1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/ArrayRef.h" 18 #include "llvm/ADT/BitVector.h" 19 #include "llvm/ADT/DenseMap.h" 20 #include "llvm/ADT/None.h" 21 #include "llvm/ADT/Optional.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/SmallPtrSet.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/StringRef.h" 27 #include "llvm/ADT/Triple.h" 28 #include "llvm/ADT/Twine.h" 29 #include "llvm/Analysis/AliasAnalysis.h" 30 #include "llvm/Analysis/BranchProbabilityInfo.h" 31 #include "llvm/Analysis/ConstantFolding.h" 32 #include "llvm/Analysis/EHPersonalities.h" 33 #include "llvm/Analysis/Loads.h" 34 #include "llvm/Analysis/MemoryLocation.h" 35 #include "llvm/Analysis/TargetLibraryInfo.h" 36 #include "llvm/Analysis/ValueTracking.h" 37 #include "llvm/Analysis/VectorUtils.h" 38 #include "llvm/CodeGen/Analysis.h" 39 #include "llvm/CodeGen/FunctionLoweringInfo.h" 40 #include "llvm/CodeGen/GCMetadata.h" 41 #include "llvm/CodeGen/ISDOpcodes.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineFrameInfo.h" 44 #include "llvm/CodeGen/MachineFunction.h" 45 #include "llvm/CodeGen/MachineInstr.h" 46 #include "llvm/CodeGen/MachineInstrBuilder.h" 47 #include "llvm/CodeGen/MachineJumpTableInfo.h" 48 #include "llvm/CodeGen/MachineMemOperand.h" 49 #include "llvm/CodeGen/MachineModuleInfo.h" 50 #include "llvm/CodeGen/MachineOperand.h" 51 #include "llvm/CodeGen/MachineRegisterInfo.h" 52 #include "llvm/CodeGen/RuntimeLibcalls.h" 53 #include "llvm/CodeGen/SelectionDAG.h" 54 #include "llvm/CodeGen/SelectionDAGNodes.h" 55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 56 #include "llvm/CodeGen/StackMaps.h" 57 #include "llvm/CodeGen/TargetFrameLowering.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGen/ValueTypes.h" 64 #include "llvm/CodeGen/WinEHFuncInfo.h" 65 #include "llvm/IR/Argument.h" 66 #include "llvm/IR/Attributes.h" 67 #include "llvm/IR/BasicBlock.h" 68 #include "llvm/IR/CFG.h" 69 #include "llvm/IR/CallSite.h" 70 #include "llvm/IR/CallingConv.h" 71 #include "llvm/IR/Constant.h" 72 #include "llvm/IR/ConstantRange.h" 73 #include "llvm/IR/Constants.h" 74 #include "llvm/IR/DataLayout.h" 75 #include "llvm/IR/DebugInfoMetadata.h" 76 #include "llvm/IR/DebugLoc.h" 77 #include "llvm/IR/DerivedTypes.h" 78 #include "llvm/IR/Function.h" 79 #include "llvm/IR/GetElementPtrTypeIterator.h" 80 #include "llvm/IR/InlineAsm.h" 81 #include "llvm/IR/InstrTypes.h" 82 #include "llvm/IR/Instruction.h" 83 #include "llvm/IR/Instructions.h" 84 #include "llvm/IR/IntrinsicInst.h" 85 #include "llvm/IR/Intrinsics.h" 86 #include "llvm/IR/LLVMContext.h" 87 #include "llvm/IR/Metadata.h" 88 #include "llvm/IR/Module.h" 89 #include "llvm/IR/Operator.h" 90 #include "llvm/IR/PatternMatch.h" 91 #include "llvm/IR/Statepoint.h" 92 #include "llvm/IR/Type.h" 93 #include "llvm/IR/User.h" 94 #include "llvm/IR/Value.h" 95 #include "llvm/MC/MCContext.h" 96 #include "llvm/MC/MCSymbol.h" 97 #include "llvm/Support/AtomicOrdering.h" 98 #include "llvm/Support/BranchProbability.h" 99 #include "llvm/Support/Casting.h" 100 #include "llvm/Support/CodeGen.h" 101 #include "llvm/Support/CommandLine.h" 102 #include "llvm/Support/Compiler.h" 103 #include "llvm/Support/Debug.h" 104 #include "llvm/Support/ErrorHandling.h" 105 #include "llvm/Support/MachineValueType.h" 106 #include "llvm/Support/MathExtras.h" 107 #include "llvm/Support/raw_ostream.h" 108 #include "llvm/Target/TargetIntrinsicInfo.h" 109 #include "llvm/Target/TargetMachine.h" 110 #include "llvm/Target/TargetOptions.h" 111 #include "llvm/Transforms/Utils/Local.h" 112 #include <algorithm> 113 #include <cassert> 114 #include <cstddef> 115 #include <cstdint> 116 #include <cstring> 117 #include <iterator> 118 #include <limits> 119 #include <numeric> 120 #include <tuple> 121 #include <utility> 122 #include <vector> 123 124 using namespace llvm; 125 using namespace PatternMatch; 126 127 #define DEBUG_TYPE "isel" 128 129 /// LimitFloatPrecision - Generate low-precision inline sequences for 130 /// some float libcalls (6, 8 or 12 bits). 131 static unsigned LimitFloatPrecision; 132 133 static cl::opt<unsigned, true> 134 LimitFPPrecision("limit-float-precision", 135 cl::desc("Generate low-precision inline sequences " 136 "for some float libcalls"), 137 cl::location(LimitFloatPrecision), cl::Hidden, 138 cl::init(0)); 139 140 static cl::opt<unsigned> SwitchPeelThreshold( 141 "switch-peel-threshold", cl::Hidden, cl::init(66), 142 cl::desc("Set the case probability threshold for peeling the case from a " 143 "switch statement. A value greater than 100 will void this " 144 "optimization")); 145 146 // Limit the width of DAG chains. This is important in general to prevent 147 // DAG-based analysis from blowing up. For example, alias analysis and 148 // load clustering may not complete in reasonable time. It is difficult to 149 // recognize and avoid this situation within each individual analysis, and 150 // future analyses are likely to have the same behavior. Limiting DAG width is 151 // the safe approach and will be especially important with global DAGs. 152 // 153 // MaxParallelChains default is arbitrarily high to avoid affecting 154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 155 // sequence over this should have been converted to llvm.memcpy by the 156 // frontend. It is easy to induce this behavior with .ll code such as: 157 // %buffer = alloca [4096 x i8] 158 // %data = load [4096 x i8]* %argPtr 159 // store [4096 x i8] %data, [4096 x i8]* %buffer 160 static const unsigned MaxParallelChains = 64; 161 162 // Return the calling convention if the Value passed requires ABI mangling as it 163 // is a parameter to a function or a return value from a function which is not 164 // an intrinsic. 165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) { 166 if (auto *R = dyn_cast<ReturnInst>(V)) 167 return R->getParent()->getParent()->getCallingConv(); 168 169 if (auto *CI = dyn_cast<CallInst>(V)) { 170 const bool IsInlineAsm = CI->isInlineAsm(); 171 const bool IsIndirectFunctionCall = 172 !IsInlineAsm && !CI->getCalledFunction(); 173 174 // It is possible that the call instruction is an inline asm statement or an 175 // indirect function call in which case the return value of 176 // getCalledFunction() would be nullptr. 177 const bool IsInstrinsicCall = 178 !IsInlineAsm && !IsIndirectFunctionCall && 179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic; 180 181 if (!IsInlineAsm && !IsInstrinsicCall) 182 return CI->getCallingConv(); 183 } 184 185 return None; 186 } 187 188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 189 const SDValue *Parts, unsigned NumParts, 190 MVT PartVT, EVT ValueVT, const Value *V, 191 Optional<CallingConv::ID> CC); 192 193 /// getCopyFromParts - Create a value that contains the specified legal parts 194 /// combined into the value they represent. If the parts combine to a type 195 /// larger than ValueVT then AssertOp can be used to specify whether the extra 196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 197 /// (ISD::AssertSext). 198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 199 const SDValue *Parts, unsigned NumParts, 200 MVT PartVT, EVT ValueVT, const Value *V, 201 Optional<CallingConv::ID> CC = None, 202 Optional<ISD::NodeType> AssertOp = None) { 203 if (ValueVT.isVector()) 204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 205 CC); 206 207 assert(NumParts > 0 && "No parts to assemble!"); 208 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 209 SDValue Val = Parts[0]; 210 211 if (NumParts > 1) { 212 // Assemble the value from multiple parts. 213 if (ValueVT.isInteger()) { 214 unsigned PartBits = PartVT.getSizeInBits(); 215 unsigned ValueBits = ValueVT.getSizeInBits(); 216 217 // Assemble the power of 2 part. 218 unsigned RoundParts = NumParts & (NumParts - 1) ? 219 1 << Log2_32(NumParts) : NumParts; 220 unsigned RoundBits = PartBits * RoundParts; 221 EVT RoundVT = RoundBits == ValueBits ? 222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 223 SDValue Lo, Hi; 224 225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 226 227 if (RoundParts > 2) { 228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 229 PartVT, HalfVT, V); 230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 231 RoundParts / 2, PartVT, HalfVT, V); 232 } else { 233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 235 } 236 237 if (DAG.getDataLayout().isBigEndian()) 238 std::swap(Lo, Hi); 239 240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 241 242 if (RoundParts < NumParts) { 243 // Assemble the trailing non-power-of-2 part. 244 unsigned OddParts = NumParts - RoundParts; 245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 247 OddVT, V, CC); 248 249 // Combine the round and odd parts. 250 Lo = Val; 251 if (DAG.getDataLayout().isBigEndian()) 252 std::swap(Lo, Hi); 253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 255 Hi = 256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 257 DAG.getConstant(Lo.getValueSizeInBits(), DL, 258 TLI.getPointerTy(DAG.getDataLayout()))); 259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 261 } 262 } else if (PartVT.isFloatingPoint()) { 263 // FP split into multiple FP parts (for ppcf128) 264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 265 "Unexpected split"); 266 SDValue Lo, Hi; 267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 270 std::swap(Lo, Hi); 271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 272 } else { 273 // FP split into integer parts (soft fp) 274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 275 !PartVT.isVector() && "Unexpected split"); 276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 278 } 279 } 280 281 // There is now one part, held in Val. Correct it to match ValueVT. 282 // PartEVT is the type of the register class that holds the value. 283 // ValueVT is the type of the inline asm operation. 284 EVT PartEVT = Val.getValueType(); 285 286 if (PartEVT == ValueVT) 287 return Val; 288 289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 290 ValueVT.bitsLT(PartEVT)) { 291 // For an FP value in an integer part, we need to truncate to the right 292 // width first. 293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 295 } 296 297 // Handle types that have the same size. 298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle types with different sizes. 302 if (PartEVT.isInteger() && ValueVT.isInteger()) { 303 if (ValueVT.bitsLT(PartEVT)) { 304 // For a truncate, see if we have any information to 305 // indicate whether the truncated bits will always be 306 // zero or sign-extension. 307 if (AssertOp.hasValue()) 308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 309 DAG.getValueType(ValueVT)); 310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 311 } 312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 313 } 314 315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 316 // FP_ROUND's are always exact here. 317 if (ValueVT.bitsLT(Val.getValueType())) 318 return DAG.getNode( 319 ISD::FP_ROUND, DL, ValueVT, Val, 320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 321 322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 323 } 324 325 llvm_unreachable("Unknown mismatch!"); 326 } 327 328 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 329 const Twine &ErrMsg) { 330 const Instruction *I = dyn_cast_or_null<Instruction>(V); 331 if (!V) 332 return Ctx.emitError(ErrMsg); 333 334 const char *AsmError = ", possible invalid constraint for vector type"; 335 if (const CallInst *CI = dyn_cast<CallInst>(I)) 336 if (isa<InlineAsm>(CI->getCalledValue())) 337 return Ctx.emitError(I, ErrMsg + AsmError); 338 339 return Ctx.emitError(I, ErrMsg); 340 } 341 342 /// getCopyFromPartsVector - Create a value that contains the specified legal 343 /// parts combined into the value they represent. If the parts combine to a 344 /// type larger than ValueVT then AssertOp can be used to specify whether the 345 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 346 /// ValueVT (ISD::AssertSext). 347 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 348 const SDValue *Parts, unsigned NumParts, 349 MVT PartVT, EVT ValueVT, const Value *V, 350 Optional<CallingConv::ID> CallConv) { 351 assert(ValueVT.isVector() && "Not a vector value"); 352 assert(NumParts > 0 && "No parts to assemble!"); 353 const bool IsABIRegCopy = CallConv.hasValue(); 354 355 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 356 SDValue Val = Parts[0]; 357 358 // Handle a multi-element vector. 359 if (NumParts > 1) { 360 EVT IntermediateVT; 361 MVT RegisterVT; 362 unsigned NumIntermediates; 363 unsigned NumRegs; 364 365 if (IsABIRegCopy) { 366 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 367 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 368 NumIntermediates, RegisterVT); 369 } else { 370 NumRegs = 371 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 372 NumIntermediates, RegisterVT); 373 } 374 375 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 376 NumParts = NumRegs; // Silence a compiler warning. 377 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 378 assert(RegisterVT.getSizeInBits() == 379 Parts[0].getSimpleValueType().getSizeInBits() && 380 "Part type sizes don't match!"); 381 382 // Assemble the parts into intermediate operands. 383 SmallVector<SDValue, 8> Ops(NumIntermediates); 384 if (NumIntermediates == NumParts) { 385 // If the register was not expanded, truncate or copy the value, 386 // as appropriate. 387 for (unsigned i = 0; i != NumParts; ++i) 388 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 389 PartVT, IntermediateVT, V); 390 } else if (NumParts > 0) { 391 // If the intermediate type was expanded, build the intermediate 392 // operands from the parts. 393 assert(NumParts % NumIntermediates == 0 && 394 "Must expand into a divisible number of parts!"); 395 unsigned Factor = NumParts / NumIntermediates; 396 for (unsigned i = 0; i != NumIntermediates; ++i) 397 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 398 PartVT, IntermediateVT, V); 399 } 400 401 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 402 // intermediate operands. 403 EVT BuiltVectorTy = 404 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(), 405 (IntermediateVT.isVector() 406 ? IntermediateVT.getVectorNumElements() * NumParts 407 : NumIntermediates)); 408 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 409 : ISD::BUILD_VECTOR, 410 DL, BuiltVectorTy, Ops); 411 } 412 413 // There is now one part, held in Val. Correct it to match ValueVT. 414 EVT PartEVT = Val.getValueType(); 415 416 if (PartEVT == ValueVT) 417 return Val; 418 419 if (PartEVT.isVector()) { 420 // If the element type of the source/dest vectors are the same, but the 421 // parts vector has more elements than the value vector, then we have a 422 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 423 // elements we want. 424 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 425 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 426 "Cannot narrow, it would be a lossy transformation"); 427 return DAG.getNode( 428 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 429 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 430 } 431 432 // Vector/Vector bitcast. 433 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 434 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 435 436 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 437 "Cannot handle this kind of promotion"); 438 // Promoted vector extract 439 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 440 441 } 442 443 // Trivial bitcast if the types are the same size and the destination 444 // vector type is legal. 445 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 446 TLI.isTypeLegal(ValueVT)) 447 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 448 449 if (ValueVT.getVectorNumElements() != 1) { 450 // Certain ABIs require that vectors are passed as integers. For vectors 451 // are the same size, this is an obvious bitcast. 452 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 453 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 454 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) { 455 // Bitcast Val back the original type and extract the corresponding 456 // vector we want. 457 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits(); 458 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(), 459 ValueVT.getVectorElementType(), Elts); 460 Val = DAG.getBitcast(WiderVecType, Val); 461 return DAG.getNode( 462 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 463 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 464 } 465 466 diagnosePossiblyInvalidConstraint( 467 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 468 return DAG.getUNDEF(ValueVT); 469 } 470 471 // Handle cases such as i8 -> <1 x i1> 472 EVT ValueSVT = ValueVT.getVectorElementType(); 473 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) 474 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 475 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 476 477 return DAG.getBuildVector(ValueVT, DL, Val); 478 } 479 480 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 481 SDValue Val, SDValue *Parts, unsigned NumParts, 482 MVT PartVT, const Value *V, 483 Optional<CallingConv::ID> CallConv); 484 485 /// getCopyToParts - Create a series of nodes that contain the specified value 486 /// split into legal parts. If the parts contain more bits than Val, then, for 487 /// integers, ExtendKind can be used to specify how to generate the extra bits. 488 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 489 SDValue *Parts, unsigned NumParts, MVT PartVT, 490 const Value *V, 491 Optional<CallingConv::ID> CallConv = None, 492 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 493 EVT ValueVT = Val.getValueType(); 494 495 // Handle the vector case separately. 496 if (ValueVT.isVector()) 497 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 498 CallConv); 499 500 unsigned PartBits = PartVT.getSizeInBits(); 501 unsigned OrigNumParts = NumParts; 502 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 503 "Copying to an illegal type!"); 504 505 if (NumParts == 0) 506 return; 507 508 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 509 EVT PartEVT = PartVT; 510 if (PartEVT == ValueVT) { 511 assert(NumParts == 1 && "No-op copy with multiple parts!"); 512 Parts[0] = Val; 513 return; 514 } 515 516 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 517 // If the parts cover more bits than the value has, promote the value. 518 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 519 assert(NumParts == 1 && "Do not know what to promote to!"); 520 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 521 } else { 522 if (ValueVT.isFloatingPoint()) { 523 // FP values need to be bitcast, then extended if they are being put 524 // into a larger container. 525 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 526 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 527 } 528 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 529 ValueVT.isInteger() && 530 "Unknown mismatch!"); 531 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 532 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 533 if (PartVT == MVT::x86mmx) 534 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 535 } 536 } else if (PartBits == ValueVT.getSizeInBits()) { 537 // Different types of the same size. 538 assert(NumParts == 1 && PartEVT != ValueVT); 539 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 540 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 541 // If the parts cover less bits than value has, truncate the value. 542 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 543 ValueVT.isInteger() && 544 "Unknown mismatch!"); 545 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 546 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 547 if (PartVT == MVT::x86mmx) 548 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 549 } 550 551 // The value may have changed - recompute ValueVT. 552 ValueVT = Val.getValueType(); 553 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 554 "Failed to tile the value with PartVT!"); 555 556 if (NumParts == 1) { 557 if (PartEVT != ValueVT) { 558 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 559 "scalar-to-vector conversion failed"); 560 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 561 } 562 563 Parts[0] = Val; 564 return; 565 } 566 567 // Expand the value into multiple parts. 568 if (NumParts & (NumParts - 1)) { 569 // The number of parts is not a power of 2. Split off and copy the tail. 570 assert(PartVT.isInteger() && ValueVT.isInteger() && 571 "Do not know what to expand to!"); 572 unsigned RoundParts = 1 << Log2_32(NumParts); 573 unsigned RoundBits = RoundParts * PartBits; 574 unsigned OddParts = NumParts - RoundParts; 575 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 576 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 577 578 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 579 CallConv); 580 581 if (DAG.getDataLayout().isBigEndian()) 582 // The odd parts were reversed by getCopyToParts - unreverse them. 583 std::reverse(Parts + RoundParts, Parts + NumParts); 584 585 NumParts = RoundParts; 586 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 587 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 588 } 589 590 // The number of parts is a power of 2. Repeatedly bisect the value using 591 // EXTRACT_ELEMENT. 592 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 593 EVT::getIntegerVT(*DAG.getContext(), 594 ValueVT.getSizeInBits()), 595 Val); 596 597 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 598 for (unsigned i = 0; i < NumParts; i += StepSize) { 599 unsigned ThisBits = StepSize * PartBits / 2; 600 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 601 SDValue &Part0 = Parts[i]; 602 SDValue &Part1 = Parts[i+StepSize/2]; 603 604 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 605 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 606 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 607 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 608 609 if (ThisBits == PartBits && ThisVT != PartVT) { 610 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 611 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 612 } 613 } 614 } 615 616 if (DAG.getDataLayout().isBigEndian()) 617 std::reverse(Parts, Parts + OrigNumParts); 618 } 619 620 static SDValue widenVectorToPartType(SelectionDAG &DAG, 621 SDValue Val, const SDLoc &DL, EVT PartVT) { 622 if (!PartVT.isVector()) 623 return SDValue(); 624 625 EVT ValueVT = Val.getValueType(); 626 unsigned PartNumElts = PartVT.getVectorNumElements(); 627 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 628 if (PartNumElts > ValueNumElts && 629 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 630 EVT ElementVT = PartVT.getVectorElementType(); 631 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 632 // undef elements. 633 SmallVector<SDValue, 16> Ops; 634 DAG.ExtractVectorElements(Val, Ops); 635 SDValue EltUndef = DAG.getUNDEF(ElementVT); 636 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 637 Ops.push_back(EltUndef); 638 639 // FIXME: Use CONCAT for 2x -> 4x. 640 return DAG.getBuildVector(PartVT, DL, Ops); 641 } 642 643 return SDValue(); 644 } 645 646 /// getCopyToPartsVector - Create a series of nodes that contain the specified 647 /// value split into legal parts. 648 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 649 SDValue Val, SDValue *Parts, unsigned NumParts, 650 MVT PartVT, const Value *V, 651 Optional<CallingConv::ID> CallConv) { 652 EVT ValueVT = Val.getValueType(); 653 assert(ValueVT.isVector() && "Not a vector"); 654 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 655 const bool IsABIRegCopy = CallConv.hasValue(); 656 657 if (NumParts == 1) { 658 EVT PartEVT = PartVT; 659 if (PartEVT == ValueVT) { 660 // Nothing to do. 661 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 662 // Bitconvert vector->vector case. 663 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 664 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 665 Val = Widened; 666 } else if (PartVT.isVector() && 667 PartEVT.getVectorElementType().bitsGE( 668 ValueVT.getVectorElementType()) && 669 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 670 671 // Promoted vector extract 672 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 673 } else { 674 if (ValueVT.getVectorNumElements() == 1) { 675 Val = DAG.getNode( 676 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 677 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 678 } else { 679 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() && 680 "lossy conversion of vector to scalar type"); 681 EVT IntermediateType = 682 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 683 Val = DAG.getBitcast(IntermediateType, Val); 684 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 685 } 686 } 687 688 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 689 Parts[0] = Val; 690 return; 691 } 692 693 // Handle a multi-element vector. 694 EVT IntermediateVT; 695 MVT RegisterVT; 696 unsigned NumIntermediates; 697 unsigned NumRegs; 698 if (IsABIRegCopy) { 699 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 700 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 701 NumIntermediates, RegisterVT); 702 } else { 703 NumRegs = 704 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 705 NumIntermediates, RegisterVT); 706 } 707 708 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 709 NumParts = NumRegs; // Silence a compiler warning. 710 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 711 712 unsigned IntermediateNumElts = IntermediateVT.isVector() ? 713 IntermediateVT.getVectorNumElements() : 1; 714 715 // Convert the vector to the appropiate type if necessary. 716 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts; 717 718 EVT BuiltVectorTy = EVT::getVectorVT( 719 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts); 720 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 721 if (ValueVT != BuiltVectorTy) { 722 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) 723 Val = Widened; 724 725 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 726 } 727 728 // Split the vector into intermediate operands. 729 SmallVector<SDValue, 8> Ops(NumIntermediates); 730 for (unsigned i = 0; i != NumIntermediates; ++i) { 731 if (IntermediateVT.isVector()) { 732 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 733 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT)); 734 } else { 735 Ops[i] = DAG.getNode( 736 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 737 DAG.getConstant(i, DL, IdxVT)); 738 } 739 } 740 741 // Split the intermediate operands into legal parts. 742 if (NumParts == NumIntermediates) { 743 // If the register was not expanded, promote or copy the value, 744 // as appropriate. 745 for (unsigned i = 0; i != NumParts; ++i) 746 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 747 } else if (NumParts > 0) { 748 // If the intermediate type was expanded, split each the value into 749 // legal parts. 750 assert(NumIntermediates != 0 && "division by zero"); 751 assert(NumParts % NumIntermediates == 0 && 752 "Must expand into a divisible number of parts!"); 753 unsigned Factor = NumParts / NumIntermediates; 754 for (unsigned i = 0; i != NumIntermediates; ++i) 755 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 756 CallConv); 757 } 758 } 759 760 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 761 EVT valuevt, Optional<CallingConv::ID> CC) 762 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 763 RegCount(1, regs.size()), CallConv(CC) {} 764 765 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 766 const DataLayout &DL, unsigned Reg, Type *Ty, 767 Optional<CallingConv::ID> CC) { 768 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 769 770 CallConv = CC; 771 772 for (EVT ValueVT : ValueVTs) { 773 unsigned NumRegs = 774 isABIMangled() 775 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 776 : TLI.getNumRegisters(Context, ValueVT); 777 MVT RegisterVT = 778 isABIMangled() 779 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 780 : TLI.getRegisterType(Context, ValueVT); 781 for (unsigned i = 0; i != NumRegs; ++i) 782 Regs.push_back(Reg + i); 783 RegVTs.push_back(RegisterVT); 784 RegCount.push_back(NumRegs); 785 Reg += NumRegs; 786 } 787 } 788 789 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 790 FunctionLoweringInfo &FuncInfo, 791 const SDLoc &dl, SDValue &Chain, 792 SDValue *Flag, const Value *V) const { 793 // A Value with type {} or [0 x %t] needs no registers. 794 if (ValueVTs.empty()) 795 return SDValue(); 796 797 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 798 799 // Assemble the legal parts into the final values. 800 SmallVector<SDValue, 4> Values(ValueVTs.size()); 801 SmallVector<SDValue, 8> Parts; 802 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 803 // Copy the legal parts from the registers. 804 EVT ValueVT = ValueVTs[Value]; 805 unsigned NumRegs = RegCount[Value]; 806 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 807 *DAG.getContext(), 808 CallConv.getValue(), RegVTs[Value]) 809 : RegVTs[Value]; 810 811 Parts.resize(NumRegs); 812 for (unsigned i = 0; i != NumRegs; ++i) { 813 SDValue P; 814 if (!Flag) { 815 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 816 } else { 817 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 818 *Flag = P.getValue(2); 819 } 820 821 Chain = P.getValue(1); 822 Parts[i] = P; 823 824 // If the source register was virtual and if we know something about it, 825 // add an assert node. 826 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 827 !RegisterVT.isInteger()) 828 continue; 829 830 const FunctionLoweringInfo::LiveOutInfo *LOI = 831 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 832 if (!LOI) 833 continue; 834 835 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 836 unsigned NumSignBits = LOI->NumSignBits; 837 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 838 839 if (NumZeroBits == RegSize) { 840 // The current value is a zero. 841 // Explicitly express that as it would be easier for 842 // optimizations to kick in. 843 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 844 continue; 845 } 846 847 // FIXME: We capture more information than the dag can represent. For 848 // now, just use the tightest assertzext/assertsext possible. 849 bool isSExt; 850 EVT FromVT(MVT::Other); 851 if (NumZeroBits) { 852 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 853 isSExt = false; 854 } else if (NumSignBits > 1) { 855 FromVT = 856 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 857 isSExt = true; 858 } else { 859 continue; 860 } 861 // Add an assertion node. 862 assert(FromVT != MVT::Other); 863 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 864 RegisterVT, P, DAG.getValueType(FromVT)); 865 } 866 867 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 868 RegisterVT, ValueVT, V, CallConv); 869 Part += NumRegs; 870 Parts.clear(); 871 } 872 873 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 874 } 875 876 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 877 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 878 const Value *V, 879 ISD::NodeType PreferredExtendType) const { 880 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 881 ISD::NodeType ExtendKind = PreferredExtendType; 882 883 // Get the list of the values's legal parts. 884 unsigned NumRegs = Regs.size(); 885 SmallVector<SDValue, 8> Parts(NumRegs); 886 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 887 unsigned NumParts = RegCount[Value]; 888 889 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 890 *DAG.getContext(), 891 CallConv.getValue(), RegVTs[Value]) 892 : RegVTs[Value]; 893 894 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 895 ExtendKind = ISD::ZERO_EXTEND; 896 897 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 898 NumParts, RegisterVT, V, CallConv, ExtendKind); 899 Part += NumParts; 900 } 901 902 // Copy the parts into the registers. 903 SmallVector<SDValue, 8> Chains(NumRegs); 904 for (unsigned i = 0; i != NumRegs; ++i) { 905 SDValue Part; 906 if (!Flag) { 907 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 908 } else { 909 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 910 *Flag = Part.getValue(1); 911 } 912 913 Chains[i] = Part.getValue(0); 914 } 915 916 if (NumRegs == 1 || Flag) 917 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 918 // flagged to it. That is the CopyToReg nodes and the user are considered 919 // a single scheduling unit. If we create a TokenFactor and return it as 920 // chain, then the TokenFactor is both a predecessor (operand) of the 921 // user as well as a successor (the TF operands are flagged to the user). 922 // c1, f1 = CopyToReg 923 // c2, f2 = CopyToReg 924 // c3 = TokenFactor c1, c2 925 // ... 926 // = op c3, ..., f2 927 Chain = Chains[NumRegs-1]; 928 else 929 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 930 } 931 932 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 933 unsigned MatchingIdx, const SDLoc &dl, 934 SelectionDAG &DAG, 935 std::vector<SDValue> &Ops) const { 936 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 937 938 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 939 if (HasMatching) 940 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 941 else if (!Regs.empty() && 942 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 943 // Put the register class of the virtual registers in the flag word. That 944 // way, later passes can recompute register class constraints for inline 945 // assembly as well as normal instructions. 946 // Don't do this for tied operands that can use the regclass information 947 // from the def. 948 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 949 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 950 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 951 } 952 953 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 954 Ops.push_back(Res); 955 956 if (Code == InlineAsm::Kind_Clobber) { 957 // Clobbers should always have a 1:1 mapping with registers, and may 958 // reference registers that have illegal (e.g. vector) types. Hence, we 959 // shouldn't try to apply any sort of splitting logic to them. 960 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 961 "No 1:1 mapping from clobbers to regs?"); 962 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 963 (void)SP; 964 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 965 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 966 assert( 967 (Regs[I] != SP || 968 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 969 "If we clobbered the stack pointer, MFI should know about it."); 970 } 971 return; 972 } 973 974 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 975 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 976 MVT RegisterVT = RegVTs[Value]; 977 for (unsigned i = 0; i != NumRegs; ++i) { 978 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 979 unsigned TheReg = Regs[Reg++]; 980 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 981 } 982 } 983 } 984 985 SmallVector<std::pair<unsigned, unsigned>, 4> 986 RegsForValue::getRegsAndSizes() const { 987 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec; 988 unsigned I = 0; 989 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 990 unsigned RegCount = std::get<0>(CountAndVT); 991 MVT RegisterVT = std::get<1>(CountAndVT); 992 unsigned RegisterSize = RegisterVT.getSizeInBits(); 993 for (unsigned E = I + RegCount; I != E; ++I) 994 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 995 } 996 return OutVec; 997 } 998 999 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1000 const TargetLibraryInfo *li) { 1001 AA = aa; 1002 GFI = gfi; 1003 LibInfo = li; 1004 DL = &DAG.getDataLayout(); 1005 Context = DAG.getContext(); 1006 LPadToCallSiteMap.clear(); 1007 } 1008 1009 void SelectionDAGBuilder::clear() { 1010 NodeMap.clear(); 1011 UnusedArgNodeMap.clear(); 1012 PendingLoads.clear(); 1013 PendingExports.clear(); 1014 CurInst = nullptr; 1015 HasTailCall = false; 1016 SDNodeOrder = LowestSDNodeOrder; 1017 StatepointLowering.clear(); 1018 } 1019 1020 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1021 DanglingDebugInfoMap.clear(); 1022 } 1023 1024 SDValue SelectionDAGBuilder::getRoot() { 1025 if (PendingLoads.empty()) 1026 return DAG.getRoot(); 1027 1028 if (PendingLoads.size() == 1) { 1029 SDValue Root = PendingLoads[0]; 1030 DAG.setRoot(Root); 1031 PendingLoads.clear(); 1032 return Root; 1033 } 1034 1035 // Otherwise, we have to make a token factor node. 1036 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads); 1037 PendingLoads.clear(); 1038 DAG.setRoot(Root); 1039 return Root; 1040 } 1041 1042 SDValue SelectionDAGBuilder::getControlRoot() { 1043 SDValue Root = DAG.getRoot(); 1044 1045 if (PendingExports.empty()) 1046 return Root; 1047 1048 // Turn all of the CopyToReg chains into one factored node. 1049 if (Root.getOpcode() != ISD::EntryToken) { 1050 unsigned i = 0, e = PendingExports.size(); 1051 for (; i != e; ++i) { 1052 assert(PendingExports[i].getNode()->getNumOperands() > 1); 1053 if (PendingExports[i].getNode()->getOperand(0) == Root) 1054 break; // Don't add the root if we already indirectly depend on it. 1055 } 1056 1057 if (i == e) 1058 PendingExports.push_back(Root); 1059 } 1060 1061 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 1062 PendingExports); 1063 PendingExports.clear(); 1064 DAG.setRoot(Root); 1065 return Root; 1066 } 1067 1068 void SelectionDAGBuilder::visit(const Instruction &I) { 1069 // Set up outgoing PHI node register values before emitting the terminator. 1070 if (I.isTerminator()) { 1071 HandlePHINodesInSuccessorBlocks(I.getParent()); 1072 } 1073 1074 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1075 if (!isa<DbgInfoIntrinsic>(I)) 1076 ++SDNodeOrder; 1077 1078 CurInst = &I; 1079 1080 visit(I.getOpcode(), I); 1081 1082 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) { 1083 // Propagate the fast-math-flags of this IR instruction to the DAG node that 1084 // maps to this instruction. 1085 // TODO: We could handle all flags (nsw, etc) here. 1086 // TODO: If an IR instruction maps to >1 node, only the final node will have 1087 // flags set. 1088 if (SDNode *Node = getNodeForIRValue(&I)) { 1089 SDNodeFlags IncomingFlags; 1090 IncomingFlags.copyFMF(*FPMO); 1091 if (!Node->getFlags().isDefined()) 1092 Node->setFlags(IncomingFlags); 1093 else 1094 Node->intersectFlagsWith(IncomingFlags); 1095 } 1096 } 1097 1098 if (!I.isTerminator() && !HasTailCall && 1099 !isStatepoint(&I)) // statepoints handle their exports internally 1100 CopyToExportRegsIfNeeded(&I); 1101 1102 CurInst = nullptr; 1103 } 1104 1105 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1106 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1107 } 1108 1109 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1110 // Note: this doesn't use InstVisitor, because it has to work with 1111 // ConstantExpr's in addition to instructions. 1112 switch (Opcode) { 1113 default: llvm_unreachable("Unknown instruction type encountered!"); 1114 // Build the switch statement using the Instruction.def file. 1115 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1116 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1117 #include "llvm/IR/Instruction.def" 1118 } 1119 } 1120 1121 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1122 const DIExpression *Expr) { 1123 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1124 const DbgValueInst *DI = DDI.getDI(); 1125 DIVariable *DanglingVariable = DI->getVariable(); 1126 DIExpression *DanglingExpr = DI->getExpression(); 1127 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1128 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1129 return true; 1130 } 1131 return false; 1132 }; 1133 1134 for (auto &DDIMI : DanglingDebugInfoMap) { 1135 DanglingDebugInfoVector &DDIV = DDIMI.second; 1136 1137 // If debug info is to be dropped, run it through final checks to see 1138 // whether it can be salvaged. 1139 for (auto &DDI : DDIV) 1140 if (isMatchingDbgValue(DDI)) 1141 salvageUnresolvedDbgValue(DDI); 1142 1143 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end()); 1144 } 1145 } 1146 1147 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1148 // generate the debug data structures now that we've seen its definition. 1149 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1150 SDValue Val) { 1151 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1152 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1153 return; 1154 1155 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1156 for (auto &DDI : DDIV) { 1157 const DbgValueInst *DI = DDI.getDI(); 1158 assert(DI && "Ill-formed DanglingDebugInfo"); 1159 DebugLoc dl = DDI.getdl(); 1160 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1161 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1162 DILocalVariable *Variable = DI->getVariable(); 1163 DIExpression *Expr = DI->getExpression(); 1164 assert(Variable->isValidLocationForIntrinsic(dl) && 1165 "Expected inlined-at fields to agree"); 1166 SDDbgValue *SDV; 1167 if (Val.getNode()) { 1168 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1169 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1170 // we couldn't resolve it directly when examining the DbgValue intrinsic 1171 // in the first place we should not be more successful here). Unless we 1172 // have some test case that prove this to be correct we should avoid 1173 // calling EmitFuncArgumentDbgValue here. 1174 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1175 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1176 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1177 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1178 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1179 // inserted after the definition of Val when emitting the instructions 1180 // after ISel. An alternative could be to teach 1181 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1182 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1183 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1184 << ValSDNodeOrder << "\n"); 1185 SDV = getDbgValue(Val, Variable, Expr, dl, 1186 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1187 DAG.AddDbgValue(SDV, Val.getNode(), false); 1188 } else 1189 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1190 << "in EmitFuncArgumentDbgValue\n"); 1191 } else { 1192 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1193 auto Undef = 1194 UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1195 auto SDV = 1196 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1197 DAG.AddDbgValue(SDV, nullptr, false); 1198 } 1199 } 1200 DDIV.clear(); 1201 } 1202 1203 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1204 Value *V = DDI.getDI()->getValue(); 1205 DILocalVariable *Var = DDI.getDI()->getVariable(); 1206 DIExpression *Expr = DDI.getDI()->getExpression(); 1207 DebugLoc DL = DDI.getdl(); 1208 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1209 unsigned SDOrder = DDI.getSDNodeOrder(); 1210 1211 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1212 // that DW_OP_stack_value is desired. 1213 assert(isa<DbgValueInst>(DDI.getDI())); 1214 bool StackValue = true; 1215 1216 // Can this Value can be encoded without any further work? 1217 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) 1218 return; 1219 1220 // Attempt to salvage back through as many instructions as possible. Bail if 1221 // a non-instruction is seen, such as a constant expression or global 1222 // variable. FIXME: Further work could recover those too. 1223 while (isa<Instruction>(V)) { 1224 Instruction &VAsInst = *cast<Instruction>(V); 1225 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue); 1226 1227 // If we cannot salvage any further, and haven't yet found a suitable debug 1228 // expression, bail out. 1229 if (!NewExpr) 1230 break; 1231 1232 // New value and expr now represent this debuginfo. 1233 V = VAsInst.getOperand(0); 1234 Expr = NewExpr; 1235 1236 // Some kind of simplification occurred: check whether the operand of the 1237 // salvaged debug expression can be encoded in this DAG. 1238 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) { 1239 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1240 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1241 return; 1242 } 1243 } 1244 1245 // This was the final opportunity to salvage this debug information, and it 1246 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1247 // any earlier variable location. 1248 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType()); 1249 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1250 DAG.AddDbgValue(SDV, nullptr, false); 1251 1252 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1253 << "\n"); 1254 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1255 << "\n"); 1256 } 1257 1258 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var, 1259 DIExpression *Expr, DebugLoc dl, 1260 DebugLoc InstDL, unsigned Order) { 1261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1262 SDDbgValue *SDV; 1263 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1264 isa<ConstantPointerNull>(V)) { 1265 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder); 1266 DAG.AddDbgValue(SDV, nullptr, false); 1267 return true; 1268 } 1269 1270 // If the Value is a frame index, we can create a FrameIndex debug value 1271 // without relying on the DAG at all. 1272 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1273 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1274 if (SI != FuncInfo.StaticAllocaMap.end()) { 1275 auto SDV = 1276 DAG.getFrameIndexDbgValue(Var, Expr, SI->second, 1277 /*IsIndirect*/ false, dl, SDNodeOrder); 1278 // Do not attach the SDNodeDbgValue to an SDNode: this variable location 1279 // is still available even if the SDNode gets optimized out. 1280 DAG.AddDbgValue(SDV, nullptr, false); 1281 return true; 1282 } 1283 } 1284 1285 // Do not use getValue() in here; we don't want to generate code at 1286 // this point if it hasn't been done yet. 1287 SDValue N = NodeMap[V]; 1288 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1289 N = UnusedArgNodeMap[V]; 1290 if (N.getNode()) { 1291 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1292 return true; 1293 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder); 1294 DAG.AddDbgValue(SDV, N.getNode(), false); 1295 return true; 1296 } 1297 1298 // Special rules apply for the first dbg.values of parameter variables in a 1299 // function. Identify them by the fact they reference Argument Values, that 1300 // they're parameters, and they are parameters of the current function. We 1301 // need to let them dangle until they get an SDNode. 1302 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() && 1303 !InstDL.getInlinedAt(); 1304 if (!IsParamOfFunc) { 1305 // The value is not used in this block yet (or it would have an SDNode). 1306 // We still want the value to appear for the user if possible -- if it has 1307 // an associated VReg, we can refer to that instead. 1308 auto VMI = FuncInfo.ValueMap.find(V); 1309 if (VMI != FuncInfo.ValueMap.end()) { 1310 unsigned Reg = VMI->second; 1311 // If this is a PHI node, it may be split up into several MI PHI nodes 1312 // (in FunctionLoweringInfo::set). 1313 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1314 V->getType(), None); 1315 if (RFV.occupiesMultipleRegs()) { 1316 unsigned Offset = 0; 1317 unsigned BitsToDescribe = 0; 1318 if (auto VarSize = Var->getSizeInBits()) 1319 BitsToDescribe = *VarSize; 1320 if (auto Fragment = Expr->getFragmentInfo()) 1321 BitsToDescribe = Fragment->SizeInBits; 1322 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1323 unsigned RegisterSize = RegAndSize.second; 1324 // Bail out if all bits are described already. 1325 if (Offset >= BitsToDescribe) 1326 break; 1327 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1328 ? BitsToDescribe - Offset 1329 : RegisterSize; 1330 auto FragmentExpr = DIExpression::createFragmentExpression( 1331 Expr, Offset, FragmentSize); 1332 if (!FragmentExpr) 1333 continue; 1334 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first, 1335 false, dl, SDNodeOrder); 1336 DAG.AddDbgValue(SDV, nullptr, false); 1337 Offset += RegisterSize; 1338 } 1339 } else { 1340 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder); 1341 DAG.AddDbgValue(SDV, nullptr, false); 1342 } 1343 return true; 1344 } 1345 } 1346 1347 return false; 1348 } 1349 1350 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1351 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1352 for (auto &Pair : DanglingDebugInfoMap) 1353 for (auto &DDI : Pair.second) 1354 salvageUnresolvedDbgValue(DDI); 1355 clearDanglingDebugInfo(); 1356 } 1357 1358 /// getCopyFromRegs - If there was virtual register allocated for the value V 1359 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1360 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1361 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1362 SDValue Result; 1363 1364 if (It != FuncInfo.ValueMap.end()) { 1365 unsigned InReg = It->second; 1366 1367 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1368 DAG.getDataLayout(), InReg, Ty, 1369 None); // This is not an ABI copy. 1370 SDValue Chain = DAG.getEntryNode(); 1371 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1372 V); 1373 resolveDanglingDebugInfo(V, Result); 1374 } 1375 1376 return Result; 1377 } 1378 1379 /// getValue - Return an SDValue for the given Value. 1380 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1381 // If we already have an SDValue for this value, use it. It's important 1382 // to do this first, so that we don't create a CopyFromReg if we already 1383 // have a regular SDValue. 1384 SDValue &N = NodeMap[V]; 1385 if (N.getNode()) return N; 1386 1387 // If there's a virtual register allocated and initialized for this 1388 // value, use it. 1389 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1390 return copyFromReg; 1391 1392 // Otherwise create a new SDValue and remember it. 1393 SDValue Val = getValueImpl(V); 1394 NodeMap[V] = Val; 1395 resolveDanglingDebugInfo(V, Val); 1396 return Val; 1397 } 1398 1399 // Return true if SDValue exists for the given Value 1400 bool SelectionDAGBuilder::findValue(const Value *V) const { 1401 return (NodeMap.find(V) != NodeMap.end()) || 1402 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1403 } 1404 1405 /// getNonRegisterValue - Return an SDValue for the given Value, but 1406 /// don't look in FuncInfo.ValueMap for a virtual register. 1407 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1408 // If we already have an SDValue for this value, use it. 1409 SDValue &N = NodeMap[V]; 1410 if (N.getNode()) { 1411 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1412 // Remove the debug location from the node as the node is about to be used 1413 // in a location which may differ from the original debug location. This 1414 // is relevant to Constant and ConstantFP nodes because they can appear 1415 // as constant expressions inside PHI nodes. 1416 N->setDebugLoc(DebugLoc()); 1417 } 1418 return N; 1419 } 1420 1421 // Otherwise create a new SDValue and remember it. 1422 SDValue Val = getValueImpl(V); 1423 NodeMap[V] = Val; 1424 resolveDanglingDebugInfo(V, Val); 1425 return Val; 1426 } 1427 1428 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1429 /// Create an SDValue for the given value. 1430 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1431 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1432 1433 if (const Constant *C = dyn_cast<Constant>(V)) { 1434 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1435 1436 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1437 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1438 1439 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1440 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1441 1442 if (isa<ConstantPointerNull>(C)) { 1443 unsigned AS = V->getType()->getPointerAddressSpace(); 1444 return DAG.getConstant(0, getCurSDLoc(), 1445 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1446 } 1447 1448 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1449 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1450 1451 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1452 return DAG.getUNDEF(VT); 1453 1454 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1455 visit(CE->getOpcode(), *CE); 1456 SDValue N1 = NodeMap[V]; 1457 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1458 return N1; 1459 } 1460 1461 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1462 SmallVector<SDValue, 4> Constants; 1463 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1464 OI != OE; ++OI) { 1465 SDNode *Val = getValue(*OI).getNode(); 1466 // If the operand is an empty aggregate, there are no values. 1467 if (!Val) continue; 1468 // Add each leaf value from the operand to the Constants list 1469 // to form a flattened list of all the values. 1470 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1471 Constants.push_back(SDValue(Val, i)); 1472 } 1473 1474 return DAG.getMergeValues(Constants, getCurSDLoc()); 1475 } 1476 1477 if (const ConstantDataSequential *CDS = 1478 dyn_cast<ConstantDataSequential>(C)) { 1479 SmallVector<SDValue, 4> Ops; 1480 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1481 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1482 // Add each leaf value from the operand to the Constants list 1483 // to form a flattened list of all the values. 1484 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1485 Ops.push_back(SDValue(Val, i)); 1486 } 1487 1488 if (isa<ArrayType>(CDS->getType())) 1489 return DAG.getMergeValues(Ops, getCurSDLoc()); 1490 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1491 } 1492 1493 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1494 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1495 "Unknown struct or array constant!"); 1496 1497 SmallVector<EVT, 4> ValueVTs; 1498 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1499 unsigned NumElts = ValueVTs.size(); 1500 if (NumElts == 0) 1501 return SDValue(); // empty struct 1502 SmallVector<SDValue, 4> Constants(NumElts); 1503 for (unsigned i = 0; i != NumElts; ++i) { 1504 EVT EltVT = ValueVTs[i]; 1505 if (isa<UndefValue>(C)) 1506 Constants[i] = DAG.getUNDEF(EltVT); 1507 else if (EltVT.isFloatingPoint()) 1508 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1509 else 1510 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1511 } 1512 1513 return DAG.getMergeValues(Constants, getCurSDLoc()); 1514 } 1515 1516 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1517 return DAG.getBlockAddress(BA, VT); 1518 1519 VectorType *VecTy = cast<VectorType>(V->getType()); 1520 unsigned NumElements = VecTy->getNumElements(); 1521 1522 // Now that we know the number and type of the elements, get that number of 1523 // elements into the Ops array based on what kind of constant it is. 1524 SmallVector<SDValue, 16> Ops; 1525 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1526 for (unsigned i = 0; i != NumElements; ++i) 1527 Ops.push_back(getValue(CV->getOperand(i))); 1528 } else { 1529 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1530 EVT EltVT = 1531 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1532 1533 SDValue Op; 1534 if (EltVT.isFloatingPoint()) 1535 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1536 else 1537 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1538 Ops.assign(NumElements, Op); 1539 } 1540 1541 // Create a BUILD_VECTOR node. 1542 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1543 } 1544 1545 // If this is a static alloca, generate it as the frameindex instead of 1546 // computation. 1547 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1548 DenseMap<const AllocaInst*, int>::iterator SI = 1549 FuncInfo.StaticAllocaMap.find(AI); 1550 if (SI != FuncInfo.StaticAllocaMap.end()) 1551 return DAG.getFrameIndex(SI->second, 1552 TLI.getFrameIndexTy(DAG.getDataLayout())); 1553 } 1554 1555 // If this is an instruction which fast-isel has deferred, select it now. 1556 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1557 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1558 1559 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1560 Inst->getType(), getABIRegCopyCC(V)); 1561 SDValue Chain = DAG.getEntryNode(); 1562 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1563 } 1564 1565 llvm_unreachable("Can't get register for value!"); 1566 } 1567 1568 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1569 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1570 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1571 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1572 bool IsSEH = isAsynchronousEHPersonality(Pers); 1573 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX; 1574 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1575 if (!IsSEH) 1576 CatchPadMBB->setIsEHScopeEntry(); 1577 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1578 if (IsMSVCCXX || IsCoreCLR) 1579 CatchPadMBB->setIsEHFuncletEntry(); 1580 // Wasm does not need catchpads anymore 1581 if (!IsWasmCXX) 1582 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, 1583 getControlRoot())); 1584 } 1585 1586 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1587 // Update machine-CFG edge. 1588 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1589 FuncInfo.MBB->addSuccessor(TargetMBB); 1590 1591 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1592 bool IsSEH = isAsynchronousEHPersonality(Pers); 1593 if (IsSEH) { 1594 // If this is not a fall-through branch or optimizations are switched off, 1595 // emit the branch. 1596 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1597 TM.getOptLevel() == CodeGenOpt::None) 1598 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1599 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1600 return; 1601 } 1602 1603 // Figure out the funclet membership for the catchret's successor. 1604 // This will be used by the FuncletLayout pass to determine how to order the 1605 // BB's. 1606 // A 'catchret' returns to the outer scope's color. 1607 Value *ParentPad = I.getCatchSwitchParentPad(); 1608 const BasicBlock *SuccessorColor; 1609 if (isa<ConstantTokenNone>(ParentPad)) 1610 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1611 else 1612 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1613 assert(SuccessorColor && "No parent funclet for catchret!"); 1614 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1615 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1616 1617 // Create the terminator node. 1618 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1619 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1620 DAG.getBasicBlock(SuccessorColorMBB)); 1621 DAG.setRoot(Ret); 1622 } 1623 1624 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1625 // Don't emit any special code for the cleanuppad instruction. It just marks 1626 // the start of an EH scope/funclet. 1627 FuncInfo.MBB->setIsEHScopeEntry(); 1628 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1629 if (Pers != EHPersonality::Wasm_CXX) { 1630 FuncInfo.MBB->setIsEHFuncletEntry(); 1631 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1632 } 1633 } 1634 1635 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and 1636 // the control flow always stops at the single catch pad, as it does for a 1637 // cleanup pad. In case the exception caught is not of the types the catch pad 1638 // catches, it will be rethrown by a rethrow. 1639 static void findWasmUnwindDestinations( 1640 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1641 BranchProbability Prob, 1642 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1643 &UnwindDests) { 1644 while (EHPadBB) { 1645 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1646 if (isa<CleanupPadInst>(Pad)) { 1647 // Stop on cleanup pads. 1648 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1649 UnwindDests.back().first->setIsEHScopeEntry(); 1650 break; 1651 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1652 // Add the catchpad handlers to the possible destinations. We don't 1653 // continue to the unwind destination of the catchswitch for wasm. 1654 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1655 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1656 UnwindDests.back().first->setIsEHScopeEntry(); 1657 } 1658 break; 1659 } else { 1660 continue; 1661 } 1662 } 1663 } 1664 1665 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1666 /// many places it could ultimately go. In the IR, we have a single unwind 1667 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1668 /// This function skips over imaginary basic blocks that hold catchswitch 1669 /// instructions, and finds all the "real" machine 1670 /// basic block destinations. As those destinations may not be successors of 1671 /// EHPadBB, here we also calculate the edge probability to those destinations. 1672 /// The passed-in Prob is the edge probability to EHPadBB. 1673 static void findUnwindDestinations( 1674 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1675 BranchProbability Prob, 1676 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1677 &UnwindDests) { 1678 EHPersonality Personality = 1679 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1680 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1681 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1682 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1683 bool IsSEH = isAsynchronousEHPersonality(Personality); 1684 1685 if (IsWasmCXX) { 1686 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1687 assert(UnwindDests.size() <= 1 && 1688 "There should be at most one unwind destination for wasm"); 1689 return; 1690 } 1691 1692 while (EHPadBB) { 1693 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1694 BasicBlock *NewEHPadBB = nullptr; 1695 if (isa<LandingPadInst>(Pad)) { 1696 // Stop on landingpads. They are not funclets. 1697 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1698 break; 1699 } else if (isa<CleanupPadInst>(Pad)) { 1700 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1701 // personalities. 1702 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1703 UnwindDests.back().first->setIsEHScopeEntry(); 1704 UnwindDests.back().first->setIsEHFuncletEntry(); 1705 break; 1706 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1707 // Add the catchpad handlers to the possible destinations. 1708 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1709 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1710 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1711 if (IsMSVCCXX || IsCoreCLR) 1712 UnwindDests.back().first->setIsEHFuncletEntry(); 1713 if (!IsSEH) 1714 UnwindDests.back().first->setIsEHScopeEntry(); 1715 } 1716 NewEHPadBB = CatchSwitch->getUnwindDest(); 1717 } else { 1718 continue; 1719 } 1720 1721 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1722 if (BPI && NewEHPadBB) 1723 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1724 EHPadBB = NewEHPadBB; 1725 } 1726 } 1727 1728 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1729 // Update successor info. 1730 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1731 auto UnwindDest = I.getUnwindDest(); 1732 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1733 BranchProbability UnwindDestProb = 1734 (BPI && UnwindDest) 1735 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1736 : BranchProbability::getZero(); 1737 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1738 for (auto &UnwindDest : UnwindDests) { 1739 UnwindDest.first->setIsEHPad(); 1740 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1741 } 1742 FuncInfo.MBB->normalizeSuccProbs(); 1743 1744 // Create the terminator node. 1745 SDValue Ret = 1746 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1747 DAG.setRoot(Ret); 1748 } 1749 1750 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1751 report_fatal_error("visitCatchSwitch not yet implemented!"); 1752 } 1753 1754 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1755 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1756 auto &DL = DAG.getDataLayout(); 1757 SDValue Chain = getControlRoot(); 1758 SmallVector<ISD::OutputArg, 8> Outs; 1759 SmallVector<SDValue, 8> OutVals; 1760 1761 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1762 // lower 1763 // 1764 // %val = call <ty> @llvm.experimental.deoptimize() 1765 // ret <ty> %val 1766 // 1767 // differently. 1768 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1769 LowerDeoptimizingReturn(); 1770 return; 1771 } 1772 1773 if (!FuncInfo.CanLowerReturn) { 1774 unsigned DemoteReg = FuncInfo.DemoteRegister; 1775 const Function *F = I.getParent()->getParent(); 1776 1777 // Emit a store of the return value through the virtual register. 1778 // Leave Outs empty so that LowerReturn won't try to load return 1779 // registers the usual way. 1780 SmallVector<EVT, 1> PtrValueVTs; 1781 ComputeValueVTs(TLI, DL, 1782 F->getReturnType()->getPointerTo( 1783 DAG.getDataLayout().getAllocaAddrSpace()), 1784 PtrValueVTs); 1785 1786 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1787 DemoteReg, PtrValueVTs[0]); 1788 SDValue RetOp = getValue(I.getOperand(0)); 1789 1790 SmallVector<EVT, 4> ValueVTs; 1791 SmallVector<uint64_t, 4> Offsets; 1792 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1793 unsigned NumValues = ValueVTs.size(); 1794 1795 SmallVector<SDValue, 4> Chains(NumValues); 1796 for (unsigned i = 0; i != NumValues; ++i) { 1797 // An aggregate return value cannot wrap around the address space, so 1798 // offsets to its parts don't wrap either. 1799 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]); 1800 Chains[i] = DAG.getStore( 1801 Chain, getCurSDLoc(), SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1802 // FIXME: better loc info would be nice. 1803 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction())); 1804 } 1805 1806 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1807 MVT::Other, Chains); 1808 } else if (I.getNumOperands() != 0) { 1809 SmallVector<EVT, 4> ValueVTs; 1810 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1811 unsigned NumValues = ValueVTs.size(); 1812 if (NumValues) { 1813 SDValue RetOp = getValue(I.getOperand(0)); 1814 1815 const Function *F = I.getParent()->getParent(); 1816 1817 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1818 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1819 Attribute::SExt)) 1820 ExtendKind = ISD::SIGN_EXTEND; 1821 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1822 Attribute::ZExt)) 1823 ExtendKind = ISD::ZERO_EXTEND; 1824 1825 LLVMContext &Context = F->getContext(); 1826 bool RetInReg = F->getAttributes().hasAttribute( 1827 AttributeList::ReturnIndex, Attribute::InReg); 1828 1829 for (unsigned j = 0; j != NumValues; ++j) { 1830 EVT VT = ValueVTs[j]; 1831 1832 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1833 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1834 1835 CallingConv::ID CC = F->getCallingConv(); 1836 1837 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1838 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1839 SmallVector<SDValue, 4> Parts(NumParts); 1840 getCopyToParts(DAG, getCurSDLoc(), 1841 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1842 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1843 1844 // 'inreg' on function refers to return value 1845 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1846 if (RetInReg) 1847 Flags.setInReg(); 1848 1849 // Propagate extension type if any 1850 if (ExtendKind == ISD::SIGN_EXTEND) 1851 Flags.setSExt(); 1852 else if (ExtendKind == ISD::ZERO_EXTEND) 1853 Flags.setZExt(); 1854 1855 for (unsigned i = 0; i < NumParts; ++i) { 1856 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1857 VT, /*isfixed=*/true, 0, 0)); 1858 OutVals.push_back(Parts[i]); 1859 } 1860 } 1861 } 1862 } 1863 1864 // Push in swifterror virtual register as the last element of Outs. This makes 1865 // sure swifterror virtual register will be returned in the swifterror 1866 // physical register. 1867 const Function *F = I.getParent()->getParent(); 1868 if (TLI.supportSwiftError() && 1869 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1870 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument"); 1871 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1872 Flags.setSwiftError(); 1873 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1874 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1875 true /*isfixed*/, 1 /*origidx*/, 1876 0 /*partOffs*/)); 1877 // Create SDNode for the swifterror virtual register. 1878 OutVals.push_back( 1879 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt( 1880 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first, 1881 EVT(TLI.getPointerTy(DL)))); 1882 } 1883 1884 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 1885 CallingConv::ID CallConv = 1886 DAG.getMachineFunction().getFunction().getCallingConv(); 1887 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1888 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1889 1890 // Verify that the target's LowerReturn behaved as expected. 1891 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1892 "LowerReturn didn't return a valid chain!"); 1893 1894 // Update the DAG with the new chain value resulting from return lowering. 1895 DAG.setRoot(Chain); 1896 } 1897 1898 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1899 /// created for it, emit nodes to copy the value into the virtual 1900 /// registers. 1901 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1902 // Skip empty types 1903 if (V->getType()->isEmptyTy()) 1904 return; 1905 1906 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1907 if (VMI != FuncInfo.ValueMap.end()) { 1908 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1909 CopyValueToVirtualRegister(V, VMI->second); 1910 } 1911 } 1912 1913 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1914 /// the current basic block, add it to ValueMap now so that we'll get a 1915 /// CopyTo/FromReg. 1916 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1917 // No need to export constants. 1918 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1919 1920 // Already exported? 1921 if (FuncInfo.isExportedInst(V)) return; 1922 1923 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1924 CopyValueToVirtualRegister(V, Reg); 1925 } 1926 1927 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1928 const BasicBlock *FromBB) { 1929 // The operands of the setcc have to be in this block. We don't know 1930 // how to export them from some other block. 1931 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1932 // Can export from current BB. 1933 if (VI->getParent() == FromBB) 1934 return true; 1935 1936 // Is already exported, noop. 1937 return FuncInfo.isExportedInst(V); 1938 } 1939 1940 // If this is an argument, we can export it if the BB is the entry block or 1941 // if it is already exported. 1942 if (isa<Argument>(V)) { 1943 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1944 return true; 1945 1946 // Otherwise, can only export this if it is already exported. 1947 return FuncInfo.isExportedInst(V); 1948 } 1949 1950 // Otherwise, constants can always be exported. 1951 return true; 1952 } 1953 1954 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1955 BranchProbability 1956 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1957 const MachineBasicBlock *Dst) const { 1958 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1959 const BasicBlock *SrcBB = Src->getBasicBlock(); 1960 const BasicBlock *DstBB = Dst->getBasicBlock(); 1961 if (!BPI) { 1962 // If BPI is not available, set the default probability as 1 / N, where N is 1963 // the number of successors. 1964 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 1965 return BranchProbability(1, SuccSize); 1966 } 1967 return BPI->getEdgeProbability(SrcBB, DstBB); 1968 } 1969 1970 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1971 MachineBasicBlock *Dst, 1972 BranchProbability Prob) { 1973 if (!FuncInfo.BPI) 1974 Src->addSuccessorWithoutProb(Dst); 1975 else { 1976 if (Prob.isUnknown()) 1977 Prob = getEdgeProbability(Src, Dst); 1978 Src->addSuccessor(Dst, Prob); 1979 } 1980 } 1981 1982 static bool InBlock(const Value *V, const BasicBlock *BB) { 1983 if (const Instruction *I = dyn_cast<Instruction>(V)) 1984 return I->getParent() == BB; 1985 return true; 1986 } 1987 1988 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1989 /// This function emits a branch and is used at the leaves of an OR or an 1990 /// AND operator tree. 1991 void 1992 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1993 MachineBasicBlock *TBB, 1994 MachineBasicBlock *FBB, 1995 MachineBasicBlock *CurBB, 1996 MachineBasicBlock *SwitchBB, 1997 BranchProbability TProb, 1998 BranchProbability FProb, 1999 bool InvertCond) { 2000 const BasicBlock *BB = CurBB->getBasicBlock(); 2001 2002 // If the leaf of the tree is a comparison, merge the condition into 2003 // the caseblock. 2004 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2005 // The operands of the cmp have to be in this block. We don't know 2006 // how to export them from some other block. If this is the first block 2007 // of the sequence, no exporting is needed. 2008 if (CurBB == SwitchBB || 2009 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2010 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2011 ISD::CondCode Condition; 2012 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2013 ICmpInst::Predicate Pred = 2014 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2015 Condition = getICmpCondCode(Pred); 2016 } else { 2017 const FCmpInst *FC = cast<FCmpInst>(Cond); 2018 FCmpInst::Predicate Pred = 2019 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2020 Condition = getFCmpCondCode(Pred); 2021 if (TM.Options.NoNaNsFPMath) 2022 Condition = getFCmpCodeWithoutNaN(Condition); 2023 } 2024 2025 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2026 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2027 SwitchCases.push_back(CB); 2028 return; 2029 } 2030 } 2031 2032 // Create a CaseBlock record representing this branch. 2033 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2034 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2035 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2036 SwitchCases.push_back(CB); 2037 } 2038 2039 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2040 MachineBasicBlock *TBB, 2041 MachineBasicBlock *FBB, 2042 MachineBasicBlock *CurBB, 2043 MachineBasicBlock *SwitchBB, 2044 Instruction::BinaryOps Opc, 2045 BranchProbability TProb, 2046 BranchProbability FProb, 2047 bool InvertCond) { 2048 // Skip over not part of the tree and remember to invert op and operands at 2049 // next level. 2050 Value *NotCond; 2051 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2052 InBlock(NotCond, CurBB->getBasicBlock())) { 2053 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2054 !InvertCond); 2055 return; 2056 } 2057 2058 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2059 // Compute the effective opcode for Cond, taking into account whether it needs 2060 // to be inverted, e.g. 2061 // and (not (or A, B)), C 2062 // gets lowered as 2063 // and (and (not A, not B), C) 2064 unsigned BOpc = 0; 2065 if (BOp) { 2066 BOpc = BOp->getOpcode(); 2067 if (InvertCond) { 2068 if (BOpc == Instruction::And) 2069 BOpc = Instruction::Or; 2070 else if (BOpc == Instruction::Or) 2071 BOpc = Instruction::And; 2072 } 2073 } 2074 2075 // If this node is not part of the or/and tree, emit it as a branch. 2076 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 2077 BOpc != unsigned(Opc) || !BOp->hasOneUse() || 2078 BOp->getParent() != CurBB->getBasicBlock() || 2079 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 2080 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 2081 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2082 TProb, FProb, InvertCond); 2083 return; 2084 } 2085 2086 // Create TmpBB after CurBB. 2087 MachineFunction::iterator BBI(CurBB); 2088 MachineFunction &MF = DAG.getMachineFunction(); 2089 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2090 CurBB->getParent()->insert(++BBI, TmpBB); 2091 2092 if (Opc == Instruction::Or) { 2093 // Codegen X | Y as: 2094 // BB1: 2095 // jmp_if_X TBB 2096 // jmp TmpBB 2097 // TmpBB: 2098 // jmp_if_Y TBB 2099 // jmp FBB 2100 // 2101 2102 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2103 // The requirement is that 2104 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2105 // = TrueProb for original BB. 2106 // Assuming the original probabilities are A and B, one choice is to set 2107 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2108 // A/(1+B) and 2B/(1+B). This choice assumes that 2109 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2110 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2111 // TmpBB, but the math is more complicated. 2112 2113 auto NewTrueProb = TProb / 2; 2114 auto NewFalseProb = TProb / 2 + FProb; 2115 // Emit the LHS condition. 2116 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 2117 NewTrueProb, NewFalseProb, InvertCond); 2118 2119 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2120 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2121 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2122 // Emit the RHS condition into TmpBB. 2123 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2124 Probs[0], Probs[1], InvertCond); 2125 } else { 2126 assert(Opc == Instruction::And && "Unknown merge op!"); 2127 // Codegen X & Y as: 2128 // BB1: 2129 // jmp_if_X TmpBB 2130 // jmp FBB 2131 // TmpBB: 2132 // jmp_if_Y TBB 2133 // jmp FBB 2134 // 2135 // This requires creation of TmpBB after CurBB. 2136 2137 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2138 // The requirement is that 2139 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2140 // = FalseProb for original BB. 2141 // Assuming the original probabilities are A and B, one choice is to set 2142 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2143 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2144 // TrueProb for BB1 * FalseProb for TmpBB. 2145 2146 auto NewTrueProb = TProb + FProb / 2; 2147 auto NewFalseProb = FProb / 2; 2148 // Emit the LHS condition. 2149 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 2150 NewTrueProb, NewFalseProb, InvertCond); 2151 2152 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2153 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2154 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2155 // Emit the RHS condition into TmpBB. 2156 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 2157 Probs[0], Probs[1], InvertCond); 2158 } 2159 } 2160 2161 /// If the set of cases should be emitted as a series of branches, return true. 2162 /// If we should emit this as a bunch of and/or'd together conditions, return 2163 /// false. 2164 bool 2165 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2166 if (Cases.size() != 2) return true; 2167 2168 // If this is two comparisons of the same values or'd or and'd together, they 2169 // will get folded into a single comparison, so don't emit two blocks. 2170 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2171 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2172 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2173 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2174 return false; 2175 } 2176 2177 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2178 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2179 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2180 Cases[0].CC == Cases[1].CC && 2181 isa<Constant>(Cases[0].CmpRHS) && 2182 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2183 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2184 return false; 2185 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2186 return false; 2187 } 2188 2189 return true; 2190 } 2191 2192 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2193 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2194 2195 // Update machine-CFG edges. 2196 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2197 2198 if (I.isUnconditional()) { 2199 // Update machine-CFG edges. 2200 BrMBB->addSuccessor(Succ0MBB); 2201 2202 // If this is not a fall-through branch or optimizations are switched off, 2203 // emit the branch. 2204 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2205 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2206 MVT::Other, getControlRoot(), 2207 DAG.getBasicBlock(Succ0MBB))); 2208 2209 return; 2210 } 2211 2212 // If this condition is one of the special cases we handle, do special stuff 2213 // now. 2214 const Value *CondVal = I.getCondition(); 2215 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2216 2217 // If this is a series of conditions that are or'd or and'd together, emit 2218 // this as a sequence of branches instead of setcc's with and/or operations. 2219 // As long as jumps are not expensive, this should improve performance. 2220 // For example, instead of something like: 2221 // cmp A, B 2222 // C = seteq 2223 // cmp D, E 2224 // F = setle 2225 // or C, F 2226 // jnz foo 2227 // Emit: 2228 // cmp A, B 2229 // je foo 2230 // cmp D, E 2231 // jle foo 2232 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 2233 Instruction::BinaryOps Opcode = BOp->getOpcode(); 2234 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 2235 !I.getMetadata(LLVMContext::MD_unpredictable) && 2236 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 2237 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 2238 Opcode, 2239 getEdgeProbability(BrMBB, Succ0MBB), 2240 getEdgeProbability(BrMBB, Succ1MBB), 2241 /*InvertCond=*/false); 2242 // If the compares in later blocks need to use values not currently 2243 // exported from this block, export them now. This block should always 2244 // be the first entry. 2245 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2246 2247 // Allow some cases to be rejected. 2248 if (ShouldEmitAsBranches(SwitchCases)) { 2249 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 2250 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 2251 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 2252 } 2253 2254 // Emit the branch for this block. 2255 visitSwitchCase(SwitchCases[0], BrMBB); 2256 SwitchCases.erase(SwitchCases.begin()); 2257 return; 2258 } 2259 2260 // Okay, we decided not to do this, remove any inserted MBB's and clear 2261 // SwitchCases. 2262 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 2263 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 2264 2265 SwitchCases.clear(); 2266 } 2267 } 2268 2269 // Create a CaseBlock record representing this branch. 2270 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2271 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2272 2273 // Use visitSwitchCase to actually insert the fast branch sequence for this 2274 // cond branch. 2275 visitSwitchCase(CB, BrMBB); 2276 } 2277 2278 /// visitSwitchCase - Emits the necessary code to represent a single node in 2279 /// the binary search tree resulting from lowering a switch instruction. 2280 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2281 MachineBasicBlock *SwitchBB) { 2282 SDValue Cond; 2283 SDValue CondLHS = getValue(CB.CmpLHS); 2284 SDLoc dl = CB.DL; 2285 2286 if (CB.CC == ISD::SETTRUE) { 2287 // Branch or fall through to TrueBB. 2288 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2289 SwitchBB->normalizeSuccProbs(); 2290 if (CB.TrueBB != NextBlock(SwitchBB)) { 2291 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2292 DAG.getBasicBlock(CB.TrueBB))); 2293 } 2294 return; 2295 } 2296 2297 // Build the setcc now. 2298 if (!CB.CmpMHS) { 2299 // Fold "(X == true)" to X and "(X == false)" to !X to 2300 // handle common cases produced by branch lowering. 2301 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2302 CB.CC == ISD::SETEQ) 2303 Cond = CondLHS; 2304 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2305 CB.CC == ISD::SETEQ) { 2306 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2307 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2308 } else 2309 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 2310 } else { 2311 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2312 2313 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2314 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2315 2316 SDValue CmpOp = getValue(CB.CmpMHS); 2317 EVT VT = CmpOp.getValueType(); 2318 2319 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2320 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2321 ISD::SETLE); 2322 } else { 2323 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2324 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2325 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2326 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2327 } 2328 } 2329 2330 // Update successor info 2331 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2332 // TrueBB and FalseBB are always different unless the incoming IR is 2333 // degenerate. This only happens when running llc on weird IR. 2334 if (CB.TrueBB != CB.FalseBB) 2335 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2336 SwitchBB->normalizeSuccProbs(); 2337 2338 // If the lhs block is the next block, invert the condition so that we can 2339 // fall through to the lhs instead of the rhs block. 2340 if (CB.TrueBB == NextBlock(SwitchBB)) { 2341 std::swap(CB.TrueBB, CB.FalseBB); 2342 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2343 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2344 } 2345 2346 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2347 MVT::Other, getControlRoot(), Cond, 2348 DAG.getBasicBlock(CB.TrueBB)); 2349 2350 // Insert the false branch. Do this even if it's a fall through branch, 2351 // this makes it easier to do DAG optimizations which require inverting 2352 // the branch condition. 2353 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2354 DAG.getBasicBlock(CB.FalseBB)); 2355 2356 DAG.setRoot(BrCond); 2357 } 2358 2359 /// visitJumpTable - Emit JumpTable node in the current MBB 2360 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 2361 // Emit the code for the jump table 2362 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2363 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2364 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2365 JT.Reg, PTy); 2366 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2367 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2368 MVT::Other, Index.getValue(1), 2369 Table, Index); 2370 DAG.setRoot(BrJumpTable); 2371 } 2372 2373 /// visitJumpTableHeader - This function emits necessary code to produce index 2374 /// in the JumpTable from switch case. 2375 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 2376 JumpTableHeader &JTH, 2377 MachineBasicBlock *SwitchBB) { 2378 SDLoc dl = getCurSDLoc(); 2379 2380 // Subtract the lowest switch case value from the value being switched on. 2381 SDValue SwitchOp = getValue(JTH.SValue); 2382 EVT VT = SwitchOp.getValueType(); 2383 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2384 DAG.getConstant(JTH.First, dl, VT)); 2385 2386 // The SDNode we just created, which holds the value being switched on minus 2387 // the smallest case value, needs to be copied to a virtual register so it 2388 // can be used as an index into the jump table in a subsequent basic block. 2389 // This value may be smaller or larger than the target's pointer type, and 2390 // therefore require extension or truncating. 2391 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2392 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2393 2394 unsigned JumpTableReg = 2395 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2396 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2397 JumpTableReg, SwitchOp); 2398 JT.Reg = JumpTableReg; 2399 2400 if (!JTH.OmitRangeCheck) { 2401 // Emit the range check for the jump table, and branch to the default block 2402 // for the switch statement if the value being switched on exceeds the 2403 // largest case in the switch. 2404 SDValue CMP = DAG.getSetCC( 2405 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2406 Sub.getValueType()), 2407 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2408 2409 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2410 MVT::Other, CopyTo, CMP, 2411 DAG.getBasicBlock(JT.Default)); 2412 2413 // Avoid emitting unnecessary branches to the next block. 2414 if (JT.MBB != NextBlock(SwitchBB)) 2415 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2416 DAG.getBasicBlock(JT.MBB)); 2417 2418 DAG.setRoot(BrCond); 2419 } else { 2420 // Avoid emitting unnecessary branches to the next block. 2421 if (JT.MBB != NextBlock(SwitchBB)) 2422 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2423 DAG.getBasicBlock(JT.MBB))); 2424 else 2425 DAG.setRoot(CopyTo); 2426 } 2427 } 2428 2429 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2430 /// variable if there exists one. 2431 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2432 SDValue &Chain) { 2433 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2434 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2435 MachineFunction &MF = DAG.getMachineFunction(); 2436 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2437 MachineSDNode *Node = 2438 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2439 if (Global) { 2440 MachinePointerInfo MPInfo(Global); 2441 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2442 MachineMemOperand::MODereferenceable; 2443 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2444 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy)); 2445 DAG.setNodeMemRefs(Node, {MemRef}); 2446 } 2447 return SDValue(Node, 0); 2448 } 2449 2450 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2451 /// tail spliced into a stack protector check success bb. 2452 /// 2453 /// For a high level explanation of how this fits into the stack protector 2454 /// generation see the comment on the declaration of class 2455 /// StackProtectorDescriptor. 2456 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2457 MachineBasicBlock *ParentBB) { 2458 2459 // First create the loads to the guard/stack slot for the comparison. 2460 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2461 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2462 2463 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2464 int FI = MFI.getStackProtectorIndex(); 2465 2466 SDValue Guard; 2467 SDLoc dl = getCurSDLoc(); 2468 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2469 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2470 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext())); 2471 2472 // Generate code to load the content of the guard slot. 2473 SDValue GuardVal = DAG.getLoad( 2474 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 2475 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2476 MachineMemOperand::MOVolatile); 2477 2478 if (TLI.useStackGuardXorFP()) 2479 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2480 2481 // Retrieve guard check function, nullptr if instrumentation is inlined. 2482 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2483 // The target provides a guard check function to validate the guard value. 2484 // Generate a call to that function with the content of the guard slot as 2485 // argument. 2486 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2487 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2488 2489 TargetLowering::ArgListTy Args; 2490 TargetLowering::ArgListEntry Entry; 2491 Entry.Node = GuardVal; 2492 Entry.Ty = FnTy->getParamType(0); 2493 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2494 Entry.IsInReg = true; 2495 Args.push_back(Entry); 2496 2497 TargetLowering::CallLoweringInfo CLI(DAG); 2498 CLI.setDebugLoc(getCurSDLoc()) 2499 .setChain(DAG.getEntryNode()) 2500 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2501 getValue(GuardCheckFn), std::move(Args)); 2502 2503 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2504 DAG.setRoot(Result.second); 2505 return; 2506 } 2507 2508 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2509 // Otherwise, emit a volatile load to retrieve the stack guard value. 2510 SDValue Chain = DAG.getEntryNode(); 2511 if (TLI.useLoadStackGuardNode()) { 2512 Guard = getLoadStackGuard(DAG, dl, Chain); 2513 } else { 2514 const Value *IRGuard = TLI.getSDagStackGuard(M); 2515 SDValue GuardPtr = getValue(IRGuard); 2516 2517 Guard = 2518 DAG.getLoad(PtrTy, dl, Chain, GuardPtr, MachinePointerInfo(IRGuard, 0), 2519 Align, MachineMemOperand::MOVolatile); 2520 } 2521 2522 // Perform the comparison via a subtract/getsetcc. 2523 EVT VT = Guard.getValueType(); 2524 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal); 2525 2526 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2527 *DAG.getContext(), 2528 Sub.getValueType()), 2529 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 2530 2531 // If the sub is not 0, then we know the guard/stackslot do not equal, so 2532 // branch to failure MBB. 2533 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2534 MVT::Other, GuardVal.getOperand(0), 2535 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2536 // Otherwise branch to success MBB. 2537 SDValue Br = DAG.getNode(ISD::BR, dl, 2538 MVT::Other, BrCond, 2539 DAG.getBasicBlock(SPD.getSuccessMBB())); 2540 2541 DAG.setRoot(Br); 2542 } 2543 2544 /// Codegen the failure basic block for a stack protector check. 2545 /// 2546 /// A failure stack protector machine basic block consists simply of a call to 2547 /// __stack_chk_fail(). 2548 /// 2549 /// For a high level explanation of how this fits into the stack protector 2550 /// generation see the comment on the declaration of class 2551 /// StackProtectorDescriptor. 2552 void 2553 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2554 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2555 SDValue Chain = 2556 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2557 None, false, getCurSDLoc(), false, false).second; 2558 // On PS4, the "return address" must still be within the calling function, 2559 // even if it's at the very end, so emit an explicit TRAP here. 2560 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2561 if (TM.getTargetTriple().isPS4CPU()) 2562 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2563 2564 DAG.setRoot(Chain); 2565 } 2566 2567 /// visitBitTestHeader - This function emits necessary code to produce value 2568 /// suitable for "bit tests" 2569 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2570 MachineBasicBlock *SwitchBB) { 2571 SDLoc dl = getCurSDLoc(); 2572 2573 // Subtract the minimum value 2574 SDValue SwitchOp = getValue(B.SValue); 2575 EVT VT = SwitchOp.getValueType(); 2576 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2577 DAG.getConstant(B.First, dl, VT)); 2578 2579 // Check range 2580 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2581 SDValue RangeCmp = DAG.getSetCC( 2582 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2583 Sub.getValueType()), 2584 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2585 2586 // Determine the type of the test operands. 2587 bool UsePtrType = false; 2588 if (!TLI.isTypeLegal(VT)) 2589 UsePtrType = true; 2590 else { 2591 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2592 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2593 // Switch table case range are encoded into series of masks. 2594 // Just use pointer type, it's guaranteed to fit. 2595 UsePtrType = true; 2596 break; 2597 } 2598 } 2599 if (UsePtrType) { 2600 VT = TLI.getPointerTy(DAG.getDataLayout()); 2601 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2602 } 2603 2604 B.RegVT = VT.getSimpleVT(); 2605 B.Reg = FuncInfo.CreateReg(B.RegVT); 2606 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2607 2608 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2609 2610 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2611 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2612 SwitchBB->normalizeSuccProbs(); 2613 2614 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2615 MVT::Other, CopyTo, RangeCmp, 2616 DAG.getBasicBlock(B.Default)); 2617 2618 // Avoid emitting unnecessary branches to the next block. 2619 if (MBB != NextBlock(SwitchBB)) 2620 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2621 DAG.getBasicBlock(MBB)); 2622 2623 DAG.setRoot(BrRange); 2624 } 2625 2626 /// visitBitTestCase - this function produces one "bit test" 2627 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2628 MachineBasicBlock* NextMBB, 2629 BranchProbability BranchProbToNext, 2630 unsigned Reg, 2631 BitTestCase &B, 2632 MachineBasicBlock *SwitchBB) { 2633 SDLoc dl = getCurSDLoc(); 2634 MVT VT = BB.RegVT; 2635 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2636 SDValue Cmp; 2637 unsigned PopCount = countPopulation(B.Mask); 2638 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2639 if (PopCount == 1) { 2640 // Testing for a single bit; just compare the shift count with what it 2641 // would need to be to shift a 1 bit in that position. 2642 Cmp = DAG.getSetCC( 2643 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2644 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2645 ISD::SETEQ); 2646 } else if (PopCount == BB.Range) { 2647 // There is only one zero bit in the range, test for it directly. 2648 Cmp = DAG.getSetCC( 2649 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2650 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2651 ISD::SETNE); 2652 } else { 2653 // Make desired shift 2654 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2655 DAG.getConstant(1, dl, VT), ShiftOp); 2656 2657 // Emit bit tests and jumps 2658 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2659 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2660 Cmp = DAG.getSetCC( 2661 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2662 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2663 } 2664 2665 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2666 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2667 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2668 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2669 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2670 // one as they are relative probabilities (and thus work more like weights), 2671 // and hence we need to normalize them to let the sum of them become one. 2672 SwitchBB->normalizeSuccProbs(); 2673 2674 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2675 MVT::Other, getControlRoot(), 2676 Cmp, DAG.getBasicBlock(B.TargetBB)); 2677 2678 // Avoid emitting unnecessary branches to the next block. 2679 if (NextMBB != NextBlock(SwitchBB)) 2680 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2681 DAG.getBasicBlock(NextMBB)); 2682 2683 DAG.setRoot(BrAnd); 2684 } 2685 2686 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2687 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2688 2689 // Retrieve successors. Look through artificial IR level blocks like 2690 // catchswitch for successors. 2691 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2692 const BasicBlock *EHPadBB = I.getSuccessor(1); 2693 2694 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2695 // have to do anything here to lower funclet bundles. 2696 assert(!I.hasOperandBundlesOtherThan( 2697 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2698 "Cannot lower invokes with arbitrary operand bundles yet!"); 2699 2700 const Value *Callee(I.getCalledValue()); 2701 const Function *Fn = dyn_cast<Function>(Callee); 2702 if (isa<InlineAsm>(Callee)) 2703 visitInlineAsm(&I); 2704 else if (Fn && Fn->isIntrinsic()) { 2705 switch (Fn->getIntrinsicID()) { 2706 default: 2707 llvm_unreachable("Cannot invoke this intrinsic"); 2708 case Intrinsic::donothing: 2709 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2710 break; 2711 case Intrinsic::experimental_patchpoint_void: 2712 case Intrinsic::experimental_patchpoint_i64: 2713 visitPatchpoint(&I, EHPadBB); 2714 break; 2715 case Intrinsic::experimental_gc_statepoint: 2716 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2717 break; 2718 case Intrinsic::wasm_rethrow_in_catch: { 2719 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2720 // special because it can be invoked, so we manually lower it to a DAG 2721 // node here. 2722 SmallVector<SDValue, 8> Ops; 2723 Ops.push_back(getRoot()); // inchain 2724 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2725 Ops.push_back( 2726 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(), 2727 TLI.getPointerTy(DAG.getDataLayout()))); 2728 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2729 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2730 break; 2731 } 2732 } 2733 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2734 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2735 // Eventually we will support lowering the @llvm.experimental.deoptimize 2736 // intrinsic, and right now there are no plans to support other intrinsics 2737 // with deopt state. 2738 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2739 } else { 2740 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2741 } 2742 2743 // If the value of the invoke is used outside of its defining block, make it 2744 // available as a virtual register. 2745 // We already took care of the exported value for the statepoint instruction 2746 // during call to the LowerStatepoint. 2747 if (!isStatepoint(I)) { 2748 CopyToExportRegsIfNeeded(&I); 2749 } 2750 2751 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2752 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2753 BranchProbability EHPadBBProb = 2754 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2755 : BranchProbability::getZero(); 2756 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2757 2758 // Update successor info. 2759 addSuccessorWithProb(InvokeMBB, Return); 2760 for (auto &UnwindDest : UnwindDests) { 2761 UnwindDest.first->setIsEHPad(); 2762 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2763 } 2764 InvokeMBB->normalizeSuccProbs(); 2765 2766 // Drop into normal successor. 2767 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2768 DAG.getBasicBlock(Return))); 2769 } 2770 2771 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2772 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2773 2774 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2775 // have to do anything here to lower funclet bundles. 2776 assert(!I.hasOperandBundlesOtherThan( 2777 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2778 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2779 2780 assert(isa<InlineAsm>(I.getCalledValue()) && 2781 "Only know how to handle inlineasm callbr"); 2782 visitInlineAsm(&I); 2783 2784 // Retrieve successors. 2785 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2786 2787 // Update successor info. 2788 addSuccessorWithProb(CallBrMBB, Return); 2789 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2790 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2791 addSuccessorWithProb(CallBrMBB, Target); 2792 } 2793 CallBrMBB->normalizeSuccProbs(); 2794 2795 // Drop into default successor. 2796 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2797 MVT::Other, getControlRoot(), 2798 DAG.getBasicBlock(Return))); 2799 } 2800 2801 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2802 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2803 } 2804 2805 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2806 assert(FuncInfo.MBB->isEHPad() && 2807 "Call to landingpad not in landing pad!"); 2808 2809 // If there aren't registers to copy the values into (e.g., during SjLj 2810 // exceptions), then don't bother to create these DAG nodes. 2811 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2812 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2813 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2814 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2815 return; 2816 2817 // If landingpad's return type is token type, we don't create DAG nodes 2818 // for its exception pointer and selector value. The extraction of exception 2819 // pointer or selector value from token type landingpads is not currently 2820 // supported. 2821 if (LP.getType()->isTokenTy()) 2822 return; 2823 2824 SmallVector<EVT, 2> ValueVTs; 2825 SDLoc dl = getCurSDLoc(); 2826 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2827 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2828 2829 // Get the two live-in registers as SDValues. The physregs have already been 2830 // copied into virtual registers. 2831 SDValue Ops[2]; 2832 if (FuncInfo.ExceptionPointerVirtReg) { 2833 Ops[0] = DAG.getZExtOrTrunc( 2834 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2835 FuncInfo.ExceptionPointerVirtReg, 2836 TLI.getPointerTy(DAG.getDataLayout())), 2837 dl, ValueVTs[0]); 2838 } else { 2839 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2840 } 2841 Ops[1] = DAG.getZExtOrTrunc( 2842 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2843 FuncInfo.ExceptionSelectorVirtReg, 2844 TLI.getPointerTy(DAG.getDataLayout())), 2845 dl, ValueVTs[1]); 2846 2847 // Merge into one. 2848 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2849 DAG.getVTList(ValueVTs), Ops); 2850 setValue(&LP, Res); 2851 } 2852 2853 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2854 #ifndef NDEBUG 2855 for (const CaseCluster &CC : Clusters) 2856 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2857 #endif 2858 2859 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) { 2860 return a.Low->getValue().slt(b.Low->getValue()); 2861 }); 2862 2863 // Merge adjacent clusters with the same destination. 2864 const unsigned N = Clusters.size(); 2865 unsigned DstIndex = 0; 2866 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2867 CaseCluster &CC = Clusters[SrcIndex]; 2868 const ConstantInt *CaseVal = CC.Low; 2869 MachineBasicBlock *Succ = CC.MBB; 2870 2871 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2872 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2873 // If this case has the same successor and is a neighbour, merge it into 2874 // the previous cluster. 2875 Clusters[DstIndex - 1].High = CaseVal; 2876 Clusters[DstIndex - 1].Prob += CC.Prob; 2877 } else { 2878 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2879 sizeof(Clusters[SrcIndex])); 2880 } 2881 } 2882 Clusters.resize(DstIndex); 2883 } 2884 2885 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2886 MachineBasicBlock *Last) { 2887 // Update JTCases. 2888 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2889 if (JTCases[i].first.HeaderBB == First) 2890 JTCases[i].first.HeaderBB = Last; 2891 2892 // Update BitTestCases. 2893 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2894 if (BitTestCases[i].Parent == First) 2895 BitTestCases[i].Parent = Last; 2896 } 2897 2898 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2899 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2900 2901 // Update machine-CFG edges with unique successors. 2902 SmallSet<BasicBlock*, 32> Done; 2903 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2904 BasicBlock *BB = I.getSuccessor(i); 2905 bool Inserted = Done.insert(BB).second; 2906 if (!Inserted) 2907 continue; 2908 2909 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2910 addSuccessorWithProb(IndirectBrMBB, Succ); 2911 } 2912 IndirectBrMBB->normalizeSuccProbs(); 2913 2914 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2915 MVT::Other, getControlRoot(), 2916 getValue(I.getAddress()))); 2917 } 2918 2919 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2920 if (!DAG.getTarget().Options.TrapUnreachable) 2921 return; 2922 2923 // We may be able to ignore unreachable behind a noreturn call. 2924 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 2925 const BasicBlock &BB = *I.getParent(); 2926 if (&I != &BB.front()) { 2927 BasicBlock::const_iterator PredI = 2928 std::prev(BasicBlock::const_iterator(&I)); 2929 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 2930 if (Call->doesNotReturn()) 2931 return; 2932 } 2933 } 2934 } 2935 2936 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2937 } 2938 2939 void SelectionDAGBuilder::visitFSub(const User &I) { 2940 // -0.0 - X --> fneg 2941 Type *Ty = I.getType(); 2942 if (isa<Constant>(I.getOperand(0)) && 2943 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2944 SDValue Op2 = getValue(I.getOperand(1)); 2945 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2946 Op2.getValueType(), Op2)); 2947 return; 2948 } 2949 2950 visitBinary(I, ISD::FSUB); 2951 } 2952 2953 /// Checks if the given instruction performs a vector reduction, in which case 2954 /// we have the freedom to alter the elements in the result as long as the 2955 /// reduction of them stays unchanged. 2956 static bool isVectorReductionOp(const User *I) { 2957 const Instruction *Inst = dyn_cast<Instruction>(I); 2958 if (!Inst || !Inst->getType()->isVectorTy()) 2959 return false; 2960 2961 auto OpCode = Inst->getOpcode(); 2962 switch (OpCode) { 2963 case Instruction::Add: 2964 case Instruction::Mul: 2965 case Instruction::And: 2966 case Instruction::Or: 2967 case Instruction::Xor: 2968 break; 2969 case Instruction::FAdd: 2970 case Instruction::FMul: 2971 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 2972 if (FPOp->getFastMathFlags().isFast()) 2973 break; 2974 LLVM_FALLTHROUGH; 2975 default: 2976 return false; 2977 } 2978 2979 unsigned ElemNum = Inst->getType()->getVectorNumElements(); 2980 // Ensure the reduction size is a power of 2. 2981 if (!isPowerOf2_32(ElemNum)) 2982 return false; 2983 2984 unsigned ElemNumToReduce = ElemNum; 2985 2986 // Do DFS search on the def-use chain from the given instruction. We only 2987 // allow four kinds of operations during the search until we reach the 2988 // instruction that extracts the first element from the vector: 2989 // 2990 // 1. The reduction operation of the same opcode as the given instruction. 2991 // 2992 // 2. PHI node. 2993 // 2994 // 3. ShuffleVector instruction together with a reduction operation that 2995 // does a partial reduction. 2996 // 2997 // 4. ExtractElement that extracts the first element from the vector, and we 2998 // stop searching the def-use chain here. 2999 // 3000 // 3 & 4 above perform a reduction on all elements of the vector. We push defs 3001 // from 1-3 to the stack to continue the DFS. The given instruction is not 3002 // a reduction operation if we meet any other instructions other than those 3003 // listed above. 3004 3005 SmallVector<const User *, 16> UsersToVisit{Inst}; 3006 SmallPtrSet<const User *, 16> Visited; 3007 bool ReduxExtracted = false; 3008 3009 while (!UsersToVisit.empty()) { 3010 auto User = UsersToVisit.back(); 3011 UsersToVisit.pop_back(); 3012 if (!Visited.insert(User).second) 3013 continue; 3014 3015 for (const auto &U : User->users()) { 3016 auto Inst = dyn_cast<Instruction>(U); 3017 if (!Inst) 3018 return false; 3019 3020 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) { 3021 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst)) 3022 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast()) 3023 return false; 3024 UsersToVisit.push_back(U); 3025 } else if (const ShuffleVectorInst *ShufInst = 3026 dyn_cast<ShuffleVectorInst>(U)) { 3027 // Detect the following pattern: A ShuffleVector instruction together 3028 // with a reduction that do partial reduction on the first and second 3029 // ElemNumToReduce / 2 elements, and store the result in 3030 // ElemNumToReduce / 2 elements in another vector. 3031 3032 unsigned ResultElements = ShufInst->getType()->getVectorNumElements(); 3033 if (ResultElements < ElemNum) 3034 return false; 3035 3036 if (ElemNumToReduce == 1) 3037 return false; 3038 if (!isa<UndefValue>(U->getOperand(1))) 3039 return false; 3040 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i) 3041 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2)) 3042 return false; 3043 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i) 3044 if (ShufInst->getMaskValue(i) != -1) 3045 return false; 3046 3047 // There is only one user of this ShuffleVector instruction, which 3048 // must be a reduction operation. 3049 if (!U->hasOneUse()) 3050 return false; 3051 3052 auto U2 = dyn_cast<Instruction>(*U->user_begin()); 3053 if (!U2 || U2->getOpcode() != OpCode) 3054 return false; 3055 3056 // Check operands of the reduction operation. 3057 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) || 3058 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) { 3059 UsersToVisit.push_back(U2); 3060 ElemNumToReduce /= 2; 3061 } else 3062 return false; 3063 } else if (isa<ExtractElementInst>(U)) { 3064 // At this moment we should have reduced all elements in the vector. 3065 if (ElemNumToReduce != 1) 3066 return false; 3067 3068 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1)); 3069 if (!Val || !Val->isZero()) 3070 return false; 3071 3072 ReduxExtracted = true; 3073 } else 3074 return false; 3075 } 3076 } 3077 return ReduxExtracted; 3078 } 3079 3080 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3081 SDNodeFlags Flags; 3082 3083 SDValue Op = getValue(I.getOperand(0)); 3084 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3085 Op, Flags); 3086 setValue(&I, UnNodeValue); 3087 } 3088 3089 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3090 SDNodeFlags Flags; 3091 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3092 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3093 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3094 } 3095 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) { 3096 Flags.setExact(ExactOp->isExact()); 3097 } 3098 if (isVectorReductionOp(&I)) { 3099 Flags.setVectorReduction(true); 3100 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n"); 3101 } 3102 3103 SDValue Op1 = getValue(I.getOperand(0)); 3104 SDValue Op2 = getValue(I.getOperand(1)); 3105 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3106 Op1, Op2, Flags); 3107 setValue(&I, BinNodeValue); 3108 } 3109 3110 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3111 SDValue Op1 = getValue(I.getOperand(0)); 3112 SDValue Op2 = getValue(I.getOperand(1)); 3113 3114 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3115 Op1.getValueType(), DAG.getDataLayout()); 3116 3117 // Coerce the shift amount to the right type if we can. 3118 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3119 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3120 unsigned Op2Size = Op2.getValueSizeInBits(); 3121 SDLoc DL = getCurSDLoc(); 3122 3123 // If the operand is smaller than the shift count type, promote it. 3124 if (ShiftSize > Op2Size) 3125 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3126 3127 // If the operand is larger than the shift count type but the shift 3128 // count type has enough bits to represent any shift value, truncate 3129 // it now. This is a common case and it exposes the truncate to 3130 // optimization early. 3131 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3132 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3133 // Otherwise we'll need to temporarily settle for some other convenient 3134 // type. Type legalization will make adjustments once the shiftee is split. 3135 else 3136 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3137 } 3138 3139 bool nuw = false; 3140 bool nsw = false; 3141 bool exact = false; 3142 3143 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3144 3145 if (const OverflowingBinaryOperator *OFBinOp = 3146 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3147 nuw = OFBinOp->hasNoUnsignedWrap(); 3148 nsw = OFBinOp->hasNoSignedWrap(); 3149 } 3150 if (const PossiblyExactOperator *ExactOp = 3151 dyn_cast<const PossiblyExactOperator>(&I)) 3152 exact = ExactOp->isExact(); 3153 } 3154 SDNodeFlags Flags; 3155 Flags.setExact(exact); 3156 Flags.setNoSignedWrap(nsw); 3157 Flags.setNoUnsignedWrap(nuw); 3158 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3159 Flags); 3160 setValue(&I, Res); 3161 } 3162 3163 void SelectionDAGBuilder::visitSDiv(const User &I) { 3164 SDValue Op1 = getValue(I.getOperand(0)); 3165 SDValue Op2 = getValue(I.getOperand(1)); 3166 3167 SDNodeFlags Flags; 3168 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3169 cast<PossiblyExactOperator>(&I)->isExact()); 3170 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3171 Op2, Flags)); 3172 } 3173 3174 void SelectionDAGBuilder::visitICmp(const User &I) { 3175 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3176 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3177 predicate = IC->getPredicate(); 3178 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3179 predicate = ICmpInst::Predicate(IC->getPredicate()); 3180 SDValue Op1 = getValue(I.getOperand(0)); 3181 SDValue Op2 = getValue(I.getOperand(1)); 3182 ISD::CondCode Opcode = getICmpCondCode(predicate); 3183 3184 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3185 I.getType()); 3186 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3187 } 3188 3189 void SelectionDAGBuilder::visitFCmp(const User &I) { 3190 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3191 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3192 predicate = FC->getPredicate(); 3193 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3194 predicate = FCmpInst::Predicate(FC->getPredicate()); 3195 SDValue Op1 = getValue(I.getOperand(0)); 3196 SDValue Op2 = getValue(I.getOperand(1)); 3197 3198 ISD::CondCode Condition = getFCmpCondCode(predicate); 3199 auto *FPMO = dyn_cast<FPMathOperator>(&I); 3200 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath) 3201 Condition = getFCmpCodeWithoutNaN(Condition); 3202 3203 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3204 I.getType()); 3205 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3206 } 3207 3208 // Check if the condition of the select has one use or two users that are both 3209 // selects with the same condition. 3210 static bool hasOnlySelectUsers(const Value *Cond) { 3211 return llvm::all_of(Cond->users(), [](const Value *V) { 3212 return isa<SelectInst>(V); 3213 }); 3214 } 3215 3216 void SelectionDAGBuilder::visitSelect(const User &I) { 3217 SmallVector<EVT, 4> ValueVTs; 3218 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3219 ValueVTs); 3220 unsigned NumValues = ValueVTs.size(); 3221 if (NumValues == 0) return; 3222 3223 SmallVector<SDValue, 4> Values(NumValues); 3224 SDValue Cond = getValue(I.getOperand(0)); 3225 SDValue LHSVal = getValue(I.getOperand(1)); 3226 SDValue RHSVal = getValue(I.getOperand(2)); 3227 auto BaseOps = {Cond}; 3228 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 3229 ISD::VSELECT : ISD::SELECT; 3230 3231 bool IsUnaryAbs = false; 3232 3233 // Min/max matching is only viable if all output VTs are the same. 3234 if (is_splat(ValueVTs)) { 3235 EVT VT = ValueVTs[0]; 3236 LLVMContext &Ctx = *DAG.getContext(); 3237 auto &TLI = DAG.getTargetLoweringInfo(); 3238 3239 // We care about the legality of the operation after it has been type 3240 // legalized. 3241 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 3242 VT != TLI.getTypeToTransformTo(Ctx, VT)) 3243 VT = TLI.getTypeToTransformTo(Ctx, VT); 3244 3245 // If the vselect is legal, assume we want to leave this as a vector setcc + 3246 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3247 // min/max is legal on the scalar type. 3248 bool UseScalarMinMax = VT.isVector() && 3249 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3250 3251 Value *LHS, *RHS; 3252 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3253 ISD::NodeType Opc = ISD::DELETED_NODE; 3254 switch (SPR.Flavor) { 3255 case SPF_UMAX: Opc = ISD::UMAX; break; 3256 case SPF_UMIN: Opc = ISD::UMIN; break; 3257 case SPF_SMAX: Opc = ISD::SMAX; break; 3258 case SPF_SMIN: Opc = ISD::SMIN; break; 3259 case SPF_FMINNUM: 3260 switch (SPR.NaNBehavior) { 3261 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3262 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3263 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3264 case SPNB_RETURNS_ANY: { 3265 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3266 Opc = ISD::FMINNUM; 3267 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3268 Opc = ISD::FMINIMUM; 3269 else if (UseScalarMinMax) 3270 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3271 ISD::FMINNUM : ISD::FMINIMUM; 3272 break; 3273 } 3274 } 3275 break; 3276 case SPF_FMAXNUM: 3277 switch (SPR.NaNBehavior) { 3278 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3279 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3280 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3281 case SPNB_RETURNS_ANY: 3282 3283 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3284 Opc = ISD::FMAXNUM; 3285 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3286 Opc = ISD::FMAXIMUM; 3287 else if (UseScalarMinMax) 3288 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3289 ISD::FMAXNUM : ISD::FMAXIMUM; 3290 break; 3291 } 3292 break; 3293 case SPF_ABS: 3294 IsUnaryAbs = true; 3295 Opc = ISD::ABS; 3296 break; 3297 case SPF_NABS: 3298 // TODO: we need to produce sub(0, abs(X)). 3299 default: break; 3300 } 3301 3302 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3303 (TLI.isOperationLegalOrCustom(Opc, VT) || 3304 (UseScalarMinMax && 3305 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3306 // If the underlying comparison instruction is used by any other 3307 // instruction, the consumed instructions won't be destroyed, so it is 3308 // not profitable to convert to a min/max. 3309 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3310 OpCode = Opc; 3311 LHSVal = getValue(LHS); 3312 RHSVal = getValue(RHS); 3313 BaseOps = {}; 3314 } 3315 3316 if (IsUnaryAbs) { 3317 OpCode = Opc; 3318 LHSVal = getValue(LHS); 3319 BaseOps = {}; 3320 } 3321 } 3322 3323 if (IsUnaryAbs) { 3324 for (unsigned i = 0; i != NumValues; ++i) { 3325 Values[i] = 3326 DAG.getNode(OpCode, getCurSDLoc(), 3327 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), 3328 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3329 } 3330 } else { 3331 for (unsigned i = 0; i != NumValues; ++i) { 3332 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3333 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3334 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3335 Values[i] = DAG.getNode( 3336 OpCode, getCurSDLoc(), 3337 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops); 3338 } 3339 } 3340 3341 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3342 DAG.getVTList(ValueVTs), Values)); 3343 } 3344 3345 void SelectionDAGBuilder::visitTrunc(const User &I) { 3346 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3347 SDValue N = getValue(I.getOperand(0)); 3348 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3349 I.getType()); 3350 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3351 } 3352 3353 void SelectionDAGBuilder::visitZExt(const User &I) { 3354 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3355 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3356 SDValue N = getValue(I.getOperand(0)); 3357 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3358 I.getType()); 3359 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3360 } 3361 3362 void SelectionDAGBuilder::visitSExt(const User &I) { 3363 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3364 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3365 SDValue N = getValue(I.getOperand(0)); 3366 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3367 I.getType()); 3368 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3369 } 3370 3371 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3372 // FPTrunc is never a no-op cast, no need to check 3373 SDValue N = getValue(I.getOperand(0)); 3374 SDLoc dl = getCurSDLoc(); 3375 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3376 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3377 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3378 DAG.getTargetConstant( 3379 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3380 } 3381 3382 void SelectionDAGBuilder::visitFPExt(const User &I) { 3383 // FPExt is never a no-op cast, no need to check 3384 SDValue N = getValue(I.getOperand(0)); 3385 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3386 I.getType()); 3387 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3388 } 3389 3390 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3391 // FPToUI is never a no-op cast, no need to check 3392 SDValue N = getValue(I.getOperand(0)); 3393 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3394 I.getType()); 3395 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3396 } 3397 3398 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3399 // FPToSI is never a no-op cast, no need to check 3400 SDValue N = getValue(I.getOperand(0)); 3401 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3402 I.getType()); 3403 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3404 } 3405 3406 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3407 // UIToFP is never a no-op cast, no need to check 3408 SDValue N = getValue(I.getOperand(0)); 3409 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3410 I.getType()); 3411 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3412 } 3413 3414 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3415 // SIToFP is never a no-op cast, no need to check 3416 SDValue N = getValue(I.getOperand(0)); 3417 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3418 I.getType()); 3419 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3420 } 3421 3422 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3423 // What to do depends on the size of the integer and the size of the pointer. 3424 // We can either truncate, zero extend, or no-op, accordingly. 3425 SDValue N = getValue(I.getOperand(0)); 3426 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3427 I.getType()); 3428 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3429 } 3430 3431 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3432 // What to do depends on the size of the integer and the size of the pointer. 3433 // We can either truncate, zero extend, or no-op, accordingly. 3434 SDValue N = getValue(I.getOperand(0)); 3435 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3436 I.getType()); 3437 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 3438 } 3439 3440 void SelectionDAGBuilder::visitBitCast(const User &I) { 3441 SDValue N = getValue(I.getOperand(0)); 3442 SDLoc dl = getCurSDLoc(); 3443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3444 I.getType()); 3445 3446 // BitCast assures us that source and destination are the same size so this is 3447 // either a BITCAST or a no-op. 3448 if (DestVT != N.getValueType()) 3449 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3450 DestVT, N)); // convert types. 3451 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3452 // might fold any kind of constant expression to an integer constant and that 3453 // is not what we are looking for. Only recognize a bitcast of a genuine 3454 // constant integer as an opaque constant. 3455 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3456 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3457 /*isOpaque*/true)); 3458 else 3459 setValue(&I, N); // noop cast. 3460 } 3461 3462 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3463 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3464 const Value *SV = I.getOperand(0); 3465 SDValue N = getValue(SV); 3466 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3467 3468 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3469 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3470 3471 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 3472 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3473 3474 setValue(&I, N); 3475 } 3476 3477 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3479 SDValue InVec = getValue(I.getOperand(0)); 3480 SDValue InVal = getValue(I.getOperand(1)); 3481 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3482 TLI.getVectorIdxTy(DAG.getDataLayout())); 3483 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3484 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3485 InVec, InVal, InIdx)); 3486 } 3487 3488 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3489 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3490 SDValue InVec = getValue(I.getOperand(0)); 3491 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3492 TLI.getVectorIdxTy(DAG.getDataLayout())); 3493 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3494 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3495 InVec, InIdx)); 3496 } 3497 3498 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3499 SDValue Src1 = getValue(I.getOperand(0)); 3500 SDValue Src2 = getValue(I.getOperand(1)); 3501 SDLoc DL = getCurSDLoc(); 3502 3503 SmallVector<int, 8> Mask; 3504 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 3505 unsigned MaskNumElts = Mask.size(); 3506 3507 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3508 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3509 EVT SrcVT = Src1.getValueType(); 3510 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3511 3512 if (SrcNumElts == MaskNumElts) { 3513 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3514 return; 3515 } 3516 3517 // Normalize the shuffle vector since mask and vector length don't match. 3518 if (SrcNumElts < MaskNumElts) { 3519 // Mask is longer than the source vectors. We can use concatenate vector to 3520 // make the mask and vectors lengths match. 3521 3522 if (MaskNumElts % SrcNumElts == 0) { 3523 // Mask length is a multiple of the source vector length. 3524 // Check if the shuffle is some kind of concatenation of the input 3525 // vectors. 3526 unsigned NumConcat = MaskNumElts / SrcNumElts; 3527 bool IsConcat = true; 3528 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3529 for (unsigned i = 0; i != MaskNumElts; ++i) { 3530 int Idx = Mask[i]; 3531 if (Idx < 0) 3532 continue; 3533 // Ensure the indices in each SrcVT sized piece are sequential and that 3534 // the same source is used for the whole piece. 3535 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3536 (ConcatSrcs[i / SrcNumElts] >= 0 && 3537 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3538 IsConcat = false; 3539 break; 3540 } 3541 // Remember which source this index came from. 3542 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3543 } 3544 3545 // The shuffle is concatenating multiple vectors together. Just emit 3546 // a CONCAT_VECTORS operation. 3547 if (IsConcat) { 3548 SmallVector<SDValue, 8> ConcatOps; 3549 for (auto Src : ConcatSrcs) { 3550 if (Src < 0) 3551 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3552 else if (Src == 0) 3553 ConcatOps.push_back(Src1); 3554 else 3555 ConcatOps.push_back(Src2); 3556 } 3557 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3558 return; 3559 } 3560 } 3561 3562 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3563 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3564 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3565 PaddedMaskNumElts); 3566 3567 // Pad both vectors with undefs to make them the same length as the mask. 3568 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3569 3570 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3571 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3572 MOps1[0] = Src1; 3573 MOps2[0] = Src2; 3574 3575 Src1 = Src1.isUndef() 3576 ? DAG.getUNDEF(PaddedVT) 3577 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3578 Src2 = Src2.isUndef() 3579 ? DAG.getUNDEF(PaddedVT) 3580 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3581 3582 // Readjust mask for new input vector length. 3583 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3584 for (unsigned i = 0; i != MaskNumElts; ++i) { 3585 int Idx = Mask[i]; 3586 if (Idx >= (int)SrcNumElts) 3587 Idx -= SrcNumElts - PaddedMaskNumElts; 3588 MappedOps[i] = Idx; 3589 } 3590 3591 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3592 3593 // If the concatenated vector was padded, extract a subvector with the 3594 // correct number of elements. 3595 if (MaskNumElts != PaddedMaskNumElts) 3596 Result = DAG.getNode( 3597 ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3598 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 3599 3600 setValue(&I, Result); 3601 return; 3602 } 3603 3604 if (SrcNumElts > MaskNumElts) { 3605 // Analyze the access pattern of the vector to see if we can extract 3606 // two subvectors and do the shuffle. 3607 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3608 bool CanExtract = true; 3609 for (int Idx : Mask) { 3610 unsigned Input = 0; 3611 if (Idx < 0) 3612 continue; 3613 3614 if (Idx >= (int)SrcNumElts) { 3615 Input = 1; 3616 Idx -= SrcNumElts; 3617 } 3618 3619 // If all the indices come from the same MaskNumElts sized portion of 3620 // the sources we can use extract. Also make sure the extract wouldn't 3621 // extract past the end of the source. 3622 int NewStartIdx = alignDown(Idx, MaskNumElts); 3623 if (NewStartIdx + MaskNumElts > SrcNumElts || 3624 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3625 CanExtract = false; 3626 // Make sure we always update StartIdx as we use it to track if all 3627 // elements are undef. 3628 StartIdx[Input] = NewStartIdx; 3629 } 3630 3631 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3632 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3633 return; 3634 } 3635 if (CanExtract) { 3636 // Extract appropriate subvector and generate a vector shuffle 3637 for (unsigned Input = 0; Input < 2; ++Input) { 3638 SDValue &Src = Input == 0 ? Src1 : Src2; 3639 if (StartIdx[Input] < 0) 3640 Src = DAG.getUNDEF(VT); 3641 else { 3642 Src = DAG.getNode( 3643 ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3644 DAG.getConstant(StartIdx[Input], DL, 3645 TLI.getVectorIdxTy(DAG.getDataLayout()))); 3646 } 3647 } 3648 3649 // Calculate new mask. 3650 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3651 for (int &Idx : MappedOps) { 3652 if (Idx >= (int)SrcNumElts) 3653 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3654 else if (Idx >= 0) 3655 Idx -= StartIdx[0]; 3656 } 3657 3658 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3659 return; 3660 } 3661 } 3662 3663 // We can't use either concat vectors or extract subvectors so fall back to 3664 // replacing the shuffle with extract and build vector. 3665 // to insert and build vector. 3666 EVT EltVT = VT.getVectorElementType(); 3667 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 3668 SmallVector<SDValue,8> Ops; 3669 for (int Idx : Mask) { 3670 SDValue Res; 3671 3672 if (Idx < 0) { 3673 Res = DAG.getUNDEF(EltVT); 3674 } else { 3675 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3676 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3677 3678 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 3679 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT)); 3680 } 3681 3682 Ops.push_back(Res); 3683 } 3684 3685 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3686 } 3687 3688 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3689 ArrayRef<unsigned> Indices; 3690 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3691 Indices = IV->getIndices(); 3692 else 3693 Indices = cast<ConstantExpr>(&I)->getIndices(); 3694 3695 const Value *Op0 = I.getOperand(0); 3696 const Value *Op1 = I.getOperand(1); 3697 Type *AggTy = I.getType(); 3698 Type *ValTy = Op1->getType(); 3699 bool IntoUndef = isa<UndefValue>(Op0); 3700 bool FromUndef = isa<UndefValue>(Op1); 3701 3702 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3703 3704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3705 SmallVector<EVT, 4> AggValueVTs; 3706 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3707 SmallVector<EVT, 4> ValValueVTs; 3708 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3709 3710 unsigned NumAggValues = AggValueVTs.size(); 3711 unsigned NumValValues = ValValueVTs.size(); 3712 SmallVector<SDValue, 4> Values(NumAggValues); 3713 3714 // Ignore an insertvalue that produces an empty object 3715 if (!NumAggValues) { 3716 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3717 return; 3718 } 3719 3720 SDValue Agg = getValue(Op0); 3721 unsigned i = 0; 3722 // Copy the beginning value(s) from the original aggregate. 3723 for (; i != LinearIndex; ++i) 3724 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3725 SDValue(Agg.getNode(), Agg.getResNo() + i); 3726 // Copy values from the inserted value(s). 3727 if (NumValValues) { 3728 SDValue Val = getValue(Op1); 3729 for (; i != LinearIndex + NumValValues; ++i) 3730 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3731 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3732 } 3733 // Copy remaining value(s) from the original aggregate. 3734 for (; i != NumAggValues; ++i) 3735 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3736 SDValue(Agg.getNode(), Agg.getResNo() + i); 3737 3738 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3739 DAG.getVTList(AggValueVTs), Values)); 3740 } 3741 3742 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3743 ArrayRef<unsigned> Indices; 3744 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3745 Indices = EV->getIndices(); 3746 else 3747 Indices = cast<ConstantExpr>(&I)->getIndices(); 3748 3749 const Value *Op0 = I.getOperand(0); 3750 Type *AggTy = Op0->getType(); 3751 Type *ValTy = I.getType(); 3752 bool OutOfUndef = isa<UndefValue>(Op0); 3753 3754 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3755 3756 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3757 SmallVector<EVT, 4> ValValueVTs; 3758 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3759 3760 unsigned NumValValues = ValValueVTs.size(); 3761 3762 // Ignore a extractvalue that produces an empty object 3763 if (!NumValValues) { 3764 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3765 return; 3766 } 3767 3768 SmallVector<SDValue, 4> Values(NumValValues); 3769 3770 SDValue Agg = getValue(Op0); 3771 // Copy out the selected value(s). 3772 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3773 Values[i - LinearIndex] = 3774 OutOfUndef ? 3775 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3776 SDValue(Agg.getNode(), Agg.getResNo() + i); 3777 3778 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3779 DAG.getVTList(ValValueVTs), Values)); 3780 } 3781 3782 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3783 Value *Op0 = I.getOperand(0); 3784 // Note that the pointer operand may be a vector of pointers. Take the scalar 3785 // element which holds a pointer. 3786 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3787 SDValue N = getValue(Op0); 3788 SDLoc dl = getCurSDLoc(); 3789 3790 // Normalize Vector GEP - all scalar operands should be converted to the 3791 // splat vector. 3792 unsigned VectorWidth = I.getType()->isVectorTy() ? 3793 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 3794 3795 if (VectorWidth && !N.getValueType().isVector()) { 3796 LLVMContext &Context = *DAG.getContext(); 3797 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth); 3798 N = DAG.getSplatBuildVector(VT, dl, N); 3799 } 3800 3801 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3802 GTI != E; ++GTI) { 3803 const Value *Idx = GTI.getOperand(); 3804 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3805 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3806 if (Field) { 3807 // N = N + Offset 3808 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3809 3810 // In an inbounds GEP with an offset that is nonnegative even when 3811 // interpreted as signed, assume there is no unsigned overflow. 3812 SDNodeFlags Flags; 3813 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3814 Flags.setNoUnsignedWrap(true); 3815 3816 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3817 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3818 } 3819 } else { 3820 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3821 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3822 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3823 3824 // If this is a scalar constant or a splat vector of constants, 3825 // handle it quickly. 3826 const auto *CI = dyn_cast<ConstantInt>(Idx); 3827 if (!CI && isa<ConstantDataVector>(Idx) && 3828 cast<ConstantDataVector>(Idx)->getSplatValue()) 3829 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3830 3831 if (CI) { 3832 if (CI->isZero()) 3833 continue; 3834 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize); 3835 LLVMContext &Context = *DAG.getContext(); 3836 SDValue OffsVal = VectorWidth ? 3837 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) : 3838 DAG.getConstant(Offs, dl, IdxTy); 3839 3840 // In an inbouds GEP with an offset that is nonnegative even when 3841 // interpreted as signed, assume there is no unsigned overflow. 3842 SDNodeFlags Flags; 3843 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3844 Flags.setNoUnsignedWrap(true); 3845 3846 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3847 continue; 3848 } 3849 3850 // N = N + Idx * ElementSize; 3851 SDValue IdxN = getValue(Idx); 3852 3853 if (!IdxN.getValueType().isVector() && VectorWidth) { 3854 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth); 3855 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3856 } 3857 3858 // If the index is smaller or larger than intptr_t, truncate or extend 3859 // it. 3860 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3861 3862 // If this is a multiply by a power of two, turn it into a shl 3863 // immediately. This is a very common case. 3864 if (ElementSize != 1) { 3865 if (ElementSize.isPowerOf2()) { 3866 unsigned Amt = ElementSize.logBase2(); 3867 IdxN = DAG.getNode(ISD::SHL, dl, 3868 N.getValueType(), IdxN, 3869 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3870 } else { 3871 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3872 IdxN = DAG.getNode(ISD::MUL, dl, 3873 N.getValueType(), IdxN, Scale); 3874 } 3875 } 3876 3877 N = DAG.getNode(ISD::ADD, dl, 3878 N.getValueType(), N, IdxN); 3879 } 3880 } 3881 3882 setValue(&I, N); 3883 } 3884 3885 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3886 // If this is a fixed sized alloca in the entry block of the function, 3887 // allocate it statically on the stack. 3888 if (FuncInfo.StaticAllocaMap.count(&I)) 3889 return; // getValue will auto-populate this. 3890 3891 SDLoc dl = getCurSDLoc(); 3892 Type *Ty = I.getAllocatedType(); 3893 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3894 auto &DL = DAG.getDataLayout(); 3895 uint64_t TySize = DL.getTypeAllocSize(Ty); 3896 unsigned Align = 3897 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3898 3899 SDValue AllocSize = getValue(I.getArraySize()); 3900 3901 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3902 if (AllocSize.getValueType() != IntPtr) 3903 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3904 3905 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3906 AllocSize, 3907 DAG.getConstant(TySize, dl, IntPtr)); 3908 3909 // Handle alignment. If the requested alignment is less than or equal to 3910 // the stack alignment, ignore it. If the size is greater than or equal to 3911 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3912 unsigned StackAlign = 3913 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3914 if (Align <= StackAlign) 3915 Align = 0; 3916 3917 // Round the size of the allocation up to the stack alignment size 3918 // by add SA-1 to the size. This doesn't overflow because we're computing 3919 // an address inside an alloca. 3920 SDNodeFlags Flags; 3921 Flags.setNoUnsignedWrap(true); 3922 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3923 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags); 3924 3925 // Mask out the low bits for alignment purposes. 3926 AllocSize = 3927 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3928 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr)); 3929 3930 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)}; 3931 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3932 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3933 setValue(&I, DSA); 3934 DAG.setRoot(DSA.getValue(1)); 3935 3936 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 3937 } 3938 3939 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3940 if (I.isAtomic()) 3941 return visitAtomicLoad(I); 3942 3943 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3944 const Value *SV = I.getOperand(0); 3945 if (TLI.supportSwiftError()) { 3946 // Swifterror values can come from either a function parameter with 3947 // swifterror attribute or an alloca with swifterror attribute. 3948 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 3949 if (Arg->hasSwiftErrorAttr()) 3950 return visitLoadFromSwiftError(I); 3951 } 3952 3953 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 3954 if (Alloca->isSwiftError()) 3955 return visitLoadFromSwiftError(I); 3956 } 3957 } 3958 3959 SDValue Ptr = getValue(SV); 3960 3961 Type *Ty = I.getType(); 3962 3963 bool isVolatile = I.isVolatile(); 3964 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3965 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 3966 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout()); 3967 unsigned Alignment = I.getAlignment(); 3968 3969 AAMDNodes AAInfo; 3970 I.getAAMetadata(AAInfo); 3971 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3972 3973 SmallVector<EVT, 4> ValueVTs; 3974 SmallVector<uint64_t, 4> Offsets; 3975 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3976 unsigned NumValues = ValueVTs.size(); 3977 if (NumValues == 0) 3978 return; 3979 3980 SDValue Root; 3981 bool ConstantMemory = false; 3982 if (isVolatile || NumValues > MaxParallelChains) 3983 // Serialize volatile loads with other side effects. 3984 Root = getRoot(); 3985 else if (AA && 3986 AA->pointsToConstantMemory(MemoryLocation( 3987 SV, 3988 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 3989 AAInfo))) { 3990 // Do not serialize (non-volatile) loads of constant memory with anything. 3991 Root = DAG.getEntryNode(); 3992 ConstantMemory = true; 3993 } else { 3994 // Do not serialize non-volatile loads against each other. 3995 Root = DAG.getRoot(); 3996 } 3997 3998 SDLoc dl = getCurSDLoc(); 3999 4000 if (isVolatile) 4001 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4002 4003 // An aggregate load cannot wrap around the address space, so offsets to its 4004 // parts don't wrap either. 4005 SDNodeFlags Flags; 4006 Flags.setNoUnsignedWrap(true); 4007 4008 SmallVector<SDValue, 4> Values(NumValues); 4009 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4010 EVT PtrVT = Ptr.getValueType(); 4011 unsigned ChainI = 0; 4012 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4013 // Serializing loads here may result in excessive register pressure, and 4014 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4015 // could recover a bit by hoisting nodes upward in the chain by recognizing 4016 // they are side-effect free or do not alias. The optimizer should really 4017 // avoid this case by converting large object/array copies to llvm.memcpy 4018 // (MaxParallelChains should always remain as failsafe). 4019 if (ChainI == MaxParallelChains) { 4020 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4021 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4022 makeArrayRef(Chains.data(), ChainI)); 4023 Root = Chain; 4024 ChainI = 0; 4025 } 4026 SDValue A = DAG.getNode(ISD::ADD, dl, 4027 PtrVT, Ptr, 4028 DAG.getConstant(Offsets[i], dl, PtrVT), 4029 Flags); 4030 auto MMOFlags = MachineMemOperand::MONone; 4031 if (isVolatile) 4032 MMOFlags |= MachineMemOperand::MOVolatile; 4033 if (isNonTemporal) 4034 MMOFlags |= MachineMemOperand::MONonTemporal; 4035 if (isInvariant) 4036 MMOFlags |= MachineMemOperand::MOInvariant; 4037 if (isDereferenceable) 4038 MMOFlags |= MachineMemOperand::MODereferenceable; 4039 MMOFlags |= TLI.getMMOFlags(I); 4040 4041 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, A, 4042 MachinePointerInfo(SV, Offsets[i]), Alignment, 4043 MMOFlags, AAInfo, Ranges); 4044 4045 Values[i] = L; 4046 Chains[ChainI] = L.getValue(1); 4047 } 4048 4049 if (!ConstantMemory) { 4050 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4051 makeArrayRef(Chains.data(), ChainI)); 4052 if (isVolatile) 4053 DAG.setRoot(Chain); 4054 else 4055 PendingLoads.push_back(Chain); 4056 } 4057 4058 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4059 DAG.getVTList(ValueVTs), Values)); 4060 } 4061 4062 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4063 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4064 "call visitStoreToSwiftError when backend supports swifterror"); 4065 4066 SmallVector<EVT, 4> ValueVTs; 4067 SmallVector<uint64_t, 4> Offsets; 4068 const Value *SrcV = I.getOperand(0); 4069 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4070 SrcV->getType(), ValueVTs, &Offsets); 4071 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4072 "expect a single EVT for swifterror"); 4073 4074 SDValue Src = getValue(SrcV); 4075 // Create a virtual register, then update the virtual register. 4076 unsigned VReg; bool CreatedVReg; 4077 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I); 4078 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4079 // Chain can be getRoot or getControlRoot. 4080 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4081 SDValue(Src.getNode(), Src.getResNo())); 4082 DAG.setRoot(CopyNode); 4083 if (CreatedVReg) 4084 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg); 4085 } 4086 4087 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4088 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4089 "call visitLoadFromSwiftError when backend supports swifterror"); 4090 4091 assert(!I.isVolatile() && 4092 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr && 4093 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr && 4094 "Support volatile, non temporal, invariant for load_from_swift_error"); 4095 4096 const Value *SV = I.getOperand(0); 4097 Type *Ty = I.getType(); 4098 AAMDNodes AAInfo; 4099 I.getAAMetadata(AAInfo); 4100 assert( 4101 (!AA || 4102 !AA->pointsToConstantMemory(MemoryLocation( 4103 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4104 AAInfo))) && 4105 "load_from_swift_error should not be constant memory"); 4106 4107 SmallVector<EVT, 4> ValueVTs; 4108 SmallVector<uint64_t, 4> Offsets; 4109 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4110 ValueVTs, &Offsets); 4111 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4112 "expect a single EVT for swifterror"); 4113 4114 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4115 SDValue L = DAG.getCopyFromReg( 4116 getRoot(), getCurSDLoc(), 4117 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first, 4118 ValueVTs[0]); 4119 4120 setValue(&I, L); 4121 } 4122 4123 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4124 if (I.isAtomic()) 4125 return visitAtomicStore(I); 4126 4127 const Value *SrcV = I.getOperand(0); 4128 const Value *PtrV = I.getOperand(1); 4129 4130 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4131 if (TLI.supportSwiftError()) { 4132 // Swifterror values can come from either a function parameter with 4133 // swifterror attribute or an alloca with swifterror attribute. 4134 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4135 if (Arg->hasSwiftErrorAttr()) 4136 return visitStoreToSwiftError(I); 4137 } 4138 4139 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4140 if (Alloca->isSwiftError()) 4141 return visitStoreToSwiftError(I); 4142 } 4143 } 4144 4145 SmallVector<EVT, 4> ValueVTs; 4146 SmallVector<uint64_t, 4> Offsets; 4147 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4148 SrcV->getType(), ValueVTs, &Offsets); 4149 unsigned NumValues = ValueVTs.size(); 4150 if (NumValues == 0) 4151 return; 4152 4153 // Get the lowered operands. Note that we do this after 4154 // checking if NumResults is zero, because with zero results 4155 // the operands won't have values in the map. 4156 SDValue Src = getValue(SrcV); 4157 SDValue Ptr = getValue(PtrV); 4158 4159 SDValue Root = getRoot(); 4160 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4161 SDLoc dl = getCurSDLoc(); 4162 EVT PtrVT = Ptr.getValueType(); 4163 unsigned Alignment = I.getAlignment(); 4164 AAMDNodes AAInfo; 4165 I.getAAMetadata(AAInfo); 4166 4167 auto MMOFlags = MachineMemOperand::MONone; 4168 if (I.isVolatile()) 4169 MMOFlags |= MachineMemOperand::MOVolatile; 4170 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr) 4171 MMOFlags |= MachineMemOperand::MONonTemporal; 4172 MMOFlags |= TLI.getMMOFlags(I); 4173 4174 // An aggregate load cannot wrap around the address space, so offsets to its 4175 // parts don't wrap either. 4176 SDNodeFlags Flags; 4177 Flags.setNoUnsignedWrap(true); 4178 4179 unsigned ChainI = 0; 4180 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4181 // See visitLoad comments. 4182 if (ChainI == MaxParallelChains) { 4183 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4184 makeArrayRef(Chains.data(), ChainI)); 4185 Root = Chain; 4186 ChainI = 0; 4187 } 4188 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 4189 DAG.getConstant(Offsets[i], dl, PtrVT), Flags); 4190 SDValue St = DAG.getStore( 4191 Root, dl, SDValue(Src.getNode(), Src.getResNo() + i), Add, 4192 MachinePointerInfo(PtrV, Offsets[i]), Alignment, MMOFlags, AAInfo); 4193 Chains[ChainI] = St; 4194 } 4195 4196 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4197 makeArrayRef(Chains.data(), ChainI)); 4198 DAG.setRoot(StoreNode); 4199 } 4200 4201 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4202 bool IsCompressing) { 4203 SDLoc sdl = getCurSDLoc(); 4204 4205 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4206 unsigned& Alignment) { 4207 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4208 Src0 = I.getArgOperand(0); 4209 Ptr = I.getArgOperand(1); 4210 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 4211 Mask = I.getArgOperand(3); 4212 }; 4213 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4214 unsigned& Alignment) { 4215 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4216 Src0 = I.getArgOperand(0); 4217 Ptr = I.getArgOperand(1); 4218 Mask = I.getArgOperand(2); 4219 Alignment = 0; 4220 }; 4221 4222 Value *PtrOperand, *MaskOperand, *Src0Operand; 4223 unsigned Alignment; 4224 if (IsCompressing) 4225 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4226 else 4227 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4228 4229 SDValue Ptr = getValue(PtrOperand); 4230 SDValue Src0 = getValue(Src0Operand); 4231 SDValue Mask = getValue(MaskOperand); 4232 4233 EVT VT = Src0.getValueType(); 4234 if (!Alignment) 4235 Alignment = DAG.getEVTAlignment(VT); 4236 4237 AAMDNodes AAInfo; 4238 I.getAAMetadata(AAInfo); 4239 4240 MachineMemOperand *MMO = 4241 DAG.getMachineFunction(). 4242 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4243 MachineMemOperand::MOStore, VT.getStoreSize(), 4244 Alignment, AAInfo); 4245 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 4246 MMO, false /* Truncating */, 4247 IsCompressing); 4248 DAG.setRoot(StoreNode); 4249 setValue(&I, StoreNode); 4250 } 4251 4252 // Get a uniform base for the Gather/Scatter intrinsic. 4253 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4254 // We try to represent it as a base pointer + vector of indices. 4255 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4256 // The first operand of the GEP may be a single pointer or a vector of pointers 4257 // Example: 4258 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4259 // or 4260 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4261 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4262 // 4263 // When the first GEP operand is a single pointer - it is the uniform base we 4264 // are looking for. If first operand of the GEP is a splat vector - we 4265 // extract the splat value and use it as a uniform base. 4266 // In all other cases the function returns 'false'. 4267 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index, 4268 SDValue &Scale, SelectionDAGBuilder* SDB) { 4269 SelectionDAG& DAG = SDB->DAG; 4270 LLVMContext &Context = *DAG.getContext(); 4271 4272 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4273 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4274 if (!GEP) 4275 return false; 4276 4277 const Value *GEPPtr = GEP->getPointerOperand(); 4278 if (!GEPPtr->getType()->isVectorTy()) 4279 Ptr = GEPPtr; 4280 else if (!(Ptr = getSplatValue(GEPPtr))) 4281 return false; 4282 4283 unsigned FinalIndex = GEP->getNumOperands() - 1; 4284 Value *IndexVal = GEP->getOperand(FinalIndex); 4285 4286 // Ensure all the other indices are 0. 4287 for (unsigned i = 1; i < FinalIndex; ++i) { 4288 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i)); 4289 if (!C || !C->isZero()) 4290 return false; 4291 } 4292 4293 // The operands of the GEP may be defined in another basic block. 4294 // In this case we'll not find nodes for the operands. 4295 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 4296 return false; 4297 4298 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4299 const DataLayout &DL = DAG.getDataLayout(); 4300 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()), 4301 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4302 Base = SDB->getValue(Ptr); 4303 Index = SDB->getValue(IndexVal); 4304 4305 if (!Index.getValueType().isVector()) { 4306 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 4307 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 4308 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index); 4309 } 4310 return true; 4311 } 4312 4313 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4314 SDLoc sdl = getCurSDLoc(); 4315 4316 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 4317 const Value *Ptr = I.getArgOperand(1); 4318 SDValue Src0 = getValue(I.getArgOperand(0)); 4319 SDValue Mask = getValue(I.getArgOperand(3)); 4320 EVT VT = Src0.getValueType(); 4321 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 4322 if (!Alignment) 4323 Alignment = DAG.getEVTAlignment(VT); 4324 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4325 4326 AAMDNodes AAInfo; 4327 I.getAAMetadata(AAInfo); 4328 4329 SDValue Base; 4330 SDValue Index; 4331 SDValue Scale; 4332 const Value *BasePtr = Ptr; 4333 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4334 4335 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 4336 MachineMemOperand *MMO = DAG.getMachineFunction(). 4337 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 4338 MachineMemOperand::MOStore, VT.getStoreSize(), 4339 Alignment, AAInfo); 4340 if (!UniformBase) { 4341 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4342 Index = getValue(Ptr); 4343 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4344 } 4345 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale }; 4346 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4347 Ops, MMO); 4348 DAG.setRoot(Scatter); 4349 setValue(&I, Scatter); 4350 } 4351 4352 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4353 SDLoc sdl = getCurSDLoc(); 4354 4355 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4356 unsigned& Alignment) { 4357 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4358 Ptr = I.getArgOperand(0); 4359 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4360 Mask = I.getArgOperand(2); 4361 Src0 = I.getArgOperand(3); 4362 }; 4363 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0, 4364 unsigned& Alignment) { 4365 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4366 Ptr = I.getArgOperand(0); 4367 Alignment = 0; 4368 Mask = I.getArgOperand(1); 4369 Src0 = I.getArgOperand(2); 4370 }; 4371 4372 Value *PtrOperand, *MaskOperand, *Src0Operand; 4373 unsigned Alignment; 4374 if (IsExpanding) 4375 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4376 else 4377 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4378 4379 SDValue Ptr = getValue(PtrOperand); 4380 SDValue Src0 = getValue(Src0Operand); 4381 SDValue Mask = getValue(MaskOperand); 4382 4383 EVT VT = Src0.getValueType(); 4384 if (!Alignment) 4385 Alignment = DAG.getEVTAlignment(VT); 4386 4387 AAMDNodes AAInfo; 4388 I.getAAMetadata(AAInfo); 4389 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4390 4391 // Do not serialize masked loads of constant memory with anything. 4392 bool AddToChain = 4393 !AA || !AA->pointsToConstantMemory(MemoryLocation( 4394 PtrOperand, 4395 LocationSize::precise( 4396 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4397 AAInfo)); 4398 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4399 4400 MachineMemOperand *MMO = 4401 DAG.getMachineFunction(). 4402 getMachineMemOperand(MachinePointerInfo(PtrOperand), 4403 MachineMemOperand::MOLoad, VT.getStoreSize(), 4404 Alignment, AAInfo, Ranges); 4405 4406 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 4407 ISD::NON_EXTLOAD, IsExpanding); 4408 if (AddToChain) 4409 PendingLoads.push_back(Load.getValue(1)); 4410 setValue(&I, Load); 4411 } 4412 4413 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4414 SDLoc sdl = getCurSDLoc(); 4415 4416 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4417 const Value *Ptr = I.getArgOperand(0); 4418 SDValue Src0 = getValue(I.getArgOperand(3)); 4419 SDValue Mask = getValue(I.getArgOperand(2)); 4420 4421 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4422 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4423 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 4424 if (!Alignment) 4425 Alignment = DAG.getEVTAlignment(VT); 4426 4427 AAMDNodes AAInfo; 4428 I.getAAMetadata(AAInfo); 4429 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4430 4431 SDValue Root = DAG.getRoot(); 4432 SDValue Base; 4433 SDValue Index; 4434 SDValue Scale; 4435 const Value *BasePtr = Ptr; 4436 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this); 4437 bool ConstantMemory = false; 4438 if (UniformBase && AA && 4439 AA->pointsToConstantMemory( 4440 MemoryLocation(BasePtr, 4441 LocationSize::precise( 4442 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4443 AAInfo))) { 4444 // Do not serialize (non-volatile) loads of constant memory with anything. 4445 Root = DAG.getEntryNode(); 4446 ConstantMemory = true; 4447 } 4448 4449 MachineMemOperand *MMO = 4450 DAG.getMachineFunction(). 4451 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 4452 MachineMemOperand::MOLoad, VT.getStoreSize(), 4453 Alignment, AAInfo, Ranges); 4454 4455 if (!UniformBase) { 4456 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4457 Index = getValue(Ptr); 4458 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4459 } 4460 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4461 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4462 Ops, MMO); 4463 4464 SDValue OutChain = Gather.getValue(1); 4465 if (!ConstantMemory) 4466 PendingLoads.push_back(OutChain); 4467 setValue(&I, Gather); 4468 } 4469 4470 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4471 SDLoc dl = getCurSDLoc(); 4472 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4473 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4474 SyncScope::ID SSID = I.getSyncScopeID(); 4475 4476 SDValue InChain = getRoot(); 4477 4478 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4479 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4480 4481 auto Alignment = DAG.getEVTAlignment(MemVT); 4482 4483 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4484 if (I.isVolatile()) 4485 Flags |= MachineMemOperand::MOVolatile; 4486 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4487 4488 MachineFunction &MF = DAG.getMachineFunction(); 4489 MachineMemOperand *MMO = 4490 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4491 Flags, MemVT.getStoreSize(), Alignment, 4492 AAMDNodes(), nullptr, SSID, SuccessOrdering, 4493 FailureOrdering); 4494 4495 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4496 dl, MemVT, VTs, InChain, 4497 getValue(I.getPointerOperand()), 4498 getValue(I.getCompareOperand()), 4499 getValue(I.getNewValOperand()), MMO); 4500 4501 SDValue OutChain = L.getValue(2); 4502 4503 setValue(&I, L); 4504 DAG.setRoot(OutChain); 4505 } 4506 4507 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4508 SDLoc dl = getCurSDLoc(); 4509 ISD::NodeType NT; 4510 switch (I.getOperation()) { 4511 default: llvm_unreachable("Unknown atomicrmw operation"); 4512 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4513 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4514 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4515 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4516 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4517 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4518 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4519 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4520 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4521 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4522 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4523 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4524 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4525 } 4526 AtomicOrdering Ordering = I.getOrdering(); 4527 SyncScope::ID SSID = I.getSyncScopeID(); 4528 4529 SDValue InChain = getRoot(); 4530 4531 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4532 auto Alignment = DAG.getEVTAlignment(MemVT); 4533 4534 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore; 4535 if (I.isVolatile()) 4536 Flags |= MachineMemOperand::MOVolatile; 4537 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I); 4538 4539 MachineFunction &MF = DAG.getMachineFunction(); 4540 MachineMemOperand *MMO = 4541 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4542 MemVT.getStoreSize(), Alignment, AAMDNodes(), 4543 nullptr, SSID, Ordering); 4544 4545 SDValue L = 4546 DAG.getAtomic(NT, dl, MemVT, InChain, 4547 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4548 MMO); 4549 4550 SDValue OutChain = L.getValue(1); 4551 4552 setValue(&I, L); 4553 DAG.setRoot(OutChain); 4554 } 4555 4556 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4557 SDLoc dl = getCurSDLoc(); 4558 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4559 SDValue Ops[3]; 4560 Ops[0] = getRoot(); 4561 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl, 4562 TLI.getFenceOperandTy(DAG.getDataLayout())); 4563 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl, 4564 TLI.getFenceOperandTy(DAG.getDataLayout())); 4565 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4566 } 4567 4568 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4569 SDLoc dl = getCurSDLoc(); 4570 AtomicOrdering Order = I.getOrdering(); 4571 SyncScope::ID SSID = I.getSyncScopeID(); 4572 4573 SDValue InChain = getRoot(); 4574 4575 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4576 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4577 4578 if (!TLI.supportsUnalignedAtomics() && 4579 I.getAlignment() < VT.getStoreSize()) 4580 report_fatal_error("Cannot generate unaligned atomic load"); 4581 4582 auto Flags = MachineMemOperand::MOLoad; 4583 if (I.isVolatile()) 4584 Flags |= MachineMemOperand::MOVolatile; 4585 if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr) 4586 Flags |= MachineMemOperand::MOInvariant; 4587 if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout())) 4588 Flags |= MachineMemOperand::MODereferenceable; 4589 4590 Flags |= TLI.getMMOFlags(I); 4591 4592 MachineMemOperand *MMO = 4593 DAG.getMachineFunction(). 4594 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 4595 Flags, VT.getStoreSize(), 4596 I.getAlignment() ? I.getAlignment() : 4597 DAG.getEVTAlignment(VT), 4598 AAMDNodes(), nullptr, SSID, Order); 4599 4600 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4601 SDValue L = 4602 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 4603 getValue(I.getPointerOperand()), MMO); 4604 4605 SDValue OutChain = L.getValue(1); 4606 4607 setValue(&I, L); 4608 DAG.setRoot(OutChain); 4609 } 4610 4611 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4612 SDLoc dl = getCurSDLoc(); 4613 4614 AtomicOrdering Ordering = I.getOrdering(); 4615 SyncScope::ID SSID = I.getSyncScopeID(); 4616 4617 SDValue InChain = getRoot(); 4618 4619 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4620 EVT VT = 4621 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4622 4623 if (I.getAlignment() < VT.getStoreSize()) 4624 report_fatal_error("Cannot generate unaligned atomic store"); 4625 4626 auto Flags = MachineMemOperand::MOStore; 4627 if (I.isVolatile()) 4628 Flags |= MachineMemOperand::MOVolatile; 4629 Flags |= TLI.getMMOFlags(I); 4630 4631 MachineFunction &MF = DAG.getMachineFunction(); 4632 MachineMemOperand *MMO = 4633 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags, 4634 VT.getStoreSize(), I.getAlignment(), AAMDNodes(), 4635 nullptr, SSID, Ordering); 4636 SDValue OutChain = 4637 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, InChain, 4638 getValue(I.getPointerOperand()), getValue(I.getValueOperand()), 4639 MMO); 4640 4641 4642 DAG.setRoot(OutChain); 4643 } 4644 4645 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4646 /// node. 4647 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4648 unsigned Intrinsic) { 4649 // Ignore the callsite's attributes. A specific call site may be marked with 4650 // readnone, but the lowering code will expect the chain based on the 4651 // definition. 4652 const Function *F = I.getCalledFunction(); 4653 bool HasChain = !F->doesNotAccessMemory(); 4654 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4655 4656 // Build the operand list. 4657 SmallVector<SDValue, 8> Ops; 4658 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4659 if (OnlyLoad) { 4660 // We don't need to serialize loads against other loads. 4661 Ops.push_back(DAG.getRoot()); 4662 } else { 4663 Ops.push_back(getRoot()); 4664 } 4665 } 4666 4667 // Info is set by getTgtMemInstrinsic 4668 TargetLowering::IntrinsicInfo Info; 4669 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4670 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4671 DAG.getMachineFunction(), 4672 Intrinsic); 4673 4674 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4675 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4676 Info.opc == ISD::INTRINSIC_W_CHAIN) 4677 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4678 TLI.getPointerTy(DAG.getDataLayout()))); 4679 4680 // Add all operands of the call to the operand list. 4681 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4682 SDValue Op = getValue(I.getArgOperand(i)); 4683 Ops.push_back(Op); 4684 } 4685 4686 SmallVector<EVT, 4> ValueVTs; 4687 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4688 4689 if (HasChain) 4690 ValueVTs.push_back(MVT::Other); 4691 4692 SDVTList VTs = DAG.getVTList(ValueVTs); 4693 4694 // Create the node. 4695 SDValue Result; 4696 if (IsTgtIntrinsic) { 4697 // This is target intrinsic that touches memory 4698 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, 4699 Ops, Info.memVT, 4700 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align, 4701 Info.flags, Info.size); 4702 } else if (!HasChain) { 4703 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4704 } else if (!I.getType()->isVoidTy()) { 4705 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4706 } else { 4707 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4708 } 4709 4710 if (HasChain) { 4711 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4712 if (OnlyLoad) 4713 PendingLoads.push_back(Chain); 4714 else 4715 DAG.setRoot(Chain); 4716 } 4717 4718 if (!I.getType()->isVoidTy()) { 4719 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4720 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4721 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4722 } else 4723 Result = lowerRangeToAssertZExt(DAG, I, Result); 4724 4725 setValue(&I, Result); 4726 } 4727 } 4728 4729 /// GetSignificand - Get the significand and build it into a floating-point 4730 /// number with exponent of 1: 4731 /// 4732 /// Op = (Op & 0x007fffff) | 0x3f800000; 4733 /// 4734 /// where Op is the hexadecimal representation of floating point value. 4735 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4736 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4737 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4738 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4739 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4740 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4741 } 4742 4743 /// GetExponent - Get the exponent: 4744 /// 4745 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4746 /// 4747 /// where Op is the hexadecimal representation of floating point value. 4748 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4749 const TargetLowering &TLI, const SDLoc &dl) { 4750 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4751 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4752 SDValue t1 = DAG.getNode( 4753 ISD::SRL, dl, MVT::i32, t0, 4754 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4755 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4756 DAG.getConstant(127, dl, MVT::i32)); 4757 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4758 } 4759 4760 /// getF32Constant - Get 32-bit floating point constant. 4761 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4762 const SDLoc &dl) { 4763 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4764 MVT::f32); 4765 } 4766 4767 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4768 SelectionDAG &DAG) { 4769 // TODO: What fast-math-flags should be set on the floating-point nodes? 4770 4771 // IntegerPartOfX = ((int32_t)(t0); 4772 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4773 4774 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4775 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4776 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4777 4778 // IntegerPartOfX <<= 23; 4779 IntegerPartOfX = DAG.getNode( 4780 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4781 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4782 DAG.getDataLayout()))); 4783 4784 SDValue TwoToFractionalPartOfX; 4785 if (LimitFloatPrecision <= 6) { 4786 // For floating-point precision of 6: 4787 // 4788 // TwoToFractionalPartOfX = 4789 // 0.997535578f + 4790 // (0.735607626f + 0.252464424f * x) * x; 4791 // 4792 // error 0.0144103317, which is 6 bits 4793 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4794 getF32Constant(DAG, 0x3e814304, dl)); 4795 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4796 getF32Constant(DAG, 0x3f3c50c8, dl)); 4797 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4798 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4799 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4800 } else if (LimitFloatPrecision <= 12) { 4801 // For floating-point precision of 12: 4802 // 4803 // TwoToFractionalPartOfX = 4804 // 0.999892986f + 4805 // (0.696457318f + 4806 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4807 // 4808 // error 0.000107046256, which is 13 to 14 bits 4809 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4810 getF32Constant(DAG, 0x3da235e3, dl)); 4811 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4812 getF32Constant(DAG, 0x3e65b8f3, dl)); 4813 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4814 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4815 getF32Constant(DAG, 0x3f324b07, dl)); 4816 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4817 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4818 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4819 } else { // LimitFloatPrecision <= 18 4820 // For floating-point precision of 18: 4821 // 4822 // TwoToFractionalPartOfX = 4823 // 0.999999982f + 4824 // (0.693148872f + 4825 // (0.240227044f + 4826 // (0.554906021e-1f + 4827 // (0.961591928e-2f + 4828 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4829 // error 2.47208000*10^(-7), which is better than 18 bits 4830 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4831 getF32Constant(DAG, 0x3924b03e, dl)); 4832 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4833 getF32Constant(DAG, 0x3ab24b87, dl)); 4834 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4835 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4836 getF32Constant(DAG, 0x3c1d8c17, dl)); 4837 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4838 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4839 getF32Constant(DAG, 0x3d634a1d, dl)); 4840 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4841 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4842 getF32Constant(DAG, 0x3e75fe14, dl)); 4843 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4844 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4845 getF32Constant(DAG, 0x3f317234, dl)); 4846 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4847 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4848 getF32Constant(DAG, 0x3f800000, dl)); 4849 } 4850 4851 // Add the exponent into the result in integer domain. 4852 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4853 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4854 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4855 } 4856 4857 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4858 /// limited-precision mode. 4859 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4860 const TargetLowering &TLI) { 4861 if (Op.getValueType() == MVT::f32 && 4862 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4863 4864 // Put the exponent in the right bit position for later addition to the 4865 // final result: 4866 // 4867 // #define LOG2OFe 1.4426950f 4868 // t0 = Op * LOG2OFe 4869 4870 // TODO: What fast-math-flags should be set here? 4871 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4872 getF32Constant(DAG, 0x3fb8aa3b, dl)); 4873 return getLimitedPrecisionExp2(t0, dl, DAG); 4874 } 4875 4876 // No special expansion. 4877 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 4878 } 4879 4880 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4881 /// limited-precision mode. 4882 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4883 const TargetLowering &TLI) { 4884 // TODO: What fast-math-flags should be set on the floating-point nodes? 4885 4886 if (Op.getValueType() == MVT::f32 && 4887 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4888 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4889 4890 // Scale the exponent by log(2) [0.69314718f]. 4891 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4892 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4893 getF32Constant(DAG, 0x3f317218, dl)); 4894 4895 // Get the significand and build it into a floating-point number with 4896 // exponent of 1. 4897 SDValue X = GetSignificand(DAG, Op1, dl); 4898 4899 SDValue LogOfMantissa; 4900 if (LimitFloatPrecision <= 6) { 4901 // For floating-point precision of 6: 4902 // 4903 // LogofMantissa = 4904 // -1.1609546f + 4905 // (1.4034025f - 0.23903021f * x) * x; 4906 // 4907 // error 0.0034276066, which is better than 8 bits 4908 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4909 getF32Constant(DAG, 0xbe74c456, dl)); 4910 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4911 getF32Constant(DAG, 0x3fb3a2b1, dl)); 4912 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4913 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4914 getF32Constant(DAG, 0x3f949a29, dl)); 4915 } else if (LimitFloatPrecision <= 12) { 4916 // For floating-point precision of 12: 4917 // 4918 // LogOfMantissa = 4919 // -1.7417939f + 4920 // (2.8212026f + 4921 // (-1.4699568f + 4922 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 4923 // 4924 // error 0.000061011436, which is 14 bits 4925 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4926 getF32Constant(DAG, 0xbd67b6d6, dl)); 4927 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4928 getF32Constant(DAG, 0x3ee4f4b8, dl)); 4929 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4930 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4931 getF32Constant(DAG, 0x3fbc278b, dl)); 4932 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4933 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4934 getF32Constant(DAG, 0x40348e95, dl)); 4935 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4936 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4937 getF32Constant(DAG, 0x3fdef31a, dl)); 4938 } else { // LimitFloatPrecision <= 18 4939 // For floating-point precision of 18: 4940 // 4941 // LogOfMantissa = 4942 // -2.1072184f + 4943 // (4.2372794f + 4944 // (-3.7029485f + 4945 // (2.2781945f + 4946 // (-0.87823314f + 4947 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 4948 // 4949 // error 0.0000023660568, which is better than 18 bits 4950 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4951 getF32Constant(DAG, 0xbc91e5ac, dl)); 4952 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4953 getF32Constant(DAG, 0x3e4350aa, dl)); 4954 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4955 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4956 getF32Constant(DAG, 0x3f60d3e3, dl)); 4957 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4958 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4959 getF32Constant(DAG, 0x4011cdf0, dl)); 4960 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4961 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4962 getF32Constant(DAG, 0x406cfd1c, dl)); 4963 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4964 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4965 getF32Constant(DAG, 0x408797cb, dl)); 4966 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4967 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4968 getF32Constant(DAG, 0x4006dcab, dl)); 4969 } 4970 4971 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 4972 } 4973 4974 // No special expansion. 4975 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 4976 } 4977 4978 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 4979 /// limited-precision mode. 4980 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4981 const TargetLowering &TLI) { 4982 // TODO: What fast-math-flags should be set on the floating-point nodes? 4983 4984 if (Op.getValueType() == MVT::f32 && 4985 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4986 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4987 4988 // Get the exponent. 4989 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 4990 4991 // Get the significand and build it into a floating-point number with 4992 // exponent of 1. 4993 SDValue X = GetSignificand(DAG, Op1, dl); 4994 4995 // Different possible minimax approximations of significand in 4996 // floating-point for various degrees of accuracy over [1,2]. 4997 SDValue Log2ofMantissa; 4998 if (LimitFloatPrecision <= 6) { 4999 // For floating-point precision of 6: 5000 // 5001 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5002 // 5003 // error 0.0049451742, which is more than 7 bits 5004 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5005 getF32Constant(DAG, 0xbeb08fe0, dl)); 5006 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5007 getF32Constant(DAG, 0x40019463, dl)); 5008 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5009 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5010 getF32Constant(DAG, 0x3fd6633d, dl)); 5011 } else if (LimitFloatPrecision <= 12) { 5012 // For floating-point precision of 12: 5013 // 5014 // Log2ofMantissa = 5015 // -2.51285454f + 5016 // (4.07009056f + 5017 // (-2.12067489f + 5018 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5019 // 5020 // error 0.0000876136000, which is better than 13 bits 5021 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5022 getF32Constant(DAG, 0xbda7262e, dl)); 5023 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5024 getF32Constant(DAG, 0x3f25280b, dl)); 5025 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5026 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5027 getF32Constant(DAG, 0x4007b923, dl)); 5028 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5029 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5030 getF32Constant(DAG, 0x40823e2f, dl)); 5031 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5032 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5033 getF32Constant(DAG, 0x4020d29c, dl)); 5034 } else { // LimitFloatPrecision <= 18 5035 // For floating-point precision of 18: 5036 // 5037 // Log2ofMantissa = 5038 // -3.0400495f + 5039 // (6.1129976f + 5040 // (-5.3420409f + 5041 // (3.2865683f + 5042 // (-1.2669343f + 5043 // (0.27515199f - 5044 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5045 // 5046 // error 0.0000018516, which is better than 18 bits 5047 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5048 getF32Constant(DAG, 0xbcd2769e, dl)); 5049 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5050 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5051 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5052 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5053 getF32Constant(DAG, 0x3fa22ae7, dl)); 5054 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5055 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5056 getF32Constant(DAG, 0x40525723, dl)); 5057 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5058 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5059 getF32Constant(DAG, 0x40aaf200, dl)); 5060 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5061 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5062 getF32Constant(DAG, 0x40c39dad, dl)); 5063 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5064 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5065 getF32Constant(DAG, 0x4042902c, dl)); 5066 } 5067 5068 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5069 } 5070 5071 // No special expansion. 5072 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 5073 } 5074 5075 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5076 /// limited-precision mode. 5077 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5078 const TargetLowering &TLI) { 5079 // TODO: What fast-math-flags should be set on the floating-point nodes? 5080 5081 if (Op.getValueType() == MVT::f32 && 5082 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5083 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5084 5085 // Scale the exponent by log10(2) [0.30102999f]. 5086 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5087 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5088 getF32Constant(DAG, 0x3e9a209a, dl)); 5089 5090 // Get the significand and build it into a floating-point number with 5091 // exponent of 1. 5092 SDValue X = GetSignificand(DAG, Op1, dl); 5093 5094 SDValue Log10ofMantissa; 5095 if (LimitFloatPrecision <= 6) { 5096 // For floating-point precision of 6: 5097 // 5098 // Log10ofMantissa = 5099 // -0.50419619f + 5100 // (0.60948995f - 0.10380950f * x) * x; 5101 // 5102 // error 0.0014886165, which is 6 bits 5103 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5104 getF32Constant(DAG, 0xbdd49a13, dl)); 5105 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5106 getF32Constant(DAG, 0x3f1c0789, dl)); 5107 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5108 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5109 getF32Constant(DAG, 0x3f011300, dl)); 5110 } else if (LimitFloatPrecision <= 12) { 5111 // For floating-point precision of 12: 5112 // 5113 // Log10ofMantissa = 5114 // -0.64831180f + 5115 // (0.91751397f + 5116 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5117 // 5118 // error 0.00019228036, which is better than 12 bits 5119 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5120 getF32Constant(DAG, 0x3d431f31, dl)); 5121 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5122 getF32Constant(DAG, 0x3ea21fb2, dl)); 5123 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5124 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5125 getF32Constant(DAG, 0x3f6ae232, dl)); 5126 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5127 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5128 getF32Constant(DAG, 0x3f25f7c3, dl)); 5129 } else { // LimitFloatPrecision <= 18 5130 // For floating-point precision of 18: 5131 // 5132 // Log10ofMantissa = 5133 // -0.84299375f + 5134 // (1.5327582f + 5135 // (-1.0688956f + 5136 // (0.49102474f + 5137 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5138 // 5139 // error 0.0000037995730, which is better than 18 bits 5140 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5141 getF32Constant(DAG, 0x3c5d51ce, dl)); 5142 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5143 getF32Constant(DAG, 0x3e00685a, dl)); 5144 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5145 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5146 getF32Constant(DAG, 0x3efb6798, dl)); 5147 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5148 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5149 getF32Constant(DAG, 0x3f88d192, dl)); 5150 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5151 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5152 getF32Constant(DAG, 0x3fc4316c, dl)); 5153 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5154 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5155 getF32Constant(DAG, 0x3f57ce70, dl)); 5156 } 5157 5158 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5159 } 5160 5161 // No special expansion. 5162 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 5163 } 5164 5165 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5166 /// limited-precision mode. 5167 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5168 const TargetLowering &TLI) { 5169 if (Op.getValueType() == MVT::f32 && 5170 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5171 return getLimitedPrecisionExp2(Op, dl, DAG); 5172 5173 // No special expansion. 5174 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 5175 } 5176 5177 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5178 /// limited-precision mode with x == 10.0f. 5179 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5180 SelectionDAG &DAG, const TargetLowering &TLI) { 5181 bool IsExp10 = false; 5182 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5183 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5184 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5185 APFloat Ten(10.0f); 5186 IsExp10 = LHSC->isExactlyValue(Ten); 5187 } 5188 } 5189 5190 // TODO: What fast-math-flags should be set on the FMUL node? 5191 if (IsExp10) { 5192 // Put the exponent in the right bit position for later addition to the 5193 // final result: 5194 // 5195 // #define LOG2OF10 3.3219281f 5196 // t0 = Op * LOG2OF10; 5197 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5198 getF32Constant(DAG, 0x40549a78, dl)); 5199 return getLimitedPrecisionExp2(t0, dl, DAG); 5200 } 5201 5202 // No special expansion. 5203 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 5204 } 5205 5206 /// ExpandPowI - Expand a llvm.powi intrinsic. 5207 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5208 SelectionDAG &DAG) { 5209 // If RHS is a constant, we can expand this out to a multiplication tree, 5210 // otherwise we end up lowering to a call to __powidf2 (for example). When 5211 // optimizing for size, we only want to do this if the expansion would produce 5212 // a small number of multiplies, otherwise we do the full expansion. 5213 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5214 // Get the exponent as a positive value. 5215 unsigned Val = RHSC->getSExtValue(); 5216 if ((int)Val < 0) Val = -Val; 5217 5218 // powi(x, 0) -> 1.0 5219 if (Val == 0) 5220 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5221 5222 const Function &F = DAG.getMachineFunction().getFunction(); 5223 if (!F.hasOptSize() || 5224 // If optimizing for size, don't insert too many multiplies. 5225 // This inserts up to 5 multiplies. 5226 countPopulation(Val) + Log2_32(Val) < 7) { 5227 // We use the simple binary decomposition method to generate the multiply 5228 // sequence. There are more optimal ways to do this (for example, 5229 // powi(x,15) generates one more multiply than it should), but this has 5230 // the benefit of being both really simple and much better than a libcall. 5231 SDValue Res; // Logically starts equal to 1.0 5232 SDValue CurSquare = LHS; 5233 // TODO: Intrinsics should have fast-math-flags that propagate to these 5234 // nodes. 5235 while (Val) { 5236 if (Val & 1) { 5237 if (Res.getNode()) 5238 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5239 else 5240 Res = CurSquare; // 1.0*CurSquare. 5241 } 5242 5243 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5244 CurSquare, CurSquare); 5245 Val >>= 1; 5246 } 5247 5248 // If the original was negative, invert the result, producing 1/(x*x*x). 5249 if (RHSC->getSExtValue() < 0) 5250 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5251 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5252 return Res; 5253 } 5254 } 5255 5256 // Otherwise, expand to a libcall. 5257 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5258 } 5259 5260 // getUnderlyingArgReg - Find underlying register used for a truncated or 5261 // bitcasted argument. 5262 static unsigned getUnderlyingArgReg(const SDValue &N) { 5263 switch (N.getOpcode()) { 5264 case ISD::CopyFromReg: 5265 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 5266 case ISD::BITCAST: 5267 case ISD::AssertZext: 5268 case ISD::AssertSext: 5269 case ISD::TRUNCATE: 5270 return getUnderlyingArgReg(N.getOperand(0)); 5271 default: 5272 return 0; 5273 } 5274 } 5275 5276 /// If the DbgValueInst is a dbg_value of a function argument, create the 5277 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5278 /// instruction selection, they will be inserted to the entry BB. 5279 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5280 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5281 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5282 const Argument *Arg = dyn_cast<Argument>(V); 5283 if (!Arg) 5284 return false; 5285 5286 if (!IsDbgDeclare) { 5287 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5288 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5289 // the entry block. 5290 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5291 if (!IsInEntryBlock) 5292 return false; 5293 5294 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5295 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5296 // variable that also is a param. 5297 // 5298 // Although, if we are at the top of the entry block already, we can still 5299 // emit using ArgDbgValue. This might catch some situations when the 5300 // dbg.value refers to an argument that isn't used in the entry block, so 5301 // any CopyToReg node would be optimized out and the only way to express 5302 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5303 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5304 // we should only emit as ArgDbgValue if the Variable is an argument to the 5305 // current function, and the dbg.value intrinsic is found in the entry 5306 // block. 5307 bool VariableIsFunctionInputArg = Variable->isParameter() && 5308 !DL->getInlinedAt(); 5309 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5310 if (!IsInPrologue && !VariableIsFunctionInputArg) 5311 return false; 5312 5313 // Here we assume that a function argument on IR level only can be used to 5314 // describe one input parameter on source level. If we for example have 5315 // source code like this 5316 // 5317 // struct A { long x, y; }; 5318 // void foo(struct A a, long b) { 5319 // ... 5320 // b = a.x; 5321 // ... 5322 // } 5323 // 5324 // and IR like this 5325 // 5326 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5327 // entry: 5328 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5329 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5330 // call void @llvm.dbg.value(metadata i32 %b, "b", 5331 // ... 5332 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5333 // ... 5334 // 5335 // then the last dbg.value is describing a parameter "b" using a value that 5336 // is an argument. But since we already has used %a1 to describe a parameter 5337 // we should not handle that last dbg.value here (that would result in an 5338 // incorrect hoisting of the DBG_VALUE to the function entry). 5339 // Notice that we allow one dbg.value per IR level argument, to accomodate 5340 // for the situation with fragments above. 5341 if (VariableIsFunctionInputArg) { 5342 unsigned ArgNo = Arg->getArgNo(); 5343 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5344 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5345 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5346 return false; 5347 FuncInfo.DescribedArgs.set(ArgNo); 5348 } 5349 } 5350 5351 MachineFunction &MF = DAG.getMachineFunction(); 5352 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5353 5354 bool IsIndirect = false; 5355 Optional<MachineOperand> Op; 5356 // Some arguments' frame index is recorded during argument lowering. 5357 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5358 if (FI != std::numeric_limits<int>::max()) 5359 Op = MachineOperand::CreateFI(FI); 5360 5361 if (!Op && N.getNode()) { 5362 unsigned Reg = getUnderlyingArgReg(N); 5363 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 5364 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5365 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 5366 if (PR) 5367 Reg = PR; 5368 } 5369 if (Reg) { 5370 Op = MachineOperand::CreateReg(Reg, false); 5371 IsIndirect = IsDbgDeclare; 5372 } 5373 } 5374 5375 if (!Op && N.getNode()) { 5376 // Check if frame index is available. 5377 SDValue LCandidate = peekThroughBitcasts(N); 5378 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5379 if (FrameIndexSDNode *FINode = 5380 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5381 Op = MachineOperand::CreateFI(FINode->getIndex()); 5382 } 5383 5384 if (!Op) { 5385 // Check if ValueMap has reg number. 5386 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 5387 if (VMI != FuncInfo.ValueMap.end()) { 5388 const auto &TLI = DAG.getTargetLoweringInfo(); 5389 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5390 V->getType(), getABIRegCopyCC(V)); 5391 if (RFV.occupiesMultipleRegs()) { 5392 unsigned Offset = 0; 5393 for (auto RegAndSize : RFV.getRegsAndSizes()) { 5394 Op = MachineOperand::CreateReg(RegAndSize.first, false); 5395 auto FragmentExpr = DIExpression::createFragmentExpression( 5396 Expr, Offset, RegAndSize.second); 5397 if (!FragmentExpr) 5398 continue; 5399 FuncInfo.ArgDbgValues.push_back( 5400 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5401 Op->getReg(), Variable, *FragmentExpr)); 5402 Offset += RegAndSize.second; 5403 } 5404 return true; 5405 } 5406 Op = MachineOperand::CreateReg(VMI->second, false); 5407 IsIndirect = IsDbgDeclare; 5408 } 5409 } 5410 5411 if (!Op) 5412 return false; 5413 5414 assert(Variable->isValidLocationForIntrinsic(DL) && 5415 "Expected inlined-at fields to agree"); 5416 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5417 FuncInfo.ArgDbgValues.push_back( 5418 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5419 *Op, Variable, Expr)); 5420 5421 return true; 5422 } 5423 5424 /// Return the appropriate SDDbgValue based on N. 5425 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5426 DILocalVariable *Variable, 5427 DIExpression *Expr, 5428 const DebugLoc &dl, 5429 unsigned DbgSDNodeOrder) { 5430 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5431 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5432 // stack slot locations. 5433 // 5434 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5435 // debug values here after optimization: 5436 // 5437 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5438 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5439 // 5440 // Both describe the direct values of their associated variables. 5441 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5442 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5443 } 5444 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5445 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5446 } 5447 5448 // VisualStudio defines setjmp as _setjmp 5449 #if defined(_MSC_VER) && defined(setjmp) && \ 5450 !defined(setjmp_undefined_for_msvc) 5451 # pragma push_macro("setjmp") 5452 # undef setjmp 5453 # define setjmp_undefined_for_msvc 5454 #endif 5455 5456 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5457 switch (Intrinsic) { 5458 case Intrinsic::smul_fix: 5459 return ISD::SMULFIX; 5460 case Intrinsic::umul_fix: 5461 return ISD::UMULFIX; 5462 default: 5463 llvm_unreachable("Unhandled fixed point intrinsic"); 5464 } 5465 } 5466 5467 /// Lower the call to the specified intrinsic function. If we want to emit this 5468 /// as a call to a named external function, return the name. Otherwise, lower it 5469 /// and return null. 5470 const char * 5471 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 5472 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5473 SDLoc sdl = getCurSDLoc(); 5474 DebugLoc dl = getCurDebugLoc(); 5475 SDValue Res; 5476 5477 switch (Intrinsic) { 5478 default: 5479 // By default, turn this into a target intrinsic node. 5480 visitTargetIntrinsic(I, Intrinsic); 5481 return nullptr; 5482 case Intrinsic::vastart: visitVAStart(I); return nullptr; 5483 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 5484 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 5485 case Intrinsic::returnaddress: 5486 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5487 TLI.getPointerTy(DAG.getDataLayout()), 5488 getValue(I.getArgOperand(0)))); 5489 return nullptr; 5490 case Intrinsic::addressofreturnaddress: 5491 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5492 TLI.getPointerTy(DAG.getDataLayout()))); 5493 return nullptr; 5494 case Intrinsic::sponentry: 5495 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5496 TLI.getPointerTy(DAG.getDataLayout()))); 5497 return nullptr; 5498 case Intrinsic::frameaddress: 5499 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5500 TLI.getPointerTy(DAG.getDataLayout()), 5501 getValue(I.getArgOperand(0)))); 5502 return nullptr; 5503 case Intrinsic::read_register: { 5504 Value *Reg = I.getArgOperand(0); 5505 SDValue Chain = getRoot(); 5506 SDValue RegName = 5507 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5508 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5509 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5510 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5511 setValue(&I, Res); 5512 DAG.setRoot(Res.getValue(1)); 5513 return nullptr; 5514 } 5515 case Intrinsic::write_register: { 5516 Value *Reg = I.getArgOperand(0); 5517 Value *RegValue = I.getArgOperand(1); 5518 SDValue Chain = getRoot(); 5519 SDValue RegName = 5520 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5521 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5522 RegName, getValue(RegValue))); 5523 return nullptr; 5524 } 5525 case Intrinsic::setjmp: 5526 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 5527 case Intrinsic::longjmp: 5528 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 5529 case Intrinsic::memcpy: { 5530 const auto &MCI = cast<MemCpyInst>(I); 5531 SDValue Op1 = getValue(I.getArgOperand(0)); 5532 SDValue Op2 = getValue(I.getArgOperand(1)); 5533 SDValue Op3 = getValue(I.getArgOperand(2)); 5534 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5535 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1); 5536 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1); 5537 unsigned Align = MinAlign(DstAlign, SrcAlign); 5538 bool isVol = MCI.isVolatile(); 5539 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5540 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5541 // node. 5542 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5543 false, isTC, 5544 MachinePointerInfo(I.getArgOperand(0)), 5545 MachinePointerInfo(I.getArgOperand(1))); 5546 updateDAGForMaybeTailCall(MC); 5547 return nullptr; 5548 } 5549 case Intrinsic::memset: { 5550 const auto &MSI = cast<MemSetInst>(I); 5551 SDValue Op1 = getValue(I.getArgOperand(0)); 5552 SDValue Op2 = getValue(I.getArgOperand(1)); 5553 SDValue Op3 = getValue(I.getArgOperand(2)); 5554 // @llvm.memset defines 0 and 1 to both mean no alignment. 5555 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1); 5556 bool isVol = MSI.isVolatile(); 5557 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5558 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5559 isTC, MachinePointerInfo(I.getArgOperand(0))); 5560 updateDAGForMaybeTailCall(MS); 5561 return nullptr; 5562 } 5563 case Intrinsic::memmove: { 5564 const auto &MMI = cast<MemMoveInst>(I); 5565 SDValue Op1 = getValue(I.getArgOperand(0)); 5566 SDValue Op2 = getValue(I.getArgOperand(1)); 5567 SDValue Op3 = getValue(I.getArgOperand(2)); 5568 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5569 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1); 5570 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1); 5571 unsigned Align = MinAlign(DstAlign, SrcAlign); 5572 bool isVol = MMI.isVolatile(); 5573 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5574 // FIXME: Support passing different dest/src alignments to the memmove DAG 5575 // node. 5576 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 5577 isTC, MachinePointerInfo(I.getArgOperand(0)), 5578 MachinePointerInfo(I.getArgOperand(1))); 5579 updateDAGForMaybeTailCall(MM); 5580 return nullptr; 5581 } 5582 case Intrinsic::memcpy_element_unordered_atomic: { 5583 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5584 SDValue Dst = getValue(MI.getRawDest()); 5585 SDValue Src = getValue(MI.getRawSource()); 5586 SDValue Length = getValue(MI.getLength()); 5587 5588 unsigned DstAlign = MI.getDestAlignment(); 5589 unsigned SrcAlign = MI.getSourceAlignment(); 5590 Type *LengthTy = MI.getLength()->getType(); 5591 unsigned ElemSz = MI.getElementSizeInBytes(); 5592 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5593 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5594 SrcAlign, Length, LengthTy, ElemSz, isTC, 5595 MachinePointerInfo(MI.getRawDest()), 5596 MachinePointerInfo(MI.getRawSource())); 5597 updateDAGForMaybeTailCall(MC); 5598 return nullptr; 5599 } 5600 case Intrinsic::memmove_element_unordered_atomic: { 5601 auto &MI = cast<AtomicMemMoveInst>(I); 5602 SDValue Dst = getValue(MI.getRawDest()); 5603 SDValue Src = getValue(MI.getRawSource()); 5604 SDValue Length = getValue(MI.getLength()); 5605 5606 unsigned DstAlign = MI.getDestAlignment(); 5607 unsigned SrcAlign = MI.getSourceAlignment(); 5608 Type *LengthTy = MI.getLength()->getType(); 5609 unsigned ElemSz = MI.getElementSizeInBytes(); 5610 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5611 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5612 SrcAlign, Length, LengthTy, ElemSz, isTC, 5613 MachinePointerInfo(MI.getRawDest()), 5614 MachinePointerInfo(MI.getRawSource())); 5615 updateDAGForMaybeTailCall(MC); 5616 return nullptr; 5617 } 5618 case Intrinsic::memset_element_unordered_atomic: { 5619 auto &MI = cast<AtomicMemSetInst>(I); 5620 SDValue Dst = getValue(MI.getRawDest()); 5621 SDValue Val = getValue(MI.getValue()); 5622 SDValue Length = getValue(MI.getLength()); 5623 5624 unsigned DstAlign = MI.getDestAlignment(); 5625 Type *LengthTy = MI.getLength()->getType(); 5626 unsigned ElemSz = MI.getElementSizeInBytes(); 5627 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 5628 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5629 LengthTy, ElemSz, isTC, 5630 MachinePointerInfo(MI.getRawDest())); 5631 updateDAGForMaybeTailCall(MC); 5632 return nullptr; 5633 } 5634 case Intrinsic::dbg_addr: 5635 case Intrinsic::dbg_declare: { 5636 const auto &DI = cast<DbgVariableIntrinsic>(I); 5637 DILocalVariable *Variable = DI.getVariable(); 5638 DIExpression *Expression = DI.getExpression(); 5639 dropDanglingDebugInfo(Variable, Expression); 5640 assert(Variable && "Missing variable"); 5641 5642 // Check if address has undef value. 5643 const Value *Address = DI.getVariableLocation(); 5644 if (!Address || isa<UndefValue>(Address) || 5645 (Address->use_empty() && !isa<Argument>(Address))) { 5646 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5647 return nullptr; 5648 } 5649 5650 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5651 5652 // Check if this variable can be described by a frame index, typically 5653 // either as a static alloca or a byval parameter. 5654 int FI = std::numeric_limits<int>::max(); 5655 if (const auto *AI = 5656 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5657 if (AI->isStaticAlloca()) { 5658 auto I = FuncInfo.StaticAllocaMap.find(AI); 5659 if (I != FuncInfo.StaticAllocaMap.end()) 5660 FI = I->second; 5661 } 5662 } else if (const auto *Arg = dyn_cast<Argument>( 5663 Address->stripInBoundsConstantOffsets())) { 5664 FI = FuncInfo.getArgumentFrameIndex(Arg); 5665 } 5666 5667 // llvm.dbg.addr is control dependent and always generates indirect 5668 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5669 // the MachineFunction variable table. 5670 if (FI != std::numeric_limits<int>::max()) { 5671 if (Intrinsic == Intrinsic::dbg_addr) { 5672 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5673 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder); 5674 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter); 5675 } 5676 return nullptr; 5677 } 5678 5679 SDValue &N = NodeMap[Address]; 5680 if (!N.getNode() && isa<Argument>(Address)) 5681 // Check unused arguments map. 5682 N = UnusedArgNodeMap[Address]; 5683 SDDbgValue *SDV; 5684 if (N.getNode()) { 5685 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 5686 Address = BCI->getOperand(0); 5687 // Parameters are handled specially. 5688 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 5689 if (isParameter && FINode) { 5690 // Byval parameter. We have a frame index at this point. 5691 SDV = 5692 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 5693 /*IsIndirect*/ true, dl, SDNodeOrder); 5694 } else if (isa<Argument>(Address)) { 5695 // Address is an argument, so try to emit its dbg value using 5696 // virtual register info from the FuncInfo.ValueMap. 5697 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 5698 return nullptr; 5699 } else { 5700 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 5701 true, dl, SDNodeOrder); 5702 } 5703 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 5704 } else { 5705 // If Address is an argument then try to emit its dbg value using 5706 // virtual register info from the FuncInfo.ValueMap. 5707 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 5708 N)) { 5709 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 5710 } 5711 } 5712 return nullptr; 5713 } 5714 case Intrinsic::dbg_label: { 5715 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 5716 DILabel *Label = DI.getLabel(); 5717 assert(Label && "Missing label"); 5718 5719 SDDbgLabel *SDV; 5720 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 5721 DAG.AddDbgLabel(SDV); 5722 return nullptr; 5723 } 5724 case Intrinsic::dbg_value: { 5725 const DbgValueInst &DI = cast<DbgValueInst>(I); 5726 assert(DI.getVariable() && "Missing variable"); 5727 5728 DILocalVariable *Variable = DI.getVariable(); 5729 DIExpression *Expression = DI.getExpression(); 5730 dropDanglingDebugInfo(Variable, Expression); 5731 const Value *V = DI.getValue(); 5732 if (!V) 5733 return nullptr; 5734 5735 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(), 5736 SDNodeOrder)) 5737 return nullptr; 5738 5739 // TODO: Dangling debug info will eventually either be resolved or produce 5740 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 5741 // between the original dbg.value location and its resolved DBG_VALUE, which 5742 // we should ideally fill with an extra Undef DBG_VALUE. 5743 5744 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder); 5745 return nullptr; 5746 } 5747 5748 case Intrinsic::eh_typeid_for: { 5749 // Find the type id for the given typeinfo. 5750 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 5751 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 5752 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 5753 setValue(&I, Res); 5754 return nullptr; 5755 } 5756 5757 case Intrinsic::eh_return_i32: 5758 case Intrinsic::eh_return_i64: 5759 DAG.getMachineFunction().setCallsEHReturn(true); 5760 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 5761 MVT::Other, 5762 getControlRoot(), 5763 getValue(I.getArgOperand(0)), 5764 getValue(I.getArgOperand(1)))); 5765 return nullptr; 5766 case Intrinsic::eh_unwind_init: 5767 DAG.getMachineFunction().setCallsUnwindInit(true); 5768 return nullptr; 5769 case Intrinsic::eh_dwarf_cfa: 5770 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 5771 TLI.getPointerTy(DAG.getDataLayout()), 5772 getValue(I.getArgOperand(0)))); 5773 return nullptr; 5774 case Intrinsic::eh_sjlj_callsite: { 5775 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5776 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 5777 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 5778 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 5779 5780 MMI.setCurrentCallSite(CI->getZExtValue()); 5781 return nullptr; 5782 } 5783 case Intrinsic::eh_sjlj_functioncontext: { 5784 // Get and store the index of the function context. 5785 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 5786 AllocaInst *FnCtx = 5787 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 5788 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 5789 MFI.setFunctionContextIndex(FI); 5790 return nullptr; 5791 } 5792 case Intrinsic::eh_sjlj_setjmp: { 5793 SDValue Ops[2]; 5794 Ops[0] = getRoot(); 5795 Ops[1] = getValue(I.getArgOperand(0)); 5796 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 5797 DAG.getVTList(MVT::i32, MVT::Other), Ops); 5798 setValue(&I, Op.getValue(0)); 5799 DAG.setRoot(Op.getValue(1)); 5800 return nullptr; 5801 } 5802 case Intrinsic::eh_sjlj_longjmp: 5803 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 5804 getRoot(), getValue(I.getArgOperand(0)))); 5805 return nullptr; 5806 case Intrinsic::eh_sjlj_setup_dispatch: 5807 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 5808 getRoot())); 5809 return nullptr; 5810 case Intrinsic::masked_gather: 5811 visitMaskedGather(I); 5812 return nullptr; 5813 case Intrinsic::masked_load: 5814 visitMaskedLoad(I); 5815 return nullptr; 5816 case Intrinsic::masked_scatter: 5817 visitMaskedScatter(I); 5818 return nullptr; 5819 case Intrinsic::masked_store: 5820 visitMaskedStore(I); 5821 return nullptr; 5822 case Intrinsic::masked_expandload: 5823 visitMaskedLoad(I, true /* IsExpanding */); 5824 return nullptr; 5825 case Intrinsic::masked_compressstore: 5826 visitMaskedStore(I, true /* IsCompressing */); 5827 return nullptr; 5828 case Intrinsic::x86_mmx_pslli_w: 5829 case Intrinsic::x86_mmx_pslli_d: 5830 case Intrinsic::x86_mmx_pslli_q: 5831 case Intrinsic::x86_mmx_psrli_w: 5832 case Intrinsic::x86_mmx_psrli_d: 5833 case Intrinsic::x86_mmx_psrli_q: 5834 case Intrinsic::x86_mmx_psrai_w: 5835 case Intrinsic::x86_mmx_psrai_d: { 5836 SDValue ShAmt = getValue(I.getArgOperand(1)); 5837 if (isa<ConstantSDNode>(ShAmt)) { 5838 visitTargetIntrinsic(I, Intrinsic); 5839 return nullptr; 5840 } 5841 unsigned NewIntrinsic = 0; 5842 EVT ShAmtVT = MVT::v2i32; 5843 switch (Intrinsic) { 5844 case Intrinsic::x86_mmx_pslli_w: 5845 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 5846 break; 5847 case Intrinsic::x86_mmx_pslli_d: 5848 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 5849 break; 5850 case Intrinsic::x86_mmx_pslli_q: 5851 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 5852 break; 5853 case Intrinsic::x86_mmx_psrli_w: 5854 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 5855 break; 5856 case Intrinsic::x86_mmx_psrli_d: 5857 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 5858 break; 5859 case Intrinsic::x86_mmx_psrli_q: 5860 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 5861 break; 5862 case Intrinsic::x86_mmx_psrai_w: 5863 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 5864 break; 5865 case Intrinsic::x86_mmx_psrai_d: 5866 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 5867 break; 5868 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5869 } 5870 5871 // The vector shift intrinsics with scalars uses 32b shift amounts but 5872 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 5873 // to be zero. 5874 // We must do this early because v2i32 is not a legal type. 5875 SDValue ShOps[2]; 5876 ShOps[0] = ShAmt; 5877 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 5878 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps); 5879 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5880 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 5881 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 5882 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 5883 getValue(I.getArgOperand(0)), ShAmt); 5884 setValue(&I, Res); 5885 return nullptr; 5886 } 5887 case Intrinsic::powi: 5888 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 5889 getValue(I.getArgOperand(1)), DAG)); 5890 return nullptr; 5891 case Intrinsic::log: 5892 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5893 return nullptr; 5894 case Intrinsic::log2: 5895 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5896 return nullptr; 5897 case Intrinsic::log10: 5898 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5899 return nullptr; 5900 case Intrinsic::exp: 5901 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5902 return nullptr; 5903 case Intrinsic::exp2: 5904 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 5905 return nullptr; 5906 case Intrinsic::pow: 5907 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 5908 getValue(I.getArgOperand(1)), DAG, TLI)); 5909 return nullptr; 5910 case Intrinsic::sqrt: 5911 case Intrinsic::fabs: 5912 case Intrinsic::sin: 5913 case Intrinsic::cos: 5914 case Intrinsic::floor: 5915 case Intrinsic::ceil: 5916 case Intrinsic::trunc: 5917 case Intrinsic::rint: 5918 case Intrinsic::nearbyint: 5919 case Intrinsic::round: 5920 case Intrinsic::canonicalize: { 5921 unsigned Opcode; 5922 switch (Intrinsic) { 5923 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5924 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 5925 case Intrinsic::fabs: Opcode = ISD::FABS; break; 5926 case Intrinsic::sin: Opcode = ISD::FSIN; break; 5927 case Intrinsic::cos: Opcode = ISD::FCOS; break; 5928 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 5929 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 5930 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 5931 case Intrinsic::rint: Opcode = ISD::FRINT; break; 5932 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 5933 case Intrinsic::round: Opcode = ISD::FROUND; break; 5934 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 5935 } 5936 5937 setValue(&I, DAG.getNode(Opcode, sdl, 5938 getValue(I.getArgOperand(0)).getValueType(), 5939 getValue(I.getArgOperand(0)))); 5940 return nullptr; 5941 } 5942 case Intrinsic::minnum: { 5943 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5944 unsigned Opc = 5945 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT) 5946 ? ISD::FMINIMUM 5947 : ISD::FMINNUM; 5948 setValue(&I, DAG.getNode(Opc, sdl, VT, 5949 getValue(I.getArgOperand(0)), 5950 getValue(I.getArgOperand(1)))); 5951 return nullptr; 5952 } 5953 case Intrinsic::maxnum: { 5954 auto VT = getValue(I.getArgOperand(0)).getValueType(); 5955 unsigned Opc = 5956 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT) 5957 ? ISD::FMAXIMUM 5958 : ISD::FMAXNUM; 5959 setValue(&I, DAG.getNode(Opc, sdl, VT, 5960 getValue(I.getArgOperand(0)), 5961 getValue(I.getArgOperand(1)))); 5962 return nullptr; 5963 } 5964 case Intrinsic::minimum: 5965 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 5966 getValue(I.getArgOperand(0)).getValueType(), 5967 getValue(I.getArgOperand(0)), 5968 getValue(I.getArgOperand(1)))); 5969 return nullptr; 5970 case Intrinsic::maximum: 5971 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 5972 getValue(I.getArgOperand(0)).getValueType(), 5973 getValue(I.getArgOperand(0)), 5974 getValue(I.getArgOperand(1)))); 5975 return nullptr; 5976 case Intrinsic::copysign: 5977 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 5978 getValue(I.getArgOperand(0)).getValueType(), 5979 getValue(I.getArgOperand(0)), 5980 getValue(I.getArgOperand(1)))); 5981 return nullptr; 5982 case Intrinsic::fma: 5983 setValue(&I, DAG.getNode(ISD::FMA, sdl, 5984 getValue(I.getArgOperand(0)).getValueType(), 5985 getValue(I.getArgOperand(0)), 5986 getValue(I.getArgOperand(1)), 5987 getValue(I.getArgOperand(2)))); 5988 return nullptr; 5989 case Intrinsic::experimental_constrained_fadd: 5990 case Intrinsic::experimental_constrained_fsub: 5991 case Intrinsic::experimental_constrained_fmul: 5992 case Intrinsic::experimental_constrained_fdiv: 5993 case Intrinsic::experimental_constrained_frem: 5994 case Intrinsic::experimental_constrained_fma: 5995 case Intrinsic::experimental_constrained_sqrt: 5996 case Intrinsic::experimental_constrained_pow: 5997 case Intrinsic::experimental_constrained_powi: 5998 case Intrinsic::experimental_constrained_sin: 5999 case Intrinsic::experimental_constrained_cos: 6000 case Intrinsic::experimental_constrained_exp: 6001 case Intrinsic::experimental_constrained_exp2: 6002 case Intrinsic::experimental_constrained_log: 6003 case Intrinsic::experimental_constrained_log10: 6004 case Intrinsic::experimental_constrained_log2: 6005 case Intrinsic::experimental_constrained_rint: 6006 case Intrinsic::experimental_constrained_nearbyint: 6007 case Intrinsic::experimental_constrained_maxnum: 6008 case Intrinsic::experimental_constrained_minnum: 6009 case Intrinsic::experimental_constrained_ceil: 6010 case Intrinsic::experimental_constrained_floor: 6011 case Intrinsic::experimental_constrained_round: 6012 case Intrinsic::experimental_constrained_trunc: 6013 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6014 return nullptr; 6015 case Intrinsic::fmuladd: { 6016 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6017 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6018 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 6019 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6020 getValue(I.getArgOperand(0)).getValueType(), 6021 getValue(I.getArgOperand(0)), 6022 getValue(I.getArgOperand(1)), 6023 getValue(I.getArgOperand(2)))); 6024 } else { 6025 // TODO: Intrinsic calls should have fast-math-flags. 6026 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 6027 getValue(I.getArgOperand(0)).getValueType(), 6028 getValue(I.getArgOperand(0)), 6029 getValue(I.getArgOperand(1))); 6030 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6031 getValue(I.getArgOperand(0)).getValueType(), 6032 Mul, 6033 getValue(I.getArgOperand(2))); 6034 setValue(&I, Add); 6035 } 6036 return nullptr; 6037 } 6038 case Intrinsic::convert_to_fp16: 6039 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6040 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6041 getValue(I.getArgOperand(0)), 6042 DAG.getTargetConstant(0, sdl, 6043 MVT::i32)))); 6044 return nullptr; 6045 case Intrinsic::convert_from_fp16: 6046 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6047 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6048 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6049 getValue(I.getArgOperand(0))))); 6050 return nullptr; 6051 case Intrinsic::pcmarker: { 6052 SDValue Tmp = getValue(I.getArgOperand(0)); 6053 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6054 return nullptr; 6055 } 6056 case Intrinsic::readcyclecounter: { 6057 SDValue Op = getRoot(); 6058 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6059 DAG.getVTList(MVT::i64, MVT::Other), Op); 6060 setValue(&I, Res); 6061 DAG.setRoot(Res.getValue(1)); 6062 return nullptr; 6063 } 6064 case Intrinsic::bitreverse: 6065 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6066 getValue(I.getArgOperand(0)).getValueType(), 6067 getValue(I.getArgOperand(0)))); 6068 return nullptr; 6069 case Intrinsic::bswap: 6070 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6071 getValue(I.getArgOperand(0)).getValueType(), 6072 getValue(I.getArgOperand(0)))); 6073 return nullptr; 6074 case Intrinsic::cttz: { 6075 SDValue Arg = getValue(I.getArgOperand(0)); 6076 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6077 EVT Ty = Arg.getValueType(); 6078 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6079 sdl, Ty, Arg)); 6080 return nullptr; 6081 } 6082 case Intrinsic::ctlz: { 6083 SDValue Arg = getValue(I.getArgOperand(0)); 6084 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6085 EVT Ty = Arg.getValueType(); 6086 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6087 sdl, Ty, Arg)); 6088 return nullptr; 6089 } 6090 case Intrinsic::ctpop: { 6091 SDValue Arg = getValue(I.getArgOperand(0)); 6092 EVT Ty = Arg.getValueType(); 6093 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6094 return nullptr; 6095 } 6096 case Intrinsic::fshl: 6097 case Intrinsic::fshr: { 6098 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6099 SDValue X = getValue(I.getArgOperand(0)); 6100 SDValue Y = getValue(I.getArgOperand(1)); 6101 SDValue Z = getValue(I.getArgOperand(2)); 6102 EVT VT = X.getValueType(); 6103 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT); 6104 SDValue Zero = DAG.getConstant(0, sdl, VT); 6105 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC); 6106 6107 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6108 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) { 6109 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6110 return nullptr; 6111 } 6112 6113 // When X == Y, this is rotate. If the data type has a power-of-2 size, we 6114 // avoid the select that is necessary in the general case to filter out 6115 // the 0-shift possibility that leads to UB. 6116 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) { 6117 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6118 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6119 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6120 return nullptr; 6121 } 6122 6123 // Some targets only rotate one way. Try the opposite direction. 6124 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL; 6125 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) { 6126 // Negate the shift amount because it is safe to ignore the high bits. 6127 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6128 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt)); 6129 return nullptr; 6130 } 6131 6132 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW)) 6133 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW)) 6134 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z); 6135 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC); 6136 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt); 6137 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt); 6138 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY)); 6139 return nullptr; 6140 } 6141 6142 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW))) 6143 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW)) 6144 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt); 6145 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt); 6146 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt); 6147 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY); 6148 6149 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth, 6150 // and that is undefined. We must compare and select to avoid UB. 6151 EVT CCVT = MVT::i1; 6152 if (VT.isVector()) 6153 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements()); 6154 6155 // For fshl, 0-shift returns the 1st arg (X). 6156 // For fshr, 0-shift returns the 2nd arg (Y). 6157 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ); 6158 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or)); 6159 return nullptr; 6160 } 6161 case Intrinsic::sadd_sat: { 6162 SDValue Op1 = getValue(I.getArgOperand(0)); 6163 SDValue Op2 = getValue(I.getArgOperand(1)); 6164 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6165 return nullptr; 6166 } 6167 case Intrinsic::uadd_sat: { 6168 SDValue Op1 = getValue(I.getArgOperand(0)); 6169 SDValue Op2 = getValue(I.getArgOperand(1)); 6170 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6171 return nullptr; 6172 } 6173 case Intrinsic::ssub_sat: { 6174 SDValue Op1 = getValue(I.getArgOperand(0)); 6175 SDValue Op2 = getValue(I.getArgOperand(1)); 6176 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6177 return nullptr; 6178 } 6179 case Intrinsic::usub_sat: { 6180 SDValue Op1 = getValue(I.getArgOperand(0)); 6181 SDValue Op2 = getValue(I.getArgOperand(1)); 6182 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6183 return nullptr; 6184 } 6185 case Intrinsic::smul_fix: 6186 case Intrinsic::umul_fix: { 6187 SDValue Op1 = getValue(I.getArgOperand(0)); 6188 SDValue Op2 = getValue(I.getArgOperand(1)); 6189 SDValue Op3 = getValue(I.getArgOperand(2)); 6190 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6191 Op1.getValueType(), Op1, Op2, Op3)); 6192 return nullptr; 6193 } 6194 case Intrinsic::stacksave: { 6195 SDValue Op = getRoot(); 6196 Res = DAG.getNode( 6197 ISD::STACKSAVE, sdl, 6198 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 6199 setValue(&I, Res); 6200 DAG.setRoot(Res.getValue(1)); 6201 return nullptr; 6202 } 6203 case Intrinsic::stackrestore: 6204 Res = getValue(I.getArgOperand(0)); 6205 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6206 return nullptr; 6207 case Intrinsic::get_dynamic_area_offset: { 6208 SDValue Op = getRoot(); 6209 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6210 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6211 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6212 // target. 6213 if (PtrTy != ResTy) 6214 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6215 " intrinsic!"); 6216 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6217 Op); 6218 DAG.setRoot(Op); 6219 setValue(&I, Res); 6220 return nullptr; 6221 } 6222 case Intrinsic::stackguard: { 6223 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6224 MachineFunction &MF = DAG.getMachineFunction(); 6225 const Module &M = *MF.getFunction().getParent(); 6226 SDValue Chain = getRoot(); 6227 if (TLI.useLoadStackGuardNode()) { 6228 Res = getLoadStackGuard(DAG, sdl, Chain); 6229 } else { 6230 const Value *Global = TLI.getSDagStackGuard(M); 6231 unsigned Align = DL->getPrefTypeAlignment(Global->getType()); 6232 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6233 MachinePointerInfo(Global, 0), Align, 6234 MachineMemOperand::MOVolatile); 6235 } 6236 if (TLI.useStackGuardXorFP()) 6237 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6238 DAG.setRoot(Chain); 6239 setValue(&I, Res); 6240 return nullptr; 6241 } 6242 case Intrinsic::stackprotector: { 6243 // Emit code into the DAG to store the stack guard onto the stack. 6244 MachineFunction &MF = DAG.getMachineFunction(); 6245 MachineFrameInfo &MFI = MF.getFrameInfo(); 6246 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 6247 SDValue Src, Chain = getRoot(); 6248 6249 if (TLI.useLoadStackGuardNode()) 6250 Src = getLoadStackGuard(DAG, sdl, Chain); 6251 else 6252 Src = getValue(I.getArgOperand(0)); // The guard's value. 6253 6254 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6255 6256 int FI = FuncInfo.StaticAllocaMap[Slot]; 6257 MFI.setStackProtectorIndex(FI); 6258 6259 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6260 6261 // Store the stack protector onto the stack. 6262 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 6263 DAG.getMachineFunction(), FI), 6264 /* Alignment = */ 0, MachineMemOperand::MOVolatile); 6265 setValue(&I, Res); 6266 DAG.setRoot(Res); 6267 return nullptr; 6268 } 6269 case Intrinsic::objectsize: { 6270 // If we don't know by now, we're never going to know. 6271 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 6272 6273 assert(CI && "Non-constant type in __builtin_object_size?"); 6274 6275 SDValue Arg = getValue(I.getCalledValue()); 6276 EVT Ty = Arg.getValueType(); 6277 6278 if (CI->isZero()) 6279 Res = DAG.getConstant(-1ULL, sdl, Ty); 6280 else 6281 Res = DAG.getConstant(0, sdl, Ty); 6282 6283 setValue(&I, Res); 6284 return nullptr; 6285 } 6286 6287 case Intrinsic::is_constant: 6288 // If this wasn't constant-folded away by now, then it's not a 6289 // constant. 6290 setValue(&I, DAG.getConstant(0, sdl, MVT::i1)); 6291 return nullptr; 6292 6293 case Intrinsic::annotation: 6294 case Intrinsic::ptr_annotation: 6295 case Intrinsic::launder_invariant_group: 6296 case Intrinsic::strip_invariant_group: 6297 // Drop the intrinsic, but forward the value 6298 setValue(&I, getValue(I.getOperand(0))); 6299 return nullptr; 6300 case Intrinsic::assume: 6301 case Intrinsic::var_annotation: 6302 case Intrinsic::sideeffect: 6303 // Discard annotate attributes, assumptions, and artificial side-effects. 6304 return nullptr; 6305 6306 case Intrinsic::codeview_annotation: { 6307 // Emit a label associated with this metadata. 6308 MachineFunction &MF = DAG.getMachineFunction(); 6309 MCSymbol *Label = 6310 MF.getMMI().getContext().createTempSymbol("annotation", true); 6311 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6312 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6313 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6314 DAG.setRoot(Res); 6315 return nullptr; 6316 } 6317 6318 case Intrinsic::init_trampoline: { 6319 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6320 6321 SDValue Ops[6]; 6322 Ops[0] = getRoot(); 6323 Ops[1] = getValue(I.getArgOperand(0)); 6324 Ops[2] = getValue(I.getArgOperand(1)); 6325 Ops[3] = getValue(I.getArgOperand(2)); 6326 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6327 Ops[5] = DAG.getSrcValue(F); 6328 6329 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6330 6331 DAG.setRoot(Res); 6332 return nullptr; 6333 } 6334 case Intrinsic::adjust_trampoline: 6335 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6336 TLI.getPointerTy(DAG.getDataLayout()), 6337 getValue(I.getArgOperand(0)))); 6338 return nullptr; 6339 case Intrinsic::gcroot: { 6340 assert(DAG.getMachineFunction().getFunction().hasGC() && 6341 "only valid in functions with gc specified, enforced by Verifier"); 6342 assert(GFI && "implied by previous"); 6343 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6344 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6345 6346 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6347 GFI->addStackRoot(FI->getIndex(), TypeMap); 6348 return nullptr; 6349 } 6350 case Intrinsic::gcread: 6351 case Intrinsic::gcwrite: 6352 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6353 case Intrinsic::flt_rounds: 6354 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 6355 return nullptr; 6356 6357 case Intrinsic::expect: 6358 // Just replace __builtin_expect(exp, c) with EXP. 6359 setValue(&I, getValue(I.getArgOperand(0))); 6360 return nullptr; 6361 6362 case Intrinsic::debugtrap: 6363 case Intrinsic::trap: { 6364 StringRef TrapFuncName = 6365 I.getAttributes() 6366 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6367 .getValueAsString(); 6368 if (TrapFuncName.empty()) { 6369 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 6370 ISD::TRAP : ISD::DEBUGTRAP; 6371 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 6372 return nullptr; 6373 } 6374 TargetLowering::ArgListTy Args; 6375 6376 TargetLowering::CallLoweringInfo CLI(DAG); 6377 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6378 CallingConv::C, I.getType(), 6379 DAG.getExternalSymbol(TrapFuncName.data(), 6380 TLI.getPointerTy(DAG.getDataLayout())), 6381 std::move(Args)); 6382 6383 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6384 DAG.setRoot(Result.second); 6385 return nullptr; 6386 } 6387 6388 case Intrinsic::uadd_with_overflow: 6389 case Intrinsic::sadd_with_overflow: 6390 case Intrinsic::usub_with_overflow: 6391 case Intrinsic::ssub_with_overflow: 6392 case Intrinsic::umul_with_overflow: 6393 case Intrinsic::smul_with_overflow: { 6394 ISD::NodeType Op; 6395 switch (Intrinsic) { 6396 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6397 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6398 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6399 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6400 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6401 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6402 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6403 } 6404 SDValue Op1 = getValue(I.getArgOperand(0)); 6405 SDValue Op2 = getValue(I.getArgOperand(1)); 6406 6407 EVT ResultVT = Op1.getValueType(); 6408 EVT OverflowVT = MVT::i1; 6409 if (ResultVT.isVector()) 6410 OverflowVT = EVT::getVectorVT( 6411 *Context, OverflowVT, ResultVT.getVectorNumElements()); 6412 6413 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6414 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6415 return nullptr; 6416 } 6417 case Intrinsic::prefetch: { 6418 SDValue Ops[5]; 6419 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6420 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6421 Ops[0] = DAG.getRoot(); 6422 Ops[1] = getValue(I.getArgOperand(0)); 6423 Ops[2] = getValue(I.getArgOperand(1)); 6424 Ops[3] = getValue(I.getArgOperand(2)); 6425 Ops[4] = getValue(I.getArgOperand(3)); 6426 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 6427 DAG.getVTList(MVT::Other), Ops, 6428 EVT::getIntegerVT(*Context, 8), 6429 MachinePointerInfo(I.getArgOperand(0)), 6430 0, /* align */ 6431 Flags); 6432 6433 // Chain the prefetch in parallell with any pending loads, to stay out of 6434 // the way of later optimizations. 6435 PendingLoads.push_back(Result); 6436 Result = getRoot(); 6437 DAG.setRoot(Result); 6438 return nullptr; 6439 } 6440 case Intrinsic::lifetime_start: 6441 case Intrinsic::lifetime_end: { 6442 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6443 // Stack coloring is not enabled in O0, discard region information. 6444 if (TM.getOptLevel() == CodeGenOpt::None) 6445 return nullptr; 6446 6447 const int64_t ObjectSize = 6448 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6449 Value *const ObjectPtr = I.getArgOperand(1); 6450 SmallVector<Value *, 4> Allocas; 6451 GetUnderlyingObjects(ObjectPtr, Allocas, *DL); 6452 6453 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 6454 E = Allocas.end(); Object != E; ++Object) { 6455 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 6456 6457 // Could not find an Alloca. 6458 if (!LifetimeObject) 6459 continue; 6460 6461 // First check that the Alloca is static, otherwise it won't have a 6462 // valid frame index. 6463 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6464 if (SI == FuncInfo.StaticAllocaMap.end()) 6465 return nullptr; 6466 6467 const int FrameIndex = SI->second; 6468 int64_t Offset; 6469 if (GetPointerBaseWithConstantOffset( 6470 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6471 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6472 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6473 Offset); 6474 DAG.setRoot(Res); 6475 } 6476 return nullptr; 6477 } 6478 case Intrinsic::invariant_start: 6479 // Discard region information. 6480 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6481 return nullptr; 6482 case Intrinsic::invariant_end: 6483 // Discard region information. 6484 return nullptr; 6485 case Intrinsic::clear_cache: 6486 return TLI.getClearCacheBuiltinName(); 6487 case Intrinsic::donothing: 6488 // ignore 6489 return nullptr; 6490 case Intrinsic::experimental_stackmap: 6491 visitStackmap(I); 6492 return nullptr; 6493 case Intrinsic::experimental_patchpoint_void: 6494 case Intrinsic::experimental_patchpoint_i64: 6495 visitPatchpoint(&I); 6496 return nullptr; 6497 case Intrinsic::experimental_gc_statepoint: 6498 LowerStatepoint(ImmutableStatepoint(&I)); 6499 return nullptr; 6500 case Intrinsic::experimental_gc_result: 6501 visitGCResult(cast<GCResultInst>(I)); 6502 return nullptr; 6503 case Intrinsic::experimental_gc_relocate: 6504 visitGCRelocate(cast<GCRelocateInst>(I)); 6505 return nullptr; 6506 case Intrinsic::instrprof_increment: 6507 llvm_unreachable("instrprof failed to lower an increment"); 6508 case Intrinsic::instrprof_value_profile: 6509 llvm_unreachable("instrprof failed to lower a value profiling call"); 6510 case Intrinsic::localescape: { 6511 MachineFunction &MF = DAG.getMachineFunction(); 6512 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6513 6514 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6515 // is the same on all targets. 6516 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6517 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6518 if (isa<ConstantPointerNull>(Arg)) 6519 continue; // Skip null pointers. They represent a hole in index space. 6520 AllocaInst *Slot = cast<AllocaInst>(Arg); 6521 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6522 "can only escape static allocas"); 6523 int FI = FuncInfo.StaticAllocaMap[Slot]; 6524 MCSymbol *FrameAllocSym = 6525 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6526 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6527 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6528 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6529 .addSym(FrameAllocSym) 6530 .addFrameIndex(FI); 6531 } 6532 6533 return nullptr; 6534 } 6535 6536 case Intrinsic::localrecover: { 6537 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6538 MachineFunction &MF = DAG.getMachineFunction(); 6539 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 6540 6541 // Get the symbol that defines the frame offset. 6542 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6543 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6544 unsigned IdxVal = 6545 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6546 MCSymbol *FrameAllocSym = 6547 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6548 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6549 6550 // Create a MCSymbol for the label to avoid any target lowering 6551 // that would make this PC relative. 6552 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6553 SDValue OffsetVal = 6554 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6555 6556 // Add the offset to the FP. 6557 Value *FP = I.getArgOperand(1); 6558 SDValue FPVal = getValue(FP); 6559 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 6560 setValue(&I, Add); 6561 6562 return nullptr; 6563 } 6564 6565 case Intrinsic::eh_exceptionpointer: 6566 case Intrinsic::eh_exceptioncode: { 6567 // Get the exception pointer vreg, copy from it, and resize it to fit. 6568 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6569 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6570 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6571 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6572 SDValue N = 6573 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6574 if (Intrinsic == Intrinsic::eh_exceptioncode) 6575 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6576 setValue(&I, N); 6577 return nullptr; 6578 } 6579 case Intrinsic::xray_customevent: { 6580 // Here we want to make sure that the intrinsic behaves as if it has a 6581 // specific calling convention, and only for x86_64. 6582 // FIXME: Support other platforms later. 6583 const auto &Triple = DAG.getTarget().getTargetTriple(); 6584 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6585 return nullptr; 6586 6587 SDLoc DL = getCurSDLoc(); 6588 SmallVector<SDValue, 8> Ops; 6589 6590 // We want to say that we always want the arguments in registers. 6591 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6592 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6593 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6594 SDValue Chain = getRoot(); 6595 Ops.push_back(LogEntryVal); 6596 Ops.push_back(StrSizeVal); 6597 Ops.push_back(Chain); 6598 6599 // We need to enforce the calling convention for the callsite, so that 6600 // argument ordering is enforced correctly, and that register allocation can 6601 // see that some registers may be assumed clobbered and have to preserve 6602 // them across calls to the intrinsic. 6603 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6604 DL, NodeTys, Ops); 6605 SDValue patchableNode = SDValue(MN, 0); 6606 DAG.setRoot(patchableNode); 6607 setValue(&I, patchableNode); 6608 return nullptr; 6609 } 6610 case Intrinsic::xray_typedevent: { 6611 // Here we want to make sure that the intrinsic behaves as if it has a 6612 // specific calling convention, and only for x86_64. 6613 // FIXME: Support other platforms later. 6614 const auto &Triple = DAG.getTarget().getTargetTriple(); 6615 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux()) 6616 return nullptr; 6617 6618 SDLoc DL = getCurSDLoc(); 6619 SmallVector<SDValue, 8> Ops; 6620 6621 // We want to say that we always want the arguments in registers. 6622 // It's unclear to me how manipulating the selection DAG here forces callers 6623 // to provide arguments in registers instead of on the stack. 6624 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6625 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6626 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6627 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6628 SDValue Chain = getRoot(); 6629 Ops.push_back(LogTypeId); 6630 Ops.push_back(LogEntryVal); 6631 Ops.push_back(StrSizeVal); 6632 Ops.push_back(Chain); 6633 6634 // We need to enforce the calling convention for the callsite, so that 6635 // argument ordering is enforced correctly, and that register allocation can 6636 // see that some registers may be assumed clobbered and have to preserve 6637 // them across calls to the intrinsic. 6638 MachineSDNode *MN = DAG.getMachineNode( 6639 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6640 SDValue patchableNode = SDValue(MN, 0); 6641 DAG.setRoot(patchableNode); 6642 setValue(&I, patchableNode); 6643 return nullptr; 6644 } 6645 case Intrinsic::experimental_deoptimize: 6646 LowerDeoptimizeCall(&I); 6647 return nullptr; 6648 6649 case Intrinsic::experimental_vector_reduce_fadd: 6650 case Intrinsic::experimental_vector_reduce_fmul: 6651 case Intrinsic::experimental_vector_reduce_add: 6652 case Intrinsic::experimental_vector_reduce_mul: 6653 case Intrinsic::experimental_vector_reduce_and: 6654 case Intrinsic::experimental_vector_reduce_or: 6655 case Intrinsic::experimental_vector_reduce_xor: 6656 case Intrinsic::experimental_vector_reduce_smax: 6657 case Intrinsic::experimental_vector_reduce_smin: 6658 case Intrinsic::experimental_vector_reduce_umax: 6659 case Intrinsic::experimental_vector_reduce_umin: 6660 case Intrinsic::experimental_vector_reduce_fmax: 6661 case Intrinsic::experimental_vector_reduce_fmin: 6662 visitVectorReduce(I, Intrinsic); 6663 return nullptr; 6664 6665 case Intrinsic::icall_branch_funnel: { 6666 SmallVector<SDValue, 16> Ops; 6667 Ops.push_back(DAG.getRoot()); 6668 Ops.push_back(getValue(I.getArgOperand(0))); 6669 6670 int64_t Offset; 6671 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6672 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6673 if (!Base) 6674 report_fatal_error( 6675 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6676 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6677 6678 struct BranchFunnelTarget { 6679 int64_t Offset; 6680 SDValue Target; 6681 }; 6682 SmallVector<BranchFunnelTarget, 8> Targets; 6683 6684 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6685 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6686 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6687 if (ElemBase != Base) 6688 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6689 "to the same GlobalValue"); 6690 6691 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6692 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6693 if (!GA) 6694 report_fatal_error( 6695 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6696 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6697 GA->getGlobal(), getCurSDLoc(), 6698 Val.getValueType(), GA->getOffset())}); 6699 } 6700 llvm::sort(Targets, 6701 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 6702 return T1.Offset < T2.Offset; 6703 }); 6704 6705 for (auto &T : Targets) { 6706 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 6707 Ops.push_back(T.Target); 6708 } 6709 6710 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 6711 getCurSDLoc(), MVT::Other, Ops), 6712 0); 6713 DAG.setRoot(N); 6714 setValue(&I, N); 6715 HasTailCall = true; 6716 return nullptr; 6717 } 6718 6719 case Intrinsic::wasm_landingpad_index: 6720 // Information this intrinsic contained has been transferred to 6721 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 6722 // delete it now. 6723 return nullptr; 6724 } 6725 } 6726 6727 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 6728 const ConstrainedFPIntrinsic &FPI) { 6729 SDLoc sdl = getCurSDLoc(); 6730 unsigned Opcode; 6731 switch (FPI.getIntrinsicID()) { 6732 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6733 case Intrinsic::experimental_constrained_fadd: 6734 Opcode = ISD::STRICT_FADD; 6735 break; 6736 case Intrinsic::experimental_constrained_fsub: 6737 Opcode = ISD::STRICT_FSUB; 6738 break; 6739 case Intrinsic::experimental_constrained_fmul: 6740 Opcode = ISD::STRICT_FMUL; 6741 break; 6742 case Intrinsic::experimental_constrained_fdiv: 6743 Opcode = ISD::STRICT_FDIV; 6744 break; 6745 case Intrinsic::experimental_constrained_frem: 6746 Opcode = ISD::STRICT_FREM; 6747 break; 6748 case Intrinsic::experimental_constrained_fma: 6749 Opcode = ISD::STRICT_FMA; 6750 break; 6751 case Intrinsic::experimental_constrained_sqrt: 6752 Opcode = ISD::STRICT_FSQRT; 6753 break; 6754 case Intrinsic::experimental_constrained_pow: 6755 Opcode = ISD::STRICT_FPOW; 6756 break; 6757 case Intrinsic::experimental_constrained_powi: 6758 Opcode = ISD::STRICT_FPOWI; 6759 break; 6760 case Intrinsic::experimental_constrained_sin: 6761 Opcode = ISD::STRICT_FSIN; 6762 break; 6763 case Intrinsic::experimental_constrained_cos: 6764 Opcode = ISD::STRICT_FCOS; 6765 break; 6766 case Intrinsic::experimental_constrained_exp: 6767 Opcode = ISD::STRICT_FEXP; 6768 break; 6769 case Intrinsic::experimental_constrained_exp2: 6770 Opcode = ISD::STRICT_FEXP2; 6771 break; 6772 case Intrinsic::experimental_constrained_log: 6773 Opcode = ISD::STRICT_FLOG; 6774 break; 6775 case Intrinsic::experimental_constrained_log10: 6776 Opcode = ISD::STRICT_FLOG10; 6777 break; 6778 case Intrinsic::experimental_constrained_log2: 6779 Opcode = ISD::STRICT_FLOG2; 6780 break; 6781 case Intrinsic::experimental_constrained_rint: 6782 Opcode = ISD::STRICT_FRINT; 6783 break; 6784 case Intrinsic::experimental_constrained_nearbyint: 6785 Opcode = ISD::STRICT_FNEARBYINT; 6786 break; 6787 case Intrinsic::experimental_constrained_maxnum: 6788 Opcode = ISD::STRICT_FMAXNUM; 6789 break; 6790 case Intrinsic::experimental_constrained_minnum: 6791 Opcode = ISD::STRICT_FMINNUM; 6792 break; 6793 case Intrinsic::experimental_constrained_ceil: 6794 Opcode = ISD::STRICT_FCEIL; 6795 break; 6796 case Intrinsic::experimental_constrained_floor: 6797 Opcode = ISD::STRICT_FFLOOR; 6798 break; 6799 case Intrinsic::experimental_constrained_round: 6800 Opcode = ISD::STRICT_FROUND; 6801 break; 6802 case Intrinsic::experimental_constrained_trunc: 6803 Opcode = ISD::STRICT_FTRUNC; 6804 break; 6805 } 6806 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6807 SDValue Chain = getRoot(); 6808 SmallVector<EVT, 4> ValueVTs; 6809 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 6810 ValueVTs.push_back(MVT::Other); // Out chain 6811 6812 SDVTList VTs = DAG.getVTList(ValueVTs); 6813 SDValue Result; 6814 if (FPI.isUnaryOp()) 6815 Result = DAG.getNode(Opcode, sdl, VTs, 6816 { Chain, getValue(FPI.getArgOperand(0)) }); 6817 else if (FPI.isTernaryOp()) 6818 Result = DAG.getNode(Opcode, sdl, VTs, 6819 { Chain, getValue(FPI.getArgOperand(0)), 6820 getValue(FPI.getArgOperand(1)), 6821 getValue(FPI.getArgOperand(2)) }); 6822 else 6823 Result = DAG.getNode(Opcode, sdl, VTs, 6824 { Chain, getValue(FPI.getArgOperand(0)), 6825 getValue(FPI.getArgOperand(1)) }); 6826 6827 assert(Result.getNode()->getNumValues() == 2); 6828 SDValue OutChain = Result.getValue(1); 6829 DAG.setRoot(OutChain); 6830 SDValue FPResult = Result.getValue(0); 6831 setValue(&FPI, FPResult); 6832 } 6833 6834 std::pair<SDValue, SDValue> 6835 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 6836 const BasicBlock *EHPadBB) { 6837 MachineFunction &MF = DAG.getMachineFunction(); 6838 MachineModuleInfo &MMI = MF.getMMI(); 6839 MCSymbol *BeginLabel = nullptr; 6840 6841 if (EHPadBB) { 6842 // Insert a label before the invoke call to mark the try range. This can be 6843 // used to detect deletion of the invoke via the MachineModuleInfo. 6844 BeginLabel = MMI.getContext().createTempSymbol(); 6845 6846 // For SjLj, keep track of which landing pads go with which invokes 6847 // so as to maintain the ordering of pads in the LSDA. 6848 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 6849 if (CallSiteIndex) { 6850 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 6851 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 6852 6853 // Now that the call site is handled, stop tracking it. 6854 MMI.setCurrentCallSite(0); 6855 } 6856 6857 // Both PendingLoads and PendingExports must be flushed here; 6858 // this call might not return. 6859 (void)getRoot(); 6860 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 6861 6862 CLI.setChain(getRoot()); 6863 } 6864 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6865 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6866 6867 assert((CLI.IsTailCall || Result.second.getNode()) && 6868 "Non-null chain expected with non-tail call!"); 6869 assert((Result.second.getNode() || !Result.first.getNode()) && 6870 "Null value expected with tail call!"); 6871 6872 if (!Result.second.getNode()) { 6873 // As a special case, a null chain means that a tail call has been emitted 6874 // and the DAG root is already updated. 6875 HasTailCall = true; 6876 6877 // Since there's no actual continuation from this block, nothing can be 6878 // relying on us setting vregs for them. 6879 PendingExports.clear(); 6880 } else { 6881 DAG.setRoot(Result.second); 6882 } 6883 6884 if (EHPadBB) { 6885 // Insert a label at the end of the invoke call to mark the try range. This 6886 // can be used to detect deletion of the invoke via the MachineModuleInfo. 6887 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 6888 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 6889 6890 // Inform MachineModuleInfo of range. 6891 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 6892 // There is a platform (e.g. wasm) that uses funclet style IR but does not 6893 // actually use outlined funclets and their LSDA info style. 6894 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 6895 assert(CLI.CS); 6896 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 6897 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()), 6898 BeginLabel, EndLabel); 6899 } else if (!isScopedEHPersonality(Pers)) { 6900 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 6901 } 6902 } 6903 6904 return Result; 6905 } 6906 6907 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 6908 bool isTailCall, 6909 const BasicBlock *EHPadBB) { 6910 auto &DL = DAG.getDataLayout(); 6911 FunctionType *FTy = CS.getFunctionType(); 6912 Type *RetTy = CS.getType(); 6913 6914 TargetLowering::ArgListTy Args; 6915 Args.reserve(CS.arg_size()); 6916 6917 const Value *SwiftErrorVal = nullptr; 6918 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6919 6920 // We can't tail call inside a function with a swifterror argument. Lowering 6921 // does not support this yet. It would have to move into the swifterror 6922 // register before the call. 6923 auto *Caller = CS.getInstruction()->getParent()->getParent(); 6924 if (TLI.supportSwiftError() && 6925 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 6926 isTailCall = false; 6927 6928 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 6929 i != e; ++i) { 6930 TargetLowering::ArgListEntry Entry; 6931 const Value *V = *i; 6932 6933 // Skip empty types 6934 if (V->getType()->isEmptyTy()) 6935 continue; 6936 6937 SDValue ArgNode = getValue(V); 6938 Entry.Node = ArgNode; Entry.Ty = V->getType(); 6939 6940 Entry.setAttributes(&CS, i - CS.arg_begin()); 6941 6942 // Use swifterror virtual register as input to the call. 6943 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 6944 SwiftErrorVal = V; 6945 // We find the virtual register for the actual swifterror argument. 6946 // Instead of using the Value, we use the virtual register instead. 6947 Entry.Node = DAG.getRegister(FuncInfo 6948 .getOrCreateSwiftErrorVRegUseAt( 6949 CS.getInstruction(), FuncInfo.MBB, V) 6950 .first, 6951 EVT(TLI.getPointerTy(DL))); 6952 } 6953 6954 Args.push_back(Entry); 6955 6956 // If we have an explicit sret argument that is an Instruction, (i.e., it 6957 // might point to function-local memory), we can't meaningfully tail-call. 6958 if (Entry.IsSRet && isa<Instruction>(V)) 6959 isTailCall = false; 6960 } 6961 6962 // Check if target-independent constraints permit a tail call here. 6963 // Target-dependent constraints are checked within TLI->LowerCallTo. 6964 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 6965 isTailCall = false; 6966 6967 // Disable tail calls if there is an swifterror argument. Targets have not 6968 // been updated to support tail calls. 6969 if (TLI.supportSwiftError() && SwiftErrorVal) 6970 isTailCall = false; 6971 6972 TargetLowering::CallLoweringInfo CLI(DAG); 6973 CLI.setDebugLoc(getCurSDLoc()) 6974 .setChain(getRoot()) 6975 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 6976 .setTailCall(isTailCall) 6977 .setConvergent(CS.isConvergent()); 6978 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 6979 6980 if (Result.first.getNode()) { 6981 const Instruction *Inst = CS.getInstruction(); 6982 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 6983 setValue(Inst, Result.first); 6984 } 6985 6986 // The last element of CLI.InVals has the SDValue for swifterror return. 6987 // Here we copy it to a virtual register and update SwiftErrorMap for 6988 // book-keeping. 6989 if (SwiftErrorVal && TLI.supportSwiftError()) { 6990 // Get the last element of InVals. 6991 SDValue Src = CLI.InVals.back(); 6992 unsigned VReg; bool CreatedVReg; 6993 std::tie(VReg, CreatedVReg) = 6994 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction()); 6995 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 6996 // We update the virtual register for the actual swifterror argument. 6997 if (CreatedVReg) 6998 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg); 6999 DAG.setRoot(CopyNode); 7000 } 7001 } 7002 7003 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7004 SelectionDAGBuilder &Builder) { 7005 // Check to see if this load can be trivially constant folded, e.g. if the 7006 // input is from a string literal. 7007 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7008 // Cast pointer to the type we really want to load. 7009 Type *LoadTy = 7010 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7011 if (LoadVT.isVector()) 7012 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7013 7014 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7015 PointerType::getUnqual(LoadTy)); 7016 7017 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7018 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7019 return Builder.getValue(LoadCst); 7020 } 7021 7022 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7023 // still constant memory, the input chain can be the entry node. 7024 SDValue Root; 7025 bool ConstantMemory = false; 7026 7027 // Do not serialize (non-volatile) loads of constant memory with anything. 7028 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7029 Root = Builder.DAG.getEntryNode(); 7030 ConstantMemory = true; 7031 } else { 7032 // Do not serialize non-volatile loads against each other. 7033 Root = Builder.DAG.getRoot(); 7034 } 7035 7036 SDValue Ptr = Builder.getValue(PtrVal); 7037 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 7038 Ptr, MachinePointerInfo(PtrVal), 7039 /* Alignment = */ 1); 7040 7041 if (!ConstantMemory) 7042 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7043 return LoadVal; 7044 } 7045 7046 /// Record the value for an instruction that produces an integer result, 7047 /// converting the type where necessary. 7048 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7049 SDValue Value, 7050 bool IsSigned) { 7051 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7052 I.getType(), true); 7053 if (IsSigned) 7054 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7055 else 7056 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7057 setValue(&I, Value); 7058 } 7059 7060 /// See if we can lower a memcmp call into an optimized form. If so, return 7061 /// true and lower it. Otherwise return false, and it will be lowered like a 7062 /// normal call. 7063 /// The caller already checked that \p I calls the appropriate LibFunc with a 7064 /// correct prototype. 7065 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 7066 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7067 const Value *Size = I.getArgOperand(2); 7068 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7069 if (CSize && CSize->getZExtValue() == 0) { 7070 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7071 I.getType(), true); 7072 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7073 return true; 7074 } 7075 7076 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7077 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7078 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7079 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7080 if (Res.first.getNode()) { 7081 processIntegerCallValue(I, Res.first, true); 7082 PendingLoads.push_back(Res.second); 7083 return true; 7084 } 7085 7086 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7087 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7088 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7089 return false; 7090 7091 // If the target has a fast compare for the given size, it will return a 7092 // preferred load type for that size. Require that the load VT is legal and 7093 // that the target supports unaligned loads of that type. Otherwise, return 7094 // INVALID. 7095 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7096 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7097 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7098 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7099 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7100 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7101 // TODO: Check alignment of src and dest ptrs. 7102 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7103 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7104 if (!TLI.isTypeLegal(LVT) || 7105 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7106 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7107 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7108 } 7109 7110 return LVT; 7111 }; 7112 7113 // This turns into unaligned loads. We only do this if the target natively 7114 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7115 // we'll only produce a small number of byte loads. 7116 MVT LoadVT; 7117 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7118 switch (NumBitsToCompare) { 7119 default: 7120 return false; 7121 case 16: 7122 LoadVT = MVT::i16; 7123 break; 7124 case 32: 7125 LoadVT = MVT::i32; 7126 break; 7127 case 64: 7128 case 128: 7129 case 256: 7130 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7131 break; 7132 } 7133 7134 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7135 return false; 7136 7137 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7138 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7139 7140 // Bitcast to a wide integer type if the loads are vectors. 7141 if (LoadVT.isVector()) { 7142 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7143 LoadL = DAG.getBitcast(CmpVT, LoadL); 7144 LoadR = DAG.getBitcast(CmpVT, LoadR); 7145 } 7146 7147 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7148 processIntegerCallValue(I, Cmp, false); 7149 return true; 7150 } 7151 7152 /// See if we can lower a memchr call into an optimized form. If so, return 7153 /// true and lower it. Otherwise return false, and it will be lowered like a 7154 /// normal call. 7155 /// The caller already checked that \p I calls the appropriate LibFunc with a 7156 /// correct prototype. 7157 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7158 const Value *Src = I.getArgOperand(0); 7159 const Value *Char = I.getArgOperand(1); 7160 const Value *Length = I.getArgOperand(2); 7161 7162 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7163 std::pair<SDValue, SDValue> Res = 7164 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7165 getValue(Src), getValue(Char), getValue(Length), 7166 MachinePointerInfo(Src)); 7167 if (Res.first.getNode()) { 7168 setValue(&I, Res.first); 7169 PendingLoads.push_back(Res.second); 7170 return true; 7171 } 7172 7173 return false; 7174 } 7175 7176 /// See if we can lower a mempcpy call into an optimized form. If so, return 7177 /// true and lower it. Otherwise return false, and it will be lowered like a 7178 /// normal call. 7179 /// The caller already checked that \p I calls the appropriate LibFunc with a 7180 /// correct prototype. 7181 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7182 SDValue Dst = getValue(I.getArgOperand(0)); 7183 SDValue Src = getValue(I.getArgOperand(1)); 7184 SDValue Size = getValue(I.getArgOperand(2)); 7185 7186 unsigned DstAlign = DAG.InferPtrAlignment(Dst); 7187 unsigned SrcAlign = DAG.InferPtrAlignment(Src); 7188 unsigned Align = std::min(DstAlign, SrcAlign); 7189 if (Align == 0) // Alignment of one or both could not be inferred. 7190 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved. 7191 7192 bool isVol = false; 7193 SDLoc sdl = getCurSDLoc(); 7194 7195 // In the mempcpy context we need to pass in a false value for isTailCall 7196 // because the return pointer needs to be adjusted by the size of 7197 // the copied memory. 7198 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol, 7199 false, /*isTailCall=*/false, 7200 MachinePointerInfo(I.getArgOperand(0)), 7201 MachinePointerInfo(I.getArgOperand(1))); 7202 assert(MC.getNode() != nullptr && 7203 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7204 DAG.setRoot(MC); 7205 7206 // Check if Size needs to be truncated or extended. 7207 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7208 7209 // Adjust return pointer to point just past the last dst byte. 7210 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7211 Dst, Size); 7212 setValue(&I, DstPlusSize); 7213 return true; 7214 } 7215 7216 /// See if we can lower a strcpy call into an optimized form. If so, return 7217 /// true and lower it, otherwise return false and it will be lowered like a 7218 /// normal call. 7219 /// The caller already checked that \p I calls the appropriate LibFunc with a 7220 /// correct prototype. 7221 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7222 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7223 7224 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7225 std::pair<SDValue, SDValue> Res = 7226 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7227 getValue(Arg0), getValue(Arg1), 7228 MachinePointerInfo(Arg0), 7229 MachinePointerInfo(Arg1), isStpcpy); 7230 if (Res.first.getNode()) { 7231 setValue(&I, Res.first); 7232 DAG.setRoot(Res.second); 7233 return true; 7234 } 7235 7236 return false; 7237 } 7238 7239 /// See if we can lower a strcmp call into an optimized form. If so, return 7240 /// true and lower it, otherwise return false and it will be lowered like a 7241 /// normal call. 7242 /// The caller already checked that \p I calls the appropriate LibFunc with a 7243 /// correct prototype. 7244 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7245 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7246 7247 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7248 std::pair<SDValue, SDValue> Res = 7249 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7250 getValue(Arg0), getValue(Arg1), 7251 MachinePointerInfo(Arg0), 7252 MachinePointerInfo(Arg1)); 7253 if (Res.first.getNode()) { 7254 processIntegerCallValue(I, Res.first, true); 7255 PendingLoads.push_back(Res.second); 7256 return true; 7257 } 7258 7259 return false; 7260 } 7261 7262 /// See if we can lower a strlen call into an optimized form. If so, return 7263 /// true and lower it, otherwise return false and it will be lowered like a 7264 /// normal call. 7265 /// The caller already checked that \p I calls the appropriate LibFunc with a 7266 /// correct prototype. 7267 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7268 const Value *Arg0 = I.getArgOperand(0); 7269 7270 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7271 std::pair<SDValue, SDValue> Res = 7272 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7273 getValue(Arg0), MachinePointerInfo(Arg0)); 7274 if (Res.first.getNode()) { 7275 processIntegerCallValue(I, Res.first, false); 7276 PendingLoads.push_back(Res.second); 7277 return true; 7278 } 7279 7280 return false; 7281 } 7282 7283 /// See if we can lower a strnlen call into an optimized form. If so, return 7284 /// true and lower it, otherwise return false and it will be lowered like a 7285 /// normal call. 7286 /// The caller already checked that \p I calls the appropriate LibFunc with a 7287 /// correct prototype. 7288 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7289 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7290 7291 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7292 std::pair<SDValue, SDValue> Res = 7293 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7294 getValue(Arg0), getValue(Arg1), 7295 MachinePointerInfo(Arg0)); 7296 if (Res.first.getNode()) { 7297 processIntegerCallValue(I, Res.first, false); 7298 PendingLoads.push_back(Res.second); 7299 return true; 7300 } 7301 7302 return false; 7303 } 7304 7305 /// See if we can lower a unary floating-point operation into an SDNode with 7306 /// the specified Opcode. If so, return true and lower it, otherwise return 7307 /// false and it will be lowered like a normal call. 7308 /// The caller already checked that \p I calls the appropriate LibFunc with a 7309 /// correct prototype. 7310 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7311 unsigned Opcode) { 7312 // We already checked this call's prototype; verify it doesn't modify errno. 7313 if (!I.onlyReadsMemory()) 7314 return false; 7315 7316 SDValue Tmp = getValue(I.getArgOperand(0)); 7317 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 7318 return true; 7319 } 7320 7321 /// See if we can lower a binary floating-point operation into an SDNode with 7322 /// the specified Opcode. If so, return true and lower it. Otherwise return 7323 /// false, and it will be lowered like a normal call. 7324 /// The caller already checked that \p I calls the appropriate LibFunc with a 7325 /// correct prototype. 7326 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7327 unsigned Opcode) { 7328 // We already checked this call's prototype; verify it doesn't modify errno. 7329 if (!I.onlyReadsMemory()) 7330 return false; 7331 7332 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7333 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7334 EVT VT = Tmp0.getValueType(); 7335 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 7336 return true; 7337 } 7338 7339 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7340 // Handle inline assembly differently. 7341 if (isa<InlineAsm>(I.getCalledValue())) { 7342 visitInlineAsm(&I); 7343 return; 7344 } 7345 7346 const char *RenameFn = nullptr; 7347 if (Function *F = I.getCalledFunction()) { 7348 if (F->isDeclaration()) { 7349 // Is this an LLVM intrinsic or a target-specific intrinsic? 7350 unsigned IID = F->getIntrinsicID(); 7351 if (!IID) 7352 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7353 IID = II->getIntrinsicID(F); 7354 7355 if (IID) { 7356 RenameFn = visitIntrinsicCall(I, IID); 7357 if (!RenameFn) 7358 return; 7359 } 7360 } 7361 7362 // Check for well-known libc/libm calls. If the function is internal, it 7363 // can't be a library call. Don't do the check if marked as nobuiltin for 7364 // some reason or the call site requires strict floating point semantics. 7365 LibFunc Func; 7366 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7367 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7368 LibInfo->hasOptimizedCodeGen(Func)) { 7369 switch (Func) { 7370 default: break; 7371 case LibFunc_copysign: 7372 case LibFunc_copysignf: 7373 case LibFunc_copysignl: 7374 // We already checked this call's prototype; verify it doesn't modify 7375 // errno. 7376 if (I.onlyReadsMemory()) { 7377 SDValue LHS = getValue(I.getArgOperand(0)); 7378 SDValue RHS = getValue(I.getArgOperand(1)); 7379 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7380 LHS.getValueType(), LHS, RHS)); 7381 return; 7382 } 7383 break; 7384 case LibFunc_fabs: 7385 case LibFunc_fabsf: 7386 case LibFunc_fabsl: 7387 if (visitUnaryFloatCall(I, ISD::FABS)) 7388 return; 7389 break; 7390 case LibFunc_fmin: 7391 case LibFunc_fminf: 7392 case LibFunc_fminl: 7393 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7394 return; 7395 break; 7396 case LibFunc_fmax: 7397 case LibFunc_fmaxf: 7398 case LibFunc_fmaxl: 7399 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7400 return; 7401 break; 7402 case LibFunc_sin: 7403 case LibFunc_sinf: 7404 case LibFunc_sinl: 7405 if (visitUnaryFloatCall(I, ISD::FSIN)) 7406 return; 7407 break; 7408 case LibFunc_cos: 7409 case LibFunc_cosf: 7410 case LibFunc_cosl: 7411 if (visitUnaryFloatCall(I, ISD::FCOS)) 7412 return; 7413 break; 7414 case LibFunc_sqrt: 7415 case LibFunc_sqrtf: 7416 case LibFunc_sqrtl: 7417 case LibFunc_sqrt_finite: 7418 case LibFunc_sqrtf_finite: 7419 case LibFunc_sqrtl_finite: 7420 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7421 return; 7422 break; 7423 case LibFunc_floor: 7424 case LibFunc_floorf: 7425 case LibFunc_floorl: 7426 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7427 return; 7428 break; 7429 case LibFunc_nearbyint: 7430 case LibFunc_nearbyintf: 7431 case LibFunc_nearbyintl: 7432 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7433 return; 7434 break; 7435 case LibFunc_ceil: 7436 case LibFunc_ceilf: 7437 case LibFunc_ceill: 7438 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7439 return; 7440 break; 7441 case LibFunc_rint: 7442 case LibFunc_rintf: 7443 case LibFunc_rintl: 7444 if (visitUnaryFloatCall(I, ISD::FRINT)) 7445 return; 7446 break; 7447 case LibFunc_round: 7448 case LibFunc_roundf: 7449 case LibFunc_roundl: 7450 if (visitUnaryFloatCall(I, ISD::FROUND)) 7451 return; 7452 break; 7453 case LibFunc_trunc: 7454 case LibFunc_truncf: 7455 case LibFunc_truncl: 7456 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7457 return; 7458 break; 7459 case LibFunc_log2: 7460 case LibFunc_log2f: 7461 case LibFunc_log2l: 7462 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7463 return; 7464 break; 7465 case LibFunc_exp2: 7466 case LibFunc_exp2f: 7467 case LibFunc_exp2l: 7468 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7469 return; 7470 break; 7471 case LibFunc_memcmp: 7472 if (visitMemCmpCall(I)) 7473 return; 7474 break; 7475 case LibFunc_mempcpy: 7476 if (visitMemPCpyCall(I)) 7477 return; 7478 break; 7479 case LibFunc_memchr: 7480 if (visitMemChrCall(I)) 7481 return; 7482 break; 7483 case LibFunc_strcpy: 7484 if (visitStrCpyCall(I, false)) 7485 return; 7486 break; 7487 case LibFunc_stpcpy: 7488 if (visitStrCpyCall(I, true)) 7489 return; 7490 break; 7491 case LibFunc_strcmp: 7492 if (visitStrCmpCall(I)) 7493 return; 7494 break; 7495 case LibFunc_strlen: 7496 if (visitStrLenCall(I)) 7497 return; 7498 break; 7499 case LibFunc_strnlen: 7500 if (visitStrNLenCall(I)) 7501 return; 7502 break; 7503 } 7504 } 7505 } 7506 7507 SDValue Callee; 7508 if (!RenameFn) 7509 Callee = getValue(I.getCalledValue()); 7510 else 7511 Callee = DAG.getExternalSymbol( 7512 RenameFn, 7513 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 7514 7515 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7516 // have to do anything here to lower funclet bundles. 7517 assert(!I.hasOperandBundlesOtherThan( 7518 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 7519 "Cannot lower calls with arbitrary operand bundles!"); 7520 7521 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7522 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7523 else 7524 // Check if we can potentially perform a tail call. More detailed checking 7525 // is be done within LowerCallTo, after more information about the call is 7526 // known. 7527 LowerCallTo(&I, Callee, I.isTailCall()); 7528 } 7529 7530 namespace { 7531 7532 /// AsmOperandInfo - This contains information for each constraint that we are 7533 /// lowering. 7534 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7535 public: 7536 /// CallOperand - If this is the result output operand or a clobber 7537 /// this is null, otherwise it is the incoming operand to the CallInst. 7538 /// This gets modified as the asm is processed. 7539 SDValue CallOperand; 7540 7541 /// AssignedRegs - If this is a register or register class operand, this 7542 /// contains the set of register corresponding to the operand. 7543 RegsForValue AssignedRegs; 7544 7545 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 7546 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 7547 } 7548 7549 /// Whether or not this operand accesses memory 7550 bool hasMemory(const TargetLowering &TLI) const { 7551 // Indirect operand accesses access memory. 7552 if (isIndirect) 7553 return true; 7554 7555 for (const auto &Code : Codes) 7556 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 7557 return true; 7558 7559 return false; 7560 } 7561 7562 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 7563 /// corresponds to. If there is no Value* for this operand, it returns 7564 /// MVT::Other. 7565 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 7566 const DataLayout &DL) const { 7567 if (!CallOperandVal) return MVT::Other; 7568 7569 if (isa<BasicBlock>(CallOperandVal)) 7570 return TLI.getPointerTy(DL); 7571 7572 llvm::Type *OpTy = CallOperandVal->getType(); 7573 7574 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 7575 // If this is an indirect operand, the operand is a pointer to the 7576 // accessed type. 7577 if (isIndirect) { 7578 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 7579 if (!PtrTy) 7580 report_fatal_error("Indirect operand for inline asm not a pointer!"); 7581 OpTy = PtrTy->getElementType(); 7582 } 7583 7584 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 7585 if (StructType *STy = dyn_cast<StructType>(OpTy)) 7586 if (STy->getNumElements() == 1) 7587 OpTy = STy->getElementType(0); 7588 7589 // If OpTy is not a single value, it may be a struct/union that we 7590 // can tile with integers. 7591 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 7592 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 7593 switch (BitSize) { 7594 default: break; 7595 case 1: 7596 case 8: 7597 case 16: 7598 case 32: 7599 case 64: 7600 case 128: 7601 OpTy = IntegerType::get(Context, BitSize); 7602 break; 7603 } 7604 } 7605 7606 return TLI.getValueType(DL, OpTy, true); 7607 } 7608 }; 7609 7610 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>; 7611 7612 } // end anonymous namespace 7613 7614 /// Make sure that the output operand \p OpInfo and its corresponding input 7615 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 7616 /// out). 7617 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 7618 SDISelAsmOperandInfo &MatchingOpInfo, 7619 SelectionDAG &DAG) { 7620 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 7621 return; 7622 7623 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 7624 const auto &TLI = DAG.getTargetLoweringInfo(); 7625 7626 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 7627 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 7628 OpInfo.ConstraintVT); 7629 std::pair<unsigned, const TargetRegisterClass *> InputRC = 7630 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 7631 MatchingOpInfo.ConstraintVT); 7632 if ((OpInfo.ConstraintVT.isInteger() != 7633 MatchingOpInfo.ConstraintVT.isInteger()) || 7634 (MatchRC.second != InputRC.second)) { 7635 // FIXME: error out in a more elegant fashion 7636 report_fatal_error("Unsupported asm: input constraint" 7637 " with a matching output constraint of" 7638 " incompatible type!"); 7639 } 7640 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 7641 } 7642 7643 /// Get a direct memory input to behave well as an indirect operand. 7644 /// This may introduce stores, hence the need for a \p Chain. 7645 /// \return The (possibly updated) chain. 7646 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 7647 SDISelAsmOperandInfo &OpInfo, 7648 SelectionDAG &DAG) { 7649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7650 7651 // If we don't have an indirect input, put it in the constpool if we can, 7652 // otherwise spill it to a stack slot. 7653 // TODO: This isn't quite right. We need to handle these according to 7654 // the addressing mode that the constraint wants. Also, this may take 7655 // an additional register for the computation and we don't want that 7656 // either. 7657 7658 // If the operand is a float, integer, or vector constant, spill to a 7659 // constant pool entry to get its address. 7660 const Value *OpVal = OpInfo.CallOperandVal; 7661 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 7662 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 7663 OpInfo.CallOperand = DAG.getConstantPool( 7664 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 7665 return Chain; 7666 } 7667 7668 // Otherwise, create a stack slot and emit a store to it before the asm. 7669 Type *Ty = OpVal->getType(); 7670 auto &DL = DAG.getDataLayout(); 7671 uint64_t TySize = DL.getTypeAllocSize(Ty); 7672 unsigned Align = DL.getPrefTypeAlignment(Ty); 7673 MachineFunction &MF = DAG.getMachineFunction(); 7674 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 7675 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 7676 Chain = DAG.getStore(Chain, Location, OpInfo.CallOperand, StackSlot, 7677 MachinePointerInfo::getFixedStack(MF, SSFI)); 7678 OpInfo.CallOperand = StackSlot; 7679 7680 return Chain; 7681 } 7682 7683 /// GetRegistersForValue - Assign registers (virtual or physical) for the 7684 /// specified operand. We prefer to assign virtual registers, to allow the 7685 /// register allocator to handle the assignment process. However, if the asm 7686 /// uses features that we can't model on machineinstrs, we have SDISel do the 7687 /// allocation. This produces generally horrible, but correct, code. 7688 /// 7689 /// OpInfo describes the operand 7690 /// RefOpInfo describes the matching operand if any, the operand otherwise 7691 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 7692 SDISelAsmOperandInfo &OpInfo, 7693 SDISelAsmOperandInfo &RefOpInfo) { 7694 LLVMContext &Context = *DAG.getContext(); 7695 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7696 7697 MachineFunction &MF = DAG.getMachineFunction(); 7698 SmallVector<unsigned, 4> Regs; 7699 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 7700 7701 // No work to do for memory operations. 7702 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 7703 return; 7704 7705 // If this is a constraint for a single physreg, or a constraint for a 7706 // register class, find it. 7707 unsigned AssignedReg; 7708 const TargetRegisterClass *RC; 7709 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 7710 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 7711 // RC is unset only on failure. Return immediately. 7712 if (!RC) 7713 return; 7714 7715 // Get the actual register value type. This is important, because the user 7716 // may have asked for (e.g.) the AX register in i32 type. We need to 7717 // remember that AX is actually i16 to get the right extension. 7718 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 7719 7720 if (OpInfo.ConstraintVT != MVT::Other) { 7721 // If this is an FP operand in an integer register (or visa versa), or more 7722 // generally if the operand value disagrees with the register class we plan 7723 // to stick it in, fix the operand type. 7724 // 7725 // If this is an input value, the bitcast to the new type is done now. 7726 // Bitcast for output value is done at the end of visitInlineAsm(). 7727 if ((OpInfo.Type == InlineAsm::isOutput || 7728 OpInfo.Type == InlineAsm::isInput) && 7729 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 7730 // Try to convert to the first EVT that the reg class contains. If the 7731 // types are identical size, use a bitcast to convert (e.g. two differing 7732 // vector types). Note: output bitcast is done at the end of 7733 // visitInlineAsm(). 7734 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 7735 // Exclude indirect inputs while they are unsupported because the code 7736 // to perform the load is missing and thus OpInfo.CallOperand still 7737 // refers to the input address rather than the pointed-to value. 7738 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 7739 OpInfo.CallOperand = 7740 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 7741 OpInfo.ConstraintVT = RegVT; 7742 // If the operand is an FP value and we want it in integer registers, 7743 // use the corresponding integer type. This turns an f64 value into 7744 // i64, which can be passed with two i32 values on a 32-bit machine. 7745 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 7746 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 7747 if (OpInfo.Type == InlineAsm::isInput) 7748 OpInfo.CallOperand = 7749 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 7750 OpInfo.ConstraintVT = VT; 7751 } 7752 } 7753 } 7754 7755 // No need to allocate a matching input constraint since the constraint it's 7756 // matching to has already been allocated. 7757 if (OpInfo.isMatchingInputConstraint()) 7758 return; 7759 7760 EVT ValueVT = OpInfo.ConstraintVT; 7761 if (OpInfo.ConstraintVT == MVT::Other) 7762 ValueVT = RegVT; 7763 7764 // Initialize NumRegs. 7765 unsigned NumRegs = 1; 7766 if (OpInfo.ConstraintVT != MVT::Other) 7767 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 7768 7769 // If this is a constraint for a specific physical register, like {r17}, 7770 // assign it now. 7771 7772 // If this associated to a specific register, initialize iterator to correct 7773 // place. If virtual, make sure we have enough registers 7774 7775 // Initialize iterator if necessary 7776 TargetRegisterClass::iterator I = RC->begin(); 7777 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 7778 7779 // Do not check for single registers. 7780 if (AssignedReg) { 7781 for (; *I != AssignedReg; ++I) 7782 assert(I != RC->end() && "AssignedReg should be member of RC"); 7783 } 7784 7785 for (; NumRegs; --NumRegs, ++I) { 7786 assert(I != RC->end() && "Ran out of registers to allocate!"); 7787 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC); 7788 Regs.push_back(R); 7789 } 7790 7791 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 7792 } 7793 7794 static unsigned 7795 findMatchingInlineAsmOperand(unsigned OperandNo, 7796 const std::vector<SDValue> &AsmNodeOperands) { 7797 // Scan until we find the definition we already emitted of this operand. 7798 unsigned CurOp = InlineAsm::Op_FirstOperand; 7799 for (; OperandNo; --OperandNo) { 7800 // Advance to the next operand. 7801 unsigned OpFlag = 7802 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 7803 assert((InlineAsm::isRegDefKind(OpFlag) || 7804 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 7805 InlineAsm::isMemKind(OpFlag)) && 7806 "Skipped past definitions?"); 7807 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 7808 } 7809 return CurOp; 7810 } 7811 7812 namespace { 7813 7814 class ExtraFlags { 7815 unsigned Flags = 0; 7816 7817 public: 7818 explicit ExtraFlags(ImmutableCallSite CS) { 7819 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7820 if (IA->hasSideEffects()) 7821 Flags |= InlineAsm::Extra_HasSideEffects; 7822 if (IA->isAlignStack()) 7823 Flags |= InlineAsm::Extra_IsAlignStack; 7824 if (CS.isConvergent()) 7825 Flags |= InlineAsm::Extra_IsConvergent; 7826 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 7827 } 7828 7829 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 7830 // Ideally, we would only check against memory constraints. However, the 7831 // meaning of an Other constraint can be target-specific and we can't easily 7832 // reason about it. Therefore, be conservative and set MayLoad/MayStore 7833 // for Other constraints as well. 7834 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7835 OpInfo.ConstraintType == TargetLowering::C_Other) { 7836 if (OpInfo.Type == InlineAsm::isInput) 7837 Flags |= InlineAsm::Extra_MayLoad; 7838 else if (OpInfo.Type == InlineAsm::isOutput) 7839 Flags |= InlineAsm::Extra_MayStore; 7840 else if (OpInfo.Type == InlineAsm::isClobber) 7841 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 7842 } 7843 } 7844 7845 unsigned get() const { return Flags; } 7846 }; 7847 7848 } // end anonymous namespace 7849 7850 /// visitInlineAsm - Handle a call to an InlineAsm object. 7851 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 7852 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 7853 7854 /// ConstraintOperands - Information about all of the constraints. 7855 SDISelAsmOperandInfoVector ConstraintOperands; 7856 7857 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7858 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 7859 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 7860 7861 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 7862 // AsmDialect, MayLoad, MayStore). 7863 bool HasSideEffect = IA->hasSideEffects(); 7864 ExtraFlags ExtraInfo(CS); 7865 7866 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 7867 unsigned ResNo = 0; // ResNo - The result number of the next output. 7868 for (auto &T : TargetConstraints) { 7869 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 7870 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 7871 7872 // Compute the value type for each operand. 7873 if (OpInfo.Type == InlineAsm::isInput || 7874 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 7875 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 7876 7877 // Process the call argument. BasicBlocks are labels, currently appearing 7878 // only in asm's. 7879 const Instruction *I = CS.getInstruction(); 7880 if (isa<CallBrInst>(I) && 7881 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() - 7882 cast<CallBrInst>(I)->getNumIndirectDests())) { 7883 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 7884 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 7885 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 7886 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 7887 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 7888 } else { 7889 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 7890 } 7891 7892 OpInfo.ConstraintVT = 7893 OpInfo 7894 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout()) 7895 .getSimpleVT(); 7896 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 7897 // The return value of the call is this value. As such, there is no 7898 // corresponding argument. 7899 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 7900 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 7901 OpInfo.ConstraintVT = TLI.getSimpleValueType( 7902 DAG.getDataLayout(), STy->getElementType(ResNo)); 7903 } else { 7904 assert(ResNo == 0 && "Asm only has one result!"); 7905 OpInfo.ConstraintVT = 7906 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 7907 } 7908 ++ResNo; 7909 } else { 7910 OpInfo.ConstraintVT = MVT::Other; 7911 } 7912 7913 if (!HasSideEffect) 7914 HasSideEffect = OpInfo.hasMemory(TLI); 7915 7916 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 7917 // FIXME: Could we compute this on OpInfo rather than T? 7918 7919 // Compute the constraint code and ConstraintType to use. 7920 TLI.ComputeConstraintToUse(T, SDValue()); 7921 7922 ExtraInfo.update(T); 7923 } 7924 7925 // We won't need to flush pending loads if this asm doesn't touch 7926 // memory and is nonvolatile. 7927 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 7928 7929 // Second pass over the constraints: compute which constraint option to use. 7930 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7931 // If this is an output operand with a matching input operand, look up the 7932 // matching input. If their types mismatch, e.g. one is an integer, the 7933 // other is floating point, or their sizes are different, flag it as an 7934 // error. 7935 if (OpInfo.hasMatchingInput()) { 7936 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 7937 patchMatchingInput(OpInfo, Input, DAG); 7938 } 7939 7940 // Compute the constraint code and ConstraintType to use. 7941 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 7942 7943 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7944 OpInfo.Type == InlineAsm::isClobber) 7945 continue; 7946 7947 // If this is a memory input, and if the operand is not indirect, do what we 7948 // need to provide an address for the memory input. 7949 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 7950 !OpInfo.isIndirect) { 7951 assert((OpInfo.isMultipleAlternative || 7952 (OpInfo.Type == InlineAsm::isInput)) && 7953 "Can only indirectify direct input operands!"); 7954 7955 // Memory operands really want the address of the value. 7956 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 7957 7958 // There is no longer a Value* corresponding to this operand. 7959 OpInfo.CallOperandVal = nullptr; 7960 7961 // It is now an indirect operand. 7962 OpInfo.isIndirect = true; 7963 } 7964 7965 } 7966 7967 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 7968 std::vector<SDValue> AsmNodeOperands; 7969 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 7970 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 7971 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 7972 7973 // If we have a !srcloc metadata node associated with it, we want to attach 7974 // this to the ultimately generated inline asm machineinstr. To do this, we 7975 // pass in the third operand as this (potentially null) inline asm MDNode. 7976 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 7977 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 7978 7979 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 7980 // bits as operand 3. 7981 AsmNodeOperands.push_back(DAG.getTargetConstant( 7982 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 7983 7984 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 7985 // this, assign virtual and physical registers for inputs and otput. 7986 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 7987 // Assign Registers. 7988 SDISelAsmOperandInfo &RefOpInfo = 7989 OpInfo.isMatchingInputConstraint() 7990 ? ConstraintOperands[OpInfo.getMatchedOperand()] 7991 : OpInfo; 7992 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 7993 7994 switch (OpInfo.Type) { 7995 case InlineAsm::isOutput: 7996 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 7997 (OpInfo.ConstraintType == TargetLowering::C_Other && 7998 OpInfo.isIndirect)) { 7999 unsigned ConstraintID = 8000 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8001 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8002 "Failed to convert memory constraint code to constraint id."); 8003 8004 // Add information to the INLINEASM node to know about this output. 8005 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8006 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8007 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8008 MVT::i32)); 8009 AsmNodeOperands.push_back(OpInfo.CallOperand); 8010 break; 8011 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other && 8012 !OpInfo.isIndirect) || 8013 OpInfo.ConstraintType == TargetLowering::C_Register || 8014 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) { 8015 // Otherwise, this outputs to a register (directly for C_Register / 8016 // C_RegisterClass, and a target-defined fashion for C_Other). Find a 8017 // register that we can use. 8018 if (OpInfo.AssignedRegs.Regs.empty()) { 8019 emitInlineAsmError( 8020 CS, "couldn't allocate output register for constraint '" + 8021 Twine(OpInfo.ConstraintCode) + "'"); 8022 return; 8023 } 8024 8025 // Add information to the INLINEASM node to know that this register is 8026 // set. 8027 OpInfo.AssignedRegs.AddInlineAsmOperands( 8028 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8029 : InlineAsm::Kind_RegDef, 8030 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8031 } 8032 break; 8033 8034 case InlineAsm::isInput: { 8035 SDValue InOperandVal = OpInfo.CallOperand; 8036 8037 if (OpInfo.isMatchingInputConstraint()) { 8038 // If this is required to match an output register we have already set, 8039 // just use its register. 8040 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8041 AsmNodeOperands); 8042 unsigned OpFlag = 8043 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8044 if (InlineAsm::isRegDefKind(OpFlag) || 8045 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8046 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8047 if (OpInfo.isIndirect) { 8048 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8049 emitInlineAsmError(CS, "inline asm not supported yet:" 8050 " don't know how to handle tied " 8051 "indirect register inputs"); 8052 return; 8053 } 8054 8055 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8056 SmallVector<unsigned, 4> Regs; 8057 8058 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8059 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8060 MachineRegisterInfo &RegInfo = 8061 DAG.getMachineFunction().getRegInfo(); 8062 for (unsigned i = 0; i != NumRegs; ++i) 8063 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8064 } else { 8065 emitInlineAsmError(CS, "inline asm error: This value type register " 8066 "class is not natively supported!"); 8067 return; 8068 } 8069 8070 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8071 8072 SDLoc dl = getCurSDLoc(); 8073 // Use the produced MatchedRegs object to 8074 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8075 CS.getInstruction()); 8076 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8077 true, OpInfo.getMatchedOperand(), dl, 8078 DAG, AsmNodeOperands); 8079 break; 8080 } 8081 8082 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8083 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8084 "Unexpected number of operands"); 8085 // Add information to the INLINEASM node to know about this input. 8086 // See InlineAsm.h isUseOperandTiedToDef. 8087 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8088 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8089 OpInfo.getMatchedOperand()); 8090 AsmNodeOperands.push_back(DAG.getTargetConstant( 8091 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8092 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8093 break; 8094 } 8095 8096 // Treat indirect 'X' constraint as memory. 8097 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8098 OpInfo.isIndirect) 8099 OpInfo.ConstraintType = TargetLowering::C_Memory; 8100 8101 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 8102 std::vector<SDValue> Ops; 8103 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8104 Ops, DAG); 8105 if (Ops.empty()) { 8106 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" + 8107 Twine(OpInfo.ConstraintCode) + "'"); 8108 return; 8109 } 8110 8111 // Add information to the INLINEASM node to know about this input. 8112 unsigned ResOpType = 8113 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8114 AsmNodeOperands.push_back(DAG.getTargetConstant( 8115 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8116 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 8117 break; 8118 } 8119 8120 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8121 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8122 assert(InOperandVal.getValueType() == 8123 TLI.getPointerTy(DAG.getDataLayout()) && 8124 "Memory operands expect pointer values"); 8125 8126 unsigned ConstraintID = 8127 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8128 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8129 "Failed to convert memory constraint code to constraint id."); 8130 8131 // Add information to the INLINEASM node to know about this input. 8132 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8133 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8134 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8135 getCurSDLoc(), 8136 MVT::i32)); 8137 AsmNodeOperands.push_back(InOperandVal); 8138 break; 8139 } 8140 8141 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8142 OpInfo.ConstraintType == TargetLowering::C_Register) && 8143 "Unknown constraint type!"); 8144 8145 // TODO: Support this. 8146 if (OpInfo.isIndirect) { 8147 emitInlineAsmError( 8148 CS, "Don't know how to handle indirect register inputs yet " 8149 "for constraint '" + 8150 Twine(OpInfo.ConstraintCode) + "'"); 8151 return; 8152 } 8153 8154 // Copy the input into the appropriate registers. 8155 if (OpInfo.AssignedRegs.Regs.empty()) { 8156 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" + 8157 Twine(OpInfo.ConstraintCode) + "'"); 8158 return; 8159 } 8160 8161 SDLoc dl = getCurSDLoc(); 8162 8163 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 8164 Chain, &Flag, CS.getInstruction()); 8165 8166 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8167 dl, DAG, AsmNodeOperands); 8168 break; 8169 } 8170 case InlineAsm::isClobber: 8171 // Add the clobbered value to the operand list, so that the register 8172 // allocator is aware that the physreg got clobbered. 8173 if (!OpInfo.AssignedRegs.Regs.empty()) 8174 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8175 false, 0, getCurSDLoc(), DAG, 8176 AsmNodeOperands); 8177 break; 8178 } 8179 } 8180 8181 // Finish up input operands. Set the input chain and add the flag last. 8182 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8183 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8184 8185 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR 8186 : ISD::INLINEASM; 8187 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8188 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8189 Flag = Chain.getValue(1); 8190 8191 // Do additional work to generate outputs. 8192 8193 SmallVector<EVT, 1> ResultVTs; 8194 SmallVector<SDValue, 1> ResultValues; 8195 SmallVector<SDValue, 8> OutChains; 8196 8197 llvm::Type *CSResultType = CS.getType(); 8198 ArrayRef<Type *> ResultTypes; 8199 if (StructType *StructResult = dyn_cast<StructType>(CSResultType)) 8200 ResultTypes = StructResult->elements(); 8201 else if (!CSResultType->isVoidTy()) 8202 ResultTypes = makeArrayRef(CSResultType); 8203 8204 auto CurResultType = ResultTypes.begin(); 8205 auto handleRegAssign = [&](SDValue V) { 8206 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8207 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8208 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8209 ++CurResultType; 8210 // If the type of the inline asm call site return value is different but has 8211 // same size as the type of the asm output bitcast it. One example of this 8212 // is for vectors with different width / number of elements. This can 8213 // happen for register classes that can contain multiple different value 8214 // types. The preg or vreg allocated may not have the same VT as was 8215 // expected. 8216 // 8217 // This can also happen for a return value that disagrees with the register 8218 // class it is put in, eg. a double in a general-purpose register on a 8219 // 32-bit machine. 8220 if (ResultVT != V.getValueType() && 8221 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8222 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8223 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8224 V.getValueType().isInteger()) { 8225 // If a result value was tied to an input value, the computed result 8226 // may have a wider width than the expected result. Extract the 8227 // relevant portion. 8228 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8229 } 8230 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8231 ResultVTs.push_back(ResultVT); 8232 ResultValues.push_back(V); 8233 }; 8234 8235 // Deal with output operands. 8236 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8237 if (OpInfo.Type == InlineAsm::isOutput) { 8238 SDValue Val; 8239 // Skip trivial output operands. 8240 if (OpInfo.AssignedRegs.Regs.empty()) 8241 continue; 8242 8243 switch (OpInfo.ConstraintType) { 8244 case TargetLowering::C_Register: 8245 case TargetLowering::C_RegisterClass: 8246 Val = OpInfo.AssignedRegs.getCopyFromRegs( 8247 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction()); 8248 break; 8249 case TargetLowering::C_Other: 8250 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8251 OpInfo, DAG); 8252 break; 8253 case TargetLowering::C_Memory: 8254 break; // Already handled. 8255 case TargetLowering::C_Unknown: 8256 assert(false && "Unexpected unknown constraint"); 8257 } 8258 8259 // Indirect output manifest as stores. Record output chains. 8260 if (OpInfo.isIndirect) { 8261 const Value *Ptr = OpInfo.CallOperandVal; 8262 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8263 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8264 MachinePointerInfo(Ptr)); 8265 OutChains.push_back(Store); 8266 } else { 8267 // generate CopyFromRegs to associated registers. 8268 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 8269 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8270 for (const SDValue &V : Val->op_values()) 8271 handleRegAssign(V); 8272 } else 8273 handleRegAssign(Val); 8274 } 8275 } 8276 } 8277 8278 // Set results. 8279 if (!ResultValues.empty()) { 8280 assert(CurResultType == ResultTypes.end() && 8281 "Mismatch in number of ResultTypes"); 8282 assert(ResultValues.size() == ResultTypes.size() && 8283 "Mismatch in number of output operands in asm result"); 8284 8285 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8286 DAG.getVTList(ResultVTs), ResultValues); 8287 setValue(CS.getInstruction(), V); 8288 } 8289 8290 // Collect store chains. 8291 if (!OutChains.empty()) 8292 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8293 8294 // Only Update Root if inline assembly has a memory effect. 8295 if (ResultValues.empty() || HasSideEffect || !OutChains.empty()) 8296 DAG.setRoot(Chain); 8297 } 8298 8299 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS, 8300 const Twine &Message) { 8301 LLVMContext &Ctx = *DAG.getContext(); 8302 Ctx.emitError(CS.getInstruction(), Message); 8303 8304 // Make sure we leave the DAG in a valid state 8305 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8306 SmallVector<EVT, 1> ValueVTs; 8307 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8308 8309 if (ValueVTs.empty()) 8310 return; 8311 8312 SmallVector<SDValue, 1> Ops; 8313 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8314 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8315 8316 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc())); 8317 } 8318 8319 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8320 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8321 MVT::Other, getRoot(), 8322 getValue(I.getArgOperand(0)), 8323 DAG.getSrcValue(I.getArgOperand(0)))); 8324 } 8325 8326 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8327 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8328 const DataLayout &DL = DAG.getDataLayout(); 8329 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 8330 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 8331 DAG.getSrcValue(I.getOperand(0)), 8332 DL.getABITypeAlignment(I.getType())); 8333 setValue(&I, V); 8334 DAG.setRoot(V.getValue(1)); 8335 } 8336 8337 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8338 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8339 MVT::Other, getRoot(), 8340 getValue(I.getArgOperand(0)), 8341 DAG.getSrcValue(I.getArgOperand(0)))); 8342 } 8343 8344 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8345 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8346 MVT::Other, getRoot(), 8347 getValue(I.getArgOperand(0)), 8348 getValue(I.getArgOperand(1)), 8349 DAG.getSrcValue(I.getArgOperand(0)), 8350 DAG.getSrcValue(I.getArgOperand(1)))); 8351 } 8352 8353 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8354 const Instruction &I, 8355 SDValue Op) { 8356 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8357 if (!Range) 8358 return Op; 8359 8360 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8361 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8362 return Op; 8363 8364 APInt Lo = CR.getUnsignedMin(); 8365 if (!Lo.isMinValue()) 8366 return Op; 8367 8368 APInt Hi = CR.getUnsignedMax(); 8369 unsigned Bits = std::max(Hi.getActiveBits(), 8370 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8371 8372 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8373 8374 SDLoc SL = getCurSDLoc(); 8375 8376 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8377 DAG.getValueType(SmallVT)); 8378 unsigned NumVals = Op.getNode()->getNumValues(); 8379 if (NumVals == 1) 8380 return ZExt; 8381 8382 SmallVector<SDValue, 4> Ops; 8383 8384 Ops.push_back(ZExt); 8385 for (unsigned I = 1; I != NumVals; ++I) 8386 Ops.push_back(Op.getValue(I)); 8387 8388 return DAG.getMergeValues(Ops, SL); 8389 } 8390 8391 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8392 /// the call being lowered. 8393 /// 8394 /// This is a helper for lowering intrinsics that follow a target calling 8395 /// convention or require stack pointer adjustment. Only a subset of the 8396 /// intrinsic's operands need to participate in the calling convention. 8397 void SelectionDAGBuilder::populateCallLoweringInfo( 8398 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8399 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8400 bool IsPatchPoint) { 8401 TargetLowering::ArgListTy Args; 8402 Args.reserve(NumArgs); 8403 8404 // Populate the argument list. 8405 // Attributes for args start at offset 1, after the return attribute. 8406 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8407 ArgI != ArgE; ++ArgI) { 8408 const Value *V = Call->getOperand(ArgI); 8409 8410 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8411 8412 TargetLowering::ArgListEntry Entry; 8413 Entry.Node = getValue(V); 8414 Entry.Ty = V->getType(); 8415 Entry.setAttributes(Call, ArgI); 8416 Args.push_back(Entry); 8417 } 8418 8419 CLI.setDebugLoc(getCurSDLoc()) 8420 .setChain(getRoot()) 8421 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8422 .setDiscardResult(Call->use_empty()) 8423 .setIsPatchPoint(IsPatchPoint); 8424 } 8425 8426 /// Add a stack map intrinsic call's live variable operands to a stackmap 8427 /// or patchpoint target node's operand list. 8428 /// 8429 /// Constants are converted to TargetConstants purely as an optimization to 8430 /// avoid constant materialization and register allocation. 8431 /// 8432 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8433 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 8434 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8435 /// address materialization and register allocation, but may also be required 8436 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8437 /// alloca in the entry block, then the runtime may assume that the alloca's 8438 /// StackMap location can be read immediately after compilation and that the 8439 /// location is valid at any point during execution (this is similar to the 8440 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8441 /// only available in a register, then the runtime would need to trap when 8442 /// execution reaches the StackMap in order to read the alloca's location. 8443 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 8444 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8445 SelectionDAGBuilder &Builder) { 8446 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 8447 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 8448 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8449 Ops.push_back( 8450 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8451 Ops.push_back( 8452 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8453 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8454 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8455 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8456 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8457 } else 8458 Ops.push_back(OpVal); 8459 } 8460 } 8461 8462 /// Lower llvm.experimental.stackmap directly to its target opcode. 8463 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8464 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8465 // [live variables...]) 8466 8467 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8468 8469 SDValue Chain, InFlag, Callee, NullPtr; 8470 SmallVector<SDValue, 32> Ops; 8471 8472 SDLoc DL = getCurSDLoc(); 8473 Callee = getValue(CI.getCalledValue()); 8474 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8475 8476 // The stackmap intrinsic only records the live variables (the arguemnts 8477 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8478 // intrinsic, this won't be lowered to a function call. This means we don't 8479 // have to worry about calling conventions and target specific lowering code. 8480 // Instead we perform the call lowering right here. 8481 // 8482 // chain, flag = CALLSEQ_START(chain, 0, 0) 8483 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8484 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8485 // 8486 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 8487 InFlag = Chain.getValue(1); 8488 8489 // Add the <id> and <numBytes> constants. 8490 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 8491 Ops.push_back(DAG.getTargetConstant( 8492 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 8493 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 8494 Ops.push_back(DAG.getTargetConstant( 8495 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 8496 MVT::i32)); 8497 8498 // Push live variables for the stack map. 8499 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 8500 8501 // We are not pushing any register mask info here on the operands list, 8502 // because the stackmap doesn't clobber anything. 8503 8504 // Push the chain and the glue flag. 8505 Ops.push_back(Chain); 8506 Ops.push_back(InFlag); 8507 8508 // Create the STACKMAP node. 8509 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8510 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 8511 Chain = SDValue(SM, 0); 8512 InFlag = Chain.getValue(1); 8513 8514 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 8515 8516 // Stackmaps don't generate values, so nothing goes into the NodeMap. 8517 8518 // Set the root to the target-lowered call chain. 8519 DAG.setRoot(Chain); 8520 8521 // Inform the Frame Information that we have a stackmap in this function. 8522 FuncInfo.MF->getFrameInfo().setHasStackMap(); 8523 } 8524 8525 /// Lower llvm.experimental.patchpoint directly to its target opcode. 8526 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 8527 const BasicBlock *EHPadBB) { 8528 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 8529 // i32 <numBytes>, 8530 // i8* <target>, 8531 // i32 <numArgs>, 8532 // [Args...], 8533 // [live variables...]) 8534 8535 CallingConv::ID CC = CS.getCallingConv(); 8536 bool IsAnyRegCC = CC == CallingConv::AnyReg; 8537 bool HasDef = !CS->getType()->isVoidTy(); 8538 SDLoc dl = getCurSDLoc(); 8539 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 8540 8541 // Handle immediate and symbolic callees. 8542 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 8543 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 8544 /*isTarget=*/true); 8545 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 8546 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 8547 SDLoc(SymbolicCallee), 8548 SymbolicCallee->getValueType(0)); 8549 8550 // Get the real number of arguments participating in the call <numArgs> 8551 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 8552 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 8553 8554 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 8555 // Intrinsics include all meta-operands up to but not including CC. 8556 unsigned NumMetaOpers = PatchPointOpers::CCPos; 8557 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 8558 "Not enough arguments provided to the patchpoint intrinsic"); 8559 8560 // For AnyRegCC the arguments are lowered later on manually. 8561 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 8562 Type *ReturnTy = 8563 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 8564 8565 TargetLowering::CallLoweringInfo CLI(DAG); 8566 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()), 8567 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true); 8568 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 8569 8570 SDNode *CallEnd = Result.second.getNode(); 8571 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 8572 CallEnd = CallEnd->getOperand(0).getNode(); 8573 8574 /// Get a call instruction from the call sequence chain. 8575 /// Tail calls are not allowed. 8576 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 8577 "Expected a callseq node."); 8578 SDNode *Call = CallEnd->getOperand(0).getNode(); 8579 bool HasGlue = Call->getGluedNode(); 8580 8581 // Replace the target specific call node with the patchable intrinsic. 8582 SmallVector<SDValue, 8> Ops; 8583 8584 // Add the <id> and <numBytes> constants. 8585 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 8586 Ops.push_back(DAG.getTargetConstant( 8587 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 8588 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 8589 Ops.push_back(DAG.getTargetConstant( 8590 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 8591 MVT::i32)); 8592 8593 // Add the callee. 8594 Ops.push_back(Callee); 8595 8596 // Adjust <numArgs> to account for any arguments that have been passed on the 8597 // stack instead. 8598 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 8599 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 8600 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 8601 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 8602 8603 // Add the calling convention 8604 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 8605 8606 // Add the arguments we omitted previously. The register allocator should 8607 // place these in any free register. 8608 if (IsAnyRegCC) 8609 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 8610 Ops.push_back(getValue(CS.getArgument(i))); 8611 8612 // Push the arguments from the call instruction up to the register mask. 8613 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 8614 Ops.append(Call->op_begin() + 2, e); 8615 8616 // Push live variables for the stack map. 8617 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 8618 8619 // Push the register mask info. 8620 if (HasGlue) 8621 Ops.push_back(*(Call->op_end()-2)); 8622 else 8623 Ops.push_back(*(Call->op_end()-1)); 8624 8625 // Push the chain (this is originally the first operand of the call, but 8626 // becomes now the last or second to last operand). 8627 Ops.push_back(*(Call->op_begin())); 8628 8629 // Push the glue flag (last operand). 8630 if (HasGlue) 8631 Ops.push_back(*(Call->op_end()-1)); 8632 8633 SDVTList NodeTys; 8634 if (IsAnyRegCC && HasDef) { 8635 // Create the return types based on the intrinsic definition 8636 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8637 SmallVector<EVT, 3> ValueVTs; 8638 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 8639 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 8640 8641 // There is always a chain and a glue type at the end 8642 ValueVTs.push_back(MVT::Other); 8643 ValueVTs.push_back(MVT::Glue); 8644 NodeTys = DAG.getVTList(ValueVTs); 8645 } else 8646 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 8647 8648 // Replace the target specific call node with a PATCHPOINT node. 8649 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 8650 dl, NodeTys, Ops); 8651 8652 // Update the NodeMap. 8653 if (HasDef) { 8654 if (IsAnyRegCC) 8655 setValue(CS.getInstruction(), SDValue(MN, 0)); 8656 else 8657 setValue(CS.getInstruction(), Result.first); 8658 } 8659 8660 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 8661 // call sequence. Furthermore the location of the chain and glue can change 8662 // when the AnyReg calling convention is used and the intrinsic returns a 8663 // value. 8664 if (IsAnyRegCC && HasDef) { 8665 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 8666 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 8667 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 8668 } else 8669 DAG.ReplaceAllUsesWith(Call, MN); 8670 DAG.DeleteNode(Call); 8671 8672 // Inform the Frame Information that we have a patchpoint in this function. 8673 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 8674 } 8675 8676 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 8677 unsigned Intrinsic) { 8678 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8679 SDValue Op1 = getValue(I.getArgOperand(0)); 8680 SDValue Op2; 8681 if (I.getNumArgOperands() > 1) 8682 Op2 = getValue(I.getArgOperand(1)); 8683 SDLoc dl = getCurSDLoc(); 8684 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 8685 SDValue Res; 8686 FastMathFlags FMF; 8687 if (isa<FPMathOperator>(I)) 8688 FMF = I.getFastMathFlags(); 8689 8690 switch (Intrinsic) { 8691 case Intrinsic::experimental_vector_reduce_fadd: 8692 if (FMF.isFast()) 8693 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2); 8694 else 8695 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2); 8696 break; 8697 case Intrinsic::experimental_vector_reduce_fmul: 8698 if (FMF.isFast()) 8699 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2); 8700 else 8701 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2); 8702 break; 8703 case Intrinsic::experimental_vector_reduce_add: 8704 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 8705 break; 8706 case Intrinsic::experimental_vector_reduce_mul: 8707 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 8708 break; 8709 case Intrinsic::experimental_vector_reduce_and: 8710 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 8711 break; 8712 case Intrinsic::experimental_vector_reduce_or: 8713 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 8714 break; 8715 case Intrinsic::experimental_vector_reduce_xor: 8716 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 8717 break; 8718 case Intrinsic::experimental_vector_reduce_smax: 8719 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 8720 break; 8721 case Intrinsic::experimental_vector_reduce_smin: 8722 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 8723 break; 8724 case Intrinsic::experimental_vector_reduce_umax: 8725 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 8726 break; 8727 case Intrinsic::experimental_vector_reduce_umin: 8728 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 8729 break; 8730 case Intrinsic::experimental_vector_reduce_fmax: 8731 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1); 8732 break; 8733 case Intrinsic::experimental_vector_reduce_fmin: 8734 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1); 8735 break; 8736 default: 8737 llvm_unreachable("Unhandled vector reduce intrinsic"); 8738 } 8739 setValue(&I, Res); 8740 } 8741 8742 /// Returns an AttributeList representing the attributes applied to the return 8743 /// value of the given call. 8744 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 8745 SmallVector<Attribute::AttrKind, 2> Attrs; 8746 if (CLI.RetSExt) 8747 Attrs.push_back(Attribute::SExt); 8748 if (CLI.RetZExt) 8749 Attrs.push_back(Attribute::ZExt); 8750 if (CLI.IsInReg) 8751 Attrs.push_back(Attribute::InReg); 8752 8753 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 8754 Attrs); 8755 } 8756 8757 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 8758 /// implementation, which just calls LowerCall. 8759 /// FIXME: When all targets are 8760 /// migrated to using LowerCall, this hook should be integrated into SDISel. 8761 std::pair<SDValue, SDValue> 8762 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 8763 // Handle the incoming return values from the call. 8764 CLI.Ins.clear(); 8765 Type *OrigRetTy = CLI.RetTy; 8766 SmallVector<EVT, 4> RetTys; 8767 SmallVector<uint64_t, 4> Offsets; 8768 auto &DL = CLI.DAG.getDataLayout(); 8769 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 8770 8771 if (CLI.IsPostTypeLegalization) { 8772 // If we are lowering a libcall after legalization, split the return type. 8773 SmallVector<EVT, 4> OldRetTys = std::move(RetTys); 8774 SmallVector<uint64_t, 4> OldOffsets = std::move(Offsets); 8775 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 8776 EVT RetVT = OldRetTys[i]; 8777 uint64_t Offset = OldOffsets[i]; 8778 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 8779 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 8780 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 8781 RetTys.append(NumRegs, RegisterVT); 8782 for (unsigned j = 0; j != NumRegs; ++j) 8783 Offsets.push_back(Offset + j * RegisterVTByteSZ); 8784 } 8785 } 8786 8787 SmallVector<ISD::OutputArg, 4> Outs; 8788 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 8789 8790 bool CanLowerReturn = 8791 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 8792 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 8793 8794 SDValue DemoteStackSlot; 8795 int DemoteStackIdx = -100; 8796 if (!CanLowerReturn) { 8797 // FIXME: equivalent assert? 8798 // assert(!CS.hasInAllocaArgument() && 8799 // "sret demotion is incompatible with inalloca"); 8800 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 8801 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 8802 MachineFunction &MF = CLI.DAG.getMachineFunction(); 8803 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false); 8804 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 8805 DL.getAllocaAddrSpace()); 8806 8807 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 8808 ArgListEntry Entry; 8809 Entry.Node = DemoteStackSlot; 8810 Entry.Ty = StackSlotPtrType; 8811 Entry.IsSExt = false; 8812 Entry.IsZExt = false; 8813 Entry.IsInReg = false; 8814 Entry.IsSRet = true; 8815 Entry.IsNest = false; 8816 Entry.IsByVal = false; 8817 Entry.IsReturned = false; 8818 Entry.IsSwiftSelf = false; 8819 Entry.IsSwiftError = false; 8820 Entry.Alignment = Align; 8821 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 8822 CLI.NumFixedArgs += 1; 8823 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 8824 8825 // sret demotion isn't compatible with tail-calls, since the sret argument 8826 // points into the callers stack frame. 8827 CLI.IsTailCall = false; 8828 } else { 8829 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 8830 EVT VT = RetTys[I]; 8831 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8832 CLI.CallConv, VT); 8833 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8834 CLI.CallConv, VT); 8835 for (unsigned i = 0; i != NumRegs; ++i) { 8836 ISD::InputArg MyFlags; 8837 MyFlags.VT = RegisterVT; 8838 MyFlags.ArgVT = VT; 8839 MyFlags.Used = CLI.IsReturnValueUsed; 8840 if (CLI.RetSExt) 8841 MyFlags.Flags.setSExt(); 8842 if (CLI.RetZExt) 8843 MyFlags.Flags.setZExt(); 8844 if (CLI.IsInReg) 8845 MyFlags.Flags.setInReg(); 8846 CLI.Ins.push_back(MyFlags); 8847 } 8848 } 8849 } 8850 8851 // We push in swifterror return as the last element of CLI.Ins. 8852 ArgListTy &Args = CLI.getArgs(); 8853 if (supportSwiftError()) { 8854 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8855 if (Args[i].IsSwiftError) { 8856 ISD::InputArg MyFlags; 8857 MyFlags.VT = getPointerTy(DL); 8858 MyFlags.ArgVT = EVT(getPointerTy(DL)); 8859 MyFlags.Flags.setSwiftError(); 8860 CLI.Ins.push_back(MyFlags); 8861 } 8862 } 8863 } 8864 8865 // Handle all of the outgoing arguments. 8866 CLI.Outs.clear(); 8867 CLI.OutVals.clear(); 8868 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 8869 SmallVector<EVT, 4> ValueVTs; 8870 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 8871 // FIXME: Split arguments if CLI.IsPostTypeLegalization 8872 Type *FinalType = Args[i].Ty; 8873 if (Args[i].IsByVal) 8874 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 8875 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 8876 FinalType, CLI.CallConv, CLI.IsVarArg); 8877 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 8878 ++Value) { 8879 EVT VT = ValueVTs[Value]; 8880 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 8881 SDValue Op = SDValue(Args[i].Node.getNode(), 8882 Args[i].Node.getResNo() + Value); 8883 ISD::ArgFlagsTy Flags; 8884 8885 // Certain targets (such as MIPS), may have a different ABI alignment 8886 // for a type depending on the context. Give the target a chance to 8887 // specify the alignment it wants. 8888 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL); 8889 8890 if (Args[i].IsZExt) 8891 Flags.setZExt(); 8892 if (Args[i].IsSExt) 8893 Flags.setSExt(); 8894 if (Args[i].IsInReg) { 8895 // If we are using vectorcall calling convention, a structure that is 8896 // passed InReg - is surely an HVA 8897 if (CLI.CallConv == CallingConv::X86_VectorCall && 8898 isa<StructType>(FinalType)) { 8899 // The first value of a structure is marked 8900 if (0 == Value) 8901 Flags.setHvaStart(); 8902 Flags.setHva(); 8903 } 8904 // Set InReg Flag 8905 Flags.setInReg(); 8906 } 8907 if (Args[i].IsSRet) 8908 Flags.setSRet(); 8909 if (Args[i].IsSwiftSelf) 8910 Flags.setSwiftSelf(); 8911 if (Args[i].IsSwiftError) 8912 Flags.setSwiftError(); 8913 if (Args[i].IsByVal) 8914 Flags.setByVal(); 8915 if (Args[i].IsInAlloca) { 8916 Flags.setInAlloca(); 8917 // Set the byval flag for CCAssignFn callbacks that don't know about 8918 // inalloca. This way we can know how many bytes we should've allocated 8919 // and how many bytes a callee cleanup function will pop. If we port 8920 // inalloca to more targets, we'll have to add custom inalloca handling 8921 // in the various CC lowering callbacks. 8922 Flags.setByVal(); 8923 } 8924 if (Args[i].IsByVal || Args[i].IsInAlloca) { 8925 PointerType *Ty = cast<PointerType>(Args[i].Ty); 8926 Type *ElementTy = Ty->getElementType(); 8927 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 8928 // For ByVal, alignment should come from FE. BE will guess if this 8929 // info is not there but there are cases it cannot get right. 8930 unsigned FrameAlign; 8931 if (Args[i].Alignment) 8932 FrameAlign = Args[i].Alignment; 8933 else 8934 FrameAlign = getByValTypeAlignment(ElementTy, DL); 8935 Flags.setByValAlign(FrameAlign); 8936 } 8937 if (Args[i].IsNest) 8938 Flags.setNest(); 8939 if (NeedsRegBlock) 8940 Flags.setInConsecutiveRegs(); 8941 Flags.setOrigAlign(OriginalAlignment); 8942 8943 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 8944 CLI.CallConv, VT); 8945 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 8946 CLI.CallConv, VT); 8947 SmallVector<SDValue, 4> Parts(NumParts); 8948 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 8949 8950 if (Args[i].IsSExt) 8951 ExtendKind = ISD::SIGN_EXTEND; 8952 else if (Args[i].IsZExt) 8953 ExtendKind = ISD::ZERO_EXTEND; 8954 8955 // Conservatively only handle 'returned' on non-vectors that can be lowered, 8956 // for now. 8957 if (Args[i].IsReturned && !Op.getValueType().isVector() && 8958 CanLowerReturn) { 8959 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 8960 "unexpected use of 'returned'"); 8961 // Before passing 'returned' to the target lowering code, ensure that 8962 // either the register MVT and the actual EVT are the same size or that 8963 // the return value and argument are extended in the same way; in these 8964 // cases it's safe to pass the argument register value unchanged as the 8965 // return register value (although it's at the target's option whether 8966 // to do so) 8967 // TODO: allow code generation to take advantage of partially preserved 8968 // registers rather than clobbering the entire register when the 8969 // parameter extension method is not compatible with the return 8970 // extension method 8971 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 8972 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 8973 CLI.RetZExt == Args[i].IsZExt)) 8974 Flags.setReturned(); 8975 } 8976 8977 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 8978 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind); 8979 8980 for (unsigned j = 0; j != NumParts; ++j) { 8981 // if it isn't first piece, alignment must be 1 8982 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 8983 i < CLI.NumFixedArgs, 8984 i, j*Parts[j].getValueType().getStoreSize()); 8985 if (NumParts > 1 && j == 0) 8986 MyFlags.Flags.setSplit(); 8987 else if (j != 0) { 8988 MyFlags.Flags.setOrigAlign(1); 8989 if (j == NumParts - 1) 8990 MyFlags.Flags.setSplitEnd(); 8991 } 8992 8993 CLI.Outs.push_back(MyFlags); 8994 CLI.OutVals.push_back(Parts[j]); 8995 } 8996 8997 if (NeedsRegBlock && Value == NumValues - 1) 8998 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 8999 } 9000 } 9001 9002 SmallVector<SDValue, 4> InVals; 9003 CLI.Chain = LowerCall(CLI, InVals); 9004 9005 // Update CLI.InVals to use outside of this function. 9006 CLI.InVals = InVals; 9007 9008 // Verify that the target's LowerCall behaved as expected. 9009 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9010 "LowerCall didn't return a valid chain!"); 9011 assert((!CLI.IsTailCall || InVals.empty()) && 9012 "LowerCall emitted a return value for a tail call!"); 9013 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9014 "LowerCall didn't emit the correct number of values!"); 9015 9016 // For a tail call, the return value is merely live-out and there aren't 9017 // any nodes in the DAG representing it. Return a special value to 9018 // indicate that a tail call has been emitted and no more Instructions 9019 // should be processed in the current block. 9020 if (CLI.IsTailCall) { 9021 CLI.DAG.setRoot(CLI.Chain); 9022 return std::make_pair(SDValue(), SDValue()); 9023 } 9024 9025 #ifndef NDEBUG 9026 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9027 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9028 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9029 "LowerCall emitted a value with the wrong type!"); 9030 } 9031 #endif 9032 9033 SmallVector<SDValue, 4> ReturnValues; 9034 if (!CanLowerReturn) { 9035 // The instruction result is the result of loading from the 9036 // hidden sret parameter. 9037 SmallVector<EVT, 1> PVTs; 9038 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9039 9040 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9041 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9042 EVT PtrVT = PVTs[0]; 9043 9044 unsigned NumValues = RetTys.size(); 9045 ReturnValues.resize(NumValues); 9046 SmallVector<SDValue, 4> Chains(NumValues); 9047 9048 // An aggregate return value cannot wrap around the address space, so 9049 // offsets to its parts don't wrap either. 9050 SDNodeFlags Flags; 9051 Flags.setNoUnsignedWrap(true); 9052 9053 for (unsigned i = 0; i < NumValues; ++i) { 9054 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9055 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9056 PtrVT), Flags); 9057 SDValue L = CLI.DAG.getLoad( 9058 RetTys[i], CLI.DL, CLI.Chain, Add, 9059 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9060 DemoteStackIdx, Offsets[i]), 9061 /* Alignment = */ 1); 9062 ReturnValues[i] = L; 9063 Chains[i] = L.getValue(1); 9064 } 9065 9066 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9067 } else { 9068 // Collect the legal value parts into potentially illegal values 9069 // that correspond to the original function's return values. 9070 Optional<ISD::NodeType> AssertOp; 9071 if (CLI.RetSExt) 9072 AssertOp = ISD::AssertSext; 9073 else if (CLI.RetZExt) 9074 AssertOp = ISD::AssertZext; 9075 unsigned CurReg = 0; 9076 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9077 EVT VT = RetTys[I]; 9078 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9079 CLI.CallConv, VT); 9080 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9081 CLI.CallConv, VT); 9082 9083 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9084 NumRegs, RegisterVT, VT, nullptr, 9085 CLI.CallConv, AssertOp)); 9086 CurReg += NumRegs; 9087 } 9088 9089 // For a function returning void, there is no return value. We can't create 9090 // such a node, so we just return a null return value in that case. In 9091 // that case, nothing will actually look at the value. 9092 if (ReturnValues.empty()) 9093 return std::make_pair(SDValue(), CLI.Chain); 9094 } 9095 9096 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9097 CLI.DAG.getVTList(RetTys), ReturnValues); 9098 return std::make_pair(Res, CLI.Chain); 9099 } 9100 9101 void TargetLowering::LowerOperationWrapper(SDNode *N, 9102 SmallVectorImpl<SDValue> &Results, 9103 SelectionDAG &DAG) const { 9104 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG)) 9105 Results.push_back(Res); 9106 } 9107 9108 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9109 llvm_unreachable("LowerOperation not implemented for this target!"); 9110 } 9111 9112 void 9113 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9114 SDValue Op = getNonRegisterValue(V); 9115 assert((Op.getOpcode() != ISD::CopyFromReg || 9116 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9117 "Copy from a reg to the same reg!"); 9118 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 9119 9120 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9121 // If this is an InlineAsm we have to match the registers required, not the 9122 // notional registers required by the type. 9123 9124 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9125 None); // This is not an ABI copy. 9126 SDValue Chain = DAG.getEntryNode(); 9127 9128 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9129 FuncInfo.PreferredExtendType.end()) 9130 ? ISD::ANY_EXTEND 9131 : FuncInfo.PreferredExtendType[V]; 9132 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9133 PendingExports.push_back(Chain); 9134 } 9135 9136 #include "llvm/CodeGen/SelectionDAGISel.h" 9137 9138 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9139 /// entry block, return true. This includes arguments used by switches, since 9140 /// the switch may expand into multiple basic blocks. 9141 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9142 // With FastISel active, we may be splitting blocks, so force creation 9143 // of virtual registers for all non-dead arguments. 9144 if (FastISel) 9145 return A->use_empty(); 9146 9147 const BasicBlock &Entry = A->getParent()->front(); 9148 for (const User *U : A->users()) 9149 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9150 return false; // Use not in entry block. 9151 9152 return true; 9153 } 9154 9155 using ArgCopyElisionMapTy = 9156 DenseMap<const Argument *, 9157 std::pair<const AllocaInst *, const StoreInst *>>; 9158 9159 /// Scan the entry block of the function in FuncInfo for arguments that look 9160 /// like copies into a local alloca. Record any copied arguments in 9161 /// ArgCopyElisionCandidates. 9162 static void 9163 findArgumentCopyElisionCandidates(const DataLayout &DL, 9164 FunctionLoweringInfo *FuncInfo, 9165 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9166 // Record the state of every static alloca used in the entry block. Argument 9167 // allocas are all used in the entry block, so we need approximately as many 9168 // entries as we have arguments. 9169 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9170 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9171 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9172 StaticAllocas.reserve(NumArgs * 2); 9173 9174 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9175 if (!V) 9176 return nullptr; 9177 V = V->stripPointerCasts(); 9178 const auto *AI = dyn_cast<AllocaInst>(V); 9179 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9180 return nullptr; 9181 auto Iter = StaticAllocas.insert({AI, Unknown}); 9182 return &Iter.first->second; 9183 }; 9184 9185 // Look for stores of arguments to static allocas. Look through bitcasts and 9186 // GEPs to handle type coercions, as long as the alloca is fully initialized 9187 // by the store. Any non-store use of an alloca escapes it and any subsequent 9188 // unanalyzed store might write it. 9189 // FIXME: Handle structs initialized with multiple stores. 9190 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9191 // Look for stores, and handle non-store uses conservatively. 9192 const auto *SI = dyn_cast<StoreInst>(&I); 9193 if (!SI) { 9194 // We will look through cast uses, so ignore them completely. 9195 if (I.isCast()) 9196 continue; 9197 // Ignore debug info intrinsics, they don't escape or store to allocas. 9198 if (isa<DbgInfoIntrinsic>(I)) 9199 continue; 9200 // This is an unknown instruction. Assume it escapes or writes to all 9201 // static alloca operands. 9202 for (const Use &U : I.operands()) { 9203 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9204 *Info = StaticAllocaInfo::Clobbered; 9205 } 9206 continue; 9207 } 9208 9209 // If the stored value is a static alloca, mark it as escaped. 9210 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9211 *Info = StaticAllocaInfo::Clobbered; 9212 9213 // Check if the destination is a static alloca. 9214 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9215 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9216 if (!Info) 9217 continue; 9218 const AllocaInst *AI = cast<AllocaInst>(Dst); 9219 9220 // Skip allocas that have been initialized or clobbered. 9221 if (*Info != StaticAllocaInfo::Unknown) 9222 continue; 9223 9224 // Check if the stored value is an argument, and that this store fully 9225 // initializes the alloca. Don't elide copies from the same argument twice. 9226 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9227 const auto *Arg = dyn_cast<Argument>(Val); 9228 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() || 9229 Arg->getType()->isEmptyTy() || 9230 DL.getTypeStoreSize(Arg->getType()) != 9231 DL.getTypeAllocSize(AI->getAllocatedType()) || 9232 ArgCopyElisionCandidates.count(Arg)) { 9233 *Info = StaticAllocaInfo::Clobbered; 9234 continue; 9235 } 9236 9237 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9238 << '\n'); 9239 9240 // Mark this alloca and store for argument copy elision. 9241 *Info = StaticAllocaInfo::Elidable; 9242 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9243 9244 // Stop scanning if we've seen all arguments. This will happen early in -O0 9245 // builds, which is useful, because -O0 builds have large entry blocks and 9246 // many allocas. 9247 if (ArgCopyElisionCandidates.size() == NumArgs) 9248 break; 9249 } 9250 } 9251 9252 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9253 /// ArgVal is a load from a suitable fixed stack object. 9254 static void tryToElideArgumentCopy( 9255 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains, 9256 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9257 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9258 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9259 SDValue ArgVal, bool &ArgHasUses) { 9260 // Check if this is a load from a fixed stack object. 9261 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9262 if (!LNode) 9263 return; 9264 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9265 if (!FINode) 9266 return; 9267 9268 // Check that the fixed stack object is the right size and alignment. 9269 // Look at the alignment that the user wrote on the alloca instead of looking 9270 // at the stack object. 9271 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9272 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9273 const AllocaInst *AI = ArgCopyIter->second.first; 9274 int FixedIndex = FINode->getIndex(); 9275 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI]; 9276 int OldIndex = AllocaIndex; 9277 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo(); 9278 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9279 LLVM_DEBUG( 9280 dbgs() << " argument copy elision failed due to bad fixed stack " 9281 "object size\n"); 9282 return; 9283 } 9284 unsigned RequiredAlignment = AI->getAlignment(); 9285 if (!RequiredAlignment) { 9286 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment( 9287 AI->getAllocatedType()); 9288 } 9289 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) { 9290 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9291 "greater than stack argument alignment (" 9292 << RequiredAlignment << " vs " 9293 << MFI.getObjectAlignment(FixedIndex) << ")\n"); 9294 return; 9295 } 9296 9297 // Perform the elision. Delete the old stack object and replace its only use 9298 // in the variable info map. Mark the stack object as mutable. 9299 LLVM_DEBUG({ 9300 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9301 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9302 << '\n'; 9303 }); 9304 MFI.RemoveStackObject(OldIndex); 9305 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9306 AllocaIndex = FixedIndex; 9307 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9308 Chains.push_back(ArgVal.getValue(1)); 9309 9310 // Avoid emitting code for the store implementing the copy. 9311 const StoreInst *SI = ArgCopyIter->second.second; 9312 ElidedArgCopyInstrs.insert(SI); 9313 9314 // Check for uses of the argument again so that we can avoid exporting ArgVal 9315 // if it is't used by anything other than the store. 9316 for (const Value *U : Arg.users()) { 9317 if (U != SI) { 9318 ArgHasUses = true; 9319 break; 9320 } 9321 } 9322 } 9323 9324 void SelectionDAGISel::LowerArguments(const Function &F) { 9325 SelectionDAG &DAG = SDB->DAG; 9326 SDLoc dl = SDB->getCurSDLoc(); 9327 const DataLayout &DL = DAG.getDataLayout(); 9328 SmallVector<ISD::InputArg, 16> Ins; 9329 9330 if (!FuncInfo->CanLowerReturn) { 9331 // Put in an sret pointer parameter before all the other parameters. 9332 SmallVector<EVT, 1> ValueVTs; 9333 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9334 F.getReturnType()->getPointerTo( 9335 DAG.getDataLayout().getAllocaAddrSpace()), 9336 ValueVTs); 9337 9338 // NOTE: Assuming that a pointer will never break down to more than one VT 9339 // or one register. 9340 ISD::ArgFlagsTy Flags; 9341 Flags.setSRet(); 9342 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9343 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9344 ISD::InputArg::NoArgIndex, 0); 9345 Ins.push_back(RetArg); 9346 } 9347 9348 // Look for stores of arguments to static allocas. Mark such arguments with a 9349 // flag to ask the target to give us the memory location of that argument if 9350 // available. 9351 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9352 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates); 9353 9354 // Set up the incoming argument description vector. 9355 for (const Argument &Arg : F.args()) { 9356 unsigned ArgNo = Arg.getArgNo(); 9357 SmallVector<EVT, 4> ValueVTs; 9358 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9359 bool isArgValueUsed = !Arg.use_empty(); 9360 unsigned PartBase = 0; 9361 Type *FinalType = Arg.getType(); 9362 if (Arg.hasAttribute(Attribute::ByVal)) 9363 FinalType = cast<PointerType>(FinalType)->getElementType(); 9364 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9365 FinalType, F.getCallingConv(), F.isVarArg()); 9366 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9367 Value != NumValues; ++Value) { 9368 EVT VT = ValueVTs[Value]; 9369 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9370 ISD::ArgFlagsTy Flags; 9371 9372 // Certain targets (such as MIPS), may have a different ABI alignment 9373 // for a type depending on the context. Give the target a chance to 9374 // specify the alignment it wants. 9375 unsigned OriginalAlignment = 9376 TLI->getABIAlignmentForCallingConv(ArgTy, DL); 9377 9378 if (Arg.hasAttribute(Attribute::ZExt)) 9379 Flags.setZExt(); 9380 if (Arg.hasAttribute(Attribute::SExt)) 9381 Flags.setSExt(); 9382 if (Arg.hasAttribute(Attribute::InReg)) { 9383 // If we are using vectorcall calling convention, a structure that is 9384 // passed InReg - is surely an HVA 9385 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9386 isa<StructType>(Arg.getType())) { 9387 // The first value of a structure is marked 9388 if (0 == Value) 9389 Flags.setHvaStart(); 9390 Flags.setHva(); 9391 } 9392 // Set InReg Flag 9393 Flags.setInReg(); 9394 } 9395 if (Arg.hasAttribute(Attribute::StructRet)) 9396 Flags.setSRet(); 9397 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9398 Flags.setSwiftSelf(); 9399 if (Arg.hasAttribute(Attribute::SwiftError)) 9400 Flags.setSwiftError(); 9401 if (Arg.hasAttribute(Attribute::ByVal)) 9402 Flags.setByVal(); 9403 if (Arg.hasAttribute(Attribute::InAlloca)) { 9404 Flags.setInAlloca(); 9405 // Set the byval flag for CCAssignFn callbacks that don't know about 9406 // inalloca. This way we can know how many bytes we should've allocated 9407 // and how many bytes a callee cleanup function will pop. If we port 9408 // inalloca to more targets, we'll have to add custom inalloca handling 9409 // in the various CC lowering callbacks. 9410 Flags.setByVal(); 9411 } 9412 if (F.getCallingConv() == CallingConv::X86_INTR) { 9413 // IA Interrupt passes frame (1st parameter) by value in the stack. 9414 if (ArgNo == 0) 9415 Flags.setByVal(); 9416 } 9417 if (Flags.isByVal() || Flags.isInAlloca()) { 9418 PointerType *Ty = cast<PointerType>(Arg.getType()); 9419 Type *ElementTy = Ty->getElementType(); 9420 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 9421 // For ByVal, alignment should be passed from FE. BE will guess if 9422 // this info is not there but there are cases it cannot get right. 9423 unsigned FrameAlign; 9424 if (Arg.getParamAlignment()) 9425 FrameAlign = Arg.getParamAlignment(); 9426 else 9427 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 9428 Flags.setByValAlign(FrameAlign); 9429 } 9430 if (Arg.hasAttribute(Attribute::Nest)) 9431 Flags.setNest(); 9432 if (NeedsRegBlock) 9433 Flags.setInConsecutiveRegs(); 9434 Flags.setOrigAlign(OriginalAlignment); 9435 if (ArgCopyElisionCandidates.count(&Arg)) 9436 Flags.setCopyElisionCandidate(); 9437 9438 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 9439 *CurDAG->getContext(), F.getCallingConv(), VT); 9440 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 9441 *CurDAG->getContext(), F.getCallingConv(), VT); 9442 for (unsigned i = 0; i != NumRegs; ++i) { 9443 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 9444 ArgNo, PartBase+i*RegisterVT.getStoreSize()); 9445 if (NumRegs > 1 && i == 0) 9446 MyFlags.Flags.setSplit(); 9447 // if it isn't first piece, alignment must be 1 9448 else if (i > 0) { 9449 MyFlags.Flags.setOrigAlign(1); 9450 if (i == NumRegs - 1) 9451 MyFlags.Flags.setSplitEnd(); 9452 } 9453 Ins.push_back(MyFlags); 9454 } 9455 if (NeedsRegBlock && Value == NumValues - 1) 9456 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 9457 PartBase += VT.getStoreSize(); 9458 } 9459 } 9460 9461 // Call the target to set up the argument values. 9462 SmallVector<SDValue, 8> InVals; 9463 SDValue NewRoot = TLI->LowerFormalArguments( 9464 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 9465 9466 // Verify that the target's LowerFormalArguments behaved as expected. 9467 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 9468 "LowerFormalArguments didn't return a valid chain!"); 9469 assert(InVals.size() == Ins.size() && 9470 "LowerFormalArguments didn't emit the correct number of values!"); 9471 LLVM_DEBUG({ 9472 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 9473 assert(InVals[i].getNode() && 9474 "LowerFormalArguments emitted a null value!"); 9475 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 9476 "LowerFormalArguments emitted a value with the wrong type!"); 9477 } 9478 }); 9479 9480 // Update the DAG with the new chain value resulting from argument lowering. 9481 DAG.setRoot(NewRoot); 9482 9483 // Set up the argument values. 9484 unsigned i = 0; 9485 if (!FuncInfo->CanLowerReturn) { 9486 // Create a virtual register for the sret pointer, and put in a copy 9487 // from the sret argument into it. 9488 SmallVector<EVT, 1> ValueVTs; 9489 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9490 F.getReturnType()->getPointerTo( 9491 DAG.getDataLayout().getAllocaAddrSpace()), 9492 ValueVTs); 9493 MVT VT = ValueVTs[0].getSimpleVT(); 9494 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 9495 Optional<ISD::NodeType> AssertOp = None; 9496 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 9497 nullptr, F.getCallingConv(), AssertOp); 9498 9499 MachineFunction& MF = SDB->DAG.getMachineFunction(); 9500 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 9501 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 9502 FuncInfo->DemoteRegister = SRetReg; 9503 NewRoot = 9504 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 9505 DAG.setRoot(NewRoot); 9506 9507 // i indexes lowered arguments. Bump it past the hidden sret argument. 9508 ++i; 9509 } 9510 9511 SmallVector<SDValue, 4> Chains; 9512 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 9513 for (const Argument &Arg : F.args()) { 9514 SmallVector<SDValue, 4> ArgValues; 9515 SmallVector<EVT, 4> ValueVTs; 9516 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9517 unsigned NumValues = ValueVTs.size(); 9518 if (NumValues == 0) 9519 continue; 9520 9521 bool ArgHasUses = !Arg.use_empty(); 9522 9523 // Elide the copying store if the target loaded this argument from a 9524 // suitable fixed stack object. 9525 if (Ins[i].Flags.isCopyElisionCandidate()) { 9526 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 9527 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 9528 InVals[i], ArgHasUses); 9529 } 9530 9531 // If this argument is unused then remember its value. It is used to generate 9532 // debugging information. 9533 bool isSwiftErrorArg = 9534 TLI->supportSwiftError() && 9535 Arg.hasAttribute(Attribute::SwiftError); 9536 if (!ArgHasUses && !isSwiftErrorArg) { 9537 SDB->setUnusedArgValue(&Arg, InVals[i]); 9538 9539 // Also remember any frame index for use in FastISel. 9540 if (FrameIndexSDNode *FI = 9541 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 9542 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9543 } 9544 9545 for (unsigned Val = 0; Val != NumValues; ++Val) { 9546 EVT VT = ValueVTs[Val]; 9547 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 9548 F.getCallingConv(), VT); 9549 unsigned NumParts = TLI->getNumRegistersForCallingConv( 9550 *CurDAG->getContext(), F.getCallingConv(), VT); 9551 9552 // Even an apparant 'unused' swifterror argument needs to be returned. So 9553 // we do generate a copy for it that can be used on return from the 9554 // function. 9555 if (ArgHasUses || isSwiftErrorArg) { 9556 Optional<ISD::NodeType> AssertOp; 9557 if (Arg.hasAttribute(Attribute::SExt)) 9558 AssertOp = ISD::AssertSext; 9559 else if (Arg.hasAttribute(Attribute::ZExt)) 9560 AssertOp = ISD::AssertZext; 9561 9562 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 9563 PartVT, VT, nullptr, 9564 F.getCallingConv(), AssertOp)); 9565 } 9566 9567 i += NumParts; 9568 } 9569 9570 // We don't need to do anything else for unused arguments. 9571 if (ArgValues.empty()) 9572 continue; 9573 9574 // Note down frame index. 9575 if (FrameIndexSDNode *FI = 9576 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 9577 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9578 9579 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 9580 SDB->getCurSDLoc()); 9581 9582 SDB->setValue(&Arg, Res); 9583 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 9584 // We want to associate the argument with the frame index, among 9585 // involved operands, that correspond to the lowest address. The 9586 // getCopyFromParts function, called earlier, is swapping the order of 9587 // the operands to BUILD_PAIR depending on endianness. The result of 9588 // that swapping is that the least significant bits of the argument will 9589 // be in the first operand of the BUILD_PAIR node, and the most 9590 // significant bits will be in the second operand. 9591 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 9592 if (LoadSDNode *LNode = 9593 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 9594 if (FrameIndexSDNode *FI = 9595 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 9596 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 9597 } 9598 9599 // Update the SwiftErrorVRegDefMap. 9600 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 9601 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9602 if (TargetRegisterInfo::isVirtualRegister(Reg)) 9603 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB, 9604 FuncInfo->SwiftErrorArg, Reg); 9605 } 9606 9607 // If this argument is live outside of the entry block, insert a copy from 9608 // wherever we got it to the vreg that other BB's will reference it as. 9609 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 9610 // If we can, though, try to skip creating an unnecessary vreg. 9611 // FIXME: This isn't very clean... it would be nice to make this more 9612 // general. It's also subtly incompatible with the hacks FastISel 9613 // uses with vregs. 9614 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 9615 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 9616 FuncInfo->ValueMap[&Arg] = Reg; 9617 continue; 9618 } 9619 } 9620 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 9621 FuncInfo->InitializeRegForValue(&Arg); 9622 SDB->CopyToExportRegsIfNeeded(&Arg); 9623 } 9624 } 9625 9626 if (!Chains.empty()) { 9627 Chains.push_back(NewRoot); 9628 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 9629 } 9630 9631 DAG.setRoot(NewRoot); 9632 9633 assert(i == InVals.size() && "Argument register count mismatch!"); 9634 9635 // If any argument copy elisions occurred and we have debug info, update the 9636 // stale frame indices used in the dbg.declare variable info table. 9637 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 9638 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 9639 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 9640 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 9641 if (I != ArgCopyElisionFrameIndexMap.end()) 9642 VI.Slot = I->second; 9643 } 9644 } 9645 9646 // Finally, if the target has anything special to do, allow it to do so. 9647 EmitFunctionEntryCode(); 9648 } 9649 9650 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 9651 /// ensure constants are generated when needed. Remember the virtual registers 9652 /// that need to be added to the Machine PHI nodes as input. We cannot just 9653 /// directly add them, because expansion might result in multiple MBB's for one 9654 /// BB. As such, the start of the BB might correspond to a different MBB than 9655 /// the end. 9656 void 9657 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 9658 const Instruction *TI = LLVMBB->getTerminator(); 9659 9660 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 9661 9662 // Check PHI nodes in successors that expect a value to be available from this 9663 // block. 9664 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 9665 const BasicBlock *SuccBB = TI->getSuccessor(succ); 9666 if (!isa<PHINode>(SuccBB->begin())) continue; 9667 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 9668 9669 // If this terminator has multiple identical successors (common for 9670 // switches), only handle each succ once. 9671 if (!SuccsHandled.insert(SuccMBB).second) 9672 continue; 9673 9674 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 9675 9676 // At this point we know that there is a 1-1 correspondence between LLVM PHI 9677 // nodes and Machine PHI nodes, but the incoming operands have not been 9678 // emitted yet. 9679 for (const PHINode &PN : SuccBB->phis()) { 9680 // Ignore dead phi's. 9681 if (PN.use_empty()) 9682 continue; 9683 9684 // Skip empty types 9685 if (PN.getType()->isEmptyTy()) 9686 continue; 9687 9688 unsigned Reg; 9689 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 9690 9691 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 9692 unsigned &RegOut = ConstantsOut[C]; 9693 if (RegOut == 0) { 9694 RegOut = FuncInfo.CreateRegs(C->getType()); 9695 CopyValueToVirtualRegister(C, RegOut); 9696 } 9697 Reg = RegOut; 9698 } else { 9699 DenseMap<const Value *, unsigned>::iterator I = 9700 FuncInfo.ValueMap.find(PHIOp); 9701 if (I != FuncInfo.ValueMap.end()) 9702 Reg = I->second; 9703 else { 9704 assert(isa<AllocaInst>(PHIOp) && 9705 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 9706 "Didn't codegen value into a register!??"); 9707 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 9708 CopyValueToVirtualRegister(PHIOp, Reg); 9709 } 9710 } 9711 9712 // Remember that this register needs to added to the machine PHI node as 9713 // the input for this MBB. 9714 SmallVector<EVT, 4> ValueVTs; 9715 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9716 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 9717 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 9718 EVT VT = ValueVTs[vti]; 9719 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 9720 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 9721 FuncInfo.PHINodesToUpdate.push_back( 9722 std::make_pair(&*MBBI++, Reg + i)); 9723 Reg += NumRegisters; 9724 } 9725 } 9726 } 9727 9728 ConstantsOut.clear(); 9729 } 9730 9731 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 9732 /// is 0. 9733 MachineBasicBlock * 9734 SelectionDAGBuilder::StackProtectorDescriptor:: 9735 AddSuccessorMBB(const BasicBlock *BB, 9736 MachineBasicBlock *ParentMBB, 9737 bool IsLikely, 9738 MachineBasicBlock *SuccMBB) { 9739 // If SuccBB has not been created yet, create it. 9740 if (!SuccMBB) { 9741 MachineFunction *MF = ParentMBB->getParent(); 9742 MachineFunction::iterator BBI(ParentMBB); 9743 SuccMBB = MF->CreateMachineBasicBlock(BB); 9744 MF->insert(++BBI, SuccMBB); 9745 } 9746 // Add it as a successor of ParentMBB. 9747 ParentMBB->addSuccessor( 9748 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 9749 return SuccMBB; 9750 } 9751 9752 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 9753 MachineFunction::iterator I(MBB); 9754 if (++I == FuncInfo.MF->end()) 9755 return nullptr; 9756 return &*I; 9757 } 9758 9759 /// During lowering new call nodes can be created (such as memset, etc.). 9760 /// Those will become new roots of the current DAG, but complications arise 9761 /// when they are tail calls. In such cases, the call lowering will update 9762 /// the root, but the builder still needs to know that a tail call has been 9763 /// lowered in order to avoid generating an additional return. 9764 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 9765 // If the node is null, we do have a tail call. 9766 if (MaybeTC.getNode() != nullptr) 9767 DAG.setRoot(MaybeTC); 9768 else 9769 HasTailCall = true; 9770 } 9771 9772 uint64_t 9773 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters, 9774 unsigned First, unsigned Last) const { 9775 assert(Last >= First); 9776 const APInt &LowCase = Clusters[First].Low->getValue(); 9777 const APInt &HighCase = Clusters[Last].High->getValue(); 9778 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 9779 9780 // FIXME: A range of consecutive cases has 100% density, but only requires one 9781 // comparison to lower. We should discriminate against such consecutive ranges 9782 // in jump tables. 9783 9784 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1; 9785 } 9786 9787 uint64_t SelectionDAGBuilder::getJumpTableNumCases( 9788 const SmallVectorImpl<unsigned> &TotalCases, unsigned First, 9789 unsigned Last) const { 9790 assert(Last >= First); 9791 assert(TotalCases[Last] >= TotalCases[First]); 9792 uint64_t NumCases = 9793 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 9794 return NumCases; 9795 } 9796 9797 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters, 9798 unsigned First, unsigned Last, 9799 const SwitchInst *SI, 9800 MachineBasicBlock *DefaultMBB, 9801 CaseCluster &JTCluster) { 9802 assert(First <= Last); 9803 9804 auto Prob = BranchProbability::getZero(); 9805 unsigned NumCmps = 0; 9806 std::vector<MachineBasicBlock*> Table; 9807 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 9808 9809 // Initialize probabilities in JTProbs. 9810 for (unsigned I = First; I <= Last; ++I) 9811 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 9812 9813 for (unsigned I = First; I <= Last; ++I) { 9814 assert(Clusters[I].Kind == CC_Range); 9815 Prob += Clusters[I].Prob; 9816 const APInt &Low = Clusters[I].Low->getValue(); 9817 const APInt &High = Clusters[I].High->getValue(); 9818 NumCmps += (Low == High) ? 1 : 2; 9819 if (I != First) { 9820 // Fill the gap between this and the previous cluster. 9821 const APInt &PreviousHigh = Clusters[I - 1].High->getValue(); 9822 assert(PreviousHigh.slt(Low)); 9823 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 9824 for (uint64_t J = 0; J < Gap; J++) 9825 Table.push_back(DefaultMBB); 9826 } 9827 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 9828 for (uint64_t J = 0; J < ClusterSize; ++J) 9829 Table.push_back(Clusters[I].MBB); 9830 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 9831 } 9832 9833 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9834 unsigned NumDests = JTProbs.size(); 9835 if (TLI.isSuitableForBitTests( 9836 NumDests, NumCmps, Clusters[First].Low->getValue(), 9837 Clusters[Last].High->getValue(), DAG.getDataLayout())) { 9838 // Clusters[First..Last] should be lowered as bit tests instead. 9839 return false; 9840 } 9841 9842 // Create the MBB that will load from and jump through the table. 9843 // Note: We create it here, but it's not inserted into the function yet. 9844 MachineFunction *CurMF = FuncInfo.MF; 9845 MachineBasicBlock *JumpTableMBB = 9846 CurMF->CreateMachineBasicBlock(SI->getParent()); 9847 9848 // Add successors. Note: use table order for determinism. 9849 SmallPtrSet<MachineBasicBlock *, 8> Done; 9850 for (MachineBasicBlock *Succ : Table) { 9851 if (Done.count(Succ)) 9852 continue; 9853 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 9854 Done.insert(Succ); 9855 } 9856 JumpTableMBB->normalizeSuccProbs(); 9857 9858 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 9859 ->createJumpTableIndex(Table); 9860 9861 // Set up the jump table info. 9862 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 9863 JumpTableHeader JTH(Clusters[First].Low->getValue(), 9864 Clusters[Last].High->getValue(), SI->getCondition(), 9865 nullptr, false); 9866 JTCases.emplace_back(std::move(JTH), std::move(JT)); 9867 9868 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 9869 JTCases.size() - 1, Prob); 9870 return true; 9871 } 9872 9873 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 9874 const SwitchInst *SI, 9875 MachineBasicBlock *DefaultMBB) { 9876 #ifndef NDEBUG 9877 // Clusters must be non-empty, sorted, and only contain Range clusters. 9878 assert(!Clusters.empty()); 9879 for (CaseCluster &C : Clusters) 9880 assert(C.Kind == CC_Range); 9881 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 9882 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 9883 #endif 9884 9885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9886 if (!TLI.areJTsAllowed(SI->getParent()->getParent())) 9887 return; 9888 9889 const int64_t N = Clusters.size(); 9890 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries(); 9891 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2; 9892 9893 if (N < 2 || N < MinJumpTableEntries) 9894 return; 9895 9896 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 9897 SmallVector<unsigned, 8> TotalCases(N); 9898 for (unsigned i = 0; i < N; ++i) { 9899 const APInt &Hi = Clusters[i].High->getValue(); 9900 const APInt &Lo = Clusters[i].Low->getValue(); 9901 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 9902 if (i != 0) 9903 TotalCases[i] += TotalCases[i - 1]; 9904 } 9905 9906 // Cheap case: the whole range may be suitable for jump table. 9907 uint64_t Range = getJumpTableRange(Clusters,0, N - 1); 9908 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1); 9909 assert(NumCases < UINT64_MAX / 100); 9910 assert(Range >= NumCases); 9911 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9912 CaseCluster JTCluster; 9913 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 9914 Clusters[0] = JTCluster; 9915 Clusters.resize(1); 9916 return; 9917 } 9918 } 9919 9920 // The algorithm below is not suitable for -O0. 9921 if (TM.getOptLevel() == CodeGenOpt::None) 9922 return; 9923 9924 // Split Clusters into minimum number of dense partitions. The algorithm uses 9925 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 9926 // for the Case Statement'" (1994), but builds the MinPartitions array in 9927 // reverse order to make it easier to reconstruct the partitions in ascending 9928 // order. In the choice between two optimal partitionings, it picks the one 9929 // which yields more jump tables. 9930 9931 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 9932 SmallVector<unsigned, 8> MinPartitions(N); 9933 // LastElement[i] is the last element of the partition starting at i. 9934 SmallVector<unsigned, 8> LastElement(N); 9935 // PartitionsScore[i] is used to break ties when choosing between two 9936 // partitionings resulting in the same number of partitions. 9937 SmallVector<unsigned, 8> PartitionsScore(N); 9938 // For PartitionsScore, a small number of comparisons is considered as good as 9939 // a jump table and a single comparison is considered better than a jump 9940 // table. 9941 enum PartitionScores : unsigned { 9942 NoTable = 0, 9943 Table = 1, 9944 FewCases = 1, 9945 SingleCase = 2 9946 }; 9947 9948 // Base case: There is only one way to partition Clusters[N-1]. 9949 MinPartitions[N - 1] = 1; 9950 LastElement[N - 1] = N - 1; 9951 PartitionsScore[N - 1] = PartitionScores::SingleCase; 9952 9953 // Note: loop indexes are signed to avoid underflow. 9954 for (int64_t i = N - 2; i >= 0; i--) { 9955 // Find optimal partitioning of Clusters[i..N-1]. 9956 // Baseline: Put Clusters[i] into a partition on its own. 9957 MinPartitions[i] = MinPartitions[i + 1] + 1; 9958 LastElement[i] = i; 9959 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase; 9960 9961 // Search for a solution that results in fewer partitions. 9962 for (int64_t j = N - 1; j > i; j--) { 9963 // Try building a partition from Clusters[i..j]. 9964 uint64_t Range = getJumpTableRange(Clusters, i, j); 9965 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j); 9966 assert(NumCases < UINT64_MAX / 100); 9967 assert(Range >= NumCases); 9968 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) { 9969 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 9970 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1]; 9971 int64_t NumEntries = j - i + 1; 9972 9973 if (NumEntries == 1) 9974 Score += PartitionScores::SingleCase; 9975 else if (NumEntries <= SmallNumberOfEntries) 9976 Score += PartitionScores::FewCases; 9977 else if (NumEntries >= MinJumpTableEntries) 9978 Score += PartitionScores::Table; 9979 9980 // If this leads to fewer partitions, or to the same number of 9981 // partitions with better score, it is a better partitioning. 9982 if (NumPartitions < MinPartitions[i] || 9983 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) { 9984 MinPartitions[i] = NumPartitions; 9985 LastElement[i] = j; 9986 PartitionsScore[i] = Score; 9987 } 9988 } 9989 } 9990 } 9991 9992 // Iterate over the partitions, replacing some with jump tables in-place. 9993 unsigned DstIndex = 0; 9994 for (unsigned First = 0, Last; First < N; First = Last + 1) { 9995 Last = LastElement[First]; 9996 assert(Last >= First); 9997 assert(DstIndex <= First); 9998 unsigned NumClusters = Last - First + 1; 9999 10000 CaseCluster JTCluster; 10001 if (NumClusters >= MinJumpTableEntries && 10002 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 10003 Clusters[DstIndex++] = JTCluster; 10004 } else { 10005 for (unsigned I = First; I <= Last; ++I) 10006 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 10007 } 10008 } 10009 Clusters.resize(DstIndex); 10010 } 10011 10012 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 10013 unsigned First, unsigned Last, 10014 const SwitchInst *SI, 10015 CaseCluster &BTCluster) { 10016 assert(First <= Last); 10017 if (First == Last) 10018 return false; 10019 10020 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10021 unsigned NumCmps = 0; 10022 for (int64_t I = First; I <= Last; ++I) { 10023 assert(Clusters[I].Kind == CC_Range); 10024 Dests.set(Clusters[I].MBB->getNumber()); 10025 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 10026 } 10027 unsigned NumDests = Dests.count(); 10028 10029 APInt Low = Clusters[First].Low->getValue(); 10030 APInt High = Clusters[Last].High->getValue(); 10031 assert(Low.slt(High)); 10032 10033 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10034 const DataLayout &DL = DAG.getDataLayout(); 10035 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL)) 10036 return false; 10037 10038 APInt LowBound; 10039 APInt CmpRange; 10040 10041 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits(); 10042 assert(TLI.rangeFitsInWord(Low, High, DL) && 10043 "Case range must fit in bit mask!"); 10044 10045 // Check if the clusters cover a contiguous range such that no value in the 10046 // range will jump to the default statement. 10047 bool ContiguousRange = true; 10048 for (int64_t I = First + 1; I <= Last; ++I) { 10049 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 10050 ContiguousRange = false; 10051 break; 10052 } 10053 } 10054 10055 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 10056 // Optimize the case where all the case values fit in a word without having 10057 // to subtract minValue. In this case, we can optimize away the subtraction. 10058 LowBound = APInt::getNullValue(Low.getBitWidth()); 10059 CmpRange = High; 10060 ContiguousRange = false; 10061 } else { 10062 LowBound = Low; 10063 CmpRange = High - Low; 10064 } 10065 10066 CaseBitsVector CBV; 10067 auto TotalProb = BranchProbability::getZero(); 10068 for (unsigned i = First; i <= Last; ++i) { 10069 // Find the CaseBits for this destination. 10070 unsigned j; 10071 for (j = 0; j < CBV.size(); ++j) 10072 if (CBV[j].BB == Clusters[i].MBB) 10073 break; 10074 if (j == CBV.size()) 10075 CBV.push_back( 10076 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 10077 CaseBits *CB = &CBV[j]; 10078 10079 // Update Mask, Bits and ExtraProb. 10080 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 10081 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 10082 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 10083 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 10084 CB->Bits += Hi - Lo + 1; 10085 CB->ExtraProb += Clusters[i].Prob; 10086 TotalProb += Clusters[i].Prob; 10087 } 10088 10089 BitTestInfo BTI; 10090 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) { 10091 // Sort by probability first, number of bits second, bit mask third. 10092 if (a.ExtraProb != b.ExtraProb) 10093 return a.ExtraProb > b.ExtraProb; 10094 if (a.Bits != b.Bits) 10095 return a.Bits > b.Bits; 10096 return a.Mask < b.Mask; 10097 }); 10098 10099 for (auto &CB : CBV) { 10100 MachineBasicBlock *BitTestBB = 10101 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 10102 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 10103 } 10104 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 10105 SI->getCondition(), -1U, MVT::Other, false, 10106 ContiguousRange, nullptr, nullptr, std::move(BTI), 10107 TotalProb); 10108 10109 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 10110 BitTestCases.size() - 1, TotalProb); 10111 return true; 10112 } 10113 10114 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 10115 const SwitchInst *SI) { 10116 // Partition Clusters into as few subsets as possible, where each subset has a 10117 // range that fits in a machine word and has <= 3 unique destinations. 10118 10119 #ifndef NDEBUG 10120 // Clusters must be sorted and contain Range or JumpTable clusters. 10121 assert(!Clusters.empty()); 10122 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 10123 for (const CaseCluster &C : Clusters) 10124 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 10125 for (unsigned i = 1; i < Clusters.size(); ++i) 10126 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 10127 #endif 10128 10129 // The algorithm below is not suitable for -O0. 10130 if (TM.getOptLevel() == CodeGenOpt::None) 10131 return; 10132 10133 // If target does not have legal shift left, do not emit bit tests at all. 10134 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10135 const DataLayout &DL = DAG.getDataLayout(); 10136 10137 EVT PTy = TLI.getPointerTy(DL); 10138 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 10139 return; 10140 10141 int BitWidth = PTy.getSizeInBits(); 10142 const int64_t N = Clusters.size(); 10143 10144 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 10145 SmallVector<unsigned, 8> MinPartitions(N); 10146 // LastElement[i] is the last element of the partition starting at i. 10147 SmallVector<unsigned, 8> LastElement(N); 10148 10149 // FIXME: This might not be the best algorithm for finding bit test clusters. 10150 10151 // Base case: There is only one way to partition Clusters[N-1]. 10152 MinPartitions[N - 1] = 1; 10153 LastElement[N - 1] = N - 1; 10154 10155 // Note: loop indexes are signed to avoid underflow. 10156 for (int64_t i = N - 2; i >= 0; --i) { 10157 // Find optimal partitioning of Clusters[i..N-1]. 10158 // Baseline: Put Clusters[i] into a partition on its own. 10159 MinPartitions[i] = MinPartitions[i + 1] + 1; 10160 LastElement[i] = i; 10161 10162 // Search for a solution that results in fewer partitions. 10163 // Note: the search is limited by BitWidth, reducing time complexity. 10164 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 10165 // Try building a partition from Clusters[i..j]. 10166 10167 // Check the range. 10168 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(), 10169 Clusters[j].High->getValue(), DL)) 10170 continue; 10171 10172 // Check nbr of destinations and cluster types. 10173 // FIXME: This works, but doesn't seem very efficient. 10174 bool RangesOnly = true; 10175 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 10176 for (int64_t k = i; k <= j; k++) { 10177 if (Clusters[k].Kind != CC_Range) { 10178 RangesOnly = false; 10179 break; 10180 } 10181 Dests.set(Clusters[k].MBB->getNumber()); 10182 } 10183 if (!RangesOnly || Dests.count() > 3) 10184 break; 10185 10186 // Check if it's a better partition. 10187 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 10188 if (NumPartitions < MinPartitions[i]) { 10189 // Found a better partition. 10190 MinPartitions[i] = NumPartitions; 10191 LastElement[i] = j; 10192 } 10193 } 10194 } 10195 10196 // Iterate over the partitions, replacing with bit-test clusters in-place. 10197 unsigned DstIndex = 0; 10198 for (unsigned First = 0, Last; First < N; First = Last + 1) { 10199 Last = LastElement[First]; 10200 assert(First <= Last); 10201 assert(DstIndex <= First); 10202 10203 CaseCluster BitTestCluster; 10204 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 10205 Clusters[DstIndex++] = BitTestCluster; 10206 } else { 10207 size_t NumClusters = Last - First + 1; 10208 std::memmove(&Clusters[DstIndex], &Clusters[First], 10209 sizeof(Clusters[0]) * NumClusters); 10210 DstIndex += NumClusters; 10211 } 10212 } 10213 Clusters.resize(DstIndex); 10214 } 10215 10216 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10217 MachineBasicBlock *SwitchMBB, 10218 MachineBasicBlock *DefaultMBB) { 10219 MachineFunction *CurMF = FuncInfo.MF; 10220 MachineBasicBlock *NextMBB = nullptr; 10221 MachineFunction::iterator BBI(W.MBB); 10222 if (++BBI != FuncInfo.MF->end()) 10223 NextMBB = &*BBI; 10224 10225 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10226 10227 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10228 10229 if (Size == 2 && W.MBB == SwitchMBB) { 10230 // If any two of the cases has the same destination, and if one value 10231 // is the same as the other, but has one bit unset that the other has set, 10232 // use bit manipulation to do two compares at once. For example: 10233 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10234 // TODO: This could be extended to merge any 2 cases in switches with 3 10235 // cases. 10236 // TODO: Handle cases where W.CaseBB != SwitchBB. 10237 CaseCluster &Small = *W.FirstCluster; 10238 CaseCluster &Big = *W.LastCluster; 10239 10240 if (Small.Low == Small.High && Big.Low == Big.High && 10241 Small.MBB == Big.MBB) { 10242 const APInt &SmallValue = Small.Low->getValue(); 10243 const APInt &BigValue = Big.Low->getValue(); 10244 10245 // Check that there is only one bit different. 10246 APInt CommonBit = BigValue ^ SmallValue; 10247 if (CommonBit.isPowerOf2()) { 10248 SDValue CondLHS = getValue(Cond); 10249 EVT VT = CondLHS.getValueType(); 10250 SDLoc DL = getCurSDLoc(); 10251 10252 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10253 DAG.getConstant(CommonBit, DL, VT)); 10254 SDValue Cond = DAG.getSetCC( 10255 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10256 ISD::SETEQ); 10257 10258 // Update successor info. 10259 // Both Small and Big will jump to Small.BB, so we sum up the 10260 // probabilities. 10261 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10262 if (BPI) 10263 addSuccessorWithProb( 10264 SwitchMBB, DefaultMBB, 10265 // The default destination is the first successor in IR. 10266 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10267 else 10268 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10269 10270 // Insert the true branch. 10271 SDValue BrCond = 10272 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10273 DAG.getBasicBlock(Small.MBB)); 10274 // Insert the false branch. 10275 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10276 DAG.getBasicBlock(DefaultMBB)); 10277 10278 DAG.setRoot(BrCond); 10279 return; 10280 } 10281 } 10282 } 10283 10284 if (TM.getOptLevel() != CodeGenOpt::None) { 10285 // Here, we order cases by probability so the most likely case will be 10286 // checked first. However, two clusters can have the same probability in 10287 // which case their relative ordering is non-deterministic. So we use Low 10288 // as a tie-breaker as clusters are guaranteed to never overlap. 10289 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10290 [](const CaseCluster &a, const CaseCluster &b) { 10291 return a.Prob != b.Prob ? 10292 a.Prob > b.Prob : 10293 a.Low->getValue().slt(b.Low->getValue()); 10294 }); 10295 10296 // Rearrange the case blocks so that the last one falls through if possible 10297 // without changing the order of probabilities. 10298 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10299 --I; 10300 if (I->Prob > W.LastCluster->Prob) 10301 break; 10302 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10303 std::swap(*I, *W.LastCluster); 10304 break; 10305 } 10306 } 10307 } 10308 10309 // Compute total probability. 10310 BranchProbability DefaultProb = W.DefaultProb; 10311 BranchProbability UnhandledProbs = DefaultProb; 10312 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10313 UnhandledProbs += I->Prob; 10314 10315 MachineBasicBlock *CurMBB = W.MBB; 10316 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10317 bool FallthroughUnreachable = false; 10318 MachineBasicBlock *Fallthrough; 10319 if (I == W.LastCluster) { 10320 // For the last cluster, fall through to the default destination. 10321 Fallthrough = DefaultMBB; 10322 FallthroughUnreachable = isa<UnreachableInst>( 10323 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10324 } else { 10325 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10326 CurMF->insert(BBI, Fallthrough); 10327 // Put Cond in a virtual register to make it available from the new blocks. 10328 ExportFromCurrentBlock(Cond); 10329 } 10330 UnhandledProbs -= I->Prob; 10331 10332 switch (I->Kind) { 10333 case CC_JumpTable: { 10334 // FIXME: Optimize away range check based on pivot comparisons. 10335 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 10336 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 10337 10338 // The jump block hasn't been inserted yet; insert it here. 10339 MachineBasicBlock *JumpMBB = JT->MBB; 10340 CurMF->insert(BBI, JumpMBB); 10341 10342 auto JumpProb = I->Prob; 10343 auto FallthroughProb = UnhandledProbs; 10344 10345 // If the default statement is a target of the jump table, we evenly 10346 // distribute the default probability to successors of CurMBB. Also 10347 // update the probability on the edge from JumpMBB to Fallthrough. 10348 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10349 SE = JumpMBB->succ_end(); 10350 SI != SE; ++SI) { 10351 if (*SI == DefaultMBB) { 10352 JumpProb += DefaultProb / 2; 10353 FallthroughProb -= DefaultProb / 2; 10354 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10355 JumpMBB->normalizeSuccProbs(); 10356 break; 10357 } 10358 } 10359 10360 if (FallthroughUnreachable) { 10361 // Skip the range check if the fallthrough block is unreachable. 10362 JTH->OmitRangeCheck = true; 10363 } 10364 10365 if (!JTH->OmitRangeCheck) 10366 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10367 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10368 CurMBB->normalizeSuccProbs(); 10369 10370 // The jump table header will be inserted in our current block, do the 10371 // range check, and fall through to our fallthrough block. 10372 JTH->HeaderBB = CurMBB; 10373 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10374 10375 // If we're in the right place, emit the jump table header right now. 10376 if (CurMBB == SwitchMBB) { 10377 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10378 JTH->Emitted = true; 10379 } 10380 break; 10381 } 10382 case CC_BitTests: { 10383 // FIXME: If Fallthrough is unreachable, skip the range check. 10384 10385 // FIXME: Optimize away range check based on pivot comparisons. 10386 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 10387 10388 // The bit test blocks haven't been inserted yet; insert them here. 10389 for (BitTestCase &BTC : BTB->Cases) 10390 CurMF->insert(BBI, BTC.ThisBB); 10391 10392 // Fill in fields of the BitTestBlock. 10393 BTB->Parent = CurMBB; 10394 BTB->Default = Fallthrough; 10395 10396 BTB->DefaultProb = UnhandledProbs; 10397 // If the cases in bit test don't form a contiguous range, we evenly 10398 // distribute the probability on the edge to Fallthrough to two 10399 // successors of CurMBB. 10400 if (!BTB->ContiguousRange) { 10401 BTB->Prob += DefaultProb / 2; 10402 BTB->DefaultProb -= DefaultProb / 2; 10403 } 10404 10405 // If we're in the right place, emit the bit test header right now. 10406 if (CurMBB == SwitchMBB) { 10407 visitBitTestHeader(*BTB, SwitchMBB); 10408 BTB->Emitted = true; 10409 } 10410 break; 10411 } 10412 case CC_Range: { 10413 const Value *RHS, *LHS, *MHS; 10414 ISD::CondCode CC; 10415 if (I->Low == I->High) { 10416 // Check Cond == I->Low. 10417 CC = ISD::SETEQ; 10418 LHS = Cond; 10419 RHS=I->Low; 10420 MHS = nullptr; 10421 } else { 10422 // Check I->Low <= Cond <= I->High. 10423 CC = ISD::SETLE; 10424 LHS = I->Low; 10425 MHS = Cond; 10426 RHS = I->High; 10427 } 10428 10429 // If Fallthrough is unreachable, fold away the comparison. 10430 if (FallthroughUnreachable) 10431 CC = ISD::SETTRUE; 10432 10433 // The false probability is the sum of all unhandled cases. 10434 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10435 getCurSDLoc(), I->Prob, UnhandledProbs); 10436 10437 if (CurMBB == SwitchMBB) 10438 visitSwitchCase(CB, SwitchMBB); 10439 else 10440 SwitchCases.push_back(CB); 10441 10442 break; 10443 } 10444 } 10445 CurMBB = Fallthrough; 10446 } 10447 } 10448 10449 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10450 CaseClusterIt First, 10451 CaseClusterIt Last) { 10452 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10453 if (X.Prob != CC.Prob) 10454 return X.Prob > CC.Prob; 10455 10456 // Ties are broken by comparing the case value. 10457 return X.Low->getValue().slt(CC.Low->getValue()); 10458 }); 10459 } 10460 10461 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10462 const SwitchWorkListItem &W, 10463 Value *Cond, 10464 MachineBasicBlock *SwitchMBB) { 10465 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10466 "Clusters not sorted?"); 10467 10468 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10469 10470 // Balance the tree based on branch probabilities to create a near-optimal (in 10471 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10472 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10473 CaseClusterIt LastLeft = W.FirstCluster; 10474 CaseClusterIt FirstRight = W.LastCluster; 10475 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10476 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10477 10478 // Move LastLeft and FirstRight towards each other from opposite directions to 10479 // find a partitioning of the clusters which balances the probability on both 10480 // sides. If LeftProb and RightProb are equal, alternate which side is 10481 // taken to ensure 0-probability nodes are distributed evenly. 10482 unsigned I = 0; 10483 while (LastLeft + 1 < FirstRight) { 10484 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10485 LeftProb += (++LastLeft)->Prob; 10486 else 10487 RightProb += (--FirstRight)->Prob; 10488 I++; 10489 } 10490 10491 while (true) { 10492 // Our binary search tree differs from a typical BST in that ours can have up 10493 // to three values in each leaf. The pivot selection above doesn't take that 10494 // into account, which means the tree might require more nodes and be less 10495 // efficient. We compensate for this here. 10496 10497 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10498 unsigned NumRight = W.LastCluster - FirstRight + 1; 10499 10500 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10501 // If one side has less than 3 clusters, and the other has more than 3, 10502 // consider taking a cluster from the other side. 10503 10504 if (NumLeft < NumRight) { 10505 // Consider moving the first cluster on the right to the left side. 10506 CaseCluster &CC = *FirstRight; 10507 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10508 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10509 if (LeftSideRank <= RightSideRank) { 10510 // Moving the cluster to the left does not demote it. 10511 ++LastLeft; 10512 ++FirstRight; 10513 continue; 10514 } 10515 } else { 10516 assert(NumRight < NumLeft); 10517 // Consider moving the last element on the left to the right side. 10518 CaseCluster &CC = *LastLeft; 10519 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10520 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10521 if (RightSideRank <= LeftSideRank) { 10522 // Moving the cluster to the right does not demot it. 10523 --LastLeft; 10524 --FirstRight; 10525 continue; 10526 } 10527 } 10528 } 10529 break; 10530 } 10531 10532 assert(LastLeft + 1 == FirstRight); 10533 assert(LastLeft >= W.FirstCluster); 10534 assert(FirstRight <= W.LastCluster); 10535 10536 // Use the first element on the right as pivot since we will make less-than 10537 // comparisons against it. 10538 CaseClusterIt PivotCluster = FirstRight; 10539 assert(PivotCluster > W.FirstCluster); 10540 assert(PivotCluster <= W.LastCluster); 10541 10542 CaseClusterIt FirstLeft = W.FirstCluster; 10543 CaseClusterIt LastRight = W.LastCluster; 10544 10545 const ConstantInt *Pivot = PivotCluster->Low; 10546 10547 // New blocks will be inserted immediately after the current one. 10548 MachineFunction::iterator BBI(W.MBB); 10549 ++BBI; 10550 10551 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10552 // we can branch to its destination directly if it's squeezed exactly in 10553 // between the known lower bound and Pivot - 1. 10554 MachineBasicBlock *LeftMBB; 10555 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10556 FirstLeft->Low == W.GE && 10557 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10558 LeftMBB = FirstLeft->MBB; 10559 } else { 10560 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10561 FuncInfo.MF->insert(BBI, LeftMBB); 10562 WorkList.push_back( 10563 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10564 // Put Cond in a virtual register to make it available from the new blocks. 10565 ExportFromCurrentBlock(Cond); 10566 } 10567 10568 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10569 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10570 // directly if RHS.High equals the current upper bound. 10571 MachineBasicBlock *RightMBB; 10572 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10573 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10574 RightMBB = FirstRight->MBB; 10575 } else { 10576 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10577 FuncInfo.MF->insert(BBI, RightMBB); 10578 WorkList.push_back( 10579 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10580 // Put Cond in a virtual register to make it available from the new blocks. 10581 ExportFromCurrentBlock(Cond); 10582 } 10583 10584 // Create the CaseBlock record that will be used to lower the branch. 10585 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10586 getCurSDLoc(), LeftProb, RightProb); 10587 10588 if (W.MBB == SwitchMBB) 10589 visitSwitchCase(CB, SwitchMBB); 10590 else 10591 SwitchCases.push_back(CB); 10592 } 10593 10594 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10595 // from the swith statement. 10596 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10597 BranchProbability PeeledCaseProb) { 10598 if (PeeledCaseProb == BranchProbability::getOne()) 10599 return BranchProbability::getZero(); 10600 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10601 10602 uint32_t Numerator = CaseProb.getNumerator(); 10603 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10604 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10605 } 10606 10607 // Try to peel the top probability case if it exceeds the threshold. 10608 // Return current MachineBasicBlock for the switch statement if the peeling 10609 // does not occur. 10610 // If the peeling is performed, return the newly created MachineBasicBlock 10611 // for the peeled switch statement. Also update Clusters to remove the peeled 10612 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10613 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10614 const SwitchInst &SI, CaseClusterVector &Clusters, 10615 BranchProbability &PeeledCaseProb) { 10616 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10617 // Don't perform if there is only one cluster or optimizing for size. 10618 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10619 TM.getOptLevel() == CodeGenOpt::None || 10620 SwitchMBB->getParent()->getFunction().hasMinSize()) 10621 return SwitchMBB; 10622 10623 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10624 unsigned PeeledCaseIndex = 0; 10625 bool SwitchPeeled = false; 10626 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10627 CaseCluster &CC = Clusters[Index]; 10628 if (CC.Prob < TopCaseProb) 10629 continue; 10630 TopCaseProb = CC.Prob; 10631 PeeledCaseIndex = Index; 10632 SwitchPeeled = true; 10633 } 10634 if (!SwitchPeeled) 10635 return SwitchMBB; 10636 10637 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10638 << TopCaseProb << "\n"); 10639 10640 // Record the MBB for the peeled switch statement. 10641 MachineFunction::iterator BBI(SwitchMBB); 10642 ++BBI; 10643 MachineBasicBlock *PeeledSwitchMBB = 10644 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10645 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10646 10647 ExportFromCurrentBlock(SI.getCondition()); 10648 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10649 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10650 nullptr, nullptr, TopCaseProb.getCompl()}; 10651 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10652 10653 Clusters.erase(PeeledCaseIt); 10654 for (CaseCluster &CC : Clusters) { 10655 LLVM_DEBUG( 10656 dbgs() << "Scale the probablity for one cluster, before scaling: " 10657 << CC.Prob << "\n"); 10658 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10659 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10660 } 10661 PeeledCaseProb = TopCaseProb; 10662 return PeeledSwitchMBB; 10663 } 10664 10665 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10666 // Extract cases from the switch. 10667 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10668 CaseClusterVector Clusters; 10669 Clusters.reserve(SI.getNumCases()); 10670 for (auto I : SI.cases()) { 10671 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10672 const ConstantInt *CaseVal = I.getCaseValue(); 10673 BranchProbability Prob = 10674 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10675 : BranchProbability(1, SI.getNumCases() + 1); 10676 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10677 } 10678 10679 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10680 10681 // Cluster adjacent cases with the same destination. We do this at all 10682 // optimization levels because it's cheap to do and will make codegen faster 10683 // if there are many clusters. 10684 sortAndRangeify(Clusters); 10685 10686 // The branch probablity of the peeled case. 10687 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10688 MachineBasicBlock *PeeledSwitchMBB = 10689 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10690 10691 // If there is only the default destination, jump there directly. 10692 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10693 if (Clusters.empty()) { 10694 assert(PeeledSwitchMBB == SwitchMBB); 10695 SwitchMBB->addSuccessor(DefaultMBB); 10696 if (DefaultMBB != NextBlock(SwitchMBB)) { 10697 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10698 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10699 } 10700 return; 10701 } 10702 10703 findJumpTables(Clusters, &SI, DefaultMBB); 10704 findBitTestClusters(Clusters, &SI); 10705 10706 LLVM_DEBUG({ 10707 dbgs() << "Case clusters: "; 10708 for (const CaseCluster &C : Clusters) { 10709 if (C.Kind == CC_JumpTable) 10710 dbgs() << "JT:"; 10711 if (C.Kind == CC_BitTests) 10712 dbgs() << "BT:"; 10713 10714 C.Low->getValue().print(dbgs(), true); 10715 if (C.Low != C.High) { 10716 dbgs() << '-'; 10717 C.High->getValue().print(dbgs(), true); 10718 } 10719 dbgs() << ' '; 10720 } 10721 dbgs() << '\n'; 10722 }); 10723 10724 assert(!Clusters.empty()); 10725 SwitchWorkList WorkList; 10726 CaseClusterIt First = Clusters.begin(); 10727 CaseClusterIt Last = Clusters.end() - 1; 10728 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10729 // Scale the branchprobability for DefaultMBB if the peel occurs and 10730 // DefaultMBB is not replaced. 10731 if (PeeledCaseProb != BranchProbability::getZero() && 10732 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10733 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10734 WorkList.push_back( 10735 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10736 10737 while (!WorkList.empty()) { 10738 SwitchWorkListItem W = WorkList.back(); 10739 WorkList.pop_back(); 10740 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10741 10742 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10743 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10744 // For optimized builds, lower large range as a balanced binary tree. 10745 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10746 continue; 10747 } 10748 10749 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10750 } 10751 } 10752