1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void 650 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 651 SDValue *Flag, const Value *V, 652 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 653 654 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 655 /// operand list. This adds the code marker, matching input operand index 656 /// (if applicable), and includes the number of values added into it. 657 void AddInlineAsmOperands(unsigned Kind, 658 bool HasMatching, unsigned MatchingIdx, 659 SelectionDAG &DAG, 660 std::vector<SDValue> &Ops) const; 661 }; 662 } 663 664 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 665 /// this value and returns the result as a ValueVT value. This uses 666 /// Chain/Flag as the input and updates them for the output Chain/Flag. 667 /// If the Flag pointer is NULL, no flag is used. 668 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 669 FunctionLoweringInfo &FuncInfo, 670 SDLoc dl, 671 SDValue &Chain, SDValue *Flag, 672 const Value *V) const { 673 // A Value with type {} or [0 x %t] needs no registers. 674 if (ValueVTs.empty()) 675 return SDValue(); 676 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 679 // Assemble the legal parts into the final values. 680 SmallVector<SDValue, 4> Values(ValueVTs.size()); 681 SmallVector<SDValue, 8> Parts; 682 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 683 // Copy the legal parts from the registers. 684 EVT ValueVT = ValueVTs[Value]; 685 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 686 MVT RegisterVT = RegVTs[Value]; 687 688 Parts.resize(NumRegs); 689 for (unsigned i = 0; i != NumRegs; ++i) { 690 SDValue P; 691 if (!Flag) { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 693 } else { 694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 695 *Flag = P.getValue(2); 696 } 697 698 Chain = P.getValue(1); 699 Parts[i] = P; 700 701 // If the source register was virtual and if we know something about it, 702 // add an assert node. 703 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 704 !RegisterVT.isInteger() || RegisterVT.isVector()) 705 continue; 706 707 const FunctionLoweringInfo::LiveOutInfo *LOI = 708 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 709 if (!LOI) 710 continue; 711 712 unsigned RegSize = RegisterVT.getSizeInBits(); 713 unsigned NumSignBits = LOI->NumSignBits; 714 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 715 716 if (NumZeroBits == RegSize) { 717 // The current value is a zero. 718 // Explicitly express that as it would be easier for 719 // optimizations to kick in. 720 Parts[i] = DAG.getConstant(0, RegisterVT); 721 continue; 722 } 723 724 // FIXME: We capture more information than the dag can represent. For 725 // now, just use the tightest assertzext/assertsext possible. 726 bool isSExt = true; 727 EVT FromVT(MVT::Other); 728 if (NumSignBits == RegSize) 729 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 730 else if (NumZeroBits >= RegSize-1) 731 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 732 else if (NumSignBits > RegSize-8) 733 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 734 else if (NumZeroBits >= RegSize-8) 735 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 736 else if (NumSignBits > RegSize-16) 737 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 738 else if (NumZeroBits >= RegSize-16) 739 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 740 else if (NumSignBits > RegSize-32) 741 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 742 else if (NumZeroBits >= RegSize-32) 743 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 744 else 745 continue; 746 747 // Add an assertion node. 748 assert(FromVT != MVT::Other); 749 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 750 RegisterVT, P, DAG.getValueType(FromVT)); 751 } 752 753 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 754 NumRegs, RegisterVT, ValueVT, V); 755 Part += NumRegs; 756 Parts.clear(); 757 } 758 759 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 760 } 761 762 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 763 /// specified value into the registers specified by this object. This uses 764 /// Chain/Flag as the input and updates them for the output Chain/Flag. 765 /// If the Flag pointer is NULL, no flag is used. 766 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 767 SDValue &Chain, SDValue *Flag, const Value *V, 768 ISD::NodeType PreferredExtendType) const { 769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 770 ISD::NodeType ExtendKind = PreferredExtendType; 771 772 // Get the list of the values's legal parts. 773 unsigned NumRegs = Regs.size(); 774 SmallVector<SDValue, 8> Parts(NumRegs); 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 EVT ValueVT = ValueVTs[Value]; 777 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 778 MVT RegisterVT = RegVTs[Value]; 779 780 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 781 ExtendKind = ISD::ZERO_EXTEND; 782 783 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 784 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 785 Part += NumParts; 786 } 787 788 // Copy the parts into the registers. 789 SmallVector<SDValue, 8> Chains(NumRegs); 790 for (unsigned i = 0; i != NumRegs; ++i) { 791 SDValue Part; 792 if (!Flag) { 793 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 794 } else { 795 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 796 *Flag = Part.getValue(1); 797 } 798 799 Chains[i] = Part.getValue(0); 800 } 801 802 if (NumRegs == 1 || Flag) 803 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 804 // flagged to it. That is the CopyToReg nodes and the user are considered 805 // a single scheduling unit. If we create a TokenFactor and return it as 806 // chain, then the TokenFactor is both a predecessor (operand) of the 807 // user as well as a successor (the TF operands are flagged to the user). 808 // c1, f1 = CopyToReg 809 // c2, f2 = CopyToReg 810 // c3 = TokenFactor c1, c2 811 // ... 812 // = op c3, ..., f2 813 Chain = Chains[NumRegs-1]; 814 else 815 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 816 } 817 818 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 819 /// operand list. This adds the code marker and includes the number of 820 /// values added into it. 821 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 822 unsigned MatchingIdx, 823 SelectionDAG &DAG, 824 std::vector<SDValue> &Ops) const { 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 828 if (HasMatching) 829 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 830 else if (!Regs.empty() && 831 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 832 // Put the register class of the virtual registers in the flag word. That 833 // way, later passes can recompute register class constraints for inline 834 // assembly as well as normal instructions. 835 // Don't do this for tied operands that can use the regclass information 836 // from the def. 837 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 838 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 839 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 840 } 841 842 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 843 Ops.push_back(Res); 844 845 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 846 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 848 MVT RegisterVT = RegVTs[Value]; 849 for (unsigned i = 0; i != NumRegs; ++i) { 850 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 851 unsigned TheReg = Regs[Reg++]; 852 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 853 854 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 855 // If we clobbered the stack pointer, MFI should know about it. 856 assert(DAG.getMachineFunction().getFrameInfo()-> 857 hasInlineAsmWithSPAdjust()); 858 } 859 } 860 } 861 } 862 863 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 864 const TargetLibraryInfo *li) { 865 AA = &aa; 866 GFI = gfi; 867 LibInfo = li; 868 DL = DAG.getSubtarget().getDataLayout(); 869 Context = DAG.getContext(); 870 LPadToCallSiteMap.clear(); 871 } 872 873 /// clear - Clear out the current SelectionDAG and the associated 874 /// state and prepare this SelectionDAGBuilder object to be used 875 /// for a new block. This doesn't clear out information about 876 /// additional blocks that are needed to complete switch lowering 877 /// or PHI node updating; that information is cleared out as it is 878 /// consumed. 879 void SelectionDAGBuilder::clear() { 880 NodeMap.clear(); 881 UnusedArgNodeMap.clear(); 882 PendingLoads.clear(); 883 PendingExports.clear(); 884 CurInst = nullptr; 885 HasTailCall = false; 886 SDNodeOrder = LowestSDNodeOrder; 887 } 888 889 /// clearDanglingDebugInfo - Clear the dangling debug information 890 /// map. This function is separated from the clear so that debug 891 /// information that is dangling in a basic block can be properly 892 /// resolved in a different basic block. This allows the 893 /// SelectionDAG to resolve dangling debug information attached 894 /// to PHI nodes. 895 void SelectionDAGBuilder::clearDanglingDebugInfo() { 896 DanglingDebugInfoMap.clear(); 897 } 898 899 /// getRoot - Return the current virtual root of the Selection DAG, 900 /// flushing any PendingLoad items. This must be done before emitting 901 /// a store or any other node that may need to be ordered after any 902 /// prior load instructions. 903 /// 904 SDValue SelectionDAGBuilder::getRoot() { 905 if (PendingLoads.empty()) 906 return DAG.getRoot(); 907 908 if (PendingLoads.size() == 1) { 909 SDValue Root = PendingLoads[0]; 910 DAG.setRoot(Root); 911 PendingLoads.clear(); 912 return Root; 913 } 914 915 // Otherwise, we have to make a token factor node. 916 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 917 PendingLoads); 918 PendingLoads.clear(); 919 DAG.setRoot(Root); 920 return Root; 921 } 922 923 /// getControlRoot - Similar to getRoot, but instead of flushing all the 924 /// PendingLoad items, flush all the PendingExports items. It is necessary 925 /// to do this before emitting a terminator instruction. 926 /// 927 SDValue SelectionDAGBuilder::getControlRoot() { 928 SDValue Root = DAG.getRoot(); 929 930 if (PendingExports.empty()) 931 return Root; 932 933 // Turn all of the CopyToReg chains into one factored node. 934 if (Root.getOpcode() != ISD::EntryToken) { 935 unsigned i = 0, e = PendingExports.size(); 936 for (; i != e; ++i) { 937 assert(PendingExports[i].getNode()->getNumOperands() > 1); 938 if (PendingExports[i].getNode()->getOperand(0) == Root) 939 break; // Don't add the root if we already indirectly depend on it. 940 } 941 942 if (i == e) 943 PendingExports.push_back(Root); 944 } 945 946 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 947 PendingExports); 948 PendingExports.clear(); 949 DAG.setRoot(Root); 950 return Root; 951 } 952 953 void SelectionDAGBuilder::visit(const Instruction &I) { 954 // Set up outgoing PHI node register values before emitting the terminator. 955 if (isa<TerminatorInst>(&I)) 956 HandlePHINodesInSuccessorBlocks(I.getParent()); 957 958 ++SDNodeOrder; 959 960 CurInst = &I; 961 962 visit(I.getOpcode(), I); 963 964 if (!isa<TerminatorInst>(&I) && !HasTailCall) 965 CopyToExportRegsIfNeeded(&I); 966 967 CurInst = nullptr; 968 } 969 970 void SelectionDAGBuilder::visitPHI(const PHINode &) { 971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 972 } 973 974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 975 // Note: this doesn't use InstVisitor, because it has to work with 976 // ConstantExpr's in addition to instructions. 977 switch (Opcode) { 978 default: llvm_unreachable("Unknown instruction type encountered!"); 979 // Build the switch statement using the Instruction.def file. 980 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 982 #include "llvm/IR/Instruction.def" 983 } 984 } 985 986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 987 // generate the debug data structures now that we've seen its definition. 988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 989 SDValue Val) { 990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 991 if (DDI.getDI()) { 992 const DbgValueInst *DI = DDI.getDI(); 993 DebugLoc dl = DDI.getdl(); 994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 995 MDNode *Variable = DI->getVariable(); 996 MDNode *Expr = DI->getExpression(); 997 uint64_t Offset = DI->getOffset(); 998 // A dbg.value for an alloca is always indirect. 999 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1000 SDDbgValue *SDV; 1001 if (Val.getNode()) { 1002 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1003 Val)) { 1004 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1005 IsIndirect, Offset, dl, DbgSDNodeOrder); 1006 DAG.AddDbgValue(SDV, Val.getNode(), false); 1007 } 1008 } else 1009 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1010 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1011 } 1012 } 1013 1014 /// getValue - Return an SDValue for the given Value. 1015 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. It's important 1017 // to do this first, so that we don't create a CopyFromReg if we already 1018 // have a regular SDValue. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) return N; 1021 1022 // If there's a virtual register allocated and initialized for this 1023 // value, use it. 1024 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 RegsForValue RFV(*DAG.getContext(), 1028 *TM.getSubtargetImpl()->getTargetLowering(), InReg, 1029 V->getType()); 1030 SDValue Chain = DAG.getEntryNode(); 1031 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1032 resolveDanglingDebugInfo(V, N); 1033 return N; 1034 } 1035 1036 // Otherwise create a new SDValue and remember it. 1037 SDValue Val = getValueImpl(V); 1038 NodeMap[V] = Val; 1039 resolveDanglingDebugInfo(V, Val); 1040 return Val; 1041 } 1042 1043 /// getNonRegisterValue - Return an SDValue for the given Value, but 1044 /// don't look in FuncInfo.ValueMap for a virtual register. 1045 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1046 // If we already have an SDValue for this value, use it. 1047 SDValue &N = NodeMap[V]; 1048 if (N.getNode()) return N; 1049 1050 // Otherwise create a new SDValue and remember it. 1051 SDValue Val = getValueImpl(V); 1052 NodeMap[V] = Val; 1053 resolveDanglingDebugInfo(V, Val); 1054 return Val; 1055 } 1056 1057 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1058 /// Create an SDValue for the given value. 1059 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1060 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1061 1062 if (const Constant *C = dyn_cast<Constant>(V)) { 1063 EVT VT = TLI->getValueType(V->getType(), true); 1064 1065 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1066 return DAG.getConstant(*CI, VT); 1067 1068 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1069 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1070 1071 if (isa<ConstantPointerNull>(C)) { 1072 unsigned AS = V->getType()->getPointerAddressSpace(); 1073 return DAG.getConstant(0, TLI->getPointerTy(AS)); 1074 } 1075 1076 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1077 return DAG.getConstantFP(*CFP, VT); 1078 1079 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1080 return DAG.getUNDEF(VT); 1081 1082 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1083 visit(CE->getOpcode(), *CE); 1084 SDValue N1 = NodeMap[V]; 1085 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1086 return N1; 1087 } 1088 1089 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1090 SmallVector<SDValue, 4> Constants; 1091 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1092 OI != OE; ++OI) { 1093 SDNode *Val = getValue(*OI).getNode(); 1094 // If the operand is an empty aggregate, there are no values. 1095 if (!Val) continue; 1096 // Add each leaf value from the operand to the Constants list 1097 // to form a flattened list of all the values. 1098 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1099 Constants.push_back(SDValue(Val, i)); 1100 } 1101 1102 return DAG.getMergeValues(Constants, getCurSDLoc()); 1103 } 1104 1105 if (const ConstantDataSequential *CDS = 1106 dyn_cast<ConstantDataSequential>(C)) { 1107 SmallVector<SDValue, 4> Ops; 1108 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1109 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1110 // Add each leaf value from the operand to the Constants list 1111 // to form a flattened list of all the values. 1112 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1113 Ops.push_back(SDValue(Val, i)); 1114 } 1115 1116 if (isa<ArrayType>(CDS->getType())) 1117 return DAG.getMergeValues(Ops, getCurSDLoc()); 1118 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1119 VT, Ops); 1120 } 1121 1122 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1123 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1124 "Unknown struct or array constant!"); 1125 1126 SmallVector<EVT, 4> ValueVTs; 1127 ComputeValueVTs(*TLI, C->getType(), ValueVTs); 1128 unsigned NumElts = ValueVTs.size(); 1129 if (NumElts == 0) 1130 return SDValue(); // empty struct 1131 SmallVector<SDValue, 4> Constants(NumElts); 1132 for (unsigned i = 0; i != NumElts; ++i) { 1133 EVT EltVT = ValueVTs[i]; 1134 if (isa<UndefValue>(C)) 1135 Constants[i] = DAG.getUNDEF(EltVT); 1136 else if (EltVT.isFloatingPoint()) 1137 Constants[i] = DAG.getConstantFP(0, EltVT); 1138 else 1139 Constants[i] = DAG.getConstant(0, EltVT); 1140 } 1141 1142 return DAG.getMergeValues(Constants, getCurSDLoc()); 1143 } 1144 1145 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1146 return DAG.getBlockAddress(BA, VT); 1147 1148 VectorType *VecTy = cast<VectorType>(V->getType()); 1149 unsigned NumElements = VecTy->getNumElements(); 1150 1151 // Now that we know the number and type of the elements, get that number of 1152 // elements into the Ops array based on what kind of constant it is. 1153 SmallVector<SDValue, 16> Ops; 1154 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1155 for (unsigned i = 0; i != NumElements; ++i) 1156 Ops.push_back(getValue(CV->getOperand(i))); 1157 } else { 1158 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1159 EVT EltVT = TLI->getValueType(VecTy->getElementType()); 1160 1161 SDValue Op; 1162 if (EltVT.isFloatingPoint()) 1163 Op = DAG.getConstantFP(0, EltVT); 1164 else 1165 Op = DAG.getConstant(0, EltVT); 1166 Ops.assign(NumElements, Op); 1167 } 1168 1169 // Create a BUILD_VECTOR node. 1170 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1171 } 1172 1173 // If this is a static alloca, generate it as the frameindex instead of 1174 // computation. 1175 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1176 DenseMap<const AllocaInst*, int>::iterator SI = 1177 FuncInfo.StaticAllocaMap.find(AI); 1178 if (SI != FuncInfo.StaticAllocaMap.end()) 1179 return DAG.getFrameIndex(SI->second, TLI->getPointerTy()); 1180 } 1181 1182 // If this is an instruction which fast-isel has deferred, select it now. 1183 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1184 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1185 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType()); 1186 SDValue Chain = DAG.getEntryNode(); 1187 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1188 } 1189 1190 llvm_unreachable("Can't get register for value!"); 1191 } 1192 1193 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1194 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1195 SDValue Chain = getControlRoot(); 1196 SmallVector<ISD::OutputArg, 8> Outs; 1197 SmallVector<SDValue, 8> OutVals; 1198 1199 if (!FuncInfo.CanLowerReturn) { 1200 unsigned DemoteReg = FuncInfo.DemoteRegister; 1201 const Function *F = I.getParent()->getParent(); 1202 1203 // Emit a store of the return value through the virtual register. 1204 // Leave Outs empty so that LowerReturn won't try to load return 1205 // registers the usual way. 1206 SmallVector<EVT, 1> PtrValueVTs; 1207 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()), 1208 PtrValueVTs); 1209 1210 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1211 SDValue RetOp = getValue(I.getOperand(0)); 1212 1213 SmallVector<EVT, 4> ValueVTs; 1214 SmallVector<uint64_t, 4> Offsets; 1215 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1216 unsigned NumValues = ValueVTs.size(); 1217 1218 SmallVector<SDValue, 4> Chains(NumValues); 1219 for (unsigned i = 0; i != NumValues; ++i) { 1220 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1221 RetPtr.getValueType(), RetPtr, 1222 DAG.getIntPtrConstant(Offsets[i])); 1223 Chains[i] = 1224 DAG.getStore(Chain, getCurSDLoc(), 1225 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1226 // FIXME: better loc info would be nice. 1227 Add, MachinePointerInfo(), false, false, 0); 1228 } 1229 1230 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1231 MVT::Other, Chains); 1232 } else if (I.getNumOperands() != 0) { 1233 SmallVector<EVT, 4> ValueVTs; 1234 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs); 1235 unsigned NumValues = ValueVTs.size(); 1236 if (NumValues) { 1237 SDValue RetOp = getValue(I.getOperand(0)); 1238 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1239 EVT VT = ValueVTs[j]; 1240 1241 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1242 1243 const Function *F = I.getParent()->getParent(); 1244 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1245 Attribute::SExt)) 1246 ExtendKind = ISD::SIGN_EXTEND; 1247 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1248 Attribute::ZExt)) 1249 ExtendKind = ISD::ZERO_EXTEND; 1250 1251 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1252 VT = TLI->getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1253 1254 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT); 1255 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT); 1256 SmallVector<SDValue, 4> Parts(NumParts); 1257 getCopyToParts(DAG, getCurSDLoc(), 1258 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1259 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1260 1261 // 'inreg' on function refers to return value 1262 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1263 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1264 Attribute::InReg)) 1265 Flags.setInReg(); 1266 1267 // Propagate extension type if any 1268 if (ExtendKind == ISD::SIGN_EXTEND) 1269 Flags.setSExt(); 1270 else if (ExtendKind == ISD::ZERO_EXTEND) 1271 Flags.setZExt(); 1272 1273 for (unsigned i = 0; i < NumParts; ++i) { 1274 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1275 VT, /*isfixed=*/true, 0, 0)); 1276 OutVals.push_back(Parts[i]); 1277 } 1278 } 1279 } 1280 } 1281 1282 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1283 CallingConv::ID CallConv = 1284 DAG.getMachineFunction().getFunction()->getCallingConv(); 1285 Chain = TM.getSubtargetImpl()->getTargetLowering()->LowerReturn( 1286 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1287 1288 // Verify that the target's LowerReturn behaved as expected. 1289 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1290 "LowerReturn didn't return a valid chain!"); 1291 1292 // Update the DAG with the new chain value resulting from return lowering. 1293 DAG.setRoot(Chain); 1294 } 1295 1296 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1297 /// created for it, emit nodes to copy the value into the virtual 1298 /// registers. 1299 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1300 // Skip empty types 1301 if (V->getType()->isEmptyTy()) 1302 return; 1303 1304 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1305 if (VMI != FuncInfo.ValueMap.end()) { 1306 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1307 CopyValueToVirtualRegister(V, VMI->second); 1308 } 1309 } 1310 1311 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1312 /// the current basic block, add it to ValueMap now so that we'll get a 1313 /// CopyTo/FromReg. 1314 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1315 // No need to export constants. 1316 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1317 1318 // Already exported? 1319 if (FuncInfo.isExportedInst(V)) return; 1320 1321 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1322 CopyValueToVirtualRegister(V, Reg); 1323 } 1324 1325 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1326 const BasicBlock *FromBB) { 1327 // The operands of the setcc have to be in this block. We don't know 1328 // how to export them from some other block. 1329 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1330 // Can export from current BB. 1331 if (VI->getParent() == FromBB) 1332 return true; 1333 1334 // Is already exported, noop. 1335 return FuncInfo.isExportedInst(V); 1336 } 1337 1338 // If this is an argument, we can export it if the BB is the entry block or 1339 // if it is already exported. 1340 if (isa<Argument>(V)) { 1341 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1342 return true; 1343 1344 // Otherwise, can only export this if it is already exported. 1345 return FuncInfo.isExportedInst(V); 1346 } 1347 1348 // Otherwise, constants can always be exported. 1349 return true; 1350 } 1351 1352 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1353 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1354 const MachineBasicBlock *Dst) const { 1355 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1356 if (!BPI) 1357 return 0; 1358 const BasicBlock *SrcBB = Src->getBasicBlock(); 1359 const BasicBlock *DstBB = Dst->getBasicBlock(); 1360 return BPI->getEdgeWeight(SrcBB, DstBB); 1361 } 1362 1363 void SelectionDAGBuilder:: 1364 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1365 uint32_t Weight /* = 0 */) { 1366 if (!Weight) 1367 Weight = getEdgeWeight(Src, Dst); 1368 Src->addSuccessor(Dst, Weight); 1369 } 1370 1371 1372 static bool InBlock(const Value *V, const BasicBlock *BB) { 1373 if (const Instruction *I = dyn_cast<Instruction>(V)) 1374 return I->getParent() == BB; 1375 return true; 1376 } 1377 1378 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1379 /// This function emits a branch and is used at the leaves of an OR or an 1380 /// AND operator tree. 1381 /// 1382 void 1383 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1384 MachineBasicBlock *TBB, 1385 MachineBasicBlock *FBB, 1386 MachineBasicBlock *CurBB, 1387 MachineBasicBlock *SwitchBB, 1388 uint32_t TWeight, 1389 uint32_t FWeight) { 1390 const BasicBlock *BB = CurBB->getBasicBlock(); 1391 1392 // If the leaf of the tree is a comparison, merge the condition into 1393 // the caseblock. 1394 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1395 // The operands of the cmp have to be in this block. We don't know 1396 // how to export them from some other block. If this is the first block 1397 // of the sequence, no exporting is needed. 1398 if (CurBB == SwitchBB || 1399 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1400 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1401 ISD::CondCode Condition; 1402 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1403 Condition = getICmpCondCode(IC->getPredicate()); 1404 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1405 Condition = getFCmpCondCode(FC->getPredicate()); 1406 if (TM.Options.NoNaNsFPMath) 1407 Condition = getFCmpCodeWithoutNaN(Condition); 1408 } else { 1409 Condition = ISD::SETEQ; // silence warning. 1410 llvm_unreachable("Unknown compare instruction"); 1411 } 1412 1413 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1414 TBB, FBB, CurBB, TWeight, FWeight); 1415 SwitchCases.push_back(CB); 1416 return; 1417 } 1418 } 1419 1420 // Create a CaseBlock record representing this branch. 1421 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1422 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1423 SwitchCases.push_back(CB); 1424 } 1425 1426 /// Scale down both weights to fit into uint32_t. 1427 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1428 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1429 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1430 NewTrue = NewTrue / Scale; 1431 NewFalse = NewFalse / Scale; 1432 } 1433 1434 /// FindMergedConditions - If Cond is an expression like 1435 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1436 MachineBasicBlock *TBB, 1437 MachineBasicBlock *FBB, 1438 MachineBasicBlock *CurBB, 1439 MachineBasicBlock *SwitchBB, 1440 unsigned Opc, uint32_t TWeight, 1441 uint32_t FWeight) { 1442 // If this node is not part of the or/and tree, emit it as a branch. 1443 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1444 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1445 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1446 BOp->getParent() != CurBB->getBasicBlock() || 1447 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1448 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1449 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1450 TWeight, FWeight); 1451 return; 1452 } 1453 1454 // Create TmpBB after CurBB. 1455 MachineFunction::iterator BBI = CurBB; 1456 MachineFunction &MF = DAG.getMachineFunction(); 1457 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1458 CurBB->getParent()->insert(++BBI, TmpBB); 1459 1460 if (Opc == Instruction::Or) { 1461 // Codegen X | Y as: 1462 // BB1: 1463 // jmp_if_X TBB 1464 // jmp TmpBB 1465 // TmpBB: 1466 // jmp_if_Y TBB 1467 // jmp FBB 1468 // 1469 1470 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1471 // The requirement is that 1472 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1473 // = TrueProb for orignal BB. 1474 // Assuming the orignal weights are A and B, one choice is to set BB1's 1475 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1476 // assumes that 1477 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1478 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1479 // TmpBB, but the math is more complicated. 1480 1481 uint64_t NewTrueWeight = TWeight; 1482 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1483 ScaleWeights(NewTrueWeight, NewFalseWeight); 1484 // Emit the LHS condition. 1485 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1486 NewTrueWeight, NewFalseWeight); 1487 1488 NewTrueWeight = TWeight; 1489 NewFalseWeight = 2 * (uint64_t)FWeight; 1490 ScaleWeights(NewTrueWeight, NewFalseWeight); 1491 // Emit the RHS condition into TmpBB. 1492 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1493 NewTrueWeight, NewFalseWeight); 1494 } else { 1495 assert(Opc == Instruction::And && "Unknown merge op!"); 1496 // Codegen X & Y as: 1497 // BB1: 1498 // jmp_if_X TmpBB 1499 // jmp FBB 1500 // TmpBB: 1501 // jmp_if_Y TBB 1502 // jmp FBB 1503 // 1504 // This requires creation of TmpBB after CurBB. 1505 1506 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1507 // The requirement is that 1508 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1509 // = FalseProb for orignal BB. 1510 // Assuming the orignal weights are A and B, one choice is to set BB1's 1511 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1512 // assumes that 1513 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1514 1515 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1516 uint64_t NewFalseWeight = FWeight; 1517 ScaleWeights(NewTrueWeight, NewFalseWeight); 1518 // Emit the LHS condition. 1519 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1520 NewTrueWeight, NewFalseWeight); 1521 1522 NewTrueWeight = 2 * (uint64_t)TWeight; 1523 NewFalseWeight = FWeight; 1524 ScaleWeights(NewTrueWeight, NewFalseWeight); 1525 // Emit the RHS condition into TmpBB. 1526 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1527 NewTrueWeight, NewFalseWeight); 1528 } 1529 } 1530 1531 /// If the set of cases should be emitted as a series of branches, return true. 1532 /// If we should emit this as a bunch of and/or'd together conditions, return 1533 /// false. 1534 bool 1535 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1536 if (Cases.size() != 2) return true; 1537 1538 // If this is two comparisons of the same values or'd or and'd together, they 1539 // will get folded into a single comparison, so don't emit two blocks. 1540 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1541 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1542 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1543 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1544 return false; 1545 } 1546 1547 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1548 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1549 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1550 Cases[0].CC == Cases[1].CC && 1551 isa<Constant>(Cases[0].CmpRHS) && 1552 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1553 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1554 return false; 1555 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1556 return false; 1557 } 1558 1559 return true; 1560 } 1561 1562 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1563 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1564 1565 // Update machine-CFG edges. 1566 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1567 1568 // Figure out which block is immediately after the current one. 1569 MachineBasicBlock *NextBlock = nullptr; 1570 MachineFunction::iterator BBI = BrMBB; 1571 if (++BBI != FuncInfo.MF->end()) 1572 NextBlock = BBI; 1573 1574 if (I.isUnconditional()) { 1575 // Update machine-CFG edges. 1576 BrMBB->addSuccessor(Succ0MBB); 1577 1578 // If this is not a fall-through branch or optimizations are switched off, 1579 // emit the branch. 1580 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1581 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1582 MVT::Other, getControlRoot(), 1583 DAG.getBasicBlock(Succ0MBB))); 1584 1585 return; 1586 } 1587 1588 // If this condition is one of the special cases we handle, do special stuff 1589 // now. 1590 const Value *CondVal = I.getCondition(); 1591 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1592 1593 // If this is a series of conditions that are or'd or and'd together, emit 1594 // this as a sequence of branches instead of setcc's with and/or operations. 1595 // As long as jumps are not expensive, this should improve performance. 1596 // For example, instead of something like: 1597 // cmp A, B 1598 // C = seteq 1599 // cmp D, E 1600 // F = setle 1601 // or C, F 1602 // jnz foo 1603 // Emit: 1604 // cmp A, B 1605 // je foo 1606 // cmp D, E 1607 // jle foo 1608 // 1609 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1610 if (!TM.getSubtargetImpl()->getTargetLowering()->isJumpExpensive() && 1611 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1612 BOp->getOpcode() == Instruction::Or)) { 1613 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1614 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1615 getEdgeWeight(BrMBB, Succ1MBB)); 1616 // If the compares in later blocks need to use values not currently 1617 // exported from this block, export them now. This block should always 1618 // be the first entry. 1619 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1620 1621 // Allow some cases to be rejected. 1622 if (ShouldEmitAsBranches(SwitchCases)) { 1623 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1624 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1625 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1626 } 1627 1628 // Emit the branch for this block. 1629 visitSwitchCase(SwitchCases[0], BrMBB); 1630 SwitchCases.erase(SwitchCases.begin()); 1631 return; 1632 } 1633 1634 // Okay, we decided not to do this, remove any inserted MBB's and clear 1635 // SwitchCases. 1636 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1637 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1638 1639 SwitchCases.clear(); 1640 } 1641 } 1642 1643 // Create a CaseBlock record representing this branch. 1644 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1645 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1646 1647 // Use visitSwitchCase to actually insert the fast branch sequence for this 1648 // cond branch. 1649 visitSwitchCase(CB, BrMBB); 1650 } 1651 1652 /// visitSwitchCase - Emits the necessary code to represent a single node in 1653 /// the binary search tree resulting from lowering a switch instruction. 1654 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1655 MachineBasicBlock *SwitchBB) { 1656 SDValue Cond; 1657 SDValue CondLHS = getValue(CB.CmpLHS); 1658 SDLoc dl = getCurSDLoc(); 1659 1660 // Build the setcc now. 1661 if (!CB.CmpMHS) { 1662 // Fold "(X == true)" to X and "(X == false)" to !X to 1663 // handle common cases produced by branch lowering. 1664 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1665 CB.CC == ISD::SETEQ) 1666 Cond = CondLHS; 1667 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1668 CB.CC == ISD::SETEQ) { 1669 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1670 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1671 } else 1672 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1673 } else { 1674 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1675 1676 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1677 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1678 1679 SDValue CmpOp = getValue(CB.CmpMHS); 1680 EVT VT = CmpOp.getValueType(); 1681 1682 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1683 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1684 ISD::SETLE); 1685 } else { 1686 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1687 VT, CmpOp, DAG.getConstant(Low, VT)); 1688 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1689 DAG.getConstant(High-Low, VT), ISD::SETULE); 1690 } 1691 } 1692 1693 // Update successor info 1694 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1695 // TrueBB and FalseBB are always different unless the incoming IR is 1696 // degenerate. This only happens when running llc on weird IR. 1697 if (CB.TrueBB != CB.FalseBB) 1698 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1699 1700 // Set NextBlock to be the MBB immediately after the current one, if any. 1701 // This is used to avoid emitting unnecessary branches to the next block. 1702 MachineBasicBlock *NextBlock = nullptr; 1703 MachineFunction::iterator BBI = SwitchBB; 1704 if (++BBI != FuncInfo.MF->end()) 1705 NextBlock = BBI; 1706 1707 // If the lhs block is the next block, invert the condition so that we can 1708 // fall through to the lhs instead of the rhs block. 1709 if (CB.TrueBB == NextBlock) { 1710 std::swap(CB.TrueBB, CB.FalseBB); 1711 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1712 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1713 } 1714 1715 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1716 MVT::Other, getControlRoot(), Cond, 1717 DAG.getBasicBlock(CB.TrueBB)); 1718 1719 // Insert the false branch. Do this even if it's a fall through branch, 1720 // this makes it easier to do DAG optimizations which require inverting 1721 // the branch condition. 1722 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1723 DAG.getBasicBlock(CB.FalseBB)); 1724 1725 DAG.setRoot(BrCond); 1726 } 1727 1728 /// visitJumpTable - Emit JumpTable node in the current MBB 1729 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1730 // Emit the code for the jump table 1731 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1732 EVT PTy = TM.getSubtargetImpl()->getTargetLowering()->getPointerTy(); 1733 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1734 JT.Reg, PTy); 1735 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1736 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1737 MVT::Other, Index.getValue(1), 1738 Table, Index); 1739 DAG.setRoot(BrJumpTable); 1740 } 1741 1742 /// visitJumpTableHeader - This function emits necessary code to produce index 1743 /// in the JumpTable from switch case. 1744 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1745 JumpTableHeader &JTH, 1746 MachineBasicBlock *SwitchBB) { 1747 // Subtract the lowest switch case value from the value being switched on and 1748 // conditional branch to default mbb if the result is greater than the 1749 // difference between smallest and largest cases. 1750 SDValue SwitchOp = getValue(JTH.SValue); 1751 EVT VT = SwitchOp.getValueType(); 1752 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1753 DAG.getConstant(JTH.First, VT)); 1754 1755 // The SDNode we just created, which holds the value being switched on minus 1756 // the smallest case value, needs to be copied to a virtual register so it 1757 // can be used as an index into the jump table in a subsequent basic block. 1758 // This value may be smaller or larger than the target's pointer type, and 1759 // therefore require extension or truncating. 1760 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1761 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy()); 1762 1763 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy()); 1764 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1765 JumpTableReg, SwitchOp); 1766 JT.Reg = JumpTableReg; 1767 1768 // Emit the range check for the jump table, and branch to the default block 1769 // for the switch statement if the value being switched on exceeds the largest 1770 // case in the switch. 1771 SDValue CMP = DAG.getSetCC(getCurSDLoc(), 1772 TLI->getSetCCResultType(*DAG.getContext(), 1773 Sub.getValueType()), 1774 Sub, 1775 DAG.getConstant(JTH.Last - JTH.First,VT), 1776 ISD::SETUGT); 1777 1778 // Set NextBlock to be the MBB immediately after the current one, if any. 1779 // This is used to avoid emitting unnecessary branches to the next block. 1780 MachineBasicBlock *NextBlock = nullptr; 1781 MachineFunction::iterator BBI = SwitchBB; 1782 1783 if (++BBI != FuncInfo.MF->end()) 1784 NextBlock = BBI; 1785 1786 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1787 MVT::Other, CopyTo, CMP, 1788 DAG.getBasicBlock(JT.Default)); 1789 1790 if (JT.MBB != NextBlock) 1791 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1792 DAG.getBasicBlock(JT.MBB)); 1793 1794 DAG.setRoot(BrCond); 1795 } 1796 1797 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1798 /// tail spliced into a stack protector check success bb. 1799 /// 1800 /// For a high level explanation of how this fits into the stack protector 1801 /// generation see the comment on the declaration of class 1802 /// StackProtectorDescriptor. 1803 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1804 MachineBasicBlock *ParentBB) { 1805 1806 // First create the loads to the guard/stack slot for the comparison. 1807 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1808 EVT PtrTy = TLI->getPointerTy(); 1809 1810 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1811 int FI = MFI->getStackProtectorIndex(); 1812 1813 const Value *IRGuard = SPD.getGuard(); 1814 SDValue GuardPtr = getValue(IRGuard); 1815 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1816 1817 unsigned Align = 1818 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1819 1820 SDValue Guard; 1821 1822 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1823 // guard value from the virtual register holding the value. Otherwise, emit a 1824 // volatile load to retrieve the stack guard value. 1825 unsigned GuardReg = SPD.getGuardReg(); 1826 1827 if (GuardReg && TLI->useLoadStackGuardNode()) 1828 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1829 PtrTy); 1830 else 1831 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1832 GuardPtr, MachinePointerInfo(IRGuard, 0), 1833 true, false, false, Align); 1834 1835 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1836 StackSlotPtr, 1837 MachinePointerInfo::getFixedStack(FI), 1838 true, false, false, Align); 1839 1840 // Perform the comparison via a subtract/getsetcc. 1841 EVT VT = Guard.getValueType(); 1842 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1843 1844 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), 1845 TLI->getSetCCResultType(*DAG.getContext(), 1846 Sub.getValueType()), 1847 Sub, DAG.getConstant(0, VT), 1848 ISD::SETNE); 1849 1850 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1851 // branch to failure MBB. 1852 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1853 MVT::Other, StackSlot.getOperand(0), 1854 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1855 // Otherwise branch to success MBB. 1856 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1857 MVT::Other, BrCond, 1858 DAG.getBasicBlock(SPD.getSuccessMBB())); 1859 1860 DAG.setRoot(Br); 1861 } 1862 1863 /// Codegen the failure basic block for a stack protector check. 1864 /// 1865 /// A failure stack protector machine basic block consists simply of a call to 1866 /// __stack_chk_fail(). 1867 /// 1868 /// For a high level explanation of how this fits into the stack protector 1869 /// generation see the comment on the declaration of class 1870 /// StackProtectorDescriptor. 1871 void 1872 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1873 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1874 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, 1875 MVT::isVoid, nullptr, 0, false, 1876 getCurSDLoc(), false, false).second; 1877 DAG.setRoot(Chain); 1878 } 1879 1880 /// visitBitTestHeader - This function emits necessary code to produce value 1881 /// suitable for "bit tests" 1882 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1883 MachineBasicBlock *SwitchBB) { 1884 // Subtract the minimum value 1885 SDValue SwitchOp = getValue(B.SValue); 1886 EVT VT = SwitchOp.getValueType(); 1887 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1888 DAG.getConstant(B.First, VT)); 1889 1890 // Check range 1891 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1892 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(), 1893 TLI->getSetCCResultType(*DAG.getContext(), 1894 Sub.getValueType()), 1895 Sub, DAG.getConstant(B.Range, VT), 1896 ISD::SETUGT); 1897 1898 // Determine the type of the test operands. 1899 bool UsePtrType = false; 1900 if (!TLI->isTypeLegal(VT)) 1901 UsePtrType = true; 1902 else { 1903 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1904 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1905 // Switch table case range are encoded into series of masks. 1906 // Just use pointer type, it's guaranteed to fit. 1907 UsePtrType = true; 1908 break; 1909 } 1910 } 1911 if (UsePtrType) { 1912 VT = TLI->getPointerTy(); 1913 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1914 } 1915 1916 B.RegVT = VT.getSimpleVT(); 1917 B.Reg = FuncInfo.CreateReg(B.RegVT); 1918 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1919 B.Reg, Sub); 1920 1921 // Set NextBlock to be the MBB immediately after the current one, if any. 1922 // This is used to avoid emitting unnecessary branches to the next block. 1923 MachineBasicBlock *NextBlock = nullptr; 1924 MachineFunction::iterator BBI = SwitchBB; 1925 if (++BBI != FuncInfo.MF->end()) 1926 NextBlock = BBI; 1927 1928 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1929 1930 addSuccessorWithWeight(SwitchBB, B.Default); 1931 addSuccessorWithWeight(SwitchBB, MBB); 1932 1933 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1934 MVT::Other, CopyTo, RangeCmp, 1935 DAG.getBasicBlock(B.Default)); 1936 1937 if (MBB != NextBlock) 1938 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1939 DAG.getBasicBlock(MBB)); 1940 1941 DAG.setRoot(BrRange); 1942 } 1943 1944 /// visitBitTestCase - this function produces one "bit test" 1945 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1946 MachineBasicBlock* NextMBB, 1947 uint32_t BranchWeightToNext, 1948 unsigned Reg, 1949 BitTestCase &B, 1950 MachineBasicBlock *SwitchBB) { 1951 MVT VT = BB.RegVT; 1952 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1953 Reg, VT); 1954 SDValue Cmp; 1955 unsigned PopCount = CountPopulation_64(B.Mask); 1956 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 1957 if (PopCount == 1) { 1958 // Testing for a single bit; just compare the shift count with what it 1959 // would need to be to shift a 1 bit in that position. 1960 Cmp = DAG.getSetCC(getCurSDLoc(), 1961 TLI->getSetCCResultType(*DAG.getContext(), VT), 1962 ShiftOp, 1963 DAG.getConstant(countTrailingZeros(B.Mask), VT), 1964 ISD::SETEQ); 1965 } else if (PopCount == BB.Range) { 1966 // There is only one zero bit in the range, test for it directly. 1967 Cmp = DAG.getSetCC(getCurSDLoc(), 1968 TLI->getSetCCResultType(*DAG.getContext(), VT), 1969 ShiftOp, 1970 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1971 ISD::SETNE); 1972 } else { 1973 // Make desired shift 1974 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1975 DAG.getConstant(1, VT), ShiftOp); 1976 1977 // Emit bit tests and jumps 1978 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1979 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1980 Cmp = DAG.getSetCC(getCurSDLoc(), 1981 TLI->getSetCCResultType(*DAG.getContext(), VT), 1982 AndOp, DAG.getConstant(0, VT), 1983 ISD::SETNE); 1984 } 1985 1986 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1987 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1988 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1989 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1990 1991 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1992 MVT::Other, getControlRoot(), 1993 Cmp, DAG.getBasicBlock(B.TargetBB)); 1994 1995 // Set NextBlock to be the MBB immediately after the current one, if any. 1996 // This is used to avoid emitting unnecessary branches to the next block. 1997 MachineBasicBlock *NextBlock = nullptr; 1998 MachineFunction::iterator BBI = SwitchBB; 1999 if (++BBI != FuncInfo.MF->end()) 2000 NextBlock = BBI; 2001 2002 if (NextMBB != NextBlock) 2003 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 2004 DAG.getBasicBlock(NextMBB)); 2005 2006 DAG.setRoot(BrAnd); 2007 } 2008 2009 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2010 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2011 2012 // Retrieve successors. 2013 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2014 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2015 2016 const Value *Callee(I.getCalledValue()); 2017 const Function *Fn = dyn_cast<Function>(Callee); 2018 if (isa<InlineAsm>(Callee)) 2019 visitInlineAsm(&I); 2020 else if (Fn && Fn->isIntrinsic()) { 2021 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2022 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2023 } else 2024 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2025 2026 // If the value of the invoke is used outside of its defining block, make it 2027 // available as a virtual register. 2028 CopyToExportRegsIfNeeded(&I); 2029 2030 // Update successor info 2031 addSuccessorWithWeight(InvokeMBB, Return); 2032 addSuccessorWithWeight(InvokeMBB, LandingPad); 2033 2034 // Drop into normal successor. 2035 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2036 MVT::Other, getControlRoot(), 2037 DAG.getBasicBlock(Return))); 2038 } 2039 2040 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2041 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2042 } 2043 2044 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2045 assert(FuncInfo.MBB->isLandingPad() && 2046 "Call to landingpad not in landing pad!"); 2047 2048 MachineBasicBlock *MBB = FuncInfo.MBB; 2049 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2050 AddLandingPadInfo(LP, MMI, MBB); 2051 2052 // If there aren't registers to copy the values into (e.g., during SjLj 2053 // exceptions), then don't bother to create these DAG nodes. 2054 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2055 if (TLI->getExceptionPointerRegister() == 0 && 2056 TLI->getExceptionSelectorRegister() == 0) 2057 return; 2058 2059 SmallVector<EVT, 2> ValueVTs; 2060 ComputeValueVTs(*TLI, LP.getType(), ValueVTs); 2061 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2062 2063 // Get the two live-in registers as SDValues. The physregs have already been 2064 // copied into virtual registers. 2065 SDValue Ops[2]; 2066 Ops[0] = DAG.getZExtOrTrunc( 2067 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2068 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()), 2069 getCurSDLoc(), ValueVTs[0]); 2070 Ops[1] = DAG.getZExtOrTrunc( 2071 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2072 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()), 2073 getCurSDLoc(), ValueVTs[1]); 2074 2075 // Merge into one. 2076 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2077 DAG.getVTList(ValueVTs), Ops); 2078 setValue(&LP, Res); 2079 } 2080 2081 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2082 /// small case ranges). 2083 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2084 CaseRecVector& WorkList, 2085 const Value* SV, 2086 MachineBasicBlock *Default, 2087 MachineBasicBlock *SwitchBB) { 2088 // Size is the number of Cases represented by this range. 2089 size_t Size = CR.Range.second - CR.Range.first; 2090 if (Size > 3) 2091 return false; 2092 2093 // Get the MachineFunction which holds the current MBB. This is used when 2094 // inserting any additional MBBs necessary to represent the switch. 2095 MachineFunction *CurMF = FuncInfo.MF; 2096 2097 // Figure out which block is immediately after the current one. 2098 MachineBasicBlock *NextBlock = nullptr; 2099 MachineFunction::iterator BBI = CR.CaseBB; 2100 2101 if (++BBI != FuncInfo.MF->end()) 2102 NextBlock = BBI; 2103 2104 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2105 // If any two of the cases has the same destination, and if one value 2106 // is the same as the other, but has one bit unset that the other has set, 2107 // use bit manipulation to do two compares at once. For example: 2108 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2109 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2110 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2111 if (Size == 2 && CR.CaseBB == SwitchBB) { 2112 Case &Small = *CR.Range.first; 2113 Case &Big = *(CR.Range.second-1); 2114 2115 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2116 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2117 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2118 2119 // Check that there is only one bit different. 2120 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2121 (SmallValue | BigValue) == BigValue) { 2122 // Isolate the common bit. 2123 APInt CommonBit = BigValue & ~SmallValue; 2124 assert((SmallValue | CommonBit) == BigValue && 2125 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2126 2127 SDValue CondLHS = getValue(SV); 2128 EVT VT = CondLHS.getValueType(); 2129 SDLoc DL = getCurSDLoc(); 2130 2131 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2132 DAG.getConstant(CommonBit, VT)); 2133 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2134 Or, DAG.getConstant(BigValue, VT), 2135 ISD::SETEQ); 2136 2137 // Update successor info. 2138 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2139 addSuccessorWithWeight(SwitchBB, Small.BB, 2140 Small.ExtraWeight + Big.ExtraWeight); 2141 addSuccessorWithWeight(SwitchBB, Default, 2142 // The default destination is the first successor in IR. 2143 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2144 2145 // Insert the true branch. 2146 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2147 getControlRoot(), Cond, 2148 DAG.getBasicBlock(Small.BB)); 2149 2150 // Insert the false branch. 2151 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2152 DAG.getBasicBlock(Default)); 2153 2154 DAG.setRoot(BrCond); 2155 return true; 2156 } 2157 } 2158 } 2159 2160 // Order cases by weight so the most likely case will be checked first. 2161 uint32_t UnhandledWeights = 0; 2162 if (BPI) { 2163 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2164 uint32_t IWeight = I->ExtraWeight; 2165 UnhandledWeights += IWeight; 2166 for (CaseItr J = CR.Range.first; J < I; ++J) { 2167 uint32_t JWeight = J->ExtraWeight; 2168 if (IWeight > JWeight) 2169 std::swap(*I, *J); 2170 } 2171 } 2172 } 2173 // Rearrange the case blocks so that the last one falls through if possible. 2174 Case &BackCase = *(CR.Range.second-1); 2175 if (Size > 1 && 2176 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2177 // The last case block won't fall through into 'NextBlock' if we emit the 2178 // branches in this order. See if rearranging a case value would help. 2179 // We start at the bottom as it's the case with the least weight. 2180 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2181 if (I->BB == NextBlock) { 2182 std::swap(*I, BackCase); 2183 break; 2184 } 2185 } 2186 2187 // Create a CaseBlock record representing a conditional branch to 2188 // the Case's target mbb if the value being switched on SV is equal 2189 // to C. 2190 MachineBasicBlock *CurBlock = CR.CaseBB; 2191 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2192 MachineBasicBlock *FallThrough; 2193 if (I != E-1) { 2194 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2195 CurMF->insert(BBI, FallThrough); 2196 2197 // Put SV in a virtual register to make it available from the new blocks. 2198 ExportFromCurrentBlock(SV); 2199 } else { 2200 // If the last case doesn't match, go to the default block. 2201 FallThrough = Default; 2202 } 2203 2204 const Value *RHS, *LHS, *MHS; 2205 ISD::CondCode CC; 2206 if (I->High == I->Low) { 2207 // This is just small small case range :) containing exactly 1 case 2208 CC = ISD::SETEQ; 2209 LHS = SV; RHS = I->High; MHS = nullptr; 2210 } else { 2211 CC = ISD::SETLE; 2212 LHS = I->Low; MHS = SV; RHS = I->High; 2213 } 2214 2215 // The false weight should be sum of all un-handled cases. 2216 UnhandledWeights -= I->ExtraWeight; 2217 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2218 /* me */ CurBlock, 2219 /* trueweight */ I->ExtraWeight, 2220 /* falseweight */ UnhandledWeights); 2221 2222 // If emitting the first comparison, just call visitSwitchCase to emit the 2223 // code into the current block. Otherwise, push the CaseBlock onto the 2224 // vector to be later processed by SDISel, and insert the node's MBB 2225 // before the next MBB. 2226 if (CurBlock == SwitchBB) 2227 visitSwitchCase(CB, SwitchBB); 2228 else 2229 SwitchCases.push_back(CB); 2230 2231 CurBlock = FallThrough; 2232 } 2233 2234 return true; 2235 } 2236 2237 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2238 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2239 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2240 } 2241 2242 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2243 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2244 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2245 return (LastExt - FirstExt + 1ULL); 2246 } 2247 2248 /// handleJTSwitchCase - Emit jumptable for current switch case range 2249 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2250 CaseRecVector &WorkList, 2251 const Value *SV, 2252 MachineBasicBlock *Default, 2253 MachineBasicBlock *SwitchBB) { 2254 Case& FrontCase = *CR.Range.first; 2255 Case& BackCase = *(CR.Range.second-1); 2256 2257 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2258 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2259 2260 APInt TSize(First.getBitWidth(), 0); 2261 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2262 TSize += I->size(); 2263 2264 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2265 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries())) 2266 return false; 2267 2268 APInt Range = ComputeRange(First, Last); 2269 // The density is TSize / Range. Require at least 40%. 2270 // It should not be possible for IntTSize to saturate for sane code, but make 2271 // sure we handle Range saturation correctly. 2272 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2273 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2274 if (IntTSize * 10 < IntRange * 4) 2275 return false; 2276 2277 DEBUG(dbgs() << "Lowering jump table\n" 2278 << "First entry: " << First << ". Last entry: " << Last << '\n' 2279 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2280 2281 // Get the MachineFunction which holds the current MBB. This is used when 2282 // inserting any additional MBBs necessary to represent the switch. 2283 MachineFunction *CurMF = FuncInfo.MF; 2284 2285 // Figure out which block is immediately after the current one. 2286 MachineFunction::iterator BBI = CR.CaseBB; 2287 ++BBI; 2288 2289 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2290 2291 // Create a new basic block to hold the code for loading the address 2292 // of the jump table, and jumping to it. Update successor information; 2293 // we will either branch to the default case for the switch, or the jump 2294 // table. 2295 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2296 CurMF->insert(BBI, JumpTableBB); 2297 2298 addSuccessorWithWeight(CR.CaseBB, Default); 2299 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2300 2301 // Build a vector of destination BBs, corresponding to each target 2302 // of the jump table. If the value of the jump table slot corresponds to 2303 // a case statement, push the case's BB onto the vector, otherwise, push 2304 // the default BB. 2305 std::vector<MachineBasicBlock*> DestBBs; 2306 APInt TEI = First; 2307 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2308 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2309 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2310 2311 if (Low.sle(TEI) && TEI.sle(High)) { 2312 DestBBs.push_back(I->BB); 2313 if (TEI==High) 2314 ++I; 2315 } else { 2316 DestBBs.push_back(Default); 2317 } 2318 } 2319 2320 // Calculate weight for each unique destination in CR. 2321 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2322 if (FuncInfo.BPI) 2323 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2324 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2325 DestWeights.find(I->BB); 2326 if (Itr != DestWeights.end()) 2327 Itr->second += I->ExtraWeight; 2328 else 2329 DestWeights[I->BB] = I->ExtraWeight; 2330 } 2331 2332 // Update successor info. Add one edge to each unique successor. 2333 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2334 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2335 E = DestBBs.end(); I != E; ++I) { 2336 if (!SuccsHandled[(*I)->getNumber()]) { 2337 SuccsHandled[(*I)->getNumber()] = true; 2338 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2339 DestWeights.find(*I); 2340 addSuccessorWithWeight(JumpTableBB, *I, 2341 Itr != DestWeights.end() ? Itr->second : 0); 2342 } 2343 } 2344 2345 // Create a jump table index for this jump table. 2346 unsigned JTEncoding = TLI->getJumpTableEncoding(); 2347 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2348 ->createJumpTableIndex(DestBBs); 2349 2350 // Set the jump table information so that we can codegen it as a second 2351 // MachineBasicBlock 2352 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2353 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2354 if (CR.CaseBB == SwitchBB) 2355 visitJumpTableHeader(JT, JTH, SwitchBB); 2356 2357 JTCases.push_back(JumpTableBlock(JTH, JT)); 2358 return true; 2359 } 2360 2361 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2362 /// 2 subtrees. 2363 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2364 CaseRecVector& WorkList, 2365 const Value* SV, 2366 MachineBasicBlock* Default, 2367 MachineBasicBlock* SwitchBB) { 2368 // Get the MachineFunction which holds the current MBB. This is used when 2369 // inserting any additional MBBs necessary to represent the switch. 2370 MachineFunction *CurMF = FuncInfo.MF; 2371 2372 // Figure out which block is immediately after the current one. 2373 MachineFunction::iterator BBI = CR.CaseBB; 2374 ++BBI; 2375 2376 Case& FrontCase = *CR.Range.first; 2377 Case& BackCase = *(CR.Range.second-1); 2378 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2379 2380 // Size is the number of Cases represented by this range. 2381 unsigned Size = CR.Range.second - CR.Range.first; 2382 2383 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2384 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2385 double FMetric = 0; 2386 CaseItr Pivot = CR.Range.first + Size/2; 2387 2388 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2389 // (heuristically) allow us to emit JumpTable's later. 2390 APInt TSize(First.getBitWidth(), 0); 2391 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2392 I!=E; ++I) 2393 TSize += I->size(); 2394 2395 APInt LSize = FrontCase.size(); 2396 APInt RSize = TSize-LSize; 2397 DEBUG(dbgs() << "Selecting best pivot: \n" 2398 << "First: " << First << ", Last: " << Last <<'\n' 2399 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2400 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2401 J!=E; ++I, ++J) { 2402 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2403 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2404 APInt Range = ComputeRange(LEnd, RBegin); 2405 assert((Range - 2ULL).isNonNegative() && 2406 "Invalid case distance"); 2407 // Use volatile double here to avoid excess precision issues on some hosts, 2408 // e.g. that use 80-bit X87 registers. 2409 volatile double LDensity = 2410 (double)LSize.roundToDouble() / 2411 (LEnd - First + 1ULL).roundToDouble(); 2412 volatile double RDensity = 2413 (double)RSize.roundToDouble() / 2414 (Last - RBegin + 1ULL).roundToDouble(); 2415 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2416 // Should always split in some non-trivial place 2417 DEBUG(dbgs() <<"=>Step\n" 2418 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2419 << "LDensity: " << LDensity 2420 << ", RDensity: " << RDensity << '\n' 2421 << "Metric: " << Metric << '\n'); 2422 if (FMetric < Metric) { 2423 Pivot = J; 2424 FMetric = Metric; 2425 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2426 } 2427 2428 LSize += J->size(); 2429 RSize -= J->size(); 2430 } 2431 2432 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2433 if (areJTsAllowed(*TLI)) { 2434 // If our case is dense we *really* should handle it earlier! 2435 assert((FMetric > 0) && "Should handle dense range earlier!"); 2436 } else { 2437 Pivot = CR.Range.first + Size/2; 2438 } 2439 2440 CaseRange LHSR(CR.Range.first, Pivot); 2441 CaseRange RHSR(Pivot, CR.Range.second); 2442 const Constant *C = Pivot->Low; 2443 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2444 2445 // We know that we branch to the LHS if the Value being switched on is 2446 // less than the Pivot value, C. We use this to optimize our binary 2447 // tree a bit, by recognizing that if SV is greater than or equal to the 2448 // LHS's Case Value, and that Case Value is exactly one less than the 2449 // Pivot's Value, then we can branch directly to the LHS's Target, 2450 // rather than creating a leaf node for it. 2451 if ((LHSR.second - LHSR.first) == 1 && 2452 LHSR.first->High == CR.GE && 2453 cast<ConstantInt>(C)->getValue() == 2454 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2455 TrueBB = LHSR.first->BB; 2456 } else { 2457 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2458 CurMF->insert(BBI, TrueBB); 2459 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2460 2461 // Put SV in a virtual register to make it available from the new blocks. 2462 ExportFromCurrentBlock(SV); 2463 } 2464 2465 // Similar to the optimization above, if the Value being switched on is 2466 // known to be less than the Constant CR.LT, and the current Case Value 2467 // is CR.LT - 1, then we can branch directly to the target block for 2468 // the current Case Value, rather than emitting a RHS leaf node for it. 2469 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2470 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2471 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2472 FalseBB = RHSR.first->BB; 2473 } else { 2474 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2475 CurMF->insert(BBI, FalseBB); 2476 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2477 2478 // Put SV in a virtual register to make it available from the new blocks. 2479 ExportFromCurrentBlock(SV); 2480 } 2481 2482 // Create a CaseBlock record representing a conditional branch to 2483 // the LHS node if the value being switched on SV is less than C. 2484 // Otherwise, branch to LHS. 2485 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2486 2487 if (CR.CaseBB == SwitchBB) 2488 visitSwitchCase(CB, SwitchBB); 2489 else 2490 SwitchCases.push_back(CB); 2491 2492 return true; 2493 } 2494 2495 /// handleBitTestsSwitchCase - if current case range has few destination and 2496 /// range span less, than machine word bitwidth, encode case range into series 2497 /// of masks and emit bit tests with these masks. 2498 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2499 CaseRecVector& WorkList, 2500 const Value* SV, 2501 MachineBasicBlock* Default, 2502 MachineBasicBlock* SwitchBB) { 2503 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2504 EVT PTy = TLI->getPointerTy(); 2505 unsigned IntPtrBits = PTy.getSizeInBits(); 2506 2507 Case& FrontCase = *CR.Range.first; 2508 Case& BackCase = *(CR.Range.second-1); 2509 2510 // Get the MachineFunction which holds the current MBB. This is used when 2511 // inserting any additional MBBs necessary to represent the switch. 2512 MachineFunction *CurMF = FuncInfo.MF; 2513 2514 // If target does not have legal shift left, do not emit bit tests at all. 2515 if (!TLI->isOperationLegal(ISD::SHL, PTy)) 2516 return false; 2517 2518 size_t numCmps = 0; 2519 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2520 I!=E; ++I) { 2521 // Single case counts one, case range - two. 2522 numCmps += (I->Low == I->High ? 1 : 2); 2523 } 2524 2525 // Count unique destinations 2526 SmallSet<MachineBasicBlock*, 4> Dests; 2527 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2528 Dests.insert(I->BB); 2529 if (Dests.size() > 3) 2530 // Don't bother the code below, if there are too much unique destinations 2531 return false; 2532 } 2533 DEBUG(dbgs() << "Total number of unique destinations: " 2534 << Dests.size() << '\n' 2535 << "Total number of comparisons: " << numCmps << '\n'); 2536 2537 // Compute span of values. 2538 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2539 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2540 APInt cmpRange = maxValue - minValue; 2541 2542 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2543 << "Low bound: " << minValue << '\n' 2544 << "High bound: " << maxValue << '\n'); 2545 2546 if (cmpRange.uge(IntPtrBits) || 2547 (!(Dests.size() == 1 && numCmps >= 3) && 2548 !(Dests.size() == 2 && numCmps >= 5) && 2549 !(Dests.size() >= 3 && numCmps >= 6))) 2550 return false; 2551 2552 DEBUG(dbgs() << "Emitting bit tests\n"); 2553 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2554 2555 // Optimize the case where all the case values fit in a 2556 // word without having to subtract minValue. In this case, 2557 // we can optimize away the subtraction. 2558 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2559 cmpRange = maxValue; 2560 } else { 2561 lowBound = minValue; 2562 } 2563 2564 CaseBitsVector CasesBits; 2565 unsigned i, count = 0; 2566 2567 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2568 MachineBasicBlock* Dest = I->BB; 2569 for (i = 0; i < count; ++i) 2570 if (Dest == CasesBits[i].BB) 2571 break; 2572 2573 if (i == count) { 2574 assert((count < 3) && "Too much destinations to test!"); 2575 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2576 count++; 2577 } 2578 2579 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2580 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2581 2582 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2583 uint64_t hi = (highValue - lowBound).getZExtValue(); 2584 CasesBits[i].ExtraWeight += I->ExtraWeight; 2585 2586 for (uint64_t j = lo; j <= hi; j++) { 2587 CasesBits[i].Mask |= 1ULL << j; 2588 CasesBits[i].Bits++; 2589 } 2590 2591 } 2592 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2593 2594 BitTestInfo BTC; 2595 2596 // Figure out which block is immediately after the current one. 2597 MachineFunction::iterator BBI = CR.CaseBB; 2598 ++BBI; 2599 2600 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2601 2602 DEBUG(dbgs() << "Cases:\n"); 2603 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2604 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2605 << ", Bits: " << CasesBits[i].Bits 2606 << ", BB: " << CasesBits[i].BB << '\n'); 2607 2608 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2609 CurMF->insert(BBI, CaseBB); 2610 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2611 CaseBB, 2612 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2613 2614 // Put SV in a virtual register to make it available from the new blocks. 2615 ExportFromCurrentBlock(SV); 2616 } 2617 2618 BitTestBlock BTB(lowBound, cmpRange, SV, 2619 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2620 CR.CaseBB, Default, BTC); 2621 2622 if (CR.CaseBB == SwitchBB) 2623 visitBitTestHeader(BTB, SwitchBB); 2624 2625 BitTestCases.push_back(BTB); 2626 2627 return true; 2628 } 2629 2630 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2631 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2632 const SwitchInst& SI) { 2633 size_t numCmps = 0; 2634 2635 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2636 // Start with "simple" cases 2637 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2638 i != e; ++i) { 2639 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2640 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2641 2642 uint32_t ExtraWeight = 2643 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2644 2645 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2646 SMBB, ExtraWeight)); 2647 } 2648 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2649 2650 // Merge case into clusters 2651 if (Cases.size() >= 2) 2652 // Must recompute end() each iteration because it may be 2653 // invalidated by erase if we hold on to it 2654 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2655 J != Cases.end(); ) { 2656 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2657 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2658 MachineBasicBlock* nextBB = J->BB; 2659 MachineBasicBlock* currentBB = I->BB; 2660 2661 // If the two neighboring cases go to the same destination, merge them 2662 // into a single case. 2663 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2664 I->High = J->High; 2665 I->ExtraWeight += J->ExtraWeight; 2666 J = Cases.erase(J); 2667 } else { 2668 I = J++; 2669 } 2670 } 2671 2672 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2673 if (I->Low != I->High) 2674 // A range counts double, since it requires two compares. 2675 ++numCmps; 2676 } 2677 2678 return numCmps; 2679 } 2680 2681 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2682 MachineBasicBlock *Last) { 2683 // Update JTCases. 2684 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2685 if (JTCases[i].first.HeaderBB == First) 2686 JTCases[i].first.HeaderBB = Last; 2687 2688 // Update BitTestCases. 2689 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2690 if (BitTestCases[i].Parent == First) 2691 BitTestCases[i].Parent = Last; 2692 } 2693 2694 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2695 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2696 2697 // Figure out which block is immediately after the current one. 2698 MachineBasicBlock *NextBlock = nullptr; 2699 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2700 2701 // If there is only the default destination, branch to it if it is not the 2702 // next basic block. Otherwise, just fall through. 2703 if (!SI.getNumCases()) { 2704 // Update machine-CFG edges. 2705 2706 // If this is not a fall-through branch, emit the branch. 2707 SwitchMBB->addSuccessor(Default); 2708 if (Default != NextBlock) 2709 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2710 MVT::Other, getControlRoot(), 2711 DAG.getBasicBlock(Default))); 2712 2713 return; 2714 } 2715 2716 // If there are any non-default case statements, create a vector of Cases 2717 // representing each one, and sort the vector so that we can efficiently 2718 // create a binary search tree from them. 2719 CaseVector Cases; 2720 size_t numCmps = Clusterify(Cases, SI); 2721 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2722 << ". Total compares: " << numCmps << '\n'); 2723 (void)numCmps; 2724 2725 // Get the Value to be switched on and default basic blocks, which will be 2726 // inserted into CaseBlock records, representing basic blocks in the binary 2727 // search tree. 2728 const Value *SV = SI.getCondition(); 2729 2730 // Push the initial CaseRec onto the worklist 2731 CaseRecVector WorkList; 2732 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2733 CaseRange(Cases.begin(),Cases.end()))); 2734 2735 while (!WorkList.empty()) { 2736 // Grab a record representing a case range to process off the worklist 2737 CaseRec CR = WorkList.back(); 2738 WorkList.pop_back(); 2739 2740 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2741 continue; 2742 2743 // If the range has few cases (two or less) emit a series of specific 2744 // tests. 2745 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2746 continue; 2747 2748 // If the switch has more than N blocks, and is at least 40% dense, and the 2749 // target supports indirect branches, then emit a jump table rather than 2750 // lowering the switch to a binary tree of conditional branches. 2751 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2752 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2753 continue; 2754 2755 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2756 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2757 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2758 } 2759 } 2760 2761 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2762 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2763 2764 // Update machine-CFG edges with unique successors. 2765 SmallSet<BasicBlock*, 32> Done; 2766 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2767 BasicBlock *BB = I.getSuccessor(i); 2768 bool Inserted = Done.insert(BB); 2769 if (!Inserted) 2770 continue; 2771 2772 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2773 addSuccessorWithWeight(IndirectBrMBB, Succ); 2774 } 2775 2776 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2777 MVT::Other, getControlRoot(), 2778 getValue(I.getAddress()))); 2779 } 2780 2781 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2782 if (DAG.getTarget().Options.TrapUnreachable) 2783 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2784 } 2785 2786 void SelectionDAGBuilder::visitFSub(const User &I) { 2787 // -0.0 - X --> fneg 2788 Type *Ty = I.getType(); 2789 if (isa<Constant>(I.getOperand(0)) && 2790 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2791 SDValue Op2 = getValue(I.getOperand(1)); 2792 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2793 Op2.getValueType(), Op2)); 2794 return; 2795 } 2796 2797 visitBinary(I, ISD::FSUB); 2798 } 2799 2800 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2801 SDValue Op1 = getValue(I.getOperand(0)); 2802 SDValue Op2 = getValue(I.getOperand(1)); 2803 2804 bool nuw = false; 2805 bool nsw = false; 2806 bool exact = false; 2807 if (const OverflowingBinaryOperator *OFBinOp = 2808 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2809 nuw = OFBinOp->hasNoUnsignedWrap(); 2810 nsw = OFBinOp->hasNoSignedWrap(); 2811 } 2812 if (const PossiblyExactOperator *ExactOp = 2813 dyn_cast<const PossiblyExactOperator>(&I)) 2814 exact = ExactOp->isExact(); 2815 2816 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2817 Op1, Op2, nuw, nsw, exact); 2818 setValue(&I, BinNodeValue); 2819 } 2820 2821 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2822 SDValue Op1 = getValue(I.getOperand(0)); 2823 SDValue Op2 = getValue(I.getOperand(1)); 2824 2825 EVT ShiftTy = TM.getSubtargetImpl()->getTargetLowering()->getShiftAmountTy( 2826 Op2.getValueType()); 2827 2828 // Coerce the shift amount to the right type if we can. 2829 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2830 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2831 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2832 SDLoc DL = getCurSDLoc(); 2833 2834 // If the operand is smaller than the shift count type, promote it. 2835 if (ShiftSize > Op2Size) 2836 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2837 2838 // If the operand is larger than the shift count type but the shift 2839 // count type has enough bits to represent any shift value, truncate 2840 // it now. This is a common case and it exposes the truncate to 2841 // optimization early. 2842 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2843 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2844 // Otherwise we'll need to temporarily settle for some other convenient 2845 // type. Type legalization will make adjustments once the shiftee is split. 2846 else 2847 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2848 } 2849 2850 bool nuw = false; 2851 bool nsw = false; 2852 bool exact = false; 2853 2854 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2855 2856 if (const OverflowingBinaryOperator *OFBinOp = 2857 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2858 nuw = OFBinOp->hasNoUnsignedWrap(); 2859 nsw = OFBinOp->hasNoSignedWrap(); 2860 } 2861 if (const PossiblyExactOperator *ExactOp = 2862 dyn_cast<const PossiblyExactOperator>(&I)) 2863 exact = ExactOp->isExact(); 2864 } 2865 2866 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2867 nuw, nsw, exact); 2868 setValue(&I, Res); 2869 } 2870 2871 void SelectionDAGBuilder::visitSDiv(const User &I) { 2872 SDValue Op1 = getValue(I.getOperand(0)); 2873 SDValue Op2 = getValue(I.getOperand(1)); 2874 2875 // Turn exact SDivs into multiplications. 2876 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2877 // exact bit. 2878 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2879 !isa<ConstantSDNode>(Op1) && 2880 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2881 setValue(&I, TM.getSubtargetImpl()->getTargetLowering()->BuildExactSDIV( 2882 Op1, Op2, getCurSDLoc(), DAG)); 2883 else 2884 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2885 Op1, Op2)); 2886 } 2887 2888 void SelectionDAGBuilder::visitICmp(const User &I) { 2889 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2890 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2891 predicate = IC->getPredicate(); 2892 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2893 predicate = ICmpInst::Predicate(IC->getPredicate()); 2894 SDValue Op1 = getValue(I.getOperand(0)); 2895 SDValue Op2 = getValue(I.getOperand(1)); 2896 ISD::CondCode Opcode = getICmpCondCode(predicate); 2897 2898 EVT DestVT = 2899 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2900 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2901 } 2902 2903 void SelectionDAGBuilder::visitFCmp(const User &I) { 2904 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2905 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2906 predicate = FC->getPredicate(); 2907 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2908 predicate = FCmpInst::Predicate(FC->getPredicate()); 2909 SDValue Op1 = getValue(I.getOperand(0)); 2910 SDValue Op2 = getValue(I.getOperand(1)); 2911 ISD::CondCode Condition = getFCmpCondCode(predicate); 2912 if (TM.Options.NoNaNsFPMath) 2913 Condition = getFCmpCodeWithoutNaN(Condition); 2914 EVT DestVT = 2915 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2916 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2917 } 2918 2919 void SelectionDAGBuilder::visitSelect(const User &I) { 2920 SmallVector<EVT, 4> ValueVTs; 2921 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), I.getType(), 2922 ValueVTs); 2923 unsigned NumValues = ValueVTs.size(); 2924 if (NumValues == 0) return; 2925 2926 SmallVector<SDValue, 4> Values(NumValues); 2927 SDValue Cond = getValue(I.getOperand(0)); 2928 SDValue TrueVal = getValue(I.getOperand(1)); 2929 SDValue FalseVal = getValue(I.getOperand(2)); 2930 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2931 ISD::VSELECT : ISD::SELECT; 2932 2933 for (unsigned i = 0; i != NumValues; ++i) 2934 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2935 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2936 Cond, 2937 SDValue(TrueVal.getNode(), 2938 TrueVal.getResNo() + i), 2939 SDValue(FalseVal.getNode(), 2940 FalseVal.getResNo() + i)); 2941 2942 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2943 DAG.getVTList(ValueVTs), Values)); 2944 } 2945 2946 void SelectionDAGBuilder::visitTrunc(const User &I) { 2947 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2948 SDValue N = getValue(I.getOperand(0)); 2949 EVT DestVT = 2950 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2951 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2952 } 2953 2954 void SelectionDAGBuilder::visitZExt(const User &I) { 2955 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2956 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2957 SDValue N = getValue(I.getOperand(0)); 2958 EVT DestVT = 2959 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2960 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2961 } 2962 2963 void SelectionDAGBuilder::visitSExt(const User &I) { 2964 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2965 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2966 SDValue N = getValue(I.getOperand(0)); 2967 EVT DestVT = 2968 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2969 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2970 } 2971 2972 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2973 // FPTrunc is never a no-op cast, no need to check 2974 SDValue N = getValue(I.getOperand(0)); 2975 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 2976 EVT DestVT = TLI->getValueType(I.getType()); 2977 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), 2978 DestVT, N, 2979 DAG.getTargetConstant(0, TLI->getPointerTy()))); 2980 } 2981 2982 void SelectionDAGBuilder::visitFPExt(const User &I) { 2983 // FPExt is never a no-op cast, no need to check 2984 SDValue N = getValue(I.getOperand(0)); 2985 EVT DestVT = 2986 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2987 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2988 } 2989 2990 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2991 // FPToUI is never a no-op cast, no need to check 2992 SDValue N = getValue(I.getOperand(0)); 2993 EVT DestVT = 2994 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 2995 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2996 } 2997 2998 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2999 // FPToSI is never a no-op cast, no need to check 3000 SDValue N = getValue(I.getOperand(0)); 3001 EVT DestVT = 3002 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3003 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3004 } 3005 3006 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3007 // UIToFP is never a no-op cast, no need to check 3008 SDValue N = getValue(I.getOperand(0)); 3009 EVT DestVT = 3010 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3011 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3012 } 3013 3014 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3015 // SIToFP is never a no-op cast, no need to check 3016 SDValue N = getValue(I.getOperand(0)); 3017 EVT DestVT = 3018 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3019 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3020 } 3021 3022 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3023 // What to do depends on the size of the integer and the size of the pointer. 3024 // We can either truncate, zero extend, or no-op, accordingly. 3025 SDValue N = getValue(I.getOperand(0)); 3026 EVT DestVT = 3027 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3028 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3029 } 3030 3031 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3032 // What to do depends on the size of the integer and the size of the pointer. 3033 // We can either truncate, zero extend, or no-op, accordingly. 3034 SDValue N = getValue(I.getOperand(0)); 3035 EVT DestVT = 3036 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3037 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3038 } 3039 3040 void SelectionDAGBuilder::visitBitCast(const User &I) { 3041 SDValue N = getValue(I.getOperand(0)); 3042 EVT DestVT = 3043 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3044 3045 // BitCast assures us that source and destination are the same size so this is 3046 // either a BITCAST or a no-op. 3047 if (DestVT != N.getValueType()) 3048 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3049 DestVT, N)); // convert types. 3050 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3051 // might fold any kind of constant expression to an integer constant and that 3052 // is not what we are looking for. Only regcognize a bitcast of a genuine 3053 // constant integer as an opaque constant. 3054 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3055 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3056 /*isOpaque*/true)); 3057 else 3058 setValue(&I, N); // noop cast. 3059 } 3060 3061 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3063 const Value *SV = I.getOperand(0); 3064 SDValue N = getValue(SV); 3065 EVT DestVT = 3066 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 3067 3068 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3069 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3070 3071 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3072 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3073 3074 setValue(&I, N); 3075 } 3076 3077 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3078 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3079 SDValue InVec = getValue(I.getOperand(0)); 3080 SDValue InVal = getValue(I.getOperand(1)); 3081 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3082 getCurSDLoc(), TLI.getVectorIdxTy()); 3083 setValue(&I, 3084 DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3085 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3086 I.getType()), 3087 InVec, InVal, InIdx)); 3088 } 3089 3090 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3091 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3092 SDValue InVec = getValue(I.getOperand(0)); 3093 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3094 getCurSDLoc(), TLI.getVectorIdxTy()); 3095 setValue(&I, 3096 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3097 TM.getSubtargetImpl()->getTargetLowering()->getValueType( 3098 I.getType()), 3099 InVec, InIdx)); 3100 } 3101 3102 // Utility for visitShuffleVector - Return true if every element in Mask, 3103 // beginning from position Pos and ending in Pos+Size, falls within the 3104 // specified sequential range [L, L+Pos). or is undef. 3105 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3106 unsigned Pos, unsigned Size, int Low) { 3107 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3108 if (Mask[i] >= 0 && Mask[i] != Low) 3109 return false; 3110 return true; 3111 } 3112 3113 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3114 SDValue Src1 = getValue(I.getOperand(0)); 3115 SDValue Src2 = getValue(I.getOperand(1)); 3116 3117 SmallVector<int, 8> Mask; 3118 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3119 unsigned MaskNumElts = Mask.size(); 3120 3121 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3122 EVT VT = TLI->getValueType(I.getType()); 3123 EVT SrcVT = Src1.getValueType(); 3124 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3125 3126 if (SrcNumElts == MaskNumElts) { 3127 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3128 &Mask[0])); 3129 return; 3130 } 3131 3132 // Normalize the shuffle vector since mask and vector length don't match. 3133 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3134 // Mask is longer than the source vectors and is a multiple of the source 3135 // vectors. We can use concatenate vector to make the mask and vectors 3136 // lengths match. 3137 if (SrcNumElts*2 == MaskNumElts) { 3138 // First check for Src1 in low and Src2 in high 3139 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3140 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3141 // The shuffle is concatenating two vectors together. 3142 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3143 VT, Src1, Src2)); 3144 return; 3145 } 3146 // Then check for Src2 in low and Src1 in high 3147 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3148 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3149 // The shuffle is concatenating two vectors together. 3150 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3151 VT, Src2, Src1)); 3152 return; 3153 } 3154 } 3155 3156 // Pad both vectors with undefs to make them the same length as the mask. 3157 unsigned NumConcat = MaskNumElts / SrcNumElts; 3158 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3159 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3160 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3161 3162 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3163 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3164 MOps1[0] = Src1; 3165 MOps2[0] = Src2; 3166 3167 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3168 getCurSDLoc(), VT, MOps1); 3169 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3170 getCurSDLoc(), VT, MOps2); 3171 3172 // Readjust mask for new input vector length. 3173 SmallVector<int, 8> MappedOps; 3174 for (unsigned i = 0; i != MaskNumElts; ++i) { 3175 int Idx = Mask[i]; 3176 if (Idx >= (int)SrcNumElts) 3177 Idx -= SrcNumElts - MaskNumElts; 3178 MappedOps.push_back(Idx); 3179 } 3180 3181 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3182 &MappedOps[0])); 3183 return; 3184 } 3185 3186 if (SrcNumElts > MaskNumElts) { 3187 // Analyze the access pattern of the vector to see if we can extract 3188 // two subvectors and do the shuffle. The analysis is done by calculating 3189 // the range of elements the mask access on both vectors. 3190 int MinRange[2] = { static_cast<int>(SrcNumElts), 3191 static_cast<int>(SrcNumElts)}; 3192 int MaxRange[2] = {-1, -1}; 3193 3194 for (unsigned i = 0; i != MaskNumElts; ++i) { 3195 int Idx = Mask[i]; 3196 unsigned Input = 0; 3197 if (Idx < 0) 3198 continue; 3199 3200 if (Idx >= (int)SrcNumElts) { 3201 Input = 1; 3202 Idx -= SrcNumElts; 3203 } 3204 if (Idx > MaxRange[Input]) 3205 MaxRange[Input] = Idx; 3206 if (Idx < MinRange[Input]) 3207 MinRange[Input] = Idx; 3208 } 3209 3210 // Check if the access is smaller than the vector size and can we find 3211 // a reasonable extract index. 3212 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3213 // Extract. 3214 int StartIdx[2]; // StartIdx to extract from 3215 for (unsigned Input = 0; Input < 2; ++Input) { 3216 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3217 RangeUse[Input] = 0; // Unused 3218 StartIdx[Input] = 0; 3219 continue; 3220 } 3221 3222 // Find a good start index that is a multiple of the mask length. Then 3223 // see if the rest of the elements are in range. 3224 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3225 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3226 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3227 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3228 } 3229 3230 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3231 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3232 return; 3233 } 3234 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3235 // Extract appropriate subvector and generate a vector shuffle 3236 for (unsigned Input = 0; Input < 2; ++Input) { 3237 SDValue &Src = Input == 0 ? Src1 : Src2; 3238 if (RangeUse[Input] == 0) 3239 Src = DAG.getUNDEF(VT); 3240 else 3241 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, 3242 Src, DAG.getConstant(StartIdx[Input], 3243 TLI->getVectorIdxTy())); 3244 } 3245 3246 // Calculate new mask. 3247 SmallVector<int, 8> MappedOps; 3248 for (unsigned i = 0; i != MaskNumElts; ++i) { 3249 int Idx = Mask[i]; 3250 if (Idx >= 0) { 3251 if (Idx < (int)SrcNumElts) 3252 Idx -= StartIdx[0]; 3253 else 3254 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3255 } 3256 MappedOps.push_back(Idx); 3257 } 3258 3259 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3260 &MappedOps[0])); 3261 return; 3262 } 3263 } 3264 3265 // We can't use either concat vectors or extract subvectors so fall back to 3266 // replacing the shuffle with extract and build vector. 3267 // to insert and build vector. 3268 EVT EltVT = VT.getVectorElementType(); 3269 EVT IdxVT = TLI->getVectorIdxTy(); 3270 SmallVector<SDValue,8> Ops; 3271 for (unsigned i = 0; i != MaskNumElts; ++i) { 3272 int Idx = Mask[i]; 3273 SDValue Res; 3274 3275 if (Idx < 0) { 3276 Res = DAG.getUNDEF(EltVT); 3277 } else { 3278 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3279 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3280 3281 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3282 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3283 } 3284 3285 Ops.push_back(Res); 3286 } 3287 3288 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3289 } 3290 3291 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3292 const Value *Op0 = I.getOperand(0); 3293 const Value *Op1 = I.getOperand(1); 3294 Type *AggTy = I.getType(); 3295 Type *ValTy = Op1->getType(); 3296 bool IntoUndef = isa<UndefValue>(Op0); 3297 bool FromUndef = isa<UndefValue>(Op1); 3298 3299 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3300 3301 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3302 SmallVector<EVT, 4> AggValueVTs; 3303 ComputeValueVTs(*TLI, AggTy, AggValueVTs); 3304 SmallVector<EVT, 4> ValValueVTs; 3305 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3306 3307 unsigned NumAggValues = AggValueVTs.size(); 3308 unsigned NumValValues = ValValueVTs.size(); 3309 SmallVector<SDValue, 4> Values(NumAggValues); 3310 3311 // Ignore an insertvalue that produces an empty object 3312 if (!NumAggValues) { 3313 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3314 return; 3315 } 3316 3317 SDValue Agg = getValue(Op0); 3318 unsigned i = 0; 3319 // Copy the beginning value(s) from the original aggregate. 3320 for (; i != LinearIndex; ++i) 3321 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3322 SDValue(Agg.getNode(), Agg.getResNo() + i); 3323 // Copy values from the inserted value(s). 3324 if (NumValValues) { 3325 SDValue Val = getValue(Op1); 3326 for (; i != LinearIndex + NumValValues; ++i) 3327 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3328 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3329 } 3330 // Copy remaining value(s) from the original aggregate. 3331 for (; i != NumAggValues; ++i) 3332 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3333 SDValue(Agg.getNode(), Agg.getResNo() + i); 3334 3335 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3336 DAG.getVTList(AggValueVTs), Values)); 3337 } 3338 3339 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3340 const Value *Op0 = I.getOperand(0); 3341 Type *AggTy = Op0->getType(); 3342 Type *ValTy = I.getType(); 3343 bool OutOfUndef = isa<UndefValue>(Op0); 3344 3345 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3346 3347 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3348 SmallVector<EVT, 4> ValValueVTs; 3349 ComputeValueVTs(*TLI, ValTy, ValValueVTs); 3350 3351 unsigned NumValValues = ValValueVTs.size(); 3352 3353 // Ignore a extractvalue that produces an empty object 3354 if (!NumValValues) { 3355 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3356 return; 3357 } 3358 3359 SmallVector<SDValue, 4> Values(NumValValues); 3360 3361 SDValue Agg = getValue(Op0); 3362 // Copy out the selected value(s). 3363 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3364 Values[i - LinearIndex] = 3365 OutOfUndef ? 3366 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3367 SDValue(Agg.getNode(), Agg.getResNo() + i); 3368 3369 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3370 DAG.getVTList(ValValueVTs), Values)); 3371 } 3372 3373 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3374 Value *Op0 = I.getOperand(0); 3375 // Note that the pointer operand may be a vector of pointers. Take the scalar 3376 // element which holds a pointer. 3377 Type *Ty = Op0->getType()->getScalarType(); 3378 unsigned AS = Ty->getPointerAddressSpace(); 3379 SDValue N = getValue(Op0); 3380 3381 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3382 OI != E; ++OI) { 3383 const Value *Idx = *OI; 3384 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3385 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3386 if (Field) { 3387 // N = N + Offset 3388 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3389 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3390 DAG.getConstant(Offset, N.getValueType())); 3391 } 3392 3393 Ty = StTy->getElementType(Field); 3394 } else { 3395 Ty = cast<SequentialType>(Ty)->getElementType(); 3396 3397 // If this is a constant subscript, handle it quickly. 3398 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3399 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3400 if (CI->isZero()) continue; 3401 uint64_t Offs = 3402 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3403 SDValue OffsVal; 3404 EVT PTy = TLI->getPointerTy(AS); 3405 unsigned PtrBits = PTy.getSizeInBits(); 3406 if (PtrBits < 64) 3407 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3408 DAG.getConstant(Offs, MVT::i64)); 3409 else 3410 OffsVal = DAG.getConstant(Offs, PTy); 3411 3412 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3413 OffsVal); 3414 continue; 3415 } 3416 3417 // N = N + Idx * ElementSize; 3418 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS), 3419 DL->getTypeAllocSize(Ty)); 3420 SDValue IdxN = getValue(Idx); 3421 3422 // If the index is smaller or larger than intptr_t, truncate or extend 3423 // it. 3424 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3425 3426 // If this is a multiply by a power of two, turn it into a shl 3427 // immediately. This is a very common case. 3428 if (ElementSize != 1) { 3429 if (ElementSize.isPowerOf2()) { 3430 unsigned Amt = ElementSize.logBase2(); 3431 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3432 N.getValueType(), IdxN, 3433 DAG.getConstant(Amt, IdxN.getValueType())); 3434 } else { 3435 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3436 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3437 N.getValueType(), IdxN, Scale); 3438 } 3439 } 3440 3441 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3442 N.getValueType(), N, IdxN); 3443 } 3444 } 3445 3446 setValue(&I, N); 3447 } 3448 3449 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3450 // If this is a fixed sized alloca in the entry block of the function, 3451 // allocate it statically on the stack. 3452 if (FuncInfo.StaticAllocaMap.count(&I)) 3453 return; // getValue will auto-populate this. 3454 3455 Type *Ty = I.getAllocatedType(); 3456 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3457 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 3458 unsigned Align = 3459 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty), 3460 I.getAlignment()); 3461 3462 SDValue AllocSize = getValue(I.getArraySize()); 3463 3464 EVT IntPtr = TLI->getPointerTy(); 3465 if (AllocSize.getValueType() != IntPtr) 3466 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3467 3468 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3469 AllocSize, 3470 DAG.getConstant(TySize, IntPtr)); 3471 3472 // Handle alignment. If the requested alignment is less than or equal to 3473 // the stack alignment, ignore it. If the size is greater than or equal to 3474 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3475 unsigned StackAlign = 3476 TM.getSubtargetImpl()->getFrameLowering()->getStackAlignment(); 3477 if (Align <= StackAlign) 3478 Align = 0; 3479 3480 // Round the size of the allocation up to the stack alignment size 3481 // by add SA-1 to the size. 3482 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3483 AllocSize.getValueType(), AllocSize, 3484 DAG.getIntPtrConstant(StackAlign-1)); 3485 3486 // Mask out the low bits for alignment purposes. 3487 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3488 AllocSize.getValueType(), AllocSize, 3489 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3490 3491 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3492 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3493 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3494 setValue(&I, DSA); 3495 DAG.setRoot(DSA.getValue(1)); 3496 3497 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3498 } 3499 3500 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3501 if (I.isAtomic()) 3502 return visitAtomicLoad(I); 3503 3504 const Value *SV = I.getOperand(0); 3505 SDValue Ptr = getValue(SV); 3506 3507 Type *Ty = I.getType(); 3508 3509 bool isVolatile = I.isVolatile(); 3510 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3511 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3512 unsigned Alignment = I.getAlignment(); 3513 3514 AAMDNodes AAInfo; 3515 I.getAAMetadata(AAInfo); 3516 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3517 3518 SmallVector<EVT, 4> ValueVTs; 3519 SmallVector<uint64_t, 4> Offsets; 3520 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), Ty, ValueVTs, 3521 &Offsets); 3522 unsigned NumValues = ValueVTs.size(); 3523 if (NumValues == 0) 3524 return; 3525 3526 SDValue Root; 3527 bool ConstantMemory = false; 3528 if (isVolatile || NumValues > MaxParallelChains) 3529 // Serialize volatile loads with other side effects. 3530 Root = getRoot(); 3531 else if (AA->pointsToConstantMemory( 3532 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3533 // Do not serialize (non-volatile) loads of constant memory with anything. 3534 Root = DAG.getEntryNode(); 3535 ConstantMemory = true; 3536 } else { 3537 // Do not serialize non-volatile loads against each other. 3538 Root = DAG.getRoot(); 3539 } 3540 3541 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3542 if (isVolatile) 3543 Root = TLI->prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3544 3545 SmallVector<SDValue, 4> Values(NumValues); 3546 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3547 NumValues)); 3548 EVT PtrVT = Ptr.getValueType(); 3549 unsigned ChainI = 0; 3550 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3551 // Serializing loads here may result in excessive register pressure, and 3552 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3553 // could recover a bit by hoisting nodes upward in the chain by recognizing 3554 // they are side-effect free or do not alias. The optimizer should really 3555 // avoid this case by converting large object/array copies to llvm.memcpy 3556 // (MaxParallelChains should always remain as failsafe). 3557 if (ChainI == MaxParallelChains) { 3558 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3559 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3560 makeArrayRef(Chains.data(), ChainI)); 3561 Root = Chain; 3562 ChainI = 0; 3563 } 3564 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3565 PtrVT, Ptr, 3566 DAG.getConstant(Offsets[i], PtrVT)); 3567 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3568 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3569 isNonTemporal, isInvariant, Alignment, AAInfo, 3570 Ranges); 3571 3572 Values[i] = L; 3573 Chains[ChainI] = L.getValue(1); 3574 } 3575 3576 if (!ConstantMemory) { 3577 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3578 makeArrayRef(Chains.data(), ChainI)); 3579 if (isVolatile) 3580 DAG.setRoot(Chain); 3581 else 3582 PendingLoads.push_back(Chain); 3583 } 3584 3585 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3586 DAG.getVTList(ValueVTs), Values)); 3587 } 3588 3589 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3590 if (I.isAtomic()) 3591 return visitAtomicStore(I); 3592 3593 const Value *SrcV = I.getOperand(0); 3594 const Value *PtrV = I.getOperand(1); 3595 3596 SmallVector<EVT, 4> ValueVTs; 3597 SmallVector<uint64_t, 4> Offsets; 3598 ComputeValueVTs(*TM.getSubtargetImpl()->getTargetLowering(), SrcV->getType(), 3599 ValueVTs, &Offsets); 3600 unsigned NumValues = ValueVTs.size(); 3601 if (NumValues == 0) 3602 return; 3603 3604 // Get the lowered operands. Note that we do this after 3605 // checking if NumResults is zero, because with zero results 3606 // the operands won't have values in the map. 3607 SDValue Src = getValue(SrcV); 3608 SDValue Ptr = getValue(PtrV); 3609 3610 SDValue Root = getRoot(); 3611 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3612 NumValues)); 3613 EVT PtrVT = Ptr.getValueType(); 3614 bool isVolatile = I.isVolatile(); 3615 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3616 unsigned Alignment = I.getAlignment(); 3617 3618 AAMDNodes AAInfo; 3619 I.getAAMetadata(AAInfo); 3620 3621 unsigned ChainI = 0; 3622 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3623 // See visitLoad comments. 3624 if (ChainI == MaxParallelChains) { 3625 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3626 makeArrayRef(Chains.data(), ChainI)); 3627 Root = Chain; 3628 ChainI = 0; 3629 } 3630 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3631 DAG.getConstant(Offsets[i], PtrVT)); 3632 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3633 SDValue(Src.getNode(), Src.getResNo() + i), 3634 Add, MachinePointerInfo(PtrV, Offsets[i]), 3635 isVolatile, isNonTemporal, Alignment, AAInfo); 3636 Chains[ChainI] = St; 3637 } 3638 3639 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3640 makeArrayRef(Chains.data(), ChainI)); 3641 DAG.setRoot(StoreNode); 3642 } 3643 3644 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3645 SynchronizationScope Scope, 3646 bool Before, SDLoc dl, 3647 SelectionDAG &DAG, 3648 const TargetLowering &TLI) { 3649 // Fence, if necessary 3650 if (Before) { 3651 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3652 Order = Release; 3653 else if (Order == Acquire || Order == Monotonic || Order == Unordered) 3654 return Chain; 3655 } else { 3656 if (Order == AcquireRelease) 3657 Order = Acquire; 3658 else if (Order == Release || Order == Monotonic || Order == Unordered) 3659 return Chain; 3660 } 3661 SDValue Ops[3]; 3662 Ops[0] = Chain; 3663 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3664 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3665 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3666 } 3667 3668 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3669 SDLoc dl = getCurSDLoc(); 3670 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3671 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3672 SynchronizationScope Scope = I.getSynchScope(); 3673 3674 SDValue InChain = getRoot(); 3675 3676 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3677 if (TLI->getInsertFencesForAtomic()) 3678 InChain = InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, 3679 DAG, *TLI); 3680 3681 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3682 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3683 SDValue L = DAG.getAtomicCmpSwap( 3684 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3685 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3686 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3687 0 /* Alignment */, 3688 TLI->getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3689 TLI->getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope); 3690 3691 SDValue OutChain = L.getValue(2); 3692 3693 if (TLI->getInsertFencesForAtomic()) 3694 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3695 DAG, *TLI); 3696 3697 setValue(&I, L); 3698 DAG.setRoot(OutChain); 3699 } 3700 3701 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3702 SDLoc dl = getCurSDLoc(); 3703 ISD::NodeType NT; 3704 switch (I.getOperation()) { 3705 default: llvm_unreachable("Unknown atomicrmw operation"); 3706 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3707 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3708 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3709 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3710 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3711 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3712 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3713 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3714 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3715 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3716 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3717 } 3718 AtomicOrdering Order = I.getOrdering(); 3719 SynchronizationScope Scope = I.getSynchScope(); 3720 3721 SDValue InChain = getRoot(); 3722 3723 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3724 if (TLI->getInsertFencesForAtomic()) 3725 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3726 DAG, *TLI); 3727 3728 SDValue L = 3729 DAG.getAtomic(NT, dl, 3730 getValue(I.getValOperand()).getSimpleValueType(), 3731 InChain, 3732 getValue(I.getPointerOperand()), 3733 getValue(I.getValOperand()), 3734 I.getPointerOperand(), 0 /* Alignment */, 3735 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3736 Scope); 3737 3738 SDValue OutChain = L.getValue(1); 3739 3740 if (TLI->getInsertFencesForAtomic()) 3741 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3742 DAG, *TLI); 3743 3744 setValue(&I, L); 3745 DAG.setRoot(OutChain); 3746 } 3747 3748 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3749 SDLoc dl = getCurSDLoc(); 3750 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3751 SDValue Ops[3]; 3752 Ops[0] = getRoot(); 3753 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy()); 3754 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy()); 3755 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3756 } 3757 3758 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3759 SDLoc dl = getCurSDLoc(); 3760 AtomicOrdering Order = I.getOrdering(); 3761 SynchronizationScope Scope = I.getSynchScope(); 3762 3763 SDValue InChain = getRoot(); 3764 3765 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3766 EVT VT = TLI->getValueType(I.getType()); 3767 3768 if (I.getAlignment() < VT.getSizeInBits() / 8) 3769 report_fatal_error("Cannot generate unaligned atomic load"); 3770 3771 MachineMemOperand *MMO = 3772 DAG.getMachineFunction(). 3773 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3774 MachineMemOperand::MOVolatile | 3775 MachineMemOperand::MOLoad, 3776 VT.getStoreSize(), 3777 I.getAlignment() ? I.getAlignment() : 3778 DAG.getEVTAlignment(VT)); 3779 3780 InChain = TLI->prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3781 SDValue L = 3782 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3783 getValue(I.getPointerOperand()), MMO, 3784 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3785 Scope); 3786 3787 SDValue OutChain = L.getValue(1); 3788 3789 if (TLI->getInsertFencesForAtomic()) 3790 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3791 DAG, *TLI); 3792 3793 setValue(&I, L); 3794 DAG.setRoot(OutChain); 3795 } 3796 3797 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3798 SDLoc dl = getCurSDLoc(); 3799 3800 AtomicOrdering Order = I.getOrdering(); 3801 SynchronizationScope Scope = I.getSynchScope(); 3802 3803 SDValue InChain = getRoot(); 3804 3805 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3806 EVT VT = TLI->getValueType(I.getValueOperand()->getType()); 3807 3808 if (I.getAlignment() < VT.getSizeInBits() / 8) 3809 report_fatal_error("Cannot generate unaligned atomic store"); 3810 3811 if (TLI->getInsertFencesForAtomic()) 3812 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3813 DAG, *TLI); 3814 3815 SDValue OutChain = 3816 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3817 InChain, 3818 getValue(I.getPointerOperand()), 3819 getValue(I.getValueOperand()), 3820 I.getPointerOperand(), I.getAlignment(), 3821 TLI->getInsertFencesForAtomic() ? Monotonic : Order, 3822 Scope); 3823 3824 if (TLI->getInsertFencesForAtomic()) 3825 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3826 DAG, *TLI); 3827 3828 DAG.setRoot(OutChain); 3829 } 3830 3831 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3832 /// node. 3833 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3834 unsigned Intrinsic) { 3835 bool HasChain = !I.doesNotAccessMemory(); 3836 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3837 3838 // Build the operand list. 3839 SmallVector<SDValue, 8> Ops; 3840 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3841 if (OnlyLoad) { 3842 // We don't need to serialize loads against other loads. 3843 Ops.push_back(DAG.getRoot()); 3844 } else { 3845 Ops.push_back(getRoot()); 3846 } 3847 } 3848 3849 // Info is set by getTgtMemInstrinsic 3850 TargetLowering::IntrinsicInfo Info; 3851 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 3852 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic); 3853 3854 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3855 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3856 Info.opc == ISD::INTRINSIC_W_CHAIN) 3857 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy())); 3858 3859 // Add all operands of the call to the operand list. 3860 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3861 SDValue Op = getValue(I.getArgOperand(i)); 3862 Ops.push_back(Op); 3863 } 3864 3865 SmallVector<EVT, 4> ValueVTs; 3866 ComputeValueVTs(*TLI, I.getType(), ValueVTs); 3867 3868 if (HasChain) 3869 ValueVTs.push_back(MVT::Other); 3870 3871 SDVTList VTs = DAG.getVTList(ValueVTs); 3872 3873 // Create the node. 3874 SDValue Result; 3875 if (IsTgtIntrinsic) { 3876 // This is target intrinsic that touches memory 3877 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3878 VTs, Ops, Info.memVT, 3879 MachinePointerInfo(Info.ptrVal, Info.offset), 3880 Info.align, Info.vol, 3881 Info.readMem, Info.writeMem, Info.size); 3882 } else if (!HasChain) { 3883 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3884 } else if (!I.getType()->isVoidTy()) { 3885 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3886 } else { 3887 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3888 } 3889 3890 if (HasChain) { 3891 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3892 if (OnlyLoad) 3893 PendingLoads.push_back(Chain); 3894 else 3895 DAG.setRoot(Chain); 3896 } 3897 3898 if (!I.getType()->isVoidTy()) { 3899 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3900 EVT VT = TLI->getValueType(PTy); 3901 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3902 } 3903 3904 setValue(&I, Result); 3905 } 3906 } 3907 3908 /// GetSignificand - Get the significand and build it into a floating-point 3909 /// number with exponent of 1: 3910 /// 3911 /// Op = (Op & 0x007fffff) | 0x3f800000; 3912 /// 3913 /// where Op is the hexadecimal representation of floating point value. 3914 static SDValue 3915 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3916 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3917 DAG.getConstant(0x007fffff, MVT::i32)); 3918 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3919 DAG.getConstant(0x3f800000, MVT::i32)); 3920 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3921 } 3922 3923 /// GetExponent - Get the exponent: 3924 /// 3925 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3926 /// 3927 /// where Op is the hexadecimal representation of floating point value. 3928 static SDValue 3929 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3930 SDLoc dl) { 3931 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3932 DAG.getConstant(0x7f800000, MVT::i32)); 3933 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3934 DAG.getConstant(23, TLI.getPointerTy())); 3935 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3936 DAG.getConstant(127, MVT::i32)); 3937 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3938 } 3939 3940 /// getF32Constant - Get 32-bit floating point constant. 3941 static SDValue 3942 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3943 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3944 MVT::f32); 3945 } 3946 3947 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3948 /// limited-precision mode. 3949 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3950 const TargetLowering &TLI) { 3951 if (Op.getValueType() == MVT::f32 && 3952 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3953 3954 // Put the exponent in the right bit position for later addition to the 3955 // final result: 3956 // 3957 // #define LOG2OFe 1.4426950f 3958 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3959 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3960 getF32Constant(DAG, 0x3fb8aa3b)); 3961 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3962 3963 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3964 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3965 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3966 3967 // IntegerPartOfX <<= 23; 3968 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3969 DAG.getConstant(23, TLI.getPointerTy())); 3970 3971 SDValue TwoToFracPartOfX; 3972 if (LimitFloatPrecision <= 6) { 3973 // For floating-point precision of 6: 3974 // 3975 // TwoToFractionalPartOfX = 3976 // 0.997535578f + 3977 // (0.735607626f + 0.252464424f * x) * x; 3978 // 3979 // error 0.0144103317, which is 6 bits 3980 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3981 getF32Constant(DAG, 0x3e814304)); 3982 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3983 getF32Constant(DAG, 0x3f3c50c8)); 3984 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3985 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3986 getF32Constant(DAG, 0x3f7f5e7e)); 3987 } else if (LimitFloatPrecision <= 12) { 3988 // For floating-point precision of 12: 3989 // 3990 // TwoToFractionalPartOfX = 3991 // 0.999892986f + 3992 // (0.696457318f + 3993 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3994 // 3995 // 0.000107046256 error, which is 13 to 14 bits 3996 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3997 getF32Constant(DAG, 0x3da235e3)); 3998 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3999 getF32Constant(DAG, 0x3e65b8f3)); 4000 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4001 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4002 getF32Constant(DAG, 0x3f324b07)); 4003 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4004 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4005 getF32Constant(DAG, 0x3f7ff8fd)); 4006 } else { // LimitFloatPrecision <= 18 4007 // For floating-point precision of 18: 4008 // 4009 // TwoToFractionalPartOfX = 4010 // 0.999999982f + 4011 // (0.693148872f + 4012 // (0.240227044f + 4013 // (0.554906021e-1f + 4014 // (0.961591928e-2f + 4015 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4016 // 4017 // error 2.47208000*10^(-7), which is better than 18 bits 4018 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4019 getF32Constant(DAG, 0x3924b03e)); 4020 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4021 getF32Constant(DAG, 0x3ab24b87)); 4022 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4023 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4024 getF32Constant(DAG, 0x3c1d8c17)); 4025 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4026 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4027 getF32Constant(DAG, 0x3d634a1d)); 4028 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4029 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4030 getF32Constant(DAG, 0x3e75fe14)); 4031 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4032 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4033 getF32Constant(DAG, 0x3f317234)); 4034 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4035 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4036 getF32Constant(DAG, 0x3f800000)); 4037 } 4038 4039 // Add the exponent into the result in integer domain. 4040 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 4041 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4042 DAG.getNode(ISD::ADD, dl, MVT::i32, 4043 t13, IntegerPartOfX)); 4044 } 4045 4046 // No special expansion. 4047 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4048 } 4049 4050 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4051 /// limited-precision mode. 4052 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4053 const TargetLowering &TLI) { 4054 if (Op.getValueType() == MVT::f32 && 4055 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4056 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4057 4058 // Scale the exponent by log(2) [0.69314718f]. 4059 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4060 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4061 getF32Constant(DAG, 0x3f317218)); 4062 4063 // Get the significand and build it into a floating-point number with 4064 // exponent of 1. 4065 SDValue X = GetSignificand(DAG, Op1, dl); 4066 4067 SDValue LogOfMantissa; 4068 if (LimitFloatPrecision <= 6) { 4069 // For floating-point precision of 6: 4070 // 4071 // LogofMantissa = 4072 // -1.1609546f + 4073 // (1.4034025f - 0.23903021f * x) * x; 4074 // 4075 // error 0.0034276066, which is better than 8 bits 4076 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4077 getF32Constant(DAG, 0xbe74c456)); 4078 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4079 getF32Constant(DAG, 0x3fb3a2b1)); 4080 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4081 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4082 getF32Constant(DAG, 0x3f949a29)); 4083 } else if (LimitFloatPrecision <= 12) { 4084 // For floating-point precision of 12: 4085 // 4086 // LogOfMantissa = 4087 // -1.7417939f + 4088 // (2.8212026f + 4089 // (-1.4699568f + 4090 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4091 // 4092 // error 0.000061011436, which is 14 bits 4093 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4094 getF32Constant(DAG, 0xbd67b6d6)); 4095 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4096 getF32Constant(DAG, 0x3ee4f4b8)); 4097 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4098 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4099 getF32Constant(DAG, 0x3fbc278b)); 4100 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4101 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4102 getF32Constant(DAG, 0x40348e95)); 4103 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4104 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4105 getF32Constant(DAG, 0x3fdef31a)); 4106 } else { // LimitFloatPrecision <= 18 4107 // For floating-point precision of 18: 4108 // 4109 // LogOfMantissa = 4110 // -2.1072184f + 4111 // (4.2372794f + 4112 // (-3.7029485f + 4113 // (2.2781945f + 4114 // (-0.87823314f + 4115 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4116 // 4117 // error 0.0000023660568, which is better than 18 bits 4118 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4119 getF32Constant(DAG, 0xbc91e5ac)); 4120 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4121 getF32Constant(DAG, 0x3e4350aa)); 4122 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4123 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4124 getF32Constant(DAG, 0x3f60d3e3)); 4125 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4126 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4127 getF32Constant(DAG, 0x4011cdf0)); 4128 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4129 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4130 getF32Constant(DAG, 0x406cfd1c)); 4131 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4132 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4133 getF32Constant(DAG, 0x408797cb)); 4134 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4135 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4136 getF32Constant(DAG, 0x4006dcab)); 4137 } 4138 4139 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4140 } 4141 4142 // No special expansion. 4143 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4144 } 4145 4146 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4147 /// limited-precision mode. 4148 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4149 const TargetLowering &TLI) { 4150 if (Op.getValueType() == MVT::f32 && 4151 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4152 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4153 4154 // Get the exponent. 4155 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4156 4157 // Get the significand and build it into a floating-point number with 4158 // exponent of 1. 4159 SDValue X = GetSignificand(DAG, Op1, dl); 4160 4161 // Different possible minimax approximations of significand in 4162 // floating-point for various degrees of accuracy over [1,2]. 4163 SDValue Log2ofMantissa; 4164 if (LimitFloatPrecision <= 6) { 4165 // For floating-point precision of 6: 4166 // 4167 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4168 // 4169 // error 0.0049451742, which is more than 7 bits 4170 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4171 getF32Constant(DAG, 0xbeb08fe0)); 4172 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4173 getF32Constant(DAG, 0x40019463)); 4174 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4175 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4176 getF32Constant(DAG, 0x3fd6633d)); 4177 } else if (LimitFloatPrecision <= 12) { 4178 // For floating-point precision of 12: 4179 // 4180 // Log2ofMantissa = 4181 // -2.51285454f + 4182 // (4.07009056f + 4183 // (-2.12067489f + 4184 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4185 // 4186 // error 0.0000876136000, which is better than 13 bits 4187 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4188 getF32Constant(DAG, 0xbda7262e)); 4189 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4190 getF32Constant(DAG, 0x3f25280b)); 4191 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4192 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4193 getF32Constant(DAG, 0x4007b923)); 4194 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4195 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4196 getF32Constant(DAG, 0x40823e2f)); 4197 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4198 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4199 getF32Constant(DAG, 0x4020d29c)); 4200 } else { // LimitFloatPrecision <= 18 4201 // For floating-point precision of 18: 4202 // 4203 // Log2ofMantissa = 4204 // -3.0400495f + 4205 // (6.1129976f + 4206 // (-5.3420409f + 4207 // (3.2865683f + 4208 // (-1.2669343f + 4209 // (0.27515199f - 4210 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4211 // 4212 // error 0.0000018516, which is better than 18 bits 4213 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4214 getF32Constant(DAG, 0xbcd2769e)); 4215 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4216 getF32Constant(DAG, 0x3e8ce0b9)); 4217 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4218 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4219 getF32Constant(DAG, 0x3fa22ae7)); 4220 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4221 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4222 getF32Constant(DAG, 0x40525723)); 4223 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4224 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4225 getF32Constant(DAG, 0x40aaf200)); 4226 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4227 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4228 getF32Constant(DAG, 0x40c39dad)); 4229 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4230 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4231 getF32Constant(DAG, 0x4042902c)); 4232 } 4233 4234 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4235 } 4236 4237 // No special expansion. 4238 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4239 } 4240 4241 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4242 /// limited-precision mode. 4243 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4244 const TargetLowering &TLI) { 4245 if (Op.getValueType() == MVT::f32 && 4246 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4247 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4248 4249 // Scale the exponent by log10(2) [0.30102999f]. 4250 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4251 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4252 getF32Constant(DAG, 0x3e9a209a)); 4253 4254 // Get the significand and build it into a floating-point number with 4255 // exponent of 1. 4256 SDValue X = GetSignificand(DAG, Op1, dl); 4257 4258 SDValue Log10ofMantissa; 4259 if (LimitFloatPrecision <= 6) { 4260 // For floating-point precision of 6: 4261 // 4262 // Log10ofMantissa = 4263 // -0.50419619f + 4264 // (0.60948995f - 0.10380950f * x) * x; 4265 // 4266 // error 0.0014886165, which is 6 bits 4267 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4268 getF32Constant(DAG, 0xbdd49a13)); 4269 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4270 getF32Constant(DAG, 0x3f1c0789)); 4271 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4272 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4273 getF32Constant(DAG, 0x3f011300)); 4274 } else if (LimitFloatPrecision <= 12) { 4275 // For floating-point precision of 12: 4276 // 4277 // Log10ofMantissa = 4278 // -0.64831180f + 4279 // (0.91751397f + 4280 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4281 // 4282 // error 0.00019228036, which is better than 12 bits 4283 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4284 getF32Constant(DAG, 0x3d431f31)); 4285 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4286 getF32Constant(DAG, 0x3ea21fb2)); 4287 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4288 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4289 getF32Constant(DAG, 0x3f6ae232)); 4290 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4291 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4292 getF32Constant(DAG, 0x3f25f7c3)); 4293 } else { // LimitFloatPrecision <= 18 4294 // For floating-point precision of 18: 4295 // 4296 // Log10ofMantissa = 4297 // -0.84299375f + 4298 // (1.5327582f + 4299 // (-1.0688956f + 4300 // (0.49102474f + 4301 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4302 // 4303 // error 0.0000037995730, which is better than 18 bits 4304 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4305 getF32Constant(DAG, 0x3c5d51ce)); 4306 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4307 getF32Constant(DAG, 0x3e00685a)); 4308 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4309 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4310 getF32Constant(DAG, 0x3efb6798)); 4311 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4312 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4313 getF32Constant(DAG, 0x3f88d192)); 4314 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4315 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4316 getF32Constant(DAG, 0x3fc4316c)); 4317 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4318 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4319 getF32Constant(DAG, 0x3f57ce70)); 4320 } 4321 4322 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4323 } 4324 4325 // No special expansion. 4326 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4327 } 4328 4329 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4330 /// limited-precision mode. 4331 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4332 const TargetLowering &TLI) { 4333 if (Op.getValueType() == MVT::f32 && 4334 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4335 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4336 4337 // FractionalPartOfX = x - (float)IntegerPartOfX; 4338 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4339 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4340 4341 // IntegerPartOfX <<= 23; 4342 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4343 DAG.getConstant(23, TLI.getPointerTy())); 4344 4345 SDValue TwoToFractionalPartOfX; 4346 if (LimitFloatPrecision <= 6) { 4347 // For floating-point precision of 6: 4348 // 4349 // TwoToFractionalPartOfX = 4350 // 0.997535578f + 4351 // (0.735607626f + 0.252464424f * x) * x; 4352 // 4353 // error 0.0144103317, which is 6 bits 4354 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4355 getF32Constant(DAG, 0x3e814304)); 4356 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4357 getF32Constant(DAG, 0x3f3c50c8)); 4358 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4359 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4360 getF32Constant(DAG, 0x3f7f5e7e)); 4361 } else if (LimitFloatPrecision <= 12) { 4362 // For floating-point precision of 12: 4363 // 4364 // TwoToFractionalPartOfX = 4365 // 0.999892986f + 4366 // (0.696457318f + 4367 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4368 // 4369 // error 0.000107046256, which is 13 to 14 bits 4370 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4371 getF32Constant(DAG, 0x3da235e3)); 4372 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4373 getF32Constant(DAG, 0x3e65b8f3)); 4374 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4375 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4376 getF32Constant(DAG, 0x3f324b07)); 4377 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4378 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4379 getF32Constant(DAG, 0x3f7ff8fd)); 4380 } else { // LimitFloatPrecision <= 18 4381 // For floating-point precision of 18: 4382 // 4383 // TwoToFractionalPartOfX = 4384 // 0.999999982f + 4385 // (0.693148872f + 4386 // (0.240227044f + 4387 // (0.554906021e-1f + 4388 // (0.961591928e-2f + 4389 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4390 // error 2.47208000*10^(-7), which is better than 18 bits 4391 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4392 getF32Constant(DAG, 0x3924b03e)); 4393 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4394 getF32Constant(DAG, 0x3ab24b87)); 4395 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4396 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4397 getF32Constant(DAG, 0x3c1d8c17)); 4398 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4399 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4400 getF32Constant(DAG, 0x3d634a1d)); 4401 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4402 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4403 getF32Constant(DAG, 0x3e75fe14)); 4404 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4405 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4406 getF32Constant(DAG, 0x3f317234)); 4407 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4408 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4409 getF32Constant(DAG, 0x3f800000)); 4410 } 4411 4412 // Add the exponent into the result in integer domain. 4413 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4414 TwoToFractionalPartOfX); 4415 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4416 DAG.getNode(ISD::ADD, dl, MVT::i32, 4417 t13, IntegerPartOfX)); 4418 } 4419 4420 // No special expansion. 4421 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4422 } 4423 4424 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4425 /// limited-precision mode with x == 10.0f. 4426 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4427 SelectionDAG &DAG, const TargetLowering &TLI) { 4428 bool IsExp10 = false; 4429 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4430 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4431 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4432 APFloat Ten(10.0f); 4433 IsExp10 = LHSC->isExactlyValue(Ten); 4434 } 4435 } 4436 4437 if (IsExp10) { 4438 // Put the exponent in the right bit position for later addition to the 4439 // final result: 4440 // 4441 // #define LOG2OF10 3.3219281f 4442 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4443 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4444 getF32Constant(DAG, 0x40549a78)); 4445 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4446 4447 // FractionalPartOfX = x - (float)IntegerPartOfX; 4448 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4449 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4450 4451 // IntegerPartOfX <<= 23; 4452 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4453 DAG.getConstant(23, TLI.getPointerTy())); 4454 4455 SDValue TwoToFractionalPartOfX; 4456 if (LimitFloatPrecision <= 6) { 4457 // For floating-point precision of 6: 4458 // 4459 // twoToFractionalPartOfX = 4460 // 0.997535578f + 4461 // (0.735607626f + 0.252464424f * x) * x; 4462 // 4463 // error 0.0144103317, which is 6 bits 4464 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4465 getF32Constant(DAG, 0x3e814304)); 4466 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4467 getF32Constant(DAG, 0x3f3c50c8)); 4468 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4469 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4470 getF32Constant(DAG, 0x3f7f5e7e)); 4471 } else if (LimitFloatPrecision <= 12) { 4472 // For floating-point precision of 12: 4473 // 4474 // TwoToFractionalPartOfX = 4475 // 0.999892986f + 4476 // (0.696457318f + 4477 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4478 // 4479 // error 0.000107046256, which is 13 to 14 bits 4480 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4481 getF32Constant(DAG, 0x3da235e3)); 4482 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4483 getF32Constant(DAG, 0x3e65b8f3)); 4484 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4485 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4486 getF32Constant(DAG, 0x3f324b07)); 4487 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4488 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4489 getF32Constant(DAG, 0x3f7ff8fd)); 4490 } else { // LimitFloatPrecision <= 18 4491 // For floating-point precision of 18: 4492 // 4493 // TwoToFractionalPartOfX = 4494 // 0.999999982f + 4495 // (0.693148872f + 4496 // (0.240227044f + 4497 // (0.554906021e-1f + 4498 // (0.961591928e-2f + 4499 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4500 // error 2.47208000*10^(-7), which is better than 18 bits 4501 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4502 getF32Constant(DAG, 0x3924b03e)); 4503 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4504 getF32Constant(DAG, 0x3ab24b87)); 4505 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4506 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4507 getF32Constant(DAG, 0x3c1d8c17)); 4508 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4509 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4510 getF32Constant(DAG, 0x3d634a1d)); 4511 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4512 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4513 getF32Constant(DAG, 0x3e75fe14)); 4514 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4515 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4516 getF32Constant(DAG, 0x3f317234)); 4517 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4518 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4519 getF32Constant(DAG, 0x3f800000)); 4520 } 4521 4522 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4523 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4524 DAG.getNode(ISD::ADD, dl, MVT::i32, 4525 t13, IntegerPartOfX)); 4526 } 4527 4528 // No special expansion. 4529 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4530 } 4531 4532 4533 /// ExpandPowI - Expand a llvm.powi intrinsic. 4534 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4535 SelectionDAG &DAG) { 4536 // If RHS is a constant, we can expand this out to a multiplication tree, 4537 // otherwise we end up lowering to a call to __powidf2 (for example). When 4538 // optimizing for size, we only want to do this if the expansion would produce 4539 // a small number of multiplies, otherwise we do the full expansion. 4540 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4541 // Get the exponent as a positive value. 4542 unsigned Val = RHSC->getSExtValue(); 4543 if ((int)Val < 0) Val = -Val; 4544 4545 // powi(x, 0) -> 1.0 4546 if (Val == 0) 4547 return DAG.getConstantFP(1.0, LHS.getValueType()); 4548 4549 const Function *F = DAG.getMachineFunction().getFunction(); 4550 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4551 Attribute::OptimizeForSize) || 4552 // If optimizing for size, don't insert too many multiplies. This 4553 // inserts up to 5 multiplies. 4554 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4555 // We use the simple binary decomposition method to generate the multiply 4556 // sequence. There are more optimal ways to do this (for example, 4557 // powi(x,15) generates one more multiply than it should), but this has 4558 // the benefit of being both really simple and much better than a libcall. 4559 SDValue Res; // Logically starts equal to 1.0 4560 SDValue CurSquare = LHS; 4561 while (Val) { 4562 if (Val & 1) { 4563 if (Res.getNode()) 4564 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4565 else 4566 Res = CurSquare; // 1.0*CurSquare. 4567 } 4568 4569 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4570 CurSquare, CurSquare); 4571 Val >>= 1; 4572 } 4573 4574 // If the original was negative, invert the result, producing 1/(x*x*x). 4575 if (RHSC->getSExtValue() < 0) 4576 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4577 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4578 return Res; 4579 } 4580 } 4581 4582 // Otherwise, expand to a libcall. 4583 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4584 } 4585 4586 // getTruncatedArgReg - Find underlying register used for an truncated 4587 // argument. 4588 static unsigned getTruncatedArgReg(const SDValue &N) { 4589 if (N.getOpcode() != ISD::TRUNCATE) 4590 return 0; 4591 4592 const SDValue &Ext = N.getOperand(0); 4593 if (Ext.getOpcode() == ISD::AssertZext || 4594 Ext.getOpcode() == ISD::AssertSext) { 4595 const SDValue &CFR = Ext.getOperand(0); 4596 if (CFR.getOpcode() == ISD::CopyFromReg) 4597 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4598 if (CFR.getOpcode() == ISD::TRUNCATE) 4599 return getTruncatedArgReg(CFR); 4600 } 4601 return 0; 4602 } 4603 4604 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4605 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4606 /// At the end of instruction selection, they will be inserted to the entry BB. 4607 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4608 MDNode *Variable, 4609 MDNode *Expr, int64_t Offset, 4610 bool IsIndirect, 4611 const SDValue &N) { 4612 const Argument *Arg = dyn_cast<Argument>(V); 4613 if (!Arg) 4614 return false; 4615 4616 MachineFunction &MF = DAG.getMachineFunction(); 4617 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4618 4619 // Ignore inlined function arguments here. 4620 DIVariable DV(Variable); 4621 if (DV.isInlinedFnArgument(MF.getFunction())) 4622 return false; 4623 4624 Optional<MachineOperand> Op; 4625 // Some arguments' frame index is recorded during argument lowering. 4626 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4627 Op = MachineOperand::CreateFI(FI); 4628 4629 if (!Op && N.getNode()) { 4630 unsigned Reg; 4631 if (N.getOpcode() == ISD::CopyFromReg) 4632 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4633 else 4634 Reg = getTruncatedArgReg(N); 4635 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4636 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4637 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4638 if (PR) 4639 Reg = PR; 4640 } 4641 if (Reg) 4642 Op = MachineOperand::CreateReg(Reg, false); 4643 } 4644 4645 if (!Op) { 4646 // Check if ValueMap has reg number. 4647 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4648 if (VMI != FuncInfo.ValueMap.end()) 4649 Op = MachineOperand::CreateReg(VMI->second, false); 4650 } 4651 4652 if (!Op && N.getNode()) 4653 // Check if frame index is available. 4654 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4655 if (FrameIndexSDNode *FINode = 4656 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4657 Op = MachineOperand::CreateFI(FINode->getIndex()); 4658 4659 if (!Op) 4660 return false; 4661 4662 if (Op->isReg()) 4663 FuncInfo.ArgDbgValues.push_back( 4664 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4665 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4666 else 4667 FuncInfo.ArgDbgValues.push_back( 4668 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4669 .addOperand(*Op) 4670 .addImm(Offset) 4671 .addMetadata(Variable) 4672 .addMetadata(Expr)); 4673 4674 return true; 4675 } 4676 4677 // VisualStudio defines setjmp as _setjmp 4678 #if defined(_MSC_VER) && defined(setjmp) && \ 4679 !defined(setjmp_undefined_for_msvc) 4680 # pragma push_macro("setjmp") 4681 # undef setjmp 4682 # define setjmp_undefined_for_msvc 4683 #endif 4684 4685 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4686 /// we want to emit this as a call to a named external function, return the name 4687 /// otherwise lower it and return null. 4688 const char * 4689 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4690 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 4691 SDLoc sdl = getCurSDLoc(); 4692 DebugLoc dl = getCurDebugLoc(); 4693 SDValue Res; 4694 4695 switch (Intrinsic) { 4696 default: 4697 // By default, turn this into a target intrinsic node. 4698 visitTargetIntrinsic(I, Intrinsic); 4699 return nullptr; 4700 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4701 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4702 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4703 case Intrinsic::returnaddress: 4704 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(), 4705 getValue(I.getArgOperand(0)))); 4706 return nullptr; 4707 case Intrinsic::frameaddress: 4708 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(), 4709 getValue(I.getArgOperand(0)))); 4710 return nullptr; 4711 case Intrinsic::read_register: { 4712 Value *Reg = I.getArgOperand(0); 4713 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4714 EVT VT = 4715 TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType()); 4716 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4717 return nullptr; 4718 } 4719 case Intrinsic::write_register: { 4720 Value *Reg = I.getArgOperand(0); 4721 Value *RegValue = I.getArgOperand(1); 4722 SDValue Chain = getValue(RegValue).getOperand(0); 4723 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4724 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4725 RegName, getValue(RegValue))); 4726 return nullptr; 4727 } 4728 case Intrinsic::setjmp: 4729 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()]; 4730 case Intrinsic::longjmp: 4731 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()]; 4732 case Intrinsic::memcpy: { 4733 // Assert for address < 256 since we support only user defined address 4734 // spaces. 4735 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4736 < 256 && 4737 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4738 < 256 && 4739 "Unknown address space"); 4740 SDValue Op1 = getValue(I.getArgOperand(0)); 4741 SDValue Op2 = getValue(I.getArgOperand(1)); 4742 SDValue Op3 = getValue(I.getArgOperand(2)); 4743 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4744 if (!Align) 4745 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4746 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4747 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4748 MachinePointerInfo(I.getArgOperand(0)), 4749 MachinePointerInfo(I.getArgOperand(1)))); 4750 return nullptr; 4751 } 4752 case Intrinsic::memset: { 4753 // Assert for address < 256 since we support only user defined address 4754 // spaces. 4755 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4756 < 256 && 4757 "Unknown address space"); 4758 SDValue Op1 = getValue(I.getArgOperand(0)); 4759 SDValue Op2 = getValue(I.getArgOperand(1)); 4760 SDValue Op3 = getValue(I.getArgOperand(2)); 4761 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4762 if (!Align) 4763 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4764 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4765 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4766 MachinePointerInfo(I.getArgOperand(0)))); 4767 return nullptr; 4768 } 4769 case Intrinsic::memmove: { 4770 // Assert for address < 256 since we support only user defined address 4771 // spaces. 4772 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4773 < 256 && 4774 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4775 < 256 && 4776 "Unknown address space"); 4777 SDValue Op1 = getValue(I.getArgOperand(0)); 4778 SDValue Op2 = getValue(I.getArgOperand(1)); 4779 SDValue Op3 = getValue(I.getArgOperand(2)); 4780 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4781 if (!Align) 4782 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4783 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4784 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4785 MachinePointerInfo(I.getArgOperand(0)), 4786 MachinePointerInfo(I.getArgOperand(1)))); 4787 return nullptr; 4788 } 4789 case Intrinsic::dbg_declare: { 4790 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4791 MDNode *Variable = DI.getVariable(); 4792 MDNode *Expression = DI.getExpression(); 4793 const Value *Address = DI.getAddress(); 4794 DIVariable DIVar(Variable); 4795 assert((!DIVar || DIVar.isVariable()) && 4796 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4797 if (!Address || !DIVar) { 4798 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4799 return nullptr; 4800 } 4801 4802 // Check if address has undef value. 4803 if (isa<UndefValue>(Address) || 4804 (Address->use_empty() && !isa<Argument>(Address))) { 4805 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4806 return nullptr; 4807 } 4808 4809 SDValue &N = NodeMap[Address]; 4810 if (!N.getNode() && isa<Argument>(Address)) 4811 // Check unused arguments map. 4812 N = UnusedArgNodeMap[Address]; 4813 SDDbgValue *SDV; 4814 if (N.getNode()) { 4815 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4816 Address = BCI->getOperand(0); 4817 // Parameters are handled specially. 4818 bool isParameter = 4819 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4820 isa<Argument>(Address)); 4821 4822 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4823 4824 if (isParameter && !AI) { 4825 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4826 if (FINode) 4827 // Byval parameter. We have a frame index at this point. 4828 SDV = DAG.getFrameIndexDbgValue( 4829 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4830 else { 4831 // Address is an argument, so try to emit its dbg value using 4832 // virtual register info from the FuncInfo.ValueMap. 4833 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4834 return nullptr; 4835 } 4836 } else if (AI) 4837 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4838 true, 0, dl, SDNodeOrder); 4839 else { 4840 // Can't do anything with other non-AI cases yet. 4841 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4842 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4843 DEBUG(Address->dump()); 4844 return nullptr; 4845 } 4846 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4847 } else { 4848 // If Address is an argument then try to emit its dbg value using 4849 // virtual register info from the FuncInfo.ValueMap. 4850 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4851 N)) { 4852 // If variable is pinned by a alloca in dominating bb then 4853 // use StaticAllocaMap. 4854 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4855 if (AI->getParent() != DI.getParent()) { 4856 DenseMap<const AllocaInst*, int>::iterator SI = 4857 FuncInfo.StaticAllocaMap.find(AI); 4858 if (SI != FuncInfo.StaticAllocaMap.end()) { 4859 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4860 0, dl, SDNodeOrder); 4861 DAG.AddDbgValue(SDV, nullptr, false); 4862 return nullptr; 4863 } 4864 } 4865 } 4866 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4867 } 4868 } 4869 return nullptr; 4870 } 4871 case Intrinsic::dbg_value: { 4872 const DbgValueInst &DI = cast<DbgValueInst>(I); 4873 DIVariable DIVar(DI.getVariable()); 4874 assert((!DIVar || DIVar.isVariable()) && 4875 "Variable in DbgValueInst should be either null or a DIVariable."); 4876 if (!DIVar) 4877 return nullptr; 4878 4879 MDNode *Variable = DI.getVariable(); 4880 MDNode *Expression = DI.getExpression(); 4881 uint64_t Offset = DI.getOffset(); 4882 const Value *V = DI.getValue(); 4883 if (!V) 4884 return nullptr; 4885 4886 SDDbgValue *SDV; 4887 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4888 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4889 SDNodeOrder); 4890 DAG.AddDbgValue(SDV, nullptr, false); 4891 } else { 4892 // Do not use getValue() in here; we don't want to generate code at 4893 // this point if it hasn't been done yet. 4894 SDValue N = NodeMap[V]; 4895 if (!N.getNode() && isa<Argument>(V)) 4896 // Check unused arguments map. 4897 N = UnusedArgNodeMap[V]; 4898 if (N.getNode()) { 4899 // A dbg.value for an alloca is always indirect. 4900 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4901 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4902 IsIndirect, N)) { 4903 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4904 IsIndirect, Offset, dl, SDNodeOrder); 4905 DAG.AddDbgValue(SDV, N.getNode(), false); 4906 } 4907 } else if (!V->use_empty() ) { 4908 // Do not call getValue(V) yet, as we don't want to generate code. 4909 // Remember it for later. 4910 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4911 DanglingDebugInfoMap[V] = DDI; 4912 } else { 4913 // We may expand this to cover more cases. One case where we have no 4914 // data available is an unreferenced parameter. 4915 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4916 } 4917 } 4918 4919 // Build a debug info table entry. 4920 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4921 V = BCI->getOperand(0); 4922 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4923 // Don't handle byval struct arguments or VLAs, for example. 4924 if (!AI) { 4925 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4926 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4927 return nullptr; 4928 } 4929 DenseMap<const AllocaInst*, int>::iterator SI = 4930 FuncInfo.StaticAllocaMap.find(AI); 4931 if (SI == FuncInfo.StaticAllocaMap.end()) 4932 return nullptr; // VLAs. 4933 return nullptr; 4934 } 4935 4936 case Intrinsic::eh_typeid_for: { 4937 // Find the type id for the given typeinfo. 4938 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4939 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4940 Res = DAG.getConstant(TypeID, MVT::i32); 4941 setValue(&I, Res); 4942 return nullptr; 4943 } 4944 4945 case Intrinsic::eh_return_i32: 4946 case Intrinsic::eh_return_i64: 4947 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4948 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4949 MVT::Other, 4950 getControlRoot(), 4951 getValue(I.getArgOperand(0)), 4952 getValue(I.getArgOperand(1)))); 4953 return nullptr; 4954 case Intrinsic::eh_unwind_init: 4955 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4956 return nullptr; 4957 case Intrinsic::eh_dwarf_cfa: { 4958 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4959 TLI->getPointerTy()); 4960 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4961 CfaArg.getValueType(), 4962 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4963 CfaArg.getValueType()), 4964 CfaArg); 4965 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, 4966 TLI->getPointerTy(), 4967 DAG.getConstant(0, TLI->getPointerTy())); 4968 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4969 FA, Offset)); 4970 return nullptr; 4971 } 4972 case Intrinsic::eh_sjlj_callsite: { 4973 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4974 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4975 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4976 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4977 4978 MMI.setCurrentCallSite(CI->getZExtValue()); 4979 return nullptr; 4980 } 4981 case Intrinsic::eh_sjlj_functioncontext: { 4982 // Get and store the index of the function context. 4983 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4984 AllocaInst *FnCtx = 4985 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4986 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4987 MFI->setFunctionContextIndex(FI); 4988 return nullptr; 4989 } 4990 case Intrinsic::eh_sjlj_setjmp: { 4991 SDValue Ops[2]; 4992 Ops[0] = getRoot(); 4993 Ops[1] = getValue(I.getArgOperand(0)); 4994 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4995 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4996 setValue(&I, Op.getValue(0)); 4997 DAG.setRoot(Op.getValue(1)); 4998 return nullptr; 4999 } 5000 case Intrinsic::eh_sjlj_longjmp: { 5001 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5002 getRoot(), getValue(I.getArgOperand(0)))); 5003 return nullptr; 5004 } 5005 5006 case Intrinsic::x86_mmx_pslli_w: 5007 case Intrinsic::x86_mmx_pslli_d: 5008 case Intrinsic::x86_mmx_pslli_q: 5009 case Intrinsic::x86_mmx_psrli_w: 5010 case Intrinsic::x86_mmx_psrli_d: 5011 case Intrinsic::x86_mmx_psrli_q: 5012 case Intrinsic::x86_mmx_psrai_w: 5013 case Intrinsic::x86_mmx_psrai_d: { 5014 SDValue ShAmt = getValue(I.getArgOperand(1)); 5015 if (isa<ConstantSDNode>(ShAmt)) { 5016 visitTargetIntrinsic(I, Intrinsic); 5017 return nullptr; 5018 } 5019 unsigned NewIntrinsic = 0; 5020 EVT ShAmtVT = MVT::v2i32; 5021 switch (Intrinsic) { 5022 case Intrinsic::x86_mmx_pslli_w: 5023 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5024 break; 5025 case Intrinsic::x86_mmx_pslli_d: 5026 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5027 break; 5028 case Intrinsic::x86_mmx_pslli_q: 5029 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5030 break; 5031 case Intrinsic::x86_mmx_psrli_w: 5032 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5033 break; 5034 case Intrinsic::x86_mmx_psrli_d: 5035 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5036 break; 5037 case Intrinsic::x86_mmx_psrli_q: 5038 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5039 break; 5040 case Intrinsic::x86_mmx_psrai_w: 5041 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5042 break; 5043 case Intrinsic::x86_mmx_psrai_d: 5044 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5045 break; 5046 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5047 } 5048 5049 // The vector shift intrinsics with scalars uses 32b shift amounts but 5050 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5051 // to be zero. 5052 // We must do this early because v2i32 is not a legal type. 5053 SDValue ShOps[2]; 5054 ShOps[0] = ShAmt; 5055 ShOps[1] = DAG.getConstant(0, MVT::i32); 5056 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5057 EVT DestVT = TLI->getValueType(I.getType()); 5058 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5059 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5060 DAG.getConstant(NewIntrinsic, MVT::i32), 5061 getValue(I.getArgOperand(0)), ShAmt); 5062 setValue(&I, Res); 5063 return nullptr; 5064 } 5065 case Intrinsic::x86_avx_vinsertf128_pd_256: 5066 case Intrinsic::x86_avx_vinsertf128_ps_256: 5067 case Intrinsic::x86_avx_vinsertf128_si_256: 5068 case Intrinsic::x86_avx2_vinserti128: { 5069 EVT DestVT = TLI->getValueType(I.getType()); 5070 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType()); 5071 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5072 ElVT.getVectorNumElements(); 5073 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5074 getValue(I.getArgOperand(0)), 5075 getValue(I.getArgOperand(1)), 5076 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5077 setValue(&I, Res); 5078 return nullptr; 5079 } 5080 case Intrinsic::x86_avx_vextractf128_pd_256: 5081 case Intrinsic::x86_avx_vextractf128_ps_256: 5082 case Intrinsic::x86_avx_vextractf128_si_256: 5083 case Intrinsic::x86_avx2_vextracti128: { 5084 EVT DestVT = TLI->getValueType(I.getType()); 5085 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5086 DestVT.getVectorNumElements(); 5087 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5088 getValue(I.getArgOperand(0)), 5089 DAG.getConstant(Idx, TLI->getVectorIdxTy())); 5090 setValue(&I, Res); 5091 return nullptr; 5092 } 5093 case Intrinsic::convertff: 5094 case Intrinsic::convertfsi: 5095 case Intrinsic::convertfui: 5096 case Intrinsic::convertsif: 5097 case Intrinsic::convertuif: 5098 case Intrinsic::convertss: 5099 case Intrinsic::convertsu: 5100 case Intrinsic::convertus: 5101 case Intrinsic::convertuu: { 5102 ISD::CvtCode Code = ISD::CVT_INVALID; 5103 switch (Intrinsic) { 5104 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5105 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5106 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5107 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5108 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5109 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5110 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5111 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5112 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5113 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5114 } 5115 EVT DestVT = TLI->getValueType(I.getType()); 5116 const Value *Op1 = I.getArgOperand(0); 5117 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5118 DAG.getValueType(DestVT), 5119 DAG.getValueType(getValue(Op1).getValueType()), 5120 getValue(I.getArgOperand(1)), 5121 getValue(I.getArgOperand(2)), 5122 Code); 5123 setValue(&I, Res); 5124 return nullptr; 5125 } 5126 case Intrinsic::powi: 5127 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5128 getValue(I.getArgOperand(1)), DAG)); 5129 return nullptr; 5130 case Intrinsic::log: 5131 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5132 return nullptr; 5133 case Intrinsic::log2: 5134 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5135 return nullptr; 5136 case Intrinsic::log10: 5137 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5138 return nullptr; 5139 case Intrinsic::exp: 5140 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5141 return nullptr; 5142 case Intrinsic::exp2: 5143 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI)); 5144 return nullptr; 5145 case Intrinsic::pow: 5146 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5147 getValue(I.getArgOperand(1)), DAG, *TLI)); 5148 return nullptr; 5149 case Intrinsic::sqrt: 5150 case Intrinsic::fabs: 5151 case Intrinsic::sin: 5152 case Intrinsic::cos: 5153 case Intrinsic::floor: 5154 case Intrinsic::ceil: 5155 case Intrinsic::trunc: 5156 case Intrinsic::rint: 5157 case Intrinsic::nearbyint: 5158 case Intrinsic::round: { 5159 unsigned Opcode; 5160 switch (Intrinsic) { 5161 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5162 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5163 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5164 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5165 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5166 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5167 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5168 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5169 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5170 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5171 case Intrinsic::round: Opcode = ISD::FROUND; break; 5172 } 5173 5174 setValue(&I, DAG.getNode(Opcode, sdl, 5175 getValue(I.getArgOperand(0)).getValueType(), 5176 getValue(I.getArgOperand(0)))); 5177 return nullptr; 5178 } 5179 case Intrinsic::copysign: 5180 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5181 getValue(I.getArgOperand(0)).getValueType(), 5182 getValue(I.getArgOperand(0)), 5183 getValue(I.getArgOperand(1)))); 5184 return nullptr; 5185 case Intrinsic::fma: 5186 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5187 getValue(I.getArgOperand(0)).getValueType(), 5188 getValue(I.getArgOperand(0)), 5189 getValue(I.getArgOperand(1)), 5190 getValue(I.getArgOperand(2)))); 5191 return nullptr; 5192 case Intrinsic::fmuladd: { 5193 EVT VT = TLI->getValueType(I.getType()); 5194 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5195 TLI->isFMAFasterThanFMulAndFAdd(VT)) { 5196 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5197 getValue(I.getArgOperand(0)).getValueType(), 5198 getValue(I.getArgOperand(0)), 5199 getValue(I.getArgOperand(1)), 5200 getValue(I.getArgOperand(2)))); 5201 } else { 5202 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5203 getValue(I.getArgOperand(0)).getValueType(), 5204 getValue(I.getArgOperand(0)), 5205 getValue(I.getArgOperand(1))); 5206 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5207 getValue(I.getArgOperand(0)).getValueType(), 5208 Mul, 5209 getValue(I.getArgOperand(2))); 5210 setValue(&I, Add); 5211 } 5212 return nullptr; 5213 } 5214 case Intrinsic::convert_to_fp16: 5215 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5216 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5217 getValue(I.getArgOperand(0)), 5218 DAG.getTargetConstant(0, MVT::i32)))); 5219 return nullptr; 5220 case Intrinsic::convert_from_fp16: 5221 setValue(&I, 5222 DAG.getNode(ISD::FP_EXTEND, sdl, TLI->getValueType(I.getType()), 5223 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5224 getValue(I.getArgOperand(0))))); 5225 return nullptr; 5226 case Intrinsic::pcmarker: { 5227 SDValue Tmp = getValue(I.getArgOperand(0)); 5228 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5229 return nullptr; 5230 } 5231 case Intrinsic::readcyclecounter: { 5232 SDValue Op = getRoot(); 5233 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5234 DAG.getVTList(MVT::i64, MVT::Other), Op); 5235 setValue(&I, Res); 5236 DAG.setRoot(Res.getValue(1)); 5237 return nullptr; 5238 } 5239 case Intrinsic::bswap: 5240 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5241 getValue(I.getArgOperand(0)).getValueType(), 5242 getValue(I.getArgOperand(0)))); 5243 return nullptr; 5244 case Intrinsic::cttz: { 5245 SDValue Arg = getValue(I.getArgOperand(0)); 5246 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5247 EVT Ty = Arg.getValueType(); 5248 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5249 sdl, Ty, Arg)); 5250 return nullptr; 5251 } 5252 case Intrinsic::ctlz: { 5253 SDValue Arg = getValue(I.getArgOperand(0)); 5254 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5255 EVT Ty = Arg.getValueType(); 5256 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5257 sdl, Ty, Arg)); 5258 return nullptr; 5259 } 5260 case Intrinsic::ctpop: { 5261 SDValue Arg = getValue(I.getArgOperand(0)); 5262 EVT Ty = Arg.getValueType(); 5263 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5264 return nullptr; 5265 } 5266 case Intrinsic::stacksave: { 5267 SDValue Op = getRoot(); 5268 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5269 DAG.getVTList(TLI->getPointerTy(), MVT::Other), Op); 5270 setValue(&I, Res); 5271 DAG.setRoot(Res.getValue(1)); 5272 return nullptr; 5273 } 5274 case Intrinsic::stackrestore: { 5275 Res = getValue(I.getArgOperand(0)); 5276 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5277 return nullptr; 5278 } 5279 case Intrinsic::stackprotector: { 5280 // Emit code into the DAG to store the stack guard onto the stack. 5281 MachineFunction &MF = DAG.getMachineFunction(); 5282 MachineFrameInfo *MFI = MF.getFrameInfo(); 5283 EVT PtrTy = TLI->getPointerTy(); 5284 SDValue Src, Chain = getRoot(); 5285 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5286 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5287 5288 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5289 // global variable __stack_chk_guard. 5290 if (!GV) 5291 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5292 if (BC->getOpcode() == Instruction::BitCast) 5293 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5294 5295 if (GV && TLI->useLoadStackGuardNode()) { 5296 // Emit a LOAD_STACK_GUARD node. 5297 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5298 sdl, PtrTy, Chain); 5299 MachinePointerInfo MPInfo(GV); 5300 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5301 unsigned Flags = MachineMemOperand::MOLoad | 5302 MachineMemOperand::MOInvariant; 5303 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5304 PtrTy.getSizeInBits() / 8, 5305 DAG.getEVTAlignment(PtrTy)); 5306 Node->setMemRefs(MemRefs, MemRefs + 1); 5307 5308 // Copy the guard value to a virtual register so that it can be 5309 // retrieved in the epilogue. 5310 Src = SDValue(Node, 0); 5311 const TargetRegisterClass *RC = 5312 TLI->getRegClassFor(Src.getSimpleValueType()); 5313 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5314 5315 SPDescriptor.setGuardReg(Reg); 5316 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5317 } else { 5318 Src = getValue(I.getArgOperand(0)); // The guard's value. 5319 } 5320 5321 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5322 5323 int FI = FuncInfo.StaticAllocaMap[Slot]; 5324 MFI->setStackProtectorIndex(FI); 5325 5326 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5327 5328 // Store the stack protector onto the stack. 5329 Res = DAG.getStore(Chain, sdl, Src, FIN, 5330 MachinePointerInfo::getFixedStack(FI), 5331 true, false, 0); 5332 setValue(&I, Res); 5333 DAG.setRoot(Res); 5334 return nullptr; 5335 } 5336 case Intrinsic::objectsize: { 5337 // If we don't know by now, we're never going to know. 5338 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5339 5340 assert(CI && "Non-constant type in __builtin_object_size?"); 5341 5342 SDValue Arg = getValue(I.getCalledValue()); 5343 EVT Ty = Arg.getValueType(); 5344 5345 if (CI->isZero()) 5346 Res = DAG.getConstant(-1ULL, Ty); 5347 else 5348 Res = DAG.getConstant(0, Ty); 5349 5350 setValue(&I, Res); 5351 return nullptr; 5352 } 5353 case Intrinsic::annotation: 5354 case Intrinsic::ptr_annotation: 5355 // Drop the intrinsic, but forward the value 5356 setValue(&I, getValue(I.getOperand(0))); 5357 return nullptr; 5358 case Intrinsic::assume: 5359 case Intrinsic::var_annotation: 5360 // Discard annotate attributes and assumptions 5361 return nullptr; 5362 5363 case Intrinsic::init_trampoline: { 5364 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5365 5366 SDValue Ops[6]; 5367 Ops[0] = getRoot(); 5368 Ops[1] = getValue(I.getArgOperand(0)); 5369 Ops[2] = getValue(I.getArgOperand(1)); 5370 Ops[3] = getValue(I.getArgOperand(2)); 5371 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5372 Ops[5] = DAG.getSrcValue(F); 5373 5374 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5375 5376 DAG.setRoot(Res); 5377 return nullptr; 5378 } 5379 case Intrinsic::adjust_trampoline: { 5380 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5381 TLI->getPointerTy(), 5382 getValue(I.getArgOperand(0)))); 5383 return nullptr; 5384 } 5385 case Intrinsic::gcroot: 5386 if (GFI) { 5387 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5388 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5389 5390 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5391 GFI->addStackRoot(FI->getIndex(), TypeMap); 5392 } 5393 return nullptr; 5394 case Intrinsic::gcread: 5395 case Intrinsic::gcwrite: 5396 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5397 case Intrinsic::flt_rounds: 5398 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5399 return nullptr; 5400 5401 case Intrinsic::expect: { 5402 // Just replace __builtin_expect(exp, c) with EXP. 5403 setValue(&I, getValue(I.getArgOperand(0))); 5404 return nullptr; 5405 } 5406 5407 case Intrinsic::debugtrap: 5408 case Intrinsic::trap: { 5409 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5410 if (TrapFuncName.empty()) { 5411 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5412 ISD::TRAP : ISD::DEBUGTRAP; 5413 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5414 return nullptr; 5415 } 5416 TargetLowering::ArgListTy Args; 5417 5418 TargetLowering::CallLoweringInfo CLI(DAG); 5419 CLI.setDebugLoc(sdl).setChain(getRoot()) 5420 .setCallee(CallingConv::C, I.getType(), 5421 DAG.getExternalSymbol(TrapFuncName.data(), TLI->getPointerTy()), 5422 std::move(Args), 0); 5423 5424 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI); 5425 DAG.setRoot(Result.second); 5426 return nullptr; 5427 } 5428 5429 case Intrinsic::uadd_with_overflow: 5430 case Intrinsic::sadd_with_overflow: 5431 case Intrinsic::usub_with_overflow: 5432 case Intrinsic::ssub_with_overflow: 5433 case Intrinsic::umul_with_overflow: 5434 case Intrinsic::smul_with_overflow: { 5435 ISD::NodeType Op; 5436 switch (Intrinsic) { 5437 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5438 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5439 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5440 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5441 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5442 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5443 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5444 } 5445 SDValue Op1 = getValue(I.getArgOperand(0)); 5446 SDValue Op2 = getValue(I.getArgOperand(1)); 5447 5448 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5449 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5450 return nullptr; 5451 } 5452 case Intrinsic::prefetch: { 5453 SDValue Ops[5]; 5454 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5455 Ops[0] = getRoot(); 5456 Ops[1] = getValue(I.getArgOperand(0)); 5457 Ops[2] = getValue(I.getArgOperand(1)); 5458 Ops[3] = getValue(I.getArgOperand(2)); 5459 Ops[4] = getValue(I.getArgOperand(3)); 5460 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5461 DAG.getVTList(MVT::Other), Ops, 5462 EVT::getIntegerVT(*Context, 8), 5463 MachinePointerInfo(I.getArgOperand(0)), 5464 0, /* align */ 5465 false, /* volatile */ 5466 rw==0, /* read */ 5467 rw==1)); /* write */ 5468 return nullptr; 5469 } 5470 case Intrinsic::lifetime_start: 5471 case Intrinsic::lifetime_end: { 5472 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5473 // Stack coloring is not enabled in O0, discard region information. 5474 if (TM.getOptLevel() == CodeGenOpt::None) 5475 return nullptr; 5476 5477 SmallVector<Value *, 4> Allocas; 5478 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5479 5480 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5481 E = Allocas.end(); Object != E; ++Object) { 5482 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5483 5484 // Could not find an Alloca. 5485 if (!LifetimeObject) 5486 continue; 5487 5488 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5489 5490 SDValue Ops[2]; 5491 Ops[0] = getRoot(); 5492 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true); 5493 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5494 5495 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5496 DAG.setRoot(Res); 5497 } 5498 return nullptr; 5499 } 5500 case Intrinsic::invariant_start: 5501 // Discard region information. 5502 setValue(&I, DAG.getUNDEF(TLI->getPointerTy())); 5503 return nullptr; 5504 case Intrinsic::invariant_end: 5505 // Discard region information. 5506 return nullptr; 5507 case Intrinsic::stackprotectorcheck: { 5508 // Do not actually emit anything for this basic block. Instead we initialize 5509 // the stack protector descriptor and export the guard variable so we can 5510 // access it in FinishBasicBlock. 5511 const BasicBlock *BB = I.getParent(); 5512 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5513 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5514 5515 // Flush our exports since we are going to process a terminator. 5516 (void)getControlRoot(); 5517 return nullptr; 5518 } 5519 case Intrinsic::clear_cache: 5520 return TLI->getClearCacheBuiltinName(); 5521 case Intrinsic::donothing: 5522 // ignore 5523 return nullptr; 5524 case Intrinsic::experimental_stackmap: { 5525 visitStackmap(I); 5526 return nullptr; 5527 } 5528 case Intrinsic::experimental_patchpoint_void: 5529 case Intrinsic::experimental_patchpoint_i64: { 5530 visitPatchpoint(I); 5531 return nullptr; 5532 } 5533 } 5534 } 5535 5536 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5537 bool isTailCall, 5538 MachineBasicBlock *LandingPad) { 5539 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5540 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5541 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5542 Type *RetTy = FTy->getReturnType(); 5543 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5544 MCSymbol *BeginLabel = nullptr; 5545 5546 TargetLowering::ArgListTy Args; 5547 TargetLowering::ArgListEntry Entry; 5548 Args.reserve(CS.arg_size()); 5549 5550 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5551 i != e; ++i) { 5552 const Value *V = *i; 5553 5554 // Skip empty types 5555 if (V->getType()->isEmptyTy()) 5556 continue; 5557 5558 SDValue ArgNode = getValue(V); 5559 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5560 5561 // Skip the first return-type Attribute to get to params. 5562 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5563 Args.push_back(Entry); 5564 } 5565 5566 if (LandingPad) { 5567 // Insert a label before the invoke call to mark the try range. This can be 5568 // used to detect deletion of the invoke via the MachineModuleInfo. 5569 BeginLabel = MMI.getContext().CreateTempSymbol(); 5570 5571 // For SjLj, keep track of which landing pads go with which invokes 5572 // so as to maintain the ordering of pads in the LSDA. 5573 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5574 if (CallSiteIndex) { 5575 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5576 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5577 5578 // Now that the call site is handled, stop tracking it. 5579 MMI.setCurrentCallSite(0); 5580 } 5581 5582 // Both PendingLoads and PendingExports must be flushed here; 5583 // this call might not return. 5584 (void)getRoot(); 5585 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5586 } 5587 5588 // Check if target-independent constraints permit a tail call here. 5589 // Target-dependent constraints are checked within TLI->LowerCallTo. 5590 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5591 isTailCall = false; 5592 5593 TargetLowering::CallLoweringInfo CLI(DAG); 5594 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5595 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5596 5597 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI); 5598 assert((isTailCall || Result.second.getNode()) && 5599 "Non-null chain expected with non-tail call!"); 5600 assert((Result.second.getNode() || !Result.first.getNode()) && 5601 "Null value expected with tail call!"); 5602 if (Result.first.getNode()) 5603 setValue(CS.getInstruction(), Result.first); 5604 5605 if (!Result.second.getNode()) { 5606 // As a special case, a null chain means that a tail call has been emitted 5607 // and the DAG root is already updated. 5608 HasTailCall = true; 5609 5610 // Since there's no actual continuation from this block, nothing can be 5611 // relying on us setting vregs for them. 5612 PendingExports.clear(); 5613 } else { 5614 DAG.setRoot(Result.second); 5615 } 5616 5617 if (LandingPad) { 5618 // Insert a label at the end of the invoke call to mark the try range. This 5619 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5620 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5621 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5622 5623 // Inform MachineModuleInfo of range. 5624 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5625 } 5626 } 5627 5628 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5629 /// value is equal or not-equal to zero. 5630 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5631 for (const User *U : V->users()) { 5632 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5633 if (IC->isEquality()) 5634 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5635 if (C->isNullValue()) 5636 continue; 5637 // Unknown instruction. 5638 return false; 5639 } 5640 return true; 5641 } 5642 5643 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5644 Type *LoadTy, 5645 SelectionDAGBuilder &Builder) { 5646 5647 // Check to see if this load can be trivially constant folded, e.g. if the 5648 // input is from a string literal. 5649 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5650 // Cast pointer to the type we really want to load. 5651 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5652 PointerType::getUnqual(LoadTy)); 5653 5654 if (const Constant *LoadCst = 5655 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5656 Builder.DL)) 5657 return Builder.getValue(LoadCst); 5658 } 5659 5660 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5661 // still constant memory, the input chain can be the entry node. 5662 SDValue Root; 5663 bool ConstantMemory = false; 5664 5665 // Do not serialize (non-volatile) loads of constant memory with anything. 5666 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5667 Root = Builder.DAG.getEntryNode(); 5668 ConstantMemory = true; 5669 } else { 5670 // Do not serialize non-volatile loads against each other. 5671 Root = Builder.DAG.getRoot(); 5672 } 5673 5674 SDValue Ptr = Builder.getValue(PtrVal); 5675 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5676 Ptr, MachinePointerInfo(PtrVal), 5677 false /*volatile*/, 5678 false /*nontemporal*/, 5679 false /*isinvariant*/, 1 /* align=1 */); 5680 5681 if (!ConstantMemory) 5682 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5683 return LoadVal; 5684 } 5685 5686 /// processIntegerCallValue - Record the value for an instruction that 5687 /// produces an integer result, converting the type where necessary. 5688 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5689 SDValue Value, 5690 bool IsSigned) { 5691 EVT VT = TM.getSubtargetImpl()->getTargetLowering()->getValueType(I.getType(), 5692 true); 5693 if (IsSigned) 5694 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5695 else 5696 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5697 setValue(&I, Value); 5698 } 5699 5700 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5701 /// If so, return true and lower it, otherwise return false and it will be 5702 /// lowered like a normal call. 5703 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5704 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5705 if (I.getNumArgOperands() != 3) 5706 return false; 5707 5708 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5709 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5710 !I.getArgOperand(2)->getType()->isIntegerTy() || 5711 !I.getType()->isIntegerTy()) 5712 return false; 5713 5714 const Value *Size = I.getArgOperand(2); 5715 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5716 if (CSize && CSize->getZExtValue() == 0) { 5717 EVT CallVT = TM.getSubtargetImpl()->getTargetLowering()->getValueType( 5718 I.getType(), true); 5719 setValue(&I, DAG.getConstant(0, CallVT)); 5720 return true; 5721 } 5722 5723 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5724 std::pair<SDValue, SDValue> Res = 5725 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5726 getValue(LHS), getValue(RHS), getValue(Size), 5727 MachinePointerInfo(LHS), 5728 MachinePointerInfo(RHS)); 5729 if (Res.first.getNode()) { 5730 processIntegerCallValue(I, Res.first, true); 5731 PendingLoads.push_back(Res.second); 5732 return true; 5733 } 5734 5735 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5736 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5737 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5738 bool ActuallyDoIt = true; 5739 MVT LoadVT; 5740 Type *LoadTy; 5741 switch (CSize->getZExtValue()) { 5742 default: 5743 LoadVT = MVT::Other; 5744 LoadTy = nullptr; 5745 ActuallyDoIt = false; 5746 break; 5747 case 2: 5748 LoadVT = MVT::i16; 5749 LoadTy = Type::getInt16Ty(CSize->getContext()); 5750 break; 5751 case 4: 5752 LoadVT = MVT::i32; 5753 LoadTy = Type::getInt32Ty(CSize->getContext()); 5754 break; 5755 case 8: 5756 LoadVT = MVT::i64; 5757 LoadTy = Type::getInt64Ty(CSize->getContext()); 5758 break; 5759 /* 5760 case 16: 5761 LoadVT = MVT::v4i32; 5762 LoadTy = Type::getInt32Ty(CSize->getContext()); 5763 LoadTy = VectorType::get(LoadTy, 4); 5764 break; 5765 */ 5766 } 5767 5768 // This turns into unaligned loads. We only do this if the target natively 5769 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5770 // we'll only produce a small number of byte loads. 5771 5772 // Require that we can find a legal MVT, and only do this if the target 5773 // supports unaligned loads of that type. Expanding into byte loads would 5774 // bloat the code. 5775 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 5776 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5777 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5778 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5779 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5780 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5781 // TODO: Check alignment of src and dest ptrs. 5782 if (!TLI->isTypeLegal(LoadVT) || 5783 !TLI->allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5784 !TLI->allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5785 ActuallyDoIt = false; 5786 } 5787 5788 if (ActuallyDoIt) { 5789 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5790 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5791 5792 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5793 ISD::SETNE); 5794 processIntegerCallValue(I, Res, false); 5795 return true; 5796 } 5797 } 5798 5799 5800 return false; 5801 } 5802 5803 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5804 /// form. If so, return true and lower it, otherwise return false and it 5805 /// will be lowered like a normal call. 5806 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5807 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5808 if (I.getNumArgOperands() != 3) 5809 return false; 5810 5811 const Value *Src = I.getArgOperand(0); 5812 const Value *Char = I.getArgOperand(1); 5813 const Value *Length = I.getArgOperand(2); 5814 if (!Src->getType()->isPointerTy() || 5815 !Char->getType()->isIntegerTy() || 5816 !Length->getType()->isIntegerTy() || 5817 !I.getType()->isPointerTy()) 5818 return false; 5819 5820 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5821 std::pair<SDValue, SDValue> Res = 5822 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5823 getValue(Src), getValue(Char), getValue(Length), 5824 MachinePointerInfo(Src)); 5825 if (Res.first.getNode()) { 5826 setValue(&I, Res.first); 5827 PendingLoads.push_back(Res.second); 5828 return true; 5829 } 5830 5831 return false; 5832 } 5833 5834 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5835 /// optimized form. If so, return true and lower it, otherwise return false 5836 /// and it will be lowered like a normal call. 5837 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5838 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5839 if (I.getNumArgOperands() != 2) 5840 return false; 5841 5842 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5843 if (!Arg0->getType()->isPointerTy() || 5844 !Arg1->getType()->isPointerTy() || 5845 !I.getType()->isPointerTy()) 5846 return false; 5847 5848 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5849 std::pair<SDValue, SDValue> Res = 5850 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5851 getValue(Arg0), getValue(Arg1), 5852 MachinePointerInfo(Arg0), 5853 MachinePointerInfo(Arg1), isStpcpy); 5854 if (Res.first.getNode()) { 5855 setValue(&I, Res.first); 5856 DAG.setRoot(Res.second); 5857 return true; 5858 } 5859 5860 return false; 5861 } 5862 5863 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5864 /// If so, return true and lower it, otherwise return false and it will be 5865 /// lowered like a normal call. 5866 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5867 // Verify that the prototype makes sense. int strcmp(void*,void*) 5868 if (I.getNumArgOperands() != 2) 5869 return false; 5870 5871 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5872 if (!Arg0->getType()->isPointerTy() || 5873 !Arg1->getType()->isPointerTy() || 5874 !I.getType()->isIntegerTy()) 5875 return false; 5876 5877 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5878 std::pair<SDValue, SDValue> Res = 5879 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5880 getValue(Arg0), getValue(Arg1), 5881 MachinePointerInfo(Arg0), 5882 MachinePointerInfo(Arg1)); 5883 if (Res.first.getNode()) { 5884 processIntegerCallValue(I, Res.first, true); 5885 PendingLoads.push_back(Res.second); 5886 return true; 5887 } 5888 5889 return false; 5890 } 5891 5892 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5893 /// form. If so, return true and lower it, otherwise return false and it 5894 /// will be lowered like a normal call. 5895 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5896 // Verify that the prototype makes sense. size_t strlen(char *) 5897 if (I.getNumArgOperands() != 1) 5898 return false; 5899 5900 const Value *Arg0 = I.getArgOperand(0); 5901 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5902 return false; 5903 5904 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5905 std::pair<SDValue, SDValue> Res = 5906 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5907 getValue(Arg0), MachinePointerInfo(Arg0)); 5908 if (Res.first.getNode()) { 5909 processIntegerCallValue(I, Res.first, false); 5910 PendingLoads.push_back(Res.second); 5911 return true; 5912 } 5913 5914 return false; 5915 } 5916 5917 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5918 /// form. If so, return true and lower it, otherwise return false and it 5919 /// will be lowered like a normal call. 5920 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5921 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5922 if (I.getNumArgOperands() != 2) 5923 return false; 5924 5925 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5926 if (!Arg0->getType()->isPointerTy() || 5927 !Arg1->getType()->isIntegerTy() || 5928 !I.getType()->isIntegerTy()) 5929 return false; 5930 5931 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5932 std::pair<SDValue, SDValue> Res = 5933 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5934 getValue(Arg0), getValue(Arg1), 5935 MachinePointerInfo(Arg0)); 5936 if (Res.first.getNode()) { 5937 processIntegerCallValue(I, Res.first, false); 5938 PendingLoads.push_back(Res.second); 5939 return true; 5940 } 5941 5942 return false; 5943 } 5944 5945 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5946 /// operation (as expected), translate it to an SDNode with the specified opcode 5947 /// and return true. 5948 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5949 unsigned Opcode) { 5950 // Sanity check that it really is a unary floating-point call. 5951 if (I.getNumArgOperands() != 1 || 5952 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5953 I.getType() != I.getArgOperand(0)->getType() || 5954 !I.onlyReadsMemory()) 5955 return false; 5956 5957 SDValue Tmp = getValue(I.getArgOperand(0)); 5958 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5959 return true; 5960 } 5961 5962 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5963 // Handle inline assembly differently. 5964 if (isa<InlineAsm>(I.getCalledValue())) { 5965 visitInlineAsm(&I); 5966 return; 5967 } 5968 5969 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5970 ComputeUsesVAFloatArgument(I, &MMI); 5971 5972 const char *RenameFn = nullptr; 5973 if (Function *F = I.getCalledFunction()) { 5974 if (F->isDeclaration()) { 5975 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5976 if (unsigned IID = II->getIntrinsicID(F)) { 5977 RenameFn = visitIntrinsicCall(I, IID); 5978 if (!RenameFn) 5979 return; 5980 } 5981 } 5982 if (unsigned IID = F->getIntrinsicID()) { 5983 RenameFn = visitIntrinsicCall(I, IID); 5984 if (!RenameFn) 5985 return; 5986 } 5987 } 5988 5989 // Check for well-known libc/libm calls. If the function is internal, it 5990 // can't be a library call. 5991 LibFunc::Func Func; 5992 if (!F->hasLocalLinkage() && F->hasName() && 5993 LibInfo->getLibFunc(F->getName(), Func) && 5994 LibInfo->hasOptimizedCodeGen(Func)) { 5995 switch (Func) { 5996 default: break; 5997 case LibFunc::copysign: 5998 case LibFunc::copysignf: 5999 case LibFunc::copysignl: 6000 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 6001 I.getArgOperand(0)->getType()->isFloatingPointTy() && 6002 I.getType() == I.getArgOperand(0)->getType() && 6003 I.getType() == I.getArgOperand(1)->getType() && 6004 I.onlyReadsMemory()) { 6005 SDValue LHS = getValue(I.getArgOperand(0)); 6006 SDValue RHS = getValue(I.getArgOperand(1)); 6007 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6008 LHS.getValueType(), LHS, RHS)); 6009 return; 6010 } 6011 break; 6012 case LibFunc::fabs: 6013 case LibFunc::fabsf: 6014 case LibFunc::fabsl: 6015 if (visitUnaryFloatCall(I, ISD::FABS)) 6016 return; 6017 break; 6018 case LibFunc::sin: 6019 case LibFunc::sinf: 6020 case LibFunc::sinl: 6021 if (visitUnaryFloatCall(I, ISD::FSIN)) 6022 return; 6023 break; 6024 case LibFunc::cos: 6025 case LibFunc::cosf: 6026 case LibFunc::cosl: 6027 if (visitUnaryFloatCall(I, ISD::FCOS)) 6028 return; 6029 break; 6030 case LibFunc::sqrt: 6031 case LibFunc::sqrtf: 6032 case LibFunc::sqrtl: 6033 case LibFunc::sqrt_finite: 6034 case LibFunc::sqrtf_finite: 6035 case LibFunc::sqrtl_finite: 6036 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6037 return; 6038 break; 6039 case LibFunc::floor: 6040 case LibFunc::floorf: 6041 case LibFunc::floorl: 6042 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6043 return; 6044 break; 6045 case LibFunc::nearbyint: 6046 case LibFunc::nearbyintf: 6047 case LibFunc::nearbyintl: 6048 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6049 return; 6050 break; 6051 case LibFunc::ceil: 6052 case LibFunc::ceilf: 6053 case LibFunc::ceill: 6054 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6055 return; 6056 break; 6057 case LibFunc::rint: 6058 case LibFunc::rintf: 6059 case LibFunc::rintl: 6060 if (visitUnaryFloatCall(I, ISD::FRINT)) 6061 return; 6062 break; 6063 case LibFunc::round: 6064 case LibFunc::roundf: 6065 case LibFunc::roundl: 6066 if (visitUnaryFloatCall(I, ISD::FROUND)) 6067 return; 6068 break; 6069 case LibFunc::trunc: 6070 case LibFunc::truncf: 6071 case LibFunc::truncl: 6072 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6073 return; 6074 break; 6075 case LibFunc::log2: 6076 case LibFunc::log2f: 6077 case LibFunc::log2l: 6078 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6079 return; 6080 break; 6081 case LibFunc::exp2: 6082 case LibFunc::exp2f: 6083 case LibFunc::exp2l: 6084 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6085 return; 6086 break; 6087 case LibFunc::memcmp: 6088 if (visitMemCmpCall(I)) 6089 return; 6090 break; 6091 case LibFunc::memchr: 6092 if (visitMemChrCall(I)) 6093 return; 6094 break; 6095 case LibFunc::strcpy: 6096 if (visitStrCpyCall(I, false)) 6097 return; 6098 break; 6099 case LibFunc::stpcpy: 6100 if (visitStrCpyCall(I, true)) 6101 return; 6102 break; 6103 case LibFunc::strcmp: 6104 if (visitStrCmpCall(I)) 6105 return; 6106 break; 6107 case LibFunc::strlen: 6108 if (visitStrLenCall(I)) 6109 return; 6110 break; 6111 case LibFunc::strnlen: 6112 if (visitStrNLenCall(I)) 6113 return; 6114 break; 6115 } 6116 } 6117 } 6118 6119 SDValue Callee; 6120 if (!RenameFn) 6121 Callee = getValue(I.getCalledValue()); 6122 else 6123 Callee = DAG.getExternalSymbol( 6124 RenameFn, TM.getSubtargetImpl()->getTargetLowering()->getPointerTy()); 6125 6126 // Check if we can potentially perform a tail call. More detailed checking is 6127 // be done within LowerCallTo, after more information about the call is known. 6128 LowerCallTo(&I, Callee, I.isTailCall()); 6129 } 6130 6131 namespace { 6132 6133 /// AsmOperandInfo - This contains information for each constraint that we are 6134 /// lowering. 6135 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6136 public: 6137 /// CallOperand - If this is the result output operand or a clobber 6138 /// this is null, otherwise it is the incoming operand to the CallInst. 6139 /// This gets modified as the asm is processed. 6140 SDValue CallOperand; 6141 6142 /// AssignedRegs - If this is a register or register class operand, this 6143 /// contains the set of register corresponding to the operand. 6144 RegsForValue AssignedRegs; 6145 6146 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6147 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6148 } 6149 6150 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6151 /// corresponds to. If there is no Value* for this operand, it returns 6152 /// MVT::Other. 6153 EVT getCallOperandValEVT(LLVMContext &Context, 6154 const TargetLowering &TLI, 6155 const DataLayout *DL) const { 6156 if (!CallOperandVal) return MVT::Other; 6157 6158 if (isa<BasicBlock>(CallOperandVal)) 6159 return TLI.getPointerTy(); 6160 6161 llvm::Type *OpTy = CallOperandVal->getType(); 6162 6163 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6164 // If this is an indirect operand, the operand is a pointer to the 6165 // accessed type. 6166 if (isIndirect) { 6167 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6168 if (!PtrTy) 6169 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6170 OpTy = PtrTy->getElementType(); 6171 } 6172 6173 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6174 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6175 if (STy->getNumElements() == 1) 6176 OpTy = STy->getElementType(0); 6177 6178 // If OpTy is not a single value, it may be a struct/union that we 6179 // can tile with integers. 6180 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6181 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6182 switch (BitSize) { 6183 default: break; 6184 case 1: 6185 case 8: 6186 case 16: 6187 case 32: 6188 case 64: 6189 case 128: 6190 OpTy = IntegerType::get(Context, BitSize); 6191 break; 6192 } 6193 } 6194 6195 return TLI.getValueType(OpTy, true); 6196 } 6197 }; 6198 6199 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6200 6201 } // end anonymous namespace 6202 6203 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6204 /// specified operand. We prefer to assign virtual registers, to allow the 6205 /// register allocator to handle the assignment process. However, if the asm 6206 /// uses features that we can't model on machineinstrs, we have SDISel do the 6207 /// allocation. This produces generally horrible, but correct, code. 6208 /// 6209 /// OpInfo describes the operand. 6210 /// 6211 static void GetRegistersForValue(SelectionDAG &DAG, 6212 const TargetLowering &TLI, 6213 SDLoc DL, 6214 SDISelAsmOperandInfo &OpInfo) { 6215 LLVMContext &Context = *DAG.getContext(); 6216 6217 MachineFunction &MF = DAG.getMachineFunction(); 6218 SmallVector<unsigned, 4> Regs; 6219 6220 // If this is a constraint for a single physreg, or a constraint for a 6221 // register class, find it. 6222 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6223 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6224 OpInfo.ConstraintVT); 6225 6226 unsigned NumRegs = 1; 6227 if (OpInfo.ConstraintVT != MVT::Other) { 6228 // If this is a FP input in an integer register (or visa versa) insert a bit 6229 // cast of the input value. More generally, handle any case where the input 6230 // value disagrees with the register class we plan to stick this in. 6231 if (OpInfo.Type == InlineAsm::isInput && 6232 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6233 // Try to convert to the first EVT that the reg class contains. If the 6234 // types are identical size, use a bitcast to convert (e.g. two differing 6235 // vector types). 6236 MVT RegVT = *PhysReg.second->vt_begin(); 6237 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6238 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6239 RegVT, OpInfo.CallOperand); 6240 OpInfo.ConstraintVT = RegVT; 6241 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6242 // If the input is a FP value and we want it in FP registers, do a 6243 // bitcast to the corresponding integer type. This turns an f64 value 6244 // into i64, which can be passed with two i32 values on a 32-bit 6245 // machine. 6246 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6247 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6248 RegVT, OpInfo.CallOperand); 6249 OpInfo.ConstraintVT = RegVT; 6250 } 6251 } 6252 6253 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6254 } 6255 6256 MVT RegVT; 6257 EVT ValueVT = OpInfo.ConstraintVT; 6258 6259 // If this is a constraint for a specific physical register, like {r17}, 6260 // assign it now. 6261 if (unsigned AssignedReg = PhysReg.first) { 6262 const TargetRegisterClass *RC = PhysReg.second; 6263 if (OpInfo.ConstraintVT == MVT::Other) 6264 ValueVT = *RC->vt_begin(); 6265 6266 // Get the actual register value type. This is important, because the user 6267 // may have asked for (e.g.) the AX register in i32 type. We need to 6268 // remember that AX is actually i16 to get the right extension. 6269 RegVT = *RC->vt_begin(); 6270 6271 // This is a explicit reference to a physical register. 6272 Regs.push_back(AssignedReg); 6273 6274 // If this is an expanded reference, add the rest of the regs to Regs. 6275 if (NumRegs != 1) { 6276 TargetRegisterClass::iterator I = RC->begin(); 6277 for (; *I != AssignedReg; ++I) 6278 assert(I != RC->end() && "Didn't find reg!"); 6279 6280 // Already added the first reg. 6281 --NumRegs; ++I; 6282 for (; NumRegs; --NumRegs, ++I) { 6283 assert(I != RC->end() && "Ran out of registers to allocate!"); 6284 Regs.push_back(*I); 6285 } 6286 } 6287 6288 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6289 return; 6290 } 6291 6292 // Otherwise, if this was a reference to an LLVM register class, create vregs 6293 // for this reference. 6294 if (const TargetRegisterClass *RC = PhysReg.second) { 6295 RegVT = *RC->vt_begin(); 6296 if (OpInfo.ConstraintVT == MVT::Other) 6297 ValueVT = RegVT; 6298 6299 // Create the appropriate number of virtual registers. 6300 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6301 for (; NumRegs; --NumRegs) 6302 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6303 6304 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6305 return; 6306 } 6307 6308 // Otherwise, we couldn't allocate enough registers for this. 6309 } 6310 6311 /// visitInlineAsm - Handle a call to an InlineAsm object. 6312 /// 6313 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6314 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6315 6316 /// ConstraintOperands - Information about all of the constraints. 6317 SDISelAsmOperandInfoVector ConstraintOperands; 6318 6319 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6320 TargetLowering::AsmOperandInfoVector 6321 TargetConstraints = TLI->ParseConstraints(CS); 6322 6323 bool hasMemory = false; 6324 6325 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6326 unsigned ResNo = 0; // ResNo - The result number of the next output. 6327 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6328 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6329 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6330 6331 MVT OpVT = MVT::Other; 6332 6333 // Compute the value type for each operand. 6334 switch (OpInfo.Type) { 6335 case InlineAsm::isOutput: 6336 // Indirect outputs just consume an argument. 6337 if (OpInfo.isIndirect) { 6338 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6339 break; 6340 } 6341 6342 // The return value of the call is this value. As such, there is no 6343 // corresponding argument. 6344 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6345 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6346 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo)); 6347 } else { 6348 assert(ResNo == 0 && "Asm only has one result!"); 6349 OpVT = TLI->getSimpleValueType(CS.getType()); 6350 } 6351 ++ResNo; 6352 break; 6353 case InlineAsm::isInput: 6354 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6355 break; 6356 case InlineAsm::isClobber: 6357 // Nothing to do. 6358 break; 6359 } 6360 6361 // If this is an input or an indirect output, process the call argument. 6362 // BasicBlocks are labels, currently appearing only in asm's. 6363 if (OpInfo.CallOperandVal) { 6364 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6365 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6366 } else { 6367 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6368 } 6369 6370 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, DL). 6371 getSimpleVT(); 6372 } 6373 6374 OpInfo.ConstraintVT = OpVT; 6375 6376 // Indirect operand accesses access memory. 6377 if (OpInfo.isIndirect) 6378 hasMemory = true; 6379 else { 6380 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6381 TargetLowering::ConstraintType 6382 CType = TLI->getConstraintType(OpInfo.Codes[j]); 6383 if (CType == TargetLowering::C_Memory) { 6384 hasMemory = true; 6385 break; 6386 } 6387 } 6388 } 6389 } 6390 6391 SDValue Chain, Flag; 6392 6393 // We won't need to flush pending loads if this asm doesn't touch 6394 // memory and is nonvolatile. 6395 if (hasMemory || IA->hasSideEffects()) 6396 Chain = getRoot(); 6397 else 6398 Chain = DAG.getRoot(); 6399 6400 // Second pass over the constraints: compute which constraint option to use 6401 // and assign registers to constraints that want a specific physreg. 6402 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6403 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6404 6405 // If this is an output operand with a matching input operand, look up the 6406 // matching input. If their types mismatch, e.g. one is an integer, the 6407 // other is floating point, or their sizes are different, flag it as an 6408 // error. 6409 if (OpInfo.hasMatchingInput()) { 6410 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6411 6412 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6413 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6414 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6415 OpInfo.ConstraintVT); 6416 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6417 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode, 6418 Input.ConstraintVT); 6419 if ((OpInfo.ConstraintVT.isInteger() != 6420 Input.ConstraintVT.isInteger()) || 6421 (MatchRC.second != InputRC.second)) { 6422 report_fatal_error("Unsupported asm: input constraint" 6423 " with a matching output constraint of" 6424 " incompatible type!"); 6425 } 6426 Input.ConstraintVT = OpInfo.ConstraintVT; 6427 } 6428 } 6429 6430 // Compute the constraint code and ConstraintType to use. 6431 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6432 6433 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6434 OpInfo.Type == InlineAsm::isClobber) 6435 continue; 6436 6437 // If this is a memory input, and if the operand is not indirect, do what we 6438 // need to to provide an address for the memory input. 6439 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6440 !OpInfo.isIndirect) { 6441 assert((OpInfo.isMultipleAlternative || 6442 (OpInfo.Type == InlineAsm::isInput)) && 6443 "Can only indirectify direct input operands!"); 6444 6445 // Memory operands really want the address of the value. If we don't have 6446 // an indirect input, put it in the constpool if we can, otherwise spill 6447 // it to a stack slot. 6448 // TODO: This isn't quite right. We need to handle these according to 6449 // the addressing mode that the constraint wants. Also, this may take 6450 // an additional register for the computation and we don't want that 6451 // either. 6452 6453 // If the operand is a float, integer, or vector constant, spill to a 6454 // constant pool entry to get its address. 6455 const Value *OpVal = OpInfo.CallOperandVal; 6456 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6457 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6458 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6459 TLI->getPointerTy()); 6460 } else { 6461 // Otherwise, create a stack slot and emit a store to it before the 6462 // asm. 6463 Type *Ty = OpVal->getType(); 6464 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty); 6465 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty); 6466 MachineFunction &MF = DAG.getMachineFunction(); 6467 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6468 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy()); 6469 Chain = DAG.getStore(Chain, getCurSDLoc(), 6470 OpInfo.CallOperand, StackSlot, 6471 MachinePointerInfo::getFixedStack(SSFI), 6472 false, false, 0); 6473 OpInfo.CallOperand = StackSlot; 6474 } 6475 6476 // There is no longer a Value* corresponding to this operand. 6477 OpInfo.CallOperandVal = nullptr; 6478 6479 // It is now an indirect operand. 6480 OpInfo.isIndirect = true; 6481 } 6482 6483 // If this constraint is for a specific register, allocate it before 6484 // anything else. 6485 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6486 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6487 } 6488 6489 // Second pass - Loop over all of the operands, assigning virtual or physregs 6490 // to register class operands. 6491 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6492 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6493 6494 // C_Register operands have already been allocated, Other/Memory don't need 6495 // to be. 6496 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6497 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo); 6498 } 6499 6500 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6501 std::vector<SDValue> AsmNodeOperands; 6502 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6503 AsmNodeOperands.push_back( 6504 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6505 TLI->getPointerTy())); 6506 6507 // If we have a !srcloc metadata node associated with it, we want to attach 6508 // this to the ultimately generated inline asm machineinstr. To do this, we 6509 // pass in the third operand as this (potentially null) inline asm MDNode. 6510 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6511 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6512 6513 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6514 // bits as operand 3. 6515 unsigned ExtraInfo = 0; 6516 if (IA->hasSideEffects()) 6517 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6518 if (IA->isAlignStack()) 6519 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6520 // Set the asm dialect. 6521 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6522 6523 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6524 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6525 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6526 6527 // Compute the constraint code and ConstraintType to use. 6528 TLI->ComputeConstraintToUse(OpInfo, SDValue()); 6529 6530 // Ideally, we would only check against memory constraints. However, the 6531 // meaning of an other constraint can be target-specific and we can't easily 6532 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6533 // for other constriants as well. 6534 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6535 OpInfo.ConstraintType == TargetLowering::C_Other) { 6536 if (OpInfo.Type == InlineAsm::isInput) 6537 ExtraInfo |= InlineAsm::Extra_MayLoad; 6538 else if (OpInfo.Type == InlineAsm::isOutput) 6539 ExtraInfo |= InlineAsm::Extra_MayStore; 6540 else if (OpInfo.Type == InlineAsm::isClobber) 6541 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6542 } 6543 } 6544 6545 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6546 TLI->getPointerTy())); 6547 6548 // Loop over all of the inputs, copying the operand values into the 6549 // appropriate registers and processing the output regs. 6550 RegsForValue RetValRegs; 6551 6552 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6553 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6554 6555 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6556 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6557 6558 switch (OpInfo.Type) { 6559 case InlineAsm::isOutput: { 6560 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6561 OpInfo.ConstraintType != TargetLowering::C_Register) { 6562 // Memory output, or 'other' output (e.g. 'X' constraint). 6563 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6564 6565 // Add information to the INLINEASM node to know about this output. 6566 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6567 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6568 TLI->getPointerTy())); 6569 AsmNodeOperands.push_back(OpInfo.CallOperand); 6570 break; 6571 } 6572 6573 // Otherwise, this is a register or register class output. 6574 6575 // Copy the output from the appropriate register. Find a register that 6576 // we can use. 6577 if (OpInfo.AssignedRegs.Regs.empty()) { 6578 LLVMContext &Ctx = *DAG.getContext(); 6579 Ctx.emitError(CS.getInstruction(), 6580 "couldn't allocate output register for constraint '" + 6581 Twine(OpInfo.ConstraintCode) + "'"); 6582 return; 6583 } 6584 6585 // If this is an indirect operand, store through the pointer after the 6586 // asm. 6587 if (OpInfo.isIndirect) { 6588 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6589 OpInfo.CallOperandVal)); 6590 } else { 6591 // This is the result value of the call. 6592 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6593 // Concatenate this output onto the outputs list. 6594 RetValRegs.append(OpInfo.AssignedRegs); 6595 } 6596 6597 // Add information to the INLINEASM node to know that this register is 6598 // set. 6599 OpInfo.AssignedRegs 6600 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6601 ? InlineAsm::Kind_RegDefEarlyClobber 6602 : InlineAsm::Kind_RegDef, 6603 false, 0, DAG, AsmNodeOperands); 6604 break; 6605 } 6606 case InlineAsm::isInput: { 6607 SDValue InOperandVal = OpInfo.CallOperand; 6608 6609 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6610 // If this is required to match an output register we have already set, 6611 // just use its register. 6612 unsigned OperandNo = OpInfo.getMatchedOperand(); 6613 6614 // Scan until we find the definition we already emitted of this operand. 6615 // When we find it, create a RegsForValue operand. 6616 unsigned CurOp = InlineAsm::Op_FirstOperand; 6617 for (; OperandNo; --OperandNo) { 6618 // Advance to the next operand. 6619 unsigned OpFlag = 6620 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6621 assert((InlineAsm::isRegDefKind(OpFlag) || 6622 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6623 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6624 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6625 } 6626 6627 unsigned OpFlag = 6628 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6629 if (InlineAsm::isRegDefKind(OpFlag) || 6630 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6631 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6632 if (OpInfo.isIndirect) { 6633 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6634 LLVMContext &Ctx = *DAG.getContext(); 6635 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6636 " don't know how to handle tied " 6637 "indirect register inputs"); 6638 return; 6639 } 6640 6641 RegsForValue MatchedRegs; 6642 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6643 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6644 MatchedRegs.RegVTs.push_back(RegVT); 6645 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6646 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6647 i != e; ++i) { 6648 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT)) 6649 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6650 else { 6651 LLVMContext &Ctx = *DAG.getContext(); 6652 Ctx.emitError(CS.getInstruction(), 6653 "inline asm error: This value" 6654 " type register class is not natively supported!"); 6655 return; 6656 } 6657 } 6658 // Use the produced MatchedRegs object to 6659 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6660 Chain, &Flag, CS.getInstruction()); 6661 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6662 true, OpInfo.getMatchedOperand(), 6663 DAG, AsmNodeOperands); 6664 break; 6665 } 6666 6667 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6668 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6669 "Unexpected number of operands"); 6670 // Add information to the INLINEASM node to know about this input. 6671 // See InlineAsm.h isUseOperandTiedToDef. 6672 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6673 OpInfo.getMatchedOperand()); 6674 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6675 TLI->getPointerTy())); 6676 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6677 break; 6678 } 6679 6680 // Treat indirect 'X' constraint as memory. 6681 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6682 OpInfo.isIndirect) 6683 OpInfo.ConstraintType = TargetLowering::C_Memory; 6684 6685 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6686 std::vector<SDValue> Ops; 6687 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6688 Ops, DAG); 6689 if (Ops.empty()) { 6690 LLVMContext &Ctx = *DAG.getContext(); 6691 Ctx.emitError(CS.getInstruction(), 6692 "invalid operand for inline asm constraint '" + 6693 Twine(OpInfo.ConstraintCode) + "'"); 6694 return; 6695 } 6696 6697 // Add information to the INLINEASM node to know about this input. 6698 unsigned ResOpType = 6699 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6700 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6701 TLI->getPointerTy())); 6702 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6703 break; 6704 } 6705 6706 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6707 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6708 assert(InOperandVal.getValueType() == TLI->getPointerTy() && 6709 "Memory operands expect pointer values"); 6710 6711 // Add information to the INLINEASM node to know about this input. 6712 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6713 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6714 TLI->getPointerTy())); 6715 AsmNodeOperands.push_back(InOperandVal); 6716 break; 6717 } 6718 6719 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6720 OpInfo.ConstraintType == TargetLowering::C_Register) && 6721 "Unknown constraint type!"); 6722 6723 // TODO: Support this. 6724 if (OpInfo.isIndirect) { 6725 LLVMContext &Ctx = *DAG.getContext(); 6726 Ctx.emitError(CS.getInstruction(), 6727 "Don't know how to handle indirect register inputs yet " 6728 "for constraint '" + 6729 Twine(OpInfo.ConstraintCode) + "'"); 6730 return; 6731 } 6732 6733 // Copy the input into the appropriate registers. 6734 if (OpInfo.AssignedRegs.Regs.empty()) { 6735 LLVMContext &Ctx = *DAG.getContext(); 6736 Ctx.emitError(CS.getInstruction(), 6737 "couldn't allocate input reg for constraint '" + 6738 Twine(OpInfo.ConstraintCode) + "'"); 6739 return; 6740 } 6741 6742 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6743 Chain, &Flag, CS.getInstruction()); 6744 6745 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6746 DAG, AsmNodeOperands); 6747 break; 6748 } 6749 case InlineAsm::isClobber: { 6750 // Add the clobbered value to the operand list, so that the register 6751 // allocator is aware that the physreg got clobbered. 6752 if (!OpInfo.AssignedRegs.Regs.empty()) 6753 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6754 false, 0, DAG, 6755 AsmNodeOperands); 6756 break; 6757 } 6758 } 6759 } 6760 6761 // Finish up input operands. Set the input chain and add the flag last. 6762 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6763 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6764 6765 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6766 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6767 Flag = Chain.getValue(1); 6768 6769 // If this asm returns a register value, copy the result from that register 6770 // and set it as the value of the call. 6771 if (!RetValRegs.Regs.empty()) { 6772 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6773 Chain, &Flag, CS.getInstruction()); 6774 6775 // FIXME: Why don't we do this for inline asms with MRVs? 6776 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6777 EVT ResultType = TLI->getValueType(CS.getType()); 6778 6779 // If any of the results of the inline asm is a vector, it may have the 6780 // wrong width/num elts. This can happen for register classes that can 6781 // contain multiple different value types. The preg or vreg allocated may 6782 // not have the same VT as was expected. Convert it to the right type 6783 // with bit_convert. 6784 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6785 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6786 ResultType, Val); 6787 6788 } else if (ResultType != Val.getValueType() && 6789 ResultType.isInteger() && Val.getValueType().isInteger()) { 6790 // If a result value was tied to an input value, the computed result may 6791 // have a wider width than the expected result. Extract the relevant 6792 // portion. 6793 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6794 } 6795 6796 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6797 } 6798 6799 setValue(CS.getInstruction(), Val); 6800 // Don't need to use this as a chain in this case. 6801 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6802 return; 6803 } 6804 6805 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6806 6807 // Process indirect outputs, first output all of the flagged copies out of 6808 // physregs. 6809 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6810 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6811 const Value *Ptr = IndirectStoresToEmit[i].second; 6812 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6813 Chain, &Flag, IA); 6814 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6815 } 6816 6817 // Emit the non-flagged stores from the physregs. 6818 SmallVector<SDValue, 8> OutChains; 6819 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6820 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6821 StoresToEmit[i].first, 6822 getValue(StoresToEmit[i].second), 6823 MachinePointerInfo(StoresToEmit[i].second), 6824 false, false, 0); 6825 OutChains.push_back(Val); 6826 } 6827 6828 if (!OutChains.empty()) 6829 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6830 6831 DAG.setRoot(Chain); 6832 } 6833 6834 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6835 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6836 MVT::Other, getRoot(), 6837 getValue(I.getArgOperand(0)), 6838 DAG.getSrcValue(I.getArgOperand(0)))); 6839 } 6840 6841 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6842 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6843 const DataLayout &DL = *TLI->getDataLayout(); 6844 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(), 6845 getRoot(), getValue(I.getOperand(0)), 6846 DAG.getSrcValue(I.getOperand(0)), 6847 DL.getABITypeAlignment(I.getType())); 6848 setValue(&I, V); 6849 DAG.setRoot(V.getValue(1)); 6850 } 6851 6852 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6853 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6854 MVT::Other, getRoot(), 6855 getValue(I.getArgOperand(0)), 6856 DAG.getSrcValue(I.getArgOperand(0)))); 6857 } 6858 6859 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6860 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6861 MVT::Other, getRoot(), 6862 getValue(I.getArgOperand(0)), 6863 getValue(I.getArgOperand(1)), 6864 DAG.getSrcValue(I.getArgOperand(0)), 6865 DAG.getSrcValue(I.getArgOperand(1)))); 6866 } 6867 6868 /// \brief Lower an argument list according to the target calling convention. 6869 /// 6870 /// \return A tuple of <return-value, token-chain> 6871 /// 6872 /// This is a helper for lowering intrinsics that follow a target calling 6873 /// convention or require stack pointer adjustment. Only a subset of the 6874 /// intrinsic's operands need to participate in the calling convention. 6875 std::pair<SDValue, SDValue> 6876 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6877 unsigned NumArgs, SDValue Callee, 6878 bool useVoidTy) { 6879 TargetLowering::ArgListTy Args; 6880 Args.reserve(NumArgs); 6881 6882 // Populate the argument list. 6883 // Attributes for args start at offset 1, after the return attribute. 6884 ImmutableCallSite CS(&CI); 6885 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6886 ArgI != ArgE; ++ArgI) { 6887 const Value *V = CI.getOperand(ArgI); 6888 6889 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6890 6891 TargetLowering::ArgListEntry Entry; 6892 Entry.Node = getValue(V); 6893 Entry.Ty = V->getType(); 6894 Entry.setAttributes(&CS, AttrI); 6895 Args.push_back(Entry); 6896 } 6897 6898 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6899 TargetLowering::CallLoweringInfo CLI(DAG); 6900 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6901 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6902 .setDiscardResult(!CI.use_empty()); 6903 6904 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 6905 return TLI->LowerCallTo(CLI); 6906 } 6907 6908 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6909 /// or patchpoint target node's operand list. 6910 /// 6911 /// Constants are converted to TargetConstants purely as an optimization to 6912 /// avoid constant materialization and register allocation. 6913 /// 6914 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6915 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6916 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6917 /// address materialization and register allocation, but may also be required 6918 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6919 /// alloca in the entry block, then the runtime may assume that the alloca's 6920 /// StackMap location can be read immediately after compilation and that the 6921 /// location is valid at any point during execution (this is similar to the 6922 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6923 /// only available in a register, then the runtime would need to trap when 6924 /// execution reaches the StackMap in order to read the alloca's location. 6925 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6926 SmallVectorImpl<SDValue> &Ops, 6927 SelectionDAGBuilder &Builder) { 6928 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6929 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6930 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6931 Ops.push_back( 6932 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6933 Ops.push_back( 6934 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6935 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6936 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6937 Ops.push_back( 6938 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6939 } else 6940 Ops.push_back(OpVal); 6941 } 6942 } 6943 6944 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6945 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6946 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6947 // [live variables...]) 6948 6949 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6950 6951 SDValue Chain, InFlag, Callee, NullPtr; 6952 SmallVector<SDValue, 32> Ops; 6953 6954 SDLoc DL = getCurSDLoc(); 6955 Callee = getValue(CI.getCalledValue()); 6956 NullPtr = DAG.getIntPtrConstant(0, true); 6957 6958 // The stackmap intrinsic only records the live variables (the arguemnts 6959 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6960 // intrinsic, this won't be lowered to a function call. This means we don't 6961 // have to worry about calling conventions and target specific lowering code. 6962 // Instead we perform the call lowering right here. 6963 // 6964 // chain, flag = CALLSEQ_START(chain, 0) 6965 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6966 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6967 // 6968 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6969 InFlag = Chain.getValue(1); 6970 6971 // Add the <id> and <numBytes> constants. 6972 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6973 Ops.push_back(DAG.getTargetConstant( 6974 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6975 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6976 Ops.push_back(DAG.getTargetConstant( 6977 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6978 6979 // Push live variables for the stack map. 6980 addStackMapLiveVars(CI, 2, Ops, *this); 6981 6982 // We are not pushing any register mask info here on the operands list, 6983 // because the stackmap doesn't clobber anything. 6984 6985 // Push the chain and the glue flag. 6986 Ops.push_back(Chain); 6987 Ops.push_back(InFlag); 6988 6989 // Create the STACKMAP node. 6990 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6991 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6992 Chain = SDValue(SM, 0); 6993 InFlag = Chain.getValue(1); 6994 6995 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6996 6997 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6998 6999 // Set the root to the target-lowered call chain. 7000 DAG.setRoot(Chain); 7001 7002 // Inform the Frame Information that we have a stackmap in this function. 7003 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 7004 } 7005 7006 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 7007 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 7008 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7009 // i32 <numBytes>, 7010 // i8* <target>, 7011 // i32 <numArgs>, 7012 // [Args...], 7013 // [live variables...]) 7014 7015 CallingConv::ID CC = CI.getCallingConv(); 7016 bool isAnyRegCC = CC == CallingConv::AnyReg; 7017 bool hasDef = !CI.getType()->isVoidTy(); 7018 SDValue Callee = getValue(CI.getOperand(2)); // <target> 7019 7020 // Get the real number of arguments participating in the call <numArgs> 7021 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 7022 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7023 7024 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7025 // Intrinsics include all meta-operands up to but not including CC. 7026 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7027 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 7028 "Not enough arguments provided to the patchpoint intrinsic"); 7029 7030 // For AnyRegCC the arguments are lowered later on manually. 7031 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 7032 std::pair<SDValue, SDValue> Result = 7033 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 7034 7035 // Set the root to the target-lowered call chain. 7036 SDValue Chain = Result.second; 7037 DAG.setRoot(Chain); 7038 7039 SDNode *CallEnd = Chain.getNode(); 7040 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7041 CallEnd = CallEnd->getOperand(0).getNode(); 7042 7043 /// Get a call instruction from the call sequence chain. 7044 /// Tail calls are not allowed. 7045 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7046 "Expected a callseq node."); 7047 SDNode *Call = CallEnd->getOperand(0).getNode(); 7048 bool hasGlue = Call->getGluedNode(); 7049 7050 // Replace the target specific call node with the patchable intrinsic. 7051 SmallVector<SDValue, 8> Ops; 7052 7053 // Add the <id> and <numBytes> constants. 7054 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7055 Ops.push_back(DAG.getTargetConstant( 7056 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7057 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7058 Ops.push_back(DAG.getTargetConstant( 7059 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7060 7061 // Assume that the Callee is a constant address. 7062 // FIXME: handle function symbols in the future. 7063 Ops.push_back( 7064 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7065 /*isTarget=*/true)); 7066 7067 // Adjust <numArgs> to account for any arguments that have been passed on the 7068 // stack instead. 7069 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7070 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7071 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7072 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7073 7074 // Add the calling convention 7075 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7076 7077 // Add the arguments we omitted previously. The register allocator should 7078 // place these in any free register. 7079 if (isAnyRegCC) 7080 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7081 Ops.push_back(getValue(CI.getArgOperand(i))); 7082 7083 // Push the arguments from the call instruction up to the register mask. 7084 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7085 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7086 Ops.push_back(*i); 7087 7088 // Push live variables for the stack map. 7089 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7090 7091 // Push the register mask info. 7092 if (hasGlue) 7093 Ops.push_back(*(Call->op_end()-2)); 7094 else 7095 Ops.push_back(*(Call->op_end()-1)); 7096 7097 // Push the chain (this is originally the first operand of the call, but 7098 // becomes now the last or second to last operand). 7099 Ops.push_back(*(Call->op_begin())); 7100 7101 // Push the glue flag (last operand). 7102 if (hasGlue) 7103 Ops.push_back(*(Call->op_end()-1)); 7104 7105 SDVTList NodeTys; 7106 if (isAnyRegCC && hasDef) { 7107 // Create the return types based on the intrinsic definition 7108 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7109 SmallVector<EVT, 3> ValueVTs; 7110 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7111 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7112 7113 // There is always a chain and a glue type at the end 7114 ValueVTs.push_back(MVT::Other); 7115 ValueVTs.push_back(MVT::Glue); 7116 NodeTys = DAG.getVTList(ValueVTs); 7117 } else 7118 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7119 7120 // Replace the target specific call node with a PATCHPOINT node. 7121 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7122 getCurSDLoc(), NodeTys, Ops); 7123 7124 // Update the NodeMap. 7125 if (hasDef) { 7126 if (isAnyRegCC) 7127 setValue(&CI, SDValue(MN, 0)); 7128 else 7129 setValue(&CI, Result.first); 7130 } 7131 7132 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7133 // call sequence. Furthermore the location of the chain and glue can change 7134 // when the AnyReg calling convention is used and the intrinsic returns a 7135 // value. 7136 if (isAnyRegCC && hasDef) { 7137 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7138 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7139 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7140 } else 7141 DAG.ReplaceAllUsesWith(Call, MN); 7142 DAG.DeleteNode(Call); 7143 7144 // Inform the Frame Information that we have a patchpoint in this function. 7145 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7146 } 7147 7148 /// Returns an AttributeSet representing the attributes applied to the return 7149 /// value of the given call. 7150 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7151 SmallVector<Attribute::AttrKind, 2> Attrs; 7152 if (CLI.RetSExt) 7153 Attrs.push_back(Attribute::SExt); 7154 if (CLI.RetZExt) 7155 Attrs.push_back(Attribute::ZExt); 7156 if (CLI.IsInReg) 7157 Attrs.push_back(Attribute::InReg); 7158 7159 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7160 Attrs); 7161 } 7162 7163 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7164 /// implementation, which just calls LowerCall. 7165 /// FIXME: When all targets are 7166 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7167 std::pair<SDValue, SDValue> 7168 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7169 // Handle the incoming return values from the call. 7170 CLI.Ins.clear(); 7171 Type *OrigRetTy = CLI.RetTy; 7172 SmallVector<EVT, 4> RetTys; 7173 SmallVector<uint64_t, 4> Offsets; 7174 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7175 7176 SmallVector<ISD::OutputArg, 4> Outs; 7177 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7178 7179 bool CanLowerReturn = 7180 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7181 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7182 7183 SDValue DemoteStackSlot; 7184 int DemoteStackIdx = -100; 7185 if (!CanLowerReturn) { 7186 // FIXME: equivalent assert? 7187 // assert(!CS.hasInAllocaArgument() && 7188 // "sret demotion is incompatible with inalloca"); 7189 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7190 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7191 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7192 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7193 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7194 7195 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7196 ArgListEntry Entry; 7197 Entry.Node = DemoteStackSlot; 7198 Entry.Ty = StackSlotPtrType; 7199 Entry.isSExt = false; 7200 Entry.isZExt = false; 7201 Entry.isInReg = false; 7202 Entry.isSRet = true; 7203 Entry.isNest = false; 7204 Entry.isByVal = false; 7205 Entry.isReturned = false; 7206 Entry.Alignment = Align; 7207 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7208 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7209 } else { 7210 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7211 EVT VT = RetTys[I]; 7212 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7213 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7214 for (unsigned i = 0; i != NumRegs; ++i) { 7215 ISD::InputArg MyFlags; 7216 MyFlags.VT = RegisterVT; 7217 MyFlags.ArgVT = VT; 7218 MyFlags.Used = CLI.IsReturnValueUsed; 7219 if (CLI.RetSExt) 7220 MyFlags.Flags.setSExt(); 7221 if (CLI.RetZExt) 7222 MyFlags.Flags.setZExt(); 7223 if (CLI.IsInReg) 7224 MyFlags.Flags.setInReg(); 7225 CLI.Ins.push_back(MyFlags); 7226 } 7227 } 7228 } 7229 7230 // Handle all of the outgoing arguments. 7231 CLI.Outs.clear(); 7232 CLI.OutVals.clear(); 7233 ArgListTy &Args = CLI.getArgs(); 7234 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7235 SmallVector<EVT, 4> ValueVTs; 7236 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7237 Type *FinalType = Args[i].Ty; 7238 if (Args[i].isByVal) 7239 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7240 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7241 FinalType, CLI.CallConv, CLI.IsVarArg); 7242 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7243 ++Value) { 7244 EVT VT = ValueVTs[Value]; 7245 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7246 SDValue Op = SDValue(Args[i].Node.getNode(), 7247 Args[i].Node.getResNo() + Value); 7248 ISD::ArgFlagsTy Flags; 7249 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7250 7251 if (Args[i].isZExt) 7252 Flags.setZExt(); 7253 if (Args[i].isSExt) 7254 Flags.setSExt(); 7255 if (Args[i].isInReg) 7256 Flags.setInReg(); 7257 if (Args[i].isSRet) 7258 Flags.setSRet(); 7259 if (Args[i].isByVal) 7260 Flags.setByVal(); 7261 if (Args[i].isInAlloca) { 7262 Flags.setInAlloca(); 7263 // Set the byval flag for CCAssignFn callbacks that don't know about 7264 // inalloca. This way we can know how many bytes we should've allocated 7265 // and how many bytes a callee cleanup function will pop. If we port 7266 // inalloca to more targets, we'll have to add custom inalloca handling 7267 // in the various CC lowering callbacks. 7268 Flags.setByVal(); 7269 } 7270 if (Args[i].isByVal || Args[i].isInAlloca) { 7271 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7272 Type *ElementTy = Ty->getElementType(); 7273 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7274 // For ByVal, alignment should come from FE. BE will guess if this 7275 // info is not there but there are cases it cannot get right. 7276 unsigned FrameAlign; 7277 if (Args[i].Alignment) 7278 FrameAlign = Args[i].Alignment; 7279 else 7280 FrameAlign = getByValTypeAlignment(ElementTy); 7281 Flags.setByValAlign(FrameAlign); 7282 } 7283 if (Args[i].isNest) 7284 Flags.setNest(); 7285 if (NeedsRegBlock) { 7286 Flags.setInConsecutiveRegs(); 7287 if (Value == NumValues - 1) 7288 Flags.setInConsecutiveRegsLast(); 7289 } 7290 Flags.setOrigAlign(OriginalAlignment); 7291 7292 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7293 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7294 SmallVector<SDValue, 4> Parts(NumParts); 7295 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7296 7297 if (Args[i].isSExt) 7298 ExtendKind = ISD::SIGN_EXTEND; 7299 else if (Args[i].isZExt) 7300 ExtendKind = ISD::ZERO_EXTEND; 7301 7302 // Conservatively only handle 'returned' on non-vectors for now 7303 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7304 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7305 "unexpected use of 'returned'"); 7306 // Before passing 'returned' to the target lowering code, ensure that 7307 // either the register MVT and the actual EVT are the same size or that 7308 // the return value and argument are extended in the same way; in these 7309 // cases it's safe to pass the argument register value unchanged as the 7310 // return register value (although it's at the target's option whether 7311 // to do so) 7312 // TODO: allow code generation to take advantage of partially preserved 7313 // registers rather than clobbering the entire register when the 7314 // parameter extension method is not compatible with the return 7315 // extension method 7316 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7317 (ExtendKind != ISD::ANY_EXTEND && 7318 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7319 Flags.setReturned(); 7320 } 7321 7322 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7323 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7324 7325 for (unsigned j = 0; j != NumParts; ++j) { 7326 // if it isn't first piece, alignment must be 1 7327 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7328 i < CLI.NumFixedArgs, 7329 i, j*Parts[j].getValueType().getStoreSize()); 7330 if (NumParts > 1 && j == 0) 7331 MyFlags.Flags.setSplit(); 7332 else if (j != 0) 7333 MyFlags.Flags.setOrigAlign(1); 7334 7335 CLI.Outs.push_back(MyFlags); 7336 CLI.OutVals.push_back(Parts[j]); 7337 } 7338 } 7339 } 7340 7341 SmallVector<SDValue, 4> InVals; 7342 CLI.Chain = LowerCall(CLI, InVals); 7343 7344 // Verify that the target's LowerCall behaved as expected. 7345 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7346 "LowerCall didn't return a valid chain!"); 7347 assert((!CLI.IsTailCall || InVals.empty()) && 7348 "LowerCall emitted a return value for a tail call!"); 7349 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7350 "LowerCall didn't emit the correct number of values!"); 7351 7352 // For a tail call, the return value is merely live-out and there aren't 7353 // any nodes in the DAG representing it. Return a special value to 7354 // indicate that a tail call has been emitted and no more Instructions 7355 // should be processed in the current block. 7356 if (CLI.IsTailCall) { 7357 CLI.DAG.setRoot(CLI.Chain); 7358 return std::make_pair(SDValue(), SDValue()); 7359 } 7360 7361 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7362 assert(InVals[i].getNode() && 7363 "LowerCall emitted a null value!"); 7364 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7365 "LowerCall emitted a value with the wrong type!"); 7366 }); 7367 7368 SmallVector<SDValue, 4> ReturnValues; 7369 if (!CanLowerReturn) { 7370 // The instruction result is the result of loading from the 7371 // hidden sret parameter. 7372 SmallVector<EVT, 1> PVTs; 7373 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7374 7375 ComputeValueVTs(*this, PtrRetTy, PVTs); 7376 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7377 EVT PtrVT = PVTs[0]; 7378 7379 unsigned NumValues = RetTys.size(); 7380 ReturnValues.resize(NumValues); 7381 SmallVector<SDValue, 4> Chains(NumValues); 7382 7383 for (unsigned i = 0; i < NumValues; ++i) { 7384 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7385 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7386 SDValue L = CLI.DAG.getLoad( 7387 RetTys[i], CLI.DL, CLI.Chain, Add, 7388 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7389 false, false, 1); 7390 ReturnValues[i] = L; 7391 Chains[i] = L.getValue(1); 7392 } 7393 7394 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7395 } else { 7396 // Collect the legal value parts into potentially illegal values 7397 // that correspond to the original function's return values. 7398 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7399 if (CLI.RetSExt) 7400 AssertOp = ISD::AssertSext; 7401 else if (CLI.RetZExt) 7402 AssertOp = ISD::AssertZext; 7403 unsigned CurReg = 0; 7404 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7405 EVT VT = RetTys[I]; 7406 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7407 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7408 7409 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7410 NumRegs, RegisterVT, VT, nullptr, 7411 AssertOp)); 7412 CurReg += NumRegs; 7413 } 7414 7415 // For a function returning void, there is no return value. We can't create 7416 // such a node, so we just return a null return value in that case. In 7417 // that case, nothing will actually look at the value. 7418 if (ReturnValues.empty()) 7419 return std::make_pair(SDValue(), CLI.Chain); 7420 } 7421 7422 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7423 CLI.DAG.getVTList(RetTys), ReturnValues); 7424 return std::make_pair(Res, CLI.Chain); 7425 } 7426 7427 void TargetLowering::LowerOperationWrapper(SDNode *N, 7428 SmallVectorImpl<SDValue> &Results, 7429 SelectionDAG &DAG) const { 7430 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7431 if (Res.getNode()) 7432 Results.push_back(Res); 7433 } 7434 7435 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7436 llvm_unreachable("LowerOperation not implemented for this target!"); 7437 } 7438 7439 void 7440 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7441 SDValue Op = getNonRegisterValue(V); 7442 assert((Op.getOpcode() != ISD::CopyFromReg || 7443 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7444 "Copy from a reg to the same reg!"); 7445 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7446 7447 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7448 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType()); 7449 SDValue Chain = DAG.getEntryNode(); 7450 7451 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7452 FuncInfo.PreferredExtendType.end()) 7453 ? ISD::ANY_EXTEND 7454 : FuncInfo.PreferredExtendType[V]; 7455 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7456 PendingExports.push_back(Chain); 7457 } 7458 7459 #include "llvm/CodeGen/SelectionDAGISel.h" 7460 7461 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7462 /// entry block, return true. This includes arguments used by switches, since 7463 /// the switch may expand into multiple basic blocks. 7464 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7465 // With FastISel active, we may be splitting blocks, so force creation 7466 // of virtual registers for all non-dead arguments. 7467 if (FastISel) 7468 return A->use_empty(); 7469 7470 const BasicBlock *Entry = A->getParent()->begin(); 7471 for (const User *U : A->users()) 7472 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7473 return false; // Use not in entry block. 7474 7475 return true; 7476 } 7477 7478 void SelectionDAGISel::LowerArguments(const Function &F) { 7479 SelectionDAG &DAG = SDB->DAG; 7480 SDLoc dl = SDB->getCurSDLoc(); 7481 const TargetLowering *TLI = getTargetLowering(); 7482 const DataLayout *DL = TLI->getDataLayout(); 7483 SmallVector<ISD::InputArg, 16> Ins; 7484 7485 if (!FuncInfo->CanLowerReturn) { 7486 // Put in an sret pointer parameter before all the other parameters. 7487 SmallVector<EVT, 1> ValueVTs; 7488 ComputeValueVTs(*getTargetLowering(), 7489 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7490 7491 // NOTE: Assuming that a pointer will never break down to more than one VT 7492 // or one register. 7493 ISD::ArgFlagsTy Flags; 7494 Flags.setSRet(); 7495 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7496 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7497 Ins.push_back(RetArg); 7498 } 7499 7500 // Set up the incoming argument description vector. 7501 unsigned Idx = 1; 7502 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7503 I != E; ++I, ++Idx) { 7504 SmallVector<EVT, 4> ValueVTs; 7505 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7506 bool isArgValueUsed = !I->use_empty(); 7507 unsigned PartBase = 0; 7508 Type *FinalType = I->getType(); 7509 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7510 FinalType = cast<PointerType>(FinalType)->getElementType(); 7511 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7512 FinalType, F.getCallingConv(), F.isVarArg()); 7513 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7514 Value != NumValues; ++Value) { 7515 EVT VT = ValueVTs[Value]; 7516 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7517 ISD::ArgFlagsTy Flags; 7518 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7519 7520 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7521 Flags.setZExt(); 7522 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7523 Flags.setSExt(); 7524 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7525 Flags.setInReg(); 7526 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7527 Flags.setSRet(); 7528 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7529 Flags.setByVal(); 7530 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7531 Flags.setInAlloca(); 7532 // Set the byval flag for CCAssignFn callbacks that don't know about 7533 // inalloca. This way we can know how many bytes we should've allocated 7534 // and how many bytes a callee cleanup function will pop. If we port 7535 // inalloca to more targets, we'll have to add custom inalloca handling 7536 // in the various CC lowering callbacks. 7537 Flags.setByVal(); 7538 } 7539 if (Flags.isByVal() || Flags.isInAlloca()) { 7540 PointerType *Ty = cast<PointerType>(I->getType()); 7541 Type *ElementTy = Ty->getElementType(); 7542 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7543 // For ByVal, alignment should be passed from FE. BE will guess if 7544 // this info is not there but there are cases it cannot get right. 7545 unsigned FrameAlign; 7546 if (F.getParamAlignment(Idx)) 7547 FrameAlign = F.getParamAlignment(Idx); 7548 else 7549 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7550 Flags.setByValAlign(FrameAlign); 7551 } 7552 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7553 Flags.setNest(); 7554 if (NeedsRegBlock) { 7555 Flags.setInConsecutiveRegs(); 7556 if (Value == NumValues - 1) 7557 Flags.setInConsecutiveRegsLast(); 7558 } 7559 Flags.setOrigAlign(OriginalAlignment); 7560 7561 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7562 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7563 for (unsigned i = 0; i != NumRegs; ++i) { 7564 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7565 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7566 if (NumRegs > 1 && i == 0) 7567 MyFlags.Flags.setSplit(); 7568 // if it isn't first piece, alignment must be 1 7569 else if (i > 0) 7570 MyFlags.Flags.setOrigAlign(1); 7571 Ins.push_back(MyFlags); 7572 } 7573 PartBase += VT.getStoreSize(); 7574 } 7575 } 7576 7577 // Call the target to set up the argument values. 7578 SmallVector<SDValue, 8> InVals; 7579 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 7580 F.isVarArg(), Ins, 7581 dl, DAG, InVals); 7582 7583 // Verify that the target's LowerFormalArguments behaved as expected. 7584 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7585 "LowerFormalArguments didn't return a valid chain!"); 7586 assert(InVals.size() == Ins.size() && 7587 "LowerFormalArguments didn't emit the correct number of values!"); 7588 DEBUG({ 7589 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7590 assert(InVals[i].getNode() && 7591 "LowerFormalArguments emitted a null value!"); 7592 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7593 "LowerFormalArguments emitted a value with the wrong type!"); 7594 } 7595 }); 7596 7597 // Update the DAG with the new chain value resulting from argument lowering. 7598 DAG.setRoot(NewRoot); 7599 7600 // Set up the argument values. 7601 unsigned i = 0; 7602 Idx = 1; 7603 if (!FuncInfo->CanLowerReturn) { 7604 // Create a virtual register for the sret pointer, and put in a copy 7605 // from the sret argument into it. 7606 SmallVector<EVT, 1> ValueVTs; 7607 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7608 MVT VT = ValueVTs[0].getSimpleVT(); 7609 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7610 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7611 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7612 RegVT, VT, nullptr, AssertOp); 7613 7614 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7615 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7616 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7617 FuncInfo->DemoteRegister = SRetReg; 7618 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), 7619 SRetReg, ArgValue); 7620 DAG.setRoot(NewRoot); 7621 7622 // i indexes lowered arguments. Bump it past the hidden sret argument. 7623 // Idx indexes LLVM arguments. Don't touch it. 7624 ++i; 7625 } 7626 7627 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7628 ++I, ++Idx) { 7629 SmallVector<SDValue, 4> ArgValues; 7630 SmallVector<EVT, 4> ValueVTs; 7631 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7632 unsigned NumValues = ValueVTs.size(); 7633 7634 // If this argument is unused then remember its value. It is used to generate 7635 // debugging information. 7636 if (I->use_empty() && NumValues) { 7637 SDB->setUnusedArgValue(I, InVals[i]); 7638 7639 // Also remember any frame index for use in FastISel. 7640 if (FrameIndexSDNode *FI = 7641 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7642 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7643 } 7644 7645 for (unsigned Val = 0; Val != NumValues; ++Val) { 7646 EVT VT = ValueVTs[Val]; 7647 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7648 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7649 7650 if (!I->use_empty()) { 7651 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7652 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7653 AssertOp = ISD::AssertSext; 7654 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7655 AssertOp = ISD::AssertZext; 7656 7657 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7658 NumParts, PartVT, VT, 7659 nullptr, AssertOp)); 7660 } 7661 7662 i += NumParts; 7663 } 7664 7665 // We don't need to do anything else for unused arguments. 7666 if (ArgValues.empty()) 7667 continue; 7668 7669 // Note down frame index. 7670 if (FrameIndexSDNode *FI = 7671 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7672 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7673 7674 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7675 SDB->getCurSDLoc()); 7676 7677 SDB->setValue(I, Res); 7678 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7679 if (LoadSDNode *LNode = 7680 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7681 if (FrameIndexSDNode *FI = 7682 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7683 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7684 } 7685 7686 // If this argument is live outside of the entry block, insert a copy from 7687 // wherever we got it to the vreg that other BB's will reference it as. 7688 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7689 // If we can, though, try to skip creating an unnecessary vreg. 7690 // FIXME: This isn't very clean... it would be nice to make this more 7691 // general. It's also subtly incompatible with the hacks FastISel 7692 // uses with vregs. 7693 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7694 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7695 FuncInfo->ValueMap[I] = Reg; 7696 continue; 7697 } 7698 } 7699 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7700 FuncInfo->InitializeRegForValue(I); 7701 SDB->CopyToExportRegsIfNeeded(I); 7702 } 7703 } 7704 7705 assert(i == InVals.size() && "Argument register count mismatch!"); 7706 7707 // Finally, if the target has anything special to do, allow it to do so. 7708 // FIXME: this should insert code into the DAG! 7709 EmitFunctionEntryCode(); 7710 } 7711 7712 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7713 /// ensure constants are generated when needed. Remember the virtual registers 7714 /// that need to be added to the Machine PHI nodes as input. We cannot just 7715 /// directly add them, because expansion might result in multiple MBB's for one 7716 /// BB. As such, the start of the BB might correspond to a different MBB than 7717 /// the end. 7718 /// 7719 void 7720 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7721 const TerminatorInst *TI = LLVMBB->getTerminator(); 7722 7723 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7724 7725 // Check successor nodes' PHI nodes that expect a constant to be available 7726 // from this block. 7727 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7728 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7729 if (!isa<PHINode>(SuccBB->begin())) continue; 7730 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7731 7732 // If this terminator has multiple identical successors (common for 7733 // switches), only handle each succ once. 7734 if (!SuccsHandled.insert(SuccMBB)) continue; 7735 7736 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7737 7738 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7739 // nodes and Machine PHI nodes, but the incoming operands have not been 7740 // emitted yet. 7741 for (BasicBlock::const_iterator I = SuccBB->begin(); 7742 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7743 // Ignore dead phi's. 7744 if (PN->use_empty()) continue; 7745 7746 // Skip empty types 7747 if (PN->getType()->isEmptyTy()) 7748 continue; 7749 7750 unsigned Reg; 7751 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7752 7753 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7754 unsigned &RegOut = ConstantsOut[C]; 7755 if (RegOut == 0) { 7756 RegOut = FuncInfo.CreateRegs(C->getType()); 7757 CopyValueToVirtualRegister(C, RegOut); 7758 } 7759 Reg = RegOut; 7760 } else { 7761 DenseMap<const Value *, unsigned>::iterator I = 7762 FuncInfo.ValueMap.find(PHIOp); 7763 if (I != FuncInfo.ValueMap.end()) 7764 Reg = I->second; 7765 else { 7766 assert(isa<AllocaInst>(PHIOp) && 7767 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7768 "Didn't codegen value into a register!??"); 7769 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7770 CopyValueToVirtualRegister(PHIOp, Reg); 7771 } 7772 } 7773 7774 // Remember that this register needs to added to the machine PHI node as 7775 // the input for this MBB. 7776 SmallVector<EVT, 4> ValueVTs; 7777 const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering(); 7778 ComputeValueVTs(*TLI, PN->getType(), ValueVTs); 7779 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7780 EVT VT = ValueVTs[vti]; 7781 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT); 7782 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7783 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7784 Reg += NumRegisters; 7785 } 7786 } 7787 } 7788 7789 ConstantsOut.clear(); 7790 } 7791 7792 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7793 /// is 0. 7794 MachineBasicBlock * 7795 SelectionDAGBuilder::StackProtectorDescriptor:: 7796 AddSuccessorMBB(const BasicBlock *BB, 7797 MachineBasicBlock *ParentMBB, 7798 MachineBasicBlock *SuccMBB) { 7799 // If SuccBB has not been created yet, create it. 7800 if (!SuccMBB) { 7801 MachineFunction *MF = ParentMBB->getParent(); 7802 MachineFunction::iterator BBI = ParentMBB; 7803 SuccMBB = MF->CreateMachineBasicBlock(BB); 7804 MF->insert(++BBI, SuccMBB); 7805 } 7806 // Add it as a successor of ParentMBB. 7807 ParentMBB->addSuccessor(SuccMBB); 7808 return SuccMBB; 7809 } 7810