1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BlockFrequencyInfo.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/ProfileSummaryInfo.h" 37 #include "llvm/Analysis/TargetLibraryInfo.h" 38 #include "llvm/Analysis/ValueTracking.h" 39 #include "llvm/Analysis/VectorUtils.h" 40 #include "llvm/CodeGen/Analysis.h" 41 #include "llvm/CodeGen/FunctionLoweringInfo.h" 42 #include "llvm/CodeGen/GCMetadata.h" 43 #include "llvm/CodeGen/ISDOpcodes.h" 44 #include "llvm/CodeGen/MachineBasicBlock.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineInstr.h" 48 #include "llvm/CodeGen/MachineInstrBuilder.h" 49 #include "llvm/CodeGen/MachineJumpTableInfo.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineModuleInfo.h" 52 #include "llvm/CodeGen/MachineOperand.h" 53 #include "llvm/CodeGen/MachineRegisterInfo.h" 54 #include "llvm/CodeGen/RuntimeLibcalls.h" 55 #include "llvm/CodeGen/SelectionDAG.h" 56 #include "llvm/CodeGen/SelectionDAGNodes.h" 57 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 58 #include "llvm/CodeGen/StackMaps.h" 59 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 60 #include "llvm/CodeGen/TargetFrameLowering.h" 61 #include "llvm/CodeGen/TargetInstrInfo.h" 62 #include "llvm/CodeGen/TargetLowering.h" 63 #include "llvm/CodeGen/TargetOpcodes.h" 64 #include "llvm/CodeGen/TargetRegisterInfo.h" 65 #include "llvm/CodeGen/TargetSubtargetInfo.h" 66 #include "llvm/CodeGen/ValueTypes.h" 67 #include "llvm/CodeGen/WinEHFuncInfo.h" 68 #include "llvm/IR/Argument.h" 69 #include "llvm/IR/Attributes.h" 70 #include "llvm/IR/BasicBlock.h" 71 #include "llvm/IR/CFG.h" 72 #include "llvm/IR/CallingConv.h" 73 #include "llvm/IR/Constant.h" 74 #include "llvm/IR/ConstantRange.h" 75 #include "llvm/IR/Constants.h" 76 #include "llvm/IR/DataLayout.h" 77 #include "llvm/IR/DebugInfoMetadata.h" 78 #include "llvm/IR/DebugLoc.h" 79 #include "llvm/IR/DerivedTypes.h" 80 #include "llvm/IR/Function.h" 81 #include "llvm/IR/GetElementPtrTypeIterator.h" 82 #include "llvm/IR/InlineAsm.h" 83 #include "llvm/IR/InstrTypes.h" 84 #include "llvm/IR/Instruction.h" 85 #include "llvm/IR/Instructions.h" 86 #include "llvm/IR/IntrinsicInst.h" 87 #include "llvm/IR/Intrinsics.h" 88 #include "llvm/IR/IntrinsicsAArch64.h" 89 #include "llvm/IR/IntrinsicsWebAssembly.h" 90 #include "llvm/IR/LLVMContext.h" 91 #include "llvm/IR/Metadata.h" 92 #include "llvm/IR/Module.h" 93 #include "llvm/IR/Operator.h" 94 #include "llvm/IR/PatternMatch.h" 95 #include "llvm/IR/Statepoint.h" 96 #include "llvm/IR/Type.h" 97 #include "llvm/IR/User.h" 98 #include "llvm/IR/Value.h" 99 #include "llvm/MC/MCContext.h" 100 #include "llvm/MC/MCSymbol.h" 101 #include "llvm/Support/AtomicOrdering.h" 102 #include "llvm/Support/BranchProbability.h" 103 #include "llvm/Support/Casting.h" 104 #include "llvm/Support/CodeGen.h" 105 #include "llvm/Support/CommandLine.h" 106 #include "llvm/Support/Compiler.h" 107 #include "llvm/Support/Debug.h" 108 #include "llvm/Support/ErrorHandling.h" 109 #include "llvm/Support/MachineValueType.h" 110 #include "llvm/Support/MathExtras.h" 111 #include "llvm/Support/raw_ostream.h" 112 #include "llvm/Target/TargetIntrinsicInfo.h" 113 #include "llvm/Target/TargetMachine.h" 114 #include "llvm/Target/TargetOptions.h" 115 #include "llvm/Transforms/Utils/Local.h" 116 #include <algorithm> 117 #include <cassert> 118 #include <cstddef> 119 #include <cstdint> 120 #include <cstring> 121 #include <iterator> 122 #include <limits> 123 #include <numeric> 124 #include <tuple> 125 #include <utility> 126 #include <vector> 127 128 using namespace llvm; 129 using namespace PatternMatch; 130 using namespace SwitchCG; 131 132 #define DEBUG_TYPE "isel" 133 134 /// LimitFloatPrecision - Generate low-precision inline sequences for 135 /// some float libcalls (6, 8 or 12 bits). 136 static unsigned LimitFloatPrecision; 137 138 static cl::opt<bool> 139 InsertAssertAlign("insert-assert-align", cl::init(true), 140 cl::desc("Insert the experimental `assertalign` node."), 141 cl::ReallyHidden); 142 143 static cl::opt<unsigned, true> 144 LimitFPPrecision("limit-float-precision", 145 cl::desc("Generate low-precision inline sequences " 146 "for some float libcalls"), 147 cl::location(LimitFloatPrecision), cl::Hidden, 148 cl::init(0)); 149 150 static cl::opt<unsigned> SwitchPeelThreshold( 151 "switch-peel-threshold", cl::Hidden, cl::init(66), 152 cl::desc("Set the case probability threshold for peeling the case from a " 153 "switch statement. A value greater than 100 will void this " 154 "optimization")); 155 156 // Limit the width of DAG chains. This is important in general to prevent 157 // DAG-based analysis from blowing up. For example, alias analysis and 158 // load clustering may not complete in reasonable time. It is difficult to 159 // recognize and avoid this situation within each individual analysis, and 160 // future analyses are likely to have the same behavior. Limiting DAG width is 161 // the safe approach and will be especially important with global DAGs. 162 // 163 // MaxParallelChains default is arbitrarily high to avoid affecting 164 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 165 // sequence over this should have been converted to llvm.memcpy by the 166 // frontend. It is easy to induce this behavior with .ll code such as: 167 // %buffer = alloca [4096 x i8] 168 // %data = load [4096 x i8]* %argPtr 169 // store [4096 x i8] %data, [4096 x i8]* %buffer 170 static const unsigned MaxParallelChains = 64; 171 172 // Return the calling convention if the Value passed requires ABI mangling as it 173 // is a parameter to a function or a return value from a function which is not 174 // an intrinsic. 175 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 176 if (auto *R = dyn_cast<ReturnInst>(V)) 177 return R->getParent()->getParent()->getCallingConv(); 178 179 if (auto *CI = dyn_cast<CallInst>(V)) { 180 const bool IsInlineAsm = CI->isInlineAsm(); 181 const bool IsIndirectFunctionCall = 182 !IsInlineAsm && !CI->getCalledFunction(); 183 184 // It is possible that the call instruction is an inline asm statement or an 185 // indirect function call in which case the return value of 186 // getCalledFunction() would be nullptr. 187 const bool IsInstrinsicCall = 188 !IsInlineAsm && !IsIndirectFunctionCall && 189 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 190 191 if (!IsInlineAsm && !IsInstrinsicCall) 192 return CI->getCallingConv(); 193 } 194 195 return None; 196 } 197 198 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC); 202 203 /// getCopyFromParts - Create a value that contains the specified legal parts 204 /// combined into the value they represent. If the parts combine to a type 205 /// larger than ValueVT then AssertOp can be used to specify whether the extra 206 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 207 /// (ISD::AssertSext). 208 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 209 const SDValue *Parts, unsigned NumParts, 210 MVT PartVT, EVT ValueVT, const Value *V, 211 Optional<CallingConv::ID> CC = None, 212 Optional<ISD::NodeType> AssertOp = None) { 213 // Let the target assemble the parts if it wants to 214 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 215 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 216 PartVT, ValueVT, CC)) 217 return Val; 218 219 if (ValueVT.isVector()) 220 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 221 CC); 222 223 assert(NumParts > 0 && "No parts to assemble!"); 224 SDValue Val = Parts[0]; 225 226 if (NumParts > 1) { 227 // Assemble the value from multiple parts. 228 if (ValueVT.isInteger()) { 229 unsigned PartBits = PartVT.getSizeInBits(); 230 unsigned ValueBits = ValueVT.getSizeInBits(); 231 232 // Assemble the power of 2 part. 233 unsigned RoundParts = 234 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 235 unsigned RoundBits = PartBits * RoundParts; 236 EVT RoundVT = RoundBits == ValueBits ? 237 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 238 SDValue Lo, Hi; 239 240 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 241 242 if (RoundParts > 2) { 243 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 244 PartVT, HalfVT, V); 245 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 246 RoundParts / 2, PartVT, HalfVT, V); 247 } else { 248 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 249 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 250 } 251 252 if (DAG.getDataLayout().isBigEndian()) 253 std::swap(Lo, Hi); 254 255 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 256 257 if (RoundParts < NumParts) { 258 // Assemble the trailing non-power-of-2 part. 259 unsigned OddParts = NumParts - RoundParts; 260 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 261 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 262 OddVT, V, CC); 263 264 // Combine the round and odd parts. 265 Lo = Val; 266 if (DAG.getDataLayout().isBigEndian()) 267 std::swap(Lo, Hi); 268 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 269 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 270 Hi = 271 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 272 DAG.getConstant(Lo.getValueSizeInBits(), DL, 273 TLI.getPointerTy(DAG.getDataLayout()))); 274 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 275 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 276 } 277 } else if (PartVT.isFloatingPoint()) { 278 // FP split into multiple FP parts (for ppcf128) 279 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 280 "Unexpected split"); 281 SDValue Lo, Hi; 282 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 283 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 284 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 285 std::swap(Lo, Hi); 286 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 287 } else { 288 // FP split into integer parts (soft fp) 289 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 290 !PartVT.isVector() && "Unexpected split"); 291 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 292 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 293 } 294 } 295 296 // There is now one part, held in Val. Correct it to match ValueVT. 297 // PartEVT is the type of the register class that holds the value. 298 // ValueVT is the type of the inline asm operation. 299 EVT PartEVT = Val.getValueType(); 300 301 if (PartEVT == ValueVT) 302 return Val; 303 304 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 305 ValueVT.bitsLT(PartEVT)) { 306 // For an FP value in an integer part, we need to truncate to the right 307 // width first. 308 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 309 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 310 } 311 312 // Handle types that have the same size. 313 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 314 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 315 316 // Handle types with different sizes. 317 if (PartEVT.isInteger() && ValueVT.isInteger()) { 318 if (ValueVT.bitsLT(PartEVT)) { 319 // For a truncate, see if we have any information to 320 // indicate whether the truncated bits will always be 321 // zero or sign-extension. 322 if (AssertOp.hasValue()) 323 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 324 DAG.getValueType(ValueVT)); 325 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 326 } 327 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 328 } 329 330 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 331 // FP_ROUND's are always exact here. 332 if (ValueVT.bitsLT(Val.getValueType())) 333 return DAG.getNode( 334 ISD::FP_ROUND, DL, ValueVT, Val, 335 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 336 337 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 338 } 339 340 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 341 // then truncating. 342 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 343 ValueVT.bitsLT(PartEVT)) { 344 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 345 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 346 } 347 348 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 349 } 350 351 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 352 const Twine &ErrMsg) { 353 const Instruction *I = dyn_cast_or_null<Instruction>(V); 354 if (!V) 355 return Ctx.emitError(ErrMsg); 356 357 const char *AsmError = ", possible invalid constraint for vector type"; 358 if (const CallInst *CI = dyn_cast<CallInst>(I)) 359 if (CI->isInlineAsm()) 360 return Ctx.emitError(I, ErrMsg + AsmError); 361 362 return Ctx.emitError(I, ErrMsg); 363 } 364 365 /// getCopyFromPartsVector - Create a value that contains the specified legal 366 /// parts combined into the value they represent. If the parts combine to a 367 /// type larger than ValueVT then AssertOp can be used to specify whether the 368 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 369 /// ValueVT (ISD::AssertSext). 370 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 371 const SDValue *Parts, unsigned NumParts, 372 MVT PartVT, EVT ValueVT, const Value *V, 373 Optional<CallingConv::ID> CallConv) { 374 assert(ValueVT.isVector() && "Not a vector value"); 375 assert(NumParts > 0 && "No parts to assemble!"); 376 const bool IsABIRegCopy = CallConv.hasValue(); 377 378 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 379 SDValue Val = Parts[0]; 380 381 // Handle a multi-element vector. 382 if (NumParts > 1) { 383 EVT IntermediateVT; 384 MVT RegisterVT; 385 unsigned NumIntermediates; 386 unsigned NumRegs; 387 388 if (IsABIRegCopy) { 389 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 390 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 391 NumIntermediates, RegisterVT); 392 } else { 393 NumRegs = 394 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 395 NumIntermediates, RegisterVT); 396 } 397 398 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 399 NumParts = NumRegs; // Silence a compiler warning. 400 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 401 assert(RegisterVT.getSizeInBits() == 402 Parts[0].getSimpleValueType().getSizeInBits() && 403 "Part type sizes don't match!"); 404 405 // Assemble the parts into intermediate operands. 406 SmallVector<SDValue, 8> Ops(NumIntermediates); 407 if (NumIntermediates == NumParts) { 408 // If the register was not expanded, truncate or copy the value, 409 // as appropriate. 410 for (unsigned i = 0; i != NumParts; ++i) 411 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 412 PartVT, IntermediateVT, V); 413 } else if (NumParts > 0) { 414 // If the intermediate type was expanded, build the intermediate 415 // operands from the parts. 416 assert(NumParts % NumIntermediates == 0 && 417 "Must expand into a divisible number of parts!"); 418 unsigned Factor = NumParts / NumIntermediates; 419 for (unsigned i = 0; i != NumIntermediates; ++i) 420 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 421 PartVT, IntermediateVT, V); 422 } 423 424 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 425 // intermediate operands. 426 EVT BuiltVectorTy = 427 IntermediateVT.isVector() 428 ? EVT::getVectorVT( 429 *DAG.getContext(), IntermediateVT.getScalarType(), 430 IntermediateVT.getVectorElementCount() * NumParts) 431 : EVT::getVectorVT(*DAG.getContext(), 432 IntermediateVT.getScalarType(), 433 NumIntermediates); 434 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 435 : ISD::BUILD_VECTOR, 436 DL, BuiltVectorTy, Ops); 437 } 438 439 // There is now one part, held in Val. Correct it to match ValueVT. 440 EVT PartEVT = Val.getValueType(); 441 442 if (PartEVT == ValueVT) 443 return Val; 444 445 if (PartEVT.isVector()) { 446 // If the element type of the source/dest vectors are the same, but the 447 // parts vector has more elements than the value vector, then we have a 448 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 449 // elements we want. 450 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 451 assert((PartEVT.getVectorElementCount().Min > 452 ValueVT.getVectorElementCount().Min) && 453 (PartEVT.getVectorElementCount().Scalable == 454 ValueVT.getVectorElementCount().Scalable) && 455 "Cannot narrow, it would be a lossy transformation"); 456 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 457 DAG.getVectorIdxConstant(0, DL)); 458 } 459 460 // Vector/Vector bitcast. 461 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 462 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 463 464 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 465 "Cannot handle this kind of promotion"); 466 // Promoted vector extract 467 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 468 469 } 470 471 // Trivial bitcast if the types are the same size and the destination 472 // vector type is legal. 473 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 474 TLI.isTypeLegal(ValueVT)) 475 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 476 477 if (ValueVT.getVectorNumElements() != 1) { 478 // Certain ABIs require that vectors are passed as integers. For vectors 479 // are the same size, this is an obvious bitcast. 480 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 481 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 482 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 483 // Bitcast Val back the original type and extract the corresponding 484 // vector we want. 485 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 486 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 487 ValueVT.getVectorElementType(), Elts); 488 Val = DAG.getBitcast(WiderVecType, Val); 489 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 490 DAG.getVectorIdxConstant(0, DL)); 491 } 492 493 diagnosePossiblyInvalidConstraint( 494 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 495 return DAG.getUNDEF(ValueVT); 496 } 497 498 // Handle cases such as i8 -> <1 x i1> 499 EVT ValueSVT = ValueVT.getVectorElementType(); 500 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 501 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 502 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 503 else 504 Val = ValueVT.isFloatingPoint() 505 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 506 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 507 } 508 509 return DAG.getBuildVector(ValueVT, DL, Val); 510 } 511 512 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 513 SDValue Val, SDValue *Parts, unsigned NumParts, 514 MVT PartVT, const Value *V, 515 Optional<CallingConv::ID> CallConv); 516 517 /// getCopyToParts - Create a series of nodes that contain the specified value 518 /// split into legal parts. If the parts contain more bits than Val, then, for 519 /// integers, ExtendKind can be used to specify how to generate the extra bits. 520 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 521 SDValue *Parts, unsigned NumParts, MVT PartVT, 522 const Value *V, 523 Optional<CallingConv::ID> CallConv = None, 524 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 525 // Let the target split the parts if it wants to 526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 527 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 528 CallConv)) 529 return; 530 EVT ValueVT = Val.getValueType(); 531 532 // Handle the vector case separately. 533 if (ValueVT.isVector()) 534 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 535 CallConv); 536 537 unsigned PartBits = PartVT.getSizeInBits(); 538 unsigned OrigNumParts = NumParts; 539 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 540 "Copying to an illegal type!"); 541 542 if (NumParts == 0) 543 return; 544 545 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 546 EVT PartEVT = PartVT; 547 if (PartEVT == ValueVT) { 548 assert(NumParts == 1 && "No-op copy with multiple parts!"); 549 Parts[0] = Val; 550 return; 551 } 552 553 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 554 // If the parts cover more bits than the value has, promote the value. 555 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 556 assert(NumParts == 1 && "Do not know what to promote to!"); 557 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 558 } else { 559 if (ValueVT.isFloatingPoint()) { 560 // FP values need to be bitcast, then extended if they are being put 561 // into a larger container. 562 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 563 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 564 } 565 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 566 ValueVT.isInteger() && 567 "Unknown mismatch!"); 568 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 569 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 570 if (PartVT == MVT::x86mmx) 571 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 572 } 573 } else if (PartBits == ValueVT.getSizeInBits()) { 574 // Different types of the same size. 575 assert(NumParts == 1 && PartEVT != ValueVT); 576 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 577 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 578 // If the parts cover less bits than value has, truncate the value. 579 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 580 ValueVT.isInteger() && 581 "Unknown mismatch!"); 582 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 583 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 584 if (PartVT == MVT::x86mmx) 585 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 586 } 587 588 // The value may have changed - recompute ValueVT. 589 ValueVT = Val.getValueType(); 590 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 591 "Failed to tile the value with PartVT!"); 592 593 if (NumParts == 1) { 594 if (PartEVT != ValueVT) { 595 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 596 "scalar-to-vector conversion failed"); 597 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 598 } 599 600 Parts[0] = Val; 601 return; 602 } 603 604 // Expand the value into multiple parts. 605 if (NumParts & (NumParts - 1)) { 606 // The number of parts is not a power of 2. Split off and copy the tail. 607 assert(PartVT.isInteger() && ValueVT.isInteger() && 608 "Do not know what to expand to!"); 609 unsigned RoundParts = 1 << Log2_32(NumParts); 610 unsigned RoundBits = RoundParts * PartBits; 611 unsigned OddParts = NumParts - RoundParts; 612 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 613 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 614 615 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 616 CallConv); 617 618 if (DAG.getDataLayout().isBigEndian()) 619 // The odd parts were reversed by getCopyToParts - unreverse them. 620 std::reverse(Parts + RoundParts, Parts + NumParts); 621 622 NumParts = RoundParts; 623 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 624 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 625 } 626 627 // The number of parts is a power of 2. Repeatedly bisect the value using 628 // EXTRACT_ELEMENT. 629 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 630 EVT::getIntegerVT(*DAG.getContext(), 631 ValueVT.getSizeInBits()), 632 Val); 633 634 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 635 for (unsigned i = 0; i < NumParts; i += StepSize) { 636 unsigned ThisBits = StepSize * PartBits / 2; 637 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 638 SDValue &Part0 = Parts[i]; 639 SDValue &Part1 = Parts[i+StepSize/2]; 640 641 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 642 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 643 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 644 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 645 646 if (ThisBits == PartBits && ThisVT != PartVT) { 647 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 648 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 649 } 650 } 651 } 652 653 if (DAG.getDataLayout().isBigEndian()) 654 std::reverse(Parts, Parts + OrigNumParts); 655 } 656 657 static SDValue widenVectorToPartType(SelectionDAG &DAG, 658 SDValue Val, const SDLoc &DL, EVT PartVT) { 659 if (!PartVT.isVector()) 660 return SDValue(); 661 662 EVT ValueVT = Val.getValueType(); 663 unsigned PartNumElts = PartVT.getVectorNumElements(); 664 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 665 if (PartNumElts > ValueNumElts && 666 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 667 EVT ElementVT = PartVT.getVectorElementType(); 668 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 669 // undef elements. 670 SmallVector<SDValue, 16> Ops; 671 DAG.ExtractVectorElements(Val, Ops); 672 SDValue EltUndef = DAG.getUNDEF(ElementVT); 673 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 674 Ops.push_back(EltUndef); 675 676 // FIXME: Use CONCAT for 2x -> 4x. 677 return DAG.getBuildVector(PartVT, DL, Ops); 678 } 679 680 return SDValue(); 681 } 682 683 /// getCopyToPartsVector - Create a series of nodes that contain the specified 684 /// value split into legal parts. 685 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 686 SDValue Val, SDValue *Parts, unsigned NumParts, 687 MVT PartVT, const Value *V, 688 Optional<CallingConv::ID> CallConv) { 689 EVT ValueVT = Val.getValueType(); 690 assert(ValueVT.isVector() && "Not a vector"); 691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 692 const bool IsABIRegCopy = CallConv.hasValue(); 693 694 if (NumParts == 1) { 695 EVT PartEVT = PartVT; 696 if (PartEVT == ValueVT) { 697 // Nothing to do. 698 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 699 // Bitconvert vector->vector case. 700 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 701 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 702 Val = Widened; 703 } else if (PartVT.isVector() && 704 PartEVT.getVectorElementType().bitsGE( 705 ValueVT.getVectorElementType()) && 706 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 707 708 // Promoted vector extract 709 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 710 } else { 711 if (ValueVT.getVectorNumElements() == 1) { 712 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 713 DAG.getVectorIdxConstant(0, DL)); 714 } else { 715 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 716 "lossy conversion of vector to scalar type"); 717 EVT IntermediateType = 718 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 719 Val = DAG.getBitcast(IntermediateType, Val); 720 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 721 } 722 } 723 724 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 725 Parts[0] = Val; 726 return; 727 } 728 729 // Handle a multi-element vector. 730 EVT IntermediateVT; 731 MVT RegisterVT; 732 unsigned NumIntermediates; 733 unsigned NumRegs; 734 if (IsABIRegCopy) { 735 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 736 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 737 NumIntermediates, RegisterVT); 738 } else { 739 NumRegs = 740 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 741 NumIntermediates, RegisterVT); 742 } 743 744 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 745 NumParts = NumRegs; // Silence a compiler warning. 746 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 747 748 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 749 "Mixing scalable and fixed vectors when copying in parts"); 750 751 ElementCount DestEltCnt; 752 753 if (IntermediateVT.isVector()) 754 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 755 else 756 DestEltCnt = ElementCount(NumIntermediates, false); 757 758 EVT BuiltVectorTy = EVT::getVectorVT( 759 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt); 760 if (ValueVT != BuiltVectorTy) { 761 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 762 Val = Widened; 763 764 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 765 } 766 767 // Split the vector into intermediate operands. 768 SmallVector<SDValue, 8> Ops(NumIntermediates); 769 for (unsigned i = 0; i != NumIntermediates; ++i) { 770 if (IntermediateVT.isVector()) { 771 // This does something sensible for scalable vectors - see the 772 // definition of EXTRACT_SUBVECTOR for further details. 773 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 774 Ops[i] = 775 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 776 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 777 } else { 778 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 779 DAG.getVectorIdxConstant(i, DL)); 780 } 781 } 782 783 // Split the intermediate operands into legal parts. 784 if (NumParts == NumIntermediates) { 785 // If the register was not expanded, promote or copy the value, 786 // as appropriate. 787 for (unsigned i = 0; i != NumParts; ++i) 788 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 789 } else if (NumParts > 0) { 790 // If the intermediate type was expanded, split each the value into 791 // legal parts. 792 assert(NumIntermediates != 0 && "division by zero"); 793 assert(NumParts % NumIntermediates == 0 && 794 "Must expand into a divisible number of parts!"); 795 unsigned Factor = NumParts / NumIntermediates; 796 for (unsigned i = 0; i != NumIntermediates; ++i) 797 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 798 CallConv); 799 } 800 } 801 802 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 803 EVT valuevt, Optional<CallingConv::ID> CC) 804 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 805 RegCount(1, regs.size()), CallConv(CC) {} 806 807 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 808 const DataLayout &DL, unsigned Reg, Type *Ty, 809 Optional<CallingConv::ID> CC) { 810 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 811 812 CallConv = CC; 813 814 for (EVT ValueVT : ValueVTs) { 815 unsigned NumRegs = 816 isABIMangled() 817 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 818 : TLI.getNumRegisters(Context, ValueVT); 819 MVT RegisterVT = 820 isABIMangled() 821 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 822 : TLI.getRegisterType(Context, ValueVT); 823 for (unsigned i = 0; i != NumRegs; ++i) 824 Regs.push_back(Reg + i); 825 RegVTs.push_back(RegisterVT); 826 RegCount.push_back(NumRegs); 827 Reg += NumRegs; 828 } 829 } 830 831 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 832 FunctionLoweringInfo &FuncInfo, 833 const SDLoc &dl, SDValue &Chain, 834 SDValue *Flag, const Value *V) const { 835 // A Value with type {} or [0 x %t] needs no registers. 836 if (ValueVTs.empty()) 837 return SDValue(); 838 839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 840 841 // Assemble the legal parts into the final values. 842 SmallVector<SDValue, 4> Values(ValueVTs.size()); 843 SmallVector<SDValue, 8> Parts; 844 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 845 // Copy the legal parts from the registers. 846 EVT ValueVT = ValueVTs[Value]; 847 unsigned NumRegs = RegCount[Value]; 848 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 849 *DAG.getContext(), 850 CallConv.getValue(), RegVTs[Value]) 851 : RegVTs[Value]; 852 853 Parts.resize(NumRegs); 854 for (unsigned i = 0; i != NumRegs; ++i) { 855 SDValue P; 856 if (!Flag) { 857 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 858 } else { 859 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 860 *Flag = P.getValue(2); 861 } 862 863 Chain = P.getValue(1); 864 Parts[i] = P; 865 866 // If the source register was virtual and if we know something about it, 867 // add an assert node. 868 if (!Register::isVirtualRegister(Regs[Part + i]) || 869 !RegisterVT.isInteger()) 870 continue; 871 872 const FunctionLoweringInfo::LiveOutInfo *LOI = 873 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 874 if (!LOI) 875 continue; 876 877 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 878 unsigned NumSignBits = LOI->NumSignBits; 879 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 880 881 if (NumZeroBits == RegSize) { 882 // The current value is a zero. 883 // Explicitly express that as it would be easier for 884 // optimizations to kick in. 885 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 886 continue; 887 } 888 889 // FIXME: We capture more information than the dag can represent. For 890 // now, just use the tightest assertzext/assertsext possible. 891 bool isSExt; 892 EVT FromVT(MVT::Other); 893 if (NumZeroBits) { 894 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 895 isSExt = false; 896 } else if (NumSignBits > 1) { 897 FromVT = 898 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 899 isSExt = true; 900 } else { 901 continue; 902 } 903 // Add an assertion node. 904 assert(FromVT != MVT::Other); 905 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 906 RegisterVT, P, DAG.getValueType(FromVT)); 907 } 908 909 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 910 RegisterVT, ValueVT, V, CallConv); 911 Part += NumRegs; 912 Parts.clear(); 913 } 914 915 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 916 } 917 918 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 919 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 920 const Value *V, 921 ISD::NodeType PreferredExtendType) const { 922 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 923 ISD::NodeType ExtendKind = PreferredExtendType; 924 925 // Get the list of the values's legal parts. 926 unsigned NumRegs = Regs.size(); 927 SmallVector<SDValue, 8> Parts(NumRegs); 928 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 929 unsigned NumParts = RegCount[Value]; 930 931 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 932 *DAG.getContext(), 933 CallConv.getValue(), RegVTs[Value]) 934 : RegVTs[Value]; 935 936 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 937 ExtendKind = ISD::ZERO_EXTEND; 938 939 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 940 NumParts, RegisterVT, V, CallConv, ExtendKind); 941 Part += NumParts; 942 } 943 944 // Copy the parts into the registers. 945 SmallVector<SDValue, 8> Chains(NumRegs); 946 for (unsigned i = 0; i != NumRegs; ++i) { 947 SDValue Part; 948 if (!Flag) { 949 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 950 } else { 951 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 952 *Flag = Part.getValue(1); 953 } 954 955 Chains[i] = Part.getValue(0); 956 } 957 958 if (NumRegs == 1 || Flag) 959 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 960 // flagged to it. That is the CopyToReg nodes and the user are considered 961 // a single scheduling unit. If we create a TokenFactor and return it as 962 // chain, then the TokenFactor is both a predecessor (operand) of the 963 // user as well as a successor (the TF operands are flagged to the user). 964 // c1, f1 = CopyToReg 965 // c2, f2 = CopyToReg 966 // c3 = TokenFactor c1, c2 967 // ... 968 // = op c3, ..., f2 969 Chain = Chains[NumRegs-1]; 970 else 971 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 972 } 973 974 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 975 unsigned MatchingIdx, const SDLoc &dl, 976 SelectionDAG &DAG, 977 std::vector<SDValue> &Ops) const { 978 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 979 980 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 981 if (HasMatching) 982 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 983 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 984 // Put the register class of the virtual registers in the flag word. That 985 // way, later passes can recompute register class constraints for inline 986 // assembly as well as normal instructions. 987 // Don't do this for tied operands that can use the regclass information 988 // from the def. 989 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 990 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 991 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 992 } 993 994 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 995 Ops.push_back(Res); 996 997 if (Code == InlineAsm::Kind_Clobber) { 998 // Clobbers should always have a 1:1 mapping with registers, and may 999 // reference registers that have illegal (e.g. vector) types. Hence, we 1000 // shouldn't try to apply any sort of splitting logic to them. 1001 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 1002 "No 1:1 mapping from clobbers to regs?"); 1003 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 1004 (void)SP; 1005 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 1006 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 1007 assert( 1008 (Regs[I] != SP || 1009 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 1010 "If we clobbered the stack pointer, MFI should know about it."); 1011 } 1012 return; 1013 } 1014 1015 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 1016 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 1017 MVT RegisterVT = RegVTs[Value]; 1018 for (unsigned i = 0; i != NumRegs; ++i) { 1019 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 1020 unsigned TheReg = Regs[Reg++]; 1021 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 1022 } 1023 } 1024 } 1025 1026 SmallVector<std::pair<unsigned, unsigned>, 4> 1027 RegsForValue::getRegsAndSizes() const { 1028 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 1029 unsigned I = 0; 1030 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 1031 unsigned RegCount = std::get<0>(CountAndVT); 1032 MVT RegisterVT = std::get<1>(CountAndVT); 1033 unsigned RegisterSize = RegisterVT.getSizeInBits(); 1034 for (unsigned E = I + RegCount; I != E; ++I) 1035 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1036 } 1037 return OutVec; 1038 } 1039 1040 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1041 const TargetLibraryInfo *li) { 1042 AA = aa; 1043 GFI = gfi; 1044 LibInfo = li; 1045 DL = &DAG.getDataLayout(); 1046 Context = DAG.getContext(); 1047 LPadToCallSiteMap.clear(); 1048 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1049 } 1050 1051 void SelectionDAGBuilder::clear() { 1052 NodeMap.clear(); 1053 UnusedArgNodeMap.clear(); 1054 PendingLoads.clear(); 1055 PendingExports.clear(); 1056 PendingConstrainedFP.clear(); 1057 PendingConstrainedFPStrict.clear(); 1058 CurInst = nullptr; 1059 HasTailCall = false; 1060 SDNodeOrder = LowestSDNodeOrder; 1061 StatepointLowering.clear(); 1062 } 1063 1064 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1065 DanglingDebugInfoMap.clear(); 1066 } 1067 1068 // Update DAG root to include dependencies on Pending chains. 1069 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1070 SDValue Root = DAG.getRoot(); 1071 1072 if (Pending.empty()) 1073 return Root; 1074 1075 // Add current root to PendingChains, unless we already indirectly 1076 // depend on it. 1077 if (Root.getOpcode() != ISD::EntryToken) { 1078 unsigned i = 0, e = Pending.size(); 1079 for (; i != e; ++i) { 1080 assert(Pending[i].getNode()->getNumOperands() > 1); 1081 if (Pending[i].getNode()->getOperand(0) == Root) 1082 break; // Don't add the root if we already indirectly depend on it. 1083 } 1084 1085 if (i == e) 1086 Pending.push_back(Root); 1087 } 1088 1089 if (Pending.size() == 1) 1090 Root = Pending[0]; 1091 else 1092 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1093 1094 DAG.setRoot(Root); 1095 Pending.clear(); 1096 return Root; 1097 } 1098 1099 SDValue SelectionDAGBuilder::getMemoryRoot() { 1100 return updateRoot(PendingLoads); 1101 } 1102 1103 SDValue SelectionDAGBuilder::getRoot() { 1104 // Chain up all pending constrained intrinsics together with all 1105 // pending loads, by simply appending them to PendingLoads and 1106 // then calling getMemoryRoot(). 1107 PendingLoads.reserve(PendingLoads.size() + 1108 PendingConstrainedFP.size() + 1109 PendingConstrainedFPStrict.size()); 1110 PendingLoads.append(PendingConstrainedFP.begin(), 1111 PendingConstrainedFP.end()); 1112 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1113 PendingConstrainedFPStrict.end()); 1114 PendingConstrainedFP.clear(); 1115 PendingConstrainedFPStrict.clear(); 1116 return getMemoryRoot(); 1117 } 1118 1119 SDValue SelectionDAGBuilder::getControlRoot() { 1120 // We need to emit pending fpexcept.strict constrained intrinsics, 1121 // so append them to the PendingExports list. 1122 PendingExports.append(PendingConstrainedFPStrict.begin(), 1123 PendingConstrainedFPStrict.end()); 1124 PendingConstrainedFPStrict.clear(); 1125 return updateRoot(PendingExports); 1126 } 1127 1128 void SelectionDAGBuilder::visit(const Instruction &I) { 1129 // Set up outgoing PHI node register values before emitting the terminator. 1130 if (I.isTerminator()) { 1131 HandlePHINodesInSuccessorBlocks(I.getParent()); 1132 } 1133 1134 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1135 if (!isa<DbgInfoIntrinsic>(I)) 1136 ++SDNodeOrder; 1137 1138 CurInst = &I; 1139 1140 visit(I.getOpcode(), I); 1141 1142 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1143 // ConstrainedFPIntrinsics handle their own FMF. 1144 if (!isa<ConstrainedFPIntrinsic>(&I)) { 1145 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1146 // maps to this instruction. 1147 // TODO: We could handle all flags (nsw, etc) here. 1148 // TODO: If an IR instruction maps to >1 node, only the final node will have 1149 // flags set. 1150 if (SDNode *Node = getNodeForIRValue(&I)) { 1151 SDNodeFlags IncomingFlags; 1152 IncomingFlags.copyFMF(*FPMO); 1153 if (!Node->getFlags().isDefined()) 1154 Node->setFlags(IncomingFlags); 1155 else 1156 Node->intersectFlagsWith(IncomingFlags); 1157 } 1158 } 1159 } 1160 1161 if (!I.isTerminator() && !HasTailCall && 1162 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1163 CopyToExportRegsIfNeeded(&I); 1164 1165 CurInst = nullptr; 1166 } 1167 1168 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1169 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1170 } 1171 1172 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1173 // Note: this doesn't use InstVisitor, because it has to work with 1174 // ConstantExpr's in addition to instructions. 1175 switch (Opcode) { 1176 default: llvm_unreachable("Unknown instruction type encountered!"); 1177 // Build the switch statement using the Instruction.def file. 1178 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1179 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1180 #include "llvm/IR/Instruction.def" 1181 } 1182 } 1183 1184 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1185 const DIExpression *Expr) { 1186 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1187 const DbgValueInst *DI = DDI.getDI(); 1188 DIVariable *DanglingVariable = DI->getVariable(); 1189 DIExpression *DanglingExpr = DI->getExpression(); 1190 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1191 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1192 return true; 1193 } 1194 return false; 1195 }; 1196 1197 for (auto &DDIMI : DanglingDebugInfoMap) { 1198 DanglingDebugInfoVector &DDIV = DDIMI.second; 1199 1200 // If debug info is to be dropped, run it through final checks to see 1201 // whether it can be salvaged. 1202 for (auto &DDI : DDIV) 1203 if (isMatchingDbgValue(DDI)) 1204 salvageUnresolvedDbgValue(DDI); 1205 1206 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1207 } 1208 } 1209 1210 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1211 // generate the debug data structures now that we've seen its definition. 1212 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1213 SDValue Val) { 1214 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1215 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1216 return; 1217 1218 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1219 for (auto &DDI : DDIV) { 1220 const DbgValueInst *DI = DDI.getDI(); 1221 assert(DI && "Ill-formed DanglingDebugInfo"); 1222 DebugLoc dl = DDI.getdl(); 1223 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1224 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1225 DILocalVariable *Variable = DI->getVariable(); 1226 DIExpression *Expr = DI->getExpression(); 1227 assert(Variable->isValidLocationForIntrinsic(dl) && 1228 "Expected inlined-at fields to agree"); 1229 SDDbgValue *SDV; 1230 if (Val.getNode()) { 1231 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1232 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1233 // we couldn't resolve it directly when examining the DbgValue intrinsic 1234 // in the first place we should not be more successful here). Unless we 1235 // have some test case that prove this to be correct we should avoid 1236 // calling EmitFuncArgumentDbgValue here. 1237 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1238 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1239 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1240 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1241 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1242 // inserted after the definition of Val when emitting the instructions 1243 // after ISel. An alternative could be to teach 1244 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1245 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1246 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1247 << ValSDNodeOrder << "\n"); 1248 SDV = getDbgValue(Val, Variable, Expr, dl, 1249 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1250 DAG.AddDbgValue(SDV, Val.getNode(), false); 1251 } else 1252 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1253 << "in EmitFuncArgumentDbgValue\n"); 1254 } else { 1255 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1256 auto Undef = 1257 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1258 auto SDV = 1259 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1260 DAG.AddDbgValue(SDV, nullptr, false); 1261 } 1262 } 1263 DDIV.clear(); 1264 } 1265 1266 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1267 Value *V = DDI.getDI()->getValue(); 1268 DILocalVariable *Var = DDI.getDI()->getVariable(); 1269 DIExpression *Expr = DDI.getDI()->getExpression(); 1270 DebugLoc DL = DDI.getdl(); 1271 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1272 unsigned SDOrder = DDI.getSDNodeOrder(); 1273 1274 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1275 // that DW_OP_stack_value is desired. 1276 assert(isa<DbgValueInst>(DDI.getDI())); 1277 bool StackValue = true; 1278 1279 // Can this Value can be encoded without any further work? 1280 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1281 return; 1282 1283 // Attempt to salvage back through as many instructions as possible. Bail if 1284 // a non-instruction is seen, such as a constant expression or global 1285 // variable. FIXME: Further work could recover those too. 1286 while (isa<Instruction>(V)) { 1287 Instruction &VAsInst = *cast<Instruction>(V); 1288 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1289 1290 // If we cannot salvage any further, and haven't yet found a suitable debug 1291 // expression, bail out. 1292 if (!NewExpr) 1293 break; 1294 1295 // New value and expr now represent this debuginfo. 1296 V = VAsInst.getOperand(0); 1297 Expr = NewExpr; 1298 1299 // Some kind of simplification occurred: check whether the operand of the 1300 // salvaged debug expression can be encoded in this DAG. 1301 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1302 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1303 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1304 return; 1305 } 1306 } 1307 1308 // This was the final opportunity to salvage this debug information, and it 1309 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1310 // any earlier variable location. 1311 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1312 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1313 DAG.AddDbgValue(SDV, nullptr, false); 1314 1315 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1316 << "\n"); 1317 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1318 << "\n"); 1319 } 1320 1321 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1322 DIExpression *Expr, DebugLoc dl, 1323 DebugLoc InstDL, unsigned Order) { 1324 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1325 SDDbgValue *SDV; 1326 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1327 isa<ConstantPointerNull>(V)) { 1328 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1329 DAG.AddDbgValue(SDV, nullptr, false); 1330 return true; 1331 } 1332 1333 // If the Value is a frame index, we can create a FrameIndex debug value 1334 // without relying on the DAG at all. 1335 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1336 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1337 if (SI != FuncInfo.StaticAllocaMap.end()) { 1338 auto SDV = 1339 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1340 /*IsIndirect*/ false, dl, SDNodeOrder); 1341 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1342 // is still available even if the SDNode gets optimized out. 1343 DAG.AddDbgValue(SDV, nullptr, false); 1344 return true; 1345 } 1346 } 1347 1348 // Do not use getValue() in here; we don't want to generate code at 1349 // this point if it hasn't been done yet. 1350 SDValue N = NodeMap[V]; 1351 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1352 N = UnusedArgNodeMap[V]; 1353 if (N.getNode()) { 1354 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1355 return true; 1356 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1357 DAG.AddDbgValue(SDV, N.getNode(), false); 1358 return true; 1359 } 1360 1361 // Special rules apply for the first dbg.values of parameter variables in a 1362 // function. Identify them by the fact they reference Argument Values, that 1363 // they're parameters, and they are parameters of the current function. We 1364 // need to let them dangle until they get an SDNode. 1365 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1366 !InstDL.getInlinedAt(); 1367 if (!IsParamOfFunc) { 1368 // The value is not used in this block yet (or it would have an SDNode). 1369 // We still want the value to appear for the user if possible -- if it has 1370 // an associated VReg, we can refer to that instead. 1371 auto VMI = FuncInfo.ValueMap.find(V); 1372 if (VMI != FuncInfo.ValueMap.end()) { 1373 unsigned Reg = VMI->second; 1374 // If this is a PHI node, it may be split up into several MI PHI nodes 1375 // (in FunctionLoweringInfo::set). 1376 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1377 V->getType(), None); 1378 if (RFV.occupiesMultipleRegs()) { 1379 unsigned Offset = 0; 1380 unsigned BitsToDescribe = 0; 1381 if (auto VarSize = Var->getSizeInBits()) 1382 BitsToDescribe = *VarSize; 1383 if (auto Fragment = Expr->getFragmentInfo()) 1384 BitsToDescribe = Fragment->SizeInBits; 1385 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1386 unsigned RegisterSize = RegAndSize.second; 1387 // Bail out if all bits are described already. 1388 if (Offset >= BitsToDescribe) 1389 break; 1390 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1391 ? BitsToDescribe - Offset 1392 : RegisterSize; 1393 auto FragmentExpr = DIExpression::createFragmentExpression( 1394 Expr, Offset, FragmentSize); 1395 if (!FragmentExpr) 1396 continue; 1397 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1398 false, dl, SDNodeOrder); 1399 DAG.AddDbgValue(SDV, nullptr, false); 1400 Offset += RegisterSize; 1401 } 1402 } else { 1403 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1404 DAG.AddDbgValue(SDV, nullptr, false); 1405 } 1406 return true; 1407 } 1408 } 1409 1410 return false; 1411 } 1412 1413 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1414 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1415 for (auto &Pair : DanglingDebugInfoMap) 1416 for (auto &DDI : Pair.second) 1417 salvageUnresolvedDbgValue(DDI); 1418 clearDanglingDebugInfo(); 1419 } 1420 1421 /// getCopyFromRegs - If there was virtual register allocated for the value V 1422 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1423 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1424 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1425 SDValue Result; 1426 1427 if (It != FuncInfo.ValueMap.end()) { 1428 Register InReg = It->second; 1429 1430 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1431 DAG.getDataLayout(), InReg, Ty, 1432 None); // This is not an ABI copy. 1433 SDValue Chain = DAG.getEntryNode(); 1434 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1435 V); 1436 resolveDanglingDebugInfo(V, Result); 1437 } 1438 1439 return Result; 1440 } 1441 1442 /// getValue - Return an SDValue for the given Value. 1443 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1444 // If we already have an SDValue for this value, use it. It's important 1445 // to do this first, so that we don't create a CopyFromReg if we already 1446 // have a regular SDValue. 1447 SDValue &N = NodeMap[V]; 1448 if (N.getNode()) return N; 1449 1450 // If there's a virtual register allocated and initialized for this 1451 // value, use it. 1452 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1453 return copyFromReg; 1454 1455 // Otherwise create a new SDValue and remember it. 1456 SDValue Val = getValueImpl(V); 1457 NodeMap[V] = Val; 1458 resolveDanglingDebugInfo(V, Val); 1459 return Val; 1460 } 1461 1462 /// getNonRegisterValue - Return an SDValue for the given Value, but 1463 /// don't look in FuncInfo.ValueMap for a virtual register. 1464 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1465 // If we already have an SDValue for this value, use it. 1466 SDValue &N = NodeMap[V]; 1467 if (N.getNode()) { 1468 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1469 // Remove the debug location from the node as the node is about to be used 1470 // in a location which may differ from the original debug location. This 1471 // is relevant to Constant and ConstantFP nodes because they can appear 1472 // as constant expressions inside PHI nodes. 1473 N->setDebugLoc(DebugLoc()); 1474 } 1475 return N; 1476 } 1477 1478 // Otherwise create a new SDValue and remember it. 1479 SDValue Val = getValueImpl(V); 1480 NodeMap[V] = Val; 1481 resolveDanglingDebugInfo(V, Val); 1482 return Val; 1483 } 1484 1485 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1486 /// Create an SDValue for the given value. 1487 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1488 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1489 1490 if (const Constant *C = dyn_cast<Constant>(V)) { 1491 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1492 1493 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1494 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1495 1496 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1497 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1498 1499 if (isa<ConstantPointerNull>(C)) { 1500 unsigned AS = V->getType()->getPointerAddressSpace(); 1501 return DAG.getConstant(0, getCurSDLoc(), 1502 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1503 } 1504 1505 if (match(C, m_VScale(DAG.getDataLayout()))) 1506 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1507 1508 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1509 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1510 1511 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1512 return DAG.getUNDEF(VT); 1513 1514 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1515 visit(CE->getOpcode(), *CE); 1516 SDValue N1 = NodeMap[V]; 1517 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1518 return N1; 1519 } 1520 1521 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1522 SmallVector<SDValue, 4> Constants; 1523 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1524 OI != OE; ++OI) { 1525 SDNode *Val = getValue(*OI).getNode(); 1526 // If the operand is an empty aggregate, there are no values. 1527 if (!Val) continue; 1528 // Add each leaf value from the operand to the Constants list 1529 // to form a flattened list of all the values. 1530 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1531 Constants.push_back(SDValue(Val, i)); 1532 } 1533 1534 return DAG.getMergeValues(Constants, getCurSDLoc()); 1535 } 1536 1537 if (const ConstantDataSequential *CDS = 1538 dyn_cast<ConstantDataSequential>(C)) { 1539 SmallVector<SDValue, 4> Ops; 1540 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1541 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1542 // Add each leaf value from the operand to the Constants list 1543 // to form a flattened list of all the values. 1544 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1545 Ops.push_back(SDValue(Val, i)); 1546 } 1547 1548 if (isa<ArrayType>(CDS->getType())) 1549 return DAG.getMergeValues(Ops, getCurSDLoc()); 1550 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1551 } 1552 1553 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1554 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1555 "Unknown struct or array constant!"); 1556 1557 SmallVector<EVT, 4> ValueVTs; 1558 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1559 unsigned NumElts = ValueVTs.size(); 1560 if (NumElts == 0) 1561 return SDValue(); // empty struct 1562 SmallVector<SDValue, 4> Constants(NumElts); 1563 for (unsigned i = 0; i != NumElts; ++i) { 1564 EVT EltVT = ValueVTs[i]; 1565 if (isa<UndefValue>(C)) 1566 Constants[i] = DAG.getUNDEF(EltVT); 1567 else if (EltVT.isFloatingPoint()) 1568 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1569 else 1570 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1571 } 1572 1573 return DAG.getMergeValues(Constants, getCurSDLoc()); 1574 } 1575 1576 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1577 return DAG.getBlockAddress(BA, VT); 1578 1579 VectorType *VecTy = cast<VectorType>(V->getType()); 1580 1581 // Now that we know the number and type of the elements, get that number of 1582 // elements into the Ops array based on what kind of constant it is. 1583 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1584 SmallVector<SDValue, 16> Ops; 1585 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1586 for (unsigned i = 0; i != NumElements; ++i) 1587 Ops.push_back(getValue(CV->getOperand(i))); 1588 1589 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1590 } else if (isa<ConstantAggregateZero>(C)) { 1591 EVT EltVT = 1592 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1593 1594 SDValue Op; 1595 if (EltVT.isFloatingPoint()) 1596 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1597 else 1598 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1599 1600 if (isa<ScalableVectorType>(VecTy)) 1601 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1602 else { 1603 SmallVector<SDValue, 16> Ops; 1604 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1605 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1606 } 1607 } 1608 llvm_unreachable("Unknown vector constant"); 1609 } 1610 1611 // If this is a static alloca, generate it as the frameindex instead of 1612 // computation. 1613 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1614 DenseMap<const AllocaInst*, int>::iterator SI = 1615 FuncInfo.StaticAllocaMap.find(AI); 1616 if (SI != FuncInfo.StaticAllocaMap.end()) 1617 return DAG.getFrameIndex(SI->second, 1618 TLI.getFrameIndexTy(DAG.getDataLayout())); 1619 } 1620 1621 // If this is an instruction which fast-isel has deferred, select it now. 1622 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1623 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1624 1625 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1626 Inst->getType(), getABIRegCopyCC(V)); 1627 SDValue Chain = DAG.getEntryNode(); 1628 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1629 } 1630 1631 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1632 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1633 } 1634 llvm_unreachable("Can't get register for value!"); 1635 } 1636 1637 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1638 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1639 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1640 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1641 bool IsSEH = isAsynchronousEHPersonality(Pers); 1642 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1643 if (!IsSEH) 1644 CatchPadMBB->setIsEHScopeEntry(); 1645 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1646 if (IsMSVCCXX || IsCoreCLR) 1647 CatchPadMBB->setIsEHFuncletEntry(); 1648 } 1649 1650 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1651 // Update machine-CFG edge. 1652 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1653 FuncInfo.MBB->addSuccessor(TargetMBB); 1654 1655 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1656 bool IsSEH = isAsynchronousEHPersonality(Pers); 1657 if (IsSEH) { 1658 // If this is not a fall-through branch or optimizations are switched off, 1659 // emit the branch. 1660 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1661 TM.getOptLevel() == CodeGenOpt::None) 1662 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1663 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1664 return; 1665 } 1666 1667 // Figure out the funclet membership for the catchret's successor. 1668 // This will be used by the FuncletLayout pass to determine how to order the 1669 // BB's. 1670 // A 'catchret' returns to the outer scope's color. 1671 Value *ParentPad = I.getCatchSwitchParentPad(); 1672 const BasicBlock *SuccessorColor; 1673 if (isa<ConstantTokenNone>(ParentPad)) 1674 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1675 else 1676 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1677 assert(SuccessorColor && "No parent funclet for catchret!"); 1678 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1679 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1680 1681 // Create the terminator node. 1682 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1683 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1684 DAG.getBasicBlock(SuccessorColorMBB)); 1685 DAG.setRoot(Ret); 1686 } 1687 1688 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1689 // Don't emit any special code for the cleanuppad instruction. It just marks 1690 // the start of an EH scope/funclet. 1691 FuncInfo.MBB->setIsEHScopeEntry(); 1692 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1693 if (Pers != EHPersonality::Wasm_CXX) { 1694 FuncInfo.MBB->setIsEHFuncletEntry(); 1695 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1696 } 1697 } 1698 1699 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1700 // the control flow always stops at the single catch pad, as it does for a 1701 // cleanup pad. In case the exception caught is not of the types the catch pad 1702 // catches, it will be rethrown by a rethrow. 1703 static void findWasmUnwindDestinations( 1704 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1705 BranchProbability Prob, 1706 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1707 &UnwindDests) { 1708 while (EHPadBB) { 1709 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1710 if (isa<CleanupPadInst>(Pad)) { 1711 // Stop on cleanup pads. 1712 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1713 UnwindDests.back().first->setIsEHScopeEntry(); 1714 break; 1715 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1716 // Add the catchpad handlers to the possible destinations. We don't 1717 // continue to the unwind destination of the catchswitch for wasm. 1718 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1719 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1720 UnwindDests.back().first->setIsEHScopeEntry(); 1721 } 1722 break; 1723 } else { 1724 continue; 1725 } 1726 } 1727 } 1728 1729 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1730 /// many places it could ultimately go. In the IR, we have a single unwind 1731 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1732 /// This function skips over imaginary basic blocks that hold catchswitch 1733 /// instructions, and finds all the "real" machine 1734 /// basic block destinations. As those destinations may not be successors of 1735 /// EHPadBB, here we also calculate the edge probability to those destinations. 1736 /// The passed-in Prob is the edge probability to EHPadBB. 1737 static void findUnwindDestinations( 1738 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1739 BranchProbability Prob, 1740 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1741 &UnwindDests) { 1742 EHPersonality Personality = 1743 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1744 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1745 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1746 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1747 bool IsSEH = isAsynchronousEHPersonality(Personality); 1748 1749 if (IsWasmCXX) { 1750 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1751 assert(UnwindDests.size() <= 1 && 1752 "There should be at most one unwind destination for wasm"); 1753 return; 1754 } 1755 1756 while (EHPadBB) { 1757 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1758 BasicBlock *NewEHPadBB = nullptr; 1759 if (isa<LandingPadInst>(Pad)) { 1760 // Stop on landingpads. They are not funclets. 1761 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1762 break; 1763 } else if (isa<CleanupPadInst>(Pad)) { 1764 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1765 // personalities. 1766 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1767 UnwindDests.back().first->setIsEHScopeEntry(); 1768 UnwindDests.back().first->setIsEHFuncletEntry(); 1769 break; 1770 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1771 // Add the catchpad handlers to the possible destinations. 1772 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1773 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1774 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1775 if (IsMSVCCXX || IsCoreCLR) 1776 UnwindDests.back().first->setIsEHFuncletEntry(); 1777 if (!IsSEH) 1778 UnwindDests.back().first->setIsEHScopeEntry(); 1779 } 1780 NewEHPadBB = CatchSwitch->getUnwindDest(); 1781 } else { 1782 continue; 1783 } 1784 1785 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1786 if (BPI && NewEHPadBB) 1787 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1788 EHPadBB = NewEHPadBB; 1789 } 1790 } 1791 1792 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1793 // Update successor info. 1794 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1795 auto UnwindDest = I.getUnwindDest(); 1796 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1797 BranchProbability UnwindDestProb = 1798 (BPI && UnwindDest) 1799 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1800 : BranchProbability::getZero(); 1801 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1802 for (auto &UnwindDest : UnwindDests) { 1803 UnwindDest.first->setIsEHPad(); 1804 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1805 } 1806 FuncInfo.MBB->normalizeSuccProbs(); 1807 1808 // Create the terminator node. 1809 SDValue Ret = 1810 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1811 DAG.setRoot(Ret); 1812 } 1813 1814 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1815 report_fatal_error("visitCatchSwitch not yet implemented!"); 1816 } 1817 1818 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1820 auto &DL = DAG.getDataLayout(); 1821 SDValue Chain = getControlRoot(); 1822 SmallVector<ISD::OutputArg, 8> Outs; 1823 SmallVector<SDValue, 8> OutVals; 1824 1825 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1826 // lower 1827 // 1828 // %val = call <ty> @llvm.experimental.deoptimize() 1829 // ret <ty> %val 1830 // 1831 // differently. 1832 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1833 LowerDeoptimizingReturn(); 1834 return; 1835 } 1836 1837 if (!FuncInfo.CanLowerReturn) { 1838 unsigned DemoteReg = FuncInfo.DemoteRegister; 1839 const Function *F = I.getParent()->getParent(); 1840 1841 // Emit a store of the return value through the virtual register. 1842 // Leave Outs empty so that LowerReturn won't try to load return 1843 // registers the usual way. 1844 SmallVector<EVT, 1> PtrValueVTs; 1845 ComputeValueVTs(TLI, DL, 1846 F->getReturnType()->getPointerTo( 1847 DAG.getDataLayout().getAllocaAddrSpace()), 1848 PtrValueVTs); 1849 1850 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1851 DemoteReg, PtrValueVTs[0]); 1852 SDValue RetOp = getValue(I.getOperand(0)); 1853 1854 SmallVector<EVT, 4> ValueVTs, MemVTs; 1855 SmallVector<uint64_t, 4> Offsets; 1856 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1857 &Offsets); 1858 unsigned NumValues = ValueVTs.size(); 1859 1860 SmallVector<SDValue, 4> Chains(NumValues); 1861 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1862 for (unsigned i = 0; i != NumValues; ++i) { 1863 // An aggregate return value cannot wrap around the address space, so 1864 // offsets to its parts don't wrap either. 1865 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1866 1867 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1868 if (MemVTs[i] != ValueVTs[i]) 1869 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1870 Chains[i] = DAG.getStore( 1871 Chain, getCurSDLoc(), Val, 1872 // FIXME: better loc info would be nice. 1873 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1874 commonAlignment(BaseAlign, Offsets[i])); 1875 } 1876 1877 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1878 MVT::Other, Chains); 1879 } else if (I.getNumOperands() != 0) { 1880 SmallVector<EVT, 4> ValueVTs; 1881 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1882 unsigned NumValues = ValueVTs.size(); 1883 if (NumValues) { 1884 SDValue RetOp = getValue(I.getOperand(0)); 1885 1886 const Function *F = I.getParent()->getParent(); 1887 1888 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1889 I.getOperand(0)->getType(), F->getCallingConv(), 1890 /*IsVarArg*/ false); 1891 1892 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1893 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1894 Attribute::SExt)) 1895 ExtendKind = ISD::SIGN_EXTEND; 1896 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1897 Attribute::ZExt)) 1898 ExtendKind = ISD::ZERO_EXTEND; 1899 1900 LLVMContext &Context = F->getContext(); 1901 bool RetInReg = F->getAttributes().hasAttribute( 1902 AttributeList::ReturnIndex, Attribute::InReg); 1903 1904 for (unsigned j = 0; j != NumValues; ++j) { 1905 EVT VT = ValueVTs[j]; 1906 1907 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1908 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1909 1910 CallingConv::ID CC = F->getCallingConv(); 1911 1912 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1913 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1914 SmallVector<SDValue, 4> Parts(NumParts); 1915 getCopyToParts(DAG, getCurSDLoc(), 1916 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1917 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1918 1919 // 'inreg' on function refers to return value 1920 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1921 if (RetInReg) 1922 Flags.setInReg(); 1923 1924 if (I.getOperand(0)->getType()->isPointerTy()) { 1925 Flags.setPointer(); 1926 Flags.setPointerAddrSpace( 1927 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1928 } 1929 1930 if (NeedsRegBlock) { 1931 Flags.setInConsecutiveRegs(); 1932 if (j == NumValues - 1) 1933 Flags.setInConsecutiveRegsLast(); 1934 } 1935 1936 // Propagate extension type if any 1937 if (ExtendKind == ISD::SIGN_EXTEND) 1938 Flags.setSExt(); 1939 else if (ExtendKind == ISD::ZERO_EXTEND) 1940 Flags.setZExt(); 1941 1942 for (unsigned i = 0; i < NumParts; ++i) { 1943 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1944 VT, /*isfixed=*/true, 0, 0)); 1945 OutVals.push_back(Parts[i]); 1946 } 1947 } 1948 } 1949 } 1950 1951 // Push in swifterror virtual register as the last element of Outs. This makes 1952 // sure swifterror virtual register will be returned in the swifterror 1953 // physical register. 1954 const Function *F = I.getParent()->getParent(); 1955 if (TLI.supportSwiftError() && 1956 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1957 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1958 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1959 Flags.setSwiftError(); 1960 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1961 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1962 true /*isfixed*/, 1 /*origidx*/, 1963 0 /*partOffs*/)); 1964 // Create SDNode for the swifterror virtual register. 1965 OutVals.push_back( 1966 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 1967 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 1968 EVT(TLI.getPointerTy(DL)))); 1969 } 1970 1971 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1972 CallingConv::ID CallConv = 1973 DAG.getMachineFunction().getFunction().getCallingConv(); 1974 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1975 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1976 1977 // Verify that the target's LowerReturn behaved as expected. 1978 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1979 "LowerReturn didn't return a valid chain!"); 1980 1981 // Update the DAG with the new chain value resulting from return lowering. 1982 DAG.setRoot(Chain); 1983 } 1984 1985 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1986 /// created for it, emit nodes to copy the value into the virtual 1987 /// registers. 1988 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1989 // Skip empty types 1990 if (V->getType()->isEmptyTy()) 1991 return; 1992 1993 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 1994 if (VMI != FuncInfo.ValueMap.end()) { 1995 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1996 CopyValueToVirtualRegister(V, VMI->second); 1997 } 1998 } 1999 2000 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2001 /// the current basic block, add it to ValueMap now so that we'll get a 2002 /// CopyTo/FromReg. 2003 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2004 // No need to export constants. 2005 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2006 2007 // Already exported? 2008 if (FuncInfo.isExportedInst(V)) return; 2009 2010 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2011 CopyValueToVirtualRegister(V, Reg); 2012 } 2013 2014 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2015 const BasicBlock *FromBB) { 2016 // The operands of the setcc have to be in this block. We don't know 2017 // how to export them from some other block. 2018 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2019 // Can export from current BB. 2020 if (VI->getParent() == FromBB) 2021 return true; 2022 2023 // Is already exported, noop. 2024 return FuncInfo.isExportedInst(V); 2025 } 2026 2027 // If this is an argument, we can export it if the BB is the entry block or 2028 // if it is already exported. 2029 if (isa<Argument>(V)) { 2030 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2031 return true; 2032 2033 // Otherwise, can only export this if it is already exported. 2034 return FuncInfo.isExportedInst(V); 2035 } 2036 2037 // Otherwise, constants can always be exported. 2038 return true; 2039 } 2040 2041 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2042 BranchProbability 2043 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2044 const MachineBasicBlock *Dst) const { 2045 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2046 const BasicBlock *SrcBB = Src->getBasicBlock(); 2047 const BasicBlock *DstBB = Dst->getBasicBlock(); 2048 if (!BPI) { 2049 // If BPI is not available, set the default probability as 1 / N, where N is 2050 // the number of successors. 2051 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2052 return BranchProbability(1, SuccSize); 2053 } 2054 return BPI->getEdgeProbability(SrcBB, DstBB); 2055 } 2056 2057 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2058 MachineBasicBlock *Dst, 2059 BranchProbability Prob) { 2060 if (!FuncInfo.BPI) 2061 Src->addSuccessorWithoutProb(Dst); 2062 else { 2063 if (Prob.isUnknown()) 2064 Prob = getEdgeProbability(Src, Dst); 2065 Src->addSuccessor(Dst, Prob); 2066 } 2067 } 2068 2069 static bool InBlock(const Value *V, const BasicBlock *BB) { 2070 if (const Instruction *I = dyn_cast<Instruction>(V)) 2071 return I->getParent() == BB; 2072 return true; 2073 } 2074 2075 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2076 /// This function emits a branch and is used at the leaves of an OR or an 2077 /// AND operator tree. 2078 void 2079 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2080 MachineBasicBlock *TBB, 2081 MachineBasicBlock *FBB, 2082 MachineBasicBlock *CurBB, 2083 MachineBasicBlock *SwitchBB, 2084 BranchProbability TProb, 2085 BranchProbability FProb, 2086 bool InvertCond) { 2087 const BasicBlock *BB = CurBB->getBasicBlock(); 2088 2089 // If the leaf of the tree is a comparison, merge the condition into 2090 // the caseblock. 2091 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2092 // The operands of the cmp have to be in this block. We don't know 2093 // how to export them from some other block. If this is the first block 2094 // of the sequence, no exporting is needed. 2095 if (CurBB == SwitchBB || 2096 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2097 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2098 ISD::CondCode Condition; 2099 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2100 ICmpInst::Predicate Pred = 2101 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2102 Condition = getICmpCondCode(Pred); 2103 } else { 2104 const FCmpInst *FC = cast<FCmpInst>(Cond); 2105 FCmpInst::Predicate Pred = 2106 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2107 Condition = getFCmpCondCode(Pred); 2108 if (TM.Options.NoNaNsFPMath) 2109 Condition = getFCmpCodeWithoutNaN(Condition); 2110 } 2111 2112 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2113 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2114 SL->SwitchCases.push_back(CB); 2115 return; 2116 } 2117 } 2118 2119 // Create a CaseBlock record representing this branch. 2120 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2121 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2122 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2123 SL->SwitchCases.push_back(CB); 2124 } 2125 2126 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2127 MachineBasicBlock *TBB, 2128 MachineBasicBlock *FBB, 2129 MachineBasicBlock *CurBB, 2130 MachineBasicBlock *SwitchBB, 2131 Instruction::BinaryOps Opc, 2132 BranchProbability TProb, 2133 BranchProbability FProb, 2134 bool InvertCond) { 2135 // Skip over not part of the tree and remember to invert op and operands at 2136 // next level. 2137 Value *NotCond; 2138 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2139 InBlock(NotCond, CurBB->getBasicBlock())) { 2140 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2141 !InvertCond); 2142 return; 2143 } 2144 2145 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2146 // Compute the effective opcode for Cond, taking into account whether it needs 2147 // to be inverted, e.g. 2148 // and (not (or A, B)), C 2149 // gets lowered as 2150 // and (and (not A, not B), C) 2151 unsigned BOpc = 0; 2152 if (BOp) { 2153 BOpc = BOp->getOpcode(); 2154 if (InvertCond) { 2155 if (BOpc == Instruction::And) 2156 BOpc = Instruction::Or; 2157 else if (BOpc == Instruction::Or) 2158 BOpc = Instruction::And; 2159 } 2160 } 2161 2162 // If this node is not part of the or/and tree, emit it as a branch. 2163 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2164 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2165 BOp->getParent() != CurBB->getBasicBlock() || 2166 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2167 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2168 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2169 TProb, FProb, InvertCond); 2170 return; 2171 } 2172 2173 // Create TmpBB after CurBB. 2174 MachineFunction::iterator BBI(CurBB); 2175 MachineFunction &MF = DAG.getMachineFunction(); 2176 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2177 CurBB->getParent()->insert(++BBI, TmpBB); 2178 2179 if (Opc == Instruction::Or) { 2180 // Codegen X | Y as: 2181 // BB1: 2182 // jmp_if_X TBB 2183 // jmp TmpBB 2184 // TmpBB: 2185 // jmp_if_Y TBB 2186 // jmp FBB 2187 // 2188 2189 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2190 // The requirement is that 2191 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2192 // = TrueProb for original BB. 2193 // Assuming the original probabilities are A and B, one choice is to set 2194 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2195 // A/(1+B) and 2B/(1+B). This choice assumes that 2196 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2197 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2198 // TmpBB, but the math is more complicated. 2199 2200 auto NewTrueProb = TProb / 2; 2201 auto NewFalseProb = TProb / 2 + FProb; 2202 // Emit the LHS condition. 2203 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2204 NewTrueProb, NewFalseProb, InvertCond); 2205 2206 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2207 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2208 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2209 // Emit the RHS condition into TmpBB. 2210 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2211 Probs[0], Probs[1], InvertCond); 2212 } else { 2213 assert(Opc == Instruction::And && "Unknown merge op!"); 2214 // Codegen X & Y as: 2215 // BB1: 2216 // jmp_if_X TmpBB 2217 // jmp FBB 2218 // TmpBB: 2219 // jmp_if_Y TBB 2220 // jmp FBB 2221 // 2222 // This requires creation of TmpBB after CurBB. 2223 2224 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2225 // The requirement is that 2226 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2227 // = FalseProb for original BB. 2228 // Assuming the original probabilities are A and B, one choice is to set 2229 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2230 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2231 // TrueProb for BB1 * FalseProb for TmpBB. 2232 2233 auto NewTrueProb = TProb + FProb / 2; 2234 auto NewFalseProb = FProb / 2; 2235 // Emit the LHS condition. 2236 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2237 NewTrueProb, NewFalseProb, InvertCond); 2238 2239 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2240 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2241 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2242 // Emit the RHS condition into TmpBB. 2243 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2244 Probs[0], Probs[1], InvertCond); 2245 } 2246 } 2247 2248 /// If the set of cases should be emitted as a series of branches, return true. 2249 /// If we should emit this as a bunch of and/or'd together conditions, return 2250 /// false. 2251 bool 2252 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2253 if (Cases.size() != 2) return true; 2254 2255 // If this is two comparisons of the same values or'd or and'd together, they 2256 // will get folded into a single comparison, so don't emit two blocks. 2257 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2258 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2259 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2260 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2261 return false; 2262 } 2263 2264 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2265 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2266 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2267 Cases[0].CC == Cases[1].CC && 2268 isa<Constant>(Cases[0].CmpRHS) && 2269 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2270 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2271 return false; 2272 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2273 return false; 2274 } 2275 2276 return true; 2277 } 2278 2279 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2280 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2281 2282 // Update machine-CFG edges. 2283 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2284 2285 if (I.isUnconditional()) { 2286 // Update machine-CFG edges. 2287 BrMBB->addSuccessor(Succ0MBB); 2288 2289 // If this is not a fall-through branch or optimizations are switched off, 2290 // emit the branch. 2291 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2292 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2293 MVT::Other, getControlRoot(), 2294 DAG.getBasicBlock(Succ0MBB))); 2295 2296 return; 2297 } 2298 2299 // If this condition is one of the special cases we handle, do special stuff 2300 // now. 2301 const Value *CondVal = I.getCondition(); 2302 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2303 2304 // If this is a series of conditions that are or'd or and'd together, emit 2305 // this as a sequence of branches instead of setcc's with and/or operations. 2306 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2307 // unpredictable branches, and vector extracts because those jumps are likely 2308 // expensive for any target), this should improve performance. 2309 // For example, instead of something like: 2310 // cmp A, B 2311 // C = seteq 2312 // cmp D, E 2313 // F = setle 2314 // or C, F 2315 // jnz foo 2316 // Emit: 2317 // cmp A, B 2318 // je foo 2319 // cmp D, E 2320 // jle foo 2321 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2322 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2323 Value *Vec, *BOp0 = BOp->getOperand(0), *BOp1 = BOp->getOperand(1); 2324 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2325 !I.hasMetadata(LLVMContext::MD_unpredictable) && 2326 (Opcode == Instruction::And || Opcode == Instruction::Or) && 2327 !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2328 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2329 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2330 Opcode, 2331 getEdgeProbability(BrMBB, Succ0MBB), 2332 getEdgeProbability(BrMBB, Succ1MBB), 2333 /*InvertCond=*/false); 2334 // If the compares in later blocks need to use values not currently 2335 // exported from this block, export them now. This block should always 2336 // be the first entry. 2337 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2338 2339 // Allow some cases to be rejected. 2340 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2341 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2342 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2343 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2344 } 2345 2346 // Emit the branch for this block. 2347 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2348 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2349 return; 2350 } 2351 2352 // Okay, we decided not to do this, remove any inserted MBB's and clear 2353 // SwitchCases. 2354 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2355 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2356 2357 SL->SwitchCases.clear(); 2358 } 2359 } 2360 2361 // Create a CaseBlock record representing this branch. 2362 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2363 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2364 2365 // Use visitSwitchCase to actually insert the fast branch sequence for this 2366 // cond branch. 2367 visitSwitchCase(CB, BrMBB); 2368 } 2369 2370 /// visitSwitchCase - Emits the necessary code to represent a single node in 2371 /// the binary search tree resulting from lowering a switch instruction. 2372 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2373 MachineBasicBlock *SwitchBB) { 2374 SDValue Cond; 2375 SDValue CondLHS = getValue(CB.CmpLHS); 2376 SDLoc dl = CB.DL; 2377 2378 if (CB.CC == ISD::SETTRUE) { 2379 // Branch or fall through to TrueBB. 2380 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2381 SwitchBB->normalizeSuccProbs(); 2382 if (CB.TrueBB != NextBlock(SwitchBB)) { 2383 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2384 DAG.getBasicBlock(CB.TrueBB))); 2385 } 2386 return; 2387 } 2388 2389 auto &TLI = DAG.getTargetLoweringInfo(); 2390 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2391 2392 // Build the setcc now. 2393 if (!CB.CmpMHS) { 2394 // Fold "(X == true)" to X and "(X == false)" to !X to 2395 // handle common cases produced by branch lowering. 2396 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2397 CB.CC == ISD::SETEQ) 2398 Cond = CondLHS; 2399 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2400 CB.CC == ISD::SETEQ) { 2401 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2402 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2403 } else { 2404 SDValue CondRHS = getValue(CB.CmpRHS); 2405 2406 // If a pointer's DAG type is larger than its memory type then the DAG 2407 // values are zero-extended. This breaks signed comparisons so truncate 2408 // back to the underlying type before doing the compare. 2409 if (CondLHS.getValueType() != MemVT) { 2410 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2411 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2412 } 2413 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2414 } 2415 } else { 2416 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2417 2418 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2419 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2420 2421 SDValue CmpOp = getValue(CB.CmpMHS); 2422 EVT VT = CmpOp.getValueType(); 2423 2424 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2425 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2426 ISD::SETLE); 2427 } else { 2428 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2429 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2430 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2431 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2432 } 2433 } 2434 2435 // Update successor info 2436 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2437 // TrueBB and FalseBB are always different unless the incoming IR is 2438 // degenerate. This only happens when running llc on weird IR. 2439 if (CB.TrueBB != CB.FalseBB) 2440 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2441 SwitchBB->normalizeSuccProbs(); 2442 2443 // If the lhs block is the next block, invert the condition so that we can 2444 // fall through to the lhs instead of the rhs block. 2445 if (CB.TrueBB == NextBlock(SwitchBB)) { 2446 std::swap(CB.TrueBB, CB.FalseBB); 2447 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2448 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2449 } 2450 2451 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2452 MVT::Other, getControlRoot(), Cond, 2453 DAG.getBasicBlock(CB.TrueBB)); 2454 2455 // Insert the false branch. Do this even if it's a fall through branch, 2456 // this makes it easier to do DAG optimizations which require inverting 2457 // the branch condition. 2458 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2459 DAG.getBasicBlock(CB.FalseBB)); 2460 2461 DAG.setRoot(BrCond); 2462 } 2463 2464 /// visitJumpTable - Emit JumpTable node in the current MBB 2465 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2466 // Emit the code for the jump table 2467 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2468 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2469 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2470 JT.Reg, PTy); 2471 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2472 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2473 MVT::Other, Index.getValue(1), 2474 Table, Index); 2475 DAG.setRoot(BrJumpTable); 2476 } 2477 2478 /// visitJumpTableHeader - This function emits necessary code to produce index 2479 /// in the JumpTable from switch case. 2480 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2481 JumpTableHeader &JTH, 2482 MachineBasicBlock *SwitchBB) { 2483 SDLoc dl = getCurSDLoc(); 2484 2485 // Subtract the lowest switch case value from the value being switched on. 2486 SDValue SwitchOp = getValue(JTH.SValue); 2487 EVT VT = SwitchOp.getValueType(); 2488 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2489 DAG.getConstant(JTH.First, dl, VT)); 2490 2491 // The SDNode we just created, which holds the value being switched on minus 2492 // the smallest case value, needs to be copied to a virtual register so it 2493 // can be used as an index into the jump table in a subsequent basic block. 2494 // This value may be smaller or larger than the target's pointer type, and 2495 // therefore require extension or truncating. 2496 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2497 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2498 2499 unsigned JumpTableReg = 2500 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2501 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2502 JumpTableReg, SwitchOp); 2503 JT.Reg = JumpTableReg; 2504 2505 if (!JTH.OmitRangeCheck) { 2506 // Emit the range check for the jump table, and branch to the default block 2507 // for the switch statement if the value being switched on exceeds the 2508 // largest case in the switch. 2509 SDValue CMP = DAG.getSetCC( 2510 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2511 Sub.getValueType()), 2512 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2513 2514 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2515 MVT::Other, CopyTo, CMP, 2516 DAG.getBasicBlock(JT.Default)); 2517 2518 // Avoid emitting unnecessary branches to the next block. 2519 if (JT.MBB != NextBlock(SwitchBB)) 2520 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2521 DAG.getBasicBlock(JT.MBB)); 2522 2523 DAG.setRoot(BrCond); 2524 } else { 2525 // Avoid emitting unnecessary branches to the next block. 2526 if (JT.MBB != NextBlock(SwitchBB)) 2527 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2528 DAG.getBasicBlock(JT.MBB))); 2529 else 2530 DAG.setRoot(CopyTo); 2531 } 2532 } 2533 2534 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2535 /// variable if there exists one. 2536 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2537 SDValue &Chain) { 2538 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2539 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2540 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2541 MachineFunction &MF = DAG.getMachineFunction(); 2542 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2543 MachineSDNode *Node = 2544 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2545 if (Global) { 2546 MachinePointerInfo MPInfo(Global); 2547 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2548 MachineMemOperand::MODereferenceable; 2549 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2550 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2551 DAG.setNodeMemRefs(Node, {MemRef}); 2552 } 2553 if (PtrTy != PtrMemTy) 2554 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2555 return SDValue(Node, 0); 2556 } 2557 2558 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2559 /// tail spliced into a stack protector check success bb. 2560 /// 2561 /// For a high level explanation of how this fits into the stack protector 2562 /// generation see the comment on the declaration of class 2563 /// StackProtectorDescriptor. 2564 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2565 MachineBasicBlock *ParentBB) { 2566 2567 // First create the loads to the guard/stack slot for the comparison. 2568 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2569 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2570 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2571 2572 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2573 int FI = MFI.getStackProtectorIndex(); 2574 2575 SDValue Guard; 2576 SDLoc dl = getCurSDLoc(); 2577 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2578 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2579 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2580 2581 // Generate code to load the content of the guard slot. 2582 SDValue GuardVal = DAG.getLoad( 2583 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2584 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2585 MachineMemOperand::MOVolatile); 2586 2587 if (TLI.useStackGuardXorFP()) 2588 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2589 2590 // Retrieve guard check function, nullptr if instrumentation is inlined. 2591 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2592 // The target provides a guard check function to validate the guard value. 2593 // Generate a call to that function with the content of the guard slot as 2594 // argument. 2595 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2596 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2597 2598 TargetLowering::ArgListTy Args; 2599 TargetLowering::ArgListEntry Entry; 2600 Entry.Node = GuardVal; 2601 Entry.Ty = FnTy->getParamType(0); 2602 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2603 Entry.IsInReg = true; 2604 Args.push_back(Entry); 2605 2606 TargetLowering::CallLoweringInfo CLI(DAG); 2607 CLI.setDebugLoc(getCurSDLoc()) 2608 .setChain(DAG.getEntryNode()) 2609 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2610 getValue(GuardCheckFn), std::move(Args)); 2611 2612 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2613 DAG.setRoot(Result.second); 2614 return; 2615 } 2616 2617 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2618 // Otherwise, emit a volatile load to retrieve the stack guard value. 2619 SDValue Chain = DAG.getEntryNode(); 2620 if (TLI.useLoadStackGuardNode()) { 2621 Guard = getLoadStackGuard(DAG, dl, Chain); 2622 } else { 2623 const Value *IRGuard = TLI.getSDagStackGuard(M); 2624 SDValue GuardPtr = getValue(IRGuard); 2625 2626 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2627 MachinePointerInfo(IRGuard, 0), Align, 2628 MachineMemOperand::MOVolatile); 2629 } 2630 2631 // Perform the comparison via a getsetcc. 2632 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2633 *DAG.getContext(), 2634 Guard.getValueType()), 2635 Guard, GuardVal, ISD::SETNE); 2636 2637 // If the guard/stackslot do not equal, branch to failure MBB. 2638 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2639 MVT::Other, GuardVal.getOperand(0), 2640 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2641 // Otherwise branch to success MBB. 2642 SDValue Br = DAG.getNode(ISD::BR, dl, 2643 MVT::Other, BrCond, 2644 DAG.getBasicBlock(SPD.getSuccessMBB())); 2645 2646 DAG.setRoot(Br); 2647 } 2648 2649 /// Codegen the failure basic block for a stack protector check. 2650 /// 2651 /// A failure stack protector machine basic block consists simply of a call to 2652 /// __stack_chk_fail(). 2653 /// 2654 /// For a high level explanation of how this fits into the stack protector 2655 /// generation see the comment on the declaration of class 2656 /// StackProtectorDescriptor. 2657 void 2658 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2659 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2660 TargetLowering::MakeLibCallOptions CallOptions; 2661 CallOptions.setDiscardResult(true); 2662 SDValue Chain = 2663 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2664 None, CallOptions, getCurSDLoc()).second; 2665 // On PS4, the "return address" must still be within the calling function, 2666 // even if it's at the very end, so emit an explicit TRAP here. 2667 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2668 if (TM.getTargetTriple().isPS4CPU()) 2669 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2670 2671 DAG.setRoot(Chain); 2672 } 2673 2674 /// visitBitTestHeader - This function emits necessary code to produce value 2675 /// suitable for "bit tests" 2676 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2677 MachineBasicBlock *SwitchBB) { 2678 SDLoc dl = getCurSDLoc(); 2679 2680 // Subtract the minimum value. 2681 SDValue SwitchOp = getValue(B.SValue); 2682 EVT VT = SwitchOp.getValueType(); 2683 SDValue RangeSub = 2684 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2685 2686 // Determine the type of the test operands. 2687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2688 bool UsePtrType = false; 2689 if (!TLI.isTypeLegal(VT)) { 2690 UsePtrType = true; 2691 } else { 2692 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2693 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2694 // Switch table case range are encoded into series of masks. 2695 // Just use pointer type, it's guaranteed to fit. 2696 UsePtrType = true; 2697 break; 2698 } 2699 } 2700 SDValue Sub = RangeSub; 2701 if (UsePtrType) { 2702 VT = TLI.getPointerTy(DAG.getDataLayout()); 2703 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2704 } 2705 2706 B.RegVT = VT.getSimpleVT(); 2707 B.Reg = FuncInfo.CreateReg(B.RegVT); 2708 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2709 2710 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2711 2712 if (!B.OmitRangeCheck) 2713 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2714 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2715 SwitchBB->normalizeSuccProbs(); 2716 2717 SDValue Root = CopyTo; 2718 if (!B.OmitRangeCheck) { 2719 // Conditional branch to the default block. 2720 SDValue RangeCmp = DAG.getSetCC(dl, 2721 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2722 RangeSub.getValueType()), 2723 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2724 ISD::SETUGT); 2725 2726 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2727 DAG.getBasicBlock(B.Default)); 2728 } 2729 2730 // Avoid emitting unnecessary branches to the next block. 2731 if (MBB != NextBlock(SwitchBB)) 2732 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2733 2734 DAG.setRoot(Root); 2735 } 2736 2737 /// visitBitTestCase - this function produces one "bit test" 2738 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2739 MachineBasicBlock* NextMBB, 2740 BranchProbability BranchProbToNext, 2741 unsigned Reg, 2742 BitTestCase &B, 2743 MachineBasicBlock *SwitchBB) { 2744 SDLoc dl = getCurSDLoc(); 2745 MVT VT = BB.RegVT; 2746 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2747 SDValue Cmp; 2748 unsigned PopCount = countPopulation(B.Mask); 2749 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2750 if (PopCount == 1) { 2751 // Testing for a single bit; just compare the shift count with what it 2752 // would need to be to shift a 1 bit in that position. 2753 Cmp = DAG.getSetCC( 2754 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2755 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2756 ISD::SETEQ); 2757 } else if (PopCount == BB.Range) { 2758 // There is only one zero bit in the range, test for it directly. 2759 Cmp = DAG.getSetCC( 2760 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2761 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2762 ISD::SETNE); 2763 } else { 2764 // Make desired shift 2765 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2766 DAG.getConstant(1, dl, VT), ShiftOp); 2767 2768 // Emit bit tests and jumps 2769 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2770 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2771 Cmp = DAG.getSetCC( 2772 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2773 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2774 } 2775 2776 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2777 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2778 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2779 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2780 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2781 // one as they are relative probabilities (and thus work more like weights), 2782 // and hence we need to normalize them to let the sum of them become one. 2783 SwitchBB->normalizeSuccProbs(); 2784 2785 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2786 MVT::Other, getControlRoot(), 2787 Cmp, DAG.getBasicBlock(B.TargetBB)); 2788 2789 // Avoid emitting unnecessary branches to the next block. 2790 if (NextMBB != NextBlock(SwitchBB)) 2791 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2792 DAG.getBasicBlock(NextMBB)); 2793 2794 DAG.setRoot(BrAnd); 2795 } 2796 2797 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2798 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2799 2800 // Retrieve successors. Look through artificial IR level blocks like 2801 // catchswitch for successors. 2802 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2803 const BasicBlock *EHPadBB = I.getSuccessor(1); 2804 2805 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2806 // have to do anything here to lower funclet bundles. 2807 assert(!I.hasOperandBundlesOtherThan({LLVMContext::OB_deopt, 2808 LLVMContext::OB_gc_transition, 2809 LLVMContext::OB_gc_live, 2810 LLVMContext::OB_funclet, 2811 LLVMContext::OB_cfguardtarget}) && 2812 "Cannot lower invokes with arbitrary operand bundles yet!"); 2813 2814 const Value *Callee(I.getCalledOperand()); 2815 const Function *Fn = dyn_cast<Function>(Callee); 2816 if (isa<InlineAsm>(Callee)) 2817 visitInlineAsm(I); 2818 else if (Fn && Fn->isIntrinsic()) { 2819 switch (Fn->getIntrinsicID()) { 2820 default: 2821 llvm_unreachable("Cannot invoke this intrinsic"); 2822 case Intrinsic::donothing: 2823 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2824 break; 2825 case Intrinsic::experimental_patchpoint_void: 2826 case Intrinsic::experimental_patchpoint_i64: 2827 visitPatchpoint(I, EHPadBB); 2828 break; 2829 case Intrinsic::experimental_gc_statepoint: 2830 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2831 break; 2832 case Intrinsic::wasm_rethrow_in_catch: { 2833 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2834 // special because it can be invoked, so we manually lower it to a DAG 2835 // node here. 2836 SmallVector<SDValue, 8> Ops; 2837 Ops.push_back(getRoot()); // inchain 2838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2839 Ops.push_back( 2840 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2841 TLI.getPointerTy(DAG.getDataLayout()))); 2842 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2843 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2844 break; 2845 } 2846 } 2847 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2848 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2849 // Eventually we will support lowering the @llvm.experimental.deoptimize 2850 // intrinsic, and right now there are no plans to support other intrinsics 2851 // with deopt state. 2852 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2853 } else { 2854 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2855 } 2856 2857 // If the value of the invoke is used outside of its defining block, make it 2858 // available as a virtual register. 2859 // We already took care of the exported value for the statepoint instruction 2860 // during call to the LowerStatepoint. 2861 if (!isa<GCStatepointInst>(I)) { 2862 CopyToExportRegsIfNeeded(&I); 2863 } 2864 2865 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2866 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2867 BranchProbability EHPadBBProb = 2868 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2869 : BranchProbability::getZero(); 2870 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2871 2872 // Update successor info. 2873 addSuccessorWithProb(InvokeMBB, Return); 2874 for (auto &UnwindDest : UnwindDests) { 2875 UnwindDest.first->setIsEHPad(); 2876 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2877 } 2878 InvokeMBB->normalizeSuccProbs(); 2879 2880 // Drop into normal successor. 2881 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2882 DAG.getBasicBlock(Return))); 2883 } 2884 2885 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2886 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2887 2888 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2889 // have to do anything here to lower funclet bundles. 2890 assert(!I.hasOperandBundlesOtherThan( 2891 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2892 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2893 2894 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2895 visitInlineAsm(I); 2896 CopyToExportRegsIfNeeded(&I); 2897 2898 // Retrieve successors. 2899 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2900 2901 // Update successor info. 2902 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2903 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2904 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2905 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2906 Target->setIsInlineAsmBrIndirectTarget(); 2907 } 2908 CallBrMBB->normalizeSuccProbs(); 2909 2910 // Drop into default successor. 2911 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2912 MVT::Other, getControlRoot(), 2913 DAG.getBasicBlock(Return))); 2914 } 2915 2916 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2917 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2918 } 2919 2920 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2921 assert(FuncInfo.MBB->isEHPad() && 2922 "Call to landingpad not in landing pad!"); 2923 2924 // If there aren't registers to copy the values into (e.g., during SjLj 2925 // exceptions), then don't bother to create these DAG nodes. 2926 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2927 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2928 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2929 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2930 return; 2931 2932 // If landingpad's return type is token type, we don't create DAG nodes 2933 // for its exception pointer and selector value. The extraction of exception 2934 // pointer or selector value from token type landingpads is not currently 2935 // supported. 2936 if (LP.getType()->isTokenTy()) 2937 return; 2938 2939 SmallVector<EVT, 2> ValueVTs; 2940 SDLoc dl = getCurSDLoc(); 2941 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2942 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2943 2944 // Get the two live-in registers as SDValues. The physregs have already been 2945 // copied into virtual registers. 2946 SDValue Ops[2]; 2947 if (FuncInfo.ExceptionPointerVirtReg) { 2948 Ops[0] = DAG.getZExtOrTrunc( 2949 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2950 FuncInfo.ExceptionPointerVirtReg, 2951 TLI.getPointerTy(DAG.getDataLayout())), 2952 dl, ValueVTs[0]); 2953 } else { 2954 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2955 } 2956 Ops[1] = DAG.getZExtOrTrunc( 2957 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2958 FuncInfo.ExceptionSelectorVirtReg, 2959 TLI.getPointerTy(DAG.getDataLayout())), 2960 dl, ValueVTs[1]); 2961 2962 // Merge into one. 2963 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2964 DAG.getVTList(ValueVTs), Ops); 2965 setValue(&LP, Res); 2966 } 2967 2968 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2969 MachineBasicBlock *Last) { 2970 // Update JTCases. 2971 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 2972 if (SL->JTCases[i].first.HeaderBB == First) 2973 SL->JTCases[i].first.HeaderBB = Last; 2974 2975 // Update BitTestCases. 2976 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 2977 if (SL->BitTestCases[i].Parent == First) 2978 SL->BitTestCases[i].Parent = Last; 2979 } 2980 2981 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2982 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2983 2984 // Update machine-CFG edges with unique successors. 2985 SmallSet<BasicBlock*, 32> Done; 2986 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2987 BasicBlock *BB = I.getSuccessor(i); 2988 bool Inserted = Done.insert(BB).second; 2989 if (!Inserted) 2990 continue; 2991 2992 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2993 addSuccessorWithProb(IndirectBrMBB, Succ); 2994 } 2995 IndirectBrMBB->normalizeSuccProbs(); 2996 2997 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2998 MVT::Other, getControlRoot(), 2999 getValue(I.getAddress()))); 3000 } 3001 3002 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3003 if (!DAG.getTarget().Options.TrapUnreachable) 3004 return; 3005 3006 // We may be able to ignore unreachable behind a noreturn call. 3007 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3008 const BasicBlock &BB = *I.getParent(); 3009 if (&I != &BB.front()) { 3010 BasicBlock::const_iterator PredI = 3011 std::prev(BasicBlock::const_iterator(&I)); 3012 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3013 if (Call->doesNotReturn()) 3014 return; 3015 } 3016 } 3017 } 3018 3019 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3020 } 3021 3022 void SelectionDAGBuilder::visitFSub(const User &I) { 3023 // -0.0 - X --> fneg 3024 Type *Ty = I.getType(); 3025 if (isa<Constant>(I.getOperand(0)) && 3026 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 3027 SDValue Op2 = getValue(I.getOperand(1)); 3028 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 3029 Op2.getValueType(), Op2)); 3030 return; 3031 } 3032 3033 visitBinary(I, ISD::FSUB); 3034 } 3035 3036 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3037 SDNodeFlags Flags; 3038 3039 SDValue Op = getValue(I.getOperand(0)); 3040 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3041 Op, Flags); 3042 setValue(&I, UnNodeValue); 3043 } 3044 3045 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3046 SDNodeFlags Flags; 3047 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3048 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3049 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3050 } 3051 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3052 Flags.setExact(ExactOp->isExact()); 3053 } 3054 3055 SDValue Op1 = getValue(I.getOperand(0)); 3056 SDValue Op2 = getValue(I.getOperand(1)); 3057 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3058 Op1, Op2, Flags); 3059 setValue(&I, BinNodeValue); 3060 } 3061 3062 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3063 SDValue Op1 = getValue(I.getOperand(0)); 3064 SDValue Op2 = getValue(I.getOperand(1)); 3065 3066 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3067 Op1.getValueType(), DAG.getDataLayout()); 3068 3069 // Coerce the shift amount to the right type if we can. 3070 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3071 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3072 unsigned Op2Size = Op2.getValueSizeInBits(); 3073 SDLoc DL = getCurSDLoc(); 3074 3075 // If the operand is smaller than the shift count type, promote it. 3076 if (ShiftSize > Op2Size) 3077 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3078 3079 // If the operand is larger than the shift count type but the shift 3080 // count type has enough bits to represent any shift value, truncate 3081 // it now. This is a common case and it exposes the truncate to 3082 // optimization early. 3083 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3084 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3085 // Otherwise we'll need to temporarily settle for some other convenient 3086 // type. Type legalization will make adjustments once the shiftee is split. 3087 else 3088 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3089 } 3090 3091 bool nuw = false; 3092 bool nsw = false; 3093 bool exact = false; 3094 3095 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3096 3097 if (const OverflowingBinaryOperator *OFBinOp = 3098 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3099 nuw = OFBinOp->hasNoUnsignedWrap(); 3100 nsw = OFBinOp->hasNoSignedWrap(); 3101 } 3102 if (const PossiblyExactOperator *ExactOp = 3103 dyn_cast<const PossiblyExactOperator>(&I)) 3104 exact = ExactOp->isExact(); 3105 } 3106 SDNodeFlags Flags; 3107 Flags.setExact(exact); 3108 Flags.setNoSignedWrap(nsw); 3109 Flags.setNoUnsignedWrap(nuw); 3110 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3111 Flags); 3112 setValue(&I, Res); 3113 } 3114 3115 void SelectionDAGBuilder::visitSDiv(const User &I) { 3116 SDValue Op1 = getValue(I.getOperand(0)); 3117 SDValue Op2 = getValue(I.getOperand(1)); 3118 3119 SDNodeFlags Flags; 3120 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3121 cast<PossiblyExactOperator>(&I)->isExact()); 3122 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3123 Op2, Flags)); 3124 } 3125 3126 void SelectionDAGBuilder::visitICmp(const User &I) { 3127 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3128 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3129 predicate = IC->getPredicate(); 3130 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3131 predicate = ICmpInst::Predicate(IC->getPredicate()); 3132 SDValue Op1 = getValue(I.getOperand(0)); 3133 SDValue Op2 = getValue(I.getOperand(1)); 3134 ISD::CondCode Opcode = getICmpCondCode(predicate); 3135 3136 auto &TLI = DAG.getTargetLoweringInfo(); 3137 EVT MemVT = 3138 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3139 3140 // If a pointer's DAG type is larger than its memory type then the DAG values 3141 // are zero-extended. This breaks signed comparisons so truncate back to the 3142 // underlying type before doing the compare. 3143 if (Op1.getValueType() != MemVT) { 3144 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3145 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3146 } 3147 3148 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3149 I.getType()); 3150 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3151 } 3152 3153 void SelectionDAGBuilder::visitFCmp(const User &I) { 3154 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3155 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3156 predicate = FC->getPredicate(); 3157 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3158 predicate = FCmpInst::Predicate(FC->getPredicate()); 3159 SDValue Op1 = getValue(I.getOperand(0)); 3160 SDValue Op2 = getValue(I.getOperand(1)); 3161 3162 ISD::CondCode Condition = getFCmpCondCode(predicate); 3163 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3164 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3165 Condition = getFCmpCodeWithoutNaN(Condition); 3166 3167 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3168 I.getType()); 3169 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3170 } 3171 3172 // Check if the condition of the select has one use or two users that are both 3173 // selects with the same condition. 3174 static bool hasOnlySelectUsers(const Value *Cond) { 3175 return llvm::all_of(Cond->users(), [](const Value *V) { 3176 return isa<SelectInst>(V); 3177 }); 3178 } 3179 3180 void SelectionDAGBuilder::visitSelect(const User &I) { 3181 SmallVector<EVT, 4> ValueVTs; 3182 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3183 ValueVTs); 3184 unsigned NumValues = ValueVTs.size(); 3185 if (NumValues == 0) return; 3186 3187 SmallVector<SDValue, 4> Values(NumValues); 3188 SDValue Cond = getValue(I.getOperand(0)); 3189 SDValue LHSVal = getValue(I.getOperand(1)); 3190 SDValue RHSVal = getValue(I.getOperand(2)); 3191 SmallVector<SDValue, 1> BaseOps(1, Cond); 3192 ISD::NodeType OpCode = 3193 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3194 3195 bool IsUnaryAbs = false; 3196 3197 // Min/max matching is only viable if all output VTs are the same. 3198 if (is_splat(ValueVTs)) { 3199 EVT VT = ValueVTs[0]; 3200 LLVMContext &Ctx = *DAG.getContext(); 3201 auto &TLI = DAG.getTargetLoweringInfo(); 3202 3203 // We care about the legality of the operation after it has been type 3204 // legalized. 3205 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3206 VT = TLI.getTypeToTransformTo(Ctx, VT); 3207 3208 // If the vselect is legal, assume we want to leave this as a vector setcc + 3209 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3210 // min/max is legal on the scalar type. 3211 bool UseScalarMinMax = VT.isVector() && 3212 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3213 3214 Value *LHS, *RHS; 3215 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3216 ISD::NodeType Opc = ISD::DELETED_NODE; 3217 switch (SPR.Flavor) { 3218 case SPF_UMAX: Opc = ISD::UMAX; break; 3219 case SPF_UMIN: Opc = ISD::UMIN; break; 3220 case SPF_SMAX: Opc = ISD::SMAX; break; 3221 case SPF_SMIN: Opc = ISD::SMIN; break; 3222 case SPF_FMINNUM: 3223 switch (SPR.NaNBehavior) { 3224 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3225 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3226 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3227 case SPNB_RETURNS_ANY: { 3228 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3229 Opc = ISD::FMINNUM; 3230 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3231 Opc = ISD::FMINIMUM; 3232 else if (UseScalarMinMax) 3233 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3234 ISD::FMINNUM : ISD::FMINIMUM; 3235 break; 3236 } 3237 } 3238 break; 3239 case SPF_FMAXNUM: 3240 switch (SPR.NaNBehavior) { 3241 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3242 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3243 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3244 case SPNB_RETURNS_ANY: 3245 3246 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3247 Opc = ISD::FMAXNUM; 3248 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3249 Opc = ISD::FMAXIMUM; 3250 else if (UseScalarMinMax) 3251 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3252 ISD::FMAXNUM : ISD::FMAXIMUM; 3253 break; 3254 } 3255 break; 3256 case SPF_ABS: 3257 IsUnaryAbs = true; 3258 Opc = ISD::ABS; 3259 break; 3260 case SPF_NABS: 3261 // TODO: we need to produce sub(0, abs(X)). 3262 default: break; 3263 } 3264 3265 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3266 (TLI.isOperationLegalOrCustom(Opc, VT) || 3267 (UseScalarMinMax && 3268 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3269 // If the underlying comparison instruction is used by any other 3270 // instruction, the consumed instructions won't be destroyed, so it is 3271 // not profitable to convert to a min/max. 3272 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3273 OpCode = Opc; 3274 LHSVal = getValue(LHS); 3275 RHSVal = getValue(RHS); 3276 BaseOps.clear(); 3277 } 3278 3279 if (IsUnaryAbs) { 3280 OpCode = Opc; 3281 LHSVal = getValue(LHS); 3282 BaseOps.clear(); 3283 } 3284 } 3285 3286 if (IsUnaryAbs) { 3287 for (unsigned i = 0; i != NumValues; ++i) { 3288 Values[i] = 3289 DAG.getNode(OpCode, getCurSDLoc(), 3290 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3291 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3292 } 3293 } else { 3294 for (unsigned i = 0; i != NumValues; ++i) { 3295 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3296 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3297 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3298 Values[i] = DAG.getNode( 3299 OpCode, getCurSDLoc(), 3300 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3301 } 3302 } 3303 3304 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3305 DAG.getVTList(ValueVTs), Values)); 3306 } 3307 3308 void SelectionDAGBuilder::visitTrunc(const User &I) { 3309 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3310 SDValue N = getValue(I.getOperand(0)); 3311 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3312 I.getType()); 3313 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3314 } 3315 3316 void SelectionDAGBuilder::visitZExt(const User &I) { 3317 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3318 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3319 SDValue N = getValue(I.getOperand(0)); 3320 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3321 I.getType()); 3322 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3323 } 3324 3325 void SelectionDAGBuilder::visitSExt(const User &I) { 3326 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3327 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3328 SDValue N = getValue(I.getOperand(0)); 3329 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3330 I.getType()); 3331 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3332 } 3333 3334 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3335 // FPTrunc is never a no-op cast, no need to check 3336 SDValue N = getValue(I.getOperand(0)); 3337 SDLoc dl = getCurSDLoc(); 3338 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3339 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3340 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3341 DAG.getTargetConstant( 3342 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3343 } 3344 3345 void SelectionDAGBuilder::visitFPExt(const User &I) { 3346 // FPExt is never a no-op cast, no need to check 3347 SDValue N = getValue(I.getOperand(0)); 3348 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3349 I.getType()); 3350 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3351 } 3352 3353 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3354 // FPToUI is never a no-op cast, no need to check 3355 SDValue N = getValue(I.getOperand(0)); 3356 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3357 I.getType()); 3358 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3359 } 3360 3361 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3362 // FPToSI is never a no-op cast, no need to check 3363 SDValue N = getValue(I.getOperand(0)); 3364 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3365 I.getType()); 3366 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3367 } 3368 3369 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3370 // UIToFP is never a no-op cast, no need to check 3371 SDValue N = getValue(I.getOperand(0)); 3372 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3373 I.getType()); 3374 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3375 } 3376 3377 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3378 // SIToFP is never a no-op cast, no need to check 3379 SDValue N = getValue(I.getOperand(0)); 3380 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3381 I.getType()); 3382 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3383 } 3384 3385 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3386 // What to do depends on the size of the integer and the size of the pointer. 3387 // We can either truncate, zero extend, or no-op, accordingly. 3388 SDValue N = getValue(I.getOperand(0)); 3389 auto &TLI = DAG.getTargetLoweringInfo(); 3390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3391 I.getType()); 3392 EVT PtrMemVT = 3393 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3394 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3395 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3396 setValue(&I, N); 3397 } 3398 3399 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3400 // What to do depends on the size of the integer and the size of the pointer. 3401 // We can either truncate, zero extend, or no-op, accordingly. 3402 SDValue N = getValue(I.getOperand(0)); 3403 auto &TLI = DAG.getTargetLoweringInfo(); 3404 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3405 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3406 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3407 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3408 setValue(&I, N); 3409 } 3410 3411 void SelectionDAGBuilder::visitBitCast(const User &I) { 3412 SDValue N = getValue(I.getOperand(0)); 3413 SDLoc dl = getCurSDLoc(); 3414 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3415 I.getType()); 3416 3417 // BitCast assures us that source and destination are the same size so this is 3418 // either a BITCAST or a no-op. 3419 if (DestVT != N.getValueType()) 3420 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3421 DestVT, N)); // convert types. 3422 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3423 // might fold any kind of constant expression to an integer constant and that 3424 // is not what we are looking for. Only recognize a bitcast of a genuine 3425 // constant integer as an opaque constant. 3426 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3427 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3428 /*isOpaque*/true)); 3429 else 3430 setValue(&I, N); // noop cast. 3431 } 3432 3433 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3434 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3435 const Value *SV = I.getOperand(0); 3436 SDValue N = getValue(SV); 3437 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3438 3439 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3440 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3441 3442 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3443 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3444 3445 setValue(&I, N); 3446 } 3447 3448 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3449 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3450 SDValue InVec = getValue(I.getOperand(0)); 3451 SDValue InVal = getValue(I.getOperand(1)); 3452 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3453 TLI.getVectorIdxTy(DAG.getDataLayout())); 3454 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3455 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3456 InVec, InVal, InIdx)); 3457 } 3458 3459 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3460 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3461 SDValue InVec = getValue(I.getOperand(0)); 3462 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3463 TLI.getVectorIdxTy(DAG.getDataLayout())); 3464 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3465 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3466 InVec, InIdx)); 3467 } 3468 3469 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3470 SDValue Src1 = getValue(I.getOperand(0)); 3471 SDValue Src2 = getValue(I.getOperand(1)); 3472 ArrayRef<int> Mask; 3473 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3474 Mask = SVI->getShuffleMask(); 3475 else 3476 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3477 SDLoc DL = getCurSDLoc(); 3478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3479 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3480 EVT SrcVT = Src1.getValueType(); 3481 3482 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3483 VT.isScalableVector()) { 3484 // Canonical splat form of first element of first input vector. 3485 SDValue FirstElt = 3486 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3487 DAG.getVectorIdxConstant(0, DL)); 3488 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3489 return; 3490 } 3491 3492 // For now, we only handle splats for scalable vectors. 3493 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3494 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3495 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3496 3497 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3498 unsigned MaskNumElts = Mask.size(); 3499 3500 if (SrcNumElts == MaskNumElts) { 3501 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3502 return; 3503 } 3504 3505 // Normalize the shuffle vector since mask and vector length don't match. 3506 if (SrcNumElts < MaskNumElts) { 3507 // Mask is longer than the source vectors. We can use concatenate vector to 3508 // make the mask and vectors lengths match. 3509 3510 if (MaskNumElts % SrcNumElts == 0) { 3511 // Mask length is a multiple of the source vector length. 3512 // Check if the shuffle is some kind of concatenation of the input 3513 // vectors. 3514 unsigned NumConcat = MaskNumElts / SrcNumElts; 3515 bool IsConcat = true; 3516 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3517 for (unsigned i = 0; i != MaskNumElts; ++i) { 3518 int Idx = Mask[i]; 3519 if (Idx < 0) 3520 continue; 3521 // Ensure the indices in each SrcVT sized piece are sequential and that 3522 // the same source is used for the whole piece. 3523 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3524 (ConcatSrcs[i / SrcNumElts] >= 0 && 3525 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3526 IsConcat = false; 3527 break; 3528 } 3529 // Remember which source this index came from. 3530 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3531 } 3532 3533 // The shuffle is concatenating multiple vectors together. Just emit 3534 // a CONCAT_VECTORS operation. 3535 if (IsConcat) { 3536 SmallVector<SDValue, 8> ConcatOps; 3537 for (auto Src : ConcatSrcs) { 3538 if (Src < 0) 3539 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3540 else if (Src == 0) 3541 ConcatOps.push_back(Src1); 3542 else 3543 ConcatOps.push_back(Src2); 3544 } 3545 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3546 return; 3547 } 3548 } 3549 3550 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3551 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3552 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3553 PaddedMaskNumElts); 3554 3555 // Pad both vectors with undefs to make them the same length as the mask. 3556 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3557 3558 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3559 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3560 MOps1[0] = Src1; 3561 MOps2[0] = Src2; 3562 3563 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3564 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3565 3566 // Readjust mask for new input vector length. 3567 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3568 for (unsigned i = 0; i != MaskNumElts; ++i) { 3569 int Idx = Mask[i]; 3570 if (Idx >= (int)SrcNumElts) 3571 Idx -= SrcNumElts - PaddedMaskNumElts; 3572 MappedOps[i] = Idx; 3573 } 3574 3575 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3576 3577 // If the concatenated vector was padded, extract a subvector with the 3578 // correct number of elements. 3579 if (MaskNumElts != PaddedMaskNumElts) 3580 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3581 DAG.getVectorIdxConstant(0, DL)); 3582 3583 setValue(&I, Result); 3584 return; 3585 } 3586 3587 if (SrcNumElts > MaskNumElts) { 3588 // Analyze the access pattern of the vector to see if we can extract 3589 // two subvectors and do the shuffle. 3590 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3591 bool CanExtract = true; 3592 for (int Idx : Mask) { 3593 unsigned Input = 0; 3594 if (Idx < 0) 3595 continue; 3596 3597 if (Idx >= (int)SrcNumElts) { 3598 Input = 1; 3599 Idx -= SrcNumElts; 3600 } 3601 3602 // If all the indices come from the same MaskNumElts sized portion of 3603 // the sources we can use extract. Also make sure the extract wouldn't 3604 // extract past the end of the source. 3605 int NewStartIdx = alignDown(Idx, MaskNumElts); 3606 if (NewStartIdx + MaskNumElts > SrcNumElts || 3607 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3608 CanExtract = false; 3609 // Make sure we always update StartIdx as we use it to track if all 3610 // elements are undef. 3611 StartIdx[Input] = NewStartIdx; 3612 } 3613 3614 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3615 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3616 return; 3617 } 3618 if (CanExtract) { 3619 // Extract appropriate subvector and generate a vector shuffle 3620 for (unsigned Input = 0; Input < 2; ++Input) { 3621 SDValue &Src = Input == 0 ? Src1 : Src2; 3622 if (StartIdx[Input] < 0) 3623 Src = DAG.getUNDEF(VT); 3624 else { 3625 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3626 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3627 } 3628 } 3629 3630 // Calculate new mask. 3631 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3632 for (int &Idx : MappedOps) { 3633 if (Idx >= (int)SrcNumElts) 3634 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3635 else if (Idx >= 0) 3636 Idx -= StartIdx[0]; 3637 } 3638 3639 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3640 return; 3641 } 3642 } 3643 3644 // We can't use either concat vectors or extract subvectors so fall back to 3645 // replacing the shuffle with extract and build vector. 3646 // to insert and build vector. 3647 EVT EltVT = VT.getVectorElementType(); 3648 SmallVector<SDValue,8> Ops; 3649 for (int Idx : Mask) { 3650 SDValue Res; 3651 3652 if (Idx < 0) { 3653 Res = DAG.getUNDEF(EltVT); 3654 } else { 3655 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3656 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3657 3658 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3659 DAG.getVectorIdxConstant(Idx, DL)); 3660 } 3661 3662 Ops.push_back(Res); 3663 } 3664 3665 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3666 } 3667 3668 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3669 ArrayRef<unsigned> Indices; 3670 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3671 Indices = IV->getIndices(); 3672 else 3673 Indices = cast<ConstantExpr>(&I)->getIndices(); 3674 3675 const Value *Op0 = I.getOperand(0); 3676 const Value *Op1 = I.getOperand(1); 3677 Type *AggTy = I.getType(); 3678 Type *ValTy = Op1->getType(); 3679 bool IntoUndef = isa<UndefValue>(Op0); 3680 bool FromUndef = isa<UndefValue>(Op1); 3681 3682 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3683 3684 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3685 SmallVector<EVT, 4> AggValueVTs; 3686 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3687 SmallVector<EVT, 4> ValValueVTs; 3688 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3689 3690 unsigned NumAggValues = AggValueVTs.size(); 3691 unsigned NumValValues = ValValueVTs.size(); 3692 SmallVector<SDValue, 4> Values(NumAggValues); 3693 3694 // Ignore an insertvalue that produces an empty object 3695 if (!NumAggValues) { 3696 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3697 return; 3698 } 3699 3700 SDValue Agg = getValue(Op0); 3701 unsigned i = 0; 3702 // Copy the beginning value(s) from the original aggregate. 3703 for (; i != LinearIndex; ++i) 3704 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3705 SDValue(Agg.getNode(), Agg.getResNo() + i); 3706 // Copy values from the inserted value(s). 3707 if (NumValValues) { 3708 SDValue Val = getValue(Op1); 3709 for (; i != LinearIndex + NumValValues; ++i) 3710 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3711 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3712 } 3713 // Copy remaining value(s) from the original aggregate. 3714 for (; i != NumAggValues; ++i) 3715 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3716 SDValue(Agg.getNode(), Agg.getResNo() + i); 3717 3718 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3719 DAG.getVTList(AggValueVTs), Values)); 3720 } 3721 3722 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3723 ArrayRef<unsigned> Indices; 3724 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3725 Indices = EV->getIndices(); 3726 else 3727 Indices = cast<ConstantExpr>(&I)->getIndices(); 3728 3729 const Value *Op0 = I.getOperand(0); 3730 Type *AggTy = Op0->getType(); 3731 Type *ValTy = I.getType(); 3732 bool OutOfUndef = isa<UndefValue>(Op0); 3733 3734 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3735 3736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3737 SmallVector<EVT, 4> ValValueVTs; 3738 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3739 3740 unsigned NumValValues = ValValueVTs.size(); 3741 3742 // Ignore a extractvalue that produces an empty object 3743 if (!NumValValues) { 3744 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3745 return; 3746 } 3747 3748 SmallVector<SDValue, 4> Values(NumValValues); 3749 3750 SDValue Agg = getValue(Op0); 3751 // Copy out the selected value(s). 3752 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3753 Values[i - LinearIndex] = 3754 OutOfUndef ? 3755 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3756 SDValue(Agg.getNode(), Agg.getResNo() + i); 3757 3758 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3759 DAG.getVTList(ValValueVTs), Values)); 3760 } 3761 3762 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3763 Value *Op0 = I.getOperand(0); 3764 // Note that the pointer operand may be a vector of pointers. Take the scalar 3765 // element which holds a pointer. 3766 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3767 SDValue N = getValue(Op0); 3768 SDLoc dl = getCurSDLoc(); 3769 auto &TLI = DAG.getTargetLoweringInfo(); 3770 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3771 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3772 3773 // Normalize Vector GEP - all scalar operands should be converted to the 3774 // splat vector. 3775 bool IsVectorGEP = I.getType()->isVectorTy(); 3776 ElementCount VectorElementCount = 3777 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3778 : ElementCount(0, false); 3779 3780 if (IsVectorGEP && !N.getValueType().isVector()) { 3781 LLVMContext &Context = *DAG.getContext(); 3782 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3783 if (VectorElementCount.Scalable) 3784 N = DAG.getSplatVector(VT, dl, N); 3785 else 3786 N = DAG.getSplatBuildVector(VT, dl, N); 3787 } 3788 3789 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3790 GTI != E; ++GTI) { 3791 const Value *Idx = GTI.getOperand(); 3792 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3793 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3794 if (Field) { 3795 // N = N + Offset 3796 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3797 3798 // In an inbounds GEP with an offset that is nonnegative even when 3799 // interpreted as signed, assume there is no unsigned overflow. 3800 SDNodeFlags Flags; 3801 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3802 Flags.setNoUnsignedWrap(true); 3803 3804 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3805 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3806 } 3807 } else { 3808 // IdxSize is the width of the arithmetic according to IR semantics. 3809 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3810 // (and fix up the result later). 3811 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3812 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3813 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3814 // We intentionally mask away the high bits here; ElementSize may not 3815 // fit in IdxTy. 3816 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3817 bool ElementScalable = ElementSize.isScalable(); 3818 3819 // If this is a scalar constant or a splat vector of constants, 3820 // handle it quickly. 3821 const auto *C = dyn_cast<Constant>(Idx); 3822 if (C && isa<VectorType>(C->getType())) 3823 C = C->getSplatValue(); 3824 3825 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3826 if (CI && CI->isZero()) 3827 continue; 3828 if (CI && !ElementScalable) { 3829 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3830 LLVMContext &Context = *DAG.getContext(); 3831 SDValue OffsVal; 3832 if (IsVectorGEP) 3833 OffsVal = DAG.getConstant( 3834 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3835 else 3836 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3837 3838 // In an inbounds GEP with an offset that is nonnegative even when 3839 // interpreted as signed, assume there is no unsigned overflow. 3840 SDNodeFlags Flags; 3841 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3842 Flags.setNoUnsignedWrap(true); 3843 3844 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3845 3846 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3847 continue; 3848 } 3849 3850 // N = N + Idx * ElementMul; 3851 SDValue IdxN = getValue(Idx); 3852 3853 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3854 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3855 VectorElementCount); 3856 if (VectorElementCount.Scalable) 3857 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3858 else 3859 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3860 } 3861 3862 // If the index is smaller or larger than intptr_t, truncate or extend 3863 // it. 3864 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3865 3866 if (ElementScalable) { 3867 EVT VScaleTy = N.getValueType().getScalarType(); 3868 SDValue VScale = DAG.getNode( 3869 ISD::VSCALE, dl, VScaleTy, 3870 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3871 if (IsVectorGEP) 3872 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3873 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3874 } else { 3875 // If this is a multiply by a power of two, turn it into a shl 3876 // immediately. This is a very common case. 3877 if (ElementMul != 1) { 3878 if (ElementMul.isPowerOf2()) { 3879 unsigned Amt = ElementMul.logBase2(); 3880 IdxN = DAG.getNode(ISD::SHL, dl, 3881 N.getValueType(), IdxN, 3882 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3883 } else { 3884 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3885 IdxN.getValueType()); 3886 IdxN = DAG.getNode(ISD::MUL, dl, 3887 N.getValueType(), IdxN, Scale); 3888 } 3889 } 3890 } 3891 3892 N = DAG.getNode(ISD::ADD, dl, 3893 N.getValueType(), N, IdxN); 3894 } 3895 } 3896 3897 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3898 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3899 3900 setValue(&I, N); 3901 } 3902 3903 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3904 // If this is a fixed sized alloca in the entry block of the function, 3905 // allocate it statically on the stack. 3906 if (FuncInfo.StaticAllocaMap.count(&I)) 3907 return; // getValue will auto-populate this. 3908 3909 SDLoc dl = getCurSDLoc(); 3910 Type *Ty = I.getAllocatedType(); 3911 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3912 auto &DL = DAG.getDataLayout(); 3913 uint64_t TySize = DL.getTypeAllocSize(Ty); 3914 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3915 3916 SDValue AllocSize = getValue(I.getArraySize()); 3917 3918 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3919 if (AllocSize.getValueType() != IntPtr) 3920 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3921 3922 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3923 AllocSize, 3924 DAG.getConstant(TySize, dl, IntPtr)); 3925 3926 // Handle alignment. If the requested alignment is less than or equal to 3927 // the stack alignment, ignore it. If the size is greater than or equal to 3928 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3929 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3930 if (*Alignment <= StackAlign) 3931 Alignment = None; 3932 3933 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3934 // Round the size of the allocation up to the stack alignment size 3935 // by add SA-1 to the size. This doesn't overflow because we're computing 3936 // an address inside an alloca. 3937 SDNodeFlags Flags; 3938 Flags.setNoUnsignedWrap(true); 3939 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3940 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3941 3942 // Mask out the low bits for alignment purposes. 3943 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3944 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 3945 3946 SDValue Ops[] = { 3947 getRoot(), AllocSize, 3948 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 3949 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3950 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3951 setValue(&I, DSA); 3952 DAG.setRoot(DSA.getValue(1)); 3953 3954 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3955 } 3956 3957 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3958 if (I.isAtomic()) 3959 return visitAtomicLoad(I); 3960 3961 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3962 const Value *SV = I.getOperand(0); 3963 if (TLI.supportSwiftError()) { 3964 // Swifterror values can come from either a function parameter with 3965 // swifterror attribute or an alloca with swifterror attribute. 3966 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3967 if (Arg->hasSwiftErrorAttr()) 3968 return visitLoadFromSwiftError(I); 3969 } 3970 3971 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3972 if (Alloca->isSwiftError()) 3973 return visitLoadFromSwiftError(I); 3974 } 3975 } 3976 3977 SDValue Ptr = getValue(SV); 3978 3979 Type *Ty = I.getType(); 3980 Align Alignment = I.getAlign(); 3981 3982 AAMDNodes AAInfo; 3983 I.getAAMetadata(AAInfo); 3984 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3985 3986 SmallVector<EVT, 4> ValueVTs, MemVTs; 3987 SmallVector<uint64_t, 4> Offsets; 3988 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 3989 unsigned NumValues = ValueVTs.size(); 3990 if (NumValues == 0) 3991 return; 3992 3993 bool isVolatile = I.isVolatile(); 3994 3995 SDValue Root; 3996 bool ConstantMemory = false; 3997 if (isVolatile) 3998 // Serialize volatile loads with other side effects. 3999 Root = getRoot(); 4000 else if (NumValues > MaxParallelChains) 4001 Root = getMemoryRoot(); 4002 else if (AA && 4003 AA->pointsToConstantMemory(MemoryLocation( 4004 SV, 4005 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4006 AAInfo))) { 4007 // Do not serialize (non-volatile) loads of constant memory with anything. 4008 Root = DAG.getEntryNode(); 4009 ConstantMemory = true; 4010 } else { 4011 // Do not serialize non-volatile loads against each other. 4012 Root = DAG.getRoot(); 4013 } 4014 4015 SDLoc dl = getCurSDLoc(); 4016 4017 if (isVolatile) 4018 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4019 4020 // An aggregate load cannot wrap around the address space, so offsets to its 4021 // parts don't wrap either. 4022 SDNodeFlags Flags; 4023 Flags.setNoUnsignedWrap(true); 4024 4025 SmallVector<SDValue, 4> Values(NumValues); 4026 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4027 EVT PtrVT = Ptr.getValueType(); 4028 4029 MachineMemOperand::Flags MMOFlags 4030 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4031 4032 unsigned ChainI = 0; 4033 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4034 // Serializing loads here may result in excessive register pressure, and 4035 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4036 // could recover a bit by hoisting nodes upward in the chain by recognizing 4037 // they are side-effect free or do not alias. The optimizer should really 4038 // avoid this case by converting large object/array copies to llvm.memcpy 4039 // (MaxParallelChains should always remain as failsafe). 4040 if (ChainI == MaxParallelChains) { 4041 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4042 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4043 makeArrayRef(Chains.data(), ChainI)); 4044 Root = Chain; 4045 ChainI = 0; 4046 } 4047 SDValue A = DAG.getNode(ISD::ADD, dl, 4048 PtrVT, Ptr, 4049 DAG.getConstant(Offsets[i], dl, PtrVT), 4050 Flags); 4051 4052 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4053 MachinePointerInfo(SV, Offsets[i]), Alignment, 4054 MMOFlags, AAInfo, Ranges); 4055 Chains[ChainI] = L.getValue(1); 4056 4057 if (MemVTs[i] != ValueVTs[i]) 4058 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4059 4060 Values[i] = L; 4061 } 4062 4063 if (!ConstantMemory) { 4064 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4065 makeArrayRef(Chains.data(), ChainI)); 4066 if (isVolatile) 4067 DAG.setRoot(Chain); 4068 else 4069 PendingLoads.push_back(Chain); 4070 } 4071 4072 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4073 DAG.getVTList(ValueVTs), Values)); 4074 } 4075 4076 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4077 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4078 "call visitStoreToSwiftError when backend supports swifterror"); 4079 4080 SmallVector<EVT, 4> ValueVTs; 4081 SmallVector<uint64_t, 4> Offsets; 4082 const Value *SrcV = I.getOperand(0); 4083 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4084 SrcV->getType(), ValueVTs, &Offsets); 4085 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4086 "expect a single EVT for swifterror"); 4087 4088 SDValue Src = getValue(SrcV); 4089 // Create a virtual register, then update the virtual register. 4090 Register VReg = 4091 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4092 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4093 // Chain can be getRoot or getControlRoot. 4094 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4095 SDValue(Src.getNode(), Src.getResNo())); 4096 DAG.setRoot(CopyNode); 4097 } 4098 4099 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4100 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4101 "call visitLoadFromSwiftError when backend supports swifterror"); 4102 4103 assert(!I.isVolatile() && 4104 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4105 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4106 "Support volatile, non temporal, invariant for load_from_swift_error"); 4107 4108 const Value *SV = I.getOperand(0); 4109 Type *Ty = I.getType(); 4110 AAMDNodes AAInfo; 4111 I.getAAMetadata(AAInfo); 4112 assert( 4113 (!AA || 4114 !AA->pointsToConstantMemory(MemoryLocation( 4115 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4116 AAInfo))) && 4117 "load_from_swift_error should not be constant memory"); 4118 4119 SmallVector<EVT, 4> ValueVTs; 4120 SmallVector<uint64_t, 4> Offsets; 4121 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4122 ValueVTs, &Offsets); 4123 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4124 "expect a single EVT for swifterror"); 4125 4126 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4127 SDValue L = DAG.getCopyFromReg( 4128 getRoot(), getCurSDLoc(), 4129 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4130 4131 setValue(&I, L); 4132 } 4133 4134 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4135 if (I.isAtomic()) 4136 return visitAtomicStore(I); 4137 4138 const Value *SrcV = I.getOperand(0); 4139 const Value *PtrV = I.getOperand(1); 4140 4141 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4142 if (TLI.supportSwiftError()) { 4143 // Swifterror values can come from either a function parameter with 4144 // swifterror attribute or an alloca with swifterror attribute. 4145 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4146 if (Arg->hasSwiftErrorAttr()) 4147 return visitStoreToSwiftError(I); 4148 } 4149 4150 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4151 if (Alloca->isSwiftError()) 4152 return visitStoreToSwiftError(I); 4153 } 4154 } 4155 4156 SmallVector<EVT, 4> ValueVTs, MemVTs; 4157 SmallVector<uint64_t, 4> Offsets; 4158 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4159 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4160 unsigned NumValues = ValueVTs.size(); 4161 if (NumValues == 0) 4162 return; 4163 4164 // Get the lowered operands. Note that we do this after 4165 // checking if NumResults is zero, because with zero results 4166 // the operands won't have values in the map. 4167 SDValue Src = getValue(SrcV); 4168 SDValue Ptr = getValue(PtrV); 4169 4170 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4171 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4172 SDLoc dl = getCurSDLoc(); 4173 Align Alignment = I.getAlign(); 4174 AAMDNodes AAInfo; 4175 I.getAAMetadata(AAInfo); 4176 4177 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4178 4179 // An aggregate load cannot wrap around the address space, so offsets to its 4180 // parts don't wrap either. 4181 SDNodeFlags Flags; 4182 Flags.setNoUnsignedWrap(true); 4183 4184 unsigned ChainI = 0; 4185 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4186 // See visitLoad comments. 4187 if (ChainI == MaxParallelChains) { 4188 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4189 makeArrayRef(Chains.data(), ChainI)); 4190 Root = Chain; 4191 ChainI = 0; 4192 } 4193 SDValue Add = DAG.getMemBasePlusOffset(Ptr, Offsets[i], dl, Flags); 4194 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4195 if (MemVTs[i] != ValueVTs[i]) 4196 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4197 SDValue St = 4198 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4199 Alignment, MMOFlags, AAInfo); 4200 Chains[ChainI] = St; 4201 } 4202 4203 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4204 makeArrayRef(Chains.data(), ChainI)); 4205 DAG.setRoot(StoreNode); 4206 } 4207 4208 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4209 bool IsCompressing) { 4210 SDLoc sdl = getCurSDLoc(); 4211 4212 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4213 MaybeAlign &Alignment) { 4214 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4215 Src0 = I.getArgOperand(0); 4216 Ptr = I.getArgOperand(1); 4217 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4218 Mask = I.getArgOperand(3); 4219 }; 4220 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4221 MaybeAlign &Alignment) { 4222 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4223 Src0 = I.getArgOperand(0); 4224 Ptr = I.getArgOperand(1); 4225 Mask = I.getArgOperand(2); 4226 Alignment = None; 4227 }; 4228 4229 Value *PtrOperand, *MaskOperand, *Src0Operand; 4230 MaybeAlign Alignment; 4231 if (IsCompressing) 4232 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4233 else 4234 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4235 4236 SDValue Ptr = getValue(PtrOperand); 4237 SDValue Src0 = getValue(Src0Operand); 4238 SDValue Mask = getValue(MaskOperand); 4239 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4240 4241 EVT VT = Src0.getValueType(); 4242 if (!Alignment) 4243 Alignment = DAG.getEVTAlign(VT); 4244 4245 AAMDNodes AAInfo; 4246 I.getAAMetadata(AAInfo); 4247 4248 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4249 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4250 // TODO: Make MachineMemOperands aware of scalable 4251 // vectors. 4252 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4253 SDValue StoreNode = 4254 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4255 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4256 DAG.setRoot(StoreNode); 4257 setValue(&I, StoreNode); 4258 } 4259 4260 // Get a uniform base for the Gather/Scatter intrinsic. 4261 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4262 // We try to represent it as a base pointer + vector of indices. 4263 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4264 // The first operand of the GEP may be a single pointer or a vector of pointers 4265 // Example: 4266 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4267 // or 4268 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4269 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4270 // 4271 // When the first GEP operand is a single pointer - it is the uniform base we 4272 // are looking for. If first operand of the GEP is a splat vector - we 4273 // extract the splat value and use it as a uniform base. 4274 // In all other cases the function returns 'false'. 4275 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4276 ISD::MemIndexType &IndexType, SDValue &Scale, 4277 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4278 SelectionDAG& DAG = SDB->DAG; 4279 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4280 const DataLayout &DL = DAG.getDataLayout(); 4281 4282 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4283 4284 // Handle splat constant pointer. 4285 if (auto *C = dyn_cast<Constant>(Ptr)) { 4286 C = C->getSplatValue(); 4287 if (!C) 4288 return false; 4289 4290 Base = SDB->getValue(C); 4291 4292 unsigned NumElts = cast<VectorType>(Ptr->getType())->getNumElements(); 4293 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4294 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4295 IndexType = ISD::SIGNED_SCALED; 4296 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4297 return true; 4298 } 4299 4300 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4301 if (!GEP || GEP->getParent() != CurBB) 4302 return false; 4303 4304 if (GEP->getNumOperands() != 2) 4305 return false; 4306 4307 const Value *BasePtr = GEP->getPointerOperand(); 4308 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4309 4310 // Make sure the base is scalar and the index is a vector. 4311 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4312 return false; 4313 4314 Base = SDB->getValue(BasePtr); 4315 Index = SDB->getValue(IndexVal); 4316 IndexType = ISD::SIGNED_SCALED; 4317 Scale = DAG.getTargetConstant( 4318 DL.getTypeAllocSize(GEP->getResultElementType()), 4319 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4320 return true; 4321 } 4322 4323 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4324 SDLoc sdl = getCurSDLoc(); 4325 4326 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4327 const Value *Ptr = I.getArgOperand(1); 4328 SDValue Src0 = getValue(I.getArgOperand(0)); 4329 SDValue Mask = getValue(I.getArgOperand(3)); 4330 EVT VT = Src0.getValueType(); 4331 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4332 ->getMaybeAlignValue() 4333 .getValueOr(DAG.getEVTAlign(VT)); 4334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4335 4336 AAMDNodes AAInfo; 4337 I.getAAMetadata(AAInfo); 4338 4339 SDValue Base; 4340 SDValue Index; 4341 ISD::MemIndexType IndexType; 4342 SDValue Scale; 4343 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4344 I.getParent()); 4345 4346 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4347 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4348 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4349 // TODO: Make MachineMemOperands aware of scalable 4350 // vectors. 4351 MemoryLocation::UnknownSize, Alignment, AAInfo); 4352 if (!UniformBase) { 4353 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4354 Index = getValue(Ptr); 4355 IndexType = ISD::SIGNED_SCALED; 4356 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4357 } 4358 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4359 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4360 Ops, MMO, IndexType); 4361 DAG.setRoot(Scatter); 4362 setValue(&I, Scatter); 4363 } 4364 4365 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4366 SDLoc sdl = getCurSDLoc(); 4367 4368 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4369 MaybeAlign &Alignment) { 4370 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4371 Ptr = I.getArgOperand(0); 4372 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4373 Mask = I.getArgOperand(2); 4374 Src0 = I.getArgOperand(3); 4375 }; 4376 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4377 MaybeAlign &Alignment) { 4378 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4379 Ptr = I.getArgOperand(0); 4380 Alignment = None; 4381 Mask = I.getArgOperand(1); 4382 Src0 = I.getArgOperand(2); 4383 }; 4384 4385 Value *PtrOperand, *MaskOperand, *Src0Operand; 4386 MaybeAlign Alignment; 4387 if (IsExpanding) 4388 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4389 else 4390 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4391 4392 SDValue Ptr = getValue(PtrOperand); 4393 SDValue Src0 = getValue(Src0Operand); 4394 SDValue Mask = getValue(MaskOperand); 4395 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4396 4397 EVT VT = Src0.getValueType(); 4398 if (!Alignment) 4399 Alignment = DAG.getEVTAlign(VT); 4400 4401 AAMDNodes AAInfo; 4402 I.getAAMetadata(AAInfo); 4403 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4404 4405 // Do not serialize masked loads of constant memory with anything. 4406 MemoryLocation ML; 4407 if (VT.isScalableVector()) 4408 ML = MemoryLocation(PtrOperand); 4409 else 4410 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4411 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4412 AAInfo); 4413 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4414 4415 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4416 4417 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4418 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4419 // TODO: Make MachineMemOperands aware of scalable 4420 // vectors. 4421 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4422 4423 SDValue Load = 4424 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4425 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4426 if (AddToChain) 4427 PendingLoads.push_back(Load.getValue(1)); 4428 setValue(&I, Load); 4429 } 4430 4431 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4432 SDLoc sdl = getCurSDLoc(); 4433 4434 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4435 const Value *Ptr = I.getArgOperand(0); 4436 SDValue Src0 = getValue(I.getArgOperand(3)); 4437 SDValue Mask = getValue(I.getArgOperand(2)); 4438 4439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4440 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4441 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4442 ->getMaybeAlignValue() 4443 .getValueOr(DAG.getEVTAlign(VT)); 4444 4445 AAMDNodes AAInfo; 4446 I.getAAMetadata(AAInfo); 4447 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4448 4449 SDValue Root = DAG.getRoot(); 4450 SDValue Base; 4451 SDValue Index; 4452 ISD::MemIndexType IndexType; 4453 SDValue Scale; 4454 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4455 I.getParent()); 4456 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4457 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4458 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4459 // TODO: Make MachineMemOperands aware of scalable 4460 // vectors. 4461 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4462 4463 if (!UniformBase) { 4464 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4465 Index = getValue(Ptr); 4466 IndexType = ISD::SIGNED_SCALED; 4467 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4468 } 4469 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4470 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4471 Ops, MMO, IndexType); 4472 4473 PendingLoads.push_back(Gather.getValue(1)); 4474 setValue(&I, Gather); 4475 } 4476 4477 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4478 SDLoc dl = getCurSDLoc(); 4479 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4480 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4481 SyncScope::ID SSID = I.getSyncScopeID(); 4482 4483 SDValue InChain = getRoot(); 4484 4485 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4486 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4487 4488 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4489 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4490 4491 MachineFunction &MF = DAG.getMachineFunction(); 4492 MachineMemOperand *MMO = MF.getMachineMemOperand( 4493 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4494 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4495 FailureOrdering); 4496 4497 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4498 dl, MemVT, VTs, InChain, 4499 getValue(I.getPointerOperand()), 4500 getValue(I.getCompareOperand()), 4501 getValue(I.getNewValOperand()), MMO); 4502 4503 SDValue OutChain = L.getValue(2); 4504 4505 setValue(&I, L); 4506 DAG.setRoot(OutChain); 4507 } 4508 4509 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4510 SDLoc dl = getCurSDLoc(); 4511 ISD::NodeType NT; 4512 switch (I.getOperation()) { 4513 default: llvm_unreachable("Unknown atomicrmw operation"); 4514 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4515 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4516 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4517 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4518 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4519 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4520 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4521 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4522 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4523 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4524 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4525 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4526 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4527 } 4528 AtomicOrdering Ordering = I.getOrdering(); 4529 SyncScope::ID SSID = I.getSyncScopeID(); 4530 4531 SDValue InChain = getRoot(); 4532 4533 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4534 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4535 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4536 4537 MachineFunction &MF = DAG.getMachineFunction(); 4538 MachineMemOperand *MMO = MF.getMachineMemOperand( 4539 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4540 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4541 4542 SDValue L = 4543 DAG.getAtomic(NT, dl, MemVT, InChain, 4544 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4545 MMO); 4546 4547 SDValue OutChain = L.getValue(1); 4548 4549 setValue(&I, L); 4550 DAG.setRoot(OutChain); 4551 } 4552 4553 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4554 SDLoc dl = getCurSDLoc(); 4555 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4556 SDValue Ops[3]; 4557 Ops[0] = getRoot(); 4558 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4559 TLI.getFenceOperandTy(DAG.getDataLayout())); 4560 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4561 TLI.getFenceOperandTy(DAG.getDataLayout())); 4562 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4563 } 4564 4565 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4566 SDLoc dl = getCurSDLoc(); 4567 AtomicOrdering Order = I.getOrdering(); 4568 SyncScope::ID SSID = I.getSyncScopeID(); 4569 4570 SDValue InChain = getRoot(); 4571 4572 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4573 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4574 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4575 4576 if (!TLI.supportsUnalignedAtomics() && 4577 I.getAlignment() < MemVT.getSizeInBits() / 8) 4578 report_fatal_error("Cannot generate unaligned atomic load"); 4579 4580 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4581 4582 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4583 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4584 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4585 4586 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4587 4588 SDValue Ptr = getValue(I.getPointerOperand()); 4589 4590 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4591 // TODO: Once this is better exercised by tests, it should be merged with 4592 // the normal path for loads to prevent future divergence. 4593 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4594 if (MemVT != VT) 4595 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4596 4597 setValue(&I, L); 4598 SDValue OutChain = L.getValue(1); 4599 if (!I.isUnordered()) 4600 DAG.setRoot(OutChain); 4601 else 4602 PendingLoads.push_back(OutChain); 4603 return; 4604 } 4605 4606 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4607 Ptr, MMO); 4608 4609 SDValue OutChain = L.getValue(1); 4610 if (MemVT != VT) 4611 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4612 4613 setValue(&I, L); 4614 DAG.setRoot(OutChain); 4615 } 4616 4617 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4618 SDLoc dl = getCurSDLoc(); 4619 4620 AtomicOrdering Ordering = I.getOrdering(); 4621 SyncScope::ID SSID = I.getSyncScopeID(); 4622 4623 SDValue InChain = getRoot(); 4624 4625 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4626 EVT MemVT = 4627 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4628 4629 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4630 report_fatal_error("Cannot generate unaligned atomic store"); 4631 4632 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4633 4634 MachineFunction &MF = DAG.getMachineFunction(); 4635 MachineMemOperand *MMO = MF.getMachineMemOperand( 4636 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4637 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4638 4639 SDValue Val = getValue(I.getValueOperand()); 4640 if (Val.getValueType() != MemVT) 4641 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4642 SDValue Ptr = getValue(I.getPointerOperand()); 4643 4644 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4645 // TODO: Once this is better exercised by tests, it should be merged with 4646 // the normal path for stores to prevent future divergence. 4647 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4648 DAG.setRoot(S); 4649 return; 4650 } 4651 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4652 Ptr, Val, MMO); 4653 4654 4655 DAG.setRoot(OutChain); 4656 } 4657 4658 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4659 /// node. 4660 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4661 unsigned Intrinsic) { 4662 // Ignore the callsite's attributes. A specific call site may be marked with 4663 // readnone, but the lowering code will expect the chain based on the 4664 // definition. 4665 const Function *F = I.getCalledFunction(); 4666 bool HasChain = !F->doesNotAccessMemory(); 4667 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4668 4669 // Build the operand list. 4670 SmallVector<SDValue, 8> Ops; 4671 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4672 if (OnlyLoad) { 4673 // We don't need to serialize loads against other loads. 4674 Ops.push_back(DAG.getRoot()); 4675 } else { 4676 Ops.push_back(getRoot()); 4677 } 4678 } 4679 4680 // Info is set by getTgtMemInstrinsic 4681 TargetLowering::IntrinsicInfo Info; 4682 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4683 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4684 DAG.getMachineFunction(), 4685 Intrinsic); 4686 4687 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4688 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4689 Info.opc == ISD::INTRINSIC_W_CHAIN) 4690 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4691 TLI.getPointerTy(DAG.getDataLayout()))); 4692 4693 // Add all operands of the call to the operand list. 4694 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4695 const Value *Arg = I.getArgOperand(i); 4696 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4697 Ops.push_back(getValue(Arg)); 4698 continue; 4699 } 4700 4701 // Use TargetConstant instead of a regular constant for immarg. 4702 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4703 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4704 assert(CI->getBitWidth() <= 64 && 4705 "large intrinsic immediates not handled"); 4706 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4707 } else { 4708 Ops.push_back( 4709 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4710 } 4711 } 4712 4713 SmallVector<EVT, 4> ValueVTs; 4714 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4715 4716 if (HasChain) 4717 ValueVTs.push_back(MVT::Other); 4718 4719 SDVTList VTs = DAG.getVTList(ValueVTs); 4720 4721 // Create the node. 4722 SDValue Result; 4723 if (IsTgtIntrinsic) { 4724 // This is target intrinsic that touches memory 4725 AAMDNodes AAInfo; 4726 I.getAAMetadata(AAInfo); 4727 Result = 4728 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4729 MachinePointerInfo(Info.ptrVal, Info.offset), 4730 Info.align, Info.flags, Info.size, AAInfo); 4731 } else if (!HasChain) { 4732 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4733 } else if (!I.getType()->isVoidTy()) { 4734 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4735 } else { 4736 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4737 } 4738 4739 if (HasChain) { 4740 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4741 if (OnlyLoad) 4742 PendingLoads.push_back(Chain); 4743 else 4744 DAG.setRoot(Chain); 4745 } 4746 4747 if (!I.getType()->isVoidTy()) { 4748 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4749 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4750 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4751 } else 4752 Result = lowerRangeToAssertZExt(DAG, I, Result); 4753 4754 MaybeAlign Alignment = I.getRetAlign(); 4755 if (!Alignment) 4756 Alignment = F->getAttributes().getRetAlignment(); 4757 // Insert `assertalign` node if there's an alignment. 4758 if (InsertAssertAlign && Alignment) { 4759 Result = 4760 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4761 } 4762 4763 setValue(&I, Result); 4764 } 4765 } 4766 4767 /// GetSignificand - Get the significand and build it into a floating-point 4768 /// number with exponent of 1: 4769 /// 4770 /// Op = (Op & 0x007fffff) | 0x3f800000; 4771 /// 4772 /// where Op is the hexadecimal representation of floating point value. 4773 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4774 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4775 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4776 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4777 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4778 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4779 } 4780 4781 /// GetExponent - Get the exponent: 4782 /// 4783 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4784 /// 4785 /// where Op is the hexadecimal representation of floating point value. 4786 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4787 const TargetLowering &TLI, const SDLoc &dl) { 4788 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4789 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4790 SDValue t1 = DAG.getNode( 4791 ISD::SRL, dl, MVT::i32, t0, 4792 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4793 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4794 DAG.getConstant(127, dl, MVT::i32)); 4795 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4796 } 4797 4798 /// getF32Constant - Get 32-bit floating point constant. 4799 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4800 const SDLoc &dl) { 4801 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4802 MVT::f32); 4803 } 4804 4805 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4806 SelectionDAG &DAG) { 4807 // TODO: What fast-math-flags should be set on the floating-point nodes? 4808 4809 // IntegerPartOfX = ((int32_t)(t0); 4810 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4811 4812 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4813 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4814 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4815 4816 // IntegerPartOfX <<= 23; 4817 IntegerPartOfX = DAG.getNode( 4818 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4819 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4820 DAG.getDataLayout()))); 4821 4822 SDValue TwoToFractionalPartOfX; 4823 if (LimitFloatPrecision <= 6) { 4824 // For floating-point precision of 6: 4825 // 4826 // TwoToFractionalPartOfX = 4827 // 0.997535578f + 4828 // (0.735607626f + 0.252464424f * x) * x; 4829 // 4830 // error 0.0144103317, which is 6 bits 4831 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4832 getF32Constant(DAG, 0x3e814304, dl)); 4833 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4834 getF32Constant(DAG, 0x3f3c50c8, dl)); 4835 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4836 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4837 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4838 } else if (LimitFloatPrecision <= 12) { 4839 // For floating-point precision of 12: 4840 // 4841 // TwoToFractionalPartOfX = 4842 // 0.999892986f + 4843 // (0.696457318f + 4844 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4845 // 4846 // error 0.000107046256, which is 13 to 14 bits 4847 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4848 getF32Constant(DAG, 0x3da235e3, dl)); 4849 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4850 getF32Constant(DAG, 0x3e65b8f3, dl)); 4851 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4852 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4853 getF32Constant(DAG, 0x3f324b07, dl)); 4854 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4855 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4856 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4857 } else { // LimitFloatPrecision <= 18 4858 // For floating-point precision of 18: 4859 // 4860 // TwoToFractionalPartOfX = 4861 // 0.999999982f + 4862 // (0.693148872f + 4863 // (0.240227044f + 4864 // (0.554906021e-1f + 4865 // (0.961591928e-2f + 4866 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4867 // error 2.47208000*10^(-7), which is better than 18 bits 4868 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4869 getF32Constant(DAG, 0x3924b03e, dl)); 4870 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4871 getF32Constant(DAG, 0x3ab24b87, dl)); 4872 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4873 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4874 getF32Constant(DAG, 0x3c1d8c17, dl)); 4875 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4876 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4877 getF32Constant(DAG, 0x3d634a1d, dl)); 4878 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4879 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4880 getF32Constant(DAG, 0x3e75fe14, dl)); 4881 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4882 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4883 getF32Constant(DAG, 0x3f317234, dl)); 4884 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4885 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4886 getF32Constant(DAG, 0x3f800000, dl)); 4887 } 4888 4889 // Add the exponent into the result in integer domain. 4890 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4891 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4892 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4893 } 4894 4895 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4896 /// limited-precision mode. 4897 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4898 const TargetLowering &TLI) { 4899 if (Op.getValueType() == MVT::f32 && 4900 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4901 4902 // Put the exponent in the right bit position for later addition to the 4903 // final result: 4904 // 4905 // t0 = Op * log2(e) 4906 4907 // TODO: What fast-math-flags should be set here? 4908 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4909 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4910 return getLimitedPrecisionExp2(t0, dl, DAG); 4911 } 4912 4913 // No special expansion. 4914 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4915 } 4916 4917 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4918 /// limited-precision mode. 4919 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4920 const TargetLowering &TLI) { 4921 // TODO: What fast-math-flags should be set on the floating-point nodes? 4922 4923 if (Op.getValueType() == MVT::f32 && 4924 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4925 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4926 4927 // Scale the exponent by log(2). 4928 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4929 SDValue LogOfExponent = 4930 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4931 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 4932 4933 // Get the significand and build it into a floating-point number with 4934 // exponent of 1. 4935 SDValue X = GetSignificand(DAG, Op1, dl); 4936 4937 SDValue LogOfMantissa; 4938 if (LimitFloatPrecision <= 6) { 4939 // For floating-point precision of 6: 4940 // 4941 // LogofMantissa = 4942 // -1.1609546f + 4943 // (1.4034025f - 0.23903021f * x) * x; 4944 // 4945 // error 0.0034276066, which is better than 8 bits 4946 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4947 getF32Constant(DAG, 0xbe74c456, dl)); 4948 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4949 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4950 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4951 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4952 getF32Constant(DAG, 0x3f949a29, dl)); 4953 } else if (LimitFloatPrecision <= 12) { 4954 // For floating-point precision of 12: 4955 // 4956 // LogOfMantissa = 4957 // -1.7417939f + 4958 // (2.8212026f + 4959 // (-1.4699568f + 4960 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4961 // 4962 // error 0.000061011436, which is 14 bits 4963 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4964 getF32Constant(DAG, 0xbd67b6d6, dl)); 4965 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4966 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4967 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4968 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4969 getF32Constant(DAG, 0x3fbc278b, dl)); 4970 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4971 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4972 getF32Constant(DAG, 0x40348e95, dl)); 4973 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4974 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4975 getF32Constant(DAG, 0x3fdef31a, dl)); 4976 } else { // LimitFloatPrecision <= 18 4977 // For floating-point precision of 18: 4978 // 4979 // LogOfMantissa = 4980 // -2.1072184f + 4981 // (4.2372794f + 4982 // (-3.7029485f + 4983 // (2.2781945f + 4984 // (-0.87823314f + 4985 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4986 // 4987 // error 0.0000023660568, which is better than 18 bits 4988 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4989 getF32Constant(DAG, 0xbc91e5ac, dl)); 4990 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4991 getF32Constant(DAG, 0x3e4350aa, dl)); 4992 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4993 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4994 getF32Constant(DAG, 0x3f60d3e3, dl)); 4995 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4996 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4997 getF32Constant(DAG, 0x4011cdf0, dl)); 4998 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4999 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5000 getF32Constant(DAG, 0x406cfd1c, dl)); 5001 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5002 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5003 getF32Constant(DAG, 0x408797cb, dl)); 5004 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5005 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5006 getF32Constant(DAG, 0x4006dcab, dl)); 5007 } 5008 5009 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5010 } 5011 5012 // No special expansion. 5013 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 5014 } 5015 5016 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5017 /// limited-precision mode. 5018 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5019 const TargetLowering &TLI) { 5020 // TODO: What fast-math-flags should be set on the floating-point nodes? 5021 5022 if (Op.getValueType() == MVT::f32 && 5023 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5024 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5025 5026 // Get the exponent. 5027 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5028 5029 // Get the significand and build it into a floating-point number with 5030 // exponent of 1. 5031 SDValue X = GetSignificand(DAG, Op1, dl); 5032 5033 // Different possible minimax approximations of significand in 5034 // floating-point for various degrees of accuracy over [1,2]. 5035 SDValue Log2ofMantissa; 5036 if (LimitFloatPrecision <= 6) { 5037 // For floating-point precision of 6: 5038 // 5039 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5040 // 5041 // error 0.0049451742, which is more than 7 bits 5042 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5043 getF32Constant(DAG, 0xbeb08fe0, dl)); 5044 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5045 getF32Constant(DAG, 0x40019463, dl)); 5046 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5047 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5048 getF32Constant(DAG, 0x3fd6633d, dl)); 5049 } else if (LimitFloatPrecision <= 12) { 5050 // For floating-point precision of 12: 5051 // 5052 // Log2ofMantissa = 5053 // -2.51285454f + 5054 // (4.07009056f + 5055 // (-2.12067489f + 5056 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5057 // 5058 // error 0.0000876136000, which is better than 13 bits 5059 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5060 getF32Constant(DAG, 0xbda7262e, dl)); 5061 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5062 getF32Constant(DAG, 0x3f25280b, dl)); 5063 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5064 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5065 getF32Constant(DAG, 0x4007b923, dl)); 5066 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5067 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5068 getF32Constant(DAG, 0x40823e2f, dl)); 5069 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5070 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5071 getF32Constant(DAG, 0x4020d29c, dl)); 5072 } else { // LimitFloatPrecision <= 18 5073 // For floating-point precision of 18: 5074 // 5075 // Log2ofMantissa = 5076 // -3.0400495f + 5077 // (6.1129976f + 5078 // (-5.3420409f + 5079 // (3.2865683f + 5080 // (-1.2669343f + 5081 // (0.27515199f - 5082 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5083 // 5084 // error 0.0000018516, which is better than 18 bits 5085 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5086 getF32Constant(DAG, 0xbcd2769e, dl)); 5087 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5088 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5089 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5090 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5091 getF32Constant(DAG, 0x3fa22ae7, dl)); 5092 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5093 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5094 getF32Constant(DAG, 0x40525723, dl)); 5095 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5096 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5097 getF32Constant(DAG, 0x40aaf200, dl)); 5098 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5099 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5100 getF32Constant(DAG, 0x40c39dad, dl)); 5101 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5102 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5103 getF32Constant(DAG, 0x4042902c, dl)); 5104 } 5105 5106 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5107 } 5108 5109 // No special expansion. 5110 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5111 } 5112 5113 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5114 /// limited-precision mode. 5115 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5116 const TargetLowering &TLI) { 5117 // TODO: What fast-math-flags should be set on the floating-point nodes? 5118 5119 if (Op.getValueType() == MVT::f32 && 5120 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5121 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5122 5123 // Scale the exponent by log10(2) [0.30102999f]. 5124 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5125 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5126 getF32Constant(DAG, 0x3e9a209a, dl)); 5127 5128 // Get the significand and build it into a floating-point number with 5129 // exponent of 1. 5130 SDValue X = GetSignificand(DAG, Op1, dl); 5131 5132 SDValue Log10ofMantissa; 5133 if (LimitFloatPrecision <= 6) { 5134 // For floating-point precision of 6: 5135 // 5136 // Log10ofMantissa = 5137 // -0.50419619f + 5138 // (0.60948995f - 0.10380950f * x) * x; 5139 // 5140 // error 0.0014886165, which is 6 bits 5141 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5142 getF32Constant(DAG, 0xbdd49a13, dl)); 5143 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5144 getF32Constant(DAG, 0x3f1c0789, dl)); 5145 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5146 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5147 getF32Constant(DAG, 0x3f011300, dl)); 5148 } else if (LimitFloatPrecision <= 12) { 5149 // For floating-point precision of 12: 5150 // 5151 // Log10ofMantissa = 5152 // -0.64831180f + 5153 // (0.91751397f + 5154 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5155 // 5156 // error 0.00019228036, which is better than 12 bits 5157 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5158 getF32Constant(DAG, 0x3d431f31, dl)); 5159 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5160 getF32Constant(DAG, 0x3ea21fb2, dl)); 5161 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5162 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5163 getF32Constant(DAG, 0x3f6ae232, dl)); 5164 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5165 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5166 getF32Constant(DAG, 0x3f25f7c3, dl)); 5167 } else { // LimitFloatPrecision <= 18 5168 // For floating-point precision of 18: 5169 // 5170 // Log10ofMantissa = 5171 // -0.84299375f + 5172 // (1.5327582f + 5173 // (-1.0688956f + 5174 // (0.49102474f + 5175 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5176 // 5177 // error 0.0000037995730, which is better than 18 bits 5178 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5179 getF32Constant(DAG, 0x3c5d51ce, dl)); 5180 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5181 getF32Constant(DAG, 0x3e00685a, dl)); 5182 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5183 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5184 getF32Constant(DAG, 0x3efb6798, dl)); 5185 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5186 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5187 getF32Constant(DAG, 0x3f88d192, dl)); 5188 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5189 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5190 getF32Constant(DAG, 0x3fc4316c, dl)); 5191 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5192 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5193 getF32Constant(DAG, 0x3f57ce70, dl)); 5194 } 5195 5196 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5197 } 5198 5199 // No special expansion. 5200 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5201 } 5202 5203 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5204 /// limited-precision mode. 5205 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5206 const TargetLowering &TLI) { 5207 if (Op.getValueType() == MVT::f32 && 5208 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5209 return getLimitedPrecisionExp2(Op, dl, DAG); 5210 5211 // No special expansion. 5212 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5213 } 5214 5215 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5216 /// limited-precision mode with x == 10.0f. 5217 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5218 SelectionDAG &DAG, const TargetLowering &TLI) { 5219 bool IsExp10 = false; 5220 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5221 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5222 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5223 APFloat Ten(10.0f); 5224 IsExp10 = LHSC->isExactlyValue(Ten); 5225 } 5226 } 5227 5228 // TODO: What fast-math-flags should be set on the FMUL node? 5229 if (IsExp10) { 5230 // Put the exponent in the right bit position for later addition to the 5231 // final result: 5232 // 5233 // #define LOG2OF10 3.3219281f 5234 // t0 = Op * LOG2OF10; 5235 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5236 getF32Constant(DAG, 0x40549a78, dl)); 5237 return getLimitedPrecisionExp2(t0, dl, DAG); 5238 } 5239 5240 // No special expansion. 5241 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5242 } 5243 5244 /// ExpandPowI - Expand a llvm.powi intrinsic. 5245 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5246 SelectionDAG &DAG) { 5247 // If RHS is a constant, we can expand this out to a multiplication tree, 5248 // otherwise we end up lowering to a call to __powidf2 (for example). When 5249 // optimizing for size, we only want to do this if the expansion would produce 5250 // a small number of multiplies, otherwise we do the full expansion. 5251 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5252 // Get the exponent as a positive value. 5253 unsigned Val = RHSC->getSExtValue(); 5254 if ((int)Val < 0) Val = -Val; 5255 5256 // powi(x, 0) -> 1.0 5257 if (Val == 0) 5258 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5259 5260 bool OptForSize = DAG.shouldOptForSize(); 5261 if (!OptForSize || 5262 // If optimizing for size, don't insert too many multiplies. 5263 // This inserts up to 5 multiplies. 5264 countPopulation(Val) + Log2_32(Val) < 7) { 5265 // We use the simple binary decomposition method to generate the multiply 5266 // sequence. There are more optimal ways to do this (for example, 5267 // powi(x,15) generates one more multiply than it should), but this has 5268 // the benefit of being both really simple and much better than a libcall. 5269 SDValue Res; // Logically starts equal to 1.0 5270 SDValue CurSquare = LHS; 5271 // TODO: Intrinsics should have fast-math-flags that propagate to these 5272 // nodes. 5273 while (Val) { 5274 if (Val & 1) { 5275 if (Res.getNode()) 5276 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5277 else 5278 Res = CurSquare; // 1.0*CurSquare. 5279 } 5280 5281 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5282 CurSquare, CurSquare); 5283 Val >>= 1; 5284 } 5285 5286 // If the original was negative, invert the result, producing 1/(x*x*x). 5287 if (RHSC->getSExtValue() < 0) 5288 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5289 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5290 return Res; 5291 } 5292 } 5293 5294 // Otherwise, expand to a libcall. 5295 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5296 } 5297 5298 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5299 SDValue LHS, SDValue RHS, SDValue Scale, 5300 SelectionDAG &DAG, const TargetLowering &TLI) { 5301 EVT VT = LHS.getValueType(); 5302 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5303 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5304 LLVMContext &Ctx = *DAG.getContext(); 5305 5306 // If the type is legal but the operation isn't, this node might survive all 5307 // the way to operation legalization. If we end up there and we do not have 5308 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5309 // node. 5310 5311 // Coax the legalizer into expanding the node during type legalization instead 5312 // by bumping the size by one bit. This will force it to Promote, enabling the 5313 // early expansion and avoiding the need to expand later. 5314 5315 // We don't have to do this if Scale is 0; that can always be expanded, unless 5316 // it's a saturating signed operation. Those can experience true integer 5317 // division overflow, a case which we must avoid. 5318 5319 // FIXME: We wouldn't have to do this (or any of the early 5320 // expansion/promotion) if it was possible to expand a libcall of an 5321 // illegal type during operation legalization. But it's not, so things 5322 // get a bit hacky. 5323 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5324 if ((ScaleInt > 0 || (Saturating && Signed)) && 5325 (TLI.isTypeLegal(VT) || 5326 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5327 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5328 Opcode, VT, ScaleInt); 5329 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5330 EVT PromVT; 5331 if (VT.isScalarInteger()) 5332 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5333 else if (VT.isVector()) { 5334 PromVT = VT.getVectorElementType(); 5335 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5336 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5337 } else 5338 llvm_unreachable("Wrong VT for DIVFIX?"); 5339 if (Signed) { 5340 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5341 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5342 } else { 5343 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5344 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5345 } 5346 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5347 // For saturating operations, we need to shift up the LHS to get the 5348 // proper saturation width, and then shift down again afterwards. 5349 if (Saturating) 5350 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5351 DAG.getConstant(1, DL, ShiftTy)); 5352 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5353 if (Saturating) 5354 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5355 DAG.getConstant(1, DL, ShiftTy)); 5356 return DAG.getZExtOrTrunc(Res, DL, VT); 5357 } 5358 } 5359 5360 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5361 } 5362 5363 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5364 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5365 static void 5366 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, unsigned>> &Regs, 5367 const SDValue &N) { 5368 switch (N.getOpcode()) { 5369 case ISD::CopyFromReg: { 5370 SDValue Op = N.getOperand(1); 5371 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5372 Op.getValueType().getSizeInBits()); 5373 return; 5374 } 5375 case ISD::BITCAST: 5376 case ISD::AssertZext: 5377 case ISD::AssertSext: 5378 case ISD::TRUNCATE: 5379 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5380 return; 5381 case ISD::BUILD_PAIR: 5382 case ISD::BUILD_VECTOR: 5383 case ISD::CONCAT_VECTORS: 5384 for (SDValue Op : N->op_values()) 5385 getUnderlyingArgRegs(Regs, Op); 5386 return; 5387 default: 5388 return; 5389 } 5390 } 5391 5392 /// If the DbgValueInst is a dbg_value of a function argument, create the 5393 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5394 /// instruction selection, they will be inserted to the entry BB. 5395 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5396 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5397 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5398 const Argument *Arg = dyn_cast<Argument>(V); 5399 if (!Arg) 5400 return false; 5401 5402 if (!IsDbgDeclare) { 5403 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5404 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5405 // the entry block. 5406 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5407 if (!IsInEntryBlock) 5408 return false; 5409 5410 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5411 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5412 // variable that also is a param. 5413 // 5414 // Although, if we are at the top of the entry block already, we can still 5415 // emit using ArgDbgValue. This might catch some situations when the 5416 // dbg.value refers to an argument that isn't used in the entry block, so 5417 // any CopyToReg node would be optimized out and the only way to express 5418 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5419 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5420 // we should only emit as ArgDbgValue if the Variable is an argument to the 5421 // current function, and the dbg.value intrinsic is found in the entry 5422 // block. 5423 bool VariableIsFunctionInputArg = Variable->isParameter() && 5424 !DL->getInlinedAt(); 5425 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5426 if (!IsInPrologue && !VariableIsFunctionInputArg) 5427 return false; 5428 5429 // Here we assume that a function argument on IR level only can be used to 5430 // describe one input parameter on source level. If we for example have 5431 // source code like this 5432 // 5433 // struct A { long x, y; }; 5434 // void foo(struct A a, long b) { 5435 // ... 5436 // b = a.x; 5437 // ... 5438 // } 5439 // 5440 // and IR like this 5441 // 5442 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5443 // entry: 5444 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5445 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5446 // call void @llvm.dbg.value(metadata i32 %b, "b", 5447 // ... 5448 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5449 // ... 5450 // 5451 // then the last dbg.value is describing a parameter "b" using a value that 5452 // is an argument. But since we already has used %a1 to describe a parameter 5453 // we should not handle that last dbg.value here (that would result in an 5454 // incorrect hoisting of the DBG_VALUE to the function entry). 5455 // Notice that we allow one dbg.value per IR level argument, to accommodate 5456 // for the situation with fragments above. 5457 if (VariableIsFunctionInputArg) { 5458 unsigned ArgNo = Arg->getArgNo(); 5459 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5460 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5461 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5462 return false; 5463 FuncInfo.DescribedArgs.set(ArgNo); 5464 } 5465 } 5466 5467 MachineFunction &MF = DAG.getMachineFunction(); 5468 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5469 5470 bool IsIndirect = false; 5471 Optional<MachineOperand> Op; 5472 // Some arguments' frame index is recorded during argument lowering. 5473 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5474 if (FI != std::numeric_limits<int>::max()) 5475 Op = MachineOperand::CreateFI(FI); 5476 5477 SmallVector<std::pair<unsigned, unsigned>, 8> ArgRegsAndSizes; 5478 if (!Op && N.getNode()) { 5479 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5480 Register Reg; 5481 if (ArgRegsAndSizes.size() == 1) 5482 Reg = ArgRegsAndSizes.front().first; 5483 5484 if (Reg && Reg.isVirtual()) { 5485 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5486 Register PR = RegInfo.getLiveInPhysReg(Reg); 5487 if (PR) 5488 Reg = PR; 5489 } 5490 if (Reg) { 5491 Op = MachineOperand::CreateReg(Reg, false); 5492 IsIndirect = IsDbgDeclare; 5493 } 5494 } 5495 5496 if (!Op && N.getNode()) { 5497 // Check if frame index is available. 5498 SDValue LCandidate = peekThroughBitcasts(N); 5499 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5500 if (FrameIndexSDNode *FINode = 5501 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5502 Op = MachineOperand::CreateFI(FINode->getIndex()); 5503 } 5504 5505 if (!Op) { 5506 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5507 auto splitMultiRegDbgValue 5508 = [&](ArrayRef<std::pair<unsigned, unsigned>> SplitRegs) { 5509 unsigned Offset = 0; 5510 for (auto RegAndSize : SplitRegs) { 5511 // If the expression is already a fragment, the current register 5512 // offset+size might extend beyond the fragment. In this case, only 5513 // the register bits that are inside the fragment are relevant. 5514 int RegFragmentSizeInBits = RegAndSize.second; 5515 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5516 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5517 // The register is entirely outside the expression fragment, 5518 // so is irrelevant for debug info. 5519 if (Offset >= ExprFragmentSizeInBits) 5520 break; 5521 // The register is partially outside the expression fragment, only 5522 // the low bits within the fragment are relevant for debug info. 5523 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5524 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5525 } 5526 } 5527 5528 auto FragmentExpr = DIExpression::createFragmentExpression( 5529 Expr, Offset, RegFragmentSizeInBits); 5530 Offset += RegAndSize.second; 5531 // If a valid fragment expression cannot be created, the variable's 5532 // correct value cannot be determined and so it is set as Undef. 5533 if (!FragmentExpr) { 5534 SDDbgValue *SDV = DAG.getConstantDbgValue( 5535 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5536 DAG.AddDbgValue(SDV, nullptr, false); 5537 continue; 5538 } 5539 assert(!IsDbgDeclare && "DbgDeclare operand is not in memory?"); 5540 FuncInfo.ArgDbgValues.push_back( 5541 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5542 RegAndSize.first, Variable, *FragmentExpr)); 5543 } 5544 }; 5545 5546 // Check if ValueMap has reg number. 5547 DenseMap<const Value *, Register>::const_iterator 5548 VMI = FuncInfo.ValueMap.find(V); 5549 if (VMI != FuncInfo.ValueMap.end()) { 5550 const auto &TLI = DAG.getTargetLoweringInfo(); 5551 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5552 V->getType(), getABIRegCopyCC(V)); 5553 if (RFV.occupiesMultipleRegs()) { 5554 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5555 return true; 5556 } 5557 5558 Op = MachineOperand::CreateReg(VMI->second, false); 5559 IsIndirect = IsDbgDeclare; 5560 } else if (ArgRegsAndSizes.size() > 1) { 5561 // This was split due to the calling convention, and no virtual register 5562 // mapping exists for the value. 5563 splitMultiRegDbgValue(ArgRegsAndSizes); 5564 return true; 5565 } 5566 } 5567 5568 if (!Op) 5569 return false; 5570 5571 assert(Variable->isValidLocationForIntrinsic(DL) && 5572 "Expected inlined-at fields to agree"); 5573 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5574 FuncInfo.ArgDbgValues.push_back( 5575 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5576 *Op, Variable, Expr)); 5577 5578 return true; 5579 } 5580 5581 /// Return the appropriate SDDbgValue based on N. 5582 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5583 DILocalVariable *Variable, 5584 DIExpression *Expr, 5585 const DebugLoc &dl, 5586 unsigned DbgSDNodeOrder) { 5587 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5588 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5589 // stack slot locations. 5590 // 5591 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5592 // debug values here after optimization: 5593 // 5594 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5595 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5596 // 5597 // Both describe the direct values of their associated variables. 5598 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5599 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5600 } 5601 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5602 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5603 } 5604 5605 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5606 switch (Intrinsic) { 5607 case Intrinsic::smul_fix: 5608 return ISD::SMULFIX; 5609 case Intrinsic::umul_fix: 5610 return ISD::UMULFIX; 5611 case Intrinsic::smul_fix_sat: 5612 return ISD::SMULFIXSAT; 5613 case Intrinsic::umul_fix_sat: 5614 return ISD::UMULFIXSAT; 5615 case Intrinsic::sdiv_fix: 5616 return ISD::SDIVFIX; 5617 case Intrinsic::udiv_fix: 5618 return ISD::UDIVFIX; 5619 case Intrinsic::sdiv_fix_sat: 5620 return ISD::SDIVFIXSAT; 5621 case Intrinsic::udiv_fix_sat: 5622 return ISD::UDIVFIXSAT; 5623 default: 5624 llvm_unreachable("Unhandled fixed point intrinsic"); 5625 } 5626 } 5627 5628 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5629 const char *FunctionName) { 5630 assert(FunctionName && "FunctionName must not be nullptr"); 5631 SDValue Callee = DAG.getExternalSymbol( 5632 FunctionName, 5633 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5634 LowerCallTo(I, Callee, I.isTailCall()); 5635 } 5636 5637 /// Given a @llvm.call.preallocated.setup, return the corresponding 5638 /// preallocated call. 5639 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5640 assert(cast<CallBase>(PreallocatedSetup) 5641 ->getCalledFunction() 5642 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5643 "expected call_preallocated_setup Value"); 5644 for (auto *U : PreallocatedSetup->users()) { 5645 auto *UseCall = cast<CallBase>(U); 5646 const Function *Fn = UseCall->getCalledFunction(); 5647 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5648 return UseCall; 5649 } 5650 } 5651 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5652 } 5653 5654 /// Lower the call to the specified intrinsic function. 5655 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5656 unsigned Intrinsic) { 5657 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5658 SDLoc sdl = getCurSDLoc(); 5659 DebugLoc dl = getCurDebugLoc(); 5660 SDValue Res; 5661 5662 switch (Intrinsic) { 5663 default: 5664 // By default, turn this into a target intrinsic node. 5665 visitTargetIntrinsic(I, Intrinsic); 5666 return; 5667 case Intrinsic::vscale: { 5668 match(&I, m_VScale(DAG.getDataLayout())); 5669 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5670 setValue(&I, 5671 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5672 return; 5673 } 5674 case Intrinsic::vastart: visitVAStart(I); return; 5675 case Intrinsic::vaend: visitVAEnd(I); return; 5676 case Intrinsic::vacopy: visitVACopy(I); return; 5677 case Intrinsic::returnaddress: 5678 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5679 TLI.getPointerTy(DAG.getDataLayout()), 5680 getValue(I.getArgOperand(0)))); 5681 return; 5682 case Intrinsic::addressofreturnaddress: 5683 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5684 TLI.getPointerTy(DAG.getDataLayout()))); 5685 return; 5686 case Intrinsic::sponentry: 5687 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5688 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5689 return; 5690 case Intrinsic::frameaddress: 5691 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5692 TLI.getFrameIndexTy(DAG.getDataLayout()), 5693 getValue(I.getArgOperand(0)))); 5694 return; 5695 case Intrinsic::read_register: { 5696 Value *Reg = I.getArgOperand(0); 5697 SDValue Chain = getRoot(); 5698 SDValue RegName = 5699 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5700 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5701 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5702 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5703 setValue(&I, Res); 5704 DAG.setRoot(Res.getValue(1)); 5705 return; 5706 } 5707 case Intrinsic::write_register: { 5708 Value *Reg = I.getArgOperand(0); 5709 Value *RegValue = I.getArgOperand(1); 5710 SDValue Chain = getRoot(); 5711 SDValue RegName = 5712 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5713 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5714 RegName, getValue(RegValue))); 5715 return; 5716 } 5717 case Intrinsic::memcpy: { 5718 const auto &MCI = cast<MemCpyInst>(I); 5719 SDValue Op1 = getValue(I.getArgOperand(0)); 5720 SDValue Op2 = getValue(I.getArgOperand(1)); 5721 SDValue Op3 = getValue(I.getArgOperand(2)); 5722 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5723 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5724 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5725 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5726 bool isVol = MCI.isVolatile(); 5727 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5728 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5729 // node. 5730 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5731 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5732 /* AlwaysInline */ false, isTC, 5733 MachinePointerInfo(I.getArgOperand(0)), 5734 MachinePointerInfo(I.getArgOperand(1))); 5735 updateDAGForMaybeTailCall(MC); 5736 return; 5737 } 5738 case Intrinsic::memcpy_inline: { 5739 const auto &MCI = cast<MemCpyInlineInst>(I); 5740 SDValue Dst = getValue(I.getArgOperand(0)); 5741 SDValue Src = getValue(I.getArgOperand(1)); 5742 SDValue Size = getValue(I.getArgOperand(2)); 5743 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5744 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5745 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5746 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5747 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5748 bool isVol = MCI.isVolatile(); 5749 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5750 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5751 // node. 5752 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5753 /* AlwaysInline */ true, isTC, 5754 MachinePointerInfo(I.getArgOperand(0)), 5755 MachinePointerInfo(I.getArgOperand(1))); 5756 updateDAGForMaybeTailCall(MC); 5757 return; 5758 } 5759 case Intrinsic::memset: { 5760 const auto &MSI = cast<MemSetInst>(I); 5761 SDValue Op1 = getValue(I.getArgOperand(0)); 5762 SDValue Op2 = getValue(I.getArgOperand(1)); 5763 SDValue Op3 = getValue(I.getArgOperand(2)); 5764 // @llvm.memset defines 0 and 1 to both mean no alignment. 5765 Align Alignment = MSI.getDestAlign().valueOrOne(); 5766 bool isVol = MSI.isVolatile(); 5767 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5768 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5769 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5770 MachinePointerInfo(I.getArgOperand(0))); 5771 updateDAGForMaybeTailCall(MS); 5772 return; 5773 } 5774 case Intrinsic::memmove: { 5775 const auto &MMI = cast<MemMoveInst>(I); 5776 SDValue Op1 = getValue(I.getArgOperand(0)); 5777 SDValue Op2 = getValue(I.getArgOperand(1)); 5778 SDValue Op3 = getValue(I.getArgOperand(2)); 5779 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5780 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5781 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5782 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5783 bool isVol = MMI.isVolatile(); 5784 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5785 // FIXME: Support passing different dest/src alignments to the memmove DAG 5786 // node. 5787 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5788 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5789 isTC, MachinePointerInfo(I.getArgOperand(0)), 5790 MachinePointerInfo(I.getArgOperand(1))); 5791 updateDAGForMaybeTailCall(MM); 5792 return; 5793 } 5794 case Intrinsic::memcpy_element_unordered_atomic: { 5795 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5796 SDValue Dst = getValue(MI.getRawDest()); 5797 SDValue Src = getValue(MI.getRawSource()); 5798 SDValue Length = getValue(MI.getLength()); 5799 5800 unsigned DstAlign = MI.getDestAlignment(); 5801 unsigned SrcAlign = MI.getSourceAlignment(); 5802 Type *LengthTy = MI.getLength()->getType(); 5803 unsigned ElemSz = MI.getElementSizeInBytes(); 5804 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5805 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5806 SrcAlign, Length, LengthTy, ElemSz, isTC, 5807 MachinePointerInfo(MI.getRawDest()), 5808 MachinePointerInfo(MI.getRawSource())); 5809 updateDAGForMaybeTailCall(MC); 5810 return; 5811 } 5812 case Intrinsic::memmove_element_unordered_atomic: { 5813 auto &MI = cast<AtomicMemMoveInst>(I); 5814 SDValue Dst = getValue(MI.getRawDest()); 5815 SDValue Src = getValue(MI.getRawSource()); 5816 SDValue Length = getValue(MI.getLength()); 5817 5818 unsigned DstAlign = MI.getDestAlignment(); 5819 unsigned SrcAlign = MI.getSourceAlignment(); 5820 Type *LengthTy = MI.getLength()->getType(); 5821 unsigned ElemSz = MI.getElementSizeInBytes(); 5822 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5823 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5824 SrcAlign, Length, LengthTy, ElemSz, isTC, 5825 MachinePointerInfo(MI.getRawDest()), 5826 MachinePointerInfo(MI.getRawSource())); 5827 updateDAGForMaybeTailCall(MC); 5828 return; 5829 } 5830 case Intrinsic::memset_element_unordered_atomic: { 5831 auto &MI = cast<AtomicMemSetInst>(I); 5832 SDValue Dst = getValue(MI.getRawDest()); 5833 SDValue Val = getValue(MI.getValue()); 5834 SDValue Length = getValue(MI.getLength()); 5835 5836 unsigned DstAlign = MI.getDestAlignment(); 5837 Type *LengthTy = MI.getLength()->getType(); 5838 unsigned ElemSz = MI.getElementSizeInBytes(); 5839 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5840 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5841 LengthTy, ElemSz, isTC, 5842 MachinePointerInfo(MI.getRawDest())); 5843 updateDAGForMaybeTailCall(MC); 5844 return; 5845 } 5846 case Intrinsic::call_preallocated_setup: { 5847 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5848 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5849 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5850 getRoot(), SrcValue); 5851 setValue(&I, Res); 5852 DAG.setRoot(Res); 5853 return; 5854 } 5855 case Intrinsic::call_preallocated_arg: { 5856 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5857 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5858 SDValue Ops[3]; 5859 Ops[0] = getRoot(); 5860 Ops[1] = SrcValue; 5861 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5862 MVT::i32); // arg index 5863 SDValue Res = DAG.getNode( 5864 ISD::PREALLOCATED_ARG, sdl, 5865 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5866 setValue(&I, Res); 5867 DAG.setRoot(Res.getValue(1)); 5868 return; 5869 } 5870 case Intrinsic::dbg_addr: 5871 case Intrinsic::dbg_declare: { 5872 const auto &DI = cast<DbgVariableIntrinsic>(I); 5873 DILocalVariable *Variable = DI.getVariable(); 5874 DIExpression *Expression = DI.getExpression(); 5875 dropDanglingDebugInfo(Variable, Expression); 5876 assert(Variable && "Missing variable"); 5877 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5878 << "\n"); 5879 // Check if address has undef value. 5880 const Value *Address = DI.getVariableLocation(); 5881 if (!Address || isa<UndefValue>(Address) || 5882 (Address->use_empty() && !isa<Argument>(Address))) { 5883 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5884 << " (bad/undef/unused-arg address)\n"); 5885 return; 5886 } 5887 5888 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5889 5890 // Check if this variable can be described by a frame index, typically 5891 // either as a static alloca or a byval parameter. 5892 int FI = std::numeric_limits<int>::max(); 5893 if (const auto *AI = 5894 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5895 if (AI->isStaticAlloca()) { 5896 auto I = FuncInfo.StaticAllocaMap.find(AI); 5897 if (I != FuncInfo.StaticAllocaMap.end()) 5898 FI = I->second; 5899 } 5900 } else if (const auto *Arg = dyn_cast<Argument>( 5901 Address->stripInBoundsConstantOffsets())) { 5902 FI = FuncInfo.getArgumentFrameIndex(Arg); 5903 } 5904 5905 // llvm.dbg.addr is control dependent and always generates indirect 5906 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5907 // the MachineFunction variable table. 5908 if (FI != std::numeric_limits<int>::max()) { 5909 if (Intrinsic == Intrinsic::dbg_addr) { 5910 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5911 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5912 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5913 } else { 5914 LLVM_DEBUG(dbgs() << "Skipping " << DI 5915 << " (variable info stashed in MF side table)\n"); 5916 } 5917 return; 5918 } 5919 5920 SDValue &N = NodeMap[Address]; 5921 if (!N.getNode() && isa<Argument>(Address)) 5922 // Check unused arguments map. 5923 N = UnusedArgNodeMap[Address]; 5924 SDDbgValue *SDV; 5925 if (N.getNode()) { 5926 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5927 Address = BCI->getOperand(0); 5928 // Parameters are handled specially. 5929 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5930 if (isParameter && FINode) { 5931 // Byval parameter. We have a frame index at this point. 5932 SDV = 5933 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5934 /*IsIndirect*/ true, dl, SDNodeOrder); 5935 } else if (isa<Argument>(Address)) { 5936 // Address is an argument, so try to emit its dbg value using 5937 // virtual register info from the FuncInfo.ValueMap. 5938 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5939 return; 5940 } else { 5941 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5942 true, dl, SDNodeOrder); 5943 } 5944 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5945 } else { 5946 // If Address is an argument then try to emit its dbg value using 5947 // virtual register info from the FuncInfo.ValueMap. 5948 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5949 N)) { 5950 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5951 << " (could not emit func-arg dbg_value)\n"); 5952 } 5953 } 5954 return; 5955 } 5956 case Intrinsic::dbg_label: { 5957 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5958 DILabel *Label = DI.getLabel(); 5959 assert(Label && "Missing label"); 5960 5961 SDDbgLabel *SDV; 5962 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5963 DAG.AddDbgLabel(SDV); 5964 return; 5965 } 5966 case Intrinsic::dbg_value: { 5967 const DbgValueInst &DI = cast<DbgValueInst>(I); 5968 assert(DI.getVariable() && "Missing variable"); 5969 5970 DILocalVariable *Variable = DI.getVariable(); 5971 DIExpression *Expression = DI.getExpression(); 5972 dropDanglingDebugInfo(Variable, Expression); 5973 const Value *V = DI.getValue(); 5974 if (!V) 5975 return; 5976 5977 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5978 SDNodeOrder)) 5979 return; 5980 5981 // TODO: Dangling debug info will eventually either be resolved or produce 5982 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5983 // between the original dbg.value location and its resolved DBG_VALUE, which 5984 // we should ideally fill with an extra Undef DBG_VALUE. 5985 5986 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5987 return; 5988 } 5989 5990 case Intrinsic::eh_typeid_for: { 5991 // Find the type id for the given typeinfo. 5992 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5993 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5994 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5995 setValue(&I, Res); 5996 return; 5997 } 5998 5999 case Intrinsic::eh_return_i32: 6000 case Intrinsic::eh_return_i64: 6001 DAG.getMachineFunction().setCallsEHReturn(true); 6002 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6003 MVT::Other, 6004 getControlRoot(), 6005 getValue(I.getArgOperand(0)), 6006 getValue(I.getArgOperand(1)))); 6007 return; 6008 case Intrinsic::eh_unwind_init: 6009 DAG.getMachineFunction().setCallsUnwindInit(true); 6010 return; 6011 case Intrinsic::eh_dwarf_cfa: 6012 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6013 TLI.getPointerTy(DAG.getDataLayout()), 6014 getValue(I.getArgOperand(0)))); 6015 return; 6016 case Intrinsic::eh_sjlj_callsite: { 6017 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6018 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6019 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6020 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6021 6022 MMI.setCurrentCallSite(CI->getZExtValue()); 6023 return; 6024 } 6025 case Intrinsic::eh_sjlj_functioncontext: { 6026 // Get and store the index of the function context. 6027 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6028 AllocaInst *FnCtx = 6029 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6030 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6031 MFI.setFunctionContextIndex(FI); 6032 return; 6033 } 6034 case Intrinsic::eh_sjlj_setjmp: { 6035 SDValue Ops[2]; 6036 Ops[0] = getRoot(); 6037 Ops[1] = getValue(I.getArgOperand(0)); 6038 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6039 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6040 setValue(&I, Op.getValue(0)); 6041 DAG.setRoot(Op.getValue(1)); 6042 return; 6043 } 6044 case Intrinsic::eh_sjlj_longjmp: 6045 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6046 getRoot(), getValue(I.getArgOperand(0)))); 6047 return; 6048 case Intrinsic::eh_sjlj_setup_dispatch: 6049 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6050 getRoot())); 6051 return; 6052 case Intrinsic::masked_gather: 6053 visitMaskedGather(I); 6054 return; 6055 case Intrinsic::masked_load: 6056 visitMaskedLoad(I); 6057 return; 6058 case Intrinsic::masked_scatter: 6059 visitMaskedScatter(I); 6060 return; 6061 case Intrinsic::masked_store: 6062 visitMaskedStore(I); 6063 return; 6064 case Intrinsic::masked_expandload: 6065 visitMaskedLoad(I, true /* IsExpanding */); 6066 return; 6067 case Intrinsic::masked_compressstore: 6068 visitMaskedStore(I, true /* IsCompressing */); 6069 return; 6070 case Intrinsic::powi: 6071 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6072 getValue(I.getArgOperand(1)), DAG)); 6073 return; 6074 case Intrinsic::log: 6075 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6076 return; 6077 case Intrinsic::log2: 6078 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6079 return; 6080 case Intrinsic::log10: 6081 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6082 return; 6083 case Intrinsic::exp: 6084 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6085 return; 6086 case Intrinsic::exp2: 6087 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 6088 return; 6089 case Intrinsic::pow: 6090 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6091 getValue(I.getArgOperand(1)), DAG, TLI)); 6092 return; 6093 case Intrinsic::sqrt: 6094 case Intrinsic::fabs: 6095 case Intrinsic::sin: 6096 case Intrinsic::cos: 6097 case Intrinsic::floor: 6098 case Intrinsic::ceil: 6099 case Intrinsic::trunc: 6100 case Intrinsic::rint: 6101 case Intrinsic::nearbyint: 6102 case Intrinsic::round: 6103 case Intrinsic::roundeven: 6104 case Intrinsic::canonicalize: { 6105 unsigned Opcode; 6106 switch (Intrinsic) { 6107 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6108 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6109 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6110 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6111 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6112 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6113 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6114 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6115 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6116 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6117 case Intrinsic::round: Opcode = ISD::FROUND; break; 6118 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6119 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6120 } 6121 6122 setValue(&I, DAG.getNode(Opcode, sdl, 6123 getValue(I.getArgOperand(0)).getValueType(), 6124 getValue(I.getArgOperand(0)))); 6125 return; 6126 } 6127 case Intrinsic::lround: 6128 case Intrinsic::llround: 6129 case Intrinsic::lrint: 6130 case Intrinsic::llrint: { 6131 unsigned Opcode; 6132 switch (Intrinsic) { 6133 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6134 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6135 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6136 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6137 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6138 } 6139 6140 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6141 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6142 getValue(I.getArgOperand(0)))); 6143 return; 6144 } 6145 case Intrinsic::minnum: 6146 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6147 getValue(I.getArgOperand(0)).getValueType(), 6148 getValue(I.getArgOperand(0)), 6149 getValue(I.getArgOperand(1)))); 6150 return; 6151 case Intrinsic::maxnum: 6152 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6153 getValue(I.getArgOperand(0)).getValueType(), 6154 getValue(I.getArgOperand(0)), 6155 getValue(I.getArgOperand(1)))); 6156 return; 6157 case Intrinsic::minimum: 6158 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6159 getValue(I.getArgOperand(0)).getValueType(), 6160 getValue(I.getArgOperand(0)), 6161 getValue(I.getArgOperand(1)))); 6162 return; 6163 case Intrinsic::maximum: 6164 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6165 getValue(I.getArgOperand(0)).getValueType(), 6166 getValue(I.getArgOperand(0)), 6167 getValue(I.getArgOperand(1)))); 6168 return; 6169 case Intrinsic::copysign: 6170 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6171 getValue(I.getArgOperand(0)).getValueType(), 6172 getValue(I.getArgOperand(0)), 6173 getValue(I.getArgOperand(1)))); 6174 return; 6175 case Intrinsic::fma: 6176 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6177 getValue(I.getArgOperand(0)).getValueType(), 6178 getValue(I.getArgOperand(0)), 6179 getValue(I.getArgOperand(1)), 6180 getValue(I.getArgOperand(2)))); 6181 return; 6182 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6183 case Intrinsic::INTRINSIC: 6184 #include "llvm/IR/ConstrainedOps.def" 6185 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6186 return; 6187 case Intrinsic::fmuladd: { 6188 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6189 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6190 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6191 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6192 getValue(I.getArgOperand(0)).getValueType(), 6193 getValue(I.getArgOperand(0)), 6194 getValue(I.getArgOperand(1)), 6195 getValue(I.getArgOperand(2)))); 6196 } else { 6197 // TODO: Intrinsic calls should have fast-math-flags. 6198 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6199 getValue(I.getArgOperand(0)).getValueType(), 6200 getValue(I.getArgOperand(0)), 6201 getValue(I.getArgOperand(1))); 6202 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6203 getValue(I.getArgOperand(0)).getValueType(), 6204 Mul, 6205 getValue(I.getArgOperand(2))); 6206 setValue(&I, Add); 6207 } 6208 return; 6209 } 6210 case Intrinsic::convert_to_fp16: 6211 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6212 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6213 getValue(I.getArgOperand(0)), 6214 DAG.getTargetConstant(0, sdl, 6215 MVT::i32)))); 6216 return; 6217 case Intrinsic::convert_from_fp16: 6218 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6219 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6220 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6221 getValue(I.getArgOperand(0))))); 6222 return; 6223 case Intrinsic::pcmarker: { 6224 SDValue Tmp = getValue(I.getArgOperand(0)); 6225 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6226 return; 6227 } 6228 case Intrinsic::readcyclecounter: { 6229 SDValue Op = getRoot(); 6230 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6231 DAG.getVTList(MVT::i64, MVT::Other), Op); 6232 setValue(&I, Res); 6233 DAG.setRoot(Res.getValue(1)); 6234 return; 6235 } 6236 case Intrinsic::bitreverse: 6237 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6238 getValue(I.getArgOperand(0)).getValueType(), 6239 getValue(I.getArgOperand(0)))); 6240 return; 6241 case Intrinsic::bswap: 6242 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6243 getValue(I.getArgOperand(0)).getValueType(), 6244 getValue(I.getArgOperand(0)))); 6245 return; 6246 case Intrinsic::cttz: { 6247 SDValue Arg = getValue(I.getArgOperand(0)); 6248 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6249 EVT Ty = Arg.getValueType(); 6250 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6251 sdl, Ty, Arg)); 6252 return; 6253 } 6254 case Intrinsic::ctlz: { 6255 SDValue Arg = getValue(I.getArgOperand(0)); 6256 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6257 EVT Ty = Arg.getValueType(); 6258 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6259 sdl, Ty, Arg)); 6260 return; 6261 } 6262 case Intrinsic::ctpop: { 6263 SDValue Arg = getValue(I.getArgOperand(0)); 6264 EVT Ty = Arg.getValueType(); 6265 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6266 return; 6267 } 6268 case Intrinsic::fshl: 6269 case Intrinsic::fshr: { 6270 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6271 SDValue X = getValue(I.getArgOperand(0)); 6272 SDValue Y = getValue(I.getArgOperand(1)); 6273 SDValue Z = getValue(I.getArgOperand(2)); 6274 EVT VT = X.getValueType(); 6275 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6276 SDValue Zero = DAG.getConstant(0, sdl, VT); 6277 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6278 6279 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6280 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6281 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6282 return; 6283 } 6284 6285 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6286 // avoid the select that is necessary in the general case to filter out 6287 // the 0-shift possibility that leads to UB. 6288 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6289 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6290 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6291 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6292 return; 6293 } 6294 6295 // Some targets only rotate one way. Try the opposite direction. 6296 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6297 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6298 // Negate the shift amount because it is safe to ignore the high bits. 6299 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6300 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6301 return; 6302 } 6303 6304 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6305 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6306 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6307 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6308 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6309 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6310 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6311 return; 6312 } 6313 6314 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6315 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6316 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6317 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6318 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6319 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6320 6321 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6322 // and that is undefined. We must compare and select to avoid UB. 6323 EVT CCVT = MVT::i1; 6324 if (VT.isVector()) 6325 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6326 6327 // For fshl, 0-shift returns the 1st arg (X). 6328 // For fshr, 0-shift returns the 2nd arg (Y). 6329 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6330 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6331 return; 6332 } 6333 case Intrinsic::sadd_sat: { 6334 SDValue Op1 = getValue(I.getArgOperand(0)); 6335 SDValue Op2 = getValue(I.getArgOperand(1)); 6336 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6337 return; 6338 } 6339 case Intrinsic::uadd_sat: { 6340 SDValue Op1 = getValue(I.getArgOperand(0)); 6341 SDValue Op2 = getValue(I.getArgOperand(1)); 6342 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6343 return; 6344 } 6345 case Intrinsic::ssub_sat: { 6346 SDValue Op1 = getValue(I.getArgOperand(0)); 6347 SDValue Op2 = getValue(I.getArgOperand(1)); 6348 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6349 return; 6350 } 6351 case Intrinsic::usub_sat: { 6352 SDValue Op1 = getValue(I.getArgOperand(0)); 6353 SDValue Op2 = getValue(I.getArgOperand(1)); 6354 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6355 return; 6356 } 6357 case Intrinsic::smul_fix: 6358 case Intrinsic::umul_fix: 6359 case Intrinsic::smul_fix_sat: 6360 case Intrinsic::umul_fix_sat: { 6361 SDValue Op1 = getValue(I.getArgOperand(0)); 6362 SDValue Op2 = getValue(I.getArgOperand(1)); 6363 SDValue Op3 = getValue(I.getArgOperand(2)); 6364 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6365 Op1.getValueType(), Op1, Op2, Op3)); 6366 return; 6367 } 6368 case Intrinsic::sdiv_fix: 6369 case Intrinsic::udiv_fix: 6370 case Intrinsic::sdiv_fix_sat: 6371 case Intrinsic::udiv_fix_sat: { 6372 SDValue Op1 = getValue(I.getArgOperand(0)); 6373 SDValue Op2 = getValue(I.getArgOperand(1)); 6374 SDValue Op3 = getValue(I.getArgOperand(2)); 6375 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6376 Op1, Op2, Op3, DAG, TLI)); 6377 return; 6378 } 6379 case Intrinsic::stacksave: { 6380 SDValue Op = getRoot(); 6381 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6382 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6383 setValue(&I, Res); 6384 DAG.setRoot(Res.getValue(1)); 6385 return; 6386 } 6387 case Intrinsic::stackrestore: 6388 Res = getValue(I.getArgOperand(0)); 6389 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6390 return; 6391 case Intrinsic::get_dynamic_area_offset: { 6392 SDValue Op = getRoot(); 6393 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6394 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6395 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6396 // target. 6397 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits()) 6398 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6399 " intrinsic!"); 6400 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6401 Op); 6402 DAG.setRoot(Op); 6403 setValue(&I, Res); 6404 return; 6405 } 6406 case Intrinsic::stackguard: { 6407 MachineFunction &MF = DAG.getMachineFunction(); 6408 const Module &M = *MF.getFunction().getParent(); 6409 SDValue Chain = getRoot(); 6410 if (TLI.useLoadStackGuardNode()) { 6411 Res = getLoadStackGuard(DAG, sdl, Chain); 6412 } else { 6413 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6414 const Value *Global = TLI.getSDagStackGuard(M); 6415 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6416 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6417 MachinePointerInfo(Global, 0), Align, 6418 MachineMemOperand::MOVolatile); 6419 } 6420 if (TLI.useStackGuardXorFP()) 6421 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6422 DAG.setRoot(Chain); 6423 setValue(&I, Res); 6424 return; 6425 } 6426 case Intrinsic::stackprotector: { 6427 // Emit code into the DAG to store the stack guard onto the stack. 6428 MachineFunction &MF = DAG.getMachineFunction(); 6429 MachineFrameInfo &MFI = MF.getFrameInfo(); 6430 SDValue Src, Chain = getRoot(); 6431 6432 if (TLI.useLoadStackGuardNode()) 6433 Src = getLoadStackGuard(DAG, sdl, Chain); 6434 else 6435 Src = getValue(I.getArgOperand(0)); // The guard's value. 6436 6437 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6438 6439 int FI = FuncInfo.StaticAllocaMap[Slot]; 6440 MFI.setStackProtectorIndex(FI); 6441 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6442 6443 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6444 6445 // Store the stack protector onto the stack. 6446 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6447 DAG.getMachineFunction(), FI), 6448 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6449 setValue(&I, Res); 6450 DAG.setRoot(Res); 6451 return; 6452 } 6453 case Intrinsic::objectsize: 6454 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6455 6456 case Intrinsic::is_constant: 6457 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6458 6459 case Intrinsic::annotation: 6460 case Intrinsic::ptr_annotation: 6461 case Intrinsic::launder_invariant_group: 6462 case Intrinsic::strip_invariant_group: 6463 // Drop the intrinsic, but forward the value 6464 setValue(&I, getValue(I.getOperand(0))); 6465 return; 6466 case Intrinsic::assume: 6467 case Intrinsic::var_annotation: 6468 case Intrinsic::sideeffect: 6469 // Discard annotate attributes, assumptions, and artificial side-effects. 6470 return; 6471 6472 case Intrinsic::codeview_annotation: { 6473 // Emit a label associated with this metadata. 6474 MachineFunction &MF = DAG.getMachineFunction(); 6475 MCSymbol *Label = 6476 MF.getMMI().getContext().createTempSymbol("annotation", true); 6477 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6478 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6479 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6480 DAG.setRoot(Res); 6481 return; 6482 } 6483 6484 case Intrinsic::init_trampoline: { 6485 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6486 6487 SDValue Ops[6]; 6488 Ops[0] = getRoot(); 6489 Ops[1] = getValue(I.getArgOperand(0)); 6490 Ops[2] = getValue(I.getArgOperand(1)); 6491 Ops[3] = getValue(I.getArgOperand(2)); 6492 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6493 Ops[5] = DAG.getSrcValue(F); 6494 6495 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6496 6497 DAG.setRoot(Res); 6498 return; 6499 } 6500 case Intrinsic::adjust_trampoline: 6501 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6502 TLI.getPointerTy(DAG.getDataLayout()), 6503 getValue(I.getArgOperand(0)))); 6504 return; 6505 case Intrinsic::gcroot: { 6506 assert(DAG.getMachineFunction().getFunction().hasGC() && 6507 "only valid in functions with gc specified, enforced by Verifier"); 6508 assert(GFI && "implied by previous"); 6509 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6510 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6511 6512 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6513 GFI->addStackRoot(FI->getIndex(), TypeMap); 6514 return; 6515 } 6516 case Intrinsic::gcread: 6517 case Intrinsic::gcwrite: 6518 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6519 case Intrinsic::flt_rounds: 6520 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6521 setValue(&I, Res); 6522 DAG.setRoot(Res.getValue(1)); 6523 return; 6524 6525 case Intrinsic::expect: 6526 // Just replace __builtin_expect(exp, c) with EXP. 6527 setValue(&I, getValue(I.getArgOperand(0))); 6528 return; 6529 6530 case Intrinsic::debugtrap: 6531 case Intrinsic::trap: { 6532 StringRef TrapFuncName = 6533 I.getAttributes() 6534 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6535 .getValueAsString(); 6536 if (TrapFuncName.empty()) { 6537 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6538 ISD::TRAP : ISD::DEBUGTRAP; 6539 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6540 return; 6541 } 6542 TargetLowering::ArgListTy Args; 6543 6544 TargetLowering::CallLoweringInfo CLI(DAG); 6545 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6546 CallingConv::C, I.getType(), 6547 DAG.getExternalSymbol(TrapFuncName.data(), 6548 TLI.getPointerTy(DAG.getDataLayout())), 6549 std::move(Args)); 6550 6551 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6552 DAG.setRoot(Result.second); 6553 return; 6554 } 6555 6556 case Intrinsic::uadd_with_overflow: 6557 case Intrinsic::sadd_with_overflow: 6558 case Intrinsic::usub_with_overflow: 6559 case Intrinsic::ssub_with_overflow: 6560 case Intrinsic::umul_with_overflow: 6561 case Intrinsic::smul_with_overflow: { 6562 ISD::NodeType Op; 6563 switch (Intrinsic) { 6564 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6565 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6566 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6567 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6568 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6569 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6570 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6571 } 6572 SDValue Op1 = getValue(I.getArgOperand(0)); 6573 SDValue Op2 = getValue(I.getArgOperand(1)); 6574 6575 EVT ResultVT = Op1.getValueType(); 6576 EVT OverflowVT = MVT::i1; 6577 if (ResultVT.isVector()) 6578 OverflowVT = EVT::getVectorVT( 6579 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6580 6581 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6582 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6583 return; 6584 } 6585 case Intrinsic::prefetch: { 6586 SDValue Ops[5]; 6587 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6588 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6589 Ops[0] = DAG.getRoot(); 6590 Ops[1] = getValue(I.getArgOperand(0)); 6591 Ops[2] = getValue(I.getArgOperand(1)); 6592 Ops[3] = getValue(I.getArgOperand(2)); 6593 Ops[4] = getValue(I.getArgOperand(3)); 6594 SDValue Result = DAG.getMemIntrinsicNode( 6595 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6596 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6597 /* align */ None, Flags); 6598 6599 // Chain the prefetch in parallell with any pending loads, to stay out of 6600 // the way of later optimizations. 6601 PendingLoads.push_back(Result); 6602 Result = getRoot(); 6603 DAG.setRoot(Result); 6604 return; 6605 } 6606 case Intrinsic::lifetime_start: 6607 case Intrinsic::lifetime_end: { 6608 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6609 // Stack coloring is not enabled in O0, discard region information. 6610 if (TM.getOptLevel() == CodeGenOpt::None) 6611 return; 6612 6613 const int64_t ObjectSize = 6614 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6615 Value *const ObjectPtr = I.getArgOperand(1); 6616 SmallVector<const Value *, 4> Allocas; 6617 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6618 6619 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(), 6620 E = Allocas.end(); Object != E; ++Object) { 6621 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6622 6623 // Could not find an Alloca. 6624 if (!LifetimeObject) 6625 continue; 6626 6627 // First check that the Alloca is static, otherwise it won't have a 6628 // valid frame index. 6629 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6630 if (SI == FuncInfo.StaticAllocaMap.end()) 6631 return; 6632 6633 const int FrameIndex = SI->second; 6634 int64_t Offset; 6635 if (GetPointerBaseWithConstantOffset( 6636 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6637 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6638 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6639 Offset); 6640 DAG.setRoot(Res); 6641 } 6642 return; 6643 } 6644 case Intrinsic::invariant_start: 6645 // Discard region information. 6646 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6647 return; 6648 case Intrinsic::invariant_end: 6649 // Discard region information. 6650 return; 6651 case Intrinsic::clear_cache: 6652 /// FunctionName may be null. 6653 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6654 lowerCallToExternalSymbol(I, FunctionName); 6655 return; 6656 case Intrinsic::donothing: 6657 // ignore 6658 return; 6659 case Intrinsic::experimental_stackmap: 6660 visitStackmap(I); 6661 return; 6662 case Intrinsic::experimental_patchpoint_void: 6663 case Intrinsic::experimental_patchpoint_i64: 6664 visitPatchpoint(I); 6665 return; 6666 case Intrinsic::experimental_gc_statepoint: 6667 LowerStatepoint(cast<GCStatepointInst>(I)); 6668 return; 6669 case Intrinsic::experimental_gc_result: 6670 visitGCResult(cast<GCResultInst>(I)); 6671 return; 6672 case Intrinsic::experimental_gc_relocate: 6673 visitGCRelocate(cast<GCRelocateInst>(I)); 6674 return; 6675 case Intrinsic::instrprof_increment: 6676 llvm_unreachable("instrprof failed to lower an increment"); 6677 case Intrinsic::instrprof_value_profile: 6678 llvm_unreachable("instrprof failed to lower a value profiling call"); 6679 case Intrinsic::localescape: { 6680 MachineFunction &MF = DAG.getMachineFunction(); 6681 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6682 6683 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6684 // is the same on all targets. 6685 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6686 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6687 if (isa<ConstantPointerNull>(Arg)) 6688 continue; // Skip null pointers. They represent a hole in index space. 6689 AllocaInst *Slot = cast<AllocaInst>(Arg); 6690 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6691 "can only escape static allocas"); 6692 int FI = FuncInfo.StaticAllocaMap[Slot]; 6693 MCSymbol *FrameAllocSym = 6694 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6695 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6696 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6697 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6698 .addSym(FrameAllocSym) 6699 .addFrameIndex(FI); 6700 } 6701 6702 return; 6703 } 6704 6705 case Intrinsic::localrecover: { 6706 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6707 MachineFunction &MF = DAG.getMachineFunction(); 6708 6709 // Get the symbol that defines the frame offset. 6710 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6711 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6712 unsigned IdxVal = 6713 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6714 MCSymbol *FrameAllocSym = 6715 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6716 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6717 6718 Value *FP = I.getArgOperand(1); 6719 SDValue FPVal = getValue(FP); 6720 EVT PtrVT = FPVal.getValueType(); 6721 6722 // Create a MCSymbol for the label to avoid any target lowering 6723 // that would make this PC relative. 6724 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6725 SDValue OffsetVal = 6726 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6727 6728 // Add the offset to the FP. 6729 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6730 setValue(&I, Add); 6731 6732 return; 6733 } 6734 6735 case Intrinsic::eh_exceptionpointer: 6736 case Intrinsic::eh_exceptioncode: { 6737 // Get the exception pointer vreg, copy from it, and resize it to fit. 6738 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6739 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6740 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6741 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6742 SDValue N = 6743 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6744 if (Intrinsic == Intrinsic::eh_exceptioncode) 6745 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6746 setValue(&I, N); 6747 return; 6748 } 6749 case Intrinsic::xray_customevent: { 6750 // Here we want to make sure that the intrinsic behaves as if it has a 6751 // specific calling convention, and only for x86_64. 6752 // FIXME: Support other platforms later. 6753 const auto &Triple = DAG.getTarget().getTargetTriple(); 6754 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6755 return; 6756 6757 SDLoc DL = getCurSDLoc(); 6758 SmallVector<SDValue, 8> Ops; 6759 6760 // We want to say that we always want the arguments in registers. 6761 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6762 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6763 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6764 SDValue Chain = getRoot(); 6765 Ops.push_back(LogEntryVal); 6766 Ops.push_back(StrSizeVal); 6767 Ops.push_back(Chain); 6768 6769 // We need to enforce the calling convention for the callsite, so that 6770 // argument ordering is enforced correctly, and that register allocation can 6771 // see that some registers may be assumed clobbered and have to preserve 6772 // them across calls to the intrinsic. 6773 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6774 DL, NodeTys, Ops); 6775 SDValue patchableNode = SDValue(MN, 0); 6776 DAG.setRoot(patchableNode); 6777 setValue(&I, patchableNode); 6778 return; 6779 } 6780 case Intrinsic::xray_typedevent: { 6781 // Here we want to make sure that the intrinsic behaves as if it has a 6782 // specific calling convention, and only for x86_64. 6783 // FIXME: Support other platforms later. 6784 const auto &Triple = DAG.getTarget().getTargetTriple(); 6785 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6786 return; 6787 6788 SDLoc DL = getCurSDLoc(); 6789 SmallVector<SDValue, 8> Ops; 6790 6791 // We want to say that we always want the arguments in registers. 6792 // It's unclear to me how manipulating the selection DAG here forces callers 6793 // to provide arguments in registers instead of on the stack. 6794 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6795 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6796 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6797 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6798 SDValue Chain = getRoot(); 6799 Ops.push_back(LogTypeId); 6800 Ops.push_back(LogEntryVal); 6801 Ops.push_back(StrSizeVal); 6802 Ops.push_back(Chain); 6803 6804 // We need to enforce the calling convention for the callsite, so that 6805 // argument ordering is enforced correctly, and that register allocation can 6806 // see that some registers may be assumed clobbered and have to preserve 6807 // them across calls to the intrinsic. 6808 MachineSDNode *MN = DAG.getMachineNode( 6809 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6810 SDValue patchableNode = SDValue(MN, 0); 6811 DAG.setRoot(patchableNode); 6812 setValue(&I, patchableNode); 6813 return; 6814 } 6815 case Intrinsic::experimental_deoptimize: 6816 LowerDeoptimizeCall(&I); 6817 return; 6818 6819 case Intrinsic::experimental_vector_reduce_v2_fadd: 6820 case Intrinsic::experimental_vector_reduce_v2_fmul: 6821 case Intrinsic::experimental_vector_reduce_add: 6822 case Intrinsic::experimental_vector_reduce_mul: 6823 case Intrinsic::experimental_vector_reduce_and: 6824 case Intrinsic::experimental_vector_reduce_or: 6825 case Intrinsic::experimental_vector_reduce_xor: 6826 case Intrinsic::experimental_vector_reduce_smax: 6827 case Intrinsic::experimental_vector_reduce_smin: 6828 case Intrinsic::experimental_vector_reduce_umax: 6829 case Intrinsic::experimental_vector_reduce_umin: 6830 case Intrinsic::experimental_vector_reduce_fmax: 6831 case Intrinsic::experimental_vector_reduce_fmin: 6832 visitVectorReduce(I, Intrinsic); 6833 return; 6834 6835 case Intrinsic::icall_branch_funnel: { 6836 SmallVector<SDValue, 16> Ops; 6837 Ops.push_back(getValue(I.getArgOperand(0))); 6838 6839 int64_t Offset; 6840 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6841 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6842 if (!Base) 6843 report_fatal_error( 6844 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6845 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6846 6847 struct BranchFunnelTarget { 6848 int64_t Offset; 6849 SDValue Target; 6850 }; 6851 SmallVector<BranchFunnelTarget, 8> Targets; 6852 6853 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6854 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6855 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6856 if (ElemBase != Base) 6857 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6858 "to the same GlobalValue"); 6859 6860 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6861 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6862 if (!GA) 6863 report_fatal_error( 6864 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6865 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6866 GA->getGlobal(), getCurSDLoc(), 6867 Val.getValueType(), GA->getOffset())}); 6868 } 6869 llvm::sort(Targets, 6870 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6871 return T1.Offset < T2.Offset; 6872 }); 6873 6874 for (auto &T : Targets) { 6875 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6876 Ops.push_back(T.Target); 6877 } 6878 6879 Ops.push_back(DAG.getRoot()); // Chain 6880 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6881 getCurSDLoc(), MVT::Other, Ops), 6882 0); 6883 DAG.setRoot(N); 6884 setValue(&I, N); 6885 HasTailCall = true; 6886 return; 6887 } 6888 6889 case Intrinsic::wasm_landingpad_index: 6890 // Information this intrinsic contained has been transferred to 6891 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6892 // delete it now. 6893 return; 6894 6895 case Intrinsic::aarch64_settag: 6896 case Intrinsic::aarch64_settag_zero: { 6897 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6898 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 6899 SDValue Val = TSI.EmitTargetCodeForSetTag( 6900 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 6901 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 6902 ZeroMemory); 6903 DAG.setRoot(Val); 6904 setValue(&I, Val); 6905 return; 6906 } 6907 case Intrinsic::ptrmask: { 6908 SDValue Ptr = getValue(I.getOperand(0)); 6909 SDValue Const = getValue(I.getOperand(1)); 6910 6911 EVT PtrVT = Ptr.getValueType(); 6912 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 6913 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 6914 return; 6915 } 6916 case Intrinsic::get_active_lane_mask: { 6917 auto DL = getCurSDLoc(); 6918 SDValue Index = getValue(I.getOperand(0)); 6919 SDValue BTC = getValue(I.getOperand(1)); 6920 Type *ElementTy = I.getOperand(0)->getType(); 6921 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6922 unsigned VecWidth = VT.getVectorNumElements(); 6923 6924 SmallVector<SDValue, 16> OpsBTC; 6925 SmallVector<SDValue, 16> OpsIndex; 6926 SmallVector<SDValue, 16> OpsStepConstants; 6927 for (unsigned i = 0; i < VecWidth; i++) { 6928 OpsBTC.push_back(BTC); 6929 OpsIndex.push_back(Index); 6930 OpsStepConstants.push_back(DAG.getConstant(i, DL, MVT::getVT(ElementTy))); 6931 } 6932 6933 EVT CCVT = MVT::i1; 6934 CCVT = EVT::getVectorVT(I.getContext(), CCVT, VecWidth); 6935 6936 auto VecTy = MVT::getVT(FixedVectorType::get(ElementTy, VecWidth)); 6937 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 6938 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 6939 SDValue VectorInduction = DAG.getNode( 6940 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 6941 SDValue VectorBTC = DAG.getBuildVector(VecTy, DL, OpsBTC); 6942 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 6943 VectorBTC, ISD::CondCode::SETULE); 6944 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 6945 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 6946 SetCC)); 6947 return; 6948 } 6949 } 6950 } 6951 6952 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6953 const ConstrainedFPIntrinsic &FPI) { 6954 SDLoc sdl = getCurSDLoc(); 6955 6956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6957 SmallVector<EVT, 4> ValueVTs; 6958 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6959 ValueVTs.push_back(MVT::Other); // Out chain 6960 6961 // We do not need to serialize constrained FP intrinsics against 6962 // each other or against (nonvolatile) loads, so they can be 6963 // chained like loads. 6964 SDValue Chain = DAG.getRoot(); 6965 SmallVector<SDValue, 4> Opers; 6966 Opers.push_back(Chain); 6967 if (FPI.isUnaryOp()) { 6968 Opers.push_back(getValue(FPI.getArgOperand(0))); 6969 } else if (FPI.isTernaryOp()) { 6970 Opers.push_back(getValue(FPI.getArgOperand(0))); 6971 Opers.push_back(getValue(FPI.getArgOperand(1))); 6972 Opers.push_back(getValue(FPI.getArgOperand(2))); 6973 } else { 6974 Opers.push_back(getValue(FPI.getArgOperand(0))); 6975 Opers.push_back(getValue(FPI.getArgOperand(1))); 6976 } 6977 6978 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 6979 assert(Result.getNode()->getNumValues() == 2); 6980 6981 // Push node to the appropriate list so that future instructions can be 6982 // chained up correctly. 6983 SDValue OutChain = Result.getValue(1); 6984 switch (EB) { 6985 case fp::ExceptionBehavior::ebIgnore: 6986 // The only reason why ebIgnore nodes still need to be chained is that 6987 // they might depend on the current rounding mode, and therefore must 6988 // not be moved across instruction that may change that mode. 6989 LLVM_FALLTHROUGH; 6990 case fp::ExceptionBehavior::ebMayTrap: 6991 // These must not be moved across calls or instructions that may change 6992 // floating-point exception masks. 6993 PendingConstrainedFP.push_back(OutChain); 6994 break; 6995 case fp::ExceptionBehavior::ebStrict: 6996 // These must not be moved across calls or instructions that may change 6997 // floating-point exception masks or read floating-point exception flags. 6998 // In addition, they cannot be optimized out even if unused. 6999 PendingConstrainedFPStrict.push_back(OutChain); 7000 break; 7001 } 7002 }; 7003 7004 SDVTList VTs = DAG.getVTList(ValueVTs); 7005 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7006 7007 SDNodeFlags Flags; 7008 if (EB == fp::ExceptionBehavior::ebIgnore) 7009 Flags.setNoFPExcept(true); 7010 7011 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7012 Flags.copyFMF(*FPOp); 7013 7014 unsigned Opcode; 7015 switch (FPI.getIntrinsicID()) { 7016 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7017 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7018 case Intrinsic::INTRINSIC: \ 7019 Opcode = ISD::STRICT_##DAGN; \ 7020 break; 7021 #include "llvm/IR/ConstrainedOps.def" 7022 case Intrinsic::experimental_constrained_fmuladd: { 7023 Opcode = ISD::STRICT_FMA; 7024 // Break fmuladd into fmul and fadd. 7025 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7026 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7027 ValueVTs[0])) { 7028 Opers.pop_back(); 7029 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7030 pushOutChain(Mul, EB); 7031 Opcode = ISD::STRICT_FADD; 7032 Opers.clear(); 7033 Opers.push_back(Mul.getValue(1)); 7034 Opers.push_back(Mul.getValue(0)); 7035 Opers.push_back(getValue(FPI.getArgOperand(2))); 7036 } 7037 break; 7038 } 7039 } 7040 7041 // A few strict DAG nodes carry additional operands that are not 7042 // set up by the default code above. 7043 switch (Opcode) { 7044 default: break; 7045 case ISD::STRICT_FP_ROUND: 7046 Opers.push_back( 7047 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7048 break; 7049 case ISD::STRICT_FSETCC: 7050 case ISD::STRICT_FSETCCS: { 7051 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7052 Opers.push_back(DAG.getCondCode(getFCmpCondCode(FPCmp->getPredicate()))); 7053 break; 7054 } 7055 } 7056 7057 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7058 pushOutChain(Result, EB); 7059 7060 SDValue FPResult = Result.getValue(0); 7061 setValue(&FPI, FPResult); 7062 } 7063 7064 std::pair<SDValue, SDValue> 7065 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7066 const BasicBlock *EHPadBB) { 7067 MachineFunction &MF = DAG.getMachineFunction(); 7068 MachineModuleInfo &MMI = MF.getMMI(); 7069 MCSymbol *BeginLabel = nullptr; 7070 7071 if (EHPadBB) { 7072 // Insert a label before the invoke call to mark the try range. This can be 7073 // used to detect deletion of the invoke via the MachineModuleInfo. 7074 BeginLabel = MMI.getContext().createTempSymbol(); 7075 7076 // For SjLj, keep track of which landing pads go with which invokes 7077 // so as to maintain the ordering of pads in the LSDA. 7078 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7079 if (CallSiteIndex) { 7080 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7081 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7082 7083 // Now that the call site is handled, stop tracking it. 7084 MMI.setCurrentCallSite(0); 7085 } 7086 7087 // Both PendingLoads and PendingExports must be flushed here; 7088 // this call might not return. 7089 (void)getRoot(); 7090 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7091 7092 CLI.setChain(getRoot()); 7093 } 7094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7095 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7096 7097 assert((CLI.IsTailCall || Result.second.getNode()) && 7098 "Non-null chain expected with non-tail call!"); 7099 assert((Result.second.getNode() || !Result.first.getNode()) && 7100 "Null value expected with tail call!"); 7101 7102 if (!Result.second.getNode()) { 7103 // As a special case, a null chain means that a tail call has been emitted 7104 // and the DAG root is already updated. 7105 HasTailCall = true; 7106 7107 // Since there's no actual continuation from this block, nothing can be 7108 // relying on us setting vregs for them. 7109 PendingExports.clear(); 7110 } else { 7111 DAG.setRoot(Result.second); 7112 } 7113 7114 if (EHPadBB) { 7115 // Insert a label at the end of the invoke call to mark the try range. This 7116 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7117 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7118 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7119 7120 // Inform MachineModuleInfo of range. 7121 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7122 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7123 // actually use outlined funclets and their LSDA info style. 7124 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7125 assert(CLI.CB); 7126 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7127 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7128 } else if (!isScopedEHPersonality(Pers)) { 7129 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7130 } 7131 } 7132 7133 return Result; 7134 } 7135 7136 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7137 bool isTailCall, 7138 const BasicBlock *EHPadBB) { 7139 auto &DL = DAG.getDataLayout(); 7140 FunctionType *FTy = CB.getFunctionType(); 7141 Type *RetTy = CB.getType(); 7142 7143 TargetLowering::ArgListTy Args; 7144 Args.reserve(CB.arg_size()); 7145 7146 const Value *SwiftErrorVal = nullptr; 7147 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7148 7149 if (isTailCall) { 7150 // Avoid emitting tail calls in functions with the disable-tail-calls 7151 // attribute. 7152 auto *Caller = CB.getParent()->getParent(); 7153 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7154 "true") 7155 isTailCall = false; 7156 7157 // We can't tail call inside a function with a swifterror argument. Lowering 7158 // does not support this yet. It would have to move into the swifterror 7159 // register before the call. 7160 if (TLI.supportSwiftError() && 7161 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7162 isTailCall = false; 7163 } 7164 7165 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7166 TargetLowering::ArgListEntry Entry; 7167 const Value *V = *I; 7168 7169 // Skip empty types 7170 if (V->getType()->isEmptyTy()) 7171 continue; 7172 7173 SDValue ArgNode = getValue(V); 7174 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7175 7176 Entry.setAttributes(&CB, I - CB.arg_begin()); 7177 7178 // Use swifterror virtual register as input to the call. 7179 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7180 SwiftErrorVal = V; 7181 // We find the virtual register for the actual swifterror argument. 7182 // Instead of using the Value, we use the virtual register instead. 7183 Entry.Node = 7184 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7185 EVT(TLI.getPointerTy(DL))); 7186 } 7187 7188 Args.push_back(Entry); 7189 7190 // If we have an explicit sret argument that is an Instruction, (i.e., it 7191 // might point to function-local memory), we can't meaningfully tail-call. 7192 if (Entry.IsSRet && isa<Instruction>(V)) 7193 isTailCall = false; 7194 } 7195 7196 // If call site has a cfguardtarget operand bundle, create and add an 7197 // additional ArgListEntry. 7198 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7199 TargetLowering::ArgListEntry Entry; 7200 Value *V = Bundle->Inputs[0]; 7201 SDValue ArgNode = getValue(V); 7202 Entry.Node = ArgNode; 7203 Entry.Ty = V->getType(); 7204 Entry.IsCFGuardTarget = true; 7205 Args.push_back(Entry); 7206 } 7207 7208 // Check if target-independent constraints permit a tail call here. 7209 // Target-dependent constraints are checked within TLI->LowerCallTo. 7210 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7211 isTailCall = false; 7212 7213 // Disable tail calls if there is an swifterror argument. Targets have not 7214 // been updated to support tail calls. 7215 if (TLI.supportSwiftError() && SwiftErrorVal) 7216 isTailCall = false; 7217 7218 TargetLowering::CallLoweringInfo CLI(DAG); 7219 CLI.setDebugLoc(getCurSDLoc()) 7220 .setChain(getRoot()) 7221 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7222 .setTailCall(isTailCall) 7223 .setConvergent(CB.isConvergent()) 7224 .setIsPreallocated( 7225 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7226 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7227 7228 if (Result.first.getNode()) { 7229 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7230 setValue(&CB, Result.first); 7231 } 7232 7233 // The last element of CLI.InVals has the SDValue for swifterror return. 7234 // Here we copy it to a virtual register and update SwiftErrorMap for 7235 // book-keeping. 7236 if (SwiftErrorVal && TLI.supportSwiftError()) { 7237 // Get the last element of InVals. 7238 SDValue Src = CLI.InVals.back(); 7239 Register VReg = 7240 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7241 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7242 DAG.setRoot(CopyNode); 7243 } 7244 } 7245 7246 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7247 SelectionDAGBuilder &Builder) { 7248 // Check to see if this load can be trivially constant folded, e.g. if the 7249 // input is from a string literal. 7250 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7251 // Cast pointer to the type we really want to load. 7252 Type *LoadTy = 7253 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7254 if (LoadVT.isVector()) 7255 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7256 7257 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7258 PointerType::getUnqual(LoadTy)); 7259 7260 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7261 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7262 return Builder.getValue(LoadCst); 7263 } 7264 7265 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7266 // still constant memory, the input chain can be the entry node. 7267 SDValue Root; 7268 bool ConstantMemory = false; 7269 7270 // Do not serialize (non-volatile) loads of constant memory with anything. 7271 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7272 Root = Builder.DAG.getEntryNode(); 7273 ConstantMemory = true; 7274 } else { 7275 // Do not serialize non-volatile loads against each other. 7276 Root = Builder.DAG.getRoot(); 7277 } 7278 7279 SDValue Ptr = Builder.getValue(PtrVal); 7280 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7281 Ptr, MachinePointerInfo(PtrVal), 7282 /* Alignment = */ 1); 7283 7284 if (!ConstantMemory) 7285 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7286 return LoadVal; 7287 } 7288 7289 /// Record the value for an instruction that produces an integer result, 7290 /// converting the type where necessary. 7291 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7292 SDValue Value, 7293 bool IsSigned) { 7294 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7295 I.getType(), true); 7296 if (IsSigned) 7297 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7298 else 7299 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7300 setValue(&I, Value); 7301 } 7302 7303 /// See if we can lower a memcmp call into an optimized form. If so, return 7304 /// true and lower it. Otherwise return false, and it will be lowered like a 7305 /// normal call. 7306 /// The caller already checked that \p I calls the appropriate LibFunc with a 7307 /// correct prototype. 7308 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7309 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7310 const Value *Size = I.getArgOperand(2); 7311 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7312 if (CSize && CSize->getZExtValue() == 0) { 7313 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7314 I.getType(), true); 7315 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7316 return true; 7317 } 7318 7319 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7320 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7321 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7322 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7323 if (Res.first.getNode()) { 7324 processIntegerCallValue(I, Res.first, true); 7325 PendingLoads.push_back(Res.second); 7326 return true; 7327 } 7328 7329 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7330 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7331 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7332 return false; 7333 7334 // If the target has a fast compare for the given size, it will return a 7335 // preferred load type for that size. Require that the load VT is legal and 7336 // that the target supports unaligned loads of that type. Otherwise, return 7337 // INVALID. 7338 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7339 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7340 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7341 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7342 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7343 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7344 // TODO: Check alignment of src and dest ptrs. 7345 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7346 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7347 if (!TLI.isTypeLegal(LVT) || 7348 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7349 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7350 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7351 } 7352 7353 return LVT; 7354 }; 7355 7356 // This turns into unaligned loads. We only do this if the target natively 7357 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7358 // we'll only produce a small number of byte loads. 7359 MVT LoadVT; 7360 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7361 switch (NumBitsToCompare) { 7362 default: 7363 return false; 7364 case 16: 7365 LoadVT = MVT::i16; 7366 break; 7367 case 32: 7368 LoadVT = MVT::i32; 7369 break; 7370 case 64: 7371 case 128: 7372 case 256: 7373 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7374 break; 7375 } 7376 7377 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7378 return false; 7379 7380 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7381 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7382 7383 // Bitcast to a wide integer type if the loads are vectors. 7384 if (LoadVT.isVector()) { 7385 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7386 LoadL = DAG.getBitcast(CmpVT, LoadL); 7387 LoadR = DAG.getBitcast(CmpVT, LoadR); 7388 } 7389 7390 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7391 processIntegerCallValue(I, Cmp, false); 7392 return true; 7393 } 7394 7395 /// See if we can lower a memchr call into an optimized form. If so, return 7396 /// true and lower it. Otherwise return false, and it will be lowered like a 7397 /// normal call. 7398 /// The caller already checked that \p I calls the appropriate LibFunc with a 7399 /// correct prototype. 7400 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7401 const Value *Src = I.getArgOperand(0); 7402 const Value *Char = I.getArgOperand(1); 7403 const Value *Length = I.getArgOperand(2); 7404 7405 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7406 std::pair<SDValue, SDValue> Res = 7407 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7408 getValue(Src), getValue(Char), getValue(Length), 7409 MachinePointerInfo(Src)); 7410 if (Res.first.getNode()) { 7411 setValue(&I, Res.first); 7412 PendingLoads.push_back(Res.second); 7413 return true; 7414 } 7415 7416 return false; 7417 } 7418 7419 /// See if we can lower a mempcpy call into an optimized form. If so, return 7420 /// true and lower it. Otherwise return false, and it will be lowered like a 7421 /// normal call. 7422 /// The caller already checked that \p I calls the appropriate LibFunc with a 7423 /// correct prototype. 7424 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7425 SDValue Dst = getValue(I.getArgOperand(0)); 7426 SDValue Src = getValue(I.getArgOperand(1)); 7427 SDValue Size = getValue(I.getArgOperand(2)); 7428 7429 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7430 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7431 // DAG::getMemcpy needs Alignment to be defined. 7432 Align Alignment = std::min(DstAlign, SrcAlign); 7433 7434 bool isVol = false; 7435 SDLoc sdl = getCurSDLoc(); 7436 7437 // In the mempcpy context we need to pass in a false value for isTailCall 7438 // because the return pointer needs to be adjusted by the size of 7439 // the copied memory. 7440 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7441 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7442 /*isTailCall=*/false, 7443 MachinePointerInfo(I.getArgOperand(0)), 7444 MachinePointerInfo(I.getArgOperand(1))); 7445 assert(MC.getNode() != nullptr && 7446 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7447 DAG.setRoot(MC); 7448 7449 // Check if Size needs to be truncated or extended. 7450 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7451 7452 // Adjust return pointer to point just past the last dst byte. 7453 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7454 Dst, Size); 7455 setValue(&I, DstPlusSize); 7456 return true; 7457 } 7458 7459 /// See if we can lower a strcpy call into an optimized form. If so, return 7460 /// true and lower it, otherwise return false and it will be lowered like a 7461 /// normal call. 7462 /// The caller already checked that \p I calls the appropriate LibFunc with a 7463 /// correct prototype. 7464 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7465 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7466 7467 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7468 std::pair<SDValue, SDValue> Res = 7469 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7470 getValue(Arg0), getValue(Arg1), 7471 MachinePointerInfo(Arg0), 7472 MachinePointerInfo(Arg1), isStpcpy); 7473 if (Res.first.getNode()) { 7474 setValue(&I, Res.first); 7475 DAG.setRoot(Res.second); 7476 return true; 7477 } 7478 7479 return false; 7480 } 7481 7482 /// See if we can lower a strcmp call into an optimized form. If so, return 7483 /// true and lower it, otherwise return false and it will be lowered like a 7484 /// normal call. 7485 /// The caller already checked that \p I calls the appropriate LibFunc with a 7486 /// correct prototype. 7487 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7488 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7489 7490 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7491 std::pair<SDValue, SDValue> Res = 7492 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7493 getValue(Arg0), getValue(Arg1), 7494 MachinePointerInfo(Arg0), 7495 MachinePointerInfo(Arg1)); 7496 if (Res.first.getNode()) { 7497 processIntegerCallValue(I, Res.first, true); 7498 PendingLoads.push_back(Res.second); 7499 return true; 7500 } 7501 7502 return false; 7503 } 7504 7505 /// See if we can lower a strlen call into an optimized form. If so, return 7506 /// true and lower it, otherwise return false and it will be lowered like a 7507 /// normal call. 7508 /// The caller already checked that \p I calls the appropriate LibFunc with a 7509 /// correct prototype. 7510 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7511 const Value *Arg0 = I.getArgOperand(0); 7512 7513 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7514 std::pair<SDValue, SDValue> Res = 7515 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7516 getValue(Arg0), MachinePointerInfo(Arg0)); 7517 if (Res.first.getNode()) { 7518 processIntegerCallValue(I, Res.first, false); 7519 PendingLoads.push_back(Res.second); 7520 return true; 7521 } 7522 7523 return false; 7524 } 7525 7526 /// See if we can lower a strnlen call into an optimized form. If so, return 7527 /// true and lower it, otherwise return false and it will be lowered like a 7528 /// normal call. 7529 /// The caller already checked that \p I calls the appropriate LibFunc with a 7530 /// correct prototype. 7531 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7532 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7533 7534 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7535 std::pair<SDValue, SDValue> Res = 7536 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7537 getValue(Arg0), getValue(Arg1), 7538 MachinePointerInfo(Arg0)); 7539 if (Res.first.getNode()) { 7540 processIntegerCallValue(I, Res.first, false); 7541 PendingLoads.push_back(Res.second); 7542 return true; 7543 } 7544 7545 return false; 7546 } 7547 7548 /// See if we can lower a unary floating-point operation into an SDNode with 7549 /// the specified Opcode. If so, return true and lower it, otherwise return 7550 /// false and it will be lowered like a normal call. 7551 /// The caller already checked that \p I calls the appropriate LibFunc with a 7552 /// correct prototype. 7553 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7554 unsigned Opcode) { 7555 // We already checked this call's prototype; verify it doesn't modify errno. 7556 if (!I.onlyReadsMemory()) 7557 return false; 7558 7559 SDValue Tmp = getValue(I.getArgOperand(0)); 7560 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7561 return true; 7562 } 7563 7564 /// See if we can lower a binary floating-point operation into an SDNode with 7565 /// the specified Opcode. If so, return true and lower it. Otherwise return 7566 /// false, and it will be lowered like a normal call. 7567 /// The caller already checked that \p I calls the appropriate LibFunc with a 7568 /// correct prototype. 7569 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7570 unsigned Opcode) { 7571 // We already checked this call's prototype; verify it doesn't modify errno. 7572 if (!I.onlyReadsMemory()) 7573 return false; 7574 7575 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7576 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7577 EVT VT = Tmp0.getValueType(); 7578 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7579 return true; 7580 } 7581 7582 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7583 // Handle inline assembly differently. 7584 if (I.isInlineAsm()) { 7585 visitInlineAsm(I); 7586 return; 7587 } 7588 7589 if (Function *F = I.getCalledFunction()) { 7590 if (F->isDeclaration()) { 7591 // Is this an LLVM intrinsic or a target-specific intrinsic? 7592 unsigned IID = F->getIntrinsicID(); 7593 if (!IID) 7594 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7595 IID = II->getIntrinsicID(F); 7596 7597 if (IID) { 7598 visitIntrinsicCall(I, IID); 7599 return; 7600 } 7601 } 7602 7603 // Check for well-known libc/libm calls. If the function is internal, it 7604 // can't be a library call. Don't do the check if marked as nobuiltin for 7605 // some reason or the call site requires strict floating point semantics. 7606 LibFunc Func; 7607 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7608 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7609 LibInfo->hasOptimizedCodeGen(Func)) { 7610 switch (Func) { 7611 default: break; 7612 case LibFunc_copysign: 7613 case LibFunc_copysignf: 7614 case LibFunc_copysignl: 7615 // We already checked this call's prototype; verify it doesn't modify 7616 // errno. 7617 if (I.onlyReadsMemory()) { 7618 SDValue LHS = getValue(I.getArgOperand(0)); 7619 SDValue RHS = getValue(I.getArgOperand(1)); 7620 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7621 LHS.getValueType(), LHS, RHS)); 7622 return; 7623 } 7624 break; 7625 case LibFunc_fabs: 7626 case LibFunc_fabsf: 7627 case LibFunc_fabsl: 7628 if (visitUnaryFloatCall(I, ISD::FABS)) 7629 return; 7630 break; 7631 case LibFunc_fmin: 7632 case LibFunc_fminf: 7633 case LibFunc_fminl: 7634 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7635 return; 7636 break; 7637 case LibFunc_fmax: 7638 case LibFunc_fmaxf: 7639 case LibFunc_fmaxl: 7640 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7641 return; 7642 break; 7643 case LibFunc_sin: 7644 case LibFunc_sinf: 7645 case LibFunc_sinl: 7646 if (visitUnaryFloatCall(I, ISD::FSIN)) 7647 return; 7648 break; 7649 case LibFunc_cos: 7650 case LibFunc_cosf: 7651 case LibFunc_cosl: 7652 if (visitUnaryFloatCall(I, ISD::FCOS)) 7653 return; 7654 break; 7655 case LibFunc_sqrt: 7656 case LibFunc_sqrtf: 7657 case LibFunc_sqrtl: 7658 case LibFunc_sqrt_finite: 7659 case LibFunc_sqrtf_finite: 7660 case LibFunc_sqrtl_finite: 7661 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7662 return; 7663 break; 7664 case LibFunc_floor: 7665 case LibFunc_floorf: 7666 case LibFunc_floorl: 7667 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7668 return; 7669 break; 7670 case LibFunc_nearbyint: 7671 case LibFunc_nearbyintf: 7672 case LibFunc_nearbyintl: 7673 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7674 return; 7675 break; 7676 case LibFunc_ceil: 7677 case LibFunc_ceilf: 7678 case LibFunc_ceill: 7679 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7680 return; 7681 break; 7682 case LibFunc_rint: 7683 case LibFunc_rintf: 7684 case LibFunc_rintl: 7685 if (visitUnaryFloatCall(I, ISD::FRINT)) 7686 return; 7687 break; 7688 case LibFunc_round: 7689 case LibFunc_roundf: 7690 case LibFunc_roundl: 7691 if (visitUnaryFloatCall(I, ISD::FROUND)) 7692 return; 7693 break; 7694 case LibFunc_trunc: 7695 case LibFunc_truncf: 7696 case LibFunc_truncl: 7697 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7698 return; 7699 break; 7700 case LibFunc_log2: 7701 case LibFunc_log2f: 7702 case LibFunc_log2l: 7703 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7704 return; 7705 break; 7706 case LibFunc_exp2: 7707 case LibFunc_exp2f: 7708 case LibFunc_exp2l: 7709 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7710 return; 7711 break; 7712 case LibFunc_memcmp: 7713 if (visitMemCmpCall(I)) 7714 return; 7715 break; 7716 case LibFunc_mempcpy: 7717 if (visitMemPCpyCall(I)) 7718 return; 7719 break; 7720 case LibFunc_memchr: 7721 if (visitMemChrCall(I)) 7722 return; 7723 break; 7724 case LibFunc_strcpy: 7725 if (visitStrCpyCall(I, false)) 7726 return; 7727 break; 7728 case LibFunc_stpcpy: 7729 if (visitStrCpyCall(I, true)) 7730 return; 7731 break; 7732 case LibFunc_strcmp: 7733 if (visitStrCmpCall(I)) 7734 return; 7735 break; 7736 case LibFunc_strlen: 7737 if (visitStrLenCall(I)) 7738 return; 7739 break; 7740 case LibFunc_strnlen: 7741 if (visitStrNLenCall(I)) 7742 return; 7743 break; 7744 } 7745 } 7746 } 7747 7748 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7749 // have to do anything here to lower funclet bundles. 7750 // CFGuardTarget bundles are lowered in LowerCallTo. 7751 assert(!I.hasOperandBundlesOtherThan( 7752 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7753 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated}) && 7754 "Cannot lower calls with arbitrary operand bundles!"); 7755 7756 SDValue Callee = getValue(I.getCalledOperand()); 7757 7758 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7759 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7760 else 7761 // Check if we can potentially perform a tail call. More detailed checking 7762 // is be done within LowerCallTo, after more information about the call is 7763 // known. 7764 LowerCallTo(I, Callee, I.isTailCall()); 7765 } 7766 7767 namespace { 7768 7769 /// AsmOperandInfo - This contains information for each constraint that we are 7770 /// lowering. 7771 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7772 public: 7773 /// CallOperand - If this is the result output operand or a clobber 7774 /// this is null, otherwise it is the incoming operand to the CallInst. 7775 /// This gets modified as the asm is processed. 7776 SDValue CallOperand; 7777 7778 /// AssignedRegs - If this is a register or register class operand, this 7779 /// contains the set of register corresponding to the operand. 7780 RegsForValue AssignedRegs; 7781 7782 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7783 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7784 } 7785 7786 /// Whether or not this operand accesses memory 7787 bool hasMemory(const TargetLowering &TLI) const { 7788 // Indirect operand accesses access memory. 7789 if (isIndirect) 7790 return true; 7791 7792 for (const auto &Code : Codes) 7793 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7794 return true; 7795 7796 return false; 7797 } 7798 7799 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7800 /// corresponds to. If there is no Value* for this operand, it returns 7801 /// MVT::Other. 7802 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7803 const DataLayout &DL) const { 7804 if (!CallOperandVal) return MVT::Other; 7805 7806 if (isa<BasicBlock>(CallOperandVal)) 7807 return TLI.getProgramPointerTy(DL); 7808 7809 llvm::Type *OpTy = CallOperandVal->getType(); 7810 7811 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7812 // If this is an indirect operand, the operand is a pointer to the 7813 // accessed type. 7814 if (isIndirect) { 7815 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7816 if (!PtrTy) 7817 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7818 OpTy = PtrTy->getElementType(); 7819 } 7820 7821 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7822 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7823 if (STy->getNumElements() == 1) 7824 OpTy = STy->getElementType(0); 7825 7826 // If OpTy is not a single value, it may be a struct/union that we 7827 // can tile with integers. 7828 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7829 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7830 switch (BitSize) { 7831 default: break; 7832 case 1: 7833 case 8: 7834 case 16: 7835 case 32: 7836 case 64: 7837 case 128: 7838 OpTy = IntegerType::get(Context, BitSize); 7839 break; 7840 } 7841 } 7842 7843 return TLI.getValueType(DL, OpTy, true); 7844 } 7845 }; 7846 7847 7848 } // end anonymous namespace 7849 7850 /// Make sure that the output operand \p OpInfo and its corresponding input 7851 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7852 /// out). 7853 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7854 SDISelAsmOperandInfo &MatchingOpInfo, 7855 SelectionDAG &DAG) { 7856 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7857 return; 7858 7859 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7860 const auto &TLI = DAG.getTargetLoweringInfo(); 7861 7862 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7863 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7864 OpInfo.ConstraintVT); 7865 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7866 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7867 MatchingOpInfo.ConstraintVT); 7868 if ((OpInfo.ConstraintVT.isInteger() != 7869 MatchingOpInfo.ConstraintVT.isInteger()) || 7870 (MatchRC.second != InputRC.second)) { 7871 // FIXME: error out in a more elegant fashion 7872 report_fatal_error("Unsupported asm: input constraint" 7873 " with a matching output constraint of" 7874 " incompatible type!"); 7875 } 7876 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7877 } 7878 7879 /// Get a direct memory input to behave well as an indirect operand. 7880 /// This may introduce stores, hence the need for a \p Chain. 7881 /// \return The (possibly updated) chain. 7882 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7883 SDISelAsmOperandInfo &OpInfo, 7884 SelectionDAG &DAG) { 7885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7886 7887 // If we don't have an indirect input, put it in the constpool if we can, 7888 // otherwise spill it to a stack slot. 7889 // TODO: This isn't quite right. We need to handle these according to 7890 // the addressing mode that the constraint wants. Also, this may take 7891 // an additional register for the computation and we don't want that 7892 // either. 7893 7894 // If the operand is a float, integer, or vector constant, spill to a 7895 // constant pool entry to get its address. 7896 const Value *OpVal = OpInfo.CallOperandVal; 7897 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7898 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7899 OpInfo.CallOperand = DAG.getConstantPool( 7900 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7901 return Chain; 7902 } 7903 7904 // Otherwise, create a stack slot and emit a store to it before the asm. 7905 Type *Ty = OpVal->getType(); 7906 auto &DL = DAG.getDataLayout(); 7907 uint64_t TySize = DL.getTypeAllocSize(Ty); 7908 MachineFunction &MF = DAG.getMachineFunction(); 7909 int SSFI = MF.getFrameInfo().CreateStackObject( 7910 TySize, DL.getPrefTypeAlign(Ty), false); 7911 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7912 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7913 MachinePointerInfo::getFixedStack(MF, SSFI), 7914 TLI.getMemValueType(DL, Ty)); 7915 OpInfo.CallOperand = StackSlot; 7916 7917 return Chain; 7918 } 7919 7920 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7921 /// specified operand. We prefer to assign virtual registers, to allow the 7922 /// register allocator to handle the assignment process. However, if the asm 7923 /// uses features that we can't model on machineinstrs, we have SDISel do the 7924 /// allocation. This produces generally horrible, but correct, code. 7925 /// 7926 /// OpInfo describes the operand 7927 /// RefOpInfo describes the matching operand if any, the operand otherwise 7928 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7929 SDISelAsmOperandInfo &OpInfo, 7930 SDISelAsmOperandInfo &RefOpInfo) { 7931 LLVMContext &Context = *DAG.getContext(); 7932 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7933 7934 MachineFunction &MF = DAG.getMachineFunction(); 7935 SmallVector<unsigned, 4> Regs; 7936 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7937 7938 // No work to do for memory operations. 7939 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7940 return; 7941 7942 // If this is a constraint for a single physreg, or a constraint for a 7943 // register class, find it. 7944 unsigned AssignedReg; 7945 const TargetRegisterClass *RC; 7946 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7947 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7948 // RC is unset only on failure. Return immediately. 7949 if (!RC) 7950 return; 7951 7952 // Get the actual register value type. This is important, because the user 7953 // may have asked for (e.g.) the AX register in i32 type. We need to 7954 // remember that AX is actually i16 to get the right extension. 7955 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7956 7957 if (OpInfo.ConstraintVT != MVT::Other) { 7958 // If this is an FP operand in an integer register (or visa versa), or more 7959 // generally if the operand value disagrees with the register class we plan 7960 // to stick it in, fix the operand type. 7961 // 7962 // If this is an input value, the bitcast to the new type is done now. 7963 // Bitcast for output value is done at the end of visitInlineAsm(). 7964 if ((OpInfo.Type == InlineAsm::isOutput || 7965 OpInfo.Type == InlineAsm::isInput) && 7966 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7967 // Try to convert to the first EVT that the reg class contains. If the 7968 // types are identical size, use a bitcast to convert (e.g. two differing 7969 // vector types). Note: output bitcast is done at the end of 7970 // visitInlineAsm(). 7971 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7972 // Exclude indirect inputs while they are unsupported because the code 7973 // to perform the load is missing and thus OpInfo.CallOperand still 7974 // refers to the input address rather than the pointed-to value. 7975 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7976 OpInfo.CallOperand = 7977 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7978 OpInfo.ConstraintVT = RegVT; 7979 // If the operand is an FP value and we want it in integer registers, 7980 // use the corresponding integer type. This turns an f64 value into 7981 // i64, which can be passed with two i32 values on a 32-bit machine. 7982 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7983 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7984 if (OpInfo.Type == InlineAsm::isInput) 7985 OpInfo.CallOperand = 7986 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7987 OpInfo.ConstraintVT = VT; 7988 } 7989 } 7990 } 7991 7992 // No need to allocate a matching input constraint since the constraint it's 7993 // matching to has already been allocated. 7994 if (OpInfo.isMatchingInputConstraint()) 7995 return; 7996 7997 EVT ValueVT = OpInfo.ConstraintVT; 7998 if (OpInfo.ConstraintVT == MVT::Other) 7999 ValueVT = RegVT; 8000 8001 // Initialize NumRegs. 8002 unsigned NumRegs = 1; 8003 if (OpInfo.ConstraintVT != MVT::Other) 8004 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 8005 8006 // If this is a constraint for a specific physical register, like {r17}, 8007 // assign it now. 8008 8009 // If this associated to a specific register, initialize iterator to correct 8010 // place. If virtual, make sure we have enough registers 8011 8012 // Initialize iterator if necessary 8013 TargetRegisterClass::iterator I = RC->begin(); 8014 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8015 8016 // Do not check for single registers. 8017 if (AssignedReg) { 8018 for (; *I != AssignedReg; ++I) 8019 assert(I != RC->end() && "AssignedReg should be member of RC"); 8020 } 8021 8022 for (; NumRegs; --NumRegs, ++I) { 8023 assert(I != RC->end() && "Ran out of registers to allocate!"); 8024 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8025 Regs.push_back(R); 8026 } 8027 8028 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8029 } 8030 8031 static unsigned 8032 findMatchingInlineAsmOperand(unsigned OperandNo, 8033 const std::vector<SDValue> &AsmNodeOperands) { 8034 // Scan until we find the definition we already emitted of this operand. 8035 unsigned CurOp = InlineAsm::Op_FirstOperand; 8036 for (; OperandNo; --OperandNo) { 8037 // Advance to the next operand. 8038 unsigned OpFlag = 8039 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8040 assert((InlineAsm::isRegDefKind(OpFlag) || 8041 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8042 InlineAsm::isMemKind(OpFlag)) && 8043 "Skipped past definitions?"); 8044 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8045 } 8046 return CurOp; 8047 } 8048 8049 namespace { 8050 8051 class ExtraFlags { 8052 unsigned Flags = 0; 8053 8054 public: 8055 explicit ExtraFlags(const CallBase &Call) { 8056 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8057 if (IA->hasSideEffects()) 8058 Flags |= InlineAsm::Extra_HasSideEffects; 8059 if (IA->isAlignStack()) 8060 Flags |= InlineAsm::Extra_IsAlignStack; 8061 if (Call.isConvergent()) 8062 Flags |= InlineAsm::Extra_IsConvergent; 8063 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8064 } 8065 8066 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8067 // Ideally, we would only check against memory constraints. However, the 8068 // meaning of an Other constraint can be target-specific and we can't easily 8069 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8070 // for Other constraints as well. 8071 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8072 OpInfo.ConstraintType == TargetLowering::C_Other) { 8073 if (OpInfo.Type == InlineAsm::isInput) 8074 Flags |= InlineAsm::Extra_MayLoad; 8075 else if (OpInfo.Type == InlineAsm::isOutput) 8076 Flags |= InlineAsm::Extra_MayStore; 8077 else if (OpInfo.Type == InlineAsm::isClobber) 8078 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8079 } 8080 } 8081 8082 unsigned get() const { return Flags; } 8083 }; 8084 8085 } // end anonymous namespace 8086 8087 /// visitInlineAsm - Handle a call to an InlineAsm object. 8088 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8089 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8090 8091 /// ConstraintOperands - Information about all of the constraints. 8092 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8093 8094 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8095 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8096 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8097 8098 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8099 // AsmDialect, MayLoad, MayStore). 8100 bool HasSideEffect = IA->hasSideEffects(); 8101 ExtraFlags ExtraInfo(Call); 8102 8103 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8104 unsigned ResNo = 0; // ResNo - The result number of the next output. 8105 unsigned NumMatchingOps = 0; 8106 for (auto &T : TargetConstraints) { 8107 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8108 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8109 8110 // Compute the value type for each operand. 8111 if (OpInfo.Type == InlineAsm::isInput || 8112 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8113 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8114 8115 // Process the call argument. BasicBlocks are labels, currently appearing 8116 // only in asm's. 8117 if (isa<CallBrInst>(Call) && 8118 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8119 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8120 NumMatchingOps) && 8121 (NumMatchingOps == 0 || 8122 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8123 NumMatchingOps))) { 8124 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8125 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8126 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8127 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8128 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8129 } else { 8130 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8131 } 8132 8133 OpInfo.ConstraintVT = 8134 OpInfo 8135 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 8136 .getSimpleVT(); 8137 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8138 // The return value of the call is this value. As such, there is no 8139 // corresponding argument. 8140 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8141 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8142 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8143 DAG.getDataLayout(), STy->getElementType(ResNo)); 8144 } else { 8145 assert(ResNo == 0 && "Asm only has one result!"); 8146 OpInfo.ConstraintVT = 8147 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8148 } 8149 ++ResNo; 8150 } else { 8151 OpInfo.ConstraintVT = MVT::Other; 8152 } 8153 8154 if (OpInfo.hasMatchingInput()) 8155 ++NumMatchingOps; 8156 8157 if (!HasSideEffect) 8158 HasSideEffect = OpInfo.hasMemory(TLI); 8159 8160 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8161 // FIXME: Could we compute this on OpInfo rather than T? 8162 8163 // Compute the constraint code and ConstraintType to use. 8164 TLI.ComputeConstraintToUse(T, SDValue()); 8165 8166 if (T.ConstraintType == TargetLowering::C_Immediate && 8167 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8168 // We've delayed emitting a diagnostic like the "n" constraint because 8169 // inlining could cause an integer showing up. 8170 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8171 "' expects an integer constant " 8172 "expression"); 8173 8174 ExtraInfo.update(T); 8175 } 8176 8177 8178 // We won't need to flush pending loads if this asm doesn't touch 8179 // memory and is nonvolatile. 8180 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8181 8182 bool IsCallBr = isa<CallBrInst>(Call); 8183 if (IsCallBr) { 8184 // If this is a callbr we need to flush pending exports since inlineasm_br 8185 // is a terminator. We need to do this before nodes are glued to 8186 // the inlineasm_br node. 8187 Chain = getControlRoot(); 8188 } 8189 8190 // Second pass over the constraints: compute which constraint option to use. 8191 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8192 // If this is an output operand with a matching input operand, look up the 8193 // matching input. If their types mismatch, e.g. one is an integer, the 8194 // other is floating point, or their sizes are different, flag it as an 8195 // error. 8196 if (OpInfo.hasMatchingInput()) { 8197 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8198 patchMatchingInput(OpInfo, Input, DAG); 8199 } 8200 8201 // Compute the constraint code and ConstraintType to use. 8202 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8203 8204 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8205 OpInfo.Type == InlineAsm::isClobber) 8206 continue; 8207 8208 // If this is a memory input, and if the operand is not indirect, do what we 8209 // need to provide an address for the memory input. 8210 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8211 !OpInfo.isIndirect) { 8212 assert((OpInfo.isMultipleAlternative || 8213 (OpInfo.Type == InlineAsm::isInput)) && 8214 "Can only indirectify direct input operands!"); 8215 8216 // Memory operands really want the address of the value. 8217 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8218 8219 // There is no longer a Value* corresponding to this operand. 8220 OpInfo.CallOperandVal = nullptr; 8221 8222 // It is now an indirect operand. 8223 OpInfo.isIndirect = true; 8224 } 8225 8226 } 8227 8228 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8229 std::vector<SDValue> AsmNodeOperands; 8230 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8231 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8232 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8233 8234 // If we have a !srcloc metadata node associated with it, we want to attach 8235 // this to the ultimately generated inline asm machineinstr. To do this, we 8236 // pass in the third operand as this (potentially null) inline asm MDNode. 8237 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8238 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8239 8240 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8241 // bits as operand 3. 8242 AsmNodeOperands.push_back(DAG.getTargetConstant( 8243 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8244 8245 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8246 // this, assign virtual and physical registers for inputs and otput. 8247 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8248 // Assign Registers. 8249 SDISelAsmOperandInfo &RefOpInfo = 8250 OpInfo.isMatchingInputConstraint() 8251 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8252 : OpInfo; 8253 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8254 8255 auto DetectWriteToReservedRegister = [&]() { 8256 const MachineFunction &MF = DAG.getMachineFunction(); 8257 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8258 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8259 if (Register::isPhysicalRegister(Reg) && 8260 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8261 const char *RegName = TRI.getName(Reg); 8262 emitInlineAsmError(Call, "write to reserved register '" + 8263 Twine(RegName) + "'"); 8264 return true; 8265 } 8266 } 8267 return false; 8268 }; 8269 8270 switch (OpInfo.Type) { 8271 case InlineAsm::isOutput: 8272 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8273 unsigned ConstraintID = 8274 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8275 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8276 "Failed to convert memory constraint code to constraint id."); 8277 8278 // Add information to the INLINEASM node to know about this output. 8279 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8280 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8281 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8282 MVT::i32)); 8283 AsmNodeOperands.push_back(OpInfo.CallOperand); 8284 } else { 8285 // Otherwise, this outputs to a register (directly for C_Register / 8286 // C_RegisterClass, and a target-defined fashion for 8287 // C_Immediate/C_Other). Find a register that we can use. 8288 if (OpInfo.AssignedRegs.Regs.empty()) { 8289 emitInlineAsmError( 8290 Call, "couldn't allocate output register for constraint '" + 8291 Twine(OpInfo.ConstraintCode) + "'"); 8292 return; 8293 } 8294 8295 if (DetectWriteToReservedRegister()) 8296 return; 8297 8298 // Add information to the INLINEASM node to know that this register is 8299 // set. 8300 OpInfo.AssignedRegs.AddInlineAsmOperands( 8301 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8302 : InlineAsm::Kind_RegDef, 8303 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8304 } 8305 break; 8306 8307 case InlineAsm::isInput: { 8308 SDValue InOperandVal = OpInfo.CallOperand; 8309 8310 if (OpInfo.isMatchingInputConstraint()) { 8311 // If this is required to match an output register we have already set, 8312 // just use its register. 8313 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8314 AsmNodeOperands); 8315 unsigned OpFlag = 8316 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8317 if (InlineAsm::isRegDefKind(OpFlag) || 8318 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8319 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8320 if (OpInfo.isIndirect) { 8321 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8322 emitInlineAsmError(Call, "inline asm not supported yet: " 8323 "don't know how to handle tied " 8324 "indirect register inputs"); 8325 return; 8326 } 8327 8328 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8329 SmallVector<unsigned, 4> Regs; 8330 8331 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8332 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8333 MachineRegisterInfo &RegInfo = 8334 DAG.getMachineFunction().getRegInfo(); 8335 for (unsigned i = 0; i != NumRegs; ++i) 8336 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8337 } else { 8338 emitInlineAsmError(Call, 8339 "inline asm error: This value type register " 8340 "class is not natively supported!"); 8341 return; 8342 } 8343 8344 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8345 8346 SDLoc dl = getCurSDLoc(); 8347 // Use the produced MatchedRegs object to 8348 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8349 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8350 true, OpInfo.getMatchedOperand(), dl, 8351 DAG, AsmNodeOperands); 8352 break; 8353 } 8354 8355 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8356 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8357 "Unexpected number of operands"); 8358 // Add information to the INLINEASM node to know about this input. 8359 // See InlineAsm.h isUseOperandTiedToDef. 8360 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8361 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8362 OpInfo.getMatchedOperand()); 8363 AsmNodeOperands.push_back(DAG.getTargetConstant( 8364 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8365 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8366 break; 8367 } 8368 8369 // Treat indirect 'X' constraint as memory. 8370 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8371 OpInfo.isIndirect) 8372 OpInfo.ConstraintType = TargetLowering::C_Memory; 8373 8374 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8375 OpInfo.ConstraintType == TargetLowering::C_Other) { 8376 std::vector<SDValue> Ops; 8377 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8378 Ops, DAG); 8379 if (Ops.empty()) { 8380 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8381 if (isa<ConstantSDNode>(InOperandVal)) { 8382 emitInlineAsmError(Call, "value out of range for constraint '" + 8383 Twine(OpInfo.ConstraintCode) + "'"); 8384 return; 8385 } 8386 8387 emitInlineAsmError(Call, 8388 "invalid operand for inline asm constraint '" + 8389 Twine(OpInfo.ConstraintCode) + "'"); 8390 return; 8391 } 8392 8393 // Add information to the INLINEASM node to know about this input. 8394 unsigned ResOpType = 8395 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8396 AsmNodeOperands.push_back(DAG.getTargetConstant( 8397 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8398 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8399 break; 8400 } 8401 8402 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8403 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8404 assert(InOperandVal.getValueType() == 8405 TLI.getPointerTy(DAG.getDataLayout()) && 8406 "Memory operands expect pointer values"); 8407 8408 unsigned ConstraintID = 8409 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8410 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8411 "Failed to convert memory constraint code to constraint id."); 8412 8413 // Add information to the INLINEASM node to know about this input. 8414 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8415 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8416 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8417 getCurSDLoc(), 8418 MVT::i32)); 8419 AsmNodeOperands.push_back(InOperandVal); 8420 break; 8421 } 8422 8423 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8424 OpInfo.ConstraintType == TargetLowering::C_Register) && 8425 "Unknown constraint type!"); 8426 8427 // TODO: Support this. 8428 if (OpInfo.isIndirect) { 8429 emitInlineAsmError( 8430 Call, "Don't know how to handle indirect register inputs yet " 8431 "for constraint '" + 8432 Twine(OpInfo.ConstraintCode) + "'"); 8433 return; 8434 } 8435 8436 // Copy the input into the appropriate registers. 8437 if (OpInfo.AssignedRegs.Regs.empty()) { 8438 emitInlineAsmError(Call, 8439 "couldn't allocate input reg for constraint '" + 8440 Twine(OpInfo.ConstraintCode) + "'"); 8441 return; 8442 } 8443 8444 if (DetectWriteToReservedRegister()) 8445 return; 8446 8447 SDLoc dl = getCurSDLoc(); 8448 8449 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8450 &Call); 8451 8452 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8453 dl, DAG, AsmNodeOperands); 8454 break; 8455 } 8456 case InlineAsm::isClobber: 8457 // Add the clobbered value to the operand list, so that the register 8458 // allocator is aware that the physreg got clobbered. 8459 if (!OpInfo.AssignedRegs.Regs.empty()) 8460 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8461 false, 0, getCurSDLoc(), DAG, 8462 AsmNodeOperands); 8463 break; 8464 } 8465 } 8466 8467 // Finish up input operands. Set the input chain and add the flag last. 8468 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8469 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8470 8471 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8472 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8473 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8474 Flag = Chain.getValue(1); 8475 8476 // Do additional work to generate outputs. 8477 8478 SmallVector<EVT, 1> ResultVTs; 8479 SmallVector<SDValue, 1> ResultValues; 8480 SmallVector<SDValue, 8> OutChains; 8481 8482 llvm::Type *CallResultType = Call.getType(); 8483 ArrayRef<Type *> ResultTypes; 8484 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8485 ResultTypes = StructResult->elements(); 8486 else if (!CallResultType->isVoidTy()) 8487 ResultTypes = makeArrayRef(CallResultType); 8488 8489 auto CurResultType = ResultTypes.begin(); 8490 auto handleRegAssign = [&](SDValue V) { 8491 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8492 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8493 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8494 ++CurResultType; 8495 // If the type of the inline asm call site return value is different but has 8496 // same size as the type of the asm output bitcast it. One example of this 8497 // is for vectors with different width / number of elements. This can 8498 // happen for register classes that can contain multiple different value 8499 // types. The preg or vreg allocated may not have the same VT as was 8500 // expected. 8501 // 8502 // This can also happen for a return value that disagrees with the register 8503 // class it is put in, eg. a double in a general-purpose register on a 8504 // 32-bit machine. 8505 if (ResultVT != V.getValueType() && 8506 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8507 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8508 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8509 V.getValueType().isInteger()) { 8510 // If a result value was tied to an input value, the computed result 8511 // may have a wider width than the expected result. Extract the 8512 // relevant portion. 8513 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8514 } 8515 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8516 ResultVTs.push_back(ResultVT); 8517 ResultValues.push_back(V); 8518 }; 8519 8520 // Deal with output operands. 8521 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8522 if (OpInfo.Type == InlineAsm::isOutput) { 8523 SDValue Val; 8524 // Skip trivial output operands. 8525 if (OpInfo.AssignedRegs.Regs.empty()) 8526 continue; 8527 8528 switch (OpInfo.ConstraintType) { 8529 case TargetLowering::C_Register: 8530 case TargetLowering::C_RegisterClass: 8531 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8532 Chain, &Flag, &Call); 8533 break; 8534 case TargetLowering::C_Immediate: 8535 case TargetLowering::C_Other: 8536 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8537 OpInfo, DAG); 8538 break; 8539 case TargetLowering::C_Memory: 8540 break; // Already handled. 8541 case TargetLowering::C_Unknown: 8542 assert(false && "Unexpected unknown constraint"); 8543 } 8544 8545 // Indirect output manifest as stores. Record output chains. 8546 if (OpInfo.isIndirect) { 8547 const Value *Ptr = OpInfo.CallOperandVal; 8548 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8549 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8550 MachinePointerInfo(Ptr)); 8551 OutChains.push_back(Store); 8552 } else { 8553 // generate CopyFromRegs to associated registers. 8554 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8555 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8556 for (const SDValue &V : Val->op_values()) 8557 handleRegAssign(V); 8558 } else 8559 handleRegAssign(Val); 8560 } 8561 } 8562 } 8563 8564 // Set results. 8565 if (!ResultValues.empty()) { 8566 assert(CurResultType == ResultTypes.end() && 8567 "Mismatch in number of ResultTypes"); 8568 assert(ResultValues.size() == ResultTypes.size() && 8569 "Mismatch in number of output operands in asm result"); 8570 8571 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8572 DAG.getVTList(ResultVTs), ResultValues); 8573 setValue(&Call, V); 8574 } 8575 8576 // Collect store chains. 8577 if (!OutChains.empty()) 8578 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8579 8580 // Only Update Root if inline assembly has a memory effect. 8581 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8582 DAG.setRoot(Chain); 8583 } 8584 8585 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8586 const Twine &Message) { 8587 LLVMContext &Ctx = *DAG.getContext(); 8588 Ctx.emitError(&Call, Message); 8589 8590 // Make sure we leave the DAG in a valid state 8591 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8592 SmallVector<EVT, 1> ValueVTs; 8593 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8594 8595 if (ValueVTs.empty()) 8596 return; 8597 8598 SmallVector<SDValue, 1> Ops; 8599 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8600 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8601 8602 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8603 } 8604 8605 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8606 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8607 MVT::Other, getRoot(), 8608 getValue(I.getArgOperand(0)), 8609 DAG.getSrcValue(I.getArgOperand(0)))); 8610 } 8611 8612 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8614 const DataLayout &DL = DAG.getDataLayout(); 8615 SDValue V = DAG.getVAArg( 8616 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8617 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8618 DL.getABITypeAlign(I.getType()).value()); 8619 DAG.setRoot(V.getValue(1)); 8620 8621 if (I.getType()->isPointerTy()) 8622 V = DAG.getPtrExtOrTrunc( 8623 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8624 setValue(&I, V); 8625 } 8626 8627 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8628 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8629 MVT::Other, getRoot(), 8630 getValue(I.getArgOperand(0)), 8631 DAG.getSrcValue(I.getArgOperand(0)))); 8632 } 8633 8634 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8635 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8636 MVT::Other, getRoot(), 8637 getValue(I.getArgOperand(0)), 8638 getValue(I.getArgOperand(1)), 8639 DAG.getSrcValue(I.getArgOperand(0)), 8640 DAG.getSrcValue(I.getArgOperand(1)))); 8641 } 8642 8643 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8644 const Instruction &I, 8645 SDValue Op) { 8646 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8647 if (!Range) 8648 return Op; 8649 8650 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8651 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8652 return Op; 8653 8654 APInt Lo = CR.getUnsignedMin(); 8655 if (!Lo.isMinValue()) 8656 return Op; 8657 8658 APInt Hi = CR.getUnsignedMax(); 8659 unsigned Bits = std::max(Hi.getActiveBits(), 8660 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8661 8662 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8663 8664 SDLoc SL = getCurSDLoc(); 8665 8666 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8667 DAG.getValueType(SmallVT)); 8668 unsigned NumVals = Op.getNode()->getNumValues(); 8669 if (NumVals == 1) 8670 return ZExt; 8671 8672 SmallVector<SDValue, 4> Ops; 8673 8674 Ops.push_back(ZExt); 8675 for (unsigned I = 1; I != NumVals; ++I) 8676 Ops.push_back(Op.getValue(I)); 8677 8678 return DAG.getMergeValues(Ops, SL); 8679 } 8680 8681 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8682 /// the call being lowered. 8683 /// 8684 /// This is a helper for lowering intrinsics that follow a target calling 8685 /// convention or require stack pointer adjustment. Only a subset of the 8686 /// intrinsic's operands need to participate in the calling convention. 8687 void SelectionDAGBuilder::populateCallLoweringInfo( 8688 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8689 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8690 bool IsPatchPoint) { 8691 TargetLowering::ArgListTy Args; 8692 Args.reserve(NumArgs); 8693 8694 // Populate the argument list. 8695 // Attributes for args start at offset 1, after the return attribute. 8696 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8697 ArgI != ArgE; ++ArgI) { 8698 const Value *V = Call->getOperand(ArgI); 8699 8700 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8701 8702 TargetLowering::ArgListEntry Entry; 8703 Entry.Node = getValue(V); 8704 Entry.Ty = V->getType(); 8705 Entry.setAttributes(Call, ArgI); 8706 Args.push_back(Entry); 8707 } 8708 8709 CLI.setDebugLoc(getCurSDLoc()) 8710 .setChain(getRoot()) 8711 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8712 .setDiscardResult(Call->use_empty()) 8713 .setIsPatchPoint(IsPatchPoint) 8714 .setIsPreallocated( 8715 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8716 } 8717 8718 /// Add a stack map intrinsic call's live variable operands to a stackmap 8719 /// or patchpoint target node's operand list. 8720 /// 8721 /// Constants are converted to TargetConstants purely as an optimization to 8722 /// avoid constant materialization and register allocation. 8723 /// 8724 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8725 /// generate addess computation nodes, and so FinalizeISel can convert the 8726 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8727 /// address materialization and register allocation, but may also be required 8728 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8729 /// alloca in the entry block, then the runtime may assume that the alloca's 8730 /// StackMap location can be read immediately after compilation and that the 8731 /// location is valid at any point during execution (this is similar to the 8732 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8733 /// only available in a register, then the runtime would need to trap when 8734 /// execution reaches the StackMap in order to read the alloca's location. 8735 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8736 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8737 SelectionDAGBuilder &Builder) { 8738 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8739 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8740 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8741 Ops.push_back( 8742 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8743 Ops.push_back( 8744 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8745 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8746 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8747 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8748 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8749 } else 8750 Ops.push_back(OpVal); 8751 } 8752 } 8753 8754 /// Lower llvm.experimental.stackmap directly to its target opcode. 8755 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8756 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8757 // [live variables...]) 8758 8759 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8760 8761 SDValue Chain, InFlag, Callee, NullPtr; 8762 SmallVector<SDValue, 32> Ops; 8763 8764 SDLoc DL = getCurSDLoc(); 8765 Callee = getValue(CI.getCalledOperand()); 8766 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8767 8768 // The stackmap intrinsic only records the live variables (the arguments 8769 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8770 // intrinsic, this won't be lowered to a function call. This means we don't 8771 // have to worry about calling conventions and target specific lowering code. 8772 // Instead we perform the call lowering right here. 8773 // 8774 // chain, flag = CALLSEQ_START(chain, 0, 0) 8775 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8776 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8777 // 8778 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8779 InFlag = Chain.getValue(1); 8780 8781 // Add the <id> and <numBytes> constants. 8782 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8783 Ops.push_back(DAG.getTargetConstant( 8784 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8785 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8786 Ops.push_back(DAG.getTargetConstant( 8787 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8788 MVT::i32)); 8789 8790 // Push live variables for the stack map. 8791 addStackMapLiveVars(CI, 2, DL, Ops, *this); 8792 8793 // We are not pushing any register mask info here on the operands list, 8794 // because the stackmap doesn't clobber anything. 8795 8796 // Push the chain and the glue flag. 8797 Ops.push_back(Chain); 8798 Ops.push_back(InFlag); 8799 8800 // Create the STACKMAP node. 8801 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8802 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8803 Chain = SDValue(SM, 0); 8804 InFlag = Chain.getValue(1); 8805 8806 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8807 8808 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8809 8810 // Set the root to the target-lowered call chain. 8811 DAG.setRoot(Chain); 8812 8813 // Inform the Frame Information that we have a stackmap in this function. 8814 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8815 } 8816 8817 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8818 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 8819 const BasicBlock *EHPadBB) { 8820 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8821 // i32 <numBytes>, 8822 // i8* <target>, 8823 // i32 <numArgs>, 8824 // [Args...], 8825 // [live variables...]) 8826 8827 CallingConv::ID CC = CB.getCallingConv(); 8828 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8829 bool HasDef = !CB.getType()->isVoidTy(); 8830 SDLoc dl = getCurSDLoc(); 8831 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 8832 8833 // Handle immediate and symbolic callees. 8834 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8835 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8836 /*isTarget=*/true); 8837 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8838 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8839 SDLoc(SymbolicCallee), 8840 SymbolicCallee->getValueType(0)); 8841 8842 // Get the real number of arguments participating in the call <numArgs> 8843 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 8844 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8845 8846 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8847 // Intrinsics include all meta-operands up to but not including CC. 8848 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8849 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 8850 "Not enough arguments provided to the patchpoint intrinsic"); 8851 8852 // For AnyRegCC the arguments are lowered later on manually. 8853 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8854 Type *ReturnTy = 8855 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 8856 8857 TargetLowering::CallLoweringInfo CLI(DAG); 8858 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 8859 ReturnTy, true); 8860 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8861 8862 SDNode *CallEnd = Result.second.getNode(); 8863 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8864 CallEnd = CallEnd->getOperand(0).getNode(); 8865 8866 /// Get a call instruction from the call sequence chain. 8867 /// Tail calls are not allowed. 8868 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8869 "Expected a callseq node."); 8870 SDNode *Call = CallEnd->getOperand(0).getNode(); 8871 bool HasGlue = Call->getGluedNode(); 8872 8873 // Replace the target specific call node with the patchable intrinsic. 8874 SmallVector<SDValue, 8> Ops; 8875 8876 // Add the <id> and <numBytes> constants. 8877 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 8878 Ops.push_back(DAG.getTargetConstant( 8879 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8880 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 8881 Ops.push_back(DAG.getTargetConstant( 8882 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8883 MVT::i32)); 8884 8885 // Add the callee. 8886 Ops.push_back(Callee); 8887 8888 // Adjust <numArgs> to account for any arguments that have been passed on the 8889 // stack instead. 8890 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8891 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8892 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8893 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8894 8895 // Add the calling convention 8896 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8897 8898 // Add the arguments we omitted previously. The register allocator should 8899 // place these in any free register. 8900 if (IsAnyRegCC) 8901 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8902 Ops.push_back(getValue(CB.getArgOperand(i))); 8903 8904 // Push the arguments from the call instruction up to the register mask. 8905 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8906 Ops.append(Call->op_begin() + 2, e); 8907 8908 // Push live variables for the stack map. 8909 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 8910 8911 // Push the register mask info. 8912 if (HasGlue) 8913 Ops.push_back(*(Call->op_end()-2)); 8914 else 8915 Ops.push_back(*(Call->op_end()-1)); 8916 8917 // Push the chain (this is originally the first operand of the call, but 8918 // becomes now the last or second to last operand). 8919 Ops.push_back(*(Call->op_begin())); 8920 8921 // Push the glue flag (last operand). 8922 if (HasGlue) 8923 Ops.push_back(*(Call->op_end()-1)); 8924 8925 SDVTList NodeTys; 8926 if (IsAnyRegCC && HasDef) { 8927 // Create the return types based on the intrinsic definition 8928 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8929 SmallVector<EVT, 3> ValueVTs; 8930 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 8931 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8932 8933 // There is always a chain and a glue type at the end 8934 ValueVTs.push_back(MVT::Other); 8935 ValueVTs.push_back(MVT::Glue); 8936 NodeTys = DAG.getVTList(ValueVTs); 8937 } else 8938 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8939 8940 // Replace the target specific call node with a PATCHPOINT node. 8941 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8942 dl, NodeTys, Ops); 8943 8944 // Update the NodeMap. 8945 if (HasDef) { 8946 if (IsAnyRegCC) 8947 setValue(&CB, SDValue(MN, 0)); 8948 else 8949 setValue(&CB, Result.first); 8950 } 8951 8952 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8953 // call sequence. Furthermore the location of the chain and glue can change 8954 // when the AnyReg calling convention is used and the intrinsic returns a 8955 // value. 8956 if (IsAnyRegCC && HasDef) { 8957 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8958 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8959 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8960 } else 8961 DAG.ReplaceAllUsesWith(Call, MN); 8962 DAG.DeleteNode(Call); 8963 8964 // Inform the Frame Information that we have a patchpoint in this function. 8965 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8966 } 8967 8968 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8969 unsigned Intrinsic) { 8970 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8971 SDValue Op1 = getValue(I.getArgOperand(0)); 8972 SDValue Op2; 8973 if (I.getNumArgOperands() > 1) 8974 Op2 = getValue(I.getArgOperand(1)); 8975 SDLoc dl = getCurSDLoc(); 8976 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8977 SDValue Res; 8978 FastMathFlags FMF; 8979 if (isa<FPMathOperator>(I)) 8980 FMF = I.getFastMathFlags(); 8981 8982 switch (Intrinsic) { 8983 case Intrinsic::experimental_vector_reduce_v2_fadd: 8984 if (FMF.allowReassoc()) 8985 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 8986 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2)); 8987 else 8988 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8989 break; 8990 case Intrinsic::experimental_vector_reduce_v2_fmul: 8991 if (FMF.allowReassoc()) 8992 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 8993 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2)); 8994 else 8995 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8996 break; 8997 case Intrinsic::experimental_vector_reduce_add: 8998 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8999 break; 9000 case Intrinsic::experimental_vector_reduce_mul: 9001 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9002 break; 9003 case Intrinsic::experimental_vector_reduce_and: 9004 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9005 break; 9006 case Intrinsic::experimental_vector_reduce_or: 9007 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9008 break; 9009 case Intrinsic::experimental_vector_reduce_xor: 9010 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9011 break; 9012 case Intrinsic::experimental_vector_reduce_smax: 9013 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9014 break; 9015 case Intrinsic::experimental_vector_reduce_smin: 9016 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9017 break; 9018 case Intrinsic::experimental_vector_reduce_umax: 9019 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9020 break; 9021 case Intrinsic::experimental_vector_reduce_umin: 9022 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9023 break; 9024 case Intrinsic::experimental_vector_reduce_fmax: 9025 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 9026 break; 9027 case Intrinsic::experimental_vector_reduce_fmin: 9028 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 9029 break; 9030 default: 9031 llvm_unreachable("Unhandled vector reduce intrinsic"); 9032 } 9033 setValue(&I, Res); 9034 } 9035 9036 /// Returns an AttributeList representing the attributes applied to the return 9037 /// value of the given call. 9038 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9039 SmallVector<Attribute::AttrKind, 2> Attrs; 9040 if (CLI.RetSExt) 9041 Attrs.push_back(Attribute::SExt); 9042 if (CLI.RetZExt) 9043 Attrs.push_back(Attribute::ZExt); 9044 if (CLI.IsInReg) 9045 Attrs.push_back(Attribute::InReg); 9046 9047 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9048 Attrs); 9049 } 9050 9051 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9052 /// implementation, which just calls LowerCall. 9053 /// FIXME: When all targets are 9054 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9055 std::pair<SDValue, SDValue> 9056 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9057 // Handle the incoming return values from the call. 9058 CLI.Ins.clear(); 9059 Type *OrigRetTy = CLI.RetTy; 9060 SmallVector<EVT, 4> RetTys; 9061 SmallVector<uint64_t, 4> Offsets; 9062 auto &DL = CLI.DAG.getDataLayout(); 9063 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9064 9065 if (CLI.IsPostTypeLegalization) { 9066 // If we are lowering a libcall after legalization, split the return type. 9067 SmallVector<EVT, 4> OldRetTys; 9068 SmallVector<uint64_t, 4> OldOffsets; 9069 RetTys.swap(OldRetTys); 9070 Offsets.swap(OldOffsets); 9071 9072 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9073 EVT RetVT = OldRetTys[i]; 9074 uint64_t Offset = OldOffsets[i]; 9075 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9076 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9077 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9078 RetTys.append(NumRegs, RegisterVT); 9079 for (unsigned j = 0; j != NumRegs; ++j) 9080 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9081 } 9082 } 9083 9084 SmallVector<ISD::OutputArg, 4> Outs; 9085 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9086 9087 bool CanLowerReturn = 9088 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9089 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9090 9091 SDValue DemoteStackSlot; 9092 int DemoteStackIdx = -100; 9093 if (!CanLowerReturn) { 9094 // FIXME: equivalent assert? 9095 // assert(!CS.hasInAllocaArgument() && 9096 // "sret demotion is incompatible with inalloca"); 9097 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9098 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9099 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9100 DemoteStackIdx = 9101 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9102 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9103 DL.getAllocaAddrSpace()); 9104 9105 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9106 ArgListEntry Entry; 9107 Entry.Node = DemoteStackSlot; 9108 Entry.Ty = StackSlotPtrType; 9109 Entry.IsSExt = false; 9110 Entry.IsZExt = false; 9111 Entry.IsInReg = false; 9112 Entry.IsSRet = true; 9113 Entry.IsNest = false; 9114 Entry.IsByVal = false; 9115 Entry.IsReturned = false; 9116 Entry.IsSwiftSelf = false; 9117 Entry.IsSwiftError = false; 9118 Entry.IsCFGuardTarget = false; 9119 Entry.Alignment = Alignment; 9120 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9121 CLI.NumFixedArgs += 1; 9122 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9123 9124 // sret demotion isn't compatible with tail-calls, since the sret argument 9125 // points into the callers stack frame. 9126 CLI.IsTailCall = false; 9127 } else { 9128 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9129 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9130 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9131 ISD::ArgFlagsTy Flags; 9132 if (NeedsRegBlock) { 9133 Flags.setInConsecutiveRegs(); 9134 if (I == RetTys.size() - 1) 9135 Flags.setInConsecutiveRegsLast(); 9136 } 9137 EVT VT = RetTys[I]; 9138 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9139 CLI.CallConv, VT); 9140 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9141 CLI.CallConv, VT); 9142 for (unsigned i = 0; i != NumRegs; ++i) { 9143 ISD::InputArg MyFlags; 9144 MyFlags.Flags = Flags; 9145 MyFlags.VT = RegisterVT; 9146 MyFlags.ArgVT = VT; 9147 MyFlags.Used = CLI.IsReturnValueUsed; 9148 if (CLI.RetTy->isPointerTy()) { 9149 MyFlags.Flags.setPointer(); 9150 MyFlags.Flags.setPointerAddrSpace( 9151 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9152 } 9153 if (CLI.RetSExt) 9154 MyFlags.Flags.setSExt(); 9155 if (CLI.RetZExt) 9156 MyFlags.Flags.setZExt(); 9157 if (CLI.IsInReg) 9158 MyFlags.Flags.setInReg(); 9159 CLI.Ins.push_back(MyFlags); 9160 } 9161 } 9162 } 9163 9164 // We push in swifterror return as the last element of CLI.Ins. 9165 ArgListTy &Args = CLI.getArgs(); 9166 if (supportSwiftError()) { 9167 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9168 if (Args[i].IsSwiftError) { 9169 ISD::InputArg MyFlags; 9170 MyFlags.VT = getPointerTy(DL); 9171 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9172 MyFlags.Flags.setSwiftError(); 9173 CLI.Ins.push_back(MyFlags); 9174 } 9175 } 9176 } 9177 9178 // Handle all of the outgoing arguments. 9179 CLI.Outs.clear(); 9180 CLI.OutVals.clear(); 9181 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9182 SmallVector<EVT, 4> ValueVTs; 9183 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9184 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9185 Type *FinalType = Args[i].Ty; 9186 if (Args[i].IsByVal) 9187 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9188 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9189 FinalType, CLI.CallConv, CLI.IsVarArg); 9190 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9191 ++Value) { 9192 EVT VT = ValueVTs[Value]; 9193 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9194 SDValue Op = SDValue(Args[i].Node.getNode(), 9195 Args[i].Node.getResNo() + Value); 9196 ISD::ArgFlagsTy Flags; 9197 9198 // Certain targets (such as MIPS), may have a different ABI alignment 9199 // for a type depending on the context. Give the target a chance to 9200 // specify the alignment it wants. 9201 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9202 9203 if (Args[i].Ty->isPointerTy()) { 9204 Flags.setPointer(); 9205 Flags.setPointerAddrSpace( 9206 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9207 } 9208 if (Args[i].IsZExt) 9209 Flags.setZExt(); 9210 if (Args[i].IsSExt) 9211 Flags.setSExt(); 9212 if (Args[i].IsInReg) { 9213 // If we are using vectorcall calling convention, a structure that is 9214 // passed InReg - is surely an HVA 9215 if (CLI.CallConv == CallingConv::X86_VectorCall && 9216 isa<StructType>(FinalType)) { 9217 // The first value of a structure is marked 9218 if (0 == Value) 9219 Flags.setHvaStart(); 9220 Flags.setHva(); 9221 } 9222 // Set InReg Flag 9223 Flags.setInReg(); 9224 } 9225 if (Args[i].IsSRet) 9226 Flags.setSRet(); 9227 if (Args[i].IsSwiftSelf) 9228 Flags.setSwiftSelf(); 9229 if (Args[i].IsSwiftError) 9230 Flags.setSwiftError(); 9231 if (Args[i].IsCFGuardTarget) 9232 Flags.setCFGuardTarget(); 9233 if (Args[i].IsByVal) 9234 Flags.setByVal(); 9235 if (Args[i].IsPreallocated) { 9236 Flags.setPreallocated(); 9237 // Set the byval flag for CCAssignFn callbacks that don't know about 9238 // preallocated. This way we can know how many bytes we should've 9239 // allocated and how many bytes a callee cleanup function will pop. If 9240 // we port preallocated to more targets, we'll have to add custom 9241 // preallocated handling in the various CC lowering callbacks. 9242 Flags.setByVal(); 9243 } 9244 if (Args[i].IsInAlloca) { 9245 Flags.setInAlloca(); 9246 // Set the byval flag for CCAssignFn callbacks that don't know about 9247 // inalloca. This way we can know how many bytes we should've allocated 9248 // and how many bytes a callee cleanup function will pop. If we port 9249 // inalloca to more targets, we'll have to add custom inalloca handling 9250 // in the various CC lowering callbacks. 9251 Flags.setByVal(); 9252 } 9253 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9254 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9255 Type *ElementTy = Ty->getElementType(); 9256 9257 unsigned FrameSize = DL.getTypeAllocSize( 9258 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9259 Flags.setByValSize(FrameSize); 9260 9261 // info is not there but there are cases it cannot get right. 9262 Align FrameAlign; 9263 if (auto MA = Args[i].Alignment) 9264 FrameAlign = *MA; 9265 else 9266 FrameAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9267 Flags.setByValAlign(FrameAlign); 9268 } 9269 if (Args[i].IsNest) 9270 Flags.setNest(); 9271 if (NeedsRegBlock) 9272 Flags.setInConsecutiveRegs(); 9273 Flags.setOrigAlign(OriginalAlignment); 9274 9275 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9276 CLI.CallConv, VT); 9277 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9278 CLI.CallConv, VT); 9279 SmallVector<SDValue, 4> Parts(NumParts); 9280 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9281 9282 if (Args[i].IsSExt) 9283 ExtendKind = ISD::SIGN_EXTEND; 9284 else if (Args[i].IsZExt) 9285 ExtendKind = ISD::ZERO_EXTEND; 9286 9287 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9288 // for now. 9289 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9290 CanLowerReturn) { 9291 assert((CLI.RetTy == Args[i].Ty || 9292 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9293 CLI.RetTy->getPointerAddressSpace() == 9294 Args[i].Ty->getPointerAddressSpace())) && 9295 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9296 // Before passing 'returned' to the target lowering code, ensure that 9297 // either the register MVT and the actual EVT are the same size or that 9298 // the return value and argument are extended in the same way; in these 9299 // cases it's safe to pass the argument register value unchanged as the 9300 // return register value (although it's at the target's option whether 9301 // to do so) 9302 // TODO: allow code generation to take advantage of partially preserved 9303 // registers rather than clobbering the entire register when the 9304 // parameter extension method is not compatible with the return 9305 // extension method 9306 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9307 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9308 CLI.RetZExt == Args[i].IsZExt)) 9309 Flags.setReturned(); 9310 } 9311 9312 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9313 CLI.CallConv, ExtendKind); 9314 9315 for (unsigned j = 0; j != NumParts; ++j) { 9316 // if it isn't first piece, alignment must be 1 9317 // For scalable vectors the scalable part is currently handled 9318 // by individual targets, so we just use the known minimum size here. 9319 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9320 i < CLI.NumFixedArgs, i, 9321 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9322 if (NumParts > 1 && j == 0) 9323 MyFlags.Flags.setSplit(); 9324 else if (j != 0) { 9325 MyFlags.Flags.setOrigAlign(Align(1)); 9326 if (j == NumParts - 1) 9327 MyFlags.Flags.setSplitEnd(); 9328 } 9329 9330 CLI.Outs.push_back(MyFlags); 9331 CLI.OutVals.push_back(Parts[j]); 9332 } 9333 9334 if (NeedsRegBlock && Value == NumValues - 1) 9335 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9336 } 9337 } 9338 9339 SmallVector<SDValue, 4> InVals; 9340 CLI.Chain = LowerCall(CLI, InVals); 9341 9342 // Update CLI.InVals to use outside of this function. 9343 CLI.InVals = InVals; 9344 9345 // Verify that the target's LowerCall behaved as expected. 9346 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9347 "LowerCall didn't return a valid chain!"); 9348 assert((!CLI.IsTailCall || InVals.empty()) && 9349 "LowerCall emitted a return value for a tail call!"); 9350 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9351 "LowerCall didn't emit the correct number of values!"); 9352 9353 // For a tail call, the return value is merely live-out and there aren't 9354 // any nodes in the DAG representing it. Return a special value to 9355 // indicate that a tail call has been emitted and no more Instructions 9356 // should be processed in the current block. 9357 if (CLI.IsTailCall) { 9358 CLI.DAG.setRoot(CLI.Chain); 9359 return std::make_pair(SDValue(), SDValue()); 9360 } 9361 9362 #ifndef NDEBUG 9363 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9364 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9365 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9366 "LowerCall emitted a value with the wrong type!"); 9367 } 9368 #endif 9369 9370 SmallVector<SDValue, 4> ReturnValues; 9371 if (!CanLowerReturn) { 9372 // The instruction result is the result of loading from the 9373 // hidden sret parameter. 9374 SmallVector<EVT, 1> PVTs; 9375 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9376 9377 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9378 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9379 EVT PtrVT = PVTs[0]; 9380 9381 unsigned NumValues = RetTys.size(); 9382 ReturnValues.resize(NumValues); 9383 SmallVector<SDValue, 4> Chains(NumValues); 9384 9385 // An aggregate return value cannot wrap around the address space, so 9386 // offsets to its parts don't wrap either. 9387 SDNodeFlags Flags; 9388 Flags.setNoUnsignedWrap(true); 9389 9390 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9391 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9392 for (unsigned i = 0; i < NumValues; ++i) { 9393 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9394 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9395 PtrVT), Flags); 9396 SDValue L = CLI.DAG.getLoad( 9397 RetTys[i], CLI.DL, CLI.Chain, Add, 9398 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9399 DemoteStackIdx, Offsets[i]), 9400 HiddenSRetAlign); 9401 ReturnValues[i] = L; 9402 Chains[i] = L.getValue(1); 9403 } 9404 9405 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9406 } else { 9407 // Collect the legal value parts into potentially illegal values 9408 // that correspond to the original function's return values. 9409 Optional<ISD::NodeType> AssertOp; 9410 if (CLI.RetSExt) 9411 AssertOp = ISD::AssertSext; 9412 else if (CLI.RetZExt) 9413 AssertOp = ISD::AssertZext; 9414 unsigned CurReg = 0; 9415 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9416 EVT VT = RetTys[I]; 9417 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9418 CLI.CallConv, VT); 9419 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9420 CLI.CallConv, VT); 9421 9422 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9423 NumRegs, RegisterVT, VT, nullptr, 9424 CLI.CallConv, AssertOp)); 9425 CurReg += NumRegs; 9426 } 9427 9428 // For a function returning void, there is no return value. We can't create 9429 // such a node, so we just return a null return value in that case. In 9430 // that case, nothing will actually look at the value. 9431 if (ReturnValues.empty()) 9432 return std::make_pair(SDValue(), CLI.Chain); 9433 } 9434 9435 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9436 CLI.DAG.getVTList(RetTys), ReturnValues); 9437 return std::make_pair(Res, CLI.Chain); 9438 } 9439 9440 void TargetLowering::LowerOperationWrapper(SDNode *N, 9441 SmallVectorImpl<SDValue> &Results, 9442 SelectionDAG &DAG) const { 9443 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9444 Results.push_back(Res); 9445 } 9446 9447 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9448 llvm_unreachable("LowerOperation not implemented for this target!"); 9449 } 9450 9451 void 9452 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9453 SDValue Op = getNonRegisterValue(V); 9454 assert((Op.getOpcode() != ISD::CopyFromReg || 9455 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9456 "Copy from a reg to the same reg!"); 9457 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9458 9459 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9460 // If this is an InlineAsm we have to match the registers required, not the 9461 // notional registers required by the type. 9462 9463 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9464 None); // This is not an ABI copy. 9465 SDValue Chain = DAG.getEntryNode(); 9466 9467 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9468 FuncInfo.PreferredExtendType.end()) 9469 ? ISD::ANY_EXTEND 9470 : FuncInfo.PreferredExtendType[V]; 9471 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9472 PendingExports.push_back(Chain); 9473 } 9474 9475 #include "llvm/CodeGen/SelectionDAGISel.h" 9476 9477 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9478 /// entry block, return true. This includes arguments used by switches, since 9479 /// the switch may expand into multiple basic blocks. 9480 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9481 // With FastISel active, we may be splitting blocks, so force creation 9482 // of virtual registers for all non-dead arguments. 9483 if (FastISel) 9484 return A->use_empty(); 9485 9486 const BasicBlock &Entry = A->getParent()->front(); 9487 for (const User *U : A->users()) 9488 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9489 return false; // Use not in entry block. 9490 9491 return true; 9492 } 9493 9494 using ArgCopyElisionMapTy = 9495 DenseMap<const Argument *, 9496 std::pair<const AllocaInst *, const StoreInst *>>; 9497 9498 /// Scan the entry block of the function in FuncInfo for arguments that look 9499 /// like copies into a local alloca. Record any copied arguments in 9500 /// ArgCopyElisionCandidates. 9501 static void 9502 findArgumentCopyElisionCandidates(const DataLayout &DL, 9503 FunctionLoweringInfo *FuncInfo, 9504 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9505 // Record the state of every static alloca used in the entry block. Argument 9506 // allocas are all used in the entry block, so we need approximately as many 9507 // entries as we have arguments. 9508 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9509 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9510 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9511 StaticAllocas.reserve(NumArgs * 2); 9512 9513 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9514 if (!V) 9515 return nullptr; 9516 V = V->stripPointerCasts(); 9517 const auto *AI = dyn_cast<AllocaInst>(V); 9518 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9519 return nullptr; 9520 auto Iter = StaticAllocas.insert({AI, Unknown}); 9521 return &Iter.first->second; 9522 }; 9523 9524 // Look for stores of arguments to static allocas. Look through bitcasts and 9525 // GEPs to handle type coercions, as long as the alloca is fully initialized 9526 // by the store. Any non-store use of an alloca escapes it and any subsequent 9527 // unanalyzed store might write it. 9528 // FIXME: Handle structs initialized with multiple stores. 9529 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9530 // Look for stores, and handle non-store uses conservatively. 9531 const auto *SI = dyn_cast<StoreInst>(&I); 9532 if (!SI) { 9533 // We will look through cast uses, so ignore them completely. 9534 if (I.isCast()) 9535 continue; 9536 // Ignore debug info intrinsics, they don't escape or store to allocas. 9537 if (isa<DbgInfoIntrinsic>(I)) 9538 continue; 9539 // This is an unknown instruction. Assume it escapes or writes to all 9540 // static alloca operands. 9541 for (const Use &U : I.operands()) { 9542 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9543 *Info = StaticAllocaInfo::Clobbered; 9544 } 9545 continue; 9546 } 9547 9548 // If the stored value is a static alloca, mark it as escaped. 9549 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9550 *Info = StaticAllocaInfo::Clobbered; 9551 9552 // Check if the destination is a static alloca. 9553 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9554 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9555 if (!Info) 9556 continue; 9557 const AllocaInst *AI = cast<AllocaInst>(Dst); 9558 9559 // Skip allocas that have been initialized or clobbered. 9560 if (*Info != StaticAllocaInfo::Unknown) 9561 continue; 9562 9563 // Check if the stored value is an argument, and that this store fully 9564 // initializes the alloca. Don't elide copies from the same argument twice. 9565 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9566 const auto *Arg = dyn_cast<Argument>(Val); 9567 if (!Arg || Arg->hasPassPointeeByValueAttr() || 9568 Arg->getType()->isEmptyTy() || 9569 DL.getTypeStoreSize(Arg->getType()) != 9570 DL.getTypeAllocSize(AI->getAllocatedType()) || 9571 ArgCopyElisionCandidates.count(Arg)) { 9572 *Info = StaticAllocaInfo::Clobbered; 9573 continue; 9574 } 9575 9576 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9577 << '\n'); 9578 9579 // Mark this alloca and store for argument copy elision. 9580 *Info = StaticAllocaInfo::Elidable; 9581 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9582 9583 // Stop scanning if we've seen all arguments. This will happen early in -O0 9584 // builds, which is useful, because -O0 builds have large entry blocks and 9585 // many allocas. 9586 if (ArgCopyElisionCandidates.size() == NumArgs) 9587 break; 9588 } 9589 } 9590 9591 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9592 /// ArgVal is a load from a suitable fixed stack object. 9593 static void tryToElideArgumentCopy( 9594 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9595 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9596 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9597 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9598 SDValue ArgVal, bool &ArgHasUses) { 9599 // Check if this is a load from a fixed stack object. 9600 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9601 if (!LNode) 9602 return; 9603 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9604 if (!FINode) 9605 return; 9606 9607 // Check that the fixed stack object is the right size and alignment. 9608 // Look at the alignment that the user wrote on the alloca instead of looking 9609 // at the stack object. 9610 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9611 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9612 const AllocaInst *AI = ArgCopyIter->second.first; 9613 int FixedIndex = FINode->getIndex(); 9614 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9615 int OldIndex = AllocaIndex; 9616 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9617 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9618 LLVM_DEBUG( 9619 dbgs() << " argument copy elision failed due to bad fixed stack " 9620 "object size\n"); 9621 return; 9622 } 9623 Align RequiredAlignment = AI->getAlign(); 9624 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9625 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9626 "greater than stack argument alignment (" 9627 << DebugStr(RequiredAlignment) << " vs " 9628 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9629 return; 9630 } 9631 9632 // Perform the elision. Delete the old stack object and replace its only use 9633 // in the variable info map. Mark the stack object as mutable. 9634 LLVM_DEBUG({ 9635 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9636 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9637 << '\n'; 9638 }); 9639 MFI.RemoveStackObject(OldIndex); 9640 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9641 AllocaIndex = FixedIndex; 9642 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9643 Chains.push_back(ArgVal.getValue(1)); 9644 9645 // Avoid emitting code for the store implementing the copy. 9646 const StoreInst *SI = ArgCopyIter->second.second; 9647 ElidedArgCopyInstrs.insert(SI); 9648 9649 // Check for uses of the argument again so that we can avoid exporting ArgVal 9650 // if it is't used by anything other than the store. 9651 for (const Value *U : Arg.users()) { 9652 if (U != SI) { 9653 ArgHasUses = true; 9654 break; 9655 } 9656 } 9657 } 9658 9659 void SelectionDAGISel::LowerArguments(const Function &F) { 9660 SelectionDAG &DAG = SDB->DAG; 9661 SDLoc dl = SDB->getCurSDLoc(); 9662 const DataLayout &DL = DAG.getDataLayout(); 9663 SmallVector<ISD::InputArg, 16> Ins; 9664 9665 // In Naked functions we aren't going to save any registers. 9666 if (F.hasFnAttribute(Attribute::Naked)) 9667 return; 9668 9669 if (!FuncInfo->CanLowerReturn) { 9670 // Put in an sret pointer parameter before all the other parameters. 9671 SmallVector<EVT, 1> ValueVTs; 9672 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9673 F.getReturnType()->getPointerTo( 9674 DAG.getDataLayout().getAllocaAddrSpace()), 9675 ValueVTs); 9676 9677 // NOTE: Assuming that a pointer will never break down to more than one VT 9678 // or one register. 9679 ISD::ArgFlagsTy Flags; 9680 Flags.setSRet(); 9681 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9682 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9683 ISD::InputArg::NoArgIndex, 0); 9684 Ins.push_back(RetArg); 9685 } 9686 9687 // Look for stores of arguments to static allocas. Mark such arguments with a 9688 // flag to ask the target to give us the memory location of that argument if 9689 // available. 9690 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9691 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9692 ArgCopyElisionCandidates); 9693 9694 // Set up the incoming argument description vector. 9695 for (const Argument &Arg : F.args()) { 9696 unsigned ArgNo = Arg.getArgNo(); 9697 SmallVector<EVT, 4> ValueVTs; 9698 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9699 bool isArgValueUsed = !Arg.use_empty(); 9700 unsigned PartBase = 0; 9701 Type *FinalType = Arg.getType(); 9702 if (Arg.hasAttribute(Attribute::ByVal)) 9703 FinalType = Arg.getParamByValType(); 9704 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9705 FinalType, F.getCallingConv(), F.isVarArg()); 9706 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9707 Value != NumValues; ++Value) { 9708 EVT VT = ValueVTs[Value]; 9709 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9710 ISD::ArgFlagsTy Flags; 9711 9712 // Certain targets (such as MIPS), may have a different ABI alignment 9713 // for a type depending on the context. Give the target a chance to 9714 // specify the alignment it wants. 9715 const Align OriginalAlignment( 9716 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 9717 9718 if (Arg.getType()->isPointerTy()) { 9719 Flags.setPointer(); 9720 Flags.setPointerAddrSpace( 9721 cast<PointerType>(Arg.getType())->getAddressSpace()); 9722 } 9723 if (Arg.hasAttribute(Attribute::ZExt)) 9724 Flags.setZExt(); 9725 if (Arg.hasAttribute(Attribute::SExt)) 9726 Flags.setSExt(); 9727 if (Arg.hasAttribute(Attribute::InReg)) { 9728 // If we are using vectorcall calling convention, a structure that is 9729 // passed InReg - is surely an HVA 9730 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9731 isa<StructType>(Arg.getType())) { 9732 // The first value of a structure is marked 9733 if (0 == Value) 9734 Flags.setHvaStart(); 9735 Flags.setHva(); 9736 } 9737 // Set InReg Flag 9738 Flags.setInReg(); 9739 } 9740 if (Arg.hasAttribute(Attribute::StructRet)) 9741 Flags.setSRet(); 9742 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9743 Flags.setSwiftSelf(); 9744 if (Arg.hasAttribute(Attribute::SwiftError)) 9745 Flags.setSwiftError(); 9746 if (Arg.hasAttribute(Attribute::ByVal)) 9747 Flags.setByVal(); 9748 if (Arg.hasAttribute(Attribute::InAlloca)) { 9749 Flags.setInAlloca(); 9750 // Set the byval flag for CCAssignFn callbacks that don't know about 9751 // inalloca. This way we can know how many bytes we should've allocated 9752 // and how many bytes a callee cleanup function will pop. If we port 9753 // inalloca to more targets, we'll have to add custom inalloca handling 9754 // in the various CC lowering callbacks. 9755 Flags.setByVal(); 9756 } 9757 if (Arg.hasAttribute(Attribute::Preallocated)) { 9758 Flags.setPreallocated(); 9759 // Set the byval flag for CCAssignFn callbacks that don't know about 9760 // preallocated. This way we can know how many bytes we should've 9761 // allocated and how many bytes a callee cleanup function will pop. If 9762 // we port preallocated to more targets, we'll have to add custom 9763 // preallocated handling in the various CC lowering callbacks. 9764 Flags.setByVal(); 9765 } 9766 if (F.getCallingConv() == CallingConv::X86_INTR) { 9767 // IA Interrupt passes frame (1st parameter) by value in the stack. 9768 if (ArgNo == 0) 9769 Flags.setByVal(); 9770 } 9771 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated()) { 9772 Type *ElementTy = Arg.getParamByValType(); 9773 9774 // For ByVal, size and alignment should be passed from FE. BE will 9775 // guess if this info is not there but there are cases it cannot get 9776 // right. 9777 unsigned FrameSize = DL.getTypeAllocSize(Arg.getParamByValType()); 9778 Flags.setByValSize(FrameSize); 9779 9780 unsigned FrameAlign; 9781 if (Arg.getParamAlignment()) 9782 FrameAlign = Arg.getParamAlignment(); 9783 else 9784 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9785 Flags.setByValAlign(Align(FrameAlign)); 9786 } 9787 if (Arg.hasAttribute(Attribute::Nest)) 9788 Flags.setNest(); 9789 if (NeedsRegBlock) 9790 Flags.setInConsecutiveRegs(); 9791 Flags.setOrigAlign(OriginalAlignment); 9792 if (ArgCopyElisionCandidates.count(&Arg)) 9793 Flags.setCopyElisionCandidate(); 9794 if (Arg.hasAttribute(Attribute::Returned)) 9795 Flags.setReturned(); 9796 9797 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9798 *CurDAG->getContext(), F.getCallingConv(), VT); 9799 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9800 *CurDAG->getContext(), F.getCallingConv(), VT); 9801 for (unsigned i = 0; i != NumRegs; ++i) { 9802 // For scalable vectors, use the minimum size; individual targets 9803 // are responsible for handling scalable vector arguments and 9804 // return values. 9805 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9806 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 9807 if (NumRegs > 1 && i == 0) 9808 MyFlags.Flags.setSplit(); 9809 // if it isn't first piece, alignment must be 1 9810 else if (i > 0) { 9811 MyFlags.Flags.setOrigAlign(Align(1)); 9812 if (i == NumRegs - 1) 9813 MyFlags.Flags.setSplitEnd(); 9814 } 9815 Ins.push_back(MyFlags); 9816 } 9817 if (NeedsRegBlock && Value == NumValues - 1) 9818 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9819 PartBase += VT.getStoreSize().getKnownMinSize(); 9820 } 9821 } 9822 9823 // Call the target to set up the argument values. 9824 SmallVector<SDValue, 8> InVals; 9825 SDValue NewRoot = TLI->LowerFormalArguments( 9826 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9827 9828 // Verify that the target's LowerFormalArguments behaved as expected. 9829 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9830 "LowerFormalArguments didn't return a valid chain!"); 9831 assert(InVals.size() == Ins.size() && 9832 "LowerFormalArguments didn't emit the correct number of values!"); 9833 LLVM_DEBUG({ 9834 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9835 assert(InVals[i].getNode() && 9836 "LowerFormalArguments emitted a null value!"); 9837 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9838 "LowerFormalArguments emitted a value with the wrong type!"); 9839 } 9840 }); 9841 9842 // Update the DAG with the new chain value resulting from argument lowering. 9843 DAG.setRoot(NewRoot); 9844 9845 // Set up the argument values. 9846 unsigned i = 0; 9847 if (!FuncInfo->CanLowerReturn) { 9848 // Create a virtual register for the sret pointer, and put in a copy 9849 // from the sret argument into it. 9850 SmallVector<EVT, 1> ValueVTs; 9851 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9852 F.getReturnType()->getPointerTo( 9853 DAG.getDataLayout().getAllocaAddrSpace()), 9854 ValueVTs); 9855 MVT VT = ValueVTs[0].getSimpleVT(); 9856 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9857 Optional<ISD::NodeType> AssertOp = None; 9858 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9859 nullptr, F.getCallingConv(), AssertOp); 9860 9861 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9862 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9863 Register SRetReg = 9864 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9865 FuncInfo->DemoteRegister = SRetReg; 9866 NewRoot = 9867 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9868 DAG.setRoot(NewRoot); 9869 9870 // i indexes lowered arguments. Bump it past the hidden sret argument. 9871 ++i; 9872 } 9873 9874 SmallVector<SDValue, 4> Chains; 9875 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9876 for (const Argument &Arg : F.args()) { 9877 SmallVector<SDValue, 4> ArgValues; 9878 SmallVector<EVT, 4> ValueVTs; 9879 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9880 unsigned NumValues = ValueVTs.size(); 9881 if (NumValues == 0) 9882 continue; 9883 9884 bool ArgHasUses = !Arg.use_empty(); 9885 9886 // Elide the copying store if the target loaded this argument from a 9887 // suitable fixed stack object. 9888 if (Ins[i].Flags.isCopyElisionCandidate()) { 9889 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9890 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9891 InVals[i], ArgHasUses); 9892 } 9893 9894 // If this argument is unused then remember its value. It is used to generate 9895 // debugging information. 9896 bool isSwiftErrorArg = 9897 TLI->supportSwiftError() && 9898 Arg.hasAttribute(Attribute::SwiftError); 9899 if (!ArgHasUses && !isSwiftErrorArg) { 9900 SDB->setUnusedArgValue(&Arg, InVals[i]); 9901 9902 // Also remember any frame index for use in FastISel. 9903 if (FrameIndexSDNode *FI = 9904 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9905 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9906 } 9907 9908 for (unsigned Val = 0; Val != NumValues; ++Val) { 9909 EVT VT = ValueVTs[Val]; 9910 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9911 F.getCallingConv(), VT); 9912 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9913 *CurDAG->getContext(), F.getCallingConv(), VT); 9914 9915 // Even an apparent 'unused' swifterror argument needs to be returned. So 9916 // we do generate a copy for it that can be used on return from the 9917 // function. 9918 if (ArgHasUses || isSwiftErrorArg) { 9919 Optional<ISD::NodeType> AssertOp; 9920 if (Arg.hasAttribute(Attribute::SExt)) 9921 AssertOp = ISD::AssertSext; 9922 else if (Arg.hasAttribute(Attribute::ZExt)) 9923 AssertOp = ISD::AssertZext; 9924 9925 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9926 PartVT, VT, nullptr, 9927 F.getCallingConv(), AssertOp)); 9928 } 9929 9930 i += NumParts; 9931 } 9932 9933 // We don't need to do anything else for unused arguments. 9934 if (ArgValues.empty()) 9935 continue; 9936 9937 // Note down frame index. 9938 if (FrameIndexSDNode *FI = 9939 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9940 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9941 9942 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9943 SDB->getCurSDLoc()); 9944 9945 SDB->setValue(&Arg, Res); 9946 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9947 // We want to associate the argument with the frame index, among 9948 // involved operands, that correspond to the lowest address. The 9949 // getCopyFromParts function, called earlier, is swapping the order of 9950 // the operands to BUILD_PAIR depending on endianness. The result of 9951 // that swapping is that the least significant bits of the argument will 9952 // be in the first operand of the BUILD_PAIR node, and the most 9953 // significant bits will be in the second operand. 9954 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9955 if (LoadSDNode *LNode = 9956 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9957 if (FrameIndexSDNode *FI = 9958 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9959 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9960 } 9961 9962 // Analyses past this point are naive and don't expect an assertion. 9963 if (Res.getOpcode() == ISD::AssertZext) 9964 Res = Res.getOperand(0); 9965 9966 // Update the SwiftErrorVRegDefMap. 9967 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9968 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9969 if (Register::isVirtualRegister(Reg)) 9970 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 9971 Reg); 9972 } 9973 9974 // If this argument is live outside of the entry block, insert a copy from 9975 // wherever we got it to the vreg that other BB's will reference it as. 9976 if (Res.getOpcode() == ISD::CopyFromReg) { 9977 // If we can, though, try to skip creating an unnecessary vreg. 9978 // FIXME: This isn't very clean... it would be nice to make this more 9979 // general. 9980 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9981 if (Register::isVirtualRegister(Reg)) { 9982 FuncInfo->ValueMap[&Arg] = Reg; 9983 continue; 9984 } 9985 } 9986 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9987 FuncInfo->InitializeRegForValue(&Arg); 9988 SDB->CopyToExportRegsIfNeeded(&Arg); 9989 } 9990 } 9991 9992 if (!Chains.empty()) { 9993 Chains.push_back(NewRoot); 9994 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9995 } 9996 9997 DAG.setRoot(NewRoot); 9998 9999 assert(i == InVals.size() && "Argument register count mismatch!"); 10000 10001 // If any argument copy elisions occurred and we have debug info, update the 10002 // stale frame indices used in the dbg.declare variable info table. 10003 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10004 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10005 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10006 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10007 if (I != ArgCopyElisionFrameIndexMap.end()) 10008 VI.Slot = I->second; 10009 } 10010 } 10011 10012 // Finally, if the target has anything special to do, allow it to do so. 10013 emitFunctionEntryCode(); 10014 } 10015 10016 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10017 /// ensure constants are generated when needed. Remember the virtual registers 10018 /// that need to be added to the Machine PHI nodes as input. We cannot just 10019 /// directly add them, because expansion might result in multiple MBB's for one 10020 /// BB. As such, the start of the BB might correspond to a different MBB than 10021 /// the end. 10022 void 10023 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10024 const Instruction *TI = LLVMBB->getTerminator(); 10025 10026 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10027 10028 // Check PHI nodes in successors that expect a value to be available from this 10029 // block. 10030 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10031 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10032 if (!isa<PHINode>(SuccBB->begin())) continue; 10033 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10034 10035 // If this terminator has multiple identical successors (common for 10036 // switches), only handle each succ once. 10037 if (!SuccsHandled.insert(SuccMBB).second) 10038 continue; 10039 10040 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10041 10042 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10043 // nodes and Machine PHI nodes, but the incoming operands have not been 10044 // emitted yet. 10045 for (const PHINode &PN : SuccBB->phis()) { 10046 // Ignore dead phi's. 10047 if (PN.use_empty()) 10048 continue; 10049 10050 // Skip empty types 10051 if (PN.getType()->isEmptyTy()) 10052 continue; 10053 10054 unsigned Reg; 10055 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10056 10057 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10058 unsigned &RegOut = ConstantsOut[C]; 10059 if (RegOut == 0) { 10060 RegOut = FuncInfo.CreateRegs(C); 10061 CopyValueToVirtualRegister(C, RegOut); 10062 } 10063 Reg = RegOut; 10064 } else { 10065 DenseMap<const Value *, Register>::iterator I = 10066 FuncInfo.ValueMap.find(PHIOp); 10067 if (I != FuncInfo.ValueMap.end()) 10068 Reg = I->second; 10069 else { 10070 assert(isa<AllocaInst>(PHIOp) && 10071 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10072 "Didn't codegen value into a register!??"); 10073 Reg = FuncInfo.CreateRegs(PHIOp); 10074 CopyValueToVirtualRegister(PHIOp, Reg); 10075 } 10076 } 10077 10078 // Remember that this register needs to added to the machine PHI node as 10079 // the input for this MBB. 10080 SmallVector<EVT, 4> ValueVTs; 10081 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10082 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10083 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10084 EVT VT = ValueVTs[vti]; 10085 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10086 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10087 FuncInfo.PHINodesToUpdate.push_back( 10088 std::make_pair(&*MBBI++, Reg + i)); 10089 Reg += NumRegisters; 10090 } 10091 } 10092 } 10093 10094 ConstantsOut.clear(); 10095 } 10096 10097 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10098 /// is 0. 10099 MachineBasicBlock * 10100 SelectionDAGBuilder::StackProtectorDescriptor:: 10101 AddSuccessorMBB(const BasicBlock *BB, 10102 MachineBasicBlock *ParentMBB, 10103 bool IsLikely, 10104 MachineBasicBlock *SuccMBB) { 10105 // If SuccBB has not been created yet, create it. 10106 if (!SuccMBB) { 10107 MachineFunction *MF = ParentMBB->getParent(); 10108 MachineFunction::iterator BBI(ParentMBB); 10109 SuccMBB = MF->CreateMachineBasicBlock(BB); 10110 MF->insert(++BBI, SuccMBB); 10111 } 10112 // Add it as a successor of ParentMBB. 10113 ParentMBB->addSuccessor( 10114 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10115 return SuccMBB; 10116 } 10117 10118 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10119 MachineFunction::iterator I(MBB); 10120 if (++I == FuncInfo.MF->end()) 10121 return nullptr; 10122 return &*I; 10123 } 10124 10125 /// During lowering new call nodes can be created (such as memset, etc.). 10126 /// Those will become new roots of the current DAG, but complications arise 10127 /// when they are tail calls. In such cases, the call lowering will update 10128 /// the root, but the builder still needs to know that a tail call has been 10129 /// lowered in order to avoid generating an additional return. 10130 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10131 // If the node is null, we do have a tail call. 10132 if (MaybeTC.getNode() != nullptr) 10133 DAG.setRoot(MaybeTC); 10134 else 10135 HasTailCall = true; 10136 } 10137 10138 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10139 MachineBasicBlock *SwitchMBB, 10140 MachineBasicBlock *DefaultMBB) { 10141 MachineFunction *CurMF = FuncInfo.MF; 10142 MachineBasicBlock *NextMBB = nullptr; 10143 MachineFunction::iterator BBI(W.MBB); 10144 if (++BBI != FuncInfo.MF->end()) 10145 NextMBB = &*BBI; 10146 10147 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10148 10149 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10150 10151 if (Size == 2 && W.MBB == SwitchMBB) { 10152 // If any two of the cases has the same destination, and if one value 10153 // is the same as the other, but has one bit unset that the other has set, 10154 // use bit manipulation to do two compares at once. For example: 10155 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10156 // TODO: This could be extended to merge any 2 cases in switches with 3 10157 // cases. 10158 // TODO: Handle cases where W.CaseBB != SwitchBB. 10159 CaseCluster &Small = *W.FirstCluster; 10160 CaseCluster &Big = *W.LastCluster; 10161 10162 if (Small.Low == Small.High && Big.Low == Big.High && 10163 Small.MBB == Big.MBB) { 10164 const APInt &SmallValue = Small.Low->getValue(); 10165 const APInt &BigValue = Big.Low->getValue(); 10166 10167 // Check that there is only one bit different. 10168 APInt CommonBit = BigValue ^ SmallValue; 10169 if (CommonBit.isPowerOf2()) { 10170 SDValue CondLHS = getValue(Cond); 10171 EVT VT = CondLHS.getValueType(); 10172 SDLoc DL = getCurSDLoc(); 10173 10174 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10175 DAG.getConstant(CommonBit, DL, VT)); 10176 SDValue Cond = DAG.getSetCC( 10177 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10178 ISD::SETEQ); 10179 10180 // Update successor info. 10181 // Both Small and Big will jump to Small.BB, so we sum up the 10182 // probabilities. 10183 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10184 if (BPI) 10185 addSuccessorWithProb( 10186 SwitchMBB, DefaultMBB, 10187 // The default destination is the first successor in IR. 10188 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10189 else 10190 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10191 10192 // Insert the true branch. 10193 SDValue BrCond = 10194 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10195 DAG.getBasicBlock(Small.MBB)); 10196 // Insert the false branch. 10197 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10198 DAG.getBasicBlock(DefaultMBB)); 10199 10200 DAG.setRoot(BrCond); 10201 return; 10202 } 10203 } 10204 } 10205 10206 if (TM.getOptLevel() != CodeGenOpt::None) { 10207 // Here, we order cases by probability so the most likely case will be 10208 // checked first. However, two clusters can have the same probability in 10209 // which case their relative ordering is non-deterministic. So we use Low 10210 // as a tie-breaker as clusters are guaranteed to never overlap. 10211 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10212 [](const CaseCluster &a, const CaseCluster &b) { 10213 return a.Prob != b.Prob ? 10214 a.Prob > b.Prob : 10215 a.Low->getValue().slt(b.Low->getValue()); 10216 }); 10217 10218 // Rearrange the case blocks so that the last one falls through if possible 10219 // without changing the order of probabilities. 10220 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10221 --I; 10222 if (I->Prob > W.LastCluster->Prob) 10223 break; 10224 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10225 std::swap(*I, *W.LastCluster); 10226 break; 10227 } 10228 } 10229 } 10230 10231 // Compute total probability. 10232 BranchProbability DefaultProb = W.DefaultProb; 10233 BranchProbability UnhandledProbs = DefaultProb; 10234 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10235 UnhandledProbs += I->Prob; 10236 10237 MachineBasicBlock *CurMBB = W.MBB; 10238 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10239 bool FallthroughUnreachable = false; 10240 MachineBasicBlock *Fallthrough; 10241 if (I == W.LastCluster) { 10242 // For the last cluster, fall through to the default destination. 10243 Fallthrough = DefaultMBB; 10244 FallthroughUnreachable = isa<UnreachableInst>( 10245 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10246 } else { 10247 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10248 CurMF->insert(BBI, Fallthrough); 10249 // Put Cond in a virtual register to make it available from the new blocks. 10250 ExportFromCurrentBlock(Cond); 10251 } 10252 UnhandledProbs -= I->Prob; 10253 10254 switch (I->Kind) { 10255 case CC_JumpTable: { 10256 // FIXME: Optimize away range check based on pivot comparisons. 10257 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10258 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10259 10260 // The jump block hasn't been inserted yet; insert it here. 10261 MachineBasicBlock *JumpMBB = JT->MBB; 10262 CurMF->insert(BBI, JumpMBB); 10263 10264 auto JumpProb = I->Prob; 10265 auto FallthroughProb = UnhandledProbs; 10266 10267 // If the default statement is a target of the jump table, we evenly 10268 // distribute the default probability to successors of CurMBB. Also 10269 // update the probability on the edge from JumpMBB to Fallthrough. 10270 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10271 SE = JumpMBB->succ_end(); 10272 SI != SE; ++SI) { 10273 if (*SI == DefaultMBB) { 10274 JumpProb += DefaultProb / 2; 10275 FallthroughProb -= DefaultProb / 2; 10276 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10277 JumpMBB->normalizeSuccProbs(); 10278 break; 10279 } 10280 } 10281 10282 if (FallthroughUnreachable) { 10283 // Skip the range check if the fallthrough block is unreachable. 10284 JTH->OmitRangeCheck = true; 10285 } 10286 10287 if (!JTH->OmitRangeCheck) 10288 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10289 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10290 CurMBB->normalizeSuccProbs(); 10291 10292 // The jump table header will be inserted in our current block, do the 10293 // range check, and fall through to our fallthrough block. 10294 JTH->HeaderBB = CurMBB; 10295 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10296 10297 // If we're in the right place, emit the jump table header right now. 10298 if (CurMBB == SwitchMBB) { 10299 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10300 JTH->Emitted = true; 10301 } 10302 break; 10303 } 10304 case CC_BitTests: { 10305 // FIXME: Optimize away range check based on pivot comparisons. 10306 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10307 10308 // The bit test blocks haven't been inserted yet; insert them here. 10309 for (BitTestCase &BTC : BTB->Cases) 10310 CurMF->insert(BBI, BTC.ThisBB); 10311 10312 // Fill in fields of the BitTestBlock. 10313 BTB->Parent = CurMBB; 10314 BTB->Default = Fallthrough; 10315 10316 BTB->DefaultProb = UnhandledProbs; 10317 // If the cases in bit test don't form a contiguous range, we evenly 10318 // distribute the probability on the edge to Fallthrough to two 10319 // successors of CurMBB. 10320 if (!BTB->ContiguousRange) { 10321 BTB->Prob += DefaultProb / 2; 10322 BTB->DefaultProb -= DefaultProb / 2; 10323 } 10324 10325 if (FallthroughUnreachable) { 10326 // Skip the range check if the fallthrough block is unreachable. 10327 BTB->OmitRangeCheck = true; 10328 } 10329 10330 // If we're in the right place, emit the bit test header right now. 10331 if (CurMBB == SwitchMBB) { 10332 visitBitTestHeader(*BTB, SwitchMBB); 10333 BTB->Emitted = true; 10334 } 10335 break; 10336 } 10337 case CC_Range: { 10338 const Value *RHS, *LHS, *MHS; 10339 ISD::CondCode CC; 10340 if (I->Low == I->High) { 10341 // Check Cond == I->Low. 10342 CC = ISD::SETEQ; 10343 LHS = Cond; 10344 RHS=I->Low; 10345 MHS = nullptr; 10346 } else { 10347 // Check I->Low <= Cond <= I->High. 10348 CC = ISD::SETLE; 10349 LHS = I->Low; 10350 MHS = Cond; 10351 RHS = I->High; 10352 } 10353 10354 // If Fallthrough is unreachable, fold away the comparison. 10355 if (FallthroughUnreachable) 10356 CC = ISD::SETTRUE; 10357 10358 // The false probability is the sum of all unhandled cases. 10359 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10360 getCurSDLoc(), I->Prob, UnhandledProbs); 10361 10362 if (CurMBB == SwitchMBB) 10363 visitSwitchCase(CB, SwitchMBB); 10364 else 10365 SL->SwitchCases.push_back(CB); 10366 10367 break; 10368 } 10369 } 10370 CurMBB = Fallthrough; 10371 } 10372 } 10373 10374 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10375 CaseClusterIt First, 10376 CaseClusterIt Last) { 10377 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10378 if (X.Prob != CC.Prob) 10379 return X.Prob > CC.Prob; 10380 10381 // Ties are broken by comparing the case value. 10382 return X.Low->getValue().slt(CC.Low->getValue()); 10383 }); 10384 } 10385 10386 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10387 const SwitchWorkListItem &W, 10388 Value *Cond, 10389 MachineBasicBlock *SwitchMBB) { 10390 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10391 "Clusters not sorted?"); 10392 10393 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10394 10395 // Balance the tree based on branch probabilities to create a near-optimal (in 10396 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10397 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10398 CaseClusterIt LastLeft = W.FirstCluster; 10399 CaseClusterIt FirstRight = W.LastCluster; 10400 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10401 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10402 10403 // Move LastLeft and FirstRight towards each other from opposite directions to 10404 // find a partitioning of the clusters which balances the probability on both 10405 // sides. If LeftProb and RightProb are equal, alternate which side is 10406 // taken to ensure 0-probability nodes are distributed evenly. 10407 unsigned I = 0; 10408 while (LastLeft + 1 < FirstRight) { 10409 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10410 LeftProb += (++LastLeft)->Prob; 10411 else 10412 RightProb += (--FirstRight)->Prob; 10413 I++; 10414 } 10415 10416 while (true) { 10417 // Our binary search tree differs from a typical BST in that ours can have up 10418 // to three values in each leaf. The pivot selection above doesn't take that 10419 // into account, which means the tree might require more nodes and be less 10420 // efficient. We compensate for this here. 10421 10422 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10423 unsigned NumRight = W.LastCluster - FirstRight + 1; 10424 10425 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10426 // If one side has less than 3 clusters, and the other has more than 3, 10427 // consider taking a cluster from the other side. 10428 10429 if (NumLeft < NumRight) { 10430 // Consider moving the first cluster on the right to the left side. 10431 CaseCluster &CC = *FirstRight; 10432 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10433 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10434 if (LeftSideRank <= RightSideRank) { 10435 // Moving the cluster to the left does not demote it. 10436 ++LastLeft; 10437 ++FirstRight; 10438 continue; 10439 } 10440 } else { 10441 assert(NumRight < NumLeft); 10442 // Consider moving the last element on the left to the right side. 10443 CaseCluster &CC = *LastLeft; 10444 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10445 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10446 if (RightSideRank <= LeftSideRank) { 10447 // Moving the cluster to the right does not demot it. 10448 --LastLeft; 10449 --FirstRight; 10450 continue; 10451 } 10452 } 10453 } 10454 break; 10455 } 10456 10457 assert(LastLeft + 1 == FirstRight); 10458 assert(LastLeft >= W.FirstCluster); 10459 assert(FirstRight <= W.LastCluster); 10460 10461 // Use the first element on the right as pivot since we will make less-than 10462 // comparisons against it. 10463 CaseClusterIt PivotCluster = FirstRight; 10464 assert(PivotCluster > W.FirstCluster); 10465 assert(PivotCluster <= W.LastCluster); 10466 10467 CaseClusterIt FirstLeft = W.FirstCluster; 10468 CaseClusterIt LastRight = W.LastCluster; 10469 10470 const ConstantInt *Pivot = PivotCluster->Low; 10471 10472 // New blocks will be inserted immediately after the current one. 10473 MachineFunction::iterator BBI(W.MBB); 10474 ++BBI; 10475 10476 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10477 // we can branch to its destination directly if it's squeezed exactly in 10478 // between the known lower bound and Pivot - 1. 10479 MachineBasicBlock *LeftMBB; 10480 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10481 FirstLeft->Low == W.GE && 10482 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10483 LeftMBB = FirstLeft->MBB; 10484 } else { 10485 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10486 FuncInfo.MF->insert(BBI, LeftMBB); 10487 WorkList.push_back( 10488 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10489 // Put Cond in a virtual register to make it available from the new blocks. 10490 ExportFromCurrentBlock(Cond); 10491 } 10492 10493 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10494 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10495 // directly if RHS.High equals the current upper bound. 10496 MachineBasicBlock *RightMBB; 10497 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10498 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10499 RightMBB = FirstRight->MBB; 10500 } else { 10501 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10502 FuncInfo.MF->insert(BBI, RightMBB); 10503 WorkList.push_back( 10504 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10505 // Put Cond in a virtual register to make it available from the new blocks. 10506 ExportFromCurrentBlock(Cond); 10507 } 10508 10509 // Create the CaseBlock record that will be used to lower the branch. 10510 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10511 getCurSDLoc(), LeftProb, RightProb); 10512 10513 if (W.MBB == SwitchMBB) 10514 visitSwitchCase(CB, SwitchMBB); 10515 else 10516 SL->SwitchCases.push_back(CB); 10517 } 10518 10519 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10520 // from the swith statement. 10521 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10522 BranchProbability PeeledCaseProb) { 10523 if (PeeledCaseProb == BranchProbability::getOne()) 10524 return BranchProbability::getZero(); 10525 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10526 10527 uint32_t Numerator = CaseProb.getNumerator(); 10528 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10529 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10530 } 10531 10532 // Try to peel the top probability case if it exceeds the threshold. 10533 // Return current MachineBasicBlock for the switch statement if the peeling 10534 // does not occur. 10535 // If the peeling is performed, return the newly created MachineBasicBlock 10536 // for the peeled switch statement. Also update Clusters to remove the peeled 10537 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10538 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10539 const SwitchInst &SI, CaseClusterVector &Clusters, 10540 BranchProbability &PeeledCaseProb) { 10541 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10542 // Don't perform if there is only one cluster or optimizing for size. 10543 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10544 TM.getOptLevel() == CodeGenOpt::None || 10545 SwitchMBB->getParent()->getFunction().hasMinSize()) 10546 return SwitchMBB; 10547 10548 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10549 unsigned PeeledCaseIndex = 0; 10550 bool SwitchPeeled = false; 10551 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10552 CaseCluster &CC = Clusters[Index]; 10553 if (CC.Prob < TopCaseProb) 10554 continue; 10555 TopCaseProb = CC.Prob; 10556 PeeledCaseIndex = Index; 10557 SwitchPeeled = true; 10558 } 10559 if (!SwitchPeeled) 10560 return SwitchMBB; 10561 10562 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10563 << TopCaseProb << "\n"); 10564 10565 // Record the MBB for the peeled switch statement. 10566 MachineFunction::iterator BBI(SwitchMBB); 10567 ++BBI; 10568 MachineBasicBlock *PeeledSwitchMBB = 10569 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10570 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10571 10572 ExportFromCurrentBlock(SI.getCondition()); 10573 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10574 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10575 nullptr, nullptr, TopCaseProb.getCompl()}; 10576 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10577 10578 Clusters.erase(PeeledCaseIt); 10579 for (CaseCluster &CC : Clusters) { 10580 LLVM_DEBUG( 10581 dbgs() << "Scale the probablity for one cluster, before scaling: " 10582 << CC.Prob << "\n"); 10583 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10584 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10585 } 10586 PeeledCaseProb = TopCaseProb; 10587 return PeeledSwitchMBB; 10588 } 10589 10590 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10591 // Extract cases from the switch. 10592 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10593 CaseClusterVector Clusters; 10594 Clusters.reserve(SI.getNumCases()); 10595 for (auto I : SI.cases()) { 10596 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10597 const ConstantInt *CaseVal = I.getCaseValue(); 10598 BranchProbability Prob = 10599 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10600 : BranchProbability(1, SI.getNumCases() + 1); 10601 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10602 } 10603 10604 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10605 10606 // Cluster adjacent cases with the same destination. We do this at all 10607 // optimization levels because it's cheap to do and will make codegen faster 10608 // if there are many clusters. 10609 sortAndRangeify(Clusters); 10610 10611 // The branch probablity of the peeled case. 10612 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10613 MachineBasicBlock *PeeledSwitchMBB = 10614 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10615 10616 // If there is only the default destination, jump there directly. 10617 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10618 if (Clusters.empty()) { 10619 assert(PeeledSwitchMBB == SwitchMBB); 10620 SwitchMBB->addSuccessor(DefaultMBB); 10621 if (DefaultMBB != NextBlock(SwitchMBB)) { 10622 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10623 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10624 } 10625 return; 10626 } 10627 10628 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10629 SL->findBitTestClusters(Clusters, &SI); 10630 10631 LLVM_DEBUG({ 10632 dbgs() << "Case clusters: "; 10633 for (const CaseCluster &C : Clusters) { 10634 if (C.Kind == CC_JumpTable) 10635 dbgs() << "JT:"; 10636 if (C.Kind == CC_BitTests) 10637 dbgs() << "BT:"; 10638 10639 C.Low->getValue().print(dbgs(), true); 10640 if (C.Low != C.High) { 10641 dbgs() << '-'; 10642 C.High->getValue().print(dbgs(), true); 10643 } 10644 dbgs() << ' '; 10645 } 10646 dbgs() << '\n'; 10647 }); 10648 10649 assert(!Clusters.empty()); 10650 SwitchWorkList WorkList; 10651 CaseClusterIt First = Clusters.begin(); 10652 CaseClusterIt Last = Clusters.end() - 1; 10653 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10654 // Scale the branchprobability for DefaultMBB if the peel occurs and 10655 // DefaultMBB is not replaced. 10656 if (PeeledCaseProb != BranchProbability::getZero() && 10657 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10658 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10659 WorkList.push_back( 10660 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10661 10662 while (!WorkList.empty()) { 10663 SwitchWorkListItem W = WorkList.back(); 10664 WorkList.pop_back(); 10665 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10666 10667 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10668 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10669 // For optimized builds, lower large range as a balanced binary tree. 10670 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10671 continue; 10672 } 10673 10674 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10675 } 10676 } 10677 10678 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10679 SmallVector<EVT, 4> ValueVTs; 10680 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10681 ValueVTs); 10682 unsigned NumValues = ValueVTs.size(); 10683 if (NumValues == 0) return; 10684 10685 SmallVector<SDValue, 4> Values(NumValues); 10686 SDValue Op = getValue(I.getOperand(0)); 10687 10688 for (unsigned i = 0; i != NumValues; ++i) 10689 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10690 SDValue(Op.getNode(), Op.getResNo() + i)); 10691 10692 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10693 DAG.getVTList(ValueVTs), Values)); 10694 } 10695