1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/APFloat.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/BitVector.h" 20 #include "llvm/ADT/DenseMap.h" 21 #include "llvm/ADT/None.h" 22 #include "llvm/ADT/Optional.h" 23 #include "llvm/ADT/STLExtras.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/ADT/SmallSet.h" 26 #include "llvm/ADT/SmallVector.h" 27 #include "llvm/ADT/StringRef.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/Analysis/AliasAnalysis.h" 31 #include "llvm/Analysis/BranchProbabilityInfo.h" 32 #include "llvm/Analysis/ConstantFolding.h" 33 #include "llvm/Analysis/EHPersonalities.h" 34 #include "llvm/Analysis/Loads.h" 35 #include "llvm/Analysis/MemoryLocation.h" 36 #include "llvm/Analysis/TargetLibraryInfo.h" 37 #include "llvm/Analysis/ValueTracking.h" 38 #include "llvm/Analysis/VectorUtils.h" 39 #include "llvm/CodeGen/Analysis.h" 40 #include "llvm/CodeGen/FunctionLoweringInfo.h" 41 #include "llvm/CodeGen/GCMetadata.h" 42 #include "llvm/CodeGen/ISDOpcodes.h" 43 #include "llvm/CodeGen/MachineBasicBlock.h" 44 #include "llvm/CodeGen/MachineFrameInfo.h" 45 #include "llvm/CodeGen/MachineFunction.h" 46 #include "llvm/CodeGen/MachineInstr.h" 47 #include "llvm/CodeGen/MachineInstrBuilder.h" 48 #include "llvm/CodeGen/MachineJumpTableInfo.h" 49 #include "llvm/CodeGen/MachineMemOperand.h" 50 #include "llvm/CodeGen/MachineModuleInfo.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/RuntimeLibcalls.h" 54 #include "llvm/CodeGen/SelectionDAG.h" 55 #include "llvm/CodeGen/SelectionDAGNodes.h" 56 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetFrameLowering.h" 59 #include "llvm/CodeGen/TargetInstrInfo.h" 60 #include "llvm/CodeGen/TargetLowering.h" 61 #include "llvm/CodeGen/TargetOpcodes.h" 62 #include "llvm/CodeGen/TargetRegisterInfo.h" 63 #include "llvm/CodeGen/TargetSubtargetInfo.h" 64 #include "llvm/CodeGen/ValueTypes.h" 65 #include "llvm/CodeGen/WinEHFuncInfo.h" 66 #include "llvm/IR/Argument.h" 67 #include "llvm/IR/Attributes.h" 68 #include "llvm/IR/BasicBlock.h" 69 #include "llvm/IR/CFG.h" 70 #include "llvm/IR/CallSite.h" 71 #include "llvm/IR/CallingConv.h" 72 #include "llvm/IR/Constant.h" 73 #include "llvm/IR/ConstantRange.h" 74 #include "llvm/IR/Constants.h" 75 #include "llvm/IR/DataLayout.h" 76 #include "llvm/IR/DebugInfoMetadata.h" 77 #include "llvm/IR/DebugLoc.h" 78 #include "llvm/IR/DerivedTypes.h" 79 #include "llvm/IR/Function.h" 80 #include "llvm/IR/GetElementPtrTypeIterator.h" 81 #include "llvm/IR/InlineAsm.h" 82 #include "llvm/IR/InstrTypes.h" 83 #include "llvm/IR/Instruction.h" 84 #include "llvm/IR/Instructions.h" 85 #include "llvm/IR/IntrinsicInst.h" 86 #include "llvm/IR/Intrinsics.h" 87 #include "llvm/IR/LLVMContext.h" 88 #include "llvm/IR/Metadata.h" 89 #include "llvm/IR/Module.h" 90 #include "llvm/IR/Operator.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include <algorithm> 112 #include <cassert> 113 #include <cstddef> 114 #include <cstdint> 115 #include <cstring> 116 #include <iterator> 117 #include <limits> 118 #include <numeric> 119 #include <tuple> 120 #include <utility> 121 #include <vector> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "isel" 126 127 /// LimitFloatPrecision - Generate low-precision inline sequences for 128 /// some float libcalls (6, 8 or 12 bits). 129 static unsigned LimitFloatPrecision; 130 131 static cl::opt<unsigned, true> 132 LimitFPPrecision("limit-float-precision", 133 cl::desc("Generate low-precision inline sequences " 134 "for some float libcalls"), 135 cl::location(LimitFloatPrecision), cl::Hidden, 136 cl::init(0)); 137 138 static cl::opt<unsigned> SwitchPeelThreshold( 139 "switch-peel-threshold", cl::Hidden, cl::init(66), 140 cl::desc("Set the case probability threshold for peeling the case from a " 141 "switch statement. A value greater than 100 will void this " 142 "optimization")); 143 144 // Limit the width of DAG chains. This is important in general to prevent 145 // DAG-based analysis from blowing up. For example, alias analysis and 146 // load clustering may not complete in reasonable time. It is difficult to 147 // recognize and avoid this situation within each individual analysis, and 148 // future analyses are likely to have the same behavior. Limiting DAG width is 149 // the safe approach and will be especially important with global DAGs. 150 // 151 // MaxParallelChains default is arbitrarily high to avoid affecting 152 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 153 // sequence over this should have been converted to llvm.memcpy by the 154 // frontend. It is easy to induce this behavior with .ll code such as: 155 // %buffer = alloca [4096 x i8] 156 // %data = load [4096 x i8]* %argPtr 157 // store [4096 x i8] %data, [4096 x i8]* %buffer 158 static const unsigned MaxParallelChains = 64; 159 160 // True if the Value passed requires ABI mangling as it is a parameter to a 161 // function or a return value from a function which is not an intrinsic. 162 static bool isABIRegCopy(const Value *V) { 163 const bool IsRetInst = V && isa<ReturnInst>(V); 164 const bool IsCallInst = V && isa<CallInst>(V); 165 const bool IsInLineAsm = 166 IsCallInst && static_cast<const CallInst *>(V)->isInlineAsm(); 167 const bool IsIndirectFunctionCall = 168 IsCallInst && !IsInLineAsm && 169 !static_cast<const CallInst *>(V)->getCalledFunction(); 170 // It is possible that the call instruction is an inline asm statement or an 171 // indirect function call in which case the return value of 172 // getCalledFunction() would be nullptr. 173 const bool IsInstrinsicCall = 174 IsCallInst && !IsInLineAsm && !IsIndirectFunctionCall && 175 static_cast<const CallInst *>(V)->getCalledFunction()->getIntrinsicID() != 176 Intrinsic::not_intrinsic; 177 178 return IsRetInst || (IsCallInst && (!IsInLineAsm && !IsInstrinsicCall)); 179 } 180 181 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 182 const SDValue *Parts, unsigned NumParts, 183 MVT PartVT, EVT ValueVT, const Value *V, 184 bool IsABIRegCopy); 185 186 /// getCopyFromParts - Create a value that contains the specified legal parts 187 /// combined into the value they represent. If the parts combine to a type 188 /// larger than ValueVT then AssertOp can be used to specify whether the extra 189 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 190 /// (ISD::AssertSext). 191 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 192 const SDValue *Parts, unsigned NumParts, 193 MVT PartVT, EVT ValueVT, const Value *V, 194 Optional<ISD::NodeType> AssertOp = None, 195 bool IsABIRegCopy = false) { 196 if (ValueVT.isVector()) 197 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 198 PartVT, ValueVT, V, IsABIRegCopy); 199 200 assert(NumParts > 0 && "No parts to assemble!"); 201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 202 SDValue Val = Parts[0]; 203 204 if (NumParts > 1) { 205 // Assemble the value from multiple parts. 206 if (ValueVT.isInteger()) { 207 unsigned PartBits = PartVT.getSizeInBits(); 208 unsigned ValueBits = ValueVT.getSizeInBits(); 209 210 // Assemble the power of 2 part. 211 unsigned RoundParts = NumParts & (NumParts - 1) ? 212 1 << Log2_32(NumParts) : NumParts; 213 unsigned RoundBits = PartBits * RoundParts; 214 EVT RoundVT = RoundBits == ValueBits ? 215 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 216 SDValue Lo, Hi; 217 218 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 219 220 if (RoundParts > 2) { 221 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 222 PartVT, HalfVT, V); 223 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 224 RoundParts / 2, PartVT, HalfVT, V); 225 } else { 226 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 227 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 228 } 229 230 if (DAG.getDataLayout().isBigEndian()) 231 std::swap(Lo, Hi); 232 233 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 234 235 if (RoundParts < NumParts) { 236 // Assemble the trailing non-power-of-2 part. 237 unsigned OddParts = NumParts - RoundParts; 238 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 239 Hi = getCopyFromParts(DAG, DL, 240 Parts + RoundParts, OddParts, PartVT, OddVT, V); 241 242 // Combine the round and odd parts. 243 Lo = Val; 244 if (DAG.getDataLayout().isBigEndian()) 245 std::swap(Lo, Hi); 246 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 247 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 248 Hi = 249 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 250 DAG.getConstant(Lo.getValueSizeInBits(), DL, 251 TLI.getPointerTy(DAG.getDataLayout()))); 252 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 253 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 254 } 255 } else if (PartVT.isFloatingPoint()) { 256 // FP split into multiple FP parts (for ppcf128) 257 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 258 "Unexpected split"); 259 SDValue Lo, Hi; 260 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 261 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 262 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 263 std::swap(Lo, Hi); 264 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 265 } else { 266 // FP split into integer parts (soft fp) 267 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 268 !PartVT.isVector() && "Unexpected split"); 269 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 270 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 271 } 272 } 273 274 // There is now one part, held in Val. Correct it to match ValueVT. 275 // PartEVT is the type of the register class that holds the value. 276 // ValueVT is the type of the inline asm operation. 277 EVT PartEVT = Val.getValueType(); 278 279 if (PartEVT == ValueVT) 280 return Val; 281 282 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 283 ValueVT.bitsLT(PartEVT)) { 284 // For an FP value in an integer part, we need to truncate to the right 285 // width first. 286 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 287 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 288 } 289 290 // Handle types that have the same size. 291 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 292 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 293 294 // Handle types with different sizes. 295 if (PartEVT.isInteger() && ValueVT.isInteger()) { 296 if (ValueVT.bitsLT(PartEVT)) { 297 // For a truncate, see if we have any information to 298 // indicate whether the truncated bits will always be 299 // zero or sign-extension. 300 if (AssertOp.hasValue()) 301 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 302 DAG.getValueType(ValueVT)); 303 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 304 } 305 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 306 } 307 308 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 309 // FP_ROUND's are always exact here. 310 if (ValueVT.bitsLT(Val.getValueType())) 311 return DAG.getNode( 312 ISD::FP_ROUND, DL, ValueVT, Val, 313 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 314 315 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 316 } 317 318 llvm_unreachable("Unknown mismatch!"); 319 } 320 321 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 322 const Twine &ErrMsg) { 323 const Instruction *I = dyn_cast_or_null<Instruction>(V); 324 if (!V) 325 return Ctx.emitError(ErrMsg); 326 327 const char *AsmError = ", possible invalid constraint for vector type"; 328 if (const CallInst *CI = dyn_cast<CallInst>(I)) 329 if (isa<InlineAsm>(CI->getCalledValue())) 330 return Ctx.emitError(I, ErrMsg + AsmError); 331 332 return Ctx.emitError(I, ErrMsg); 333 } 334 335 /// getCopyFromPartsVector - Create a value that contains the specified legal 336 /// parts combined into the value they represent. If the parts combine to a 337 /// type larger than ValueVT then AssertOp can be used to specify whether the 338 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 339 /// ValueVT (ISD::AssertSext). 340 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 341 const SDValue *Parts, unsigned NumParts, 342 MVT PartVT, EVT ValueVT, const Value *V, 343 bool IsABIRegCopy) { 344 assert(ValueVT.isVector() && "Not a vector value"); 345 assert(NumParts > 0 && "No parts to assemble!"); 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 SDValue Val = Parts[0]; 348 349 // Handle a multi-element vector. 350 if (NumParts > 1) { 351 EVT IntermediateVT; 352 MVT RegisterVT; 353 unsigned NumIntermediates; 354 unsigned NumRegs; 355 356 if (IsABIRegCopy) { 357 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 358 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 359 RegisterVT); 360 } else { 361 NumRegs = 362 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 363 NumIntermediates, RegisterVT); 364 } 365 366 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 367 NumParts = NumRegs; // Silence a compiler warning. 368 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 369 assert(RegisterVT.getSizeInBits() == 370 Parts[0].getSimpleValueType().getSizeInBits() && 371 "Part type sizes don't match!"); 372 373 // Assemble the parts into intermediate operands. 374 SmallVector<SDValue, 8> Ops(NumIntermediates); 375 if (NumIntermediates == NumParts) { 376 // If the register was not expanded, truncate or copy the value, 377 // as appropriate. 378 for (unsigned i = 0; i != NumParts; ++i) 379 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 380 PartVT, IntermediateVT, V); 381 } else if (NumParts > 0) { 382 // If the intermediate type was expanded, build the intermediate 383 // operands from the parts. 384 assert(NumParts % NumIntermediates == 0 && 385 "Must expand into a divisible number of parts!"); 386 unsigned Factor = NumParts / NumIntermediates; 387 for (unsigned i = 0; i != NumIntermediates; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 389 PartVT, IntermediateVT, V); 390 } 391 392 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 393 // intermediate operands. 394 EVT BuiltVectorTy = 395 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 396 (IntermediateVT.isVector() 397 ? IntermediateVT.getVectorNumElements() * NumParts 398 : NumIntermediates)); 399 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 400 : ISD::BUILD_VECTOR, 401 DL, BuiltVectorTy, Ops); 402 } 403 404 // There is now one part, held in Val. Correct it to match ValueVT. 405 EVT PartEVT = Val.getValueType(); 406 407 if (PartEVT == ValueVT) 408 return Val; 409 410 if (PartEVT.isVector()) { 411 // If the element type of the source/dest vectors are the same, but the 412 // parts vector has more elements than the value vector, then we have a 413 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 414 // elements we want. 415 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 416 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 417 "Cannot narrow, it would be a lossy transformation"); 418 return DAG.getNode( 419 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 420 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 421 } 422 423 // Vector/Vector bitcast. 424 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 425 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 426 427 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 428 "Cannot handle this kind of promotion"); 429 // Promoted vector extract 430 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 431 432 } 433 434 // Trivial bitcast if the types are the same size and the destination 435 // vector type is legal. 436 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 437 TLI.isTypeLegal(ValueVT)) 438 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 439 440 if (ValueVT.getVectorNumElements() != 1) { 441 // Certain ABIs require that vectors are passed as integers. For vectors 442 // are the same size, this is an obvious bitcast. 443 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 444 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 445 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 446 // Bitcast Val back the original type and extract the corresponding 447 // vector we want. 448 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 449 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 450 ValueVT.getVectorElementType(), Elts); 451 Val = DAG.getBitcast(WiderVecType, Val); 452 return DAG.getNode( 453 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 454 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 455 } 456 457 diagnosePossiblyInvalidConstraint( 458 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 459 return DAG.getUNDEF(ValueVT); 460 } 461 462 // Handle cases such as i8 -> <1 x i1> 463 EVT ValueSVT = ValueVT.getVectorElementType(); 464 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 465 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 466 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 467 468 return DAG.getBuildVector(ValueVT, DL, Val); 469 } 470 471 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 472 SDValue Val, SDValue *Parts, unsigned NumParts, 473 MVT PartVT, const Value *V, bool IsABIRegCopy); 474 475 /// getCopyToParts - Create a series of nodes that contain the specified value 476 /// split into legal parts. If the parts contain more bits than Val, then, for 477 /// integers, ExtendKind can be used to specify how to generate the extra bits. 478 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 479 SDValue *Parts, unsigned NumParts, MVT PartVT, 480 const Value *V, 481 ISD::NodeType ExtendKind = ISD::ANY_EXTEND, 482 bool IsABIRegCopy = false) { 483 EVT ValueVT = Val.getValueType(); 484 485 // Handle the vector case separately. 486 if (ValueVT.isVector()) 487 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 488 IsABIRegCopy); 489 490 unsigned PartBits = PartVT.getSizeInBits(); 491 unsigned OrigNumParts = NumParts; 492 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 493 "Copying to an illegal type!"); 494 495 if (NumParts == 0) 496 return; 497 498 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 499 EVT PartEVT = PartVT; 500 if (PartEVT == ValueVT) { 501 assert(NumParts == 1 && "No-op copy with multiple parts!"); 502 Parts[0] = Val; 503 return; 504 } 505 506 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 507 // If the parts cover more bits than the value has, promote the value. 508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 509 assert(NumParts == 1 && "Do not know what to promote to!"); 510 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 511 } else { 512 if (ValueVT.isFloatingPoint()) { 513 // FP values need to be bitcast, then extended if they are being put 514 // into a larger container. 515 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 516 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 517 } 518 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 519 ValueVT.isInteger() && 520 "Unknown mismatch!"); 521 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 522 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 523 if (PartVT == MVT::x86mmx) 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } 526 } else if (PartBits == ValueVT.getSizeInBits()) { 527 // Different types of the same size. 528 assert(NumParts == 1 && PartEVT != ValueVT); 529 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 530 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 531 // If the parts cover less bits than value has, truncate the value. 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 541 // The value may have changed - recompute ValueVT. 542 ValueVT = Val.getValueType(); 543 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 544 "Failed to tile the value with PartVT!"); 545 546 if (NumParts == 1) { 547 if (PartEVT != ValueVT) { 548 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 549 "scalar-to-vector conversion failed"); 550 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 551 } 552 553 Parts[0] = Val; 554 return; 555 } 556 557 // Expand the value into multiple parts. 558 if (NumParts & (NumParts - 1)) { 559 // The number of parts is not a power of 2. Split off and copy the tail. 560 assert(PartVT.isInteger() && ValueVT.isInteger() && 561 "Do not know what to expand to!"); 562 unsigned RoundParts = 1 << Log2_32(NumParts); 563 unsigned RoundBits = RoundParts * PartBits; 564 unsigned OddParts = NumParts - RoundParts; 565 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 566 DAG.getIntPtrConstant(RoundBits, DL)); 567 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 568 569 if (DAG.getDataLayout().isBigEndian()) 570 // The odd parts were reversed by getCopyToParts - unreverse them. 571 std::reverse(Parts + RoundParts, Parts + NumParts); 572 573 NumParts = RoundParts; 574 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 575 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 576 } 577 578 // The number of parts is a power of 2. Repeatedly bisect the value using 579 // EXTRACT_ELEMENT. 580 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 581 EVT::getIntegerVT(*DAG.getContext(), 582 ValueVT.getSizeInBits()), 583 Val); 584 585 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 586 for (unsigned i = 0; i < NumParts; i += StepSize) { 587 unsigned ThisBits = StepSize * PartBits / 2; 588 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 589 SDValue &Part0 = Parts[i]; 590 SDValue &Part1 = Parts[i+StepSize/2]; 591 592 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 593 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 594 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 595 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 596 597 if (ThisBits == PartBits && ThisVT != PartVT) { 598 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 599 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 600 } 601 } 602 } 603 604 if (DAG.getDataLayout().isBigEndian()) 605 std::reverse(Parts, Parts + OrigNumParts); 606 } 607 608 609 /// getCopyToPartsVector - Create a series of nodes that contain the specified 610 /// value split into legal parts. 611 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 612 SDValue Val, SDValue *Parts, unsigned NumParts, 613 MVT PartVT, const Value *V, 614 bool IsABIRegCopy) { 615 EVT ValueVT = Val.getValueType(); 616 assert(ValueVT.isVector() && "Not a vector"); 617 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 618 619 if (NumParts == 1) { 620 EVT PartEVT = PartVT; 621 if (PartEVT == ValueVT) { 622 // Nothing to do. 623 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 624 // Bitconvert vector->vector case. 625 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 626 } else if (PartVT.isVector() && 627 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 628 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 629 EVT ElementVT = PartVT.getVectorElementType(); 630 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 631 // undef elements. 632 SmallVector<SDValue, 16> Ops; 633 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 634 Ops.push_back(DAG.getNode( 635 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 636 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 637 638 for (unsigned i = ValueVT.getVectorNumElements(), 639 e = PartVT.getVectorNumElements(); i != e; ++i) 640 Ops.push_back(DAG.getUNDEF(ElementVT)); 641 642 Val = DAG.getBuildVector(PartVT, DL, Ops); 643 644 // FIXME: Use CONCAT for 2x -> 4x. 645 646 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 647 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 648 } else if (PartVT.isVector() && 649 PartEVT.getVectorElementType().bitsGE( 650 ValueVT.getVectorElementType()) && 651 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 652 653 // Promoted vector extract 654 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 655 } else { 656 if (ValueVT.getVectorNumElements() == 1) { 657 Val = DAG.getNode( 658 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 659 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 660 } else { 661 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 662 "lossy conversion of vector to scalar type"); 663 EVT IntermediateType = 664 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 665 Val = DAG.getBitcast(IntermediateType, Val); 666 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 667 } 668 } 669 670 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 671 Parts[0] = Val; 672 return; 673 } 674 675 // Handle a multi-element vector. 676 EVT IntermediateVT; 677 MVT RegisterVT; 678 unsigned NumIntermediates; 679 unsigned NumRegs; 680 if (IsABIRegCopy) { 681 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 682 *DAG.getContext(), ValueVT, IntermediateVT, NumIntermediates, 683 RegisterVT); 684 } else { 685 NumRegs = 686 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 687 NumIntermediates, RegisterVT); 688 } 689 unsigned NumElements = ValueVT.getVectorNumElements(); 690 691 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 692 NumParts = NumRegs; // Silence a compiler warning. 693 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 694 695 // Convert the vector to the appropiate type if necessary. 696 unsigned DestVectorNoElts = 697 NumIntermediates * 698 (IntermediateVT.isVector() ? IntermediateVT.getVectorNumElements() : 1); 699 EVT BuiltVectorTy = EVT::getVectorVT( 700 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 701 if (Val.getValueType() != BuiltVectorTy) 702 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 703 704 // Split the vector into intermediate operands. 705 SmallVector<SDValue, 8> Ops(NumIntermediates); 706 for (unsigned i = 0; i != NumIntermediates; ++i) { 707 if (IntermediateVT.isVector()) 708 Ops[i] = 709 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 710 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 711 TLI.getVectorIdxTy(DAG.getDataLayout()))); 712 else 713 Ops[i] = DAG.getNode( 714 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 715 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 716 } 717 718 // Split the intermediate operands into legal parts. 719 if (NumParts == NumIntermediates) { 720 // If the register was not expanded, promote or copy the value, 721 // as appropriate. 722 for (unsigned i = 0; i != NumParts; ++i) 723 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 724 } else if (NumParts > 0) { 725 // If the intermediate type was expanded, split each the value into 726 // legal parts. 727 assert(NumIntermediates != 0 && "division by zero"); 728 assert(NumParts % NumIntermediates == 0 && 729 "Must expand into a divisible number of parts!"); 730 unsigned Factor = NumParts / NumIntermediates; 731 for (unsigned i = 0; i != NumIntermediates; ++i) 732 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 733 } 734 } 735 736 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 737 EVT valuevt, bool IsABIMangledValue) 738 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 739 RegCount(1, regs.size()), IsABIMangled(IsABIMangledValue) {} 740 741 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 742 const DataLayout &DL, unsigned Reg, Type *Ty, 743 bool IsABIMangledValue) { 744 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 745 746 IsABIMangled = IsABIMangledValue; 747 748 for (EVT ValueVT : ValueVTs) { 749 unsigned NumRegs = IsABIMangledValue 750 ? TLI.getNumRegistersForCallingConv(Context, ValueVT) 751 : TLI.getNumRegisters(Context, ValueVT); 752 MVT RegisterVT = IsABIMangledValue 753 ? TLI.getRegisterTypeForCallingConv(Context, ValueVT) 754 : TLI.getRegisterType(Context, ValueVT); 755 for (unsigned i = 0; i != NumRegs; ++i) 756 Regs.push_back(Reg + i); 757 RegVTs.push_back(RegisterVT); 758 RegCount.push_back(NumRegs); 759 Reg += NumRegs; 760 } 761 } 762 763 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 764 FunctionLoweringInfo &FuncInfo, 765 const SDLoc &dl, SDValue &Chain, 766 SDValue *Flag, const Value *V) const { 767 // A Value with type {} or [0 x %t] needs no registers. 768 if (ValueVTs.empty()) 769 return SDValue(); 770 771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 772 773 // Assemble the legal parts into the final values. 774 SmallVector<SDValue, 4> Values(ValueVTs.size()); 775 SmallVector<SDValue, 8> Parts; 776 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 777 // Copy the legal parts from the registers. 778 EVT ValueVT = ValueVTs[Value]; 779 unsigned NumRegs = RegCount[Value]; 780 MVT RegisterVT = IsABIMangled 781 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 782 : RegVTs[Value]; 783 784 Parts.resize(NumRegs); 785 for (unsigned i = 0; i != NumRegs; ++i) { 786 SDValue P; 787 if (!Flag) { 788 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 789 } else { 790 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 791 *Flag = P.getValue(2); 792 } 793 794 Chain = P.getValue(1); 795 Parts[i] = P; 796 797 // If the source register was virtual and if we know something about it, 798 // add an assert node. 799 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 800 !RegisterVT.isInteger() || RegisterVT.isVector()) 801 continue; 802 803 const FunctionLoweringInfo::LiveOutInfo *LOI = 804 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 805 if (!LOI) 806 continue; 807 808 unsigned RegSize = RegisterVT.getSizeInBits(); 809 unsigned NumSignBits = LOI->NumSignBits; 810 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 811 812 if (NumZeroBits == RegSize) { 813 // The current value is a zero. 814 // Explicitly express that as it would be easier for 815 // optimizations to kick in. 816 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 817 continue; 818 } 819 820 // FIXME: We capture more information than the dag can represent. For 821 // now, just use the tightest assertzext/assertsext possible. 822 bool isSExt = true; 823 EVT FromVT(MVT::Other); 824 if (NumSignBits == RegSize) { 825 isSExt = true; // ASSERT SEXT 1 826 FromVT = MVT::i1; 827 } else if (NumZeroBits >= RegSize - 1) { 828 isSExt = false; // ASSERT ZEXT 1 829 FromVT = MVT::i1; 830 } else if (NumSignBits > RegSize - 8) { 831 isSExt = true; // ASSERT SEXT 8 832 FromVT = MVT::i8; 833 } else if (NumZeroBits >= RegSize - 8) { 834 isSExt = false; // ASSERT ZEXT 8 835 FromVT = MVT::i8; 836 } else if (NumSignBits > RegSize - 16) { 837 isSExt = true; // ASSERT SEXT 16 838 FromVT = MVT::i16; 839 } else if (NumZeroBits >= RegSize - 16) { 840 isSExt = false; // ASSERT ZEXT 16 841 FromVT = MVT::i16; 842 } else if (NumSignBits > RegSize - 32) { 843 isSExt = true; // ASSERT SEXT 32 844 FromVT = MVT::i32; 845 } else if (NumZeroBits >= RegSize - 32) { 846 isSExt = false; // ASSERT ZEXT 32 847 FromVT = MVT::i32; 848 } else { 849 continue; 850 } 851 // Add an assertion node. 852 assert(FromVT != MVT::Other); 853 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 854 RegisterVT, P, DAG.getValueType(FromVT)); 855 } 856 857 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 858 NumRegs, RegisterVT, ValueVT, V); 859 Part += NumRegs; 860 Parts.clear(); 861 } 862 863 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 864 } 865 866 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 867 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 868 const Value *V, 869 ISD::NodeType PreferredExtendType) const { 870 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 871 ISD::NodeType ExtendKind = PreferredExtendType; 872 873 // Get the list of the values's legal parts. 874 unsigned NumRegs = Regs.size(); 875 SmallVector<SDValue, 8> Parts(NumRegs); 876 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 877 unsigned NumParts = RegCount[Value]; 878 879 MVT RegisterVT = IsABIMangled 880 ? TLI.getRegisterTypeForCallingConv(RegVTs[Value]) 881 : RegVTs[Value]; 882 883 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 884 ExtendKind = ISD::ZERO_EXTEND; 885 886 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 887 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 888 Part += NumParts; 889 } 890 891 // Copy the parts into the registers. 892 SmallVector<SDValue, 8> Chains(NumRegs); 893 for (unsigned i = 0; i != NumRegs; ++i) { 894 SDValue Part; 895 if (!Flag) { 896 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 897 } else { 898 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 899 *Flag = Part.getValue(1); 900 } 901 902 Chains[i] = Part.getValue(0); 903 } 904 905 if (NumRegs == 1 || Flag) 906 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 907 // flagged to it. That is the CopyToReg nodes and the user are considered 908 // a single scheduling unit. If we create a TokenFactor and return it as 909 // chain, then the TokenFactor is both a predecessor (operand) of the 910 // user as well as a successor (the TF operands are flagged to the user). 911 // c1, f1 = CopyToReg 912 // c2, f2 = CopyToReg 913 // c3 = TokenFactor c1, c2 914 // ... 915 // = op c3, ..., f2 916 Chain = Chains[NumRegs-1]; 917 else 918 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 919 } 920 921 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 922 unsigned MatchingIdx, const SDLoc &dl, 923 SelectionDAG &DAG, 924 std::vector<SDValue> &Ops) const { 925 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 926 927 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 928 if (HasMatching) 929 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 930 else if (!Regs.empty() && 931 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 932 // Put the register class of the virtual registers in the flag word. That 933 // way, later passes can recompute register class constraints for inline 934 // assembly as well as normal instructions. 935 // Don't do this for tied operands that can use the regclass information 936 // from the def. 937 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 938 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 939 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 940 } 941 942 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 943 Ops.push_back(Res); 944 945 if (Code == InlineAsm::Kind_Clobber) { 946 // Clobbers should always have a 1:1 mapping with registers, and may 947 // reference registers that have illegal (e.g. vector) types. Hence, we 948 // shouldn't try to apply any sort of splitting logic to them. 949 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 950 "No 1:1 mapping from clobbers to regs?"); 951 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 952 (void)SP; 953 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 954 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 955 assert( 956 (Regs[I] != SP || 957 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 958 "If we clobbered the stack pointer, MFI should know about it."); 959 } 960 return; 961 } 962 963 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 964 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 965 MVT RegisterVT = RegVTs[Value]; 966 for (unsigned i = 0; i != NumRegs; ++i) { 967 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 968 unsigned TheReg = Regs[Reg++]; 969 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 970 } 971 } 972 } 973 974 SmallVector<std::pair<unsigned, unsigned>, 4> 975 RegsForValue::getRegsAndSizes() const { 976 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 977 unsigned I = 0; 978 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 979 unsigned RegCount = std::get<0>(CountAndVT); 980 MVT RegisterVT = std::get<1>(CountAndVT); 981 unsigned RegisterSize = RegisterVT.getSizeInBits(); 982 for (unsigned E = I + RegCount; I != E; ++I) 983 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 984 } 985 return OutVec; 986 } 987 988 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 989 const TargetLibraryInfo *li) { 990 AA = aa; 991 GFI = gfi; 992 LibInfo = li; 993 DL = &DAG.getDataLayout(); 994 Context = DAG.getContext(); 995 LPadToCallSiteMap.clear(); 996 } 997 998 void SelectionDAGBuilder::clear() { 999 NodeMap.clear(); 1000 UnusedArgNodeMap.clear(); 1001 PendingLoads.clear(); 1002 PendingExports.clear(); 1003 CurInst = nullptr; 1004 HasTailCall = false; 1005 SDNodeOrder = LowestSDNodeOrder; 1006 StatepointLowering.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1010 DanglingDebugInfoMap.clear(); 1011 } 1012 1013 SDValue SelectionDAGBuilder::getRoot() { 1014 if (PendingLoads.empty()) 1015 return DAG.getRoot(); 1016 1017 if (PendingLoads.size() == 1) { 1018 SDValue Root = PendingLoads[0]; 1019 DAG.setRoot(Root); 1020 PendingLoads.clear(); 1021 return Root; 1022 } 1023 1024 // Otherwise, we have to make a token factor node. 1025 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1026 PendingLoads); 1027 PendingLoads.clear(); 1028 DAG.setRoot(Root); 1029 return Root; 1030 } 1031 1032 SDValue SelectionDAGBuilder::getControlRoot() { 1033 SDValue Root = DAG.getRoot(); 1034 1035 if (PendingExports.empty()) 1036 return Root; 1037 1038 // Turn all of the CopyToReg chains into one factored node. 1039 if (Root.getOpcode() != ISD::EntryToken) { 1040 unsigned i = 0, e = PendingExports.size(); 1041 for (; i != e; ++i) { 1042 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1043 if (PendingExports[i].getNode()->getOperand(0) == Root) 1044 break; // Don't add the root if we already indirectly depend on it. 1045 } 1046 1047 if (i == e) 1048 PendingExports.push_back(Root); 1049 } 1050 1051 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1052 PendingExports); 1053 PendingExports.clear(); 1054 DAG.setRoot(Root); 1055 return Root; 1056 } 1057 1058 void SelectionDAGBuilder::visit(const Instruction &I) { 1059 // Set up outgoing PHI node register values before emitting the terminator. 1060 if (isa<TerminatorInst>(&I)) { 1061 HandlePHINodesInSuccessorBlocks(I.getParent()); 1062 } 1063 1064 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1065 if (!isa<DbgInfoIntrinsic>(I)) 1066 ++SDNodeOrder; 1067 1068 CurInst = &I; 1069 1070 visit(I.getOpcode(), I); 1071 1072 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1073 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1074 // maps to this instruction. 1075 // TODO: We could handle all flags (nsw, etc) here. 1076 // TODO: If an IR instruction maps to >1 node, only the final node will have 1077 // flags set. 1078 if (SDNode *Node = getNodeForIRValue(&I)) { 1079 SDNodeFlags IncomingFlags; 1080 IncomingFlags.copyFMF(*FPMO); 1081 if (!Node->getFlags().isDefined()) 1082 Node->setFlags(IncomingFlags); 1083 else 1084 Node->intersectFlagsWith(IncomingFlags); 1085 } 1086 } 1087 1088 if (!isa<TerminatorInst>(&I) && !HasTailCall && 1089 !isStatepoint(&I)) // statepoints handle their exports internally 1090 CopyToExportRegsIfNeeded(&I); 1091 1092 CurInst = nullptr; 1093 } 1094 1095 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1096 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1097 } 1098 1099 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1100 // Note: this doesn't use InstVisitor, because it has to work with 1101 // ConstantExpr's in addition to instructions. 1102 switch (Opcode) { 1103 default: llvm_unreachable("Unknown instruction type encountered!"); 1104 // Build the switch statement using the Instruction.def file. 1105 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1106 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1107 #include "llvm/IR/Instruction.def" 1108 } 1109 } 1110 1111 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1112 const DIExpression *Expr) { 1113 for (auto &DDIMI : DanglingDebugInfoMap) 1114 for (auto &DDI : DDIMI.second) 1115 if (DDI.getDI()) { 1116 const DbgValueInst *DI = DDI.getDI(); 1117 DIVariable *DanglingVariable = DI->getVariable(); 1118 DIExpression *DanglingExpr = DI->getExpression(); 1119 if (DanglingVariable == Variable && 1120 Expr->fragmentsOverlap(DanglingExpr)) { 1121 LLVM_DEBUG(dbgs() 1122 << "Dropping dangling debug info for " << *DI << "\n"); 1123 DDI = DanglingDebugInfo(); 1124 } 1125 } 1126 } 1127 1128 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1129 // generate the debug data structures now that we've seen its definition. 1130 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1131 SDValue Val) { 1132 DanglingDebugInfoVector &DDIV = DanglingDebugInfoMap[V]; 1133 for (auto &DDI : DDIV) { 1134 if (!DDI.getDI()) 1135 continue; 1136 const DbgValueInst *DI = DDI.getDI(); 1137 DebugLoc dl = DDI.getdl(); 1138 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1139 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1140 DILocalVariable *Variable = DI->getVariable(); 1141 DIExpression *Expr = DI->getExpression(); 1142 assert(Variable->isValidLocationForIntrinsic(dl) && 1143 "Expected inlined-at fields to agree"); 1144 SDDbgValue *SDV; 1145 if (Val.getNode()) { 1146 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1147 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1148 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1149 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1150 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1151 // inserted after the definition of Val when emitting the instructions 1152 // after ISel. An alternative could be to teach 1153 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1154 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1155 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1156 << ValSDNodeOrder << "\n"); 1157 SDV = getDbgValue(Val, Variable, Expr, dl, 1158 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1159 DAG.AddDbgValue(SDV, Val.getNode(), false); 1160 } else 1161 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1162 << "in EmitFuncArgumentDbgValue\n"); 1163 } else 1164 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1165 } 1166 DanglingDebugInfoMap[V].clear(); 1167 } 1168 1169 /// getCopyFromRegs - If there was virtual register allocated for the value V 1170 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1171 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1172 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1173 SDValue Result; 1174 1175 if (It != FuncInfo.ValueMap.end()) { 1176 unsigned InReg = It->second; 1177 1178 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1179 DAG.getDataLayout(), InReg, Ty, isABIRegCopy(V)); 1180 SDValue Chain = DAG.getEntryNode(); 1181 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1182 V); 1183 resolveDanglingDebugInfo(V, Result); 1184 } 1185 1186 return Result; 1187 } 1188 1189 /// getValue - Return an SDValue for the given Value. 1190 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1191 // If we already have an SDValue for this value, use it. It's important 1192 // to do this first, so that we don't create a CopyFromReg if we already 1193 // have a regular SDValue. 1194 SDValue &N = NodeMap[V]; 1195 if (N.getNode()) return N; 1196 1197 // If there's a virtual register allocated and initialized for this 1198 // value, use it. 1199 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1200 return copyFromReg; 1201 1202 // Otherwise create a new SDValue and remember it. 1203 SDValue Val = getValueImpl(V); 1204 NodeMap[V] = Val; 1205 resolveDanglingDebugInfo(V, Val); 1206 return Val; 1207 } 1208 1209 // Return true if SDValue exists for the given Value 1210 bool SelectionDAGBuilder::findValue(const Value *V) const { 1211 return (NodeMap.find(V) != NodeMap.end()) || 1212 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1213 } 1214 1215 /// getNonRegisterValue - Return an SDValue for the given Value, but 1216 /// don't look in FuncInfo.ValueMap for a virtual register. 1217 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1218 // If we already have an SDValue for this value, use it. 1219 SDValue &N = NodeMap[V]; 1220 if (N.getNode()) { 1221 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1222 // Remove the debug location from the node as the node is about to be used 1223 // in a location which may differ from the original debug location. This 1224 // is relevant to Constant and ConstantFP nodes because they can appear 1225 // as constant expressions inside PHI nodes. 1226 N->setDebugLoc(DebugLoc()); 1227 } 1228 return N; 1229 } 1230 1231 // Otherwise create a new SDValue and remember it. 1232 SDValue Val = getValueImpl(V); 1233 NodeMap[V] = Val; 1234 resolveDanglingDebugInfo(V, Val); 1235 return Val; 1236 } 1237 1238 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1239 /// Create an SDValue for the given value. 1240 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1241 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1242 1243 if (const Constant *C = dyn_cast<Constant>(V)) { 1244 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1245 1246 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1247 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1248 1249 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1250 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1251 1252 if (isa<ConstantPointerNull>(C)) { 1253 unsigned AS = V->getType()->getPointerAddressSpace(); 1254 return DAG.getConstant(0, getCurSDLoc(), 1255 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1256 } 1257 1258 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1259 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1260 1261 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1262 return DAG.getUNDEF(VT); 1263 1264 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1265 visit(CE->getOpcode(), *CE); 1266 SDValue N1 = NodeMap[V]; 1267 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1268 return N1; 1269 } 1270 1271 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1272 SmallVector<SDValue, 4> Constants; 1273 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1274 OI != OE; ++OI) { 1275 SDNode *Val = getValue(*OI).getNode(); 1276 // If the operand is an empty aggregate, there are no values. 1277 if (!Val) continue; 1278 // Add each leaf value from the operand to the Constants list 1279 // to form a flattened list of all the values. 1280 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1281 Constants.push_back(SDValue(Val, i)); 1282 } 1283 1284 return DAG.getMergeValues(Constants, getCurSDLoc()); 1285 } 1286 1287 if (const ConstantDataSequential *CDS = 1288 dyn_cast<ConstantDataSequential>(C)) { 1289 SmallVector<SDValue, 4> Ops; 1290 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1291 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1292 // Add each leaf value from the operand to the Constants list 1293 // to form a flattened list of all the values. 1294 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1295 Ops.push_back(SDValue(Val, i)); 1296 } 1297 1298 if (isa<ArrayType>(CDS->getType())) 1299 return DAG.getMergeValues(Ops, getCurSDLoc()); 1300 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1301 } 1302 1303 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1304 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1305 "Unknown struct or array constant!"); 1306 1307 SmallVector<EVT, 4> ValueVTs; 1308 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1309 unsigned NumElts = ValueVTs.size(); 1310 if (NumElts == 0) 1311 return SDValue(); // empty struct 1312 SmallVector<SDValue, 4> Constants(NumElts); 1313 for (unsigned i = 0; i != NumElts; ++i) { 1314 EVT EltVT = ValueVTs[i]; 1315 if (isa<UndefValue>(C)) 1316 Constants[i] = DAG.getUNDEF(EltVT); 1317 else if (EltVT.isFloatingPoint()) 1318 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1319 else 1320 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1321 } 1322 1323 return DAG.getMergeValues(Constants, getCurSDLoc()); 1324 } 1325 1326 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1327 return DAG.getBlockAddress(BA, VT); 1328 1329 VectorType *VecTy = cast<VectorType>(V->getType()); 1330 unsigned NumElements = VecTy->getNumElements(); 1331 1332 // Now that we know the number and type of the elements, get that number of 1333 // elements into the Ops array based on what kind of constant it is. 1334 SmallVector<SDValue, 16> Ops; 1335 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1336 for (unsigned i = 0; i != NumElements; ++i) 1337 Ops.push_back(getValue(CV->getOperand(i))); 1338 } else { 1339 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1340 EVT EltVT = 1341 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1342 1343 SDValue Op; 1344 if (EltVT.isFloatingPoint()) 1345 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1346 else 1347 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1348 Ops.assign(NumElements, Op); 1349 } 1350 1351 // Create a BUILD_VECTOR node. 1352 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1353 } 1354 1355 // If this is a static alloca, generate it as the frameindex instead of 1356 // computation. 1357 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1358 DenseMap<const AllocaInst*, int>::iterator SI = 1359 FuncInfo.StaticAllocaMap.find(AI); 1360 if (SI != FuncInfo.StaticAllocaMap.end()) 1361 return DAG.getFrameIndex(SI->second, 1362 TLI.getFrameIndexTy(DAG.getDataLayout())); 1363 } 1364 1365 // If this is an instruction which fast-isel has deferred, select it now. 1366 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1367 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1368 1369 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1370 Inst->getType(), isABIRegCopy(V)); 1371 SDValue Chain = DAG.getEntryNode(); 1372 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1373 } 1374 1375 llvm_unreachable("Can't get register for value!"); 1376 } 1377 1378 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1379 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1380 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1381 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1382 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1383 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1384 if (IsMSVCCXX || IsCoreCLR) 1385 CatchPadMBB->setIsEHFuncletEntry(); 1386 1387 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1388 } 1389 1390 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1391 // Update machine-CFG edge. 1392 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1393 FuncInfo.MBB->addSuccessor(TargetMBB); 1394 1395 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1396 bool IsSEH = isAsynchronousEHPersonality(Pers); 1397 if (IsSEH) { 1398 // If this is not a fall-through branch or optimizations are switched off, 1399 // emit the branch. 1400 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1401 TM.getOptLevel() == CodeGenOpt::None) 1402 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1403 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1404 return; 1405 } 1406 1407 // Figure out the funclet membership for the catchret's successor. 1408 // This will be used by the FuncletLayout pass to determine how to order the 1409 // BB's. 1410 // A 'catchret' returns to the outer scope's color. 1411 Value *ParentPad = I.getCatchSwitchParentPad(); 1412 const BasicBlock *SuccessorColor; 1413 if (isa<ConstantTokenNone>(ParentPad)) 1414 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1415 else 1416 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1417 assert(SuccessorColor && "No parent funclet for catchret!"); 1418 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1419 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1420 1421 // Create the terminator node. 1422 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1423 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1424 DAG.getBasicBlock(SuccessorColorMBB)); 1425 DAG.setRoot(Ret); 1426 } 1427 1428 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1429 // Don't emit any special code for the cleanuppad instruction. It just marks 1430 // the start of a funclet. 1431 FuncInfo.MBB->setIsEHFuncletEntry(); 1432 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1433 } 1434 1435 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1436 /// many places it could ultimately go. In the IR, we have a single unwind 1437 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1438 /// This function skips over imaginary basic blocks that hold catchswitch 1439 /// instructions, and finds all the "real" machine 1440 /// basic block destinations. As those destinations may not be successors of 1441 /// EHPadBB, here we also calculate the edge probability to those destinations. 1442 /// The passed-in Prob is the edge probability to EHPadBB. 1443 static void findUnwindDestinations( 1444 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1445 BranchProbability Prob, 1446 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1447 &UnwindDests) { 1448 EHPersonality Personality = 1449 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1450 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1451 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1452 1453 while (EHPadBB) { 1454 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1455 BasicBlock *NewEHPadBB = nullptr; 1456 if (isa<LandingPadInst>(Pad)) { 1457 // Stop on landingpads. They are not funclets. 1458 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1459 break; 1460 } else if (isa<CleanupPadInst>(Pad)) { 1461 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1462 // personalities. 1463 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1464 UnwindDests.back().first->setIsEHFuncletEntry(); 1465 break; 1466 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1467 // Add the catchpad handlers to the possible destinations. 1468 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1469 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1470 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1471 if (IsMSVCCXX || IsCoreCLR) 1472 UnwindDests.back().first->setIsEHFuncletEntry(); 1473 } 1474 NewEHPadBB = CatchSwitch->getUnwindDest(); 1475 } else { 1476 continue; 1477 } 1478 1479 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1480 if (BPI && NewEHPadBB) 1481 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1482 EHPadBB = NewEHPadBB; 1483 } 1484 } 1485 1486 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1487 // Update successor info. 1488 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1489 auto UnwindDest = I.getUnwindDest(); 1490 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1491 BranchProbability UnwindDestProb = 1492 (BPI && UnwindDest) 1493 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1494 : BranchProbability::getZero(); 1495 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1496 for (auto &UnwindDest : UnwindDests) { 1497 UnwindDest.first->setIsEHPad(); 1498 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1499 } 1500 FuncInfo.MBB->normalizeSuccProbs(); 1501 1502 // Create the terminator node. 1503 SDValue Ret = 1504 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1505 DAG.setRoot(Ret); 1506 } 1507 1508 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1509 report_fatal_error("visitCatchSwitch not yet implemented!"); 1510 } 1511 1512 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1513 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1514 auto &DL = DAG.getDataLayout(); 1515 SDValue Chain = getControlRoot(); 1516 SmallVector<ISD::OutputArg, 8> Outs; 1517 SmallVector<SDValue, 8> OutVals; 1518 1519 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1520 // lower 1521 // 1522 // %val = call <ty> @llvm.experimental.deoptimize() 1523 // ret <ty> %val 1524 // 1525 // differently. 1526 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1527 LowerDeoptimizingReturn(); 1528 return; 1529 } 1530 1531 if (!FuncInfo.CanLowerReturn) { 1532 unsigned DemoteReg = FuncInfo.DemoteRegister; 1533 const Function *F = I.getParent()->getParent(); 1534 1535 // Emit a store of the return value through the virtual register. 1536 // Leave Outs empty so that LowerReturn won't try to load return 1537 // registers the usual way. 1538 SmallVector<EVT, 1> PtrValueVTs; 1539 ComputeValueVTs(TLI, DL, 1540 F->getReturnType()->getPointerTo( 1541 DAG.getDataLayout().getAllocaAddrSpace()), 1542 PtrValueVTs); 1543 1544 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1545 DemoteReg, PtrValueVTs[0]); 1546 SDValue RetOp = getValue(I.getOperand(0)); 1547 1548 SmallVector<EVT, 4> ValueVTs; 1549 SmallVector<uint64_t, 4> Offsets; 1550 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1551 unsigned NumValues = ValueVTs.size(); 1552 1553 SmallVector<SDValue, 4> Chains(NumValues); 1554 for (unsigned i = 0; i != NumValues; ++i) { 1555 // An aggregate return value cannot wrap around the address space, so 1556 // offsets to its parts don't wrap either. 1557 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1558 Chains[i] = DAG.getStore( 1559 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1560 // FIXME: better loc info would be nice. 1561 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1562 } 1563 1564 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1565 MVT::Other, Chains); 1566 } else if (I.getNumOperands() != 0) { 1567 SmallVector<EVT, 4> ValueVTs; 1568 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1569 unsigned NumValues = ValueVTs.size(); 1570 if (NumValues) { 1571 SDValue RetOp = getValue(I.getOperand(0)); 1572 1573 const Function *F = I.getParent()->getParent(); 1574 1575 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1576 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1577 Attribute::SExt)) 1578 ExtendKind = ISD::SIGN_EXTEND; 1579 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1580 Attribute::ZExt)) 1581 ExtendKind = ISD::ZERO_EXTEND; 1582 1583 LLVMContext &Context = F->getContext(); 1584 bool RetInReg = F->getAttributes().hasAttribute( 1585 AttributeList::ReturnIndex, Attribute::InReg); 1586 1587 for (unsigned j = 0; j != NumValues; ++j) { 1588 EVT VT = ValueVTs[j]; 1589 1590 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1591 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1592 1593 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, VT); 1594 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, VT); 1595 SmallVector<SDValue, 4> Parts(NumParts); 1596 getCopyToParts(DAG, getCurSDLoc(), 1597 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1598 &Parts[0], NumParts, PartVT, &I, ExtendKind, true); 1599 1600 // 'inreg' on function refers to return value 1601 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1602 if (RetInReg) 1603 Flags.setInReg(); 1604 1605 // Propagate extension type if any 1606 if (ExtendKind == ISD::SIGN_EXTEND) 1607 Flags.setSExt(); 1608 else if (ExtendKind == ISD::ZERO_EXTEND) 1609 Flags.setZExt(); 1610 1611 for (unsigned i = 0; i < NumParts; ++i) { 1612 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1613 VT, /*isfixed=*/true, 0, 0)); 1614 OutVals.push_back(Parts[i]); 1615 } 1616 } 1617 } 1618 } 1619 1620 // Push in swifterror virtual register as the last element of Outs. This makes 1621 // sure swifterror virtual register will be returned in the swifterror 1622 // physical register. 1623 const Function *F = I.getParent()->getParent(); 1624 if (TLI.supportSwiftError() && 1625 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1626 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1627 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1628 Flags.setSwiftError(); 1629 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1630 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1631 true /*isfixed*/, 1 /*origidx*/, 1632 0 /*partOffs*/)); 1633 // Create SDNode for the swifterror virtual register. 1634 OutVals.push_back( 1635 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1636 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1637 EVT(TLI.getPointerTy(DL)))); 1638 } 1639 1640 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1641 CallingConv::ID CallConv = 1642 DAG.getMachineFunction().getFunction().getCallingConv(); 1643 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1644 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1645 1646 // Verify that the target's LowerReturn behaved as expected. 1647 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1648 "LowerReturn didn't return a valid chain!"); 1649 1650 // Update the DAG with the new chain value resulting from return lowering. 1651 DAG.setRoot(Chain); 1652 } 1653 1654 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1655 /// created for it, emit nodes to copy the value into the virtual 1656 /// registers. 1657 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1658 // Skip empty types 1659 if (V->getType()->isEmptyTy()) 1660 return; 1661 1662 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1663 if (VMI != FuncInfo.ValueMap.end()) { 1664 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1665 CopyValueToVirtualRegister(V, VMI->second); 1666 } 1667 } 1668 1669 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1670 /// the current basic block, add it to ValueMap now so that we'll get a 1671 /// CopyTo/FromReg. 1672 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1673 // No need to export constants. 1674 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1675 1676 // Already exported? 1677 if (FuncInfo.isExportedInst(V)) return; 1678 1679 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1680 CopyValueToVirtualRegister(V, Reg); 1681 } 1682 1683 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1684 const BasicBlock *FromBB) { 1685 // The operands of the setcc have to be in this block. We don't know 1686 // how to export them from some other block. 1687 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1688 // Can export from current BB. 1689 if (VI->getParent() == FromBB) 1690 return true; 1691 1692 // Is already exported, noop. 1693 return FuncInfo.isExportedInst(V); 1694 } 1695 1696 // If this is an argument, we can export it if the BB is the entry block or 1697 // if it is already exported. 1698 if (isa<Argument>(V)) { 1699 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1700 return true; 1701 1702 // Otherwise, can only export this if it is already exported. 1703 return FuncInfo.isExportedInst(V); 1704 } 1705 1706 // Otherwise, constants can always be exported. 1707 return true; 1708 } 1709 1710 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1711 BranchProbability 1712 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1713 const MachineBasicBlock *Dst) const { 1714 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1715 const BasicBlock *SrcBB = Src->getBasicBlock(); 1716 const BasicBlock *DstBB = Dst->getBasicBlock(); 1717 if (!BPI) { 1718 // If BPI is not available, set the default probability as 1 / N, where N is 1719 // the number of successors. 1720 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1721 return BranchProbability(1, SuccSize); 1722 } 1723 return BPI->getEdgeProbability(SrcBB, DstBB); 1724 } 1725 1726 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1727 MachineBasicBlock *Dst, 1728 BranchProbability Prob) { 1729 if (!FuncInfo.BPI) 1730 Src->addSuccessorWithoutProb(Dst); 1731 else { 1732 if (Prob.isUnknown()) 1733 Prob = getEdgeProbability(Src, Dst); 1734 Src->addSuccessor(Dst, Prob); 1735 } 1736 } 1737 1738 static bool InBlock(const Value *V, const BasicBlock *BB) { 1739 if (const Instruction *I = dyn_cast<Instruction>(V)) 1740 return I->getParent() == BB; 1741 return true; 1742 } 1743 1744 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1745 /// This function emits a branch and is used at the leaves of an OR or an 1746 /// AND operator tree. 1747 void 1748 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1749 MachineBasicBlock *TBB, 1750 MachineBasicBlock *FBB, 1751 MachineBasicBlock *CurBB, 1752 MachineBasicBlock *SwitchBB, 1753 BranchProbability TProb, 1754 BranchProbability FProb, 1755 bool InvertCond) { 1756 const BasicBlock *BB = CurBB->getBasicBlock(); 1757 1758 // If the leaf of the tree is a comparison, merge the condition into 1759 // the caseblock. 1760 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1761 // The operands of the cmp have to be in this block. We don't know 1762 // how to export them from some other block. If this is the first block 1763 // of the sequence, no exporting is needed. 1764 if (CurBB == SwitchBB || 1765 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1766 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1767 ISD::CondCode Condition; 1768 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1769 ICmpInst::Predicate Pred = 1770 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 1771 Condition = getICmpCondCode(Pred); 1772 } else { 1773 const FCmpInst *FC = cast<FCmpInst>(Cond); 1774 FCmpInst::Predicate Pred = 1775 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 1776 Condition = getFCmpCondCode(Pred); 1777 if (TM.Options.NoNaNsFPMath) 1778 Condition = getFCmpCodeWithoutNaN(Condition); 1779 } 1780 1781 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1782 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1783 SwitchCases.push_back(CB); 1784 return; 1785 } 1786 } 1787 1788 // Create a CaseBlock record representing this branch. 1789 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 1790 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 1791 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 1792 SwitchCases.push_back(CB); 1793 } 1794 1795 /// FindMergedConditions - If Cond is an expression like 1796 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1797 MachineBasicBlock *TBB, 1798 MachineBasicBlock *FBB, 1799 MachineBasicBlock *CurBB, 1800 MachineBasicBlock *SwitchBB, 1801 Instruction::BinaryOps Opc, 1802 BranchProbability TProb, 1803 BranchProbability FProb, 1804 bool InvertCond) { 1805 // Skip over not part of the tree and remember to invert op and operands at 1806 // next level. 1807 if (BinaryOperator::isNot(Cond) && Cond->hasOneUse()) { 1808 const Value *CondOp = BinaryOperator::getNotArgument(Cond); 1809 if (InBlock(CondOp, CurBB->getBasicBlock())) { 1810 FindMergedConditions(CondOp, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 1811 !InvertCond); 1812 return; 1813 } 1814 } 1815 1816 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1817 // Compute the effective opcode for Cond, taking into account whether it needs 1818 // to be inverted, e.g. 1819 // and (not (or A, B)), C 1820 // gets lowered as 1821 // and (and (not A, not B), C) 1822 unsigned BOpc = 0; 1823 if (BOp) { 1824 BOpc = BOp->getOpcode(); 1825 if (InvertCond) { 1826 if (BOpc == Instruction::And) 1827 BOpc = Instruction::Or; 1828 else if (BOpc == Instruction::Or) 1829 BOpc = Instruction::And; 1830 } 1831 } 1832 1833 // If this node is not part of the or/and tree, emit it as a branch. 1834 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1835 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 1836 BOp->getParent() != CurBB->getBasicBlock() || 1837 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1838 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1839 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1840 TProb, FProb, InvertCond); 1841 return; 1842 } 1843 1844 // Create TmpBB after CurBB. 1845 MachineFunction::iterator BBI(CurBB); 1846 MachineFunction &MF = DAG.getMachineFunction(); 1847 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1848 CurBB->getParent()->insert(++BBI, TmpBB); 1849 1850 if (Opc == Instruction::Or) { 1851 // Codegen X | Y as: 1852 // BB1: 1853 // jmp_if_X TBB 1854 // jmp TmpBB 1855 // TmpBB: 1856 // jmp_if_Y TBB 1857 // jmp FBB 1858 // 1859 1860 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1861 // The requirement is that 1862 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1863 // = TrueProb for original BB. 1864 // Assuming the original probabilities are A and B, one choice is to set 1865 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1866 // A/(1+B) and 2B/(1+B). This choice assumes that 1867 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1868 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1869 // TmpBB, but the math is more complicated. 1870 1871 auto NewTrueProb = TProb / 2; 1872 auto NewFalseProb = TProb / 2 + FProb; 1873 // Emit the LHS condition. 1874 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1875 NewTrueProb, NewFalseProb, InvertCond); 1876 1877 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1878 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1879 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1880 // Emit the RHS condition into TmpBB. 1881 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1882 Probs[0], Probs[1], InvertCond); 1883 } else { 1884 assert(Opc == Instruction::And && "Unknown merge op!"); 1885 // Codegen X & Y as: 1886 // BB1: 1887 // jmp_if_X TmpBB 1888 // jmp FBB 1889 // TmpBB: 1890 // jmp_if_Y TBB 1891 // jmp FBB 1892 // 1893 // This requires creation of TmpBB after CurBB. 1894 1895 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1896 // The requirement is that 1897 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1898 // = FalseProb for original BB. 1899 // Assuming the original probabilities are A and B, one choice is to set 1900 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1901 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1902 // TrueProb for BB1 * FalseProb for TmpBB. 1903 1904 auto NewTrueProb = TProb + FProb / 2; 1905 auto NewFalseProb = FProb / 2; 1906 // Emit the LHS condition. 1907 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1908 NewTrueProb, NewFalseProb, InvertCond); 1909 1910 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1911 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1912 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1913 // Emit the RHS condition into TmpBB. 1914 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1915 Probs[0], Probs[1], InvertCond); 1916 } 1917 } 1918 1919 /// If the set of cases should be emitted as a series of branches, return true. 1920 /// If we should emit this as a bunch of and/or'd together conditions, return 1921 /// false. 1922 bool 1923 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1924 if (Cases.size() != 2) return true; 1925 1926 // If this is two comparisons of the same values or'd or and'd together, they 1927 // will get folded into a single comparison, so don't emit two blocks. 1928 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1929 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1930 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1931 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1932 return false; 1933 } 1934 1935 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1936 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1937 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1938 Cases[0].CC == Cases[1].CC && 1939 isa<Constant>(Cases[0].CmpRHS) && 1940 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1941 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1942 return false; 1943 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1944 return false; 1945 } 1946 1947 return true; 1948 } 1949 1950 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1951 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1952 1953 // Update machine-CFG edges. 1954 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1955 1956 if (I.isUnconditional()) { 1957 // Update machine-CFG edges. 1958 BrMBB->addSuccessor(Succ0MBB); 1959 1960 // If this is not a fall-through branch or optimizations are switched off, 1961 // emit the branch. 1962 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1963 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1964 MVT::Other, getControlRoot(), 1965 DAG.getBasicBlock(Succ0MBB))); 1966 1967 return; 1968 } 1969 1970 // If this condition is one of the special cases we handle, do special stuff 1971 // now. 1972 const Value *CondVal = I.getCondition(); 1973 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1974 1975 // If this is a series of conditions that are or'd or and'd together, emit 1976 // this as a sequence of branches instead of setcc's with and/or operations. 1977 // As long as jumps are not expensive, this should improve performance. 1978 // For example, instead of something like: 1979 // cmp A, B 1980 // C = seteq 1981 // cmp D, E 1982 // F = setle 1983 // or C, F 1984 // jnz foo 1985 // Emit: 1986 // cmp A, B 1987 // je foo 1988 // cmp D, E 1989 // jle foo 1990 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1991 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1992 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1993 !I.getMetadata(LLVMContext::MD_unpredictable) && 1994 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1995 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1996 Opcode, 1997 getEdgeProbability(BrMBB, Succ0MBB), 1998 getEdgeProbability(BrMBB, Succ1MBB), 1999 /*InvertCond=*/false); 2000 // If the compares in later blocks need to use values not currently 2001 // exported from this block, export them now. This block should always 2002 // be the first entry. 2003 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2004 2005 // Allow some cases to be rejected. 2006 if (ShouldEmitAsBranches(SwitchCases)) { 2007 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2008 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2009 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2010 } 2011 2012 // Emit the branch for this block. 2013 visitSwitchCase(SwitchCases[0], BrMBB); 2014 SwitchCases.erase(SwitchCases.begin()); 2015 return; 2016 } 2017 2018 // Okay, we decided not to do this, remove any inserted MBB's and clear 2019 // SwitchCases. 2020 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2021 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2022 2023 SwitchCases.clear(); 2024 } 2025 } 2026 2027 // Create a CaseBlock record representing this branch. 2028 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2029 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2030 2031 // Use visitSwitchCase to actually insert the fast branch sequence for this 2032 // cond branch. 2033 visitSwitchCase(CB, BrMBB); 2034 } 2035 2036 /// visitSwitchCase - Emits the necessary code to represent a single node in 2037 /// the binary search tree resulting from lowering a switch instruction. 2038 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2039 MachineBasicBlock *SwitchBB) { 2040 SDValue Cond; 2041 SDValue CondLHS = getValue(CB.CmpLHS); 2042 SDLoc dl = CB.DL; 2043 2044 // Build the setcc now. 2045 if (!CB.CmpMHS) { 2046 // Fold "(X == true)" to X and "(X == false)" to !X to 2047 // handle common cases produced by branch lowering. 2048 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2049 CB.CC == ISD::SETEQ) 2050 Cond = CondLHS; 2051 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2052 CB.CC == ISD::SETEQ) { 2053 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2054 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2055 } else 2056 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2057 } else { 2058 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2059 2060 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2061 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2062 2063 SDValue CmpOp = getValue(CB.CmpMHS); 2064 EVT VT = CmpOp.getValueType(); 2065 2066 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2067 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2068 ISD::SETLE); 2069 } else { 2070 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2071 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2072 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2073 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2074 } 2075 } 2076 2077 // Update successor info 2078 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2079 // TrueBB and FalseBB are always different unless the incoming IR is 2080 // degenerate. This only happens when running llc on weird IR. 2081 if (CB.TrueBB != CB.FalseBB) 2082 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2083 SwitchBB->normalizeSuccProbs(); 2084 2085 // If the lhs block is the next block, invert the condition so that we can 2086 // fall through to the lhs instead of the rhs block. 2087 if (CB.TrueBB == NextBlock(SwitchBB)) { 2088 std::swap(CB.TrueBB, CB.FalseBB); 2089 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2090 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2091 } 2092 2093 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2094 MVT::Other, getControlRoot(), Cond, 2095 DAG.getBasicBlock(CB.TrueBB)); 2096 2097 // Insert the false branch. Do this even if it's a fall through branch, 2098 // this makes it easier to do DAG optimizations which require inverting 2099 // the branch condition. 2100 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2101 DAG.getBasicBlock(CB.FalseBB)); 2102 2103 DAG.setRoot(BrCond); 2104 } 2105 2106 /// visitJumpTable - Emit JumpTable node in the current MBB 2107 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2108 // Emit the code for the jump table 2109 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2110 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2111 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2112 JT.Reg, PTy); 2113 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2114 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2115 MVT::Other, Index.getValue(1), 2116 Table, Index); 2117 DAG.setRoot(BrJumpTable); 2118 } 2119 2120 /// visitJumpTableHeader - This function emits necessary code to produce index 2121 /// in the JumpTable from switch case. 2122 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2123 JumpTableHeader &JTH, 2124 MachineBasicBlock *SwitchBB) { 2125 SDLoc dl = getCurSDLoc(); 2126 2127 // Subtract the lowest switch case value from the value being switched on and 2128 // conditional branch to default mbb if the result is greater than the 2129 // difference between smallest and largest cases. 2130 SDValue SwitchOp = getValue(JTH.SValue); 2131 EVT VT = SwitchOp.getValueType(); 2132 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2133 DAG.getConstant(JTH.First, dl, VT)); 2134 2135 // The SDNode we just created, which holds the value being switched on minus 2136 // the smallest case value, needs to be copied to a virtual register so it 2137 // can be used as an index into the jump table in a subsequent basic block. 2138 // This value may be smaller or larger than the target's pointer type, and 2139 // therefore require extension or truncating. 2140 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2141 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2142 2143 unsigned JumpTableReg = 2144 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2145 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2146 JumpTableReg, SwitchOp); 2147 JT.Reg = JumpTableReg; 2148 2149 // Emit the range check for the jump table, and branch to the default block 2150 // for the switch statement if the value being switched on exceeds the largest 2151 // case in the switch. 2152 SDValue CMP = DAG.getSetCC( 2153 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2154 Sub.getValueType()), 2155 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2156 2157 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2158 MVT::Other, CopyTo, CMP, 2159 DAG.getBasicBlock(JT.Default)); 2160 2161 // Avoid emitting unnecessary branches to the next block. 2162 if (JT.MBB != NextBlock(SwitchBB)) 2163 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2164 DAG.getBasicBlock(JT.MBB)); 2165 2166 DAG.setRoot(BrCond); 2167 } 2168 2169 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2170 /// variable if there exists one. 2171 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2172 SDValue &Chain) { 2173 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2174 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2175 MachineFunction &MF = DAG.getMachineFunction(); 2176 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2177 MachineSDNode *Node = 2178 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2179 if (Global) { 2180 MachinePointerInfo MPInfo(Global); 2181 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 2182 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2183 MachineMemOperand::MODereferenceable; 2184 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, PtrTy.getSizeInBits() / 8, 2185 DAG.getEVTAlignment(PtrTy)); 2186 Node->setMemRefs(MemRefs, MemRefs + 1); 2187 } 2188 return SDValue(Node, 0); 2189 } 2190 2191 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2192 /// tail spliced into a stack protector check success bb. 2193 /// 2194 /// For a high level explanation of how this fits into the stack protector 2195 /// generation see the comment on the declaration of class 2196 /// StackProtectorDescriptor. 2197 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2198 MachineBasicBlock *ParentBB) { 2199 2200 // First create the loads to the guard/stack slot for the comparison. 2201 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2202 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2203 2204 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2205 int FI = MFI.getStackProtectorIndex(); 2206 2207 SDValue Guard; 2208 SDLoc dl = getCurSDLoc(); 2209 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2210 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2211 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2212 2213 // Generate code to load the content of the guard slot. 2214 SDValue GuardVal = DAG.getLoad( 2215 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2216 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2217 MachineMemOperand::MOVolatile); 2218 2219 if (TLI.useStackGuardXorFP()) 2220 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2221 2222 // Retrieve guard check function, nullptr if instrumentation is inlined. 2223 if (const Value *GuardCheck = TLI.getSSPStackGuardCheck(M)) { 2224 // The target provides a guard check function to validate the guard value. 2225 // Generate a call to that function with the content of the guard slot as 2226 // argument. 2227 auto *Fn = cast<Function>(GuardCheck); 2228 FunctionType *FnTy = Fn->getFunctionType(); 2229 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2230 2231 TargetLowering::ArgListTy Args; 2232 TargetLowering::ArgListEntry Entry; 2233 Entry.Node = GuardVal; 2234 Entry.Ty = FnTy->getParamType(0); 2235 if (Fn->hasAttribute(1, Attribute::AttrKind::InReg)) 2236 Entry.IsInReg = true; 2237 Args.push_back(Entry); 2238 2239 TargetLowering::CallLoweringInfo CLI(DAG); 2240 CLI.setDebugLoc(getCurSDLoc()) 2241 .setChain(DAG.getEntryNode()) 2242 .setCallee(Fn->getCallingConv(), FnTy->getReturnType(), 2243 getValue(GuardCheck), std::move(Args)); 2244 2245 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2246 DAG.setRoot(Result.second); 2247 return; 2248 } 2249 2250 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2251 // Otherwise, emit a volatile load to retrieve the stack guard value. 2252 SDValue Chain = DAG.getEntryNode(); 2253 if (TLI.useLoadStackGuardNode()) { 2254 Guard = getLoadStackGuard(DAG, dl, Chain); 2255 } else { 2256 const Value *IRGuard = TLI.getSDagStackGuard(M); 2257 SDValue GuardPtr = getValue(IRGuard); 2258 2259 Guard = 2260 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2261 Align, MachineMemOperand::MOVolatile); 2262 } 2263 2264 // Perform the comparison via a subtract/getsetcc. 2265 EVT VT = Guard.getValueType(); 2266 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2267 2268 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2269 *DAG.getContext(), 2270 Sub.getValueType()), 2271 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2272 2273 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2274 // branch to failure MBB. 2275 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2276 MVT::Other, GuardVal.getOperand(0), 2277 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2278 // Otherwise branch to success MBB. 2279 SDValue Br = DAG.getNode(ISD::BR, dl, 2280 MVT::Other, BrCond, 2281 DAG.getBasicBlock(SPD.getSuccessMBB())); 2282 2283 DAG.setRoot(Br); 2284 } 2285 2286 /// Codegen the failure basic block for a stack protector check. 2287 /// 2288 /// A failure stack protector machine basic block consists simply of a call to 2289 /// __stack_chk_fail(). 2290 /// 2291 /// For a high level explanation of how this fits into the stack protector 2292 /// generation see the comment on the declaration of class 2293 /// StackProtectorDescriptor. 2294 void 2295 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2296 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2297 SDValue Chain = 2298 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2299 None, false, getCurSDLoc(), false, false).second; 2300 DAG.setRoot(Chain); 2301 } 2302 2303 /// visitBitTestHeader - This function emits necessary code to produce value 2304 /// suitable for "bit tests" 2305 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2306 MachineBasicBlock *SwitchBB) { 2307 SDLoc dl = getCurSDLoc(); 2308 2309 // Subtract the minimum value 2310 SDValue SwitchOp = getValue(B.SValue); 2311 EVT VT = SwitchOp.getValueType(); 2312 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2313 DAG.getConstant(B.First, dl, VT)); 2314 2315 // Check range 2316 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2317 SDValue RangeCmp = DAG.getSetCC( 2318 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2319 Sub.getValueType()), 2320 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2321 2322 // Determine the type of the test operands. 2323 bool UsePtrType = false; 2324 if (!TLI.isTypeLegal(VT)) 2325 UsePtrType = true; 2326 else { 2327 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2328 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2329 // Switch table case range are encoded into series of masks. 2330 // Just use pointer type, it's guaranteed to fit. 2331 UsePtrType = true; 2332 break; 2333 } 2334 } 2335 if (UsePtrType) { 2336 VT = TLI.getPointerTy(DAG.getDataLayout()); 2337 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2338 } 2339 2340 B.RegVT = VT.getSimpleVT(); 2341 B.Reg = FuncInfo.CreateReg(B.RegVT); 2342 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2343 2344 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2345 2346 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2347 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2348 SwitchBB->normalizeSuccProbs(); 2349 2350 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2351 MVT::Other, CopyTo, RangeCmp, 2352 DAG.getBasicBlock(B.Default)); 2353 2354 // Avoid emitting unnecessary branches to the next block. 2355 if (MBB != NextBlock(SwitchBB)) 2356 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2357 DAG.getBasicBlock(MBB)); 2358 2359 DAG.setRoot(BrRange); 2360 } 2361 2362 /// visitBitTestCase - this function produces one "bit test" 2363 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2364 MachineBasicBlock* NextMBB, 2365 BranchProbability BranchProbToNext, 2366 unsigned Reg, 2367 BitTestCase &B, 2368 MachineBasicBlock *SwitchBB) { 2369 SDLoc dl = getCurSDLoc(); 2370 MVT VT = BB.RegVT; 2371 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2372 SDValue Cmp; 2373 unsigned PopCount = countPopulation(B.Mask); 2374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2375 if (PopCount == 1) { 2376 // Testing for a single bit; just compare the shift count with what it 2377 // would need to be to shift a 1 bit in that position. 2378 Cmp = DAG.getSetCC( 2379 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2380 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2381 ISD::SETEQ); 2382 } else if (PopCount == BB.Range) { 2383 // There is only one zero bit in the range, test for it directly. 2384 Cmp = DAG.getSetCC( 2385 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2386 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2387 ISD::SETNE); 2388 } else { 2389 // Make desired shift 2390 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2391 DAG.getConstant(1, dl, VT), ShiftOp); 2392 2393 // Emit bit tests and jumps 2394 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2395 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2396 Cmp = DAG.getSetCC( 2397 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2398 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2399 } 2400 2401 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2402 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2403 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2404 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2405 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2406 // one as they are relative probabilities (and thus work more like weights), 2407 // and hence we need to normalize them to let the sum of them become one. 2408 SwitchBB->normalizeSuccProbs(); 2409 2410 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2411 MVT::Other, getControlRoot(), 2412 Cmp, DAG.getBasicBlock(B.TargetBB)); 2413 2414 // Avoid emitting unnecessary branches to the next block. 2415 if (NextMBB != NextBlock(SwitchBB)) 2416 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2417 DAG.getBasicBlock(NextMBB)); 2418 2419 DAG.setRoot(BrAnd); 2420 } 2421 2422 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2423 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2424 2425 // Retrieve successors. Look through artificial IR level blocks like 2426 // catchswitch for successors. 2427 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2428 const BasicBlock *EHPadBB = I.getSuccessor(1); 2429 2430 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2431 // have to do anything here to lower funclet bundles. 2432 assert(!I.hasOperandBundlesOtherThan( 2433 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2434 "Cannot lower invokes with arbitrary operand bundles yet!"); 2435 2436 const Value *Callee(I.getCalledValue()); 2437 const Function *Fn = dyn_cast<Function>(Callee); 2438 if (isa<InlineAsm>(Callee)) 2439 visitInlineAsm(&I); 2440 else if (Fn && Fn->isIntrinsic()) { 2441 switch (Fn->getIntrinsicID()) { 2442 default: 2443 llvm_unreachable("Cannot invoke this intrinsic"); 2444 case Intrinsic::donothing: 2445 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2446 break; 2447 case Intrinsic::experimental_patchpoint_void: 2448 case Intrinsic::experimental_patchpoint_i64: 2449 visitPatchpoint(&I, EHPadBB); 2450 break; 2451 case Intrinsic::experimental_gc_statepoint: 2452 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2453 break; 2454 } 2455 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2456 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2457 // Eventually we will support lowering the @llvm.experimental.deoptimize 2458 // intrinsic, and right now there are no plans to support other intrinsics 2459 // with deopt state. 2460 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2461 } else { 2462 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2463 } 2464 2465 // If the value of the invoke is used outside of its defining block, make it 2466 // available as a virtual register. 2467 // We already took care of the exported value for the statepoint instruction 2468 // during call to the LowerStatepoint. 2469 if (!isStatepoint(I)) { 2470 CopyToExportRegsIfNeeded(&I); 2471 } 2472 2473 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2474 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2475 BranchProbability EHPadBBProb = 2476 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2477 : BranchProbability::getZero(); 2478 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2479 2480 // Update successor info. 2481 addSuccessorWithProb(InvokeMBB, Return); 2482 for (auto &UnwindDest : UnwindDests) { 2483 UnwindDest.first->setIsEHPad(); 2484 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2485 } 2486 InvokeMBB->normalizeSuccProbs(); 2487 2488 // Drop into normal successor. 2489 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2490 MVT::Other, getControlRoot(), 2491 DAG.getBasicBlock(Return))); 2492 } 2493 2494 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2495 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2496 } 2497 2498 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2499 assert(FuncInfo.MBB->isEHPad() && 2500 "Call to landingpad not in landing pad!"); 2501 2502 MachineBasicBlock *MBB = FuncInfo.MBB; 2503 addLandingPadInfo(LP, *MBB); 2504 2505 // If there aren't registers to copy the values into (e.g., during SjLj 2506 // exceptions), then don't bother to create these DAG nodes. 2507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2508 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2509 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2510 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2511 return; 2512 2513 // If landingpad's return type is token type, we don't create DAG nodes 2514 // for its exception pointer and selector value. The extraction of exception 2515 // pointer or selector value from token type landingpads is not currently 2516 // supported. 2517 if (LP.getType()->isTokenTy()) 2518 return; 2519 2520 SmallVector<EVT, 2> ValueVTs; 2521 SDLoc dl = getCurSDLoc(); 2522 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2523 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2524 2525 // Get the two live-in registers as SDValues. The physregs have already been 2526 // copied into virtual registers. 2527 SDValue Ops[2]; 2528 if (FuncInfo.ExceptionPointerVirtReg) { 2529 Ops[0] = DAG.getZExtOrTrunc( 2530 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2531 FuncInfo.ExceptionPointerVirtReg, 2532 TLI.getPointerTy(DAG.getDataLayout())), 2533 dl, ValueVTs[0]); 2534 } else { 2535 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2536 } 2537 Ops[1] = DAG.getZExtOrTrunc( 2538 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2539 FuncInfo.ExceptionSelectorVirtReg, 2540 TLI.getPointerTy(DAG.getDataLayout())), 2541 dl, ValueVTs[1]); 2542 2543 // Merge into one. 2544 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2545 DAG.getVTList(ValueVTs), Ops); 2546 setValue(&LP, Res); 2547 } 2548 2549 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2550 #ifndef NDEBUG 2551 for (const CaseCluster &CC : Clusters) 2552 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2553 #endif 2554 2555 llvm::sort(Clusters.begin(), Clusters.end(), 2556 [](const CaseCluster &a, const CaseCluster &b) { 2557 return a.Low->getValue().slt(b.Low->getValue()); 2558 }); 2559 2560 // Merge adjacent clusters with the same destination. 2561 const unsigned N = Clusters.size(); 2562 unsigned DstIndex = 0; 2563 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2564 CaseCluster &CC = Clusters[SrcIndex]; 2565 const ConstantInt *CaseVal = CC.Low; 2566 MachineBasicBlock *Succ = CC.MBB; 2567 2568 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2569 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2570 // If this case has the same successor and is a neighbour, merge it into 2571 // the previous cluster. 2572 Clusters[DstIndex - 1].High = CaseVal; 2573 Clusters[DstIndex - 1].Prob += CC.Prob; 2574 } else { 2575 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2576 sizeof(Clusters[SrcIndex])); 2577 } 2578 } 2579 Clusters.resize(DstIndex); 2580 } 2581 2582 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2583 MachineBasicBlock *Last) { 2584 // Update JTCases. 2585 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2586 if (JTCases[i].first.HeaderBB == First) 2587 JTCases[i].first.HeaderBB = Last; 2588 2589 // Update BitTestCases. 2590 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2591 if (BitTestCases[i].Parent == First) 2592 BitTestCases[i].Parent = Last; 2593 } 2594 2595 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2596 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2597 2598 // Update machine-CFG edges with unique successors. 2599 SmallSet<BasicBlock*, 32> Done; 2600 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2601 BasicBlock *BB = I.getSuccessor(i); 2602 bool Inserted = Done.insert(BB).second; 2603 if (!Inserted) 2604 continue; 2605 2606 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2607 addSuccessorWithProb(IndirectBrMBB, Succ); 2608 } 2609 IndirectBrMBB->normalizeSuccProbs(); 2610 2611 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2612 MVT::Other, getControlRoot(), 2613 getValue(I.getAddress()))); 2614 } 2615 2616 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2617 if (DAG.getTarget().Options.TrapUnreachable) 2618 DAG.setRoot( 2619 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2620 } 2621 2622 void SelectionDAGBuilder::visitFSub(const User &I) { 2623 // -0.0 - X --> fneg 2624 Type *Ty = I.getType(); 2625 if (isa<Constant>(I.getOperand(0)) && 2626 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2627 SDValue Op2 = getValue(I.getOperand(1)); 2628 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2629 Op2.getValueType(), Op2)); 2630 return; 2631 } 2632 2633 visitBinary(I, ISD::FSUB); 2634 } 2635 2636 /// Checks if the given instruction performs a vector reduction, in which case 2637 /// we have the freedom to alter the elements in the result as long as the 2638 /// reduction of them stays unchanged. 2639 static bool isVectorReductionOp(const User *I) { 2640 const Instruction *Inst = dyn_cast<Instruction>(I); 2641 if (!Inst || !Inst->getType()->isVectorTy()) 2642 return false; 2643 2644 auto OpCode = Inst->getOpcode(); 2645 switch (OpCode) { 2646 case Instruction::Add: 2647 case Instruction::Mul: 2648 case Instruction::And: 2649 case Instruction::Or: 2650 case Instruction::Xor: 2651 break; 2652 case Instruction::FAdd: 2653 case Instruction::FMul: 2654 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2655 if (FPOp->getFastMathFlags().isFast()) 2656 break; 2657 LLVM_FALLTHROUGH; 2658 default: 2659 return false; 2660 } 2661 2662 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2663 unsigned ElemNumToReduce = ElemNum; 2664 2665 // Do DFS search on the def-use chain from the given instruction. We only 2666 // allow four kinds of operations during the search until we reach the 2667 // instruction that extracts the first element from the vector: 2668 // 2669 // 1. The reduction operation of the same opcode as the given instruction. 2670 // 2671 // 2. PHI node. 2672 // 2673 // 3. ShuffleVector instruction together with a reduction operation that 2674 // does a partial reduction. 2675 // 2676 // 4. ExtractElement that extracts the first element from the vector, and we 2677 // stop searching the def-use chain here. 2678 // 2679 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 2680 // from 1-3 to the stack to continue the DFS. The given instruction is not 2681 // a reduction operation if we meet any other instructions other than those 2682 // listed above. 2683 2684 SmallVector<const User *, 16> UsersToVisit{Inst}; 2685 SmallPtrSet<const User *, 16> Visited; 2686 bool ReduxExtracted = false; 2687 2688 while (!UsersToVisit.empty()) { 2689 auto User = UsersToVisit.back(); 2690 UsersToVisit.pop_back(); 2691 if (!Visited.insert(User).second) 2692 continue; 2693 2694 for (const auto &U : User->users()) { 2695 auto Inst = dyn_cast<Instruction>(U); 2696 if (!Inst) 2697 return false; 2698 2699 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 2700 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2701 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 2702 return false; 2703 UsersToVisit.push_back(U); 2704 } else if (const ShuffleVectorInst *ShufInst = 2705 dyn_cast<ShuffleVectorInst>(U)) { 2706 // Detect the following pattern: A ShuffleVector instruction together 2707 // with a reduction that do partial reduction on the first and second 2708 // ElemNumToReduce / 2 elements, and store the result in 2709 // ElemNumToReduce / 2 elements in another vector. 2710 2711 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 2712 if (ResultElements < ElemNum) 2713 return false; 2714 2715 if (ElemNumToReduce == 1) 2716 return false; 2717 if (!isa<UndefValue>(U->getOperand(1))) 2718 return false; 2719 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 2720 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 2721 return false; 2722 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 2723 if (ShufInst->getMaskValue(i) != -1) 2724 return false; 2725 2726 // There is only one user of this ShuffleVector instruction, which 2727 // must be a reduction operation. 2728 if (!U->hasOneUse()) 2729 return false; 2730 2731 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 2732 if (!U2 || U2->getOpcode() != OpCode) 2733 return false; 2734 2735 // Check operands of the reduction operation. 2736 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 2737 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 2738 UsersToVisit.push_back(U2); 2739 ElemNumToReduce /= 2; 2740 } else 2741 return false; 2742 } else if (isa<ExtractElementInst>(U)) { 2743 // At this moment we should have reduced all elements in the vector. 2744 if (ElemNumToReduce != 1) 2745 return false; 2746 2747 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 2748 if (!Val || Val->getZExtValue() != 0) 2749 return false; 2750 2751 ReduxExtracted = true; 2752 } else 2753 return false; 2754 } 2755 } 2756 return ReduxExtracted; 2757 } 2758 2759 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 2760 SDNodeFlags Flags; 2761 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 2762 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 2763 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 2764 } 2765 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 2766 Flags.setExact(ExactOp->isExact()); 2767 } 2768 if (isVectorReductionOp(&I)) { 2769 Flags.setVectorReduction(true); 2770 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 2771 } 2772 2773 SDValue Op1 = getValue(I.getOperand(0)); 2774 SDValue Op2 = getValue(I.getOperand(1)); 2775 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 2776 Op1, Op2, Flags); 2777 setValue(&I, BinNodeValue); 2778 } 2779 2780 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2781 SDValue Op1 = getValue(I.getOperand(0)); 2782 SDValue Op2 = getValue(I.getOperand(1)); 2783 2784 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2785 Op2.getValueType(), DAG.getDataLayout()); 2786 2787 // Coerce the shift amount to the right type if we can. 2788 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2789 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2790 unsigned Op2Size = Op2.getValueSizeInBits(); 2791 SDLoc DL = getCurSDLoc(); 2792 2793 // If the operand is smaller than the shift count type, promote it. 2794 if (ShiftSize > Op2Size) 2795 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2796 2797 // If the operand is larger than the shift count type but the shift 2798 // count type has enough bits to represent any shift value, truncate 2799 // it now. This is a common case and it exposes the truncate to 2800 // optimization early. 2801 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 2802 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2803 // Otherwise we'll need to temporarily settle for some other convenient 2804 // type. Type legalization will make adjustments once the shiftee is split. 2805 else 2806 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2807 } 2808 2809 bool nuw = false; 2810 bool nsw = false; 2811 bool exact = false; 2812 2813 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2814 2815 if (const OverflowingBinaryOperator *OFBinOp = 2816 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2817 nuw = OFBinOp->hasNoUnsignedWrap(); 2818 nsw = OFBinOp->hasNoSignedWrap(); 2819 } 2820 if (const PossiblyExactOperator *ExactOp = 2821 dyn_cast<const PossiblyExactOperator>(&I)) 2822 exact = ExactOp->isExact(); 2823 } 2824 SDNodeFlags Flags; 2825 Flags.setExact(exact); 2826 Flags.setNoSignedWrap(nsw); 2827 Flags.setNoUnsignedWrap(nuw); 2828 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2829 Flags); 2830 setValue(&I, Res); 2831 } 2832 2833 void SelectionDAGBuilder::visitSDiv(const User &I) { 2834 SDValue Op1 = getValue(I.getOperand(0)); 2835 SDValue Op2 = getValue(I.getOperand(1)); 2836 2837 SDNodeFlags Flags; 2838 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2839 cast<PossiblyExactOperator>(&I)->isExact()); 2840 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2841 Op2, Flags)); 2842 } 2843 2844 void SelectionDAGBuilder::visitICmp(const User &I) { 2845 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2846 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2847 predicate = IC->getPredicate(); 2848 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2849 predicate = ICmpInst::Predicate(IC->getPredicate()); 2850 SDValue Op1 = getValue(I.getOperand(0)); 2851 SDValue Op2 = getValue(I.getOperand(1)); 2852 ISD::CondCode Opcode = getICmpCondCode(predicate); 2853 2854 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2855 I.getType()); 2856 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2857 } 2858 2859 void SelectionDAGBuilder::visitFCmp(const User &I) { 2860 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2861 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2862 predicate = FC->getPredicate(); 2863 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2864 predicate = FCmpInst::Predicate(FC->getPredicate()); 2865 SDValue Op1 = getValue(I.getOperand(0)); 2866 SDValue Op2 = getValue(I.getOperand(1)); 2867 2868 ISD::CondCode Condition = getFCmpCondCode(predicate); 2869 auto *FPMO = dyn_cast<FPMathOperator>(&I); 2870 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 2871 Condition = getFCmpCodeWithoutNaN(Condition); 2872 2873 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2874 I.getType()); 2875 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2876 } 2877 2878 // Check if the condition of the select has one use or two users that are both 2879 // selects with the same condition. 2880 static bool hasOnlySelectUsers(const Value *Cond) { 2881 return llvm::all_of(Cond->users(), [](const Value *V) { 2882 return isa<SelectInst>(V); 2883 }); 2884 } 2885 2886 void SelectionDAGBuilder::visitSelect(const User &I) { 2887 SmallVector<EVT, 4> ValueVTs; 2888 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2889 ValueVTs); 2890 unsigned NumValues = ValueVTs.size(); 2891 if (NumValues == 0) return; 2892 2893 SmallVector<SDValue, 4> Values(NumValues); 2894 SDValue Cond = getValue(I.getOperand(0)); 2895 SDValue LHSVal = getValue(I.getOperand(1)); 2896 SDValue RHSVal = getValue(I.getOperand(2)); 2897 auto BaseOps = {Cond}; 2898 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2899 ISD::VSELECT : ISD::SELECT; 2900 2901 // Min/max matching is only viable if all output VTs are the same. 2902 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2903 EVT VT = ValueVTs[0]; 2904 LLVMContext &Ctx = *DAG.getContext(); 2905 auto &TLI = DAG.getTargetLoweringInfo(); 2906 2907 // We care about the legality of the operation after it has been type 2908 // legalized. 2909 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2910 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2911 VT = TLI.getTypeToTransformTo(Ctx, VT); 2912 2913 // If the vselect is legal, assume we want to leave this as a vector setcc + 2914 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2915 // min/max is legal on the scalar type. 2916 bool UseScalarMinMax = VT.isVector() && 2917 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2918 2919 Value *LHS, *RHS; 2920 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2921 ISD::NodeType Opc = ISD::DELETED_NODE; 2922 switch (SPR.Flavor) { 2923 case SPF_UMAX: Opc = ISD::UMAX; break; 2924 case SPF_UMIN: Opc = ISD::UMIN; break; 2925 case SPF_SMAX: Opc = ISD::SMAX; break; 2926 case SPF_SMIN: Opc = ISD::SMIN; break; 2927 case SPF_FMINNUM: 2928 switch (SPR.NaNBehavior) { 2929 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2930 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2931 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2932 case SPNB_RETURNS_ANY: { 2933 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2934 Opc = ISD::FMINNUM; 2935 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2936 Opc = ISD::FMINNAN; 2937 else if (UseScalarMinMax) 2938 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2939 ISD::FMINNUM : ISD::FMINNAN; 2940 break; 2941 } 2942 } 2943 break; 2944 case SPF_FMAXNUM: 2945 switch (SPR.NaNBehavior) { 2946 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2947 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2948 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2949 case SPNB_RETURNS_ANY: 2950 2951 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2952 Opc = ISD::FMAXNUM; 2953 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2954 Opc = ISD::FMAXNAN; 2955 else if (UseScalarMinMax) 2956 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2957 ISD::FMAXNUM : ISD::FMAXNAN; 2958 break; 2959 } 2960 break; 2961 default: break; 2962 } 2963 2964 if (Opc != ISD::DELETED_NODE && 2965 (TLI.isOperationLegalOrCustom(Opc, VT) || 2966 (UseScalarMinMax && 2967 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2968 // If the underlying comparison instruction is used by any other 2969 // instruction, the consumed instructions won't be destroyed, so it is 2970 // not profitable to convert to a min/max. 2971 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 2972 OpCode = Opc; 2973 LHSVal = getValue(LHS); 2974 RHSVal = getValue(RHS); 2975 BaseOps = {}; 2976 } 2977 } 2978 2979 for (unsigned i = 0; i != NumValues; ++i) { 2980 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2981 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2982 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2983 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2984 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2985 Ops); 2986 } 2987 2988 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2989 DAG.getVTList(ValueVTs), Values)); 2990 } 2991 2992 void SelectionDAGBuilder::visitTrunc(const User &I) { 2993 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2994 SDValue N = getValue(I.getOperand(0)); 2995 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2996 I.getType()); 2997 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2998 } 2999 3000 void SelectionDAGBuilder::visitZExt(const User &I) { 3001 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3002 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3003 SDValue N = getValue(I.getOperand(0)); 3004 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3005 I.getType()); 3006 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3007 } 3008 3009 void SelectionDAGBuilder::visitSExt(const User &I) { 3010 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3011 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3012 SDValue N = getValue(I.getOperand(0)); 3013 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3014 I.getType()); 3015 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3016 } 3017 3018 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3019 // FPTrunc is never a no-op cast, no need to check 3020 SDValue N = getValue(I.getOperand(0)); 3021 SDLoc dl = getCurSDLoc(); 3022 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3023 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3024 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3025 DAG.getTargetConstant( 3026 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3027 } 3028 3029 void SelectionDAGBuilder::visitFPExt(const User &I) { 3030 // FPExt is never a no-op cast, no need to check 3031 SDValue N = getValue(I.getOperand(0)); 3032 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3033 I.getType()); 3034 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3035 } 3036 3037 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3038 // FPToUI is never a no-op cast, no need to check 3039 SDValue N = getValue(I.getOperand(0)); 3040 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3041 I.getType()); 3042 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3043 } 3044 3045 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3046 // FPToSI is never a no-op cast, no need to check 3047 SDValue N = getValue(I.getOperand(0)); 3048 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3049 I.getType()); 3050 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3051 } 3052 3053 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3054 // UIToFP is never a no-op cast, no need to check 3055 SDValue N = getValue(I.getOperand(0)); 3056 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3057 I.getType()); 3058 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3059 } 3060 3061 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3062 // SIToFP is never a no-op cast, no need to check 3063 SDValue N = getValue(I.getOperand(0)); 3064 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3065 I.getType()); 3066 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3067 } 3068 3069 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3070 // What to do depends on the size of the integer and the size of the pointer. 3071 // We can either truncate, zero extend, or no-op, accordingly. 3072 SDValue N = getValue(I.getOperand(0)); 3073 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3074 I.getType()); 3075 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3076 } 3077 3078 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3079 // What to do depends on the size of the integer and the size of the pointer. 3080 // We can either truncate, zero extend, or no-op, accordingly. 3081 SDValue N = getValue(I.getOperand(0)); 3082 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3083 I.getType()); 3084 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3085 } 3086 3087 void SelectionDAGBuilder::visitBitCast(const User &I) { 3088 SDValue N = getValue(I.getOperand(0)); 3089 SDLoc dl = getCurSDLoc(); 3090 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3091 I.getType()); 3092 3093 // BitCast assures us that source and destination are the same size so this is 3094 // either a BITCAST or a no-op. 3095 if (DestVT != N.getValueType()) 3096 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3097 DestVT, N)); // convert types. 3098 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3099 // might fold any kind of constant expression to an integer constant and that 3100 // is not what we are looking for. Only recognize a bitcast of a genuine 3101 // constant integer as an opaque constant. 3102 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3103 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3104 /*isOpaque*/true)); 3105 else 3106 setValue(&I, N); // noop cast. 3107 } 3108 3109 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3110 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3111 const Value *SV = I.getOperand(0); 3112 SDValue N = getValue(SV); 3113 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3114 3115 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3116 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3117 3118 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3119 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3120 3121 setValue(&I, N); 3122 } 3123 3124 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3125 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3126 SDValue InVec = getValue(I.getOperand(0)); 3127 SDValue InVal = getValue(I.getOperand(1)); 3128 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3129 TLI.getVectorIdxTy(DAG.getDataLayout())); 3130 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3131 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3132 InVec, InVal, InIdx)); 3133 } 3134 3135 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3136 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3137 SDValue InVec = getValue(I.getOperand(0)); 3138 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3139 TLI.getVectorIdxTy(DAG.getDataLayout())); 3140 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3141 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3142 InVec, InIdx)); 3143 } 3144 3145 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3146 SDValue Src1 = getValue(I.getOperand(0)); 3147 SDValue Src2 = getValue(I.getOperand(1)); 3148 SDLoc DL = getCurSDLoc(); 3149 3150 SmallVector<int, 8> Mask; 3151 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3152 unsigned MaskNumElts = Mask.size(); 3153 3154 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3155 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3156 EVT SrcVT = Src1.getValueType(); 3157 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3158 3159 if (SrcNumElts == MaskNumElts) { 3160 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3161 return; 3162 } 3163 3164 // Normalize the shuffle vector since mask and vector length don't match. 3165 if (SrcNumElts < MaskNumElts) { 3166 // Mask is longer than the source vectors. We can use concatenate vector to 3167 // make the mask and vectors lengths match. 3168 3169 if (MaskNumElts % SrcNumElts == 0) { 3170 // Mask length is a multiple of the source vector length. 3171 // Check if the shuffle is some kind of concatenation of the input 3172 // vectors. 3173 unsigned NumConcat = MaskNumElts / SrcNumElts; 3174 bool IsConcat = true; 3175 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3176 for (unsigned i = 0; i != MaskNumElts; ++i) { 3177 int Idx = Mask[i]; 3178 if (Idx < 0) 3179 continue; 3180 // Ensure the indices in each SrcVT sized piece are sequential and that 3181 // the same source is used for the whole piece. 3182 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3183 (ConcatSrcs[i / SrcNumElts] >= 0 && 3184 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3185 IsConcat = false; 3186 break; 3187 } 3188 // Remember which source this index came from. 3189 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3190 } 3191 3192 // The shuffle is concatenating multiple vectors together. Just emit 3193 // a CONCAT_VECTORS operation. 3194 if (IsConcat) { 3195 SmallVector<SDValue, 8> ConcatOps; 3196 for (auto Src : ConcatSrcs) { 3197 if (Src < 0) 3198 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3199 else if (Src == 0) 3200 ConcatOps.push_back(Src1); 3201 else 3202 ConcatOps.push_back(Src2); 3203 } 3204 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3205 return; 3206 } 3207 } 3208 3209 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3210 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3211 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3212 PaddedMaskNumElts); 3213 3214 // Pad both vectors with undefs to make them the same length as the mask. 3215 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3216 3217 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3218 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3219 MOps1[0] = Src1; 3220 MOps2[0] = Src2; 3221 3222 Src1 = Src1.isUndef() 3223 ? DAG.getUNDEF(PaddedVT) 3224 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3225 Src2 = Src2.isUndef() 3226 ? DAG.getUNDEF(PaddedVT) 3227 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3228 3229 // Readjust mask for new input vector length. 3230 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3231 for (unsigned i = 0; i != MaskNumElts; ++i) { 3232 int Idx = Mask[i]; 3233 if (Idx >= (int)SrcNumElts) 3234 Idx -= SrcNumElts - PaddedMaskNumElts; 3235 MappedOps[i] = Idx; 3236 } 3237 3238 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3239 3240 // If the concatenated vector was padded, extract a subvector with the 3241 // correct number of elements. 3242 if (MaskNumElts != PaddedMaskNumElts) 3243 Result = DAG.getNode( 3244 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3245 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3246 3247 setValue(&I, Result); 3248 return; 3249 } 3250 3251 if (SrcNumElts > MaskNumElts) { 3252 // Analyze the access pattern of the vector to see if we can extract 3253 // two subvectors and do the shuffle. 3254 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3255 bool CanExtract = true; 3256 for (int Idx : Mask) { 3257 unsigned Input = 0; 3258 if (Idx < 0) 3259 continue; 3260 3261 if (Idx >= (int)SrcNumElts) { 3262 Input = 1; 3263 Idx -= SrcNumElts; 3264 } 3265 3266 // If all the indices come from the same MaskNumElts sized portion of 3267 // the sources we can use extract. Also make sure the extract wouldn't 3268 // extract past the end of the source. 3269 int NewStartIdx = alignDown(Idx, MaskNumElts); 3270 if (NewStartIdx + MaskNumElts > SrcNumElts || 3271 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3272 CanExtract = false; 3273 // Make sure we always update StartIdx as we use it to track if all 3274 // elements are undef. 3275 StartIdx[Input] = NewStartIdx; 3276 } 3277 3278 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3279 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3280 return; 3281 } 3282 if (CanExtract) { 3283 // Extract appropriate subvector and generate a vector shuffle 3284 for (unsigned Input = 0; Input < 2; ++Input) { 3285 SDValue &Src = Input == 0 ? Src1 : Src2; 3286 if (StartIdx[Input] < 0) 3287 Src = DAG.getUNDEF(VT); 3288 else { 3289 Src = DAG.getNode( 3290 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3291 DAG.getConstant(StartIdx[Input], DL, 3292 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3293 } 3294 } 3295 3296 // Calculate new mask. 3297 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3298 for (int &Idx : MappedOps) { 3299 if (Idx >= (int)SrcNumElts) 3300 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3301 else if (Idx >= 0) 3302 Idx -= StartIdx[0]; 3303 } 3304 3305 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3306 return; 3307 } 3308 } 3309 3310 // We can't use either concat vectors or extract subvectors so fall back to 3311 // replacing the shuffle with extract and build vector. 3312 // to insert and build vector. 3313 EVT EltVT = VT.getVectorElementType(); 3314 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3315 SmallVector<SDValue,8> Ops; 3316 for (int Idx : Mask) { 3317 SDValue Res; 3318 3319 if (Idx < 0) { 3320 Res = DAG.getUNDEF(EltVT); 3321 } else { 3322 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3323 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3324 3325 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3326 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3327 } 3328 3329 Ops.push_back(Res); 3330 } 3331 3332 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3333 } 3334 3335 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3336 ArrayRef<unsigned> Indices; 3337 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3338 Indices = IV->getIndices(); 3339 else 3340 Indices = cast<ConstantExpr>(&I)->getIndices(); 3341 3342 const Value *Op0 = I.getOperand(0); 3343 const Value *Op1 = I.getOperand(1); 3344 Type *AggTy = I.getType(); 3345 Type *ValTy = Op1->getType(); 3346 bool IntoUndef = isa<UndefValue>(Op0); 3347 bool FromUndef = isa<UndefValue>(Op1); 3348 3349 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3350 3351 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3352 SmallVector<EVT, 4> AggValueVTs; 3353 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3354 SmallVector<EVT, 4> ValValueVTs; 3355 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3356 3357 unsigned NumAggValues = AggValueVTs.size(); 3358 unsigned NumValValues = ValValueVTs.size(); 3359 SmallVector<SDValue, 4> Values(NumAggValues); 3360 3361 // Ignore an insertvalue that produces an empty object 3362 if (!NumAggValues) { 3363 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3364 return; 3365 } 3366 3367 SDValue Agg = getValue(Op0); 3368 unsigned i = 0; 3369 // Copy the beginning value(s) from the original aggregate. 3370 for (; i != LinearIndex; ++i) 3371 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3372 SDValue(Agg.getNode(), Agg.getResNo() + i); 3373 // Copy values from the inserted value(s). 3374 if (NumValValues) { 3375 SDValue Val = getValue(Op1); 3376 for (; i != LinearIndex + NumValValues; ++i) 3377 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3378 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3379 } 3380 // Copy remaining value(s) from the original aggregate. 3381 for (; i != NumAggValues; ++i) 3382 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3383 SDValue(Agg.getNode(), Agg.getResNo() + i); 3384 3385 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3386 DAG.getVTList(AggValueVTs), Values)); 3387 } 3388 3389 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3390 ArrayRef<unsigned> Indices; 3391 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3392 Indices = EV->getIndices(); 3393 else 3394 Indices = cast<ConstantExpr>(&I)->getIndices(); 3395 3396 const Value *Op0 = I.getOperand(0); 3397 Type *AggTy = Op0->getType(); 3398 Type *ValTy = I.getType(); 3399 bool OutOfUndef = isa<UndefValue>(Op0); 3400 3401 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3402 3403 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3404 SmallVector<EVT, 4> ValValueVTs; 3405 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3406 3407 unsigned NumValValues = ValValueVTs.size(); 3408 3409 // Ignore a extractvalue that produces an empty object 3410 if (!NumValValues) { 3411 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3412 return; 3413 } 3414 3415 SmallVector<SDValue, 4> Values(NumValValues); 3416 3417 SDValue Agg = getValue(Op0); 3418 // Copy out the selected value(s). 3419 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3420 Values[i - LinearIndex] = 3421 OutOfUndef ? 3422 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3423 SDValue(Agg.getNode(), Agg.getResNo() + i); 3424 3425 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3426 DAG.getVTList(ValValueVTs), Values)); 3427 } 3428 3429 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3430 Value *Op0 = I.getOperand(0); 3431 // Note that the pointer operand may be a vector of pointers. Take the scalar 3432 // element which holds a pointer. 3433 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3434 SDValue N = getValue(Op0); 3435 SDLoc dl = getCurSDLoc(); 3436 3437 // Normalize Vector GEP - all scalar operands should be converted to the 3438 // splat vector. 3439 unsigned VectorWidth = I.getType()->isVectorTy() ? 3440 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3441 3442 if (VectorWidth && !N.getValueType().isVector()) { 3443 LLVMContext &Context = *DAG.getContext(); 3444 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3445 N = DAG.getSplatBuildVector(VT, dl, N); 3446 } 3447 3448 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3449 GTI != E; ++GTI) { 3450 const Value *Idx = GTI.getOperand(); 3451 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3452 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3453 if (Field) { 3454 // N = N + Offset 3455 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3456 3457 // In an inbounds GEP with an offset that is nonnegative even when 3458 // interpreted as signed, assume there is no unsigned overflow. 3459 SDNodeFlags Flags; 3460 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3461 Flags.setNoUnsignedWrap(true); 3462 3463 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3464 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3465 } 3466 } else { 3467 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3468 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3469 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3470 3471 // If this is a scalar constant or a splat vector of constants, 3472 // handle it quickly. 3473 const auto *CI = dyn_cast<ConstantInt>(Idx); 3474 if (!CI && isa<ConstantDataVector>(Idx) && 3475 cast<ConstantDataVector>(Idx)->getSplatValue()) 3476 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3477 3478 if (CI) { 3479 if (CI->isZero()) 3480 continue; 3481 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3482 LLVMContext &Context = *DAG.getContext(); 3483 SDValue OffsVal = VectorWidth ? 3484 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3485 DAG.getConstant(Offs, dl, IdxTy); 3486 3487 // In an inbouds GEP with an offset that is nonnegative even when 3488 // interpreted as signed, assume there is no unsigned overflow. 3489 SDNodeFlags Flags; 3490 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3491 Flags.setNoUnsignedWrap(true); 3492 3493 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3494 continue; 3495 } 3496 3497 // N = N + Idx * ElementSize; 3498 SDValue IdxN = getValue(Idx); 3499 3500 if (!IdxN.getValueType().isVector() && VectorWidth) { 3501 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3502 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3503 } 3504 3505 // If the index is smaller or larger than intptr_t, truncate or extend 3506 // it. 3507 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3508 3509 // If this is a multiply by a power of two, turn it into a shl 3510 // immediately. This is a very common case. 3511 if (ElementSize != 1) { 3512 if (ElementSize.isPowerOf2()) { 3513 unsigned Amt = ElementSize.logBase2(); 3514 IdxN = DAG.getNode(ISD::SHL, dl, 3515 N.getValueType(), IdxN, 3516 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3517 } else { 3518 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3519 IdxN = DAG.getNode(ISD::MUL, dl, 3520 N.getValueType(), IdxN, Scale); 3521 } 3522 } 3523 3524 N = DAG.getNode(ISD::ADD, dl, 3525 N.getValueType(), N, IdxN); 3526 } 3527 } 3528 3529 setValue(&I, N); 3530 } 3531 3532 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3533 // If this is a fixed sized alloca in the entry block of the function, 3534 // allocate it statically on the stack. 3535 if (FuncInfo.StaticAllocaMap.count(&I)) 3536 return; // getValue will auto-populate this. 3537 3538 SDLoc dl = getCurSDLoc(); 3539 Type *Ty = I.getAllocatedType(); 3540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3541 auto &DL = DAG.getDataLayout(); 3542 uint64_t TySize = DL.getTypeAllocSize(Ty); 3543 unsigned Align = 3544 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3545 3546 SDValue AllocSize = getValue(I.getArraySize()); 3547 3548 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3549 if (AllocSize.getValueType() != IntPtr) 3550 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3551 3552 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3553 AllocSize, 3554 DAG.getConstant(TySize, dl, IntPtr)); 3555 3556 // Handle alignment. If the requested alignment is less than or equal to 3557 // the stack alignment, ignore it. If the size is greater than or equal to 3558 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3559 unsigned StackAlign = 3560 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3561 if (Align <= StackAlign) 3562 Align = 0; 3563 3564 // Round the size of the allocation up to the stack alignment size 3565 // by add SA-1 to the size. This doesn't overflow because we're computing 3566 // an address inside an alloca. 3567 SDNodeFlags Flags; 3568 Flags.setNoUnsignedWrap(true); 3569 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3570 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3571 3572 // Mask out the low bits for alignment purposes. 3573 AllocSize = 3574 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3575 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3576 3577 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3578 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3579 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3580 setValue(&I, DSA); 3581 DAG.setRoot(DSA.getValue(1)); 3582 3583 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3584 } 3585 3586 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3587 if (I.isAtomic()) 3588 return visitAtomicLoad(I); 3589 3590 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3591 const Value *SV = I.getOperand(0); 3592 if (TLI.supportSwiftError()) { 3593 // Swifterror values can come from either a function parameter with 3594 // swifterror attribute or an alloca with swifterror attribute. 3595 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3596 if (Arg->hasSwiftErrorAttr()) 3597 return visitLoadFromSwiftError(I); 3598 } 3599 3600 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3601 if (Alloca->isSwiftError()) 3602 return visitLoadFromSwiftError(I); 3603 } 3604 } 3605 3606 SDValue Ptr = getValue(SV); 3607 3608 Type *Ty = I.getType(); 3609 3610 bool isVolatile = I.isVolatile(); 3611 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3612 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3613 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3614 unsigned Alignment = I.getAlignment(); 3615 3616 AAMDNodes AAInfo; 3617 I.getAAMetadata(AAInfo); 3618 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3619 3620 SmallVector<EVT, 4> ValueVTs; 3621 SmallVector<uint64_t, 4> Offsets; 3622 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3623 unsigned NumValues = ValueVTs.size(); 3624 if (NumValues == 0) 3625 return; 3626 3627 SDValue Root; 3628 bool ConstantMemory = false; 3629 if (isVolatile || NumValues > MaxParallelChains) 3630 // Serialize volatile loads with other side effects. 3631 Root = getRoot(); 3632 else if (AA && AA->pointsToConstantMemory(MemoryLocation( 3633 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3634 // Do not serialize (non-volatile) loads of constant memory with anything. 3635 Root = DAG.getEntryNode(); 3636 ConstantMemory = true; 3637 } else { 3638 // Do not serialize non-volatile loads against each other. 3639 Root = DAG.getRoot(); 3640 } 3641 3642 SDLoc dl = getCurSDLoc(); 3643 3644 if (isVolatile) 3645 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3646 3647 // An aggregate load cannot wrap around the address space, so offsets to its 3648 // parts don't wrap either. 3649 SDNodeFlags Flags; 3650 Flags.setNoUnsignedWrap(true); 3651 3652 SmallVector<SDValue, 4> Values(NumValues); 3653 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3654 EVT PtrVT = Ptr.getValueType(); 3655 unsigned ChainI = 0; 3656 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3657 // Serializing loads here may result in excessive register pressure, and 3658 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3659 // could recover a bit by hoisting nodes upward in the chain by recognizing 3660 // they are side-effect free or do not alias. The optimizer should really 3661 // avoid this case by converting large object/array copies to llvm.memcpy 3662 // (MaxParallelChains should always remain as failsafe). 3663 if (ChainI == MaxParallelChains) { 3664 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3665 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3666 makeArrayRef(Chains.data(), ChainI)); 3667 Root = Chain; 3668 ChainI = 0; 3669 } 3670 SDValue A = DAG.getNode(ISD::ADD, dl, 3671 PtrVT, Ptr, 3672 DAG.getConstant(Offsets[i], dl, PtrVT), 3673 Flags); 3674 auto MMOFlags = MachineMemOperand::MONone; 3675 if (isVolatile) 3676 MMOFlags |= MachineMemOperand::MOVolatile; 3677 if (isNonTemporal) 3678 MMOFlags |= MachineMemOperand::MONonTemporal; 3679 if (isInvariant) 3680 MMOFlags |= MachineMemOperand::MOInvariant; 3681 if (isDereferenceable) 3682 MMOFlags |= MachineMemOperand::MODereferenceable; 3683 MMOFlags |= TLI.getMMOFlags(I); 3684 3685 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 3686 MachinePointerInfo(SV, Offsets[i]), Alignment, 3687 MMOFlags, AAInfo, Ranges); 3688 3689 Values[i] = L; 3690 Chains[ChainI] = L.getValue(1); 3691 } 3692 3693 if (!ConstantMemory) { 3694 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3695 makeArrayRef(Chains.data(), ChainI)); 3696 if (isVolatile) 3697 DAG.setRoot(Chain); 3698 else 3699 PendingLoads.push_back(Chain); 3700 } 3701 3702 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3703 DAG.getVTList(ValueVTs), Values)); 3704 } 3705 3706 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 3707 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3708 "call visitStoreToSwiftError when backend supports swifterror"); 3709 3710 SmallVector<EVT, 4> ValueVTs; 3711 SmallVector<uint64_t, 4> Offsets; 3712 const Value *SrcV = I.getOperand(0); 3713 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3714 SrcV->getType(), ValueVTs, &Offsets); 3715 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3716 "expect a single EVT for swifterror"); 3717 3718 SDValue Src = getValue(SrcV); 3719 // Create a virtual register, then update the virtual register. 3720 unsigned VReg; bool CreatedVReg; 3721 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 3722 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 3723 // Chain can be getRoot or getControlRoot. 3724 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 3725 SDValue(Src.getNode(), Src.getResNo())); 3726 DAG.setRoot(CopyNode); 3727 if (CreatedVReg) 3728 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 3729 } 3730 3731 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 3732 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 3733 "call visitLoadFromSwiftError when backend supports swifterror"); 3734 3735 assert(!I.isVolatile() && 3736 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 3737 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 3738 "Support volatile, non temporal, invariant for load_from_swift_error"); 3739 3740 const Value *SV = I.getOperand(0); 3741 Type *Ty = I.getType(); 3742 AAMDNodes AAInfo; 3743 I.getAAMetadata(AAInfo); 3744 assert((!AA || !AA->pointsToConstantMemory(MemoryLocation( 3745 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) && 3746 "load_from_swift_error should not be constant memory"); 3747 3748 SmallVector<EVT, 4> ValueVTs; 3749 SmallVector<uint64_t, 4> Offsets; 3750 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 3751 ValueVTs, &Offsets); 3752 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 3753 "expect a single EVT for swifterror"); 3754 3755 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 3756 SDValue L = DAG.getCopyFromReg( 3757 getRoot(), getCurSDLoc(), 3758 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 3759 ValueVTs[0]); 3760 3761 setValue(&I, L); 3762 } 3763 3764 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3765 if (I.isAtomic()) 3766 return visitAtomicStore(I); 3767 3768 const Value *SrcV = I.getOperand(0); 3769 const Value *PtrV = I.getOperand(1); 3770 3771 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3772 if (TLI.supportSwiftError()) { 3773 // Swifterror values can come from either a function parameter with 3774 // swifterror attribute or an alloca with swifterror attribute. 3775 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 3776 if (Arg->hasSwiftErrorAttr()) 3777 return visitStoreToSwiftError(I); 3778 } 3779 3780 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 3781 if (Alloca->isSwiftError()) 3782 return visitStoreToSwiftError(I); 3783 } 3784 } 3785 3786 SmallVector<EVT, 4> ValueVTs; 3787 SmallVector<uint64_t, 4> Offsets; 3788 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3789 SrcV->getType(), ValueVTs, &Offsets); 3790 unsigned NumValues = ValueVTs.size(); 3791 if (NumValues == 0) 3792 return; 3793 3794 // Get the lowered operands. Note that we do this after 3795 // checking if NumResults is zero, because with zero results 3796 // the operands won't have values in the map. 3797 SDValue Src = getValue(SrcV); 3798 SDValue Ptr = getValue(PtrV); 3799 3800 SDValue Root = getRoot(); 3801 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3802 SDLoc dl = getCurSDLoc(); 3803 EVT PtrVT = Ptr.getValueType(); 3804 unsigned Alignment = I.getAlignment(); 3805 AAMDNodes AAInfo; 3806 I.getAAMetadata(AAInfo); 3807 3808 auto MMOFlags = MachineMemOperand::MONone; 3809 if (I.isVolatile()) 3810 MMOFlags |= MachineMemOperand::MOVolatile; 3811 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 3812 MMOFlags |= MachineMemOperand::MONonTemporal; 3813 MMOFlags |= TLI.getMMOFlags(I); 3814 3815 // An aggregate load cannot wrap around the address space, so offsets to its 3816 // parts don't wrap either. 3817 SDNodeFlags Flags; 3818 Flags.setNoUnsignedWrap(true); 3819 3820 unsigned ChainI = 0; 3821 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3822 // See visitLoad comments. 3823 if (ChainI == MaxParallelChains) { 3824 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3825 makeArrayRef(Chains.data(), ChainI)); 3826 Root = Chain; 3827 ChainI = 0; 3828 } 3829 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3830 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 3831 SDValue St = DAG.getStore( 3832 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 3833 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 3834 Chains[ChainI] = St; 3835 } 3836 3837 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3838 makeArrayRef(Chains.data(), ChainI)); 3839 DAG.setRoot(StoreNode); 3840 } 3841 3842 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 3843 bool IsCompressing) { 3844 SDLoc sdl = getCurSDLoc(); 3845 3846 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3847 unsigned& Alignment) { 3848 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3849 Src0 = I.getArgOperand(0); 3850 Ptr = I.getArgOperand(1); 3851 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 3852 Mask = I.getArgOperand(3); 3853 }; 3854 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3855 unsigned& Alignment) { 3856 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 3857 Src0 = I.getArgOperand(0); 3858 Ptr = I.getArgOperand(1); 3859 Mask = I.getArgOperand(2); 3860 Alignment = 0; 3861 }; 3862 3863 Value *PtrOperand, *MaskOperand, *Src0Operand; 3864 unsigned Alignment; 3865 if (IsCompressing) 3866 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3867 else 3868 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 3869 3870 SDValue Ptr = getValue(PtrOperand); 3871 SDValue Src0 = getValue(Src0Operand); 3872 SDValue Mask = getValue(MaskOperand); 3873 3874 EVT VT = Src0.getValueType(); 3875 if (!Alignment) 3876 Alignment = DAG.getEVTAlignment(VT); 3877 3878 AAMDNodes AAInfo; 3879 I.getAAMetadata(AAInfo); 3880 3881 MachineMemOperand *MMO = 3882 DAG.getMachineFunction(). 3883 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3884 MachineMemOperand::MOStore, VT.getStoreSize(), 3885 Alignment, AAInfo); 3886 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3887 MMO, false /* Truncating */, 3888 IsCompressing); 3889 DAG.setRoot(StoreNode); 3890 setValue(&I, StoreNode); 3891 } 3892 3893 // Get a uniform base for the Gather/Scatter intrinsic. 3894 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3895 // We try to represent it as a base pointer + vector of indices. 3896 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3897 // The first operand of the GEP may be a single pointer or a vector of pointers 3898 // Example: 3899 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3900 // or 3901 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3902 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3903 // 3904 // When the first GEP operand is a single pointer - it is the uniform base we 3905 // are looking for. If first operand of the GEP is a splat vector - we 3906 // extract the splat value and use it as a uniform base. 3907 // In all other cases the function returns 'false'. 3908 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 3909 SDValue &Scale, SelectionDAGBuilder* SDB) { 3910 SelectionDAG& DAG = SDB->DAG; 3911 LLVMContext &Context = *DAG.getContext(); 3912 3913 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3914 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3915 if (!GEP) 3916 return false; 3917 3918 const Value *GEPPtr = GEP->getPointerOperand(); 3919 if (!GEPPtr->getType()->isVectorTy()) 3920 Ptr = GEPPtr; 3921 else if (!(Ptr = getSplatValue(GEPPtr))) 3922 return false; 3923 3924 unsigned FinalIndex = GEP->getNumOperands() - 1; 3925 Value *IndexVal = GEP->getOperand(FinalIndex); 3926 3927 // Ensure all the other indices are 0. 3928 for (unsigned i = 1; i < FinalIndex; ++i) { 3929 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 3930 if (!C || !C->isZero()) 3931 return false; 3932 } 3933 3934 // The operands of the GEP may be defined in another basic block. 3935 // In this case we'll not find nodes for the operands. 3936 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3937 return false; 3938 3939 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3940 const DataLayout &DL = DAG.getDataLayout(); 3941 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 3942 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 3943 Base = SDB->getValue(Ptr); 3944 Index = SDB->getValue(IndexVal); 3945 3946 if (!Index.getValueType().isVector()) { 3947 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3948 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3949 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 3950 } 3951 return true; 3952 } 3953 3954 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3955 SDLoc sdl = getCurSDLoc(); 3956 3957 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3958 const Value *Ptr = I.getArgOperand(1); 3959 SDValue Src0 = getValue(I.getArgOperand(0)); 3960 SDValue Mask = getValue(I.getArgOperand(3)); 3961 EVT VT = Src0.getValueType(); 3962 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3963 if (!Alignment) 3964 Alignment = DAG.getEVTAlignment(VT); 3965 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3966 3967 AAMDNodes AAInfo; 3968 I.getAAMetadata(AAInfo); 3969 3970 SDValue Base; 3971 SDValue Index; 3972 SDValue Scale; 3973 const Value *BasePtr = Ptr; 3974 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 3975 3976 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3977 MachineMemOperand *MMO = DAG.getMachineFunction(). 3978 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3979 MachineMemOperand::MOStore, VT.getStoreSize(), 3980 Alignment, AAInfo); 3981 if (!UniformBase) { 3982 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3983 Index = getValue(Ptr); 3984 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3985 } 3986 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 3987 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3988 Ops, MMO); 3989 DAG.setRoot(Scatter); 3990 setValue(&I, Scatter); 3991 } 3992 3993 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 3994 SDLoc sdl = getCurSDLoc(); 3995 3996 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 3997 unsigned& Alignment) { 3998 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3999 Ptr = I.getArgOperand(0); 4000 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4001 Mask = I.getArgOperand(2); 4002 Src0 = I.getArgOperand(3); 4003 }; 4004 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4005 unsigned& Alignment) { 4006 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4007 Ptr = I.getArgOperand(0); 4008 Alignment = 0; 4009 Mask = I.getArgOperand(1); 4010 Src0 = I.getArgOperand(2); 4011 }; 4012 4013 Value *PtrOperand, *MaskOperand, *Src0Operand; 4014 unsigned Alignment; 4015 if (IsExpanding) 4016 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4017 else 4018 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4019 4020 SDValue Ptr = getValue(PtrOperand); 4021 SDValue Src0 = getValue(Src0Operand); 4022 SDValue Mask = getValue(MaskOperand); 4023 4024 EVT VT = Src0.getValueType(); 4025 if (!Alignment) 4026 Alignment = DAG.getEVTAlignment(VT); 4027 4028 AAMDNodes AAInfo; 4029 I.getAAMetadata(AAInfo); 4030 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4031 4032 // Do not serialize masked loads of constant memory with anything. 4033 bool AddToChain = !AA || !AA->pointsToConstantMemory(MemoryLocation( 4034 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), AAInfo)); 4035 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4036 4037 MachineMemOperand *MMO = 4038 DAG.getMachineFunction(). 4039 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4040 MachineMemOperand::MOLoad, VT.getStoreSize(), 4041 Alignment, AAInfo, Ranges); 4042 4043 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4044 ISD::NON_EXTLOAD, IsExpanding); 4045 if (AddToChain) { 4046 SDValue OutChain = Load.getValue(1); 4047 DAG.setRoot(OutChain); 4048 } 4049 setValue(&I, Load); 4050 } 4051 4052 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4053 SDLoc sdl = getCurSDLoc(); 4054 4055 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4056 const Value *Ptr = I.getArgOperand(0); 4057 SDValue Src0 = getValue(I.getArgOperand(3)); 4058 SDValue Mask = getValue(I.getArgOperand(2)); 4059 4060 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4061 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4062 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4063 if (!Alignment) 4064 Alignment = DAG.getEVTAlignment(VT); 4065 4066 AAMDNodes AAInfo; 4067 I.getAAMetadata(AAInfo); 4068 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4069 4070 SDValue Root = DAG.getRoot(); 4071 SDValue Base; 4072 SDValue Index; 4073 SDValue Scale; 4074 const Value *BasePtr = Ptr; 4075 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4076 bool ConstantMemory = false; 4077 if (UniformBase && 4078 AA && AA->pointsToConstantMemory(MemoryLocation( 4079 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 4080 AAInfo))) { 4081 // Do not serialize (non-volatile) loads of constant memory with anything. 4082 Root = DAG.getEntryNode(); 4083 ConstantMemory = true; 4084 } 4085 4086 MachineMemOperand *MMO = 4087 DAG.getMachineFunction(). 4088 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4089 MachineMemOperand::MOLoad, VT.getStoreSize(), 4090 Alignment, AAInfo, Ranges); 4091 4092 if (!UniformBase) { 4093 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4094 Index = getValue(Ptr); 4095 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4096 } 4097 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4098 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4099 Ops, MMO); 4100 4101 SDValue OutChain = Gather.getValue(1); 4102 if (!ConstantMemory) 4103 PendingLoads.push_back(OutChain); 4104 setValue(&I, Gather); 4105 } 4106 4107 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4108 SDLoc dl = getCurSDLoc(); 4109 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 4110 AtomicOrdering FailureOrder = I.getFailureOrdering(); 4111 SyncScope::ID SSID = I.getSyncScopeID(); 4112 4113 SDValue InChain = getRoot(); 4114 4115 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4116 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4117 SDValue L = DAG.getAtomicCmpSwap( 4118 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 4119 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 4120 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 4121 /*Alignment=*/ 0, SuccessOrder, FailureOrder, SSID); 4122 4123 SDValue OutChain = L.getValue(2); 4124 4125 setValue(&I, L); 4126 DAG.setRoot(OutChain); 4127 } 4128 4129 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4130 SDLoc dl = getCurSDLoc(); 4131 ISD::NodeType NT; 4132 switch (I.getOperation()) { 4133 default: llvm_unreachable("Unknown atomicrmw operation"); 4134 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4135 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4136 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4137 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4138 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4139 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4140 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4141 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4142 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4143 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4144 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4145 } 4146 AtomicOrdering Order = I.getOrdering(); 4147 SyncScope::ID SSID = I.getSyncScopeID(); 4148 4149 SDValue InChain = getRoot(); 4150 4151 SDValue L = 4152 DAG.getAtomic(NT, dl, 4153 getValue(I.getValOperand()).getSimpleValueType(), 4154 InChain, 4155 getValue(I.getPointerOperand()), 4156 getValue(I.getValOperand()), 4157 I.getPointerOperand(), 4158 /* Alignment=*/ 0, Order, SSID); 4159 4160 SDValue OutChain = L.getValue(1); 4161 4162 setValue(&I, L); 4163 DAG.setRoot(OutChain); 4164 } 4165 4166 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4167 SDLoc dl = getCurSDLoc(); 4168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4169 SDValue Ops[3]; 4170 Ops[0] = getRoot(); 4171 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4172 TLI.getFenceOperandTy(DAG.getDataLayout())); 4173 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4174 TLI.getFenceOperandTy(DAG.getDataLayout())); 4175 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4176 } 4177 4178 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4179 SDLoc dl = getCurSDLoc(); 4180 AtomicOrdering Order = I.getOrdering(); 4181 SyncScope::ID SSID = I.getSyncScopeID(); 4182 4183 SDValue InChain = getRoot(); 4184 4185 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4186 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4187 4188 if (!TLI.supportsUnalignedAtomics() && 4189 I.getAlignment() < VT.getStoreSize()) 4190 report_fatal_error("Cannot generate unaligned atomic load"); 4191 4192 MachineMemOperand *MMO = 4193 DAG.getMachineFunction(). 4194 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4195 MachineMemOperand::MOVolatile | 4196 MachineMemOperand::MOLoad, 4197 VT.getStoreSize(), 4198 I.getAlignment() ? I.getAlignment() : 4199 DAG.getEVTAlignment(VT), 4200 AAMDNodes(), nullptr, SSID, Order); 4201 4202 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4203 SDValue L = 4204 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4205 getValue(I.getPointerOperand()), MMO); 4206 4207 SDValue OutChain = L.getValue(1); 4208 4209 setValue(&I, L); 4210 DAG.setRoot(OutChain); 4211 } 4212 4213 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4214 SDLoc dl = getCurSDLoc(); 4215 4216 AtomicOrdering Order = I.getOrdering(); 4217 SyncScope::ID SSID = I.getSyncScopeID(); 4218 4219 SDValue InChain = getRoot(); 4220 4221 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4222 EVT VT = 4223 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4224 4225 if (I.getAlignment() < VT.getStoreSize()) 4226 report_fatal_error("Cannot generate unaligned atomic store"); 4227 4228 SDValue OutChain = 4229 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 4230 InChain, 4231 getValue(I.getPointerOperand()), 4232 getValue(I.getValueOperand()), 4233 I.getPointerOperand(), I.getAlignment(), 4234 Order, SSID); 4235 4236 DAG.setRoot(OutChain); 4237 } 4238 4239 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4240 /// node. 4241 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4242 unsigned Intrinsic) { 4243 // Ignore the callsite's attributes. A specific call site may be marked with 4244 // readnone, but the lowering code will expect the chain based on the 4245 // definition. 4246 const Function *F = I.getCalledFunction(); 4247 bool HasChain = !F->doesNotAccessMemory(); 4248 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4249 4250 // Build the operand list. 4251 SmallVector<SDValue, 8> Ops; 4252 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4253 if (OnlyLoad) { 4254 // We don't need to serialize loads against other loads. 4255 Ops.push_back(DAG.getRoot()); 4256 } else { 4257 Ops.push_back(getRoot()); 4258 } 4259 } 4260 4261 // Info is set by getTgtMemInstrinsic 4262 TargetLowering::IntrinsicInfo Info; 4263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4264 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4265 DAG.getMachineFunction(), 4266 Intrinsic); 4267 4268 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4269 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4270 Info.opc == ISD::INTRINSIC_W_CHAIN) 4271 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4272 TLI.getPointerTy(DAG.getDataLayout()))); 4273 4274 // Add all operands of the call to the operand list. 4275 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4276 SDValue Op = getValue(I.getArgOperand(i)); 4277 Ops.push_back(Op); 4278 } 4279 4280 SmallVector<EVT, 4> ValueVTs; 4281 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4282 4283 if (HasChain) 4284 ValueVTs.push_back(MVT::Other); 4285 4286 SDVTList VTs = DAG.getVTList(ValueVTs); 4287 4288 // Create the node. 4289 SDValue Result; 4290 if (IsTgtIntrinsic) { 4291 // This is target intrinsic that touches memory 4292 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4293 Ops, Info.memVT, 4294 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4295 Info.flags, Info.size); 4296 } else if (!HasChain) { 4297 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4298 } else if (!I.getType()->isVoidTy()) { 4299 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4300 } else { 4301 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4302 } 4303 4304 if (HasChain) { 4305 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4306 if (OnlyLoad) 4307 PendingLoads.push_back(Chain); 4308 else 4309 DAG.setRoot(Chain); 4310 } 4311 4312 if (!I.getType()->isVoidTy()) { 4313 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4314 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4315 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4316 } else 4317 Result = lowerRangeToAssertZExt(DAG, I, Result); 4318 4319 setValue(&I, Result); 4320 } 4321 } 4322 4323 /// GetSignificand - Get the significand and build it into a floating-point 4324 /// number with exponent of 1: 4325 /// 4326 /// Op = (Op & 0x007fffff) | 0x3f800000; 4327 /// 4328 /// where Op is the hexadecimal representation of floating point value. 4329 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4330 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4331 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4332 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4333 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4334 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4335 } 4336 4337 /// GetExponent - Get the exponent: 4338 /// 4339 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4340 /// 4341 /// where Op is the hexadecimal representation of floating point value. 4342 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4343 const TargetLowering &TLI, const SDLoc &dl) { 4344 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4345 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4346 SDValue t1 = DAG.getNode( 4347 ISD::SRL, dl, MVT::i32, t0, 4348 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4349 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4350 DAG.getConstant(127, dl, MVT::i32)); 4351 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4352 } 4353 4354 /// getF32Constant - Get 32-bit floating point constant. 4355 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4356 const SDLoc &dl) { 4357 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4358 MVT::f32); 4359 } 4360 4361 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4362 SelectionDAG &DAG) { 4363 // TODO: What fast-math-flags should be set on the floating-point nodes? 4364 4365 // IntegerPartOfX = ((int32_t)(t0); 4366 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4367 4368 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4369 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4370 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4371 4372 // IntegerPartOfX <<= 23; 4373 IntegerPartOfX = DAG.getNode( 4374 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4375 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4376 DAG.getDataLayout()))); 4377 4378 SDValue TwoToFractionalPartOfX; 4379 if (LimitFloatPrecision <= 6) { 4380 // For floating-point precision of 6: 4381 // 4382 // TwoToFractionalPartOfX = 4383 // 0.997535578f + 4384 // (0.735607626f + 0.252464424f * x) * x; 4385 // 4386 // error 0.0144103317, which is 6 bits 4387 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4388 getF32Constant(DAG, 0x3e814304, dl)); 4389 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4390 getF32Constant(DAG, 0x3f3c50c8, dl)); 4391 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4392 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4393 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4394 } else if (LimitFloatPrecision <= 12) { 4395 // For floating-point precision of 12: 4396 // 4397 // TwoToFractionalPartOfX = 4398 // 0.999892986f + 4399 // (0.696457318f + 4400 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4401 // 4402 // error 0.000107046256, which is 13 to 14 bits 4403 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4404 getF32Constant(DAG, 0x3da235e3, dl)); 4405 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4406 getF32Constant(DAG, 0x3e65b8f3, dl)); 4407 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4408 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4409 getF32Constant(DAG, 0x3f324b07, dl)); 4410 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4411 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4412 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4413 } else { // LimitFloatPrecision <= 18 4414 // For floating-point precision of 18: 4415 // 4416 // TwoToFractionalPartOfX = 4417 // 0.999999982f + 4418 // (0.693148872f + 4419 // (0.240227044f + 4420 // (0.554906021e-1f + 4421 // (0.961591928e-2f + 4422 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4423 // error 2.47208000*10^(-7), which is better than 18 bits 4424 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4425 getF32Constant(DAG, 0x3924b03e, dl)); 4426 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4427 getF32Constant(DAG, 0x3ab24b87, dl)); 4428 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4429 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4430 getF32Constant(DAG, 0x3c1d8c17, dl)); 4431 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4432 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4433 getF32Constant(DAG, 0x3d634a1d, dl)); 4434 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4435 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4436 getF32Constant(DAG, 0x3e75fe14, dl)); 4437 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4438 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4439 getF32Constant(DAG, 0x3f317234, dl)); 4440 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4441 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4442 getF32Constant(DAG, 0x3f800000, dl)); 4443 } 4444 4445 // Add the exponent into the result in integer domain. 4446 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4447 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4448 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4449 } 4450 4451 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4452 /// limited-precision mode. 4453 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4454 const TargetLowering &TLI) { 4455 if (Op.getValueType() == MVT::f32 && 4456 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4457 4458 // Put the exponent in the right bit position for later addition to the 4459 // final result: 4460 // 4461 // #define LOG2OFe 1.4426950f 4462 // t0 = Op * LOG2OFe 4463 4464 // TODO: What fast-math-flags should be set here? 4465 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4466 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4467 return getLimitedPrecisionExp2(t0, dl, DAG); 4468 } 4469 4470 // No special expansion. 4471 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4472 } 4473 4474 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4475 /// limited-precision mode. 4476 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4477 const TargetLowering &TLI) { 4478 // TODO: What fast-math-flags should be set on the floating-point nodes? 4479 4480 if (Op.getValueType() == MVT::f32 && 4481 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4482 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4483 4484 // Scale the exponent by log(2) [0.69314718f]. 4485 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4486 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4487 getF32Constant(DAG, 0x3f317218, dl)); 4488 4489 // Get the significand and build it into a floating-point number with 4490 // exponent of 1. 4491 SDValue X = GetSignificand(DAG, Op1, dl); 4492 4493 SDValue LogOfMantissa; 4494 if (LimitFloatPrecision <= 6) { 4495 // For floating-point precision of 6: 4496 // 4497 // LogofMantissa = 4498 // -1.1609546f + 4499 // (1.4034025f - 0.23903021f * x) * x; 4500 // 4501 // error 0.0034276066, which is better than 8 bits 4502 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4503 getF32Constant(DAG, 0xbe74c456, dl)); 4504 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4505 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4506 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4507 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4508 getF32Constant(DAG, 0x3f949a29, dl)); 4509 } else if (LimitFloatPrecision <= 12) { 4510 // For floating-point precision of 12: 4511 // 4512 // LogOfMantissa = 4513 // -1.7417939f + 4514 // (2.8212026f + 4515 // (-1.4699568f + 4516 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4517 // 4518 // error 0.000061011436, which is 14 bits 4519 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4520 getF32Constant(DAG, 0xbd67b6d6, dl)); 4521 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4522 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4523 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4524 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4525 getF32Constant(DAG, 0x3fbc278b, dl)); 4526 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4527 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4528 getF32Constant(DAG, 0x40348e95, dl)); 4529 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4530 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4531 getF32Constant(DAG, 0x3fdef31a, dl)); 4532 } else { // LimitFloatPrecision <= 18 4533 // For floating-point precision of 18: 4534 // 4535 // LogOfMantissa = 4536 // -2.1072184f + 4537 // (4.2372794f + 4538 // (-3.7029485f + 4539 // (2.2781945f + 4540 // (-0.87823314f + 4541 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4542 // 4543 // error 0.0000023660568, which is better than 18 bits 4544 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4545 getF32Constant(DAG, 0xbc91e5ac, dl)); 4546 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4547 getF32Constant(DAG, 0x3e4350aa, dl)); 4548 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4549 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4550 getF32Constant(DAG, 0x3f60d3e3, dl)); 4551 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4552 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4553 getF32Constant(DAG, 0x4011cdf0, dl)); 4554 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4555 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4556 getF32Constant(DAG, 0x406cfd1c, dl)); 4557 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4558 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4559 getF32Constant(DAG, 0x408797cb, dl)); 4560 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4561 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4562 getF32Constant(DAG, 0x4006dcab, dl)); 4563 } 4564 4565 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4566 } 4567 4568 // No special expansion. 4569 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4570 } 4571 4572 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4573 /// limited-precision mode. 4574 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4575 const TargetLowering &TLI) { 4576 // TODO: What fast-math-flags should be set on the floating-point nodes? 4577 4578 if (Op.getValueType() == MVT::f32 && 4579 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4580 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4581 4582 // Get the exponent. 4583 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4584 4585 // Get the significand and build it into a floating-point number with 4586 // exponent of 1. 4587 SDValue X = GetSignificand(DAG, Op1, dl); 4588 4589 // Different possible minimax approximations of significand in 4590 // floating-point for various degrees of accuracy over [1,2]. 4591 SDValue Log2ofMantissa; 4592 if (LimitFloatPrecision <= 6) { 4593 // For floating-point precision of 6: 4594 // 4595 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4596 // 4597 // error 0.0049451742, which is more than 7 bits 4598 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4599 getF32Constant(DAG, 0xbeb08fe0, dl)); 4600 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4601 getF32Constant(DAG, 0x40019463, dl)); 4602 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4603 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4604 getF32Constant(DAG, 0x3fd6633d, dl)); 4605 } else if (LimitFloatPrecision <= 12) { 4606 // For floating-point precision of 12: 4607 // 4608 // Log2ofMantissa = 4609 // -2.51285454f + 4610 // (4.07009056f + 4611 // (-2.12067489f + 4612 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4613 // 4614 // error 0.0000876136000, which is better than 13 bits 4615 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4616 getF32Constant(DAG, 0xbda7262e, dl)); 4617 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4618 getF32Constant(DAG, 0x3f25280b, dl)); 4619 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4620 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4621 getF32Constant(DAG, 0x4007b923, dl)); 4622 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4623 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4624 getF32Constant(DAG, 0x40823e2f, dl)); 4625 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4626 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4627 getF32Constant(DAG, 0x4020d29c, dl)); 4628 } else { // LimitFloatPrecision <= 18 4629 // For floating-point precision of 18: 4630 // 4631 // Log2ofMantissa = 4632 // -3.0400495f + 4633 // (6.1129976f + 4634 // (-5.3420409f + 4635 // (3.2865683f + 4636 // (-1.2669343f + 4637 // (0.27515199f - 4638 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4639 // 4640 // error 0.0000018516, which is better than 18 bits 4641 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4642 getF32Constant(DAG, 0xbcd2769e, dl)); 4643 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4644 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4645 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4646 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4647 getF32Constant(DAG, 0x3fa22ae7, dl)); 4648 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4649 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4650 getF32Constant(DAG, 0x40525723, dl)); 4651 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4652 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4653 getF32Constant(DAG, 0x40aaf200, dl)); 4654 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4655 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4656 getF32Constant(DAG, 0x40c39dad, dl)); 4657 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4658 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4659 getF32Constant(DAG, 0x4042902c, dl)); 4660 } 4661 4662 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4663 } 4664 4665 // No special expansion. 4666 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4667 } 4668 4669 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4670 /// limited-precision mode. 4671 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4672 const TargetLowering &TLI) { 4673 // TODO: What fast-math-flags should be set on the floating-point nodes? 4674 4675 if (Op.getValueType() == MVT::f32 && 4676 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4677 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4678 4679 // Scale the exponent by log10(2) [0.30102999f]. 4680 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4681 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4682 getF32Constant(DAG, 0x3e9a209a, dl)); 4683 4684 // Get the significand and build it into a floating-point number with 4685 // exponent of 1. 4686 SDValue X = GetSignificand(DAG, Op1, dl); 4687 4688 SDValue Log10ofMantissa; 4689 if (LimitFloatPrecision <= 6) { 4690 // For floating-point precision of 6: 4691 // 4692 // Log10ofMantissa = 4693 // -0.50419619f + 4694 // (0.60948995f - 0.10380950f * x) * x; 4695 // 4696 // error 0.0014886165, which is 6 bits 4697 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4698 getF32Constant(DAG, 0xbdd49a13, dl)); 4699 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4700 getF32Constant(DAG, 0x3f1c0789, dl)); 4701 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4702 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4703 getF32Constant(DAG, 0x3f011300, dl)); 4704 } else if (LimitFloatPrecision <= 12) { 4705 // For floating-point precision of 12: 4706 // 4707 // Log10ofMantissa = 4708 // -0.64831180f + 4709 // (0.91751397f + 4710 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4711 // 4712 // error 0.00019228036, which is better than 12 bits 4713 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4714 getF32Constant(DAG, 0x3d431f31, dl)); 4715 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4716 getF32Constant(DAG, 0x3ea21fb2, dl)); 4717 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4718 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4719 getF32Constant(DAG, 0x3f6ae232, dl)); 4720 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4721 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4722 getF32Constant(DAG, 0x3f25f7c3, dl)); 4723 } else { // LimitFloatPrecision <= 18 4724 // For floating-point precision of 18: 4725 // 4726 // Log10ofMantissa = 4727 // -0.84299375f + 4728 // (1.5327582f + 4729 // (-1.0688956f + 4730 // (0.49102474f + 4731 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4732 // 4733 // error 0.0000037995730, which is better than 18 bits 4734 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4735 getF32Constant(DAG, 0x3c5d51ce, dl)); 4736 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4737 getF32Constant(DAG, 0x3e00685a, dl)); 4738 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4739 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4740 getF32Constant(DAG, 0x3efb6798, dl)); 4741 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4742 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4743 getF32Constant(DAG, 0x3f88d192, dl)); 4744 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4745 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4746 getF32Constant(DAG, 0x3fc4316c, dl)); 4747 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4748 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4749 getF32Constant(DAG, 0x3f57ce70, dl)); 4750 } 4751 4752 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4753 } 4754 4755 // No special expansion. 4756 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4757 } 4758 4759 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4760 /// limited-precision mode. 4761 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4762 const TargetLowering &TLI) { 4763 if (Op.getValueType() == MVT::f32 && 4764 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4765 return getLimitedPrecisionExp2(Op, dl, DAG); 4766 4767 // No special expansion. 4768 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4769 } 4770 4771 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4772 /// limited-precision mode with x == 10.0f. 4773 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 4774 SelectionDAG &DAG, const TargetLowering &TLI) { 4775 bool IsExp10 = false; 4776 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4777 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4778 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4779 APFloat Ten(10.0f); 4780 IsExp10 = LHSC->isExactlyValue(Ten); 4781 } 4782 } 4783 4784 // TODO: What fast-math-flags should be set on the FMUL node? 4785 if (IsExp10) { 4786 // Put the exponent in the right bit position for later addition to the 4787 // final result: 4788 // 4789 // #define LOG2OF10 3.3219281f 4790 // t0 = Op * LOG2OF10; 4791 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4792 getF32Constant(DAG, 0x40549a78, dl)); 4793 return getLimitedPrecisionExp2(t0, dl, DAG); 4794 } 4795 4796 // No special expansion. 4797 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4798 } 4799 4800 /// ExpandPowI - Expand a llvm.powi intrinsic. 4801 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 4802 SelectionDAG &DAG) { 4803 // If RHS is a constant, we can expand this out to a multiplication tree, 4804 // otherwise we end up lowering to a call to __powidf2 (for example). When 4805 // optimizing for size, we only want to do this if the expansion would produce 4806 // a small number of multiplies, otherwise we do the full expansion. 4807 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4808 // Get the exponent as a positive value. 4809 unsigned Val = RHSC->getSExtValue(); 4810 if ((int)Val < 0) Val = -Val; 4811 4812 // powi(x, 0) -> 1.0 4813 if (Val == 0) 4814 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4815 4816 const Function &F = DAG.getMachineFunction().getFunction(); 4817 if (!F.optForSize() || 4818 // If optimizing for size, don't insert too many multiplies. 4819 // This inserts up to 5 multiplies. 4820 countPopulation(Val) + Log2_32(Val) < 7) { 4821 // We use the simple binary decomposition method to generate the multiply 4822 // sequence. There are more optimal ways to do this (for example, 4823 // powi(x,15) generates one more multiply than it should), but this has 4824 // the benefit of being both really simple and much better than a libcall. 4825 SDValue Res; // Logically starts equal to 1.0 4826 SDValue CurSquare = LHS; 4827 // TODO: Intrinsics should have fast-math-flags that propagate to these 4828 // nodes. 4829 while (Val) { 4830 if (Val & 1) { 4831 if (Res.getNode()) 4832 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4833 else 4834 Res = CurSquare; // 1.0*CurSquare. 4835 } 4836 4837 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4838 CurSquare, CurSquare); 4839 Val >>= 1; 4840 } 4841 4842 // If the original was negative, invert the result, producing 1/(x*x*x). 4843 if (RHSC->getSExtValue() < 0) 4844 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4845 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4846 return Res; 4847 } 4848 } 4849 4850 // Otherwise, expand to a libcall. 4851 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4852 } 4853 4854 // getUnderlyingArgReg - Find underlying register used for a truncated or 4855 // bitcasted argument. 4856 static unsigned getUnderlyingArgReg(const SDValue &N) { 4857 switch (N.getOpcode()) { 4858 case ISD::CopyFromReg: 4859 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4860 case ISD::BITCAST: 4861 case ISD::AssertZext: 4862 case ISD::AssertSext: 4863 case ISD::TRUNCATE: 4864 return getUnderlyingArgReg(N.getOperand(0)); 4865 default: 4866 return 0; 4867 } 4868 } 4869 4870 /// If the DbgValueInst is a dbg_value of a function argument, create the 4871 /// corresponding DBG_VALUE machine instruction for it now. At the end of 4872 /// instruction selection, they will be inserted to the entry BB. 4873 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4874 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4875 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 4876 const Argument *Arg = dyn_cast<Argument>(V); 4877 if (!Arg) 4878 return false; 4879 4880 MachineFunction &MF = DAG.getMachineFunction(); 4881 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4882 4883 bool IsIndirect = false; 4884 Optional<MachineOperand> Op; 4885 // Some arguments' frame index is recorded during argument lowering. 4886 int FI = FuncInfo.getArgumentFrameIndex(Arg); 4887 if (FI != std::numeric_limits<int>::max()) 4888 Op = MachineOperand::CreateFI(FI); 4889 4890 if (!Op && N.getNode()) { 4891 unsigned Reg = getUnderlyingArgReg(N); 4892 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4893 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4894 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4895 if (PR) 4896 Reg = PR; 4897 } 4898 if (Reg) { 4899 Op = MachineOperand::CreateReg(Reg, false); 4900 IsIndirect = IsDbgDeclare; 4901 } 4902 } 4903 4904 if (!Op && N.getNode()) 4905 // Check if frame index is available. 4906 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4907 if (FrameIndexSDNode *FINode = 4908 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4909 Op = MachineOperand::CreateFI(FINode->getIndex()); 4910 4911 if (!Op) { 4912 // Check if ValueMap has reg number. 4913 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4914 if (VMI != FuncInfo.ValueMap.end()) { 4915 const auto &TLI = DAG.getTargetLoweringInfo(); 4916 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 4917 V->getType(), isABIRegCopy(V)); 4918 if (RFV.occupiesMultipleRegs()) { 4919 unsigned Offset = 0; 4920 for (auto RegAndSize : RFV.getRegsAndSizes()) { 4921 Op = MachineOperand::CreateReg(RegAndSize.first, false); 4922 auto FragmentExpr = DIExpression::createFragmentExpression( 4923 Expr, Offset, RegAndSize.second); 4924 if (!FragmentExpr) 4925 continue; 4926 FuncInfo.ArgDbgValues.push_back( 4927 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 4928 Op->getReg(), Variable, *FragmentExpr)); 4929 Offset += RegAndSize.second; 4930 } 4931 return true; 4932 } 4933 Op = MachineOperand::CreateReg(VMI->second, false); 4934 IsIndirect = IsDbgDeclare; 4935 } 4936 } 4937 4938 if (!Op) 4939 return false; 4940 4941 assert(Variable->isValidLocationForIntrinsic(DL) && 4942 "Expected inlined-at fields to agree"); 4943 if (Op->isReg()) 4944 FuncInfo.ArgDbgValues.push_back( 4945 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4946 Op->getReg(), Variable, Expr)); 4947 else 4948 FuncInfo.ArgDbgValues.push_back( 4949 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4950 .add(*Op) 4951 .addImm(0) 4952 .addMetadata(Variable) 4953 .addMetadata(Expr)); 4954 4955 return true; 4956 } 4957 4958 /// Return the appropriate SDDbgValue based on N. 4959 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 4960 DILocalVariable *Variable, 4961 DIExpression *Expr, 4962 const DebugLoc &dl, 4963 unsigned DbgSDNodeOrder) { 4964 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 4965 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 4966 // stack slot locations as such instead of as indirectly addressed 4967 // locations. 4968 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), dl, 4969 DbgSDNodeOrder); 4970 } 4971 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), false, dl, 4972 DbgSDNodeOrder); 4973 } 4974 4975 // VisualStudio defines setjmp as _setjmp 4976 #if defined(_MSC_VER) && defined(setjmp) && \ 4977 !defined(setjmp_undefined_for_msvc) 4978 # pragma push_macro("setjmp") 4979 # undef setjmp 4980 # define setjmp_undefined_for_msvc 4981 #endif 4982 4983 /// Lower the call to the specified intrinsic function. If we want to emit this 4984 /// as a call to a named external function, return the name. Otherwise, lower it 4985 /// and return null. 4986 const char * 4987 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4988 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4989 SDLoc sdl = getCurSDLoc(); 4990 DebugLoc dl = getCurDebugLoc(); 4991 SDValue Res; 4992 4993 switch (Intrinsic) { 4994 default: 4995 // By default, turn this into a target intrinsic node. 4996 visitTargetIntrinsic(I, Intrinsic); 4997 return nullptr; 4998 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4999 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5000 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5001 case Intrinsic::returnaddress: 5002 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5003 TLI.getPointerTy(DAG.getDataLayout()), 5004 getValue(I.getArgOperand(0)))); 5005 return nullptr; 5006 case Intrinsic::addressofreturnaddress: 5007 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5008 TLI.getPointerTy(DAG.getDataLayout()))); 5009 return nullptr; 5010 case Intrinsic::frameaddress: 5011 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5012 TLI.getPointerTy(DAG.getDataLayout()), 5013 getValue(I.getArgOperand(0)))); 5014 return nullptr; 5015 case Intrinsic::read_register: { 5016 Value *Reg = I.getArgOperand(0); 5017 SDValue Chain = getRoot(); 5018 SDValue RegName = 5019 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5020 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5021 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5022 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5023 setValue(&I, Res); 5024 DAG.setRoot(Res.getValue(1)); 5025 return nullptr; 5026 } 5027 case Intrinsic::write_register: { 5028 Value *Reg = I.getArgOperand(0); 5029 Value *RegValue = I.getArgOperand(1); 5030 SDValue Chain = getRoot(); 5031 SDValue RegName = 5032 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5033 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5034 RegName, getValue(RegValue))); 5035 return nullptr; 5036 } 5037 case Intrinsic::setjmp: 5038 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5039 case Intrinsic::longjmp: 5040 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5041 case Intrinsic::memcpy: { 5042 const auto &MCI = cast<MemCpyInst>(I); 5043 SDValue Op1 = getValue(I.getArgOperand(0)); 5044 SDValue Op2 = getValue(I.getArgOperand(1)); 5045 SDValue Op3 = getValue(I.getArgOperand(2)); 5046 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5047 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5048 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5049 unsigned Align = MinAlign(DstAlign, SrcAlign); 5050 bool isVol = MCI.isVolatile(); 5051 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5052 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5053 // node. 5054 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5055 false, isTC, 5056 MachinePointerInfo(I.getArgOperand(0)), 5057 MachinePointerInfo(I.getArgOperand(1))); 5058 updateDAGForMaybeTailCall(MC); 5059 return nullptr; 5060 } 5061 case Intrinsic::memset: { 5062 const auto &MSI = cast<MemSetInst>(I); 5063 SDValue Op1 = getValue(I.getArgOperand(0)); 5064 SDValue Op2 = getValue(I.getArgOperand(1)); 5065 SDValue Op3 = getValue(I.getArgOperand(2)); 5066 // @llvm.memset defines 0 and 1 to both mean no alignment. 5067 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5068 bool isVol = MSI.isVolatile(); 5069 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5070 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5071 isTC, MachinePointerInfo(I.getArgOperand(0))); 5072 updateDAGForMaybeTailCall(MS); 5073 return nullptr; 5074 } 5075 case Intrinsic::memmove: { 5076 const auto &MMI = cast<MemMoveInst>(I); 5077 SDValue Op1 = getValue(I.getArgOperand(0)); 5078 SDValue Op2 = getValue(I.getArgOperand(1)); 5079 SDValue Op3 = getValue(I.getArgOperand(2)); 5080 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5081 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5082 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5083 unsigned Align = MinAlign(DstAlign, SrcAlign); 5084 bool isVol = MMI.isVolatile(); 5085 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5086 // FIXME: Support passing different dest/src alignments to the memmove DAG 5087 // node. 5088 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5089 isTC, MachinePointerInfo(I.getArgOperand(0)), 5090 MachinePointerInfo(I.getArgOperand(1))); 5091 updateDAGForMaybeTailCall(MM); 5092 return nullptr; 5093 } 5094 case Intrinsic::memcpy_element_unordered_atomic: { 5095 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5096 SDValue Dst = getValue(MI.getRawDest()); 5097 SDValue Src = getValue(MI.getRawSource()); 5098 SDValue Length = getValue(MI.getLength()); 5099 5100 unsigned DstAlign = MI.getDestAlignment(); 5101 unsigned SrcAlign = MI.getSourceAlignment(); 5102 Type *LengthTy = MI.getLength()->getType(); 5103 unsigned ElemSz = MI.getElementSizeInBytes(); 5104 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5105 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5106 SrcAlign, Length, LengthTy, ElemSz, isTC, 5107 MachinePointerInfo(MI.getRawDest()), 5108 MachinePointerInfo(MI.getRawSource())); 5109 updateDAGForMaybeTailCall(MC); 5110 return nullptr; 5111 } 5112 case Intrinsic::memmove_element_unordered_atomic: { 5113 auto &MI = cast<AtomicMemMoveInst>(I); 5114 SDValue Dst = getValue(MI.getRawDest()); 5115 SDValue Src = getValue(MI.getRawSource()); 5116 SDValue Length = getValue(MI.getLength()); 5117 5118 unsigned DstAlign = MI.getDestAlignment(); 5119 unsigned SrcAlign = MI.getSourceAlignment(); 5120 Type *LengthTy = MI.getLength()->getType(); 5121 unsigned ElemSz = MI.getElementSizeInBytes(); 5122 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5123 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5124 SrcAlign, Length, LengthTy, ElemSz, isTC, 5125 MachinePointerInfo(MI.getRawDest()), 5126 MachinePointerInfo(MI.getRawSource())); 5127 updateDAGForMaybeTailCall(MC); 5128 return nullptr; 5129 } 5130 case Intrinsic::memset_element_unordered_atomic: { 5131 auto &MI = cast<AtomicMemSetInst>(I); 5132 SDValue Dst = getValue(MI.getRawDest()); 5133 SDValue Val = getValue(MI.getValue()); 5134 SDValue Length = getValue(MI.getLength()); 5135 5136 unsigned DstAlign = MI.getDestAlignment(); 5137 Type *LengthTy = MI.getLength()->getType(); 5138 unsigned ElemSz = MI.getElementSizeInBytes(); 5139 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5140 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5141 LengthTy, ElemSz, isTC, 5142 MachinePointerInfo(MI.getRawDest())); 5143 updateDAGForMaybeTailCall(MC); 5144 return nullptr; 5145 } 5146 case Intrinsic::dbg_addr: 5147 case Intrinsic::dbg_declare: { 5148 const DbgInfoIntrinsic &DI = cast<DbgInfoIntrinsic>(I); 5149 DILocalVariable *Variable = DI.getVariable(); 5150 DIExpression *Expression = DI.getExpression(); 5151 dropDanglingDebugInfo(Variable, Expression); 5152 assert(Variable && "Missing variable"); 5153 5154 // Check if address has undef value. 5155 const Value *Address = DI.getVariableLocation(); 5156 if (!Address || isa<UndefValue>(Address) || 5157 (Address->use_empty() && !isa<Argument>(Address))) { 5158 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5159 return nullptr; 5160 } 5161 5162 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5163 5164 // Check if this variable can be described by a frame index, typically 5165 // either as a static alloca or a byval parameter. 5166 int FI = std::numeric_limits<int>::max(); 5167 if (const auto *AI = 5168 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5169 if (AI->isStaticAlloca()) { 5170 auto I = FuncInfo.StaticAllocaMap.find(AI); 5171 if (I != FuncInfo.StaticAllocaMap.end()) 5172 FI = I->second; 5173 } 5174 } else if (const auto *Arg = dyn_cast<Argument>( 5175 Address->stripInBoundsConstantOffsets())) { 5176 FI = FuncInfo.getArgumentFrameIndex(Arg); 5177 } 5178 5179 // llvm.dbg.addr is control dependent and always generates indirect 5180 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5181 // the MachineFunction variable table. 5182 if (FI != std::numeric_limits<int>::max()) { 5183 if (Intrinsic == Intrinsic::dbg_addr) { 5184 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5185 FI, dl, SDNodeOrder); 5186 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5187 } 5188 return nullptr; 5189 } 5190 5191 SDValue &N = NodeMap[Address]; 5192 if (!N.getNode() && isa<Argument>(Address)) 5193 // Check unused arguments map. 5194 N = UnusedArgNodeMap[Address]; 5195 SDDbgValue *SDV; 5196 if (N.getNode()) { 5197 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5198 Address = BCI->getOperand(0); 5199 // Parameters are handled specially. 5200 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5201 if (isParameter && FINode) { 5202 // Byval parameter. We have a frame index at this point. 5203 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 5204 FINode->getIndex(), dl, SDNodeOrder); 5205 } else if (isa<Argument>(Address)) { 5206 // Address is an argument, so try to emit its dbg value using 5207 // virtual register info from the FuncInfo.ValueMap. 5208 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5209 return nullptr; 5210 } else { 5211 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5212 true, dl, SDNodeOrder); 5213 } 5214 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5215 } else { 5216 // If Address is an argument then try to emit its dbg value using 5217 // virtual register info from the FuncInfo.ValueMap. 5218 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5219 N)) { 5220 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5221 } 5222 } 5223 return nullptr; 5224 } 5225 case Intrinsic::dbg_label: { 5226 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5227 DILabel *Label = DI.getLabel(); 5228 assert(Label && "Missing label"); 5229 5230 SDDbgLabel *SDV; 5231 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5232 DAG.AddDbgLabel(SDV); 5233 return nullptr; 5234 } 5235 case Intrinsic::dbg_value: { 5236 const DbgValueInst &DI = cast<DbgValueInst>(I); 5237 assert(DI.getVariable() && "Missing variable"); 5238 5239 DILocalVariable *Variable = DI.getVariable(); 5240 DIExpression *Expression = DI.getExpression(); 5241 dropDanglingDebugInfo(Variable, Expression); 5242 const Value *V = DI.getValue(); 5243 if (!V) 5244 return nullptr; 5245 5246 SDDbgValue *SDV; 5247 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 5248 SDV = DAG.getConstantDbgValue(Variable, Expression, V, dl, SDNodeOrder); 5249 DAG.AddDbgValue(SDV, nullptr, false); 5250 return nullptr; 5251 } 5252 5253 // Do not use getValue() in here; we don't want to generate code at 5254 // this point if it hasn't been done yet. 5255 SDValue N = NodeMap[V]; 5256 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 5257 N = UnusedArgNodeMap[V]; 5258 if (N.getNode()) { 5259 if (EmitFuncArgumentDbgValue(V, Variable, Expression, dl, false, N)) 5260 return nullptr; 5261 SDV = getDbgValue(N, Variable, Expression, dl, SDNodeOrder); 5262 DAG.AddDbgValue(SDV, N.getNode(), false); 5263 return nullptr; 5264 } 5265 5266 // PHI nodes have already been selected, so we should know which VReg that 5267 // is assigns to already. 5268 if (isa<PHINode>(V)) { 5269 auto VMI = FuncInfo.ValueMap.find(V); 5270 if (VMI != FuncInfo.ValueMap.end()) { 5271 unsigned Reg = VMI->second; 5272 // The PHI node may be split up into several MI PHI nodes (in 5273 // FunctionLoweringInfo::set). 5274 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 5275 V->getType(), false); 5276 if (RFV.occupiesMultipleRegs()) { 5277 unsigned Offset = 0; 5278 unsigned BitsToDescribe = 0; 5279 if (auto VarSize = Variable->getSizeInBits()) 5280 BitsToDescribe = *VarSize; 5281 if (auto Fragment = Expression->getFragmentInfo()) 5282 BitsToDescribe = Fragment->SizeInBits; 5283 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5284 unsigned RegisterSize = RegAndSize.second; 5285 // Bail out if all bits are described already. 5286 if (Offset >= BitsToDescribe) 5287 break; 5288 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 5289 ? BitsToDescribe - Offset 5290 : RegisterSize; 5291 auto FragmentExpr = DIExpression::createFragmentExpression( 5292 Expression, Offset, FragmentSize); 5293 if (!FragmentExpr) 5294 continue; 5295 SDV = DAG.getVRegDbgValue(Variable, *FragmentExpr, RegAndSize.first, 5296 false, dl, SDNodeOrder); 5297 DAG.AddDbgValue(SDV, nullptr, false); 5298 Offset += RegisterSize; 5299 } 5300 } else { 5301 SDV = DAG.getVRegDbgValue(Variable, Expression, Reg, false, dl, 5302 SDNodeOrder); 5303 DAG.AddDbgValue(SDV, nullptr, false); 5304 } 5305 return nullptr; 5306 } 5307 } 5308 5309 // TODO: When we get here we will either drop the dbg.value completely, or 5310 // we try to move it forward by letting it dangle for awhile. So we should 5311 // probably add an extra DbgValue to the DAG here, with a reference to 5312 // "noreg", to indicate that we have lost the debug location for the 5313 // variable. 5314 5315 if (!V->use_empty() ) { 5316 // Do not call getValue(V) yet, as we don't want to generate code. 5317 // Remember it for later. 5318 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 5319 DanglingDebugInfoMap[V].push_back(DDI); 5320 return nullptr; 5321 } 5322 5323 LLVM_DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 5324 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 5325 return nullptr; 5326 } 5327 5328 case Intrinsic::eh_typeid_for: { 5329 // Find the type id for the given typeinfo. 5330 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5331 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5332 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5333 setValue(&I, Res); 5334 return nullptr; 5335 } 5336 5337 case Intrinsic::eh_return_i32: 5338 case Intrinsic::eh_return_i64: 5339 DAG.getMachineFunction().setCallsEHReturn(true); 5340 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5341 MVT::Other, 5342 getControlRoot(), 5343 getValue(I.getArgOperand(0)), 5344 getValue(I.getArgOperand(1)))); 5345 return nullptr; 5346 case Intrinsic::eh_unwind_init: 5347 DAG.getMachineFunction().setCallsUnwindInit(true); 5348 return nullptr; 5349 case Intrinsic::eh_dwarf_cfa: 5350 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5351 TLI.getPointerTy(DAG.getDataLayout()), 5352 getValue(I.getArgOperand(0)))); 5353 return nullptr; 5354 case Intrinsic::eh_sjlj_callsite: { 5355 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5356 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5357 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5358 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5359 5360 MMI.setCurrentCallSite(CI->getZExtValue()); 5361 return nullptr; 5362 } 5363 case Intrinsic::eh_sjlj_functioncontext: { 5364 // Get and store the index of the function context. 5365 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5366 AllocaInst *FnCtx = 5367 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5368 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5369 MFI.setFunctionContextIndex(FI); 5370 return nullptr; 5371 } 5372 case Intrinsic::eh_sjlj_setjmp: { 5373 SDValue Ops[2]; 5374 Ops[0] = getRoot(); 5375 Ops[1] = getValue(I.getArgOperand(0)); 5376 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5377 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5378 setValue(&I, Op.getValue(0)); 5379 DAG.setRoot(Op.getValue(1)); 5380 return nullptr; 5381 } 5382 case Intrinsic::eh_sjlj_longjmp: 5383 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5384 getRoot(), getValue(I.getArgOperand(0)))); 5385 return nullptr; 5386 case Intrinsic::eh_sjlj_setup_dispatch: 5387 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5388 getRoot())); 5389 return nullptr; 5390 case Intrinsic::masked_gather: 5391 visitMaskedGather(I); 5392 return nullptr; 5393 case Intrinsic::masked_load: 5394 visitMaskedLoad(I); 5395 return nullptr; 5396 case Intrinsic::masked_scatter: 5397 visitMaskedScatter(I); 5398 return nullptr; 5399 case Intrinsic::masked_store: 5400 visitMaskedStore(I); 5401 return nullptr; 5402 case Intrinsic::masked_expandload: 5403 visitMaskedLoad(I, true /* IsExpanding */); 5404 return nullptr; 5405 case Intrinsic::masked_compressstore: 5406 visitMaskedStore(I, true /* IsCompressing */); 5407 return nullptr; 5408 case Intrinsic::x86_mmx_pslli_w: 5409 case Intrinsic::x86_mmx_pslli_d: 5410 case Intrinsic::x86_mmx_pslli_q: 5411 case Intrinsic::x86_mmx_psrli_w: 5412 case Intrinsic::x86_mmx_psrli_d: 5413 case Intrinsic::x86_mmx_psrli_q: 5414 case Intrinsic::x86_mmx_psrai_w: 5415 case Intrinsic::x86_mmx_psrai_d: { 5416 SDValue ShAmt = getValue(I.getArgOperand(1)); 5417 if (isa<ConstantSDNode>(ShAmt)) { 5418 visitTargetIntrinsic(I, Intrinsic); 5419 return nullptr; 5420 } 5421 unsigned NewIntrinsic = 0; 5422 EVT ShAmtVT = MVT::v2i32; 5423 switch (Intrinsic) { 5424 case Intrinsic::x86_mmx_pslli_w: 5425 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5426 break; 5427 case Intrinsic::x86_mmx_pslli_d: 5428 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5429 break; 5430 case Intrinsic::x86_mmx_pslli_q: 5431 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5432 break; 5433 case Intrinsic::x86_mmx_psrli_w: 5434 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5435 break; 5436 case Intrinsic::x86_mmx_psrli_d: 5437 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5438 break; 5439 case Intrinsic::x86_mmx_psrli_q: 5440 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5441 break; 5442 case Intrinsic::x86_mmx_psrai_w: 5443 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5444 break; 5445 case Intrinsic::x86_mmx_psrai_d: 5446 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5447 break; 5448 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5449 } 5450 5451 // The vector shift intrinsics with scalars uses 32b shift amounts but 5452 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5453 // to be zero. 5454 // We must do this early because v2i32 is not a legal type. 5455 SDValue ShOps[2]; 5456 ShOps[0] = ShAmt; 5457 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5458 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5459 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5460 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5461 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5462 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5463 getValue(I.getArgOperand(0)), ShAmt); 5464 setValue(&I, Res); 5465 return nullptr; 5466 } 5467 case Intrinsic::powi: 5468 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5469 getValue(I.getArgOperand(1)), DAG)); 5470 return nullptr; 5471 case Intrinsic::log: 5472 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5473 return nullptr; 5474 case Intrinsic::log2: 5475 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5476 return nullptr; 5477 case Intrinsic::log10: 5478 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5479 return nullptr; 5480 case Intrinsic::exp: 5481 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5482 return nullptr; 5483 case Intrinsic::exp2: 5484 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5485 return nullptr; 5486 case Intrinsic::pow: 5487 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5488 getValue(I.getArgOperand(1)), DAG, TLI)); 5489 return nullptr; 5490 case Intrinsic::sqrt: 5491 case Intrinsic::fabs: 5492 case Intrinsic::sin: 5493 case Intrinsic::cos: 5494 case Intrinsic::floor: 5495 case Intrinsic::ceil: 5496 case Intrinsic::trunc: 5497 case Intrinsic::rint: 5498 case Intrinsic::nearbyint: 5499 case Intrinsic::round: 5500 case Intrinsic::canonicalize: { 5501 unsigned Opcode; 5502 switch (Intrinsic) { 5503 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5504 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5505 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5506 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5507 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5508 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5509 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5510 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5511 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5512 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5513 case Intrinsic::round: Opcode = ISD::FROUND; break; 5514 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5515 } 5516 5517 setValue(&I, DAG.getNode(Opcode, sdl, 5518 getValue(I.getArgOperand(0)).getValueType(), 5519 getValue(I.getArgOperand(0)))); 5520 return nullptr; 5521 } 5522 case Intrinsic::minnum: { 5523 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5524 unsigned Opc = 5525 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT) 5526 ? ISD::FMINNAN 5527 : ISD::FMINNUM; 5528 setValue(&I, DAG.getNode(Opc, sdl, VT, 5529 getValue(I.getArgOperand(0)), 5530 getValue(I.getArgOperand(1)))); 5531 return nullptr; 5532 } 5533 case Intrinsic::maxnum: { 5534 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5535 unsigned Opc = 5536 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT) 5537 ? ISD::FMAXNAN 5538 : ISD::FMAXNUM; 5539 setValue(&I, DAG.getNode(Opc, sdl, VT, 5540 getValue(I.getArgOperand(0)), 5541 getValue(I.getArgOperand(1)))); 5542 return nullptr; 5543 } 5544 case Intrinsic::copysign: 5545 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5546 getValue(I.getArgOperand(0)).getValueType(), 5547 getValue(I.getArgOperand(0)), 5548 getValue(I.getArgOperand(1)))); 5549 return nullptr; 5550 case Intrinsic::fma: 5551 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5552 getValue(I.getArgOperand(0)).getValueType(), 5553 getValue(I.getArgOperand(0)), 5554 getValue(I.getArgOperand(1)), 5555 getValue(I.getArgOperand(2)))); 5556 return nullptr; 5557 case Intrinsic::experimental_constrained_fadd: 5558 case Intrinsic::experimental_constrained_fsub: 5559 case Intrinsic::experimental_constrained_fmul: 5560 case Intrinsic::experimental_constrained_fdiv: 5561 case Intrinsic::experimental_constrained_frem: 5562 case Intrinsic::experimental_constrained_fma: 5563 case Intrinsic::experimental_constrained_sqrt: 5564 case Intrinsic::experimental_constrained_pow: 5565 case Intrinsic::experimental_constrained_powi: 5566 case Intrinsic::experimental_constrained_sin: 5567 case Intrinsic::experimental_constrained_cos: 5568 case Intrinsic::experimental_constrained_exp: 5569 case Intrinsic::experimental_constrained_exp2: 5570 case Intrinsic::experimental_constrained_log: 5571 case Intrinsic::experimental_constrained_log10: 5572 case Intrinsic::experimental_constrained_log2: 5573 case Intrinsic::experimental_constrained_rint: 5574 case Intrinsic::experimental_constrained_nearbyint: 5575 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 5576 return nullptr; 5577 case Intrinsic::fmuladd: { 5578 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5579 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5580 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5581 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5582 getValue(I.getArgOperand(0)).getValueType(), 5583 getValue(I.getArgOperand(0)), 5584 getValue(I.getArgOperand(1)), 5585 getValue(I.getArgOperand(2)))); 5586 } else { 5587 // TODO: Intrinsic calls should have fast-math-flags. 5588 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5589 getValue(I.getArgOperand(0)).getValueType(), 5590 getValue(I.getArgOperand(0)), 5591 getValue(I.getArgOperand(1))); 5592 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5593 getValue(I.getArgOperand(0)).getValueType(), 5594 Mul, 5595 getValue(I.getArgOperand(2))); 5596 setValue(&I, Add); 5597 } 5598 return nullptr; 5599 } 5600 case Intrinsic::convert_to_fp16: 5601 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5602 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5603 getValue(I.getArgOperand(0)), 5604 DAG.getTargetConstant(0, sdl, 5605 MVT::i32)))); 5606 return nullptr; 5607 case Intrinsic::convert_from_fp16: 5608 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 5609 TLI.getValueType(DAG.getDataLayout(), I.getType()), 5610 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5611 getValue(I.getArgOperand(0))))); 5612 return nullptr; 5613 case Intrinsic::pcmarker: { 5614 SDValue Tmp = getValue(I.getArgOperand(0)); 5615 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5616 return nullptr; 5617 } 5618 case Intrinsic::readcyclecounter: { 5619 SDValue Op = getRoot(); 5620 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5621 DAG.getVTList(MVT::i64, MVT::Other), Op); 5622 setValue(&I, Res); 5623 DAG.setRoot(Res.getValue(1)); 5624 return nullptr; 5625 } 5626 case Intrinsic::bitreverse: 5627 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 5628 getValue(I.getArgOperand(0)).getValueType(), 5629 getValue(I.getArgOperand(0)))); 5630 return nullptr; 5631 case Intrinsic::bswap: 5632 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5633 getValue(I.getArgOperand(0)).getValueType(), 5634 getValue(I.getArgOperand(0)))); 5635 return nullptr; 5636 case Intrinsic::cttz: { 5637 SDValue Arg = getValue(I.getArgOperand(0)); 5638 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5639 EVT Ty = Arg.getValueType(); 5640 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5641 sdl, Ty, Arg)); 5642 return nullptr; 5643 } 5644 case Intrinsic::ctlz: { 5645 SDValue Arg = getValue(I.getArgOperand(0)); 5646 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5647 EVT Ty = Arg.getValueType(); 5648 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5649 sdl, Ty, Arg)); 5650 return nullptr; 5651 } 5652 case Intrinsic::ctpop: { 5653 SDValue Arg = getValue(I.getArgOperand(0)); 5654 EVT Ty = Arg.getValueType(); 5655 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5656 return nullptr; 5657 } 5658 case Intrinsic::stacksave: { 5659 SDValue Op = getRoot(); 5660 Res = DAG.getNode( 5661 ISD::STACKSAVE, sdl, 5662 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 5663 setValue(&I, Res); 5664 DAG.setRoot(Res.getValue(1)); 5665 return nullptr; 5666 } 5667 case Intrinsic::stackrestore: 5668 Res = getValue(I.getArgOperand(0)); 5669 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5670 return nullptr; 5671 case Intrinsic::get_dynamic_area_offset: { 5672 SDValue Op = getRoot(); 5673 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5674 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5675 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 5676 // target. 5677 if (PtrTy != ResTy) 5678 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 5679 " intrinsic!"); 5680 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 5681 Op); 5682 DAG.setRoot(Op); 5683 setValue(&I, Res); 5684 return nullptr; 5685 } 5686 case Intrinsic::stackguard: { 5687 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5688 MachineFunction &MF = DAG.getMachineFunction(); 5689 const Module &M = *MF.getFunction().getParent(); 5690 SDValue Chain = getRoot(); 5691 if (TLI.useLoadStackGuardNode()) { 5692 Res = getLoadStackGuard(DAG, sdl, Chain); 5693 } else { 5694 const Value *Global = TLI.getSDagStackGuard(M); 5695 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 5696 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 5697 MachinePointerInfo(Global, 0), Align, 5698 MachineMemOperand::MOVolatile); 5699 } 5700 if (TLI.useStackGuardXorFP()) 5701 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 5702 DAG.setRoot(Chain); 5703 setValue(&I, Res); 5704 return nullptr; 5705 } 5706 case Intrinsic::stackprotector: { 5707 // Emit code into the DAG to store the stack guard onto the stack. 5708 MachineFunction &MF = DAG.getMachineFunction(); 5709 MachineFrameInfo &MFI = MF.getFrameInfo(); 5710 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 5711 SDValue Src, Chain = getRoot(); 5712 5713 if (TLI.useLoadStackGuardNode()) 5714 Src = getLoadStackGuard(DAG, sdl, Chain); 5715 else 5716 Src = getValue(I.getArgOperand(0)); // The guard's value. 5717 5718 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5719 5720 int FI = FuncInfo.StaticAllocaMap[Slot]; 5721 MFI.setStackProtectorIndex(FI); 5722 5723 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5724 5725 // Store the stack protector onto the stack. 5726 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5727 DAG.getMachineFunction(), FI), 5728 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 5729 setValue(&I, Res); 5730 DAG.setRoot(Res); 5731 return nullptr; 5732 } 5733 case Intrinsic::objectsize: { 5734 // If we don't know by now, we're never going to know. 5735 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5736 5737 assert(CI && "Non-constant type in __builtin_object_size?"); 5738 5739 SDValue Arg = getValue(I.getCalledValue()); 5740 EVT Ty = Arg.getValueType(); 5741 5742 if (CI->isZero()) 5743 Res = DAG.getConstant(-1ULL, sdl, Ty); 5744 else 5745 Res = DAG.getConstant(0, sdl, Ty); 5746 5747 setValue(&I, Res); 5748 return nullptr; 5749 } 5750 case Intrinsic::annotation: 5751 case Intrinsic::ptr_annotation: 5752 case Intrinsic::launder_invariant_group: 5753 // Drop the intrinsic, but forward the value 5754 setValue(&I, getValue(I.getOperand(0))); 5755 return nullptr; 5756 case Intrinsic::assume: 5757 case Intrinsic::var_annotation: 5758 case Intrinsic::sideeffect: 5759 // Discard annotate attributes, assumptions, and artificial side-effects. 5760 return nullptr; 5761 5762 case Intrinsic::codeview_annotation: { 5763 // Emit a label associated with this metadata. 5764 MachineFunction &MF = DAG.getMachineFunction(); 5765 MCSymbol *Label = 5766 MF.getMMI().getContext().createTempSymbol("annotation", true); 5767 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 5768 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 5769 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 5770 DAG.setRoot(Res); 5771 return nullptr; 5772 } 5773 5774 case Intrinsic::init_trampoline: { 5775 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5776 5777 SDValue Ops[6]; 5778 Ops[0] = getRoot(); 5779 Ops[1] = getValue(I.getArgOperand(0)); 5780 Ops[2] = getValue(I.getArgOperand(1)); 5781 Ops[3] = getValue(I.getArgOperand(2)); 5782 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5783 Ops[5] = DAG.getSrcValue(F); 5784 5785 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5786 5787 DAG.setRoot(Res); 5788 return nullptr; 5789 } 5790 case Intrinsic::adjust_trampoline: 5791 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5792 TLI.getPointerTy(DAG.getDataLayout()), 5793 getValue(I.getArgOperand(0)))); 5794 return nullptr; 5795 case Intrinsic::gcroot: { 5796 assert(DAG.getMachineFunction().getFunction().hasGC() && 5797 "only valid in functions with gc specified, enforced by Verifier"); 5798 assert(GFI && "implied by previous"); 5799 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5800 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5801 5802 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5803 GFI->addStackRoot(FI->getIndex(), TypeMap); 5804 return nullptr; 5805 } 5806 case Intrinsic::gcread: 5807 case Intrinsic::gcwrite: 5808 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5809 case Intrinsic::flt_rounds: 5810 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5811 return nullptr; 5812 5813 case Intrinsic::expect: 5814 // Just replace __builtin_expect(exp, c) with EXP. 5815 setValue(&I, getValue(I.getArgOperand(0))); 5816 return nullptr; 5817 5818 case Intrinsic::debugtrap: 5819 case Intrinsic::trap: { 5820 StringRef TrapFuncName = 5821 I.getAttributes() 5822 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 5823 .getValueAsString(); 5824 if (TrapFuncName.empty()) { 5825 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5826 ISD::TRAP : ISD::DEBUGTRAP; 5827 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5828 return nullptr; 5829 } 5830 TargetLowering::ArgListTy Args; 5831 5832 TargetLowering::CallLoweringInfo CLI(DAG); 5833 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 5834 CallingConv::C, I.getType(), 5835 DAG.getExternalSymbol(TrapFuncName.data(), 5836 TLI.getPointerTy(DAG.getDataLayout())), 5837 std::move(Args)); 5838 5839 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5840 DAG.setRoot(Result.second); 5841 return nullptr; 5842 } 5843 5844 case Intrinsic::uadd_with_overflow: 5845 case Intrinsic::sadd_with_overflow: 5846 case Intrinsic::usub_with_overflow: 5847 case Intrinsic::ssub_with_overflow: 5848 case Intrinsic::umul_with_overflow: 5849 case Intrinsic::smul_with_overflow: { 5850 ISD::NodeType Op; 5851 switch (Intrinsic) { 5852 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5853 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5854 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5855 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5856 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5857 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5858 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5859 } 5860 SDValue Op1 = getValue(I.getArgOperand(0)); 5861 SDValue Op2 = getValue(I.getArgOperand(1)); 5862 5863 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5864 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5865 return nullptr; 5866 } 5867 case Intrinsic::prefetch: { 5868 SDValue Ops[5]; 5869 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5870 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 5871 Ops[0] = DAG.getRoot(); 5872 Ops[1] = getValue(I.getArgOperand(0)); 5873 Ops[2] = getValue(I.getArgOperand(1)); 5874 Ops[3] = getValue(I.getArgOperand(2)); 5875 Ops[4] = getValue(I.getArgOperand(3)); 5876 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5877 DAG.getVTList(MVT::Other), Ops, 5878 EVT::getIntegerVT(*Context, 8), 5879 MachinePointerInfo(I.getArgOperand(0)), 5880 0, /* align */ 5881 Flags); 5882 5883 // Chain the prefetch in parallell with any pending loads, to stay out of 5884 // the way of later optimizations. 5885 PendingLoads.push_back(Result); 5886 Result = getRoot(); 5887 DAG.setRoot(Result); 5888 return nullptr; 5889 } 5890 case Intrinsic::lifetime_start: 5891 case Intrinsic::lifetime_end: { 5892 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5893 // Stack coloring is not enabled in O0, discard region information. 5894 if (TM.getOptLevel() == CodeGenOpt::None) 5895 return nullptr; 5896 5897 SmallVector<Value *, 4> Allocas; 5898 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5899 5900 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5901 E = Allocas.end(); Object != E; ++Object) { 5902 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5903 5904 // Could not find an Alloca. 5905 if (!LifetimeObject) 5906 continue; 5907 5908 // First check that the Alloca is static, otherwise it won't have a 5909 // valid frame index. 5910 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5911 if (SI == FuncInfo.StaticAllocaMap.end()) 5912 return nullptr; 5913 5914 int FI = SI->second; 5915 5916 SDValue Ops[2]; 5917 Ops[0] = getRoot(); 5918 Ops[1] = 5919 DAG.getFrameIndex(FI, TLI.getFrameIndexTy(DAG.getDataLayout()), true); 5920 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5921 5922 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5923 DAG.setRoot(Res); 5924 } 5925 return nullptr; 5926 } 5927 case Intrinsic::invariant_start: 5928 // Discard region information. 5929 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5930 return nullptr; 5931 case Intrinsic::invariant_end: 5932 // Discard region information. 5933 return nullptr; 5934 case Intrinsic::clear_cache: 5935 return TLI.getClearCacheBuiltinName(); 5936 case Intrinsic::donothing: 5937 // ignore 5938 return nullptr; 5939 case Intrinsic::experimental_stackmap: 5940 visitStackmap(I); 5941 return nullptr; 5942 case Intrinsic::experimental_patchpoint_void: 5943 case Intrinsic::experimental_patchpoint_i64: 5944 visitPatchpoint(&I); 5945 return nullptr; 5946 case Intrinsic::experimental_gc_statepoint: 5947 LowerStatepoint(ImmutableStatepoint(&I)); 5948 return nullptr; 5949 case Intrinsic::experimental_gc_result: 5950 visitGCResult(cast<GCResultInst>(I)); 5951 return nullptr; 5952 case Intrinsic::experimental_gc_relocate: 5953 visitGCRelocate(cast<GCRelocateInst>(I)); 5954 return nullptr; 5955 case Intrinsic::instrprof_increment: 5956 llvm_unreachable("instrprof failed to lower an increment"); 5957 case Intrinsic::instrprof_value_profile: 5958 llvm_unreachable("instrprof failed to lower a value profiling call"); 5959 case Intrinsic::localescape: { 5960 MachineFunction &MF = DAG.getMachineFunction(); 5961 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5962 5963 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5964 // is the same on all targets. 5965 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5966 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5967 if (isa<ConstantPointerNull>(Arg)) 5968 continue; // Skip null pointers. They represent a hole in index space. 5969 AllocaInst *Slot = cast<AllocaInst>(Arg); 5970 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5971 "can only escape static allocas"); 5972 int FI = FuncInfo.StaticAllocaMap[Slot]; 5973 MCSymbol *FrameAllocSym = 5974 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5975 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 5976 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5977 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5978 .addSym(FrameAllocSym) 5979 .addFrameIndex(FI); 5980 } 5981 5982 return nullptr; 5983 } 5984 5985 case Intrinsic::localrecover: { 5986 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5987 MachineFunction &MF = DAG.getMachineFunction(); 5988 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5989 5990 // Get the symbol that defines the frame offset. 5991 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5992 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5993 unsigned IdxVal = 5994 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 5995 MCSymbol *FrameAllocSym = 5996 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5997 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 5998 5999 // Create a MCSymbol for the label to avoid any target lowering 6000 // that would make this PC relative. 6001 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6002 SDValue OffsetVal = 6003 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6004 6005 // Add the offset to the FP. 6006 Value *FP = I.getArgOperand(1); 6007 SDValue FPVal = getValue(FP); 6008 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6009 setValue(&I, Add); 6010 6011 return nullptr; 6012 } 6013 6014 case Intrinsic::eh_exceptionpointer: 6015 case Intrinsic::eh_exceptioncode: { 6016 // Get the exception pointer vreg, copy from it, and resize it to fit. 6017 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6018 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6019 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6020 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6021 SDValue N = 6022 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6023 if (Intrinsic == Intrinsic::eh_exceptioncode) 6024 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6025 setValue(&I, N); 6026 return nullptr; 6027 } 6028 case Intrinsic::xray_customevent: { 6029 // Here we want to make sure that the intrinsic behaves as if it has a 6030 // specific calling convention, and only for x86_64. 6031 // FIXME: Support other platforms later. 6032 const auto &Triple = DAG.getTarget().getTargetTriple(); 6033 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6034 return nullptr; 6035 6036 SDLoc DL = getCurSDLoc(); 6037 SmallVector<SDValue, 8> Ops; 6038 6039 // We want to say that we always want the arguments in registers. 6040 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6041 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6042 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6043 SDValue Chain = getRoot(); 6044 Ops.push_back(LogEntryVal); 6045 Ops.push_back(StrSizeVal); 6046 Ops.push_back(Chain); 6047 6048 // We need to enforce the calling convention for the callsite, so that 6049 // argument ordering is enforced correctly, and that register allocation can 6050 // see that some registers may be assumed clobbered and have to preserve 6051 // them across calls to the intrinsic. 6052 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6053 DL, NodeTys, Ops); 6054 SDValue patchableNode = SDValue(MN, 0); 6055 DAG.setRoot(patchableNode); 6056 setValue(&I, patchableNode); 6057 return nullptr; 6058 } 6059 case Intrinsic::xray_typedevent: { 6060 // Here we want to make sure that the intrinsic behaves as if it has a 6061 // specific calling convention, and only for x86_64. 6062 // FIXME: Support other platforms later. 6063 const auto &Triple = DAG.getTarget().getTargetTriple(); 6064 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6065 return nullptr; 6066 6067 SDLoc DL = getCurSDLoc(); 6068 SmallVector<SDValue, 8> Ops; 6069 6070 // We want to say that we always want the arguments in registers. 6071 // It's unclear to me how manipulating the selection DAG here forces callers 6072 // to provide arguments in registers instead of on the stack. 6073 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6074 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6075 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6076 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6077 SDValue Chain = getRoot(); 6078 Ops.push_back(LogTypeId); 6079 Ops.push_back(LogEntryVal); 6080 Ops.push_back(StrSizeVal); 6081 Ops.push_back(Chain); 6082 6083 // We need to enforce the calling convention for the callsite, so that 6084 // argument ordering is enforced correctly, and that register allocation can 6085 // see that some registers may be assumed clobbered and have to preserve 6086 // them across calls to the intrinsic. 6087 MachineSDNode *MN = DAG.getMachineNode( 6088 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6089 SDValue patchableNode = SDValue(MN, 0); 6090 DAG.setRoot(patchableNode); 6091 setValue(&I, patchableNode); 6092 return nullptr; 6093 } 6094 case Intrinsic::experimental_deoptimize: 6095 LowerDeoptimizeCall(&I); 6096 return nullptr; 6097 6098 case Intrinsic::experimental_vector_reduce_fadd: 6099 case Intrinsic::experimental_vector_reduce_fmul: 6100 case Intrinsic::experimental_vector_reduce_add: 6101 case Intrinsic::experimental_vector_reduce_mul: 6102 case Intrinsic::experimental_vector_reduce_and: 6103 case Intrinsic::experimental_vector_reduce_or: 6104 case Intrinsic::experimental_vector_reduce_xor: 6105 case Intrinsic::experimental_vector_reduce_smax: 6106 case Intrinsic::experimental_vector_reduce_smin: 6107 case Intrinsic::experimental_vector_reduce_umax: 6108 case Intrinsic::experimental_vector_reduce_umin: 6109 case Intrinsic::experimental_vector_reduce_fmax: 6110 case Intrinsic::experimental_vector_reduce_fmin: 6111 visitVectorReduce(I, Intrinsic); 6112 return nullptr; 6113 6114 case Intrinsic::icall_branch_funnel: { 6115 SmallVector<SDValue, 16> Ops; 6116 Ops.push_back(DAG.getRoot()); 6117 Ops.push_back(getValue(I.getArgOperand(0))); 6118 6119 int64_t Offset; 6120 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6121 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6122 if (!Base) 6123 report_fatal_error( 6124 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6125 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6126 6127 struct BranchFunnelTarget { 6128 int64_t Offset; 6129 SDValue Target; 6130 }; 6131 SmallVector<BranchFunnelTarget, 8> Targets; 6132 6133 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6134 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6135 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6136 if (ElemBase != Base) 6137 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6138 "to the same GlobalValue"); 6139 6140 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6141 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6142 if (!GA) 6143 report_fatal_error( 6144 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6145 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6146 GA->getGlobal(), getCurSDLoc(), 6147 Val.getValueType(), GA->getOffset())}); 6148 } 6149 llvm::sort(Targets.begin(), Targets.end(), 6150 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6151 return T1.Offset < T2.Offset; 6152 }); 6153 6154 for (auto &T : Targets) { 6155 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6156 Ops.push_back(T.Target); 6157 } 6158 6159 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6160 getCurSDLoc(), MVT::Other, Ops), 6161 0); 6162 DAG.setRoot(N); 6163 setValue(&I, N); 6164 HasTailCall = true; 6165 return nullptr; 6166 } 6167 } 6168 } 6169 6170 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6171 const ConstrainedFPIntrinsic &FPI) { 6172 SDLoc sdl = getCurSDLoc(); 6173 unsigned Opcode; 6174 switch (FPI.getIntrinsicID()) { 6175 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6176 case Intrinsic::experimental_constrained_fadd: 6177 Opcode = ISD::STRICT_FADD; 6178 break; 6179 case Intrinsic::experimental_constrained_fsub: 6180 Opcode = ISD::STRICT_FSUB; 6181 break; 6182 case Intrinsic::experimental_constrained_fmul: 6183 Opcode = ISD::STRICT_FMUL; 6184 break; 6185 case Intrinsic::experimental_constrained_fdiv: 6186 Opcode = ISD::STRICT_FDIV; 6187 break; 6188 case Intrinsic::experimental_constrained_frem: 6189 Opcode = ISD::STRICT_FREM; 6190 break; 6191 case Intrinsic::experimental_constrained_fma: 6192 Opcode = ISD::STRICT_FMA; 6193 break; 6194 case Intrinsic::experimental_constrained_sqrt: 6195 Opcode = ISD::STRICT_FSQRT; 6196 break; 6197 case Intrinsic::experimental_constrained_pow: 6198 Opcode = ISD::STRICT_FPOW; 6199 break; 6200 case Intrinsic::experimental_constrained_powi: 6201 Opcode = ISD::STRICT_FPOWI; 6202 break; 6203 case Intrinsic::experimental_constrained_sin: 6204 Opcode = ISD::STRICT_FSIN; 6205 break; 6206 case Intrinsic::experimental_constrained_cos: 6207 Opcode = ISD::STRICT_FCOS; 6208 break; 6209 case Intrinsic::experimental_constrained_exp: 6210 Opcode = ISD::STRICT_FEXP; 6211 break; 6212 case Intrinsic::experimental_constrained_exp2: 6213 Opcode = ISD::STRICT_FEXP2; 6214 break; 6215 case Intrinsic::experimental_constrained_log: 6216 Opcode = ISD::STRICT_FLOG; 6217 break; 6218 case Intrinsic::experimental_constrained_log10: 6219 Opcode = ISD::STRICT_FLOG10; 6220 break; 6221 case Intrinsic::experimental_constrained_log2: 6222 Opcode = ISD::STRICT_FLOG2; 6223 break; 6224 case Intrinsic::experimental_constrained_rint: 6225 Opcode = ISD::STRICT_FRINT; 6226 break; 6227 case Intrinsic::experimental_constrained_nearbyint: 6228 Opcode = ISD::STRICT_FNEARBYINT; 6229 break; 6230 } 6231 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6232 SDValue Chain = getRoot(); 6233 SmallVector<EVT, 4> ValueVTs; 6234 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6235 ValueVTs.push_back(MVT::Other); // Out chain 6236 6237 SDVTList VTs = DAG.getVTList(ValueVTs); 6238 SDValue Result; 6239 if (FPI.isUnaryOp()) 6240 Result = DAG.getNode(Opcode, sdl, VTs, 6241 { Chain, getValue(FPI.getArgOperand(0)) }); 6242 else if (FPI.isTernaryOp()) 6243 Result = DAG.getNode(Opcode, sdl, VTs, 6244 { Chain, getValue(FPI.getArgOperand(0)), 6245 getValue(FPI.getArgOperand(1)), 6246 getValue(FPI.getArgOperand(2)) }); 6247 else 6248 Result = DAG.getNode(Opcode, sdl, VTs, 6249 { Chain, getValue(FPI.getArgOperand(0)), 6250 getValue(FPI.getArgOperand(1)) }); 6251 6252 assert(Result.getNode()->getNumValues() == 2); 6253 SDValue OutChain = Result.getValue(1); 6254 DAG.setRoot(OutChain); 6255 SDValue FPResult = Result.getValue(0); 6256 setValue(&FPI, FPResult); 6257 } 6258 6259 std::pair<SDValue, SDValue> 6260 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6261 const BasicBlock *EHPadBB) { 6262 MachineFunction &MF = DAG.getMachineFunction(); 6263 MachineModuleInfo &MMI = MF.getMMI(); 6264 MCSymbol *BeginLabel = nullptr; 6265 6266 if (EHPadBB) { 6267 // Insert a label before the invoke call to mark the try range. This can be 6268 // used to detect deletion of the invoke via the MachineModuleInfo. 6269 BeginLabel = MMI.getContext().createTempSymbol(); 6270 6271 // For SjLj, keep track of which landing pads go with which invokes 6272 // so as to maintain the ordering of pads in the LSDA. 6273 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6274 if (CallSiteIndex) { 6275 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6276 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6277 6278 // Now that the call site is handled, stop tracking it. 6279 MMI.setCurrentCallSite(0); 6280 } 6281 6282 // Both PendingLoads and PendingExports must be flushed here; 6283 // this call might not return. 6284 (void)getRoot(); 6285 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6286 6287 CLI.setChain(getRoot()); 6288 } 6289 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6290 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6291 6292 assert((CLI.IsTailCall || Result.second.getNode()) && 6293 "Non-null chain expected with non-tail call!"); 6294 assert((Result.second.getNode() || !Result.first.getNode()) && 6295 "Null value expected with tail call!"); 6296 6297 if (!Result.second.getNode()) { 6298 // As a special case, a null chain means that a tail call has been emitted 6299 // and the DAG root is already updated. 6300 HasTailCall = true; 6301 6302 // Since there's no actual continuation from this block, nothing can be 6303 // relying on us setting vregs for them. 6304 PendingExports.clear(); 6305 } else { 6306 DAG.setRoot(Result.second); 6307 } 6308 6309 if (EHPadBB) { 6310 // Insert a label at the end of the invoke call to mark the try range. This 6311 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6312 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6313 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6314 6315 // Inform MachineModuleInfo of range. 6316 if (MF.hasEHFunclets()) { 6317 assert(CLI.CS); 6318 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6319 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6320 BeginLabel, EndLabel); 6321 } else { 6322 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6323 } 6324 } 6325 6326 return Result; 6327 } 6328 6329 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6330 bool isTailCall, 6331 const BasicBlock *EHPadBB) { 6332 auto &DL = DAG.getDataLayout(); 6333 FunctionType *FTy = CS.getFunctionType(); 6334 Type *RetTy = CS.getType(); 6335 6336 TargetLowering::ArgListTy Args; 6337 Args.reserve(CS.arg_size()); 6338 6339 const Value *SwiftErrorVal = nullptr; 6340 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6341 6342 // We can't tail call inside a function with a swifterror argument. Lowering 6343 // does not support this yet. It would have to move into the swifterror 6344 // register before the call. 6345 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6346 if (TLI.supportSwiftError() && 6347 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6348 isTailCall = false; 6349 6350 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6351 i != e; ++i) { 6352 TargetLowering::ArgListEntry Entry; 6353 const Value *V = *i; 6354 6355 // Skip empty types 6356 if (V->getType()->isEmptyTy()) 6357 continue; 6358 6359 SDValue ArgNode = getValue(V); 6360 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6361 6362 Entry.setAttributes(&CS, i - CS.arg_begin()); 6363 6364 // Use swifterror virtual register as input to the call. 6365 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6366 SwiftErrorVal = V; 6367 // We find the virtual register for the actual swifterror argument. 6368 // Instead of using the Value, we use the virtual register instead. 6369 Entry.Node = DAG.getRegister(FuncInfo 6370 .getOrCreateSwiftErrorVRegUseAt( 6371 CS.getInstruction(), FuncInfo.MBB, V) 6372 .first, 6373 EVT(TLI.getPointerTy(DL))); 6374 } 6375 6376 Args.push_back(Entry); 6377 6378 // If we have an explicit sret argument that is an Instruction, (i.e., it 6379 // might point to function-local memory), we can't meaningfully tail-call. 6380 if (Entry.IsSRet && isa<Instruction>(V)) 6381 isTailCall = false; 6382 } 6383 6384 // Check if target-independent constraints permit a tail call here. 6385 // Target-dependent constraints are checked within TLI->LowerCallTo. 6386 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6387 isTailCall = false; 6388 6389 // Disable tail calls if there is an swifterror argument. Targets have not 6390 // been updated to support tail calls. 6391 if (TLI.supportSwiftError() && SwiftErrorVal) 6392 isTailCall = false; 6393 6394 TargetLowering::CallLoweringInfo CLI(DAG); 6395 CLI.setDebugLoc(getCurSDLoc()) 6396 .setChain(getRoot()) 6397 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6398 .setTailCall(isTailCall) 6399 .setConvergent(CS.isConvergent()); 6400 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6401 6402 if (Result.first.getNode()) { 6403 const Instruction *Inst = CS.getInstruction(); 6404 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6405 setValue(Inst, Result.first); 6406 } 6407 6408 // The last element of CLI.InVals has the SDValue for swifterror return. 6409 // Here we copy it to a virtual register and update SwiftErrorMap for 6410 // book-keeping. 6411 if (SwiftErrorVal && TLI.supportSwiftError()) { 6412 // Get the last element of InVals. 6413 SDValue Src = CLI.InVals.back(); 6414 unsigned VReg; bool CreatedVReg; 6415 std::tie(VReg, CreatedVReg) = 6416 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6417 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6418 // We update the virtual register for the actual swifterror argument. 6419 if (CreatedVReg) 6420 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6421 DAG.setRoot(CopyNode); 6422 } 6423 } 6424 6425 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 6426 SelectionDAGBuilder &Builder) { 6427 // Check to see if this load can be trivially constant folded, e.g. if the 6428 // input is from a string literal. 6429 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 6430 // Cast pointer to the type we really want to load. 6431 Type *LoadTy = 6432 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 6433 if (LoadVT.isVector()) 6434 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 6435 6436 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 6437 PointerType::getUnqual(LoadTy)); 6438 6439 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 6440 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 6441 return Builder.getValue(LoadCst); 6442 } 6443 6444 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 6445 // still constant memory, the input chain can be the entry node. 6446 SDValue Root; 6447 bool ConstantMemory = false; 6448 6449 // Do not serialize (non-volatile) loads of constant memory with anything. 6450 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 6451 Root = Builder.DAG.getEntryNode(); 6452 ConstantMemory = true; 6453 } else { 6454 // Do not serialize non-volatile loads against each other. 6455 Root = Builder.DAG.getRoot(); 6456 } 6457 6458 SDValue Ptr = Builder.getValue(PtrVal); 6459 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 6460 Ptr, MachinePointerInfo(PtrVal), 6461 /* Alignment = */ 1); 6462 6463 if (!ConstantMemory) 6464 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 6465 return LoadVal; 6466 } 6467 6468 /// Record the value for an instruction that produces an integer result, 6469 /// converting the type where necessary. 6470 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 6471 SDValue Value, 6472 bool IsSigned) { 6473 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6474 I.getType(), true); 6475 if (IsSigned) 6476 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 6477 else 6478 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 6479 setValue(&I, Value); 6480 } 6481 6482 /// See if we can lower a memcmp call into an optimized form. If so, return 6483 /// true and lower it. Otherwise return false, and it will be lowered like a 6484 /// normal call. 6485 /// The caller already checked that \p I calls the appropriate LibFunc with a 6486 /// correct prototype. 6487 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 6488 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 6489 const Value *Size = I.getArgOperand(2); 6490 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 6491 if (CSize && CSize->getZExtValue() == 0) { 6492 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 6493 I.getType(), true); 6494 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 6495 return true; 6496 } 6497 6498 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6499 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 6500 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 6501 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 6502 if (Res.first.getNode()) { 6503 processIntegerCallValue(I, Res.first, true); 6504 PendingLoads.push_back(Res.second); 6505 return true; 6506 } 6507 6508 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 6509 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 6510 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 6511 return false; 6512 6513 // If the target has a fast compare for the given size, it will return a 6514 // preferred load type for that size. Require that the load VT is legal and 6515 // that the target supports unaligned loads of that type. Otherwise, return 6516 // INVALID. 6517 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 6518 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6519 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 6520 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 6521 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 6522 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 6523 // TODO: Check alignment of src and dest ptrs. 6524 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 6525 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 6526 if (!TLI.isTypeLegal(LVT) || 6527 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 6528 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 6529 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 6530 } 6531 6532 return LVT; 6533 }; 6534 6535 // This turns into unaligned loads. We only do this if the target natively 6536 // supports the MVT we'll be loading or if it is small enough (<= 4) that 6537 // we'll only produce a small number of byte loads. 6538 MVT LoadVT; 6539 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 6540 switch (NumBitsToCompare) { 6541 default: 6542 return false; 6543 case 16: 6544 LoadVT = MVT::i16; 6545 break; 6546 case 32: 6547 LoadVT = MVT::i32; 6548 break; 6549 case 64: 6550 case 128: 6551 case 256: 6552 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 6553 break; 6554 } 6555 6556 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 6557 return false; 6558 6559 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 6560 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 6561 6562 // Bitcast to a wide integer type if the loads are vectors. 6563 if (LoadVT.isVector()) { 6564 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 6565 LoadL = DAG.getBitcast(CmpVT, LoadL); 6566 LoadR = DAG.getBitcast(CmpVT, LoadR); 6567 } 6568 6569 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 6570 processIntegerCallValue(I, Cmp, false); 6571 return true; 6572 } 6573 6574 /// See if we can lower a memchr call into an optimized form. If so, return 6575 /// true and lower it. Otherwise return false, and it will be lowered like a 6576 /// normal call. 6577 /// The caller already checked that \p I calls the appropriate LibFunc with a 6578 /// correct prototype. 6579 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 6580 const Value *Src = I.getArgOperand(0); 6581 const Value *Char = I.getArgOperand(1); 6582 const Value *Length = I.getArgOperand(2); 6583 6584 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6585 std::pair<SDValue, SDValue> Res = 6586 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 6587 getValue(Src), getValue(Char), getValue(Length), 6588 MachinePointerInfo(Src)); 6589 if (Res.first.getNode()) { 6590 setValue(&I, Res.first); 6591 PendingLoads.push_back(Res.second); 6592 return true; 6593 } 6594 6595 return false; 6596 } 6597 6598 /// See if we can lower a mempcpy call into an optimized form. If so, return 6599 /// true and lower it. Otherwise return false, and it will be lowered like a 6600 /// normal call. 6601 /// The caller already checked that \p I calls the appropriate LibFunc with a 6602 /// correct prototype. 6603 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 6604 SDValue Dst = getValue(I.getArgOperand(0)); 6605 SDValue Src = getValue(I.getArgOperand(1)); 6606 SDValue Size = getValue(I.getArgOperand(2)); 6607 6608 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 6609 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 6610 unsigned Align = std::min(DstAlign, SrcAlign); 6611 if (Align == 0) // Alignment of one or both could not be inferred. 6612 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 6613 6614 bool isVol = false; 6615 SDLoc sdl = getCurSDLoc(); 6616 6617 // In the mempcpy context we need to pass in a false value for isTailCall 6618 // because the return pointer needs to be adjusted by the size of 6619 // the copied memory. 6620 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 6621 false, /*isTailCall=*/false, 6622 MachinePointerInfo(I.getArgOperand(0)), 6623 MachinePointerInfo(I.getArgOperand(1))); 6624 assert(MC.getNode() != nullptr && 6625 "** memcpy should not be lowered as TailCall in mempcpy context **"); 6626 DAG.setRoot(MC); 6627 6628 // Check if Size needs to be truncated or extended. 6629 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 6630 6631 // Adjust return pointer to point just past the last dst byte. 6632 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 6633 Dst, Size); 6634 setValue(&I, DstPlusSize); 6635 return true; 6636 } 6637 6638 /// See if we can lower a strcpy call into an optimized form. If so, return 6639 /// true and lower it, otherwise return false and it will be lowered like a 6640 /// normal call. 6641 /// The caller already checked that \p I calls the appropriate LibFunc with a 6642 /// correct prototype. 6643 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 6644 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6645 6646 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6647 std::pair<SDValue, SDValue> Res = 6648 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 6649 getValue(Arg0), getValue(Arg1), 6650 MachinePointerInfo(Arg0), 6651 MachinePointerInfo(Arg1), isStpcpy); 6652 if (Res.first.getNode()) { 6653 setValue(&I, Res.first); 6654 DAG.setRoot(Res.second); 6655 return true; 6656 } 6657 6658 return false; 6659 } 6660 6661 /// See if we can lower a strcmp call into an optimized form. If so, return 6662 /// true and lower it, otherwise return false and it will be lowered like a 6663 /// normal call. 6664 /// The caller already checked that \p I calls the appropriate LibFunc with a 6665 /// correct prototype. 6666 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 6667 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6668 6669 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6670 std::pair<SDValue, SDValue> Res = 6671 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 6672 getValue(Arg0), getValue(Arg1), 6673 MachinePointerInfo(Arg0), 6674 MachinePointerInfo(Arg1)); 6675 if (Res.first.getNode()) { 6676 processIntegerCallValue(I, Res.first, true); 6677 PendingLoads.push_back(Res.second); 6678 return true; 6679 } 6680 6681 return false; 6682 } 6683 6684 /// See if we can lower a strlen call into an optimized form. If so, return 6685 /// true and lower it, otherwise return false and it will be lowered like a 6686 /// normal call. 6687 /// The caller already checked that \p I calls the appropriate LibFunc with a 6688 /// correct prototype. 6689 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 6690 const Value *Arg0 = I.getArgOperand(0); 6691 6692 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6693 std::pair<SDValue, SDValue> Res = 6694 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 6695 getValue(Arg0), MachinePointerInfo(Arg0)); 6696 if (Res.first.getNode()) { 6697 processIntegerCallValue(I, Res.first, false); 6698 PendingLoads.push_back(Res.second); 6699 return true; 6700 } 6701 6702 return false; 6703 } 6704 6705 /// See if we can lower a strnlen call into an optimized form. If so, return 6706 /// true and lower it, otherwise return false and it will be lowered like a 6707 /// normal call. 6708 /// The caller already checked that \p I calls the appropriate LibFunc with a 6709 /// correct prototype. 6710 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 6711 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 6712 6713 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 6714 std::pair<SDValue, SDValue> Res = 6715 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 6716 getValue(Arg0), getValue(Arg1), 6717 MachinePointerInfo(Arg0)); 6718 if (Res.first.getNode()) { 6719 processIntegerCallValue(I, Res.first, false); 6720 PendingLoads.push_back(Res.second); 6721 return true; 6722 } 6723 6724 return false; 6725 } 6726 6727 /// See if we can lower a unary floating-point operation into an SDNode with 6728 /// the specified Opcode. If so, return true and lower it, otherwise return 6729 /// false and it will be lowered like a normal call. 6730 /// The caller already checked that \p I calls the appropriate LibFunc with a 6731 /// correct prototype. 6732 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 6733 unsigned Opcode) { 6734 // We already checked this call's prototype; verify it doesn't modify errno. 6735 if (!I.onlyReadsMemory()) 6736 return false; 6737 6738 SDValue Tmp = getValue(I.getArgOperand(0)); 6739 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 6740 return true; 6741 } 6742 6743 /// See if we can lower a binary floating-point operation into an SDNode with 6744 /// the specified Opcode. If so, return true and lower it. Otherwise return 6745 /// false, and it will be lowered like a normal call. 6746 /// The caller already checked that \p I calls the appropriate LibFunc with a 6747 /// correct prototype. 6748 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 6749 unsigned Opcode) { 6750 // We already checked this call's prototype; verify it doesn't modify errno. 6751 if (!I.onlyReadsMemory()) 6752 return false; 6753 6754 SDValue Tmp0 = getValue(I.getArgOperand(0)); 6755 SDValue Tmp1 = getValue(I.getArgOperand(1)); 6756 EVT VT = Tmp0.getValueType(); 6757 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 6758 return true; 6759 } 6760 6761 void SelectionDAGBuilder::visitCall(const CallInst &I) { 6762 // Handle inline assembly differently. 6763 if (isa<InlineAsm>(I.getCalledValue())) { 6764 visitInlineAsm(&I); 6765 return; 6766 } 6767 6768 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6769 computeUsesVAFloatArgument(I, MMI); 6770 6771 const char *RenameFn = nullptr; 6772 if (Function *F = I.getCalledFunction()) { 6773 if (F->isDeclaration()) { 6774 // Is this an LLVM intrinsic or a target-specific intrinsic? 6775 unsigned IID = F->getIntrinsicID(); 6776 if (!IID) 6777 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 6778 IID = II->getIntrinsicID(F); 6779 6780 if (IID) { 6781 RenameFn = visitIntrinsicCall(I, IID); 6782 if (!RenameFn) 6783 return; 6784 } 6785 } 6786 6787 // Check for well-known libc/libm calls. If the function is internal, it 6788 // can't be a library call. Don't do the check if marked as nobuiltin for 6789 // some reason or the call site requires strict floating point semantics. 6790 LibFunc Func; 6791 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 6792 F->hasName() && LibInfo->getLibFunc(*F, Func) && 6793 LibInfo->hasOptimizedCodeGen(Func)) { 6794 switch (Func) { 6795 default: break; 6796 case LibFunc_copysign: 6797 case LibFunc_copysignf: 6798 case LibFunc_copysignl: 6799 // We already checked this call's prototype; verify it doesn't modify 6800 // errno. 6801 if (I.onlyReadsMemory()) { 6802 SDValue LHS = getValue(I.getArgOperand(0)); 6803 SDValue RHS = getValue(I.getArgOperand(1)); 6804 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 6805 LHS.getValueType(), LHS, RHS)); 6806 return; 6807 } 6808 break; 6809 case LibFunc_fabs: 6810 case LibFunc_fabsf: 6811 case LibFunc_fabsl: 6812 if (visitUnaryFloatCall(I, ISD::FABS)) 6813 return; 6814 break; 6815 case LibFunc_fmin: 6816 case LibFunc_fminf: 6817 case LibFunc_fminl: 6818 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 6819 return; 6820 break; 6821 case LibFunc_fmax: 6822 case LibFunc_fmaxf: 6823 case LibFunc_fmaxl: 6824 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 6825 return; 6826 break; 6827 case LibFunc_sin: 6828 case LibFunc_sinf: 6829 case LibFunc_sinl: 6830 if (visitUnaryFloatCall(I, ISD::FSIN)) 6831 return; 6832 break; 6833 case LibFunc_cos: 6834 case LibFunc_cosf: 6835 case LibFunc_cosl: 6836 if (visitUnaryFloatCall(I, ISD::FCOS)) 6837 return; 6838 break; 6839 case LibFunc_sqrt: 6840 case LibFunc_sqrtf: 6841 case LibFunc_sqrtl: 6842 case LibFunc_sqrt_finite: 6843 case LibFunc_sqrtf_finite: 6844 case LibFunc_sqrtl_finite: 6845 if (visitUnaryFloatCall(I, ISD::FSQRT)) 6846 return; 6847 break; 6848 case LibFunc_floor: 6849 case LibFunc_floorf: 6850 case LibFunc_floorl: 6851 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 6852 return; 6853 break; 6854 case LibFunc_nearbyint: 6855 case LibFunc_nearbyintf: 6856 case LibFunc_nearbyintl: 6857 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6858 return; 6859 break; 6860 case LibFunc_ceil: 6861 case LibFunc_ceilf: 6862 case LibFunc_ceill: 6863 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6864 return; 6865 break; 6866 case LibFunc_rint: 6867 case LibFunc_rintf: 6868 case LibFunc_rintl: 6869 if (visitUnaryFloatCall(I, ISD::FRINT)) 6870 return; 6871 break; 6872 case LibFunc_round: 6873 case LibFunc_roundf: 6874 case LibFunc_roundl: 6875 if (visitUnaryFloatCall(I, ISD::FROUND)) 6876 return; 6877 break; 6878 case LibFunc_trunc: 6879 case LibFunc_truncf: 6880 case LibFunc_truncl: 6881 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6882 return; 6883 break; 6884 case LibFunc_log2: 6885 case LibFunc_log2f: 6886 case LibFunc_log2l: 6887 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6888 return; 6889 break; 6890 case LibFunc_exp2: 6891 case LibFunc_exp2f: 6892 case LibFunc_exp2l: 6893 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6894 return; 6895 break; 6896 case LibFunc_memcmp: 6897 if (visitMemCmpCall(I)) 6898 return; 6899 break; 6900 case LibFunc_mempcpy: 6901 if (visitMemPCpyCall(I)) 6902 return; 6903 break; 6904 case LibFunc_memchr: 6905 if (visitMemChrCall(I)) 6906 return; 6907 break; 6908 case LibFunc_strcpy: 6909 if (visitStrCpyCall(I, false)) 6910 return; 6911 break; 6912 case LibFunc_stpcpy: 6913 if (visitStrCpyCall(I, true)) 6914 return; 6915 break; 6916 case LibFunc_strcmp: 6917 if (visitStrCmpCall(I)) 6918 return; 6919 break; 6920 case LibFunc_strlen: 6921 if (visitStrLenCall(I)) 6922 return; 6923 break; 6924 case LibFunc_strnlen: 6925 if (visitStrNLenCall(I)) 6926 return; 6927 break; 6928 } 6929 } 6930 } 6931 6932 SDValue Callee; 6933 if (!RenameFn) 6934 Callee = getValue(I.getCalledValue()); 6935 else 6936 Callee = DAG.getExternalSymbol( 6937 RenameFn, 6938 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 6939 6940 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 6941 // have to do anything here to lower funclet bundles. 6942 assert(!I.hasOperandBundlesOtherThan( 6943 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 6944 "Cannot lower calls with arbitrary operand bundles!"); 6945 6946 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 6947 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 6948 else 6949 // Check if we can potentially perform a tail call. More detailed checking 6950 // is be done within LowerCallTo, after more information about the call is 6951 // known. 6952 LowerCallTo(&I, Callee, I.isTailCall()); 6953 } 6954 6955 namespace { 6956 6957 /// AsmOperandInfo - This contains information for each constraint that we are 6958 /// lowering. 6959 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6960 public: 6961 /// CallOperand - If this is the result output operand or a clobber 6962 /// this is null, otherwise it is the incoming operand to the CallInst. 6963 /// This gets modified as the asm is processed. 6964 SDValue CallOperand; 6965 6966 /// AssignedRegs - If this is a register or register class operand, this 6967 /// contains the set of register corresponding to the operand. 6968 RegsForValue AssignedRegs; 6969 6970 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6971 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 6972 } 6973 6974 /// Whether or not this operand accesses memory 6975 bool hasMemory(const TargetLowering &TLI) const { 6976 // Indirect operand accesses access memory. 6977 if (isIndirect) 6978 return true; 6979 6980 for (const auto &Code : Codes) 6981 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 6982 return true; 6983 6984 return false; 6985 } 6986 6987 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6988 /// corresponds to. If there is no Value* for this operand, it returns 6989 /// MVT::Other. 6990 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 6991 const DataLayout &DL) const { 6992 if (!CallOperandVal) return MVT::Other; 6993 6994 if (isa<BasicBlock>(CallOperandVal)) 6995 return TLI.getPointerTy(DL); 6996 6997 llvm::Type *OpTy = CallOperandVal->getType(); 6998 6999 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7000 // If this is an indirect operand, the operand is a pointer to the 7001 // accessed type. 7002 if (isIndirect) { 7003 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7004 if (!PtrTy) 7005 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7006 OpTy = PtrTy->getElementType(); 7007 } 7008 7009 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7010 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7011 if (STy->getNumElements() == 1) 7012 OpTy = STy->getElementType(0); 7013 7014 // If OpTy is not a single value, it may be a struct/union that we 7015 // can tile with integers. 7016 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7017 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7018 switch (BitSize) { 7019 default: break; 7020 case 1: 7021 case 8: 7022 case 16: 7023 case 32: 7024 case 64: 7025 case 128: 7026 OpTy = IntegerType::get(Context, BitSize); 7027 break; 7028 } 7029 } 7030 7031 return TLI.getValueType(DL, OpTy, true); 7032 } 7033 }; 7034 7035 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7036 7037 } // end anonymous namespace 7038 7039 /// Make sure that the output operand \p OpInfo and its corresponding input 7040 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7041 /// out). 7042 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7043 SDISelAsmOperandInfo &MatchingOpInfo, 7044 SelectionDAG &DAG) { 7045 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7046 return; 7047 7048 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7049 const auto &TLI = DAG.getTargetLoweringInfo(); 7050 7051 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7052 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7053 OpInfo.ConstraintVT); 7054 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7055 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7056 MatchingOpInfo.ConstraintVT); 7057 if ((OpInfo.ConstraintVT.isInteger() != 7058 MatchingOpInfo.ConstraintVT.isInteger()) || 7059 (MatchRC.second != InputRC.second)) { 7060 // FIXME: error out in a more elegant fashion 7061 report_fatal_error("Unsupported asm: input constraint" 7062 " with a matching output constraint of" 7063 " incompatible type!"); 7064 } 7065 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7066 } 7067 7068 /// Get a direct memory input to behave well as an indirect operand. 7069 /// This may introduce stores, hence the need for a \p Chain. 7070 /// \return The (possibly updated) chain. 7071 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7072 SDISelAsmOperandInfo &OpInfo, 7073 SelectionDAG &DAG) { 7074 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7075 7076 // If we don't have an indirect input, put it in the constpool if we can, 7077 // otherwise spill it to a stack slot. 7078 // TODO: This isn't quite right. We need to handle these according to 7079 // the addressing mode that the constraint wants. Also, this may take 7080 // an additional register for the computation and we don't want that 7081 // either. 7082 7083 // If the operand is a float, integer, or vector constant, spill to a 7084 // constant pool entry to get its address. 7085 const Value *OpVal = OpInfo.CallOperandVal; 7086 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7087 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7088 OpInfo.CallOperand = DAG.getConstantPool( 7089 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7090 return Chain; 7091 } 7092 7093 // Otherwise, create a stack slot and emit a store to it before the asm. 7094 Type *Ty = OpVal->getType(); 7095 auto &DL = DAG.getDataLayout(); 7096 uint64_t TySize = DL.getTypeAllocSize(Ty); 7097 unsigned Align = DL.getPrefTypeAlignment(Ty); 7098 MachineFunction &MF = DAG.getMachineFunction(); 7099 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7100 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7101 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7102 MachinePointerInfo::getFixedStack(MF, SSFI)); 7103 OpInfo.CallOperand = StackSlot; 7104 7105 return Chain; 7106 } 7107 7108 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7109 /// specified operand. We prefer to assign virtual registers, to allow the 7110 /// register allocator to handle the assignment process. However, if the asm 7111 /// uses features that we can't model on machineinstrs, we have SDISel do the 7112 /// allocation. This produces generally horrible, but correct, code. 7113 /// 7114 /// OpInfo describes the operand. 7115 static void GetRegistersForValue(SelectionDAG &DAG, const TargetLowering &TLI, 7116 const SDLoc &DL, 7117 SDISelAsmOperandInfo &OpInfo) { 7118 LLVMContext &Context = *DAG.getContext(); 7119 7120 MachineFunction &MF = DAG.getMachineFunction(); 7121 SmallVector<unsigned, 4> Regs; 7122 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7123 7124 // If this is a constraint for a single physreg, or a constraint for a 7125 // register class, find it. 7126 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 7127 TLI.getRegForInlineAsmConstraint(&TRI, OpInfo.ConstraintCode, 7128 OpInfo.ConstraintVT); 7129 7130 unsigned NumRegs = 1; 7131 if (OpInfo.ConstraintVT != MVT::Other) { 7132 // If this is a FP input in an integer register (or visa versa) insert a bit 7133 // cast of the input value. More generally, handle any case where the input 7134 // value disagrees with the register class we plan to stick this in. 7135 if (OpInfo.Type == InlineAsm::isInput && PhysReg.second && 7136 !TRI.isTypeLegalForClass(*PhysReg.second, OpInfo.ConstraintVT)) { 7137 // Try to convert to the first EVT that the reg class contains. If the 7138 // types are identical size, use a bitcast to convert (e.g. two differing 7139 // vector types). 7140 MVT RegVT = *TRI.legalclasstypes_begin(*PhysReg.second); 7141 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 7142 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7143 RegVT, OpInfo.CallOperand); 7144 OpInfo.ConstraintVT = RegVT; 7145 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7146 // If the input is a FP value and we want it in FP registers, do a 7147 // bitcast to the corresponding integer type. This turns an f64 value 7148 // into i64, which can be passed with two i32 values on a 32-bit 7149 // machine. 7150 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7151 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 7152 RegVT, OpInfo.CallOperand); 7153 OpInfo.ConstraintVT = RegVT; 7154 } 7155 } 7156 7157 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7158 } 7159 7160 MVT RegVT; 7161 EVT ValueVT = OpInfo.ConstraintVT; 7162 7163 // If this is a constraint for a specific physical register, like {r17}, 7164 // assign it now. 7165 if (unsigned AssignedReg = PhysReg.first) { 7166 const TargetRegisterClass *RC = PhysReg.second; 7167 if (OpInfo.ConstraintVT == MVT::Other) 7168 ValueVT = *TRI.legalclasstypes_begin(*RC); 7169 7170 // Get the actual register value type. This is important, because the user 7171 // may have asked for (e.g.) the AX register in i32 type. We need to 7172 // remember that AX is actually i16 to get the right extension. 7173 RegVT = *TRI.legalclasstypes_begin(*RC); 7174 7175 // This is a explicit reference to a physical register. 7176 Regs.push_back(AssignedReg); 7177 7178 // If this is an expanded reference, add the rest of the regs to Regs. 7179 if (NumRegs != 1) { 7180 TargetRegisterClass::iterator I = RC->begin(); 7181 for (; *I != AssignedReg; ++I) 7182 assert(I != RC->end() && "Didn't find reg!"); 7183 7184 // Already added the first reg. 7185 --NumRegs; ++I; 7186 for (; NumRegs; --NumRegs, ++I) { 7187 assert(I != RC->end() && "Ran out of registers to allocate!"); 7188 Regs.push_back(*I); 7189 } 7190 } 7191 7192 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7193 return; 7194 } 7195 7196 // Otherwise, if this was a reference to an LLVM register class, create vregs 7197 // for this reference. 7198 if (const TargetRegisterClass *RC = PhysReg.second) { 7199 RegVT = *TRI.legalclasstypes_begin(*RC); 7200 if (OpInfo.ConstraintVT == MVT::Other) 7201 ValueVT = RegVT; 7202 7203 // Create the appropriate number of virtual registers. 7204 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7205 for (; NumRegs; --NumRegs) 7206 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7207 7208 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7209 return; 7210 } 7211 7212 // Otherwise, we couldn't allocate enough registers for this. 7213 } 7214 7215 static unsigned 7216 findMatchingInlineAsmOperand(unsigned OperandNo, 7217 const std::vector<SDValue> &AsmNodeOperands) { 7218 // Scan until we find the definition we already emitted of this operand. 7219 unsigned CurOp = InlineAsm::Op_FirstOperand; 7220 for (; OperandNo; --OperandNo) { 7221 // Advance to the next operand. 7222 unsigned OpFlag = 7223 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7224 assert((InlineAsm::isRegDefKind(OpFlag) || 7225 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7226 InlineAsm::isMemKind(OpFlag)) && 7227 "Skipped past definitions?"); 7228 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7229 } 7230 return CurOp; 7231 } 7232 7233 /// Fill \p Regs with \p NumRegs new virtual registers of type \p RegVT 7234 /// \return true if it has succeeded, false otherwise 7235 static bool createVirtualRegs(SmallVector<unsigned, 4> &Regs, unsigned NumRegs, 7236 MVT RegVT, SelectionDAG &DAG) { 7237 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7238 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 7239 for (unsigned i = 0, e = NumRegs; i != e; ++i) { 7240 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 7241 Regs.push_back(RegInfo.createVirtualRegister(RC)); 7242 else 7243 return false; 7244 } 7245 return true; 7246 } 7247 7248 namespace { 7249 7250 class ExtraFlags { 7251 unsigned Flags = 0; 7252 7253 public: 7254 explicit ExtraFlags(ImmutableCallSite CS) { 7255 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7256 if (IA->hasSideEffects()) 7257 Flags |= InlineAsm::Extra_HasSideEffects; 7258 if (IA->isAlignStack()) 7259 Flags |= InlineAsm::Extra_IsAlignStack; 7260 if (CS.isConvergent()) 7261 Flags |= InlineAsm::Extra_IsConvergent; 7262 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7263 } 7264 7265 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7266 // Ideally, we would only check against memory constraints. However, the 7267 // meaning of an Other constraint can be target-specific and we can't easily 7268 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7269 // for Other constraints as well. 7270 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7271 OpInfo.ConstraintType == TargetLowering::C_Other) { 7272 if (OpInfo.Type == InlineAsm::isInput) 7273 Flags |= InlineAsm::Extra_MayLoad; 7274 else if (OpInfo.Type == InlineAsm::isOutput) 7275 Flags |= InlineAsm::Extra_MayStore; 7276 else if (OpInfo.Type == InlineAsm::isClobber) 7277 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7278 } 7279 } 7280 7281 unsigned get() const { return Flags; } 7282 }; 7283 7284 } // end anonymous namespace 7285 7286 /// visitInlineAsm - Handle a call to an InlineAsm object. 7287 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7288 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7289 7290 /// ConstraintOperands - Information about all of the constraints. 7291 SDISelAsmOperandInfoVector ConstraintOperands; 7292 7293 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7294 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7295 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7296 7297 bool hasMemory = false; 7298 7299 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7300 ExtraFlags ExtraInfo(CS); 7301 7302 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7303 unsigned ResNo = 0; // ResNo - The result number of the next output. 7304 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 7305 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 7306 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7307 7308 MVT OpVT = MVT::Other; 7309 7310 // Compute the value type for each operand. 7311 if (OpInfo.Type == InlineAsm::isInput || 7312 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7313 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7314 7315 // Process the call argument. BasicBlocks are labels, currently appearing 7316 // only in asm's. 7317 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7318 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7319 } else { 7320 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7321 } 7322 7323 OpVT = 7324 OpInfo 7325 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7326 .getSimpleVT(); 7327 } 7328 7329 if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7330 // The return value of the call is this value. As such, there is no 7331 // corresponding argument. 7332 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7333 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7334 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 7335 STy->getElementType(ResNo)); 7336 } else { 7337 assert(ResNo == 0 && "Asm only has one result!"); 7338 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7339 } 7340 ++ResNo; 7341 } 7342 7343 OpInfo.ConstraintVT = OpVT; 7344 7345 if (!hasMemory) 7346 hasMemory = OpInfo.hasMemory(TLI); 7347 7348 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7349 // FIXME: Could we compute this on OpInfo rather than TargetConstraints[i]? 7350 auto TargetConstraint = TargetConstraints[i]; 7351 7352 // Compute the constraint code and ConstraintType to use. 7353 TLI.ComputeConstraintToUse(TargetConstraint, SDValue()); 7354 7355 ExtraInfo.update(TargetConstraint); 7356 } 7357 7358 SDValue Chain, Flag; 7359 7360 // We won't need to flush pending loads if this asm doesn't touch 7361 // memory and is nonvolatile. 7362 if (hasMemory || IA->hasSideEffects()) 7363 Chain = getRoot(); 7364 else 7365 Chain = DAG.getRoot(); 7366 7367 // Second pass over the constraints: compute which constraint option to use 7368 // and assign registers to constraints that want a specific physreg. 7369 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7370 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7371 7372 // If this is an output operand with a matching input operand, look up the 7373 // matching input. If their types mismatch, e.g. one is an integer, the 7374 // other is floating point, or their sizes are different, flag it as an 7375 // error. 7376 if (OpInfo.hasMatchingInput()) { 7377 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7378 patchMatchingInput(OpInfo, Input, DAG); 7379 } 7380 7381 // Compute the constraint code and ConstraintType to use. 7382 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7383 7384 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7385 OpInfo.Type == InlineAsm::isClobber) 7386 continue; 7387 7388 // If this is a memory input, and if the operand is not indirect, do what we 7389 // need to provide an address for the memory input. 7390 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7391 !OpInfo.isIndirect) { 7392 assert((OpInfo.isMultipleAlternative || 7393 (OpInfo.Type == InlineAsm::isInput)) && 7394 "Can only indirectify direct input operands!"); 7395 7396 // Memory operands really want the address of the value. 7397 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7398 7399 // There is no longer a Value* corresponding to this operand. 7400 OpInfo.CallOperandVal = nullptr; 7401 7402 // It is now an indirect operand. 7403 OpInfo.isIndirect = true; 7404 } 7405 7406 // If this constraint is for a specific register, allocate it before 7407 // anything else. 7408 if (OpInfo.ConstraintType == TargetLowering::C_Register) 7409 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7410 } 7411 7412 // Third pass - Loop over all of the operands, assigning virtual or physregs 7413 // to register class operands. 7414 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7415 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7416 7417 // C_Register operands have already been allocated, Other/Memory don't need 7418 // to be. 7419 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 7420 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 7421 } 7422 7423 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7424 std::vector<SDValue> AsmNodeOperands; 7425 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7426 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7427 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7428 7429 // If we have a !srcloc metadata node associated with it, we want to attach 7430 // this to the ultimately generated inline asm machineinstr. To do this, we 7431 // pass in the third operand as this (potentially null) inline asm MDNode. 7432 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7433 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7434 7435 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7436 // bits as operand 3. 7437 AsmNodeOperands.push_back(DAG.getTargetConstant( 7438 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7439 7440 // Loop over all of the inputs, copying the operand values into the 7441 // appropriate registers and processing the output regs. 7442 RegsForValue RetValRegs; 7443 7444 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 7445 std::vector<std::pair<RegsForValue, Value *>> IndirectStoresToEmit; 7446 7447 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 7448 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 7449 7450 switch (OpInfo.Type) { 7451 case InlineAsm::isOutput: 7452 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 7453 OpInfo.ConstraintType != TargetLowering::C_Register) { 7454 // Memory output, or 'other' output (e.g. 'X' constraint). 7455 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 7456 7457 unsigned ConstraintID = 7458 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7459 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7460 "Failed to convert memory constraint code to constraint id."); 7461 7462 // Add information to the INLINEASM node to know about this output. 7463 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7464 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 7465 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 7466 MVT::i32)); 7467 AsmNodeOperands.push_back(OpInfo.CallOperand); 7468 break; 7469 } 7470 7471 // Otherwise, this is a register or register class output. 7472 7473 // Copy the output from the appropriate register. Find a register that 7474 // we can use. 7475 if (OpInfo.AssignedRegs.Regs.empty()) { 7476 emitInlineAsmError( 7477 CS, "couldn't allocate output register for constraint '" + 7478 Twine(OpInfo.ConstraintCode) + "'"); 7479 return; 7480 } 7481 7482 // If this is an indirect operand, store through the pointer after the 7483 // asm. 7484 if (OpInfo.isIndirect) { 7485 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 7486 OpInfo.CallOperandVal)); 7487 } else { 7488 // This is the result value of the call. 7489 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7490 // Concatenate this output onto the outputs list. 7491 RetValRegs.append(OpInfo.AssignedRegs); 7492 } 7493 7494 // Add information to the INLINEASM node to know that this register is 7495 // set. 7496 OpInfo.AssignedRegs 7497 .AddInlineAsmOperands(OpInfo.isEarlyClobber 7498 ? InlineAsm::Kind_RegDefEarlyClobber 7499 : InlineAsm::Kind_RegDef, 7500 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 7501 break; 7502 7503 case InlineAsm::isInput: { 7504 SDValue InOperandVal = OpInfo.CallOperand; 7505 7506 if (OpInfo.isMatchingInputConstraint()) { 7507 // If this is required to match an output register we have already set, 7508 // just use its register. 7509 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 7510 AsmNodeOperands); 7511 unsigned OpFlag = 7512 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7513 if (InlineAsm::isRegDefKind(OpFlag) || 7514 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 7515 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 7516 if (OpInfo.isIndirect) { 7517 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 7518 emitInlineAsmError(CS, "inline asm not supported yet:" 7519 " don't know how to handle tied " 7520 "indirect register inputs"); 7521 return; 7522 } 7523 7524 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 7525 SmallVector<unsigned, 4> Regs; 7526 7527 if (!createVirtualRegs(Regs, 7528 InlineAsm::getNumOperandRegisters(OpFlag), 7529 RegVT, DAG)) { 7530 emitInlineAsmError(CS, "inline asm error: This value type register " 7531 "class is not natively supported!"); 7532 return; 7533 } 7534 7535 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 7536 7537 SDLoc dl = getCurSDLoc(); 7538 // Use the produced MatchedRegs object to 7539 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 7540 CS.getInstruction()); 7541 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 7542 true, OpInfo.getMatchedOperand(), dl, 7543 DAG, AsmNodeOperands); 7544 break; 7545 } 7546 7547 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 7548 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 7549 "Unexpected number of operands"); 7550 // Add information to the INLINEASM node to know about this input. 7551 // See InlineAsm.h isUseOperandTiedToDef. 7552 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 7553 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 7554 OpInfo.getMatchedOperand()); 7555 AsmNodeOperands.push_back(DAG.getTargetConstant( 7556 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7557 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 7558 break; 7559 } 7560 7561 // Treat indirect 'X' constraint as memory. 7562 if (OpInfo.ConstraintType == TargetLowering::C_Other && 7563 OpInfo.isIndirect) 7564 OpInfo.ConstraintType = TargetLowering::C_Memory; 7565 7566 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 7567 std::vector<SDValue> Ops; 7568 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 7569 Ops, DAG); 7570 if (Ops.empty()) { 7571 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 7572 Twine(OpInfo.ConstraintCode) + "'"); 7573 return; 7574 } 7575 7576 // Add information to the INLINEASM node to know about this input. 7577 unsigned ResOpType = 7578 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 7579 AsmNodeOperands.push_back(DAG.getTargetConstant( 7580 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7581 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 7582 break; 7583 } 7584 7585 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 7586 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 7587 assert(InOperandVal.getValueType() == 7588 TLI.getPointerTy(DAG.getDataLayout()) && 7589 "Memory operands expect pointer values"); 7590 7591 unsigned ConstraintID = 7592 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 7593 assert(ConstraintID != InlineAsm::Constraint_Unknown && 7594 "Failed to convert memory constraint code to constraint id."); 7595 7596 // Add information to the INLINEASM node to know about this input. 7597 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 7598 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 7599 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 7600 getCurSDLoc(), 7601 MVT::i32)); 7602 AsmNodeOperands.push_back(InOperandVal); 7603 break; 7604 } 7605 7606 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 7607 OpInfo.ConstraintType == TargetLowering::C_Register) && 7608 "Unknown constraint type!"); 7609 7610 // TODO: Support this. 7611 if (OpInfo.isIndirect) { 7612 emitInlineAsmError( 7613 CS, "Don't know how to handle indirect register inputs yet " 7614 "for constraint '" + 7615 Twine(OpInfo.ConstraintCode) + "'"); 7616 return; 7617 } 7618 7619 // Copy the input into the appropriate registers. 7620 if (OpInfo.AssignedRegs.Regs.empty()) { 7621 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 7622 Twine(OpInfo.ConstraintCode) + "'"); 7623 return; 7624 } 7625 7626 SDLoc dl = getCurSDLoc(); 7627 7628 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 7629 Chain, &Flag, CS.getInstruction()); 7630 7631 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 7632 dl, DAG, AsmNodeOperands); 7633 break; 7634 } 7635 case InlineAsm::isClobber: 7636 // Add the clobbered value to the operand list, so that the register 7637 // allocator is aware that the physreg got clobbered. 7638 if (!OpInfo.AssignedRegs.Regs.empty()) 7639 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 7640 false, 0, getCurSDLoc(), DAG, 7641 AsmNodeOperands); 7642 break; 7643 } 7644 } 7645 7646 // Finish up input operands. Set the input chain and add the flag last. 7647 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 7648 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 7649 7650 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 7651 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 7652 Flag = Chain.getValue(1); 7653 7654 // If this asm returns a register value, copy the result from that register 7655 // and set it as the value of the call. 7656 if (!RetValRegs.Regs.empty()) { 7657 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7658 Chain, &Flag, CS.getInstruction()); 7659 7660 // FIXME: Why don't we do this for inline asms with MRVs? 7661 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 7662 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7663 7664 // If any of the results of the inline asm is a vector, it may have the 7665 // wrong width/num elts. This can happen for register classes that can 7666 // contain multiple different value types. The preg or vreg allocated may 7667 // not have the same VT as was expected. Convert it to the right type 7668 // with bit_convert. 7669 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 7670 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 7671 ResultType, Val); 7672 7673 } else if (ResultType != Val.getValueType() && 7674 ResultType.isInteger() && Val.getValueType().isInteger()) { 7675 // If a result value was tied to an input value, the computed result may 7676 // have a wider width than the expected result. Extract the relevant 7677 // portion. 7678 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 7679 } 7680 7681 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 7682 } 7683 7684 setValue(CS.getInstruction(), Val); 7685 // Don't need to use this as a chain in this case. 7686 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 7687 return; 7688 } 7689 7690 std::vector<std::pair<SDValue, const Value *>> StoresToEmit; 7691 7692 // Process indirect outputs, first output all of the flagged copies out of 7693 // physregs. 7694 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 7695 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 7696 const Value *Ptr = IndirectStoresToEmit[i].second; 7697 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 7698 Chain, &Flag, IA); 7699 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 7700 } 7701 7702 // Emit the non-flagged stores from the physregs. 7703 SmallVector<SDValue, 8> OutChains; 7704 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 7705 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), StoresToEmit[i].first, 7706 getValue(StoresToEmit[i].second), 7707 MachinePointerInfo(StoresToEmit[i].second)); 7708 OutChains.push_back(Val); 7709 } 7710 7711 if (!OutChains.empty()) 7712 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 7713 7714 DAG.setRoot(Chain); 7715 } 7716 7717 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 7718 const Twine &Message) { 7719 LLVMContext &Ctx = *DAG.getContext(); 7720 Ctx.emitError(CS.getInstruction(), Message); 7721 7722 // Make sure we leave the DAG in a valid state 7723 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7724 auto VT = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 7725 setValue(CS.getInstruction(), DAG.getUNDEF(VT)); 7726 } 7727 7728 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 7729 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 7730 MVT::Other, getRoot(), 7731 getValue(I.getArgOperand(0)), 7732 DAG.getSrcValue(I.getArgOperand(0)))); 7733 } 7734 7735 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 7736 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7737 const DataLayout &DL = DAG.getDataLayout(); 7738 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 7739 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 7740 DAG.getSrcValue(I.getOperand(0)), 7741 DL.getABITypeAlignment(I.getType())); 7742 setValue(&I, V); 7743 DAG.setRoot(V.getValue(1)); 7744 } 7745 7746 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 7747 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 7748 MVT::Other, getRoot(), 7749 getValue(I.getArgOperand(0)), 7750 DAG.getSrcValue(I.getArgOperand(0)))); 7751 } 7752 7753 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 7754 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 7755 MVT::Other, getRoot(), 7756 getValue(I.getArgOperand(0)), 7757 getValue(I.getArgOperand(1)), 7758 DAG.getSrcValue(I.getArgOperand(0)), 7759 DAG.getSrcValue(I.getArgOperand(1)))); 7760 } 7761 7762 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 7763 const Instruction &I, 7764 SDValue Op) { 7765 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 7766 if (!Range) 7767 return Op; 7768 7769 ConstantRange CR = getConstantRangeFromMetadata(*Range); 7770 if (CR.isFullSet() || CR.isEmptySet() || CR.isWrappedSet()) 7771 return Op; 7772 7773 APInt Lo = CR.getUnsignedMin(); 7774 if (!Lo.isMinValue()) 7775 return Op; 7776 7777 APInt Hi = CR.getUnsignedMax(); 7778 unsigned Bits = Hi.getActiveBits(); 7779 7780 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 7781 7782 SDLoc SL = getCurSDLoc(); 7783 7784 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 7785 DAG.getValueType(SmallVT)); 7786 unsigned NumVals = Op.getNode()->getNumValues(); 7787 if (NumVals == 1) 7788 return ZExt; 7789 7790 SmallVector<SDValue, 4> Ops; 7791 7792 Ops.push_back(ZExt); 7793 for (unsigned I = 1; I != NumVals; ++I) 7794 Ops.push_back(Op.getValue(I)); 7795 7796 return DAG.getMergeValues(Ops, SL); 7797 } 7798 7799 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 7800 /// the call being lowered. 7801 /// 7802 /// This is a helper for lowering intrinsics that follow a target calling 7803 /// convention or require stack pointer adjustment. Only a subset of the 7804 /// intrinsic's operands need to participate in the calling convention. 7805 void SelectionDAGBuilder::populateCallLoweringInfo( 7806 TargetLowering::CallLoweringInfo &CLI, ImmutableCallSite CS, 7807 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 7808 bool IsPatchPoint) { 7809 TargetLowering::ArgListTy Args; 7810 Args.reserve(NumArgs); 7811 7812 // Populate the argument list. 7813 // Attributes for args start at offset 1, after the return attribute. 7814 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 7815 ArgI != ArgE; ++ArgI) { 7816 const Value *V = CS->getOperand(ArgI); 7817 7818 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 7819 7820 TargetLowering::ArgListEntry Entry; 7821 Entry.Node = getValue(V); 7822 Entry.Ty = V->getType(); 7823 Entry.setAttributes(&CS, ArgI); 7824 Args.push_back(Entry); 7825 } 7826 7827 CLI.setDebugLoc(getCurSDLoc()) 7828 .setChain(getRoot()) 7829 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args)) 7830 .setDiscardResult(CS->use_empty()) 7831 .setIsPatchPoint(IsPatchPoint); 7832 } 7833 7834 /// Add a stack map intrinsic call's live variable operands to a stackmap 7835 /// or patchpoint target node's operand list. 7836 /// 7837 /// Constants are converted to TargetConstants purely as an optimization to 7838 /// avoid constant materialization and register allocation. 7839 /// 7840 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 7841 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 7842 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 7843 /// address materialization and register allocation, but may also be required 7844 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 7845 /// alloca in the entry block, then the runtime may assume that the alloca's 7846 /// StackMap location can be read immediately after compilation and that the 7847 /// location is valid at any point during execution (this is similar to the 7848 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 7849 /// only available in a register, then the runtime would need to trap when 7850 /// execution reaches the StackMap in order to read the alloca's location. 7851 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 7852 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 7853 SelectionDAGBuilder &Builder) { 7854 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 7855 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 7856 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 7857 Ops.push_back( 7858 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 7859 Ops.push_back( 7860 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 7861 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 7862 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 7863 Ops.push_back(Builder.DAG.getTargetFrameIndex( 7864 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 7865 } else 7866 Ops.push_back(OpVal); 7867 } 7868 } 7869 7870 /// Lower llvm.experimental.stackmap directly to its target opcode. 7871 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 7872 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 7873 // [live variables...]) 7874 7875 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 7876 7877 SDValue Chain, InFlag, Callee, NullPtr; 7878 SmallVector<SDValue, 32> Ops; 7879 7880 SDLoc DL = getCurSDLoc(); 7881 Callee = getValue(CI.getCalledValue()); 7882 NullPtr = DAG.getIntPtrConstant(0, DL, true); 7883 7884 // The stackmap intrinsic only records the live variables (the arguemnts 7885 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 7886 // intrinsic, this won't be lowered to a function call. This means we don't 7887 // have to worry about calling conventions and target specific lowering code. 7888 // Instead we perform the call lowering right here. 7889 // 7890 // chain, flag = CALLSEQ_START(chain, 0, 0) 7891 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 7892 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 7893 // 7894 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 7895 InFlag = Chain.getValue(1); 7896 7897 // Add the <id> and <numBytes> constants. 7898 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7899 Ops.push_back(DAG.getTargetConstant( 7900 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 7901 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7902 Ops.push_back(DAG.getTargetConstant( 7903 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 7904 MVT::i32)); 7905 7906 // Push live variables for the stack map. 7907 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 7908 7909 // We are not pushing any register mask info here on the operands list, 7910 // because the stackmap doesn't clobber anything. 7911 7912 // Push the chain and the glue flag. 7913 Ops.push_back(Chain); 7914 Ops.push_back(InFlag); 7915 7916 // Create the STACKMAP node. 7917 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7918 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 7919 Chain = SDValue(SM, 0); 7920 InFlag = Chain.getValue(1); 7921 7922 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 7923 7924 // Stackmaps don't generate values, so nothing goes into the NodeMap. 7925 7926 // Set the root to the target-lowered call chain. 7927 DAG.setRoot(Chain); 7928 7929 // Inform the Frame Information that we have a stackmap in this function. 7930 FuncInfo.MF->getFrameInfo().setHasStackMap(); 7931 } 7932 7933 /// Lower llvm.experimental.patchpoint directly to its target opcode. 7934 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 7935 const BasicBlock *EHPadBB) { 7936 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 7937 // i32 <numBytes>, 7938 // i8* <target>, 7939 // i32 <numArgs>, 7940 // [Args...], 7941 // [live variables...]) 7942 7943 CallingConv::ID CC = CS.getCallingConv(); 7944 bool IsAnyRegCC = CC == CallingConv::AnyReg; 7945 bool HasDef = !CS->getType()->isVoidTy(); 7946 SDLoc dl = getCurSDLoc(); 7947 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 7948 7949 // Handle immediate and symbolic callees. 7950 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 7951 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 7952 /*isTarget=*/true); 7953 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 7954 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 7955 SDLoc(SymbolicCallee), 7956 SymbolicCallee->getValueType(0)); 7957 7958 // Get the real number of arguments participating in the call <numArgs> 7959 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 7960 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 7961 7962 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 7963 // Intrinsics include all meta-operands up to but not including CC. 7964 unsigned NumMetaOpers = PatchPointOpers::CCPos; 7965 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 7966 "Not enough arguments provided to the patchpoint intrinsic"); 7967 7968 // For AnyRegCC the arguments are lowered later on manually. 7969 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 7970 Type *ReturnTy = 7971 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 7972 7973 TargetLowering::CallLoweringInfo CLI(DAG); 7974 populateCallLoweringInfo(CLI, CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, 7975 true); 7976 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7977 7978 SDNode *CallEnd = Result.second.getNode(); 7979 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 7980 CallEnd = CallEnd->getOperand(0).getNode(); 7981 7982 /// Get a call instruction from the call sequence chain. 7983 /// Tail calls are not allowed. 7984 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 7985 "Expected a callseq node."); 7986 SDNode *Call = CallEnd->getOperand(0).getNode(); 7987 bool HasGlue = Call->getGluedNode(); 7988 7989 // Replace the target specific call node with the patchable intrinsic. 7990 SmallVector<SDValue, 8> Ops; 7991 7992 // Add the <id> and <numBytes> constants. 7993 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 7994 Ops.push_back(DAG.getTargetConstant( 7995 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 7996 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 7997 Ops.push_back(DAG.getTargetConstant( 7998 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 7999 MVT::i32)); 8000 8001 // Add the callee. 8002 Ops.push_back(Callee); 8003 8004 // Adjust <numArgs> to account for any arguments that have been passed on the 8005 // stack instead. 8006 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8007 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8008 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8009 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8010 8011 // Add the calling convention 8012 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8013 8014 // Add the arguments we omitted previously. The register allocator should 8015 // place these in any free register. 8016 if (IsAnyRegCC) 8017 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8018 Ops.push_back(getValue(CS.getArgument(i))); 8019 8020 // Push the arguments from the call instruction up to the register mask. 8021 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8022 Ops.append(Call->op_begin() + 2, e); 8023 8024 // Push live variables for the stack map. 8025 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8026 8027 // Push the register mask info. 8028 if (HasGlue) 8029 Ops.push_back(*(Call->op_end()-2)); 8030 else 8031 Ops.push_back(*(Call->op_end()-1)); 8032 8033 // Push the chain (this is originally the first operand of the call, but 8034 // becomes now the last or second to last operand). 8035 Ops.push_back(*(Call->op_begin())); 8036 8037 // Push the glue flag (last operand). 8038 if (HasGlue) 8039 Ops.push_back(*(Call->op_end()-1)); 8040 8041 SDVTList NodeTys; 8042 if (IsAnyRegCC && HasDef) { 8043 // Create the return types based on the intrinsic definition 8044 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8045 SmallVector<EVT, 3> ValueVTs; 8046 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8047 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8048 8049 // There is always a chain and a glue type at the end 8050 ValueVTs.push_back(MVT::Other); 8051 ValueVTs.push_back(MVT::Glue); 8052 NodeTys = DAG.getVTList(ValueVTs); 8053 } else 8054 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8055 8056 // Replace the target specific call node with a PATCHPOINT node. 8057 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8058 dl, NodeTys, Ops); 8059 8060 // Update the NodeMap. 8061 if (HasDef) { 8062 if (IsAnyRegCC) 8063 setValue(CS.getInstruction(), SDValue(MN, 0)); 8064 else 8065 setValue(CS.getInstruction(), Result.first); 8066 } 8067 8068 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8069 // call sequence. Furthermore the location of the chain and glue can change 8070 // when the AnyReg calling convention is used and the intrinsic returns a 8071 // value. 8072 if (IsAnyRegCC && HasDef) { 8073 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8074 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8075 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8076 } else 8077 DAG.ReplaceAllUsesWith(Call, MN); 8078 DAG.DeleteNode(Call); 8079 8080 // Inform the Frame Information that we have a patchpoint in this function. 8081 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8082 } 8083 8084 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8085 unsigned Intrinsic) { 8086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8087 SDValue Op1 = getValue(I.getArgOperand(0)); 8088 SDValue Op2; 8089 if (I.getNumArgOperands() > 1) 8090 Op2 = getValue(I.getArgOperand(1)); 8091 SDLoc dl = getCurSDLoc(); 8092 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8093 SDValue Res; 8094 FastMathFlags FMF; 8095 if (isa<FPMathOperator>(I)) 8096 FMF = I.getFastMathFlags(); 8097 8098 switch (Intrinsic) { 8099 case Intrinsic::experimental_vector_reduce_fadd: 8100 if (FMF.isFast()) 8101 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8102 else 8103 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8104 break; 8105 case Intrinsic::experimental_vector_reduce_fmul: 8106 if (FMF.isFast()) 8107 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8108 else 8109 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8110 break; 8111 case Intrinsic::experimental_vector_reduce_add: 8112 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8113 break; 8114 case Intrinsic::experimental_vector_reduce_mul: 8115 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8116 break; 8117 case Intrinsic::experimental_vector_reduce_and: 8118 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8119 break; 8120 case Intrinsic::experimental_vector_reduce_or: 8121 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8122 break; 8123 case Intrinsic::experimental_vector_reduce_xor: 8124 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8125 break; 8126 case Intrinsic::experimental_vector_reduce_smax: 8127 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8128 break; 8129 case Intrinsic::experimental_vector_reduce_smin: 8130 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8131 break; 8132 case Intrinsic::experimental_vector_reduce_umax: 8133 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8134 break; 8135 case Intrinsic::experimental_vector_reduce_umin: 8136 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8137 break; 8138 case Intrinsic::experimental_vector_reduce_fmax: 8139 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8140 break; 8141 case Intrinsic::experimental_vector_reduce_fmin: 8142 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8143 break; 8144 default: 8145 llvm_unreachable("Unhandled vector reduce intrinsic"); 8146 } 8147 setValue(&I, Res); 8148 } 8149 8150 /// Returns an AttributeList representing the attributes applied to the return 8151 /// value of the given call. 8152 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8153 SmallVector<Attribute::AttrKind, 2> Attrs; 8154 if (CLI.RetSExt) 8155 Attrs.push_back(Attribute::SExt); 8156 if (CLI.RetZExt) 8157 Attrs.push_back(Attribute::ZExt); 8158 if (CLI.IsInReg) 8159 Attrs.push_back(Attribute::InReg); 8160 8161 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8162 Attrs); 8163 } 8164 8165 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8166 /// implementation, which just calls LowerCall. 8167 /// FIXME: When all targets are 8168 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8169 std::pair<SDValue, SDValue> 8170 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8171 // Handle the incoming return values from the call. 8172 CLI.Ins.clear(); 8173 Type *OrigRetTy = CLI.RetTy; 8174 SmallVector<EVT, 4> RetTys; 8175 SmallVector<uint64_t, 4> Offsets; 8176 auto &DL = CLI.DAG.getDataLayout(); 8177 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8178 8179 if (CLI.IsPostTypeLegalization) { 8180 // If we are lowering a libcall after legalization, split the return type. 8181 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8182 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8183 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8184 EVT RetVT = OldRetTys[i]; 8185 uint64_t Offset = OldOffsets[i]; 8186 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8187 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8188 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8189 RetTys.append(NumRegs, RegisterVT); 8190 for (unsigned j = 0; j != NumRegs; ++j) 8191 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8192 } 8193 } 8194 8195 SmallVector<ISD::OutputArg, 4> Outs; 8196 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8197 8198 bool CanLowerReturn = 8199 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8200 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8201 8202 SDValue DemoteStackSlot; 8203 int DemoteStackIdx = -100; 8204 if (!CanLowerReturn) { 8205 // FIXME: equivalent assert? 8206 // assert(!CS.hasInAllocaArgument() && 8207 // "sret demotion is incompatible with inalloca"); 8208 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8209 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8210 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8211 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8212 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 8213 8214 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8215 ArgListEntry Entry; 8216 Entry.Node = DemoteStackSlot; 8217 Entry.Ty = StackSlotPtrType; 8218 Entry.IsSExt = false; 8219 Entry.IsZExt = false; 8220 Entry.IsInReg = false; 8221 Entry.IsSRet = true; 8222 Entry.IsNest = false; 8223 Entry.IsByVal = false; 8224 Entry.IsReturned = false; 8225 Entry.IsSwiftSelf = false; 8226 Entry.IsSwiftError = false; 8227 Entry.Alignment = Align; 8228 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8229 CLI.NumFixedArgs += 1; 8230 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8231 8232 // sret demotion isn't compatible with tail-calls, since the sret argument 8233 // points into the callers stack frame. 8234 CLI.IsTailCall = false; 8235 } else { 8236 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8237 EVT VT = RetTys[I]; 8238 MVT RegisterVT = 8239 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8240 unsigned NumRegs = 8241 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8242 for (unsigned i = 0; i != NumRegs; ++i) { 8243 ISD::InputArg MyFlags; 8244 MyFlags.VT = RegisterVT; 8245 MyFlags.ArgVT = VT; 8246 MyFlags.Used = CLI.IsReturnValueUsed; 8247 if (CLI.RetSExt) 8248 MyFlags.Flags.setSExt(); 8249 if (CLI.RetZExt) 8250 MyFlags.Flags.setZExt(); 8251 if (CLI.IsInReg) 8252 MyFlags.Flags.setInReg(); 8253 CLI.Ins.push_back(MyFlags); 8254 } 8255 } 8256 } 8257 8258 // We push in swifterror return as the last element of CLI.Ins. 8259 ArgListTy &Args = CLI.getArgs(); 8260 if (supportSwiftError()) { 8261 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8262 if (Args[i].IsSwiftError) { 8263 ISD::InputArg MyFlags; 8264 MyFlags.VT = getPointerTy(DL); 8265 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8266 MyFlags.Flags.setSwiftError(); 8267 CLI.Ins.push_back(MyFlags); 8268 } 8269 } 8270 } 8271 8272 // Handle all of the outgoing arguments. 8273 CLI.Outs.clear(); 8274 CLI.OutVals.clear(); 8275 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8276 SmallVector<EVT, 4> ValueVTs; 8277 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8278 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8279 Type *FinalType = Args[i].Ty; 8280 if (Args[i].IsByVal) 8281 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8282 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8283 FinalType, CLI.CallConv, CLI.IsVarArg); 8284 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8285 ++Value) { 8286 EVT VT = ValueVTs[Value]; 8287 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8288 SDValue Op = SDValue(Args[i].Node.getNode(), 8289 Args[i].Node.getResNo() + Value); 8290 ISD::ArgFlagsTy Flags; 8291 8292 // Certain targets (such as MIPS), may have a different ABI alignment 8293 // for a type depending on the context. Give the target a chance to 8294 // specify the alignment it wants. 8295 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8296 8297 if (Args[i].IsZExt) 8298 Flags.setZExt(); 8299 if (Args[i].IsSExt) 8300 Flags.setSExt(); 8301 if (Args[i].IsInReg) { 8302 // If we are using vectorcall calling convention, a structure that is 8303 // passed InReg - is surely an HVA 8304 if (CLI.CallConv == CallingConv::X86_VectorCall && 8305 isa<StructType>(FinalType)) { 8306 // The first value of a structure is marked 8307 if (0 == Value) 8308 Flags.setHvaStart(); 8309 Flags.setHva(); 8310 } 8311 // Set InReg Flag 8312 Flags.setInReg(); 8313 } 8314 if (Args[i].IsSRet) 8315 Flags.setSRet(); 8316 if (Args[i].IsSwiftSelf) 8317 Flags.setSwiftSelf(); 8318 if (Args[i].IsSwiftError) 8319 Flags.setSwiftError(); 8320 if (Args[i].IsByVal) 8321 Flags.setByVal(); 8322 if (Args[i].IsInAlloca) { 8323 Flags.setInAlloca(); 8324 // Set the byval flag for CCAssignFn callbacks that don't know about 8325 // inalloca. This way we can know how many bytes we should've allocated 8326 // and how many bytes a callee cleanup function will pop. If we port 8327 // inalloca to more targets, we'll have to add custom inalloca handling 8328 // in the various CC lowering callbacks. 8329 Flags.setByVal(); 8330 } 8331 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8332 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8333 Type *ElementTy = Ty->getElementType(); 8334 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8335 // For ByVal, alignment should come from FE. BE will guess if this 8336 // info is not there but there are cases it cannot get right. 8337 unsigned FrameAlign; 8338 if (Args[i].Alignment) 8339 FrameAlign = Args[i].Alignment; 8340 else 8341 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8342 Flags.setByValAlign(FrameAlign); 8343 } 8344 if (Args[i].IsNest) 8345 Flags.setNest(); 8346 if (NeedsRegBlock) 8347 Flags.setInConsecutiveRegs(); 8348 Flags.setOrigAlign(OriginalAlignment); 8349 8350 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8351 unsigned NumParts = 8352 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8353 SmallVector<SDValue, 4> Parts(NumParts); 8354 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8355 8356 if (Args[i].IsSExt) 8357 ExtendKind = ISD::SIGN_EXTEND; 8358 else if (Args[i].IsZExt) 8359 ExtendKind = ISD::ZERO_EXTEND; 8360 8361 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8362 // for now. 8363 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8364 CanLowerReturn) { 8365 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8366 "unexpected use of 'returned'"); 8367 // Before passing 'returned' to the target lowering code, ensure that 8368 // either the register MVT and the actual EVT are the same size or that 8369 // the return value and argument are extended in the same way; in these 8370 // cases it's safe to pass the argument register value unchanged as the 8371 // return register value (although it's at the target's option whether 8372 // to do so) 8373 // TODO: allow code generation to take advantage of partially preserved 8374 // registers rather than clobbering the entire register when the 8375 // parameter extension method is not compatible with the return 8376 // extension method 8377 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8378 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8379 CLI.RetZExt == Args[i].IsZExt)) 8380 Flags.setReturned(); 8381 } 8382 8383 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8384 CLI.CS.getInstruction(), ExtendKind, true); 8385 8386 for (unsigned j = 0; j != NumParts; ++j) { 8387 // if it isn't first piece, alignment must be 1 8388 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8389 i < CLI.NumFixedArgs, 8390 i, j*Parts[j].getValueType().getStoreSize()); 8391 if (NumParts > 1 && j == 0) 8392 MyFlags.Flags.setSplit(); 8393 else if (j != 0) { 8394 MyFlags.Flags.setOrigAlign(1); 8395 if (j == NumParts - 1) 8396 MyFlags.Flags.setSplitEnd(); 8397 } 8398 8399 CLI.Outs.push_back(MyFlags); 8400 CLI.OutVals.push_back(Parts[j]); 8401 } 8402 8403 if (NeedsRegBlock && Value == NumValues - 1) 8404 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8405 } 8406 } 8407 8408 SmallVector<SDValue, 4> InVals; 8409 CLI.Chain = LowerCall(CLI, InVals); 8410 8411 // Update CLI.InVals to use outside of this function. 8412 CLI.InVals = InVals; 8413 8414 // Verify that the target's LowerCall behaved as expected. 8415 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 8416 "LowerCall didn't return a valid chain!"); 8417 assert((!CLI.IsTailCall || InVals.empty()) && 8418 "LowerCall emitted a return value for a tail call!"); 8419 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 8420 "LowerCall didn't emit the correct number of values!"); 8421 8422 // For a tail call, the return value is merely live-out and there aren't 8423 // any nodes in the DAG representing it. Return a special value to 8424 // indicate that a tail call has been emitted and no more Instructions 8425 // should be processed in the current block. 8426 if (CLI.IsTailCall) { 8427 CLI.DAG.setRoot(CLI.Chain); 8428 return std::make_pair(SDValue(), SDValue()); 8429 } 8430 8431 #ifndef NDEBUG 8432 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 8433 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 8434 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 8435 "LowerCall emitted a value with the wrong type!"); 8436 } 8437 #endif 8438 8439 SmallVector<SDValue, 4> ReturnValues; 8440 if (!CanLowerReturn) { 8441 // The instruction result is the result of loading from the 8442 // hidden sret parameter. 8443 SmallVector<EVT, 1> PVTs; 8444 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 8445 8446 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 8447 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 8448 EVT PtrVT = PVTs[0]; 8449 8450 unsigned NumValues = RetTys.size(); 8451 ReturnValues.resize(NumValues); 8452 SmallVector<SDValue, 4> Chains(NumValues); 8453 8454 // An aggregate return value cannot wrap around the address space, so 8455 // offsets to its parts don't wrap either. 8456 SDNodeFlags Flags; 8457 Flags.setNoUnsignedWrap(true); 8458 8459 for (unsigned i = 0; i < NumValues; ++i) { 8460 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 8461 CLI.DAG.getConstant(Offsets[i], CLI.DL, 8462 PtrVT), Flags); 8463 SDValue L = CLI.DAG.getLoad( 8464 RetTys[i], CLI.DL, CLI.Chain, Add, 8465 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 8466 DemoteStackIdx, Offsets[i]), 8467 /* Alignment = */ 1); 8468 ReturnValues[i] = L; 8469 Chains[i] = L.getValue(1); 8470 } 8471 8472 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 8473 } else { 8474 // Collect the legal value parts into potentially illegal values 8475 // that correspond to the original function's return values. 8476 Optional<ISD::NodeType> AssertOp; 8477 if (CLI.RetSExt) 8478 AssertOp = ISD::AssertSext; 8479 else if (CLI.RetZExt) 8480 AssertOp = ISD::AssertZext; 8481 unsigned CurReg = 0; 8482 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8483 EVT VT = RetTys[I]; 8484 MVT RegisterVT = 8485 getRegisterTypeForCallingConv(CLI.RetTy->getContext(), VT); 8486 unsigned NumRegs = 8487 getNumRegistersForCallingConv(CLI.RetTy->getContext(), VT); 8488 8489 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 8490 NumRegs, RegisterVT, VT, nullptr, 8491 AssertOp, true)); 8492 CurReg += NumRegs; 8493 } 8494 8495 // For a function returning void, there is no return value. We can't create 8496 // such a node, so we just return a null return value in that case. In 8497 // that case, nothing will actually look at the value. 8498 if (ReturnValues.empty()) 8499 return std::make_pair(SDValue(), CLI.Chain); 8500 } 8501 8502 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 8503 CLI.DAG.getVTList(RetTys), ReturnValues); 8504 return std::make_pair(Res, CLI.Chain); 8505 } 8506 8507 void TargetLowering::LowerOperationWrapper(SDNode *N, 8508 SmallVectorImpl<SDValue> &Results, 8509 SelectionDAG &DAG) const { 8510 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 8511 Results.push_back(Res); 8512 } 8513 8514 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 8515 llvm_unreachable("LowerOperation not implemented for this target!"); 8516 } 8517 8518 void 8519 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 8520 SDValue Op = getNonRegisterValue(V); 8521 assert((Op.getOpcode() != ISD::CopyFromReg || 8522 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 8523 "Copy from a reg to the same reg!"); 8524 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 8525 8526 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8527 // If this is an InlineAsm we have to match the registers required, not the 8528 // notional registers required by the type. 8529 8530 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 8531 V->getType(), isABIRegCopy(V)); 8532 SDValue Chain = DAG.getEntryNode(); 8533 8534 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 8535 FuncInfo.PreferredExtendType.end()) 8536 ? ISD::ANY_EXTEND 8537 : FuncInfo.PreferredExtendType[V]; 8538 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 8539 PendingExports.push_back(Chain); 8540 } 8541 8542 #include "llvm/CodeGen/SelectionDAGISel.h" 8543 8544 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 8545 /// entry block, return true. This includes arguments used by switches, since 8546 /// the switch may expand into multiple basic blocks. 8547 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 8548 // With FastISel active, we may be splitting blocks, so force creation 8549 // of virtual registers for all non-dead arguments. 8550 if (FastISel) 8551 return A->use_empty(); 8552 8553 const BasicBlock &Entry = A->getParent()->front(); 8554 for (const User *U : A->users()) 8555 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 8556 return false; // Use not in entry block. 8557 8558 return true; 8559 } 8560 8561 using ArgCopyElisionMapTy = 8562 DenseMap<const Argument *, 8563 std::pair<const AllocaInst *, const StoreInst *>>; 8564 8565 /// Scan the entry block of the function in FuncInfo for arguments that look 8566 /// like copies into a local alloca. Record any copied arguments in 8567 /// ArgCopyElisionCandidates. 8568 static void 8569 findArgumentCopyElisionCandidates(const DataLayout &DL, 8570 FunctionLoweringInfo *FuncInfo, 8571 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 8572 // Record the state of every static alloca used in the entry block. Argument 8573 // allocas are all used in the entry block, so we need approximately as many 8574 // entries as we have arguments. 8575 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 8576 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 8577 unsigned NumArgs = FuncInfo->Fn->arg_size(); 8578 StaticAllocas.reserve(NumArgs * 2); 8579 8580 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 8581 if (!V) 8582 return nullptr; 8583 V = V->stripPointerCasts(); 8584 const auto *AI = dyn_cast<AllocaInst>(V); 8585 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 8586 return nullptr; 8587 auto Iter = StaticAllocas.insert({AI, Unknown}); 8588 return &Iter.first->second; 8589 }; 8590 8591 // Look for stores of arguments to static allocas. Look through bitcasts and 8592 // GEPs to handle type coercions, as long as the alloca is fully initialized 8593 // by the store. Any non-store use of an alloca escapes it and any subsequent 8594 // unanalyzed store might write it. 8595 // FIXME: Handle structs initialized with multiple stores. 8596 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 8597 // Look for stores, and handle non-store uses conservatively. 8598 const auto *SI = dyn_cast<StoreInst>(&I); 8599 if (!SI) { 8600 // We will look through cast uses, so ignore them completely. 8601 if (I.isCast()) 8602 continue; 8603 // Ignore debug info intrinsics, they don't escape or store to allocas. 8604 if (isa<DbgInfoIntrinsic>(I)) 8605 continue; 8606 // This is an unknown instruction. Assume it escapes or writes to all 8607 // static alloca operands. 8608 for (const Use &U : I.operands()) { 8609 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 8610 *Info = StaticAllocaInfo::Clobbered; 8611 } 8612 continue; 8613 } 8614 8615 // If the stored value is a static alloca, mark it as escaped. 8616 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 8617 *Info = StaticAllocaInfo::Clobbered; 8618 8619 // Check if the destination is a static alloca. 8620 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 8621 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 8622 if (!Info) 8623 continue; 8624 const AllocaInst *AI = cast<AllocaInst>(Dst); 8625 8626 // Skip allocas that have been initialized or clobbered. 8627 if (*Info != StaticAllocaInfo::Unknown) 8628 continue; 8629 8630 // Check if the stored value is an argument, and that this store fully 8631 // initializes the alloca. Don't elide copies from the same argument twice. 8632 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 8633 const auto *Arg = dyn_cast<Argument>(Val); 8634 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 8635 Arg->getType()->isEmptyTy() || 8636 DL.getTypeStoreSize(Arg->getType()) != 8637 DL.getTypeAllocSize(AI->getAllocatedType()) || 8638 ArgCopyElisionCandidates.count(Arg)) { 8639 *Info = StaticAllocaInfo::Clobbered; 8640 continue; 8641 } 8642 8643 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 8644 << '\n'); 8645 8646 // Mark this alloca and store for argument copy elision. 8647 *Info = StaticAllocaInfo::Elidable; 8648 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 8649 8650 // Stop scanning if we've seen all arguments. This will happen early in -O0 8651 // builds, which is useful, because -O0 builds have large entry blocks and 8652 // many allocas. 8653 if (ArgCopyElisionCandidates.size() == NumArgs) 8654 break; 8655 } 8656 } 8657 8658 /// Try to elide argument copies from memory into a local alloca. Succeeds if 8659 /// ArgVal is a load from a suitable fixed stack object. 8660 static void tryToElideArgumentCopy( 8661 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 8662 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 8663 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 8664 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 8665 SDValue ArgVal, bool &ArgHasUses) { 8666 // Check if this is a load from a fixed stack object. 8667 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 8668 if (!LNode) 8669 return; 8670 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 8671 if (!FINode) 8672 return; 8673 8674 // Check that the fixed stack object is the right size and alignment. 8675 // Look at the alignment that the user wrote on the alloca instead of looking 8676 // at the stack object. 8677 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 8678 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 8679 const AllocaInst *AI = ArgCopyIter->second.first; 8680 int FixedIndex = FINode->getIndex(); 8681 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 8682 int OldIndex = AllocaIndex; 8683 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 8684 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 8685 LLVM_DEBUG( 8686 dbgs() << " argument copy elision failed due to bad fixed stack " 8687 "object size\n"); 8688 return; 8689 } 8690 unsigned RequiredAlignment = AI->getAlignment(); 8691 if (!RequiredAlignment) { 8692 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 8693 AI->getAllocatedType()); 8694 } 8695 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 8696 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 8697 "greater than stack argument alignment (" 8698 << RequiredAlignment << " vs " 8699 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 8700 return; 8701 } 8702 8703 // Perform the elision. Delete the old stack object and replace its only use 8704 // in the variable info map. Mark the stack object as mutable. 8705 LLVM_DEBUG({ 8706 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 8707 << " Replacing frame index " << OldIndex << " with " << FixedIndex 8708 << '\n'; 8709 }); 8710 MFI.RemoveStackObject(OldIndex); 8711 MFI.setIsImmutableObjectIndex(FixedIndex, false); 8712 AllocaIndex = FixedIndex; 8713 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 8714 Chains.push_back(ArgVal.getValue(1)); 8715 8716 // Avoid emitting code for the store implementing the copy. 8717 const StoreInst *SI = ArgCopyIter->second.second; 8718 ElidedArgCopyInstrs.insert(SI); 8719 8720 // Check for uses of the argument again so that we can avoid exporting ArgVal 8721 // if it is't used by anything other than the store. 8722 for (const Value *U : Arg.users()) { 8723 if (U != SI) { 8724 ArgHasUses = true; 8725 break; 8726 } 8727 } 8728 } 8729 8730 void SelectionDAGISel::LowerArguments(const Function &F) { 8731 SelectionDAG &DAG = SDB->DAG; 8732 SDLoc dl = SDB->getCurSDLoc(); 8733 const DataLayout &DL = DAG.getDataLayout(); 8734 SmallVector<ISD::InputArg, 16> Ins; 8735 8736 if (!FuncInfo->CanLowerReturn) { 8737 // Put in an sret pointer parameter before all the other parameters. 8738 SmallVector<EVT, 1> ValueVTs; 8739 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8740 F.getReturnType()->getPointerTo( 8741 DAG.getDataLayout().getAllocaAddrSpace()), 8742 ValueVTs); 8743 8744 // NOTE: Assuming that a pointer will never break down to more than one VT 8745 // or one register. 8746 ISD::ArgFlagsTy Flags; 8747 Flags.setSRet(); 8748 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 8749 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 8750 ISD::InputArg::NoArgIndex, 0); 8751 Ins.push_back(RetArg); 8752 } 8753 8754 // Look for stores of arguments to static allocas. Mark such arguments with a 8755 // flag to ask the target to give us the memory location of that argument if 8756 // available. 8757 ArgCopyElisionMapTy ArgCopyElisionCandidates; 8758 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 8759 8760 // Set up the incoming argument description vector. 8761 for (const Argument &Arg : F.args()) { 8762 unsigned ArgNo = Arg.getArgNo(); 8763 SmallVector<EVT, 4> ValueVTs; 8764 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8765 bool isArgValueUsed = !Arg.use_empty(); 8766 unsigned PartBase = 0; 8767 Type *FinalType = Arg.getType(); 8768 if (Arg.hasAttribute(Attribute::ByVal)) 8769 FinalType = cast<PointerType>(FinalType)->getElementType(); 8770 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 8771 FinalType, F.getCallingConv(), F.isVarArg()); 8772 for (unsigned Value = 0, NumValues = ValueVTs.size(); 8773 Value != NumValues; ++Value) { 8774 EVT VT = ValueVTs[Value]; 8775 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 8776 ISD::ArgFlagsTy Flags; 8777 8778 // Certain targets (such as MIPS), may have a different ABI alignment 8779 // for a type depending on the context. Give the target a chance to 8780 // specify the alignment it wants. 8781 unsigned OriginalAlignment = 8782 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 8783 8784 if (Arg.hasAttribute(Attribute::ZExt)) 8785 Flags.setZExt(); 8786 if (Arg.hasAttribute(Attribute::SExt)) 8787 Flags.setSExt(); 8788 if (Arg.hasAttribute(Attribute::InReg)) { 8789 // If we are using vectorcall calling convention, a structure that is 8790 // passed InReg - is surely an HVA 8791 if (F.getCallingConv() == CallingConv::X86_VectorCall && 8792 isa<StructType>(Arg.getType())) { 8793 // The first value of a structure is marked 8794 if (0 == Value) 8795 Flags.setHvaStart(); 8796 Flags.setHva(); 8797 } 8798 // Set InReg Flag 8799 Flags.setInReg(); 8800 } 8801 if (Arg.hasAttribute(Attribute::StructRet)) 8802 Flags.setSRet(); 8803 if (Arg.hasAttribute(Attribute::SwiftSelf)) 8804 Flags.setSwiftSelf(); 8805 if (Arg.hasAttribute(Attribute::SwiftError)) 8806 Flags.setSwiftError(); 8807 if (Arg.hasAttribute(Attribute::ByVal)) 8808 Flags.setByVal(); 8809 if (Arg.hasAttribute(Attribute::InAlloca)) { 8810 Flags.setInAlloca(); 8811 // Set the byval flag for CCAssignFn callbacks that don't know about 8812 // inalloca. This way we can know how many bytes we should've allocated 8813 // and how many bytes a callee cleanup function will pop. If we port 8814 // inalloca to more targets, we'll have to add custom inalloca handling 8815 // in the various CC lowering callbacks. 8816 Flags.setByVal(); 8817 } 8818 if (F.getCallingConv() == CallingConv::X86_INTR) { 8819 // IA Interrupt passes frame (1st parameter) by value in the stack. 8820 if (ArgNo == 0) 8821 Flags.setByVal(); 8822 } 8823 if (Flags.isByVal() || Flags.isInAlloca()) { 8824 PointerType *Ty = cast<PointerType>(Arg.getType()); 8825 Type *ElementTy = Ty->getElementType(); 8826 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8827 // For ByVal, alignment should be passed from FE. BE will guess if 8828 // this info is not there but there are cases it cannot get right. 8829 unsigned FrameAlign; 8830 if (Arg.getParamAlignment()) 8831 FrameAlign = Arg.getParamAlignment(); 8832 else 8833 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 8834 Flags.setByValAlign(FrameAlign); 8835 } 8836 if (Arg.hasAttribute(Attribute::Nest)) 8837 Flags.setNest(); 8838 if (NeedsRegBlock) 8839 Flags.setInConsecutiveRegs(); 8840 Flags.setOrigAlign(OriginalAlignment); 8841 if (ArgCopyElisionCandidates.count(&Arg)) 8842 Flags.setCopyElisionCandidate(); 8843 8844 MVT RegisterVT = 8845 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8846 unsigned NumRegs = 8847 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8848 for (unsigned i = 0; i != NumRegs; ++i) { 8849 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 8850 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 8851 if (NumRegs > 1 && i == 0) 8852 MyFlags.Flags.setSplit(); 8853 // if it isn't first piece, alignment must be 1 8854 else if (i > 0) { 8855 MyFlags.Flags.setOrigAlign(1); 8856 if (i == NumRegs - 1) 8857 MyFlags.Flags.setSplitEnd(); 8858 } 8859 Ins.push_back(MyFlags); 8860 } 8861 if (NeedsRegBlock && Value == NumValues - 1) 8862 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 8863 PartBase += VT.getStoreSize(); 8864 } 8865 } 8866 8867 // Call the target to set up the argument values. 8868 SmallVector<SDValue, 8> InVals; 8869 SDValue NewRoot = TLI->LowerFormalArguments( 8870 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 8871 8872 // Verify that the target's LowerFormalArguments behaved as expected. 8873 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 8874 "LowerFormalArguments didn't return a valid chain!"); 8875 assert(InVals.size() == Ins.size() && 8876 "LowerFormalArguments didn't emit the correct number of values!"); 8877 LLVM_DEBUG({ 8878 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 8879 assert(InVals[i].getNode() && 8880 "LowerFormalArguments emitted a null value!"); 8881 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 8882 "LowerFormalArguments emitted a value with the wrong type!"); 8883 } 8884 }); 8885 8886 // Update the DAG with the new chain value resulting from argument lowering. 8887 DAG.setRoot(NewRoot); 8888 8889 // Set up the argument values. 8890 unsigned i = 0; 8891 if (!FuncInfo->CanLowerReturn) { 8892 // Create a virtual register for the sret pointer, and put in a copy 8893 // from the sret argument into it. 8894 SmallVector<EVT, 1> ValueVTs; 8895 ComputeValueVTs(*TLI, DAG.getDataLayout(), 8896 F.getReturnType()->getPointerTo( 8897 DAG.getDataLayout().getAllocaAddrSpace()), 8898 ValueVTs); 8899 MVT VT = ValueVTs[0].getSimpleVT(); 8900 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 8901 Optional<ISD::NodeType> AssertOp = None; 8902 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 8903 RegVT, VT, nullptr, AssertOp); 8904 8905 MachineFunction& MF = SDB->DAG.getMachineFunction(); 8906 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 8907 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 8908 FuncInfo->DemoteRegister = SRetReg; 8909 NewRoot = 8910 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 8911 DAG.setRoot(NewRoot); 8912 8913 // i indexes lowered arguments. Bump it past the hidden sret argument. 8914 ++i; 8915 } 8916 8917 SmallVector<SDValue, 4> Chains; 8918 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 8919 for (const Argument &Arg : F.args()) { 8920 SmallVector<SDValue, 4> ArgValues; 8921 SmallVector<EVT, 4> ValueVTs; 8922 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 8923 unsigned NumValues = ValueVTs.size(); 8924 if (NumValues == 0) 8925 continue; 8926 8927 bool ArgHasUses = !Arg.use_empty(); 8928 8929 // Elide the copying store if the target loaded this argument from a 8930 // suitable fixed stack object. 8931 if (Ins[i].Flags.isCopyElisionCandidate()) { 8932 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 8933 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 8934 InVals[i], ArgHasUses); 8935 } 8936 8937 // If this argument is unused then remember its value. It is used to generate 8938 // debugging information. 8939 bool isSwiftErrorArg = 8940 TLI->supportSwiftError() && 8941 Arg.hasAttribute(Attribute::SwiftError); 8942 if (!ArgHasUses && !isSwiftErrorArg) { 8943 SDB->setUnusedArgValue(&Arg, InVals[i]); 8944 8945 // Also remember any frame index for use in FastISel. 8946 if (FrameIndexSDNode *FI = 8947 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 8948 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8949 } 8950 8951 for (unsigned Val = 0; Val != NumValues; ++Val) { 8952 EVT VT = ValueVTs[Val]; 8953 MVT PartVT = 8954 TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), VT); 8955 unsigned NumParts = 8956 TLI->getNumRegistersForCallingConv(*CurDAG->getContext(), VT); 8957 8958 // Even an apparant 'unused' swifterror argument needs to be returned. So 8959 // we do generate a copy for it that can be used on return from the 8960 // function. 8961 if (ArgHasUses || isSwiftErrorArg) { 8962 Optional<ISD::NodeType> AssertOp; 8963 if (Arg.hasAttribute(Attribute::SExt)) 8964 AssertOp = ISD::AssertSext; 8965 else if (Arg.hasAttribute(Attribute::ZExt)) 8966 AssertOp = ISD::AssertZext; 8967 8968 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 8969 PartVT, VT, nullptr, AssertOp, 8970 true)); 8971 } 8972 8973 i += NumParts; 8974 } 8975 8976 // We don't need to do anything else for unused arguments. 8977 if (ArgValues.empty()) 8978 continue; 8979 8980 // Note down frame index. 8981 if (FrameIndexSDNode *FI = 8982 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 8983 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 8984 8985 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 8986 SDB->getCurSDLoc()); 8987 8988 SDB->setValue(&Arg, Res); 8989 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 8990 // We want to associate the argument with the frame index, among 8991 // involved operands, that correspond to the lowest address. The 8992 // getCopyFromParts function, called earlier, is swapping the order of 8993 // the operands to BUILD_PAIR depending on endianness. The result of 8994 // that swapping is that the least significant bits of the argument will 8995 // be in the first operand of the BUILD_PAIR node, and the most 8996 // significant bits will be in the second operand. 8997 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 8998 if (LoadSDNode *LNode = 8999 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9000 if (FrameIndexSDNode *FI = 9001 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9002 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9003 } 9004 9005 // Update the SwiftErrorVRegDefMap. 9006 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9007 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9008 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9009 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9010 FuncInfo->SwiftErrorArg, Reg); 9011 } 9012 9013 // If this argument is live outside of the entry block, insert a copy from 9014 // wherever we got it to the vreg that other BB's will reference it as. 9015 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9016 // If we can, though, try to skip creating an unnecessary vreg. 9017 // FIXME: This isn't very clean... it would be nice to make this more 9018 // general. It's also subtly incompatible with the hacks FastISel 9019 // uses with vregs. 9020 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9021 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9022 FuncInfo->ValueMap[&Arg] = Reg; 9023 continue; 9024 } 9025 } 9026 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9027 FuncInfo->InitializeRegForValue(&Arg); 9028 SDB->CopyToExportRegsIfNeeded(&Arg); 9029 } 9030 } 9031 9032 if (!Chains.empty()) { 9033 Chains.push_back(NewRoot); 9034 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9035 } 9036 9037 DAG.setRoot(NewRoot); 9038 9039 assert(i == InVals.size() && "Argument register count mismatch!"); 9040 9041 // If any argument copy elisions occurred and we have debug info, update the 9042 // stale frame indices used in the dbg.declare variable info table. 9043 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9044 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9045 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9046 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9047 if (I != ArgCopyElisionFrameIndexMap.end()) 9048 VI.Slot = I->second; 9049 } 9050 } 9051 9052 // Finally, if the target has anything special to do, allow it to do so. 9053 EmitFunctionEntryCode(); 9054 } 9055 9056 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9057 /// ensure constants are generated when needed. Remember the virtual registers 9058 /// that need to be added to the Machine PHI nodes as input. We cannot just 9059 /// directly add them, because expansion might result in multiple MBB's for one 9060 /// BB. As such, the start of the BB might correspond to a different MBB than 9061 /// the end. 9062 void 9063 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9064 const TerminatorInst *TI = LLVMBB->getTerminator(); 9065 9066 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9067 9068 // Check PHI nodes in successors that expect a value to be available from this 9069 // block. 9070 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9071 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9072 if (!isa<PHINode>(SuccBB->begin())) continue; 9073 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9074 9075 // If this terminator has multiple identical successors (common for 9076 // switches), only handle each succ once. 9077 if (!SuccsHandled.insert(SuccMBB).second) 9078 continue; 9079 9080 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9081 9082 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9083 // nodes and Machine PHI nodes, but the incoming operands have not been 9084 // emitted yet. 9085 for (const PHINode &PN : SuccBB->phis()) { 9086 // Ignore dead phi's. 9087 if (PN.use_empty()) 9088 continue; 9089 9090 // Skip empty types 9091 if (PN.getType()->isEmptyTy()) 9092 continue; 9093 9094 unsigned Reg; 9095 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9096 9097 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9098 unsigned &RegOut = ConstantsOut[C]; 9099 if (RegOut == 0) { 9100 RegOut = FuncInfo.CreateRegs(C->getType()); 9101 CopyValueToVirtualRegister(C, RegOut); 9102 } 9103 Reg = RegOut; 9104 } else { 9105 DenseMap<const Value *, unsigned>::iterator I = 9106 FuncInfo.ValueMap.find(PHIOp); 9107 if (I != FuncInfo.ValueMap.end()) 9108 Reg = I->second; 9109 else { 9110 assert(isa<AllocaInst>(PHIOp) && 9111 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9112 "Didn't codegen value into a register!??"); 9113 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9114 CopyValueToVirtualRegister(PHIOp, Reg); 9115 } 9116 } 9117 9118 // Remember that this register needs to added to the machine PHI node as 9119 // the input for this MBB. 9120 SmallVector<EVT, 4> ValueVTs; 9121 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9122 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9123 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9124 EVT VT = ValueVTs[vti]; 9125 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9126 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9127 FuncInfo.PHINodesToUpdate.push_back( 9128 std::make_pair(&*MBBI++, Reg + i)); 9129 Reg += NumRegisters; 9130 } 9131 } 9132 } 9133 9134 ConstantsOut.clear(); 9135 } 9136 9137 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9138 /// is 0. 9139 MachineBasicBlock * 9140 SelectionDAGBuilder::StackProtectorDescriptor:: 9141 AddSuccessorMBB(const BasicBlock *BB, 9142 MachineBasicBlock *ParentMBB, 9143 bool IsLikely, 9144 MachineBasicBlock *SuccMBB) { 9145 // If SuccBB has not been created yet, create it. 9146 if (!SuccMBB) { 9147 MachineFunction *MF = ParentMBB->getParent(); 9148 MachineFunction::iterator BBI(ParentMBB); 9149 SuccMBB = MF->CreateMachineBasicBlock(BB); 9150 MF->insert(++BBI, SuccMBB); 9151 } 9152 // Add it as a successor of ParentMBB. 9153 ParentMBB->addSuccessor( 9154 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9155 return SuccMBB; 9156 } 9157 9158 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9159 MachineFunction::iterator I(MBB); 9160 if (++I == FuncInfo.MF->end()) 9161 return nullptr; 9162 return &*I; 9163 } 9164 9165 /// During lowering new call nodes can be created (such as memset, etc.). 9166 /// Those will become new roots of the current DAG, but complications arise 9167 /// when they are tail calls. In such cases, the call lowering will update 9168 /// the root, but the builder still needs to know that a tail call has been 9169 /// lowered in order to avoid generating an additional return. 9170 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9171 // If the node is null, we do have a tail call. 9172 if (MaybeTC.getNode() != nullptr) 9173 DAG.setRoot(MaybeTC); 9174 else 9175 HasTailCall = true; 9176 } 9177 9178 uint64_t 9179 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9180 unsigned First, unsigned Last) const { 9181 assert(Last >= First); 9182 const APInt &LowCase = Clusters[First].Low->getValue(); 9183 const APInt &HighCase = Clusters[Last].High->getValue(); 9184 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9185 9186 // FIXME: A range of consecutive cases has 100% density, but only requires one 9187 // comparison to lower. We should discriminate against such consecutive ranges 9188 // in jump tables. 9189 9190 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9191 } 9192 9193 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9194 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9195 unsigned Last) const { 9196 assert(Last >= First); 9197 assert(TotalCases[Last] >= TotalCases[First]); 9198 uint64_t NumCases = 9199 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9200 return NumCases; 9201 } 9202 9203 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9204 unsigned First, unsigned Last, 9205 const SwitchInst *SI, 9206 MachineBasicBlock *DefaultMBB, 9207 CaseCluster &JTCluster) { 9208 assert(First <= Last); 9209 9210 auto Prob = BranchProbability::getZero(); 9211 unsigned NumCmps = 0; 9212 std::vector<MachineBasicBlock*> Table; 9213 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9214 9215 // Initialize probabilities in JTProbs. 9216 for (unsigned I = First; I <= Last; ++I) 9217 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9218 9219 for (unsigned I = First; I <= Last; ++I) { 9220 assert(Clusters[I].Kind == CC_Range); 9221 Prob += Clusters[I].Prob; 9222 const APInt &Low = Clusters[I].Low->getValue(); 9223 const APInt &High = Clusters[I].High->getValue(); 9224 NumCmps += (Low == High) ? 1 : 2; 9225 if (I != First) { 9226 // Fill the gap between this and the previous cluster. 9227 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9228 assert(PreviousHigh.slt(Low)); 9229 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9230 for (uint64_t J = 0; J < Gap; J++) 9231 Table.push_back(DefaultMBB); 9232 } 9233 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9234 for (uint64_t J = 0; J < ClusterSize; ++J) 9235 Table.push_back(Clusters[I].MBB); 9236 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9237 } 9238 9239 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9240 unsigned NumDests = JTProbs.size(); 9241 if (TLI.isSuitableForBitTests( 9242 NumDests, NumCmps, Clusters[First].Low->getValue(), 9243 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9244 // Clusters[First..Last] should be lowered as bit tests instead. 9245 return false; 9246 } 9247 9248 // Create the MBB that will load from and jump through the table. 9249 // Note: We create it here, but it's not inserted into the function yet. 9250 MachineFunction *CurMF = FuncInfo.MF; 9251 MachineBasicBlock *JumpTableMBB = 9252 CurMF->CreateMachineBasicBlock(SI->getParent()); 9253 9254 // Add successors. Note: use table order for determinism. 9255 SmallPtrSet<MachineBasicBlock *, 8> Done; 9256 for (MachineBasicBlock *Succ : Table) { 9257 if (Done.count(Succ)) 9258 continue; 9259 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9260 Done.insert(Succ); 9261 } 9262 JumpTableMBB->normalizeSuccProbs(); 9263 9264 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9265 ->createJumpTableIndex(Table); 9266 9267 // Set up the jump table info. 9268 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9269 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9270 Clusters[Last].High->getValue(), SI->getCondition(), 9271 nullptr, false); 9272 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9273 9274 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9275 JTCases.size() - 1, Prob); 9276 return true; 9277 } 9278 9279 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9280 const SwitchInst *SI, 9281 MachineBasicBlock *DefaultMBB) { 9282 #ifndef NDEBUG 9283 // Clusters must be non-empty, sorted, and only contain Range clusters. 9284 assert(!Clusters.empty()); 9285 for (CaseCluster &C : Clusters) 9286 assert(C.Kind == CC_Range); 9287 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9288 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9289 #endif 9290 9291 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9292 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9293 return; 9294 9295 const int64_t N = Clusters.size(); 9296 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9297 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9298 9299 if (N < 2 || N < MinJumpTableEntries) 9300 return; 9301 9302 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9303 SmallVector<unsigned, 8> TotalCases(N); 9304 for (unsigned i = 0; i < N; ++i) { 9305 const APInt &Hi = Clusters[i].High->getValue(); 9306 const APInt &Lo = Clusters[i].Low->getValue(); 9307 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9308 if (i != 0) 9309 TotalCases[i] += TotalCases[i - 1]; 9310 } 9311 9312 // Cheap case: the whole range may be suitable for jump table. 9313 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9314 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9315 assert(NumCases < UINT64_MAX / 100); 9316 assert(Range >= NumCases); 9317 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9318 CaseCluster JTCluster; 9319 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9320 Clusters[0] = JTCluster; 9321 Clusters.resize(1); 9322 return; 9323 } 9324 } 9325 9326 // The algorithm below is not suitable for -O0. 9327 if (TM.getOptLevel() == CodeGenOpt::None) 9328 return; 9329 9330 // Split Clusters into minimum number of dense partitions. The algorithm uses 9331 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9332 // for the Case Statement'" (1994), but builds the MinPartitions array in 9333 // reverse order to make it easier to reconstruct the partitions in ascending 9334 // order. In the choice between two optimal partitionings, it picks the one 9335 // which yields more jump tables. 9336 9337 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9338 SmallVector<unsigned, 8> MinPartitions(N); 9339 // LastElement[i] is the last element of the partition starting at i. 9340 SmallVector<unsigned, 8> LastElement(N); 9341 // PartitionsScore[i] is used to break ties when choosing between two 9342 // partitionings resulting in the same number of partitions. 9343 SmallVector<unsigned, 8> PartitionsScore(N); 9344 // For PartitionsScore, a small number of comparisons is considered as good as 9345 // a jump table and a single comparison is considered better than a jump 9346 // table. 9347 enum PartitionScores : unsigned { 9348 NoTable = 0, 9349 Table = 1, 9350 FewCases = 1, 9351 SingleCase = 2 9352 }; 9353 9354 // Base case: There is only one way to partition Clusters[N-1]. 9355 MinPartitions[N - 1] = 1; 9356 LastElement[N - 1] = N - 1; 9357 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9358 9359 // Note: loop indexes are signed to avoid underflow. 9360 for (int64_t i = N - 2; i >= 0; i--) { 9361 // Find optimal partitioning of Clusters[i..N-1]. 9362 // Baseline: Put Clusters[i] into a partition on its own. 9363 MinPartitions[i] = MinPartitions[i + 1] + 1; 9364 LastElement[i] = i; 9365 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9366 9367 // Search for a solution that results in fewer partitions. 9368 for (int64_t j = N - 1; j > i; j--) { 9369 // Try building a partition from Clusters[i..j]. 9370 uint64_t Range = getJumpTableRange(Clusters, i, j); 9371 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9372 assert(NumCases < UINT64_MAX / 100); 9373 assert(Range >= NumCases); 9374 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9375 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9376 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9377 int64_t NumEntries = j - i + 1; 9378 9379 if (NumEntries == 1) 9380 Score += PartitionScores::SingleCase; 9381 else if (NumEntries <= SmallNumberOfEntries) 9382 Score += PartitionScores::FewCases; 9383 else if (NumEntries >= MinJumpTableEntries) 9384 Score += PartitionScores::Table; 9385 9386 // If this leads to fewer partitions, or to the same number of 9387 // partitions with better score, it is a better partitioning. 9388 if (NumPartitions < MinPartitions[i] || 9389 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9390 MinPartitions[i] = NumPartitions; 9391 LastElement[i] = j; 9392 PartitionsScore[i] = Score; 9393 } 9394 } 9395 } 9396 } 9397 9398 // Iterate over the partitions, replacing some with jump tables in-place. 9399 unsigned DstIndex = 0; 9400 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9401 Last = LastElement[First]; 9402 assert(Last >= First); 9403 assert(DstIndex <= First); 9404 unsigned NumClusters = Last - First + 1; 9405 9406 CaseCluster JTCluster; 9407 if (NumClusters >= MinJumpTableEntries && 9408 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 9409 Clusters[DstIndex++] = JTCluster; 9410 } else { 9411 for (unsigned I = First; I <= Last; ++I) 9412 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 9413 } 9414 } 9415 Clusters.resize(DstIndex); 9416 } 9417 9418 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 9419 unsigned First, unsigned Last, 9420 const SwitchInst *SI, 9421 CaseCluster &BTCluster) { 9422 assert(First <= Last); 9423 if (First == Last) 9424 return false; 9425 9426 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9427 unsigned NumCmps = 0; 9428 for (int64_t I = First; I <= Last; ++I) { 9429 assert(Clusters[I].Kind == CC_Range); 9430 Dests.set(Clusters[I].MBB->getNumber()); 9431 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 9432 } 9433 unsigned NumDests = Dests.count(); 9434 9435 APInt Low = Clusters[First].Low->getValue(); 9436 APInt High = Clusters[Last].High->getValue(); 9437 assert(Low.slt(High)); 9438 9439 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9440 const DataLayout &DL = DAG.getDataLayout(); 9441 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 9442 return false; 9443 9444 APInt LowBound; 9445 APInt CmpRange; 9446 9447 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 9448 assert(TLI.rangeFitsInWord(Low, High, DL) && 9449 "Case range must fit in bit mask!"); 9450 9451 // Check if the clusters cover a contiguous range such that no value in the 9452 // range will jump to the default statement. 9453 bool ContiguousRange = true; 9454 for (int64_t I = First + 1; I <= Last; ++I) { 9455 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 9456 ContiguousRange = false; 9457 break; 9458 } 9459 } 9460 9461 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 9462 // Optimize the case where all the case values fit in a word without having 9463 // to subtract minValue. In this case, we can optimize away the subtraction. 9464 LowBound = APInt::getNullValue(Low.getBitWidth()); 9465 CmpRange = High; 9466 ContiguousRange = false; 9467 } else { 9468 LowBound = Low; 9469 CmpRange = High - Low; 9470 } 9471 9472 CaseBitsVector CBV; 9473 auto TotalProb = BranchProbability::getZero(); 9474 for (unsigned i = First; i <= Last; ++i) { 9475 // Find the CaseBits for this destination. 9476 unsigned j; 9477 for (j = 0; j < CBV.size(); ++j) 9478 if (CBV[j].BB == Clusters[i].MBB) 9479 break; 9480 if (j == CBV.size()) 9481 CBV.push_back( 9482 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 9483 CaseBits *CB = &CBV[j]; 9484 9485 // Update Mask, Bits and ExtraProb. 9486 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 9487 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 9488 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 9489 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 9490 CB->Bits += Hi - Lo + 1; 9491 CB->ExtraProb += Clusters[i].Prob; 9492 TotalProb += Clusters[i].Prob; 9493 } 9494 9495 BitTestInfo BTI; 9496 llvm::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 9497 // Sort by probability first, number of bits second, bit mask third. 9498 if (a.ExtraProb != b.ExtraProb) 9499 return a.ExtraProb > b.ExtraProb; 9500 if (a.Bits != b.Bits) 9501 return a.Bits > b.Bits; 9502 return a.Mask < b.Mask; 9503 }); 9504 9505 for (auto &CB : CBV) { 9506 MachineBasicBlock *BitTestBB = 9507 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 9508 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 9509 } 9510 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 9511 SI->getCondition(), -1U, MVT::Other, false, 9512 ContiguousRange, nullptr, nullptr, std::move(BTI), 9513 TotalProb); 9514 9515 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 9516 BitTestCases.size() - 1, TotalProb); 9517 return true; 9518 } 9519 9520 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 9521 const SwitchInst *SI) { 9522 // Partition Clusters into as few subsets as possible, where each subset has a 9523 // range that fits in a machine word and has <= 3 unique destinations. 9524 9525 #ifndef NDEBUG 9526 // Clusters must be sorted and contain Range or JumpTable clusters. 9527 assert(!Clusters.empty()); 9528 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 9529 for (const CaseCluster &C : Clusters) 9530 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 9531 for (unsigned i = 1; i < Clusters.size(); ++i) 9532 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 9533 #endif 9534 9535 // The algorithm below is not suitable for -O0. 9536 if (TM.getOptLevel() == CodeGenOpt::None) 9537 return; 9538 9539 // If target does not have legal shift left, do not emit bit tests at all. 9540 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9541 const DataLayout &DL = DAG.getDataLayout(); 9542 9543 EVT PTy = TLI.getPointerTy(DL); 9544 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 9545 return; 9546 9547 int BitWidth = PTy.getSizeInBits(); 9548 const int64_t N = Clusters.size(); 9549 9550 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9551 SmallVector<unsigned, 8> MinPartitions(N); 9552 // LastElement[i] is the last element of the partition starting at i. 9553 SmallVector<unsigned, 8> LastElement(N); 9554 9555 // FIXME: This might not be the best algorithm for finding bit test clusters. 9556 9557 // Base case: There is only one way to partition Clusters[N-1]. 9558 MinPartitions[N - 1] = 1; 9559 LastElement[N - 1] = N - 1; 9560 9561 // Note: loop indexes are signed to avoid underflow. 9562 for (int64_t i = N - 2; i >= 0; --i) { 9563 // Find optimal partitioning of Clusters[i..N-1]. 9564 // Baseline: Put Clusters[i] into a partition on its own. 9565 MinPartitions[i] = MinPartitions[i + 1] + 1; 9566 LastElement[i] = i; 9567 9568 // Search for a solution that results in fewer partitions. 9569 // Note: the search is limited by BitWidth, reducing time complexity. 9570 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 9571 // Try building a partition from Clusters[i..j]. 9572 9573 // Check the range. 9574 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 9575 Clusters[j].High->getValue(), DL)) 9576 continue; 9577 9578 // Check nbr of destinations and cluster types. 9579 // FIXME: This works, but doesn't seem very efficient. 9580 bool RangesOnly = true; 9581 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 9582 for (int64_t k = i; k <= j; k++) { 9583 if (Clusters[k].Kind != CC_Range) { 9584 RangesOnly = false; 9585 break; 9586 } 9587 Dests.set(Clusters[k].MBB->getNumber()); 9588 } 9589 if (!RangesOnly || Dests.count() > 3) 9590 break; 9591 9592 // Check if it's a better partition. 9593 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9594 if (NumPartitions < MinPartitions[i]) { 9595 // Found a better partition. 9596 MinPartitions[i] = NumPartitions; 9597 LastElement[i] = j; 9598 } 9599 } 9600 } 9601 9602 // Iterate over the partitions, replacing with bit-test clusters in-place. 9603 unsigned DstIndex = 0; 9604 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9605 Last = LastElement[First]; 9606 assert(First <= Last); 9607 assert(DstIndex <= First); 9608 9609 CaseCluster BitTestCluster; 9610 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 9611 Clusters[DstIndex++] = BitTestCluster; 9612 } else { 9613 size_t NumClusters = Last - First + 1; 9614 std::memmove(&Clusters[DstIndex], &Clusters[First], 9615 sizeof(Clusters[0]) * NumClusters); 9616 DstIndex += NumClusters; 9617 } 9618 } 9619 Clusters.resize(DstIndex); 9620 } 9621 9622 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 9623 MachineBasicBlock *SwitchMBB, 9624 MachineBasicBlock *DefaultMBB) { 9625 MachineFunction *CurMF = FuncInfo.MF; 9626 MachineBasicBlock *NextMBB = nullptr; 9627 MachineFunction::iterator BBI(W.MBB); 9628 if (++BBI != FuncInfo.MF->end()) 9629 NextMBB = &*BBI; 9630 9631 unsigned Size = W.LastCluster - W.FirstCluster + 1; 9632 9633 BranchProbabilityInfo *BPI = FuncInfo.BPI; 9634 9635 if (Size == 2 && W.MBB == SwitchMBB) { 9636 // If any two of the cases has the same destination, and if one value 9637 // is the same as the other, but has one bit unset that the other has set, 9638 // use bit manipulation to do two compares at once. For example: 9639 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 9640 // TODO: This could be extended to merge any 2 cases in switches with 3 9641 // cases. 9642 // TODO: Handle cases where W.CaseBB != SwitchBB. 9643 CaseCluster &Small = *W.FirstCluster; 9644 CaseCluster &Big = *W.LastCluster; 9645 9646 if (Small.Low == Small.High && Big.Low == Big.High && 9647 Small.MBB == Big.MBB) { 9648 const APInt &SmallValue = Small.Low->getValue(); 9649 const APInt &BigValue = Big.Low->getValue(); 9650 9651 // Check that there is only one bit different. 9652 APInt CommonBit = BigValue ^ SmallValue; 9653 if (CommonBit.isPowerOf2()) { 9654 SDValue CondLHS = getValue(Cond); 9655 EVT VT = CondLHS.getValueType(); 9656 SDLoc DL = getCurSDLoc(); 9657 9658 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 9659 DAG.getConstant(CommonBit, DL, VT)); 9660 SDValue Cond = DAG.getSetCC( 9661 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 9662 ISD::SETEQ); 9663 9664 // Update successor info. 9665 // Both Small and Big will jump to Small.BB, so we sum up the 9666 // probabilities. 9667 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 9668 if (BPI) 9669 addSuccessorWithProb( 9670 SwitchMBB, DefaultMBB, 9671 // The default destination is the first successor in IR. 9672 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 9673 else 9674 addSuccessorWithProb(SwitchMBB, DefaultMBB); 9675 9676 // Insert the true branch. 9677 SDValue BrCond = 9678 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 9679 DAG.getBasicBlock(Small.MBB)); 9680 // Insert the false branch. 9681 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 9682 DAG.getBasicBlock(DefaultMBB)); 9683 9684 DAG.setRoot(BrCond); 9685 return; 9686 } 9687 } 9688 } 9689 9690 if (TM.getOptLevel() != CodeGenOpt::None) { 9691 // Here, we order cases by probability so the most likely case will be 9692 // checked first. However, two clusters can have the same probability in 9693 // which case their relative ordering is non-deterministic. So we use Low 9694 // as a tie-breaker as clusters are guaranteed to never overlap. 9695 llvm::sort(W.FirstCluster, W.LastCluster + 1, 9696 [](const CaseCluster &a, const CaseCluster &b) { 9697 return a.Prob != b.Prob ? 9698 a.Prob > b.Prob : 9699 a.Low->getValue().slt(b.Low->getValue()); 9700 }); 9701 9702 // Rearrange the case blocks so that the last one falls through if possible 9703 // without changing the order of probabilities. 9704 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 9705 --I; 9706 if (I->Prob > W.LastCluster->Prob) 9707 break; 9708 if (I->Kind == CC_Range && I->MBB == NextMBB) { 9709 std::swap(*I, *W.LastCluster); 9710 break; 9711 } 9712 } 9713 } 9714 9715 // Compute total probability. 9716 BranchProbability DefaultProb = W.DefaultProb; 9717 BranchProbability UnhandledProbs = DefaultProb; 9718 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 9719 UnhandledProbs += I->Prob; 9720 9721 MachineBasicBlock *CurMBB = W.MBB; 9722 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 9723 MachineBasicBlock *Fallthrough; 9724 if (I == W.LastCluster) { 9725 // For the last cluster, fall through to the default destination. 9726 Fallthrough = DefaultMBB; 9727 } else { 9728 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 9729 CurMF->insert(BBI, Fallthrough); 9730 // Put Cond in a virtual register to make it available from the new blocks. 9731 ExportFromCurrentBlock(Cond); 9732 } 9733 UnhandledProbs -= I->Prob; 9734 9735 switch (I->Kind) { 9736 case CC_JumpTable: { 9737 // FIXME: Optimize away range check based on pivot comparisons. 9738 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 9739 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 9740 9741 // The jump block hasn't been inserted yet; insert it here. 9742 MachineBasicBlock *JumpMBB = JT->MBB; 9743 CurMF->insert(BBI, JumpMBB); 9744 9745 auto JumpProb = I->Prob; 9746 auto FallthroughProb = UnhandledProbs; 9747 9748 // If the default statement is a target of the jump table, we evenly 9749 // distribute the default probability to successors of CurMBB. Also 9750 // update the probability on the edge from JumpMBB to Fallthrough. 9751 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 9752 SE = JumpMBB->succ_end(); 9753 SI != SE; ++SI) { 9754 if (*SI == DefaultMBB) { 9755 JumpProb += DefaultProb / 2; 9756 FallthroughProb -= DefaultProb / 2; 9757 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 9758 JumpMBB->normalizeSuccProbs(); 9759 break; 9760 } 9761 } 9762 9763 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 9764 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 9765 CurMBB->normalizeSuccProbs(); 9766 9767 // The jump table header will be inserted in our current block, do the 9768 // range check, and fall through to our fallthrough block. 9769 JTH->HeaderBB = CurMBB; 9770 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 9771 9772 // If we're in the right place, emit the jump table header right now. 9773 if (CurMBB == SwitchMBB) { 9774 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 9775 JTH->Emitted = true; 9776 } 9777 break; 9778 } 9779 case CC_BitTests: { 9780 // FIXME: Optimize away range check based on pivot comparisons. 9781 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 9782 9783 // The bit test blocks haven't been inserted yet; insert them here. 9784 for (BitTestCase &BTC : BTB->Cases) 9785 CurMF->insert(BBI, BTC.ThisBB); 9786 9787 // Fill in fields of the BitTestBlock. 9788 BTB->Parent = CurMBB; 9789 BTB->Default = Fallthrough; 9790 9791 BTB->DefaultProb = UnhandledProbs; 9792 // If the cases in bit test don't form a contiguous range, we evenly 9793 // distribute the probability on the edge to Fallthrough to two 9794 // successors of CurMBB. 9795 if (!BTB->ContiguousRange) { 9796 BTB->Prob += DefaultProb / 2; 9797 BTB->DefaultProb -= DefaultProb / 2; 9798 } 9799 9800 // If we're in the right place, emit the bit test header right now. 9801 if (CurMBB == SwitchMBB) { 9802 visitBitTestHeader(*BTB, SwitchMBB); 9803 BTB->Emitted = true; 9804 } 9805 break; 9806 } 9807 case CC_Range: { 9808 const Value *RHS, *LHS, *MHS; 9809 ISD::CondCode CC; 9810 if (I->Low == I->High) { 9811 // Check Cond == I->Low. 9812 CC = ISD::SETEQ; 9813 LHS = Cond; 9814 RHS=I->Low; 9815 MHS = nullptr; 9816 } else { 9817 // Check I->Low <= Cond <= I->High. 9818 CC = ISD::SETLE; 9819 LHS = I->Low; 9820 MHS = Cond; 9821 RHS = I->High; 9822 } 9823 9824 // The false probability is the sum of all unhandled cases. 9825 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 9826 getCurSDLoc(), I->Prob, UnhandledProbs); 9827 9828 if (CurMBB == SwitchMBB) 9829 visitSwitchCase(CB, SwitchMBB); 9830 else 9831 SwitchCases.push_back(CB); 9832 9833 break; 9834 } 9835 } 9836 CurMBB = Fallthrough; 9837 } 9838 } 9839 9840 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 9841 CaseClusterIt First, 9842 CaseClusterIt Last) { 9843 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 9844 if (X.Prob != CC.Prob) 9845 return X.Prob > CC.Prob; 9846 9847 // Ties are broken by comparing the case value. 9848 return X.Low->getValue().slt(CC.Low->getValue()); 9849 }); 9850 } 9851 9852 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 9853 const SwitchWorkListItem &W, 9854 Value *Cond, 9855 MachineBasicBlock *SwitchMBB) { 9856 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 9857 "Clusters not sorted?"); 9858 9859 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 9860 9861 // Balance the tree based on branch probabilities to create a near-optimal (in 9862 // terms of search time given key frequency) binary search tree. See e.g. Kurt 9863 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 9864 CaseClusterIt LastLeft = W.FirstCluster; 9865 CaseClusterIt FirstRight = W.LastCluster; 9866 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 9867 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 9868 9869 // Move LastLeft and FirstRight towards each other from opposite directions to 9870 // find a partitioning of the clusters which balances the probability on both 9871 // sides. If LeftProb and RightProb are equal, alternate which side is 9872 // taken to ensure 0-probability nodes are distributed evenly. 9873 unsigned I = 0; 9874 while (LastLeft + 1 < FirstRight) { 9875 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 9876 LeftProb += (++LastLeft)->Prob; 9877 else 9878 RightProb += (--FirstRight)->Prob; 9879 I++; 9880 } 9881 9882 while (true) { 9883 // Our binary search tree differs from a typical BST in that ours can have up 9884 // to three values in each leaf. The pivot selection above doesn't take that 9885 // into account, which means the tree might require more nodes and be less 9886 // efficient. We compensate for this here. 9887 9888 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 9889 unsigned NumRight = W.LastCluster - FirstRight + 1; 9890 9891 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 9892 // If one side has less than 3 clusters, and the other has more than 3, 9893 // consider taking a cluster from the other side. 9894 9895 if (NumLeft < NumRight) { 9896 // Consider moving the first cluster on the right to the left side. 9897 CaseCluster &CC = *FirstRight; 9898 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9899 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9900 if (LeftSideRank <= RightSideRank) { 9901 // Moving the cluster to the left does not demote it. 9902 ++LastLeft; 9903 ++FirstRight; 9904 continue; 9905 } 9906 } else { 9907 assert(NumRight < NumLeft); 9908 // Consider moving the last element on the left to the right side. 9909 CaseCluster &CC = *LastLeft; 9910 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 9911 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 9912 if (RightSideRank <= LeftSideRank) { 9913 // Moving the cluster to the right does not demot it. 9914 --LastLeft; 9915 --FirstRight; 9916 continue; 9917 } 9918 } 9919 } 9920 break; 9921 } 9922 9923 assert(LastLeft + 1 == FirstRight); 9924 assert(LastLeft >= W.FirstCluster); 9925 assert(FirstRight <= W.LastCluster); 9926 9927 // Use the first element on the right as pivot since we will make less-than 9928 // comparisons against it. 9929 CaseClusterIt PivotCluster = FirstRight; 9930 assert(PivotCluster > W.FirstCluster); 9931 assert(PivotCluster <= W.LastCluster); 9932 9933 CaseClusterIt FirstLeft = W.FirstCluster; 9934 CaseClusterIt LastRight = W.LastCluster; 9935 9936 const ConstantInt *Pivot = PivotCluster->Low; 9937 9938 // New blocks will be inserted immediately after the current one. 9939 MachineFunction::iterator BBI(W.MBB); 9940 ++BBI; 9941 9942 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 9943 // we can branch to its destination directly if it's squeezed exactly in 9944 // between the known lower bound and Pivot - 1. 9945 MachineBasicBlock *LeftMBB; 9946 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 9947 FirstLeft->Low == W.GE && 9948 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 9949 LeftMBB = FirstLeft->MBB; 9950 } else { 9951 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9952 FuncInfo.MF->insert(BBI, LeftMBB); 9953 WorkList.push_back( 9954 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 9955 // Put Cond in a virtual register to make it available from the new blocks. 9956 ExportFromCurrentBlock(Cond); 9957 } 9958 9959 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 9960 // single cluster, RHS.Low == Pivot, and we can branch to its destination 9961 // directly if RHS.High equals the current upper bound. 9962 MachineBasicBlock *RightMBB; 9963 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 9964 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 9965 RightMBB = FirstRight->MBB; 9966 } else { 9967 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 9968 FuncInfo.MF->insert(BBI, RightMBB); 9969 WorkList.push_back( 9970 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 9971 // Put Cond in a virtual register to make it available from the new blocks. 9972 ExportFromCurrentBlock(Cond); 9973 } 9974 9975 // Create the CaseBlock record that will be used to lower the branch. 9976 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 9977 getCurSDLoc(), LeftProb, RightProb); 9978 9979 if (W.MBB == SwitchMBB) 9980 visitSwitchCase(CB, SwitchMBB); 9981 else 9982 SwitchCases.push_back(CB); 9983 } 9984 9985 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 9986 // from the swith statement. 9987 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 9988 BranchProbability PeeledCaseProb) { 9989 if (PeeledCaseProb == BranchProbability::getOne()) 9990 return BranchProbability::getZero(); 9991 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 9992 9993 uint32_t Numerator = CaseProb.getNumerator(); 9994 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 9995 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 9996 } 9997 9998 // Try to peel the top probability case if it exceeds the threshold. 9999 // Return current MachineBasicBlock for the switch statement if the peeling 10000 // does not occur. 10001 // If the peeling is performed, return the newly created MachineBasicBlock 10002 // for the peeled switch statement. Also update Clusters to remove the peeled 10003 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10004 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10005 const SwitchInst &SI, CaseClusterVector &Clusters, 10006 BranchProbability &PeeledCaseProb) { 10007 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10008 // Don't perform if there is only one cluster or optimizing for size. 10009 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10010 TM.getOptLevel() == CodeGenOpt::None || 10011 SwitchMBB->getParent()->getFunction().optForMinSize()) 10012 return SwitchMBB; 10013 10014 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10015 unsigned PeeledCaseIndex = 0; 10016 bool SwitchPeeled = false; 10017 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10018 CaseCluster &CC = Clusters[Index]; 10019 if (CC.Prob < TopCaseProb) 10020 continue; 10021 TopCaseProb = CC.Prob; 10022 PeeledCaseIndex = Index; 10023 SwitchPeeled = true; 10024 } 10025 if (!SwitchPeeled) 10026 return SwitchMBB; 10027 10028 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10029 << TopCaseProb << "\n"); 10030 10031 // Record the MBB for the peeled switch statement. 10032 MachineFunction::iterator BBI(SwitchMBB); 10033 ++BBI; 10034 MachineBasicBlock *PeeledSwitchMBB = 10035 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10036 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10037 10038 ExportFromCurrentBlock(SI.getCondition()); 10039 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10040 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10041 nullptr, nullptr, TopCaseProb.getCompl()}; 10042 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10043 10044 Clusters.erase(PeeledCaseIt); 10045 for (CaseCluster &CC : Clusters) { 10046 LLVM_DEBUG( 10047 dbgs() << "Scale the probablity for one cluster, before scaling: " 10048 << CC.Prob << "\n"); 10049 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10050 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10051 } 10052 PeeledCaseProb = TopCaseProb; 10053 return PeeledSwitchMBB; 10054 } 10055 10056 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10057 // Extract cases from the switch. 10058 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10059 CaseClusterVector Clusters; 10060 Clusters.reserve(SI.getNumCases()); 10061 for (auto I : SI.cases()) { 10062 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10063 const ConstantInt *CaseVal = I.getCaseValue(); 10064 BranchProbability Prob = 10065 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10066 : BranchProbability(1, SI.getNumCases() + 1); 10067 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10068 } 10069 10070 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10071 10072 // Cluster adjacent cases with the same destination. We do this at all 10073 // optimization levels because it's cheap to do and will make codegen faster 10074 // if there are many clusters. 10075 sortAndRangeify(Clusters); 10076 10077 if (TM.getOptLevel() != CodeGenOpt::None) { 10078 // Replace an unreachable default with the most popular destination. 10079 // FIXME: Exploit unreachable default more aggressively. 10080 bool UnreachableDefault = 10081 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 10082 if (UnreachableDefault && !Clusters.empty()) { 10083 DenseMap<const BasicBlock *, unsigned> Popularity; 10084 unsigned MaxPop = 0; 10085 const BasicBlock *MaxBB = nullptr; 10086 for (auto I : SI.cases()) { 10087 const BasicBlock *BB = I.getCaseSuccessor(); 10088 if (++Popularity[BB] > MaxPop) { 10089 MaxPop = Popularity[BB]; 10090 MaxBB = BB; 10091 } 10092 } 10093 // Set new default. 10094 assert(MaxPop > 0 && MaxBB); 10095 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 10096 10097 // Remove cases that were pointing to the destination that is now the 10098 // default. 10099 CaseClusterVector New; 10100 New.reserve(Clusters.size()); 10101 for (CaseCluster &CC : Clusters) { 10102 if (CC.MBB != DefaultMBB) 10103 New.push_back(CC); 10104 } 10105 Clusters = std::move(New); 10106 } 10107 } 10108 10109 // The branch probablity of the peeled case. 10110 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10111 MachineBasicBlock *PeeledSwitchMBB = 10112 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10113 10114 // If there is only the default destination, jump there directly. 10115 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10116 if (Clusters.empty()) { 10117 assert(PeeledSwitchMBB == SwitchMBB); 10118 SwitchMBB->addSuccessor(DefaultMBB); 10119 if (DefaultMBB != NextBlock(SwitchMBB)) { 10120 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10121 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10122 } 10123 return; 10124 } 10125 10126 findJumpTables(Clusters, &SI, DefaultMBB); 10127 findBitTestClusters(Clusters, &SI); 10128 10129 LLVM_DEBUG({ 10130 dbgs() << "Case clusters: "; 10131 for (const CaseCluster &C : Clusters) { 10132 if (C.Kind == CC_JumpTable) 10133 dbgs() << "JT:"; 10134 if (C.Kind == CC_BitTests) 10135 dbgs() << "BT:"; 10136 10137 C.Low->getValue().print(dbgs(), true); 10138 if (C.Low != C.High) { 10139 dbgs() << '-'; 10140 C.High->getValue().print(dbgs(), true); 10141 } 10142 dbgs() << ' '; 10143 } 10144 dbgs() << '\n'; 10145 }); 10146 10147 assert(!Clusters.empty()); 10148 SwitchWorkList WorkList; 10149 CaseClusterIt First = Clusters.begin(); 10150 CaseClusterIt Last = Clusters.end() - 1; 10151 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10152 // Scale the branchprobability for DefaultMBB if the peel occurs and 10153 // DefaultMBB is not replaced. 10154 if (PeeledCaseProb != BranchProbability::getZero() && 10155 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10156 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10157 WorkList.push_back( 10158 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10159 10160 while (!WorkList.empty()) { 10161 SwitchWorkListItem W = WorkList.back(); 10162 WorkList.pop_back(); 10163 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10164 10165 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10166 !DefaultMBB->getParent()->getFunction().optForMinSize()) { 10167 // For optimized builds, lower large range as a balanced binary tree. 10168 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10169 continue; 10170 } 10171 10172 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10173 } 10174 } 10175