } else { 201 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 202 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 203 } 204 205 if (DAG.getDataLayout().isBigEndian()) 206 std::swap(Lo, Hi); 207 208 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 209 210 if (RoundParts < NumParts) { 211 // Assemble the trailing non-power-of-2 part. 212 unsigned OddParts = NumParts - RoundParts; 213 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 214 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 215 OddVT, V, CC); 216 217 // Combine the round and odd parts. 218 Lo = Val; 219 if (DAG.getDataLayout().isBigEndian()) 220 std::swap(Lo, Hi); 221 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 222 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 223 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 224 DAG.getConstant(Lo.getValueSizeInBits(), DL, 225 TLI.getShiftAmountTy( 226 TotalVT, DAG.getDataLayout()))); 227 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 228 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 229 } 230 } else if (PartVT.isFloatingPoint()) { 231 // FP split into multiple FP parts (for ppcf128) 232 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 233 "Unexpected split"); 234 SDValue Lo, Hi; 235 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 236 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 237 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 238 std::swap(Lo, Hi); 239 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 240 } else { 241 // FP split into integer parts (soft fp) 242 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 243 !PartVT.isVector() && "Unexpected split"); 244 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 245 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 246 } 247 } 248 249 // There is now one part, held in Val. Correct it to match ValueVT. 250 // PartEVT is the type of the register class that holds the value. 251 // ValueVT is the type of the inline asm operation. 252 EVT PartEVT = Val.getValueType(); 253 254 if (PartEVT == ValueVT) 255 return Val; 256 257 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 258 ValueVT.bitsLT(PartEVT)) { 259 // For an FP value in an integer part, we need to truncate to the right 260 // width first. 261 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 262 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 263 } 264 265 // Handle types that have the same size. 266 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 267 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 268 269 // Handle types with different sizes. 270 if (PartEVT.isInteger() && ValueVT.isInteger()) { 271 if (ValueVT.bitsLT(PartEVT)) { 272 // For a truncate, see if we have any information to 273 // indicate whether the truncated bits will always be 274 // zero or sign-extension. 275 if (AssertOp) 276 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 277 DAG.getValueType(ValueVT)); 278 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 279 } 280 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 281 } 282 283 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 284 // FP_ROUND's are always exact here. 285 if (ValueVT.bitsLT(Val.getValueType())) 286 return DAG.getNode( 287 ISD::FP_ROUND, DL, ValueVT, Val, 288 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 289 290 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 291 } 292 293 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 294 // then truncating. 295 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 296 ValueVT.bitsLT(PartEVT)) { 297 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 298 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 299 } 300 301 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 302 } 303 304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 305 const Twine &ErrMsg) { 306 const Instruction *I = dyn_cast_or_null<Instruction>(V); 307 if (!V) 308 return Ctx.emitError(ErrMsg); 309 310 const char *AsmError = ", possible invalid constraint for vector type"; 311 if (const CallInst *CI = dyn_cast<CallInst>(I)) 312 if (CI->isInlineAsm()) 313 return Ctx.emitError(I, ErrMsg + AsmError); 314 315 return Ctx.emitError(I, ErrMsg); 316 } 317 318 /// getCopyFromPartsVector - Create a value that contains the specified legal 319 /// parts combined into the value they represent. If the parts combine to a 320 /// type larger than ValueVT then AssertOp can be used to specify whether the 321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 322 /// ValueVT (ISD::AssertSext). 323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 324 const SDValue *Parts, unsigned NumParts, 325 MVT PartVT, EVT ValueVT, const Value *V, 326 std::optional<CallingConv::ID> CallConv) { 327 assert(ValueVT.isVector() && "Not a vector value"); 328 assert(NumParts > 0 && "No parts to assemble!"); 329 const bool IsABIRegCopy = CallConv.has_value(); 330 331 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 332 SDValue Val = Parts[0]; 333 334 // Handle a multi-element vector. 335 if (NumParts > 1) { 336 EVT IntermediateVT; 337 MVT RegisterVT; 338 unsigned NumIntermediates; 339 unsigned NumRegs; 340 341 if (IsABIRegCopy) { 342 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 343 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, 344 NumIntermediates, RegisterVT); 345 } else { 346 NumRegs = 347 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 348 NumIntermediates, RegisterVT); 349 } 350 351 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 352 NumParts = NumRegs; // Silence a compiler warning. 353 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 354 assert(RegisterVT.getSizeInBits() == 355 Parts[0].getSimpleValueType().getSizeInBits() && 356 "Part type sizes don't match!"); 357 358 // Assemble the parts into intermediate operands. 359 SmallVector<SDValue, 8> Ops(NumIntermediates); 360 if (NumIntermediates == NumParts) { 361 // If the register was not expanded, truncate or copy the value, 362 // as appropriate. 363 for (unsigned i = 0; i != NumParts; ++i) 364 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 365 PartVT, IntermediateVT, V, CallConv); 366 } else if (NumParts > 0) { 367 // If the intermediate type was expanded, build the intermediate 368 // operands from the parts. 369 assert(NumParts % NumIntermediates == 0 && 370 "Must expand into a divisible number of parts!"); 371 unsigned Factor = NumParts / NumIntermediates; 372 for (unsigned i = 0; i != NumIntermediates; ++i) 373 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 374 PartVT, IntermediateVT, V, CallConv); 375 } 376 377 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 378 // intermediate operands. 379 EVT BuiltVectorTy = 380 IntermediateVT.isVector() 381 ? EVT::getVectorVT( 382 *DAG.getContext(), IntermediateVT.getScalarType(), 383 IntermediateVT.getVectorElementCount() * NumParts) 384 : EVT::getVectorVT(*DAG.getContext(), 385 IntermediateVT.getScalarType(), 386 NumIntermediates); 387 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 388 : ISD::BUILD_VECTOR, 389 DL, BuiltVectorTy, Ops); 390 } 391 392 // There is now one part, held in Val. Correct it to match ValueVT. 393 EVT PartEVT = Val.getValueType(); 394 395 if (PartEVT == ValueVT) 396 return Val; 397 398 if (PartEVT.isVector()) { 399 // Vector/Vector bitcast. 400 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 401 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 402 403 // If the parts vector has more elements than the value vector, then we 404 // have a vector widening case (e.g. <2 x float> -> <4 x float>). 405 // Extract the elements we want. 406 if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 PartEVT = 413 EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(), 414 ValueVT.getVectorElementCount()); 415 Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val, 416 DAG.getVectorIdxConstant(0, DL)); 417 if (PartEVT == ValueVT) 418 return Val; 419 if (PartEVT.isInteger() && ValueVT.isFloatingPoint()) 420 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 421 422 // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>). 423 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 424 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 425 } 426 427 // Promoted vector extract 428 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 429 } 430 431 // Trivial bitcast if the types are the same size and the destination 432 // vector type is legal. 433 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 434 TLI.isTypeLegal(ValueVT)) 435 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 436 437 if (ValueVT.getVectorNumElements() != 1) { 438 // Certain ABIs require that vectors are passed as integers. For vectors 439 // are the same size, this is an obvious bitcast. 440 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 441 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 442 } else if (ValueVT.bitsLT(PartEVT)) { 443 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 444 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 445 // Drop the extra bits. 446 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 447 return DAG.getBitcast(ValueVT, Val); 448 } 449 450 diagnosePossiblyInvalidConstraint( 451 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 452 return DAG.getUNDEF(ValueVT); 453 } 454 455 // Handle cases such as i8 -> <1 x i1> 456 EVT ValueSVT = ValueVT.getVectorElementType(); 457 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 458 unsigned ValueSize = ValueSVT.getSizeInBits(); 459 if (ValueSize == PartEVT.getSizeInBits()) { 460 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 461 } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) { 462 // It's possible a scalar floating point type gets softened to integer and 463 // then promoted to a larger integer. If PartEVT is the larger integer 464 // we need to truncate it and then bitcast to the FP type. 465 assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types"); 466 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 467 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 468 Val = DAG.getBitcast(ValueSVT, Val); 469 } else { 470 Val = ValueVT.isFloatingPoint() 471 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 472 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 473 } 474 } 475 476 return DAG.getBuildVector(ValueVT, DL, Val); 477 } 478 479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 480 SDValue Val, SDValue *Parts, unsigned NumParts, 481 MVT PartVT, const Value *V, 482 std::optional<CallingConv::ID> CallConv); 483 484 /// getCopyToParts - Create a series of nodes that contain the specified value 485 /// split into legal parts. If the parts contain more bits than Val, then, for 486 /// integers, ExtendKind can be used to specify how to generate the extra bits. 487 static void 488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, 489 unsigned NumParts, MVT PartVT, const Value *V, 490 std::optional<CallingConv::ID> CallConv = std::nullopt, 491 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 492 // Let the target split the parts if it wants to 493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 494 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 495 CallConv)) 496 return; 497 EVT ValueVT = Val.getValueType(); 498 499 // Handle the vector case separately. 500 if (ValueVT.isVector()) 501 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 502 CallConv); 503 504 unsigned OrigNumParts = NumParts; 505 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 506 "Copying to an illegal type!"); 507 508 if (NumParts == 0) 509 return; 510 511 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 512 EVT PartEVT = PartVT; 513 if (PartEVT == ValueVT) { 514 assert(NumParts == 1 && "No-op copy with multiple parts!"); 515 Parts[0] = Val; 516 return; 517 } 518 519 unsigned PartBits = PartVT.getSizeInBits(); 520 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 521 // If the parts cover more bits than the value has, promote the value. 522 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 523 assert(NumParts == 1 && "Do not know what to promote to!"); 524 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 525 } else { 526 if (ValueVT.isFloatingPoint()) { 527 // FP values need to be bitcast, then extended if they are being put 528 // into a larger container. 529 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 530 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 531 } 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 } else if (PartBits == ValueVT.getSizeInBits()) { 541 // Different types of the same size. 542 assert(NumParts == 1 && PartEVT != ValueVT); 543 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 544 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 545 // If the parts cover less bits than value has, truncate the value. 546 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 547 ValueVT.isInteger() && 548 "Unknown mismatch!"); 549 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 550 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 551 if (PartVT == MVT::x86mmx) 552 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 553 } 554 555 // The value may have changed - recompute ValueVT. 556 ValueVT = Val.getValueType(); 557 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 558 "Failed to tile the value with PartVT!"); 559 560 if (NumParts == 1) { 561 if (PartEVT != ValueVT) { 562 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 563 "scalar-to-vector conversion failed"); 564 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 565 } 566 567 Parts[0] = Val; 568 return; 569 } 570 571 // Expand the value into multiple parts. 572 if (NumParts & (NumParts - 1)) { 573 // The number of parts is not a power of 2. Split off and copy the tail. 574 assert(PartVT.isInteger() && ValueVT.isInteger() && 575 "Do not know what to expand to!"); 576 unsigned RoundParts = llvm::bit_floor(NumParts); 577 unsigned RoundBits = RoundParts * PartBits; 578 unsigned OddParts = NumParts - RoundParts; 579 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 580 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL)); 581 582 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 583 CallConv); 584 585 if (DAG.getDataLayout().isBigEndian()) 586 // The odd parts were reversed by getCopyToParts - unreverse them. 587 std::reverse(Parts + RoundParts, Parts + NumParts); 588 589 NumParts = RoundParts; 590 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 591 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 592 } 593 594 // The number of parts is a power of 2. Repeatedly bisect the value using 595 // EXTRACT_ELEMENT. 596 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 597 EVT::getIntegerVT(*DAG.getContext(), 598 ValueVT.getSizeInBits()), 599 Val); 600 601 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 602 for (unsigned i = 0; i < NumParts; i += StepSize) { 603 unsigned ThisBits = StepSize * PartBits / 2; 604 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 605 SDValue &Part0 = Parts[i]; 606 SDValue &Part1 = Parts[i+StepSize/2]; 607 608 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 609 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 610 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 611 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 612 613 if (ThisBits == PartBits && ThisVT != PartVT) { 614 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 615 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 616 } 617 } 618 } 619 620 if (DAG.getDataLayout().isBigEndian()) 621 std::reverse(Parts, Parts + OrigNumParts); 622 } 623 624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val, 625 const SDLoc &DL, EVT PartVT) { 626 if (!PartVT.isVector()) 627 return SDValue(); 628 629 EVT ValueVT = Val.getValueType(); 630 EVT PartEVT = PartVT.getVectorElementType(); 631 EVT ValueEVT = ValueVT.getVectorElementType(); 632 ElementCount PartNumElts = PartVT.getVectorElementCount(); 633 ElementCount ValueNumElts = ValueVT.getVectorElementCount(); 634 635 // We only support widening vectors with equivalent element types and 636 // fixed/scalable properties. If a target needs to widen a fixed-length type 637 // to a scalable one, it should be possible to use INSERT_SUBVECTOR below. 638 if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) || 639 PartNumElts.isScalable() != ValueNumElts.isScalable()) 640 return SDValue(); 641 642 // Have a try for bf16 because some targets share its ABI with fp16. 643 if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) { 644 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 645 "Cannot widen to illegal type"); 646 Val = DAG.getNode(ISD::BITCAST, DL, 647 ValueVT.changeVectorElementType(MVT::f16), Val); 648 } else if (PartEVT != ValueEVT) { 649 return SDValue(); 650 } 651 652 // Widening a scalable vector to another scalable vector is done by inserting 653 // the vector into a larger undef one. 654 if (PartNumElts.isScalable()) 655 return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT), 656 Val, DAG.getVectorIdxConstant(0, DL)); 657 658 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 659 // undef elements. 660 SmallVector<SDValue, 16> Ops; 661 DAG.ExtractVectorElements(Val, Ops); 662 SDValue EltUndef = DAG.getUNDEF(PartEVT); 663 Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef); 664 665 // FIXME: Use CONCAT for 2x -> 4x. 666 return DAG.getBuildVector(PartVT, DL, Ops); 667 } 668 669 /// getCopyToPartsVector - Create a series of nodes that contain the specified 670 /// value split into legal parts. 671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 672 SDValue Val, SDValue *Parts, unsigned NumParts, 673 MVT PartVT, const Value *V, 674 std::optional<CallingConv::ID> CallConv) { 675 EVT ValueVT = Val.getValueType(); 676 assert(ValueVT.isVector() && "Not a vector"); 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 const bool IsABIRegCopy = CallConv.has_value(); 679 680 if (NumParts == 1) { 681 EVT PartEVT = PartVT; 682 if (PartEVT == ValueVT) { 683 // Nothing to do. 684 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 685 // Bitconvert vector->vector case. 686 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 687 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 688 Val = Widened; 689 } else if (PartVT.isVector() && 690 PartEVT.getVectorElementType().bitsGE( 691 ValueVT.getVectorElementType()) && 692 PartEVT.getVectorElementCount() == 693 ValueVT.getVectorElementCount()) { 694 695 // Promoted vector extract 696 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 697 } else if (PartEVT.isVector() && 698 PartEVT.getVectorElementType() != 699 ValueVT.getVectorElementType() && 700 TLI.getTypeAction(*DAG.getContext(), ValueVT) == 701 TargetLowering::TypeWidenVector) { 702 // Combination of widening and promotion. 703 EVT WidenVT = 704 EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(), 705 PartVT.getVectorElementCount()); 706 SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT); 707 Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT); 708 } else { 709 // Don't extract an integer from a float vector. This can happen if the 710 // FP type gets softened to integer and then promoted. The promotion 711 // prevents it from being picked up by the earlier bitcast case. 712 if (ValueVT.getVectorElementCount().isScalar() && 713 (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) { 714 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 715 DAG.getVectorIdxConstant(0, DL)); 716 } else { 717 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 718 assert(PartVT.getFixedSizeInBits() > ValueSize && 719 "lossy conversion of vector to scalar type"); 720 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 721 Val = DAG.getBitcast(IntermediateType, Val); 722 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 723 } 724 } 725 726 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 727 Parts[0] = Val; 728 return; 729 } 730 731 // Handle a multi-element vector. 732 EVT IntermediateVT; 733 MVT RegisterVT; 734 unsigned NumIntermediates; 735 unsigned NumRegs; 736 if (IsABIRegCopy) { 737 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 738 *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates, 739 RegisterVT); 740 } else { 741 NumRegs = 742 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 743 NumIntermediates, RegisterVT); 744 } 745 746 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 747 NumParts = NumRegs; // Silence a compiler warning. 748 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 749 750 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 751 "Mixing scalable and fixed vectors when copying in parts"); 752 753 std::optional<ElementCount> DestEltCnt; 754 755 if (IntermediateVT.isVector()) 756 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 757 else 758 DestEltCnt = ElementCount::getFixed(NumIntermediates); 759 760 EVT BuiltVectorTy = EVT::getVectorVT( 761 *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt); 762 763 if (ValueVT == BuiltVectorTy) { 764 // Nothing to do. 765 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 766 // Bitconvert vector->vector case. 767 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 768 } else { 769 if (BuiltVectorTy.getVectorElementType().bitsGT( 770 ValueVT.getVectorElementType())) { 771 // Integer promotion. 772 ValueVT = EVT::getVectorVT(*DAG.getContext(), 773 BuiltVectorTy.getVectorElementType(), 774 ValueVT.getVectorElementCount()); 775 Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 776 } 777 778 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 779 Val = Widened; 780 } 781 } 782 783 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 784 785 // Split the vector into intermediate operands. 786 SmallVector<SDValue, 8> Ops(NumIntermediates); 787 for (unsigned i = 0; i != NumIntermediates; ++i) { 788 if (IntermediateVT.isVector()) { 789 // This does something sensible for scalable vectors - see the 790 // definition of EXTRACT_SUBVECTOR for further details. 791 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 792 Ops[i] = 793 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 794 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 795 } else { 796 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 797 DAG.getVectorIdxConstant(i, DL)); 798 } 799 } 800 801 // Split the intermediate operands into legal parts. 802 if (NumParts == NumIntermediates) { 803 // If the register was not expanded, promote or copy the value, 804 // as appropriate. 805 for (unsigned i = 0; i != NumParts; ++i) 806 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 807 } else if (NumParts > 0) { 808 // If the intermediate type was expanded, split each the value into 809 // legal parts. 810 assert(NumIntermediates != 0 && "division by zero"); 811 assert(NumParts % NumIntermediates == 0 && 812 "Must expand into a divisible number of parts!"); 813 unsigned Factor = NumParts / NumIntermediates; 814 for (unsigned i = 0; i != NumIntermediates; ++i) 815 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 816 CallConv); 817 } 818 } 819 820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 821 EVT valuevt, std::optional<CallingConv::ID> CC) 822 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 823 RegCount(1, regs.size()), CallConv(CC) {} 824 825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 826 const DataLayout &DL, unsigned Reg, Type *Ty, 827 std::optional<CallingConv::ID> CC) { 828 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 829 830 CallConv = CC; 831 832 for (EVT ValueVT : ValueVTs) { 833 unsigned NumRegs = 834 isABIMangled() 835 ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT) 836 : TLI.getNumRegisters(Context, ValueVT); 837 MVT RegisterVT = 838 isABIMangled() 839 ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT) 840 : TLI.getRegisterType(Context, ValueVT); 841 for (unsigned i = 0; i != NumRegs; ++i) 842 Regs.push_back(Reg + i); 843 RegVTs.push_back(RegisterVT); 844 RegCount.push_back(NumRegs); 845 Reg += NumRegs; 846 } 847 } 848 849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 850 FunctionLoweringInfo &FuncInfo, 851 const SDLoc &dl, SDValue &Chain, 852 SDValue *Glue, const Value *V) const { 853 // A Value with type {} or [0 x %t] needs no registers. 854 if (ValueVTs.empty()) 855 return SDValue(); 856 857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 858 859 // Assemble the legal parts into the final values. 860 SmallVector<SDValue, 4> Values(ValueVTs.size()); 861 SmallVector<SDValue, 8> Parts; 862 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 863 // Copy the legal parts from the registers. 864 EVT ValueVT = ValueVTs[Value]; 865 unsigned NumRegs = RegCount[Value]; 866 MVT RegisterVT = isABIMangled() 867 ? TLI.getRegisterTypeForCallingConv( 868 *DAG.getContext(), *CallConv, RegVTs[Value]) 869 : RegVTs[Value]; 870 871 Parts.resize(NumRegs); 872 for (unsigned i = 0; i != NumRegs; ++i) { 873 SDValue P; 874 if (!Glue) { 875 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 876 } else { 877 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue); 878 *Glue = P.getValue(2); 879 } 880 881 Chain = P.getValue(1); 882 Parts[i] = P; 883 884 // If the source register was virtual and if we know something about it, 885 // add an assert node. 886 if (!Register::isVirtualRegister(Regs[Part + i]) || 887 !RegisterVT.isInteger()) 888 continue; 889 890 const FunctionLoweringInfo::LiveOutInfo *LOI = 891 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 892 if (!LOI) 893 continue; 894 895 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 896 unsigned NumSignBits = LOI->NumSignBits; 897 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 898 899 if (NumZeroBits == RegSize) { 900 // The current value is a zero. 901 // Explicitly express that as it would be easier for 902 // optimizations to kick in. 903 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 904 continue; 905 } 906 907 // FIXME: We capture more information than the dag can represent. For 908 // now, just use the tightest assertzext/assertsext possible. 909 bool isSExt; 910 EVT FromVT(MVT::Other); 911 if (NumZeroBits) { 912 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 913 isSExt = false; 914 } else if (NumSignBits > 1) { 915 FromVT = 916 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 917 isSExt = true; 918 } else { 919 continue; 920 } 921 // Add an assertion node. 922 assert(FromVT != MVT::Other); 923 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 924 RegisterVT, P, DAG.getValueType(FromVT)); 925 } 926 927 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 928 RegisterVT, ValueVT, V, CallConv); 929 Part += NumRegs; 930 Parts.clear(); 931 } 932 933 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 934 } 935 936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 937 const SDLoc &dl, SDValue &Chain, SDValue *Glue, 938 const Value *V, 939 ISD::NodeType PreferredExtendType) const { 940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 941 ISD::NodeType ExtendKind = PreferredExtendType; 942 943 // Get the list of the values's legal parts. 944 unsigned NumRegs = Regs.size(); 945 SmallVector<SDValue, 8> Parts(NumRegs); 946 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 947 unsigned NumParts = RegCount[Value]; 948 949 MVT RegisterVT = isABIMangled() 950 ? TLI.getRegisterTypeForCallingConv( 951 *DAG.getContext(), *CallConv, RegVTs[Value]) 952 : RegVTs[Value]; 953 954 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 955 ExtendKind = ISD::ZERO_EXTEND; 956 957 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 958 NumParts, RegisterVT, V, CallConv, ExtendKind); 959 Part += NumParts; 960 } 961 962 // Copy the parts into the registers. 963 SmallVector<SDValue, 8> Chains(NumRegs); 964 for (unsigned i = 0; i != NumRegs; ++i) { 965 SDValue Part; 966 if (!Glue) { 967 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 968 } else { 969 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue); 970 *Glue = Part.getValue(1); 971 } 972 973 Chains[i] = Part.getValue(0); 974 } 975 976 if (NumRegs == 1 || Glue) 977 // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is 978 // flagged to it. That is the CopyToReg nodes and the user are considered 979 // a single scheduling unit. If we create a TokenFactor and return it as 980 // chain, then the TokenFactor is both a predecessor (operand) of the 981 // user as well as a successor (the TF operands are flagged to the user). 982 // c1, f1 = CopyToReg 983 // c2, f2 = CopyToReg 984 // c3 = TokenFactor c1, c2 985 // ... 986 // = op c3, ..., f2 987 Chain = Chains[NumRegs-1]; 988 else 989 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 990 } 991 992 void RegsForValue::AddInlineAsmOperands(InlineAsm::Kind Code, bool HasMatching, 993 unsigned MatchingIdx, const SDLoc &dl, 994 SelectionDAG &DAG, 995 std::vector<SDValue> &Ops) const { 996 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 997 998 InlineAsm::Flag Flag(Code, Regs.size()); 999 if (HasMatching) 1000 Flag.setMatchingOp(MatchingIdx); 1001 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 1002 // Put the register class of the virtual registers in the flag word. That 1003 // way, later passes can recompute register class constraints for inline 1004 // assembly as well as normal instructions. 1005 // Don't do this for tied operands that can use the regclass information 1006 // from the def. 1007 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 1008 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 1009 Flag.setRegClass(RC->getID()); 1010 } 1011 1012 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 1013 Ops.push_back(Res); 1014 1015 if (Code == InlineAsm::Kind::Clobber) { 1016 // Clobbers should always have a 1:1 mapping with registers, and may 1017 // reference registers that have illegal (e.g. vector) types. Hence, we 1018 // shouldn't try to apply any sort of splitting logic to them. 1019 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1020 "No 1:1 mapping from clobbers to regs?"); 1021 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 1022 (void)SP; 1023 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1024 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1025 assert( 1026 (Regs[I] != SP || 1027 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1028 "If we clobbered the stack pointer, MFI should know about it."); 1029 } 1030 return; 1031 } 1032 1033 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1034 MVT RegisterVT = RegVTs[Value]; 1035 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value], 1036 RegisterVT); 1037 for (unsigned i = 0; i != NumRegs; ++i) { 1038 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1039 unsigned TheReg = Regs[Reg++]; 1040 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1041 } 1042 } 1043 } 1044 1045 SmallVector<std::pair<unsigned, TypeSize>, 4> 1046 RegsForValue::getRegsAndSizes() const { 1047 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 1048 unsigned I = 0; 1049 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1050 unsigned RegCount = std::get<0>(CountAndVT); 1051 MVT RegisterVT = std::get<1>(CountAndVT); 1052 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1053 for (unsigned E = I + RegCount; I != E; ++I) 1054 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1055 } 1056 return OutVec; 1057 } 1058 1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1060 AssumptionCache *ac, 1061 const TargetLibraryInfo *li) { 1062 AA = aa; 1063 AC = ac; 1064 GFI = gfi; 1065 LibInfo = li; 1066 Context = DAG.getContext(); 1067 LPadToCallSiteMap.clear(); 1068 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1069 AssignmentTrackingEnabled = isAssignmentTrackingEnabled( 1070 *DAG.getMachineFunction().getFunction().getParent()); 1071 } 1072 1073 void SelectionDAGBuilder::clear() { 1074 NodeMap.clear(); 1075 UnusedArgNodeMap.clear(); 1076 PendingLoads.clear(); 1077 PendingExports.clear(); 1078 PendingConstrainedFP.clear(); 1079 PendingConstrainedFPStrict.clear(); 1080 CurInst = nullptr; 1081 HasTailCall = false; 1082 SDNodeOrder = LowestSDNodeOrder; 1083 StatepointLowering.clear(); 1084 } 1085 1086 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1087 DanglingDebugInfoMap.clear(); 1088 } 1089 1090 // Update DAG root to include dependencies on Pending chains. 1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1092 SDValue Root = DAG.getRoot(); 1093 1094 if (Pending.empty()) 1095 return Root; 1096 1097 // Add current root to PendingChains, unless we already indirectly 1098 // depend on it. 1099 if (Root.getOpcode() != ISD::EntryToken) { 1100 unsigned i = 0, e = Pending.size(); 1101 for (; i != e; ++i) { 1102 assert(Pending[i].getNode()->getNumOperands() > 1); 1103 if (Pending[i].getNode()->getOperand(0) == Root) 1104 break; // Don't add the root if we already indirectly depend on it. 1105 } 1106 1107 if (i == e) 1108 Pending.push_back(Root); 1109 } 1110 1111 if (Pending.size() == 1) 1112 Root = Pending[0]; 1113 else 1114 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1115 1116 DAG.setRoot(Root); 1117 Pending.clear(); 1118 return Root; 1119 } 1120 1121 SDValue SelectionDAGBuilder::getMemoryRoot() { 1122 return updateRoot(PendingLoads); 1123 } 1124 1125 SDValue SelectionDAGBuilder::getRoot() { 1126 // Chain up all pending constrained intrinsics together with all 1127 // pending loads, by simply appending them to PendingLoads and 1128 // then calling getMemoryRoot(). 1129 PendingLoads.reserve(PendingLoads.size() + 1130 PendingConstrainedFP.size() + 1131 PendingConstrainedFPStrict.size()); 1132 PendingLoads.append(PendingConstrainedFP.begin(), 1133 PendingConstrainedFP.end()); 1134 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1135 PendingConstrainedFPStrict.end()); 1136 PendingConstrainedFP.clear(); 1137 PendingConstrainedFPStrict.clear(); 1138 return getMemoryRoot(); 1139 } 1140 1141 SDValue SelectionDAGBuilder::getControlRoot() { 1142 // We need to emit pending fpexcept.strict constrained intrinsics, 1143 // so append them to the PendingExports list. 1144 PendingExports.append(PendingConstrainedFPStrict.begin(), 1145 PendingConstrainedFPStrict.end()); 1146 PendingConstrainedFPStrict.clear(); 1147 return updateRoot(PendingExports); 1148 } 1149 1150 void SelectionDAGBuilder::visit(const Instruction &I) { 1151 // Set up outgoing PHI node register values before emitting the terminator. 1152 if (I.isTerminator()) { 1153 HandlePHINodesInSuccessorBlocks(I.getParent()); 1154 } 1155 1156 // Add SDDbgValue nodes for any var locs here. Do so before updating 1157 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1158 if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) { 1159 // Add SDDbgValue nodes for any var locs here. Do so before updating 1160 // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}. 1161 for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I); 1162 It != End; ++It) { 1163 auto *Var = FnVarLocs->getDILocalVariable(It->VariableID); 1164 dropDanglingDebugInfo(Var, It->Expr); 1165 if (It->Values.isKillLocation(It->Expr)) { 1166 handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder); 1167 continue; 1168 } 1169 SmallVector<Value *> Values(It->Values.location_ops()); 1170 if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder, 1171 It->Values.hasArgList())) 1172 addDanglingDebugInfo(It, SDNodeOrder); 1173 } 1174 } 1175 1176 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1177 if (!isa<DbgInfoIntrinsic>(I)) 1178 ++SDNodeOrder; 1179 1180 CurInst = &I; 1181 1182 // Set inserted listener only if required. 1183 bool NodeInserted = false; 1184 std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener; 1185 MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections); 1186 if (PCSectionsMD) { 1187 InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>( 1188 DAG, [&](SDNode *) { NodeInserted = true; }); 1189 } 1190 1191 visit(I.getOpcode(), I); 1192 1193 if (!I.isTerminator() && !HasTailCall && 1194 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1195 CopyToExportRegsIfNeeded(&I); 1196 1197 // Handle metadata. 1198 if (PCSectionsMD) { 1199 auto It = NodeMap.find(&I); 1200 if (It != NodeMap.end()) { 1201 DAG.addPCSections(It->second.getNode(), PCSectionsMD); 1202 } else if (NodeInserted) { 1203 // This should not happen; if it does, don't let it go unnoticed so we can 1204 // fix it. Relevant visit*() function is probably missing a setValue(). 1205 errs() << "warning: loosing !pcsections metadata [" 1206 << I.getModule()->getName() << "]\n"; 1207 LLVM_DEBUG(I.dump()); 1208 assert(false); 1209 } 1210 } 1211 1212 CurInst = nullptr; 1213 } 1214 1215 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1216 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1217 } 1218 1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1220 // Note: this doesn't use InstVisitor, because it has to work with 1221 // ConstantExpr's in addition to instructions. 1222 switch (Opcode) { 1223 default: llvm_unreachable("Unknown instruction type encountered!"); 1224 // Build the switch statement using the Instruction.def file. 1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1226 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1227 #include "llvm/IR/Instruction.def" 1228 } 1229 } 1230 1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG, 1232 DILocalVariable *Variable, 1233 DebugLoc DL, unsigned Order, 1234 RawLocationWrapper Values, 1235 DIExpression *Expression) { 1236 if (!Values.hasArgList()) 1237 return false; 1238 // For variadic dbg_values we will now insert an undef. 1239 // FIXME: We can potentially recover these! 1240 SmallVector<SDDbgOperand, 2> Locs; 1241 for (const Value *V : Values.location_ops()) { 1242 auto *Undef = UndefValue::get(V->getType()); 1243 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1244 } 1245 SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {}, 1246 /*IsIndirect=*/false, DL, Order, 1247 /*IsVariadic=*/true); 1248 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1249 return true; 1250 } 1251 1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc, 1253 unsigned Order) { 1254 if (!handleDanglingVariadicDebugInfo( 1255 DAG, 1256 const_cast<DILocalVariable *>(DAG.getFunctionVarLocs() 1257 ->getVariable(VarLoc->VariableID) 1258 .getVariable()), 1259 VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) { 1260 DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back( 1261 VarLoc, Order); 1262 } 1263 } 1264 1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1266 unsigned Order) { 1267 // We treat variadic dbg_values differently at this stage. 1268 if (!handleDanglingVariadicDebugInfo( 1269 DAG, DI->getVariable(), DI->getDebugLoc(), Order, 1270 DI->getWrappedLocation(), DI->getExpression())) { 1271 // TODO: Dangling debug info will eventually either be resolved or produce 1272 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1273 // between the original dbg.value location and its resolved DBG_VALUE, 1274 // which we should ideally fill with an extra Undef DBG_VALUE. 1275 assert(DI->getNumVariableLocationOps() == 1 && 1276 "DbgValueInst without an ArgList should have a single location " 1277 "operand."); 1278 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order); 1279 } 1280 } 1281 1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1283 const DIExpression *Expr) { 1284 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1285 DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs()); 1286 DIExpression *DanglingExpr = DDI.getExpression(); 1287 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1288 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI) 1289 << "\n"); 1290 return true; 1291 } 1292 return false; 1293 }; 1294 1295 for (auto &DDIMI : DanglingDebugInfoMap) { 1296 DanglingDebugInfoVector &DDIV = DDIMI.second; 1297 1298 // If debug info is to be dropped, run it through final checks to see 1299 // whether it can be salvaged. 1300 for (auto &DDI : DDIV) 1301 if (isMatchingDbgValue(DDI)) 1302 salvageUnresolvedDbgValue(DDI); 1303 1304 erase_if(DDIV, isMatchingDbgValue); 1305 } 1306 } 1307 1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1309 // generate the debug data structures now that we've seen its definition. 1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1311 SDValue Val) { 1312 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1313 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1314 return; 1315 1316 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1317 for (auto &DDI : DDIV) { 1318 DebugLoc DL = DDI.getDebugLoc(); 1319 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1320 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1321 DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs()); 1322 DIExpression *Expr = DDI.getExpression(); 1323 assert(Variable->isValidLocationForIntrinsic(DL) && 1324 "Expected inlined-at fields to agree"); 1325 SDDbgValue *SDV; 1326 if (Val.getNode()) { 1327 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1328 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1329 // we couldn't resolve it directly when examining the DbgValue intrinsic 1330 // in the first place we should not be more successful here). Unless we 1331 // have some test case that prove this to be correct we should avoid 1332 // calling EmitFuncArgumentDbgValue here. 1333 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL, 1334 FuncArgumentDbgValueKind::Value, Val)) { 1335 LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI) 1336 << "\n"); 1337 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1338 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1339 // inserted after the definition of Val when emitting the instructions 1340 // after ISel. An alternative could be to teach 1341 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1342 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1343 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1344 << ValSDNodeOrder << "\n"); 1345 SDV = getDbgValue(Val, Variable, Expr, DL, 1346 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1347 DAG.AddDbgValue(SDV, false); 1348 } else 1349 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " 1350 << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n"); 1351 } else { 1352 LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n"); 1353 auto Undef = UndefValue::get(V->getType()); 1354 auto SDV = 1355 DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder); 1356 DAG.AddDbgValue(SDV, false); 1357 } 1358 } 1359 DDIV.clear(); 1360 } 1361 1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1363 // TODO: For the variadic implementation, instead of only checking the fail 1364 // state of `handleDebugValue`, we need know specifically which values were 1365 // invalid, so that we attempt to salvage only those values when processing 1366 // a DIArgList. 1367 Value *V = DDI.getVariableLocationOp(0); 1368 Value *OrigV = V; 1369 DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs()); 1370 DIExpression *Expr = DDI.getExpression(); 1371 DebugLoc DL = DDI.getDebugLoc(); 1372 unsigned SDOrder = DDI.getSDNodeOrder(); 1373 1374 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1375 // that DW_OP_stack_value is desired. 1376 bool StackValue = true; 1377 1378 // Can this Value can be encoded without any further work? 1379 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) 1380 return; 1381 1382 // Attempt to salvage back through as many instructions as possible. Bail if 1383 // a non-instruction is seen, such as a constant expression or global 1384 // variable. FIXME: Further work could recover those too. 1385 while (isa<Instruction>(V)) { 1386 Instruction &VAsInst = *cast<Instruction>(V); 1387 // Temporary "0", awaiting real implementation. 1388 SmallVector<uint64_t, 16> Ops; 1389 SmallVector<Value *, 4> AdditionalValues; 1390 V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops, 1391 AdditionalValues); 1392 // If we cannot salvage any further, and haven't yet found a suitable debug 1393 // expression, bail out. 1394 if (!V) 1395 break; 1396 1397 // TODO: If AdditionalValues isn't empty, then the salvage can only be 1398 // represented with a DBG_VALUE_LIST, so we give up. When we have support 1399 // here for variadic dbg_values, remove that condition. 1400 if (!AdditionalValues.empty()) 1401 break; 1402 1403 // New value and expr now represent this debuginfo. 1404 Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue); 1405 1406 // Some kind of simplification occurred: check whether the operand of the 1407 // salvaged debug expression can be encoded in this DAG. 1408 if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) { 1409 LLVM_DEBUG( 1410 dbgs() << "Salvaged debug location info for:\n " << *Var << "\n" 1411 << *OrigV << "\nBy stripping back to:\n " << *V << "\n"); 1412 return; 1413 } 1414 } 1415 1416 // This was the final opportunity to salvage this debug information, and it 1417 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1418 // any earlier variable location. 1419 assert(OrigV && "V shouldn't be null"); 1420 auto *Undef = UndefValue::get(OrigV->getType()); 1421 auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1422 DAG.AddDbgValue(SDV, false); 1423 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << printDDI(DDI) 1424 << "\n"); 1425 } 1426 1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var, 1428 DIExpression *Expr, 1429 DebugLoc DbgLoc, 1430 unsigned Order) { 1431 Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context)); 1432 DIExpression *NewExpr = 1433 const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr)); 1434 handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order, 1435 /*IsVariadic*/ false); 1436 } 1437 1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1439 DILocalVariable *Var, 1440 DIExpression *Expr, DebugLoc DbgLoc, 1441 unsigned Order, bool IsVariadic) { 1442 if (Values.empty()) 1443 return true; 1444 SmallVector<SDDbgOperand> LocationOps; 1445 SmallVector<SDNode *> Dependencies; 1446 for (const Value *V : Values) { 1447 // Constant value. 1448 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1449 isa<ConstantPointerNull>(V)) { 1450 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1451 continue; 1452 } 1453 1454 // Look through IntToPtr constants. 1455 if (auto *CE = dyn_cast<ConstantExpr>(V)) 1456 if (CE->getOpcode() == Instruction::IntToPtr) { 1457 LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0))); 1458 continue; 1459 } 1460 1461 // If the Value is a frame index, we can create a FrameIndex debug value 1462 // without relying on the DAG at all. 1463 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1464 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1465 if (SI != FuncInfo.StaticAllocaMap.end()) { 1466 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1467 continue; 1468 } 1469 } 1470 1471 // Do not use getValue() in here; we don't want to generate code at 1472 // this point if it hasn't been done yet. 1473 SDValue N = NodeMap[V]; 1474 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1475 N = UnusedArgNodeMap[V]; 1476 if (N.getNode()) { 1477 // Only emit func arg dbg value for non-variadic dbg.values for now. 1478 if (!IsVariadic && 1479 EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc, 1480 FuncArgumentDbgValueKind::Value, N)) 1481 return true; 1482 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1483 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1484 // describe stack slot locations. 1485 // 1486 // Consider "int x = 0; int *px = &x;". There are two kinds of 1487 // interesting debug values here after optimization: 1488 // 1489 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1490 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1491 // 1492 // Both describe the direct values of their associated variables. 1493 Dependencies.push_back(N.getNode()); 1494 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1495 continue; 1496 } 1497 LocationOps.emplace_back( 1498 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1499 continue; 1500 } 1501 1502 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1503 // Special rules apply for the first dbg.values of parameter variables in a 1504 // function. Identify them by the fact they reference Argument Values, that 1505 // they're parameters, and they are parameters of the current function. We 1506 // need to let them dangle until they get an SDNode. 1507 bool IsParamOfFunc = 1508 isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt(); 1509 if (IsParamOfFunc) 1510 return false; 1511 1512 // The value is not used in this block yet (or it would have an SDNode). 1513 // We still want the value to appear for the user if possible -- if it has 1514 // an associated VReg, we can refer to that instead. 1515 auto VMI = FuncInfo.ValueMap.find(V); 1516 if (VMI != FuncInfo.ValueMap.end()) { 1517 unsigned Reg = VMI->second; 1518 // If this is a PHI node, it may be split up into several MI PHI nodes 1519 // (in FunctionLoweringInfo::set). 1520 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1521 V->getType(), std::nullopt); 1522 if (RFV.occupiesMultipleRegs()) { 1523 // FIXME: We could potentially support variadic dbg_values here. 1524 if (IsVariadic) 1525 return false; 1526 unsigned Offset = 0; 1527 unsigned BitsToDescribe = 0; 1528 if (auto VarSize = Var->getSizeInBits()) 1529 BitsToDescribe = *VarSize; 1530 if (auto Fragment = Expr->getFragmentInfo()) 1531 BitsToDescribe = Fragment->SizeInBits; 1532 for (const auto &RegAndSize : RFV.getRegsAndSizes()) { 1533 // Bail out if all bits are described already. 1534 if (Offset >= BitsToDescribe) 1535 break; 1536 // TODO: handle scalable vectors. 1537 unsigned RegisterSize = RegAndSize.second; 1538 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1539 ? BitsToDescribe - Offset 1540 : RegisterSize; 1541 auto FragmentExpr = DIExpression::createFragmentExpression( 1542 Expr, Offset, FragmentSize); 1543 if (!FragmentExpr) 1544 continue; 1545 SDDbgValue *SDV = DAG.getVRegDbgValue( 1546 Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder); 1547 DAG.AddDbgValue(SDV, false); 1548 Offset += RegisterSize; 1549 } 1550 return true; 1551 } 1552 // We can use simple vreg locations for variadic dbg_values as well. 1553 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1554 continue; 1555 } 1556 // We failed to create a SDDbgOperand for V. 1557 return false; 1558 } 1559 1560 // We have created a SDDbgOperand for each Value in Values. 1561 // Should use Order instead of SDNodeOrder? 1562 assert(!LocationOps.empty()); 1563 SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1564 /*IsIndirect=*/false, DbgLoc, 1565 SDNodeOrder, IsVariadic); 1566 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1567 return true; 1568 } 1569 1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1571 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1572 for (auto &Pair : DanglingDebugInfoMap) 1573 for (auto &DDI : Pair.second) 1574 salvageUnresolvedDbgValue(DDI); 1575 clearDanglingDebugInfo(); 1576 } 1577 1578 /// getCopyFromRegs - If there was virtual register allocated for the value V 1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1581 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1582 SDValue Result; 1583 1584 if (It != FuncInfo.ValueMap.end()) { 1585 Register InReg = It->second; 1586 1587 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1588 DAG.getDataLayout(), InReg, Ty, 1589 std::nullopt); // This is not an ABI copy. 1590 SDValue Chain = DAG.getEntryNode(); 1591 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1592 V); 1593 resolveDanglingDebugInfo(V, Result); 1594 } 1595 1596 return Result; 1597 } 1598 1599 /// getValue - Return an SDValue for the given Value. 1600 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1601 // If we already have an SDValue for this value, use it. It's important 1602 // to do this first, so that we don't create a CopyFromReg if we already 1603 // have a regular SDValue. 1604 SDValue &N = NodeMap[V]; 1605 if (N.getNode()) return N; 1606 1607 // If there's a virtual register allocated and initialized for this 1608 // value, use it. 1609 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1610 return copyFromReg; 1611 1612 // Otherwise create a new SDValue and remember it. 1613 SDValue Val = getValueImpl(V); 1614 NodeMap[V] = Val; 1615 resolveDanglingDebugInfo(V, Val); 1616 return Val; 1617 } 1618 1619 /// getNonRegisterValue - Return an SDValue for the given Value, but 1620 /// don't look in FuncInfo.ValueMap for a virtual register. 1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1622 // If we already have an SDValue for this value, use it. 1623 SDValue &N = NodeMap[V]; 1624 if (N.getNode()) { 1625 if (isIntOrFPConstant(N)) { 1626 // Remove the debug location from the node as the node is about to be used 1627 // in a location which may differ from the original debug location. This 1628 // is relevant to Constant and ConstantFP nodes because they can appear 1629 // as constant expressions inside PHI nodes. 1630 N->setDebugLoc(DebugLoc()); 1631 } 1632 return N; 1633 } 1634 1635 // Otherwise create a new SDValue and remember it. 1636 SDValue Val = getValueImpl(V); 1637 NodeMap[V] = Val; 1638 resolveDanglingDebugInfo(V, Val); 1639 return Val; 1640 } 1641 1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1643 /// Create an SDValue for the given value. 1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1646 1647 if (const Constant *C = dyn_cast<Constant>(V)) { 1648 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1649 1650 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1651 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1652 1653 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1654 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1655 1656 if (isa<ConstantPointerNull>(C)) { 1657 unsigned AS = V->getType()->getPointerAddressSpace(); 1658 return DAG.getConstant(0, getCurSDLoc(), 1659 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1660 } 1661 1662 if (match(C, m_VScale())) 1663 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1664 1665 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1666 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1667 1668 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1669 return DAG.getUNDEF(VT); 1670 1671 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1672 visit(CE->getOpcode(), *CE); 1673 SDValue N1 = NodeMap[V]; 1674 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1675 return N1; 1676 } 1677 1678 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1679 SmallVector<SDValue, 4> Constants; 1680 for (const Use &U : C->operands()) { 1681 SDNode *Val = getValue(U).getNode(); 1682 // If the operand is an empty aggregate, there are no values. 1683 if (!Val) continue; 1684 // Add each leaf value from the operand to the Constants list 1685 // to form a flattened list of all the values. 1686 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1687 Constants.push_back(SDValue(Val, i)); 1688 } 1689 1690 return DAG.getMergeValues(Constants, getCurSDLoc()); 1691 } 1692 1693 if (const ConstantDataSequential *CDS = 1694 dyn_cast<ConstantDataSequential>(C)) { 1695 SmallVector<SDValue, 4> Ops; 1696 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1697 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1698 // Add each leaf value from the operand to the Constants list 1699 // to form a flattened list of all the values. 1700 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1701 Ops.push_back(SDValue(Val, i)); 1702 } 1703 1704 if (isa<ArrayType>(CDS->getType())) 1705 return DAG.getMergeValues(Ops, getCurSDLoc()); 1706 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1707 } 1708 1709 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1710 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1711 "Unknown struct or array constant!"); 1712 1713 SmallVector<EVT, 4> ValueVTs; 1714 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1715 unsigned NumElts = ValueVTs.size(); 1716 if (NumElts == 0) 1717 return SDValue(); // empty struct 1718 SmallVector<SDValue, 4> Constants(NumElts); 1719 for (unsigned i = 0; i != NumElts; ++i) { 1720 EVT EltVT = ValueVTs[i]; 1721 if (isa<UndefValue>(C)) 1722 Constants[i] = DAG.getUNDEF(EltVT); 1723 else if (EltVT.isFloatingPoint()) 1724 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1725 else 1726 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1727 } 1728 1729 return DAG.getMergeValues(Constants, getCurSDLoc()); 1730 } 1731 1732 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1733 return DAG.getBlockAddress(BA, VT); 1734 1735 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1736 return getValue(Equiv->getGlobalValue()); 1737 1738 if (const auto *NC = dyn_cast<NoCFIValue>(C)) 1739 return getValue(NC->getGlobalValue()); 1740 1741 if (VT == MVT::aarch64svcount) { 1742 assert(C->isNullValue() && "Can only zero this target type!"); 1743 return DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, 1744 DAG.getConstant(0, getCurSDLoc(), MVT::nxv16i1)); 1745 } 1746 1747 VectorType *VecTy = cast<VectorType>(V->getType()); 1748 1749 // Now that we know the number and type of the elements, get that number of 1750 // elements into the Ops array based on what kind of constant it is. 1751 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1752 SmallVector<SDValue, 16> Ops; 1753 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1754 for (unsigned i = 0; i != NumElements; ++i) 1755 Ops.push_back(getValue(CV->getOperand(i))); 1756 1757 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1758 } 1759 1760 if (isa<ConstantAggregateZero>(C)) { 1761 EVT EltVT = 1762 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1763 1764 SDValue Op; 1765 if (EltVT.isFloatingPoint()) 1766 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1767 else 1768 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1769 1770 return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op); 1771 } 1772 1773 llvm_unreachable("Unknown vector constant"); 1774 } 1775 1776 // If this is a static alloca, generate it as the frameindex instead of 1777 // computation. 1778 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1779 DenseMap<const AllocaInst*, int>::iterator SI = 1780 FuncInfo.StaticAllocaMap.find(AI); 1781 if (SI != FuncInfo.StaticAllocaMap.end()) 1782 return DAG.getFrameIndex( 1783 SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType())); 1784 } 1785 1786 // If this is an instruction which fast-isel has deferred, select it now. 1787 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1788 Register InReg = FuncInfo.InitializeRegForValue(Inst); 1789 1790 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1791 Inst->getType(), std::nullopt); 1792 SDValue Chain = DAG.getEntryNode(); 1793 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1794 } 1795 1796 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) 1797 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1798 1799 if (const auto *BB = dyn_cast<BasicBlock>(V)) 1800 return DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 1801 1802 llvm_unreachable("Can't get register for value!"); 1803 } 1804 1805 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1806 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1807 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1808 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1809 bool IsSEH = isAsynchronousEHPersonality(Pers); 1810 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1811 if (!IsSEH) 1812 CatchPadMBB->setIsEHScopeEntry(); 1813 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1814 if (IsMSVCCXX || IsCoreCLR) 1815 CatchPadMBB->setIsEHFuncletEntry(); 1816 } 1817 1818 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1819 // Update machine-CFG edge. 1820 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1821 FuncInfo.MBB->addSuccessor(TargetMBB); 1822 TargetMBB->setIsEHCatchretTarget(true); 1823 DAG.getMachineFunction().setHasEHCatchret(true); 1824 1825 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1826 bool IsSEH = isAsynchronousEHPersonality(Pers); 1827 if (IsSEH) { 1828 // If this is not a fall-through branch or optimizations are switched off, 1829 // emit the branch. 1830 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1831 TM.getOptLevel() == CodeGenOptLevel::None) 1832 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1833 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1834 return; 1835 } 1836 1837 // Figure out the funclet membership for the catchret's successor. 1838 // This will be used by the FuncletLayout pass to determine how to order the 1839 // BB's. 1840 // A 'catchret' returns to the outer scope's color. 1841 Value *ParentPad = I.getCatchSwitchParentPad(); 1842 const BasicBlock *SuccessorColor; 1843 if (isa<ConstantTokenNone>(ParentPad)) 1844 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1845 else 1846 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1847 assert(SuccessorColor && "No parent funclet for catchret!"); 1848 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1849 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1850 1851 // Create the terminator node. 1852 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1853 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1854 DAG.getBasicBlock(SuccessorColorMBB)); 1855 DAG.setRoot(Ret); 1856 } 1857 1858 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1859 // Don't emit any special code for the cleanuppad instruction. It just marks 1860 // the start of an EH scope/funclet. 1861 FuncInfo.MBB->setIsEHScopeEntry(); 1862 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1863 if (Pers != EHPersonality::Wasm_CXX) { 1864 FuncInfo.MBB->setIsEHFuncletEntry(); 1865 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1866 } 1867 } 1868 1869 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1870 // not match, it is OK to add only the first unwind destination catchpad to the 1871 // successors, because there will be at least one invoke instruction within the 1872 // catch scope that points to the next unwind destination, if one exists, so 1873 // CFGSort cannot mess up with BB sorting order. 1874 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1875 // call within them, and catchpads only consisting of 'catch (...)' have a 1876 // '__cxa_end_catch' call within them, both of which generate invokes in case 1877 // the next unwind destination exists, i.e., the next unwind destination is not 1878 // the caller.) 1879 // 1880 // Having at most one EH pad successor is also simpler and helps later 1881 // transformations. 1882 // 1883 // For example, 1884 // current: 1885 // invoke void @foo to ... unwind label %catch.dispatch 1886 // catch.dispatch: 1887 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1888 // catch.start: 1889 // ... 1890 // ... in this BB or some other child BB dominated by this BB there will be an 1891 // invoke that points to 'next' BB as an unwind destination 1892 // 1893 // next: ; We don't need to add this to 'current' BB's successor 1894 // ... 1895 static void findWasmUnwindDestinations( 1896 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1897 BranchProbability Prob, 1898 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1899 &UnwindDests) { 1900 while (EHPadBB) { 1901 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1902 if (isa<CleanupPadInst>(Pad)) { 1903 // Stop on cleanup pads. 1904 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1905 UnwindDests.back().first->setIsEHScopeEntry(); 1906 break; 1907 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1908 // Add the catchpad handlers to the possible destinations. We don't 1909 // continue to the unwind destination of the catchswitch for wasm. 1910 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1911 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1912 UnwindDests.back().first->setIsEHScopeEntry(); 1913 } 1914 break; 1915 } else { 1916 continue; 1917 } 1918 } 1919 } 1920 1921 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1922 /// many places it could ultimately go. In the IR, we have a single unwind 1923 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1924 /// This function skips over imaginary basic blocks that hold catchswitch 1925 /// instructions, and finds all the "real" machine 1926 /// basic block destinations. As those destinations may not be successors of 1927 /// EHPadBB, here we also calculate the edge probability to those destinations. 1928 /// The passed-in Prob is the edge probability to EHPadBB. 1929 static void findUnwindDestinations( 1930 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1931 BranchProbability Prob, 1932 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1933 &UnwindDests) { 1934 EHPersonality Personality = 1935 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1936 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1937 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1938 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1939 bool IsSEH = isAsynchronousEHPersonality(Personality); 1940 1941 if (IsWasmCXX) { 1942 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1943 assert(UnwindDests.size() <= 1 && 1944 "There should be at most one unwind destination for wasm"); 1945 return; 1946 } 1947 1948 while (EHPadBB) { 1949 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1950 BasicBlock *NewEHPadBB = nullptr; 1951 if (isa<LandingPadInst>(Pad)) { 1952 // Stop on landingpads. They are not funclets. 1953 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1954 break; 1955 } else if (isa<CleanupPadInst>(Pad)) { 1956 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1957 // personalities. 1958 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1959 UnwindDests.back().first->setIsEHScopeEntry(); 1960 UnwindDests.back().first->setIsEHFuncletEntry(); 1961 break; 1962 } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1963 // Add the catchpad handlers to the possible destinations. 1964 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1965 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1966 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1967 if (IsMSVCCXX || IsCoreCLR) 1968 UnwindDests.back().first->setIsEHFuncletEntry(); 1969 if (!IsSEH) 1970 UnwindDests.back().first->setIsEHScopeEntry(); 1971 } 1972 NewEHPadBB = CatchSwitch->getUnwindDest(); 1973 } else { 1974 continue; 1975 } 1976 1977 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1978 if (BPI && NewEHPadBB) 1979 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1980 EHPadBB = NewEHPadBB; 1981 } 1982 } 1983 1984 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1985 // Update successor info. 1986 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1987 auto UnwindDest = I.getUnwindDest(); 1988 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1989 BranchProbability UnwindDestProb = 1990 (BPI && UnwindDest) 1991 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1992 : BranchProbability::getZero(); 1993 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1994 for (auto &UnwindDest : UnwindDests) { 1995 UnwindDest.first->setIsEHPad(); 1996 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1997 } 1998 FuncInfo.MBB->normalizeSuccProbs(); 1999 2000 // Create the terminator node. 2001 SDValue Ret = 2002 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 2003 DAG.setRoot(Ret); 2004 } 2005 2006 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 2007 report_fatal_error("visitCatchSwitch not yet implemented!"); 2008 } 2009 2010 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 2011 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2012 auto &DL = DAG.getDataLayout(); 2013 SDValue Chain = getControlRoot(); 2014 SmallVector<ISD::OutputArg, 8> Outs; 2015 SmallVector<SDValue, 8> OutVals; 2016 2017 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 2018 // lower 2019 // 2020 // %val = call <ty> @llvm.experimental.deoptimize() 2021 // ret <ty> %val 2022 // 2023 // differently. 2024 if (I.getParent()->getTerminatingDeoptimizeCall()) { 2025 LowerDeoptimizingReturn(); 2026 return; 2027 } 2028 2029 if (!FuncInfo.CanLowerReturn) { 2030 unsigned DemoteReg = FuncInfo.DemoteRegister; 2031 const Function *F = I.getParent()->getParent(); 2032 2033 // Emit a store of the return value through the virtual register. 2034 // Leave Outs empty so that LowerReturn won't try to load return 2035 // registers the usual way. 2036 SmallVector<EVT, 1> PtrValueVTs; 2037 ComputeValueVTs(TLI, DL, 2038 PointerType::get(F->getContext(), 2039 DAG.getDataLayout().getAllocaAddrSpace()), 2040 PtrValueVTs); 2041 2042 SDValue RetPtr = 2043 DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]); 2044 SDValue RetOp = getValue(I.getOperand(0)); 2045 2046 SmallVector<EVT, 4> ValueVTs, MemVTs; 2047 SmallVector<uint64_t, 4> Offsets; 2048 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 2049 &Offsets, 0); 2050 unsigned NumValues = ValueVTs.size(); 2051 2052 SmallVector<SDValue, 4> Chains(NumValues); 2053 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 2054 for (unsigned i = 0; i != NumValues; ++i) { 2055 // An aggregate return value cannot wrap around the address space, so 2056 // offsets to its parts don't wrap either. 2057 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 2058 TypeSize::Fixed(Offsets[i])); 2059 2060 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 2061 if (MemVTs[i] != ValueVTs[i]) 2062 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 2063 Chains[i] = DAG.getStore( 2064 Chain, getCurSDLoc(), Val, 2065 // FIXME: better loc info would be nice. 2066 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 2067 commonAlignment(BaseAlign, Offsets[i])); 2068 } 2069 2070 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 2071 MVT::Other, Chains); 2072 } else if (I.getNumOperands() != 0) { 2073 SmallVector<EVT, 4> ValueVTs; 2074 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 2075 unsigned NumValues = ValueVTs.size(); 2076 if (NumValues) { 2077 SDValue RetOp = getValue(I.getOperand(0)); 2078 2079 const Function *F = I.getParent()->getParent(); 2080 2081 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 2082 I.getOperand(0)->getType(), F->getCallingConv(), 2083 /*IsVarArg*/ false, DL); 2084 2085 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 2086 if (F->getAttributes().hasRetAttr(Attribute::SExt)) 2087 ExtendKind = ISD::SIGN_EXTEND; 2088 else if (F->getAttributes().hasRetAttr(Attribute::ZExt)) 2089 ExtendKind = ISD::ZERO_EXTEND; 2090 2091 LLVMContext &Context = F->getContext(); 2092 bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg); 2093 2094 for (unsigned j = 0; j != NumValues; ++j) { 2095 EVT VT = ValueVTs[j]; 2096 2097 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 2098 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 2099 2100 CallingConv::ID CC = F->getCallingConv(); 2101 2102 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 2103 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 2104 SmallVector<SDValue, 4> Parts(NumParts); 2105 getCopyToParts(DAG, getCurSDLoc(), 2106 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 2107 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 2108 2109 // 'inreg' on function refers to return value 2110 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2111 if (RetInReg) 2112 Flags.setInReg(); 2113 2114 if (I.getOperand(0)->getType()->isPointerTy()) { 2115 Flags.setPointer(); 2116 Flags.setPointerAddrSpace( 2117 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 2118 } 2119 2120 if (NeedsRegBlock) { 2121 Flags.setInConsecutiveRegs(); 2122 if (j == NumValues - 1) 2123 Flags.setInConsecutiveRegsLast(); 2124 } 2125 2126 // Propagate extension type if any 2127 if (ExtendKind == ISD::SIGN_EXTEND) 2128 Flags.setSExt(); 2129 else if (ExtendKind == ISD::ZERO_EXTEND) 2130 Flags.setZExt(); 2131 2132 for (unsigned i = 0; i < NumParts; ++i) { 2133 Outs.push_back(ISD::OutputArg(Flags, 2134 Parts[i].getValueType().getSimpleVT(), 2135 VT, /*isfixed=*/true, 0, 0)); 2136 OutVals.push_back(Parts[i]); 2137 } 2138 } 2139 } 2140 } 2141 2142 // Push in swifterror virtual register as the last element of Outs. This makes 2143 // sure swifterror virtual register will be returned in the swifterror 2144 // physical register. 2145 const Function *F = I.getParent()->getParent(); 2146 if (TLI.supportSwiftError() && 2147 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 2148 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 2149 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 2150 Flags.setSwiftError(); 2151 Outs.push_back(ISD::OutputArg( 2152 Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)), 2153 /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0)); 2154 // Create SDNode for the swifterror virtual register. 2155 OutVals.push_back( 2156 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2157 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2158 EVT(TLI.getPointerTy(DL)))); 2159 } 2160 2161 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2162 CallingConv::ID CallConv = 2163 DAG.getMachineFunction().getFunction().getCallingConv(); 2164 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2165 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2166 2167 // Verify that the target's LowerReturn behaved as expected. 2168 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2169 "LowerReturn didn't return a valid chain!"); 2170 2171 // Update the DAG with the new chain value resulting from return lowering. 2172 DAG.setRoot(Chain); 2173 } 2174 2175 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2176 /// created for it, emit nodes to copy the value into the virtual 2177 /// registers. 2178 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2179 // Skip empty types 2180 if (V->getType()->isEmptyTy()) 2181 return; 2182 2183 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2184 if (VMI != FuncInfo.ValueMap.end()) { 2185 assert((!V->use_empty() || isa<CallBrInst>(V)) && 2186 "Unused value assigned virtual registers!"); 2187 CopyValueToVirtualRegister(V, VMI->second); 2188 } 2189 } 2190 2191 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2192 /// the current basic block, add it to ValueMap now so that we'll get a 2193 /// CopyTo/FromReg. 2194 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2195 // No need to export constants. 2196 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2197 2198 // Already exported? 2199 if (FuncInfo.isExportedInst(V)) return; 2200 2201 Register Reg = FuncInfo.InitializeRegForValue(V); 2202 CopyValueToVirtualRegister(V, Reg); 2203 } 2204 2205 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2206 const BasicBlock *FromBB) { 2207 // The operands of the setcc have to be in this block. We don't know 2208 // how to export them from some other block. 2209 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2210 // Can export from current BB. 2211 if (VI->getParent() == FromBB) 2212 return true; 2213 2214 // Is already exported, noop. 2215 return FuncInfo.isExportedInst(V); 2216 } 2217 2218 // If this is an argument, we can export it if the BB is the entry block or 2219 // if it is already exported. 2220 if (isa<Argument>(V)) { 2221 if (FromBB->isEntryBlock()) 2222 return true; 2223 2224 // Otherwise, can only export this if it is already exported. 2225 return FuncInfo.isExportedInst(V); 2226 } 2227 2228 // Otherwise, constants can always be exported. 2229 return true; 2230 } 2231 2232 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2233 BranchProbability 2234 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2235 const MachineBasicBlock *Dst) const { 2236 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2237 const BasicBlock *SrcBB = Src->getBasicBlock(); 2238 const BasicBlock *DstBB = Dst->getBasicBlock(); 2239 if (!BPI) { 2240 // If BPI is not available, set the default probability as 1 / N, where N is 2241 // the number of successors. 2242 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2243 return BranchProbability(1, SuccSize); 2244 } 2245 return BPI->getEdgeProbability(SrcBB, DstBB); 2246 } 2247 2248 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2249 MachineBasicBlock *Dst, 2250 BranchProbability Prob) { 2251 if (!FuncInfo.BPI) 2252 Src->addSuccessorWithoutProb(Dst); 2253 else { 2254 if (Prob.isUnknown()) 2255 Prob = getEdgeProbability(Src, Dst); 2256 Src->addSuccessor(Dst, Prob); 2257 } 2258 } 2259 2260 static bool InBlock(const Value *V, const BasicBlock *BB) { 2261 if (const Instruction *I = dyn_cast<Instruction>(V)) 2262 return I->getParent() == BB; 2263 return true; 2264 } 2265 2266 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2267 /// This function emits a branch and is used at the leaves of an OR or an 2268 /// AND operator tree. 2269 void 2270 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2271 MachineBasicBlock *TBB, 2272 MachineBasicBlock *FBB, 2273 MachineBasicBlock *CurBB, 2274 MachineBasicBlock *SwitchBB, 2275 BranchProbability TProb, 2276 BranchProbability FProb, 2277 bool InvertCond) { 2278 const BasicBlock *BB = CurBB->getBasicBlock(); 2279 2280 // If the leaf of the tree is a comparison, merge the condition into 2281 // the caseblock. 2282 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2283 // The operands of the cmp have to be in this block. We don't know 2284 // how to export them from some other block. If this is the first block 2285 // of the sequence, no exporting is needed. 2286 if (CurBB == SwitchBB || 2287 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2288 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2289 ISD::CondCode Condition; 2290 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2291 ICmpInst::Predicate Pred = 2292 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2293 Condition = getICmpCondCode(Pred); 2294 } else { 2295 const FCmpInst *FC = cast<FCmpInst>(Cond); 2296 FCmpInst::Predicate Pred = 2297 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2298 Condition = getFCmpCondCode(Pred); 2299 if (TM.Options.NoNaNsFPMath) 2300 Condition = getFCmpCodeWithoutNaN(Condition); 2301 } 2302 2303 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2304 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2305 SL->SwitchCases.push_back(CB); 2306 return; 2307 } 2308 } 2309 2310 // Create a CaseBlock record representing this branch. 2311 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2312 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2313 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2314 SL->SwitchCases.push_back(CB); 2315 } 2316 2317 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2318 MachineBasicBlock *TBB, 2319 MachineBasicBlock *FBB, 2320 MachineBasicBlock *CurBB, 2321 MachineBasicBlock *SwitchBB, 2322 Instruction::BinaryOps Opc, 2323 BranchProbability TProb, 2324 BranchProbability FProb, 2325 bool InvertCond) { 2326 // Skip over not part of the tree and remember to invert op and operands at 2327 // next level. 2328 Value *NotCond; 2329 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2330 InBlock(NotCond, CurBB->getBasicBlock())) { 2331 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2332 !InvertCond); 2333 return; 2334 } 2335 2336 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2337 const Value *BOpOp0, *BOpOp1; 2338 // Compute the effective opcode for Cond, taking into account whether it needs 2339 // to be inverted, e.g. 2340 // and (not (or A, B)), C 2341 // gets lowered as 2342 // and (and (not A, not B), C) 2343 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2344 if (BOp) { 2345 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2346 ? Instruction::And 2347 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2348 ? Instruction::Or 2349 : (Instruction::BinaryOps)0); 2350 if (InvertCond) { 2351 if (BOpc == Instruction::And) 2352 BOpc = Instruction::Or; 2353 else if (BOpc == Instruction::Or) 2354 BOpc = Instruction::And; 2355 } 2356 } 2357 2358 // If this node is not part of the or/and tree, emit it as a branch. 2359 // Note that all nodes in the tree should have same opcode. 2360 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2361 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2362 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2363 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2364 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2365 TProb, FProb, InvertCond); 2366 return; 2367 } 2368 2369 // Create TmpBB after CurBB. 2370 MachineFunction::iterator BBI(CurBB); 2371 MachineFunction &MF = DAG.getMachineFunction(); 2372 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2373 CurBB->getParent()->insert(++BBI, TmpBB); 2374 2375 if (Opc == Instruction::Or) { 2376 // Codegen X | Y as: 2377 // BB1: 2378 // jmp_if_X TBB 2379 // jmp TmpBB 2380 // TmpBB: 2381 // jmp_if_Y TBB 2382 // jmp FBB 2383 // 2384 2385 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2386 // The requirement is that 2387 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2388 // = TrueProb for original BB. 2389 // Assuming the original probabilities are A and B, one choice is to set 2390 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2391 // A/(1+B) and 2B/(1+B). This choice assumes that 2392 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2393 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2394 // TmpBB, but the math is more complicated. 2395 2396 auto NewTrueProb = TProb / 2; 2397 auto NewFalseProb = TProb / 2 + FProb; 2398 // Emit the LHS condition. 2399 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2400 NewFalseProb, InvertCond); 2401 2402 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2403 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2404 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2405 // Emit the RHS condition into TmpBB. 2406 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2407 Probs[1], InvertCond); 2408 } else { 2409 assert(Opc == Instruction::And && "Unknown merge op!"); 2410 // Codegen X & Y as: 2411 // BB1: 2412 // jmp_if_X TmpBB 2413 // jmp FBB 2414 // TmpBB: 2415 // jmp_if_Y TBB 2416 // jmp FBB 2417 // 2418 // This requires creation of TmpBB after CurBB. 2419 2420 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2421 // The requirement is that 2422 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2423 // = FalseProb for original BB. 2424 // Assuming the original probabilities are A and B, one choice is to set 2425 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2426 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2427 // TrueProb for BB1 * FalseProb for TmpBB. 2428 2429 auto NewTrueProb = TProb + FProb / 2; 2430 auto NewFalseProb = FProb / 2; 2431 // Emit the LHS condition. 2432 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2433 NewFalseProb, InvertCond); 2434 2435 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2436 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2437 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2438 // Emit the RHS condition into TmpBB. 2439 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2440 Probs[1], InvertCond); 2441 } 2442 } 2443 2444 /// If the set of cases should be emitted as a series of branches, return true. 2445 /// If we should emit this as a bunch of and/or'd together conditions, return 2446 /// false. 2447 bool 2448 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2449 if (Cases.size() != 2) return true; 2450 2451 // If this is two comparisons of the same values or'd or and'd together, they 2452 // will get folded into a single comparison, so don't emit two blocks. 2453 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2454 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2455 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2456 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2457 return false; 2458 } 2459 2460 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2461 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2462 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2463 Cases[0].CC == Cases[1].CC && 2464 isa<Constant>(Cases[0].CmpRHS) && 2465 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2466 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2467 return false; 2468 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2469 return false; 2470 } 2471 2472 return true; 2473 } 2474 2475 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2476 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2477 2478 // Update machine-CFG edges. 2479 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2480 2481 if (I.isUnconditional()) { 2482 // Update machine-CFG edges. 2483 BrMBB->addSuccessor(Succ0MBB); 2484 2485 // If this is not a fall-through branch or optimizations are switched off, 2486 // emit the branch. 2487 if (Succ0MBB != NextBlock(BrMBB) || 2488 TM.getOptLevel() == CodeGenOptLevel::None) { 2489 auto Br = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 2490 getControlRoot(), DAG.getBasicBlock(Succ0MBB)); 2491 setValue(&I, Br); 2492 DAG.setRoot(Br); 2493 } 2494 2495 return; 2496 } 2497 2498 // If this condition is one of the special cases we handle, do special stuff 2499 // now. 2500 const Value *CondVal = I.getCondition(); 2501 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2502 2503 // If this is a series of conditions that are or'd or and'd together, emit 2504 // this as a sequence of branches instead of setcc's with and/or operations. 2505 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2506 // unpredictable branches, and vector extracts because those jumps are likely 2507 // expensive for any target), this should improve performance. 2508 // For example, instead of something like: 2509 // cmp A, B 2510 // C = seteq 2511 // cmp D, E 2512 // F = setle 2513 // or C, F 2514 // jnz foo 2515 // Emit: 2516 // cmp A, B 2517 // je foo 2518 // cmp D, E 2519 // jle foo 2520 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2521 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2522 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2523 Value *Vec; 2524 const Value *BOp0, *BOp1; 2525 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2526 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2527 Opcode = Instruction::And; 2528 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2529 Opcode = Instruction::Or; 2530 2531 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2532 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2533 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2534 getEdgeProbability(BrMBB, Succ0MBB), 2535 getEdgeProbability(BrMBB, Succ1MBB), 2536 /*InvertCond=*/false); 2537 // If the compares in later blocks need to use values not currently 2538 // exported from this block, export them now. This block should always 2539 // be the first entry. 2540 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2541 2542 // Allow some cases to be rejected. 2543 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2544 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2545 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2546 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2547 } 2548 2549 // Emit the branch for this block. 2550 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2551 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2552 return; 2553 } 2554 2555 // Okay, we decided not to do this, remove any inserted MBB's and clear 2556 // SwitchCases. 2557 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2558 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2559 2560 SL->SwitchCases.clear(); 2561 } 2562 } 2563 2564 // Create a CaseBlock record representing this branch. 2565 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2566 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2567 2568 // Use visitSwitchCase to actually insert the fast branch sequence for this 2569 // cond branch. 2570 visitSwitchCase(CB, BrMBB); 2571 } 2572 2573 /// visitSwitchCase - Emits the necessary code to represent a single node in 2574 /// the binary search tree resulting from lowering a switch instruction. 2575 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2576 MachineBasicBlock *SwitchBB) { 2577 SDValue Cond; 2578 SDValue CondLHS = getValue(CB.CmpLHS); 2579 SDLoc dl = CB.DL; 2580 2581 if (CB.CC == ISD::SETTRUE) { 2582 // Branch or fall through to TrueBB. 2583 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2584 SwitchBB->normalizeSuccProbs(); 2585 if (CB.TrueBB != NextBlock(SwitchBB)) { 2586 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2587 DAG.getBasicBlock(CB.TrueBB))); 2588 } 2589 return; 2590 } 2591 2592 auto &TLI = DAG.getTargetLoweringInfo(); 2593 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2594 2595 // Build the setcc now. 2596 if (!CB.CmpMHS) { 2597 // Fold "(X == true)" to X and "(X == false)" to !X to 2598 // handle common cases produced by branch lowering. 2599 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2600 CB.CC == ISD::SETEQ) 2601 Cond = CondLHS; 2602 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2603 CB.CC == ISD::SETEQ) { 2604 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2605 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2606 } else { 2607 SDValue CondRHS = getValue(CB.CmpRHS); 2608 2609 // If a pointer's DAG type is larger than its memory type then the DAG 2610 // values are zero-extended. This breaks signed comparisons so truncate 2611 // back to the underlying type before doing the compare. 2612 if (CondLHS.getValueType() != MemVT) { 2613 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2614 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2615 } 2616 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2617 } 2618 } else { 2619 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2620 2621 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2622 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2623 2624 SDValue CmpOp = getValue(CB.CmpMHS); 2625 EVT VT = CmpOp.getValueType(); 2626 2627 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2628 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2629 ISD::SETLE); 2630 } else { 2631 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2632 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2633 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2634 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2635 } 2636 } 2637 2638 // Update successor info 2639 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2640 // TrueBB and FalseBB are always different unless the incoming IR is 2641 // degenerate. This only happens when running llc on weird IR. 2642 if (CB.TrueBB != CB.FalseBB) 2643 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2644 SwitchBB->normalizeSuccProbs(); 2645 2646 // If the lhs block is the next block, invert the condition so that we can 2647 // fall through to the lhs instead of the rhs block. 2648 if (CB.TrueBB == NextBlock(SwitchBB)) { 2649 std::swap(CB.TrueBB, CB.FalseBB); 2650 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2651 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2652 } 2653 2654 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2655 MVT::Other, getControlRoot(), Cond, 2656 DAG.getBasicBlock(CB.TrueBB)); 2657 2658 setValue(CurInst, BrCond); 2659 2660 // Insert the false branch. Do this even if it's a fall through branch, 2661 // this makes it easier to do DAG optimizations which require inverting 2662 // the branch condition. 2663 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2664 DAG.getBasicBlock(CB.FalseBB)); 2665 2666 DAG.setRoot(BrCond); 2667 } 2668 2669 /// visitJumpTable - Emit JumpTable node in the current MBB 2670 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2671 // Emit the code for the jump table 2672 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2673 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2674 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2675 JT.Reg, PTy); 2676 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2677 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2678 MVT::Other, Index.getValue(1), 2679 Table, Index); 2680 DAG.setRoot(BrJumpTable); 2681 } 2682 2683 /// visitJumpTableHeader - This function emits necessary code to produce index 2684 /// in the JumpTable from switch case. 2685 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2686 JumpTableHeader &JTH, 2687 MachineBasicBlock *SwitchBB) { 2688 SDLoc dl = getCurSDLoc(); 2689 2690 // Subtract the lowest switch case value from the value being switched on. 2691 SDValue SwitchOp = getValue(JTH.SValue); 2692 EVT VT = SwitchOp.getValueType(); 2693 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2694 DAG.getConstant(JTH.First, dl, VT)); 2695 2696 // The SDNode we just created, which holds the value being switched on minus 2697 // the smallest case value, needs to be copied to a virtual register so it 2698 // can be used as an index into the jump table in a subsequent basic block. 2699 // This value may be smaller or larger than the target's pointer type, and 2700 // therefore require extension or truncating. 2701 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2702 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2703 2704 unsigned JumpTableReg = 2705 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2706 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2707 JumpTableReg, SwitchOp); 2708 JT.Reg = JumpTableReg; 2709 2710 if (!JTH.FallthroughUnreachable) { 2711 // Emit the range check for the jump table, and branch to the default block 2712 // for the switch statement if the value being switched on exceeds the 2713 // largest case in the switch. 2714 SDValue CMP = DAG.getSetCC( 2715 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2716 Sub.getValueType()), 2717 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2718 2719 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2720 MVT::Other, CopyTo, CMP, 2721 DAG.getBasicBlock(JT.Default)); 2722 2723 // Avoid emitting unnecessary branches to the next block. 2724 if (JT.MBB != NextBlock(SwitchBB)) 2725 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2726 DAG.getBasicBlock(JT.MBB)); 2727 2728 DAG.setRoot(BrCond); 2729 } else { 2730 // Avoid emitting unnecessary branches to the next block. 2731 if (JT.MBB != NextBlock(SwitchBB)) 2732 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2733 DAG.getBasicBlock(JT.MBB))); 2734 else 2735 DAG.setRoot(CopyTo); 2736 } 2737 } 2738 2739 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2740 /// variable if there exists one. 2741 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2742 SDValue &Chain) { 2743 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2744 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2745 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2746 MachineFunction &MF = DAG.getMachineFunction(); 2747 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2748 MachineSDNode *Node = 2749 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2750 if (Global) { 2751 MachinePointerInfo MPInfo(Global); 2752 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2753 MachineMemOperand::MODereferenceable; 2754 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2755 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2756 DAG.setNodeMemRefs(Node, {MemRef}); 2757 } 2758 if (PtrTy != PtrMemTy) 2759 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2760 return SDValue(Node, 0); 2761 } 2762 2763 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2764 /// tail spliced into a stack protector check success bb. 2765 /// 2766 /// For a high level explanation of how this fits into the stack protector 2767 /// generation see the comment on the declaration of class 2768 /// StackProtectorDescriptor. 2769 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2770 MachineBasicBlock *ParentBB) { 2771 2772 // First create the loads to the guard/stack slot for the comparison. 2773 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2774 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2775 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2776 2777 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2778 int FI = MFI.getStackProtectorIndex(); 2779 2780 SDValue Guard; 2781 SDLoc dl = getCurSDLoc(); 2782 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2783 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2784 Align Align = 2785 DAG.getDataLayout().getPrefTypeAlign(PointerType::get(M.getContext(), 0)); 2786 2787 // Generate code to load the content of the guard slot. 2788 SDValue GuardVal = DAG.getLoad( 2789 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2790 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2791 MachineMemOperand::MOVolatile); 2792 2793 if (TLI.useStackGuardXorFP()) 2794 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2795 2796 // Retrieve guard check function, nullptr if instrumentation is inlined. 2797 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2798 // The target provides a guard check function to validate the guard value. 2799 // Generate a call to that function with the content of the guard slot as 2800 // argument. 2801 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2802 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2803 2804 TargetLowering::ArgListTy Args; 2805 TargetLowering::ArgListEntry Entry; 2806 Entry.Node = GuardVal; 2807 Entry.Ty = FnTy->getParamType(0); 2808 if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg)) 2809 Entry.IsInReg = true; 2810 Args.push_back(Entry); 2811 2812 TargetLowering::CallLoweringInfo CLI(DAG); 2813 CLI.setDebugLoc(getCurSDLoc()) 2814 .setChain(DAG.getEntryNode()) 2815 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2816 getValue(GuardCheckFn), std::move(Args)); 2817 2818 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2819 DAG.setRoot(Result.second); 2820 return; 2821 } 2822 2823 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2824 // Otherwise, emit a volatile load to retrieve the stack guard value. 2825 SDValue Chain = DAG.getEntryNode(); 2826 if (TLI.useLoadStackGuardNode()) { 2827 Guard = getLoadStackGuard(DAG, dl, Chain); 2828 } else { 2829 const Value *IRGuard = TLI.getSDagStackGuard(M); 2830 SDValue GuardPtr = getValue(IRGuard); 2831 2832 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2833 MachinePointerInfo(IRGuard, 0), Align, 2834 MachineMemOperand::MOVolatile); 2835 } 2836 2837 // Perform the comparison via a getsetcc. 2838 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2839 *DAG.getContext(), 2840 Guard.getValueType()), 2841 Guard, GuardVal, ISD::SETNE); 2842 2843 // If the guard/stackslot do not equal, branch to failure MBB. 2844 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2845 MVT::Other, GuardVal.getOperand(0), 2846 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2847 // Otherwise branch to success MBB. 2848 SDValue Br = DAG.getNode(ISD::BR, dl, 2849 MVT::Other, BrCond, 2850 DAG.getBasicBlock(SPD.getSuccessMBB())); 2851 2852 DAG.setRoot(Br); 2853 } 2854 2855 /// Codegen the failure basic block for a stack protector check. 2856 /// 2857 /// A failure stack protector machine basic block consists simply of a call to 2858 /// __stack_chk_fail(). 2859 /// 2860 /// For a high level explanation of how this fits into the stack protector 2861 /// generation see the comment on the declaration of class 2862 /// StackProtectorDescriptor. 2863 void 2864 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2865 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2866 TargetLowering::MakeLibCallOptions CallOptions; 2867 CallOptions.setDiscardResult(true); 2868 SDValue Chain = 2869 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2870 std::nullopt, CallOptions, getCurSDLoc()) 2871 .second; 2872 // On PS4/PS5, the "return address" must still be within the calling 2873 // function, even if it's at the very end, so emit an explicit TRAP here. 2874 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2875 if (TM.getTargetTriple().isPS()) 2876 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2877 // WebAssembly needs an unreachable instruction after a non-returning call, 2878 // because the function return type can be different from __stack_chk_fail's 2879 // return type (void). 2880 if (TM.getTargetTriple().isWasm()) 2881 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2882 2883 DAG.setRoot(Chain); 2884 } 2885 2886 /// visitBitTestHeader - This function emits necessary code to produce value 2887 /// suitable for "bit tests" 2888 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2889 MachineBasicBlock *SwitchBB) { 2890 SDLoc dl = getCurSDLoc(); 2891 2892 // Subtract the minimum value. 2893 SDValue SwitchOp = getValue(B.SValue); 2894 EVT VT = SwitchOp.getValueType(); 2895 SDValue RangeSub = 2896 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2897 2898 // Determine the type of the test operands. 2899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2900 bool UsePtrType = false; 2901 if (!TLI.isTypeLegal(VT)) { 2902 UsePtrType = true; 2903 } else { 2904 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2905 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2906 // Switch table case range are encoded into series of masks. 2907 // Just use pointer type, it's guaranteed to fit. 2908 UsePtrType = true; 2909 break; 2910 } 2911 } 2912 SDValue Sub = RangeSub; 2913 if (UsePtrType) { 2914 VT = TLI.getPointerTy(DAG.getDataLayout()); 2915 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2916 } 2917 2918 B.RegVT = VT.getSimpleVT(); 2919 B.Reg = FuncInfo.CreateReg(B.RegVT); 2920 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2921 2922 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2923 2924 if (!B.FallthroughUnreachable) 2925 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2926 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2927 SwitchBB->normalizeSuccProbs(); 2928 2929 SDValue Root = CopyTo; 2930 if (!B.FallthroughUnreachable) { 2931 // Conditional branch to the default block. 2932 SDValue RangeCmp = DAG.getSetCC(dl, 2933 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2934 RangeSub.getValueType()), 2935 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2936 ISD::SETUGT); 2937 2938 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2939 DAG.getBasicBlock(B.Default)); 2940 } 2941 2942 // Avoid emitting unnecessary branches to the next block. 2943 if (MBB != NextBlock(SwitchBB)) 2944 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2945 2946 DAG.setRoot(Root); 2947 } 2948 2949 /// visitBitTestCase - this function produces one "bit test" 2950 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2951 MachineBasicBlock* NextMBB, 2952 BranchProbability BranchProbToNext, 2953 unsigned Reg, 2954 BitTestCase &B, 2955 MachineBasicBlock *SwitchBB) { 2956 SDLoc dl = getCurSDLoc(); 2957 MVT VT = BB.RegVT; 2958 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2959 SDValue Cmp; 2960 unsigned PopCount = llvm::popcount(B.Mask); 2961 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2962 if (PopCount == 1) { 2963 // Testing for a single bit; just compare the shift count with what it 2964 // would need to be to shift a 1 bit in that position. 2965 Cmp = DAG.getSetCC( 2966 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2967 ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT), 2968 ISD::SETEQ); 2969 } else if (PopCount == BB.Range) { 2970 // There is only one zero bit in the range, test for it directly. 2971 Cmp = DAG.getSetCC( 2972 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2973 ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE); 2974 } else { 2975 // Make desired shift 2976 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2977 DAG.getConstant(1, dl, VT), ShiftOp); 2978 2979 // Emit bit tests and jumps 2980 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2981 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2982 Cmp = DAG.getSetCC( 2983 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2984 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2985 } 2986 2987 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2988 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2989 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2990 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2991 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2992 // one as they are relative probabilities (and thus work more like weights), 2993 // and hence we need to normalize them to let the sum of them become one. 2994 SwitchBB->normalizeSuccProbs(); 2995 2996 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2997 MVT::Other, getControlRoot(), 2998 Cmp, DAG.getBasicBlock(B.TargetBB)); 2999 3000 // Avoid emitting unnecessary branches to the next block. 3001 if (NextMBB != NextBlock(SwitchBB)) 3002 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 3003 DAG.getBasicBlock(NextMBB)); 3004 3005 DAG.setRoot(BrAnd); 3006 } 3007 3008 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 3009 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 3010 3011 // Retrieve successors. Look through artificial IR level blocks like 3012 // catchswitch for successors. 3013 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 3014 const BasicBlock *EHPadBB = I.getSuccessor(1); 3015 MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB]; 3016 3017 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3018 // have to do anything here to lower funclet bundles. 3019 assert(!I.hasOperandBundlesOtherThan( 3020 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 3021 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 3022 LLVMContext::OB_cfguardtarget, 3023 LLVMContext::OB_clang_arc_attachedcall}) && 3024 "Cannot lower invokes with arbitrary operand bundles yet!"); 3025 3026 const Value *Callee(I.getCalledOperand()); 3027 const Function *Fn = dyn_cast<Function>(Callee); 3028 if (isa<InlineAsm>(Callee)) 3029 visitInlineAsm(I, EHPadBB); 3030 else if (Fn && Fn->isIntrinsic()) { 3031 switch (Fn->getIntrinsicID()) { 3032 default: 3033 llvm_unreachable("Cannot invoke this intrinsic"); 3034 case Intrinsic::donothing: 3035 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 3036 case Intrinsic::seh_try_begin: 3037 case Intrinsic::seh_scope_begin: 3038 case Intrinsic::seh_try_end: 3039 case Intrinsic::seh_scope_end: 3040 if (EHPadMBB) 3041 // a block referenced by EH table 3042 // so dtor-funclet not removed by opts 3043 EHPadMBB->setMachineBlockAddressTaken(); 3044 break; 3045 case Intrinsic::experimental_patchpoint_void: 3046 case Intrinsic::experimental_patchpoint_i64: 3047 visitPatchpoint(I, EHPadBB); 3048 break; 3049 case Intrinsic::experimental_gc_statepoint: 3050 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 3051 break; 3052 case Intrinsic::wasm_rethrow: { 3053 // This is usually done in visitTargetIntrinsic, but this intrinsic is 3054 // special because it can be invoked, so we manually lower it to a DAG 3055 // node here. 3056 SmallVector<SDValue, 8> Ops; 3057 Ops.push_back(getRoot()); // inchain 3058 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3059 Ops.push_back( 3060 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 3061 TLI.getPointerTy(DAG.getDataLayout()))); 3062 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 3063 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 3064 break; 3065 } 3066 } 3067 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 3068 // Currently we do not lower any intrinsic calls with deopt operand bundles. 3069 // Eventually we will support lowering the @llvm.experimental.deoptimize 3070 // intrinsic, and right now there are no plans to support other intrinsics 3071 // with deopt state. 3072 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 3073 } else { 3074 LowerCallTo(I, getValue(Callee), false, false, EHPadBB); 3075 } 3076 3077 // If the value of the invoke is used outside of its defining block, make it 3078 // available as a virtual register. 3079 // We already took care of the exported value for the statepoint instruction 3080 // during call to the LowerStatepoint. 3081 if (!isa<GCStatepointInst>(I)) { 3082 CopyToExportRegsIfNeeded(&I); 3083 } 3084 3085 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 3086 BranchProbabilityInfo *BPI = FuncInfo.BPI; 3087 BranchProbability EHPadBBProb = 3088 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 3089 : BranchProbability::getZero(); 3090 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 3091 3092 // Update successor info. 3093 addSuccessorWithProb(InvokeMBB, Return); 3094 for (auto &UnwindDest : UnwindDests) { 3095 UnwindDest.first->setIsEHPad(); 3096 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 3097 } 3098 InvokeMBB->normalizeSuccProbs(); 3099 3100 // Drop into normal successor. 3101 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 3102 DAG.getBasicBlock(Return))); 3103 } 3104 3105 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 3106 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 3107 3108 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 3109 // have to do anything here to lower funclet bundles. 3110 assert(!I.hasOperandBundlesOtherThan( 3111 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 3112 "Cannot lower callbrs with arbitrary operand bundles yet!"); 3113 3114 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 3115 visitInlineAsm(I); 3116 CopyToExportRegsIfNeeded(&I); 3117 3118 // Retrieve successors. 3119 SmallPtrSet<BasicBlock *, 8> Dests; 3120 Dests.insert(I.getDefaultDest()); 3121 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 3122 3123 // Update successor info. 3124 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 3125 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 3126 BasicBlock *Dest = I.getIndirectDest(i); 3127 MachineBasicBlock *Target = FuncInfo.MBBMap[Dest]; 3128 Target->setIsInlineAsmBrIndirectTarget(); 3129 Target->setMachineBlockAddressTaken(); 3130 Target->setLabelMustBeEmitted(); 3131 // Don't add duplicate machine successors. 3132 if (Dests.insert(Dest).second) 3133 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 3134 } 3135 CallBrMBB->normalizeSuccProbs(); 3136 3137 // Drop into default successor. 3138 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 3139 MVT::Other, getControlRoot(), 3140 DAG.getBasicBlock(Return))); 3141 } 3142 3143 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 3144 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 3145 } 3146 3147 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 3148 assert(FuncInfo.MBB->isEHPad() && 3149 "Call to landingpad not in landing pad!"); 3150 3151 // If there aren't registers to copy the values into (e.g., during SjLj 3152 // exceptions), then don't bother to create these DAG nodes. 3153 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3154 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 3155 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 3156 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 3157 return; 3158 3159 // If landingpad's return type is token type, we don't create DAG nodes 3160 // for its exception pointer and selector value. The extraction of exception 3161 // pointer or selector value from token type landingpads is not currently 3162 // supported. 3163 if (LP.getType()->isTokenTy()) 3164 return; 3165 3166 SmallVector<EVT, 2> ValueVTs; 3167 SDLoc dl = getCurSDLoc(); 3168 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 3169 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 3170 3171 // Get the two live-in registers as SDValues. The physregs have already been 3172 // copied into virtual registers. 3173 SDValue Ops[2]; 3174 if (FuncInfo.ExceptionPointerVirtReg) { 3175 Ops[0] = DAG.getZExtOrTrunc( 3176 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3177 FuncInfo.ExceptionPointerVirtReg, 3178 TLI.getPointerTy(DAG.getDataLayout())), 3179 dl, ValueVTs[0]); 3180 } else { 3181 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3182 } 3183 Ops[1] = DAG.getZExtOrTrunc( 3184 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3185 FuncInfo.ExceptionSelectorVirtReg, 3186 TLI.getPointerTy(DAG.getDataLayout())), 3187 dl, ValueVTs[1]); 3188 3189 // Merge into one. 3190 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3191 DAG.getVTList(ValueVTs), Ops); 3192 setValue(&LP, Res); 3193 } 3194 3195 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3196 MachineBasicBlock *Last) { 3197 // Update JTCases. 3198 for (JumpTableBlock &JTB : SL->JTCases) 3199 if (JTB.first.HeaderBB == First) 3200 JTB.first.HeaderBB = Last; 3201 3202 // Update BitTestCases. 3203 for (BitTestBlock &BTB : SL->BitTestCases) 3204 if (BTB.Parent == First) 3205 BTB.Parent = Last; 3206 } 3207 3208 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3209 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3210 3211 // Update machine-CFG edges with unique successors. 3212 SmallSet<BasicBlock*, 32> Done; 3213 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3214 BasicBlock *BB = I.getSuccessor(i); 3215 bool Inserted = Done.insert(BB).second; 3216 if (!Inserted) 3217 continue; 3218 3219 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3220 addSuccessorWithProb(IndirectBrMBB, Succ); 3221 } 3222 IndirectBrMBB->normalizeSuccProbs(); 3223 3224 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3225 MVT::Other, getControlRoot(), 3226 getValue(I.getAddress()))); 3227 } 3228 3229 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3230 if (!DAG.getTarget().Options.TrapUnreachable) 3231 return; 3232 3233 // We may be able to ignore unreachable behind a noreturn call. 3234 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3235 if (const CallInst *Call = dyn_cast_or_null<CallInst>(I.getPrevNode())) { 3236 if (Call->doesNotReturn()) 3237 return; 3238 } 3239 } 3240 3241 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3242 } 3243 3244 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3245 SDNodeFlags Flags; 3246 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3247 Flags.copyFMF(*FPOp); 3248 3249 SDValue Op = getValue(I.getOperand(0)); 3250 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3251 Op, Flags); 3252 setValue(&I, UnNodeValue); 3253 } 3254 3255 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3256 SDNodeFlags Flags; 3257 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3258 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3259 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3260 } 3261 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3262 Flags.setExact(ExactOp->isExact()); 3263 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3264 Flags.copyFMF(*FPOp); 3265 3266 SDValue Op1 = getValue(I.getOperand(0)); 3267 SDValue Op2 = getValue(I.getOperand(1)); 3268 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3269 Op1, Op2, Flags); 3270 setValue(&I, BinNodeValue); 3271 } 3272 3273 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3274 SDValue Op1 = getValue(I.getOperand(0)); 3275 SDValue Op2 = getValue(I.getOperand(1)); 3276 3277 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3278 Op1.getValueType(), DAG.getDataLayout()); 3279 3280 // Coerce the shift amount to the right type if we can. This exposes the 3281 // truncate or zext to optimization early. 3282 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3283 assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) && 3284 "Unexpected shift type"); 3285 Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy); 3286 } 3287 3288 bool nuw = false; 3289 bool nsw = false; 3290 bool exact = false; 3291 3292 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3293 3294 if (const OverflowingBinaryOperator *OFBinOp = 3295 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3296 nuw = OFBinOp->hasNoUnsignedWrap(); 3297 nsw = OFBinOp->hasNoSignedWrap(); 3298 } 3299 if (const PossiblyExactOperator *ExactOp = 3300 dyn_cast<const PossiblyExactOperator>(&I)) 3301 exact = ExactOp->isExact(); 3302 } 3303 SDNodeFlags Flags; 3304 Flags.setExact(exact); 3305 Flags.setNoSignedWrap(nsw); 3306 Flags.setNoUnsignedWrap(nuw); 3307 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3308 Flags); 3309 setValue(&I, Res); 3310 } 3311 3312 void SelectionDAGBuilder::visitSDiv(const User &I) { 3313 SDValue Op1 = getValue(I.getOperand(0)); 3314 SDValue Op2 = getValue(I.getOperand(1)); 3315 3316 SDNodeFlags Flags; 3317 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3318 cast<PossiblyExactOperator>(&I)->isExact()); 3319 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3320 Op2, Flags)); 3321 } 3322 3323 void SelectionDAGBuilder::visitICmp(const User &I) { 3324 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3325 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3326 predicate = IC->getPredicate(); 3327 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3328 predicate = ICmpInst::Predicate(IC->getPredicate()); 3329 SDValue Op1 = getValue(I.getOperand(0)); 3330 SDValue Op2 = getValue(I.getOperand(1)); 3331 ISD::CondCode Opcode = getICmpCondCode(predicate); 3332 3333 auto &TLI = DAG.getTargetLoweringInfo(); 3334 EVT MemVT = 3335 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3336 3337 // If a pointer's DAG type is larger than its memory type then the DAG values 3338 // are zero-extended. This breaks signed comparisons so truncate back to the 3339 // underlying type before doing the compare. 3340 if (Op1.getValueType() != MemVT) { 3341 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3342 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3343 } 3344 3345 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3346 I.getType()); 3347 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3348 } 3349 3350 void SelectionDAGBuilder::visitFCmp(const User &I) { 3351 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3352 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3353 predicate = FC->getPredicate(); 3354 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3355 predicate = FCmpInst::Predicate(FC->getPredicate()); 3356 SDValue Op1 = getValue(I.getOperand(0)); 3357 SDValue Op2 = getValue(I.getOperand(1)); 3358 3359 ISD::CondCode Condition = getFCmpCondCode(predicate); 3360 auto *FPMO = cast<FPMathOperator>(&I); 3361 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3362 Condition = getFCmpCodeWithoutNaN(Condition); 3363 3364 SDNodeFlags Flags; 3365 Flags.copyFMF(*FPMO); 3366 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3367 3368 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3369 I.getType()); 3370 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3371 } 3372 3373 // Check if the condition of the select has one use or two users that are both 3374 // selects with the same condition. 3375 static bool hasOnlySelectUsers(const Value *Cond) { 3376 return llvm::all_of(Cond->users(), [](const Value *V) { 3377 return isa<SelectInst>(V); 3378 }); 3379 } 3380 3381 void SelectionDAGBuilder::visitSelect(const User &I) { 3382 SmallVector<EVT, 4> ValueVTs; 3383 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3384 ValueVTs); 3385 unsigned NumValues = ValueVTs.size(); 3386 if (NumValues == 0) return; 3387 3388 SmallVector<SDValue, 4> Values(NumValues); 3389 SDValue Cond = getValue(I.getOperand(0)); 3390 SDValue LHSVal = getValue(I.getOperand(1)); 3391 SDValue RHSVal = getValue(I.getOperand(2)); 3392 SmallVector<SDValue, 1> BaseOps(1, Cond); 3393 ISD::NodeType OpCode = 3394 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3395 3396 bool IsUnaryAbs = false; 3397 bool Negate = false; 3398 3399 SDNodeFlags Flags; 3400 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3401 Flags.copyFMF(*FPOp); 3402 3403 Flags.setUnpredictable( 3404 cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable)); 3405 3406 // Min/max matching is only viable if all output VTs are the same. 3407 if (all_equal(ValueVTs)) { 3408 EVT VT = ValueVTs[0]; 3409 LLVMContext &Ctx = *DAG.getContext(); 3410 auto &TLI = DAG.getTargetLoweringInfo(); 3411 3412 // We care about the legality of the operation after it has been type 3413 // legalized. 3414 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3415 VT = TLI.getTypeToTransformTo(Ctx, VT); 3416 3417 // If the vselect is legal, assume we want to leave this as a vector setcc + 3418 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3419 // min/max is legal on the scalar type. 3420 bool UseScalarMinMax = VT.isVector() && 3421 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3422 3423 // ValueTracking's select pattern matching does not account for -0.0, 3424 // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that 3425 // -0.0 is less than +0.0. 3426 Value *LHS, *RHS; 3427 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3428 ISD::NodeType Opc = ISD::DELETED_NODE; 3429 switch (SPR.Flavor) { 3430 case SPF_UMAX: Opc = ISD::UMAX; break; 3431 case SPF_UMIN: Opc = ISD::UMIN; break; 3432 case SPF_SMAX: Opc = ISD::SMAX; break; 3433 case SPF_SMIN: Opc = ISD::SMIN; break; 3434 case SPF_FMINNUM: 3435 switch (SPR.NaNBehavior) { 3436 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3437 case SPNB_RETURNS_NAN: break; 3438 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3439 case SPNB_RETURNS_ANY: 3440 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) || 3441 (UseScalarMinMax && 3442 TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()))) 3443 Opc = ISD::FMINNUM; 3444 break; 3445 } 3446 break; 3447 case SPF_FMAXNUM: 3448 switch (SPR.NaNBehavior) { 3449 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3450 case SPNB_RETURNS_NAN: break; 3451 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3452 case SPNB_RETURNS_ANY: 3453 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) || 3454 (UseScalarMinMax && 3455 TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()))) 3456 Opc = ISD::FMAXNUM; 3457 break; 3458 } 3459 break; 3460 case SPF_NABS: 3461 Negate = true; 3462 [[fallthrough]]; 3463 case SPF_ABS: 3464 IsUnaryAbs = true; 3465 Opc = ISD::ABS; 3466 break; 3467 default: break; 3468 } 3469 3470 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3471 (TLI.isOperationLegalOrCustomOrPromote(Opc, VT) || 3472 (UseScalarMinMax && 3473 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3474 // If the underlying comparison instruction is used by any other 3475 // instruction, the consumed instructions won't be destroyed, so it is 3476 // not profitable to convert to a min/max. 3477 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3478 OpCode = Opc; 3479 LHSVal = getValue(LHS); 3480 RHSVal = getValue(RHS); 3481 BaseOps.clear(); 3482 } 3483 3484 if (IsUnaryAbs) { 3485 OpCode = Opc; 3486 LHSVal = getValue(LHS); 3487 BaseOps.clear(); 3488 } 3489 } 3490 3491 if (IsUnaryAbs) { 3492 for (unsigned i = 0; i != NumValues; ++i) { 3493 SDLoc dl = getCurSDLoc(); 3494 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3495 Values[i] = 3496 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3497 if (Negate) 3498 Values[i] = DAG.getNegative(Values[i], dl, VT); 3499 } 3500 } else { 3501 for (unsigned i = 0; i != NumValues; ++i) { 3502 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3503 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3504 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3505 Values[i] = DAG.getNode( 3506 OpCode, getCurSDLoc(), 3507 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3508 } 3509 } 3510 3511 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3512 DAG.getVTList(ValueVTs), Values)); 3513 } 3514 3515 void SelectionDAGBuilder::visitTrunc(const User &I) { 3516 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3517 SDValue N = getValue(I.getOperand(0)); 3518 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3519 I.getType()); 3520 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3521 } 3522 3523 void SelectionDAGBuilder::visitZExt(const User &I) { 3524 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3525 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3526 SDValue N = getValue(I.getOperand(0)); 3527 auto &TLI = DAG.getTargetLoweringInfo(); 3528 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3529 3530 // Since we don't yet have a representation of zext nneg in SDAG or MI, 3531 // eagerly use the information to canonicalize towards sign_extend if 3532 // that is the target's preference. TODO: Add nneg support to the 3533 // SDAG and MI representations. 3534 if (auto *PNI = dyn_cast<PossiblyNonNegInst>(&I); 3535 PNI && PNI->hasNonNeg() && 3536 TLI.isSExtCheaperThanZExt(N.getValueType(), DestVT)) { 3537 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3538 return; 3539 } 3540 3541 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3542 } 3543 3544 void SelectionDAGBuilder::visitSExt(const User &I) { 3545 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3546 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3547 SDValue N = getValue(I.getOperand(0)); 3548 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3549 I.getType()); 3550 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3551 } 3552 3553 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3554 // FPTrunc is never a no-op cast, no need to check 3555 SDValue N = getValue(I.getOperand(0)); 3556 SDLoc dl = getCurSDLoc(); 3557 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3558 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3559 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3560 DAG.getTargetConstant( 3561 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3562 } 3563 3564 void SelectionDAGBuilder::visitFPExt(const User &I) { 3565 // FPExt is never a no-op cast, no need to check 3566 SDValue N = getValue(I.getOperand(0)); 3567 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3568 I.getType()); 3569 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3570 } 3571 3572 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3573 // FPToUI is never a no-op cast, no need to check 3574 SDValue N = getValue(I.getOperand(0)); 3575 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3576 I.getType()); 3577 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3578 } 3579 3580 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3581 // FPToSI is never a no-op cast, no need to check 3582 SDValue N = getValue(I.getOperand(0)); 3583 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3584 I.getType()); 3585 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3586 } 3587 3588 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3589 // UIToFP is never a no-op cast, no need to check 3590 SDValue N = getValue(I.getOperand(0)); 3591 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3592 I.getType()); 3593 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3594 } 3595 3596 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3597 // SIToFP is never a no-op cast, no need to check 3598 SDValue N = getValue(I.getOperand(0)); 3599 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3600 I.getType()); 3601 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3602 } 3603 3604 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3605 // What to do depends on the size of the integer and the size of the pointer. 3606 // We can either truncate, zero extend, or no-op, accordingly. 3607 SDValue N = getValue(I.getOperand(0)); 3608 auto &TLI = DAG.getTargetLoweringInfo(); 3609 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3610 I.getType()); 3611 EVT PtrMemVT = 3612 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3613 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3614 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3615 setValue(&I, N); 3616 } 3617 3618 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3619 // What to do depends on the size of the integer and the size of the pointer. 3620 // We can either truncate, zero extend, or no-op, accordingly. 3621 SDValue N = getValue(I.getOperand(0)); 3622 auto &TLI = DAG.getTargetLoweringInfo(); 3623 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3624 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3625 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3626 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3627 setValue(&I, N); 3628 } 3629 3630 void SelectionDAGBuilder::visitBitCast(const User &I) { 3631 SDValue N = getValue(I.getOperand(0)); 3632 SDLoc dl = getCurSDLoc(); 3633 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3634 I.getType()); 3635 3636 // BitCast assures us that source and destination are the same size so this is 3637 // either a BITCAST or a no-op. 3638 if (DestVT != N.getValueType()) 3639 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3640 DestVT, N)); // convert types. 3641 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3642 // might fold any kind of constant expression to an integer constant and that 3643 // is not what we are looking for. Only recognize a bitcast of a genuine 3644 // constant integer as an opaque constant. 3645 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3646 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3647 /*isOpaque*/true)); 3648 else 3649 setValue(&I, N); // noop cast. 3650 } 3651 3652 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3654 const Value *SV = I.getOperand(0); 3655 SDValue N = getValue(SV); 3656 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3657 3658 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3659 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3660 3661 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3662 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3663 3664 setValue(&I, N); 3665 } 3666 3667 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3669 SDValue InVec = getValue(I.getOperand(0)); 3670 SDValue InVal = getValue(I.getOperand(1)); 3671 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3672 TLI.getVectorIdxTy(DAG.getDataLayout())); 3673 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3674 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3675 InVec, InVal, InIdx)); 3676 } 3677 3678 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3679 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3680 SDValue InVec = getValue(I.getOperand(0)); 3681 SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3682 TLI.getVectorIdxTy(DAG.getDataLayout())); 3683 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3684 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3685 InVec, InIdx)); 3686 } 3687 3688 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3689 SDValue Src1 = getValue(I.getOperand(0)); 3690 SDValue Src2 = getValue(I.getOperand(1)); 3691 ArrayRef<int> Mask; 3692 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3693 Mask = SVI->getShuffleMask(); 3694 else 3695 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3696 SDLoc DL = getCurSDLoc(); 3697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3698 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3699 EVT SrcVT = Src1.getValueType(); 3700 3701 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3702 VT.isScalableVector()) { 3703 // Canonical splat form of first element of first input vector. 3704 SDValue FirstElt = 3705 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3706 DAG.getVectorIdxConstant(0, DL)); 3707 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3708 return; 3709 } 3710 3711 // For now, we only handle splats for scalable vectors. 3712 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3713 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3714 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3715 3716 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3717 unsigned MaskNumElts = Mask.size(); 3718 3719 if (SrcNumElts == MaskNumElts) { 3720 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3721 return; 3722 } 3723 3724 // Normalize the shuffle vector since mask and vector length don't match. 3725 if (SrcNumElts < MaskNumElts) { 3726 // Mask is longer than the source vectors. We can use concatenate vector to 3727 // make the mask and vectors lengths match. 3728 3729 if (MaskNumElts % SrcNumElts == 0) { 3730 // Mask length is a multiple of the source vector length. 3731 // Check if the shuffle is some kind of concatenation of the input 3732 // vectors. 3733 unsigned NumConcat = MaskNumElts / SrcNumElts; 3734 bool IsConcat = true; 3735 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3736 for (unsigned i = 0; i != MaskNumElts; ++i) { 3737 int Idx = Mask[i]; 3738 if (Idx < 0) 3739 continue; 3740 // Ensure the indices in each SrcVT sized piece are sequential and that 3741 // the same source is used for the whole piece. 3742 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3743 (ConcatSrcs[i / SrcNumElts] >= 0 && 3744 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3745 IsConcat = false; 3746 break; 3747 } 3748 // Remember which source this index came from. 3749 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3750 } 3751 3752 // The shuffle is concatenating multiple vectors together. Just emit 3753 // a CONCAT_VECTORS operation. 3754 if (IsConcat) { 3755 SmallVector<SDValue, 8> ConcatOps; 3756 for (auto Src : ConcatSrcs) { 3757 if (Src < 0) 3758 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3759 else if (Src == 0) 3760 ConcatOps.push_back(Src1); 3761 else 3762 ConcatOps.push_back(Src2); 3763 } 3764 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3765 return; 3766 } 3767 } 3768 3769 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3770 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3771 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3772 PaddedMaskNumElts); 3773 3774 // Pad both vectors with undefs to make them the same length as the mask. 3775 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3776 3777 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3778 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3779 MOps1[0] = Src1; 3780 MOps2[0] = Src2; 3781 3782 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3783 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3784 3785 // Readjust mask for new input vector length. 3786 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3787 for (unsigned i = 0; i != MaskNumElts; ++i) { 3788 int Idx = Mask[i]; 3789 if (Idx >= (int)SrcNumElts) 3790 Idx -= SrcNumElts - PaddedMaskNumElts; 3791 MappedOps[i] = Idx; 3792 } 3793 3794 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3795 3796 // If the concatenated vector was padded, extract a subvector with the 3797 // correct number of elements. 3798 if (MaskNumElts != PaddedMaskNumElts) 3799 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3800 DAG.getVectorIdxConstant(0, DL)); 3801 3802 setValue(&I, Result); 3803 return; 3804 } 3805 3806 if (SrcNumElts > MaskNumElts) { 3807 // Analyze the access pattern of the vector to see if we can extract 3808 // two subvectors and do the shuffle. 3809 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3810 bool CanExtract = true; 3811 for (int Idx : Mask) { 3812 unsigned Input = 0; 3813 if (Idx < 0) 3814 continue; 3815 3816 if (Idx >= (int)SrcNumElts) { 3817 Input = 1; 3818 Idx -= SrcNumElts; 3819 } 3820 3821 // If all the indices come from the same MaskNumElts sized portion of 3822 // the sources we can use extract. Also make sure the extract wouldn't 3823 // extract past the end of the source. 3824 int NewStartIdx = alignDown(Idx, MaskNumElts); 3825 if (NewStartIdx + MaskNumElts > SrcNumElts || 3826 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3827 CanExtract = false; 3828 // Make sure we always update StartIdx as we use it to track if all 3829 // elements are undef. 3830 StartIdx[Input] = NewStartIdx; 3831 } 3832 3833 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3834 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3835 return; 3836 } 3837 if (CanExtract) { 3838 // Extract appropriate subvector and generate a vector shuffle 3839 for (unsigned Input = 0; Input < 2; ++Input) { 3840 SDValue &Src = Input == 0 ? Src1 : Src2; 3841 if (StartIdx[Input] < 0) 3842 Src = DAG.getUNDEF(VT); 3843 else { 3844 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3845 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3846 } 3847 } 3848 3849 // Calculate new mask. 3850 SmallVector<int, 8> MappedOps(Mask); 3851 for (int &Idx : MappedOps) { 3852 if (Idx >= (int)SrcNumElts) 3853 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3854 else if (Idx >= 0) 3855 Idx -= StartIdx[0]; 3856 } 3857 3858 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3859 return; 3860 } 3861 } 3862 3863 // We can't use either concat vectors or extract subvectors so fall back to 3864 // replacing the shuffle with extract and build vector. 3865 // to insert and build vector. 3866 EVT EltVT = VT.getVectorElementType(); 3867 SmallVector<SDValue,8> Ops; 3868 for (int Idx : Mask) { 3869 SDValue Res; 3870 3871 if (Idx < 0) { 3872 Res = DAG.getUNDEF(EltVT); 3873 } else { 3874 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3875 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3876 3877 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3878 DAG.getVectorIdxConstant(Idx, DL)); 3879 } 3880 3881 Ops.push_back(Res); 3882 } 3883 3884 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3885 } 3886 3887 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3888 ArrayRef<unsigned> Indices = I.getIndices(); 3889 const Value *Op0 = I.getOperand(0); 3890 const Value *Op1 = I.getOperand(1); 3891 Type *AggTy = I.getType(); 3892 Type *ValTy = Op1->getType(); 3893 bool IntoUndef = isa<UndefValue>(Op0); 3894 bool FromUndef = isa<UndefValue>(Op1); 3895 3896 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3897 3898 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3899 SmallVector<EVT, 4> AggValueVTs; 3900 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3901 SmallVector<EVT, 4> ValValueVTs; 3902 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3903 3904 unsigned NumAggValues = AggValueVTs.size(); 3905 unsigned NumValValues = ValValueVTs.size(); 3906 SmallVector<SDValue, 4> Values(NumAggValues); 3907 3908 // Ignore an insertvalue that produces an empty object 3909 if (!NumAggValues) { 3910 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3911 return; 3912 } 3913 3914 SDValue Agg = getValue(Op0); 3915 unsigned i = 0; 3916 // Copy the beginning value(s) from the original aggregate. 3917 for (; i != LinearIndex; ++i) 3918 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3919 SDValue(Agg.getNode(), Agg.getResNo() + i); 3920 // Copy values from the inserted value(s). 3921 if (NumValValues) { 3922 SDValue Val = getValue(Op1); 3923 for (; i != LinearIndex + NumValValues; ++i) 3924 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3925 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3926 } 3927 // Copy remaining value(s) from the original aggregate. 3928 for (; i != NumAggValues; ++i) 3929 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3930 SDValue(Agg.getNode(), Agg.getResNo() + i); 3931 3932 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3933 DAG.getVTList(AggValueVTs), Values)); 3934 } 3935 3936 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3937 ArrayRef<unsigned> Indices = I.getIndices(); 3938 const Value *Op0 = I.getOperand(0); 3939 Type *AggTy = Op0->getType(); 3940 Type *ValTy = I.getType(); 3941 bool OutOfUndef = isa<UndefValue>(Op0); 3942 3943 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3944 3945 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3946 SmallVector<EVT, 4> ValValueVTs; 3947 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3948 3949 unsigned NumValValues = ValValueVTs.size(); 3950 3951 // Ignore a extractvalue that produces an empty object 3952 if (!NumValValues) { 3953 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3954 return; 3955 } 3956 3957 SmallVector<SDValue, 4> Values(NumValValues); 3958 3959 SDValue Agg = getValue(Op0); 3960 // Copy out the selected value(s). 3961 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3962 Values[i - LinearIndex] = 3963 OutOfUndef ? 3964 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3965 SDValue(Agg.getNode(), Agg.getResNo() + i); 3966 3967 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3968 DAG.getVTList(ValValueVTs), Values)); 3969 } 3970 3971 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3972 Value *Op0 = I.getOperand(0); 3973 // Note that the pointer operand may be a vector of pointers. Take the scalar 3974 // element which holds a pointer. 3975 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3976 SDValue N = getValue(Op0); 3977 SDLoc dl = getCurSDLoc(); 3978 auto &TLI = DAG.getTargetLoweringInfo(); 3979 3980 // Normalize Vector GEP - all scalar operands should be converted to the 3981 // splat vector. 3982 bool IsVectorGEP = I.getType()->isVectorTy(); 3983 ElementCount VectorElementCount = 3984 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3985 : ElementCount::getFixed(0); 3986 3987 if (IsVectorGEP && !N.getValueType().isVector()) { 3988 LLVMContext &Context = *DAG.getContext(); 3989 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3990 N = DAG.getSplat(VT, dl, N); 3991 } 3992 3993 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3994 GTI != E; ++GTI) { 3995 const Value *Idx = GTI.getOperand(); 3996 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3997 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3998 if (Field) { 3999 // N = N + Offset 4000 uint64_t Offset = 4001 DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field); 4002 4003 // In an inbounds GEP with an offset that is nonnegative even when 4004 // interpreted as signed, assume there is no unsigned overflow. 4005 SDNodeFlags Flags; 4006 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 4007 Flags.setNoUnsignedWrap(true); 4008 4009 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 4010 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 4011 } 4012 } else { 4013 // IdxSize is the width of the arithmetic according to IR semantics. 4014 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 4015 // (and fix up the result later). 4016 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 4017 MVT IdxTy = MVT::getIntegerVT(IdxSize); 4018 TypeSize ElementSize = 4019 DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType()); 4020 // We intentionally mask away the high bits here; ElementSize may not 4021 // fit in IdxTy. 4022 APInt ElementMul(IdxSize, ElementSize.getKnownMinValue()); 4023 bool ElementScalable = ElementSize.isScalable(); 4024 4025 // If this is a scalar constant or a splat vector of constants, 4026 // handle it quickly. 4027 const auto *C = dyn_cast<Constant>(Idx); 4028 if (C && isa<VectorType>(C->getType())) 4029 C = C->getSplatValue(); 4030 4031 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 4032 if (CI && CI->isZero()) 4033 continue; 4034 if (CI && !ElementScalable) { 4035 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 4036 LLVMContext &Context = *DAG.getContext(); 4037 SDValue OffsVal; 4038 if (IsVectorGEP) 4039 OffsVal = DAG.getConstant( 4040 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 4041 else 4042 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 4043 4044 // In an inbounds GEP with an offset that is nonnegative even when 4045 // interpreted as signed, assume there is no unsigned overflow. 4046 SDNodeFlags Flags; 4047 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 4048 Flags.setNoUnsignedWrap(true); 4049 4050 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 4051 4052 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 4053 continue; 4054 } 4055 4056 // N = N + Idx * ElementMul; 4057 SDValue IdxN = getValue(Idx); 4058 4059 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 4060 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 4061 VectorElementCount); 4062 IdxN = DAG.getSplat(VT, dl, IdxN); 4063 } 4064 4065 // If the index is smaller or larger than intptr_t, truncate or extend 4066 // it. 4067 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 4068 4069 if (ElementScalable) { 4070 EVT VScaleTy = N.getValueType().getScalarType(); 4071 SDValue VScale = DAG.getNode( 4072 ISD::VSCALE, dl, VScaleTy, 4073 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 4074 if (IsVectorGEP) 4075 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 4076 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 4077 } else { 4078 // If this is a multiply by a power of two, turn it into a shl 4079 // immediately. This is a very common case. 4080 if (ElementMul != 1) { 4081 if (ElementMul.isPowerOf2()) { 4082 unsigned Amt = ElementMul.logBase2(); 4083 IdxN = DAG.getNode(ISD::SHL, dl, 4084 N.getValueType(), IdxN, 4085 DAG.getConstant(Amt, dl, IdxN.getValueType())); 4086 } else { 4087 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 4088 IdxN.getValueType()); 4089 IdxN = DAG.getNode(ISD::MUL, dl, 4090 N.getValueType(), IdxN, Scale); 4091 } 4092 } 4093 } 4094 4095 N = DAG.getNode(ISD::ADD, dl, 4096 N.getValueType(), N, IdxN); 4097 } 4098 } 4099 4100 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 4101 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 4102 if (IsVectorGEP) { 4103 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 4104 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 4105 } 4106 4107 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 4108 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 4109 4110 setValue(&I, N); 4111 } 4112 4113 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 4114 // If this is a fixed sized alloca in the entry block of the function, 4115 // allocate it statically on the stack. 4116 if (FuncInfo.StaticAllocaMap.count(&I)) 4117 return; // getValue will auto-populate this. 4118 4119 SDLoc dl = getCurSDLoc(); 4120 Type *Ty = I.getAllocatedType(); 4121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4122 auto &DL = DAG.getDataLayout(); 4123 TypeSize TySize = DL.getTypeAllocSize(Ty); 4124 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 4125 4126 SDValue AllocSize = getValue(I.getArraySize()); 4127 4128 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace()); 4129 if (AllocSize.getValueType() != IntPtr) 4130 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 4131 4132 if (TySize.isScalable()) 4133 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4134 DAG.getVScale(dl, IntPtr, 4135 APInt(IntPtr.getScalarSizeInBits(), 4136 TySize.getKnownMinValue()))); 4137 else 4138 AllocSize = 4139 DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize, 4140 DAG.getConstant(TySize.getFixedValue(), dl, IntPtr)); 4141 4142 // Handle alignment. If the requested alignment is less than or equal to 4143 // the stack alignment, ignore it. If the size is greater than or equal to 4144 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 4145 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 4146 if (*Alignment <= StackAlign) 4147 Alignment = std::nullopt; 4148 4149 const uint64_t StackAlignMask = StackAlign.value() - 1U; 4150 // Round the size of the allocation up to the stack alignment size 4151 // by add SA-1 to the size. This doesn't overflow because we're computing 4152 // an address inside an alloca. 4153 SDNodeFlags Flags; 4154 Flags.setNoUnsignedWrap(true); 4155 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 4156 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 4157 4158 // Mask out the low bits for alignment purposes. 4159 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 4160 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4161 4162 SDValue Ops[] = { 4163 getRoot(), AllocSize, 4164 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4165 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4166 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4167 setValue(&I, DSA); 4168 DAG.setRoot(DSA.getValue(1)); 4169 4170 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4171 } 4172 4173 static const MDNode *getRangeMetadata(const Instruction &I) { 4174 // If !noundef is not present, then !range violation results in a poison 4175 // value rather than immediate undefined behavior. In theory, transferring 4176 // these annotations to SDAG is fine, but in practice there are key SDAG 4177 // transforms that are known not to be poison-safe, such as folding logical 4178 // and/or to bitwise and/or. For now, only transfer !range if !noundef is 4179 // also present. 4180 if (!I.hasMetadata(LLVMContext::MD_noundef)) 4181 return nullptr; 4182 return I.getMetadata(LLVMContext::MD_range); 4183 } 4184 4185 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4186 if (I.isAtomic()) 4187 return visitAtomicLoad(I); 4188 4189 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4190 const Value *SV = I.getOperand(0); 4191 if (TLI.supportSwiftError()) { 4192 // Swifterror values can come from either a function parameter with 4193 // swifterror attribute or an alloca with swifterror attribute. 4194 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4195 if (Arg->hasSwiftErrorAttr()) 4196 return visitLoadFromSwiftError(I); 4197 } 4198 4199 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4200 if (Alloca->isSwiftError()) 4201 return visitLoadFromSwiftError(I); 4202 } 4203 } 4204 4205 SDValue Ptr = getValue(SV); 4206 4207 Type *Ty = I.getType(); 4208 SmallVector<EVT, 4> ValueVTs, MemVTs; 4209 SmallVector<TypeSize, 4> Offsets; 4210 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0); 4211 unsigned NumValues = ValueVTs.size(); 4212 if (NumValues == 0) 4213 return; 4214 4215 Align Alignment = I.getAlign(); 4216 AAMDNodes AAInfo = I.getAAMetadata(); 4217 const MDNode *Ranges = getRangeMetadata(I); 4218 bool isVolatile = I.isVolatile(); 4219 MachineMemOperand::Flags MMOFlags = 4220 TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4221 4222 SDValue Root; 4223 bool ConstantMemory = false; 4224 if (isVolatile) 4225 // Serialize volatile loads with other side effects. 4226 Root = getRoot(); 4227 else if (NumValues > MaxParallelChains) 4228 Root = getMemoryRoot(); 4229 else if (AA && 4230 AA->pointsToConstantMemory(MemoryLocation( 4231 SV, 4232 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4233 AAInfo))) { 4234 // Do not serialize (non-volatile) loads of constant memory with anything. 4235 Root = DAG.getEntryNode(); 4236 ConstantMemory = true; 4237 MMOFlags |= MachineMemOperand::MOInvariant; 4238 } else { 4239 // Do not serialize non-volatile loads against each other. 4240 Root = DAG.getRoot(); 4241 } 4242 4243 SDLoc dl = getCurSDLoc(); 4244 4245 if (isVolatile) 4246 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4247 4248 SmallVector<SDValue, 4> Values(NumValues); 4249 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4250 4251 unsigned ChainI = 0; 4252 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4253 // Serializing loads here may result in excessive register pressure, and 4254 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4255 // could recover a bit by hoisting nodes upward in the chain by recognizing 4256 // they are side-effect free or do not alias. The optimizer should really 4257 // avoid this case by converting large object/array copies to llvm.memcpy 4258 // (MaxParallelChains should always remain as failsafe). 4259 if (ChainI == MaxParallelChains) { 4260 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4261 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4262 ArrayRef(Chains.data(), ChainI)); 4263 Root = Chain; 4264 ChainI = 0; 4265 } 4266 4267 // TODO: MachinePointerInfo only supports a fixed length offset. 4268 MachinePointerInfo PtrInfo = 4269 !Offsets[i].isScalable() || Offsets[i].isZero() 4270 ? MachinePointerInfo(SV, Offsets[i].getKnownMinValue()) 4271 : MachinePointerInfo(); 4272 4273 SDValue A = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4274 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, PtrInfo, Alignment, 4275 MMOFlags, AAInfo, Ranges); 4276 Chains[ChainI] = L.getValue(1); 4277 4278 if (MemVTs[i] != ValueVTs[i]) 4279 L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]); 4280 4281 Values[i] = L; 4282 } 4283 4284 if (!ConstantMemory) { 4285 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4286 ArrayRef(Chains.data(), ChainI)); 4287 if (isVolatile) 4288 DAG.setRoot(Chain); 4289 else 4290 PendingLoads.push_back(Chain); 4291 } 4292 4293 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4294 DAG.getVTList(ValueVTs), Values)); 4295 } 4296 4297 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4298 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4299 "call visitStoreToSwiftError when backend supports swifterror"); 4300 4301 SmallVector<EVT, 4> ValueVTs; 4302 SmallVector<uint64_t, 4> Offsets; 4303 const Value *SrcV = I.getOperand(0); 4304 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4305 SrcV->getType(), ValueVTs, &Offsets, 0); 4306 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4307 "expect a single EVT for swifterror"); 4308 4309 SDValue Src = getValue(SrcV); 4310 // Create a virtual register, then update the virtual register. 4311 Register VReg = 4312 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4313 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4314 // Chain can be getRoot or getControlRoot. 4315 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4316 SDValue(Src.getNode(), Src.getResNo())); 4317 DAG.setRoot(CopyNode); 4318 } 4319 4320 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4321 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4322 "call visitLoadFromSwiftError when backend supports swifterror"); 4323 4324 assert(!I.isVolatile() && 4325 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4326 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4327 "Support volatile, non temporal, invariant for load_from_swift_error"); 4328 4329 const Value *SV = I.getOperand(0); 4330 Type *Ty = I.getType(); 4331 assert( 4332 (!AA || 4333 !AA->pointsToConstantMemory(MemoryLocation( 4334 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4335 I.getAAMetadata()))) && 4336 "load_from_swift_error should not be constant memory"); 4337 4338 SmallVector<EVT, 4> ValueVTs; 4339 SmallVector<uint64_t, 4> Offsets; 4340 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4341 ValueVTs, &Offsets, 0); 4342 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4343 "expect a single EVT for swifterror"); 4344 4345 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4346 SDValue L = DAG.getCopyFromReg( 4347 getRoot(), getCurSDLoc(), 4348 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4349 4350 setValue(&I, L); 4351 } 4352 4353 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4354 if (I.isAtomic()) 4355 return visitAtomicStore(I); 4356 4357 const Value *SrcV = I.getOperand(0); 4358 const Value *PtrV = I.getOperand(1); 4359 4360 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4361 if (TLI.supportSwiftError()) { 4362 // Swifterror values can come from either a function parameter with 4363 // swifterror attribute or an alloca with swifterror attribute. 4364 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4365 if (Arg->hasSwiftErrorAttr()) 4366 return visitStoreToSwiftError(I); 4367 } 4368 4369 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4370 if (Alloca->isSwiftError()) 4371 return visitStoreToSwiftError(I); 4372 } 4373 } 4374 4375 SmallVector<EVT, 4> ValueVTs, MemVTs; 4376 SmallVector<TypeSize, 4> Offsets; 4377 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4378 SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0); 4379 unsigned NumValues = ValueVTs.size(); 4380 if (NumValues == 0) 4381 return; 4382 4383 // Get the lowered operands. Note that we do this after 4384 // checking if NumResults is zero, because with zero results 4385 // the operands won't have values in the map. 4386 SDValue Src = getValue(SrcV); 4387 SDValue Ptr = getValue(PtrV); 4388 4389 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4390 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4391 SDLoc dl = getCurSDLoc(); 4392 Align Alignment = I.getAlign(); 4393 AAMDNodes AAInfo = I.getAAMetadata(); 4394 4395 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4396 4397 unsigned ChainI = 0; 4398 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4399 // See visitLoad comments. 4400 if (ChainI == MaxParallelChains) { 4401 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4402 ArrayRef(Chains.data(), ChainI)); 4403 Root = Chain; 4404 ChainI = 0; 4405 } 4406 4407 // TODO: MachinePointerInfo only supports a fixed length offset. 4408 MachinePointerInfo PtrInfo = 4409 !Offsets[i].isScalable() || Offsets[i].isZero() 4410 ? MachinePointerInfo(PtrV, Offsets[i].getKnownMinValue()) 4411 : MachinePointerInfo(); 4412 4413 SDValue Add = DAG.getObjectPtrOffset(dl, Ptr, Offsets[i]); 4414 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4415 if (MemVTs[i] != ValueVTs[i]) 4416 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4417 SDValue St = 4418 DAG.getStore(Root, dl, Val, Add, PtrInfo, Alignment, MMOFlags, AAInfo); 4419 Chains[ChainI] = St; 4420 } 4421 4422 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4423 ArrayRef(Chains.data(), ChainI)); 4424 setValue(&I, StoreNode); 4425 DAG.setRoot(StoreNode); 4426 } 4427 4428 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4429 bool IsCompressing) { 4430 SDLoc sdl = getCurSDLoc(); 4431 4432 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4433 MaybeAlign &Alignment) { 4434 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4435 Src0 = I.getArgOperand(0); 4436 Ptr = I.getArgOperand(1); 4437 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4438 Mask = I.getArgOperand(3); 4439 }; 4440 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4441 MaybeAlign &Alignment) { 4442 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4443 Src0 = I.getArgOperand(0); 4444 Ptr = I.getArgOperand(1); 4445 Mask = I.getArgOperand(2); 4446 Alignment = std::nullopt; 4447 }; 4448 4449 Value *PtrOperand, *MaskOperand, *Src0Operand; 4450 MaybeAlign Alignment; 4451 if (IsCompressing) 4452 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4453 else 4454 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4455 4456 SDValue Ptr = getValue(PtrOperand); 4457 SDValue Src0 = getValue(Src0Operand); 4458 SDValue Mask = getValue(MaskOperand); 4459 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4460 4461 EVT VT = Src0.getValueType(); 4462 if (!Alignment) 4463 Alignment = DAG.getEVTAlign(VT); 4464 4465 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4466 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4467 MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata()); 4468 SDValue StoreNode = 4469 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4470 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4471 DAG.setRoot(StoreNode); 4472 setValue(&I, StoreNode); 4473 } 4474 4475 // Get a uniform base for the Gather/Scatter intrinsic. 4476 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4477 // We try to represent it as a base pointer + vector of indices. 4478 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4479 // The first operand of the GEP may be a single pointer or a vector of pointers 4480 // Example: 4481 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4482 // or 4483 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4484 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4485 // 4486 // When the first GEP operand is a single pointer - it is the uniform base we 4487 // are looking for. If first operand of the GEP is a splat vector - we 4488 // extract the splat value and use it as a uniform base. 4489 // In all other cases the function returns 'false'. 4490 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4491 ISD::MemIndexType &IndexType, SDValue &Scale, 4492 SelectionDAGBuilder *SDB, const BasicBlock *CurBB, 4493 uint64_t ElemSize) { 4494 SelectionDAG& DAG = SDB->DAG; 4495 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4496 const DataLayout &DL = DAG.getDataLayout(); 4497 4498 assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type"); 4499 4500 // Handle splat constant pointer. 4501 if (auto *C = dyn_cast<Constant>(Ptr)) { 4502 C = C->getSplatValue(); 4503 if (!C) 4504 return false; 4505 4506 Base = SDB->getValue(C); 4507 4508 ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount(); 4509 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4510 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4511 IndexType = ISD::SIGNED_SCALED; 4512 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4513 return true; 4514 } 4515 4516 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4517 if (!GEP || GEP->getParent() != CurBB) 4518 return false; 4519 4520 if (GEP->getNumOperands() != 2) 4521 return false; 4522 4523 const Value *BasePtr = GEP->getPointerOperand(); 4524 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4525 4526 // Make sure the base is scalar and the index is a vector. 4527 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4528 return false; 4529 4530 TypeSize ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType()); 4531 if (ScaleVal.isScalable()) 4532 return false; 4533 4534 // Target may not support the required addressing mode. 4535 if (ScaleVal != 1 && 4536 !TLI.isLegalScaleForGatherScatter(ScaleVal.getFixedValue(), ElemSize)) 4537 return false; 4538 4539 Base = SDB->getValue(BasePtr); 4540 Index = SDB->getValue(IndexVal); 4541 IndexType = ISD::SIGNED_SCALED; 4542 4543 Scale = 4544 DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4545 return true; 4546 } 4547 4548 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4549 SDLoc sdl = getCurSDLoc(); 4550 4551 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4552 const Value *Ptr = I.getArgOperand(1); 4553 SDValue Src0 = getValue(I.getArgOperand(0)); 4554 SDValue Mask = getValue(I.getArgOperand(3)); 4555 EVT VT = Src0.getValueType(); 4556 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4557 ->getMaybeAlignValue() 4558 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4559 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4560 4561 SDValue Base; 4562 SDValue Index; 4563 ISD::MemIndexType IndexType; 4564 SDValue Scale; 4565 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4566 I.getParent(), VT.getScalarStoreSize()); 4567 4568 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4569 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4570 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4571 // TODO: Make MachineMemOperands aware of scalable 4572 // vectors. 4573 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata()); 4574 if (!UniformBase) { 4575 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4576 Index = getValue(Ptr); 4577 IndexType = ISD::SIGNED_SCALED; 4578 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4579 } 4580 4581 EVT IdxVT = Index.getValueType(); 4582 EVT EltTy = IdxVT.getVectorElementType(); 4583 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4584 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4585 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4586 } 4587 4588 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4589 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4590 Ops, MMO, IndexType, false); 4591 DAG.setRoot(Scatter); 4592 setValue(&I, Scatter); 4593 } 4594 4595 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4596 SDLoc sdl = getCurSDLoc(); 4597 4598 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4599 MaybeAlign &Alignment) { 4600 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4601 Ptr = I.getArgOperand(0); 4602 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4603 Mask = I.getArgOperand(2); 4604 Src0 = I.getArgOperand(3); 4605 }; 4606 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4607 MaybeAlign &Alignment) { 4608 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4609 Ptr = I.getArgOperand(0); 4610 Alignment = std::nullopt; 4611 Mask = I.getArgOperand(1); 4612 Src0 = I.getArgOperand(2); 4613 }; 4614 4615 Value *PtrOperand, *MaskOperand, *Src0Operand; 4616 MaybeAlign Alignment; 4617 if (IsExpanding) 4618 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4619 else 4620 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4621 4622 SDValue Ptr = getValue(PtrOperand); 4623 SDValue Src0 = getValue(Src0Operand); 4624 SDValue Mask = getValue(MaskOperand); 4625 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4626 4627 EVT VT = Src0.getValueType(); 4628 if (!Alignment) 4629 Alignment = DAG.getEVTAlign(VT); 4630 4631 AAMDNodes AAInfo = I.getAAMetadata(); 4632 const MDNode *Ranges = getRangeMetadata(I); 4633 4634 // Do not serialize masked loads of constant memory with anything. 4635 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 4636 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4637 4638 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4639 4640 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4641 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4642 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 4643 4644 SDValue Load = 4645 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4646 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4647 if (AddToChain) 4648 PendingLoads.push_back(Load.getValue(1)); 4649 setValue(&I, Load); 4650 } 4651 4652 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4653 SDLoc sdl = getCurSDLoc(); 4654 4655 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4656 const Value *Ptr = I.getArgOperand(0); 4657 SDValue Src0 = getValue(I.getArgOperand(3)); 4658 SDValue Mask = getValue(I.getArgOperand(2)); 4659 4660 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4661 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4662 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4663 ->getMaybeAlignValue() 4664 .value_or(DAG.getEVTAlign(VT.getScalarType())); 4665 4666 const MDNode *Ranges = getRangeMetadata(I); 4667 4668 SDValue Root = DAG.getRoot(); 4669 SDValue Base; 4670 SDValue Index; 4671 ISD::MemIndexType IndexType; 4672 SDValue Scale; 4673 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4674 I.getParent(), VT.getScalarStoreSize()); 4675 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4676 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4677 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4678 // TODO: Make MachineMemOperands aware of scalable 4679 // vectors. 4680 MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges); 4681 4682 if (!UniformBase) { 4683 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4684 Index = getValue(Ptr); 4685 IndexType = ISD::SIGNED_SCALED; 4686 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4687 } 4688 4689 EVT IdxVT = Index.getValueType(); 4690 EVT EltTy = IdxVT.getVectorElementType(); 4691 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4692 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4693 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4694 } 4695 4696 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4697 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4698 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4699 4700 PendingLoads.push_back(Gather.getValue(1)); 4701 setValue(&I, Gather); 4702 } 4703 4704 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4705 SDLoc dl = getCurSDLoc(); 4706 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4707 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4708 SyncScope::ID SSID = I.getSyncScopeID(); 4709 4710 SDValue InChain = getRoot(); 4711 4712 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4713 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4714 4715 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4716 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4717 4718 MachineFunction &MF = DAG.getMachineFunction(); 4719 MachineMemOperand *MMO = MF.getMachineMemOperand( 4720 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4721 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4722 FailureOrdering); 4723 4724 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4725 dl, MemVT, VTs, InChain, 4726 getValue(I.getPointerOperand()), 4727 getValue(I.getCompareOperand()), 4728 getValue(I.getNewValOperand()), MMO); 4729 4730 SDValue OutChain = L.getValue(2); 4731 4732 setValue(&I, L); 4733 DAG.setRoot(OutChain); 4734 } 4735 4736 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4737 SDLoc dl = getCurSDLoc(); 4738 ISD::NodeType NT; 4739 switch (I.getOperation()) { 4740 default: llvm_unreachable("Unknown atomicrmw operation"); 4741 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4742 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4743 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4744 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4745 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4746 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4747 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4748 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4749 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4750 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4751 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4752 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4753 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4754 case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break; 4755 case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break; 4756 case AtomicRMWInst::UIncWrap: 4757 NT = ISD::ATOMIC_LOAD_UINC_WRAP; 4758 break; 4759 case AtomicRMWInst::UDecWrap: 4760 NT = ISD::ATOMIC_LOAD_UDEC_WRAP; 4761 break; 4762 } 4763 AtomicOrdering Ordering = I.getOrdering(); 4764 SyncScope::ID SSID = I.getSyncScopeID(); 4765 4766 SDValue InChain = getRoot(); 4767 4768 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4770 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4771 4772 MachineFunction &MF = DAG.getMachineFunction(); 4773 MachineMemOperand *MMO = MF.getMachineMemOperand( 4774 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4775 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4776 4777 SDValue L = 4778 DAG.getAtomic(NT, dl, MemVT, InChain, 4779 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4780 MMO); 4781 4782 SDValue OutChain = L.getValue(1); 4783 4784 setValue(&I, L); 4785 DAG.setRoot(OutChain); 4786 } 4787 4788 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4789 SDLoc dl = getCurSDLoc(); 4790 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4791 SDValue Ops[3]; 4792 Ops[0] = getRoot(); 4793 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4794 TLI.getFenceOperandTy(DAG.getDataLayout())); 4795 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4796 TLI.getFenceOperandTy(DAG.getDataLayout())); 4797 SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 4798 setValue(&I, N); 4799 DAG.setRoot(N); 4800 } 4801 4802 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4803 SDLoc dl = getCurSDLoc(); 4804 AtomicOrdering Order = I.getOrdering(); 4805 SyncScope::ID SSID = I.getSyncScopeID(); 4806 4807 SDValue InChain = getRoot(); 4808 4809 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4810 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4811 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4812 4813 if (!TLI.supportsUnalignedAtomics() && 4814 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4815 report_fatal_error("Cannot generate unaligned atomic load"); 4816 4817 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo); 4818 4819 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4820 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4821 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4822 4823 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4824 4825 SDValue Ptr = getValue(I.getPointerOperand()); 4826 4827 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4828 // TODO: Once this is better exercised by tests, it should be merged with 4829 // the normal path for loads to prevent future divergence. 4830 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4831 if (MemVT != VT) 4832 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4833 4834 setValue(&I, L); 4835 SDValue OutChain = L.getValue(1); 4836 if (!I.isUnordered()) 4837 DAG.setRoot(OutChain); 4838 else 4839 PendingLoads.push_back(OutChain); 4840 return; 4841 } 4842 4843 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4844 Ptr, MMO); 4845 4846 SDValue OutChain = L.getValue(1); 4847 if (MemVT != VT) 4848 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4849 4850 setValue(&I, L); 4851 DAG.setRoot(OutChain); 4852 } 4853 4854 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4855 SDLoc dl = getCurSDLoc(); 4856 4857 AtomicOrdering Ordering = I.getOrdering(); 4858 SyncScope::ID SSID = I.getSyncScopeID(); 4859 4860 SDValue InChain = getRoot(); 4861 4862 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4863 EVT MemVT = 4864 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4865 4866 if (!TLI.supportsUnalignedAtomics() && 4867 I.getAlign().value() < MemVT.getSizeInBits() / 8) 4868 report_fatal_error("Cannot generate unaligned atomic store"); 4869 4870 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4871 4872 MachineFunction &MF = DAG.getMachineFunction(); 4873 MachineMemOperand *MMO = MF.getMachineMemOperand( 4874 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4875 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4876 4877 SDValue Val = getValue(I.getValueOperand()); 4878 if (Val.getValueType() != MemVT) 4879 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4880 SDValue Ptr = getValue(I.getPointerOperand()); 4881 4882 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4883 // TODO: Once this is better exercised by tests, it should be merged with 4884 // the normal path for stores to prevent future divergence. 4885 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4886 setValue(&I, S); 4887 DAG.setRoot(S); 4888 return; 4889 } 4890 SDValue OutChain = 4891 DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, Val, Ptr, MMO); 4892 4893 setValue(&I, OutChain); 4894 DAG.setRoot(OutChain); 4895 } 4896 4897 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4898 /// node. 4899 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4900 unsigned Intrinsic) { 4901 // Ignore the callsite's attributes. A specific call site may be marked with 4902 // readnone, but the lowering code will expect the chain based on the 4903 // definition. 4904 const Function *F = I.getCalledFunction(); 4905 bool HasChain = !F->doesNotAccessMemory(); 4906 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4907 4908 // Build the operand list. 4909 SmallVector<SDValue, 8> Ops; 4910 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4911 if (OnlyLoad) { 4912 // We don't need to serialize loads against other loads. 4913 Ops.push_back(DAG.getRoot()); 4914 } else { 4915 Ops.push_back(getRoot()); 4916 } 4917 } 4918 4919 // Info is set by getTgtMemIntrinsic 4920 TargetLowering::IntrinsicInfo Info; 4921 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4922 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4923 DAG.getMachineFunction(), 4924 Intrinsic); 4925 4926 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4927 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4928 Info.opc == ISD::INTRINSIC_W_CHAIN) 4929 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4930 TLI.getPointerTy(DAG.getDataLayout()))); 4931 4932 // Add all operands of the call to the operand list. 4933 for (unsigned i = 0, e = I.arg_size(); i != e; ++i) { 4934 const Value *Arg = I.getArgOperand(i); 4935 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4936 Ops.push_back(getValue(Arg)); 4937 continue; 4938 } 4939 4940 // Use TargetConstant instead of a regular constant for immarg. 4941 EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true); 4942 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4943 assert(CI->getBitWidth() <= 64 && 4944 "large intrinsic immediates not handled"); 4945 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4946 } else { 4947 Ops.push_back( 4948 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4949 } 4950 } 4951 4952 SmallVector<EVT, 4> ValueVTs; 4953 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4954 4955 if (HasChain) 4956 ValueVTs.push_back(MVT::Other); 4957 4958 SDVTList VTs = DAG.getVTList(ValueVTs); 4959 4960 // Propagate fast-math-flags from IR to node(s). 4961 SDNodeFlags Flags; 4962 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 4963 Flags.copyFMF(*FPMO); 4964 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 4965 4966 // Create the node. 4967 SDValue Result; 4968 // In some cases, custom collection of operands from CallInst I may be needed. 4969 TLI.CollectTargetIntrinsicOperands(I, Ops, DAG); 4970 if (IsTgtIntrinsic) { 4971 // This is target intrinsic that touches memory 4972 // 4973 // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic 4974 // didn't yield anything useful. 4975 MachinePointerInfo MPI; 4976 if (Info.ptrVal) 4977 MPI = MachinePointerInfo(Info.ptrVal, Info.offset); 4978 else if (Info.fallbackAddressSpace) 4979 MPI = MachinePointerInfo(*Info.fallbackAddressSpace); 4980 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, 4981 Info.memVT, MPI, Info.align, Info.flags, 4982 Info.size, I.getAAMetadata()); 4983 } else if (!HasChain) { 4984 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4985 } else if (!I.getType()->isVoidTy()) { 4986 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4987 } else { 4988 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4989 } 4990 4991 if (HasChain) { 4992 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4993 if (OnlyLoad) 4994 PendingLoads.push_back(Chain); 4995 else 4996 DAG.setRoot(Chain); 4997 } 4998 4999 if (!I.getType()->isVoidTy()) { 5000 if (!isa<VectorType>(I.getType())) 5001 Result = lowerRangeToAssertZExt(DAG, I, Result); 5002 5003 MaybeAlign Alignment = I.getRetAlign(); 5004 5005 // Insert `assertalign` node if there's an alignment. 5006 if (InsertAssertAlign && Alignment) { 5007 Result = 5008 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 5009 } 5010 5011 setValue(&I, Result); 5012 } 5013 } 5014 5015 /// GetSignificand - Get the significand and build it into a floating-point 5016 /// number with exponent of 1: 5017 /// 5018 /// Op = (Op & 0x007fffff) | 0x3f800000; 5019 /// 5020 /// where Op is the hexadecimal representation of floating point value. 5021 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 5022 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5023 DAG.getConstant(0x007fffff, dl, MVT::i32)); 5024 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 5025 DAG.getConstant(0x3f800000, dl, MVT::i32)); 5026 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 5027 } 5028 5029 /// GetExponent - Get the exponent: 5030 /// 5031 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 5032 /// 5033 /// where Op is the hexadecimal representation of floating point value. 5034 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 5035 const TargetLowering &TLI, const SDLoc &dl) { 5036 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 5037 DAG.getConstant(0x7f800000, dl, MVT::i32)); 5038 SDValue t1 = DAG.getNode( 5039 ISD::SRL, dl, MVT::i32, t0, 5040 DAG.getConstant(23, dl, 5041 TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout()))); 5042 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 5043 DAG.getConstant(127, dl, MVT::i32)); 5044 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 5045 } 5046 5047 /// getF32Constant - Get 32-bit floating point constant. 5048 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 5049 const SDLoc &dl) { 5050 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 5051 MVT::f32); 5052 } 5053 5054 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 5055 SelectionDAG &DAG) { 5056 // TODO: What fast-math-flags should be set on the floating-point nodes? 5057 5058 // IntegerPartOfX = ((int32_t)(t0); 5059 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 5060 5061 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 5062 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 5063 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 5064 5065 // IntegerPartOfX <<= 23; 5066 IntegerPartOfX = 5067 DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 5068 DAG.getConstant(23, dl, 5069 DAG.getTargetLoweringInfo().getShiftAmountTy( 5070 MVT::i32, DAG.getDataLayout()))); 5071 5072 SDValue TwoToFractionalPartOfX; 5073 if (LimitFloatPrecision <= 6) { 5074 // For floating-point precision of 6: 5075 // 5076 // TwoToFractionalPartOfX = 5077 // 0.997535578f + 5078 // (0.735607626f + 0.252464424f * x) * x; 5079 // 5080 // error 0.0144103317, which is 6 bits 5081 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5082 getF32Constant(DAG, 0x3e814304, dl)); 5083 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5084 getF32Constant(DAG, 0x3f3c50c8, dl)); 5085 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5086 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5087 getF32Constant(DAG, 0x3f7f5e7e, dl)); 5088 } else if (LimitFloatPrecision <= 12) { 5089 // For floating-point precision of 12: 5090 // 5091 // TwoToFractionalPartOfX = 5092 // 0.999892986f + 5093 // (0.696457318f + 5094 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 5095 // 5096 // error 0.000107046256, which is 13 to 14 bits 5097 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5098 getF32Constant(DAG, 0x3da235e3, dl)); 5099 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5100 getF32Constant(DAG, 0x3e65b8f3, dl)); 5101 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5102 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5103 getF32Constant(DAG, 0x3f324b07, dl)); 5104 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5105 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5106 getF32Constant(DAG, 0x3f7ff8fd, dl)); 5107 } else { // LimitFloatPrecision <= 18 5108 // For floating-point precision of 18: 5109 // 5110 // TwoToFractionalPartOfX = 5111 // 0.999999982f + 5112 // (0.693148872f + 5113 // (0.240227044f + 5114 // (0.554906021e-1f + 5115 // (0.961591928e-2f + 5116 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 5117 // error 2.47208000*10^(-7), which is better than 18 bits 5118 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5119 getF32Constant(DAG, 0x3924b03e, dl)); 5120 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5121 getF32Constant(DAG, 0x3ab24b87, dl)); 5122 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5123 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5124 getF32Constant(DAG, 0x3c1d8c17, dl)); 5125 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5126 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5127 getF32Constant(DAG, 0x3d634a1d, dl)); 5128 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5129 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5130 getF32Constant(DAG, 0x3e75fe14, dl)); 5131 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5132 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 5133 getF32Constant(DAG, 0x3f317234, dl)); 5134 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 5135 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 5136 getF32Constant(DAG, 0x3f800000, dl)); 5137 } 5138 5139 // Add the exponent into the result in integer domain. 5140 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 5141 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 5142 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 5143 } 5144 5145 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 5146 /// limited-precision mode. 5147 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5148 const TargetLowering &TLI, SDNodeFlags Flags) { 5149 if (Op.getValueType() == MVT::f32 && 5150 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5151 5152 // Put the exponent in the right bit position for later addition to the 5153 // final result: 5154 // 5155 // t0 = Op * log2(e) 5156 5157 // TODO: What fast-math-flags should be set here? 5158 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 5159 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 5160 return getLimitedPrecisionExp2(t0, dl, DAG); 5161 } 5162 5163 // No special expansion. 5164 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 5165 } 5166 5167 /// expandLog - Lower a log intrinsic. Handles the special sequences for 5168 /// limited-precision mode. 5169 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5170 const TargetLowering &TLI, SDNodeFlags Flags) { 5171 // TODO: What fast-math-flags should be set on the floating-point nodes? 5172 5173 if (Op.getValueType() == MVT::f32 && 5174 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5175 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5176 5177 // Scale the exponent by log(2). 5178 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5179 SDValue LogOfExponent = 5180 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5181 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5182 5183 // Get the significand and build it into a floating-point number with 5184 // exponent of 1. 5185 SDValue X = GetSignificand(DAG, Op1, dl); 5186 5187 SDValue LogOfMantissa; 5188 if (LimitFloatPrecision <= 6) { 5189 // For floating-point precision of 6: 5190 // 5191 // LogofMantissa = 5192 // -1.1609546f + 5193 // (1.4034025f - 0.23903021f * x) * x; 5194 // 5195 // error 0.0034276066, which is better than 8 bits 5196 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5197 getF32Constant(DAG, 0xbe74c456, dl)); 5198 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5199 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5200 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5201 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5202 getF32Constant(DAG, 0x3f949a29, dl)); 5203 } else if (LimitFloatPrecision <= 12) { 5204 // For floating-point precision of 12: 5205 // 5206 // LogOfMantissa = 5207 // -1.7417939f + 5208 // (2.8212026f + 5209 // (-1.4699568f + 5210 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5211 // 5212 // error 0.000061011436, which is 14 bits 5213 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5214 getF32Constant(DAG, 0xbd67b6d6, dl)); 5215 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5216 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5217 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5218 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5219 getF32Constant(DAG, 0x3fbc278b, dl)); 5220 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5221 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5222 getF32Constant(DAG, 0x40348e95, dl)); 5223 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5224 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5225 getF32Constant(DAG, 0x3fdef31a, dl)); 5226 } else { // LimitFloatPrecision <= 18 5227 // For floating-point precision of 18: 5228 // 5229 // LogOfMantissa = 5230 // -2.1072184f + 5231 // (4.2372794f + 5232 // (-3.7029485f + 5233 // (2.2781945f + 5234 // (-0.87823314f + 5235 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5236 // 5237 // error 0.0000023660568, which is better than 18 bits 5238 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5239 getF32Constant(DAG, 0xbc91e5ac, dl)); 5240 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5241 getF32Constant(DAG, 0x3e4350aa, dl)); 5242 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5243 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5244 getF32Constant(DAG, 0x3f60d3e3, dl)); 5245 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5246 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5247 getF32Constant(DAG, 0x4011cdf0, dl)); 5248 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5249 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5250 getF32Constant(DAG, 0x406cfd1c, dl)); 5251 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5252 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5253 getF32Constant(DAG, 0x408797cb, dl)); 5254 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5255 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5256 getF32Constant(DAG, 0x4006dcab, dl)); 5257 } 5258 5259 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5260 } 5261 5262 // No special expansion. 5263 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5264 } 5265 5266 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5267 /// limited-precision mode. 5268 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5269 const TargetLowering &TLI, SDNodeFlags Flags) { 5270 // TODO: What fast-math-flags should be set on the floating-point nodes? 5271 5272 if (Op.getValueType() == MVT::f32 && 5273 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5274 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5275 5276 // Get the exponent. 5277 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5278 5279 // Get the significand and build it into a floating-point number with 5280 // exponent of 1. 5281 SDValue X = GetSignificand(DAG, Op1, dl); 5282 5283 // Different possible minimax approximations of significand in 5284 // floating-point for various degrees of accuracy over [1,2]. 5285 SDValue Log2ofMantissa; 5286 if (LimitFloatPrecision <= 6) { 5287 // For floating-point precision of 6: 5288 // 5289 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5290 // 5291 // error 0.0049451742, which is more than 7 bits 5292 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5293 getF32Constant(DAG, 0xbeb08fe0, dl)); 5294 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5295 getF32Constant(DAG, 0x40019463, dl)); 5296 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5297 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5298 getF32Constant(DAG, 0x3fd6633d, dl)); 5299 } else if (LimitFloatPrecision <= 12) { 5300 // For floating-point precision of 12: 5301 // 5302 // Log2ofMantissa = 5303 // -2.51285454f + 5304 // (4.07009056f + 5305 // (-2.12067489f + 5306 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5307 // 5308 // error 0.0000876136000, which is better than 13 bits 5309 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5310 getF32Constant(DAG, 0xbda7262e, dl)); 5311 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5312 getF32Constant(DAG, 0x3f25280b, dl)); 5313 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5314 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5315 getF32Constant(DAG, 0x4007b923, dl)); 5316 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5317 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5318 getF32Constant(DAG, 0x40823e2f, dl)); 5319 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5320 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5321 getF32Constant(DAG, 0x4020d29c, dl)); 5322 } else { // LimitFloatPrecision <= 18 5323 // For floating-point precision of 18: 5324 // 5325 // Log2ofMantissa = 5326 // -3.0400495f + 5327 // (6.1129976f + 5328 // (-5.3420409f + 5329 // (3.2865683f + 5330 // (-1.2669343f + 5331 // (0.27515199f - 5332 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5333 // 5334 // error 0.0000018516, which is better than 18 bits 5335 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5336 getF32Constant(DAG, 0xbcd2769e, dl)); 5337 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5338 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5339 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5340 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5341 getF32Constant(DAG, 0x3fa22ae7, dl)); 5342 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5343 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5344 getF32Constant(DAG, 0x40525723, dl)); 5345 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5346 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5347 getF32Constant(DAG, 0x40aaf200, dl)); 5348 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5349 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5350 getF32Constant(DAG, 0x40c39dad, dl)); 5351 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5352 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5353 getF32Constant(DAG, 0x4042902c, dl)); 5354 } 5355 5356 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5357 } 5358 5359 // No special expansion. 5360 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5361 } 5362 5363 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5364 /// limited-precision mode. 5365 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5366 const TargetLowering &TLI, SDNodeFlags Flags) { 5367 // TODO: What fast-math-flags should be set on the floating-point nodes? 5368 5369 if (Op.getValueType() == MVT::f32 && 5370 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5371 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5372 5373 // Scale the exponent by log10(2) [0.30102999f]. 5374 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5375 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5376 getF32Constant(DAG, 0x3e9a209a, dl)); 5377 5378 // Get the significand and build it into a floating-point number with 5379 // exponent of 1. 5380 SDValue X = GetSignificand(DAG, Op1, dl); 5381 5382 SDValue Log10ofMantissa; 5383 if (LimitFloatPrecision <= 6) { 5384 // For floating-point precision of 6: 5385 // 5386 // Log10ofMantissa = 5387 // -0.50419619f + 5388 // (0.60948995f - 0.10380950f * x) * x; 5389 // 5390 // error 0.0014886165, which is 6 bits 5391 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5392 getF32Constant(DAG, 0xbdd49a13, dl)); 5393 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5394 getF32Constant(DAG, 0x3f1c0789, dl)); 5395 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5396 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5397 getF32Constant(DAG, 0x3f011300, dl)); 5398 } else if (LimitFloatPrecision <= 12) { 5399 // For floating-point precision of 12: 5400 // 5401 // Log10ofMantissa = 5402 // -0.64831180f + 5403 // (0.91751397f + 5404 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5405 // 5406 // error 0.00019228036, which is better than 12 bits 5407 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5408 getF32Constant(DAG, 0x3d431f31, dl)); 5409 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5410 getF32Constant(DAG, 0x3ea21fb2, dl)); 5411 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5412 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5413 getF32Constant(DAG, 0x3f6ae232, dl)); 5414 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5415 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5416 getF32Constant(DAG, 0x3f25f7c3, dl)); 5417 } else { // LimitFloatPrecision <= 18 5418 // For floating-point precision of 18: 5419 // 5420 // Log10ofMantissa = 5421 // -0.84299375f + 5422 // (1.5327582f + 5423 // (-1.0688956f + 5424 // (0.49102474f + 5425 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5426 // 5427 // error 0.0000037995730, which is better than 18 bits 5428 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5429 getF32Constant(DAG, 0x3c5d51ce, dl)); 5430 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5431 getF32Constant(DAG, 0x3e00685a, dl)); 5432 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5433 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5434 getF32Constant(DAG, 0x3efb6798, dl)); 5435 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5436 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5437 getF32Constant(DAG, 0x3f88d192, dl)); 5438 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5439 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5440 getF32Constant(DAG, 0x3fc4316c, dl)); 5441 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5442 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5443 getF32Constant(DAG, 0x3f57ce70, dl)); 5444 } 5445 5446 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5447 } 5448 5449 // No special expansion. 5450 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5451 } 5452 5453 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5454 /// limited-precision mode. 5455 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5456 const TargetLowering &TLI, SDNodeFlags Flags) { 5457 if (Op.getValueType() == MVT::f32 && 5458 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5459 return getLimitedPrecisionExp2(Op, dl, DAG); 5460 5461 // No special expansion. 5462 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5463 } 5464 5465 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5466 /// limited-precision mode with x == 10.0f. 5467 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5468 SelectionDAG &DAG, const TargetLowering &TLI, 5469 SDNodeFlags Flags) { 5470 bool IsExp10 = false; 5471 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5472 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5473 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5474 APFloat Ten(10.0f); 5475 IsExp10 = LHSC->isExactlyValue(Ten); 5476 } 5477 } 5478 5479 // TODO: What fast-math-flags should be set on the FMUL node? 5480 if (IsExp10) { 5481 // Put the exponent in the right bit position for later addition to the 5482 // final result: 5483 // 5484 // #define LOG2OF10 3.3219281f 5485 // t0 = Op * LOG2OF10; 5486 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5487 getF32Constant(DAG, 0x40549a78, dl)); 5488 return getLimitedPrecisionExp2(t0, dl, DAG); 5489 } 5490 5491 // No special expansion. 5492 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5493 } 5494 5495 /// ExpandPowI - Expand a llvm.powi intrinsic. 5496 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5497 SelectionDAG &DAG) { 5498 // If RHS is a constant, we can expand this out to a multiplication tree if 5499 // it's beneficial on the target, otherwise we end up lowering to a call to 5500 // __powidf2 (for example). 5501 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5502 unsigned Val = RHSC->getSExtValue(); 5503 5504 // powi(x, 0) -> 1.0 5505 if (Val == 0) 5506 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5507 5508 if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI( 5509 Val, DAG.shouldOptForSize())) { 5510 // Get the exponent as a positive value. 5511 if ((int)Val < 0) 5512 Val = -Val; 5513 // We use the simple binary decomposition method to generate the multiply 5514 // sequence. There are more optimal ways to do this (for example, 5515 // powi(x,15) generates one more multiply than it should), but this has 5516 // the benefit of being both really simple and much better than a libcall. 5517 SDValue Res; // Logically starts equal to 1.0 5518 SDValue CurSquare = LHS; 5519 // TODO: Intrinsics should have fast-math-flags that propagate to these 5520 // nodes. 5521 while (Val) { 5522 if (Val & 1) { 5523 if (Res.getNode()) 5524 Res = 5525 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare); 5526 else 5527 Res = CurSquare; // 1.0*CurSquare. 5528 } 5529 5530 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5531 CurSquare, CurSquare); 5532 Val >>= 1; 5533 } 5534 5535 // If the original was negative, invert the result, producing 1/(x*x*x). 5536 if (RHSC->getSExtValue() < 0) 5537 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5538 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5539 return Res; 5540 } 5541 } 5542 5543 // Otherwise, expand to a libcall. 5544 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5545 } 5546 5547 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5548 SDValue LHS, SDValue RHS, SDValue Scale, 5549 SelectionDAG &DAG, const TargetLowering &TLI) { 5550 EVT VT = LHS.getValueType(); 5551 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5552 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5553 LLVMContext &Ctx = *DAG.getContext(); 5554 5555 // If the type is legal but the operation isn't, this node might survive all 5556 // the way to operation legalization. If we end up there and we do not have 5557 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5558 // node. 5559 5560 // Coax the legalizer into expanding the node during type legalization instead 5561 // by bumping the size by one bit. This will force it to Promote, enabling the 5562 // early expansion and avoiding the need to expand later. 5563 5564 // We don't have to do this if Scale is 0; that can always be expanded, unless 5565 // it's a saturating signed operation. Those can experience true integer 5566 // division overflow, a case which we must avoid. 5567 5568 // FIXME: We wouldn't have to do this (or any of the early 5569 // expansion/promotion) if it was possible to expand a libcall of an 5570 // illegal type during operation legalization. But it's not, so things 5571 // get a bit hacky. 5572 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5573 if ((ScaleInt > 0 || (Saturating && Signed)) && 5574 (TLI.isTypeLegal(VT) || 5575 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5576 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5577 Opcode, VT, ScaleInt); 5578 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5579 EVT PromVT; 5580 if (VT.isScalarInteger()) 5581 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5582 else if (VT.isVector()) { 5583 PromVT = VT.getVectorElementType(); 5584 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5585 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5586 } else 5587 llvm_unreachable("Wrong VT for DIVFIX?"); 5588 LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT); 5589 RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT); 5590 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5591 // For saturating operations, we need to shift up the LHS to get the 5592 // proper saturation width, and then shift down again afterwards. 5593 if (Saturating) 5594 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5595 DAG.getConstant(1, DL, ShiftTy)); 5596 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5597 if (Saturating) 5598 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5599 DAG.getConstant(1, DL, ShiftTy)); 5600 return DAG.getZExtOrTrunc(Res, DL, VT); 5601 } 5602 } 5603 5604 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5605 } 5606 5607 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5608 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5609 static void 5610 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5611 const SDValue &N) { 5612 switch (N.getOpcode()) { 5613 case ISD::CopyFromReg: { 5614 SDValue Op = N.getOperand(1); 5615 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5616 Op.getValueType().getSizeInBits()); 5617 return; 5618 } 5619 case ISD::BITCAST: 5620 case ISD::AssertZext: 5621 case ISD::AssertSext: 5622 case ISD::TRUNCATE: 5623 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5624 return; 5625 case ISD::BUILD_PAIR: 5626 case ISD::BUILD_VECTOR: 5627 case ISD::CONCAT_VECTORS: 5628 for (SDValue Op : N->op_values()) 5629 getUnderlyingArgRegs(Regs, Op); 5630 return; 5631 default: 5632 return; 5633 } 5634 } 5635 5636 /// If the DbgValueInst is a dbg_value of a function argument, create the 5637 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5638 /// instruction selection, they will be inserted to the entry BB. 5639 /// We don't currently support this for variadic dbg_values, as they shouldn't 5640 /// appear for function arguments or in the prologue. 5641 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5642 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5643 DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) { 5644 const Argument *Arg = dyn_cast<Argument>(V); 5645 if (!Arg) 5646 return false; 5647 5648 MachineFunction &MF = DAG.getMachineFunction(); 5649 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5650 5651 // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind 5652 // we've been asked to pursue. 5653 auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr, 5654 bool Indirect) { 5655 if (Reg.isVirtual() && MF.useDebugInstrRef()) { 5656 // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF 5657 // pointing at the VReg, which will be patched up later. 5658 auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF); 5659 SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg( 5660 /* Reg */ Reg, /* isDef */ false, /* isImp */ false, 5661 /* isKill */ false, /* isDead */ false, 5662 /* isUndef */ false, /* isEarlyClobber */ false, 5663 /* SubReg */ 0, /* isDebug */ true)}); 5664 5665 auto *NewDIExpr = FragExpr; 5666 // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into 5667 // the DIExpression. 5668 if (Indirect) 5669 NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore); 5670 SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0}); 5671 NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops); 5672 return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr); 5673 } else { 5674 // Create a completely standard DBG_VALUE. 5675 auto &Inst = TII->get(TargetOpcode::DBG_VALUE); 5676 return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr); 5677 } 5678 }; 5679 5680 if (Kind == FuncArgumentDbgValueKind::Value) { 5681 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5682 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5683 // the entry block. 5684 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5685 if (!IsInEntryBlock) 5686 return false; 5687 5688 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5689 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5690 // variable that also is a param. 5691 // 5692 // Although, if we are at the top of the entry block already, we can still 5693 // emit using ArgDbgValue. This might catch some situations when the 5694 // dbg.value refers to an argument that isn't used in the entry block, so 5695 // any CopyToReg node would be optimized out and the only way to express 5696 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5697 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5698 // we should only emit as ArgDbgValue if the Variable is an argument to the 5699 // current function, and the dbg.value intrinsic is found in the entry 5700 // block. 5701 bool VariableIsFunctionInputArg = Variable->isParameter() && 5702 !DL->getInlinedAt(); 5703 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5704 if (!IsInPrologue && !VariableIsFunctionInputArg) 5705 return false; 5706 5707 // Here we assume that a function argument on IR level only can be used to 5708 // describe one input parameter on source level. If we for example have 5709 // source code like this 5710 // 5711 // struct A { long x, y; }; 5712 // void foo(struct A a, long b) { 5713 // ... 5714 // b = a.x; 5715 // ... 5716 // } 5717 // 5718 // and IR like this 5719 // 5720 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5721 // entry: 5722 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5723 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5724 // call void @llvm.dbg.value(metadata i32 %b, "b", 5725 // ... 5726 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5727 // ... 5728 // 5729 // then the last dbg.value is describing a parameter "b" using a value that 5730 // is an argument. But since we already has used %a1 to describe a parameter 5731 // we should not handle that last dbg.value here (that would result in an 5732 // incorrect hoisting of the DBG_VALUE to the function entry). 5733 // Notice that we allow one dbg.value per IR level argument, to accommodate 5734 // for the situation with fragments above. 5735 if (VariableIsFunctionInputArg) { 5736 unsigned ArgNo = Arg->getArgNo(); 5737 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5738 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5739 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5740 return false; 5741 FuncInfo.DescribedArgs.set(ArgNo); 5742 } 5743 } 5744 5745 bool IsIndirect = false; 5746 std::optional<MachineOperand> Op; 5747 // Some arguments' frame index is recorded during argument lowering. 5748 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5749 if (FI != std::numeric_limits<int>::max()) 5750 Op = MachineOperand::CreateFI(FI); 5751 5752 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5753 if (!Op && N.getNode()) { 5754 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5755 Register Reg; 5756 if (ArgRegsAndSizes.size() == 1) 5757 Reg = ArgRegsAndSizes.front().first; 5758 5759 if (Reg && Reg.isVirtual()) { 5760 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5761 Register PR = RegInfo.getLiveInPhysReg(Reg); 5762 if (PR) 5763 Reg = PR; 5764 } 5765 if (Reg) { 5766 Op = MachineOperand::CreateReg(Reg, false); 5767 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5768 } 5769 } 5770 5771 if (!Op && N.getNode()) { 5772 // Check if frame index is available. 5773 SDValue LCandidate = peekThroughBitcasts(N); 5774 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5775 if (FrameIndexSDNode *FINode = 5776 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5777 Op = MachineOperand::CreateFI(FINode->getIndex()); 5778 } 5779 5780 if (!Op) { 5781 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5782 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5783 SplitRegs) { 5784 unsigned Offset = 0; 5785 for (const auto &RegAndSize : SplitRegs) { 5786 // If the expression is already a fragment, the current register 5787 // offset+size might extend beyond the fragment. In this case, only 5788 // the register bits that are inside the fragment are relevant. 5789 int RegFragmentSizeInBits = RegAndSize.second; 5790 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5791 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5792 // The register is entirely outside the expression fragment, 5793 // so is irrelevant for debug info. 5794 if (Offset >= ExprFragmentSizeInBits) 5795 break; 5796 // The register is partially outside the expression fragment, only 5797 // the low bits within the fragment are relevant for debug info. 5798 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5799 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5800 } 5801 } 5802 5803 auto FragmentExpr = DIExpression::createFragmentExpression( 5804 Expr, Offset, RegFragmentSizeInBits); 5805 Offset += RegAndSize.second; 5806 // If a valid fragment expression cannot be created, the variable's 5807 // correct value cannot be determined and so it is set as Undef. 5808 if (!FragmentExpr) { 5809 SDDbgValue *SDV = DAG.getConstantDbgValue( 5810 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5811 DAG.AddDbgValue(SDV, false); 5812 continue; 5813 } 5814 MachineInstr *NewMI = 5815 MakeVRegDbgValue(RegAndSize.first, *FragmentExpr, 5816 Kind != FuncArgumentDbgValueKind::Value); 5817 FuncInfo.ArgDbgValues.push_back(NewMI); 5818 } 5819 }; 5820 5821 // Check if ValueMap has reg number. 5822 DenseMap<const Value *, Register>::const_iterator 5823 VMI = FuncInfo.ValueMap.find(V); 5824 if (VMI != FuncInfo.ValueMap.end()) { 5825 const auto &TLI = DAG.getTargetLoweringInfo(); 5826 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5827 V->getType(), std::nullopt); 5828 if (RFV.occupiesMultipleRegs()) { 5829 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5830 return true; 5831 } 5832 5833 Op = MachineOperand::CreateReg(VMI->second, false); 5834 IsIndirect = Kind != FuncArgumentDbgValueKind::Value; 5835 } else if (ArgRegsAndSizes.size() > 1) { 5836 // This was split due to the calling convention, and no virtual register 5837 // mapping exists for the value. 5838 splitMultiRegDbgValue(ArgRegsAndSizes); 5839 return true; 5840 } 5841 } 5842 5843 if (!Op) 5844 return false; 5845 5846 assert(Variable->isValidLocationForIntrinsic(DL) && 5847 "Expected inlined-at fields to agree"); 5848 MachineInstr *NewMI = nullptr; 5849 5850 if (Op->isReg()) 5851 NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect); 5852 else 5853 NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op, 5854 Variable, Expr); 5855 5856 // Otherwise, use ArgDbgValues. 5857 FuncInfo.ArgDbgValues.push_back(NewMI); 5858 return true; 5859 } 5860 5861 /// Return the appropriate SDDbgValue based on N. 5862 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5863 DILocalVariable *Variable, 5864 DIExpression *Expr, 5865 const DebugLoc &dl, 5866 unsigned DbgSDNodeOrder) { 5867 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5868 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5869 // stack slot locations. 5870 // 5871 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5872 // debug values here after optimization: 5873 // 5874 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5875 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5876 // 5877 // Both describe the direct values of their associated variables. 5878 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5879 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5880 } 5881 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5882 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5883 } 5884 5885 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5886 switch (Intrinsic) { 5887 case Intrinsic::smul_fix: 5888 return ISD::SMULFIX; 5889 case Intrinsic::umul_fix: 5890 return ISD::UMULFIX; 5891 case Intrinsic::smul_fix_sat: 5892 return ISD::SMULFIXSAT; 5893 case Intrinsic::umul_fix_sat: 5894 return ISD::UMULFIXSAT; 5895 case Intrinsic::sdiv_fix: 5896 return ISD::SDIVFIX; 5897 case Intrinsic::udiv_fix: 5898 return ISD::UDIVFIX; 5899 case Intrinsic::sdiv_fix_sat: 5900 return ISD::SDIVFIXSAT; 5901 case Intrinsic::udiv_fix_sat: 5902 return ISD::UDIVFIXSAT; 5903 default: 5904 llvm_unreachable("Unhandled fixed point intrinsic"); 5905 } 5906 } 5907 5908 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5909 const char *FunctionName) { 5910 assert(FunctionName && "FunctionName must not be nullptr"); 5911 SDValue Callee = DAG.getExternalSymbol( 5912 FunctionName, 5913 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5914 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 5915 } 5916 5917 /// Given a @llvm.call.preallocated.setup, return the corresponding 5918 /// preallocated call. 5919 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5920 assert(cast<CallBase>(PreallocatedSetup) 5921 ->getCalledFunction() 5922 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5923 "expected call_preallocated_setup Value"); 5924 for (const auto *U : PreallocatedSetup->users()) { 5925 auto *UseCall = cast<CallBase>(U); 5926 const Function *Fn = UseCall->getCalledFunction(); 5927 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5928 return UseCall; 5929 } 5930 } 5931 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5932 } 5933 5934 /// If DI is a debug value with an EntryValue expression, lower it using the 5935 /// corresponding physical register of the associated Argument value 5936 /// (guaranteed to exist by the verifier). 5937 bool SelectionDAGBuilder::visitEntryValueDbgValue(const DbgValueInst &DI) { 5938 DILocalVariable *Variable = DI.getVariable(); 5939 DIExpression *Expr = DI.getExpression(); 5940 if (!Expr->isEntryValue() || !hasSingleElement(DI.getValues())) 5941 return false; 5942 5943 // These properties are guaranteed by the verifier. 5944 Argument *Arg = cast<Argument>(DI.getValue(0)); 5945 assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync)); 5946 5947 auto ArgIt = FuncInfo.ValueMap.find(Arg); 5948 if (ArgIt == FuncInfo.ValueMap.end()) { 5949 LLVM_DEBUG( 5950 dbgs() << "Dropping dbg.value: expression is entry_value but " 5951 "couldn't find an associated register for the Argument\n"); 5952 return true; 5953 } 5954 Register ArgVReg = ArgIt->getSecond(); 5955 5956 for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins()) 5957 if (ArgVReg == VirtReg || ArgVReg == PhysReg) { 5958 SDDbgValue *SDV = 5959 DAG.getVRegDbgValue(Variable, Expr, PhysReg, false /*IsIndidrect*/, 5960 DI.getDebugLoc(), SDNodeOrder); 5961 DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/); 5962 return true; 5963 } 5964 LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but " 5965 "couldn't find a physical register\n"); 5966 return true; 5967 } 5968 5969 /// Lower the call to the specified intrinsic function. 5970 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5971 unsigned Intrinsic) { 5972 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5973 SDLoc sdl = getCurSDLoc(); 5974 DebugLoc dl = getCurDebugLoc(); 5975 SDValue Res; 5976 5977 SDNodeFlags Flags; 5978 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5979 Flags.copyFMF(*FPOp); 5980 5981 switch (Intrinsic) { 5982 default: 5983 // By default, turn this into a target intrinsic node. 5984 visitTargetIntrinsic(I, Intrinsic); 5985 return; 5986 case Intrinsic::vscale: { 5987 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5988 setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1))); 5989 return; 5990 } 5991 case Intrinsic::vastart: visitVAStart(I); return; 5992 case Intrinsic::vaend: visitVAEnd(I); return; 5993 case Intrinsic::vacopy: visitVACopy(I); return; 5994 case Intrinsic::returnaddress: 5995 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5996 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5997 getValue(I.getArgOperand(0)))); 5998 return; 5999 case Intrinsic::addressofreturnaddress: 6000 setValue(&I, 6001 DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 6002 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6003 return; 6004 case Intrinsic::sponentry: 6005 setValue(&I, 6006 DAG.getNode(ISD::SPONENTRY, sdl, 6007 TLI.getValueType(DAG.getDataLayout(), I.getType()))); 6008 return; 6009 case Intrinsic::frameaddress: 6010 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 6011 TLI.getFrameIndexTy(DAG.getDataLayout()), 6012 getValue(I.getArgOperand(0)))); 6013 return; 6014 case Intrinsic::read_volatile_register: 6015 case Intrinsic::read_register: { 6016 Value *Reg = I.getArgOperand(0); 6017 SDValue Chain = getRoot(); 6018 SDValue RegName = 6019 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6020 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6021 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 6022 DAG.getVTList(VT, MVT::Other), Chain, RegName); 6023 setValue(&I, Res); 6024 DAG.setRoot(Res.getValue(1)); 6025 return; 6026 } 6027 case Intrinsic::write_register: { 6028 Value *Reg = I.getArgOperand(0); 6029 Value *RegValue = I.getArgOperand(1); 6030 SDValue Chain = getRoot(); 6031 SDValue RegName = 6032 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 6033 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 6034 RegName, getValue(RegValue))); 6035 return; 6036 } 6037 case Intrinsic::memcpy: { 6038 const auto &MCI = cast<MemCpyInst>(I); 6039 SDValue Op1 = getValue(I.getArgOperand(0)); 6040 SDValue Op2 = getValue(I.getArgOperand(1)); 6041 SDValue Op3 = getValue(I.getArgOperand(2)); 6042 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 6043 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6044 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6045 Align Alignment = std::min(DstAlign, SrcAlign); 6046 bool isVol = MCI.isVolatile(); 6047 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6048 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6049 // node. 6050 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6051 SDValue MC = DAG.getMemcpy( 6052 Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6053 /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)), 6054 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6055 updateDAGForMaybeTailCall(MC); 6056 return; 6057 } 6058 case Intrinsic::memcpy_inline: { 6059 const auto &MCI = cast<MemCpyInlineInst>(I); 6060 SDValue Dst = getValue(I.getArgOperand(0)); 6061 SDValue Src = getValue(I.getArgOperand(1)); 6062 SDValue Size = getValue(I.getArgOperand(2)); 6063 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 6064 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 6065 Align DstAlign = MCI.getDestAlign().valueOrOne(); 6066 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 6067 Align Alignment = std::min(DstAlign, SrcAlign); 6068 bool isVol = MCI.isVolatile(); 6069 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6070 // FIXME: Support passing different dest/src alignments to the memcpy DAG 6071 // node. 6072 SDValue MC = DAG.getMemcpy( 6073 getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 6074 /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)), 6075 MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA); 6076 updateDAGForMaybeTailCall(MC); 6077 return; 6078 } 6079 case Intrinsic::memset: { 6080 const auto &MSI = cast<MemSetInst>(I); 6081 SDValue Op1 = getValue(I.getArgOperand(0)); 6082 SDValue Op2 = getValue(I.getArgOperand(1)); 6083 SDValue Op3 = getValue(I.getArgOperand(2)); 6084 // @llvm.memset defines 0 and 1 to both mean no alignment. 6085 Align Alignment = MSI.getDestAlign().valueOrOne(); 6086 bool isVol = MSI.isVolatile(); 6087 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6088 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6089 SDValue MS = DAG.getMemset( 6090 Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false, 6091 isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata()); 6092 updateDAGForMaybeTailCall(MS); 6093 return; 6094 } 6095 case Intrinsic::memset_inline: { 6096 const auto &MSII = cast<MemSetInlineInst>(I); 6097 SDValue Dst = getValue(I.getArgOperand(0)); 6098 SDValue Value = getValue(I.getArgOperand(1)); 6099 SDValue Size = getValue(I.getArgOperand(2)); 6100 assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size"); 6101 // @llvm.memset defines 0 and 1 to both mean no alignment. 6102 Align DstAlign = MSII.getDestAlign().valueOrOne(); 6103 bool isVol = MSII.isVolatile(); 6104 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6105 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6106 SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol, 6107 /* AlwaysInline */ true, isTC, 6108 MachinePointerInfo(I.getArgOperand(0)), 6109 I.getAAMetadata()); 6110 updateDAGForMaybeTailCall(MC); 6111 return; 6112 } 6113 case Intrinsic::memmove: { 6114 const auto &MMI = cast<MemMoveInst>(I); 6115 SDValue Op1 = getValue(I.getArgOperand(0)); 6116 SDValue Op2 = getValue(I.getArgOperand(1)); 6117 SDValue Op3 = getValue(I.getArgOperand(2)); 6118 // @llvm.memmove defines 0 and 1 to both mean no alignment. 6119 Align DstAlign = MMI.getDestAlign().valueOrOne(); 6120 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 6121 Align Alignment = std::min(DstAlign, SrcAlign); 6122 bool isVol = MMI.isVolatile(); 6123 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6124 // FIXME: Support passing different dest/src alignments to the memmove DAG 6125 // node. 6126 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 6127 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 6128 isTC, MachinePointerInfo(I.getArgOperand(0)), 6129 MachinePointerInfo(I.getArgOperand(1)), 6130 I.getAAMetadata(), AA); 6131 updateDAGForMaybeTailCall(MM); 6132 return; 6133 } 6134 case Intrinsic::memcpy_element_unordered_atomic: { 6135 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 6136 SDValue Dst = getValue(MI.getRawDest()); 6137 SDValue Src = getValue(MI.getRawSource()); 6138 SDValue Length = getValue(MI.getLength()); 6139 6140 Type *LengthTy = MI.getLength()->getType(); 6141 unsigned ElemSz = MI.getElementSizeInBytes(); 6142 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6143 SDValue MC = 6144 DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6145 isTC, MachinePointerInfo(MI.getRawDest()), 6146 MachinePointerInfo(MI.getRawSource())); 6147 updateDAGForMaybeTailCall(MC); 6148 return; 6149 } 6150 case Intrinsic::memmove_element_unordered_atomic: { 6151 auto &MI = cast<AtomicMemMoveInst>(I); 6152 SDValue Dst = getValue(MI.getRawDest()); 6153 SDValue Src = getValue(MI.getRawSource()); 6154 SDValue Length = getValue(MI.getLength()); 6155 6156 Type *LengthTy = MI.getLength()->getType(); 6157 unsigned ElemSz = MI.getElementSizeInBytes(); 6158 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6159 SDValue MC = 6160 DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz, 6161 isTC, MachinePointerInfo(MI.getRawDest()), 6162 MachinePointerInfo(MI.getRawSource())); 6163 updateDAGForMaybeTailCall(MC); 6164 return; 6165 } 6166 case Intrinsic::memset_element_unordered_atomic: { 6167 auto &MI = cast<AtomicMemSetInst>(I); 6168 SDValue Dst = getValue(MI.getRawDest()); 6169 SDValue Val = getValue(MI.getValue()); 6170 SDValue Length = getValue(MI.getLength()); 6171 6172 Type *LengthTy = MI.getLength()->getType(); 6173 unsigned ElemSz = MI.getElementSizeInBytes(); 6174 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 6175 SDValue MC = 6176 DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz, 6177 isTC, MachinePointerInfo(MI.getRawDest())); 6178 updateDAGForMaybeTailCall(MC); 6179 return; 6180 } 6181 case Intrinsic::call_preallocated_setup: { 6182 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 6183 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6184 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 6185 getRoot(), SrcValue); 6186 setValue(&I, Res); 6187 DAG.setRoot(Res); 6188 return; 6189 } 6190 case Intrinsic::call_preallocated_arg: { 6191 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 6192 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 6193 SDValue Ops[3]; 6194 Ops[0] = getRoot(); 6195 Ops[1] = SrcValue; 6196 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 6197 MVT::i32); // arg index 6198 SDValue Res = DAG.getNode( 6199 ISD::PREALLOCATED_ARG, sdl, 6200 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 6201 setValue(&I, Res); 6202 DAG.setRoot(Res.getValue(1)); 6203 return; 6204 } 6205 case Intrinsic::dbg_declare: { 6206 const auto &DI = cast<DbgDeclareInst>(I); 6207 // Debug intrinsics are handled separately in assignment tracking mode. 6208 // Some intrinsics are handled right after Argument lowering. 6209 if (AssignmentTrackingEnabled || 6210 FuncInfo.PreprocessedDbgDeclares.count(&DI)) 6211 return; 6212 // Assume dbg.declare can not currently use DIArgList, i.e. 6213 // it is non-variadic. 6214 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 6215 DILocalVariable *Variable = DI.getVariable(); 6216 DIExpression *Expression = DI.getExpression(); 6217 dropDanglingDebugInfo(Variable, Expression); 6218 assert(Variable && "Missing variable"); 6219 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 6220 << "\n"); 6221 // Check if address has undef value. 6222 const Value *Address = DI.getVariableLocationOp(0); 6223 if (!Address || isa<UndefValue>(Address) || 6224 (Address->use_empty() && !isa<Argument>(Address))) { 6225 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6226 << " (bad/undef/unused-arg address)\n"); 6227 return; 6228 } 6229 6230 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 6231 6232 SDValue &N = NodeMap[Address]; 6233 if (!N.getNode() && isa<Argument>(Address)) 6234 // Check unused arguments map. 6235 N = UnusedArgNodeMap[Address]; 6236 SDDbgValue *SDV; 6237 if (N.getNode()) { 6238 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6239 Address = BCI->getOperand(0); 6240 // Parameters are handled specially. 6241 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6242 if (isParameter && FINode) { 6243 // Byval parameter. We have a frame index at this point. 6244 SDV = 6245 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6246 /*IsIndirect*/ true, dl, SDNodeOrder); 6247 } else if (isa<Argument>(Address)) { 6248 // Address is an argument, so try to emit its dbg value using 6249 // virtual register info from the FuncInfo.ValueMap. 6250 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6251 FuncArgumentDbgValueKind::Declare, N); 6252 return; 6253 } else { 6254 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6255 true, dl, SDNodeOrder); 6256 } 6257 DAG.AddDbgValue(SDV, isParameter); 6258 } else { 6259 // If Address is an argument then try to emit its dbg value using 6260 // virtual register info from the FuncInfo.ValueMap. 6261 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 6262 FuncArgumentDbgValueKind::Declare, N)) { 6263 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6264 << " (could not emit func-arg dbg_value)\n"); 6265 } 6266 } 6267 return; 6268 } 6269 case Intrinsic::dbg_label: { 6270 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6271 DILabel *Label = DI.getLabel(); 6272 assert(Label && "Missing label"); 6273 6274 SDDbgLabel *SDV; 6275 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6276 DAG.AddDbgLabel(SDV); 6277 return; 6278 } 6279 case Intrinsic::dbg_assign: { 6280 // Debug intrinsics are handled seperately in assignment tracking mode. 6281 if (AssignmentTrackingEnabled) 6282 return; 6283 // If assignment tracking hasn't been enabled then fall through and treat 6284 // the dbg.assign as a dbg.value. 6285 [[fallthrough]]; 6286 } 6287 case Intrinsic::dbg_value: { 6288 // Debug intrinsics are handled seperately in assignment tracking mode. 6289 if (AssignmentTrackingEnabled) 6290 return; 6291 const DbgValueInst &DI = cast<DbgValueInst>(I); 6292 assert(DI.getVariable() && "Missing variable"); 6293 6294 DILocalVariable *Variable = DI.getVariable(); 6295 DIExpression *Expression = DI.getExpression(); 6296 dropDanglingDebugInfo(Variable, Expression); 6297 6298 if (visitEntryValueDbgValue(DI)) 6299 return; 6300 6301 if (DI.isKillLocation()) { 6302 handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder); 6303 return; 6304 } 6305 6306 SmallVector<Value *, 4> Values(DI.getValues()); 6307 if (Values.empty()) 6308 return; 6309 6310 bool IsVariadic = DI.hasArgList(); 6311 if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(), 6312 SDNodeOrder, IsVariadic)) 6313 addDanglingDebugInfo(&DI, SDNodeOrder); 6314 return; 6315 } 6316 6317 case Intrinsic::eh_typeid_for: { 6318 // Find the type id for the given typeinfo. 6319 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6320 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6321 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6322 setValue(&I, Res); 6323 return; 6324 } 6325 6326 case Intrinsic::eh_return_i32: 6327 case Intrinsic::eh_return_i64: 6328 DAG.getMachineFunction().setCallsEHReturn(true); 6329 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6330 MVT::Other, 6331 getControlRoot(), 6332 getValue(I.getArgOperand(0)), 6333 getValue(I.getArgOperand(1)))); 6334 return; 6335 case Intrinsic::eh_unwind_init: 6336 DAG.getMachineFunction().setCallsUnwindInit(true); 6337 return; 6338 case Intrinsic::eh_dwarf_cfa: 6339 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6340 TLI.getPointerTy(DAG.getDataLayout()), 6341 getValue(I.getArgOperand(0)))); 6342 return; 6343 case Intrinsic::eh_sjlj_callsite: { 6344 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6345 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0)); 6346 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6347 6348 MMI.setCurrentCallSite(CI->getZExtValue()); 6349 return; 6350 } 6351 case Intrinsic::eh_sjlj_functioncontext: { 6352 // Get and store the index of the function context. 6353 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6354 AllocaInst *FnCtx = 6355 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6356 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6357 MFI.setFunctionContextIndex(FI); 6358 return; 6359 } 6360 case Intrinsic::eh_sjlj_setjmp: { 6361 SDValue Ops[2]; 6362 Ops[0] = getRoot(); 6363 Ops[1] = getValue(I.getArgOperand(0)); 6364 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6365 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6366 setValue(&I, Op.getValue(0)); 6367 DAG.setRoot(Op.getValue(1)); 6368 return; 6369 } 6370 case Intrinsic::eh_sjlj_longjmp: 6371 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6372 getRoot(), getValue(I.getArgOperand(0)))); 6373 return; 6374 case Intrinsic::eh_sjlj_setup_dispatch: 6375 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6376 getRoot())); 6377 return; 6378 case Intrinsic::masked_gather: 6379 visitMaskedGather(I); 6380 return; 6381 case Intrinsic::masked_load: 6382 visitMaskedLoad(I); 6383 return; 6384 case Intrinsic::masked_scatter: 6385 visitMaskedScatter(I); 6386 return; 6387 case Intrinsic::masked_store: 6388 visitMaskedStore(I); 6389 return; 6390 case Intrinsic::masked_expandload: 6391 visitMaskedLoad(I, true /* IsExpanding */); 6392 return; 6393 case Intrinsic::masked_compressstore: 6394 visitMaskedStore(I, true /* IsCompressing */); 6395 return; 6396 case Intrinsic::powi: 6397 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6398 getValue(I.getArgOperand(1)), DAG)); 6399 return; 6400 case Intrinsic::log: 6401 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6402 return; 6403 case Intrinsic::log2: 6404 setValue(&I, 6405 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6406 return; 6407 case Intrinsic::log10: 6408 setValue(&I, 6409 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6410 return; 6411 case Intrinsic::exp: 6412 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6413 return; 6414 case Intrinsic::exp2: 6415 setValue(&I, 6416 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6417 return; 6418 case Intrinsic::pow: 6419 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6420 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6421 return; 6422 case Intrinsic::sqrt: 6423 case Intrinsic::fabs: 6424 case Intrinsic::sin: 6425 case Intrinsic::cos: 6426 case Intrinsic::exp10: 6427 case Intrinsic::floor: 6428 case Intrinsic::ceil: 6429 case Intrinsic::trunc: 6430 case Intrinsic::rint: 6431 case Intrinsic::nearbyint: 6432 case Intrinsic::round: 6433 case Intrinsic::roundeven: 6434 case Intrinsic::canonicalize: { 6435 unsigned Opcode; 6436 switch (Intrinsic) { 6437 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6438 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6439 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6440 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6441 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6442 case Intrinsic::exp10: Opcode = ISD::FEXP10; break; 6443 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6444 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6445 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6446 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6447 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6448 case Intrinsic::round: Opcode = ISD::FROUND; break; 6449 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6450 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6451 } 6452 6453 setValue(&I, DAG.getNode(Opcode, sdl, 6454 getValue(I.getArgOperand(0)).getValueType(), 6455 getValue(I.getArgOperand(0)), Flags)); 6456 return; 6457 } 6458 case Intrinsic::lround: 6459 case Intrinsic::llround: 6460 case Intrinsic::lrint: 6461 case Intrinsic::llrint: { 6462 unsigned Opcode; 6463 switch (Intrinsic) { 6464 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6465 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6466 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6467 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6468 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6469 } 6470 6471 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6472 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6473 getValue(I.getArgOperand(0)))); 6474 return; 6475 } 6476 case Intrinsic::minnum: 6477 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6478 getValue(I.getArgOperand(0)).getValueType(), 6479 getValue(I.getArgOperand(0)), 6480 getValue(I.getArgOperand(1)), Flags)); 6481 return; 6482 case Intrinsic::maxnum: 6483 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6484 getValue(I.getArgOperand(0)).getValueType(), 6485 getValue(I.getArgOperand(0)), 6486 getValue(I.getArgOperand(1)), Flags)); 6487 return; 6488 case Intrinsic::minimum: 6489 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6490 getValue(I.getArgOperand(0)).getValueType(), 6491 getValue(I.getArgOperand(0)), 6492 getValue(I.getArgOperand(1)), Flags)); 6493 return; 6494 case Intrinsic::maximum: 6495 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6496 getValue(I.getArgOperand(0)).getValueType(), 6497 getValue(I.getArgOperand(0)), 6498 getValue(I.getArgOperand(1)), Flags)); 6499 return; 6500 case Intrinsic::copysign: 6501 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6502 getValue(I.getArgOperand(0)).getValueType(), 6503 getValue(I.getArgOperand(0)), 6504 getValue(I.getArgOperand(1)), Flags)); 6505 return; 6506 case Intrinsic::ldexp: 6507 setValue(&I, DAG.getNode(ISD::FLDEXP, sdl, 6508 getValue(I.getArgOperand(0)).getValueType(), 6509 getValue(I.getArgOperand(0)), 6510 getValue(I.getArgOperand(1)), Flags)); 6511 return; 6512 case Intrinsic::frexp: { 6513 SmallVector<EVT, 2> ValueVTs; 6514 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 6515 SDVTList VTs = DAG.getVTList(ValueVTs); 6516 setValue(&I, 6517 DAG.getNode(ISD::FFREXP, sdl, VTs, getValue(I.getArgOperand(0)))); 6518 return; 6519 } 6520 case Intrinsic::arithmetic_fence: { 6521 setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl, 6522 getValue(I.getArgOperand(0)).getValueType(), 6523 getValue(I.getArgOperand(0)), Flags)); 6524 return; 6525 } 6526 case Intrinsic::fma: 6527 setValue(&I, DAG.getNode( 6528 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6529 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6530 getValue(I.getArgOperand(2)), Flags)); 6531 return; 6532 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6533 case Intrinsic::INTRINSIC: 6534 #include "llvm/IR/ConstrainedOps.def" 6535 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6536 return; 6537 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6538 #include "llvm/IR/VPIntrinsics.def" 6539 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6540 return; 6541 case Intrinsic::fptrunc_round: { 6542 // Get the last argument, the metadata and convert it to an integer in the 6543 // call 6544 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata(); 6545 std::optional<RoundingMode> RoundMode = 6546 convertStrToRoundingMode(cast<MDString>(MD)->getString()); 6547 6548 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6549 6550 // Propagate fast-math-flags from IR to node(s). 6551 SDNodeFlags Flags; 6552 Flags.copyFMF(*cast<FPMathOperator>(&I)); 6553 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 6554 6555 SDValue Result; 6556 Result = DAG.getNode( 6557 ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)), 6558 DAG.getTargetConstant((int)*RoundMode, sdl, 6559 TLI.getPointerTy(DAG.getDataLayout()))); 6560 setValue(&I, Result); 6561 6562 return; 6563 } 6564 case Intrinsic::fmuladd: { 6565 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6566 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6567 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6568 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6569 getValue(I.getArgOperand(0)).getValueType(), 6570 getValue(I.getArgOperand(0)), 6571 getValue(I.getArgOperand(1)), 6572 getValue(I.getArgOperand(2)), Flags)); 6573 } else { 6574 // TODO: Intrinsic calls should have fast-math-flags. 6575 SDValue Mul = DAG.getNode( 6576 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6577 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6578 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6579 getValue(I.getArgOperand(0)).getValueType(), 6580 Mul, getValue(I.getArgOperand(2)), Flags); 6581 setValue(&I, Add); 6582 } 6583 return; 6584 } 6585 case Intrinsic::convert_to_fp16: 6586 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6587 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6588 getValue(I.getArgOperand(0)), 6589 DAG.getTargetConstant(0, sdl, 6590 MVT::i32)))); 6591 return; 6592 case Intrinsic::convert_from_fp16: 6593 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6594 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6595 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6596 getValue(I.getArgOperand(0))))); 6597 return; 6598 case Intrinsic::fptosi_sat: { 6599 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6600 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6601 getValue(I.getArgOperand(0)), 6602 DAG.getValueType(VT.getScalarType()))); 6603 return; 6604 } 6605 case Intrinsic::fptoui_sat: { 6606 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6607 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6608 getValue(I.getArgOperand(0)), 6609 DAG.getValueType(VT.getScalarType()))); 6610 return; 6611 } 6612 case Intrinsic::set_rounding: 6613 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6614 {getRoot(), getValue(I.getArgOperand(0))}); 6615 setValue(&I, Res); 6616 DAG.setRoot(Res.getValue(0)); 6617 return; 6618 case Intrinsic::is_fpclass: { 6619 const DataLayout DLayout = DAG.getDataLayout(); 6620 EVT DestVT = TLI.getValueType(DLayout, I.getType()); 6621 EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType()); 6622 FPClassTest Test = static_cast<FPClassTest>( 6623 cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); 6624 MachineFunction &MF = DAG.getMachineFunction(); 6625 const Function &F = MF.getFunction(); 6626 SDValue Op = getValue(I.getArgOperand(0)); 6627 SDNodeFlags Flags; 6628 Flags.setNoFPExcept( 6629 !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP)); 6630 // If ISD::IS_FPCLASS should be expanded, do it right now, because the 6631 // expansion can use illegal types. Making expansion early allows 6632 // legalizing these types prior to selection. 6633 if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) { 6634 SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG); 6635 setValue(&I, Result); 6636 return; 6637 } 6638 6639 SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32); 6640 SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags); 6641 setValue(&I, V); 6642 return; 6643 } 6644 case Intrinsic::get_fpenv: { 6645 const DataLayout DLayout = DAG.getDataLayout(); 6646 EVT EnvVT = TLI.getValueType(DLayout, I.getType()); 6647 Align TempAlign = DAG.getEVTAlign(EnvVT); 6648 SDValue Chain = getRoot(); 6649 // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node 6650 // and temporary storage in stack. 6651 if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) { 6652 Res = DAG.getNode( 6653 ISD::GET_FPENV, sdl, 6654 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6655 MVT::Other), 6656 Chain); 6657 } else { 6658 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6659 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6660 auto MPI = 6661 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6662 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6663 MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize, 6664 TempAlign); 6665 Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6666 Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI); 6667 } 6668 setValue(&I, Res); 6669 DAG.setRoot(Res.getValue(1)); 6670 return; 6671 } 6672 case Intrinsic::set_fpenv: { 6673 const DataLayout DLayout = DAG.getDataLayout(); 6674 SDValue Env = getValue(I.getArgOperand(0)); 6675 EVT EnvVT = Env.getValueType(); 6676 Align TempAlign = DAG.getEVTAlign(EnvVT); 6677 SDValue Chain = getRoot(); 6678 // If SET_FPENV is custom or legal, use it. Otherwise use loading 6679 // environment from memory. 6680 if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) { 6681 Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env); 6682 } else { 6683 // Allocate space in stack, copy environment bits into it and use this 6684 // memory in SET_FPENV_MEM. 6685 SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value()); 6686 int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex(); 6687 auto MPI = 6688 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI); 6689 Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign, 6690 MachineMemOperand::MOStore); 6691 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 6692 MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize, 6693 TempAlign); 6694 Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO); 6695 } 6696 DAG.setRoot(Chain); 6697 return; 6698 } 6699 case Intrinsic::reset_fpenv: 6700 DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot())); 6701 return; 6702 case Intrinsic::get_fpmode: 6703 Res = DAG.getNode( 6704 ISD::GET_FPMODE, sdl, 6705 DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6706 MVT::Other), 6707 DAG.getRoot()); 6708 setValue(&I, Res); 6709 DAG.setRoot(Res.getValue(1)); 6710 return; 6711 case Intrinsic::set_fpmode: 6712 Res = DAG.getNode(ISD::SET_FPMODE, sdl, MVT::Other, {DAG.getRoot()}, 6713 getValue(I.getArgOperand(0))); 6714 DAG.setRoot(Res); 6715 return; 6716 case Intrinsic::reset_fpmode: { 6717 Res = DAG.getNode(ISD::RESET_FPMODE, sdl, MVT::Other, getRoot()); 6718 DAG.setRoot(Res); 6719 return; 6720 } 6721 case Intrinsic::pcmarker: { 6722 SDValue Tmp = getValue(I.getArgOperand(0)); 6723 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6724 return; 6725 } 6726 case Intrinsic::readcyclecounter: { 6727 SDValue Op = getRoot(); 6728 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6729 DAG.getVTList(MVT::i64, MVT::Other), Op); 6730 setValue(&I, Res); 6731 DAG.setRoot(Res.getValue(1)); 6732 return; 6733 } 6734 case Intrinsic::bitreverse: 6735 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6736 getValue(I.getArgOperand(0)).getValueType(), 6737 getValue(I.getArgOperand(0)))); 6738 return; 6739 case Intrinsic::bswap: 6740 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6741 getValue(I.getArgOperand(0)).getValueType(), 6742 getValue(I.getArgOperand(0)))); 6743 return; 6744 case Intrinsic::cttz: { 6745 SDValue Arg = getValue(I.getArgOperand(0)); 6746 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6747 EVT Ty = Arg.getValueType(); 6748 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6749 sdl, Ty, Arg)); 6750 return; 6751 } 6752 case Intrinsic::ctlz: { 6753 SDValue Arg = getValue(I.getArgOperand(0)); 6754 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6755 EVT Ty = Arg.getValueType(); 6756 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6757 sdl, Ty, Arg)); 6758 return; 6759 } 6760 case Intrinsic::ctpop: { 6761 SDValue Arg = getValue(I.getArgOperand(0)); 6762 EVT Ty = Arg.getValueType(); 6763 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6764 return; 6765 } 6766 case Intrinsic::fshl: 6767 case Intrinsic::fshr: { 6768 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6769 SDValue X = getValue(I.getArgOperand(0)); 6770 SDValue Y = getValue(I.getArgOperand(1)); 6771 SDValue Z = getValue(I.getArgOperand(2)); 6772 EVT VT = X.getValueType(); 6773 6774 if (X == Y) { 6775 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6776 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6777 } else { 6778 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6779 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6780 } 6781 return; 6782 } 6783 case Intrinsic::sadd_sat: { 6784 SDValue Op1 = getValue(I.getArgOperand(0)); 6785 SDValue Op2 = getValue(I.getArgOperand(1)); 6786 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6787 return; 6788 } 6789 case Intrinsic::uadd_sat: { 6790 SDValue Op1 = getValue(I.getArgOperand(0)); 6791 SDValue Op2 = getValue(I.getArgOperand(1)); 6792 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6793 return; 6794 } 6795 case Intrinsic::ssub_sat: { 6796 SDValue Op1 = getValue(I.getArgOperand(0)); 6797 SDValue Op2 = getValue(I.getArgOperand(1)); 6798 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6799 return; 6800 } 6801 case Intrinsic::usub_sat: { 6802 SDValue Op1 = getValue(I.getArgOperand(0)); 6803 SDValue Op2 = getValue(I.getArgOperand(1)); 6804 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6805 return; 6806 } 6807 case Intrinsic::sshl_sat: { 6808 SDValue Op1 = getValue(I.getArgOperand(0)); 6809 SDValue Op2 = getValue(I.getArgOperand(1)); 6810 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6811 return; 6812 } 6813 case Intrinsic::ushl_sat: { 6814 SDValue Op1 = getValue(I.getArgOperand(0)); 6815 SDValue Op2 = getValue(I.getArgOperand(1)); 6816 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6817 return; 6818 } 6819 case Intrinsic::smul_fix: 6820 case Intrinsic::umul_fix: 6821 case Intrinsic::smul_fix_sat: 6822 case Intrinsic::umul_fix_sat: { 6823 SDValue Op1 = getValue(I.getArgOperand(0)); 6824 SDValue Op2 = getValue(I.getArgOperand(1)); 6825 SDValue Op3 = getValue(I.getArgOperand(2)); 6826 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6827 Op1.getValueType(), Op1, Op2, Op3)); 6828 return; 6829 } 6830 case Intrinsic::sdiv_fix: 6831 case Intrinsic::udiv_fix: 6832 case Intrinsic::sdiv_fix_sat: 6833 case Intrinsic::udiv_fix_sat: { 6834 SDValue Op1 = getValue(I.getArgOperand(0)); 6835 SDValue Op2 = getValue(I.getArgOperand(1)); 6836 SDValue Op3 = getValue(I.getArgOperand(2)); 6837 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6838 Op1, Op2, Op3, DAG, TLI)); 6839 return; 6840 } 6841 case Intrinsic::smax: { 6842 SDValue Op1 = getValue(I.getArgOperand(0)); 6843 SDValue Op2 = getValue(I.getArgOperand(1)); 6844 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6845 return; 6846 } 6847 case Intrinsic::smin: { 6848 SDValue Op1 = getValue(I.getArgOperand(0)); 6849 SDValue Op2 = getValue(I.getArgOperand(1)); 6850 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6851 return; 6852 } 6853 case Intrinsic::umax: { 6854 SDValue Op1 = getValue(I.getArgOperand(0)); 6855 SDValue Op2 = getValue(I.getArgOperand(1)); 6856 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6857 return; 6858 } 6859 case Intrinsic::umin: { 6860 SDValue Op1 = getValue(I.getArgOperand(0)); 6861 SDValue Op2 = getValue(I.getArgOperand(1)); 6862 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6863 return; 6864 } 6865 case Intrinsic::abs: { 6866 // TODO: Preserve "int min is poison" arg in SDAG? 6867 SDValue Op1 = getValue(I.getArgOperand(0)); 6868 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6869 return; 6870 } 6871 case Intrinsic::stacksave: { 6872 SDValue Op = getRoot(); 6873 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6874 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6875 setValue(&I, Res); 6876 DAG.setRoot(Res.getValue(1)); 6877 return; 6878 } 6879 case Intrinsic::stackrestore: 6880 Res = getValue(I.getArgOperand(0)); 6881 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6882 return; 6883 case Intrinsic::get_dynamic_area_offset: { 6884 SDValue Op = getRoot(); 6885 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6886 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6887 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6888 // target. 6889 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6890 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6891 " intrinsic!"); 6892 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6893 Op); 6894 DAG.setRoot(Op); 6895 setValue(&I, Res); 6896 return; 6897 } 6898 case Intrinsic::stackguard: { 6899 MachineFunction &MF = DAG.getMachineFunction(); 6900 const Module &M = *MF.getFunction().getParent(); 6901 SDValue Chain = getRoot(); 6902 if (TLI.useLoadStackGuardNode()) { 6903 Res = getLoadStackGuard(DAG, sdl, Chain); 6904 } else { 6905 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6906 const Value *Global = TLI.getSDagStackGuard(M); 6907 Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType()); 6908 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6909 MachinePointerInfo(Global, 0), Align, 6910 MachineMemOperand::MOVolatile); 6911 } 6912 if (TLI.useStackGuardXorFP()) 6913 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6914 DAG.setRoot(Chain); 6915 setValue(&I, Res); 6916 return; 6917 } 6918 case Intrinsic::stackprotector: { 6919 // Emit code into the DAG to store the stack guard onto the stack. 6920 MachineFunction &MF = DAG.getMachineFunction(); 6921 MachineFrameInfo &MFI = MF.getFrameInfo(); 6922 SDValue Src, Chain = getRoot(); 6923 6924 if (TLI.useLoadStackGuardNode()) 6925 Src = getLoadStackGuard(DAG, sdl, Chain); 6926 else 6927 Src = getValue(I.getArgOperand(0)); // The guard's value. 6928 6929 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6930 6931 int FI = FuncInfo.StaticAllocaMap[Slot]; 6932 MFI.setStackProtectorIndex(FI); 6933 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6934 6935 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6936 6937 // Store the stack protector onto the stack. 6938 Res = DAG.getStore( 6939 Chain, sdl, Src, FIN, 6940 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6941 MaybeAlign(), MachineMemOperand::MOVolatile); 6942 setValue(&I, Res); 6943 DAG.setRoot(Res); 6944 return; 6945 } 6946 case Intrinsic::objectsize: 6947 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6948 6949 case Intrinsic::is_constant: 6950 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6951 6952 case Intrinsic::annotation: 6953 case Intrinsic::ptr_annotation: 6954 case Intrinsic::launder_invariant_group: 6955 case Intrinsic::strip_invariant_group: 6956 // Drop the intrinsic, but forward the value 6957 setValue(&I, getValue(I.getOperand(0))); 6958 return; 6959 6960 case Intrinsic::assume: 6961 case Intrinsic::experimental_noalias_scope_decl: 6962 case Intrinsic::var_annotation: 6963 case Intrinsic::sideeffect: 6964 // Discard annotate attributes, noalias scope declarations, assumptions, and 6965 // artificial side-effects. 6966 return; 6967 6968 case Intrinsic::codeview_annotation: { 6969 // Emit a label associated with this metadata. 6970 MachineFunction &MF = DAG.getMachineFunction(); 6971 MCSymbol *Label = 6972 MF.getMMI().getContext().createTempSymbol("annotation", true); 6973 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6974 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6975 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6976 DAG.setRoot(Res); 6977 return; 6978 } 6979 6980 case Intrinsic::init_trampoline: { 6981 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6982 6983 SDValue Ops[6]; 6984 Ops[0] = getRoot(); 6985 Ops[1] = getValue(I.getArgOperand(0)); 6986 Ops[2] = getValue(I.getArgOperand(1)); 6987 Ops[3] = getValue(I.getArgOperand(2)); 6988 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6989 Ops[5] = DAG.getSrcValue(F); 6990 6991 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6992 6993 DAG.setRoot(Res); 6994 return; 6995 } 6996 case Intrinsic::adjust_trampoline: 6997 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6998 TLI.getPointerTy(DAG.getDataLayout()), 6999 getValue(I.getArgOperand(0)))); 7000 return; 7001 case Intrinsic::gcroot: { 7002 assert(DAG.getMachineFunction().getFunction().hasGC() && 7003 "only valid in functions with gc specified, enforced by Verifier"); 7004 assert(GFI && "implied by previous"); 7005 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 7006 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 7007 7008 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 7009 GFI->addStackRoot(FI->getIndex(), TypeMap); 7010 return; 7011 } 7012 case Intrinsic::gcread: 7013 case Intrinsic::gcwrite: 7014 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 7015 case Intrinsic::get_rounding: 7016 Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot()); 7017 setValue(&I, Res); 7018 DAG.setRoot(Res.getValue(1)); 7019 return; 7020 7021 case Intrinsic::expect: 7022 // Just replace __builtin_expect(exp, c) with EXP. 7023 setValue(&I, getValue(I.getArgOperand(0))); 7024 return; 7025 7026 case Intrinsic::ubsantrap: 7027 case Intrinsic::debugtrap: 7028 case Intrinsic::trap: { 7029 StringRef TrapFuncName = 7030 I.getAttributes().getFnAttr("trap-func-name").getValueAsString(); 7031 if (TrapFuncName.empty()) { 7032 switch (Intrinsic) { 7033 case Intrinsic::trap: 7034 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 7035 break; 7036 case Intrinsic::debugtrap: 7037 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 7038 break; 7039 case Intrinsic::ubsantrap: 7040 DAG.setRoot(DAG.getNode( 7041 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 7042 DAG.getTargetConstant( 7043 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 7044 MVT::i32))); 7045 break; 7046 default: llvm_unreachable("unknown trap intrinsic"); 7047 } 7048 return; 7049 } 7050 TargetLowering::ArgListTy Args; 7051 if (Intrinsic == Intrinsic::ubsantrap) { 7052 Args.push_back(TargetLoweringBase::ArgListEntry()); 7053 Args[0].Val = I.getArgOperand(0); 7054 Args[0].Node = getValue(Args[0].Val); 7055 Args[0].Ty = Args[0].Val->getType(); 7056 } 7057 7058 TargetLowering::CallLoweringInfo CLI(DAG); 7059 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 7060 CallingConv::C, I.getType(), 7061 DAG.getExternalSymbol(TrapFuncName.data(), 7062 TLI.getPointerTy(DAG.getDataLayout())), 7063 std::move(Args)); 7064 7065 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7066 DAG.setRoot(Result.second); 7067 return; 7068 } 7069 7070 case Intrinsic::uadd_with_overflow: 7071 case Intrinsic::sadd_with_overflow: 7072 case Intrinsic::usub_with_overflow: 7073 case Intrinsic::ssub_with_overflow: 7074 case Intrinsic::umul_with_overflow: 7075 case Intrinsic::smul_with_overflow: { 7076 ISD::NodeType Op; 7077 switch (Intrinsic) { 7078 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7079 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 7080 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 7081 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 7082 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 7083 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 7084 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 7085 } 7086 SDValue Op1 = getValue(I.getArgOperand(0)); 7087 SDValue Op2 = getValue(I.getArgOperand(1)); 7088 7089 EVT ResultVT = Op1.getValueType(); 7090 EVT OverflowVT = MVT::i1; 7091 if (ResultVT.isVector()) 7092 OverflowVT = EVT::getVectorVT( 7093 *Context, OverflowVT, ResultVT.getVectorElementCount()); 7094 7095 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 7096 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 7097 return; 7098 } 7099 case Intrinsic::prefetch: { 7100 SDValue Ops[5]; 7101 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7102 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 7103 Ops[0] = DAG.getRoot(); 7104 Ops[1] = getValue(I.getArgOperand(0)); 7105 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 7106 MVT::i32); 7107 Ops[3] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(2)), sdl, 7108 MVT::i32); 7109 Ops[4] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(3)), sdl, 7110 MVT::i32); 7111 SDValue Result = DAG.getMemIntrinsicNode( 7112 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 7113 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 7114 /* align */ std::nullopt, Flags); 7115 7116 // Chain the prefetch in parallell with any pending loads, to stay out of 7117 // the way of later optimizations. 7118 PendingLoads.push_back(Result); 7119 Result = getRoot(); 7120 DAG.setRoot(Result); 7121 return; 7122 } 7123 case Intrinsic::lifetime_start: 7124 case Intrinsic::lifetime_end: { 7125 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 7126 // Stack coloring is not enabled in O0, discard region information. 7127 if (TM.getOptLevel() == CodeGenOptLevel::None) 7128 return; 7129 7130 const int64_t ObjectSize = 7131 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 7132 Value *const ObjectPtr = I.getArgOperand(1); 7133 SmallVector<const Value *, 4> Allocas; 7134 getUnderlyingObjects(ObjectPtr, Allocas); 7135 7136 for (const Value *Alloca : Allocas) { 7137 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 7138 7139 // Could not find an Alloca. 7140 if (!LifetimeObject) 7141 continue; 7142 7143 // First check that the Alloca is static, otherwise it won't have a 7144 // valid frame index. 7145 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 7146 if (SI == FuncInfo.StaticAllocaMap.end()) 7147 return; 7148 7149 const int FrameIndex = SI->second; 7150 int64_t Offset; 7151 if (GetPointerBaseWithConstantOffset( 7152 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 7153 Offset = -1; // Cannot determine offset from alloca to lifetime object. 7154 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 7155 Offset); 7156 DAG.setRoot(Res); 7157 } 7158 return; 7159 } 7160 case Intrinsic::pseudoprobe: { 7161 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 7162 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 7163 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 7164 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 7165 DAG.setRoot(Res); 7166 return; 7167 } 7168 case Intrinsic::invariant_start: 7169 // Discard region information. 7170 setValue(&I, 7171 DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType()))); 7172 return; 7173 case Intrinsic::invariant_end: 7174 // Discard region information. 7175 return; 7176 case Intrinsic::clear_cache: 7177 /// FunctionName may be null. 7178 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 7179 lowerCallToExternalSymbol(I, FunctionName); 7180 return; 7181 case Intrinsic::donothing: 7182 case Intrinsic::seh_try_begin: 7183 case Intrinsic::seh_scope_begin: 7184 case Intrinsic::seh_try_end: 7185 case Intrinsic::seh_scope_end: 7186 // ignore 7187 return; 7188 case Intrinsic::experimental_stackmap: 7189 visitStackmap(I); 7190 return; 7191 case Intrinsic::experimental_patchpoint_void: 7192 case Intrinsic::experimental_patchpoint_i64: 7193 visitPatchpoint(I); 7194 return; 7195 case Intrinsic::experimental_gc_statepoint: 7196 LowerStatepoint(cast<GCStatepointInst>(I)); 7197 return; 7198 case Intrinsic::experimental_gc_result: 7199 visitGCResult(cast<GCResultInst>(I)); 7200 return; 7201 case Intrinsic::experimental_gc_relocate: 7202 visitGCRelocate(cast<GCRelocateInst>(I)); 7203 return; 7204 case Intrinsic::instrprof_cover: 7205 llvm_unreachable("instrprof failed to lower a cover"); 7206 case Intrinsic::instrprof_increment: 7207 llvm_unreachable("instrprof failed to lower an increment"); 7208 case Intrinsic::instrprof_timestamp: 7209 llvm_unreachable("instrprof failed to lower a timestamp"); 7210 case Intrinsic::instrprof_value_profile: 7211 llvm_unreachable("instrprof failed to lower a value profiling call"); 7212 case Intrinsic::instrprof_mcdc_parameters: 7213 llvm_unreachable("instrprof failed to lower mcdc parameters"); 7214 case Intrinsic::instrprof_mcdc_tvbitmap_update: 7215 llvm_unreachable("instrprof failed to lower an mcdc tvbitmap update"); 7216 case Intrinsic::instrprof_mcdc_condbitmap_update: 7217 llvm_unreachable("instrprof failed to lower an mcdc condbitmap update"); 7218 case Intrinsic::localescape: { 7219 MachineFunction &MF = DAG.getMachineFunction(); 7220 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 7221 7222 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 7223 // is the same on all targets. 7224 for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) { 7225 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 7226 if (isa<ConstantPointerNull>(Arg)) 7227 continue; // Skip null pointers. They represent a hole in index space. 7228 AllocaInst *Slot = cast<AllocaInst>(Arg); 7229 assert(FuncInfo.StaticAllocaMap.count(Slot) && 7230 "can only escape static allocas"); 7231 int FI = FuncInfo.StaticAllocaMap[Slot]; 7232 MCSymbol *FrameAllocSym = 7233 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7234 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 7235 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 7236 TII->get(TargetOpcode::LOCAL_ESCAPE)) 7237 .addSym(FrameAllocSym) 7238 .addFrameIndex(FI); 7239 } 7240 7241 return; 7242 } 7243 7244 case Intrinsic::localrecover: { 7245 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 7246 MachineFunction &MF = DAG.getMachineFunction(); 7247 7248 // Get the symbol that defines the frame offset. 7249 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 7250 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 7251 unsigned IdxVal = 7252 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 7253 MCSymbol *FrameAllocSym = 7254 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 7255 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 7256 7257 Value *FP = I.getArgOperand(1); 7258 SDValue FPVal = getValue(FP); 7259 EVT PtrVT = FPVal.getValueType(); 7260 7261 // Create a MCSymbol for the label to avoid any target lowering 7262 // that would make this PC relative. 7263 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 7264 SDValue OffsetVal = 7265 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 7266 7267 // Add the offset to the FP. 7268 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 7269 setValue(&I, Add); 7270 7271 return; 7272 } 7273 7274 case Intrinsic::eh_exceptionpointer: 7275 case Intrinsic::eh_exceptioncode: { 7276 // Get the exception pointer vreg, copy from it, and resize it to fit. 7277 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 7278 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 7279 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 7280 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 7281 SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT); 7282 if (Intrinsic == Intrinsic::eh_exceptioncode) 7283 N = DAG.getZExtOrTrunc(N, sdl, MVT::i32); 7284 setValue(&I, N); 7285 return; 7286 } 7287 case Intrinsic::xray_customevent: { 7288 // Here we want to make sure that the intrinsic behaves as if it has a 7289 // specific calling convention. 7290 const auto &Triple = DAG.getTarget().getTargetTriple(); 7291 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7292 return; 7293 7294 SmallVector<SDValue, 8> Ops; 7295 7296 // We want to say that we always want the arguments in registers. 7297 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 7298 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 7299 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7300 SDValue Chain = getRoot(); 7301 Ops.push_back(LogEntryVal); 7302 Ops.push_back(StrSizeVal); 7303 Ops.push_back(Chain); 7304 7305 // We need to enforce the calling convention for the callsite, so that 7306 // argument ordering is enforced correctly, and that register allocation can 7307 // see that some registers may be assumed clobbered and have to preserve 7308 // them across calls to the intrinsic. 7309 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 7310 sdl, NodeTys, Ops); 7311 SDValue patchableNode = SDValue(MN, 0); 7312 DAG.setRoot(patchableNode); 7313 setValue(&I, patchableNode); 7314 return; 7315 } 7316 case Intrinsic::xray_typedevent: { 7317 // Here we want to make sure that the intrinsic behaves as if it has a 7318 // specific calling convention. 7319 const auto &Triple = DAG.getTarget().getTargetTriple(); 7320 if (!Triple.isAArch64(64) && Triple.getArch() != Triple::x86_64) 7321 return; 7322 7323 SmallVector<SDValue, 8> Ops; 7324 7325 // We want to say that we always want the arguments in registers. 7326 // It's unclear to me how manipulating the selection DAG here forces callers 7327 // to provide arguments in registers instead of on the stack. 7328 SDValue LogTypeId = getValue(I.getArgOperand(0)); 7329 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 7330 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 7331 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7332 SDValue Chain = getRoot(); 7333 Ops.push_back(LogTypeId); 7334 Ops.push_back(LogEntryVal); 7335 Ops.push_back(StrSizeVal); 7336 Ops.push_back(Chain); 7337 7338 // We need to enforce the calling convention for the callsite, so that 7339 // argument ordering is enforced correctly, and that register allocation can 7340 // see that some registers may be assumed clobbered and have to preserve 7341 // them across calls to the intrinsic. 7342 MachineSDNode *MN = DAG.getMachineNode( 7343 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops); 7344 SDValue patchableNode = SDValue(MN, 0); 7345 DAG.setRoot(patchableNode); 7346 setValue(&I, patchableNode); 7347 return; 7348 } 7349 case Intrinsic::experimental_deoptimize: 7350 LowerDeoptimizeCall(&I); 7351 return; 7352 case Intrinsic::experimental_stepvector: 7353 visitStepVector(I); 7354 return; 7355 case Intrinsic::vector_reduce_fadd: 7356 case Intrinsic::vector_reduce_fmul: 7357 case Intrinsic::vector_reduce_add: 7358 case Intrinsic::vector_reduce_mul: 7359 case Intrinsic::vector_reduce_and: 7360 case Intrinsic::vector_reduce_or: 7361 case Intrinsic::vector_reduce_xor: 7362 case Intrinsic::vector_reduce_smax: 7363 case Intrinsic::vector_reduce_smin: 7364 case Intrinsic::vector_reduce_umax: 7365 case Intrinsic::vector_reduce_umin: 7366 case Intrinsic::vector_reduce_fmax: 7367 case Intrinsic::vector_reduce_fmin: 7368 case Intrinsic::vector_reduce_fmaximum: 7369 case Intrinsic::vector_reduce_fminimum: 7370 visitVectorReduce(I, Intrinsic); 7371 return; 7372 7373 case Intrinsic::icall_branch_funnel: { 7374 SmallVector<SDValue, 16> Ops; 7375 Ops.push_back(getValue(I.getArgOperand(0))); 7376 7377 int64_t Offset; 7378 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7379 I.getArgOperand(1), Offset, DAG.getDataLayout())); 7380 if (!Base) 7381 report_fatal_error( 7382 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7383 Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0)); 7384 7385 struct BranchFunnelTarget { 7386 int64_t Offset; 7387 SDValue Target; 7388 }; 7389 SmallVector<BranchFunnelTarget, 8> Targets; 7390 7391 for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) { 7392 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 7393 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 7394 if (ElemBase != Base) 7395 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 7396 "to the same GlobalValue"); 7397 7398 SDValue Val = getValue(I.getArgOperand(Op + 1)); 7399 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 7400 if (!GA) 7401 report_fatal_error( 7402 "llvm.icall.branch.funnel operand must be a GlobalValue"); 7403 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 7404 GA->getGlobal(), sdl, Val.getValueType(), 7405 GA->getOffset())}); 7406 } 7407 llvm::sort(Targets, 7408 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7409 return T1.Offset < T2.Offset; 7410 }); 7411 7412 for (auto &T : Targets) { 7413 Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32)); 7414 Ops.push_back(T.Target); 7415 } 7416 7417 Ops.push_back(DAG.getRoot()); // Chain 7418 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl, 7419 MVT::Other, Ops), 7420 0); 7421 DAG.setRoot(N); 7422 setValue(&I, N); 7423 HasTailCall = true; 7424 return; 7425 } 7426 7427 case Intrinsic::wasm_landingpad_index: 7428 // Information this intrinsic contained has been transferred to 7429 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7430 // delete it now. 7431 return; 7432 7433 case Intrinsic::aarch64_settag: 7434 case Intrinsic::aarch64_settag_zero: { 7435 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7436 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7437 SDValue Val = TSI.EmitTargetCodeForSetTag( 7438 DAG, sdl, getRoot(), getValue(I.getArgOperand(0)), 7439 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7440 ZeroMemory); 7441 DAG.setRoot(Val); 7442 setValue(&I, Val); 7443 return; 7444 } 7445 case Intrinsic::ptrmask: { 7446 SDValue Ptr = getValue(I.getOperand(0)); 7447 SDValue Mask = getValue(I.getOperand(1)); 7448 7449 EVT PtrVT = Ptr.getValueType(); 7450 assert(PtrVT == Mask.getValueType() && 7451 "Pointers with different index type are not supported by SDAG"); 7452 setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr, Mask)); 7453 return; 7454 } 7455 case Intrinsic::threadlocal_address: { 7456 setValue(&I, getValue(I.getOperand(0))); 7457 return; 7458 } 7459 case Intrinsic::get_active_lane_mask: { 7460 EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7461 SDValue Index = getValue(I.getOperand(0)); 7462 EVT ElementVT = Index.getValueType(); 7463 7464 if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) { 7465 visitTargetIntrinsic(I, Intrinsic); 7466 return; 7467 } 7468 7469 SDValue TripCount = getValue(I.getOperand(1)); 7470 EVT VecTy = EVT::getVectorVT(*DAG.getContext(), ElementVT, 7471 CCVT.getVectorElementCount()); 7472 7473 SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index); 7474 SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount); 7475 SDValue VectorStep = DAG.getStepVector(sdl, VecTy); 7476 SDValue VectorInduction = DAG.getNode( 7477 ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep); 7478 SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction, 7479 VectorTripCount, ISD::CondCode::SETULT); 7480 setValue(&I, SetCC); 7481 return; 7482 } 7483 case Intrinsic::experimental_get_vector_length: { 7484 assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 && 7485 "Expected positive VF"); 7486 unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue(); 7487 bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne(); 7488 7489 SDValue Count = getValue(I.getOperand(0)); 7490 EVT CountVT = Count.getValueType(); 7491 7492 if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) { 7493 visitTargetIntrinsic(I, Intrinsic); 7494 return; 7495 } 7496 7497 // Expand to a umin between the trip count and the maximum elements the type 7498 // can hold. 7499 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7500 7501 // Extend the trip count to at least the result VT. 7502 if (CountVT.bitsLT(VT)) { 7503 Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count); 7504 CountVT = VT; 7505 } 7506 7507 SDValue MaxEVL = DAG.getElementCount(sdl, CountVT, 7508 ElementCount::get(VF, IsScalable)); 7509 7510 SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL); 7511 // Clip to the result type if needed. 7512 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin); 7513 7514 setValue(&I, Trunc); 7515 return; 7516 } 7517 case Intrinsic::experimental_cttz_elts: { 7518 auto DL = getCurSDLoc(); 7519 SDValue Op = getValue(I.getOperand(0)); 7520 EVT OpVT = Op.getValueType(); 7521 7522 if (!TLI.shouldExpandCttzElements(OpVT)) { 7523 visitTargetIntrinsic(I, Intrinsic); 7524 return; 7525 } 7526 7527 if (OpVT.getScalarType() != MVT::i1) { 7528 // Compare the input vector elements to zero & use to count trailing zeros 7529 SDValue AllZero = DAG.getConstant(0, DL, OpVT); 7530 OpVT = EVT::getVectorVT(*DAG.getContext(), MVT::i1, 7531 OpVT.getVectorElementCount()); 7532 Op = DAG.getSetCC(DL, OpVT, Op, AllZero, ISD::SETNE); 7533 } 7534 7535 // Find the smallest "sensible" element type to use for the expansion. 7536 ConstantRange CR( 7537 APInt(64, OpVT.getVectorElementCount().getKnownMinValue())); 7538 if (OpVT.isScalableVT()) 7539 CR = CR.umul_sat(getVScaleRange(I.getCaller(), 64)); 7540 7541 // If the zero-is-poison flag is set, we can assume the upper limit 7542 // of the result is VF-1. 7543 if (!cast<ConstantSDNode>(getValue(I.getOperand(1)))->isZero()) 7544 CR = CR.subtract(APInt(64, 1)); 7545 7546 unsigned EltWidth = I.getType()->getScalarSizeInBits(); 7547 EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits()); 7548 EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8); 7549 7550 MVT NewEltTy = MVT::getIntegerVT(EltWidth); 7551 7552 // Create the new vector type & get the vector length 7553 EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltTy, 7554 OpVT.getVectorElementCount()); 7555 7556 SDValue VL = 7557 DAG.getElementCount(DL, NewEltTy, OpVT.getVectorElementCount()); 7558 7559 SDValue StepVec = DAG.getStepVector(DL, NewVT); 7560 SDValue SplatVL = DAG.getSplat(NewVT, DL, VL); 7561 SDValue StepVL = DAG.getNode(ISD::SUB, DL, NewVT, SplatVL, StepVec); 7562 SDValue Ext = DAG.getNode(ISD::SIGN_EXTEND, DL, NewVT, Op); 7563 SDValue And = DAG.getNode(ISD::AND, DL, NewVT, StepVL, Ext); 7564 SDValue Max = DAG.getNode(ISD::VECREDUCE_UMAX, DL, NewEltTy, And); 7565 SDValue Sub = DAG.getNode(ISD::SUB, DL, NewEltTy, VL, Max); 7566 7567 EVT RetTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7568 SDValue Ret = DAG.getZExtOrTrunc(Sub, DL, RetTy); 7569 7570 setValue(&I, Ret); 7571 return; 7572 } 7573 case Intrinsic::vector_insert: { 7574 SDValue Vec = getValue(I.getOperand(0)); 7575 SDValue SubVec = getValue(I.getOperand(1)); 7576 SDValue Index = getValue(I.getOperand(2)); 7577 7578 // The intrinsic's index type is i64, but the SDNode requires an index type 7579 // suitable for the target. Convert the index as required. 7580 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7581 if (Index.getValueType() != VectorIdxTy) 7582 Index = DAG.getVectorIdxConstant( 7583 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7584 7585 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7586 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec, 7587 Index)); 7588 return; 7589 } 7590 case Intrinsic::vector_extract: { 7591 SDValue Vec = getValue(I.getOperand(0)); 7592 SDValue Index = getValue(I.getOperand(1)); 7593 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7594 7595 // The intrinsic's index type is i64, but the SDNode requires an index type 7596 // suitable for the target. Convert the index as required. 7597 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7598 if (Index.getValueType() != VectorIdxTy) 7599 Index = DAG.getVectorIdxConstant( 7600 cast<ConstantSDNode>(Index)->getZExtValue(), sdl); 7601 7602 setValue(&I, 7603 DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index)); 7604 return; 7605 } 7606 case Intrinsic::experimental_vector_reverse: 7607 visitVectorReverse(I); 7608 return; 7609 case Intrinsic::experimental_vector_splice: 7610 visitVectorSplice(I); 7611 return; 7612 case Intrinsic::callbr_landingpad: 7613 visitCallBrLandingPad(I); 7614 return; 7615 case Intrinsic::experimental_vector_interleave2: 7616 visitVectorInterleave(I); 7617 return; 7618 case Intrinsic::experimental_vector_deinterleave2: 7619 visitVectorDeinterleave(I); 7620 return; 7621 } 7622 } 7623 7624 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7625 const ConstrainedFPIntrinsic &FPI) { 7626 SDLoc sdl = getCurSDLoc(); 7627 7628 // We do not need to serialize constrained FP intrinsics against 7629 // each other or against (nonvolatile) loads, so they can be 7630 // chained like loads. 7631 SDValue Chain = DAG.getRoot(); 7632 SmallVector<SDValue, 4> Opers; 7633 Opers.push_back(Chain); 7634 if (FPI.isUnaryOp()) { 7635 Opers.push_back(getValue(FPI.getArgOperand(0))); 7636 } else if (FPI.isTernaryOp()) { 7637 Opers.push_back(getValue(FPI.getArgOperand(0))); 7638 Opers.push_back(getValue(FPI.getArgOperand(1))); 7639 Opers.push_back(getValue(FPI.getArgOperand(2))); 7640 } else { 7641 Opers.push_back(getValue(FPI.getArgOperand(0))); 7642 Opers.push_back(getValue(FPI.getArgOperand(1))); 7643 } 7644 7645 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7646 assert(Result.getNode()->getNumValues() == 2); 7647 7648 // Push node to the appropriate list so that future instructions can be 7649 // chained up correctly. 7650 SDValue OutChain = Result.getValue(1); 7651 switch (EB) { 7652 case fp::ExceptionBehavior::ebIgnore: 7653 // The only reason why ebIgnore nodes still need to be chained is that 7654 // they might depend on the current rounding mode, and therefore must 7655 // not be moved across instruction that may change that mode. 7656 [[fallthrough]]; 7657 case fp::ExceptionBehavior::ebMayTrap: 7658 // These must not be moved across calls or instructions that may change 7659 // floating-point exception masks. 7660 PendingConstrainedFP.push_back(OutChain); 7661 break; 7662 case fp::ExceptionBehavior::ebStrict: 7663 // These must not be moved across calls or instructions that may change 7664 // floating-point exception masks or read floating-point exception flags. 7665 // In addition, they cannot be optimized out even if unused. 7666 PendingConstrainedFPStrict.push_back(OutChain); 7667 break; 7668 } 7669 }; 7670 7671 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7672 EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType()); 7673 SDVTList VTs = DAG.getVTList(VT, MVT::Other); 7674 fp::ExceptionBehavior EB = *FPI.getExceptionBehavior(); 7675 7676 SDNodeFlags Flags; 7677 if (EB == fp::ExceptionBehavior::ebIgnore) 7678 Flags.setNoFPExcept(true); 7679 7680 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7681 Flags.copyFMF(*FPOp); 7682 7683 unsigned Opcode; 7684 switch (FPI.getIntrinsicID()) { 7685 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7686 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7687 case Intrinsic::INTRINSIC: \ 7688 Opcode = ISD::STRICT_##DAGN; \ 7689 break; 7690 #include "llvm/IR/ConstrainedOps.def" 7691 case Intrinsic::experimental_constrained_fmuladd: { 7692 Opcode = ISD::STRICT_FMA; 7693 // Break fmuladd into fmul and fadd. 7694 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7695 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 7696 Opers.pop_back(); 7697 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7698 pushOutChain(Mul, EB); 7699 Opcode = ISD::STRICT_FADD; 7700 Opers.clear(); 7701 Opers.push_back(Mul.getValue(1)); 7702 Opers.push_back(Mul.getValue(0)); 7703 Opers.push_back(getValue(FPI.getArgOperand(2))); 7704 } 7705 break; 7706 } 7707 } 7708 7709 // A few strict DAG nodes carry additional operands that are not 7710 // set up by the default code above. 7711 switch (Opcode) { 7712 default: break; 7713 case ISD::STRICT_FP_ROUND: 7714 Opers.push_back( 7715 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7716 break; 7717 case ISD::STRICT_FSETCC: 7718 case ISD::STRICT_FSETCCS: { 7719 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7720 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7721 if (TM.Options.NoNaNsFPMath) 7722 Condition = getFCmpCodeWithoutNaN(Condition); 7723 Opers.push_back(DAG.getCondCode(Condition)); 7724 break; 7725 } 7726 } 7727 7728 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7729 pushOutChain(Result, EB); 7730 7731 SDValue FPResult = Result.getValue(0); 7732 setValue(&FPI, FPResult); 7733 } 7734 7735 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7736 std::optional<unsigned> ResOPC; 7737 switch (VPIntrin.getIntrinsicID()) { 7738 case Intrinsic::vp_ctlz: { 7739 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7740 ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ; 7741 break; 7742 } 7743 case Intrinsic::vp_cttz: { 7744 bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne(); 7745 ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ; 7746 break; 7747 } 7748 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD) \ 7749 case Intrinsic::VPID: \ 7750 ResOPC = ISD::VPSD; \ 7751 break; 7752 #include "llvm/IR/VPIntrinsics.def" 7753 } 7754 7755 if (!ResOPC) 7756 llvm_unreachable( 7757 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7758 7759 if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD || 7760 *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) { 7761 if (VPIntrin.getFastMathFlags().allowReassoc()) 7762 return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD 7763 : ISD::VP_REDUCE_FMUL; 7764 } 7765 7766 return *ResOPC; 7767 } 7768 7769 void SelectionDAGBuilder::visitVPLoad( 7770 const VPIntrinsic &VPIntrin, EVT VT, 7771 const SmallVectorImpl<SDValue> &OpValues) { 7772 SDLoc DL = getCurSDLoc(); 7773 Value *PtrOperand = VPIntrin.getArgOperand(0); 7774 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7775 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7776 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7777 SDValue LD; 7778 // Do not serialize variable-length loads of constant memory with 7779 // anything. 7780 if (!Alignment) 7781 Alignment = DAG.getEVTAlign(VT); 7782 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7783 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7784 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7785 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7786 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7787 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7788 LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2], 7789 MMO, false /*IsExpanding */); 7790 if (AddToChain) 7791 PendingLoads.push_back(LD.getValue(1)); 7792 setValue(&VPIntrin, LD); 7793 } 7794 7795 void SelectionDAGBuilder::visitVPGather( 7796 const VPIntrinsic &VPIntrin, EVT VT, 7797 const SmallVectorImpl<SDValue> &OpValues) { 7798 SDLoc DL = getCurSDLoc(); 7799 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7800 Value *PtrOperand = VPIntrin.getArgOperand(0); 7801 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7802 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7803 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7804 SDValue LD; 7805 if (!Alignment) 7806 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7807 unsigned AS = 7808 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7809 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7810 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 7811 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7812 SDValue Base, Index, Scale; 7813 ISD::MemIndexType IndexType; 7814 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7815 this, VPIntrin.getParent(), 7816 VT.getScalarStoreSize()); 7817 if (!UniformBase) { 7818 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7819 Index = getValue(PtrOperand); 7820 IndexType = ISD::SIGNED_SCALED; 7821 Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7822 } 7823 EVT IdxVT = Index.getValueType(); 7824 EVT EltTy = IdxVT.getVectorElementType(); 7825 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7826 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7827 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7828 } 7829 LD = DAG.getGatherVP( 7830 DAG.getVTList(VT, MVT::Other), VT, DL, 7831 {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO, 7832 IndexType); 7833 PendingLoads.push_back(LD.getValue(1)); 7834 setValue(&VPIntrin, LD); 7835 } 7836 7837 void SelectionDAGBuilder::visitVPStore( 7838 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7839 SDLoc DL = getCurSDLoc(); 7840 Value *PtrOperand = VPIntrin.getArgOperand(1); 7841 EVT VT = OpValues[0].getValueType(); 7842 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7843 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7844 SDValue ST; 7845 if (!Alignment) 7846 Alignment = DAG.getEVTAlign(VT); 7847 SDValue Ptr = OpValues[1]; 7848 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 7849 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7850 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7851 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7852 ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset, 7853 OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED, 7854 /* IsTruncating */ false, /*IsCompressing*/ false); 7855 DAG.setRoot(ST); 7856 setValue(&VPIntrin, ST); 7857 } 7858 7859 void SelectionDAGBuilder::visitVPScatter( 7860 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7861 SDLoc DL = getCurSDLoc(); 7862 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7863 Value *PtrOperand = VPIntrin.getArgOperand(1); 7864 EVT VT = OpValues[0].getValueType(); 7865 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7866 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7867 SDValue ST; 7868 if (!Alignment) 7869 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7870 unsigned AS = 7871 PtrOperand->getType()->getScalarType()->getPointerAddressSpace(); 7872 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7873 MachinePointerInfo(AS), MachineMemOperand::MOStore, 7874 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7875 SDValue Base, Index, Scale; 7876 ISD::MemIndexType IndexType; 7877 bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale, 7878 this, VPIntrin.getParent(), 7879 VT.getScalarStoreSize()); 7880 if (!UniformBase) { 7881 Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout())); 7882 Index = getValue(PtrOperand); 7883 IndexType = ISD::SIGNED_SCALED; 7884 Scale = 7885 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())); 7886 } 7887 EVT IdxVT = Index.getValueType(); 7888 EVT EltTy = IdxVT.getVectorElementType(); 7889 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 7890 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 7891 Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index); 7892 } 7893 ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL, 7894 {getMemoryRoot(), OpValues[0], Base, Index, Scale, 7895 OpValues[2], OpValues[3]}, 7896 MMO, IndexType); 7897 DAG.setRoot(ST); 7898 setValue(&VPIntrin, ST); 7899 } 7900 7901 void SelectionDAGBuilder::visitVPStridedLoad( 7902 const VPIntrinsic &VPIntrin, EVT VT, 7903 const SmallVectorImpl<SDValue> &OpValues) { 7904 SDLoc DL = getCurSDLoc(); 7905 Value *PtrOperand = VPIntrin.getArgOperand(0); 7906 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7907 if (!Alignment) 7908 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7909 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7910 const MDNode *Ranges = getRangeMetadata(VPIntrin); 7911 MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo); 7912 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 7913 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 7914 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7915 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 7916 MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges); 7917 7918 SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], 7919 OpValues[2], OpValues[3], MMO, 7920 false /*IsExpanding*/); 7921 7922 if (AddToChain) 7923 PendingLoads.push_back(LD.getValue(1)); 7924 setValue(&VPIntrin, LD); 7925 } 7926 7927 void SelectionDAGBuilder::visitVPStridedStore( 7928 const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) { 7929 SDLoc DL = getCurSDLoc(); 7930 Value *PtrOperand = VPIntrin.getArgOperand(1); 7931 EVT VT = OpValues[0].getValueType(); 7932 MaybeAlign Alignment = VPIntrin.getPointerAlignment(); 7933 if (!Alignment) 7934 Alignment = DAG.getEVTAlign(VT.getScalarType()); 7935 AAMDNodes AAInfo = VPIntrin.getAAMetadata(); 7936 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 7937 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 7938 MemoryLocation::UnknownSize, *Alignment, AAInfo); 7939 7940 SDValue ST = DAG.getStridedStoreVP( 7941 getMemoryRoot(), DL, OpValues[0], OpValues[1], 7942 DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3], 7943 OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false, 7944 /*IsCompressing*/ false); 7945 7946 DAG.setRoot(ST); 7947 setValue(&VPIntrin, ST); 7948 } 7949 7950 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) { 7951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7952 SDLoc DL = getCurSDLoc(); 7953 7954 ISD::CondCode Condition; 7955 CmpInst::Predicate CondCode = VPIntrin.getPredicate(); 7956 bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy(); 7957 if (IsFP) { 7958 // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan) 7959 // flags, but calls that don't return floating-point types can't be 7960 // FPMathOperators, like vp.fcmp. This affects constrained fcmp too. 7961 Condition = getFCmpCondCode(CondCode); 7962 if (TM.Options.NoNaNsFPMath) 7963 Condition = getFCmpCodeWithoutNaN(Condition); 7964 } else { 7965 Condition = getICmpCondCode(CondCode); 7966 } 7967 7968 SDValue Op1 = getValue(VPIntrin.getOperand(0)); 7969 SDValue Op2 = getValue(VPIntrin.getOperand(1)); 7970 // #2 is the condition code 7971 SDValue MaskOp = getValue(VPIntrin.getOperand(3)); 7972 SDValue EVL = getValue(VPIntrin.getOperand(4)); 7973 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 7974 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 7975 "Unexpected target EVL type"); 7976 EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL); 7977 7978 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7979 VPIntrin.getType()); 7980 setValue(&VPIntrin, 7981 DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL)); 7982 } 7983 7984 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7985 const VPIntrinsic &VPIntrin) { 7986 SDLoc DL = getCurSDLoc(); 7987 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7988 7989 auto IID = VPIntrin.getIntrinsicID(); 7990 7991 if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin)) 7992 return visitVPCmp(*CmpI); 7993 7994 SmallVector<EVT, 4> ValueVTs; 7995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7996 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7997 SDVTList VTs = DAG.getVTList(ValueVTs); 7998 7999 auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID); 8000 8001 MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy(); 8002 assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) && 8003 "Unexpected target EVL type"); 8004 8005 // Request operands. 8006 SmallVector<SDValue, 7> OpValues; 8007 for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) { 8008 auto Op = getValue(VPIntrin.getArgOperand(I)); 8009 if (I == EVLParamPos) 8010 Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op); 8011 OpValues.push_back(Op); 8012 } 8013 8014 switch (Opcode) { 8015 default: { 8016 SDNodeFlags SDFlags; 8017 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8018 SDFlags.copyFMF(*FPMO); 8019 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags); 8020 setValue(&VPIntrin, Result); 8021 break; 8022 } 8023 case ISD::VP_LOAD: 8024 visitVPLoad(VPIntrin, ValueVTs[0], OpValues); 8025 break; 8026 case ISD::VP_GATHER: 8027 visitVPGather(VPIntrin, ValueVTs[0], OpValues); 8028 break; 8029 case ISD::EXPERIMENTAL_VP_STRIDED_LOAD: 8030 visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues); 8031 break; 8032 case ISD::VP_STORE: 8033 visitVPStore(VPIntrin, OpValues); 8034 break; 8035 case ISD::VP_SCATTER: 8036 visitVPScatter(VPIntrin, OpValues); 8037 break; 8038 case ISD::EXPERIMENTAL_VP_STRIDED_STORE: 8039 visitVPStridedStore(VPIntrin, OpValues); 8040 break; 8041 case ISD::VP_FMULADD: { 8042 assert(OpValues.size() == 5 && "Unexpected number of operands"); 8043 SDNodeFlags SDFlags; 8044 if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin)) 8045 SDFlags.copyFMF(*FPMO); 8046 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 8047 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) { 8048 setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags)); 8049 } else { 8050 SDValue Mul = DAG.getNode( 8051 ISD::VP_FMUL, DL, VTs, 8052 {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags); 8053 SDValue Add = 8054 DAG.getNode(ISD::VP_FADD, DL, VTs, 8055 {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags); 8056 setValue(&VPIntrin, Add); 8057 } 8058 break; 8059 } 8060 case ISD::VP_IS_FPCLASS: { 8061 const DataLayout DLayout = DAG.getDataLayout(); 8062 EVT DestVT = TLI.getValueType(DLayout, VPIntrin.getType()); 8063 auto Constant = cast<ConstantSDNode>(OpValues[1])->getZExtValue(); 8064 SDValue Check = DAG.getTargetConstant(Constant, DL, MVT::i32); 8065 SDValue V = DAG.getNode(ISD::VP_IS_FPCLASS, DL, DestVT, 8066 {OpValues[0], Check, OpValues[2], OpValues[3]}); 8067 setValue(&VPIntrin, V); 8068 return; 8069 } 8070 case ISD::VP_INTTOPTR: { 8071 SDValue N = OpValues[0]; 8072 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType()); 8073 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType()); 8074 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8075 OpValues[2]); 8076 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8077 OpValues[2]); 8078 setValue(&VPIntrin, N); 8079 break; 8080 } 8081 case ISD::VP_PTRTOINT: { 8082 SDValue N = OpValues[0]; 8083 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8084 VPIntrin.getType()); 8085 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), 8086 VPIntrin.getOperand(0)->getType()); 8087 N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1], 8088 OpValues[2]); 8089 N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1], 8090 OpValues[2]); 8091 setValue(&VPIntrin, N); 8092 break; 8093 } 8094 case ISD::VP_ABS: 8095 case ISD::VP_CTLZ: 8096 case ISD::VP_CTLZ_ZERO_UNDEF: 8097 case ISD::VP_CTTZ: 8098 case ISD::VP_CTTZ_ZERO_UNDEF: { 8099 SDValue Result = 8100 DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]}); 8101 setValue(&VPIntrin, Result); 8102 break; 8103 } 8104 } 8105 } 8106 8107 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain, 8108 const BasicBlock *EHPadBB, 8109 MCSymbol *&BeginLabel) { 8110 MachineFunction &MF = DAG.getMachineFunction(); 8111 MachineModuleInfo &MMI = MF.getMMI(); 8112 8113 // Insert a label before the invoke call to mark the try range. This can be 8114 // used to detect deletion of the invoke via the MachineModuleInfo. 8115 BeginLabel = MMI.getContext().createTempSymbol(); 8116 8117 // For SjLj, keep track of which landing pads go with which invokes 8118 // so as to maintain the ordering of pads in the LSDA. 8119 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 8120 if (CallSiteIndex) { 8121 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 8122 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 8123 8124 // Now that the call site is handled, stop tracking it. 8125 MMI.setCurrentCallSite(0); 8126 } 8127 8128 return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel); 8129 } 8130 8131 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II, 8132 const BasicBlock *EHPadBB, 8133 MCSymbol *BeginLabel) { 8134 assert(BeginLabel && "BeginLabel should've been set"); 8135 8136 MachineFunction &MF = DAG.getMachineFunction(); 8137 MachineModuleInfo &MMI = MF.getMMI(); 8138 8139 // Insert a label at the end of the invoke call to mark the try range. This 8140 // can be used to detect deletion of the invoke via the MachineModuleInfo. 8141 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 8142 Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel); 8143 8144 // Inform MachineModuleInfo of range. 8145 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 8146 // There is a platform (e.g. wasm) that uses funclet style IR but does not 8147 // actually use outlined funclets and their LSDA info style. 8148 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 8149 assert(II && "II should've been set"); 8150 WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo(); 8151 EHInfo->addIPToStateRange(II, BeginLabel, EndLabel); 8152 } else if (!isScopedEHPersonality(Pers)) { 8153 assert(EHPadBB); 8154 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 8155 } 8156 8157 return Chain; 8158 } 8159 8160 std::pair<SDValue, SDValue> 8161 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 8162 const BasicBlock *EHPadBB) { 8163 MCSymbol *BeginLabel = nullptr; 8164 8165 if (EHPadBB) { 8166 // Both PendingLoads and PendingExports must be flushed here; 8167 // this call might not return. 8168 (void)getRoot(); 8169 DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel)); 8170 CLI.setChain(getRoot()); 8171 } 8172 8173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8174 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 8175 8176 assert((CLI.IsTailCall || Result.second.getNode()) && 8177 "Non-null chain expected with non-tail call!"); 8178 assert((Result.second.getNode() || !Result.first.getNode()) && 8179 "Null value expected with tail call!"); 8180 8181 if (!Result.second.getNode()) { 8182 // As a special case, a null chain means that a tail call has been emitted 8183 // and the DAG root is already updated. 8184 HasTailCall = true; 8185 8186 // Since there's no actual continuation from this block, nothing can be 8187 // relying on us setting vregs for them. 8188 PendingExports.clear(); 8189 } else { 8190 DAG.setRoot(Result.second); 8191 } 8192 8193 if (EHPadBB) { 8194 DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB, 8195 BeginLabel)); 8196 } 8197 8198 return Result; 8199 } 8200 8201 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 8202 bool isTailCall, 8203 bool isMustTailCall, 8204 const BasicBlock *EHPadBB) { 8205 auto &DL = DAG.getDataLayout(); 8206 FunctionType *FTy = CB.getFunctionType(); 8207 Type *RetTy = CB.getType(); 8208 8209 TargetLowering::ArgListTy Args; 8210 Args.reserve(CB.arg_size()); 8211 8212 const Value *SwiftErrorVal = nullptr; 8213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8214 8215 if (isTailCall) { 8216 // Avoid emitting tail calls in functions with the disable-tail-calls 8217 // attribute. 8218 auto *Caller = CB.getParent()->getParent(); 8219 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 8220 "true" && !isMustTailCall) 8221 isTailCall = false; 8222 8223 // We can't tail call inside a function with a swifterror argument. Lowering 8224 // does not support this yet. It would have to move into the swifterror 8225 // register before the call. 8226 if (TLI.supportSwiftError() && 8227 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 8228 isTailCall = false; 8229 } 8230 8231 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 8232 TargetLowering::ArgListEntry Entry; 8233 const Value *V = *I; 8234 8235 // Skip empty types 8236 if (V->getType()->isEmptyTy()) 8237 continue; 8238 8239 SDValue ArgNode = getValue(V); 8240 Entry.Node = ArgNode; Entry.Ty = V->getType(); 8241 8242 Entry.setAttributes(&CB, I - CB.arg_begin()); 8243 8244 // Use swifterror virtual register as input to the call. 8245 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 8246 SwiftErrorVal = V; 8247 // We find the virtual register for the actual swifterror argument. 8248 // Instead of using the Value, we use the virtual register instead. 8249 Entry.Node = 8250 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 8251 EVT(TLI.getPointerTy(DL))); 8252 } 8253 8254 Args.push_back(Entry); 8255 8256 // If we have an explicit sret argument that is an Instruction, (i.e., it 8257 // might point to function-local memory), we can't meaningfully tail-call. 8258 if (Entry.IsSRet && isa<Instruction>(V)) 8259 isTailCall = false; 8260 } 8261 8262 // If call site has a cfguardtarget operand bundle, create and add an 8263 // additional ArgListEntry. 8264 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 8265 TargetLowering::ArgListEntry Entry; 8266 Value *V = Bundle->Inputs[0]; 8267 SDValue ArgNode = getValue(V); 8268 Entry.Node = ArgNode; 8269 Entry.Ty = V->getType(); 8270 Entry.IsCFGuardTarget = true; 8271 Args.push_back(Entry); 8272 } 8273 8274 // Check if target-independent constraints permit a tail call here. 8275 // Target-dependent constraints are checked within TLI->LowerCallTo. 8276 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 8277 isTailCall = false; 8278 8279 // Disable tail calls if there is an swifterror argument. Targets have not 8280 // been updated to support tail calls. 8281 if (TLI.supportSwiftError() && SwiftErrorVal) 8282 isTailCall = false; 8283 8284 ConstantInt *CFIType = nullptr; 8285 if (CB.isIndirectCall()) { 8286 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) { 8287 if (!TLI.supportKCFIBundles()) 8288 report_fatal_error( 8289 "Target doesn't support calls with kcfi operand bundles."); 8290 CFIType = cast<ConstantInt>(Bundle->Inputs[0]); 8291 assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type"); 8292 } 8293 } 8294 8295 TargetLowering::CallLoweringInfo CLI(DAG); 8296 CLI.setDebugLoc(getCurSDLoc()) 8297 .setChain(getRoot()) 8298 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 8299 .setTailCall(isTailCall) 8300 .setConvergent(CB.isConvergent()) 8301 .setIsPreallocated( 8302 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0) 8303 .setCFIType(CFIType); 8304 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8305 8306 if (Result.first.getNode()) { 8307 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 8308 setValue(&CB, Result.first); 8309 } 8310 8311 // The last element of CLI.InVals has the SDValue for swifterror return. 8312 // Here we copy it to a virtual register and update SwiftErrorMap for 8313 // book-keeping. 8314 if (SwiftErrorVal && TLI.supportSwiftError()) { 8315 // Get the last element of InVals. 8316 SDValue Src = CLI.InVals.back(); 8317 Register VReg = 8318 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 8319 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 8320 DAG.setRoot(CopyNode); 8321 } 8322 } 8323 8324 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 8325 SelectionDAGBuilder &Builder) { 8326 // Check to see if this load can be trivially constant folded, e.g. if the 8327 // input is from a string literal. 8328 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 8329 // Cast pointer to the type we really want to load. 8330 Type *LoadTy = 8331 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 8332 if (LoadVT.isVector()) 8333 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 8334 8335 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 8336 PointerType::getUnqual(LoadTy)); 8337 8338 if (const Constant *LoadCst = 8339 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 8340 LoadTy, Builder.DAG.getDataLayout())) 8341 return Builder.getValue(LoadCst); 8342 } 8343 8344 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 8345 // still constant memory, the input chain can be the entry node. 8346 SDValue Root; 8347 bool ConstantMemory = false; 8348 8349 // Do not serialize (non-volatile) loads of constant memory with anything. 8350 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 8351 Root = Builder.DAG.getEntryNode(); 8352 ConstantMemory = true; 8353 } else { 8354 // Do not serialize non-volatile loads against each other. 8355 Root = Builder.DAG.getRoot(); 8356 } 8357 8358 SDValue Ptr = Builder.getValue(PtrVal); 8359 SDValue LoadVal = 8360 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 8361 MachinePointerInfo(PtrVal), Align(1)); 8362 8363 if (!ConstantMemory) 8364 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 8365 return LoadVal; 8366 } 8367 8368 /// Record the value for an instruction that produces an integer result, 8369 /// converting the type where necessary. 8370 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 8371 SDValue Value, 8372 bool IsSigned) { 8373 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8374 I.getType(), true); 8375 Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT); 8376 setValue(&I, Value); 8377 } 8378 8379 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 8380 /// true and lower it. Otherwise return false, and it will be lowered like a 8381 /// normal call. 8382 /// The caller already checked that \p I calls the appropriate LibFunc with a 8383 /// correct prototype. 8384 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 8385 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 8386 const Value *Size = I.getArgOperand(2); 8387 const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size)); 8388 if (CSize && CSize->getZExtValue() == 0) { 8389 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 8390 I.getType(), true); 8391 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 8392 return true; 8393 } 8394 8395 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8396 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 8397 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 8398 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 8399 if (Res.first.getNode()) { 8400 processIntegerCallValue(I, Res.first, true); 8401 PendingLoads.push_back(Res.second); 8402 return true; 8403 } 8404 8405 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 8406 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 8407 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 8408 return false; 8409 8410 // If the target has a fast compare for the given size, it will return a 8411 // preferred load type for that size. Require that the load VT is legal and 8412 // that the target supports unaligned loads of that type. Otherwise, return 8413 // INVALID. 8414 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 8415 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8416 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 8417 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 8418 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 8419 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 8420 // TODO: Check alignment of src and dest ptrs. 8421 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 8422 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 8423 if (!TLI.isTypeLegal(LVT) || 8424 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 8425 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 8426 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 8427 } 8428 8429 return LVT; 8430 }; 8431 8432 // This turns into unaligned loads. We only do this if the target natively 8433 // supports the MVT we'll be loading or if it is small enough (<= 4) that 8434 // we'll only produce a small number of byte loads. 8435 MVT LoadVT; 8436 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 8437 switch (NumBitsToCompare) { 8438 default: 8439 return false; 8440 case 16: 8441 LoadVT = MVT::i16; 8442 break; 8443 case 32: 8444 LoadVT = MVT::i32; 8445 break; 8446 case 64: 8447 case 128: 8448 case 256: 8449 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 8450 break; 8451 } 8452 8453 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 8454 return false; 8455 8456 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 8457 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 8458 8459 // Bitcast to a wide integer type if the loads are vectors. 8460 if (LoadVT.isVector()) { 8461 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 8462 LoadL = DAG.getBitcast(CmpVT, LoadL); 8463 LoadR = DAG.getBitcast(CmpVT, LoadR); 8464 } 8465 8466 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 8467 processIntegerCallValue(I, Cmp, false); 8468 return true; 8469 } 8470 8471 /// See if we can lower a memchr call into an optimized form. If so, return 8472 /// true and lower it. Otherwise return false, and it will be lowered like a 8473 /// normal call. 8474 /// The caller already checked that \p I calls the appropriate LibFunc with a 8475 /// correct prototype. 8476 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 8477 const Value *Src = I.getArgOperand(0); 8478 const Value *Char = I.getArgOperand(1); 8479 const Value *Length = I.getArgOperand(2); 8480 8481 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8482 std::pair<SDValue, SDValue> Res = 8483 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 8484 getValue(Src), getValue(Char), getValue(Length), 8485 MachinePointerInfo(Src)); 8486 if (Res.first.getNode()) { 8487 setValue(&I, Res.first); 8488 PendingLoads.push_back(Res.second); 8489 return true; 8490 } 8491 8492 return false; 8493 } 8494 8495 /// See if we can lower a mempcpy call into an optimized form. If so, return 8496 /// true and lower it. Otherwise return false, and it will be lowered like a 8497 /// normal call. 8498 /// The caller already checked that \p I calls the appropriate LibFunc with a 8499 /// correct prototype. 8500 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 8501 SDValue Dst = getValue(I.getArgOperand(0)); 8502 SDValue Src = getValue(I.getArgOperand(1)); 8503 SDValue Size = getValue(I.getArgOperand(2)); 8504 8505 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 8506 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 8507 // DAG::getMemcpy needs Alignment to be defined. 8508 Align Alignment = std::min(DstAlign, SrcAlign); 8509 8510 SDLoc sdl = getCurSDLoc(); 8511 8512 // In the mempcpy context we need to pass in a false value for isTailCall 8513 // because the return pointer needs to be adjusted by the size of 8514 // the copied memory. 8515 SDValue Root = getMemoryRoot(); 8516 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false, 8517 /*isTailCall=*/false, 8518 MachinePointerInfo(I.getArgOperand(0)), 8519 MachinePointerInfo(I.getArgOperand(1)), 8520 I.getAAMetadata()); 8521 assert(MC.getNode() != nullptr && 8522 "** memcpy should not be lowered as TailCall in mempcpy context **"); 8523 DAG.setRoot(MC); 8524 8525 // Check if Size needs to be truncated or extended. 8526 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 8527 8528 // Adjust return pointer to point just past the last dst byte. 8529 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 8530 Dst, Size); 8531 setValue(&I, DstPlusSize); 8532 return true; 8533 } 8534 8535 /// See if we can lower a strcpy call into an optimized form. If so, return 8536 /// true and lower it, otherwise return false and it will be lowered like a 8537 /// normal call. 8538 /// The caller already checked that \p I calls the appropriate LibFunc with a 8539 /// correct prototype. 8540 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 8541 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8542 8543 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8544 std::pair<SDValue, SDValue> Res = 8545 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 8546 getValue(Arg0), getValue(Arg1), 8547 MachinePointerInfo(Arg0), 8548 MachinePointerInfo(Arg1), isStpcpy); 8549 if (Res.first.getNode()) { 8550 setValue(&I, Res.first); 8551 DAG.setRoot(Res.second); 8552 return true; 8553 } 8554 8555 return false; 8556 } 8557 8558 /// See if we can lower a strcmp call into an optimized form. If so, return 8559 /// true and lower it, otherwise return false and it will be lowered like a 8560 /// normal call. 8561 /// The caller already checked that \p I calls the appropriate LibFunc with a 8562 /// correct prototype. 8563 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 8564 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8565 8566 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8567 std::pair<SDValue, SDValue> Res = 8568 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 8569 getValue(Arg0), getValue(Arg1), 8570 MachinePointerInfo(Arg0), 8571 MachinePointerInfo(Arg1)); 8572 if (Res.first.getNode()) { 8573 processIntegerCallValue(I, Res.first, true); 8574 PendingLoads.push_back(Res.second); 8575 return true; 8576 } 8577 8578 return false; 8579 } 8580 8581 /// See if we can lower a strlen call into an optimized form. If so, return 8582 /// true and lower it, otherwise return false and it will be lowered like a 8583 /// normal call. 8584 /// The caller already checked that \p I calls the appropriate LibFunc with a 8585 /// correct prototype. 8586 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 8587 const Value *Arg0 = I.getArgOperand(0); 8588 8589 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8590 std::pair<SDValue, SDValue> Res = 8591 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 8592 getValue(Arg0), MachinePointerInfo(Arg0)); 8593 if (Res.first.getNode()) { 8594 processIntegerCallValue(I, Res.first, false); 8595 PendingLoads.push_back(Res.second); 8596 return true; 8597 } 8598 8599 return false; 8600 } 8601 8602 /// See if we can lower a strnlen call into an optimized form. If so, return 8603 /// true and lower it, otherwise return false and it will be lowered like a 8604 /// normal call. 8605 /// The caller already checked that \p I calls the appropriate LibFunc with a 8606 /// correct prototype. 8607 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 8608 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 8609 8610 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 8611 std::pair<SDValue, SDValue> Res = 8612 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 8613 getValue(Arg0), getValue(Arg1), 8614 MachinePointerInfo(Arg0)); 8615 if (Res.first.getNode()) { 8616 processIntegerCallValue(I, Res.first, false); 8617 PendingLoads.push_back(Res.second); 8618 return true; 8619 } 8620 8621 return false; 8622 } 8623 8624 /// See if we can lower a unary floating-point operation into an SDNode with 8625 /// the specified Opcode. If so, return true and lower it, otherwise return 8626 /// false and it will be lowered like a normal call. 8627 /// The caller already checked that \p I calls the appropriate LibFunc with a 8628 /// correct prototype. 8629 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 8630 unsigned Opcode) { 8631 // We already checked this call's prototype; verify it doesn't modify errno. 8632 if (!I.onlyReadsMemory()) 8633 return false; 8634 8635 SDNodeFlags Flags; 8636 Flags.copyFMF(cast<FPMathOperator>(I)); 8637 8638 SDValue Tmp = getValue(I.getArgOperand(0)); 8639 setValue(&I, 8640 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 8641 return true; 8642 } 8643 8644 /// See if we can lower a binary floating-point operation into an SDNode with 8645 /// the specified Opcode. If so, return true and lower it. Otherwise return 8646 /// false, and it will be lowered like a normal call. 8647 /// The caller already checked that \p I calls the appropriate LibFunc with a 8648 /// correct prototype. 8649 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 8650 unsigned Opcode) { 8651 // We already checked this call's prototype; verify it doesn't modify errno. 8652 if (!I.onlyReadsMemory()) 8653 return false; 8654 8655 SDNodeFlags Flags; 8656 Flags.copyFMF(cast<FPMathOperator>(I)); 8657 8658 SDValue Tmp0 = getValue(I.getArgOperand(0)); 8659 SDValue Tmp1 = getValue(I.getArgOperand(1)); 8660 EVT VT = Tmp0.getValueType(); 8661 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 8662 return true; 8663 } 8664 8665 void SelectionDAGBuilder::visitCall(const CallInst &I) { 8666 // Handle inline assembly differently. 8667 if (I.isInlineAsm()) { 8668 visitInlineAsm(I); 8669 return; 8670 } 8671 8672 diagnoseDontCall(I); 8673 8674 if (Function *F = I.getCalledFunction()) { 8675 if (F->isDeclaration()) { 8676 // Is this an LLVM intrinsic or a target-specific intrinsic? 8677 unsigned IID = F->getIntrinsicID(); 8678 if (!IID) 8679 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 8680 IID = II->getIntrinsicID(F); 8681 8682 if (IID) { 8683 visitIntrinsicCall(I, IID); 8684 return; 8685 } 8686 } 8687 8688 // Check for well-known libc/libm calls. If the function is internal, it 8689 // can't be a library call. Don't do the check if marked as nobuiltin for 8690 // some reason or the call site requires strict floating point semantics. 8691 LibFunc Func; 8692 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 8693 F->hasName() && LibInfo->getLibFunc(*F, Func) && 8694 LibInfo->hasOptimizedCodeGen(Func)) { 8695 switch (Func) { 8696 default: break; 8697 case LibFunc_bcmp: 8698 if (visitMemCmpBCmpCall(I)) 8699 return; 8700 break; 8701 case LibFunc_copysign: 8702 case LibFunc_copysignf: 8703 case LibFunc_copysignl: 8704 // We already checked this call's prototype; verify it doesn't modify 8705 // errno. 8706 if (I.onlyReadsMemory()) { 8707 SDValue LHS = getValue(I.getArgOperand(0)); 8708 SDValue RHS = getValue(I.getArgOperand(1)); 8709 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 8710 LHS.getValueType(), LHS, RHS)); 8711 return; 8712 } 8713 break; 8714 case LibFunc_fabs: 8715 case LibFunc_fabsf: 8716 case LibFunc_fabsl: 8717 if (visitUnaryFloatCall(I, ISD::FABS)) 8718 return; 8719 break; 8720 case LibFunc_fmin: 8721 case LibFunc_fminf: 8722 case LibFunc_fminl: 8723 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 8724 return; 8725 break; 8726 case LibFunc_fmax: 8727 case LibFunc_fmaxf: 8728 case LibFunc_fmaxl: 8729 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 8730 return; 8731 break; 8732 case LibFunc_sin: 8733 case LibFunc_sinf: 8734 case LibFunc_sinl: 8735 if (visitUnaryFloatCall(I, ISD::FSIN)) 8736 return; 8737 break; 8738 case LibFunc_cos: 8739 case LibFunc_cosf: 8740 case LibFunc_cosl: 8741 if (visitUnaryFloatCall(I, ISD::FCOS)) 8742 return; 8743 break; 8744 case LibFunc_sqrt: 8745 case LibFunc_sqrtf: 8746 case LibFunc_sqrtl: 8747 case LibFunc_sqrt_finite: 8748 case LibFunc_sqrtf_finite: 8749 case LibFunc_sqrtl_finite: 8750 if (visitUnaryFloatCall(I, ISD::FSQRT)) 8751 return; 8752 break; 8753 case LibFunc_floor: 8754 case LibFunc_floorf: 8755 case LibFunc_floorl: 8756 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 8757 return; 8758 break; 8759 case LibFunc_nearbyint: 8760 case LibFunc_nearbyintf: 8761 case LibFunc_nearbyintl: 8762 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 8763 return; 8764 break; 8765 case LibFunc_ceil: 8766 case LibFunc_ceilf: 8767 case LibFunc_ceill: 8768 if (visitUnaryFloatCall(I, ISD::FCEIL)) 8769 return; 8770 break; 8771 case LibFunc_rint: 8772 case LibFunc_rintf: 8773 case LibFunc_rintl: 8774 if (visitUnaryFloatCall(I, ISD::FRINT)) 8775 return; 8776 break; 8777 case LibFunc_round: 8778 case LibFunc_roundf: 8779 case LibFunc_roundl: 8780 if (visitUnaryFloatCall(I, ISD::FROUND)) 8781 return; 8782 break; 8783 case LibFunc_trunc: 8784 case LibFunc_truncf: 8785 case LibFunc_truncl: 8786 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 8787 return; 8788 break; 8789 case LibFunc_log2: 8790 case LibFunc_log2f: 8791 case LibFunc_log2l: 8792 if (visitUnaryFloatCall(I, ISD::FLOG2)) 8793 return; 8794 break; 8795 case LibFunc_exp2: 8796 case LibFunc_exp2f: 8797 case LibFunc_exp2l: 8798 if (visitUnaryFloatCall(I, ISD::FEXP2)) 8799 return; 8800 break; 8801 case LibFunc_exp10: 8802 case LibFunc_exp10f: 8803 case LibFunc_exp10l: 8804 if (visitUnaryFloatCall(I, ISD::FEXP10)) 8805 return; 8806 break; 8807 case LibFunc_ldexp: 8808 case LibFunc_ldexpf: 8809 case LibFunc_ldexpl: 8810 if (visitBinaryFloatCall(I, ISD::FLDEXP)) 8811 return; 8812 break; 8813 case LibFunc_memcmp: 8814 if (visitMemCmpBCmpCall(I)) 8815 return; 8816 break; 8817 case LibFunc_mempcpy: 8818 if (visitMemPCpyCall(I)) 8819 return; 8820 break; 8821 case LibFunc_memchr: 8822 if (visitMemChrCall(I)) 8823 return; 8824 break; 8825 case LibFunc_strcpy: 8826 if (visitStrCpyCall(I, false)) 8827 return; 8828 break; 8829 case LibFunc_stpcpy: 8830 if (visitStrCpyCall(I, true)) 8831 return; 8832 break; 8833 case LibFunc_strcmp: 8834 if (visitStrCmpCall(I)) 8835 return; 8836 break; 8837 case LibFunc_strlen: 8838 if (visitStrLenCall(I)) 8839 return; 8840 break; 8841 case LibFunc_strnlen: 8842 if (visitStrNLenCall(I)) 8843 return; 8844 break; 8845 } 8846 } 8847 } 8848 8849 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 8850 // have to do anything here to lower funclet bundles. 8851 // CFGuardTarget bundles are lowered in LowerCallTo. 8852 assert(!I.hasOperandBundlesOtherThan( 8853 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 8854 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 8855 LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) && 8856 "Cannot lower calls with arbitrary operand bundles!"); 8857 8858 SDValue Callee = getValue(I.getCalledOperand()); 8859 8860 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 8861 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 8862 else 8863 // Check if we can potentially perform a tail call. More detailed checking 8864 // is be done within LowerCallTo, after more information about the call is 8865 // known. 8866 LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall()); 8867 } 8868 8869 namespace { 8870 8871 /// AsmOperandInfo - This contains information for each constraint that we are 8872 /// lowering. 8873 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 8874 public: 8875 /// CallOperand - If this is the result output operand or a clobber 8876 /// this is null, otherwise it is the incoming operand to the CallInst. 8877 /// This gets modified as the asm is processed. 8878 SDValue CallOperand; 8879 8880 /// AssignedRegs - If this is a register or register class operand, this 8881 /// contains the set of register corresponding to the operand. 8882 RegsForValue AssignedRegs; 8883 8884 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8885 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8886 } 8887 8888 /// Whether or not this operand accesses memory 8889 bool hasMemory(const TargetLowering &TLI) const { 8890 // Indirect operand accesses access memory. 8891 if (isIndirect) 8892 return true; 8893 8894 for (const auto &Code : Codes) 8895 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8896 return true; 8897 8898 return false; 8899 } 8900 }; 8901 8902 8903 } // end anonymous namespace 8904 8905 /// Make sure that the output operand \p OpInfo and its corresponding input 8906 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8907 /// out). 8908 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8909 SDISelAsmOperandInfo &MatchingOpInfo, 8910 SelectionDAG &DAG) { 8911 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8912 return; 8913 8914 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8915 const auto &TLI = DAG.getTargetLoweringInfo(); 8916 8917 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8918 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8919 OpInfo.ConstraintVT); 8920 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8921 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8922 MatchingOpInfo.ConstraintVT); 8923 if ((OpInfo.ConstraintVT.isInteger() != 8924 MatchingOpInfo.ConstraintVT.isInteger()) || 8925 (MatchRC.second != InputRC.second)) { 8926 // FIXME: error out in a more elegant fashion 8927 report_fatal_error("Unsupported asm: input constraint" 8928 " with a matching output constraint of" 8929 " incompatible type!"); 8930 } 8931 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8932 } 8933 8934 /// Get a direct memory input to behave well as an indirect operand. 8935 /// This may introduce stores, hence the need for a \p Chain. 8936 /// \return The (possibly updated) chain. 8937 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8938 SDISelAsmOperandInfo &OpInfo, 8939 SelectionDAG &DAG) { 8940 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8941 8942 // If we don't have an indirect input, put it in the constpool if we can, 8943 // otherwise spill it to a stack slot. 8944 // TODO: This isn't quite right. We need to handle these according to 8945 // the addressing mode that the constraint wants. Also, this may take 8946 // an additional register for the computation and we don't want that 8947 // either. 8948 8949 // If the operand is a float, integer, or vector constant, spill to a 8950 // constant pool entry to get its address. 8951 const Value *OpVal = OpInfo.CallOperandVal; 8952 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8953 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8954 OpInfo.CallOperand = DAG.getConstantPool( 8955 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8956 return Chain; 8957 } 8958 8959 // Otherwise, create a stack slot and emit a store to it before the asm. 8960 Type *Ty = OpVal->getType(); 8961 auto &DL = DAG.getDataLayout(); 8962 uint64_t TySize = DL.getTypeAllocSize(Ty); 8963 MachineFunction &MF = DAG.getMachineFunction(); 8964 int SSFI = MF.getFrameInfo().CreateStackObject( 8965 TySize, DL.getPrefTypeAlign(Ty), false); 8966 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8967 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8968 MachinePointerInfo::getFixedStack(MF, SSFI), 8969 TLI.getMemValueType(DL, Ty)); 8970 OpInfo.CallOperand = StackSlot; 8971 8972 return Chain; 8973 } 8974 8975 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8976 /// specified operand. We prefer to assign virtual registers, to allow the 8977 /// register allocator to handle the assignment process. However, if the asm 8978 /// uses features that we can't model on machineinstrs, we have SDISel do the 8979 /// allocation. This produces generally horrible, but correct, code. 8980 /// 8981 /// OpInfo describes the operand 8982 /// RefOpInfo describes the matching operand if any, the operand otherwise 8983 static std::optional<unsigned> 8984 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8985 SDISelAsmOperandInfo &OpInfo, 8986 SDISelAsmOperandInfo &RefOpInfo) { 8987 LLVMContext &Context = *DAG.getContext(); 8988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8989 8990 MachineFunction &MF = DAG.getMachineFunction(); 8991 SmallVector<unsigned, 4> Regs; 8992 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8993 8994 // No work to do for memory/address operands. 8995 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8996 OpInfo.ConstraintType == TargetLowering::C_Address) 8997 return std::nullopt; 8998 8999 // If this is a constraint for a single physreg, or a constraint for a 9000 // register class, find it. 9001 unsigned AssignedReg; 9002 const TargetRegisterClass *RC; 9003 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 9004 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 9005 // RC is unset only on failure. Return immediately. 9006 if (!RC) 9007 return std::nullopt; 9008 9009 // Get the actual register value type. This is important, because the user 9010 // may have asked for (e.g.) the AX register in i32 type. We need to 9011 // remember that AX is actually i16 to get the right extension. 9012 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 9013 9014 if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) { 9015 // If this is an FP operand in an integer register (or visa versa), or more 9016 // generally if the operand value disagrees with the register class we plan 9017 // to stick it in, fix the operand type. 9018 // 9019 // If this is an input value, the bitcast to the new type is done now. 9020 // Bitcast for output value is done at the end of visitInlineAsm(). 9021 if ((OpInfo.Type == InlineAsm::isOutput || 9022 OpInfo.Type == InlineAsm::isInput) && 9023 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 9024 // Try to convert to the first EVT that the reg class contains. If the 9025 // types are identical size, use a bitcast to convert (e.g. two differing 9026 // vector types). Note: output bitcast is done at the end of 9027 // visitInlineAsm(). 9028 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 9029 // Exclude indirect inputs while they are unsupported because the code 9030 // to perform the load is missing and thus OpInfo.CallOperand still 9031 // refers to the input address rather than the pointed-to value. 9032 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 9033 OpInfo.CallOperand = 9034 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 9035 OpInfo.ConstraintVT = RegVT; 9036 // If the operand is an FP value and we want it in integer registers, 9037 // use the corresponding integer type. This turns an f64 value into 9038 // i64, which can be passed with two i32 values on a 32-bit machine. 9039 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 9040 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 9041 if (OpInfo.Type == InlineAsm::isInput) 9042 OpInfo.CallOperand = 9043 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 9044 OpInfo.ConstraintVT = VT; 9045 } 9046 } 9047 } 9048 9049 // No need to allocate a matching input constraint since the constraint it's 9050 // matching to has already been allocated. 9051 if (OpInfo.isMatchingInputConstraint()) 9052 return std::nullopt; 9053 9054 EVT ValueVT = OpInfo.ConstraintVT; 9055 if (OpInfo.ConstraintVT == MVT::Other) 9056 ValueVT = RegVT; 9057 9058 // Initialize NumRegs. 9059 unsigned NumRegs = 1; 9060 if (OpInfo.ConstraintVT != MVT::Other) 9061 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT); 9062 9063 // If this is a constraint for a specific physical register, like {r17}, 9064 // assign it now. 9065 9066 // If this associated to a specific register, initialize iterator to correct 9067 // place. If virtual, make sure we have enough registers 9068 9069 // Initialize iterator if necessary 9070 TargetRegisterClass::iterator I = RC->begin(); 9071 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 9072 9073 // Do not check for single registers. 9074 if (AssignedReg) { 9075 I = std::find(I, RC->end(), AssignedReg); 9076 if (I == RC->end()) { 9077 // RC does not contain the selected register, which indicates a 9078 // mismatch between the register and the required type/bitwidth. 9079 return {AssignedReg}; 9080 } 9081 } 9082 9083 for (; NumRegs; --NumRegs, ++I) { 9084 assert(I != RC->end() && "Ran out of registers to allocate!"); 9085 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 9086 Regs.push_back(R); 9087 } 9088 9089 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 9090 return std::nullopt; 9091 } 9092 9093 static unsigned 9094 findMatchingInlineAsmOperand(unsigned OperandNo, 9095 const std::vector<SDValue> &AsmNodeOperands) { 9096 // Scan until we find the definition we already emitted of this operand. 9097 unsigned CurOp = InlineAsm::Op_FirstOperand; 9098 for (; OperandNo; --OperandNo) { 9099 // Advance to the next operand. 9100 unsigned OpFlag = 9101 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 9102 const InlineAsm::Flag F(OpFlag); 9103 assert( 9104 (F.isRegDefKind() || F.isRegDefEarlyClobberKind() || F.isMemKind()) && 9105 "Skipped past definitions?"); 9106 CurOp += F.getNumOperandRegisters() + 1; 9107 } 9108 return CurOp; 9109 } 9110 9111 namespace { 9112 9113 class ExtraFlags { 9114 unsigned Flags = 0; 9115 9116 public: 9117 explicit ExtraFlags(const CallBase &Call) { 9118 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9119 if (IA->hasSideEffects()) 9120 Flags |= InlineAsm::Extra_HasSideEffects; 9121 if (IA->isAlignStack()) 9122 Flags |= InlineAsm::Extra_IsAlignStack; 9123 if (Call.isConvergent()) 9124 Flags |= InlineAsm::Extra_IsConvergent; 9125 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 9126 } 9127 9128 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 9129 // Ideally, we would only check against memory constraints. However, the 9130 // meaning of an Other constraint can be target-specific and we can't easily 9131 // reason about it. Therefore, be conservative and set MayLoad/MayStore 9132 // for Other constraints as well. 9133 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 9134 OpInfo.ConstraintType == TargetLowering::C_Other) { 9135 if (OpInfo.Type == InlineAsm::isInput) 9136 Flags |= InlineAsm::Extra_MayLoad; 9137 else if (OpInfo.Type == InlineAsm::isOutput) 9138 Flags |= InlineAsm::Extra_MayStore; 9139 else if (OpInfo.Type == InlineAsm::isClobber) 9140 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 9141 } 9142 } 9143 9144 unsigned get() const { return Flags; } 9145 }; 9146 9147 } // end anonymous namespace 9148 9149 static bool isFunction(SDValue Op) { 9150 if (Op && Op.getOpcode() == ISD::GlobalAddress) { 9151 if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) { 9152 auto Fn = dyn_cast_or_null<Function>(GA->getGlobal()); 9153 9154 // In normal "call dllimport func" instruction (non-inlineasm) it force 9155 // indirect access by specifing call opcode. And usually specially print 9156 // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can 9157 // not do in this way now. (In fact, this is similar with "Data Access" 9158 // action). So here we ignore dllimport function. 9159 if (Fn && !Fn->hasDLLImportStorageClass()) 9160 return true; 9161 } 9162 } 9163 return false; 9164 } 9165 9166 /// visitInlineAsm - Handle a call to an InlineAsm object. 9167 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call, 9168 const BasicBlock *EHPadBB) { 9169 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 9170 9171 /// ConstraintOperands - Information about all of the constraints. 9172 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 9173 9174 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9175 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 9176 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 9177 9178 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 9179 // AsmDialect, MayLoad, MayStore). 9180 bool HasSideEffect = IA->hasSideEffects(); 9181 ExtraFlags ExtraInfo(Call); 9182 9183 for (auto &T : TargetConstraints) { 9184 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 9185 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 9186 9187 if (OpInfo.CallOperandVal) 9188 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 9189 9190 if (!HasSideEffect) 9191 HasSideEffect = OpInfo.hasMemory(TLI); 9192 9193 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 9194 // FIXME: Could we compute this on OpInfo rather than T? 9195 9196 // Compute the constraint code and ConstraintType to use. 9197 TLI.ComputeConstraintToUse(T, SDValue()); 9198 9199 if (T.ConstraintType == TargetLowering::C_Immediate && 9200 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 9201 // We've delayed emitting a diagnostic like the "n" constraint because 9202 // inlining could cause an integer showing up. 9203 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 9204 "' expects an integer constant " 9205 "expression"); 9206 9207 ExtraInfo.update(T); 9208 } 9209 9210 // We won't need to flush pending loads if this asm doesn't touch 9211 // memory and is nonvolatile. 9212 SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 9213 9214 bool EmitEHLabels = isa<InvokeInst>(Call); 9215 if (EmitEHLabels) { 9216 assert(EHPadBB && "InvokeInst must have an EHPadBB"); 9217 } 9218 bool IsCallBr = isa<CallBrInst>(Call); 9219 9220 if (IsCallBr || EmitEHLabels) { 9221 // If this is a callbr or invoke we need to flush pending exports since 9222 // inlineasm_br and invoke are terminators. 9223 // We need to do this before nodes are glued to the inlineasm_br node. 9224 Chain = getControlRoot(); 9225 } 9226 9227 MCSymbol *BeginLabel = nullptr; 9228 if (EmitEHLabels) { 9229 Chain = lowerStartEH(Chain, EHPadBB, BeginLabel); 9230 } 9231 9232 int OpNo = -1; 9233 SmallVector<StringRef> AsmStrs; 9234 IA->collectAsmStrs(AsmStrs); 9235 9236 // Second pass over the constraints: compute which constraint option to use. 9237 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9238 if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput) 9239 OpNo++; 9240 9241 // If this is an output operand with a matching input operand, look up the 9242 // matching input. If their types mismatch, e.g. one is an integer, the 9243 // other is floating point, or their sizes are different, flag it as an 9244 // error. 9245 if (OpInfo.hasMatchingInput()) { 9246 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 9247 patchMatchingInput(OpInfo, Input, DAG); 9248 } 9249 9250 // Compute the constraint code and ConstraintType to use. 9251 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 9252 9253 if ((OpInfo.ConstraintType == TargetLowering::C_Memory && 9254 OpInfo.Type == InlineAsm::isClobber) || 9255 OpInfo.ConstraintType == TargetLowering::C_Address) 9256 continue; 9257 9258 // In Linux PIC model, there are 4 cases about value/label addressing: 9259 // 9260 // 1: Function call or Label jmp inside the module. 9261 // 2: Data access (such as global variable, static variable) inside module. 9262 // 3: Function call or Label jmp outside the module. 9263 // 4: Data access (such as global variable) outside the module. 9264 // 9265 // Due to current llvm inline asm architecture designed to not "recognize" 9266 // the asm code, there are quite troubles for us to treat mem addressing 9267 // differently for same value/adress used in different instuctions. 9268 // For example, in pic model, call a func may in plt way or direclty 9269 // pc-related, but lea/mov a function adress may use got. 9270 // 9271 // Here we try to "recognize" function call for the case 1 and case 3 in 9272 // inline asm. And try to adjust the constraint for them. 9273 // 9274 // TODO: Due to current inline asm didn't encourage to jmp to the outsider 9275 // label, so here we don't handle jmp function label now, but we need to 9276 // enhance it (especilly in PIC model) if we meet meaningful requirements. 9277 if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) && 9278 TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) && 9279 TM.getCodeModel() != CodeModel::Large) { 9280 OpInfo.isIndirect = false; 9281 OpInfo.ConstraintType = TargetLowering::C_Address; 9282 } 9283 9284 // If this is a memory input, and if the operand is not indirect, do what we 9285 // need to provide an address for the memory input. 9286 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 9287 !OpInfo.isIndirect) { 9288 assert((OpInfo.isMultipleAlternative || 9289 (OpInfo.Type == InlineAsm::isInput)) && 9290 "Can only indirectify direct input operands!"); 9291 9292 // Memory operands really want the address of the value. 9293 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 9294 9295 // There is no longer a Value* corresponding to this operand. 9296 OpInfo.CallOperandVal = nullptr; 9297 9298 // It is now an indirect operand. 9299 OpInfo.isIndirect = true; 9300 } 9301 9302 } 9303 9304 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 9305 std::vector<SDValue> AsmNodeOperands; 9306 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 9307 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 9308 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 9309 9310 // If we have a !srcloc metadata node associated with it, we want to attach 9311 // this to the ultimately generated inline asm machineinstr. To do this, we 9312 // pass in the third operand as this (potentially null) inline asm MDNode. 9313 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 9314 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 9315 9316 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 9317 // bits as operand 3. 9318 AsmNodeOperands.push_back(DAG.getTargetConstant( 9319 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9320 9321 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 9322 // this, assign virtual and physical registers for inputs and otput. 9323 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9324 // Assign Registers. 9325 SDISelAsmOperandInfo &RefOpInfo = 9326 OpInfo.isMatchingInputConstraint() 9327 ? ConstraintOperands[OpInfo.getMatchedOperand()] 9328 : OpInfo; 9329 const auto RegError = 9330 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 9331 if (RegError) { 9332 const MachineFunction &MF = DAG.getMachineFunction(); 9333 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9334 const char *RegName = TRI.getName(*RegError); 9335 emitInlineAsmError(Call, "register '" + Twine(RegName) + 9336 "' allocated for constraint '" + 9337 Twine(OpInfo.ConstraintCode) + 9338 "' does not match required type"); 9339 return; 9340 } 9341 9342 auto DetectWriteToReservedRegister = [&]() { 9343 const MachineFunction &MF = DAG.getMachineFunction(); 9344 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9345 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 9346 if (Register::isPhysicalRegister(Reg) && 9347 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 9348 const char *RegName = TRI.getName(Reg); 9349 emitInlineAsmError(Call, "write to reserved register '" + 9350 Twine(RegName) + "'"); 9351 return true; 9352 } 9353 } 9354 return false; 9355 }; 9356 assert((OpInfo.ConstraintType != TargetLowering::C_Address || 9357 (OpInfo.Type == InlineAsm::isInput && 9358 !OpInfo.isMatchingInputConstraint())) && 9359 "Only address as input operand is allowed."); 9360 9361 switch (OpInfo.Type) { 9362 case InlineAsm::isOutput: 9363 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9364 const InlineAsm::ConstraintCode ConstraintID = 9365 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9366 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9367 "Failed to convert memory constraint code to constraint id."); 9368 9369 // Add information to the INLINEASM node to know about this output. 9370 InlineAsm::Flag OpFlags(InlineAsm::Kind::Mem, 1); 9371 OpFlags.setMemConstraint(ConstraintID); 9372 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 9373 MVT::i32)); 9374 AsmNodeOperands.push_back(OpInfo.CallOperand); 9375 } else { 9376 // Otherwise, this outputs to a register (directly for C_Register / 9377 // C_RegisterClass, and a target-defined fashion for 9378 // C_Immediate/C_Other). Find a register that we can use. 9379 if (OpInfo.AssignedRegs.Regs.empty()) { 9380 emitInlineAsmError( 9381 Call, "couldn't allocate output register for constraint '" + 9382 Twine(OpInfo.ConstraintCode) + "'"); 9383 return; 9384 } 9385 9386 if (DetectWriteToReservedRegister()) 9387 return; 9388 9389 // Add information to the INLINEASM node to know that this register is 9390 // set. 9391 OpInfo.AssignedRegs.AddInlineAsmOperands( 9392 OpInfo.isEarlyClobber ? InlineAsm::Kind::RegDefEarlyClobber 9393 : InlineAsm::Kind::RegDef, 9394 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 9395 } 9396 break; 9397 9398 case InlineAsm::isInput: 9399 case InlineAsm::isLabel: { 9400 SDValue InOperandVal = OpInfo.CallOperand; 9401 9402 if (OpInfo.isMatchingInputConstraint()) { 9403 // If this is required to match an output register we have already set, 9404 // just use its register. 9405 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 9406 AsmNodeOperands); 9407 InlineAsm::Flag Flag( 9408 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue()); 9409 if (Flag.isRegDefKind() || Flag.isRegDefEarlyClobberKind()) { 9410 if (OpInfo.isIndirect) { 9411 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 9412 emitInlineAsmError(Call, "inline asm not supported yet: " 9413 "don't know how to handle tied " 9414 "indirect register inputs"); 9415 return; 9416 } 9417 9418 SmallVector<unsigned, 4> Regs; 9419 MachineFunction &MF = DAG.getMachineFunction(); 9420 MachineRegisterInfo &MRI = MF.getRegInfo(); 9421 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 9422 auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]); 9423 Register TiedReg = R->getReg(); 9424 MVT RegVT = R->getSimpleValueType(0); 9425 const TargetRegisterClass *RC = 9426 TiedReg.isVirtual() ? MRI.getRegClass(TiedReg) 9427 : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT) 9428 : TRI.getMinimalPhysRegClass(TiedReg); 9429 for (unsigned i = 0, e = Flag.getNumOperandRegisters(); i != e; ++i) 9430 Regs.push_back(MRI.createVirtualRegister(RC)); 9431 9432 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 9433 9434 SDLoc dl = getCurSDLoc(); 9435 // Use the produced MatchedRegs object to 9436 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call); 9437 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, true, 9438 OpInfo.getMatchedOperand(), dl, DAG, 9439 AsmNodeOperands); 9440 break; 9441 } 9442 9443 assert(Flag.isMemKind() && "Unknown matching constraint!"); 9444 assert(Flag.getNumOperandRegisters() == 1 && 9445 "Unexpected number of operands"); 9446 // Add information to the INLINEASM node to know about this input. 9447 // See InlineAsm.h isUseOperandTiedToDef. 9448 Flag.clearMemConstraint(); 9449 Flag.setMatchingOp(OpInfo.getMatchedOperand()); 9450 AsmNodeOperands.push_back(DAG.getTargetConstant( 9451 Flag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9452 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 9453 break; 9454 } 9455 9456 // Treat indirect 'X' constraint as memory. 9457 if (OpInfo.ConstraintType == TargetLowering::C_Other && 9458 OpInfo.isIndirect) 9459 OpInfo.ConstraintType = TargetLowering::C_Memory; 9460 9461 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 9462 OpInfo.ConstraintType == TargetLowering::C_Other) { 9463 std::vector<SDValue> Ops; 9464 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 9465 Ops, DAG); 9466 if (Ops.empty()) { 9467 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 9468 if (isa<ConstantSDNode>(InOperandVal)) { 9469 emitInlineAsmError(Call, "value out of range for constraint '" + 9470 Twine(OpInfo.ConstraintCode) + "'"); 9471 return; 9472 } 9473 9474 emitInlineAsmError(Call, 9475 "invalid operand for inline asm constraint '" + 9476 Twine(OpInfo.ConstraintCode) + "'"); 9477 return; 9478 } 9479 9480 // Add information to the INLINEASM node to know about this input. 9481 InlineAsm::Flag ResOpType(InlineAsm::Kind::Imm, Ops.size()); 9482 AsmNodeOperands.push_back(DAG.getTargetConstant( 9483 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 9484 llvm::append_range(AsmNodeOperands, Ops); 9485 break; 9486 } 9487 9488 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 9489 assert((OpInfo.isIndirect || 9490 OpInfo.ConstraintType != TargetLowering::C_Memory) && 9491 "Operand must be indirect to be a mem!"); 9492 assert(InOperandVal.getValueType() == 9493 TLI.getPointerTy(DAG.getDataLayout()) && 9494 "Memory operands expect pointer values"); 9495 9496 const InlineAsm::ConstraintCode ConstraintID = 9497 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9498 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9499 "Failed to convert memory constraint code to constraint id."); 9500 9501 // Add information to the INLINEASM node to know about this input. 9502 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9503 ResOpType.setMemConstraint(ConstraintID); 9504 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 9505 getCurSDLoc(), 9506 MVT::i32)); 9507 AsmNodeOperands.push_back(InOperandVal); 9508 break; 9509 } 9510 9511 if (OpInfo.ConstraintType == TargetLowering::C_Address) { 9512 const InlineAsm::ConstraintCode ConstraintID = 9513 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 9514 assert(ConstraintID != InlineAsm::ConstraintCode::Unknown && 9515 "Failed to convert memory constraint code to constraint id."); 9516 9517 InlineAsm::Flag ResOpType(InlineAsm::Kind::Mem, 1); 9518 9519 SDValue AsmOp = InOperandVal; 9520 if (isFunction(InOperandVal)) { 9521 auto *GA = cast<GlobalAddressSDNode>(InOperandVal); 9522 ResOpType = InlineAsm::Flag(InlineAsm::Kind::Func, 1); 9523 AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(), 9524 InOperandVal.getValueType(), 9525 GA->getOffset()); 9526 } 9527 9528 // Add information to the INLINEASM node to know about this input. 9529 ResOpType.setMemConstraint(ConstraintID); 9530 9531 AsmNodeOperands.push_back( 9532 DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32)); 9533 9534 AsmNodeOperands.push_back(AsmOp); 9535 break; 9536 } 9537 9538 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 9539 OpInfo.ConstraintType == TargetLowering::C_Register) && 9540 "Unknown constraint type!"); 9541 9542 // TODO: Support this. 9543 if (OpInfo.isIndirect) { 9544 emitInlineAsmError( 9545 Call, "Don't know how to handle indirect register inputs yet " 9546 "for constraint '" + 9547 Twine(OpInfo.ConstraintCode) + "'"); 9548 return; 9549 } 9550 9551 // Copy the input into the appropriate registers. 9552 if (OpInfo.AssignedRegs.Regs.empty()) { 9553 emitInlineAsmError(Call, 9554 "couldn't allocate input reg for constraint '" + 9555 Twine(OpInfo.ConstraintCode) + "'"); 9556 return; 9557 } 9558 9559 if (DetectWriteToReservedRegister()) 9560 return; 9561 9562 SDLoc dl = getCurSDLoc(); 9563 9564 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, 9565 &Call); 9566 9567 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::RegUse, false, 9568 0, dl, DAG, AsmNodeOperands); 9569 break; 9570 } 9571 case InlineAsm::isClobber: 9572 // Add the clobbered value to the operand list, so that the register 9573 // allocator is aware that the physreg got clobbered. 9574 if (!OpInfo.AssignedRegs.Regs.empty()) 9575 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind::Clobber, 9576 false, 0, getCurSDLoc(), DAG, 9577 AsmNodeOperands); 9578 break; 9579 } 9580 } 9581 9582 // Finish up input operands. Set the input chain and add the flag last. 9583 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 9584 if (Glue.getNode()) AsmNodeOperands.push_back(Glue); 9585 9586 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 9587 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 9588 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 9589 Glue = Chain.getValue(1); 9590 9591 // Do additional work to generate outputs. 9592 9593 SmallVector<EVT, 1> ResultVTs; 9594 SmallVector<SDValue, 1> ResultValues; 9595 SmallVector<SDValue, 8> OutChains; 9596 9597 llvm::Type *CallResultType = Call.getType(); 9598 ArrayRef<Type *> ResultTypes; 9599 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 9600 ResultTypes = StructResult->elements(); 9601 else if (!CallResultType->isVoidTy()) 9602 ResultTypes = ArrayRef(CallResultType); 9603 9604 auto CurResultType = ResultTypes.begin(); 9605 auto handleRegAssign = [&](SDValue V) { 9606 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 9607 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 9608 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 9609 ++CurResultType; 9610 // If the type of the inline asm call site return value is different but has 9611 // same size as the type of the asm output bitcast it. One example of this 9612 // is for vectors with different width / number of elements. This can 9613 // happen for register classes that can contain multiple different value 9614 // types. The preg or vreg allocated may not have the same VT as was 9615 // expected. 9616 // 9617 // This can also happen for a return value that disagrees with the register 9618 // class it is put in, eg. a double in a general-purpose register on a 9619 // 32-bit machine. 9620 if (ResultVT != V.getValueType() && 9621 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 9622 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 9623 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 9624 V.getValueType().isInteger()) { 9625 // If a result value was tied to an input value, the computed result 9626 // may have a wider width than the expected result. Extract the 9627 // relevant portion. 9628 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 9629 } 9630 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 9631 ResultVTs.push_back(ResultVT); 9632 ResultValues.push_back(V); 9633 }; 9634 9635 // Deal with output operands. 9636 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 9637 if (OpInfo.Type == InlineAsm::isOutput) { 9638 SDValue Val; 9639 // Skip trivial output operands. 9640 if (OpInfo.AssignedRegs.Regs.empty()) 9641 continue; 9642 9643 switch (OpInfo.ConstraintType) { 9644 case TargetLowering::C_Register: 9645 case TargetLowering::C_RegisterClass: 9646 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 9647 Chain, &Glue, &Call); 9648 break; 9649 case TargetLowering::C_Immediate: 9650 case TargetLowering::C_Other: 9651 Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(), 9652 OpInfo, DAG); 9653 break; 9654 case TargetLowering::C_Memory: 9655 break; // Already handled. 9656 case TargetLowering::C_Address: 9657 break; // Silence warning. 9658 case TargetLowering::C_Unknown: 9659 assert(false && "Unexpected unknown constraint"); 9660 } 9661 9662 // Indirect output manifest as stores. Record output chains. 9663 if (OpInfo.isIndirect) { 9664 const Value *Ptr = OpInfo.CallOperandVal; 9665 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 9666 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 9667 MachinePointerInfo(Ptr)); 9668 OutChains.push_back(Store); 9669 } else { 9670 // generate CopyFromRegs to associated registers. 9671 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 9672 if (Val.getOpcode() == ISD::MERGE_VALUES) { 9673 for (const SDValue &V : Val->op_values()) 9674 handleRegAssign(V); 9675 } else 9676 handleRegAssign(Val); 9677 } 9678 } 9679 } 9680 9681 // Set results. 9682 if (!ResultValues.empty()) { 9683 assert(CurResultType == ResultTypes.end() && 9684 "Mismatch in number of ResultTypes"); 9685 assert(ResultValues.size() == ResultTypes.size() && 9686 "Mismatch in number of output operands in asm result"); 9687 9688 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 9689 DAG.getVTList(ResultVTs), ResultValues); 9690 setValue(&Call, V); 9691 } 9692 9693 // Collect store chains. 9694 if (!OutChains.empty()) 9695 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 9696 9697 if (EmitEHLabels) { 9698 Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel); 9699 } 9700 9701 // Only Update Root if inline assembly has a memory effect. 9702 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr || 9703 EmitEHLabels) 9704 DAG.setRoot(Chain); 9705 } 9706 9707 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 9708 const Twine &Message) { 9709 LLVMContext &Ctx = *DAG.getContext(); 9710 Ctx.emitError(&Call, Message); 9711 9712 // Make sure we leave the DAG in a valid state 9713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9714 SmallVector<EVT, 1> ValueVTs; 9715 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 9716 9717 if (ValueVTs.empty()) 9718 return; 9719 9720 SmallVector<SDValue, 1> Ops; 9721 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 9722 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 9723 9724 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 9725 } 9726 9727 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 9728 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 9729 MVT::Other, getRoot(), 9730 getValue(I.getArgOperand(0)), 9731 DAG.getSrcValue(I.getArgOperand(0)))); 9732 } 9733 9734 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 9735 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9736 const DataLayout &DL = DAG.getDataLayout(); 9737 SDValue V = DAG.getVAArg( 9738 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 9739 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 9740 DL.getABITypeAlign(I.getType()).value()); 9741 DAG.setRoot(V.getValue(1)); 9742 9743 if (I.getType()->isPointerTy()) 9744 V = DAG.getPtrExtOrTrunc( 9745 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 9746 setValue(&I, V); 9747 } 9748 9749 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 9750 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 9751 MVT::Other, getRoot(), 9752 getValue(I.getArgOperand(0)), 9753 DAG.getSrcValue(I.getArgOperand(0)))); 9754 } 9755 9756 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 9757 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 9758 MVT::Other, getRoot(), 9759 getValue(I.getArgOperand(0)), 9760 getValue(I.getArgOperand(1)), 9761 DAG.getSrcValue(I.getArgOperand(0)), 9762 DAG.getSrcValue(I.getArgOperand(1)))); 9763 } 9764 9765 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 9766 const Instruction &I, 9767 SDValue Op) { 9768 const MDNode *Range = getRangeMetadata(I); 9769 if (!Range) 9770 return Op; 9771 9772 ConstantRange CR = getConstantRangeFromMetadata(*Range); 9773 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 9774 return Op; 9775 9776 APInt Lo = CR.getUnsignedMin(); 9777 if (!Lo.isMinValue()) 9778 return Op; 9779 9780 APInt Hi = CR.getUnsignedMax(); 9781 unsigned Bits = std::max(Hi.getActiveBits(), 9782 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 9783 9784 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 9785 9786 SDLoc SL = getCurSDLoc(); 9787 9788 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 9789 DAG.getValueType(SmallVT)); 9790 unsigned NumVals = Op.getNode()->getNumValues(); 9791 if (NumVals == 1) 9792 return ZExt; 9793 9794 SmallVector<SDValue, 4> Ops; 9795 9796 Ops.push_back(ZExt); 9797 for (unsigned I = 1; I != NumVals; ++I) 9798 Ops.push_back(Op.getValue(I)); 9799 9800 return DAG.getMergeValues(Ops, SL); 9801 } 9802 9803 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 9804 /// the call being lowered. 9805 /// 9806 /// This is a helper for lowering intrinsics that follow a target calling 9807 /// convention or require stack pointer adjustment. Only a subset of the 9808 /// intrinsic's operands need to participate in the calling convention. 9809 void SelectionDAGBuilder::populateCallLoweringInfo( 9810 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 9811 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 9812 AttributeSet RetAttrs, bool IsPatchPoint) { 9813 TargetLowering::ArgListTy Args; 9814 Args.reserve(NumArgs); 9815 9816 // Populate the argument list. 9817 // Attributes for args start at offset 1, after the return attribute. 9818 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 9819 ArgI != ArgE; ++ArgI) { 9820 const Value *V = Call->getOperand(ArgI); 9821 9822 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 9823 9824 TargetLowering::ArgListEntry Entry; 9825 Entry.Node = getValue(V); 9826 Entry.Ty = V->getType(); 9827 Entry.setAttributes(Call, ArgI); 9828 Args.push_back(Entry); 9829 } 9830 9831 CLI.setDebugLoc(getCurSDLoc()) 9832 .setChain(getRoot()) 9833 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args), 9834 RetAttrs) 9835 .setDiscardResult(Call->use_empty()) 9836 .setIsPatchPoint(IsPatchPoint) 9837 .setIsPreallocated( 9838 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 9839 } 9840 9841 /// Add a stack map intrinsic call's live variable operands to a stackmap 9842 /// or patchpoint target node's operand list. 9843 /// 9844 /// Constants are converted to TargetConstants purely as an optimization to 9845 /// avoid constant materialization and register allocation. 9846 /// 9847 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 9848 /// generate addess computation nodes, and so FinalizeISel can convert the 9849 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 9850 /// address materialization and register allocation, but may also be required 9851 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 9852 /// alloca in the entry block, then the runtime may assume that the alloca's 9853 /// StackMap location can be read immediately after compilation and that the 9854 /// location is valid at any point during execution (this is similar to the 9855 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 9856 /// only available in a register, then the runtime would need to trap when 9857 /// execution reaches the StackMap in order to read the alloca's location. 9858 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 9859 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 9860 SelectionDAGBuilder &Builder) { 9861 SelectionDAG &DAG = Builder.DAG; 9862 for (unsigned I = StartIdx; I < Call.arg_size(); I++) { 9863 SDValue Op = Builder.getValue(Call.getArgOperand(I)); 9864 9865 // Things on the stack are pointer-typed, meaning that they are already 9866 // legal and can be emitted directly to target nodes. 9867 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) { 9868 Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType())); 9869 } else { 9870 // Otherwise emit a target independent node to be legalised. 9871 Ops.push_back(Builder.getValue(Call.getArgOperand(I))); 9872 } 9873 } 9874 } 9875 9876 /// Lower llvm.experimental.stackmap. 9877 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 9878 // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>, 9879 // [live variables...]) 9880 9881 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 9882 9883 SDValue Chain, InGlue, Callee; 9884 SmallVector<SDValue, 32> Ops; 9885 9886 SDLoc DL = getCurSDLoc(); 9887 Callee = getValue(CI.getCalledOperand()); 9888 9889 // The stackmap intrinsic only records the live variables (the arguments 9890 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 9891 // intrinsic, this won't be lowered to a function call. This means we don't 9892 // have to worry about calling conventions and target specific lowering code. 9893 // Instead we perform the call lowering right here. 9894 // 9895 // chain, flag = CALLSEQ_START(chain, 0, 0) 9896 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 9897 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 9898 // 9899 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9900 InGlue = Chain.getValue(1); 9901 9902 // Add the STACKMAP operands, starting with DAG house-keeping. 9903 Ops.push_back(Chain); 9904 Ops.push_back(InGlue); 9905 9906 // Add the <id>, <numShadowBytes> operands. 9907 // 9908 // These do not require legalisation, and can be emitted directly to target 9909 // constant nodes. 9910 SDValue ID = getValue(CI.getArgOperand(0)); 9911 assert(ID.getValueType() == MVT::i64); 9912 SDValue IDConst = DAG.getTargetConstant( 9913 cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType()); 9914 Ops.push_back(IDConst); 9915 9916 SDValue Shad = getValue(CI.getArgOperand(1)); 9917 assert(Shad.getValueType() == MVT::i32); 9918 SDValue ShadConst = DAG.getTargetConstant( 9919 cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType()); 9920 Ops.push_back(ShadConst); 9921 9922 // Add the live variables. 9923 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9924 9925 // Create the STACKMAP node. 9926 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9927 Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops); 9928 InGlue = Chain.getValue(1); 9929 9930 Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL); 9931 9932 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9933 9934 // Set the root to the target-lowered call chain. 9935 DAG.setRoot(Chain); 9936 9937 // Inform the Frame Information that we have a stackmap in this function. 9938 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9939 } 9940 9941 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9942 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9943 const BasicBlock *EHPadBB) { 9944 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9945 // i32 <numBytes>, 9946 // i8* <target>, 9947 // i32 <numArgs>, 9948 // [Args...], 9949 // [live variables...]) 9950 9951 CallingConv::ID CC = CB.getCallingConv(); 9952 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9953 bool HasDef = !CB.getType()->isVoidTy(); 9954 SDLoc dl = getCurSDLoc(); 9955 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9956 9957 // Handle immediate and symbolic callees. 9958 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9959 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9960 /*isTarget=*/true); 9961 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9962 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9963 SDLoc(SymbolicCallee), 9964 SymbolicCallee->getValueType(0)); 9965 9966 // Get the real number of arguments participating in the call <numArgs> 9967 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9968 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9969 9970 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9971 // Intrinsics include all meta-operands up to but not including CC. 9972 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9973 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9974 "Not enough arguments provided to the patchpoint intrinsic"); 9975 9976 // For AnyRegCC the arguments are lowered later on manually. 9977 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9978 Type *ReturnTy = 9979 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9980 9981 TargetLowering::CallLoweringInfo CLI(DAG); 9982 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9983 ReturnTy, CB.getAttributes().getRetAttrs(), true); 9984 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9985 9986 SDNode *CallEnd = Result.second.getNode(); 9987 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9988 CallEnd = CallEnd->getOperand(0).getNode(); 9989 9990 /// Get a call instruction from the call sequence chain. 9991 /// Tail calls are not allowed. 9992 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9993 "Expected a callseq node."); 9994 SDNode *Call = CallEnd->getOperand(0).getNode(); 9995 bool HasGlue = Call->getGluedNode(); 9996 9997 // Replace the target specific call node with the patchable intrinsic. 9998 SmallVector<SDValue, 8> Ops; 9999 10000 // Push the chain. 10001 Ops.push_back(*(Call->op_begin())); 10002 10003 // Optionally, push the glue (if any). 10004 if (HasGlue) 10005 Ops.push_back(*(Call->op_end() - 1)); 10006 10007 // Push the register mask info. 10008 if (HasGlue) 10009 Ops.push_back(*(Call->op_end() - 2)); 10010 else 10011 Ops.push_back(*(Call->op_end() - 1)); 10012 10013 // Add the <id> and <numBytes> constants. 10014 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 10015 Ops.push_back(DAG.getTargetConstant( 10016 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 10017 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 10018 Ops.push_back(DAG.getTargetConstant( 10019 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 10020 MVT::i32)); 10021 10022 // Add the callee. 10023 Ops.push_back(Callee); 10024 10025 // Adjust <numArgs> to account for any arguments that have been passed on the 10026 // stack instead. 10027 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 10028 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 10029 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 10030 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 10031 10032 // Add the calling convention 10033 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 10034 10035 // Add the arguments we omitted previously. The register allocator should 10036 // place these in any free register. 10037 if (IsAnyRegCC) 10038 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 10039 Ops.push_back(getValue(CB.getArgOperand(i))); 10040 10041 // Push the arguments from the call instruction. 10042 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 10043 Ops.append(Call->op_begin() + 2, e); 10044 10045 // Push live variables for the stack map. 10046 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 10047 10048 SDVTList NodeTys; 10049 if (IsAnyRegCC && HasDef) { 10050 // Create the return types based on the intrinsic definition 10051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10052 SmallVector<EVT, 3> ValueVTs; 10053 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 10054 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 10055 10056 // There is always a chain and a glue type at the end 10057 ValueVTs.push_back(MVT::Other); 10058 ValueVTs.push_back(MVT::Glue); 10059 NodeTys = DAG.getVTList(ValueVTs); 10060 } else 10061 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 10062 10063 // Replace the target specific call node with a PATCHPOINT node. 10064 SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops); 10065 10066 // Update the NodeMap. 10067 if (HasDef) { 10068 if (IsAnyRegCC) 10069 setValue(&CB, SDValue(PPV.getNode(), 0)); 10070 else 10071 setValue(&CB, Result.first); 10072 } 10073 10074 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 10075 // call sequence. Furthermore the location of the chain and glue can change 10076 // when the AnyReg calling convention is used and the intrinsic returns a 10077 // value. 10078 if (IsAnyRegCC && HasDef) { 10079 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 10080 SDValue To[] = {PPV.getValue(1), PPV.getValue(2)}; 10081 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 10082 } else 10083 DAG.ReplaceAllUsesWith(Call, PPV.getNode()); 10084 DAG.DeleteNode(Call); 10085 10086 // Inform the Frame Information that we have a patchpoint in this function. 10087 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 10088 } 10089 10090 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 10091 unsigned Intrinsic) { 10092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10093 SDValue Op1 = getValue(I.getArgOperand(0)); 10094 SDValue Op2; 10095 if (I.arg_size() > 1) 10096 Op2 = getValue(I.getArgOperand(1)); 10097 SDLoc dl = getCurSDLoc(); 10098 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10099 SDValue Res; 10100 SDNodeFlags SDFlags; 10101 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 10102 SDFlags.copyFMF(*FPMO); 10103 10104 switch (Intrinsic) { 10105 case Intrinsic::vector_reduce_fadd: 10106 if (SDFlags.hasAllowReassociation()) 10107 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 10108 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 10109 SDFlags); 10110 else 10111 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 10112 break; 10113 case Intrinsic::vector_reduce_fmul: 10114 if (SDFlags.hasAllowReassociation()) 10115 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 10116 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 10117 SDFlags); 10118 else 10119 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 10120 break; 10121 case Intrinsic::vector_reduce_add: 10122 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 10123 break; 10124 case Intrinsic::vector_reduce_mul: 10125 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 10126 break; 10127 case Intrinsic::vector_reduce_and: 10128 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 10129 break; 10130 case Intrinsic::vector_reduce_or: 10131 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 10132 break; 10133 case Intrinsic::vector_reduce_xor: 10134 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 10135 break; 10136 case Intrinsic::vector_reduce_smax: 10137 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 10138 break; 10139 case Intrinsic::vector_reduce_smin: 10140 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 10141 break; 10142 case Intrinsic::vector_reduce_umax: 10143 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 10144 break; 10145 case Intrinsic::vector_reduce_umin: 10146 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 10147 break; 10148 case Intrinsic::vector_reduce_fmax: 10149 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 10150 break; 10151 case Intrinsic::vector_reduce_fmin: 10152 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 10153 break; 10154 case Intrinsic::vector_reduce_fmaximum: 10155 Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags); 10156 break; 10157 case Intrinsic::vector_reduce_fminimum: 10158 Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags); 10159 break; 10160 default: 10161 llvm_unreachable("Unhandled vector reduce intrinsic"); 10162 } 10163 setValue(&I, Res); 10164 } 10165 10166 /// Returns an AttributeList representing the attributes applied to the return 10167 /// value of the given call. 10168 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 10169 SmallVector<Attribute::AttrKind, 2> Attrs; 10170 if (CLI.RetSExt) 10171 Attrs.push_back(Attribute::SExt); 10172 if (CLI.RetZExt) 10173 Attrs.push_back(Attribute::ZExt); 10174 if (CLI.IsInReg) 10175 Attrs.push_back(Attribute::InReg); 10176 10177 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 10178 Attrs); 10179 } 10180 10181 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 10182 /// implementation, which just calls LowerCall. 10183 /// FIXME: When all targets are 10184 /// migrated to using LowerCall, this hook should be integrated into SDISel. 10185 std::pair<SDValue, SDValue> 10186 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 10187 // Handle the incoming return values from the call. 10188 CLI.Ins.clear(); 10189 Type *OrigRetTy = CLI.RetTy; 10190 SmallVector<EVT, 4> RetTys; 10191 SmallVector<uint64_t, 4> Offsets; 10192 auto &DL = CLI.DAG.getDataLayout(); 10193 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0); 10194 10195 if (CLI.IsPostTypeLegalization) { 10196 // If we are lowering a libcall after legalization, split the return type. 10197 SmallVector<EVT, 4> OldRetTys; 10198 SmallVector<uint64_t, 4> OldOffsets; 10199 RetTys.swap(OldRetTys); 10200 Offsets.swap(OldOffsets); 10201 10202 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 10203 EVT RetVT = OldRetTys[i]; 10204 uint64_t Offset = OldOffsets[i]; 10205 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 10206 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 10207 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 10208 RetTys.append(NumRegs, RegisterVT); 10209 for (unsigned j = 0; j != NumRegs; ++j) 10210 Offsets.push_back(Offset + j * RegisterVTByteSZ); 10211 } 10212 } 10213 10214 SmallVector<ISD::OutputArg, 4> Outs; 10215 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 10216 10217 bool CanLowerReturn = 10218 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 10219 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 10220 10221 SDValue DemoteStackSlot; 10222 int DemoteStackIdx = -100; 10223 if (!CanLowerReturn) { 10224 // FIXME: equivalent assert? 10225 // assert(!CS.hasInAllocaArgument() && 10226 // "sret demotion is incompatible with inalloca"); 10227 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 10228 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 10229 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10230 DemoteStackIdx = 10231 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 10232 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 10233 DL.getAllocaAddrSpace()); 10234 10235 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 10236 ArgListEntry Entry; 10237 Entry.Node = DemoteStackSlot; 10238 Entry.Ty = StackSlotPtrType; 10239 Entry.IsSExt = false; 10240 Entry.IsZExt = false; 10241 Entry.IsInReg = false; 10242 Entry.IsSRet = true; 10243 Entry.IsNest = false; 10244 Entry.IsByVal = false; 10245 Entry.IsByRef = false; 10246 Entry.IsReturned = false; 10247 Entry.IsSwiftSelf = false; 10248 Entry.IsSwiftAsync = false; 10249 Entry.IsSwiftError = false; 10250 Entry.IsCFGuardTarget = false; 10251 Entry.Alignment = Alignment; 10252 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 10253 CLI.NumFixedArgs += 1; 10254 CLI.getArgs()[0].IndirectType = CLI.RetTy; 10255 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 10256 10257 // sret demotion isn't compatible with tail-calls, since the sret argument 10258 // points into the callers stack frame. 10259 CLI.IsTailCall = false; 10260 } else { 10261 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10262 CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL); 10263 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10264 ISD::ArgFlagsTy Flags; 10265 if (NeedsRegBlock) { 10266 Flags.setInConsecutiveRegs(); 10267 if (I == RetTys.size() - 1) 10268 Flags.setInConsecutiveRegsLast(); 10269 } 10270 EVT VT = RetTys[I]; 10271 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10272 CLI.CallConv, VT); 10273 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10274 CLI.CallConv, VT); 10275 for (unsigned i = 0; i != NumRegs; ++i) { 10276 ISD::InputArg MyFlags; 10277 MyFlags.Flags = Flags; 10278 MyFlags.VT = RegisterVT; 10279 MyFlags.ArgVT = VT; 10280 MyFlags.Used = CLI.IsReturnValueUsed; 10281 if (CLI.RetTy->isPointerTy()) { 10282 MyFlags.Flags.setPointer(); 10283 MyFlags.Flags.setPointerAddrSpace( 10284 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 10285 } 10286 if (CLI.RetSExt) 10287 MyFlags.Flags.setSExt(); 10288 if (CLI.RetZExt) 10289 MyFlags.Flags.setZExt(); 10290 if (CLI.IsInReg) 10291 MyFlags.Flags.setInReg(); 10292 CLI.Ins.push_back(MyFlags); 10293 } 10294 } 10295 } 10296 10297 // We push in swifterror return as the last element of CLI.Ins. 10298 ArgListTy &Args = CLI.getArgs(); 10299 if (supportSwiftError()) { 10300 for (const ArgListEntry &Arg : Args) { 10301 if (Arg.IsSwiftError) { 10302 ISD::InputArg MyFlags; 10303 MyFlags.VT = getPointerTy(DL); 10304 MyFlags.ArgVT = EVT(getPointerTy(DL)); 10305 MyFlags.Flags.setSwiftError(); 10306 CLI.Ins.push_back(MyFlags); 10307 } 10308 } 10309 } 10310 10311 // Handle all of the outgoing arguments. 10312 CLI.Outs.clear(); 10313 CLI.OutVals.clear(); 10314 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 10315 SmallVector<EVT, 4> ValueVTs; 10316 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 10317 // FIXME: Split arguments if CLI.IsPostTypeLegalization 10318 Type *FinalType = Args[i].Ty; 10319 if (Args[i].IsByVal) 10320 FinalType = Args[i].IndirectType; 10321 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 10322 FinalType, CLI.CallConv, CLI.IsVarArg, DL); 10323 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 10324 ++Value) { 10325 EVT VT = ValueVTs[Value]; 10326 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 10327 SDValue Op = SDValue(Args[i].Node.getNode(), 10328 Args[i].Node.getResNo() + Value); 10329 ISD::ArgFlagsTy Flags; 10330 10331 // Certain targets (such as MIPS), may have a different ABI alignment 10332 // for a type depending on the context. Give the target a chance to 10333 // specify the alignment it wants. 10334 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 10335 Flags.setOrigAlign(OriginalAlignment); 10336 10337 if (Args[i].Ty->isPointerTy()) { 10338 Flags.setPointer(); 10339 Flags.setPointerAddrSpace( 10340 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 10341 } 10342 if (Args[i].IsZExt) 10343 Flags.setZExt(); 10344 if (Args[i].IsSExt) 10345 Flags.setSExt(); 10346 if (Args[i].IsInReg) { 10347 // If we are using vectorcall calling convention, a structure that is 10348 // passed InReg - is surely an HVA 10349 if (CLI.CallConv == CallingConv::X86_VectorCall && 10350 isa<StructType>(FinalType)) { 10351 // The first value of a structure is marked 10352 if (0 == Value) 10353 Flags.setHvaStart(); 10354 Flags.setHva(); 10355 } 10356 // Set InReg Flag 10357 Flags.setInReg(); 10358 } 10359 if (Args[i].IsSRet) 10360 Flags.setSRet(); 10361 if (Args[i].IsSwiftSelf) 10362 Flags.setSwiftSelf(); 10363 if (Args[i].IsSwiftAsync) 10364 Flags.setSwiftAsync(); 10365 if (Args[i].IsSwiftError) 10366 Flags.setSwiftError(); 10367 if (Args[i].IsCFGuardTarget) 10368 Flags.setCFGuardTarget(); 10369 if (Args[i].IsByVal) 10370 Flags.setByVal(); 10371 if (Args[i].IsByRef) 10372 Flags.setByRef(); 10373 if (Args[i].IsPreallocated) { 10374 Flags.setPreallocated(); 10375 // Set the byval flag for CCAssignFn callbacks that don't know about 10376 // preallocated. This way we can know how many bytes we should've 10377 // allocated and how many bytes a callee cleanup function will pop. If 10378 // we port preallocated to more targets, we'll have to add custom 10379 // preallocated handling in the various CC lowering callbacks. 10380 Flags.setByVal(); 10381 } 10382 if (Args[i].IsInAlloca) { 10383 Flags.setInAlloca(); 10384 // Set the byval flag for CCAssignFn callbacks that don't know about 10385 // inalloca. This way we can know how many bytes we should've allocated 10386 // and how many bytes a callee cleanup function will pop. If we port 10387 // inalloca to more targets, we'll have to add custom inalloca handling 10388 // in the various CC lowering callbacks. 10389 Flags.setByVal(); 10390 } 10391 Align MemAlign; 10392 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 10393 unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType); 10394 Flags.setByValSize(FrameSize); 10395 10396 // info is not there but there are cases it cannot get right. 10397 if (auto MA = Args[i].Alignment) 10398 MemAlign = *MA; 10399 else 10400 MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL)); 10401 } else if (auto MA = Args[i].Alignment) { 10402 MemAlign = *MA; 10403 } else { 10404 MemAlign = OriginalAlignment; 10405 } 10406 Flags.setMemAlign(MemAlign); 10407 if (Args[i].IsNest) 10408 Flags.setNest(); 10409 if (NeedsRegBlock) 10410 Flags.setInConsecutiveRegs(); 10411 10412 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10413 CLI.CallConv, VT); 10414 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10415 CLI.CallConv, VT); 10416 SmallVector<SDValue, 4> Parts(NumParts); 10417 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 10418 10419 if (Args[i].IsSExt) 10420 ExtendKind = ISD::SIGN_EXTEND; 10421 else if (Args[i].IsZExt) 10422 ExtendKind = ISD::ZERO_EXTEND; 10423 10424 // Conservatively only handle 'returned' on non-vectors that can be lowered, 10425 // for now. 10426 if (Args[i].IsReturned && !Op.getValueType().isVector() && 10427 CanLowerReturn) { 10428 assert((CLI.RetTy == Args[i].Ty || 10429 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 10430 CLI.RetTy->getPointerAddressSpace() == 10431 Args[i].Ty->getPointerAddressSpace())) && 10432 RetTys.size() == NumValues && "unexpected use of 'returned'"); 10433 // Before passing 'returned' to the target lowering code, ensure that 10434 // either the register MVT and the actual EVT are the same size or that 10435 // the return value and argument are extended in the same way; in these 10436 // cases it's safe to pass the argument register value unchanged as the 10437 // return register value (although it's at the target's option whether 10438 // to do so) 10439 // TODO: allow code generation to take advantage of partially preserved 10440 // registers rather than clobbering the entire register when the 10441 // parameter extension method is not compatible with the return 10442 // extension method 10443 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 10444 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 10445 CLI.RetZExt == Args[i].IsZExt)) 10446 Flags.setReturned(); 10447 } 10448 10449 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 10450 CLI.CallConv, ExtendKind); 10451 10452 for (unsigned j = 0; j != NumParts; ++j) { 10453 // if it isn't first piece, alignment must be 1 10454 // For scalable vectors the scalable part is currently handled 10455 // by individual targets, so we just use the known minimum size here. 10456 ISD::OutputArg MyFlags( 10457 Flags, Parts[j].getValueType().getSimpleVT(), VT, 10458 i < CLI.NumFixedArgs, i, 10459 j * Parts[j].getValueType().getStoreSize().getKnownMinValue()); 10460 if (NumParts > 1 && j == 0) 10461 MyFlags.Flags.setSplit(); 10462 else if (j != 0) { 10463 MyFlags.Flags.setOrigAlign(Align(1)); 10464 if (j == NumParts - 1) 10465 MyFlags.Flags.setSplitEnd(); 10466 } 10467 10468 CLI.Outs.push_back(MyFlags); 10469 CLI.OutVals.push_back(Parts[j]); 10470 } 10471 10472 if (NeedsRegBlock && Value == NumValues - 1) 10473 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 10474 } 10475 } 10476 10477 SmallVector<SDValue, 4> InVals; 10478 CLI.Chain = LowerCall(CLI, InVals); 10479 10480 // Update CLI.InVals to use outside of this function. 10481 CLI.InVals = InVals; 10482 10483 // Verify that the target's LowerCall behaved as expected. 10484 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 10485 "LowerCall didn't return a valid chain!"); 10486 assert((!CLI.IsTailCall || InVals.empty()) && 10487 "LowerCall emitted a return value for a tail call!"); 10488 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 10489 "LowerCall didn't emit the correct number of values!"); 10490 10491 // For a tail call, the return value is merely live-out and there aren't 10492 // any nodes in the DAG representing it. Return a special value to 10493 // indicate that a tail call has been emitted and no more Instructions 10494 // should be processed in the current block. 10495 if (CLI.IsTailCall) { 10496 CLI.DAG.setRoot(CLI.Chain); 10497 return std::make_pair(SDValue(), SDValue()); 10498 } 10499 10500 #ifndef NDEBUG 10501 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 10502 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 10503 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 10504 "LowerCall emitted a value with the wrong type!"); 10505 } 10506 #endif 10507 10508 SmallVector<SDValue, 4> ReturnValues; 10509 if (!CanLowerReturn) { 10510 // The instruction result is the result of loading from the 10511 // hidden sret parameter. 10512 SmallVector<EVT, 1> PVTs; 10513 Type *PtrRetTy = 10514 PointerType::get(OrigRetTy->getContext(), DL.getAllocaAddrSpace()); 10515 10516 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 10517 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 10518 EVT PtrVT = PVTs[0]; 10519 10520 unsigned NumValues = RetTys.size(); 10521 ReturnValues.resize(NumValues); 10522 SmallVector<SDValue, 4> Chains(NumValues); 10523 10524 // An aggregate return value cannot wrap around the address space, so 10525 // offsets to its parts don't wrap either. 10526 SDNodeFlags Flags; 10527 Flags.setNoUnsignedWrap(true); 10528 10529 MachineFunction &MF = CLI.DAG.getMachineFunction(); 10530 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 10531 for (unsigned i = 0; i < NumValues; ++i) { 10532 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 10533 CLI.DAG.getConstant(Offsets[i], CLI.DL, 10534 PtrVT), Flags); 10535 SDValue L = CLI.DAG.getLoad( 10536 RetTys[i], CLI.DL, CLI.Chain, Add, 10537 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 10538 DemoteStackIdx, Offsets[i]), 10539 HiddenSRetAlign); 10540 ReturnValues[i] = L; 10541 Chains[i] = L.getValue(1); 10542 } 10543 10544 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 10545 } else { 10546 // Collect the legal value parts into potentially illegal values 10547 // that correspond to the original function's return values. 10548 std::optional<ISD::NodeType> AssertOp; 10549 if (CLI.RetSExt) 10550 AssertOp = ISD::AssertSext; 10551 else if (CLI.RetZExt) 10552 AssertOp = ISD::AssertZext; 10553 unsigned CurReg = 0; 10554 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 10555 EVT VT = RetTys[I]; 10556 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 10557 CLI.CallConv, VT); 10558 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 10559 CLI.CallConv, VT); 10560 10561 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 10562 NumRegs, RegisterVT, VT, nullptr, 10563 CLI.CallConv, AssertOp)); 10564 CurReg += NumRegs; 10565 } 10566 10567 // For a function returning void, there is no return value. We can't create 10568 // such a node, so we just return a null return value in that case. In 10569 // that case, nothing will actually look at the value. 10570 if (ReturnValues.empty()) 10571 return std::make_pair(SDValue(), CLI.Chain); 10572 } 10573 10574 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 10575 CLI.DAG.getVTList(RetTys), ReturnValues); 10576 return std::make_pair(Res, CLI.Chain); 10577 } 10578 10579 /// Places new result values for the node in Results (their number 10580 /// and types must exactly match those of the original return values of 10581 /// the node), or leaves Results empty, which indicates that the node is not 10582 /// to be custom lowered after all. 10583 void TargetLowering::LowerOperationWrapper(SDNode *N, 10584 SmallVectorImpl<SDValue> &Results, 10585 SelectionDAG &DAG) const { 10586 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 10587 10588 if (!Res.getNode()) 10589 return; 10590 10591 // If the original node has one result, take the return value from 10592 // LowerOperation as is. It might not be result number 0. 10593 if (N->getNumValues() == 1) { 10594 Results.push_back(Res); 10595 return; 10596 } 10597 10598 // If the original node has multiple results, then the return node should 10599 // have the same number of results. 10600 assert((N->getNumValues() == Res->getNumValues()) && 10601 "Lowering returned the wrong number of results!"); 10602 10603 // Places new result values base on N result number. 10604 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 10605 Results.push_back(Res.getValue(I)); 10606 } 10607 10608 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 10609 llvm_unreachable("LowerOperation not implemented for this target!"); 10610 } 10611 10612 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, 10613 unsigned Reg, 10614 ISD::NodeType ExtendType) { 10615 SDValue Op = getNonRegisterValue(V); 10616 assert((Op.getOpcode() != ISD::CopyFromReg || 10617 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 10618 "Copy from a reg to the same reg!"); 10619 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 10620 10621 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10622 // If this is an InlineAsm we have to match the registers required, not the 10623 // notional registers required by the type. 10624 10625 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 10626 std::nullopt); // This is not an ABI copy. 10627 SDValue Chain = DAG.getEntryNode(); 10628 10629 if (ExtendType == ISD::ANY_EXTEND) { 10630 auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V); 10631 if (PreferredExtendIt != FuncInfo.PreferredExtendType.end()) 10632 ExtendType = PreferredExtendIt->second; 10633 } 10634 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 10635 PendingExports.push_back(Chain); 10636 } 10637 10638 #include "llvm/CodeGen/SelectionDAGISel.h" 10639 10640 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 10641 /// entry block, return true. This includes arguments used by switches, since 10642 /// the switch may expand into multiple basic blocks. 10643 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 10644 // With FastISel active, we may be splitting blocks, so force creation 10645 // of virtual registers for all non-dead arguments. 10646 if (FastISel) 10647 return A->use_empty(); 10648 10649 const BasicBlock &Entry = A->getParent()->front(); 10650 for (const User *U : A->users()) 10651 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 10652 return false; // Use not in entry block. 10653 10654 return true; 10655 } 10656 10657 using ArgCopyElisionMapTy = 10658 DenseMap<const Argument *, 10659 std::pair<const AllocaInst *, const StoreInst *>>; 10660 10661 /// Scan the entry block of the function in FuncInfo for arguments that look 10662 /// like copies into a local alloca. Record any copied arguments in 10663 /// ArgCopyElisionCandidates. 10664 static void 10665 findArgumentCopyElisionCandidates(const DataLayout &DL, 10666 FunctionLoweringInfo *FuncInfo, 10667 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 10668 // Record the state of every static alloca used in the entry block. Argument 10669 // allocas are all used in the entry block, so we need approximately as many 10670 // entries as we have arguments. 10671 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 10672 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 10673 unsigned NumArgs = FuncInfo->Fn->arg_size(); 10674 StaticAllocas.reserve(NumArgs * 2); 10675 10676 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 10677 if (!V) 10678 return nullptr; 10679 V = V->stripPointerCasts(); 10680 const auto *AI = dyn_cast<AllocaInst>(V); 10681 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 10682 return nullptr; 10683 auto Iter = StaticAllocas.insert({AI, Unknown}); 10684 return &Iter.first->second; 10685 }; 10686 10687 // Look for stores of arguments to static allocas. Look through bitcasts and 10688 // GEPs to handle type coercions, as long as the alloca is fully initialized 10689 // by the store. Any non-store use of an alloca escapes it and any subsequent 10690 // unanalyzed store might write it. 10691 // FIXME: Handle structs initialized with multiple stores. 10692 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 10693 // Look for stores, and handle non-store uses conservatively. 10694 const auto *SI = dyn_cast<StoreInst>(&I); 10695 if (!SI) { 10696 // We will look through cast uses, so ignore them completely. 10697 if (I.isCast()) 10698 continue; 10699 // Ignore debug info and pseudo op intrinsics, they don't escape or store 10700 // to allocas. 10701 if (I.isDebugOrPseudoInst()) 10702 continue; 10703 // This is an unknown instruction. Assume it escapes or writes to all 10704 // static alloca operands. 10705 for (const Use &U : I.operands()) { 10706 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 10707 *Info = StaticAllocaInfo::Clobbered; 10708 } 10709 continue; 10710 } 10711 10712 // If the stored value is a static alloca, mark it as escaped. 10713 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 10714 *Info = StaticAllocaInfo::Clobbered; 10715 10716 // Check if the destination is a static alloca. 10717 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 10718 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 10719 if (!Info) 10720 continue; 10721 const AllocaInst *AI = cast<AllocaInst>(Dst); 10722 10723 // Skip allocas that have been initialized or clobbered. 10724 if (*Info != StaticAllocaInfo::Unknown) 10725 continue; 10726 10727 // Check if the stored value is an argument, and that this store fully 10728 // initializes the alloca. 10729 // If the argument type has padding bits we can't directly forward a pointer 10730 // as the upper bits may contain garbage. 10731 // Don't elide copies from the same argument twice. 10732 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 10733 const auto *Arg = dyn_cast<Argument>(Val); 10734 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 10735 Arg->getType()->isEmptyTy() || 10736 DL.getTypeStoreSize(Arg->getType()) != 10737 DL.getTypeAllocSize(AI->getAllocatedType()) || 10738 !DL.typeSizeEqualsStoreSize(Arg->getType()) || 10739 ArgCopyElisionCandidates.count(Arg)) { 10740 *Info = StaticAllocaInfo::Clobbered; 10741 continue; 10742 } 10743 10744 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 10745 << '\n'); 10746 10747 // Mark this alloca and store for argument copy elision. 10748 *Info = StaticAllocaInfo::Elidable; 10749 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 10750 10751 // Stop scanning if we've seen all arguments. This will happen early in -O0 10752 // builds, which is useful, because -O0 builds have large entry blocks and 10753 // many allocas. 10754 if (ArgCopyElisionCandidates.size() == NumArgs) 10755 break; 10756 } 10757 } 10758 10759 /// Try to elide argument copies from memory into a local alloca. Succeeds if 10760 /// ArgVal is a load from a suitable fixed stack object. 10761 static void tryToElideArgumentCopy( 10762 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 10763 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 10764 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 10765 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 10766 ArrayRef<SDValue> ArgVals, bool &ArgHasUses) { 10767 // Check if this is a load from a fixed stack object. 10768 auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]); 10769 if (!LNode) 10770 return; 10771 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 10772 if (!FINode) 10773 return; 10774 10775 // Check that the fixed stack object is the right size and alignment. 10776 // Look at the alignment that the user wrote on the alloca instead of looking 10777 // at the stack object. 10778 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 10779 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 10780 const AllocaInst *AI = ArgCopyIter->second.first; 10781 int FixedIndex = FINode->getIndex(); 10782 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 10783 int OldIndex = AllocaIndex; 10784 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 10785 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 10786 LLVM_DEBUG( 10787 dbgs() << " argument copy elision failed due to bad fixed stack " 10788 "object size\n"); 10789 return; 10790 } 10791 Align RequiredAlignment = AI->getAlign(); 10792 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 10793 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 10794 "greater than stack argument alignment (" 10795 << DebugStr(RequiredAlignment) << " vs " 10796 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 10797 return; 10798 } 10799 10800 // Perform the elision. Delete the old stack object and replace its only use 10801 // in the variable info map. Mark the stack object as mutable. 10802 LLVM_DEBUG({ 10803 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 10804 << " Replacing frame index " << OldIndex << " with " << FixedIndex 10805 << '\n'; 10806 }); 10807 MFI.RemoveStackObject(OldIndex); 10808 MFI.setIsImmutableObjectIndex(FixedIndex, false); 10809 AllocaIndex = FixedIndex; 10810 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 10811 for (SDValue ArgVal : ArgVals) 10812 Chains.push_back(ArgVal.getValue(1)); 10813 10814 // Avoid emitting code for the store implementing the copy. 10815 const StoreInst *SI = ArgCopyIter->second.second; 10816 ElidedArgCopyInstrs.insert(SI); 10817 10818 // Check for uses of the argument again so that we can avoid exporting ArgVal 10819 // if it is't used by anything other than the store. 10820 for (const Value *U : Arg.users()) { 10821 if (U != SI) { 10822 ArgHasUses = true; 10823 break; 10824 } 10825 } 10826 } 10827 10828 void SelectionDAGISel::LowerArguments(const Function &F) { 10829 SelectionDAG &DAG = SDB->DAG; 10830 SDLoc dl = SDB->getCurSDLoc(); 10831 const DataLayout &DL = DAG.getDataLayout(); 10832 SmallVector<ISD::InputArg, 16> Ins; 10833 10834 // In Naked functions we aren't going to save any registers. 10835 if (F.hasFnAttribute(Attribute::Naked)) 10836 return; 10837 10838 if (!FuncInfo->CanLowerReturn) { 10839 // Put in an sret pointer parameter before all the other parameters. 10840 SmallVector<EVT, 1> ValueVTs; 10841 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10842 PointerType::get(F.getContext(), 10843 DAG.getDataLayout().getAllocaAddrSpace()), 10844 ValueVTs); 10845 10846 // NOTE: Assuming that a pointer will never break down to more than one VT 10847 // or one register. 10848 ISD::ArgFlagsTy Flags; 10849 Flags.setSRet(); 10850 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 10851 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 10852 ISD::InputArg::NoArgIndex, 0); 10853 Ins.push_back(RetArg); 10854 } 10855 10856 // Look for stores of arguments to static allocas. Mark such arguments with a 10857 // flag to ask the target to give us the memory location of that argument if 10858 // available. 10859 ArgCopyElisionMapTy ArgCopyElisionCandidates; 10860 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 10861 ArgCopyElisionCandidates); 10862 10863 // Set up the incoming argument description vector. 10864 for (const Argument &Arg : F.args()) { 10865 unsigned ArgNo = Arg.getArgNo(); 10866 SmallVector<EVT, 4> ValueVTs; 10867 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10868 bool isArgValueUsed = !Arg.use_empty(); 10869 unsigned PartBase = 0; 10870 Type *FinalType = Arg.getType(); 10871 if (Arg.hasAttribute(Attribute::ByVal)) 10872 FinalType = Arg.getParamByValType(); 10873 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 10874 FinalType, F.getCallingConv(), F.isVarArg(), DL); 10875 for (unsigned Value = 0, NumValues = ValueVTs.size(); 10876 Value != NumValues; ++Value) { 10877 EVT VT = ValueVTs[Value]; 10878 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 10879 ISD::ArgFlagsTy Flags; 10880 10881 10882 if (Arg.getType()->isPointerTy()) { 10883 Flags.setPointer(); 10884 Flags.setPointerAddrSpace( 10885 cast<PointerType>(Arg.getType())->getAddressSpace()); 10886 } 10887 if (Arg.hasAttribute(Attribute::ZExt)) 10888 Flags.setZExt(); 10889 if (Arg.hasAttribute(Attribute::SExt)) 10890 Flags.setSExt(); 10891 if (Arg.hasAttribute(Attribute::InReg)) { 10892 // If we are using vectorcall calling convention, a structure that is 10893 // passed InReg - is surely an HVA 10894 if (F.getCallingConv() == CallingConv::X86_VectorCall && 10895 isa<StructType>(Arg.getType())) { 10896 // The first value of a structure is marked 10897 if (0 == Value) 10898 Flags.setHvaStart(); 10899 Flags.setHva(); 10900 } 10901 // Set InReg Flag 10902 Flags.setInReg(); 10903 } 10904 if (Arg.hasAttribute(Attribute::StructRet)) 10905 Flags.setSRet(); 10906 if (Arg.hasAttribute(Attribute::SwiftSelf)) 10907 Flags.setSwiftSelf(); 10908 if (Arg.hasAttribute(Attribute::SwiftAsync)) 10909 Flags.setSwiftAsync(); 10910 if (Arg.hasAttribute(Attribute::SwiftError)) 10911 Flags.setSwiftError(); 10912 if (Arg.hasAttribute(Attribute::ByVal)) 10913 Flags.setByVal(); 10914 if (Arg.hasAttribute(Attribute::ByRef)) 10915 Flags.setByRef(); 10916 if (Arg.hasAttribute(Attribute::InAlloca)) { 10917 Flags.setInAlloca(); 10918 // Set the byval flag for CCAssignFn callbacks that don't know about 10919 // inalloca. This way we can know how many bytes we should've allocated 10920 // and how many bytes a callee cleanup function will pop. If we port 10921 // inalloca to more targets, we'll have to add custom inalloca handling 10922 // in the various CC lowering callbacks. 10923 Flags.setByVal(); 10924 } 10925 if (Arg.hasAttribute(Attribute::Preallocated)) { 10926 Flags.setPreallocated(); 10927 // Set the byval flag for CCAssignFn callbacks that don't know about 10928 // preallocated. This way we can know how many bytes we should've 10929 // allocated and how many bytes a callee cleanup function will pop. If 10930 // we port preallocated to more targets, we'll have to add custom 10931 // preallocated handling in the various CC lowering callbacks. 10932 Flags.setByVal(); 10933 } 10934 10935 // Certain targets (such as MIPS), may have a different ABI alignment 10936 // for a type depending on the context. Give the target a chance to 10937 // specify the alignment it wants. 10938 const Align OriginalAlignment( 10939 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10940 Flags.setOrigAlign(OriginalAlignment); 10941 10942 Align MemAlign; 10943 Type *ArgMemTy = nullptr; 10944 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10945 Flags.isByRef()) { 10946 if (!ArgMemTy) 10947 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10948 10949 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10950 10951 // For in-memory arguments, size and alignment should be passed from FE. 10952 // BE will guess if this info is not there but there are cases it cannot 10953 // get right. 10954 if (auto ParamAlign = Arg.getParamStackAlign()) 10955 MemAlign = *ParamAlign; 10956 else if ((ParamAlign = Arg.getParamAlign())) 10957 MemAlign = *ParamAlign; 10958 else 10959 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10960 if (Flags.isByRef()) 10961 Flags.setByRefSize(MemSize); 10962 else 10963 Flags.setByValSize(MemSize); 10964 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10965 MemAlign = *ParamAlign; 10966 } else { 10967 MemAlign = OriginalAlignment; 10968 } 10969 Flags.setMemAlign(MemAlign); 10970 10971 if (Arg.hasAttribute(Attribute::Nest)) 10972 Flags.setNest(); 10973 if (NeedsRegBlock) 10974 Flags.setInConsecutiveRegs(); 10975 if (ArgCopyElisionCandidates.count(&Arg)) 10976 Flags.setCopyElisionCandidate(); 10977 if (Arg.hasAttribute(Attribute::Returned)) 10978 Flags.setReturned(); 10979 10980 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10981 *CurDAG->getContext(), F.getCallingConv(), VT); 10982 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10983 *CurDAG->getContext(), F.getCallingConv(), VT); 10984 for (unsigned i = 0; i != NumRegs; ++i) { 10985 // For scalable vectors, use the minimum size; individual targets 10986 // are responsible for handling scalable vector arguments and 10987 // return values. 10988 ISD::InputArg MyFlags( 10989 Flags, RegisterVT, VT, isArgValueUsed, ArgNo, 10990 PartBase + i * RegisterVT.getStoreSize().getKnownMinValue()); 10991 if (NumRegs > 1 && i == 0) 10992 MyFlags.Flags.setSplit(); 10993 // if it isn't first piece, alignment must be 1 10994 else if (i > 0) { 10995 MyFlags.Flags.setOrigAlign(Align(1)); 10996 if (i == NumRegs - 1) 10997 MyFlags.Flags.setSplitEnd(); 10998 } 10999 Ins.push_back(MyFlags); 11000 } 11001 if (NeedsRegBlock && Value == NumValues - 1) 11002 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 11003 PartBase += VT.getStoreSize().getKnownMinValue(); 11004 } 11005 } 11006 11007 // Call the target to set up the argument values. 11008 SmallVector<SDValue, 8> InVals; 11009 SDValue NewRoot = TLI->LowerFormalArguments( 11010 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 11011 11012 // Verify that the target's LowerFormalArguments behaved as expected. 11013 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 11014 "LowerFormalArguments didn't return a valid chain!"); 11015 assert(InVals.size() == Ins.size() && 11016 "LowerFormalArguments didn't emit the correct number of values!"); 11017 LLVM_DEBUG({ 11018 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 11019 assert(InVals[i].getNode() && 11020 "LowerFormalArguments emitted a null value!"); 11021 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 11022 "LowerFormalArguments emitted a value with the wrong type!"); 11023 } 11024 }); 11025 11026 // Update the DAG with the new chain value resulting from argument lowering. 11027 DAG.setRoot(NewRoot); 11028 11029 // Set up the argument values. 11030 unsigned i = 0; 11031 if (!FuncInfo->CanLowerReturn) { 11032 // Create a virtual register for the sret pointer, and put in a copy 11033 // from the sret argument into it. 11034 SmallVector<EVT, 1> ValueVTs; 11035 ComputeValueVTs(*TLI, DAG.getDataLayout(), 11036 PointerType::get(F.getContext(), 11037 DAG.getDataLayout().getAllocaAddrSpace()), 11038 ValueVTs); 11039 MVT VT = ValueVTs[0].getSimpleVT(); 11040 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 11041 std::optional<ISD::NodeType> AssertOp; 11042 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 11043 nullptr, F.getCallingConv(), AssertOp); 11044 11045 MachineFunction& MF = SDB->DAG.getMachineFunction(); 11046 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 11047 Register SRetReg = 11048 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 11049 FuncInfo->DemoteRegister = SRetReg; 11050 NewRoot = 11051 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 11052 DAG.setRoot(NewRoot); 11053 11054 // i indexes lowered arguments. Bump it past the hidden sret argument. 11055 ++i; 11056 } 11057 11058 SmallVector<SDValue, 4> Chains; 11059 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 11060 for (const Argument &Arg : F.args()) { 11061 SmallVector<SDValue, 4> ArgValues; 11062 SmallVector<EVT, 4> ValueVTs; 11063 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 11064 unsigned NumValues = ValueVTs.size(); 11065 if (NumValues == 0) 11066 continue; 11067 11068 bool ArgHasUses = !Arg.use_empty(); 11069 11070 // Elide the copying store if the target loaded this argument from a 11071 // suitable fixed stack object. 11072 if (Ins[i].Flags.isCopyElisionCandidate()) { 11073 unsigned NumParts = 0; 11074 for (EVT VT : ValueVTs) 11075 NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), 11076 F.getCallingConv(), VT); 11077 11078 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 11079 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 11080 ArrayRef(&InVals[i], NumParts), ArgHasUses); 11081 } 11082 11083 // If this argument is unused then remember its value. It is used to generate 11084 // debugging information. 11085 bool isSwiftErrorArg = 11086 TLI->supportSwiftError() && 11087 Arg.hasAttribute(Attribute::SwiftError); 11088 if (!ArgHasUses && !isSwiftErrorArg) { 11089 SDB->setUnusedArgValue(&Arg, InVals[i]); 11090 11091 // Also remember any frame index for use in FastISel. 11092 if (FrameIndexSDNode *FI = 11093 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 11094 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11095 } 11096 11097 for (unsigned Val = 0; Val != NumValues; ++Val) { 11098 EVT VT = ValueVTs[Val]; 11099 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 11100 F.getCallingConv(), VT); 11101 unsigned NumParts = TLI->getNumRegistersForCallingConv( 11102 *CurDAG->getContext(), F.getCallingConv(), VT); 11103 11104 // Even an apparent 'unused' swifterror argument needs to be returned. So 11105 // we do generate a copy for it that can be used on return from the 11106 // function. 11107 if (ArgHasUses || isSwiftErrorArg) { 11108 std::optional<ISD::NodeType> AssertOp; 11109 if (Arg.hasAttribute(Attribute::SExt)) 11110 AssertOp = ISD::AssertSext; 11111 else if (Arg.hasAttribute(Attribute::ZExt)) 11112 AssertOp = ISD::AssertZext; 11113 11114 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 11115 PartVT, VT, nullptr, 11116 F.getCallingConv(), AssertOp)); 11117 } 11118 11119 i += NumParts; 11120 } 11121 11122 // We don't need to do anything else for unused arguments. 11123 if (ArgValues.empty()) 11124 continue; 11125 11126 // Note down frame index. 11127 if (FrameIndexSDNode *FI = 11128 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 11129 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11130 11131 SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues), 11132 SDB->getCurSDLoc()); 11133 11134 SDB->setValue(&Arg, Res); 11135 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 11136 // We want to associate the argument with the frame index, among 11137 // involved operands, that correspond to the lowest address. The 11138 // getCopyFromParts function, called earlier, is swapping the order of 11139 // the operands to BUILD_PAIR depending on endianness. The result of 11140 // that swapping is that the least significant bits of the argument will 11141 // be in the first operand of the BUILD_PAIR node, and the most 11142 // significant bits will be in the second operand. 11143 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 11144 if (LoadSDNode *LNode = 11145 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 11146 if (FrameIndexSDNode *FI = 11147 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 11148 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 11149 } 11150 11151 // Analyses past this point are naive and don't expect an assertion. 11152 if (Res.getOpcode() == ISD::AssertZext) 11153 Res = Res.getOperand(0); 11154 11155 // Update the SwiftErrorVRegDefMap. 11156 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 11157 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11158 if (Register::isVirtualRegister(Reg)) 11159 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 11160 Reg); 11161 } 11162 11163 // If this argument is live outside of the entry block, insert a copy from 11164 // wherever we got it to the vreg that other BB's will reference it as. 11165 if (Res.getOpcode() == ISD::CopyFromReg) { 11166 // If we can, though, try to skip creating an unnecessary vreg. 11167 // FIXME: This isn't very clean... it would be nice to make this more 11168 // general. 11169 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 11170 if (Register::isVirtualRegister(Reg)) { 11171 FuncInfo->ValueMap[&Arg] = Reg; 11172 continue; 11173 } 11174 } 11175 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 11176 FuncInfo->InitializeRegForValue(&Arg); 11177 SDB->CopyToExportRegsIfNeeded(&Arg); 11178 } 11179 } 11180 11181 if (!Chains.empty()) { 11182 Chains.push_back(NewRoot); 11183 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 11184 } 11185 11186 DAG.setRoot(NewRoot); 11187 11188 assert(i == InVals.size() && "Argument register count mismatch!"); 11189 11190 // If any argument copy elisions occurred and we have debug info, update the 11191 // stale frame indices used in the dbg.declare variable info table. 11192 if (!ArgCopyElisionFrameIndexMap.empty()) { 11193 for (MachineFunction::VariableDbgInfo &VI : 11194 MF->getInStackSlotVariableDbgInfo()) { 11195 auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot()); 11196 if (I != ArgCopyElisionFrameIndexMap.end()) 11197 VI.updateStackSlot(I->second); 11198 } 11199 } 11200 11201 // Finally, if the target has anything special to do, allow it to do so. 11202 emitFunctionEntryCode(); 11203 } 11204 11205 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 11206 /// ensure constants are generated when needed. Remember the virtual registers 11207 /// that need to be added to the Machine PHI nodes as input. We cannot just 11208 /// directly add them, because expansion might result in multiple MBB's for one 11209 /// BB. As such, the start of the BB might correspond to a different MBB than 11210 /// the end. 11211 void 11212 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 11213 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11214 11215 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 11216 11217 // Check PHI nodes in successors that expect a value to be available from this 11218 // block. 11219 for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) { 11220 if (!isa<PHINode>(SuccBB->begin())) continue; 11221 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 11222 11223 // If this terminator has multiple identical successors (common for 11224 // switches), only handle each succ once. 11225 if (!SuccsHandled.insert(SuccMBB).second) 11226 continue; 11227 11228 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 11229 11230 // At this point we know that there is a 1-1 correspondence between LLVM PHI 11231 // nodes and Machine PHI nodes, but the incoming operands have not been 11232 // emitted yet. 11233 for (const PHINode &PN : SuccBB->phis()) { 11234 // Ignore dead phi's. 11235 if (PN.use_empty()) 11236 continue; 11237 11238 // Skip empty types 11239 if (PN.getType()->isEmptyTy()) 11240 continue; 11241 11242 unsigned Reg; 11243 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 11244 11245 if (const auto *C = dyn_cast<Constant>(PHIOp)) { 11246 unsigned &RegOut = ConstantsOut[C]; 11247 if (RegOut == 0) { 11248 RegOut = FuncInfo.CreateRegs(C); 11249 // We need to zero/sign extend ConstantInt phi operands to match 11250 // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo. 11251 ISD::NodeType ExtendType = ISD::ANY_EXTEND; 11252 if (auto *CI = dyn_cast<ConstantInt>(C)) 11253 ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND 11254 : ISD::ZERO_EXTEND; 11255 CopyValueToVirtualRegister(C, RegOut, ExtendType); 11256 } 11257 Reg = RegOut; 11258 } else { 11259 DenseMap<const Value *, Register>::iterator I = 11260 FuncInfo.ValueMap.find(PHIOp); 11261 if (I != FuncInfo.ValueMap.end()) 11262 Reg = I->second; 11263 else { 11264 assert(isa<AllocaInst>(PHIOp) && 11265 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 11266 "Didn't codegen value into a register!??"); 11267 Reg = FuncInfo.CreateRegs(PHIOp); 11268 CopyValueToVirtualRegister(PHIOp, Reg); 11269 } 11270 } 11271 11272 // Remember that this register needs to added to the machine PHI node as 11273 // the input for this MBB. 11274 SmallVector<EVT, 4> ValueVTs; 11275 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 11276 for (EVT VT : ValueVTs) { 11277 const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 11278 for (unsigned i = 0; i != NumRegisters; ++i) 11279 FuncInfo.PHINodesToUpdate.push_back( 11280 std::make_pair(&*MBBI++, Reg + i)); 11281 Reg += NumRegisters; 11282 } 11283 } 11284 } 11285 11286 ConstantsOut.clear(); 11287 } 11288 11289 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 11290 MachineFunction::iterator I(MBB); 11291 if (++I == FuncInfo.MF->end()) 11292 return nullptr; 11293 return &*I; 11294 } 11295 11296 /// During lowering new call nodes can be created (such as memset, etc.). 11297 /// Those will become new roots of the current DAG, but complications arise 11298 /// when they are tail calls. In such cases, the call lowering will update 11299 /// the root, but the builder still needs to know that a tail call has been 11300 /// lowered in order to avoid generating an additional return. 11301 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 11302 // If the node is null, we do have a tail call. 11303 if (MaybeTC.getNode() != nullptr) 11304 DAG.setRoot(MaybeTC); 11305 else 11306 HasTailCall = true; 11307 } 11308 11309 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 11310 MachineBasicBlock *SwitchMBB, 11311 MachineBasicBlock *DefaultMBB) { 11312 MachineFunction *CurMF = FuncInfo.MF; 11313 MachineBasicBlock *NextMBB = nullptr; 11314 MachineFunction::iterator BBI(W.MBB); 11315 if (++BBI != FuncInfo.MF->end()) 11316 NextMBB = &*BBI; 11317 11318 unsigned Size = W.LastCluster - W.FirstCluster + 1; 11319 11320 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11321 11322 if (Size == 2 && W.MBB == SwitchMBB) { 11323 // If any two of the cases has the same destination, and if one value 11324 // is the same as the other, but has one bit unset that the other has set, 11325 // use bit manipulation to do two compares at once. For example: 11326 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 11327 // TODO: This could be extended to merge any 2 cases in switches with 3 11328 // cases. 11329 // TODO: Handle cases where W.CaseBB != SwitchBB. 11330 CaseCluster &Small = *W.FirstCluster; 11331 CaseCluster &Big = *W.LastCluster; 11332 11333 if (Small.Low == Small.High && Big.Low == Big.High && 11334 Small.MBB == Big.MBB) { 11335 const APInt &SmallValue = Small.Low->getValue(); 11336 const APInt &BigValue = Big.Low->getValue(); 11337 11338 // Check that there is only one bit different. 11339 APInt CommonBit = BigValue ^ SmallValue; 11340 if (CommonBit.isPowerOf2()) { 11341 SDValue CondLHS = getValue(Cond); 11342 EVT VT = CondLHS.getValueType(); 11343 SDLoc DL = getCurSDLoc(); 11344 11345 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 11346 DAG.getConstant(CommonBit, DL, VT)); 11347 SDValue Cond = DAG.getSetCC( 11348 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 11349 ISD::SETEQ); 11350 11351 // Update successor info. 11352 // Both Small and Big will jump to Small.BB, so we sum up the 11353 // probabilities. 11354 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 11355 if (BPI) 11356 addSuccessorWithProb( 11357 SwitchMBB, DefaultMBB, 11358 // The default destination is the first successor in IR. 11359 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 11360 else 11361 addSuccessorWithProb(SwitchMBB, DefaultMBB); 11362 11363 // Insert the true branch. 11364 SDValue BrCond = 11365 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 11366 DAG.getBasicBlock(Small.MBB)); 11367 // Insert the false branch. 11368 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 11369 DAG.getBasicBlock(DefaultMBB)); 11370 11371 DAG.setRoot(BrCond); 11372 return; 11373 } 11374 } 11375 } 11376 11377 if (TM.getOptLevel() != CodeGenOptLevel::None) { 11378 // Here, we order cases by probability so the most likely case will be 11379 // checked first. However, two clusters can have the same probability in 11380 // which case their relative ordering is non-deterministic. So we use Low 11381 // as a tie-breaker as clusters are guaranteed to never overlap. 11382 llvm::sort(W.FirstCluster, W.LastCluster + 1, 11383 [](const CaseCluster &a, const CaseCluster &b) { 11384 return a.Prob != b.Prob ? 11385 a.Prob > b.Prob : 11386 a.Low->getValue().slt(b.Low->getValue()); 11387 }); 11388 11389 // Rearrange the case blocks so that the last one falls through if possible 11390 // without changing the order of probabilities. 11391 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 11392 --I; 11393 if (I->Prob > W.LastCluster->Prob) 11394 break; 11395 if (I->Kind == CC_Range && I->MBB == NextMBB) { 11396 std::swap(*I, *W.LastCluster); 11397 break; 11398 } 11399 } 11400 } 11401 11402 // Compute total probability. 11403 BranchProbability DefaultProb = W.DefaultProb; 11404 BranchProbability UnhandledProbs = DefaultProb; 11405 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 11406 UnhandledProbs += I->Prob; 11407 11408 MachineBasicBlock *CurMBB = W.MBB; 11409 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 11410 bool FallthroughUnreachable = false; 11411 MachineBasicBlock *Fallthrough; 11412 if (I == W.LastCluster) { 11413 // For the last cluster, fall through to the default destination. 11414 Fallthrough = DefaultMBB; 11415 FallthroughUnreachable = isa<UnreachableInst>( 11416 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 11417 } else { 11418 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 11419 CurMF->insert(BBI, Fallthrough); 11420 // Put Cond in a virtual register to make it available from the new blocks. 11421 ExportFromCurrentBlock(Cond); 11422 } 11423 UnhandledProbs -= I->Prob; 11424 11425 switch (I->Kind) { 11426 case CC_JumpTable: { 11427 // FIXME: Optimize away range check based on pivot comparisons. 11428 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 11429 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 11430 11431 // The jump block hasn't been inserted yet; insert it here. 11432 MachineBasicBlock *JumpMBB = JT->MBB; 11433 CurMF->insert(BBI, JumpMBB); 11434 11435 auto JumpProb = I->Prob; 11436 auto FallthroughProb = UnhandledProbs; 11437 11438 // If the default statement is a target of the jump table, we evenly 11439 // distribute the default probability to successors of CurMBB. Also 11440 // update the probability on the edge from JumpMBB to Fallthrough. 11441 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 11442 SE = JumpMBB->succ_end(); 11443 SI != SE; ++SI) { 11444 if (*SI == DefaultMBB) { 11445 JumpProb += DefaultProb / 2; 11446 FallthroughProb -= DefaultProb / 2; 11447 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 11448 JumpMBB->normalizeSuccProbs(); 11449 break; 11450 } 11451 } 11452 11453 // If the default clause is unreachable, propagate that knowledge into 11454 // JTH->FallthroughUnreachable which will use it to suppress the range 11455 // check. 11456 // 11457 // However, don't do this if we're doing branch target enforcement, 11458 // because a table branch _without_ a range check can be a tempting JOP 11459 // gadget - out-of-bounds inputs that are impossible in correct 11460 // execution become possible again if an attacker can influence the 11461 // control flow. So if an attacker doesn't already have a BTI bypass 11462 // available, we don't want them to be able to get one out of this 11463 // table branch. 11464 if (FallthroughUnreachable) { 11465 Function &CurFunc = CurMF->getFunction(); 11466 bool HasBranchTargetEnforcement = false; 11467 if (CurFunc.hasFnAttribute("branch-target-enforcement")) { 11468 HasBranchTargetEnforcement = 11469 CurFunc.getFnAttribute("branch-target-enforcement") 11470 .getValueAsBool(); 11471 } else { 11472 HasBranchTargetEnforcement = 11473 CurMF->getMMI().getModule()->getModuleFlag( 11474 "branch-target-enforcement"); 11475 } 11476 if (!HasBranchTargetEnforcement) 11477 JTH->FallthroughUnreachable = true; 11478 } 11479 11480 if (!JTH->FallthroughUnreachable) 11481 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 11482 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 11483 CurMBB->normalizeSuccProbs(); 11484 11485 // The jump table header will be inserted in our current block, do the 11486 // range check, and fall through to our fallthrough block. 11487 JTH->HeaderBB = CurMBB; 11488 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 11489 11490 // If we're in the right place, emit the jump table header right now. 11491 if (CurMBB == SwitchMBB) { 11492 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 11493 JTH->Emitted = true; 11494 } 11495 break; 11496 } 11497 case CC_BitTests: { 11498 // FIXME: Optimize away range check based on pivot comparisons. 11499 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 11500 11501 // The bit test blocks haven't been inserted yet; insert them here. 11502 for (BitTestCase &BTC : BTB->Cases) 11503 CurMF->insert(BBI, BTC.ThisBB); 11504 11505 // Fill in fields of the BitTestBlock. 11506 BTB->Parent = CurMBB; 11507 BTB->Default = Fallthrough; 11508 11509 BTB->DefaultProb = UnhandledProbs; 11510 // If the cases in bit test don't form a contiguous range, we evenly 11511 // distribute the probability on the edge to Fallthrough to two 11512 // successors of CurMBB. 11513 if (!BTB->ContiguousRange) { 11514 BTB->Prob += DefaultProb / 2; 11515 BTB->DefaultProb -= DefaultProb / 2; 11516 } 11517 11518 if (FallthroughUnreachable) 11519 BTB->FallthroughUnreachable = true; 11520 11521 // If we're in the right place, emit the bit test header right now. 11522 if (CurMBB == SwitchMBB) { 11523 visitBitTestHeader(*BTB, SwitchMBB); 11524 BTB->Emitted = true; 11525 } 11526 break; 11527 } 11528 case CC_Range: { 11529 const Value *RHS, *LHS, *MHS; 11530 ISD::CondCode CC; 11531 if (I->Low == I->High) { 11532 // Check Cond == I->Low. 11533 CC = ISD::SETEQ; 11534 LHS = Cond; 11535 RHS=I->Low; 11536 MHS = nullptr; 11537 } else { 11538 // Check I->Low <= Cond <= I->High. 11539 CC = ISD::SETLE; 11540 LHS = I->Low; 11541 MHS = Cond; 11542 RHS = I->High; 11543 } 11544 11545 // If Fallthrough is unreachable, fold away the comparison. 11546 if (FallthroughUnreachable) 11547 CC = ISD::SETTRUE; 11548 11549 // The false probability is the sum of all unhandled cases. 11550 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 11551 getCurSDLoc(), I->Prob, UnhandledProbs); 11552 11553 if (CurMBB == SwitchMBB) 11554 visitSwitchCase(CB, SwitchMBB); 11555 else 11556 SL->SwitchCases.push_back(CB); 11557 11558 break; 11559 } 11560 } 11561 CurMBB = Fallthrough; 11562 } 11563 } 11564 11565 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 11566 CaseClusterIt First, 11567 CaseClusterIt Last) { 11568 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 11569 if (X.Prob != CC.Prob) 11570 return X.Prob > CC.Prob; 11571 11572 // Ties are broken by comparing the case value. 11573 return X.Low->getValue().slt(CC.Low->getValue()); 11574 }); 11575 } 11576 11577 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 11578 const SwitchWorkListItem &W, 11579 Value *Cond, 11580 MachineBasicBlock *SwitchMBB) { 11581 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 11582 "Clusters not sorted?"); 11583 11584 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 11585 11586 // Balance the tree based on branch probabilities to create a near-optimal (in 11587 // terms of search time given key frequency) binary search tree. See e.g. Kurt 11588 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 11589 CaseClusterIt LastLeft = W.FirstCluster; 11590 CaseClusterIt FirstRight = W.LastCluster; 11591 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 11592 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 11593 11594 // Move LastLeft and FirstRight towards each other from opposite directions to 11595 // find a partitioning of the clusters which balances the probability on both 11596 // sides. If LeftProb and RightProb are equal, alternate which side is 11597 // taken to ensure 0-probability nodes are distributed evenly. 11598 unsigned I = 0; 11599 while (LastLeft + 1 < FirstRight) { 11600 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 11601 LeftProb += (++LastLeft)->Prob; 11602 else 11603 RightProb += (--FirstRight)->Prob; 11604 I++; 11605 } 11606 11607 while (true) { 11608 // Our binary search tree differs from a typical BST in that ours can have up 11609 // to three values in each leaf. The pivot selection above doesn't take that 11610 // into account, which means the tree might require more nodes and be less 11611 // efficient. We compensate for this here. 11612 11613 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 11614 unsigned NumRight = W.LastCluster - FirstRight + 1; 11615 11616 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 11617 // If one side has less than 3 clusters, and the other has more than 3, 11618 // consider taking a cluster from the other side. 11619 11620 if (NumLeft < NumRight) { 11621 // Consider moving the first cluster on the right to the left side. 11622 CaseCluster &CC = *FirstRight; 11623 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11624 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11625 if (LeftSideRank <= RightSideRank) { 11626 // Moving the cluster to the left does not demote it. 11627 ++LastLeft; 11628 ++FirstRight; 11629 continue; 11630 } 11631 } else { 11632 assert(NumRight < NumLeft); 11633 // Consider moving the last element on the left to the right side. 11634 CaseCluster &CC = *LastLeft; 11635 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 11636 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 11637 if (RightSideRank <= LeftSideRank) { 11638 // Moving the cluster to the right does not demot it. 11639 --LastLeft; 11640 --FirstRight; 11641 continue; 11642 } 11643 } 11644 } 11645 break; 11646 } 11647 11648 assert(LastLeft + 1 == FirstRight); 11649 assert(LastLeft >= W.FirstCluster); 11650 assert(FirstRight <= W.LastCluster); 11651 11652 // Use the first element on the right as pivot since we will make less-than 11653 // comparisons against it. 11654 CaseClusterIt PivotCluster = FirstRight; 11655 assert(PivotCluster > W.FirstCluster); 11656 assert(PivotCluster <= W.LastCluster); 11657 11658 CaseClusterIt FirstLeft = W.FirstCluster; 11659 CaseClusterIt LastRight = W.LastCluster; 11660 11661 const ConstantInt *Pivot = PivotCluster->Low; 11662 11663 // New blocks will be inserted immediately after the current one. 11664 MachineFunction::iterator BBI(W.MBB); 11665 ++BBI; 11666 11667 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 11668 // we can branch to its destination directly if it's squeezed exactly in 11669 // between the known lower bound and Pivot - 1. 11670 MachineBasicBlock *LeftMBB; 11671 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 11672 FirstLeft->Low == W.GE && 11673 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 11674 LeftMBB = FirstLeft->MBB; 11675 } else { 11676 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11677 FuncInfo.MF->insert(BBI, LeftMBB); 11678 WorkList.push_back( 11679 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 11680 // Put Cond in a virtual register to make it available from the new blocks. 11681 ExportFromCurrentBlock(Cond); 11682 } 11683 11684 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 11685 // single cluster, RHS.Low == Pivot, and we can branch to its destination 11686 // directly if RHS.High equals the current upper bound. 11687 MachineBasicBlock *RightMBB; 11688 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 11689 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 11690 RightMBB = FirstRight->MBB; 11691 } else { 11692 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 11693 FuncInfo.MF->insert(BBI, RightMBB); 11694 WorkList.push_back( 11695 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 11696 // Put Cond in a virtual register to make it available from the new blocks. 11697 ExportFromCurrentBlock(Cond); 11698 } 11699 11700 // Create the CaseBlock record that will be used to lower the branch. 11701 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 11702 getCurSDLoc(), LeftProb, RightProb); 11703 11704 if (W.MBB == SwitchMBB) 11705 visitSwitchCase(CB, SwitchMBB); 11706 else 11707 SL->SwitchCases.push_back(CB); 11708 } 11709 11710 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 11711 // from the swith statement. 11712 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 11713 BranchProbability PeeledCaseProb) { 11714 if (PeeledCaseProb == BranchProbability::getOne()) 11715 return BranchProbability::getZero(); 11716 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 11717 11718 uint32_t Numerator = CaseProb.getNumerator(); 11719 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 11720 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 11721 } 11722 11723 // Try to peel the top probability case if it exceeds the threshold. 11724 // Return current MachineBasicBlock for the switch statement if the peeling 11725 // does not occur. 11726 // If the peeling is performed, return the newly created MachineBasicBlock 11727 // for the peeled switch statement. Also update Clusters to remove the peeled 11728 // case. PeeledCaseProb is the BranchProbability for the peeled case. 11729 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 11730 const SwitchInst &SI, CaseClusterVector &Clusters, 11731 BranchProbability &PeeledCaseProb) { 11732 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11733 // Don't perform if there is only one cluster or optimizing for size. 11734 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 11735 TM.getOptLevel() == CodeGenOptLevel::None || 11736 SwitchMBB->getParent()->getFunction().hasMinSize()) 11737 return SwitchMBB; 11738 11739 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 11740 unsigned PeeledCaseIndex = 0; 11741 bool SwitchPeeled = false; 11742 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 11743 CaseCluster &CC = Clusters[Index]; 11744 if (CC.Prob < TopCaseProb) 11745 continue; 11746 TopCaseProb = CC.Prob; 11747 PeeledCaseIndex = Index; 11748 SwitchPeeled = true; 11749 } 11750 if (!SwitchPeeled) 11751 return SwitchMBB; 11752 11753 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 11754 << TopCaseProb << "\n"); 11755 11756 // Record the MBB for the peeled switch statement. 11757 MachineFunction::iterator BBI(SwitchMBB); 11758 ++BBI; 11759 MachineBasicBlock *PeeledSwitchMBB = 11760 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 11761 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 11762 11763 ExportFromCurrentBlock(SI.getCondition()); 11764 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 11765 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 11766 nullptr, nullptr, TopCaseProb.getCompl()}; 11767 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 11768 11769 Clusters.erase(PeeledCaseIt); 11770 for (CaseCluster &CC : Clusters) { 11771 LLVM_DEBUG( 11772 dbgs() << "Scale the probablity for one cluster, before scaling: " 11773 << CC.Prob << "\n"); 11774 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 11775 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 11776 } 11777 PeeledCaseProb = TopCaseProb; 11778 return PeeledSwitchMBB; 11779 } 11780 11781 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 11782 // Extract cases from the switch. 11783 BranchProbabilityInfo *BPI = FuncInfo.BPI; 11784 CaseClusterVector Clusters; 11785 Clusters.reserve(SI.getNumCases()); 11786 for (auto I : SI.cases()) { 11787 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 11788 const ConstantInt *CaseVal = I.getCaseValue(); 11789 BranchProbability Prob = 11790 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 11791 : BranchProbability(1, SI.getNumCases() + 1); 11792 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 11793 } 11794 11795 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 11796 11797 // Cluster adjacent cases with the same destination. We do this at all 11798 // optimization levels because it's cheap to do and will make codegen faster 11799 // if there are many clusters. 11800 sortAndRangeify(Clusters); 11801 11802 // The branch probablity of the peeled case. 11803 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 11804 MachineBasicBlock *PeeledSwitchMBB = 11805 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 11806 11807 // If there is only the default destination, jump there directly. 11808 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 11809 if (Clusters.empty()) { 11810 assert(PeeledSwitchMBB == SwitchMBB); 11811 SwitchMBB->addSuccessor(DefaultMBB); 11812 if (DefaultMBB != NextBlock(SwitchMBB)) { 11813 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 11814 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 11815 } 11816 return; 11817 } 11818 11819 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 11820 SL->findBitTestClusters(Clusters, &SI); 11821 11822 LLVM_DEBUG({ 11823 dbgs() << "Case clusters: "; 11824 for (const CaseCluster &C : Clusters) { 11825 if (C.Kind == CC_JumpTable) 11826 dbgs() << "JT:"; 11827 if (C.Kind == CC_BitTests) 11828 dbgs() << "BT:"; 11829 11830 C.Low->getValue().print(dbgs(), true); 11831 if (C.Low != C.High) { 11832 dbgs() << '-'; 11833 C.High->getValue().print(dbgs(), true); 11834 } 11835 dbgs() << ' '; 11836 } 11837 dbgs() << '\n'; 11838 }); 11839 11840 assert(!Clusters.empty()); 11841 SwitchWorkList WorkList; 11842 CaseClusterIt First = Clusters.begin(); 11843 CaseClusterIt Last = Clusters.end() - 1; 11844 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 11845 // Scale the branchprobability for DefaultMBB if the peel occurs and 11846 // DefaultMBB is not replaced. 11847 if (PeeledCaseProb != BranchProbability::getZero() && 11848 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 11849 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 11850 WorkList.push_back( 11851 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 11852 11853 while (!WorkList.empty()) { 11854 SwitchWorkListItem W = WorkList.pop_back_val(); 11855 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 11856 11857 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOptLevel::None && 11858 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 11859 // For optimized builds, lower large range as a balanced binary tree. 11860 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 11861 continue; 11862 } 11863 11864 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 11865 } 11866 } 11867 11868 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 11869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11870 auto DL = getCurSDLoc(); 11871 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11872 setValue(&I, DAG.getStepVector(DL, ResultVT)); 11873 } 11874 11875 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 11876 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11877 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11878 11879 SDLoc DL = getCurSDLoc(); 11880 SDValue V = getValue(I.getOperand(0)); 11881 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 11882 11883 if (VT.isScalableVector()) { 11884 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 11885 return; 11886 } 11887 11888 // Use VECTOR_SHUFFLE for the fixed-length vector 11889 // to maintain existing behavior. 11890 SmallVector<int, 8> Mask; 11891 unsigned NumElts = VT.getVectorMinNumElements(); 11892 for (unsigned i = 0; i != NumElts; ++i) 11893 Mask.push_back(NumElts - 1 - i); 11894 11895 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 11896 } 11897 11898 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) { 11899 auto DL = getCurSDLoc(); 11900 SDValue InVec = getValue(I.getOperand(0)); 11901 EVT OutVT = 11902 InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext()); 11903 11904 unsigned OutNumElts = OutVT.getVectorMinNumElements(); 11905 11906 // ISD Node needs the input vectors split into two equal parts 11907 SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11908 DAG.getVectorIdxConstant(0, DL)); 11909 SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec, 11910 DAG.getVectorIdxConstant(OutNumElts, DL)); 11911 11912 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11913 // legalisation and combines. 11914 if (OutVT.isFixedLengthVector()) { 11915 SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11916 createStrideMask(0, 2, OutNumElts)); 11917 SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi, 11918 createStrideMask(1, 2, OutNumElts)); 11919 SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc()); 11920 setValue(&I, Res); 11921 return; 11922 } 11923 11924 SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL, 11925 DAG.getVTList(OutVT, OutVT), Lo, Hi); 11926 setValue(&I, Res); 11927 } 11928 11929 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) { 11930 auto DL = getCurSDLoc(); 11931 EVT InVT = getValue(I.getOperand(0)).getValueType(); 11932 SDValue InVec0 = getValue(I.getOperand(0)); 11933 SDValue InVec1 = getValue(I.getOperand(1)); 11934 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11935 EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11936 11937 // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing 11938 // legalisation and combines. 11939 if (OutVT.isFixedLengthVector()) { 11940 unsigned NumElts = InVT.getVectorMinNumElements(); 11941 SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1); 11942 setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT), 11943 createInterleaveMask(NumElts, 2))); 11944 return; 11945 } 11946 11947 SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL, 11948 DAG.getVTList(InVT, InVT), InVec0, InVec1); 11949 Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0), 11950 Res.getValue(1)); 11951 setValue(&I, Res); 11952 } 11953 11954 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 11955 SmallVector<EVT, 4> ValueVTs; 11956 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 11957 ValueVTs); 11958 unsigned NumValues = ValueVTs.size(); 11959 if (NumValues == 0) return; 11960 11961 SmallVector<SDValue, 4> Values(NumValues); 11962 SDValue Op = getValue(I.getOperand(0)); 11963 11964 for (unsigned i = 0; i != NumValues; ++i) 11965 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 11966 SDValue(Op.getNode(), Op.getResNo() + i)); 11967 11968 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 11969 DAG.getVTList(ValueVTs), Values)); 11970 } 11971 11972 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 11973 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 11974 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 11975 11976 SDLoc DL = getCurSDLoc(); 11977 SDValue V1 = getValue(I.getOperand(0)); 11978 SDValue V2 = getValue(I.getOperand(1)); 11979 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11980 11981 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11982 if (VT.isScalableVector()) { 11983 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11984 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11985 DAG.getConstant(Imm, DL, IdxVT))); 11986 return; 11987 } 11988 11989 unsigned NumElts = VT.getVectorNumElements(); 11990 11991 uint64_t Idx = (NumElts + Imm) % NumElts; 11992 11993 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11994 SmallVector<int, 8> Mask; 11995 for (unsigned i = 0; i < NumElts; ++i) 11996 Mask.push_back(Idx + i); 11997 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11998 } 11999 12000 // Consider the following MIR after SelectionDAG, which produces output in 12001 // phyregs in the first case or virtregs in the second case. 12002 // 12003 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx 12004 // %5:gr32 = COPY $ebx 12005 // %6:gr32 = COPY $edx 12006 // %1:gr32 = COPY %6:gr32 12007 // %0:gr32 = COPY %5:gr32 12008 // 12009 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32 12010 // %1:gr32 = COPY %6:gr32 12011 // %0:gr32 = COPY %5:gr32 12012 // 12013 // Given %0, we'd like to return $ebx in the first case and %5 in the second. 12014 // Given %1, we'd like to return $edx in the first case and %6 in the second. 12015 // 12016 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap 12017 // to a single virtreg (such as %0). The remaining outputs monotonically 12018 // increase in virtreg number from there. If a callbr has no outputs, then it 12019 // should not have a corresponding callbr landingpad; in fact, the callbr 12020 // landingpad would not even be able to refer to such a callbr. 12021 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) { 12022 MachineInstr *MI = MRI.def_begin(Reg)->getParent(); 12023 // There is definitely at least one copy. 12024 assert(MI->getOpcode() == TargetOpcode::COPY && 12025 "start of copy chain MUST be COPY"); 12026 Reg = MI->getOperand(1).getReg(); 12027 MI = MRI.def_begin(Reg)->getParent(); 12028 // There may be an optional second copy. 12029 if (MI->getOpcode() == TargetOpcode::COPY) { 12030 assert(Reg.isVirtual() && "expected COPY of virtual register"); 12031 Reg = MI->getOperand(1).getReg(); 12032 assert(Reg.isPhysical() && "expected COPY of physical register"); 12033 MI = MRI.def_begin(Reg)->getParent(); 12034 } 12035 // The start of the chain must be an INLINEASM_BR. 12036 assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR && 12037 "end of copy chain MUST be INLINEASM_BR"); 12038 return Reg; 12039 } 12040 12041 // We must do this walk rather than the simpler 12042 // setValue(&I, getCopyFromRegs(CBR, CBR->getType())); 12043 // otherwise we will end up with copies of virtregs only valid along direct 12044 // edges. 12045 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) { 12046 SmallVector<EVT, 8> ResultVTs; 12047 SmallVector<SDValue, 8> ResultValues; 12048 const auto *CBR = 12049 cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator()); 12050 12051 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 12052 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 12053 MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 12054 12055 unsigned InitialDef = FuncInfo.ValueMap[CBR]; 12056 SDValue Chain = DAG.getRoot(); 12057 12058 // Re-parse the asm constraints string. 12059 TargetLowering::AsmOperandInfoVector TargetConstraints = 12060 TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR); 12061 for (auto &T : TargetConstraints) { 12062 SDISelAsmOperandInfo OpInfo(T); 12063 if (OpInfo.Type != InlineAsm::isOutput) 12064 continue; 12065 12066 // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the 12067 // individual constraint. 12068 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 12069 12070 switch (OpInfo.ConstraintType) { 12071 case TargetLowering::C_Register: 12072 case TargetLowering::C_RegisterClass: { 12073 // Fill in OpInfo.AssignedRegs.Regs. 12074 getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo); 12075 12076 // getRegistersForValue may produce 1 to many registers based on whether 12077 // the OpInfo.ConstraintVT is legal on the target or not. 12078 for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) { 12079 Register OriginalDef = FollowCopyChain(MRI, InitialDef++); 12080 if (Register::isPhysicalRegister(OriginalDef)) 12081 FuncInfo.MBB->addLiveIn(OriginalDef); 12082 // Update the assigned registers to use the original defs. 12083 OpInfo.AssignedRegs.Regs[i] = OriginalDef; 12084 } 12085 12086 SDValue V = OpInfo.AssignedRegs.getCopyFromRegs( 12087 DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR); 12088 ResultValues.push_back(V); 12089 ResultVTs.push_back(OpInfo.ConstraintVT); 12090 break; 12091 } 12092 case TargetLowering::C_Other: { 12093 SDValue Flag; 12094 SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 12095 OpInfo, DAG); 12096 ++InitialDef; 12097 ResultValues.push_back(V); 12098 ResultVTs.push_back(OpInfo.ConstraintVT); 12099 break; 12100 } 12101 default: 12102 break; 12103 } 12104 } 12105 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 12106 DAG.getVTList(ResultVTs), ResultValues); 12107 setValue(&I, V); 12108 } 12109