1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/Analysis/AliasAnalysis.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Analysis.h" 24 #include "llvm/CodeGen/FastISel.h" 25 #include "llvm/CodeGen/FunctionLoweringInfo.h" 26 #include "llvm/CodeGen/GCMetadata.h" 27 #include "llvm/CodeGen/GCStrategy.h" 28 #include "llvm/CodeGen/MachineFrameInfo.h" 29 #include "llvm/CodeGen/MachineFunction.h" 30 #include "llvm/CodeGen/MachineInstrBuilder.h" 31 #include "llvm/CodeGen/MachineJumpTableInfo.h" 32 #include "llvm/CodeGen/MachineModuleInfo.h" 33 #include "llvm/CodeGen/MachineRegisterInfo.h" 34 #include "llvm/CodeGen/SelectionDAG.h" 35 #include "llvm/CodeGen/StackMaps.h" 36 #include "llvm/IR/CallingConv.h" 37 #include "llvm/IR/Constants.h" 38 #include "llvm/IR/DataLayout.h" 39 #include "llvm/IR/DebugInfo.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GlobalVariable.h" 43 #include "llvm/IR/InlineAsm.h" 44 #include "llvm/IR/Instructions.h" 45 #include "llvm/IR/IntrinsicInst.h" 46 #include "llvm/IR/Intrinsics.h" 47 #include "llvm/IR/LLVMContext.h" 48 #include "llvm/IR/Module.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/ErrorHandling.h" 52 #include "llvm/Support/MathExtras.h" 53 #include "llvm/Support/raw_ostream.h" 54 #include "llvm/Target/TargetFrameLowering.h" 55 #include "llvm/Target/TargetInstrInfo.h" 56 #include "llvm/Target/TargetIntrinsicInfo.h" 57 #include "llvm/Target/TargetLibraryInfo.h" 58 #include "llvm/Target/TargetLowering.h" 59 #include "llvm/Target/TargetOptions.h" 60 #include "llvm/Target/TargetSelectionDAGInfo.h" 61 #include "llvm/Target/TargetSubtargetInfo.h" 62 #include <algorithm> 63 using namespace llvm; 64 65 #define DEBUG_TYPE "isel" 66 67 /// LimitFloatPrecision - Generate low-precision inline sequences for 68 /// some float libcalls (6, 8 or 12 bits). 69 static unsigned LimitFloatPrecision; 70 71 static cl::opt<unsigned, true> 72 LimitFPPrecision("limit-float-precision", 73 cl::desc("Generate low-precision inline sequences " 74 "for some float libcalls"), 75 cl::location(LimitFloatPrecision), 76 cl::init(0)); 77 78 // Limit the width of DAG chains. This is important in general to prevent 79 // prevent DAG-based analysis from blowing up. For example, alias analysis and 80 // load clustering may not complete in reasonable time. It is difficult to 81 // recognize and avoid this situation within each individual analysis, and 82 // future analyses are likely to have the same behavior. Limiting DAG width is 83 // the safe approach, and will be especially important with global DAGs. 84 // 85 // MaxParallelChains default is arbitrarily high to avoid affecting 86 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 87 // sequence over this should have been converted to llvm.memcpy by the 88 // frontend. It easy to induce this behavior with .ll code such as: 89 // %buffer = alloca [4096 x i8] 90 // %data = load [4096 x i8]* %argPtr 91 // store [4096 x i8] %data, [4096 x i8]* %buffer 92 static const unsigned MaxParallelChains = 64; 93 94 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 95 const SDValue *Parts, unsigned NumParts, 96 MVT PartVT, EVT ValueVT, const Value *V); 97 98 /// getCopyFromParts - Create a value that contains the specified legal parts 99 /// combined into the value they represent. If the parts combine to a type 100 /// larger then ValueVT then AssertOp can be used to specify whether the extra 101 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 102 /// (ISD::AssertSext). 103 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 104 const SDValue *Parts, 105 unsigned NumParts, MVT PartVT, EVT ValueVT, 106 const Value *V, 107 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 108 if (ValueVT.isVector()) 109 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 110 PartVT, ValueVT, V); 111 112 assert(NumParts > 0 && "No parts to assemble!"); 113 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 114 SDValue Val = Parts[0]; 115 116 if (NumParts > 1) { 117 // Assemble the value from multiple parts. 118 if (ValueVT.isInteger()) { 119 unsigned PartBits = PartVT.getSizeInBits(); 120 unsigned ValueBits = ValueVT.getSizeInBits(); 121 122 // Assemble the power of 2 part. 123 unsigned RoundParts = NumParts & (NumParts - 1) ? 124 1 << Log2_32(NumParts) : NumParts; 125 unsigned RoundBits = PartBits * RoundParts; 126 EVT RoundVT = RoundBits == ValueBits ? 127 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 128 SDValue Lo, Hi; 129 130 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 131 132 if (RoundParts > 2) { 133 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 134 PartVT, HalfVT, V); 135 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 136 RoundParts / 2, PartVT, HalfVT, V); 137 } else { 138 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 139 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 140 } 141 142 if (TLI.isBigEndian()) 143 std::swap(Lo, Hi); 144 145 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 146 147 if (RoundParts < NumParts) { 148 // Assemble the trailing non-power-of-2 part. 149 unsigned OddParts = NumParts - RoundParts; 150 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 151 Hi = getCopyFromParts(DAG, DL, 152 Parts + RoundParts, OddParts, PartVT, OddVT, V); 153 154 // Combine the round and odd parts. 155 Lo = Val; 156 if (TLI.isBigEndian()) 157 std::swap(Lo, Hi); 158 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 159 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 160 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 161 DAG.getConstant(Lo.getValueType().getSizeInBits(), 162 TLI.getPointerTy())); 163 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 164 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 165 } 166 } else if (PartVT.isFloatingPoint()) { 167 // FP split into multiple FP parts (for ppcf128) 168 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 169 "Unexpected split"); 170 SDValue Lo, Hi; 171 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 172 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 173 if (TLI.hasBigEndianPartOrdering(ValueVT)) 174 std::swap(Lo, Hi); 175 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 176 } else { 177 // FP split into integer parts (soft fp) 178 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 179 !PartVT.isVector() && "Unexpected split"); 180 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 181 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 182 } 183 } 184 185 // There is now one part, held in Val. Correct it to match ValueVT. 186 EVT PartEVT = Val.getValueType(); 187 188 if (PartEVT == ValueVT) 189 return Val; 190 191 if (PartEVT.isInteger() && ValueVT.isInteger()) { 192 if (ValueVT.bitsLT(PartEVT)) { 193 // For a truncate, see if we have any information to 194 // indicate whether the truncated bits will always be 195 // zero or sign-extension. 196 if (AssertOp != ISD::DELETED_NODE) 197 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 198 DAG.getValueType(ValueVT)); 199 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 200 } 201 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 202 } 203 204 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 205 // FP_ROUND's are always exact here. 206 if (ValueVT.bitsLT(Val.getValueType())) 207 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 208 DAG.getTargetConstant(1, TLI.getPointerTy())); 209 210 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 211 } 212 213 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 214 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 215 216 llvm_unreachable("Unknown mismatch!"); 217 } 218 219 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 220 const Twine &ErrMsg) { 221 const Instruction *I = dyn_cast_or_null<Instruction>(V); 222 if (!V) 223 return Ctx.emitError(ErrMsg); 224 225 const char *AsmError = ", possible invalid constraint for vector type"; 226 if (const CallInst *CI = dyn_cast<CallInst>(I)) 227 if (isa<InlineAsm>(CI->getCalledValue())) 228 return Ctx.emitError(I, ErrMsg + AsmError); 229 230 return Ctx.emitError(I, ErrMsg); 231 } 232 233 /// getCopyFromPartsVector - Create a value that contains the specified legal 234 /// parts combined into the value they represent. If the parts combine to a 235 /// type larger then ValueVT then AssertOp can be used to specify whether the 236 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 237 /// ValueVT (ISD::AssertSext). 238 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 239 const SDValue *Parts, unsigned NumParts, 240 MVT PartVT, EVT ValueVT, const Value *V) { 241 assert(ValueVT.isVector() && "Not a vector value"); 242 assert(NumParts > 0 && "No parts to assemble!"); 243 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 244 SDValue Val = Parts[0]; 245 246 // Handle a multi-element vector. 247 if (NumParts > 1) { 248 EVT IntermediateVT; 249 MVT RegisterVT; 250 unsigned NumIntermediates; 251 unsigned NumRegs = 252 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 253 NumIntermediates, RegisterVT); 254 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 255 NumParts = NumRegs; // Silence a compiler warning. 256 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 257 assert(RegisterVT == Parts[0].getSimpleValueType() && 258 "Part type doesn't match part!"); 259 260 // Assemble the parts into intermediate operands. 261 SmallVector<SDValue, 8> Ops(NumIntermediates); 262 if (NumIntermediates == NumParts) { 263 // If the register was not expanded, truncate or copy the value, 264 // as appropriate. 265 for (unsigned i = 0; i != NumParts; ++i) 266 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 267 PartVT, IntermediateVT, V); 268 } else if (NumParts > 0) { 269 // If the intermediate type was expanded, build the intermediate 270 // operands from the parts. 271 assert(NumParts % NumIntermediates == 0 && 272 "Must expand into a divisible number of parts!"); 273 unsigned Factor = NumParts / NumIntermediates; 274 for (unsigned i = 0; i != NumIntermediates; ++i) 275 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 276 PartVT, IntermediateVT, V); 277 } 278 279 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 280 // intermediate operands. 281 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 282 : ISD::BUILD_VECTOR, 283 DL, ValueVT, Ops); 284 } 285 286 // There is now one part, held in Val. Correct it to match ValueVT. 287 EVT PartEVT = Val.getValueType(); 288 289 if (PartEVT == ValueVT) 290 return Val; 291 292 if (PartEVT.isVector()) { 293 // If the element type of the source/dest vectors are the same, but the 294 // parts vector has more elements than the value vector, then we have a 295 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 296 // elements we want. 297 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 298 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 299 "Cannot narrow, it would be a lossy transformation"); 300 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 301 DAG.getConstant(0, TLI.getVectorIdxTy())); 302 } 303 304 // Vector/Vector bitcast. 305 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 306 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 307 308 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 309 "Cannot handle this kind of promotion"); 310 // Promoted vector extract 311 bool Smaller = ValueVT.bitsLE(PartEVT); 312 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 313 DL, ValueVT, Val); 314 315 } 316 317 // Trivial bitcast if the types are the same size and the destination 318 // vector type is legal. 319 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 320 TLI.isTypeLegal(ValueVT)) 321 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 322 323 // Handle cases such as i8 -> <1 x i1> 324 if (ValueVT.getVectorNumElements() != 1) { 325 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 326 "non-trivial scalar-to-vector conversion"); 327 return DAG.getUNDEF(ValueVT); 328 } 329 330 if (ValueVT.getVectorNumElements() == 1 && 331 ValueVT.getVectorElementType() != PartEVT) { 332 bool Smaller = ValueVT.bitsLE(PartEVT); 333 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 334 DL, ValueVT.getScalarType(), Val); 335 } 336 337 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 338 } 339 340 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 341 SDValue Val, SDValue *Parts, unsigned NumParts, 342 MVT PartVT, const Value *V); 343 344 /// getCopyToParts - Create a series of nodes that contain the specified value 345 /// split into legal parts. If the parts contain more bits than Val, then, for 346 /// integers, ExtendKind can be used to specify how to generate the extra bits. 347 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 348 SDValue Val, SDValue *Parts, unsigned NumParts, 349 MVT PartVT, const Value *V, 350 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 351 EVT ValueVT = Val.getValueType(); 352 353 // Handle the vector case separately. 354 if (ValueVT.isVector()) 355 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 356 357 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 358 unsigned PartBits = PartVT.getSizeInBits(); 359 unsigned OrigNumParts = NumParts; 360 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 361 362 if (NumParts == 0) 363 return; 364 365 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 366 EVT PartEVT = PartVT; 367 if (PartEVT == ValueVT) { 368 assert(NumParts == 1 && "No-op copy with multiple parts!"); 369 Parts[0] = Val; 370 return; 371 } 372 373 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 374 // If the parts cover more bits than the value has, promote the value. 375 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 376 assert(NumParts == 1 && "Do not know what to promote to!"); 377 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 378 } else { 379 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 380 ValueVT.isInteger() && 381 "Unknown mismatch!"); 382 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 383 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 384 if (PartVT == MVT::x86mmx) 385 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 386 } 387 } else if (PartBits == ValueVT.getSizeInBits()) { 388 // Different types of the same size. 389 assert(NumParts == 1 && PartEVT != ValueVT); 390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 391 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 392 // If the parts cover less bits than value has, truncate the value. 393 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 394 ValueVT.isInteger() && 395 "Unknown mismatch!"); 396 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 397 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 398 if (PartVT == MVT::x86mmx) 399 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 400 } 401 402 // The value may have changed - recompute ValueVT. 403 ValueVT = Val.getValueType(); 404 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 405 "Failed to tile the value with PartVT!"); 406 407 if (NumParts == 1) { 408 if (PartEVT != ValueVT) 409 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 410 "scalar-to-vector conversion failed"); 411 412 Parts[0] = Val; 413 return; 414 } 415 416 // Expand the value into multiple parts. 417 if (NumParts & (NumParts - 1)) { 418 // The number of parts is not a power of 2. Split off and copy the tail. 419 assert(PartVT.isInteger() && ValueVT.isInteger() && 420 "Do not know what to expand to!"); 421 unsigned RoundParts = 1 << Log2_32(NumParts); 422 unsigned RoundBits = RoundParts * PartBits; 423 unsigned OddParts = NumParts - RoundParts; 424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 425 DAG.getIntPtrConstant(RoundBits)); 426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 427 428 if (TLI.isBigEndian()) 429 // The odd parts were reversed by getCopyToParts - unreverse them. 430 std::reverse(Parts + RoundParts, Parts + NumParts); 431 432 NumParts = RoundParts; 433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 435 } 436 437 // The number of parts is a power of 2. Repeatedly bisect the value using 438 // EXTRACT_ELEMENT. 439 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 440 EVT::getIntegerVT(*DAG.getContext(), 441 ValueVT.getSizeInBits()), 442 Val); 443 444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 445 for (unsigned i = 0; i < NumParts; i += StepSize) { 446 unsigned ThisBits = StepSize * PartBits / 2; 447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 448 SDValue &Part0 = Parts[i]; 449 SDValue &Part1 = Parts[i+StepSize/2]; 450 451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 452 ThisVT, Part0, DAG.getIntPtrConstant(1)); 453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 454 ThisVT, Part0, DAG.getIntPtrConstant(0)); 455 456 if (ThisBits == PartBits && ThisVT != PartVT) { 457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 459 } 460 } 461 } 462 463 if (TLI.isBigEndian()) 464 std::reverse(Parts, Parts + OrigNumParts); 465 } 466 467 468 /// getCopyToPartsVector - Create a series of nodes that contain the specified 469 /// value split into legal parts. 470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 471 SDValue Val, SDValue *Parts, unsigned NumParts, 472 MVT PartVT, const Value *V) { 473 EVT ValueVT = Val.getValueType(); 474 assert(ValueVT.isVector() && "Not a vector"); 475 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 476 477 if (NumParts == 1) { 478 EVT PartEVT = PartVT; 479 if (PartEVT == ValueVT) { 480 // Nothing to do. 481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 482 // Bitconvert vector->vector case. 483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 484 } else if (PartVT.isVector() && 485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 487 EVT ElementVT = PartVT.getVectorElementType(); 488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 489 // undef elements. 490 SmallVector<SDValue, 16> Ops; 491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 493 ElementVT, Val, DAG.getConstant(i, 494 TLI.getVectorIdxTy()))); 495 496 for (unsigned i = ValueVT.getVectorNumElements(), 497 e = PartVT.getVectorNumElements(); i != e; ++i) 498 Ops.push_back(DAG.getUNDEF(ElementVT)); 499 500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 501 502 // FIXME: Use CONCAT for 2x -> 4x. 503 504 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 506 } else if (PartVT.isVector() && 507 PartEVT.getVectorElementType().bitsGE( 508 ValueVT.getVectorElementType()) && 509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 510 511 // Promoted vector extract 512 bool Smaller = PartEVT.bitsLE(ValueVT); 513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 514 DL, PartVT, Val); 515 } else{ 516 // Vector -> scalar conversion. 517 assert(ValueVT.getVectorNumElements() == 1 && 518 "Only trivial vector-to-scalar conversions should get here!"); 519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy())); 521 522 bool Smaller = ValueVT.bitsLE(PartVT); 523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 524 DL, PartVT, Val); 525 } 526 527 Parts[0] = Val; 528 return; 529 } 530 531 // Handle a multi-element vector. 532 EVT IntermediateVT; 533 MVT RegisterVT; 534 unsigned NumIntermediates; 535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 536 IntermediateVT, 537 NumIntermediates, RegisterVT); 538 unsigned NumElements = ValueVT.getVectorNumElements(); 539 540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 541 NumParts = NumRegs; // Silence a compiler warning. 542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 543 544 // Split the vector into intermediate operands. 545 SmallVector<SDValue, 8> Ops(NumIntermediates); 546 for (unsigned i = 0; i != NumIntermediates; ++i) { 547 if (IntermediateVT.isVector()) 548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 549 IntermediateVT, Val, 550 DAG.getConstant(i * (NumElements / NumIntermediates), 551 TLI.getVectorIdxTy())); 552 else 553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i, TLI.getVectorIdxTy())); 556 } 557 558 // Split the intermediate operands into legal parts. 559 if (NumParts == NumIntermediates) { 560 // If the register was not expanded, promote or copy the value, 561 // as appropriate. 562 for (unsigned i = 0; i != NumParts; ++i) 563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 564 } else if (NumParts > 0) { 565 // If the intermediate type was expanded, split each the value into 566 // legal parts. 567 assert(NumParts % NumIntermediates == 0 && 568 "Must expand into a divisible number of parts!"); 569 unsigned Factor = NumParts / NumIntermediates; 570 for (unsigned i = 0; i != NumIntermediates; ++i) 571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 572 } 573 } 574 575 namespace { 576 /// RegsForValue - This struct represents the registers (physical or virtual) 577 /// that a particular set of values is assigned, and the type information 578 /// about the value. The most common situation is to represent one value at a 579 /// time, but struct or array values are handled element-wise as multiple 580 /// values. The splitting of aggregates is performed recursively, so that we 581 /// never have aggregate-typed registers. The values at this point do not 582 /// necessarily have legal types, so each value may require one or more 583 /// registers of some legal type. 584 /// 585 struct RegsForValue { 586 /// ValueVTs - The value types of the values, which may not be legal, and 587 /// may need be promoted or synthesized from one or more registers. 588 /// 589 SmallVector<EVT, 4> ValueVTs; 590 591 /// RegVTs - The value types of the registers. This is the same size as 592 /// ValueVTs and it records, for each value, what the type of the assigned 593 /// register or registers are. (Individual values are never synthesized 594 /// from more than one type of register.) 595 /// 596 /// With virtual registers, the contents of RegVTs is redundant with TLI's 597 /// getRegisterType member function, however when with physical registers 598 /// it is necessary to have a separate record of the types. 599 /// 600 SmallVector<MVT, 4> RegVTs; 601 602 /// Regs - This list holds the registers assigned to the values. 603 /// Each legal or promoted value requires one register, and each 604 /// expanded value requires multiple registers. 605 /// 606 SmallVector<unsigned, 4> Regs; 607 608 RegsForValue() {} 609 610 RegsForValue(const SmallVector<unsigned, 4> ®s, 611 MVT regvt, EVT valuevt) 612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 613 614 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 615 unsigned Reg, Type *Ty) { 616 ComputeValueVTs(tli, Ty, ValueVTs); 617 618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 619 EVT ValueVT = ValueVTs[Value]; 620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 622 for (unsigned i = 0; i != NumRegs; ++i) 623 Regs.push_back(Reg + i); 624 RegVTs.push_back(RegisterVT); 625 Reg += NumRegs; 626 } 627 } 628 629 /// append - Add the specified values to this one. 630 void append(const RegsForValue &RHS) { 631 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 632 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 633 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 634 } 635 636 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 637 /// this value and returns the result as a ValueVTs value. This uses 638 /// Chain/Flag as the input and updates them for the output Chain/Flag. 639 /// If the Flag pointer is NULL, no flag is used. 640 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 641 SDLoc dl, 642 SDValue &Chain, SDValue *Flag, 643 const Value *V = nullptr) const; 644 645 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 646 /// specified value into the registers specified by this object. This uses 647 /// Chain/Flag as the input and updates them for the output Chain/Flag. 648 /// If the Flag pointer is NULL, no flag is used. 649 void 650 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 651 SDValue *Flag, const Value *V, 652 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 653 654 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 655 /// operand list. This adds the code marker, matching input operand index 656 /// (if applicable), and includes the number of values added into it. 657 void AddInlineAsmOperands(unsigned Kind, 658 bool HasMatching, unsigned MatchingIdx, 659 SelectionDAG &DAG, 660 std::vector<SDValue> &Ops) const; 661 }; 662 } 663 664 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 665 /// this value and returns the result as a ValueVT value. This uses 666 /// Chain/Flag as the input and updates them for the output Chain/Flag. 667 /// If the Flag pointer is NULL, no flag is used. 668 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 669 FunctionLoweringInfo &FuncInfo, 670 SDLoc dl, 671 SDValue &Chain, SDValue *Flag, 672 const Value *V) const { 673 // A Value with type {} or [0 x %t] needs no registers. 674 if (ValueVTs.empty()) 675 return SDValue(); 676 677 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 678 679 // Assemble the legal parts into the final values. 680 SmallVector<SDValue, 4> Values(ValueVTs.size()); 681 SmallVector<SDValue, 8> Parts; 682 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 683 // Copy the legal parts from the registers. 684 EVT ValueVT = ValueVTs[Value]; 685 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 686 MVT RegisterVT = RegVTs[Value]; 687 688 Parts.resize(NumRegs); 689 for (unsigned i = 0; i != NumRegs; ++i) { 690 SDValue P; 691 if (!Flag) { 692 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 693 } else { 694 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 695 *Flag = P.getValue(2); 696 } 697 698 Chain = P.getValue(1); 699 Parts[i] = P; 700 701 // If the source register was virtual and if we know something about it, 702 // add an assert node. 703 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 704 !RegisterVT.isInteger() || RegisterVT.isVector()) 705 continue; 706 707 const FunctionLoweringInfo::LiveOutInfo *LOI = 708 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 709 if (!LOI) 710 continue; 711 712 unsigned RegSize = RegisterVT.getSizeInBits(); 713 unsigned NumSignBits = LOI->NumSignBits; 714 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 715 716 if (NumZeroBits == RegSize) { 717 // The current value is a zero. 718 // Explicitly express that as it would be easier for 719 // optimizations to kick in. 720 Parts[i] = DAG.getConstant(0, RegisterVT); 721 continue; 722 } 723 724 // FIXME: We capture more information than the dag can represent. For 725 // now, just use the tightest assertzext/assertsext possible. 726 bool isSExt = true; 727 EVT FromVT(MVT::Other); 728 if (NumSignBits == RegSize) 729 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 730 else if (NumZeroBits >= RegSize-1) 731 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 732 else if (NumSignBits > RegSize-8) 733 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 734 else if (NumZeroBits >= RegSize-8) 735 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 736 else if (NumSignBits > RegSize-16) 737 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 738 else if (NumZeroBits >= RegSize-16) 739 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 740 else if (NumSignBits > RegSize-32) 741 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 742 else if (NumZeroBits >= RegSize-32) 743 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 744 else 745 continue; 746 747 // Add an assertion node. 748 assert(FromVT != MVT::Other); 749 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 750 RegisterVT, P, DAG.getValueType(FromVT)); 751 } 752 753 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 754 NumRegs, RegisterVT, ValueVT, V); 755 Part += NumRegs; 756 Parts.clear(); 757 } 758 759 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 760 } 761 762 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 763 /// specified value into the registers specified by this object. This uses 764 /// Chain/Flag as the input and updates them for the output Chain/Flag. 765 /// If the Flag pointer is NULL, no flag is used. 766 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 767 SDValue &Chain, SDValue *Flag, const Value *V, 768 ISD::NodeType PreferredExtendType) const { 769 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 770 ISD::NodeType ExtendKind = PreferredExtendType; 771 772 // Get the list of the values's legal parts. 773 unsigned NumRegs = Regs.size(); 774 SmallVector<SDValue, 8> Parts(NumRegs); 775 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 776 EVT ValueVT = ValueVTs[Value]; 777 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 778 MVT RegisterVT = RegVTs[Value]; 779 780 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 781 ExtendKind = ISD::ZERO_EXTEND; 782 783 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 784 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 785 Part += NumParts; 786 } 787 788 // Copy the parts into the registers. 789 SmallVector<SDValue, 8> Chains(NumRegs); 790 for (unsigned i = 0; i != NumRegs; ++i) { 791 SDValue Part; 792 if (!Flag) { 793 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 794 } else { 795 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 796 *Flag = Part.getValue(1); 797 } 798 799 Chains[i] = Part.getValue(0); 800 } 801 802 if (NumRegs == 1 || Flag) 803 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 804 // flagged to it. That is the CopyToReg nodes and the user are considered 805 // a single scheduling unit. If we create a TokenFactor and return it as 806 // chain, then the TokenFactor is both a predecessor (operand) of the 807 // user as well as a successor (the TF operands are flagged to the user). 808 // c1, f1 = CopyToReg 809 // c2, f2 = CopyToReg 810 // c3 = TokenFactor c1, c2 811 // ... 812 // = op c3, ..., f2 813 Chain = Chains[NumRegs-1]; 814 else 815 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 816 } 817 818 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 819 /// operand list. This adds the code marker and includes the number of 820 /// values added into it. 821 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 822 unsigned MatchingIdx, 823 SelectionDAG &DAG, 824 std::vector<SDValue> &Ops) const { 825 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 826 827 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 828 if (HasMatching) 829 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 830 else if (!Regs.empty() && 831 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 832 // Put the register class of the virtual registers in the flag word. That 833 // way, later passes can recompute register class constraints for inline 834 // assembly as well as normal instructions. 835 // Don't do this for tied operands that can use the regclass information 836 // from the def. 837 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 838 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 839 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 840 } 841 842 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 843 Ops.push_back(Res); 844 845 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 846 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 847 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 848 MVT RegisterVT = RegVTs[Value]; 849 for (unsigned i = 0; i != NumRegs; ++i) { 850 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 851 unsigned TheReg = Regs[Reg++]; 852 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 853 854 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 855 // If we clobbered the stack pointer, MFI should know about it. 856 assert(DAG.getMachineFunction().getFrameInfo()-> 857 hasInlineAsmWithSPAdjust()); 858 } 859 } 860 } 861 } 862 863 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 864 const TargetLibraryInfo *li) { 865 AA = &aa; 866 GFI = gfi; 867 LibInfo = li; 868 DL = DAG.getSubtarget().getDataLayout(); 869 Context = DAG.getContext(); 870 LPadToCallSiteMap.clear(); 871 } 872 873 /// clear - Clear out the current SelectionDAG and the associated 874 /// state and prepare this SelectionDAGBuilder object to be used 875 /// for a new block. This doesn't clear out information about 876 /// additional blocks that are needed to complete switch lowering 877 /// or PHI node updating; that information is cleared out as it is 878 /// consumed. 879 void SelectionDAGBuilder::clear() { 880 NodeMap.clear(); 881 UnusedArgNodeMap.clear(); 882 PendingLoads.clear(); 883 PendingExports.clear(); 884 CurInst = nullptr; 885 HasTailCall = false; 886 SDNodeOrder = LowestSDNodeOrder; 887 } 888 889 /// clearDanglingDebugInfo - Clear the dangling debug information 890 /// map. This function is separated from the clear so that debug 891 /// information that is dangling in a basic block can be properly 892 /// resolved in a different basic block. This allows the 893 /// SelectionDAG to resolve dangling debug information attached 894 /// to PHI nodes. 895 void SelectionDAGBuilder::clearDanglingDebugInfo() { 896 DanglingDebugInfoMap.clear(); 897 } 898 899 /// getRoot - Return the current virtual root of the Selection DAG, 900 /// flushing any PendingLoad items. This must be done before emitting 901 /// a store or any other node that may need to be ordered after any 902 /// prior load instructions. 903 /// 904 SDValue SelectionDAGBuilder::getRoot() { 905 if (PendingLoads.empty()) 906 return DAG.getRoot(); 907 908 if (PendingLoads.size() == 1) { 909 SDValue Root = PendingLoads[0]; 910 DAG.setRoot(Root); 911 PendingLoads.clear(); 912 return Root; 913 } 914 915 // Otherwise, we have to make a token factor node. 916 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 917 PendingLoads); 918 PendingLoads.clear(); 919 DAG.setRoot(Root); 920 return Root; 921 } 922 923 /// getControlRoot - Similar to getRoot, but instead of flushing all the 924 /// PendingLoad items, flush all the PendingExports items. It is necessary 925 /// to do this before emitting a terminator instruction. 926 /// 927 SDValue SelectionDAGBuilder::getControlRoot() { 928 SDValue Root = DAG.getRoot(); 929 930 if (PendingExports.empty()) 931 return Root; 932 933 // Turn all of the CopyToReg chains into one factored node. 934 if (Root.getOpcode() != ISD::EntryToken) { 935 unsigned i = 0, e = PendingExports.size(); 936 for (; i != e; ++i) { 937 assert(PendingExports[i].getNode()->getNumOperands() > 1); 938 if (PendingExports[i].getNode()->getOperand(0) == Root) 939 break; // Don't add the root if we already indirectly depend on it. 940 } 941 942 if (i == e) 943 PendingExports.push_back(Root); 944 } 945 946 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 947 PendingExports); 948 PendingExports.clear(); 949 DAG.setRoot(Root); 950 return Root; 951 } 952 953 void SelectionDAGBuilder::visit(const Instruction &I) { 954 // Set up outgoing PHI node register values before emitting the terminator. 955 if (isa<TerminatorInst>(&I)) 956 HandlePHINodesInSuccessorBlocks(I.getParent()); 957 958 ++SDNodeOrder; 959 960 CurInst = &I; 961 962 visit(I.getOpcode(), I); 963 964 if (!isa<TerminatorInst>(&I) && !HasTailCall) 965 CopyToExportRegsIfNeeded(&I); 966 967 CurInst = nullptr; 968 } 969 970 void SelectionDAGBuilder::visitPHI(const PHINode &) { 971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 972 } 973 974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 975 // Note: this doesn't use InstVisitor, because it has to work with 976 // ConstantExpr's in addition to instructions. 977 switch (Opcode) { 978 default: llvm_unreachable("Unknown instruction type encountered!"); 979 // Build the switch statement using the Instruction.def file. 980 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 982 #include "llvm/IR/Instruction.def" 983 } 984 } 985 986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 987 // generate the debug data structures now that we've seen its definition. 988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 989 SDValue Val) { 990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 991 if (DDI.getDI()) { 992 const DbgValueInst *DI = DDI.getDI(); 993 DebugLoc dl = DDI.getdl(); 994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 995 MDNode *Variable = DI->getVariable(); 996 MDNode *Expr = DI->getExpression(); 997 uint64_t Offset = DI->getOffset(); 998 // A dbg.value for an alloca is always indirect. 999 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1000 SDDbgValue *SDV; 1001 if (Val.getNode()) { 1002 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect, 1003 Val)) { 1004 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1005 IsIndirect, Offset, dl, DbgSDNodeOrder); 1006 DAG.AddDbgValue(SDV, Val.getNode(), false); 1007 } 1008 } else 1009 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1010 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1011 } 1012 } 1013 1014 /// getValue - Return an SDValue for the given Value. 1015 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1016 // If we already have an SDValue for this value, use it. It's important 1017 // to do this first, so that we don't create a CopyFromReg if we already 1018 // have a regular SDValue. 1019 SDValue &N = NodeMap[V]; 1020 if (N.getNode()) return N; 1021 1022 // If there's a virtual register allocated and initialized for this 1023 // value, use it. 1024 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1025 if (It != FuncInfo.ValueMap.end()) { 1026 unsigned InReg = It->second; 1027 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1028 V->getType()); 1029 SDValue Chain = DAG.getEntryNode(); 1030 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1031 resolveDanglingDebugInfo(V, N); 1032 return N; 1033 } 1034 1035 // Otherwise create a new SDValue and remember it. 1036 SDValue Val = getValueImpl(V); 1037 NodeMap[V] = Val; 1038 resolveDanglingDebugInfo(V, Val); 1039 return Val; 1040 } 1041 1042 /// getNonRegisterValue - Return an SDValue for the given Value, but 1043 /// don't look in FuncInfo.ValueMap for a virtual register. 1044 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1045 // If we already have an SDValue for this value, use it. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) return N; 1048 1049 // Otherwise create a new SDValue and remember it. 1050 SDValue Val = getValueImpl(V); 1051 NodeMap[V] = Val; 1052 resolveDanglingDebugInfo(V, Val); 1053 return Val; 1054 } 1055 1056 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1057 /// Create an SDValue for the given value. 1058 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1060 1061 if (const Constant *C = dyn_cast<Constant>(V)) { 1062 EVT VT = TLI.getValueType(V->getType(), true); 1063 1064 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1065 return DAG.getConstant(*CI, VT); 1066 1067 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1068 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1069 1070 if (isa<ConstantPointerNull>(C)) { 1071 unsigned AS = V->getType()->getPointerAddressSpace(); 1072 return DAG.getConstant(0, TLI.getPointerTy(AS)); 1073 } 1074 1075 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1076 return DAG.getConstantFP(*CFP, VT); 1077 1078 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1079 return DAG.getUNDEF(VT); 1080 1081 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1082 visit(CE->getOpcode(), *CE); 1083 SDValue N1 = NodeMap[V]; 1084 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1085 return N1; 1086 } 1087 1088 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1089 SmallVector<SDValue, 4> Constants; 1090 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1091 OI != OE; ++OI) { 1092 SDNode *Val = getValue(*OI).getNode(); 1093 // If the operand is an empty aggregate, there are no values. 1094 if (!Val) continue; 1095 // Add each leaf value from the operand to the Constants list 1096 // to form a flattened list of all the values. 1097 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1098 Constants.push_back(SDValue(Val, i)); 1099 } 1100 1101 return DAG.getMergeValues(Constants, getCurSDLoc()); 1102 } 1103 1104 if (const ConstantDataSequential *CDS = 1105 dyn_cast<ConstantDataSequential>(C)) { 1106 SmallVector<SDValue, 4> Ops; 1107 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1108 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1109 // Add each leaf value from the operand to the Constants list 1110 // to form a flattened list of all the values. 1111 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1112 Ops.push_back(SDValue(Val, i)); 1113 } 1114 1115 if (isa<ArrayType>(CDS->getType())) 1116 return DAG.getMergeValues(Ops, getCurSDLoc()); 1117 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1118 VT, Ops); 1119 } 1120 1121 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1122 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1123 "Unknown struct or array constant!"); 1124 1125 SmallVector<EVT, 4> ValueVTs; 1126 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1127 unsigned NumElts = ValueVTs.size(); 1128 if (NumElts == 0) 1129 return SDValue(); // empty struct 1130 SmallVector<SDValue, 4> Constants(NumElts); 1131 for (unsigned i = 0; i != NumElts; ++i) { 1132 EVT EltVT = ValueVTs[i]; 1133 if (isa<UndefValue>(C)) 1134 Constants[i] = DAG.getUNDEF(EltVT); 1135 else if (EltVT.isFloatingPoint()) 1136 Constants[i] = DAG.getConstantFP(0, EltVT); 1137 else 1138 Constants[i] = DAG.getConstant(0, EltVT); 1139 } 1140 1141 return DAG.getMergeValues(Constants, getCurSDLoc()); 1142 } 1143 1144 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1145 return DAG.getBlockAddress(BA, VT); 1146 1147 VectorType *VecTy = cast<VectorType>(V->getType()); 1148 unsigned NumElements = VecTy->getNumElements(); 1149 1150 // Now that we know the number and type of the elements, get that number of 1151 // elements into the Ops array based on what kind of constant it is. 1152 SmallVector<SDValue, 16> Ops; 1153 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1154 for (unsigned i = 0; i != NumElements; ++i) 1155 Ops.push_back(getValue(CV->getOperand(i))); 1156 } else { 1157 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1158 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1159 1160 SDValue Op; 1161 if (EltVT.isFloatingPoint()) 1162 Op = DAG.getConstantFP(0, EltVT); 1163 else 1164 Op = DAG.getConstant(0, EltVT); 1165 Ops.assign(NumElements, Op); 1166 } 1167 1168 // Create a BUILD_VECTOR node. 1169 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1170 } 1171 1172 // If this is a static alloca, generate it as the frameindex instead of 1173 // computation. 1174 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1175 DenseMap<const AllocaInst*, int>::iterator SI = 1176 FuncInfo.StaticAllocaMap.find(AI); 1177 if (SI != FuncInfo.StaticAllocaMap.end()) 1178 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1179 } 1180 1181 // If this is an instruction which fast-isel has deferred, select it now. 1182 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1183 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1184 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1185 SDValue Chain = DAG.getEntryNode(); 1186 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1187 } 1188 1189 llvm_unreachable("Can't get register for value!"); 1190 } 1191 1192 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1193 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1194 SDValue Chain = getControlRoot(); 1195 SmallVector<ISD::OutputArg, 8> Outs; 1196 SmallVector<SDValue, 8> OutVals; 1197 1198 if (!FuncInfo.CanLowerReturn) { 1199 unsigned DemoteReg = FuncInfo.DemoteRegister; 1200 const Function *F = I.getParent()->getParent(); 1201 1202 // Emit a store of the return value through the virtual register. 1203 // Leave Outs empty so that LowerReturn won't try to load return 1204 // registers the usual way. 1205 SmallVector<EVT, 1> PtrValueVTs; 1206 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1207 PtrValueVTs); 1208 1209 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1210 SDValue RetOp = getValue(I.getOperand(0)); 1211 1212 SmallVector<EVT, 4> ValueVTs; 1213 SmallVector<uint64_t, 4> Offsets; 1214 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1215 unsigned NumValues = ValueVTs.size(); 1216 1217 SmallVector<SDValue, 4> Chains(NumValues); 1218 for (unsigned i = 0; i != NumValues; ++i) { 1219 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1220 RetPtr.getValueType(), RetPtr, 1221 DAG.getIntPtrConstant(Offsets[i])); 1222 Chains[i] = 1223 DAG.getStore(Chain, getCurSDLoc(), 1224 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1225 // FIXME: better loc info would be nice. 1226 Add, MachinePointerInfo(), false, false, 0); 1227 } 1228 1229 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1230 MVT::Other, Chains); 1231 } else if (I.getNumOperands() != 0) { 1232 SmallVector<EVT, 4> ValueVTs; 1233 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1234 unsigned NumValues = ValueVTs.size(); 1235 if (NumValues) { 1236 SDValue RetOp = getValue(I.getOperand(0)); 1237 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1238 EVT VT = ValueVTs[j]; 1239 1240 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1241 1242 const Function *F = I.getParent()->getParent(); 1243 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1244 Attribute::SExt)) 1245 ExtendKind = ISD::SIGN_EXTEND; 1246 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1247 Attribute::ZExt)) 1248 ExtendKind = ISD::ZERO_EXTEND; 1249 1250 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1251 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1252 1253 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1254 MVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1255 SmallVector<SDValue, 4> Parts(NumParts); 1256 getCopyToParts(DAG, getCurSDLoc(), 1257 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1258 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1259 1260 // 'inreg' on function refers to return value 1261 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1262 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1263 Attribute::InReg)) 1264 Flags.setInReg(); 1265 1266 // Propagate extension type if any 1267 if (ExtendKind == ISD::SIGN_EXTEND) 1268 Flags.setSExt(); 1269 else if (ExtendKind == ISD::ZERO_EXTEND) 1270 Flags.setZExt(); 1271 1272 for (unsigned i = 0; i < NumParts; ++i) { 1273 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1274 VT, /*isfixed=*/true, 0, 0)); 1275 OutVals.push_back(Parts[i]); 1276 } 1277 } 1278 } 1279 } 1280 1281 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1282 CallingConv::ID CallConv = 1283 DAG.getMachineFunction().getFunction()->getCallingConv(); 1284 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1285 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1286 1287 // Verify that the target's LowerReturn behaved as expected. 1288 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1289 "LowerReturn didn't return a valid chain!"); 1290 1291 // Update the DAG with the new chain value resulting from return lowering. 1292 DAG.setRoot(Chain); 1293 } 1294 1295 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1296 /// created for it, emit nodes to copy the value into the virtual 1297 /// registers. 1298 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1299 // Skip empty types 1300 if (V->getType()->isEmptyTy()) 1301 return; 1302 1303 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1304 if (VMI != FuncInfo.ValueMap.end()) { 1305 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1306 CopyValueToVirtualRegister(V, VMI->second); 1307 } 1308 } 1309 1310 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1311 /// the current basic block, add it to ValueMap now so that we'll get a 1312 /// CopyTo/FromReg. 1313 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1314 // No need to export constants. 1315 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1316 1317 // Already exported? 1318 if (FuncInfo.isExportedInst(V)) return; 1319 1320 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1321 CopyValueToVirtualRegister(V, Reg); 1322 } 1323 1324 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1325 const BasicBlock *FromBB) { 1326 // The operands of the setcc have to be in this block. We don't know 1327 // how to export them from some other block. 1328 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1329 // Can export from current BB. 1330 if (VI->getParent() == FromBB) 1331 return true; 1332 1333 // Is already exported, noop. 1334 return FuncInfo.isExportedInst(V); 1335 } 1336 1337 // If this is an argument, we can export it if the BB is the entry block or 1338 // if it is already exported. 1339 if (isa<Argument>(V)) { 1340 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1341 return true; 1342 1343 // Otherwise, can only export this if it is already exported. 1344 return FuncInfo.isExportedInst(V); 1345 } 1346 1347 // Otherwise, constants can always be exported. 1348 return true; 1349 } 1350 1351 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1352 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1353 const MachineBasicBlock *Dst) const { 1354 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1355 if (!BPI) 1356 return 0; 1357 const BasicBlock *SrcBB = Src->getBasicBlock(); 1358 const BasicBlock *DstBB = Dst->getBasicBlock(); 1359 return BPI->getEdgeWeight(SrcBB, DstBB); 1360 } 1361 1362 void SelectionDAGBuilder:: 1363 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1364 uint32_t Weight /* = 0 */) { 1365 if (!Weight) 1366 Weight = getEdgeWeight(Src, Dst); 1367 Src->addSuccessor(Dst, Weight); 1368 } 1369 1370 1371 static bool InBlock(const Value *V, const BasicBlock *BB) { 1372 if (const Instruction *I = dyn_cast<Instruction>(V)) 1373 return I->getParent() == BB; 1374 return true; 1375 } 1376 1377 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1378 /// This function emits a branch and is used at the leaves of an OR or an 1379 /// AND operator tree. 1380 /// 1381 void 1382 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1383 MachineBasicBlock *TBB, 1384 MachineBasicBlock *FBB, 1385 MachineBasicBlock *CurBB, 1386 MachineBasicBlock *SwitchBB, 1387 uint32_t TWeight, 1388 uint32_t FWeight) { 1389 const BasicBlock *BB = CurBB->getBasicBlock(); 1390 1391 // If the leaf of the tree is a comparison, merge the condition into 1392 // the caseblock. 1393 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1394 // The operands of the cmp have to be in this block. We don't know 1395 // how to export them from some other block. If this is the first block 1396 // of the sequence, no exporting is needed. 1397 if (CurBB == SwitchBB || 1398 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1399 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1400 ISD::CondCode Condition; 1401 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1402 Condition = getICmpCondCode(IC->getPredicate()); 1403 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1404 Condition = getFCmpCondCode(FC->getPredicate()); 1405 if (TM.Options.NoNaNsFPMath) 1406 Condition = getFCmpCodeWithoutNaN(Condition); 1407 } else { 1408 Condition = ISD::SETEQ; // silence warning. 1409 llvm_unreachable("Unknown compare instruction"); 1410 } 1411 1412 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1413 TBB, FBB, CurBB, TWeight, FWeight); 1414 SwitchCases.push_back(CB); 1415 return; 1416 } 1417 } 1418 1419 // Create a CaseBlock record representing this branch. 1420 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1421 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1422 SwitchCases.push_back(CB); 1423 } 1424 1425 /// Scale down both weights to fit into uint32_t. 1426 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1427 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1428 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1429 NewTrue = NewTrue / Scale; 1430 NewFalse = NewFalse / Scale; 1431 } 1432 1433 /// FindMergedConditions - If Cond is an expression like 1434 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1435 MachineBasicBlock *TBB, 1436 MachineBasicBlock *FBB, 1437 MachineBasicBlock *CurBB, 1438 MachineBasicBlock *SwitchBB, 1439 unsigned Opc, uint32_t TWeight, 1440 uint32_t FWeight) { 1441 // If this node is not part of the or/and tree, emit it as a branch. 1442 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1443 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1444 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1445 BOp->getParent() != CurBB->getBasicBlock() || 1446 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1447 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1448 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1449 TWeight, FWeight); 1450 return; 1451 } 1452 1453 // Create TmpBB after CurBB. 1454 MachineFunction::iterator BBI = CurBB; 1455 MachineFunction &MF = DAG.getMachineFunction(); 1456 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1457 CurBB->getParent()->insert(++BBI, TmpBB); 1458 1459 if (Opc == Instruction::Or) { 1460 // Codegen X | Y as: 1461 // BB1: 1462 // jmp_if_X TBB 1463 // jmp TmpBB 1464 // TmpBB: 1465 // jmp_if_Y TBB 1466 // jmp FBB 1467 // 1468 1469 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1470 // The requirement is that 1471 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1472 // = TrueProb for orignal BB. 1473 // Assuming the orignal weights are A and B, one choice is to set BB1's 1474 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1475 // assumes that 1476 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1477 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1478 // TmpBB, but the math is more complicated. 1479 1480 uint64_t NewTrueWeight = TWeight; 1481 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1482 ScaleWeights(NewTrueWeight, NewFalseWeight); 1483 // Emit the LHS condition. 1484 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1485 NewTrueWeight, NewFalseWeight); 1486 1487 NewTrueWeight = TWeight; 1488 NewFalseWeight = 2 * (uint64_t)FWeight; 1489 ScaleWeights(NewTrueWeight, NewFalseWeight); 1490 // Emit the RHS condition into TmpBB. 1491 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1492 NewTrueWeight, NewFalseWeight); 1493 } else { 1494 assert(Opc == Instruction::And && "Unknown merge op!"); 1495 // Codegen X & Y as: 1496 // BB1: 1497 // jmp_if_X TmpBB 1498 // jmp FBB 1499 // TmpBB: 1500 // jmp_if_Y TBB 1501 // jmp FBB 1502 // 1503 // This requires creation of TmpBB after CurBB. 1504 1505 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1506 // The requirement is that 1507 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1508 // = FalseProb for orignal BB. 1509 // Assuming the orignal weights are A and B, one choice is to set BB1's 1510 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1511 // assumes that 1512 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1513 1514 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1515 uint64_t NewFalseWeight = FWeight; 1516 ScaleWeights(NewTrueWeight, NewFalseWeight); 1517 // Emit the LHS condition. 1518 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1519 NewTrueWeight, NewFalseWeight); 1520 1521 NewTrueWeight = 2 * (uint64_t)TWeight; 1522 NewFalseWeight = FWeight; 1523 ScaleWeights(NewTrueWeight, NewFalseWeight); 1524 // Emit the RHS condition into TmpBB. 1525 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1526 NewTrueWeight, NewFalseWeight); 1527 } 1528 } 1529 1530 /// If the set of cases should be emitted as a series of branches, return true. 1531 /// If we should emit this as a bunch of and/or'd together conditions, return 1532 /// false. 1533 bool 1534 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1535 if (Cases.size() != 2) return true; 1536 1537 // If this is two comparisons of the same values or'd or and'd together, they 1538 // will get folded into a single comparison, so don't emit two blocks. 1539 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1540 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1541 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1542 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1543 return false; 1544 } 1545 1546 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1547 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1548 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1549 Cases[0].CC == Cases[1].CC && 1550 isa<Constant>(Cases[0].CmpRHS) && 1551 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1552 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1553 return false; 1554 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1555 return false; 1556 } 1557 1558 return true; 1559 } 1560 1561 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1562 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1563 1564 // Update machine-CFG edges. 1565 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1566 1567 // Figure out which block is immediately after the current one. 1568 MachineBasicBlock *NextBlock = nullptr; 1569 MachineFunction::iterator BBI = BrMBB; 1570 if (++BBI != FuncInfo.MF->end()) 1571 NextBlock = BBI; 1572 1573 if (I.isUnconditional()) { 1574 // Update machine-CFG edges. 1575 BrMBB->addSuccessor(Succ0MBB); 1576 1577 // If this is not a fall-through branch or optimizations are switched off, 1578 // emit the branch. 1579 if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None) 1580 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1581 MVT::Other, getControlRoot(), 1582 DAG.getBasicBlock(Succ0MBB))); 1583 1584 return; 1585 } 1586 1587 // If this condition is one of the special cases we handle, do special stuff 1588 // now. 1589 const Value *CondVal = I.getCondition(); 1590 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1591 1592 // If this is a series of conditions that are or'd or and'd together, emit 1593 // this as a sequence of branches instead of setcc's with and/or operations. 1594 // As long as jumps are not expensive, this should improve performance. 1595 // For example, instead of something like: 1596 // cmp A, B 1597 // C = seteq 1598 // cmp D, E 1599 // F = setle 1600 // or C, F 1601 // jnz foo 1602 // Emit: 1603 // cmp A, B 1604 // je foo 1605 // cmp D, E 1606 // jle foo 1607 // 1608 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1609 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1610 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1611 BOp->getOpcode() == Instruction::Or)) { 1612 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1613 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1614 getEdgeWeight(BrMBB, Succ1MBB)); 1615 // If the compares in later blocks need to use values not currently 1616 // exported from this block, export them now. This block should always 1617 // be the first entry. 1618 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1619 1620 // Allow some cases to be rejected. 1621 if (ShouldEmitAsBranches(SwitchCases)) { 1622 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1623 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1624 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1625 } 1626 1627 // Emit the branch for this block. 1628 visitSwitchCase(SwitchCases[0], BrMBB); 1629 SwitchCases.erase(SwitchCases.begin()); 1630 return; 1631 } 1632 1633 // Okay, we decided not to do this, remove any inserted MBB's and clear 1634 // SwitchCases. 1635 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1636 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1637 1638 SwitchCases.clear(); 1639 } 1640 } 1641 1642 // Create a CaseBlock record representing this branch. 1643 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1644 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1645 1646 // Use visitSwitchCase to actually insert the fast branch sequence for this 1647 // cond branch. 1648 visitSwitchCase(CB, BrMBB); 1649 } 1650 1651 /// visitSwitchCase - Emits the necessary code to represent a single node in 1652 /// the binary search tree resulting from lowering a switch instruction. 1653 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1654 MachineBasicBlock *SwitchBB) { 1655 SDValue Cond; 1656 SDValue CondLHS = getValue(CB.CmpLHS); 1657 SDLoc dl = getCurSDLoc(); 1658 1659 // Build the setcc now. 1660 if (!CB.CmpMHS) { 1661 // Fold "(X == true)" to X and "(X == false)" to !X to 1662 // handle common cases produced by branch lowering. 1663 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1664 CB.CC == ISD::SETEQ) 1665 Cond = CondLHS; 1666 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1667 CB.CC == ISD::SETEQ) { 1668 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1669 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1670 } else 1671 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1672 } else { 1673 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1674 1675 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1676 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1677 1678 SDValue CmpOp = getValue(CB.CmpMHS); 1679 EVT VT = CmpOp.getValueType(); 1680 1681 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1682 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1683 ISD::SETLE); 1684 } else { 1685 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1686 VT, CmpOp, DAG.getConstant(Low, VT)); 1687 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1688 DAG.getConstant(High-Low, VT), ISD::SETULE); 1689 } 1690 } 1691 1692 // Update successor info 1693 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1694 // TrueBB and FalseBB are always different unless the incoming IR is 1695 // degenerate. This only happens when running llc on weird IR. 1696 if (CB.TrueBB != CB.FalseBB) 1697 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1698 1699 // Set NextBlock to be the MBB immediately after the current one, if any. 1700 // This is used to avoid emitting unnecessary branches to the next block. 1701 MachineBasicBlock *NextBlock = nullptr; 1702 MachineFunction::iterator BBI = SwitchBB; 1703 if (++BBI != FuncInfo.MF->end()) 1704 NextBlock = BBI; 1705 1706 // If the lhs block is the next block, invert the condition so that we can 1707 // fall through to the lhs instead of the rhs block. 1708 if (CB.TrueBB == NextBlock) { 1709 std::swap(CB.TrueBB, CB.FalseBB); 1710 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1711 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1712 } 1713 1714 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1715 MVT::Other, getControlRoot(), Cond, 1716 DAG.getBasicBlock(CB.TrueBB)); 1717 1718 // Insert the false branch. Do this even if it's a fall through branch, 1719 // this makes it easier to do DAG optimizations which require inverting 1720 // the branch condition. 1721 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1722 DAG.getBasicBlock(CB.FalseBB)); 1723 1724 DAG.setRoot(BrCond); 1725 } 1726 1727 /// visitJumpTable - Emit JumpTable node in the current MBB 1728 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1729 // Emit the code for the jump table 1730 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1731 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1732 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1733 JT.Reg, PTy); 1734 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1735 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1736 MVT::Other, Index.getValue(1), 1737 Table, Index); 1738 DAG.setRoot(BrJumpTable); 1739 } 1740 1741 /// visitJumpTableHeader - This function emits necessary code to produce index 1742 /// in the JumpTable from switch case. 1743 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1744 JumpTableHeader &JTH, 1745 MachineBasicBlock *SwitchBB) { 1746 // Subtract the lowest switch case value from the value being switched on and 1747 // conditional branch to default mbb if the result is greater than the 1748 // difference between smallest and largest cases. 1749 SDValue SwitchOp = getValue(JTH.SValue); 1750 EVT VT = SwitchOp.getValueType(); 1751 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1752 DAG.getConstant(JTH.First, VT)); 1753 1754 // The SDNode we just created, which holds the value being switched on minus 1755 // the smallest case value, needs to be copied to a virtual register so it 1756 // can be used as an index into the jump table in a subsequent basic block. 1757 // This value may be smaller or larger than the target's pointer type, and 1758 // therefore require extension or truncating. 1759 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1760 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy()); 1761 1762 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1763 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1764 JumpTableReg, SwitchOp); 1765 JT.Reg = JumpTableReg; 1766 1767 // Emit the range check for the jump table, and branch to the default block 1768 // for the switch statement if the value being switched on exceeds the largest 1769 // case in the switch. 1770 SDValue CMP = 1771 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1772 Sub.getValueType()), 1773 Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT); 1774 1775 // Set NextBlock to be the MBB immediately after the current one, if any. 1776 // This is used to avoid emitting unnecessary branches to the next block. 1777 MachineBasicBlock *NextBlock = nullptr; 1778 MachineFunction::iterator BBI = SwitchBB; 1779 1780 if (++BBI != FuncInfo.MF->end()) 1781 NextBlock = BBI; 1782 1783 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1784 MVT::Other, CopyTo, CMP, 1785 DAG.getBasicBlock(JT.Default)); 1786 1787 if (JT.MBB != NextBlock) 1788 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond, 1789 DAG.getBasicBlock(JT.MBB)); 1790 1791 DAG.setRoot(BrCond); 1792 } 1793 1794 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1795 /// tail spliced into a stack protector check success bb. 1796 /// 1797 /// For a high level explanation of how this fits into the stack protector 1798 /// generation see the comment on the declaration of class 1799 /// StackProtectorDescriptor. 1800 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1801 MachineBasicBlock *ParentBB) { 1802 1803 // First create the loads to the guard/stack slot for the comparison. 1804 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1805 EVT PtrTy = TLI.getPointerTy(); 1806 1807 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1808 int FI = MFI->getStackProtectorIndex(); 1809 1810 const Value *IRGuard = SPD.getGuard(); 1811 SDValue GuardPtr = getValue(IRGuard); 1812 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1813 1814 unsigned Align = 1815 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1816 1817 SDValue Guard; 1818 1819 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1820 // guard value from the virtual register holding the value. Otherwise, emit a 1821 // volatile load to retrieve the stack guard value. 1822 unsigned GuardReg = SPD.getGuardReg(); 1823 1824 if (GuardReg && TLI.useLoadStackGuardNode()) 1825 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg, 1826 PtrTy); 1827 else 1828 Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1829 GuardPtr, MachinePointerInfo(IRGuard, 0), 1830 true, false, false, Align); 1831 1832 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(), 1833 StackSlotPtr, 1834 MachinePointerInfo::getFixedStack(FI), 1835 true, false, false, Align); 1836 1837 // Perform the comparison via a subtract/getsetcc. 1838 EVT VT = Guard.getValueType(); 1839 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot); 1840 1841 SDValue Cmp = 1842 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1843 Sub.getValueType()), 1844 Sub, DAG.getConstant(0, VT), ISD::SETNE); 1845 1846 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1847 // branch to failure MBB. 1848 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1849 MVT::Other, StackSlot.getOperand(0), 1850 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1851 // Otherwise branch to success MBB. 1852 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(), 1853 MVT::Other, BrCond, 1854 DAG.getBasicBlock(SPD.getSuccessMBB())); 1855 1856 DAG.setRoot(Br); 1857 } 1858 1859 /// Codegen the failure basic block for a stack protector check. 1860 /// 1861 /// A failure stack protector machine basic block consists simply of a call to 1862 /// __stack_chk_fail(). 1863 /// 1864 /// For a high level explanation of how this fits into the stack protector 1865 /// generation see the comment on the declaration of class 1866 /// StackProtectorDescriptor. 1867 void 1868 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1869 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1870 SDValue Chain = 1871 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1872 nullptr, 0, false, getCurSDLoc(), false, false).second; 1873 DAG.setRoot(Chain); 1874 } 1875 1876 /// visitBitTestHeader - This function emits necessary code to produce value 1877 /// suitable for "bit tests" 1878 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1879 MachineBasicBlock *SwitchBB) { 1880 // Subtract the minimum value 1881 SDValue SwitchOp = getValue(B.SValue); 1882 EVT VT = SwitchOp.getValueType(); 1883 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp, 1884 DAG.getConstant(B.First, VT)); 1885 1886 // Check range 1887 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1888 SDValue RangeCmp = 1889 DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), 1890 Sub.getValueType()), 1891 Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT); 1892 1893 // Determine the type of the test operands. 1894 bool UsePtrType = false; 1895 if (!TLI.isTypeLegal(VT)) 1896 UsePtrType = true; 1897 else { 1898 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1899 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1900 // Switch table case range are encoded into series of masks. 1901 // Just use pointer type, it's guaranteed to fit. 1902 UsePtrType = true; 1903 break; 1904 } 1905 } 1906 if (UsePtrType) { 1907 VT = TLI.getPointerTy(); 1908 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT); 1909 } 1910 1911 B.RegVT = VT.getSimpleVT(); 1912 B.Reg = FuncInfo.CreateReg(B.RegVT); 1913 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(), 1914 B.Reg, Sub); 1915 1916 // Set NextBlock to be the MBB immediately after the current one, if any. 1917 // This is used to avoid emitting unnecessary branches to the next block. 1918 MachineBasicBlock *NextBlock = nullptr; 1919 MachineFunction::iterator BBI = SwitchBB; 1920 if (++BBI != FuncInfo.MF->end()) 1921 NextBlock = BBI; 1922 1923 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1924 1925 addSuccessorWithWeight(SwitchBB, B.Default); 1926 addSuccessorWithWeight(SwitchBB, MBB); 1927 1928 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1929 MVT::Other, CopyTo, RangeCmp, 1930 DAG.getBasicBlock(B.Default)); 1931 1932 if (MBB != NextBlock) 1933 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo, 1934 DAG.getBasicBlock(MBB)); 1935 1936 DAG.setRoot(BrRange); 1937 } 1938 1939 /// visitBitTestCase - this function produces one "bit test" 1940 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1941 MachineBasicBlock* NextMBB, 1942 uint32_t BranchWeightToNext, 1943 unsigned Reg, 1944 BitTestCase &B, 1945 MachineBasicBlock *SwitchBB) { 1946 MVT VT = BB.RegVT; 1947 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1948 Reg, VT); 1949 SDValue Cmp; 1950 unsigned PopCount = CountPopulation_64(B.Mask); 1951 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1952 if (PopCount == 1) { 1953 // Testing for a single bit; just compare the shift count with what it 1954 // would need to be to shift a 1 bit in that position. 1955 Cmp = DAG.getSetCC( 1956 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1957 DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ); 1958 } else if (PopCount == BB.Range) { 1959 // There is only one zero bit in the range, test for it directly. 1960 Cmp = DAG.getSetCC( 1961 getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1962 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE); 1963 } else { 1964 // Make desired shift 1965 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT, 1966 DAG.getConstant(1, VT), ShiftOp); 1967 1968 // Emit bit tests and jumps 1969 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(), 1970 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1971 Cmp = DAG.getSetCC(getCurSDLoc(), 1972 TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1973 DAG.getConstant(0, VT), ISD::SETNE); 1974 } 1975 1976 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1977 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1978 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1979 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1980 1981 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(), 1982 MVT::Other, getControlRoot(), 1983 Cmp, DAG.getBasicBlock(B.TargetBB)); 1984 1985 // Set NextBlock to be the MBB immediately after the current one, if any. 1986 // This is used to avoid emitting unnecessary branches to the next block. 1987 MachineBasicBlock *NextBlock = nullptr; 1988 MachineFunction::iterator BBI = SwitchBB; 1989 if (++BBI != FuncInfo.MF->end()) 1990 NextBlock = BBI; 1991 1992 if (NextMBB != NextBlock) 1993 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd, 1994 DAG.getBasicBlock(NextMBB)); 1995 1996 DAG.setRoot(BrAnd); 1997 } 1998 1999 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2000 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2001 2002 // Retrieve successors. 2003 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2004 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2005 2006 const Value *Callee(I.getCalledValue()); 2007 const Function *Fn = dyn_cast<Function>(Callee); 2008 if (isa<InlineAsm>(Callee)) 2009 visitInlineAsm(&I); 2010 else if (Fn && Fn->isIntrinsic()) { 2011 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 2012 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2013 } else 2014 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2015 2016 // If the value of the invoke is used outside of its defining block, make it 2017 // available as a virtual register. 2018 CopyToExportRegsIfNeeded(&I); 2019 2020 // Update successor info 2021 addSuccessorWithWeight(InvokeMBB, Return); 2022 addSuccessorWithWeight(InvokeMBB, LandingPad); 2023 2024 // Drop into normal successor. 2025 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2026 MVT::Other, getControlRoot(), 2027 DAG.getBasicBlock(Return))); 2028 } 2029 2030 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2031 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2032 } 2033 2034 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2035 assert(FuncInfo.MBB->isLandingPad() && 2036 "Call to landingpad not in landing pad!"); 2037 2038 MachineBasicBlock *MBB = FuncInfo.MBB; 2039 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2040 AddLandingPadInfo(LP, MMI, MBB); 2041 2042 // If there aren't registers to copy the values into (e.g., during SjLj 2043 // exceptions), then don't bother to create these DAG nodes. 2044 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2045 if (TLI.getExceptionPointerRegister() == 0 && 2046 TLI.getExceptionSelectorRegister() == 0) 2047 return; 2048 2049 SmallVector<EVT, 2> ValueVTs; 2050 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2051 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2052 2053 // Get the two live-in registers as SDValues. The physregs have already been 2054 // copied into virtual registers. 2055 SDValue Ops[2]; 2056 Ops[0] = DAG.getZExtOrTrunc( 2057 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2058 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2059 getCurSDLoc(), ValueVTs[0]); 2060 Ops[1] = DAG.getZExtOrTrunc( 2061 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 2062 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2063 getCurSDLoc(), ValueVTs[1]); 2064 2065 // Merge into one. 2066 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2067 DAG.getVTList(ValueVTs), Ops); 2068 setValue(&LP, Res); 2069 } 2070 2071 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 2072 /// small case ranges). 2073 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 2074 CaseRecVector& WorkList, 2075 const Value* SV, 2076 MachineBasicBlock *Default, 2077 MachineBasicBlock *SwitchBB) { 2078 // Size is the number of Cases represented by this range. 2079 size_t Size = CR.Range.second - CR.Range.first; 2080 if (Size > 3) 2081 return false; 2082 2083 // Get the MachineFunction which holds the current MBB. This is used when 2084 // inserting any additional MBBs necessary to represent the switch. 2085 MachineFunction *CurMF = FuncInfo.MF; 2086 2087 // Figure out which block is immediately after the current one. 2088 MachineBasicBlock *NextBlock = nullptr; 2089 MachineFunction::iterator BBI = CR.CaseBB; 2090 2091 if (++BBI != FuncInfo.MF->end()) 2092 NextBlock = BBI; 2093 2094 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2095 // If any two of the cases has the same destination, and if one value 2096 // is the same as the other, but has one bit unset that the other has set, 2097 // use bit manipulation to do two compares at once. For example: 2098 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 2099 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 2100 // TODO: Handle cases where CR.CaseBB != SwitchBB. 2101 if (Size == 2 && CR.CaseBB == SwitchBB) { 2102 Case &Small = *CR.Range.first; 2103 Case &Big = *(CR.Range.second-1); 2104 2105 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 2106 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 2107 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 2108 2109 // Check that there is only one bit different. 2110 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 2111 (SmallValue | BigValue) == BigValue) { 2112 // Isolate the common bit. 2113 APInt CommonBit = BigValue & ~SmallValue; 2114 assert((SmallValue | CommonBit) == BigValue && 2115 CommonBit.countPopulation() == 1 && "Not a common bit?"); 2116 2117 SDValue CondLHS = getValue(SV); 2118 EVT VT = CondLHS.getValueType(); 2119 SDLoc DL = getCurSDLoc(); 2120 2121 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 2122 DAG.getConstant(CommonBit, VT)); 2123 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 2124 Or, DAG.getConstant(BigValue, VT), 2125 ISD::SETEQ); 2126 2127 // Update successor info. 2128 // Both Small and Big will jump to Small.BB, so we sum up the weights. 2129 addSuccessorWithWeight(SwitchBB, Small.BB, 2130 Small.ExtraWeight + Big.ExtraWeight); 2131 addSuccessorWithWeight(SwitchBB, Default, 2132 // The default destination is the first successor in IR. 2133 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 2134 2135 // Insert the true branch. 2136 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 2137 getControlRoot(), Cond, 2138 DAG.getBasicBlock(Small.BB)); 2139 2140 // Insert the false branch. 2141 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 2142 DAG.getBasicBlock(Default)); 2143 2144 DAG.setRoot(BrCond); 2145 return true; 2146 } 2147 } 2148 } 2149 2150 // Order cases by weight so the most likely case will be checked first. 2151 uint32_t UnhandledWeights = 0; 2152 if (BPI) { 2153 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2154 uint32_t IWeight = I->ExtraWeight; 2155 UnhandledWeights += IWeight; 2156 for (CaseItr J = CR.Range.first; J < I; ++J) { 2157 uint32_t JWeight = J->ExtraWeight; 2158 if (IWeight > JWeight) 2159 std::swap(*I, *J); 2160 } 2161 } 2162 } 2163 // Rearrange the case blocks so that the last one falls through if possible. 2164 Case &BackCase = *(CR.Range.second-1); 2165 if (Size > 1 && 2166 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2167 // The last case block won't fall through into 'NextBlock' if we emit the 2168 // branches in this order. See if rearranging a case value would help. 2169 // We start at the bottom as it's the case with the least weight. 2170 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I) 2171 if (I->BB == NextBlock) { 2172 std::swap(*I, BackCase); 2173 break; 2174 } 2175 } 2176 2177 // Create a CaseBlock record representing a conditional branch to 2178 // the Case's target mbb if the value being switched on SV is equal 2179 // to C. 2180 MachineBasicBlock *CurBlock = CR.CaseBB; 2181 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2182 MachineBasicBlock *FallThrough; 2183 if (I != E-1) { 2184 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2185 CurMF->insert(BBI, FallThrough); 2186 2187 // Put SV in a virtual register to make it available from the new blocks. 2188 ExportFromCurrentBlock(SV); 2189 } else { 2190 // If the last case doesn't match, go to the default block. 2191 FallThrough = Default; 2192 } 2193 2194 const Value *RHS, *LHS, *MHS; 2195 ISD::CondCode CC; 2196 if (I->High == I->Low) { 2197 // This is just small small case range :) containing exactly 1 case 2198 CC = ISD::SETEQ; 2199 LHS = SV; RHS = I->High; MHS = nullptr; 2200 } else { 2201 CC = ISD::SETLE; 2202 LHS = I->Low; MHS = SV; RHS = I->High; 2203 } 2204 2205 // The false weight should be sum of all un-handled cases. 2206 UnhandledWeights -= I->ExtraWeight; 2207 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2208 /* me */ CurBlock, 2209 /* trueweight */ I->ExtraWeight, 2210 /* falseweight */ UnhandledWeights); 2211 2212 // If emitting the first comparison, just call visitSwitchCase to emit the 2213 // code into the current block. Otherwise, push the CaseBlock onto the 2214 // vector to be later processed by SDISel, and insert the node's MBB 2215 // before the next MBB. 2216 if (CurBlock == SwitchBB) 2217 visitSwitchCase(CB, SwitchBB); 2218 else 2219 SwitchCases.push_back(CB); 2220 2221 CurBlock = FallThrough; 2222 } 2223 2224 return true; 2225 } 2226 2227 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2228 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2229 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 2230 } 2231 2232 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2233 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2234 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2235 return (LastExt - FirstExt + 1ULL); 2236 } 2237 2238 /// handleJTSwitchCase - Emit jumptable for current switch case range 2239 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2240 CaseRecVector &WorkList, 2241 const Value *SV, 2242 MachineBasicBlock *Default, 2243 MachineBasicBlock *SwitchBB) { 2244 Case& FrontCase = *CR.Range.first; 2245 Case& BackCase = *(CR.Range.second-1); 2246 2247 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2248 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2249 2250 APInt TSize(First.getBitWidth(), 0); 2251 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2252 TSize += I->size(); 2253 2254 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2255 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2256 return false; 2257 2258 APInt Range = ComputeRange(First, Last); 2259 // The density is TSize / Range. Require at least 40%. 2260 // It should not be possible for IntTSize to saturate for sane code, but make 2261 // sure we handle Range saturation correctly. 2262 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2263 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2264 if (IntTSize * 10 < IntRange * 4) 2265 return false; 2266 2267 DEBUG(dbgs() << "Lowering jump table\n" 2268 << "First entry: " << First << ". Last entry: " << Last << '\n' 2269 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2270 2271 // Get the MachineFunction which holds the current MBB. This is used when 2272 // inserting any additional MBBs necessary to represent the switch. 2273 MachineFunction *CurMF = FuncInfo.MF; 2274 2275 // Figure out which block is immediately after the current one. 2276 MachineFunction::iterator BBI = CR.CaseBB; 2277 ++BBI; 2278 2279 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2280 2281 // Create a new basic block to hold the code for loading the address 2282 // of the jump table, and jumping to it. Update successor information; 2283 // we will either branch to the default case for the switch, or the jump 2284 // table. 2285 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2286 CurMF->insert(BBI, JumpTableBB); 2287 2288 addSuccessorWithWeight(CR.CaseBB, Default); 2289 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2290 2291 // Build a vector of destination BBs, corresponding to each target 2292 // of the jump table. If the value of the jump table slot corresponds to 2293 // a case statement, push the case's BB onto the vector, otherwise, push 2294 // the default BB. 2295 std::vector<MachineBasicBlock*> DestBBs; 2296 APInt TEI = First; 2297 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2298 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2299 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2300 2301 if (Low.sle(TEI) && TEI.sle(High)) { 2302 DestBBs.push_back(I->BB); 2303 if (TEI==High) 2304 ++I; 2305 } else { 2306 DestBBs.push_back(Default); 2307 } 2308 } 2309 2310 // Calculate weight for each unique destination in CR. 2311 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2312 if (FuncInfo.BPI) 2313 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2314 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2315 DestWeights.find(I->BB); 2316 if (Itr != DestWeights.end()) 2317 Itr->second += I->ExtraWeight; 2318 else 2319 DestWeights[I->BB] = I->ExtraWeight; 2320 } 2321 2322 // Update successor info. Add one edge to each unique successor. 2323 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2324 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2325 E = DestBBs.end(); I != E; ++I) { 2326 if (!SuccsHandled[(*I)->getNumber()]) { 2327 SuccsHandled[(*I)->getNumber()] = true; 2328 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2329 DestWeights.find(*I); 2330 addSuccessorWithWeight(JumpTableBB, *I, 2331 Itr != DestWeights.end() ? Itr->second : 0); 2332 } 2333 } 2334 2335 // Create a jump table index for this jump table. 2336 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2337 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2338 ->createJumpTableIndex(DestBBs); 2339 2340 // Set the jump table information so that we can codegen it as a second 2341 // MachineBasicBlock 2342 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2343 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2344 if (CR.CaseBB == SwitchBB) 2345 visitJumpTableHeader(JT, JTH, SwitchBB); 2346 2347 JTCases.push_back(JumpTableBlock(JTH, JT)); 2348 return true; 2349 } 2350 2351 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2352 /// 2 subtrees. 2353 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2354 CaseRecVector& WorkList, 2355 const Value* SV, 2356 MachineBasicBlock* Default, 2357 MachineBasicBlock* SwitchBB) { 2358 // Get the MachineFunction which holds the current MBB. This is used when 2359 // inserting any additional MBBs necessary to represent the switch. 2360 MachineFunction *CurMF = FuncInfo.MF; 2361 2362 // Figure out which block is immediately after the current one. 2363 MachineFunction::iterator BBI = CR.CaseBB; 2364 ++BBI; 2365 2366 Case& FrontCase = *CR.Range.first; 2367 Case& BackCase = *(CR.Range.second-1); 2368 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2369 2370 // Size is the number of Cases represented by this range. 2371 unsigned Size = CR.Range.second - CR.Range.first; 2372 2373 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2374 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2375 double FMetric = 0; 2376 CaseItr Pivot = CR.Range.first + Size/2; 2377 2378 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2379 // (heuristically) allow us to emit JumpTable's later. 2380 APInt TSize(First.getBitWidth(), 0); 2381 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2382 I!=E; ++I) 2383 TSize += I->size(); 2384 2385 APInt LSize = FrontCase.size(); 2386 APInt RSize = TSize-LSize; 2387 DEBUG(dbgs() << "Selecting best pivot: \n" 2388 << "First: " << First << ", Last: " << Last <<'\n' 2389 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2390 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2391 J!=E; ++I, ++J) { 2392 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2393 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2394 APInt Range = ComputeRange(LEnd, RBegin); 2395 assert((Range - 2ULL).isNonNegative() && 2396 "Invalid case distance"); 2397 // Use volatile double here to avoid excess precision issues on some hosts, 2398 // e.g. that use 80-bit X87 registers. 2399 volatile double LDensity = 2400 (double)LSize.roundToDouble() / 2401 (LEnd - First + 1ULL).roundToDouble(); 2402 volatile double RDensity = 2403 (double)RSize.roundToDouble() / 2404 (Last - RBegin + 1ULL).roundToDouble(); 2405 volatile double Metric = Range.logBase2()*(LDensity+RDensity); 2406 // Should always split in some non-trivial place 2407 DEBUG(dbgs() <<"=>Step\n" 2408 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2409 << "LDensity: " << LDensity 2410 << ", RDensity: " << RDensity << '\n' 2411 << "Metric: " << Metric << '\n'); 2412 if (FMetric < Metric) { 2413 Pivot = J; 2414 FMetric = Metric; 2415 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2416 } 2417 2418 LSize += J->size(); 2419 RSize -= J->size(); 2420 } 2421 2422 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2423 if (areJTsAllowed(TLI)) { 2424 // If our case is dense we *really* should handle it earlier! 2425 assert((FMetric > 0) && "Should handle dense range earlier!"); 2426 } else { 2427 Pivot = CR.Range.first + Size/2; 2428 } 2429 2430 CaseRange LHSR(CR.Range.first, Pivot); 2431 CaseRange RHSR(Pivot, CR.Range.second); 2432 const Constant *C = Pivot->Low; 2433 MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr; 2434 2435 // We know that we branch to the LHS if the Value being switched on is 2436 // less than the Pivot value, C. We use this to optimize our binary 2437 // tree a bit, by recognizing that if SV is greater than or equal to the 2438 // LHS's Case Value, and that Case Value is exactly one less than the 2439 // Pivot's Value, then we can branch directly to the LHS's Target, 2440 // rather than creating a leaf node for it. 2441 if ((LHSR.second - LHSR.first) == 1 && 2442 LHSR.first->High == CR.GE && 2443 cast<ConstantInt>(C)->getValue() == 2444 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2445 TrueBB = LHSR.first->BB; 2446 } else { 2447 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2448 CurMF->insert(BBI, TrueBB); 2449 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2450 2451 // Put SV in a virtual register to make it available from the new blocks. 2452 ExportFromCurrentBlock(SV); 2453 } 2454 2455 // Similar to the optimization above, if the Value being switched on is 2456 // known to be less than the Constant CR.LT, and the current Case Value 2457 // is CR.LT - 1, then we can branch directly to the target block for 2458 // the current Case Value, rather than emitting a RHS leaf node for it. 2459 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2460 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2461 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2462 FalseBB = RHSR.first->BB; 2463 } else { 2464 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2465 CurMF->insert(BBI, FalseBB); 2466 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2467 2468 // Put SV in a virtual register to make it available from the new blocks. 2469 ExportFromCurrentBlock(SV); 2470 } 2471 2472 // Create a CaseBlock record representing a conditional branch to 2473 // the LHS node if the value being switched on SV is less than C. 2474 // Otherwise, branch to LHS. 2475 CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB); 2476 2477 if (CR.CaseBB == SwitchBB) 2478 visitSwitchCase(CB, SwitchBB); 2479 else 2480 SwitchCases.push_back(CB); 2481 2482 return true; 2483 } 2484 2485 /// handleBitTestsSwitchCase - if current case range has few destination and 2486 /// range span less, than machine word bitwidth, encode case range into series 2487 /// of masks and emit bit tests with these masks. 2488 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2489 CaseRecVector& WorkList, 2490 const Value* SV, 2491 MachineBasicBlock* Default, 2492 MachineBasicBlock* SwitchBB) { 2493 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2494 EVT PTy = TLI.getPointerTy(); 2495 unsigned IntPtrBits = PTy.getSizeInBits(); 2496 2497 Case& FrontCase = *CR.Range.first; 2498 Case& BackCase = *(CR.Range.second-1); 2499 2500 // Get the MachineFunction which holds the current MBB. This is used when 2501 // inserting any additional MBBs necessary to represent the switch. 2502 MachineFunction *CurMF = FuncInfo.MF; 2503 2504 // If target does not have legal shift left, do not emit bit tests at all. 2505 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 2506 return false; 2507 2508 size_t numCmps = 0; 2509 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2510 I!=E; ++I) { 2511 // Single case counts one, case range - two. 2512 numCmps += (I->Low == I->High ? 1 : 2); 2513 } 2514 2515 // Count unique destinations 2516 SmallSet<MachineBasicBlock*, 4> Dests; 2517 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2518 Dests.insert(I->BB); 2519 if (Dests.size() > 3) 2520 // Don't bother the code below, if there are too much unique destinations 2521 return false; 2522 } 2523 DEBUG(dbgs() << "Total number of unique destinations: " 2524 << Dests.size() << '\n' 2525 << "Total number of comparisons: " << numCmps << '\n'); 2526 2527 // Compute span of values. 2528 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2529 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2530 APInt cmpRange = maxValue - minValue; 2531 2532 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2533 << "Low bound: " << minValue << '\n' 2534 << "High bound: " << maxValue << '\n'); 2535 2536 if (cmpRange.uge(IntPtrBits) || 2537 (!(Dests.size() == 1 && numCmps >= 3) && 2538 !(Dests.size() == 2 && numCmps >= 5) && 2539 !(Dests.size() >= 3 && numCmps >= 6))) 2540 return false; 2541 2542 DEBUG(dbgs() << "Emitting bit tests\n"); 2543 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2544 2545 // Optimize the case where all the case values fit in a 2546 // word without having to subtract minValue. In this case, 2547 // we can optimize away the subtraction. 2548 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2549 cmpRange = maxValue; 2550 } else { 2551 lowBound = minValue; 2552 } 2553 2554 CaseBitsVector CasesBits; 2555 unsigned i, count = 0; 2556 2557 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2558 MachineBasicBlock* Dest = I->BB; 2559 for (i = 0; i < count; ++i) 2560 if (Dest == CasesBits[i].BB) 2561 break; 2562 2563 if (i == count) { 2564 assert((count < 3) && "Too much destinations to test!"); 2565 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2566 count++; 2567 } 2568 2569 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2570 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2571 2572 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2573 uint64_t hi = (highValue - lowBound).getZExtValue(); 2574 CasesBits[i].ExtraWeight += I->ExtraWeight; 2575 2576 for (uint64_t j = lo; j <= hi; j++) { 2577 CasesBits[i].Mask |= 1ULL << j; 2578 CasesBits[i].Bits++; 2579 } 2580 2581 } 2582 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2583 2584 BitTestInfo BTC; 2585 2586 // Figure out which block is immediately after the current one. 2587 MachineFunction::iterator BBI = CR.CaseBB; 2588 ++BBI; 2589 2590 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2591 2592 DEBUG(dbgs() << "Cases:\n"); 2593 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2594 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2595 << ", Bits: " << CasesBits[i].Bits 2596 << ", BB: " << CasesBits[i].BB << '\n'); 2597 2598 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2599 CurMF->insert(BBI, CaseBB); 2600 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2601 CaseBB, 2602 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2603 2604 // Put SV in a virtual register to make it available from the new blocks. 2605 ExportFromCurrentBlock(SV); 2606 } 2607 2608 BitTestBlock BTB(lowBound, cmpRange, SV, 2609 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2610 CR.CaseBB, Default, std::move(BTC)); 2611 2612 if (CR.CaseBB == SwitchBB) 2613 visitBitTestHeader(BTB, SwitchBB); 2614 2615 BitTestCases.push_back(std::move(BTB)); 2616 2617 return true; 2618 } 2619 2620 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2621 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2622 const SwitchInst& SI) { 2623 size_t numCmps = 0; 2624 2625 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2626 // Start with "simple" cases 2627 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2628 i != e; ++i) { 2629 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2630 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2631 2632 uint32_t ExtraWeight = 2633 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0; 2634 2635 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(), 2636 SMBB, ExtraWeight)); 2637 } 2638 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2639 2640 // Merge case into clusters 2641 if (Cases.size() >= 2) 2642 // Must recompute end() each iteration because it may be 2643 // invalidated by erase if we hold on to it 2644 for (CaseItr I = Cases.begin(), J = std::next(Cases.begin()); 2645 J != Cases.end(); ) { 2646 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2647 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2648 MachineBasicBlock* nextBB = J->BB; 2649 MachineBasicBlock* currentBB = I->BB; 2650 2651 // If the two neighboring cases go to the same destination, merge them 2652 // into a single case. 2653 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2654 I->High = J->High; 2655 I->ExtraWeight += J->ExtraWeight; 2656 J = Cases.erase(J); 2657 } else { 2658 I = J++; 2659 } 2660 } 2661 2662 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2663 if (I->Low != I->High) 2664 // A range counts double, since it requires two compares. 2665 ++numCmps; 2666 } 2667 2668 return numCmps; 2669 } 2670 2671 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2672 MachineBasicBlock *Last) { 2673 // Update JTCases. 2674 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2675 if (JTCases[i].first.HeaderBB == First) 2676 JTCases[i].first.HeaderBB = Last; 2677 2678 // Update BitTestCases. 2679 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2680 if (BitTestCases[i].Parent == First) 2681 BitTestCases[i].Parent = Last; 2682 } 2683 2684 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2685 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2686 2687 // Figure out which block is immediately after the current one. 2688 MachineBasicBlock *NextBlock = nullptr; 2689 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2690 2691 // If there is only the default destination, branch to it if it is not the 2692 // next basic block. Otherwise, just fall through. 2693 if (!SI.getNumCases()) { 2694 // Update machine-CFG edges. 2695 2696 // If this is not a fall-through branch, emit the branch. 2697 SwitchMBB->addSuccessor(Default); 2698 if (Default != NextBlock) 2699 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2700 MVT::Other, getControlRoot(), 2701 DAG.getBasicBlock(Default))); 2702 2703 return; 2704 } 2705 2706 // If there are any non-default case statements, create a vector of Cases 2707 // representing each one, and sort the vector so that we can efficiently 2708 // create a binary search tree from them. 2709 CaseVector Cases; 2710 size_t numCmps = Clusterify(Cases, SI); 2711 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2712 << ". Total compares: " << numCmps << '\n'); 2713 (void)numCmps; 2714 2715 // Get the Value to be switched on and default basic blocks, which will be 2716 // inserted into CaseBlock records, representing basic blocks in the binary 2717 // search tree. 2718 const Value *SV = SI.getCondition(); 2719 2720 // Push the initial CaseRec onto the worklist 2721 CaseRecVector WorkList; 2722 WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr, 2723 CaseRange(Cases.begin(),Cases.end()))); 2724 2725 while (!WorkList.empty()) { 2726 // Grab a record representing a case range to process off the worklist 2727 CaseRec CR = WorkList.back(); 2728 WorkList.pop_back(); 2729 2730 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2731 continue; 2732 2733 // If the range has few cases (two or less) emit a series of specific 2734 // tests. 2735 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2736 continue; 2737 2738 // If the switch has more than N blocks, and is at least 40% dense, and the 2739 // target supports indirect branches, then emit a jump table rather than 2740 // lowering the switch to a binary tree of conditional branches. 2741 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2742 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2743 continue; 2744 2745 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2746 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2747 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2748 } 2749 } 2750 2751 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2752 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2753 2754 // Update machine-CFG edges with unique successors. 2755 SmallSet<BasicBlock*, 32> Done; 2756 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2757 BasicBlock *BB = I.getSuccessor(i); 2758 bool Inserted = Done.insert(BB); 2759 if (!Inserted) 2760 continue; 2761 2762 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2763 addSuccessorWithWeight(IndirectBrMBB, Succ); 2764 } 2765 2766 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2767 MVT::Other, getControlRoot(), 2768 getValue(I.getAddress()))); 2769 } 2770 2771 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2772 if (DAG.getTarget().Options.TrapUnreachable) 2773 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2774 } 2775 2776 void SelectionDAGBuilder::visitFSub(const User &I) { 2777 // -0.0 - X --> fneg 2778 Type *Ty = I.getType(); 2779 if (isa<Constant>(I.getOperand(0)) && 2780 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2781 SDValue Op2 = getValue(I.getOperand(1)); 2782 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2783 Op2.getValueType(), Op2)); 2784 return; 2785 } 2786 2787 visitBinary(I, ISD::FSUB); 2788 } 2789 2790 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2791 SDValue Op1 = getValue(I.getOperand(0)); 2792 SDValue Op2 = getValue(I.getOperand(1)); 2793 2794 bool nuw = false; 2795 bool nsw = false; 2796 bool exact = false; 2797 if (const OverflowingBinaryOperator *OFBinOp = 2798 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2799 nuw = OFBinOp->hasNoUnsignedWrap(); 2800 nsw = OFBinOp->hasNoSignedWrap(); 2801 } 2802 if (const PossiblyExactOperator *ExactOp = 2803 dyn_cast<const PossiblyExactOperator>(&I)) 2804 exact = ExactOp->isExact(); 2805 2806 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2807 Op1, Op2, nuw, nsw, exact); 2808 setValue(&I, BinNodeValue); 2809 } 2810 2811 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2812 SDValue Op1 = getValue(I.getOperand(0)); 2813 SDValue Op2 = getValue(I.getOperand(1)); 2814 2815 EVT ShiftTy = 2816 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2817 2818 // Coerce the shift amount to the right type if we can. 2819 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2820 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2821 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2822 SDLoc DL = getCurSDLoc(); 2823 2824 // If the operand is smaller than the shift count type, promote it. 2825 if (ShiftSize > Op2Size) 2826 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2827 2828 // If the operand is larger than the shift count type but the shift 2829 // count type has enough bits to represent any shift value, truncate 2830 // it now. This is a common case and it exposes the truncate to 2831 // optimization early. 2832 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2833 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2834 // Otherwise we'll need to temporarily settle for some other convenient 2835 // type. Type legalization will make adjustments once the shiftee is split. 2836 else 2837 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2838 } 2839 2840 bool nuw = false; 2841 bool nsw = false; 2842 bool exact = false; 2843 2844 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2845 2846 if (const OverflowingBinaryOperator *OFBinOp = 2847 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2848 nuw = OFBinOp->hasNoUnsignedWrap(); 2849 nsw = OFBinOp->hasNoSignedWrap(); 2850 } 2851 if (const PossiblyExactOperator *ExactOp = 2852 dyn_cast<const PossiblyExactOperator>(&I)) 2853 exact = ExactOp->isExact(); 2854 } 2855 2856 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2857 nuw, nsw, exact); 2858 setValue(&I, Res); 2859 } 2860 2861 void SelectionDAGBuilder::visitSDiv(const User &I) { 2862 SDValue Op1 = getValue(I.getOperand(0)); 2863 SDValue Op2 = getValue(I.getOperand(1)); 2864 2865 // Turn exact SDivs into multiplications. 2866 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2867 // exact bit. 2868 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2869 !isa<ConstantSDNode>(Op1) && 2870 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2871 setValue(&I, DAG.getTargetLoweringInfo() 2872 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2873 else 2874 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2875 Op1, Op2)); 2876 } 2877 2878 void SelectionDAGBuilder::visitICmp(const User &I) { 2879 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2880 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2881 predicate = IC->getPredicate(); 2882 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2883 predicate = ICmpInst::Predicate(IC->getPredicate()); 2884 SDValue Op1 = getValue(I.getOperand(0)); 2885 SDValue Op2 = getValue(I.getOperand(1)); 2886 ISD::CondCode Opcode = getICmpCondCode(predicate); 2887 2888 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2889 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2890 } 2891 2892 void SelectionDAGBuilder::visitFCmp(const User &I) { 2893 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2894 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2895 predicate = FC->getPredicate(); 2896 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2897 predicate = FCmpInst::Predicate(FC->getPredicate()); 2898 SDValue Op1 = getValue(I.getOperand(0)); 2899 SDValue Op2 = getValue(I.getOperand(1)); 2900 ISD::CondCode Condition = getFCmpCondCode(predicate); 2901 if (TM.Options.NoNaNsFPMath) 2902 Condition = getFCmpCodeWithoutNaN(Condition); 2903 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2904 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2905 } 2906 2907 void SelectionDAGBuilder::visitSelect(const User &I) { 2908 SmallVector<EVT, 4> ValueVTs; 2909 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2910 unsigned NumValues = ValueVTs.size(); 2911 if (NumValues == 0) return; 2912 2913 SmallVector<SDValue, 4> Values(NumValues); 2914 SDValue Cond = getValue(I.getOperand(0)); 2915 SDValue TrueVal = getValue(I.getOperand(1)); 2916 SDValue FalseVal = getValue(I.getOperand(2)); 2917 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2918 ISD::VSELECT : ISD::SELECT; 2919 2920 for (unsigned i = 0; i != NumValues; ++i) 2921 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2922 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2923 Cond, 2924 SDValue(TrueVal.getNode(), 2925 TrueVal.getResNo() + i), 2926 SDValue(FalseVal.getNode(), 2927 FalseVal.getResNo() + i)); 2928 2929 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2930 DAG.getVTList(ValueVTs), Values)); 2931 } 2932 2933 void SelectionDAGBuilder::visitTrunc(const User &I) { 2934 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2935 SDValue N = getValue(I.getOperand(0)); 2936 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2937 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2938 } 2939 2940 void SelectionDAGBuilder::visitZExt(const User &I) { 2941 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2942 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2943 SDValue N = getValue(I.getOperand(0)); 2944 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2945 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2946 } 2947 2948 void SelectionDAGBuilder::visitSExt(const User &I) { 2949 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2950 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2951 SDValue N = getValue(I.getOperand(0)); 2952 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2953 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2954 } 2955 2956 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2957 // FPTrunc is never a no-op cast, no need to check 2958 SDValue N = getValue(I.getOperand(0)); 2959 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2960 EVT DestVT = TLI.getValueType(I.getType()); 2961 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N, 2962 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2963 } 2964 2965 void SelectionDAGBuilder::visitFPExt(const User &I) { 2966 // FPExt is never a no-op cast, no need to check 2967 SDValue N = getValue(I.getOperand(0)); 2968 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2969 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2970 } 2971 2972 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2973 // FPToUI is never a no-op cast, no need to check 2974 SDValue N = getValue(I.getOperand(0)); 2975 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2976 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2977 } 2978 2979 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2980 // FPToSI is never a no-op cast, no need to check 2981 SDValue N = getValue(I.getOperand(0)); 2982 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2983 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2984 } 2985 2986 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2987 // UIToFP is never a no-op cast, no need to check 2988 SDValue N = getValue(I.getOperand(0)); 2989 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2990 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2991 } 2992 2993 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2994 // SIToFP is never a no-op cast, no need to check 2995 SDValue N = getValue(I.getOperand(0)); 2996 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2997 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2998 } 2999 3000 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3001 // What to do depends on the size of the integer and the size of the pointer. 3002 // We can either truncate, zero extend, or no-op, accordingly. 3003 SDValue N = getValue(I.getOperand(0)); 3004 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3005 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3006 } 3007 3008 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3009 // What to do depends on the size of the integer and the size of the pointer. 3010 // We can either truncate, zero extend, or no-op, accordingly. 3011 SDValue N = getValue(I.getOperand(0)); 3012 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3013 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3014 } 3015 3016 void SelectionDAGBuilder::visitBitCast(const User &I) { 3017 SDValue N = getValue(I.getOperand(0)); 3018 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 3019 3020 // BitCast assures us that source and destination are the same size so this is 3021 // either a BITCAST or a no-op. 3022 if (DestVT != N.getValueType()) 3023 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(), 3024 DestVT, N)); // convert types. 3025 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3026 // might fold any kind of constant expression to an integer constant and that 3027 // is not what we are looking for. Only regcognize a bitcast of a genuine 3028 // constant integer as an opaque constant. 3029 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3030 setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false, 3031 /*isOpaque*/true)); 3032 else 3033 setValue(&I, N); // noop cast. 3034 } 3035 3036 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3037 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3038 const Value *SV = I.getOperand(0); 3039 SDValue N = getValue(SV); 3040 EVT DestVT = TLI.getValueType(I.getType()); 3041 3042 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3043 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3044 3045 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3046 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3047 3048 setValue(&I, N); 3049 } 3050 3051 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3052 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3053 SDValue InVec = getValue(I.getOperand(0)); 3054 SDValue InVal = getValue(I.getOperand(1)); 3055 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 3056 getCurSDLoc(), TLI.getVectorIdxTy()); 3057 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3058 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 3059 } 3060 3061 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3062 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3063 SDValue InVec = getValue(I.getOperand(0)); 3064 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 3065 getCurSDLoc(), TLI.getVectorIdxTy()); 3066 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3067 TLI.getValueType(I.getType()), InVec, InIdx)); 3068 } 3069 3070 // Utility for visitShuffleVector - Return true if every element in Mask, 3071 // beginning from position Pos and ending in Pos+Size, falls within the 3072 // specified sequential range [L, L+Pos). or is undef. 3073 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 3074 unsigned Pos, unsigned Size, int Low) { 3075 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 3076 if (Mask[i] >= 0 && Mask[i] != Low) 3077 return false; 3078 return true; 3079 } 3080 3081 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3082 SDValue Src1 = getValue(I.getOperand(0)); 3083 SDValue Src2 = getValue(I.getOperand(1)); 3084 3085 SmallVector<int, 8> Mask; 3086 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3087 unsigned MaskNumElts = Mask.size(); 3088 3089 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3090 EVT VT = TLI.getValueType(I.getType()); 3091 EVT SrcVT = Src1.getValueType(); 3092 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3093 3094 if (SrcNumElts == MaskNumElts) { 3095 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3096 &Mask[0])); 3097 return; 3098 } 3099 3100 // Normalize the shuffle vector since mask and vector length don't match. 3101 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 3102 // Mask is longer than the source vectors and is a multiple of the source 3103 // vectors. We can use concatenate vector to make the mask and vectors 3104 // lengths match. 3105 if (SrcNumElts*2 == MaskNumElts) { 3106 // First check for Src1 in low and Src2 in high 3107 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 3108 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 3109 // The shuffle is concatenating two vectors together. 3110 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3111 VT, Src1, Src2)); 3112 return; 3113 } 3114 // Then check for Src2 in low and Src1 in high 3115 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 3116 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 3117 // The shuffle is concatenating two vectors together. 3118 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 3119 VT, Src2, Src1)); 3120 return; 3121 } 3122 } 3123 3124 // Pad both vectors with undefs to make them the same length as the mask. 3125 unsigned NumConcat = MaskNumElts / SrcNumElts; 3126 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 3127 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 3128 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3129 3130 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3131 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3132 MOps1[0] = Src1; 3133 MOps2[0] = Src2; 3134 3135 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3136 getCurSDLoc(), VT, MOps1); 3137 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 3138 getCurSDLoc(), VT, MOps2); 3139 3140 // Readjust mask for new input vector length. 3141 SmallVector<int, 8> MappedOps; 3142 for (unsigned i = 0; i != MaskNumElts; ++i) { 3143 int Idx = Mask[i]; 3144 if (Idx >= (int)SrcNumElts) 3145 Idx -= SrcNumElts - MaskNumElts; 3146 MappedOps.push_back(Idx); 3147 } 3148 3149 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3150 &MappedOps[0])); 3151 return; 3152 } 3153 3154 if (SrcNumElts > MaskNumElts) { 3155 // Analyze the access pattern of the vector to see if we can extract 3156 // two subvectors and do the shuffle. The analysis is done by calculating 3157 // the range of elements the mask access on both vectors. 3158 int MinRange[2] = { static_cast<int>(SrcNumElts), 3159 static_cast<int>(SrcNumElts)}; 3160 int MaxRange[2] = {-1, -1}; 3161 3162 for (unsigned i = 0; i != MaskNumElts; ++i) { 3163 int Idx = Mask[i]; 3164 unsigned Input = 0; 3165 if (Idx < 0) 3166 continue; 3167 3168 if (Idx >= (int)SrcNumElts) { 3169 Input = 1; 3170 Idx -= SrcNumElts; 3171 } 3172 if (Idx > MaxRange[Input]) 3173 MaxRange[Input] = Idx; 3174 if (Idx < MinRange[Input]) 3175 MinRange[Input] = Idx; 3176 } 3177 3178 // Check if the access is smaller than the vector size and can we find 3179 // a reasonable extract index. 3180 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 3181 // Extract. 3182 int StartIdx[2]; // StartIdx to extract from 3183 for (unsigned Input = 0; Input < 2; ++Input) { 3184 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 3185 RangeUse[Input] = 0; // Unused 3186 StartIdx[Input] = 0; 3187 continue; 3188 } 3189 3190 // Find a good start index that is a multiple of the mask length. Then 3191 // see if the rest of the elements are in range. 3192 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 3193 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 3194 StartIdx[Input] + MaskNumElts <= SrcNumElts) 3195 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 3196 } 3197 3198 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 3199 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3200 return; 3201 } 3202 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 3203 // Extract appropriate subvector and generate a vector shuffle 3204 for (unsigned Input = 0; Input < 2; ++Input) { 3205 SDValue &Src = Input == 0 ? Src1 : Src2; 3206 if (RangeUse[Input] == 0) 3207 Src = DAG.getUNDEF(VT); 3208 else 3209 Src = DAG.getNode( 3210 ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src, 3211 DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy())); 3212 } 3213 3214 // Calculate new mask. 3215 SmallVector<int, 8> MappedOps; 3216 for (unsigned i = 0; i != MaskNumElts; ++i) { 3217 int Idx = Mask[i]; 3218 if (Idx >= 0) { 3219 if (Idx < (int)SrcNumElts) 3220 Idx -= StartIdx[0]; 3221 else 3222 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3223 } 3224 MappedOps.push_back(Idx); 3225 } 3226 3227 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 3228 &MappedOps[0])); 3229 return; 3230 } 3231 } 3232 3233 // We can't use either concat vectors or extract subvectors so fall back to 3234 // replacing the shuffle with extract and build vector. 3235 // to insert and build vector. 3236 EVT EltVT = VT.getVectorElementType(); 3237 EVT IdxVT = TLI.getVectorIdxTy(); 3238 SmallVector<SDValue,8> Ops; 3239 for (unsigned i = 0; i != MaskNumElts; ++i) { 3240 int Idx = Mask[i]; 3241 SDValue Res; 3242 3243 if (Idx < 0) { 3244 Res = DAG.getUNDEF(EltVT); 3245 } else { 3246 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3247 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3248 3249 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3250 EltVT, Src, DAG.getConstant(Idx, IdxVT)); 3251 } 3252 3253 Ops.push_back(Res); 3254 } 3255 3256 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops)); 3257 } 3258 3259 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3260 const Value *Op0 = I.getOperand(0); 3261 const Value *Op1 = I.getOperand(1); 3262 Type *AggTy = I.getType(); 3263 Type *ValTy = Op1->getType(); 3264 bool IntoUndef = isa<UndefValue>(Op0); 3265 bool FromUndef = isa<UndefValue>(Op1); 3266 3267 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3268 3269 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3270 SmallVector<EVT, 4> AggValueVTs; 3271 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3272 SmallVector<EVT, 4> ValValueVTs; 3273 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3274 3275 unsigned NumAggValues = AggValueVTs.size(); 3276 unsigned NumValValues = ValValueVTs.size(); 3277 SmallVector<SDValue, 4> Values(NumAggValues); 3278 3279 // Ignore an insertvalue that produces an empty object 3280 if (!NumAggValues) { 3281 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3282 return; 3283 } 3284 3285 SDValue Agg = getValue(Op0); 3286 unsigned i = 0; 3287 // Copy the beginning value(s) from the original aggregate. 3288 for (; i != LinearIndex; ++i) 3289 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3290 SDValue(Agg.getNode(), Agg.getResNo() + i); 3291 // Copy values from the inserted value(s). 3292 if (NumValValues) { 3293 SDValue Val = getValue(Op1); 3294 for (; i != LinearIndex + NumValValues; ++i) 3295 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3296 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3297 } 3298 // Copy remaining value(s) from the original aggregate. 3299 for (; i != NumAggValues; ++i) 3300 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3301 SDValue(Agg.getNode(), Agg.getResNo() + i); 3302 3303 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3304 DAG.getVTList(AggValueVTs), Values)); 3305 } 3306 3307 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3308 const Value *Op0 = I.getOperand(0); 3309 Type *AggTy = Op0->getType(); 3310 Type *ValTy = I.getType(); 3311 bool OutOfUndef = isa<UndefValue>(Op0); 3312 3313 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3314 3315 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3316 SmallVector<EVT, 4> ValValueVTs; 3317 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3318 3319 unsigned NumValValues = ValValueVTs.size(); 3320 3321 // Ignore a extractvalue that produces an empty object 3322 if (!NumValValues) { 3323 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3324 return; 3325 } 3326 3327 SmallVector<SDValue, 4> Values(NumValValues); 3328 3329 SDValue Agg = getValue(Op0); 3330 // Copy out the selected value(s). 3331 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3332 Values[i - LinearIndex] = 3333 OutOfUndef ? 3334 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3335 SDValue(Agg.getNode(), Agg.getResNo() + i); 3336 3337 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3338 DAG.getVTList(ValValueVTs), Values)); 3339 } 3340 3341 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3342 Value *Op0 = I.getOperand(0); 3343 // Note that the pointer operand may be a vector of pointers. Take the scalar 3344 // element which holds a pointer. 3345 Type *Ty = Op0->getType()->getScalarType(); 3346 unsigned AS = Ty->getPointerAddressSpace(); 3347 SDValue N = getValue(Op0); 3348 3349 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3350 OI != E; ++OI) { 3351 const Value *Idx = *OI; 3352 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3353 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3354 if (Field) { 3355 // N = N + Offset 3356 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3357 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3358 DAG.getConstant(Offset, N.getValueType())); 3359 } 3360 3361 Ty = StTy->getElementType(Field); 3362 } else { 3363 Ty = cast<SequentialType>(Ty)->getElementType(); 3364 3365 // If this is a constant subscript, handle it quickly. 3366 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3367 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3368 if (CI->isZero()) continue; 3369 uint64_t Offs = 3370 DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3371 SDValue OffsVal; 3372 EVT PTy = TLI.getPointerTy(AS); 3373 unsigned PtrBits = PTy.getSizeInBits(); 3374 if (PtrBits < 64) 3375 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy, 3376 DAG.getConstant(Offs, MVT::i64)); 3377 else 3378 OffsVal = DAG.getConstant(Offs, PTy); 3379 3380 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N, 3381 OffsVal); 3382 continue; 3383 } 3384 3385 // N = N + Idx * ElementSize; 3386 APInt ElementSize = 3387 APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty)); 3388 SDValue IdxN = getValue(Idx); 3389 3390 // If the index is smaller or larger than intptr_t, truncate or extend 3391 // it. 3392 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType()); 3393 3394 // If this is a multiply by a power of two, turn it into a shl 3395 // immediately. This is a very common case. 3396 if (ElementSize != 1) { 3397 if (ElementSize.isPowerOf2()) { 3398 unsigned Amt = ElementSize.logBase2(); 3399 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(), 3400 N.getValueType(), IdxN, 3401 DAG.getConstant(Amt, IdxN.getValueType())); 3402 } else { 3403 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType()); 3404 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(), 3405 N.getValueType(), IdxN, Scale); 3406 } 3407 } 3408 3409 N = DAG.getNode(ISD::ADD, getCurSDLoc(), 3410 N.getValueType(), N, IdxN); 3411 } 3412 } 3413 3414 setValue(&I, N); 3415 } 3416 3417 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3418 // If this is a fixed sized alloca in the entry block of the function, 3419 // allocate it statically on the stack. 3420 if (FuncInfo.StaticAllocaMap.count(&I)) 3421 return; // getValue will auto-populate this. 3422 3423 Type *Ty = I.getAllocatedType(); 3424 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3425 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 3426 unsigned Align = 3427 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 3428 I.getAlignment()); 3429 3430 SDValue AllocSize = getValue(I.getArraySize()); 3431 3432 EVT IntPtr = TLI.getPointerTy(); 3433 if (AllocSize.getValueType() != IntPtr) 3434 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr); 3435 3436 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr, 3437 AllocSize, 3438 DAG.getConstant(TySize, IntPtr)); 3439 3440 // Handle alignment. If the requested alignment is less than or equal to 3441 // the stack alignment, ignore it. If the size is greater than or equal to 3442 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3443 unsigned StackAlign = 3444 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3445 if (Align <= StackAlign) 3446 Align = 0; 3447 3448 // Round the size of the allocation up to the stack alignment size 3449 // by add SA-1 to the size. 3450 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(), 3451 AllocSize.getValueType(), AllocSize, 3452 DAG.getIntPtrConstant(StackAlign-1)); 3453 3454 // Mask out the low bits for alignment purposes. 3455 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(), 3456 AllocSize.getValueType(), AllocSize, 3457 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3458 3459 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3460 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3461 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops); 3462 setValue(&I, DSA); 3463 DAG.setRoot(DSA.getValue(1)); 3464 3465 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3466 } 3467 3468 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3469 if (I.isAtomic()) 3470 return visitAtomicLoad(I); 3471 3472 const Value *SV = I.getOperand(0); 3473 SDValue Ptr = getValue(SV); 3474 3475 Type *Ty = I.getType(); 3476 3477 bool isVolatile = I.isVolatile(); 3478 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3479 bool isInvariant = I.getMetadata("invariant.load") != nullptr; 3480 unsigned Alignment = I.getAlignment(); 3481 3482 AAMDNodes AAInfo; 3483 I.getAAMetadata(AAInfo); 3484 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3485 3486 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3487 SmallVector<EVT, 4> ValueVTs; 3488 SmallVector<uint64_t, 4> Offsets; 3489 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3490 unsigned NumValues = ValueVTs.size(); 3491 if (NumValues == 0) 3492 return; 3493 3494 SDValue Root; 3495 bool ConstantMemory = false; 3496 if (isVolatile || NumValues > MaxParallelChains) 3497 // Serialize volatile loads with other side effects. 3498 Root = getRoot(); 3499 else if (AA->pointsToConstantMemory( 3500 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 3501 // Do not serialize (non-volatile) loads of constant memory with anything. 3502 Root = DAG.getEntryNode(); 3503 ConstantMemory = true; 3504 } else { 3505 // Do not serialize non-volatile loads against each other. 3506 Root = DAG.getRoot(); 3507 } 3508 3509 if (isVolatile) 3510 Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG); 3511 3512 SmallVector<SDValue, 4> Values(NumValues); 3513 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3514 NumValues)); 3515 EVT PtrVT = Ptr.getValueType(); 3516 unsigned ChainI = 0; 3517 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3518 // Serializing loads here may result in excessive register pressure, and 3519 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3520 // could recover a bit by hoisting nodes upward in the chain by recognizing 3521 // they are side-effect free or do not alias. The optimizer should really 3522 // avoid this case by converting large object/array copies to llvm.memcpy 3523 // (MaxParallelChains should always remain as failsafe). 3524 if (ChainI == MaxParallelChains) { 3525 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3526 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3527 makeArrayRef(Chains.data(), ChainI)); 3528 Root = Chain; 3529 ChainI = 0; 3530 } 3531 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(), 3532 PtrVT, Ptr, 3533 DAG.getConstant(Offsets[i], PtrVT)); 3534 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root, 3535 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3536 isNonTemporal, isInvariant, Alignment, AAInfo, 3537 Ranges); 3538 3539 Values[i] = L; 3540 Chains[ChainI] = L.getValue(1); 3541 } 3542 3543 if (!ConstantMemory) { 3544 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3545 makeArrayRef(Chains.data(), ChainI)); 3546 if (isVolatile) 3547 DAG.setRoot(Chain); 3548 else 3549 PendingLoads.push_back(Chain); 3550 } 3551 3552 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3553 DAG.getVTList(ValueVTs), Values)); 3554 } 3555 3556 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3557 if (I.isAtomic()) 3558 return visitAtomicStore(I); 3559 3560 const Value *SrcV = I.getOperand(0); 3561 const Value *PtrV = I.getOperand(1); 3562 3563 SmallVector<EVT, 4> ValueVTs; 3564 SmallVector<uint64_t, 4> Offsets; 3565 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 3566 ValueVTs, &Offsets); 3567 unsigned NumValues = ValueVTs.size(); 3568 if (NumValues == 0) 3569 return; 3570 3571 // Get the lowered operands. Note that we do this after 3572 // checking if NumResults is zero, because with zero results 3573 // the operands won't have values in the map. 3574 SDValue Src = getValue(SrcV); 3575 SDValue Ptr = getValue(PtrV); 3576 3577 SDValue Root = getRoot(); 3578 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3579 NumValues)); 3580 EVT PtrVT = Ptr.getValueType(); 3581 bool isVolatile = I.isVolatile(); 3582 bool isNonTemporal = I.getMetadata("nontemporal") != nullptr; 3583 unsigned Alignment = I.getAlignment(); 3584 3585 AAMDNodes AAInfo; 3586 I.getAAMetadata(AAInfo); 3587 3588 unsigned ChainI = 0; 3589 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3590 // See visitLoad comments. 3591 if (ChainI == MaxParallelChains) { 3592 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3593 makeArrayRef(Chains.data(), ChainI)); 3594 Root = Chain; 3595 ChainI = 0; 3596 } 3597 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr, 3598 DAG.getConstant(Offsets[i], PtrVT)); 3599 SDValue St = DAG.getStore(Root, getCurSDLoc(), 3600 SDValue(Src.getNode(), Src.getResNo() + i), 3601 Add, MachinePointerInfo(PtrV, Offsets[i]), 3602 isVolatile, isNonTemporal, Alignment, AAInfo); 3603 Chains[ChainI] = St; 3604 } 3605 3606 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 3607 makeArrayRef(Chains.data(), ChainI)); 3608 DAG.setRoot(StoreNode); 3609 } 3610 3611 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3612 SynchronizationScope Scope, 3613 bool Before, SDLoc dl, 3614 SelectionDAG &DAG, 3615 const TargetLowering &TLI) { 3616 // Fence, if necessary 3617 if (Before) { 3618 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3619 Order = Release; 3620 else if (Order == Acquire || Order == Monotonic || Order == Unordered) 3621 return Chain; 3622 } else { 3623 if (Order == AcquireRelease) 3624 Order = Acquire; 3625 else if (Order == Release || Order == Monotonic || Order == Unordered) 3626 return Chain; 3627 } 3628 SDValue Ops[3]; 3629 Ops[0] = Chain; 3630 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3631 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3632 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops); 3633 } 3634 3635 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3636 SDLoc dl = getCurSDLoc(); 3637 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3638 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3639 SynchronizationScope Scope = I.getSynchScope(); 3640 3641 SDValue InChain = getRoot(); 3642 3643 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3644 if (TLI.getInsertFencesForAtomic()) 3645 InChain = 3646 InsertFenceForAtomic(InChain, SuccessOrder, Scope, true, dl, DAG, TLI); 3647 3648 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3649 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3650 SDValue L = DAG.getAtomicCmpSwap( 3651 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3652 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3653 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3654 0 /* Alignment */, 3655 TLI.getInsertFencesForAtomic() ? Monotonic : SuccessOrder, 3656 TLI.getInsertFencesForAtomic() ? Monotonic : FailureOrder, Scope); 3657 3658 SDValue OutChain = L.getValue(2); 3659 3660 if (TLI.getInsertFencesForAtomic()) 3661 OutChain = InsertFenceForAtomic(OutChain, SuccessOrder, Scope, false, dl, 3662 DAG, TLI); 3663 3664 setValue(&I, L); 3665 DAG.setRoot(OutChain); 3666 } 3667 3668 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3669 SDLoc dl = getCurSDLoc(); 3670 ISD::NodeType NT; 3671 switch (I.getOperation()) { 3672 default: llvm_unreachable("Unknown atomicrmw operation"); 3673 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3674 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3675 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3676 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3677 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3678 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3679 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3680 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3681 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3682 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3683 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3684 } 3685 AtomicOrdering Order = I.getOrdering(); 3686 SynchronizationScope Scope = I.getSynchScope(); 3687 3688 SDValue InChain = getRoot(); 3689 3690 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3691 if (TLI.getInsertFencesForAtomic()) 3692 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, DAG, TLI); 3693 3694 SDValue L = DAG.getAtomic( 3695 NT, dl, getValue(I.getValOperand()).getSimpleValueType(), InChain, 3696 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 3697 I.getPointerOperand(), 0 /* Alignment */, 3698 TLI.getInsertFencesForAtomic() ? Monotonic : Order, Scope); 3699 3700 SDValue OutChain = L.getValue(1); 3701 3702 if (TLI.getInsertFencesForAtomic()) 3703 OutChain = 3704 InsertFenceForAtomic(OutChain, Order, Scope, false, dl, DAG, TLI); 3705 3706 setValue(&I, L); 3707 DAG.setRoot(OutChain); 3708 } 3709 3710 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3711 SDLoc dl = getCurSDLoc(); 3712 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3713 SDValue Ops[3]; 3714 Ops[0] = getRoot(); 3715 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3716 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3717 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3718 } 3719 3720 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3721 SDLoc dl = getCurSDLoc(); 3722 AtomicOrdering Order = I.getOrdering(); 3723 SynchronizationScope Scope = I.getSynchScope(); 3724 3725 SDValue InChain = getRoot(); 3726 3727 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3728 EVT VT = TLI.getValueType(I.getType()); 3729 3730 if (I.getAlignment() < VT.getSizeInBits() / 8) 3731 report_fatal_error("Cannot generate unaligned atomic load"); 3732 3733 MachineMemOperand *MMO = 3734 DAG.getMachineFunction(). 3735 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3736 MachineMemOperand::MOVolatile | 3737 MachineMemOperand::MOLoad, 3738 VT.getStoreSize(), 3739 I.getAlignment() ? I.getAlignment() : 3740 DAG.getEVTAlignment(VT)); 3741 3742 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3743 SDValue L = DAG.getAtomic( 3744 ISD::ATOMIC_LOAD, dl, VT, VT, InChain, getValue(I.getPointerOperand()), 3745 MMO, TLI.getInsertFencesForAtomic() ? Monotonic : Order, Scope); 3746 3747 SDValue OutChain = L.getValue(1); 3748 3749 if (TLI.getInsertFencesForAtomic()) 3750 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3751 DAG, TLI); 3752 3753 setValue(&I, L); 3754 DAG.setRoot(OutChain); 3755 } 3756 3757 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3758 SDLoc dl = getCurSDLoc(); 3759 3760 AtomicOrdering Order = I.getOrdering(); 3761 SynchronizationScope Scope = I.getSynchScope(); 3762 3763 SDValue InChain = getRoot(); 3764 3765 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3766 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3767 3768 if (I.getAlignment() < VT.getSizeInBits() / 8) 3769 report_fatal_error("Cannot generate unaligned atomic store"); 3770 3771 if (TLI.getInsertFencesForAtomic()) 3772 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, DAG, TLI); 3773 3774 SDValue OutChain = DAG.getAtomic( 3775 ISD::ATOMIC_STORE, dl, VT, InChain, getValue(I.getPointerOperand()), 3776 getValue(I.getValueOperand()), I.getPointerOperand(), I.getAlignment(), 3777 TLI.getInsertFencesForAtomic() ? Monotonic : Order, Scope); 3778 3779 if (TLI.getInsertFencesForAtomic()) 3780 OutChain = 3781 InsertFenceForAtomic(OutChain, Order, Scope, false, dl, DAG, TLI); 3782 3783 DAG.setRoot(OutChain); 3784 } 3785 3786 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3787 /// node. 3788 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3789 unsigned Intrinsic) { 3790 bool HasChain = !I.doesNotAccessMemory(); 3791 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3792 3793 // Build the operand list. 3794 SmallVector<SDValue, 8> Ops; 3795 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3796 if (OnlyLoad) { 3797 // We don't need to serialize loads against other loads. 3798 Ops.push_back(DAG.getRoot()); 3799 } else { 3800 Ops.push_back(getRoot()); 3801 } 3802 } 3803 3804 // Info is set by getTgtMemInstrinsic 3805 TargetLowering::IntrinsicInfo Info; 3806 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3807 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3808 3809 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3810 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3811 Info.opc == ISD::INTRINSIC_W_CHAIN) 3812 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3813 3814 // Add all operands of the call to the operand list. 3815 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3816 SDValue Op = getValue(I.getArgOperand(i)); 3817 Ops.push_back(Op); 3818 } 3819 3820 SmallVector<EVT, 4> ValueVTs; 3821 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3822 3823 if (HasChain) 3824 ValueVTs.push_back(MVT::Other); 3825 3826 SDVTList VTs = DAG.getVTList(ValueVTs); 3827 3828 // Create the node. 3829 SDValue Result; 3830 if (IsTgtIntrinsic) { 3831 // This is target intrinsic that touches memory 3832 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3833 VTs, Ops, Info.memVT, 3834 MachinePointerInfo(Info.ptrVal, Info.offset), 3835 Info.align, Info.vol, 3836 Info.readMem, Info.writeMem, Info.size); 3837 } else if (!HasChain) { 3838 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3839 } else if (!I.getType()->isVoidTy()) { 3840 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3841 } else { 3842 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3843 } 3844 3845 if (HasChain) { 3846 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3847 if (OnlyLoad) 3848 PendingLoads.push_back(Chain); 3849 else 3850 DAG.setRoot(Chain); 3851 } 3852 3853 if (!I.getType()->isVoidTy()) { 3854 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3855 EVT VT = TLI.getValueType(PTy); 3856 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3857 } 3858 3859 setValue(&I, Result); 3860 } 3861 } 3862 3863 /// GetSignificand - Get the significand and build it into a floating-point 3864 /// number with exponent of 1: 3865 /// 3866 /// Op = (Op & 0x007fffff) | 0x3f800000; 3867 /// 3868 /// where Op is the hexadecimal representation of floating point value. 3869 static SDValue 3870 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3871 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3872 DAG.getConstant(0x007fffff, MVT::i32)); 3873 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3874 DAG.getConstant(0x3f800000, MVT::i32)); 3875 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3876 } 3877 3878 /// GetExponent - Get the exponent: 3879 /// 3880 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3881 /// 3882 /// where Op is the hexadecimal representation of floating point value. 3883 static SDValue 3884 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3885 SDLoc dl) { 3886 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3887 DAG.getConstant(0x7f800000, MVT::i32)); 3888 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3889 DAG.getConstant(23, TLI.getPointerTy())); 3890 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3891 DAG.getConstant(127, MVT::i32)); 3892 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3893 } 3894 3895 /// getF32Constant - Get 32-bit floating point constant. 3896 static SDValue 3897 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3898 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), 3899 MVT::f32); 3900 } 3901 3902 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3903 /// limited-precision mode. 3904 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3905 const TargetLowering &TLI) { 3906 if (Op.getValueType() == MVT::f32 && 3907 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3908 3909 // Put the exponent in the right bit position for later addition to the 3910 // final result: 3911 // 3912 // #define LOG2OFe 1.4426950f 3913 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3914 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3915 getF32Constant(DAG, 0x3fb8aa3b)); 3916 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3917 3918 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3919 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3920 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3921 3922 // IntegerPartOfX <<= 23; 3923 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3924 DAG.getConstant(23, TLI.getPointerTy())); 3925 3926 SDValue TwoToFracPartOfX; 3927 if (LimitFloatPrecision <= 6) { 3928 // For floating-point precision of 6: 3929 // 3930 // TwoToFractionalPartOfX = 3931 // 0.997535578f + 3932 // (0.735607626f + 0.252464424f * x) * x; 3933 // 3934 // error 0.0144103317, which is 6 bits 3935 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3936 getF32Constant(DAG, 0x3e814304)); 3937 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3938 getF32Constant(DAG, 0x3f3c50c8)); 3939 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3940 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3941 getF32Constant(DAG, 0x3f7f5e7e)); 3942 } else if (LimitFloatPrecision <= 12) { 3943 // For floating-point precision of 12: 3944 // 3945 // TwoToFractionalPartOfX = 3946 // 0.999892986f + 3947 // (0.696457318f + 3948 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3949 // 3950 // 0.000107046256 error, which is 13 to 14 bits 3951 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3952 getF32Constant(DAG, 0x3da235e3)); 3953 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3954 getF32Constant(DAG, 0x3e65b8f3)); 3955 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3956 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3957 getF32Constant(DAG, 0x3f324b07)); 3958 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3959 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3960 getF32Constant(DAG, 0x3f7ff8fd)); 3961 } else { // LimitFloatPrecision <= 18 3962 // For floating-point precision of 18: 3963 // 3964 // TwoToFractionalPartOfX = 3965 // 0.999999982f + 3966 // (0.693148872f + 3967 // (0.240227044f + 3968 // (0.554906021e-1f + 3969 // (0.961591928e-2f + 3970 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3971 // 3972 // error 2.47208000*10^(-7), which is better than 18 bits 3973 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3974 getF32Constant(DAG, 0x3924b03e)); 3975 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3976 getF32Constant(DAG, 0x3ab24b87)); 3977 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3978 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3979 getF32Constant(DAG, 0x3c1d8c17)); 3980 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3981 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3982 getF32Constant(DAG, 0x3d634a1d)); 3983 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3984 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3985 getF32Constant(DAG, 0x3e75fe14)); 3986 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3987 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3988 getF32Constant(DAG, 0x3f317234)); 3989 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3990 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3991 getF32Constant(DAG, 0x3f800000)); 3992 } 3993 3994 // Add the exponent into the result in integer domain. 3995 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX); 3996 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3997 DAG.getNode(ISD::ADD, dl, MVT::i32, 3998 t13, IntegerPartOfX)); 3999 } 4000 4001 // No special expansion. 4002 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4003 } 4004 4005 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4006 /// limited-precision mode. 4007 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4008 const TargetLowering &TLI) { 4009 if (Op.getValueType() == MVT::f32 && 4010 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4011 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4012 4013 // Scale the exponent by log(2) [0.69314718f]. 4014 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4015 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4016 getF32Constant(DAG, 0x3f317218)); 4017 4018 // Get the significand and build it into a floating-point number with 4019 // exponent of 1. 4020 SDValue X = GetSignificand(DAG, Op1, dl); 4021 4022 SDValue LogOfMantissa; 4023 if (LimitFloatPrecision <= 6) { 4024 // For floating-point precision of 6: 4025 // 4026 // LogofMantissa = 4027 // -1.1609546f + 4028 // (1.4034025f - 0.23903021f * x) * x; 4029 // 4030 // error 0.0034276066, which is better than 8 bits 4031 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4032 getF32Constant(DAG, 0xbe74c456)); 4033 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4034 getF32Constant(DAG, 0x3fb3a2b1)); 4035 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4036 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4037 getF32Constant(DAG, 0x3f949a29)); 4038 } else if (LimitFloatPrecision <= 12) { 4039 // For floating-point precision of 12: 4040 // 4041 // LogOfMantissa = 4042 // -1.7417939f + 4043 // (2.8212026f + 4044 // (-1.4699568f + 4045 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4046 // 4047 // error 0.000061011436, which is 14 bits 4048 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4049 getF32Constant(DAG, 0xbd67b6d6)); 4050 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4051 getF32Constant(DAG, 0x3ee4f4b8)); 4052 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4053 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4054 getF32Constant(DAG, 0x3fbc278b)); 4055 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4056 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4057 getF32Constant(DAG, 0x40348e95)); 4058 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4059 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4060 getF32Constant(DAG, 0x3fdef31a)); 4061 } else { // LimitFloatPrecision <= 18 4062 // For floating-point precision of 18: 4063 // 4064 // LogOfMantissa = 4065 // -2.1072184f + 4066 // (4.2372794f + 4067 // (-3.7029485f + 4068 // (2.2781945f + 4069 // (-0.87823314f + 4070 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4071 // 4072 // error 0.0000023660568, which is better than 18 bits 4073 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4074 getF32Constant(DAG, 0xbc91e5ac)); 4075 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4076 getF32Constant(DAG, 0x3e4350aa)); 4077 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4078 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4079 getF32Constant(DAG, 0x3f60d3e3)); 4080 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4081 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4082 getF32Constant(DAG, 0x4011cdf0)); 4083 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4084 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4085 getF32Constant(DAG, 0x406cfd1c)); 4086 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4087 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4088 getF32Constant(DAG, 0x408797cb)); 4089 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4090 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4091 getF32Constant(DAG, 0x4006dcab)); 4092 } 4093 4094 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4095 } 4096 4097 // No special expansion. 4098 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4099 } 4100 4101 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4102 /// limited-precision mode. 4103 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4104 const TargetLowering &TLI) { 4105 if (Op.getValueType() == MVT::f32 && 4106 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4107 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4108 4109 // Get the exponent. 4110 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4111 4112 // Get the significand and build it into a floating-point number with 4113 // exponent of 1. 4114 SDValue X = GetSignificand(DAG, Op1, dl); 4115 4116 // Different possible minimax approximations of significand in 4117 // floating-point for various degrees of accuracy over [1,2]. 4118 SDValue Log2ofMantissa; 4119 if (LimitFloatPrecision <= 6) { 4120 // For floating-point precision of 6: 4121 // 4122 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4123 // 4124 // error 0.0049451742, which is more than 7 bits 4125 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4126 getF32Constant(DAG, 0xbeb08fe0)); 4127 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4128 getF32Constant(DAG, 0x40019463)); 4129 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4130 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4131 getF32Constant(DAG, 0x3fd6633d)); 4132 } else if (LimitFloatPrecision <= 12) { 4133 // For floating-point precision of 12: 4134 // 4135 // Log2ofMantissa = 4136 // -2.51285454f + 4137 // (4.07009056f + 4138 // (-2.12067489f + 4139 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4140 // 4141 // error 0.0000876136000, which is better than 13 bits 4142 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4143 getF32Constant(DAG, 0xbda7262e)); 4144 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4145 getF32Constant(DAG, 0x3f25280b)); 4146 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4147 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4148 getF32Constant(DAG, 0x4007b923)); 4149 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4150 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4151 getF32Constant(DAG, 0x40823e2f)); 4152 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4153 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4154 getF32Constant(DAG, 0x4020d29c)); 4155 } else { // LimitFloatPrecision <= 18 4156 // For floating-point precision of 18: 4157 // 4158 // Log2ofMantissa = 4159 // -3.0400495f + 4160 // (6.1129976f + 4161 // (-5.3420409f + 4162 // (3.2865683f + 4163 // (-1.2669343f + 4164 // (0.27515199f - 4165 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4166 // 4167 // error 0.0000018516, which is better than 18 bits 4168 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4169 getF32Constant(DAG, 0xbcd2769e)); 4170 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4171 getF32Constant(DAG, 0x3e8ce0b9)); 4172 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4173 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4174 getF32Constant(DAG, 0x3fa22ae7)); 4175 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4176 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4177 getF32Constant(DAG, 0x40525723)); 4178 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4179 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4180 getF32Constant(DAG, 0x40aaf200)); 4181 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4182 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4183 getF32Constant(DAG, 0x40c39dad)); 4184 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4185 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4186 getF32Constant(DAG, 0x4042902c)); 4187 } 4188 4189 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4190 } 4191 4192 // No special expansion. 4193 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4194 } 4195 4196 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4197 /// limited-precision mode. 4198 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4199 const TargetLowering &TLI) { 4200 if (Op.getValueType() == MVT::f32 && 4201 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4202 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4203 4204 // Scale the exponent by log10(2) [0.30102999f]. 4205 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4206 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4207 getF32Constant(DAG, 0x3e9a209a)); 4208 4209 // Get the significand and build it into a floating-point number with 4210 // exponent of 1. 4211 SDValue X = GetSignificand(DAG, Op1, dl); 4212 4213 SDValue Log10ofMantissa; 4214 if (LimitFloatPrecision <= 6) { 4215 // For floating-point precision of 6: 4216 // 4217 // Log10ofMantissa = 4218 // -0.50419619f + 4219 // (0.60948995f - 0.10380950f * x) * x; 4220 // 4221 // error 0.0014886165, which is 6 bits 4222 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4223 getF32Constant(DAG, 0xbdd49a13)); 4224 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4225 getF32Constant(DAG, 0x3f1c0789)); 4226 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4227 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4228 getF32Constant(DAG, 0x3f011300)); 4229 } else if (LimitFloatPrecision <= 12) { 4230 // For floating-point precision of 12: 4231 // 4232 // Log10ofMantissa = 4233 // -0.64831180f + 4234 // (0.91751397f + 4235 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4236 // 4237 // error 0.00019228036, which is better than 12 bits 4238 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4239 getF32Constant(DAG, 0x3d431f31)); 4240 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4241 getF32Constant(DAG, 0x3ea21fb2)); 4242 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4243 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4244 getF32Constant(DAG, 0x3f6ae232)); 4245 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4246 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4247 getF32Constant(DAG, 0x3f25f7c3)); 4248 } else { // LimitFloatPrecision <= 18 4249 // For floating-point precision of 18: 4250 // 4251 // Log10ofMantissa = 4252 // -0.84299375f + 4253 // (1.5327582f + 4254 // (-1.0688956f + 4255 // (0.49102474f + 4256 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4257 // 4258 // error 0.0000037995730, which is better than 18 bits 4259 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4260 getF32Constant(DAG, 0x3c5d51ce)); 4261 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4262 getF32Constant(DAG, 0x3e00685a)); 4263 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4264 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4265 getF32Constant(DAG, 0x3efb6798)); 4266 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4267 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4268 getF32Constant(DAG, 0x3f88d192)); 4269 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4270 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4271 getF32Constant(DAG, 0x3fc4316c)); 4272 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4273 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4274 getF32Constant(DAG, 0x3f57ce70)); 4275 } 4276 4277 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4278 } 4279 4280 // No special expansion. 4281 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4282 } 4283 4284 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4285 /// limited-precision mode. 4286 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4287 const TargetLowering &TLI) { 4288 if (Op.getValueType() == MVT::f32 && 4289 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4290 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4291 4292 // FractionalPartOfX = x - (float)IntegerPartOfX; 4293 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4294 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4295 4296 // IntegerPartOfX <<= 23; 4297 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4298 DAG.getConstant(23, TLI.getPointerTy())); 4299 4300 SDValue TwoToFractionalPartOfX; 4301 if (LimitFloatPrecision <= 6) { 4302 // For floating-point precision of 6: 4303 // 4304 // TwoToFractionalPartOfX = 4305 // 0.997535578f + 4306 // (0.735607626f + 0.252464424f * x) * x; 4307 // 4308 // error 0.0144103317, which is 6 bits 4309 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4310 getF32Constant(DAG, 0x3e814304)); 4311 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4312 getF32Constant(DAG, 0x3f3c50c8)); 4313 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4314 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4315 getF32Constant(DAG, 0x3f7f5e7e)); 4316 } else if (LimitFloatPrecision <= 12) { 4317 // For floating-point precision of 12: 4318 // 4319 // TwoToFractionalPartOfX = 4320 // 0.999892986f + 4321 // (0.696457318f + 4322 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4323 // 4324 // error 0.000107046256, which is 13 to 14 bits 4325 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4326 getF32Constant(DAG, 0x3da235e3)); 4327 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4328 getF32Constant(DAG, 0x3e65b8f3)); 4329 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4330 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4331 getF32Constant(DAG, 0x3f324b07)); 4332 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4333 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4334 getF32Constant(DAG, 0x3f7ff8fd)); 4335 } else { // LimitFloatPrecision <= 18 4336 // For floating-point precision of 18: 4337 // 4338 // TwoToFractionalPartOfX = 4339 // 0.999999982f + 4340 // (0.693148872f + 4341 // (0.240227044f + 4342 // (0.554906021e-1f + 4343 // (0.961591928e-2f + 4344 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4345 // error 2.47208000*10^(-7), which is better than 18 bits 4346 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4347 getF32Constant(DAG, 0x3924b03e)); 4348 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4349 getF32Constant(DAG, 0x3ab24b87)); 4350 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4351 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4352 getF32Constant(DAG, 0x3c1d8c17)); 4353 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4354 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4355 getF32Constant(DAG, 0x3d634a1d)); 4356 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4357 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4358 getF32Constant(DAG, 0x3e75fe14)); 4359 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4360 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4361 getF32Constant(DAG, 0x3f317234)); 4362 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4363 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4364 getF32Constant(DAG, 0x3f800000)); 4365 } 4366 4367 // Add the exponent into the result in integer domain. 4368 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, 4369 TwoToFractionalPartOfX); 4370 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4371 DAG.getNode(ISD::ADD, dl, MVT::i32, 4372 t13, IntegerPartOfX)); 4373 } 4374 4375 // No special expansion. 4376 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4377 } 4378 4379 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4380 /// limited-precision mode with x == 10.0f. 4381 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4382 SelectionDAG &DAG, const TargetLowering &TLI) { 4383 bool IsExp10 = false; 4384 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4385 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4386 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4387 APFloat Ten(10.0f); 4388 IsExp10 = LHSC->isExactlyValue(Ten); 4389 } 4390 } 4391 4392 if (IsExp10) { 4393 // Put the exponent in the right bit position for later addition to the 4394 // final result: 4395 // 4396 // #define LOG2OF10 3.3219281f 4397 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4398 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4399 getF32Constant(DAG, 0x40549a78)); 4400 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4401 4402 // FractionalPartOfX = x - (float)IntegerPartOfX; 4403 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4404 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4405 4406 // IntegerPartOfX <<= 23; 4407 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4408 DAG.getConstant(23, TLI.getPointerTy())); 4409 4410 SDValue TwoToFractionalPartOfX; 4411 if (LimitFloatPrecision <= 6) { 4412 // For floating-point precision of 6: 4413 // 4414 // twoToFractionalPartOfX = 4415 // 0.997535578f + 4416 // (0.735607626f + 0.252464424f * x) * x; 4417 // 4418 // error 0.0144103317, which is 6 bits 4419 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4420 getF32Constant(DAG, 0x3e814304)); 4421 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4422 getF32Constant(DAG, 0x3f3c50c8)); 4423 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4424 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4425 getF32Constant(DAG, 0x3f7f5e7e)); 4426 } else if (LimitFloatPrecision <= 12) { 4427 // For floating-point precision of 12: 4428 // 4429 // TwoToFractionalPartOfX = 4430 // 0.999892986f + 4431 // (0.696457318f + 4432 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4433 // 4434 // error 0.000107046256, which is 13 to 14 bits 4435 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4436 getF32Constant(DAG, 0x3da235e3)); 4437 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4438 getF32Constant(DAG, 0x3e65b8f3)); 4439 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4440 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4441 getF32Constant(DAG, 0x3f324b07)); 4442 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4443 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4444 getF32Constant(DAG, 0x3f7ff8fd)); 4445 } else { // LimitFloatPrecision <= 18 4446 // For floating-point precision of 18: 4447 // 4448 // TwoToFractionalPartOfX = 4449 // 0.999999982f + 4450 // (0.693148872f + 4451 // (0.240227044f + 4452 // (0.554906021e-1f + 4453 // (0.961591928e-2f + 4454 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4455 // error 2.47208000*10^(-7), which is better than 18 bits 4456 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4457 getF32Constant(DAG, 0x3924b03e)); 4458 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4459 getF32Constant(DAG, 0x3ab24b87)); 4460 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4461 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4462 getF32Constant(DAG, 0x3c1d8c17)); 4463 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4464 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4465 getF32Constant(DAG, 0x3d634a1d)); 4466 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4467 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4468 getF32Constant(DAG, 0x3e75fe14)); 4469 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4470 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4471 getF32Constant(DAG, 0x3f317234)); 4472 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4473 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4474 getF32Constant(DAG, 0x3f800000)); 4475 } 4476 4477 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX); 4478 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4479 DAG.getNode(ISD::ADD, dl, MVT::i32, 4480 t13, IntegerPartOfX)); 4481 } 4482 4483 // No special expansion. 4484 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4485 } 4486 4487 4488 /// ExpandPowI - Expand a llvm.powi intrinsic. 4489 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4490 SelectionDAG &DAG) { 4491 // If RHS is a constant, we can expand this out to a multiplication tree, 4492 // otherwise we end up lowering to a call to __powidf2 (for example). When 4493 // optimizing for size, we only want to do this if the expansion would produce 4494 // a small number of multiplies, otherwise we do the full expansion. 4495 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4496 // Get the exponent as a positive value. 4497 unsigned Val = RHSC->getSExtValue(); 4498 if ((int)Val < 0) Val = -Val; 4499 4500 // powi(x, 0) -> 1.0 4501 if (Val == 0) 4502 return DAG.getConstantFP(1.0, LHS.getValueType()); 4503 4504 const Function *F = DAG.getMachineFunction().getFunction(); 4505 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 4506 Attribute::OptimizeForSize) || 4507 // If optimizing for size, don't insert too many multiplies. This 4508 // inserts up to 5 multiplies. 4509 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4510 // We use the simple binary decomposition method to generate the multiply 4511 // sequence. There are more optimal ways to do this (for example, 4512 // powi(x,15) generates one more multiply than it should), but this has 4513 // the benefit of being both really simple and much better than a libcall. 4514 SDValue Res; // Logically starts equal to 1.0 4515 SDValue CurSquare = LHS; 4516 while (Val) { 4517 if (Val & 1) { 4518 if (Res.getNode()) 4519 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4520 else 4521 Res = CurSquare; // 1.0*CurSquare. 4522 } 4523 4524 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4525 CurSquare, CurSquare); 4526 Val >>= 1; 4527 } 4528 4529 // If the original was negative, invert the result, producing 1/(x*x*x). 4530 if (RHSC->getSExtValue() < 0) 4531 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4532 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4533 return Res; 4534 } 4535 } 4536 4537 // Otherwise, expand to a libcall. 4538 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4539 } 4540 4541 // getTruncatedArgReg - Find underlying register used for an truncated 4542 // argument. 4543 static unsigned getTruncatedArgReg(const SDValue &N) { 4544 if (N.getOpcode() != ISD::TRUNCATE) 4545 return 0; 4546 4547 const SDValue &Ext = N.getOperand(0); 4548 if (Ext.getOpcode() == ISD::AssertZext || 4549 Ext.getOpcode() == ISD::AssertSext) { 4550 const SDValue &CFR = Ext.getOperand(0); 4551 if (CFR.getOpcode() == ISD::CopyFromReg) 4552 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4553 if (CFR.getOpcode() == ISD::TRUNCATE) 4554 return getTruncatedArgReg(CFR); 4555 } 4556 return 0; 4557 } 4558 4559 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4560 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4561 /// At the end of instruction selection, they will be inserted to the entry BB. 4562 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, 4563 MDNode *Variable, 4564 MDNode *Expr, int64_t Offset, 4565 bool IsIndirect, 4566 const SDValue &N) { 4567 const Argument *Arg = dyn_cast<Argument>(V); 4568 if (!Arg) 4569 return false; 4570 4571 MachineFunction &MF = DAG.getMachineFunction(); 4572 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4573 4574 // Ignore inlined function arguments here. 4575 DIVariable DV(Variable); 4576 if (DV.isInlinedFnArgument(MF.getFunction())) 4577 return false; 4578 4579 Optional<MachineOperand> Op; 4580 // Some arguments' frame index is recorded during argument lowering. 4581 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4582 Op = MachineOperand::CreateFI(FI); 4583 4584 if (!Op && N.getNode()) { 4585 unsigned Reg; 4586 if (N.getOpcode() == ISD::CopyFromReg) 4587 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4588 else 4589 Reg = getTruncatedArgReg(N); 4590 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4591 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4592 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4593 if (PR) 4594 Reg = PR; 4595 } 4596 if (Reg) 4597 Op = MachineOperand::CreateReg(Reg, false); 4598 } 4599 4600 if (!Op) { 4601 // Check if ValueMap has reg number. 4602 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4603 if (VMI != FuncInfo.ValueMap.end()) 4604 Op = MachineOperand::CreateReg(VMI->second, false); 4605 } 4606 4607 if (!Op && N.getNode()) 4608 // Check if frame index is available. 4609 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4610 if (FrameIndexSDNode *FINode = 4611 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4612 Op = MachineOperand::CreateFI(FINode->getIndex()); 4613 4614 if (!Op) 4615 return false; 4616 4617 if (Op->isReg()) 4618 FuncInfo.ArgDbgValues.push_back( 4619 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE), 4620 IsIndirect, Op->getReg(), Offset, Variable, Expr)); 4621 else 4622 FuncInfo.ArgDbgValues.push_back( 4623 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE)) 4624 .addOperand(*Op) 4625 .addImm(Offset) 4626 .addMetadata(Variable) 4627 .addMetadata(Expr)); 4628 4629 return true; 4630 } 4631 4632 // VisualStudio defines setjmp as _setjmp 4633 #if defined(_MSC_VER) && defined(setjmp) && \ 4634 !defined(setjmp_undefined_for_msvc) 4635 # pragma push_macro("setjmp") 4636 # undef setjmp 4637 # define setjmp_undefined_for_msvc 4638 #endif 4639 4640 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4641 /// we want to emit this as a call to a named external function, return the name 4642 /// otherwise lower it and return null. 4643 const char * 4644 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4645 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4646 SDLoc sdl = getCurSDLoc(); 4647 DebugLoc dl = getCurDebugLoc(); 4648 SDValue Res; 4649 4650 switch (Intrinsic) { 4651 default: 4652 // By default, turn this into a target intrinsic node. 4653 visitTargetIntrinsic(I, Intrinsic); 4654 return nullptr; 4655 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4656 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4657 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4658 case Intrinsic::returnaddress: 4659 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4660 getValue(I.getArgOperand(0)))); 4661 return nullptr; 4662 case Intrinsic::frameaddress: 4663 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4664 getValue(I.getArgOperand(0)))); 4665 return nullptr; 4666 case Intrinsic::read_register: { 4667 Value *Reg = I.getArgOperand(0); 4668 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4669 EVT VT = TLI.getValueType(I.getType()); 4670 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4671 return nullptr; 4672 } 4673 case Intrinsic::write_register: { 4674 Value *Reg = I.getArgOperand(0); 4675 Value *RegValue = I.getArgOperand(1); 4676 SDValue Chain = getValue(RegValue).getOperand(0); 4677 SDValue RegName = DAG.getMDNode(cast<MDNode>(Reg)); 4678 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4679 RegName, getValue(RegValue))); 4680 return nullptr; 4681 } 4682 case Intrinsic::setjmp: 4683 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4684 case Intrinsic::longjmp: 4685 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4686 case Intrinsic::memcpy: { 4687 // Assert for address < 256 since we support only user defined address 4688 // spaces. 4689 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4690 < 256 && 4691 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4692 < 256 && 4693 "Unknown address space"); 4694 SDValue Op1 = getValue(I.getArgOperand(0)); 4695 SDValue Op2 = getValue(I.getArgOperand(1)); 4696 SDValue Op3 = getValue(I.getArgOperand(2)); 4697 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4698 if (!Align) 4699 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4700 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4701 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false, 4702 MachinePointerInfo(I.getArgOperand(0)), 4703 MachinePointerInfo(I.getArgOperand(1)))); 4704 return nullptr; 4705 } 4706 case Intrinsic::memset: { 4707 // Assert for address < 256 since we support only user defined address 4708 // spaces. 4709 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4710 < 256 && 4711 "Unknown address space"); 4712 SDValue Op1 = getValue(I.getArgOperand(0)); 4713 SDValue Op2 = getValue(I.getArgOperand(1)); 4714 SDValue Op3 = getValue(I.getArgOperand(2)); 4715 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4716 if (!Align) 4717 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4718 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4719 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4720 MachinePointerInfo(I.getArgOperand(0)))); 4721 return nullptr; 4722 } 4723 case Intrinsic::memmove: { 4724 // Assert for address < 256 since we support only user defined address 4725 // spaces. 4726 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4727 < 256 && 4728 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4729 < 256 && 4730 "Unknown address space"); 4731 SDValue Op1 = getValue(I.getArgOperand(0)); 4732 SDValue Op2 = getValue(I.getArgOperand(1)); 4733 SDValue Op3 = getValue(I.getArgOperand(2)); 4734 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4735 if (!Align) 4736 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4737 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4738 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4739 MachinePointerInfo(I.getArgOperand(0)), 4740 MachinePointerInfo(I.getArgOperand(1)))); 4741 return nullptr; 4742 } 4743 case Intrinsic::dbg_declare: { 4744 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4745 MDNode *Variable = DI.getVariable(); 4746 MDNode *Expression = DI.getExpression(); 4747 const Value *Address = DI.getAddress(); 4748 DIVariable DIVar(Variable); 4749 assert((!DIVar || DIVar.isVariable()) && 4750 "Variable in DbgDeclareInst should be either null or a DIVariable."); 4751 if (!Address || !DIVar) { 4752 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4753 return nullptr; 4754 } 4755 4756 // Check if address has undef value. 4757 if (isa<UndefValue>(Address) || 4758 (Address->use_empty() && !isa<Argument>(Address))) { 4759 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4760 return nullptr; 4761 } 4762 4763 SDValue &N = NodeMap[Address]; 4764 if (!N.getNode() && isa<Argument>(Address)) 4765 // Check unused arguments map. 4766 N = UnusedArgNodeMap[Address]; 4767 SDDbgValue *SDV; 4768 if (N.getNode()) { 4769 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4770 Address = BCI->getOperand(0); 4771 // Parameters are handled specially. 4772 bool isParameter = 4773 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4774 isa<Argument>(Address)); 4775 4776 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4777 4778 if (isParameter && !AI) { 4779 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4780 if (FINode) 4781 // Byval parameter. We have a frame index at this point. 4782 SDV = DAG.getFrameIndexDbgValue( 4783 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4784 else { 4785 // Address is an argument, so try to emit its dbg value using 4786 // virtual register info from the FuncInfo.ValueMap. 4787 EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N); 4788 return nullptr; 4789 } 4790 } else if (AI) 4791 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4792 true, 0, dl, SDNodeOrder); 4793 else { 4794 // Can't do anything with other non-AI cases yet. 4795 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4796 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4797 DEBUG(Address->dump()); 4798 return nullptr; 4799 } 4800 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4801 } else { 4802 // If Address is an argument then try to emit its dbg value using 4803 // virtual register info from the FuncInfo.ValueMap. 4804 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, 4805 N)) { 4806 // If variable is pinned by a alloca in dominating bb then 4807 // use StaticAllocaMap. 4808 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4809 if (AI->getParent() != DI.getParent()) { 4810 DenseMap<const AllocaInst*, int>::iterator SI = 4811 FuncInfo.StaticAllocaMap.find(AI); 4812 if (SI != FuncInfo.StaticAllocaMap.end()) { 4813 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4814 0, dl, SDNodeOrder); 4815 DAG.AddDbgValue(SDV, nullptr, false); 4816 return nullptr; 4817 } 4818 } 4819 } 4820 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4821 } 4822 } 4823 return nullptr; 4824 } 4825 case Intrinsic::dbg_value: { 4826 const DbgValueInst &DI = cast<DbgValueInst>(I); 4827 DIVariable DIVar(DI.getVariable()); 4828 assert((!DIVar || DIVar.isVariable()) && 4829 "Variable in DbgValueInst should be either null or a DIVariable."); 4830 if (!DIVar) 4831 return nullptr; 4832 4833 MDNode *Variable = DI.getVariable(); 4834 MDNode *Expression = DI.getExpression(); 4835 uint64_t Offset = DI.getOffset(); 4836 const Value *V = DI.getValue(); 4837 if (!V) 4838 return nullptr; 4839 4840 SDDbgValue *SDV; 4841 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4842 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4843 SDNodeOrder); 4844 DAG.AddDbgValue(SDV, nullptr, false); 4845 } else { 4846 // Do not use getValue() in here; we don't want to generate code at 4847 // this point if it hasn't been done yet. 4848 SDValue N = NodeMap[V]; 4849 if (!N.getNode() && isa<Argument>(V)) 4850 // Check unused arguments map. 4851 N = UnusedArgNodeMap[V]; 4852 if (N.getNode()) { 4853 // A dbg.value for an alloca is always indirect. 4854 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4855 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset, 4856 IsIndirect, N)) { 4857 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4858 IsIndirect, Offset, dl, SDNodeOrder); 4859 DAG.AddDbgValue(SDV, N.getNode(), false); 4860 } 4861 } else if (!V->use_empty() ) { 4862 // Do not call getValue(V) yet, as we don't want to generate code. 4863 // Remember it for later. 4864 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4865 DanglingDebugInfoMap[V] = DDI; 4866 } else { 4867 // We may expand this to cover more cases. One case where we have no 4868 // data available is an unreferenced parameter. 4869 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4870 } 4871 } 4872 4873 // Build a debug info table entry. 4874 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4875 V = BCI->getOperand(0); 4876 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4877 // Don't handle byval struct arguments or VLAs, for example. 4878 if (!AI) { 4879 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4880 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4881 return nullptr; 4882 } 4883 DenseMap<const AllocaInst*, int>::iterator SI = 4884 FuncInfo.StaticAllocaMap.find(AI); 4885 if (SI == FuncInfo.StaticAllocaMap.end()) 4886 return nullptr; // VLAs. 4887 return nullptr; 4888 } 4889 4890 case Intrinsic::eh_typeid_for: { 4891 // Find the type id for the given typeinfo. 4892 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4893 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4894 Res = DAG.getConstant(TypeID, MVT::i32); 4895 setValue(&I, Res); 4896 return nullptr; 4897 } 4898 4899 case Intrinsic::eh_return_i32: 4900 case Intrinsic::eh_return_i64: 4901 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4902 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4903 MVT::Other, 4904 getControlRoot(), 4905 getValue(I.getArgOperand(0)), 4906 getValue(I.getArgOperand(1)))); 4907 return nullptr; 4908 case Intrinsic::eh_unwind_init: 4909 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4910 return nullptr; 4911 case Intrinsic::eh_dwarf_cfa: { 4912 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4913 TLI.getPointerTy()); 4914 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4915 CfaArg.getValueType(), 4916 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4917 CfaArg.getValueType()), 4918 CfaArg); 4919 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4920 DAG.getConstant(0, TLI.getPointerTy())); 4921 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4922 FA, Offset)); 4923 return nullptr; 4924 } 4925 case Intrinsic::eh_sjlj_callsite: { 4926 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4927 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4928 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4929 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4930 4931 MMI.setCurrentCallSite(CI->getZExtValue()); 4932 return nullptr; 4933 } 4934 case Intrinsic::eh_sjlj_functioncontext: { 4935 // Get and store the index of the function context. 4936 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4937 AllocaInst *FnCtx = 4938 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4939 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4940 MFI->setFunctionContextIndex(FI); 4941 return nullptr; 4942 } 4943 case Intrinsic::eh_sjlj_setjmp: { 4944 SDValue Ops[2]; 4945 Ops[0] = getRoot(); 4946 Ops[1] = getValue(I.getArgOperand(0)); 4947 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4948 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4949 setValue(&I, Op.getValue(0)); 4950 DAG.setRoot(Op.getValue(1)); 4951 return nullptr; 4952 } 4953 case Intrinsic::eh_sjlj_longjmp: { 4954 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4955 getRoot(), getValue(I.getArgOperand(0)))); 4956 return nullptr; 4957 } 4958 4959 case Intrinsic::x86_mmx_pslli_w: 4960 case Intrinsic::x86_mmx_pslli_d: 4961 case Intrinsic::x86_mmx_pslli_q: 4962 case Intrinsic::x86_mmx_psrli_w: 4963 case Intrinsic::x86_mmx_psrli_d: 4964 case Intrinsic::x86_mmx_psrli_q: 4965 case Intrinsic::x86_mmx_psrai_w: 4966 case Intrinsic::x86_mmx_psrai_d: { 4967 SDValue ShAmt = getValue(I.getArgOperand(1)); 4968 if (isa<ConstantSDNode>(ShAmt)) { 4969 visitTargetIntrinsic(I, Intrinsic); 4970 return nullptr; 4971 } 4972 unsigned NewIntrinsic = 0; 4973 EVT ShAmtVT = MVT::v2i32; 4974 switch (Intrinsic) { 4975 case Intrinsic::x86_mmx_pslli_w: 4976 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4977 break; 4978 case Intrinsic::x86_mmx_pslli_d: 4979 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4980 break; 4981 case Intrinsic::x86_mmx_pslli_q: 4982 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4983 break; 4984 case Intrinsic::x86_mmx_psrli_w: 4985 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4986 break; 4987 case Intrinsic::x86_mmx_psrli_d: 4988 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4989 break; 4990 case Intrinsic::x86_mmx_psrli_q: 4991 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4992 break; 4993 case Intrinsic::x86_mmx_psrai_w: 4994 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4995 break; 4996 case Intrinsic::x86_mmx_psrai_d: 4997 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4998 break; 4999 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5000 } 5001 5002 // The vector shift intrinsics with scalars uses 32b shift amounts but 5003 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5004 // to be zero. 5005 // We must do this early because v2i32 is not a legal type. 5006 SDValue ShOps[2]; 5007 ShOps[0] = ShAmt; 5008 ShOps[1] = DAG.getConstant(0, MVT::i32); 5009 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 5010 EVT DestVT = TLI.getValueType(I.getType()); 5011 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5012 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5013 DAG.getConstant(NewIntrinsic, MVT::i32), 5014 getValue(I.getArgOperand(0)), ShAmt); 5015 setValue(&I, Res); 5016 return nullptr; 5017 } 5018 case Intrinsic::x86_avx_vinsertf128_pd_256: 5019 case Intrinsic::x86_avx_vinsertf128_ps_256: 5020 case Intrinsic::x86_avx_vinsertf128_si_256: 5021 case Intrinsic::x86_avx2_vinserti128: { 5022 EVT DestVT = TLI.getValueType(I.getType()); 5023 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 5024 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 5025 ElVT.getVectorNumElements(); 5026 Res = 5027 DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT, 5028 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 5029 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5030 setValue(&I, Res); 5031 return nullptr; 5032 } 5033 case Intrinsic::x86_avx_vextractf128_pd_256: 5034 case Intrinsic::x86_avx_vextractf128_ps_256: 5035 case Intrinsic::x86_avx_vextractf128_si_256: 5036 case Intrinsic::x86_avx2_vextracti128: { 5037 EVT DestVT = TLI.getValueType(I.getType()); 5038 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 5039 DestVT.getVectorNumElements(); 5040 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT, 5041 getValue(I.getArgOperand(0)), 5042 DAG.getConstant(Idx, TLI.getVectorIdxTy())); 5043 setValue(&I, Res); 5044 return nullptr; 5045 } 5046 case Intrinsic::convertff: 5047 case Intrinsic::convertfsi: 5048 case Intrinsic::convertfui: 5049 case Intrinsic::convertsif: 5050 case Intrinsic::convertuif: 5051 case Intrinsic::convertss: 5052 case Intrinsic::convertsu: 5053 case Intrinsic::convertus: 5054 case Intrinsic::convertuu: { 5055 ISD::CvtCode Code = ISD::CVT_INVALID; 5056 switch (Intrinsic) { 5057 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5058 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 5059 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 5060 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 5061 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 5062 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 5063 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 5064 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 5065 case Intrinsic::convertus: Code = ISD::CVT_US; break; 5066 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 5067 } 5068 EVT DestVT = TLI.getValueType(I.getType()); 5069 const Value *Op1 = I.getArgOperand(0); 5070 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 5071 DAG.getValueType(DestVT), 5072 DAG.getValueType(getValue(Op1).getValueType()), 5073 getValue(I.getArgOperand(1)), 5074 getValue(I.getArgOperand(2)), 5075 Code); 5076 setValue(&I, Res); 5077 return nullptr; 5078 } 5079 case Intrinsic::powi: 5080 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5081 getValue(I.getArgOperand(1)), DAG)); 5082 return nullptr; 5083 case Intrinsic::log: 5084 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5085 return nullptr; 5086 case Intrinsic::log2: 5087 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5088 return nullptr; 5089 case Intrinsic::log10: 5090 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5091 return nullptr; 5092 case Intrinsic::exp: 5093 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5094 return nullptr; 5095 case Intrinsic::exp2: 5096 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5097 return nullptr; 5098 case Intrinsic::pow: 5099 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5100 getValue(I.getArgOperand(1)), DAG, TLI)); 5101 return nullptr; 5102 case Intrinsic::sqrt: 5103 case Intrinsic::fabs: 5104 case Intrinsic::sin: 5105 case Intrinsic::cos: 5106 case Intrinsic::floor: 5107 case Intrinsic::ceil: 5108 case Intrinsic::trunc: 5109 case Intrinsic::rint: 5110 case Intrinsic::nearbyint: 5111 case Intrinsic::round: { 5112 unsigned Opcode; 5113 switch (Intrinsic) { 5114 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5115 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5116 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5117 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5118 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5119 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5120 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5121 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5122 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5123 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5124 case Intrinsic::round: Opcode = ISD::FROUND; break; 5125 } 5126 5127 setValue(&I, DAG.getNode(Opcode, sdl, 5128 getValue(I.getArgOperand(0)).getValueType(), 5129 getValue(I.getArgOperand(0)))); 5130 return nullptr; 5131 } 5132 case Intrinsic::copysign: 5133 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5134 getValue(I.getArgOperand(0)).getValueType(), 5135 getValue(I.getArgOperand(0)), 5136 getValue(I.getArgOperand(1)))); 5137 return nullptr; 5138 case Intrinsic::fma: 5139 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5140 getValue(I.getArgOperand(0)).getValueType(), 5141 getValue(I.getArgOperand(0)), 5142 getValue(I.getArgOperand(1)), 5143 getValue(I.getArgOperand(2)))); 5144 return nullptr; 5145 case Intrinsic::fmuladd: { 5146 EVT VT = TLI.getValueType(I.getType()); 5147 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 5148 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 5149 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5150 getValue(I.getArgOperand(0)).getValueType(), 5151 getValue(I.getArgOperand(0)), 5152 getValue(I.getArgOperand(1)), 5153 getValue(I.getArgOperand(2)))); 5154 } else { 5155 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 5156 getValue(I.getArgOperand(0)).getValueType(), 5157 getValue(I.getArgOperand(0)), 5158 getValue(I.getArgOperand(1))); 5159 SDValue Add = DAG.getNode(ISD::FADD, sdl, 5160 getValue(I.getArgOperand(0)).getValueType(), 5161 Mul, 5162 getValue(I.getArgOperand(2))); 5163 setValue(&I, Add); 5164 } 5165 return nullptr; 5166 } 5167 case Intrinsic::convert_to_fp16: 5168 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 5169 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 5170 getValue(I.getArgOperand(0)), 5171 DAG.getTargetConstant(0, MVT::i32)))); 5172 return nullptr; 5173 case Intrinsic::convert_from_fp16: 5174 setValue(&I, 5175 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 5176 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 5177 getValue(I.getArgOperand(0))))); 5178 return nullptr; 5179 case Intrinsic::pcmarker: { 5180 SDValue Tmp = getValue(I.getArgOperand(0)); 5181 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 5182 return nullptr; 5183 } 5184 case Intrinsic::readcyclecounter: { 5185 SDValue Op = getRoot(); 5186 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 5187 DAG.getVTList(MVT::i64, MVT::Other), Op); 5188 setValue(&I, Res); 5189 DAG.setRoot(Res.getValue(1)); 5190 return nullptr; 5191 } 5192 case Intrinsic::bswap: 5193 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 5194 getValue(I.getArgOperand(0)).getValueType(), 5195 getValue(I.getArgOperand(0)))); 5196 return nullptr; 5197 case Intrinsic::cttz: { 5198 SDValue Arg = getValue(I.getArgOperand(0)); 5199 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5200 EVT Ty = Arg.getValueType(); 5201 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5202 sdl, Ty, Arg)); 5203 return nullptr; 5204 } 5205 case Intrinsic::ctlz: { 5206 SDValue Arg = getValue(I.getArgOperand(0)); 5207 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5208 EVT Ty = Arg.getValueType(); 5209 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5210 sdl, Ty, Arg)); 5211 return nullptr; 5212 } 5213 case Intrinsic::ctpop: { 5214 SDValue Arg = getValue(I.getArgOperand(0)); 5215 EVT Ty = Arg.getValueType(); 5216 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 5217 return nullptr; 5218 } 5219 case Intrinsic::stacksave: { 5220 SDValue Op = getRoot(); 5221 Res = DAG.getNode(ISD::STACKSAVE, sdl, 5222 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 5223 setValue(&I, Res); 5224 DAG.setRoot(Res.getValue(1)); 5225 return nullptr; 5226 } 5227 case Intrinsic::stackrestore: { 5228 Res = getValue(I.getArgOperand(0)); 5229 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 5230 return nullptr; 5231 } 5232 case Intrinsic::stackprotector: { 5233 // Emit code into the DAG to store the stack guard onto the stack. 5234 MachineFunction &MF = DAG.getMachineFunction(); 5235 MachineFrameInfo *MFI = MF.getFrameInfo(); 5236 EVT PtrTy = TLI.getPointerTy(); 5237 SDValue Src, Chain = getRoot(); 5238 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 5239 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 5240 5241 // See if Ptr is a bitcast. If it is, look through it and see if we can get 5242 // global variable __stack_chk_guard. 5243 if (!GV) 5244 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 5245 if (BC->getOpcode() == Instruction::BitCast) 5246 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 5247 5248 if (GV && TLI.useLoadStackGuardNode()) { 5249 // Emit a LOAD_STACK_GUARD node. 5250 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 5251 sdl, PtrTy, Chain); 5252 MachinePointerInfo MPInfo(GV); 5253 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 5254 unsigned Flags = MachineMemOperand::MOLoad | 5255 MachineMemOperand::MOInvariant; 5256 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 5257 PtrTy.getSizeInBits() / 8, 5258 DAG.getEVTAlignment(PtrTy)); 5259 Node->setMemRefs(MemRefs, MemRefs + 1); 5260 5261 // Copy the guard value to a virtual register so that it can be 5262 // retrieved in the epilogue. 5263 Src = SDValue(Node, 0); 5264 const TargetRegisterClass *RC = 5265 TLI.getRegClassFor(Src.getSimpleValueType()); 5266 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 5267 5268 SPDescriptor.setGuardReg(Reg); 5269 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 5270 } else { 5271 Src = getValue(I.getArgOperand(0)); // The guard's value. 5272 } 5273 5274 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5275 5276 int FI = FuncInfo.StaticAllocaMap[Slot]; 5277 MFI->setStackProtectorIndex(FI); 5278 5279 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5280 5281 // Store the stack protector onto the stack. 5282 Res = DAG.getStore(Chain, sdl, Src, FIN, 5283 MachinePointerInfo::getFixedStack(FI), 5284 true, false, 0); 5285 setValue(&I, Res); 5286 DAG.setRoot(Res); 5287 return nullptr; 5288 } 5289 case Intrinsic::objectsize: { 5290 // If we don't know by now, we're never going to know. 5291 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5292 5293 assert(CI && "Non-constant type in __builtin_object_size?"); 5294 5295 SDValue Arg = getValue(I.getCalledValue()); 5296 EVT Ty = Arg.getValueType(); 5297 5298 if (CI->isZero()) 5299 Res = DAG.getConstant(-1ULL, Ty); 5300 else 5301 Res = DAG.getConstant(0, Ty); 5302 5303 setValue(&I, Res); 5304 return nullptr; 5305 } 5306 case Intrinsic::annotation: 5307 case Intrinsic::ptr_annotation: 5308 // Drop the intrinsic, but forward the value 5309 setValue(&I, getValue(I.getOperand(0))); 5310 return nullptr; 5311 case Intrinsic::assume: 5312 case Intrinsic::var_annotation: 5313 // Discard annotate attributes and assumptions 5314 return nullptr; 5315 5316 case Intrinsic::init_trampoline: { 5317 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5318 5319 SDValue Ops[6]; 5320 Ops[0] = getRoot(); 5321 Ops[1] = getValue(I.getArgOperand(0)); 5322 Ops[2] = getValue(I.getArgOperand(1)); 5323 Ops[3] = getValue(I.getArgOperand(2)); 5324 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5325 Ops[5] = DAG.getSrcValue(F); 5326 5327 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5328 5329 DAG.setRoot(Res); 5330 return nullptr; 5331 } 5332 case Intrinsic::adjust_trampoline: { 5333 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5334 TLI.getPointerTy(), 5335 getValue(I.getArgOperand(0)))); 5336 return nullptr; 5337 } 5338 case Intrinsic::gcroot: 5339 if (GFI) { 5340 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5341 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5342 5343 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5344 GFI->addStackRoot(FI->getIndex(), TypeMap); 5345 } 5346 return nullptr; 5347 case Intrinsic::gcread: 5348 case Intrinsic::gcwrite: 5349 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5350 case Intrinsic::flt_rounds: 5351 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5352 return nullptr; 5353 5354 case Intrinsic::expect: { 5355 // Just replace __builtin_expect(exp, c) with EXP. 5356 setValue(&I, getValue(I.getArgOperand(0))); 5357 return nullptr; 5358 } 5359 5360 case Intrinsic::debugtrap: 5361 case Intrinsic::trap: { 5362 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5363 if (TrapFuncName.empty()) { 5364 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5365 ISD::TRAP : ISD::DEBUGTRAP; 5366 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5367 return nullptr; 5368 } 5369 TargetLowering::ArgListTy Args; 5370 5371 TargetLowering::CallLoweringInfo CLI(DAG); 5372 CLI.setDebugLoc(sdl).setChain(getRoot()) 5373 .setCallee(CallingConv::C, I.getType(), 5374 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5375 std::move(Args), 0); 5376 5377 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5378 DAG.setRoot(Result.second); 5379 return nullptr; 5380 } 5381 5382 case Intrinsic::uadd_with_overflow: 5383 case Intrinsic::sadd_with_overflow: 5384 case Intrinsic::usub_with_overflow: 5385 case Intrinsic::ssub_with_overflow: 5386 case Intrinsic::umul_with_overflow: 5387 case Intrinsic::smul_with_overflow: { 5388 ISD::NodeType Op; 5389 switch (Intrinsic) { 5390 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5391 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5392 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5393 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5394 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5395 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5396 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5397 } 5398 SDValue Op1 = getValue(I.getArgOperand(0)); 5399 SDValue Op2 = getValue(I.getArgOperand(1)); 5400 5401 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5402 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5403 return nullptr; 5404 } 5405 case Intrinsic::prefetch: { 5406 SDValue Ops[5]; 5407 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5408 Ops[0] = getRoot(); 5409 Ops[1] = getValue(I.getArgOperand(0)); 5410 Ops[2] = getValue(I.getArgOperand(1)); 5411 Ops[3] = getValue(I.getArgOperand(2)); 5412 Ops[4] = getValue(I.getArgOperand(3)); 5413 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5414 DAG.getVTList(MVT::Other), Ops, 5415 EVT::getIntegerVT(*Context, 8), 5416 MachinePointerInfo(I.getArgOperand(0)), 5417 0, /* align */ 5418 false, /* volatile */ 5419 rw==0, /* read */ 5420 rw==1)); /* write */ 5421 return nullptr; 5422 } 5423 case Intrinsic::lifetime_start: 5424 case Intrinsic::lifetime_end: { 5425 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5426 // Stack coloring is not enabled in O0, discard region information. 5427 if (TM.getOptLevel() == CodeGenOpt::None) 5428 return nullptr; 5429 5430 SmallVector<Value *, 4> Allocas; 5431 GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL); 5432 5433 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5434 E = Allocas.end(); Object != E; ++Object) { 5435 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5436 5437 // Could not find an Alloca. 5438 if (!LifetimeObject) 5439 continue; 5440 5441 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5442 5443 SDValue Ops[2]; 5444 Ops[0] = getRoot(); 5445 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5446 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5447 5448 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5449 DAG.setRoot(Res); 5450 } 5451 return nullptr; 5452 } 5453 case Intrinsic::invariant_start: 5454 // Discard region information. 5455 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5456 return nullptr; 5457 case Intrinsic::invariant_end: 5458 // Discard region information. 5459 return nullptr; 5460 case Intrinsic::stackprotectorcheck: { 5461 // Do not actually emit anything for this basic block. Instead we initialize 5462 // the stack protector descriptor and export the guard variable so we can 5463 // access it in FinishBasicBlock. 5464 const BasicBlock *BB = I.getParent(); 5465 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5466 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5467 5468 // Flush our exports since we are going to process a terminator. 5469 (void)getControlRoot(); 5470 return nullptr; 5471 } 5472 case Intrinsic::clear_cache: 5473 return TLI.getClearCacheBuiltinName(); 5474 case Intrinsic::donothing: 5475 // ignore 5476 return nullptr; 5477 case Intrinsic::experimental_stackmap: { 5478 visitStackmap(I); 5479 return nullptr; 5480 } 5481 case Intrinsic::experimental_patchpoint_void: 5482 case Intrinsic::experimental_patchpoint_i64: { 5483 visitPatchpoint(I); 5484 return nullptr; 5485 } 5486 } 5487 } 5488 5489 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5490 bool isTailCall, 5491 MachineBasicBlock *LandingPad) { 5492 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5493 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5494 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5495 Type *RetTy = FTy->getReturnType(); 5496 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5497 MCSymbol *BeginLabel = nullptr; 5498 5499 TargetLowering::ArgListTy Args; 5500 TargetLowering::ArgListEntry Entry; 5501 Args.reserve(CS.arg_size()); 5502 5503 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5504 i != e; ++i) { 5505 const Value *V = *i; 5506 5507 // Skip empty types 5508 if (V->getType()->isEmptyTy()) 5509 continue; 5510 5511 SDValue ArgNode = getValue(V); 5512 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5513 5514 // Skip the first return-type Attribute to get to params. 5515 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5516 Args.push_back(Entry); 5517 } 5518 5519 if (LandingPad) { 5520 // Insert a label before the invoke call to mark the try range. This can be 5521 // used to detect deletion of the invoke via the MachineModuleInfo. 5522 BeginLabel = MMI.getContext().CreateTempSymbol(); 5523 5524 // For SjLj, keep track of which landing pads go with which invokes 5525 // so as to maintain the ordering of pads in the LSDA. 5526 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5527 if (CallSiteIndex) { 5528 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5529 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5530 5531 // Now that the call site is handled, stop tracking it. 5532 MMI.setCurrentCallSite(0); 5533 } 5534 5535 // Both PendingLoads and PendingExports must be flushed here; 5536 // this call might not return. 5537 (void)getRoot(); 5538 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5539 } 5540 5541 // Check if target-independent constraints permit a tail call here. 5542 // Target-dependent constraints are checked within TLI.LowerCallTo. 5543 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5544 isTailCall = false; 5545 5546 TargetLowering::CallLoweringInfo CLI(DAG); 5547 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5548 .setCallee(RetTy, FTy, Callee, std::move(Args), CS).setTailCall(isTailCall); 5549 5550 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5551 assert((isTailCall || Result.second.getNode()) && 5552 "Non-null chain expected with non-tail call!"); 5553 assert((Result.second.getNode() || !Result.first.getNode()) && 5554 "Null value expected with tail call!"); 5555 if (Result.first.getNode()) 5556 setValue(CS.getInstruction(), Result.first); 5557 5558 if (!Result.second.getNode()) { 5559 // As a special case, a null chain means that a tail call has been emitted 5560 // and the DAG root is already updated. 5561 HasTailCall = true; 5562 5563 // Since there's no actual continuation from this block, nothing can be 5564 // relying on us setting vregs for them. 5565 PendingExports.clear(); 5566 } else { 5567 DAG.setRoot(Result.second); 5568 } 5569 5570 if (LandingPad) { 5571 // Insert a label at the end of the invoke call to mark the try range. This 5572 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5573 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5574 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5575 5576 // Inform MachineModuleInfo of range. 5577 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5578 } 5579 } 5580 5581 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5582 /// value is equal or not-equal to zero. 5583 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5584 for (const User *U : V->users()) { 5585 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5586 if (IC->isEquality()) 5587 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5588 if (C->isNullValue()) 5589 continue; 5590 // Unknown instruction. 5591 return false; 5592 } 5593 return true; 5594 } 5595 5596 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5597 Type *LoadTy, 5598 SelectionDAGBuilder &Builder) { 5599 5600 // Check to see if this load can be trivially constant folded, e.g. if the 5601 // input is from a string literal. 5602 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5603 // Cast pointer to the type we really want to load. 5604 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5605 PointerType::getUnqual(LoadTy)); 5606 5607 if (const Constant *LoadCst = 5608 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5609 Builder.DL)) 5610 return Builder.getValue(LoadCst); 5611 } 5612 5613 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5614 // still constant memory, the input chain can be the entry node. 5615 SDValue Root; 5616 bool ConstantMemory = false; 5617 5618 // Do not serialize (non-volatile) loads of constant memory with anything. 5619 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5620 Root = Builder.DAG.getEntryNode(); 5621 ConstantMemory = true; 5622 } else { 5623 // Do not serialize non-volatile loads against each other. 5624 Root = Builder.DAG.getRoot(); 5625 } 5626 5627 SDValue Ptr = Builder.getValue(PtrVal); 5628 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5629 Ptr, MachinePointerInfo(PtrVal), 5630 false /*volatile*/, 5631 false /*nontemporal*/, 5632 false /*isinvariant*/, 1 /* align=1 */); 5633 5634 if (!ConstantMemory) 5635 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5636 return LoadVal; 5637 } 5638 5639 /// processIntegerCallValue - Record the value for an instruction that 5640 /// produces an integer result, converting the type where necessary. 5641 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5642 SDValue Value, 5643 bool IsSigned) { 5644 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5645 if (IsSigned) 5646 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5647 else 5648 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5649 setValue(&I, Value); 5650 } 5651 5652 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5653 /// If so, return true and lower it, otherwise return false and it will be 5654 /// lowered like a normal call. 5655 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5656 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5657 if (I.getNumArgOperands() != 3) 5658 return false; 5659 5660 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5661 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5662 !I.getArgOperand(2)->getType()->isIntegerTy() || 5663 !I.getType()->isIntegerTy()) 5664 return false; 5665 5666 const Value *Size = I.getArgOperand(2); 5667 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5668 if (CSize && CSize->getZExtValue() == 0) { 5669 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5670 setValue(&I, DAG.getConstant(0, CallVT)); 5671 return true; 5672 } 5673 5674 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5675 std::pair<SDValue, SDValue> Res = 5676 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5677 getValue(LHS), getValue(RHS), getValue(Size), 5678 MachinePointerInfo(LHS), 5679 MachinePointerInfo(RHS)); 5680 if (Res.first.getNode()) { 5681 processIntegerCallValue(I, Res.first, true); 5682 PendingLoads.push_back(Res.second); 5683 return true; 5684 } 5685 5686 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5687 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5688 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5689 bool ActuallyDoIt = true; 5690 MVT LoadVT; 5691 Type *LoadTy; 5692 switch (CSize->getZExtValue()) { 5693 default: 5694 LoadVT = MVT::Other; 5695 LoadTy = nullptr; 5696 ActuallyDoIt = false; 5697 break; 5698 case 2: 5699 LoadVT = MVT::i16; 5700 LoadTy = Type::getInt16Ty(CSize->getContext()); 5701 break; 5702 case 4: 5703 LoadVT = MVT::i32; 5704 LoadTy = Type::getInt32Ty(CSize->getContext()); 5705 break; 5706 case 8: 5707 LoadVT = MVT::i64; 5708 LoadTy = Type::getInt64Ty(CSize->getContext()); 5709 break; 5710 /* 5711 case 16: 5712 LoadVT = MVT::v4i32; 5713 LoadTy = Type::getInt32Ty(CSize->getContext()); 5714 LoadTy = VectorType::get(LoadTy, 4); 5715 break; 5716 */ 5717 } 5718 5719 // This turns into unaligned loads. We only do this if the target natively 5720 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5721 // we'll only produce a small number of byte loads. 5722 5723 // Require that we can find a legal MVT, and only do this if the target 5724 // supports unaligned loads of that type. Expanding into byte loads would 5725 // bloat the code. 5726 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5727 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5728 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5729 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5730 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5731 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5732 // TODO: Check alignment of src and dest ptrs. 5733 if (!TLI.isTypeLegal(LoadVT) || 5734 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5735 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5736 ActuallyDoIt = false; 5737 } 5738 5739 if (ActuallyDoIt) { 5740 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5741 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5742 5743 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5744 ISD::SETNE); 5745 processIntegerCallValue(I, Res, false); 5746 return true; 5747 } 5748 } 5749 5750 5751 return false; 5752 } 5753 5754 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5755 /// form. If so, return true and lower it, otherwise return false and it 5756 /// will be lowered like a normal call. 5757 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5758 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5759 if (I.getNumArgOperands() != 3) 5760 return false; 5761 5762 const Value *Src = I.getArgOperand(0); 5763 const Value *Char = I.getArgOperand(1); 5764 const Value *Length = I.getArgOperand(2); 5765 if (!Src->getType()->isPointerTy() || 5766 !Char->getType()->isIntegerTy() || 5767 !Length->getType()->isIntegerTy() || 5768 !I.getType()->isPointerTy()) 5769 return false; 5770 5771 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5772 std::pair<SDValue, SDValue> Res = 5773 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5774 getValue(Src), getValue(Char), getValue(Length), 5775 MachinePointerInfo(Src)); 5776 if (Res.first.getNode()) { 5777 setValue(&I, Res.first); 5778 PendingLoads.push_back(Res.second); 5779 return true; 5780 } 5781 5782 return false; 5783 } 5784 5785 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5786 /// optimized form. If so, return true and lower it, otherwise return false 5787 /// and it will be lowered like a normal call. 5788 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5789 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5790 if (I.getNumArgOperands() != 2) 5791 return false; 5792 5793 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5794 if (!Arg0->getType()->isPointerTy() || 5795 !Arg1->getType()->isPointerTy() || 5796 !I.getType()->isPointerTy()) 5797 return false; 5798 5799 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5800 std::pair<SDValue, SDValue> Res = 5801 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5802 getValue(Arg0), getValue(Arg1), 5803 MachinePointerInfo(Arg0), 5804 MachinePointerInfo(Arg1), isStpcpy); 5805 if (Res.first.getNode()) { 5806 setValue(&I, Res.first); 5807 DAG.setRoot(Res.second); 5808 return true; 5809 } 5810 5811 return false; 5812 } 5813 5814 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5815 /// If so, return true and lower it, otherwise return false and it will be 5816 /// lowered like a normal call. 5817 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5818 // Verify that the prototype makes sense. int strcmp(void*,void*) 5819 if (I.getNumArgOperands() != 2) 5820 return false; 5821 5822 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5823 if (!Arg0->getType()->isPointerTy() || 5824 !Arg1->getType()->isPointerTy() || 5825 !I.getType()->isIntegerTy()) 5826 return false; 5827 5828 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5829 std::pair<SDValue, SDValue> Res = 5830 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5831 getValue(Arg0), getValue(Arg1), 5832 MachinePointerInfo(Arg0), 5833 MachinePointerInfo(Arg1)); 5834 if (Res.first.getNode()) { 5835 processIntegerCallValue(I, Res.first, true); 5836 PendingLoads.push_back(Res.second); 5837 return true; 5838 } 5839 5840 return false; 5841 } 5842 5843 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5844 /// form. If so, return true and lower it, otherwise return false and it 5845 /// will be lowered like a normal call. 5846 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5847 // Verify that the prototype makes sense. size_t strlen(char *) 5848 if (I.getNumArgOperands() != 1) 5849 return false; 5850 5851 const Value *Arg0 = I.getArgOperand(0); 5852 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5853 return false; 5854 5855 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5856 std::pair<SDValue, SDValue> Res = 5857 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5858 getValue(Arg0), MachinePointerInfo(Arg0)); 5859 if (Res.first.getNode()) { 5860 processIntegerCallValue(I, Res.first, false); 5861 PendingLoads.push_back(Res.second); 5862 return true; 5863 } 5864 5865 return false; 5866 } 5867 5868 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5869 /// form. If so, return true and lower it, otherwise return false and it 5870 /// will be lowered like a normal call. 5871 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5872 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5873 if (I.getNumArgOperands() != 2) 5874 return false; 5875 5876 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5877 if (!Arg0->getType()->isPointerTy() || 5878 !Arg1->getType()->isIntegerTy() || 5879 !I.getType()->isIntegerTy()) 5880 return false; 5881 5882 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5883 std::pair<SDValue, SDValue> Res = 5884 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5885 getValue(Arg0), getValue(Arg1), 5886 MachinePointerInfo(Arg0)); 5887 if (Res.first.getNode()) { 5888 processIntegerCallValue(I, Res.first, false); 5889 PendingLoads.push_back(Res.second); 5890 return true; 5891 } 5892 5893 return false; 5894 } 5895 5896 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5897 /// operation (as expected), translate it to an SDNode with the specified opcode 5898 /// and return true. 5899 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5900 unsigned Opcode) { 5901 // Sanity check that it really is a unary floating-point call. 5902 if (I.getNumArgOperands() != 1 || 5903 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5904 I.getType() != I.getArgOperand(0)->getType() || 5905 !I.onlyReadsMemory()) 5906 return false; 5907 5908 SDValue Tmp = getValue(I.getArgOperand(0)); 5909 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5910 return true; 5911 } 5912 5913 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5914 // Handle inline assembly differently. 5915 if (isa<InlineAsm>(I.getCalledValue())) { 5916 visitInlineAsm(&I); 5917 return; 5918 } 5919 5920 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5921 ComputeUsesVAFloatArgument(I, &MMI); 5922 5923 const char *RenameFn = nullptr; 5924 if (Function *F = I.getCalledFunction()) { 5925 if (F->isDeclaration()) { 5926 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5927 if (unsigned IID = II->getIntrinsicID(F)) { 5928 RenameFn = visitIntrinsicCall(I, IID); 5929 if (!RenameFn) 5930 return; 5931 } 5932 } 5933 if (unsigned IID = F->getIntrinsicID()) { 5934 RenameFn = visitIntrinsicCall(I, IID); 5935 if (!RenameFn) 5936 return; 5937 } 5938 } 5939 5940 // Check for well-known libc/libm calls. If the function is internal, it 5941 // can't be a library call. 5942 LibFunc::Func Func; 5943 if (!F->hasLocalLinkage() && F->hasName() && 5944 LibInfo->getLibFunc(F->getName(), Func) && 5945 LibInfo->hasOptimizedCodeGen(Func)) { 5946 switch (Func) { 5947 default: break; 5948 case LibFunc::copysign: 5949 case LibFunc::copysignf: 5950 case LibFunc::copysignl: 5951 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5952 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5953 I.getType() == I.getArgOperand(0)->getType() && 5954 I.getType() == I.getArgOperand(1)->getType() && 5955 I.onlyReadsMemory()) { 5956 SDValue LHS = getValue(I.getArgOperand(0)); 5957 SDValue RHS = getValue(I.getArgOperand(1)); 5958 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5959 LHS.getValueType(), LHS, RHS)); 5960 return; 5961 } 5962 break; 5963 case LibFunc::fabs: 5964 case LibFunc::fabsf: 5965 case LibFunc::fabsl: 5966 if (visitUnaryFloatCall(I, ISD::FABS)) 5967 return; 5968 break; 5969 case LibFunc::sin: 5970 case LibFunc::sinf: 5971 case LibFunc::sinl: 5972 if (visitUnaryFloatCall(I, ISD::FSIN)) 5973 return; 5974 break; 5975 case LibFunc::cos: 5976 case LibFunc::cosf: 5977 case LibFunc::cosl: 5978 if (visitUnaryFloatCall(I, ISD::FCOS)) 5979 return; 5980 break; 5981 case LibFunc::sqrt: 5982 case LibFunc::sqrtf: 5983 case LibFunc::sqrtl: 5984 case LibFunc::sqrt_finite: 5985 case LibFunc::sqrtf_finite: 5986 case LibFunc::sqrtl_finite: 5987 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5988 return; 5989 break; 5990 case LibFunc::floor: 5991 case LibFunc::floorf: 5992 case LibFunc::floorl: 5993 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5994 return; 5995 break; 5996 case LibFunc::nearbyint: 5997 case LibFunc::nearbyintf: 5998 case LibFunc::nearbyintl: 5999 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 6000 return; 6001 break; 6002 case LibFunc::ceil: 6003 case LibFunc::ceilf: 6004 case LibFunc::ceill: 6005 if (visitUnaryFloatCall(I, ISD::FCEIL)) 6006 return; 6007 break; 6008 case LibFunc::rint: 6009 case LibFunc::rintf: 6010 case LibFunc::rintl: 6011 if (visitUnaryFloatCall(I, ISD::FRINT)) 6012 return; 6013 break; 6014 case LibFunc::round: 6015 case LibFunc::roundf: 6016 case LibFunc::roundl: 6017 if (visitUnaryFloatCall(I, ISD::FROUND)) 6018 return; 6019 break; 6020 case LibFunc::trunc: 6021 case LibFunc::truncf: 6022 case LibFunc::truncl: 6023 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 6024 return; 6025 break; 6026 case LibFunc::log2: 6027 case LibFunc::log2f: 6028 case LibFunc::log2l: 6029 if (visitUnaryFloatCall(I, ISD::FLOG2)) 6030 return; 6031 break; 6032 case LibFunc::exp2: 6033 case LibFunc::exp2f: 6034 case LibFunc::exp2l: 6035 if (visitUnaryFloatCall(I, ISD::FEXP2)) 6036 return; 6037 break; 6038 case LibFunc::memcmp: 6039 if (visitMemCmpCall(I)) 6040 return; 6041 break; 6042 case LibFunc::memchr: 6043 if (visitMemChrCall(I)) 6044 return; 6045 break; 6046 case LibFunc::strcpy: 6047 if (visitStrCpyCall(I, false)) 6048 return; 6049 break; 6050 case LibFunc::stpcpy: 6051 if (visitStrCpyCall(I, true)) 6052 return; 6053 break; 6054 case LibFunc::strcmp: 6055 if (visitStrCmpCall(I)) 6056 return; 6057 break; 6058 case LibFunc::strlen: 6059 if (visitStrLenCall(I)) 6060 return; 6061 break; 6062 case LibFunc::strnlen: 6063 if (visitStrNLenCall(I)) 6064 return; 6065 break; 6066 } 6067 } 6068 } 6069 6070 SDValue Callee; 6071 if (!RenameFn) 6072 Callee = getValue(I.getCalledValue()); 6073 else 6074 Callee = DAG.getExternalSymbol(RenameFn, 6075 DAG.getTargetLoweringInfo().getPointerTy()); 6076 6077 // Check if we can potentially perform a tail call. More detailed checking is 6078 // be done within LowerCallTo, after more information about the call is known. 6079 LowerCallTo(&I, Callee, I.isTailCall()); 6080 } 6081 6082 namespace { 6083 6084 /// AsmOperandInfo - This contains information for each constraint that we are 6085 /// lowering. 6086 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 6087 public: 6088 /// CallOperand - If this is the result output operand or a clobber 6089 /// this is null, otherwise it is the incoming operand to the CallInst. 6090 /// This gets modified as the asm is processed. 6091 SDValue CallOperand; 6092 6093 /// AssignedRegs - If this is a register or register class operand, this 6094 /// contains the set of register corresponding to the operand. 6095 RegsForValue AssignedRegs; 6096 6097 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 6098 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 6099 } 6100 6101 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 6102 /// corresponds to. If there is no Value* for this operand, it returns 6103 /// MVT::Other. 6104 EVT getCallOperandValEVT(LLVMContext &Context, 6105 const TargetLowering &TLI, 6106 const DataLayout *DL) const { 6107 if (!CallOperandVal) return MVT::Other; 6108 6109 if (isa<BasicBlock>(CallOperandVal)) 6110 return TLI.getPointerTy(); 6111 6112 llvm::Type *OpTy = CallOperandVal->getType(); 6113 6114 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 6115 // If this is an indirect operand, the operand is a pointer to the 6116 // accessed type. 6117 if (isIndirect) { 6118 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6119 if (!PtrTy) 6120 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6121 OpTy = PtrTy->getElementType(); 6122 } 6123 6124 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6125 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6126 if (STy->getNumElements() == 1) 6127 OpTy = STy->getElementType(0); 6128 6129 // If OpTy is not a single value, it may be a struct/union that we 6130 // can tile with integers. 6131 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6132 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 6133 switch (BitSize) { 6134 default: break; 6135 case 1: 6136 case 8: 6137 case 16: 6138 case 32: 6139 case 64: 6140 case 128: 6141 OpTy = IntegerType::get(Context, BitSize); 6142 break; 6143 } 6144 } 6145 6146 return TLI.getValueType(OpTy, true); 6147 } 6148 }; 6149 6150 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6151 6152 } // end anonymous namespace 6153 6154 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6155 /// specified operand. We prefer to assign virtual registers, to allow the 6156 /// register allocator to handle the assignment process. However, if the asm 6157 /// uses features that we can't model on machineinstrs, we have SDISel do the 6158 /// allocation. This produces generally horrible, but correct, code. 6159 /// 6160 /// OpInfo describes the operand. 6161 /// 6162 static void GetRegistersForValue(SelectionDAG &DAG, 6163 const TargetLowering &TLI, 6164 SDLoc DL, 6165 SDISelAsmOperandInfo &OpInfo) { 6166 LLVMContext &Context = *DAG.getContext(); 6167 6168 MachineFunction &MF = DAG.getMachineFunction(); 6169 SmallVector<unsigned, 4> Regs; 6170 6171 // If this is a constraint for a single physreg, or a constraint for a 6172 // register class, find it. 6173 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 6174 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6175 OpInfo.ConstraintVT); 6176 6177 unsigned NumRegs = 1; 6178 if (OpInfo.ConstraintVT != MVT::Other) { 6179 // If this is a FP input in an integer register (or visa versa) insert a bit 6180 // cast of the input value. More generally, handle any case where the input 6181 // value disagrees with the register class we plan to stick this in. 6182 if (OpInfo.Type == InlineAsm::isInput && 6183 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6184 // Try to convert to the first EVT that the reg class contains. If the 6185 // types are identical size, use a bitcast to convert (e.g. two differing 6186 // vector types). 6187 MVT RegVT = *PhysReg.second->vt_begin(); 6188 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6189 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6190 RegVT, OpInfo.CallOperand); 6191 OpInfo.ConstraintVT = RegVT; 6192 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6193 // If the input is a FP value and we want it in FP registers, do a 6194 // bitcast to the corresponding integer type. This turns an f64 value 6195 // into i64, which can be passed with two i32 values on a 32-bit 6196 // machine. 6197 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6198 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6199 RegVT, OpInfo.CallOperand); 6200 OpInfo.ConstraintVT = RegVT; 6201 } 6202 } 6203 6204 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6205 } 6206 6207 MVT RegVT; 6208 EVT ValueVT = OpInfo.ConstraintVT; 6209 6210 // If this is a constraint for a specific physical register, like {r17}, 6211 // assign it now. 6212 if (unsigned AssignedReg = PhysReg.first) { 6213 const TargetRegisterClass *RC = PhysReg.second; 6214 if (OpInfo.ConstraintVT == MVT::Other) 6215 ValueVT = *RC->vt_begin(); 6216 6217 // Get the actual register value type. This is important, because the user 6218 // may have asked for (e.g.) the AX register in i32 type. We need to 6219 // remember that AX is actually i16 to get the right extension. 6220 RegVT = *RC->vt_begin(); 6221 6222 // This is a explicit reference to a physical register. 6223 Regs.push_back(AssignedReg); 6224 6225 // If this is an expanded reference, add the rest of the regs to Regs. 6226 if (NumRegs != 1) { 6227 TargetRegisterClass::iterator I = RC->begin(); 6228 for (; *I != AssignedReg; ++I) 6229 assert(I != RC->end() && "Didn't find reg!"); 6230 6231 // Already added the first reg. 6232 --NumRegs; ++I; 6233 for (; NumRegs; --NumRegs, ++I) { 6234 assert(I != RC->end() && "Ran out of registers to allocate!"); 6235 Regs.push_back(*I); 6236 } 6237 } 6238 6239 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6240 return; 6241 } 6242 6243 // Otherwise, if this was a reference to an LLVM register class, create vregs 6244 // for this reference. 6245 if (const TargetRegisterClass *RC = PhysReg.second) { 6246 RegVT = *RC->vt_begin(); 6247 if (OpInfo.ConstraintVT == MVT::Other) 6248 ValueVT = RegVT; 6249 6250 // Create the appropriate number of virtual registers. 6251 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6252 for (; NumRegs; --NumRegs) 6253 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6254 6255 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6256 return; 6257 } 6258 6259 // Otherwise, we couldn't allocate enough registers for this. 6260 } 6261 6262 /// visitInlineAsm - Handle a call to an InlineAsm object. 6263 /// 6264 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6265 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6266 6267 /// ConstraintOperands - Information about all of the constraints. 6268 SDISelAsmOperandInfoVector ConstraintOperands; 6269 6270 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6271 TargetLowering::AsmOperandInfoVector 6272 TargetConstraints = TLI.ParseConstraints(CS); 6273 6274 bool hasMemory = false; 6275 6276 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6277 unsigned ResNo = 0; // ResNo - The result number of the next output. 6278 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6279 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6280 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6281 6282 MVT OpVT = MVT::Other; 6283 6284 // Compute the value type for each operand. 6285 switch (OpInfo.Type) { 6286 case InlineAsm::isOutput: 6287 // Indirect outputs just consume an argument. 6288 if (OpInfo.isIndirect) { 6289 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6290 break; 6291 } 6292 6293 // The return value of the call is this value. As such, there is no 6294 // corresponding argument. 6295 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6296 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6297 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 6298 } else { 6299 assert(ResNo == 0 && "Asm only has one result!"); 6300 OpVT = TLI.getSimpleValueType(CS.getType()); 6301 } 6302 ++ResNo; 6303 break; 6304 case InlineAsm::isInput: 6305 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6306 break; 6307 case InlineAsm::isClobber: 6308 // Nothing to do. 6309 break; 6310 } 6311 6312 // If this is an input or an indirect output, process the call argument. 6313 // BasicBlocks are labels, currently appearing only in asm's. 6314 if (OpInfo.CallOperandVal) { 6315 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6316 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6317 } else { 6318 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6319 } 6320 6321 OpVT = 6322 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 6323 } 6324 6325 OpInfo.ConstraintVT = OpVT; 6326 6327 // Indirect operand accesses access memory. 6328 if (OpInfo.isIndirect) 6329 hasMemory = true; 6330 else { 6331 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6332 TargetLowering::ConstraintType 6333 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6334 if (CType == TargetLowering::C_Memory) { 6335 hasMemory = true; 6336 break; 6337 } 6338 } 6339 } 6340 } 6341 6342 SDValue Chain, Flag; 6343 6344 // We won't need to flush pending loads if this asm doesn't touch 6345 // memory and is nonvolatile. 6346 if (hasMemory || IA->hasSideEffects()) 6347 Chain = getRoot(); 6348 else 6349 Chain = DAG.getRoot(); 6350 6351 // Second pass over the constraints: compute which constraint option to use 6352 // and assign registers to constraints that want a specific physreg. 6353 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6354 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6355 6356 // If this is an output operand with a matching input operand, look up the 6357 // matching input. If their types mismatch, e.g. one is an integer, the 6358 // other is floating point, or their sizes are different, flag it as an 6359 // error. 6360 if (OpInfo.hasMatchingInput()) { 6361 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6362 6363 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6364 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6365 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6366 OpInfo.ConstraintVT); 6367 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6368 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6369 Input.ConstraintVT); 6370 if ((OpInfo.ConstraintVT.isInteger() != 6371 Input.ConstraintVT.isInteger()) || 6372 (MatchRC.second != InputRC.second)) { 6373 report_fatal_error("Unsupported asm: input constraint" 6374 " with a matching output constraint of" 6375 " incompatible type!"); 6376 } 6377 Input.ConstraintVT = OpInfo.ConstraintVT; 6378 } 6379 } 6380 6381 // Compute the constraint code and ConstraintType to use. 6382 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6383 6384 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6385 OpInfo.Type == InlineAsm::isClobber) 6386 continue; 6387 6388 // If this is a memory input, and if the operand is not indirect, do what we 6389 // need to to provide an address for the memory input. 6390 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6391 !OpInfo.isIndirect) { 6392 assert((OpInfo.isMultipleAlternative || 6393 (OpInfo.Type == InlineAsm::isInput)) && 6394 "Can only indirectify direct input operands!"); 6395 6396 // Memory operands really want the address of the value. If we don't have 6397 // an indirect input, put it in the constpool if we can, otherwise spill 6398 // it to a stack slot. 6399 // TODO: This isn't quite right. We need to handle these according to 6400 // the addressing mode that the constraint wants. Also, this may take 6401 // an additional register for the computation and we don't want that 6402 // either. 6403 6404 // If the operand is a float, integer, or vector constant, spill to a 6405 // constant pool entry to get its address. 6406 const Value *OpVal = OpInfo.CallOperandVal; 6407 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6408 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6409 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6410 TLI.getPointerTy()); 6411 } else { 6412 // Otherwise, create a stack slot and emit a store to it before the 6413 // asm. 6414 Type *Ty = OpVal->getType(); 6415 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 6416 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 6417 MachineFunction &MF = DAG.getMachineFunction(); 6418 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6419 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6420 Chain = DAG.getStore(Chain, getCurSDLoc(), 6421 OpInfo.CallOperand, StackSlot, 6422 MachinePointerInfo::getFixedStack(SSFI), 6423 false, false, 0); 6424 OpInfo.CallOperand = StackSlot; 6425 } 6426 6427 // There is no longer a Value* corresponding to this operand. 6428 OpInfo.CallOperandVal = nullptr; 6429 6430 // It is now an indirect operand. 6431 OpInfo.isIndirect = true; 6432 } 6433 6434 // If this constraint is for a specific register, allocate it before 6435 // anything else. 6436 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6437 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6438 } 6439 6440 // Second pass - Loop over all of the operands, assigning virtual or physregs 6441 // to register class operands. 6442 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6443 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6444 6445 // C_Register operands have already been allocated, Other/Memory don't need 6446 // to be. 6447 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6448 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6449 } 6450 6451 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6452 std::vector<SDValue> AsmNodeOperands; 6453 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6454 AsmNodeOperands.push_back( 6455 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6456 TLI.getPointerTy())); 6457 6458 // If we have a !srcloc metadata node associated with it, we want to attach 6459 // this to the ultimately generated inline asm machineinstr. To do this, we 6460 // pass in the third operand as this (potentially null) inline asm MDNode. 6461 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6462 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6463 6464 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6465 // bits as operand 3. 6466 unsigned ExtraInfo = 0; 6467 if (IA->hasSideEffects()) 6468 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6469 if (IA->isAlignStack()) 6470 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6471 // Set the asm dialect. 6472 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6473 6474 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6475 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6476 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6477 6478 // Compute the constraint code and ConstraintType to use. 6479 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6480 6481 // Ideally, we would only check against memory constraints. However, the 6482 // meaning of an other constraint can be target-specific and we can't easily 6483 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6484 // for other constriants as well. 6485 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6486 OpInfo.ConstraintType == TargetLowering::C_Other) { 6487 if (OpInfo.Type == InlineAsm::isInput) 6488 ExtraInfo |= InlineAsm::Extra_MayLoad; 6489 else if (OpInfo.Type == InlineAsm::isOutput) 6490 ExtraInfo |= InlineAsm::Extra_MayStore; 6491 else if (OpInfo.Type == InlineAsm::isClobber) 6492 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6493 } 6494 } 6495 6496 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6497 TLI.getPointerTy())); 6498 6499 // Loop over all of the inputs, copying the operand values into the 6500 // appropriate registers and processing the output regs. 6501 RegsForValue RetValRegs; 6502 6503 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6504 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6505 6506 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6507 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6508 6509 switch (OpInfo.Type) { 6510 case InlineAsm::isOutput: { 6511 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6512 OpInfo.ConstraintType != TargetLowering::C_Register) { 6513 // Memory output, or 'other' output (e.g. 'X' constraint). 6514 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6515 6516 // Add information to the INLINEASM node to know about this output. 6517 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6518 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6519 TLI.getPointerTy())); 6520 AsmNodeOperands.push_back(OpInfo.CallOperand); 6521 break; 6522 } 6523 6524 // Otherwise, this is a register or register class output. 6525 6526 // Copy the output from the appropriate register. Find a register that 6527 // we can use. 6528 if (OpInfo.AssignedRegs.Regs.empty()) { 6529 LLVMContext &Ctx = *DAG.getContext(); 6530 Ctx.emitError(CS.getInstruction(), 6531 "couldn't allocate output register for constraint '" + 6532 Twine(OpInfo.ConstraintCode) + "'"); 6533 return; 6534 } 6535 6536 // If this is an indirect operand, store through the pointer after the 6537 // asm. 6538 if (OpInfo.isIndirect) { 6539 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6540 OpInfo.CallOperandVal)); 6541 } else { 6542 // This is the result value of the call. 6543 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6544 // Concatenate this output onto the outputs list. 6545 RetValRegs.append(OpInfo.AssignedRegs); 6546 } 6547 6548 // Add information to the INLINEASM node to know that this register is 6549 // set. 6550 OpInfo.AssignedRegs 6551 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6552 ? InlineAsm::Kind_RegDefEarlyClobber 6553 : InlineAsm::Kind_RegDef, 6554 false, 0, DAG, AsmNodeOperands); 6555 break; 6556 } 6557 case InlineAsm::isInput: { 6558 SDValue InOperandVal = OpInfo.CallOperand; 6559 6560 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6561 // If this is required to match an output register we have already set, 6562 // just use its register. 6563 unsigned OperandNo = OpInfo.getMatchedOperand(); 6564 6565 // Scan until we find the definition we already emitted of this operand. 6566 // When we find it, create a RegsForValue operand. 6567 unsigned CurOp = InlineAsm::Op_FirstOperand; 6568 for (; OperandNo; --OperandNo) { 6569 // Advance to the next operand. 6570 unsigned OpFlag = 6571 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6572 assert((InlineAsm::isRegDefKind(OpFlag) || 6573 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6574 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6575 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6576 } 6577 6578 unsigned OpFlag = 6579 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6580 if (InlineAsm::isRegDefKind(OpFlag) || 6581 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6582 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6583 if (OpInfo.isIndirect) { 6584 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6585 LLVMContext &Ctx = *DAG.getContext(); 6586 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6587 " don't know how to handle tied " 6588 "indirect register inputs"); 6589 return; 6590 } 6591 6592 RegsForValue MatchedRegs; 6593 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6594 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6595 MatchedRegs.RegVTs.push_back(RegVT); 6596 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6597 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6598 i != e; ++i) { 6599 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6600 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6601 else { 6602 LLVMContext &Ctx = *DAG.getContext(); 6603 Ctx.emitError(CS.getInstruction(), 6604 "inline asm error: This value" 6605 " type register class is not natively supported!"); 6606 return; 6607 } 6608 } 6609 // Use the produced MatchedRegs object to 6610 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6611 Chain, &Flag, CS.getInstruction()); 6612 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6613 true, OpInfo.getMatchedOperand(), 6614 DAG, AsmNodeOperands); 6615 break; 6616 } 6617 6618 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6619 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6620 "Unexpected number of operands"); 6621 // Add information to the INLINEASM node to know about this input. 6622 // See InlineAsm.h isUseOperandTiedToDef. 6623 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6624 OpInfo.getMatchedOperand()); 6625 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6626 TLI.getPointerTy())); 6627 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6628 break; 6629 } 6630 6631 // Treat indirect 'X' constraint as memory. 6632 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6633 OpInfo.isIndirect) 6634 OpInfo.ConstraintType = TargetLowering::C_Memory; 6635 6636 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6637 std::vector<SDValue> Ops; 6638 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6639 Ops, DAG); 6640 if (Ops.empty()) { 6641 LLVMContext &Ctx = *DAG.getContext(); 6642 Ctx.emitError(CS.getInstruction(), 6643 "invalid operand for inline asm constraint '" + 6644 Twine(OpInfo.ConstraintCode) + "'"); 6645 return; 6646 } 6647 6648 // Add information to the INLINEASM node to know about this input. 6649 unsigned ResOpType = 6650 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6651 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6652 TLI.getPointerTy())); 6653 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6654 break; 6655 } 6656 6657 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6658 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6659 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6660 "Memory operands expect pointer values"); 6661 6662 // Add information to the INLINEASM node to know about this input. 6663 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6664 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6665 TLI.getPointerTy())); 6666 AsmNodeOperands.push_back(InOperandVal); 6667 break; 6668 } 6669 6670 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6671 OpInfo.ConstraintType == TargetLowering::C_Register) && 6672 "Unknown constraint type!"); 6673 6674 // TODO: Support this. 6675 if (OpInfo.isIndirect) { 6676 LLVMContext &Ctx = *DAG.getContext(); 6677 Ctx.emitError(CS.getInstruction(), 6678 "Don't know how to handle indirect register inputs yet " 6679 "for constraint '" + 6680 Twine(OpInfo.ConstraintCode) + "'"); 6681 return; 6682 } 6683 6684 // Copy the input into the appropriate registers. 6685 if (OpInfo.AssignedRegs.Regs.empty()) { 6686 LLVMContext &Ctx = *DAG.getContext(); 6687 Ctx.emitError(CS.getInstruction(), 6688 "couldn't allocate input reg for constraint '" + 6689 Twine(OpInfo.ConstraintCode) + "'"); 6690 return; 6691 } 6692 6693 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(), 6694 Chain, &Flag, CS.getInstruction()); 6695 6696 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6697 DAG, AsmNodeOperands); 6698 break; 6699 } 6700 case InlineAsm::isClobber: { 6701 // Add the clobbered value to the operand list, so that the register 6702 // allocator is aware that the physreg got clobbered. 6703 if (!OpInfo.AssignedRegs.Regs.empty()) 6704 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6705 false, 0, DAG, 6706 AsmNodeOperands); 6707 break; 6708 } 6709 } 6710 } 6711 6712 // Finish up input operands. Set the input chain and add the flag last. 6713 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6714 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6715 6716 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6717 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6718 Flag = Chain.getValue(1); 6719 6720 // If this asm returns a register value, copy the result from that register 6721 // and set it as the value of the call. 6722 if (!RetValRegs.Regs.empty()) { 6723 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6724 Chain, &Flag, CS.getInstruction()); 6725 6726 // FIXME: Why don't we do this for inline asms with MRVs? 6727 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6728 EVT ResultType = TLI.getValueType(CS.getType()); 6729 6730 // If any of the results of the inline asm is a vector, it may have the 6731 // wrong width/num elts. This can happen for register classes that can 6732 // contain multiple different value types. The preg or vreg allocated may 6733 // not have the same VT as was expected. Convert it to the right type 6734 // with bit_convert. 6735 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6736 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6737 ResultType, Val); 6738 6739 } else if (ResultType != Val.getValueType() && 6740 ResultType.isInteger() && Val.getValueType().isInteger()) { 6741 // If a result value was tied to an input value, the computed result may 6742 // have a wider width than the expected result. Extract the relevant 6743 // portion. 6744 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6745 } 6746 6747 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6748 } 6749 6750 setValue(CS.getInstruction(), Val); 6751 // Don't need to use this as a chain in this case. 6752 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6753 return; 6754 } 6755 6756 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6757 6758 // Process indirect outputs, first output all of the flagged copies out of 6759 // physregs. 6760 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6761 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6762 const Value *Ptr = IndirectStoresToEmit[i].second; 6763 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6764 Chain, &Flag, IA); 6765 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6766 } 6767 6768 // Emit the non-flagged stores from the physregs. 6769 SmallVector<SDValue, 8> OutChains; 6770 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6771 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6772 StoresToEmit[i].first, 6773 getValue(StoresToEmit[i].second), 6774 MachinePointerInfo(StoresToEmit[i].second), 6775 false, false, 0); 6776 OutChains.push_back(Val); 6777 } 6778 6779 if (!OutChains.empty()) 6780 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6781 6782 DAG.setRoot(Chain); 6783 } 6784 6785 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6786 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6787 MVT::Other, getRoot(), 6788 getValue(I.getArgOperand(0)), 6789 DAG.getSrcValue(I.getArgOperand(0)))); 6790 } 6791 6792 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6793 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6794 const DataLayout &DL = *TLI.getDataLayout(); 6795 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6796 getRoot(), getValue(I.getOperand(0)), 6797 DAG.getSrcValue(I.getOperand(0)), 6798 DL.getABITypeAlignment(I.getType())); 6799 setValue(&I, V); 6800 DAG.setRoot(V.getValue(1)); 6801 } 6802 6803 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6804 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6805 MVT::Other, getRoot(), 6806 getValue(I.getArgOperand(0)), 6807 DAG.getSrcValue(I.getArgOperand(0)))); 6808 } 6809 6810 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6811 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6812 MVT::Other, getRoot(), 6813 getValue(I.getArgOperand(0)), 6814 getValue(I.getArgOperand(1)), 6815 DAG.getSrcValue(I.getArgOperand(0)), 6816 DAG.getSrcValue(I.getArgOperand(1)))); 6817 } 6818 6819 /// \brief Lower an argument list according to the target calling convention. 6820 /// 6821 /// \return A tuple of <return-value, token-chain> 6822 /// 6823 /// This is a helper for lowering intrinsics that follow a target calling 6824 /// convention or require stack pointer adjustment. Only a subset of the 6825 /// intrinsic's operands need to participate in the calling convention. 6826 std::pair<SDValue, SDValue> 6827 SelectionDAGBuilder::LowerCallOperands(const CallInst &CI, unsigned ArgIdx, 6828 unsigned NumArgs, SDValue Callee, 6829 bool useVoidTy) { 6830 TargetLowering::ArgListTy Args; 6831 Args.reserve(NumArgs); 6832 6833 // Populate the argument list. 6834 // Attributes for args start at offset 1, after the return attribute. 6835 ImmutableCallSite CS(&CI); 6836 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6837 ArgI != ArgE; ++ArgI) { 6838 const Value *V = CI.getOperand(ArgI); 6839 6840 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6841 6842 TargetLowering::ArgListEntry Entry; 6843 Entry.Node = getValue(V); 6844 Entry.Ty = V->getType(); 6845 Entry.setAttributes(&CS, AttrI); 6846 Args.push_back(Entry); 6847 } 6848 6849 Type *retTy = useVoidTy ? Type::getVoidTy(*DAG.getContext()) : CI.getType(); 6850 TargetLowering::CallLoweringInfo CLI(DAG); 6851 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6852 .setCallee(CI.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6853 .setDiscardResult(!CI.use_empty()); 6854 6855 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6856 return TLI.LowerCallTo(CLI); 6857 } 6858 6859 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6860 /// or patchpoint target node's operand list. 6861 /// 6862 /// Constants are converted to TargetConstants purely as an optimization to 6863 /// avoid constant materialization and register allocation. 6864 /// 6865 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6866 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6867 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6868 /// address materialization and register allocation, but may also be required 6869 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6870 /// alloca in the entry block, then the runtime may assume that the alloca's 6871 /// StackMap location can be read immediately after compilation and that the 6872 /// location is valid at any point during execution (this is similar to the 6873 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6874 /// only available in a register, then the runtime would need to trap when 6875 /// execution reaches the StackMap in order to read the alloca's location. 6876 static void addStackMapLiveVars(const CallInst &CI, unsigned StartIdx, 6877 SmallVectorImpl<SDValue> &Ops, 6878 SelectionDAGBuilder &Builder) { 6879 for (unsigned i = StartIdx, e = CI.getNumArgOperands(); i != e; ++i) { 6880 SDValue OpVal = Builder.getValue(CI.getArgOperand(i)); 6881 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6882 Ops.push_back( 6883 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64)); 6884 Ops.push_back( 6885 Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64)); 6886 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6887 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6888 Ops.push_back( 6889 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6890 } else 6891 Ops.push_back(OpVal); 6892 } 6893 } 6894 6895 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6896 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6897 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6898 // [live variables...]) 6899 6900 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6901 6902 SDValue Chain, InFlag, Callee, NullPtr; 6903 SmallVector<SDValue, 32> Ops; 6904 6905 SDLoc DL = getCurSDLoc(); 6906 Callee = getValue(CI.getCalledValue()); 6907 NullPtr = DAG.getIntPtrConstant(0, true); 6908 6909 // The stackmap intrinsic only records the live variables (the arguemnts 6910 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6911 // intrinsic, this won't be lowered to a function call. This means we don't 6912 // have to worry about calling conventions and target specific lowering code. 6913 // Instead we perform the call lowering right here. 6914 // 6915 // chain, flag = CALLSEQ_START(chain, 0) 6916 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6917 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6918 // 6919 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6920 InFlag = Chain.getValue(1); 6921 6922 // Add the <id> and <numBytes> constants. 6923 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6924 Ops.push_back(DAG.getTargetConstant( 6925 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 6926 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6927 Ops.push_back(DAG.getTargetConstant( 6928 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 6929 6930 // Push live variables for the stack map. 6931 addStackMapLiveVars(CI, 2, Ops, *this); 6932 6933 // We are not pushing any register mask info here on the operands list, 6934 // because the stackmap doesn't clobber anything. 6935 6936 // Push the chain and the glue flag. 6937 Ops.push_back(Chain); 6938 Ops.push_back(InFlag); 6939 6940 // Create the STACKMAP node. 6941 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6942 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6943 Chain = SDValue(SM, 0); 6944 InFlag = Chain.getValue(1); 6945 6946 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6947 6948 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6949 6950 // Set the root to the target-lowered call chain. 6951 DAG.setRoot(Chain); 6952 6953 // Inform the Frame Information that we have a stackmap in this function. 6954 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6955 } 6956 6957 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6958 void SelectionDAGBuilder::visitPatchpoint(const CallInst &CI) { 6959 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6960 // i32 <numBytes>, 6961 // i8* <target>, 6962 // i32 <numArgs>, 6963 // [Args...], 6964 // [live variables...]) 6965 6966 CallingConv::ID CC = CI.getCallingConv(); 6967 bool isAnyRegCC = CC == CallingConv::AnyReg; 6968 bool hasDef = !CI.getType()->isVoidTy(); 6969 SDValue Callee = getValue(CI.getOperand(2)); // <target> 6970 6971 // Get the real number of arguments participating in the call <numArgs> 6972 SDValue NArgVal = getValue(CI.getArgOperand(PatchPointOpers::NArgPos)); 6973 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6974 6975 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6976 // Intrinsics include all meta-operands up to but not including CC. 6977 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6978 assert(CI.getNumArgOperands() >= NumMetaOpers + NumArgs && 6979 "Not enough arguments provided to the patchpoint intrinsic"); 6980 6981 // For AnyRegCC the arguments are lowered later on manually. 6982 unsigned NumCallArgs = isAnyRegCC ? 0 : NumArgs; 6983 std::pair<SDValue, SDValue> Result = 6984 LowerCallOperands(CI, NumMetaOpers, NumCallArgs, Callee, isAnyRegCC); 6985 6986 // Set the root to the target-lowered call chain. 6987 SDValue Chain = Result.second; 6988 DAG.setRoot(Chain); 6989 6990 SDNode *CallEnd = Chain.getNode(); 6991 if (hasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6992 CallEnd = CallEnd->getOperand(0).getNode(); 6993 6994 /// Get a call instruction from the call sequence chain. 6995 /// Tail calls are not allowed. 6996 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6997 "Expected a callseq node."); 6998 SDNode *Call = CallEnd->getOperand(0).getNode(); 6999 bool hasGlue = Call->getGluedNode(); 7000 7001 // Replace the target specific call node with the patchable intrinsic. 7002 SmallVector<SDValue, 8> Ops; 7003 7004 // Add the <id> and <numBytes> constants. 7005 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 7006 Ops.push_back(DAG.getTargetConstant( 7007 cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64)); 7008 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 7009 Ops.push_back(DAG.getTargetConstant( 7010 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32)); 7011 7012 // Assume that the Callee is a constant address. 7013 // FIXME: handle function symbols in the future. 7014 Ops.push_back( 7015 DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(), 7016 /*isTarget=*/true)); 7017 7018 // Adjust <numArgs> to account for any arguments that have been passed on the 7019 // stack instead. 7020 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 7021 unsigned NumCallRegArgs = Call->getNumOperands() - (hasGlue ? 4 : 3); 7022 NumCallRegArgs = isAnyRegCC ? NumArgs : NumCallRegArgs; 7023 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32)); 7024 7025 // Add the calling convention 7026 Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32)); 7027 7028 // Add the arguments we omitted previously. The register allocator should 7029 // place these in any free register. 7030 if (isAnyRegCC) 7031 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 7032 Ops.push_back(getValue(CI.getArgOperand(i))); 7033 7034 // Push the arguments from the call instruction up to the register mask. 7035 SDNode::op_iterator e = hasGlue ? Call->op_end()-2 : Call->op_end()-1; 7036 for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i) 7037 Ops.push_back(*i); 7038 7039 // Push live variables for the stack map. 7040 addStackMapLiveVars(CI, NumMetaOpers + NumArgs, Ops, *this); 7041 7042 // Push the register mask info. 7043 if (hasGlue) 7044 Ops.push_back(*(Call->op_end()-2)); 7045 else 7046 Ops.push_back(*(Call->op_end()-1)); 7047 7048 // Push the chain (this is originally the first operand of the call, but 7049 // becomes now the last or second to last operand). 7050 Ops.push_back(*(Call->op_begin())); 7051 7052 // Push the glue flag (last operand). 7053 if (hasGlue) 7054 Ops.push_back(*(Call->op_end()-1)); 7055 7056 SDVTList NodeTys; 7057 if (isAnyRegCC && hasDef) { 7058 // Create the return types based on the intrinsic definition 7059 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7060 SmallVector<EVT, 3> ValueVTs; 7061 ComputeValueVTs(TLI, CI.getType(), ValueVTs); 7062 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7063 7064 // There is always a chain and a glue type at the end 7065 ValueVTs.push_back(MVT::Other); 7066 ValueVTs.push_back(MVT::Glue); 7067 NodeTys = DAG.getVTList(ValueVTs); 7068 } else 7069 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7070 7071 // Replace the target specific call node with a PATCHPOINT node. 7072 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7073 getCurSDLoc(), NodeTys, Ops); 7074 7075 // Update the NodeMap. 7076 if (hasDef) { 7077 if (isAnyRegCC) 7078 setValue(&CI, SDValue(MN, 0)); 7079 else 7080 setValue(&CI, Result.first); 7081 } 7082 7083 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7084 // call sequence. Furthermore the location of the chain and glue can change 7085 // when the AnyReg calling convention is used and the intrinsic returns a 7086 // value. 7087 if (isAnyRegCC && hasDef) { 7088 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7089 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7090 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7091 } else 7092 DAG.ReplaceAllUsesWith(Call, MN); 7093 DAG.DeleteNode(Call); 7094 7095 // Inform the Frame Information that we have a patchpoint in this function. 7096 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7097 } 7098 7099 /// Returns an AttributeSet representing the attributes applied to the return 7100 /// value of the given call. 7101 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7102 SmallVector<Attribute::AttrKind, 2> Attrs; 7103 if (CLI.RetSExt) 7104 Attrs.push_back(Attribute::SExt); 7105 if (CLI.RetZExt) 7106 Attrs.push_back(Attribute::ZExt); 7107 if (CLI.IsInReg) 7108 Attrs.push_back(Attribute::InReg); 7109 7110 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7111 Attrs); 7112 } 7113 7114 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7115 /// implementation, which just calls LowerCall. 7116 /// FIXME: When all targets are 7117 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7118 std::pair<SDValue, SDValue> 7119 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7120 // Handle the incoming return values from the call. 7121 CLI.Ins.clear(); 7122 Type *OrigRetTy = CLI.RetTy; 7123 SmallVector<EVT, 4> RetTys; 7124 SmallVector<uint64_t, 4> Offsets; 7125 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 7126 7127 SmallVector<ISD::OutputArg, 4> Outs; 7128 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 7129 7130 bool CanLowerReturn = 7131 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7132 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7133 7134 SDValue DemoteStackSlot; 7135 int DemoteStackIdx = -100; 7136 if (!CanLowerReturn) { 7137 // FIXME: equivalent assert? 7138 // assert(!CS.hasInAllocaArgument() && 7139 // "sret demotion is incompatible with inalloca"); 7140 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 7141 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 7142 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7143 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7144 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7145 7146 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 7147 ArgListEntry Entry; 7148 Entry.Node = DemoteStackSlot; 7149 Entry.Ty = StackSlotPtrType; 7150 Entry.isSExt = false; 7151 Entry.isZExt = false; 7152 Entry.isInReg = false; 7153 Entry.isSRet = true; 7154 Entry.isNest = false; 7155 Entry.isByVal = false; 7156 Entry.isReturned = false; 7157 Entry.Alignment = Align; 7158 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7159 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7160 } else { 7161 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7162 EVT VT = RetTys[I]; 7163 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7164 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7165 for (unsigned i = 0; i != NumRegs; ++i) { 7166 ISD::InputArg MyFlags; 7167 MyFlags.VT = RegisterVT; 7168 MyFlags.ArgVT = VT; 7169 MyFlags.Used = CLI.IsReturnValueUsed; 7170 if (CLI.RetSExt) 7171 MyFlags.Flags.setSExt(); 7172 if (CLI.RetZExt) 7173 MyFlags.Flags.setZExt(); 7174 if (CLI.IsInReg) 7175 MyFlags.Flags.setInReg(); 7176 CLI.Ins.push_back(MyFlags); 7177 } 7178 } 7179 } 7180 7181 // Handle all of the outgoing arguments. 7182 CLI.Outs.clear(); 7183 CLI.OutVals.clear(); 7184 ArgListTy &Args = CLI.getArgs(); 7185 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7186 SmallVector<EVT, 4> ValueVTs; 7187 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 7188 Type *FinalType = Args[i].Ty; 7189 if (Args[i].isByVal) 7190 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7191 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7192 FinalType, CLI.CallConv, CLI.IsVarArg); 7193 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7194 ++Value) { 7195 EVT VT = ValueVTs[Value]; 7196 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7197 SDValue Op = SDValue(Args[i].Node.getNode(), 7198 Args[i].Node.getResNo() + Value); 7199 ISD::ArgFlagsTy Flags; 7200 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 7201 7202 if (Args[i].isZExt) 7203 Flags.setZExt(); 7204 if (Args[i].isSExt) 7205 Flags.setSExt(); 7206 if (Args[i].isInReg) 7207 Flags.setInReg(); 7208 if (Args[i].isSRet) 7209 Flags.setSRet(); 7210 if (Args[i].isByVal) 7211 Flags.setByVal(); 7212 if (Args[i].isInAlloca) { 7213 Flags.setInAlloca(); 7214 // Set the byval flag for CCAssignFn callbacks that don't know about 7215 // inalloca. This way we can know how many bytes we should've allocated 7216 // and how many bytes a callee cleanup function will pop. If we port 7217 // inalloca to more targets, we'll have to add custom inalloca handling 7218 // in the various CC lowering callbacks. 7219 Flags.setByVal(); 7220 } 7221 if (Args[i].isByVal || Args[i].isInAlloca) { 7222 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7223 Type *ElementTy = Ty->getElementType(); 7224 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 7225 // For ByVal, alignment should come from FE. BE will guess if this 7226 // info is not there but there are cases it cannot get right. 7227 unsigned FrameAlign; 7228 if (Args[i].Alignment) 7229 FrameAlign = Args[i].Alignment; 7230 else 7231 FrameAlign = getByValTypeAlignment(ElementTy); 7232 Flags.setByValAlign(FrameAlign); 7233 } 7234 if (Args[i].isNest) 7235 Flags.setNest(); 7236 if (NeedsRegBlock) { 7237 Flags.setInConsecutiveRegs(); 7238 if (Value == NumValues - 1) 7239 Flags.setInConsecutiveRegsLast(); 7240 } 7241 Flags.setOrigAlign(OriginalAlignment); 7242 7243 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7244 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7245 SmallVector<SDValue, 4> Parts(NumParts); 7246 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7247 7248 if (Args[i].isSExt) 7249 ExtendKind = ISD::SIGN_EXTEND; 7250 else if (Args[i].isZExt) 7251 ExtendKind = ISD::ZERO_EXTEND; 7252 7253 // Conservatively only handle 'returned' on non-vectors for now 7254 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7255 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7256 "unexpected use of 'returned'"); 7257 // Before passing 'returned' to the target lowering code, ensure that 7258 // either the register MVT and the actual EVT are the same size or that 7259 // the return value and argument are extended in the same way; in these 7260 // cases it's safe to pass the argument register value unchanged as the 7261 // return register value (although it's at the target's option whether 7262 // to do so) 7263 // TODO: allow code generation to take advantage of partially preserved 7264 // registers rather than clobbering the entire register when the 7265 // parameter extension method is not compatible with the return 7266 // extension method 7267 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7268 (ExtendKind != ISD::ANY_EXTEND && 7269 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7270 Flags.setReturned(); 7271 } 7272 7273 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7274 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7275 7276 for (unsigned j = 0; j != NumParts; ++j) { 7277 // if it isn't first piece, alignment must be 1 7278 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7279 i < CLI.NumFixedArgs, 7280 i, j*Parts[j].getValueType().getStoreSize()); 7281 if (NumParts > 1 && j == 0) 7282 MyFlags.Flags.setSplit(); 7283 else if (j != 0) 7284 MyFlags.Flags.setOrigAlign(1); 7285 7286 CLI.Outs.push_back(MyFlags); 7287 CLI.OutVals.push_back(Parts[j]); 7288 } 7289 } 7290 } 7291 7292 SmallVector<SDValue, 4> InVals; 7293 CLI.Chain = LowerCall(CLI, InVals); 7294 7295 // Verify that the target's LowerCall behaved as expected. 7296 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7297 "LowerCall didn't return a valid chain!"); 7298 assert((!CLI.IsTailCall || InVals.empty()) && 7299 "LowerCall emitted a return value for a tail call!"); 7300 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7301 "LowerCall didn't emit the correct number of values!"); 7302 7303 // For a tail call, the return value is merely live-out and there aren't 7304 // any nodes in the DAG representing it. Return a special value to 7305 // indicate that a tail call has been emitted and no more Instructions 7306 // should be processed in the current block. 7307 if (CLI.IsTailCall) { 7308 CLI.DAG.setRoot(CLI.Chain); 7309 return std::make_pair(SDValue(), SDValue()); 7310 } 7311 7312 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7313 assert(InVals[i].getNode() && 7314 "LowerCall emitted a null value!"); 7315 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7316 "LowerCall emitted a value with the wrong type!"); 7317 }); 7318 7319 SmallVector<SDValue, 4> ReturnValues; 7320 if (!CanLowerReturn) { 7321 // The instruction result is the result of loading from the 7322 // hidden sret parameter. 7323 SmallVector<EVT, 1> PVTs; 7324 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7325 7326 ComputeValueVTs(*this, PtrRetTy, PVTs); 7327 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7328 EVT PtrVT = PVTs[0]; 7329 7330 unsigned NumValues = RetTys.size(); 7331 ReturnValues.resize(NumValues); 7332 SmallVector<SDValue, 4> Chains(NumValues); 7333 7334 for (unsigned i = 0; i < NumValues; ++i) { 7335 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7336 CLI.DAG.getConstant(Offsets[i], PtrVT)); 7337 SDValue L = CLI.DAG.getLoad( 7338 RetTys[i], CLI.DL, CLI.Chain, Add, 7339 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 7340 false, false, 1); 7341 ReturnValues[i] = L; 7342 Chains[i] = L.getValue(1); 7343 } 7344 7345 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7346 } else { 7347 // Collect the legal value parts into potentially illegal values 7348 // that correspond to the original function's return values. 7349 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7350 if (CLI.RetSExt) 7351 AssertOp = ISD::AssertSext; 7352 else if (CLI.RetZExt) 7353 AssertOp = ISD::AssertZext; 7354 unsigned CurReg = 0; 7355 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7356 EVT VT = RetTys[I]; 7357 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7358 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7359 7360 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7361 NumRegs, RegisterVT, VT, nullptr, 7362 AssertOp)); 7363 CurReg += NumRegs; 7364 } 7365 7366 // For a function returning void, there is no return value. We can't create 7367 // such a node, so we just return a null return value in that case. In 7368 // that case, nothing will actually look at the value. 7369 if (ReturnValues.empty()) 7370 return std::make_pair(SDValue(), CLI.Chain); 7371 } 7372 7373 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7374 CLI.DAG.getVTList(RetTys), ReturnValues); 7375 return std::make_pair(Res, CLI.Chain); 7376 } 7377 7378 void TargetLowering::LowerOperationWrapper(SDNode *N, 7379 SmallVectorImpl<SDValue> &Results, 7380 SelectionDAG &DAG) const { 7381 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7382 if (Res.getNode()) 7383 Results.push_back(Res); 7384 } 7385 7386 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7387 llvm_unreachable("LowerOperation not implemented for this target!"); 7388 } 7389 7390 void 7391 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7392 SDValue Op = getNonRegisterValue(V); 7393 assert((Op.getOpcode() != ISD::CopyFromReg || 7394 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7395 "Copy from a reg to the same reg!"); 7396 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7397 7398 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7399 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 7400 SDValue Chain = DAG.getEntryNode(); 7401 7402 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7403 FuncInfo.PreferredExtendType.end()) 7404 ? ISD::ANY_EXTEND 7405 : FuncInfo.PreferredExtendType[V]; 7406 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7407 PendingExports.push_back(Chain); 7408 } 7409 7410 #include "llvm/CodeGen/SelectionDAGISel.h" 7411 7412 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7413 /// entry block, return true. This includes arguments used by switches, since 7414 /// the switch may expand into multiple basic blocks. 7415 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7416 // With FastISel active, we may be splitting blocks, so force creation 7417 // of virtual registers for all non-dead arguments. 7418 if (FastISel) 7419 return A->use_empty(); 7420 7421 const BasicBlock *Entry = A->getParent()->begin(); 7422 for (const User *U : A->users()) 7423 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7424 return false; // Use not in entry block. 7425 7426 return true; 7427 } 7428 7429 void SelectionDAGISel::LowerArguments(const Function &F) { 7430 SelectionDAG &DAG = SDB->DAG; 7431 SDLoc dl = SDB->getCurSDLoc(); 7432 const DataLayout *DL = TLI->getDataLayout(); 7433 SmallVector<ISD::InputArg, 16> Ins; 7434 7435 if (!FuncInfo->CanLowerReturn) { 7436 // Put in an sret pointer parameter before all the other parameters. 7437 SmallVector<EVT, 1> ValueVTs; 7438 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7439 7440 // NOTE: Assuming that a pointer will never break down to more than one VT 7441 // or one register. 7442 ISD::ArgFlagsTy Flags; 7443 Flags.setSRet(); 7444 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7445 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0); 7446 Ins.push_back(RetArg); 7447 } 7448 7449 // Set up the incoming argument description vector. 7450 unsigned Idx = 1; 7451 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7452 I != E; ++I, ++Idx) { 7453 SmallVector<EVT, 4> ValueVTs; 7454 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7455 bool isArgValueUsed = !I->use_empty(); 7456 unsigned PartBase = 0; 7457 Type *FinalType = I->getType(); 7458 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7459 FinalType = cast<PointerType>(FinalType)->getElementType(); 7460 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7461 FinalType, F.getCallingConv(), F.isVarArg()); 7462 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7463 Value != NumValues; ++Value) { 7464 EVT VT = ValueVTs[Value]; 7465 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7466 ISD::ArgFlagsTy Flags; 7467 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7468 7469 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7470 Flags.setZExt(); 7471 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7472 Flags.setSExt(); 7473 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7474 Flags.setInReg(); 7475 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7476 Flags.setSRet(); 7477 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7478 Flags.setByVal(); 7479 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7480 Flags.setInAlloca(); 7481 // Set the byval flag for CCAssignFn callbacks that don't know about 7482 // inalloca. This way we can know how many bytes we should've allocated 7483 // and how many bytes a callee cleanup function will pop. If we port 7484 // inalloca to more targets, we'll have to add custom inalloca handling 7485 // in the various CC lowering callbacks. 7486 Flags.setByVal(); 7487 } 7488 if (Flags.isByVal() || Flags.isInAlloca()) { 7489 PointerType *Ty = cast<PointerType>(I->getType()); 7490 Type *ElementTy = Ty->getElementType(); 7491 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7492 // For ByVal, alignment should be passed from FE. BE will guess if 7493 // this info is not there but there are cases it cannot get right. 7494 unsigned FrameAlign; 7495 if (F.getParamAlignment(Idx)) 7496 FrameAlign = F.getParamAlignment(Idx); 7497 else 7498 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7499 Flags.setByValAlign(FrameAlign); 7500 } 7501 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7502 Flags.setNest(); 7503 if (NeedsRegBlock) { 7504 Flags.setInConsecutiveRegs(); 7505 if (Value == NumValues - 1) 7506 Flags.setInConsecutiveRegsLast(); 7507 } 7508 Flags.setOrigAlign(OriginalAlignment); 7509 7510 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7511 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7512 for (unsigned i = 0; i != NumRegs; ++i) { 7513 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7514 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7515 if (NumRegs > 1 && i == 0) 7516 MyFlags.Flags.setSplit(); 7517 // if it isn't first piece, alignment must be 1 7518 else if (i > 0) 7519 MyFlags.Flags.setOrigAlign(1); 7520 Ins.push_back(MyFlags); 7521 } 7522 PartBase += VT.getStoreSize(); 7523 } 7524 } 7525 7526 // Call the target to set up the argument values. 7527 SmallVector<SDValue, 8> InVals; 7528 SDValue NewRoot = TLI->LowerFormalArguments( 7529 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7530 7531 // Verify that the target's LowerFormalArguments behaved as expected. 7532 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7533 "LowerFormalArguments didn't return a valid chain!"); 7534 assert(InVals.size() == Ins.size() && 7535 "LowerFormalArguments didn't emit the correct number of values!"); 7536 DEBUG({ 7537 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7538 assert(InVals[i].getNode() && 7539 "LowerFormalArguments emitted a null value!"); 7540 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7541 "LowerFormalArguments emitted a value with the wrong type!"); 7542 } 7543 }); 7544 7545 // Update the DAG with the new chain value resulting from argument lowering. 7546 DAG.setRoot(NewRoot); 7547 7548 // Set up the argument values. 7549 unsigned i = 0; 7550 Idx = 1; 7551 if (!FuncInfo->CanLowerReturn) { 7552 // Create a virtual register for the sret pointer, and put in a copy 7553 // from the sret argument into it. 7554 SmallVector<EVT, 1> ValueVTs; 7555 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7556 MVT VT = ValueVTs[0].getSimpleVT(); 7557 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7558 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7559 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7560 RegVT, VT, nullptr, AssertOp); 7561 7562 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7563 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7564 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7565 FuncInfo->DemoteRegister = SRetReg; 7566 NewRoot = 7567 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7568 DAG.setRoot(NewRoot); 7569 7570 // i indexes lowered arguments. Bump it past the hidden sret argument. 7571 // Idx indexes LLVM arguments. Don't touch it. 7572 ++i; 7573 } 7574 7575 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7576 ++I, ++Idx) { 7577 SmallVector<SDValue, 4> ArgValues; 7578 SmallVector<EVT, 4> ValueVTs; 7579 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7580 unsigned NumValues = ValueVTs.size(); 7581 7582 // If this argument is unused then remember its value. It is used to generate 7583 // debugging information. 7584 if (I->use_empty() && NumValues) { 7585 SDB->setUnusedArgValue(I, InVals[i]); 7586 7587 // Also remember any frame index for use in FastISel. 7588 if (FrameIndexSDNode *FI = 7589 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7590 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7591 } 7592 7593 for (unsigned Val = 0; Val != NumValues; ++Val) { 7594 EVT VT = ValueVTs[Val]; 7595 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7596 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7597 7598 if (!I->use_empty()) { 7599 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7600 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7601 AssertOp = ISD::AssertSext; 7602 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7603 AssertOp = ISD::AssertZext; 7604 7605 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7606 NumParts, PartVT, VT, 7607 nullptr, AssertOp)); 7608 } 7609 7610 i += NumParts; 7611 } 7612 7613 // We don't need to do anything else for unused arguments. 7614 if (ArgValues.empty()) 7615 continue; 7616 7617 // Note down frame index. 7618 if (FrameIndexSDNode *FI = 7619 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7620 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7621 7622 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7623 SDB->getCurSDLoc()); 7624 7625 SDB->setValue(I, Res); 7626 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7627 if (LoadSDNode *LNode = 7628 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7629 if (FrameIndexSDNode *FI = 7630 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7631 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7632 } 7633 7634 // If this argument is live outside of the entry block, insert a copy from 7635 // wherever we got it to the vreg that other BB's will reference it as. 7636 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7637 // If we can, though, try to skip creating an unnecessary vreg. 7638 // FIXME: This isn't very clean... it would be nice to make this more 7639 // general. It's also subtly incompatible with the hacks FastISel 7640 // uses with vregs. 7641 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7642 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7643 FuncInfo->ValueMap[I] = Reg; 7644 continue; 7645 } 7646 } 7647 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7648 FuncInfo->InitializeRegForValue(I); 7649 SDB->CopyToExportRegsIfNeeded(I); 7650 } 7651 } 7652 7653 assert(i == InVals.size() && "Argument register count mismatch!"); 7654 7655 // Finally, if the target has anything special to do, allow it to do so. 7656 // FIXME: this should insert code into the DAG! 7657 EmitFunctionEntryCode(); 7658 } 7659 7660 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7661 /// ensure constants are generated when needed. Remember the virtual registers 7662 /// that need to be added to the Machine PHI nodes as input. We cannot just 7663 /// directly add them, because expansion might result in multiple MBB's for one 7664 /// BB. As such, the start of the BB might correspond to a different MBB than 7665 /// the end. 7666 /// 7667 void 7668 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7669 const TerminatorInst *TI = LLVMBB->getTerminator(); 7670 7671 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7672 7673 // Check successor nodes' PHI nodes that expect a constant to be available 7674 // from this block. 7675 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7676 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7677 if (!isa<PHINode>(SuccBB->begin())) continue; 7678 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7679 7680 // If this terminator has multiple identical successors (common for 7681 // switches), only handle each succ once. 7682 if (!SuccsHandled.insert(SuccMBB)) continue; 7683 7684 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7685 7686 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7687 // nodes and Machine PHI nodes, but the incoming operands have not been 7688 // emitted yet. 7689 for (BasicBlock::const_iterator I = SuccBB->begin(); 7690 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7691 // Ignore dead phi's. 7692 if (PN->use_empty()) continue; 7693 7694 // Skip empty types 7695 if (PN->getType()->isEmptyTy()) 7696 continue; 7697 7698 unsigned Reg; 7699 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7700 7701 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7702 unsigned &RegOut = ConstantsOut[C]; 7703 if (RegOut == 0) { 7704 RegOut = FuncInfo.CreateRegs(C->getType()); 7705 CopyValueToVirtualRegister(C, RegOut); 7706 } 7707 Reg = RegOut; 7708 } else { 7709 DenseMap<const Value *, unsigned>::iterator I = 7710 FuncInfo.ValueMap.find(PHIOp); 7711 if (I != FuncInfo.ValueMap.end()) 7712 Reg = I->second; 7713 else { 7714 assert(isa<AllocaInst>(PHIOp) && 7715 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7716 "Didn't codegen value into a register!??"); 7717 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7718 CopyValueToVirtualRegister(PHIOp, Reg); 7719 } 7720 } 7721 7722 // Remember that this register needs to added to the machine PHI node as 7723 // the input for this MBB. 7724 SmallVector<EVT, 4> ValueVTs; 7725 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7726 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7727 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7728 EVT VT = ValueVTs[vti]; 7729 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7730 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7731 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7732 Reg += NumRegisters; 7733 } 7734 } 7735 } 7736 7737 ConstantsOut.clear(); 7738 } 7739 7740 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7741 /// is 0. 7742 MachineBasicBlock * 7743 SelectionDAGBuilder::StackProtectorDescriptor:: 7744 AddSuccessorMBB(const BasicBlock *BB, 7745 MachineBasicBlock *ParentMBB, 7746 MachineBasicBlock *SuccMBB) { 7747 // If SuccBB has not been created yet, create it. 7748 if (!SuccMBB) { 7749 MachineFunction *MF = ParentMBB->getParent(); 7750 MachineFunction::iterator BBI = ParentMBB; 7751 SuccMBB = MF->CreateMachineBasicBlock(BB); 7752 MF->insert(++BBI, SuccMBB); 7753 } 7754 // Add it as a successor of ParentMBB. 7755 ParentMBB->addSuccessor(SuccMBB); 7756 return SuccMBB; 7757 } 7758