xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 8555ab2fcdfad1f9869ccaa784b38dfa59fc17f1)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineFrameInfo.h"
38 #include "llvm/CodeGen/MachineFunction.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
41 #include "llvm/CodeGen/MachineMemOperand.h"
42 #include "llvm/CodeGen/MachineModuleInfo.h"
43 #include "llvm/CodeGen/MachineOperand.h"
44 #include "llvm/CodeGen/MachineRegisterInfo.h"
45 #include "llvm/CodeGen/RuntimeLibcalls.h"
46 #include "llvm/CodeGen/SelectionDAG.h"
47 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
48 #include "llvm/CodeGen/StackMaps.h"
49 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
50 #include "llvm/CodeGen/TargetFrameLowering.h"
51 #include "llvm/CodeGen/TargetInstrInfo.h"
52 #include "llvm/CodeGen/TargetOpcodes.h"
53 #include "llvm/CodeGen/TargetRegisterInfo.h"
54 #include "llvm/CodeGen/TargetSubtargetInfo.h"
55 #include "llvm/CodeGen/WinEHFuncInfo.h"
56 #include "llvm/IR/Argument.h"
57 #include "llvm/IR/Attributes.h"
58 #include "llvm/IR/BasicBlock.h"
59 #include "llvm/IR/CFG.h"
60 #include "llvm/IR/CallingConv.h"
61 #include "llvm/IR/Constant.h"
62 #include "llvm/IR/ConstantRange.h"
63 #include "llvm/IR/Constants.h"
64 #include "llvm/IR/DataLayout.h"
65 #include "llvm/IR/DebugInfo.h"
66 #include "llvm/IR/DebugInfoMetadata.h"
67 #include "llvm/IR/DerivedTypes.h"
68 #include "llvm/IR/DiagnosticInfo.h"
69 #include "llvm/IR/EHPersonalities.h"
70 #include "llvm/IR/Function.h"
71 #include "llvm/IR/GetElementPtrTypeIterator.h"
72 #include "llvm/IR/InlineAsm.h"
73 #include "llvm/IR/InstrTypes.h"
74 #include "llvm/IR/Instructions.h"
75 #include "llvm/IR/IntrinsicInst.h"
76 #include "llvm/IR/Intrinsics.h"
77 #include "llvm/IR/IntrinsicsAArch64.h"
78 #include "llvm/IR/IntrinsicsWebAssembly.h"
79 #include "llvm/IR/LLVMContext.h"
80 #include "llvm/IR/Metadata.h"
81 #include "llvm/IR/Module.h"
82 #include "llvm/IR/Operator.h"
83 #include "llvm/IR/PatternMatch.h"
84 #include "llvm/IR/Statepoint.h"
85 #include "llvm/IR/Type.h"
86 #include "llvm/IR/User.h"
87 #include "llvm/IR/Value.h"
88 #include "llvm/MC/MCContext.h"
89 #include "llvm/Support/AtomicOrdering.h"
90 #include "llvm/Support/Casting.h"
91 #include "llvm/Support/CommandLine.h"
92 #include "llvm/Support/Compiler.h"
93 #include "llvm/Support/Debug.h"
94 #include "llvm/Support/MathExtras.h"
95 #include "llvm/Support/raw_ostream.h"
96 #include "llvm/Target/TargetIntrinsicInfo.h"
97 #include "llvm/Target/TargetMachine.h"
98 #include "llvm/Target/TargetOptions.h"
99 #include "llvm/TargetParser/Triple.h"
100 #include "llvm/Transforms/Utils/Local.h"
101 #include <cstddef>
102 #include <iterator>
103 #include <limits>
104 #include <optional>
105 #include <tuple>
106 
107 using namespace llvm;
108 using namespace PatternMatch;
109 using namespace SwitchCG;
110 
111 #define DEBUG_TYPE "isel"
112 
113 /// LimitFloatPrecision - Generate low-precision inline sequences for
114 /// some float libcalls (6, 8 or 12 bits).
115 static unsigned LimitFloatPrecision;
116 
117 static cl::opt<bool>
118     InsertAssertAlign("insert-assert-align", cl::init(true),
119                       cl::desc("Insert the experimental `assertalign` node."),
120                       cl::ReallyHidden);
121 
122 static cl::opt<unsigned, true>
123     LimitFPPrecision("limit-float-precision",
124                      cl::desc("Generate low-precision inline sequences "
125                               "for some float libcalls"),
126                      cl::location(LimitFloatPrecision), cl::Hidden,
127                      cl::init(0));
128 
129 static cl::opt<unsigned> SwitchPeelThreshold(
130     "switch-peel-threshold", cl::Hidden, cl::init(66),
131     cl::desc("Set the case probability threshold for peeling the case from a "
132              "switch statement. A value greater than 100 will void this "
133              "optimization"));
134 
135 // Limit the width of DAG chains. This is important in general to prevent
136 // DAG-based analysis from blowing up. For example, alias analysis and
137 // load clustering may not complete in reasonable time. It is difficult to
138 // recognize and avoid this situation within each individual analysis, and
139 // future analyses are likely to have the same behavior. Limiting DAG width is
140 // the safe approach and will be especially important with global DAGs.
141 //
142 // MaxParallelChains default is arbitrarily high to avoid affecting
143 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
144 // sequence over this should have been converted to llvm.memcpy by the
145 // frontend. It is easy to induce this behavior with .ll code such as:
146 // %buffer = alloca [4096 x i8]
147 // %data = load [4096 x i8]* %argPtr
148 // store [4096 x i8] %data, [4096 x i8]* %buffer
149 static const unsigned MaxParallelChains = 64;
150 
151 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
152                                       const SDValue *Parts, unsigned NumParts,
153                                       MVT PartVT, EVT ValueVT, const Value *V,
154                                       std::optional<CallingConv::ID> CC);
155 
156 /// getCopyFromParts - Create a value that contains the specified legal parts
157 /// combined into the value they represent.  If the parts combine to a type
158 /// larger than ValueVT then AssertOp can be used to specify whether the extra
159 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
160 /// (ISD::AssertSext).
161 static SDValue
162 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
163                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
164                  std::optional<CallingConv::ID> CC = std::nullopt,
165                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
166   // Let the target assemble the parts if it wants to
167   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
168   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
169                                                    PartVT, ValueVT, CC))
170     return Val;
171 
172   if (ValueVT.isVector())
173     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
174                                   CC);
175 
176   assert(NumParts > 0 && "No parts to assemble!");
177   SDValue Val = Parts[0];
178 
179   if (NumParts > 1) {
180     // Assemble the value from multiple parts.
181     if (ValueVT.isInteger()) {
182       unsigned PartBits = PartVT.getSizeInBits();
183       unsigned ValueBits = ValueVT.getSizeInBits();
184 
185       // Assemble the power of 2 part.
186       unsigned RoundParts = llvm::bit_floor(NumParts);
187       unsigned RoundBits = PartBits * RoundParts;
188       EVT RoundVT = RoundBits == ValueBits ?
189         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
190       SDValue Lo, Hi;
191 
192       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
193 
194       if (RoundParts > 2) {
195         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
196                               PartVT, HalfVT, V);
197         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
198                               RoundParts / 2, PartVT, HalfVT, V);
199       } else {
200         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
201         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
202       }
203 
204       if (DAG.getDataLayout().isBigEndian())
205         std::swap(Lo, Hi);
206 
207       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
208 
209       if (RoundParts < NumParts) {
210         // Assemble the trailing non-power-of-2 part.
211         unsigned OddParts = NumParts - RoundParts;
212         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
213         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
214                               OddVT, V, CC);
215 
216         // Combine the round and odd parts.
217         Lo = Val;
218         if (DAG.getDataLayout().isBigEndian())
219           std::swap(Lo, Hi);
220         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
221         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
222         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
223                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
224                                          TLI.getShiftAmountTy(
225                                              TotalVT, DAG.getDataLayout())));
226         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
227         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
228       }
229     } else if (PartVT.isFloatingPoint()) {
230       // FP split into multiple FP parts (for ppcf128)
231       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
232              "Unexpected split");
233       SDValue Lo, Hi;
234       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
235       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
236       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
237         std::swap(Lo, Hi);
238       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
239     } else {
240       // FP split into integer parts (soft fp)
241       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
242              !PartVT.isVector() && "Unexpected split");
243       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
244       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
245     }
246   }
247 
248   // There is now one part, held in Val.  Correct it to match ValueVT.
249   // PartEVT is the type of the register class that holds the value.
250   // ValueVT is the type of the inline asm operation.
251   EVT PartEVT = Val.getValueType();
252 
253   if (PartEVT == ValueVT)
254     return Val;
255 
256   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
257       ValueVT.bitsLT(PartEVT)) {
258     // For an FP value in an integer part, we need to truncate to the right
259     // width first.
260     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
261     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
262   }
263 
264   // Handle types that have the same size.
265   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
266     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
267 
268   // Handle types with different sizes.
269   if (PartEVT.isInteger() && ValueVT.isInteger()) {
270     if (ValueVT.bitsLT(PartEVT)) {
271       // For a truncate, see if we have any information to
272       // indicate whether the truncated bits will always be
273       // zero or sign-extension.
274       if (AssertOp)
275         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
276                           DAG.getValueType(ValueVT));
277       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
278     }
279     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
280   }
281 
282   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
283     // FP_ROUND's are always exact here.
284     if (ValueVT.bitsLT(Val.getValueType()))
285       return DAG.getNode(
286           ISD::FP_ROUND, DL, ValueVT, Val,
287           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
288 
289     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
290   }
291 
292   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
293   // then truncating.
294   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
295       ValueVT.bitsLT(PartEVT)) {
296     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
297     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
298   }
299 
300   report_fatal_error("Unknown mismatch in getCopyFromParts!");
301 }
302 
303 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
304                                               const Twine &ErrMsg) {
305   const Instruction *I = dyn_cast_or_null<Instruction>(V);
306   if (!V)
307     return Ctx.emitError(ErrMsg);
308 
309   const char *AsmError = ", possible invalid constraint for vector type";
310   if (const CallInst *CI = dyn_cast<CallInst>(I))
311     if (CI->isInlineAsm())
312       return Ctx.emitError(I, ErrMsg + AsmError);
313 
314   return Ctx.emitError(I, ErrMsg);
315 }
316 
317 /// getCopyFromPartsVector - Create a value that contains the specified legal
318 /// parts combined into the value they represent.  If the parts combine to a
319 /// type larger than ValueVT then AssertOp can be used to specify whether the
320 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
321 /// ValueVT (ISD::AssertSext).
322 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
323                                       const SDValue *Parts, unsigned NumParts,
324                                       MVT PartVT, EVT ValueVT, const Value *V,
325                                       std::optional<CallingConv::ID> CallConv) {
326   assert(ValueVT.isVector() && "Not a vector value");
327   assert(NumParts > 0 && "No parts to assemble!");
328   const bool IsABIRegCopy = CallConv.has_value();
329 
330   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
331   SDValue Val = Parts[0];
332 
333   // Handle a multi-element vector.
334   if (NumParts > 1) {
335     EVT IntermediateVT;
336     MVT RegisterVT;
337     unsigned NumIntermediates;
338     unsigned NumRegs;
339 
340     if (IsABIRegCopy) {
341       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
342           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
343           NumIntermediates, RegisterVT);
344     } else {
345       NumRegs =
346           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
347                                      NumIntermediates, RegisterVT);
348     }
349 
350     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
351     NumParts = NumRegs; // Silence a compiler warning.
352     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
353     assert(RegisterVT.getSizeInBits() ==
354            Parts[0].getSimpleValueType().getSizeInBits() &&
355            "Part type sizes don't match!");
356 
357     // Assemble the parts into intermediate operands.
358     SmallVector<SDValue, 8> Ops(NumIntermediates);
359     if (NumIntermediates == NumParts) {
360       // If the register was not expanded, truncate or copy the value,
361       // as appropriate.
362       for (unsigned i = 0; i != NumParts; ++i)
363         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
364                                   PartVT, IntermediateVT, V, CallConv);
365     } else if (NumParts > 0) {
366       // If the intermediate type was expanded, build the intermediate
367       // operands from the parts.
368       assert(NumParts % NumIntermediates == 0 &&
369              "Must expand into a divisible number of parts!");
370       unsigned Factor = NumParts / NumIntermediates;
371       for (unsigned i = 0; i != NumIntermediates; ++i)
372         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
373                                   PartVT, IntermediateVT, V, CallConv);
374     }
375 
376     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
377     // intermediate operands.
378     EVT BuiltVectorTy =
379         IntermediateVT.isVector()
380             ? EVT::getVectorVT(
381                   *DAG.getContext(), IntermediateVT.getScalarType(),
382                   IntermediateVT.getVectorElementCount() * NumParts)
383             : EVT::getVectorVT(*DAG.getContext(),
384                                IntermediateVT.getScalarType(),
385                                NumIntermediates);
386     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
387                                                 : ISD::BUILD_VECTOR,
388                       DL, BuiltVectorTy, Ops);
389   }
390 
391   // There is now one part, held in Val.  Correct it to match ValueVT.
392   EVT PartEVT = Val.getValueType();
393 
394   if (PartEVT == ValueVT)
395     return Val;
396 
397   if (PartEVT.isVector()) {
398     // Vector/Vector bitcast.
399     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
400       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
401 
402     // If the parts vector has more elements than the value vector, then we
403     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
404     // Extract the elements we want.
405     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
406       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
407               ValueVT.getVectorElementCount().getKnownMinValue()) &&
408              (PartEVT.getVectorElementCount().isScalable() ==
409               ValueVT.getVectorElementCount().isScalable()) &&
410              "Cannot narrow, it would be a lossy transformation");
411       PartEVT =
412           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
413                            ValueVT.getVectorElementCount());
414       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
415                         DAG.getVectorIdxConstant(0, DL));
416       if (PartEVT == ValueVT)
417         return Val;
418       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
419         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
420     }
421 
422     // Promoted vector extract
423     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
424   }
425 
426   // Trivial bitcast if the types are the same size and the destination
427   // vector type is legal.
428   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
429       TLI.isTypeLegal(ValueVT))
430     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
431 
432   if (ValueVT.getVectorNumElements() != 1) {
433      // Certain ABIs require that vectors are passed as integers. For vectors
434      // are the same size, this is an obvious bitcast.
435      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
436        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
437      } else if (ValueVT.bitsLT(PartEVT)) {
438        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
439        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
440        // Drop the extra bits.
441        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
442        return DAG.getBitcast(ValueVT, Val);
443      }
444 
445      diagnosePossiblyInvalidConstraint(
446          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
447      return DAG.getUNDEF(ValueVT);
448   }
449 
450   // Handle cases such as i8 -> <1 x i1>
451   EVT ValueSVT = ValueVT.getVectorElementType();
452   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
453     unsigned ValueSize = ValueSVT.getSizeInBits();
454     if (ValueSize == PartEVT.getSizeInBits()) {
455       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
456     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
457       // It's possible a scalar floating point type gets softened to integer and
458       // then promoted to a larger integer. If PartEVT is the larger integer
459       // we need to truncate it and then bitcast to the FP type.
460       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
461       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
462       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
463       Val = DAG.getBitcast(ValueSVT, Val);
464     } else {
465       Val = ValueVT.isFloatingPoint()
466                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
467                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
468     }
469   }
470 
471   return DAG.getBuildVector(ValueVT, DL, Val);
472 }
473 
474 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
475                                  SDValue Val, SDValue *Parts, unsigned NumParts,
476                                  MVT PartVT, const Value *V,
477                                  std::optional<CallingConv::ID> CallConv);
478 
479 /// getCopyToParts - Create a series of nodes that contain the specified value
480 /// split into legal parts.  If the parts contain more bits than Val, then, for
481 /// integers, ExtendKind can be used to specify how to generate the extra bits.
482 static void
483 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
484                unsigned NumParts, MVT PartVT, const Value *V,
485                std::optional<CallingConv::ID> CallConv = std::nullopt,
486                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
487   // Let the target split the parts if it wants to
488   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
489   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
490                                       CallConv))
491     return;
492   EVT ValueVT = Val.getValueType();
493 
494   // Handle the vector case separately.
495   if (ValueVT.isVector())
496     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
497                                 CallConv);
498 
499   unsigned PartBits = PartVT.getSizeInBits();
500   unsigned OrigNumParts = NumParts;
501   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
502          "Copying to an illegal type!");
503 
504   if (NumParts == 0)
505     return;
506 
507   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
508   EVT PartEVT = PartVT;
509   if (PartEVT == ValueVT) {
510     assert(NumParts == 1 && "No-op copy with multiple parts!");
511     Parts[0] = Val;
512     return;
513   }
514 
515   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
516     // If the parts cover more bits than the value has, promote the value.
517     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
518       assert(NumParts == 1 && "Do not know what to promote to!");
519       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
520     } else {
521       if (ValueVT.isFloatingPoint()) {
522         // FP values need to be bitcast, then extended if they are being put
523         // into a larger container.
524         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
525         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
526       }
527       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
528              ValueVT.isInteger() &&
529              "Unknown mismatch!");
530       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
531       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
532       if (PartVT == MVT::x86mmx)
533         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
534     }
535   } else if (PartBits == ValueVT.getSizeInBits()) {
536     // Different types of the same size.
537     assert(NumParts == 1 && PartEVT != ValueVT);
538     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
540     // If the parts cover less bits than value has, truncate the value.
541     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
542            ValueVT.isInteger() &&
543            "Unknown mismatch!");
544     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
545     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
546     if (PartVT == MVT::x86mmx)
547       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548   }
549 
550   // The value may have changed - recompute ValueVT.
551   ValueVT = Val.getValueType();
552   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
553          "Failed to tile the value with PartVT!");
554 
555   if (NumParts == 1) {
556     if (PartEVT != ValueVT) {
557       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
558                                         "scalar-to-vector conversion failed");
559       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
560     }
561 
562     Parts[0] = Val;
563     return;
564   }
565 
566   // Expand the value into multiple parts.
567   if (NumParts & (NumParts - 1)) {
568     // The number of parts is not a power of 2.  Split off and copy the tail.
569     assert(PartVT.isInteger() && ValueVT.isInteger() &&
570            "Do not know what to expand to!");
571     unsigned RoundParts = llvm::bit_floor(NumParts);
572     unsigned RoundBits = RoundParts * PartBits;
573     unsigned OddParts = NumParts - RoundParts;
574     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
575       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
576 
577     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
578                    CallConv);
579 
580     if (DAG.getDataLayout().isBigEndian())
581       // The odd parts were reversed by getCopyToParts - unreverse them.
582       std::reverse(Parts + RoundParts, Parts + NumParts);
583 
584     NumParts = RoundParts;
585     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
586     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
587   }
588 
589   // The number of parts is a power of 2.  Repeatedly bisect the value using
590   // EXTRACT_ELEMENT.
591   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
592                          EVT::getIntegerVT(*DAG.getContext(),
593                                            ValueVT.getSizeInBits()),
594                          Val);
595 
596   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
597     for (unsigned i = 0; i < NumParts; i += StepSize) {
598       unsigned ThisBits = StepSize * PartBits / 2;
599       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
600       SDValue &Part0 = Parts[i];
601       SDValue &Part1 = Parts[i+StepSize/2];
602 
603       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
604                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
605       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
606                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
607 
608       if (ThisBits == PartBits && ThisVT != PartVT) {
609         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
610         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
611       }
612     }
613   }
614 
615   if (DAG.getDataLayout().isBigEndian())
616     std::reverse(Parts, Parts + OrigNumParts);
617 }
618 
619 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
620                                      const SDLoc &DL, EVT PartVT) {
621   if (!PartVT.isVector())
622     return SDValue();
623 
624   EVT ValueVT = Val.getValueType();
625   ElementCount PartNumElts = PartVT.getVectorElementCount();
626   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
627 
628   // We only support widening vectors with equivalent element types and
629   // fixed/scalable properties. If a target needs to widen a fixed-length type
630   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
631   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
632       PartNumElts.isScalable() != ValueNumElts.isScalable() ||
633       PartVT.getVectorElementType() != ValueVT.getVectorElementType())
634     return SDValue();
635 
636   // Widening a scalable vector to another scalable vector is done by inserting
637   // the vector into a larger undef one.
638   if (PartNumElts.isScalable())
639     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
640                        Val, DAG.getVectorIdxConstant(0, DL));
641 
642   EVT ElementVT = PartVT.getVectorElementType();
643   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
644   // undef elements.
645   SmallVector<SDValue, 16> Ops;
646   DAG.ExtractVectorElements(Val, Ops);
647   SDValue EltUndef = DAG.getUNDEF(ElementVT);
648   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
649 
650   // FIXME: Use CONCAT for 2x -> 4x.
651   return DAG.getBuildVector(PartVT, DL, Ops);
652 }
653 
654 /// getCopyToPartsVector - Create a series of nodes that contain the specified
655 /// value split into legal parts.
656 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
657                                  SDValue Val, SDValue *Parts, unsigned NumParts,
658                                  MVT PartVT, const Value *V,
659                                  std::optional<CallingConv::ID> CallConv) {
660   EVT ValueVT = Val.getValueType();
661   assert(ValueVT.isVector() && "Not a vector");
662   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
663   const bool IsABIRegCopy = CallConv.has_value();
664 
665   if (NumParts == 1) {
666     EVT PartEVT = PartVT;
667     if (PartEVT == ValueVT) {
668       // Nothing to do.
669     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
670       // Bitconvert vector->vector case.
671       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
672     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
673       Val = Widened;
674     } else if (PartVT.isVector() &&
675                PartEVT.getVectorElementType().bitsGE(
676                    ValueVT.getVectorElementType()) &&
677                PartEVT.getVectorElementCount() ==
678                    ValueVT.getVectorElementCount()) {
679 
680       // Promoted vector extract
681       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
682     } else if (PartEVT.isVector() &&
683                PartEVT.getVectorElementType() !=
684                    ValueVT.getVectorElementType() &&
685                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
686                    TargetLowering::TypeWidenVector) {
687       // Combination of widening and promotion.
688       EVT WidenVT =
689           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
690                            PartVT.getVectorElementCount());
691       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
692       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
693     } else {
694       // Don't extract an integer from a float vector. This can happen if the
695       // FP type gets softened to integer and then promoted. The promotion
696       // prevents it from being picked up by the earlier bitcast case.
697       if (ValueVT.getVectorElementCount().isScalar() &&
698           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
699         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
700                           DAG.getVectorIdxConstant(0, DL));
701       } else {
702         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
703         assert(PartVT.getFixedSizeInBits() > ValueSize &&
704                "lossy conversion of vector to scalar type");
705         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
706         Val = DAG.getBitcast(IntermediateType, Val);
707         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
708       }
709     }
710 
711     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
712     Parts[0] = Val;
713     return;
714   }
715 
716   // Handle a multi-element vector.
717   EVT IntermediateVT;
718   MVT RegisterVT;
719   unsigned NumIntermediates;
720   unsigned NumRegs;
721   if (IsABIRegCopy) {
722     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
723         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
724         RegisterVT);
725   } else {
726     NumRegs =
727         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
728                                    NumIntermediates, RegisterVT);
729   }
730 
731   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
732   NumParts = NumRegs; // Silence a compiler warning.
733   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
734 
735   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
736          "Mixing scalable and fixed vectors when copying in parts");
737 
738   std::optional<ElementCount> DestEltCnt;
739 
740   if (IntermediateVT.isVector())
741     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
742   else
743     DestEltCnt = ElementCount::getFixed(NumIntermediates);
744 
745   EVT BuiltVectorTy = EVT::getVectorVT(
746       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
747 
748   if (ValueVT == BuiltVectorTy) {
749     // Nothing to do.
750   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
751     // Bitconvert vector->vector case.
752     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
753   } else {
754     if (BuiltVectorTy.getVectorElementType().bitsGT(
755             ValueVT.getVectorElementType())) {
756       // Integer promotion.
757       ValueVT = EVT::getVectorVT(*DAG.getContext(),
758                                  BuiltVectorTy.getVectorElementType(),
759                                  ValueVT.getVectorElementCount());
760       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
761     }
762 
763     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
764       Val = Widened;
765     }
766   }
767 
768   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
769 
770   // Split the vector into intermediate operands.
771   SmallVector<SDValue, 8> Ops(NumIntermediates);
772   for (unsigned i = 0; i != NumIntermediates; ++i) {
773     if (IntermediateVT.isVector()) {
774       // This does something sensible for scalable vectors - see the
775       // definition of EXTRACT_SUBVECTOR for further details.
776       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
777       Ops[i] =
778           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
779                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
780     } else {
781       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
782                            DAG.getVectorIdxConstant(i, DL));
783     }
784   }
785 
786   // Split the intermediate operands into legal parts.
787   if (NumParts == NumIntermediates) {
788     // If the register was not expanded, promote or copy the value,
789     // as appropriate.
790     for (unsigned i = 0; i != NumParts; ++i)
791       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
792   } else if (NumParts > 0) {
793     // If the intermediate type was expanded, split each the value into
794     // legal parts.
795     assert(NumIntermediates != 0 && "division by zero");
796     assert(NumParts % NumIntermediates == 0 &&
797            "Must expand into a divisible number of parts!");
798     unsigned Factor = NumParts / NumIntermediates;
799     for (unsigned i = 0; i != NumIntermediates; ++i)
800       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
801                      CallConv);
802   }
803 }
804 
805 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
806                            EVT valuevt, std::optional<CallingConv::ID> CC)
807     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
808       RegCount(1, regs.size()), CallConv(CC) {}
809 
810 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
811                            const DataLayout &DL, unsigned Reg, Type *Ty,
812                            std::optional<CallingConv::ID> CC) {
813   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
814 
815   CallConv = CC;
816 
817   for (EVT ValueVT : ValueVTs) {
818     unsigned NumRegs =
819         isABIMangled()
820             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
821             : TLI.getNumRegisters(Context, ValueVT);
822     MVT RegisterVT =
823         isABIMangled()
824             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
825             : TLI.getRegisterType(Context, ValueVT);
826     for (unsigned i = 0; i != NumRegs; ++i)
827       Regs.push_back(Reg + i);
828     RegVTs.push_back(RegisterVT);
829     RegCount.push_back(NumRegs);
830     Reg += NumRegs;
831   }
832 }
833 
834 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
835                                       FunctionLoweringInfo &FuncInfo,
836                                       const SDLoc &dl, SDValue &Chain,
837                                       SDValue *Flag, const Value *V) const {
838   // A Value with type {} or [0 x %t] needs no registers.
839   if (ValueVTs.empty())
840     return SDValue();
841 
842   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
843 
844   // Assemble the legal parts into the final values.
845   SmallVector<SDValue, 4> Values(ValueVTs.size());
846   SmallVector<SDValue, 8> Parts;
847   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
848     // Copy the legal parts from the registers.
849     EVT ValueVT = ValueVTs[Value];
850     unsigned NumRegs = RegCount[Value];
851     MVT RegisterVT = isABIMangled()
852                          ? TLI.getRegisterTypeForCallingConv(
853                                *DAG.getContext(), *CallConv, RegVTs[Value])
854                          : RegVTs[Value];
855 
856     Parts.resize(NumRegs);
857     for (unsigned i = 0; i != NumRegs; ++i) {
858       SDValue P;
859       if (!Flag) {
860         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
861       } else {
862         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
863         *Flag = P.getValue(2);
864       }
865 
866       Chain = P.getValue(1);
867       Parts[i] = P;
868 
869       // If the source register was virtual and if we know something about it,
870       // add an assert node.
871       if (!Register::isVirtualRegister(Regs[Part + i]) ||
872           !RegisterVT.isInteger())
873         continue;
874 
875       const FunctionLoweringInfo::LiveOutInfo *LOI =
876         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
877       if (!LOI)
878         continue;
879 
880       unsigned RegSize = RegisterVT.getScalarSizeInBits();
881       unsigned NumSignBits = LOI->NumSignBits;
882       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
883 
884       if (NumZeroBits == RegSize) {
885         // The current value is a zero.
886         // Explicitly express that as it would be easier for
887         // optimizations to kick in.
888         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
889         continue;
890       }
891 
892       // FIXME: We capture more information than the dag can represent.  For
893       // now, just use the tightest assertzext/assertsext possible.
894       bool isSExt;
895       EVT FromVT(MVT::Other);
896       if (NumZeroBits) {
897         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
898         isSExt = false;
899       } else if (NumSignBits > 1) {
900         FromVT =
901             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
902         isSExt = true;
903       } else {
904         continue;
905       }
906       // Add an assertion node.
907       assert(FromVT != MVT::Other);
908       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
909                              RegisterVT, P, DAG.getValueType(FromVT));
910     }
911 
912     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
913                                      RegisterVT, ValueVT, V, CallConv);
914     Part += NumRegs;
915     Parts.clear();
916   }
917 
918   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
919 }
920 
921 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
922                                  const SDLoc &dl, SDValue &Chain, SDValue *Flag,
923                                  const Value *V,
924                                  ISD::NodeType PreferredExtendType) const {
925   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
926   ISD::NodeType ExtendKind = PreferredExtendType;
927 
928   // Get the list of the values's legal parts.
929   unsigned NumRegs = Regs.size();
930   SmallVector<SDValue, 8> Parts(NumRegs);
931   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
932     unsigned NumParts = RegCount[Value];
933 
934     MVT RegisterVT = isABIMangled()
935                          ? TLI.getRegisterTypeForCallingConv(
936                                *DAG.getContext(), *CallConv, RegVTs[Value])
937                          : RegVTs[Value];
938 
939     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
940       ExtendKind = ISD::ZERO_EXTEND;
941 
942     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
943                    NumParts, RegisterVT, V, CallConv, ExtendKind);
944     Part += NumParts;
945   }
946 
947   // Copy the parts into the registers.
948   SmallVector<SDValue, 8> Chains(NumRegs);
949   for (unsigned i = 0; i != NumRegs; ++i) {
950     SDValue Part;
951     if (!Flag) {
952       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
953     } else {
954       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
955       *Flag = Part.getValue(1);
956     }
957 
958     Chains[i] = Part.getValue(0);
959   }
960 
961   if (NumRegs == 1 || Flag)
962     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
963     // flagged to it. That is the CopyToReg nodes and the user are considered
964     // a single scheduling unit. If we create a TokenFactor and return it as
965     // chain, then the TokenFactor is both a predecessor (operand) of the
966     // user as well as a successor (the TF operands are flagged to the user).
967     // c1, f1 = CopyToReg
968     // c2, f2 = CopyToReg
969     // c3     = TokenFactor c1, c2
970     // ...
971     //        = op c3, ..., f2
972     Chain = Chains[NumRegs-1];
973   else
974     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
975 }
976 
977 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
978                                         unsigned MatchingIdx, const SDLoc &dl,
979                                         SelectionDAG &DAG,
980                                         std::vector<SDValue> &Ops) const {
981   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
982 
983   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
984   if (HasMatching)
985     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
986   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
987     // Put the register class of the virtual registers in the flag word.  That
988     // way, later passes can recompute register class constraints for inline
989     // assembly as well as normal instructions.
990     // Don't do this for tied operands that can use the regclass information
991     // from the def.
992     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
993     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
994     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
995   }
996 
997   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
998   Ops.push_back(Res);
999 
1000   if (Code == InlineAsm::Kind_Clobber) {
1001     // Clobbers should always have a 1:1 mapping with registers, and may
1002     // reference registers that have illegal (e.g. vector) types. Hence, we
1003     // shouldn't try to apply any sort of splitting logic to them.
1004     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1005            "No 1:1 mapping from clobbers to regs?");
1006     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1007     (void)SP;
1008     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1009       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1010       assert(
1011           (Regs[I] != SP ||
1012            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1013           "If we clobbered the stack pointer, MFI should know about it.");
1014     }
1015     return;
1016   }
1017 
1018   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1019     MVT RegisterVT = RegVTs[Value];
1020     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1021                                            RegisterVT);
1022     for (unsigned i = 0; i != NumRegs; ++i) {
1023       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1024       unsigned TheReg = Regs[Reg++];
1025       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1026     }
1027   }
1028 }
1029 
1030 SmallVector<std::pair<unsigned, TypeSize>, 4>
1031 RegsForValue::getRegsAndSizes() const {
1032   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1033   unsigned I = 0;
1034   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1035     unsigned RegCount = std::get<0>(CountAndVT);
1036     MVT RegisterVT = std::get<1>(CountAndVT);
1037     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1038     for (unsigned E = I + RegCount; I != E; ++I)
1039       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1040   }
1041   return OutVec;
1042 }
1043 
1044 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1045                                AssumptionCache *ac,
1046                                const TargetLibraryInfo *li) {
1047   AA = aa;
1048   AC = ac;
1049   GFI = gfi;
1050   LibInfo = li;
1051   Context = DAG.getContext();
1052   LPadToCallSiteMap.clear();
1053   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1054 }
1055 
1056 void SelectionDAGBuilder::clear() {
1057   NodeMap.clear();
1058   UnusedArgNodeMap.clear();
1059   PendingLoads.clear();
1060   PendingExports.clear();
1061   PendingConstrainedFP.clear();
1062   PendingConstrainedFPStrict.clear();
1063   CurInst = nullptr;
1064   HasTailCall = false;
1065   SDNodeOrder = LowestSDNodeOrder;
1066   StatepointLowering.clear();
1067 }
1068 
1069 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1070   DanglingDebugInfoMap.clear();
1071 }
1072 
1073 // Update DAG root to include dependencies on Pending chains.
1074 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1075   SDValue Root = DAG.getRoot();
1076 
1077   if (Pending.empty())
1078     return Root;
1079 
1080   // Add current root to PendingChains, unless we already indirectly
1081   // depend on it.
1082   if (Root.getOpcode() != ISD::EntryToken) {
1083     unsigned i = 0, e = Pending.size();
1084     for (; i != e; ++i) {
1085       assert(Pending[i].getNode()->getNumOperands() > 1);
1086       if (Pending[i].getNode()->getOperand(0) == Root)
1087         break;  // Don't add the root if we already indirectly depend on it.
1088     }
1089 
1090     if (i == e)
1091       Pending.push_back(Root);
1092   }
1093 
1094   if (Pending.size() == 1)
1095     Root = Pending[0];
1096   else
1097     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1098 
1099   DAG.setRoot(Root);
1100   Pending.clear();
1101   return Root;
1102 }
1103 
1104 SDValue SelectionDAGBuilder::getMemoryRoot() {
1105   return updateRoot(PendingLoads);
1106 }
1107 
1108 SDValue SelectionDAGBuilder::getRoot() {
1109   // Chain up all pending constrained intrinsics together with all
1110   // pending loads, by simply appending them to PendingLoads and
1111   // then calling getMemoryRoot().
1112   PendingLoads.reserve(PendingLoads.size() +
1113                        PendingConstrainedFP.size() +
1114                        PendingConstrainedFPStrict.size());
1115   PendingLoads.append(PendingConstrainedFP.begin(),
1116                       PendingConstrainedFP.end());
1117   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1118                       PendingConstrainedFPStrict.end());
1119   PendingConstrainedFP.clear();
1120   PendingConstrainedFPStrict.clear();
1121   return getMemoryRoot();
1122 }
1123 
1124 SDValue SelectionDAGBuilder::getControlRoot() {
1125   // We need to emit pending fpexcept.strict constrained intrinsics,
1126   // so append them to the PendingExports list.
1127   PendingExports.append(PendingConstrainedFPStrict.begin(),
1128                         PendingConstrainedFPStrict.end());
1129   PendingConstrainedFPStrict.clear();
1130   return updateRoot(PendingExports);
1131 }
1132 
1133 void SelectionDAGBuilder::visit(const Instruction &I) {
1134   // Set up outgoing PHI node register values before emitting the terminator.
1135   if (I.isTerminator()) {
1136     HandlePHINodesInSuccessorBlocks(I.getParent());
1137   }
1138 
1139   // Add SDDbgValue nodes for any var locs here. Do so before updating
1140   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1141   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1142     // Add SDDbgValue nodes for any var locs here. Do so before updating
1143     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1144     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1145          It != End; ++It) {
1146       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1147       dropDanglingDebugInfo(Var, It->Expr);
1148       if (!handleDebugValue(It->V, Var, It->Expr, It->DL, SDNodeOrder,
1149                             /*IsVariadic=*/false))
1150         addDanglingDebugInfo(It, SDNodeOrder);
1151     }
1152   }
1153 
1154   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1155   if (!isa<DbgInfoIntrinsic>(I))
1156     ++SDNodeOrder;
1157 
1158   CurInst = &I;
1159 
1160   // Set inserted listener only if required.
1161   bool NodeInserted = false;
1162   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1163   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1164   if (PCSectionsMD) {
1165     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1166         DAG, [&](SDNode *) { NodeInserted = true; });
1167   }
1168 
1169   visit(I.getOpcode(), I);
1170 
1171   if (!I.isTerminator() && !HasTailCall &&
1172       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1173     CopyToExportRegsIfNeeded(&I);
1174 
1175   // Handle metadata.
1176   if (PCSectionsMD) {
1177     auto It = NodeMap.find(&I);
1178     if (It != NodeMap.end()) {
1179       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1180     } else if (NodeInserted) {
1181       // This should not happen; if it does, don't let it go unnoticed so we can
1182       // fix it. Relevant visit*() function is probably missing a setValue().
1183       errs() << "warning: loosing !pcsections metadata ["
1184              << I.getModule()->getName() << "]\n";
1185       LLVM_DEBUG(I.dump());
1186       assert(false);
1187     }
1188   }
1189 
1190   CurInst = nullptr;
1191 }
1192 
1193 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1194   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1195 }
1196 
1197 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1198   // Note: this doesn't use InstVisitor, because it has to work with
1199   // ConstantExpr's in addition to instructions.
1200   switch (Opcode) {
1201   default: llvm_unreachable("Unknown instruction type encountered!");
1202     // Build the switch statement using the Instruction.def file.
1203 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1204     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1205 #include "llvm/IR/Instruction.def"
1206   }
1207 }
1208 
1209 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1210                                                unsigned Order) {
1211   DanglingDebugInfoMap[VarLoc->V].emplace_back(VarLoc, Order);
1212 }
1213 
1214 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1215                                                unsigned Order) {
1216   // We treat variadic dbg_values differently at this stage.
1217   if (DI->hasArgList()) {
1218     // For variadic dbg_values we will now insert an undef.
1219     // FIXME: We can potentially recover these!
1220     SmallVector<SDDbgOperand, 2> Locs;
1221     for (const Value *V : DI->getValues()) {
1222       auto Undef = UndefValue::get(V->getType());
1223       Locs.push_back(SDDbgOperand::fromConst(Undef));
1224     }
1225     SDDbgValue *SDV = DAG.getDbgValueList(
1226         DI->getVariable(), DI->getExpression(), Locs, {},
1227         /*IsIndirect=*/false, DI->getDebugLoc(), Order, /*IsVariadic=*/true);
1228     DAG.AddDbgValue(SDV, /*isParameter=*/false);
1229   } else {
1230     // TODO: Dangling debug info will eventually either be resolved or produce
1231     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1232     // between the original dbg.value location and its resolved DBG_VALUE,
1233     // which we should ideally fill with an extra Undef DBG_VALUE.
1234     assert(DI->getNumVariableLocationOps() == 1 &&
1235            "DbgValueInst without an ArgList should have a single location "
1236            "operand.");
1237     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1238   }
1239 }
1240 
1241 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1242                                                 const DIExpression *Expr) {
1243   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1244     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1245     DIExpression *DanglingExpr = DDI.getExpression();
1246     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1247       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1248                         << "\n");
1249       return true;
1250     }
1251     return false;
1252   };
1253 
1254   for (auto &DDIMI : DanglingDebugInfoMap) {
1255     DanglingDebugInfoVector &DDIV = DDIMI.second;
1256 
1257     // If debug info is to be dropped, run it through final checks to see
1258     // whether it can be salvaged.
1259     for (auto &DDI : DDIV)
1260       if (isMatchingDbgValue(DDI))
1261         salvageUnresolvedDbgValue(DDI);
1262 
1263     erase_if(DDIV, isMatchingDbgValue);
1264   }
1265 }
1266 
1267 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1268 // generate the debug data structures now that we've seen its definition.
1269 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1270                                                    SDValue Val) {
1271   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1272   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1273     return;
1274 
1275   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1276   for (auto &DDI : DDIV) {
1277     DebugLoc DL = DDI.getDebugLoc();
1278     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1279     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1280     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1281     DIExpression *Expr = DDI.getExpression();
1282     assert(Variable->isValidLocationForIntrinsic(DL) &&
1283            "Expected inlined-at fields to agree");
1284     SDDbgValue *SDV;
1285     if (Val.getNode()) {
1286       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1287       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1288       // we couldn't resolve it directly when examining the DbgValue intrinsic
1289       // in the first place we should not be more successful here). Unless we
1290       // have some test case that prove this to be correct we should avoid
1291       // calling EmitFuncArgumentDbgValue here.
1292       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1293                                     FuncArgumentDbgValueKind::Value, Val)) {
1294         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1295                           << "\n");
1296         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1297         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1298         // inserted after the definition of Val when emitting the instructions
1299         // after ISel. An alternative could be to teach
1300         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1301         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1302                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1303                    << ValSDNodeOrder << "\n");
1304         SDV = getDbgValue(Val, Variable, Expr, DL,
1305                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1306         DAG.AddDbgValue(SDV, false);
1307       } else
1308         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1309                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1310     } else {
1311       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1312       auto Undef = UndefValue::get(V->getType());
1313       auto SDV =
1314           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1315       DAG.AddDbgValue(SDV, false);
1316     }
1317   }
1318   DDIV.clear();
1319 }
1320 
1321 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1322   // TODO: For the variadic implementation, instead of only checking the fail
1323   // state of `handleDebugValue`, we need know specifically which values were
1324   // invalid, so that we attempt to salvage only those values when processing
1325   // a DIArgList.
1326   Value *V = DDI.getVariableLocationOp(0);
1327   Value *OrigV = V;
1328   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1329   DIExpression *Expr = DDI.getExpression();
1330   DebugLoc DL = DDI.getDebugLoc();
1331   unsigned SDOrder = DDI.getSDNodeOrder();
1332 
1333   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1334   // that DW_OP_stack_value is desired.
1335   bool StackValue = true;
1336 
1337   // Can this Value can be encoded without any further work?
1338   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1339     return;
1340 
1341   // Attempt to salvage back through as many instructions as possible. Bail if
1342   // a non-instruction is seen, such as a constant expression or global
1343   // variable. FIXME: Further work could recover those too.
1344   while (isa<Instruction>(V)) {
1345     Instruction &VAsInst = *cast<Instruction>(V);
1346     // Temporary "0", awaiting real implementation.
1347     SmallVector<uint64_t, 16> Ops;
1348     SmallVector<Value *, 4> AdditionalValues;
1349     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1350                              AdditionalValues);
1351     // If we cannot salvage any further, and haven't yet found a suitable debug
1352     // expression, bail out.
1353     if (!V)
1354       break;
1355 
1356     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1357     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1358     // here for variadic dbg_values, remove that condition.
1359     if (!AdditionalValues.empty())
1360       break;
1361 
1362     // New value and expr now represent this debuginfo.
1363     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1364 
1365     // Some kind of simplification occurred: check whether the operand of the
1366     // salvaged debug expression can be encoded in this DAG.
1367     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1368       LLVM_DEBUG(
1369           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1370                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1371       return;
1372     }
1373   }
1374 
1375   // This was the final opportunity to salvage this debug information, and it
1376   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1377   // any earlier variable location.
1378   assert(OrigV && "V shouldn't be null");
1379   auto *Undef = UndefValue::get(OrigV->getType());
1380   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1381   DAG.AddDbgValue(SDV, false);
1382   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1383                     << "\n");
1384 }
1385 
1386 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1387                                            DILocalVariable *Var,
1388                                            DIExpression *Expr, DebugLoc DbgLoc,
1389                                            unsigned Order, bool IsVariadic) {
1390   if (Values.empty())
1391     return true;
1392   SmallVector<SDDbgOperand> LocationOps;
1393   SmallVector<SDNode *> Dependencies;
1394   for (const Value *V : Values) {
1395     // Constant value.
1396     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1397         isa<ConstantPointerNull>(V)) {
1398       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1399       continue;
1400     }
1401 
1402     // Look through IntToPtr constants.
1403     if (auto *CE = dyn_cast<ConstantExpr>(V))
1404       if (CE->getOpcode() == Instruction::IntToPtr) {
1405         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1406         continue;
1407       }
1408 
1409     // If the Value is a frame index, we can create a FrameIndex debug value
1410     // without relying on the DAG at all.
1411     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1412       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1413       if (SI != FuncInfo.StaticAllocaMap.end()) {
1414         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1415         continue;
1416       }
1417     }
1418 
1419     // Do not use getValue() in here; we don't want to generate code at
1420     // this point if it hasn't been done yet.
1421     SDValue N = NodeMap[V];
1422     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1423       N = UnusedArgNodeMap[V];
1424     if (N.getNode()) {
1425       // Only emit func arg dbg value for non-variadic dbg.values for now.
1426       if (!IsVariadic &&
1427           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1428                                    FuncArgumentDbgValueKind::Value, N))
1429         return true;
1430       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1431         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1432         // describe stack slot locations.
1433         //
1434         // Consider "int x = 0; int *px = &x;". There are two kinds of
1435         // interesting debug values here after optimization:
1436         //
1437         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1438         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1439         //
1440         // Both describe the direct values of their associated variables.
1441         Dependencies.push_back(N.getNode());
1442         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1443         continue;
1444       }
1445       LocationOps.emplace_back(
1446           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1447       continue;
1448     }
1449 
1450     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1451     // Special rules apply for the first dbg.values of parameter variables in a
1452     // function. Identify them by the fact they reference Argument Values, that
1453     // they're parameters, and they are parameters of the current function. We
1454     // need to let them dangle until they get an SDNode.
1455     bool IsParamOfFunc =
1456         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1457     if (IsParamOfFunc)
1458       return false;
1459 
1460     // The value is not used in this block yet (or it would have an SDNode).
1461     // We still want the value to appear for the user if possible -- if it has
1462     // an associated VReg, we can refer to that instead.
1463     auto VMI = FuncInfo.ValueMap.find(V);
1464     if (VMI != FuncInfo.ValueMap.end()) {
1465       unsigned Reg = VMI->second;
1466       // If this is a PHI node, it may be split up into several MI PHI nodes
1467       // (in FunctionLoweringInfo::set).
1468       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1469                        V->getType(), std::nullopt);
1470       if (RFV.occupiesMultipleRegs()) {
1471         // FIXME: We could potentially support variadic dbg_values here.
1472         if (IsVariadic)
1473           return false;
1474         unsigned Offset = 0;
1475         unsigned BitsToDescribe = 0;
1476         if (auto VarSize = Var->getSizeInBits())
1477           BitsToDescribe = *VarSize;
1478         if (auto Fragment = Expr->getFragmentInfo())
1479           BitsToDescribe = Fragment->SizeInBits;
1480         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1481           // Bail out if all bits are described already.
1482           if (Offset >= BitsToDescribe)
1483             break;
1484           // TODO: handle scalable vectors.
1485           unsigned RegisterSize = RegAndSize.second;
1486           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1487                                       ? BitsToDescribe - Offset
1488                                       : RegisterSize;
1489           auto FragmentExpr = DIExpression::createFragmentExpression(
1490               Expr, Offset, FragmentSize);
1491           if (!FragmentExpr)
1492             continue;
1493           SDDbgValue *SDV = DAG.getVRegDbgValue(
1494               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1495           DAG.AddDbgValue(SDV, false);
1496           Offset += RegisterSize;
1497         }
1498         return true;
1499       }
1500       // We can use simple vreg locations for variadic dbg_values as well.
1501       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1502       continue;
1503     }
1504     // We failed to create a SDDbgOperand for V.
1505     return false;
1506   }
1507 
1508   // We have created a SDDbgOperand for each Value in Values.
1509   // Should use Order instead of SDNodeOrder?
1510   assert(!LocationOps.empty());
1511   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1512                                         /*IsIndirect=*/false, DbgLoc,
1513                                         SDNodeOrder, IsVariadic);
1514   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1515   return true;
1516 }
1517 
1518 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1519   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1520   for (auto &Pair : DanglingDebugInfoMap)
1521     for (auto &DDI : Pair.second)
1522       salvageUnresolvedDbgValue(DDI);
1523   clearDanglingDebugInfo();
1524 }
1525 
1526 /// getCopyFromRegs - If there was virtual register allocated for the value V
1527 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1528 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1529   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1530   SDValue Result;
1531 
1532   if (It != FuncInfo.ValueMap.end()) {
1533     Register InReg = It->second;
1534 
1535     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1536                      DAG.getDataLayout(), InReg, Ty,
1537                      std::nullopt); // This is not an ABI copy.
1538     SDValue Chain = DAG.getEntryNode();
1539     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1540                                  V);
1541     resolveDanglingDebugInfo(V, Result);
1542   }
1543 
1544   return Result;
1545 }
1546 
1547 /// getValue - Return an SDValue for the given Value.
1548 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1549   // If we already have an SDValue for this value, use it. It's important
1550   // to do this first, so that we don't create a CopyFromReg if we already
1551   // have a regular SDValue.
1552   SDValue &N = NodeMap[V];
1553   if (N.getNode()) return N;
1554 
1555   // If there's a virtual register allocated and initialized for this
1556   // value, use it.
1557   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1558     return copyFromReg;
1559 
1560   // Otherwise create a new SDValue and remember it.
1561   SDValue Val = getValueImpl(V);
1562   NodeMap[V] = Val;
1563   resolveDanglingDebugInfo(V, Val);
1564   return Val;
1565 }
1566 
1567 /// getNonRegisterValue - Return an SDValue for the given Value, but
1568 /// don't look in FuncInfo.ValueMap for a virtual register.
1569 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1570   // If we already have an SDValue for this value, use it.
1571   SDValue &N = NodeMap[V];
1572   if (N.getNode()) {
1573     if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1574       // Remove the debug location from the node as the node is about to be used
1575       // in a location which may differ from the original debug location.  This
1576       // is relevant to Constant and ConstantFP nodes because they can appear
1577       // as constant expressions inside PHI nodes.
1578       N->setDebugLoc(DebugLoc());
1579     }
1580     return N;
1581   }
1582 
1583   // Otherwise create a new SDValue and remember it.
1584   SDValue Val = getValueImpl(V);
1585   NodeMap[V] = Val;
1586   resolveDanglingDebugInfo(V, Val);
1587   return Val;
1588 }
1589 
1590 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1591 /// Create an SDValue for the given value.
1592 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1593   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1594 
1595   if (const Constant *C = dyn_cast<Constant>(V)) {
1596     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1597 
1598     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1599       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1600 
1601     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1602       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1603 
1604     if (isa<ConstantPointerNull>(C)) {
1605       unsigned AS = V->getType()->getPointerAddressSpace();
1606       return DAG.getConstant(0, getCurSDLoc(),
1607                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1608     }
1609 
1610     if (match(C, m_VScale(DAG.getDataLayout())))
1611       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1612 
1613     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1614       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1615 
1616     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1617       return DAG.getUNDEF(VT);
1618 
1619     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1620       visit(CE->getOpcode(), *CE);
1621       SDValue N1 = NodeMap[V];
1622       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1623       return N1;
1624     }
1625 
1626     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1627       SmallVector<SDValue, 4> Constants;
1628       for (const Use &U : C->operands()) {
1629         SDNode *Val = getValue(U).getNode();
1630         // If the operand is an empty aggregate, there are no values.
1631         if (!Val) continue;
1632         // Add each leaf value from the operand to the Constants list
1633         // to form a flattened list of all the values.
1634         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1635           Constants.push_back(SDValue(Val, i));
1636       }
1637 
1638       return DAG.getMergeValues(Constants, getCurSDLoc());
1639     }
1640 
1641     if (const ConstantDataSequential *CDS =
1642           dyn_cast<ConstantDataSequential>(C)) {
1643       SmallVector<SDValue, 4> Ops;
1644       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1645         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1646         // Add each leaf value from the operand to the Constants list
1647         // to form a flattened list of all the values.
1648         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1649           Ops.push_back(SDValue(Val, i));
1650       }
1651 
1652       if (isa<ArrayType>(CDS->getType()))
1653         return DAG.getMergeValues(Ops, getCurSDLoc());
1654       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1655     }
1656 
1657     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1658       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1659              "Unknown struct or array constant!");
1660 
1661       SmallVector<EVT, 4> ValueVTs;
1662       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1663       unsigned NumElts = ValueVTs.size();
1664       if (NumElts == 0)
1665         return SDValue(); // empty struct
1666       SmallVector<SDValue, 4> Constants(NumElts);
1667       for (unsigned i = 0; i != NumElts; ++i) {
1668         EVT EltVT = ValueVTs[i];
1669         if (isa<UndefValue>(C))
1670           Constants[i] = DAG.getUNDEF(EltVT);
1671         else if (EltVT.isFloatingPoint())
1672           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1673         else
1674           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1675       }
1676 
1677       return DAG.getMergeValues(Constants, getCurSDLoc());
1678     }
1679 
1680     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1681       return DAG.getBlockAddress(BA, VT);
1682 
1683     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1684       return getValue(Equiv->getGlobalValue());
1685 
1686     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1687       return getValue(NC->getGlobalValue());
1688 
1689     VectorType *VecTy = cast<VectorType>(V->getType());
1690 
1691     // Now that we know the number and type of the elements, get that number of
1692     // elements into the Ops array based on what kind of constant it is.
1693     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1694       SmallVector<SDValue, 16> Ops;
1695       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1696       for (unsigned i = 0; i != NumElements; ++i)
1697         Ops.push_back(getValue(CV->getOperand(i)));
1698 
1699       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1700     }
1701 
1702     if (isa<ConstantAggregateZero>(C)) {
1703       EVT EltVT =
1704           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1705 
1706       SDValue Op;
1707       if (EltVT.isFloatingPoint())
1708         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1709       else
1710         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1711 
1712       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1713     }
1714 
1715     llvm_unreachable("Unknown vector constant");
1716   }
1717 
1718   // If this is a static alloca, generate it as the frameindex instead of
1719   // computation.
1720   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1721     DenseMap<const AllocaInst*, int>::iterator SI =
1722       FuncInfo.StaticAllocaMap.find(AI);
1723     if (SI != FuncInfo.StaticAllocaMap.end())
1724       return DAG.getFrameIndex(
1725           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1726   }
1727 
1728   // If this is an instruction which fast-isel has deferred, select it now.
1729   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1730     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1731 
1732     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1733                      Inst->getType(), std::nullopt);
1734     SDValue Chain = DAG.getEntryNode();
1735     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1736   }
1737 
1738   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1739     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1740 
1741   if (const auto *BB = dyn_cast<BasicBlock>(V))
1742     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1743 
1744   llvm_unreachable("Can't get register for value!");
1745 }
1746 
1747 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1748   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1749   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1750   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1751   bool IsSEH = isAsynchronousEHPersonality(Pers);
1752   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1753   if (!IsSEH)
1754     CatchPadMBB->setIsEHScopeEntry();
1755   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1756   if (IsMSVCCXX || IsCoreCLR)
1757     CatchPadMBB->setIsEHFuncletEntry();
1758 }
1759 
1760 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1761   // Update machine-CFG edge.
1762   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1763   FuncInfo.MBB->addSuccessor(TargetMBB);
1764   TargetMBB->setIsEHCatchretTarget(true);
1765   DAG.getMachineFunction().setHasEHCatchret(true);
1766 
1767   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1768   bool IsSEH = isAsynchronousEHPersonality(Pers);
1769   if (IsSEH) {
1770     // If this is not a fall-through branch or optimizations are switched off,
1771     // emit the branch.
1772     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1773         TM.getOptLevel() == CodeGenOpt::None)
1774       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1775                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1776     return;
1777   }
1778 
1779   // Figure out the funclet membership for the catchret's successor.
1780   // This will be used by the FuncletLayout pass to determine how to order the
1781   // BB's.
1782   // A 'catchret' returns to the outer scope's color.
1783   Value *ParentPad = I.getCatchSwitchParentPad();
1784   const BasicBlock *SuccessorColor;
1785   if (isa<ConstantTokenNone>(ParentPad))
1786     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1787   else
1788     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1789   assert(SuccessorColor && "No parent funclet for catchret!");
1790   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1791   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1792 
1793   // Create the terminator node.
1794   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1795                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1796                             DAG.getBasicBlock(SuccessorColorMBB));
1797   DAG.setRoot(Ret);
1798 }
1799 
1800 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1801   // Don't emit any special code for the cleanuppad instruction. It just marks
1802   // the start of an EH scope/funclet.
1803   FuncInfo.MBB->setIsEHScopeEntry();
1804   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1805   if (Pers != EHPersonality::Wasm_CXX) {
1806     FuncInfo.MBB->setIsEHFuncletEntry();
1807     FuncInfo.MBB->setIsCleanupFuncletEntry();
1808   }
1809 }
1810 
1811 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1812 // not match, it is OK to add only the first unwind destination catchpad to the
1813 // successors, because there will be at least one invoke instruction within the
1814 // catch scope that points to the next unwind destination, if one exists, so
1815 // CFGSort cannot mess up with BB sorting order.
1816 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1817 // call within them, and catchpads only consisting of 'catch (...)' have a
1818 // '__cxa_end_catch' call within them, both of which generate invokes in case
1819 // the next unwind destination exists, i.e., the next unwind destination is not
1820 // the caller.)
1821 //
1822 // Having at most one EH pad successor is also simpler and helps later
1823 // transformations.
1824 //
1825 // For example,
1826 // current:
1827 //   invoke void @foo to ... unwind label %catch.dispatch
1828 // catch.dispatch:
1829 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1830 // catch.start:
1831 //   ...
1832 //   ... in this BB or some other child BB dominated by this BB there will be an
1833 //   invoke that points to 'next' BB as an unwind destination
1834 //
1835 // next: ; We don't need to add this to 'current' BB's successor
1836 //   ...
1837 static void findWasmUnwindDestinations(
1838     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1839     BranchProbability Prob,
1840     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1841         &UnwindDests) {
1842   while (EHPadBB) {
1843     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1844     if (isa<CleanupPadInst>(Pad)) {
1845       // Stop on cleanup pads.
1846       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1847       UnwindDests.back().first->setIsEHScopeEntry();
1848       break;
1849     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1850       // Add the catchpad handlers to the possible destinations. We don't
1851       // continue to the unwind destination of the catchswitch for wasm.
1852       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1853         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1854         UnwindDests.back().first->setIsEHScopeEntry();
1855       }
1856       break;
1857     } else {
1858       continue;
1859     }
1860   }
1861 }
1862 
1863 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1864 /// many places it could ultimately go. In the IR, we have a single unwind
1865 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1866 /// This function skips over imaginary basic blocks that hold catchswitch
1867 /// instructions, and finds all the "real" machine
1868 /// basic block destinations. As those destinations may not be successors of
1869 /// EHPadBB, here we also calculate the edge probability to those destinations.
1870 /// The passed-in Prob is the edge probability to EHPadBB.
1871 static void findUnwindDestinations(
1872     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1873     BranchProbability Prob,
1874     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1875         &UnwindDests) {
1876   EHPersonality Personality =
1877     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1878   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1879   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1880   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1881   bool IsSEH = isAsynchronousEHPersonality(Personality);
1882 
1883   if (IsWasmCXX) {
1884     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1885     assert(UnwindDests.size() <= 1 &&
1886            "There should be at most one unwind destination for wasm");
1887     return;
1888   }
1889 
1890   while (EHPadBB) {
1891     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1892     BasicBlock *NewEHPadBB = nullptr;
1893     if (isa<LandingPadInst>(Pad)) {
1894       // Stop on landingpads. They are not funclets.
1895       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1896       break;
1897     } else if (isa<CleanupPadInst>(Pad)) {
1898       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1899       // personalities.
1900       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1901       UnwindDests.back().first->setIsEHScopeEntry();
1902       UnwindDests.back().first->setIsEHFuncletEntry();
1903       break;
1904     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1905       // Add the catchpad handlers to the possible destinations.
1906       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1907         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1908         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1909         if (IsMSVCCXX || IsCoreCLR)
1910           UnwindDests.back().first->setIsEHFuncletEntry();
1911         if (!IsSEH)
1912           UnwindDests.back().first->setIsEHScopeEntry();
1913       }
1914       NewEHPadBB = CatchSwitch->getUnwindDest();
1915     } else {
1916       continue;
1917     }
1918 
1919     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1920     if (BPI && NewEHPadBB)
1921       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1922     EHPadBB = NewEHPadBB;
1923   }
1924 }
1925 
1926 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1927   // Update successor info.
1928   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1929   auto UnwindDest = I.getUnwindDest();
1930   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1931   BranchProbability UnwindDestProb =
1932       (BPI && UnwindDest)
1933           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1934           : BranchProbability::getZero();
1935   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1936   for (auto &UnwindDest : UnwindDests) {
1937     UnwindDest.first->setIsEHPad();
1938     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1939   }
1940   FuncInfo.MBB->normalizeSuccProbs();
1941 
1942   // Create the terminator node.
1943   SDValue Ret =
1944       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1945   DAG.setRoot(Ret);
1946 }
1947 
1948 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1949   report_fatal_error("visitCatchSwitch not yet implemented!");
1950 }
1951 
1952 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1953   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1954   auto &DL = DAG.getDataLayout();
1955   SDValue Chain = getControlRoot();
1956   SmallVector<ISD::OutputArg, 8> Outs;
1957   SmallVector<SDValue, 8> OutVals;
1958 
1959   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1960   // lower
1961   //
1962   //   %val = call <ty> @llvm.experimental.deoptimize()
1963   //   ret <ty> %val
1964   //
1965   // differently.
1966   if (I.getParent()->getTerminatingDeoptimizeCall()) {
1967     LowerDeoptimizingReturn();
1968     return;
1969   }
1970 
1971   if (!FuncInfo.CanLowerReturn) {
1972     unsigned DemoteReg = FuncInfo.DemoteRegister;
1973     const Function *F = I.getParent()->getParent();
1974 
1975     // Emit a store of the return value through the virtual register.
1976     // Leave Outs empty so that LowerReturn won't try to load return
1977     // registers the usual way.
1978     SmallVector<EVT, 1> PtrValueVTs;
1979     ComputeValueVTs(TLI, DL,
1980                     F->getReturnType()->getPointerTo(
1981                         DAG.getDataLayout().getAllocaAddrSpace()),
1982                     PtrValueVTs);
1983 
1984     SDValue RetPtr =
1985         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
1986     SDValue RetOp = getValue(I.getOperand(0));
1987 
1988     SmallVector<EVT, 4> ValueVTs, MemVTs;
1989     SmallVector<uint64_t, 4> Offsets;
1990     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1991                     &Offsets);
1992     unsigned NumValues = ValueVTs.size();
1993 
1994     SmallVector<SDValue, 4> Chains(NumValues);
1995     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
1996     for (unsigned i = 0; i != NumValues; ++i) {
1997       // An aggregate return value cannot wrap around the address space, so
1998       // offsets to its parts don't wrap either.
1999       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2000                                            TypeSize::Fixed(Offsets[i]));
2001 
2002       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2003       if (MemVTs[i] != ValueVTs[i])
2004         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2005       Chains[i] = DAG.getStore(
2006           Chain, getCurSDLoc(), Val,
2007           // FIXME: better loc info would be nice.
2008           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2009           commonAlignment(BaseAlign, Offsets[i]));
2010     }
2011 
2012     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2013                         MVT::Other, Chains);
2014   } else if (I.getNumOperands() != 0) {
2015     SmallVector<EVT, 4> ValueVTs;
2016     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2017     unsigned NumValues = ValueVTs.size();
2018     if (NumValues) {
2019       SDValue RetOp = getValue(I.getOperand(0));
2020 
2021       const Function *F = I.getParent()->getParent();
2022 
2023       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2024           I.getOperand(0)->getType(), F->getCallingConv(),
2025           /*IsVarArg*/ false, DL);
2026 
2027       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2028       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2029         ExtendKind = ISD::SIGN_EXTEND;
2030       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2031         ExtendKind = ISD::ZERO_EXTEND;
2032 
2033       LLVMContext &Context = F->getContext();
2034       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2035 
2036       for (unsigned j = 0; j != NumValues; ++j) {
2037         EVT VT = ValueVTs[j];
2038 
2039         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2040           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2041 
2042         CallingConv::ID CC = F->getCallingConv();
2043 
2044         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2045         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2046         SmallVector<SDValue, 4> Parts(NumParts);
2047         getCopyToParts(DAG, getCurSDLoc(),
2048                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2049                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2050 
2051         // 'inreg' on function refers to return value
2052         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2053         if (RetInReg)
2054           Flags.setInReg();
2055 
2056         if (I.getOperand(0)->getType()->isPointerTy()) {
2057           Flags.setPointer();
2058           Flags.setPointerAddrSpace(
2059               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2060         }
2061 
2062         if (NeedsRegBlock) {
2063           Flags.setInConsecutiveRegs();
2064           if (j == NumValues - 1)
2065             Flags.setInConsecutiveRegsLast();
2066         }
2067 
2068         // Propagate extension type if any
2069         if (ExtendKind == ISD::SIGN_EXTEND)
2070           Flags.setSExt();
2071         else if (ExtendKind == ISD::ZERO_EXTEND)
2072           Flags.setZExt();
2073 
2074         for (unsigned i = 0; i < NumParts; ++i) {
2075           Outs.push_back(ISD::OutputArg(Flags,
2076                                         Parts[i].getValueType().getSimpleVT(),
2077                                         VT, /*isfixed=*/true, 0, 0));
2078           OutVals.push_back(Parts[i]);
2079         }
2080       }
2081     }
2082   }
2083 
2084   // Push in swifterror virtual register as the last element of Outs. This makes
2085   // sure swifterror virtual register will be returned in the swifterror
2086   // physical register.
2087   const Function *F = I.getParent()->getParent();
2088   if (TLI.supportSwiftError() &&
2089       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2090     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2091     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2092     Flags.setSwiftError();
2093     Outs.push_back(ISD::OutputArg(
2094         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2095         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2096     // Create SDNode for the swifterror virtual register.
2097     OutVals.push_back(
2098         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2099                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2100                         EVT(TLI.getPointerTy(DL))));
2101   }
2102 
2103   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2104   CallingConv::ID CallConv =
2105     DAG.getMachineFunction().getFunction().getCallingConv();
2106   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2107       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2108 
2109   // Verify that the target's LowerReturn behaved as expected.
2110   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2111          "LowerReturn didn't return a valid chain!");
2112 
2113   // Update the DAG with the new chain value resulting from return lowering.
2114   DAG.setRoot(Chain);
2115 }
2116 
2117 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2118 /// created for it, emit nodes to copy the value into the virtual
2119 /// registers.
2120 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2121   // Skip empty types
2122   if (V->getType()->isEmptyTy())
2123     return;
2124 
2125   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2126   if (VMI != FuncInfo.ValueMap.end()) {
2127     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2128            "Unused value assigned virtual registers!");
2129     CopyValueToVirtualRegister(V, VMI->second);
2130   }
2131 }
2132 
2133 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2134 /// the current basic block, add it to ValueMap now so that we'll get a
2135 /// CopyTo/FromReg.
2136 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2137   // No need to export constants.
2138   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2139 
2140   // Already exported?
2141   if (FuncInfo.isExportedInst(V)) return;
2142 
2143   Register Reg = FuncInfo.InitializeRegForValue(V);
2144   CopyValueToVirtualRegister(V, Reg);
2145 }
2146 
2147 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2148                                                      const BasicBlock *FromBB) {
2149   // The operands of the setcc have to be in this block.  We don't know
2150   // how to export them from some other block.
2151   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2152     // Can export from current BB.
2153     if (VI->getParent() == FromBB)
2154       return true;
2155 
2156     // Is already exported, noop.
2157     return FuncInfo.isExportedInst(V);
2158   }
2159 
2160   // If this is an argument, we can export it if the BB is the entry block or
2161   // if it is already exported.
2162   if (isa<Argument>(V)) {
2163     if (FromBB->isEntryBlock())
2164       return true;
2165 
2166     // Otherwise, can only export this if it is already exported.
2167     return FuncInfo.isExportedInst(V);
2168   }
2169 
2170   // Otherwise, constants can always be exported.
2171   return true;
2172 }
2173 
2174 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2175 BranchProbability
2176 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2177                                         const MachineBasicBlock *Dst) const {
2178   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2179   const BasicBlock *SrcBB = Src->getBasicBlock();
2180   const BasicBlock *DstBB = Dst->getBasicBlock();
2181   if (!BPI) {
2182     // If BPI is not available, set the default probability as 1 / N, where N is
2183     // the number of successors.
2184     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2185     return BranchProbability(1, SuccSize);
2186   }
2187   return BPI->getEdgeProbability(SrcBB, DstBB);
2188 }
2189 
2190 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2191                                                MachineBasicBlock *Dst,
2192                                                BranchProbability Prob) {
2193   if (!FuncInfo.BPI)
2194     Src->addSuccessorWithoutProb(Dst);
2195   else {
2196     if (Prob.isUnknown())
2197       Prob = getEdgeProbability(Src, Dst);
2198     Src->addSuccessor(Dst, Prob);
2199   }
2200 }
2201 
2202 static bool InBlock(const Value *V, const BasicBlock *BB) {
2203   if (const Instruction *I = dyn_cast<Instruction>(V))
2204     return I->getParent() == BB;
2205   return true;
2206 }
2207 
2208 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2209 /// This function emits a branch and is used at the leaves of an OR or an
2210 /// AND operator tree.
2211 void
2212 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2213                                                   MachineBasicBlock *TBB,
2214                                                   MachineBasicBlock *FBB,
2215                                                   MachineBasicBlock *CurBB,
2216                                                   MachineBasicBlock *SwitchBB,
2217                                                   BranchProbability TProb,
2218                                                   BranchProbability FProb,
2219                                                   bool InvertCond) {
2220   const BasicBlock *BB = CurBB->getBasicBlock();
2221 
2222   // If the leaf of the tree is a comparison, merge the condition into
2223   // the caseblock.
2224   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2225     // The operands of the cmp have to be in this block.  We don't know
2226     // how to export them from some other block.  If this is the first block
2227     // of the sequence, no exporting is needed.
2228     if (CurBB == SwitchBB ||
2229         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2230          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2231       ISD::CondCode Condition;
2232       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2233         ICmpInst::Predicate Pred =
2234             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2235         Condition = getICmpCondCode(Pred);
2236       } else {
2237         const FCmpInst *FC = cast<FCmpInst>(Cond);
2238         FCmpInst::Predicate Pred =
2239             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2240         Condition = getFCmpCondCode(Pred);
2241         if (TM.Options.NoNaNsFPMath)
2242           Condition = getFCmpCodeWithoutNaN(Condition);
2243       }
2244 
2245       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2246                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2247       SL->SwitchCases.push_back(CB);
2248       return;
2249     }
2250   }
2251 
2252   // Create a CaseBlock record representing this branch.
2253   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2254   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2255                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2256   SL->SwitchCases.push_back(CB);
2257 }
2258 
2259 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2260                                                MachineBasicBlock *TBB,
2261                                                MachineBasicBlock *FBB,
2262                                                MachineBasicBlock *CurBB,
2263                                                MachineBasicBlock *SwitchBB,
2264                                                Instruction::BinaryOps Opc,
2265                                                BranchProbability TProb,
2266                                                BranchProbability FProb,
2267                                                bool InvertCond) {
2268   // Skip over not part of the tree and remember to invert op and operands at
2269   // next level.
2270   Value *NotCond;
2271   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2272       InBlock(NotCond, CurBB->getBasicBlock())) {
2273     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2274                          !InvertCond);
2275     return;
2276   }
2277 
2278   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2279   const Value *BOpOp0, *BOpOp1;
2280   // Compute the effective opcode for Cond, taking into account whether it needs
2281   // to be inverted, e.g.
2282   //   and (not (or A, B)), C
2283   // gets lowered as
2284   //   and (and (not A, not B), C)
2285   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2286   if (BOp) {
2287     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2288                ? Instruction::And
2289                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2290                       ? Instruction::Or
2291                       : (Instruction::BinaryOps)0);
2292     if (InvertCond) {
2293       if (BOpc == Instruction::And)
2294         BOpc = Instruction::Or;
2295       else if (BOpc == Instruction::Or)
2296         BOpc = Instruction::And;
2297     }
2298   }
2299 
2300   // If this node is not part of the or/and tree, emit it as a branch.
2301   // Note that all nodes in the tree should have same opcode.
2302   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2303   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2304       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2305       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2306     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2307                                  TProb, FProb, InvertCond);
2308     return;
2309   }
2310 
2311   //  Create TmpBB after CurBB.
2312   MachineFunction::iterator BBI(CurBB);
2313   MachineFunction &MF = DAG.getMachineFunction();
2314   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2315   CurBB->getParent()->insert(++BBI, TmpBB);
2316 
2317   if (Opc == Instruction::Or) {
2318     // Codegen X | Y as:
2319     // BB1:
2320     //   jmp_if_X TBB
2321     //   jmp TmpBB
2322     // TmpBB:
2323     //   jmp_if_Y TBB
2324     //   jmp FBB
2325     //
2326 
2327     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2328     // The requirement is that
2329     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2330     //     = TrueProb for original BB.
2331     // Assuming the original probabilities are A and B, one choice is to set
2332     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2333     // A/(1+B) and 2B/(1+B). This choice assumes that
2334     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2335     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2336     // TmpBB, but the math is more complicated.
2337 
2338     auto NewTrueProb = TProb / 2;
2339     auto NewFalseProb = TProb / 2 + FProb;
2340     // Emit the LHS condition.
2341     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2342                          NewFalseProb, InvertCond);
2343 
2344     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2345     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2346     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2347     // Emit the RHS condition into TmpBB.
2348     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2349                          Probs[1], InvertCond);
2350   } else {
2351     assert(Opc == Instruction::And && "Unknown merge op!");
2352     // Codegen X & Y as:
2353     // BB1:
2354     //   jmp_if_X TmpBB
2355     //   jmp FBB
2356     // TmpBB:
2357     //   jmp_if_Y TBB
2358     //   jmp FBB
2359     //
2360     //  This requires creation of TmpBB after CurBB.
2361 
2362     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2363     // The requirement is that
2364     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2365     //     = FalseProb for original BB.
2366     // Assuming the original probabilities are A and B, one choice is to set
2367     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2368     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2369     // TrueProb for BB1 * FalseProb for TmpBB.
2370 
2371     auto NewTrueProb = TProb + FProb / 2;
2372     auto NewFalseProb = FProb / 2;
2373     // Emit the LHS condition.
2374     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2375                          NewFalseProb, InvertCond);
2376 
2377     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2378     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2379     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2380     // Emit the RHS condition into TmpBB.
2381     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2382                          Probs[1], InvertCond);
2383   }
2384 }
2385 
2386 /// If the set of cases should be emitted as a series of branches, return true.
2387 /// If we should emit this as a bunch of and/or'd together conditions, return
2388 /// false.
2389 bool
2390 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2391   if (Cases.size() != 2) return true;
2392 
2393   // If this is two comparisons of the same values or'd or and'd together, they
2394   // will get folded into a single comparison, so don't emit two blocks.
2395   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2396        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2397       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2398        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2399     return false;
2400   }
2401 
2402   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2403   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2404   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2405       Cases[0].CC == Cases[1].CC &&
2406       isa<Constant>(Cases[0].CmpRHS) &&
2407       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2408     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2409       return false;
2410     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2411       return false;
2412   }
2413 
2414   return true;
2415 }
2416 
2417 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2418   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2419 
2420   // Update machine-CFG edges.
2421   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2422 
2423   if (I.isUnconditional()) {
2424     // Update machine-CFG edges.
2425     BrMBB->addSuccessor(Succ0MBB);
2426 
2427     // If this is not a fall-through branch or optimizations are switched off,
2428     // emit the branch.
2429     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2430       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2431                               MVT::Other, getControlRoot(),
2432                               DAG.getBasicBlock(Succ0MBB)));
2433 
2434     return;
2435   }
2436 
2437   // If this condition is one of the special cases we handle, do special stuff
2438   // now.
2439   const Value *CondVal = I.getCondition();
2440   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2441 
2442   // If this is a series of conditions that are or'd or and'd together, emit
2443   // this as a sequence of branches instead of setcc's with and/or operations.
2444   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2445   // unpredictable branches, and vector extracts because those jumps are likely
2446   // expensive for any target), this should improve performance.
2447   // For example, instead of something like:
2448   //     cmp A, B
2449   //     C = seteq
2450   //     cmp D, E
2451   //     F = setle
2452   //     or C, F
2453   //     jnz foo
2454   // Emit:
2455   //     cmp A, B
2456   //     je foo
2457   //     cmp D, E
2458   //     jle foo
2459   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2460   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2461       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2462     Value *Vec;
2463     const Value *BOp0, *BOp1;
2464     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2465     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2466       Opcode = Instruction::And;
2467     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2468       Opcode = Instruction::Or;
2469 
2470     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2471                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2472       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2473                            getEdgeProbability(BrMBB, Succ0MBB),
2474                            getEdgeProbability(BrMBB, Succ1MBB),
2475                            /*InvertCond=*/false);
2476       // If the compares in later blocks need to use values not currently
2477       // exported from this block, export them now.  This block should always
2478       // be the first entry.
2479       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2480 
2481       // Allow some cases to be rejected.
2482       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2483         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2484           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2485           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2486         }
2487 
2488         // Emit the branch for this block.
2489         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2490         SL->SwitchCases.erase(SL->SwitchCases.begin());
2491         return;
2492       }
2493 
2494       // Okay, we decided not to do this, remove any inserted MBB's and clear
2495       // SwitchCases.
2496       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2497         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2498 
2499       SL->SwitchCases.clear();
2500     }
2501   }
2502 
2503   // Create a CaseBlock record representing this branch.
2504   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2505                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2506 
2507   // Use visitSwitchCase to actually insert the fast branch sequence for this
2508   // cond branch.
2509   visitSwitchCase(CB, BrMBB);
2510 }
2511 
2512 /// visitSwitchCase - Emits the necessary code to represent a single node in
2513 /// the binary search tree resulting from lowering a switch instruction.
2514 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2515                                           MachineBasicBlock *SwitchBB) {
2516   SDValue Cond;
2517   SDValue CondLHS = getValue(CB.CmpLHS);
2518   SDLoc dl = CB.DL;
2519 
2520   if (CB.CC == ISD::SETTRUE) {
2521     // Branch or fall through to TrueBB.
2522     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2523     SwitchBB->normalizeSuccProbs();
2524     if (CB.TrueBB != NextBlock(SwitchBB)) {
2525       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2526                               DAG.getBasicBlock(CB.TrueBB)));
2527     }
2528     return;
2529   }
2530 
2531   auto &TLI = DAG.getTargetLoweringInfo();
2532   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2533 
2534   // Build the setcc now.
2535   if (!CB.CmpMHS) {
2536     // Fold "(X == true)" to X and "(X == false)" to !X to
2537     // handle common cases produced by branch lowering.
2538     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2539         CB.CC == ISD::SETEQ)
2540       Cond = CondLHS;
2541     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2542              CB.CC == ISD::SETEQ) {
2543       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2544       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2545     } else {
2546       SDValue CondRHS = getValue(CB.CmpRHS);
2547 
2548       // If a pointer's DAG type is larger than its memory type then the DAG
2549       // values are zero-extended. This breaks signed comparisons so truncate
2550       // back to the underlying type before doing the compare.
2551       if (CondLHS.getValueType() != MemVT) {
2552         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2553         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2554       }
2555       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2556     }
2557   } else {
2558     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2559 
2560     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2561     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2562 
2563     SDValue CmpOp = getValue(CB.CmpMHS);
2564     EVT VT = CmpOp.getValueType();
2565 
2566     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2567       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2568                           ISD::SETLE);
2569     } else {
2570       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2571                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2572       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2573                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2574     }
2575   }
2576 
2577   // Update successor info
2578   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2579   // TrueBB and FalseBB are always different unless the incoming IR is
2580   // degenerate. This only happens when running llc on weird IR.
2581   if (CB.TrueBB != CB.FalseBB)
2582     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2583   SwitchBB->normalizeSuccProbs();
2584 
2585   // If the lhs block is the next block, invert the condition so that we can
2586   // fall through to the lhs instead of the rhs block.
2587   if (CB.TrueBB == NextBlock(SwitchBB)) {
2588     std::swap(CB.TrueBB, CB.FalseBB);
2589     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2590     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2591   }
2592 
2593   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2594                                MVT::Other, getControlRoot(), Cond,
2595                                DAG.getBasicBlock(CB.TrueBB));
2596 
2597   setValue(CurInst, BrCond);
2598 
2599   // Insert the false branch. Do this even if it's a fall through branch,
2600   // this makes it easier to do DAG optimizations which require inverting
2601   // the branch condition.
2602   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2603                        DAG.getBasicBlock(CB.FalseBB));
2604 
2605   DAG.setRoot(BrCond);
2606 }
2607 
2608 /// visitJumpTable - Emit JumpTable node in the current MBB
2609 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2610   // Emit the code for the jump table
2611   assert(JT.Reg != -1U && "Should lower JT Header first!");
2612   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2613   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2614                                      JT.Reg, PTy);
2615   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2616   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2617                                     MVT::Other, Index.getValue(1),
2618                                     Table, Index);
2619   DAG.setRoot(BrJumpTable);
2620 }
2621 
2622 /// visitJumpTableHeader - This function emits necessary code to produce index
2623 /// in the JumpTable from switch case.
2624 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2625                                                JumpTableHeader &JTH,
2626                                                MachineBasicBlock *SwitchBB) {
2627   SDLoc dl = getCurSDLoc();
2628 
2629   // Subtract the lowest switch case value from the value being switched on.
2630   SDValue SwitchOp = getValue(JTH.SValue);
2631   EVT VT = SwitchOp.getValueType();
2632   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2633                             DAG.getConstant(JTH.First, dl, VT));
2634 
2635   // The SDNode we just created, which holds the value being switched on minus
2636   // the smallest case value, needs to be copied to a virtual register so it
2637   // can be used as an index into the jump table in a subsequent basic block.
2638   // This value may be smaller or larger than the target's pointer type, and
2639   // therefore require extension or truncating.
2640   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2641   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2642 
2643   unsigned JumpTableReg =
2644       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2645   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2646                                     JumpTableReg, SwitchOp);
2647   JT.Reg = JumpTableReg;
2648 
2649   if (!JTH.FallthroughUnreachable) {
2650     // Emit the range check for the jump table, and branch to the default block
2651     // for the switch statement if the value being switched on exceeds the
2652     // largest case in the switch.
2653     SDValue CMP = DAG.getSetCC(
2654         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2655                                    Sub.getValueType()),
2656         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2657 
2658     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2659                                  MVT::Other, CopyTo, CMP,
2660                                  DAG.getBasicBlock(JT.Default));
2661 
2662     // Avoid emitting unnecessary branches to the next block.
2663     if (JT.MBB != NextBlock(SwitchBB))
2664       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2665                            DAG.getBasicBlock(JT.MBB));
2666 
2667     DAG.setRoot(BrCond);
2668   } else {
2669     // Avoid emitting unnecessary branches to the next block.
2670     if (JT.MBB != NextBlock(SwitchBB))
2671       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2672                               DAG.getBasicBlock(JT.MBB)));
2673     else
2674       DAG.setRoot(CopyTo);
2675   }
2676 }
2677 
2678 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2679 /// variable if there exists one.
2680 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2681                                  SDValue &Chain) {
2682   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2683   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2684   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2685   MachineFunction &MF = DAG.getMachineFunction();
2686   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2687   MachineSDNode *Node =
2688       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2689   if (Global) {
2690     MachinePointerInfo MPInfo(Global);
2691     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2692                  MachineMemOperand::MODereferenceable;
2693     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2694         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2695     DAG.setNodeMemRefs(Node, {MemRef});
2696   }
2697   if (PtrTy != PtrMemTy)
2698     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2699   return SDValue(Node, 0);
2700 }
2701 
2702 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2703 /// tail spliced into a stack protector check success bb.
2704 ///
2705 /// For a high level explanation of how this fits into the stack protector
2706 /// generation see the comment on the declaration of class
2707 /// StackProtectorDescriptor.
2708 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2709                                                   MachineBasicBlock *ParentBB) {
2710 
2711   // First create the loads to the guard/stack slot for the comparison.
2712   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2713   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2714   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2715 
2716   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2717   int FI = MFI.getStackProtectorIndex();
2718 
2719   SDValue Guard;
2720   SDLoc dl = getCurSDLoc();
2721   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2722   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2723   Align Align =
2724       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2725 
2726   // Generate code to load the content of the guard slot.
2727   SDValue GuardVal = DAG.getLoad(
2728       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2729       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2730       MachineMemOperand::MOVolatile);
2731 
2732   if (TLI.useStackGuardXorFP())
2733     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2734 
2735   // Retrieve guard check function, nullptr if instrumentation is inlined.
2736   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2737     // The target provides a guard check function to validate the guard value.
2738     // Generate a call to that function with the content of the guard slot as
2739     // argument.
2740     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2741     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2742 
2743     TargetLowering::ArgListTy Args;
2744     TargetLowering::ArgListEntry Entry;
2745     Entry.Node = GuardVal;
2746     Entry.Ty = FnTy->getParamType(0);
2747     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2748       Entry.IsInReg = true;
2749     Args.push_back(Entry);
2750 
2751     TargetLowering::CallLoweringInfo CLI(DAG);
2752     CLI.setDebugLoc(getCurSDLoc())
2753         .setChain(DAG.getEntryNode())
2754         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2755                    getValue(GuardCheckFn), std::move(Args));
2756 
2757     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2758     DAG.setRoot(Result.second);
2759     return;
2760   }
2761 
2762   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2763   // Otherwise, emit a volatile load to retrieve the stack guard value.
2764   SDValue Chain = DAG.getEntryNode();
2765   if (TLI.useLoadStackGuardNode()) {
2766     Guard = getLoadStackGuard(DAG, dl, Chain);
2767   } else {
2768     const Value *IRGuard = TLI.getSDagStackGuard(M);
2769     SDValue GuardPtr = getValue(IRGuard);
2770 
2771     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2772                         MachinePointerInfo(IRGuard, 0), Align,
2773                         MachineMemOperand::MOVolatile);
2774   }
2775 
2776   // Perform the comparison via a getsetcc.
2777   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2778                                                         *DAG.getContext(),
2779                                                         Guard.getValueType()),
2780                              Guard, GuardVal, ISD::SETNE);
2781 
2782   // If the guard/stackslot do not equal, branch to failure MBB.
2783   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2784                                MVT::Other, GuardVal.getOperand(0),
2785                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2786   // Otherwise branch to success MBB.
2787   SDValue Br = DAG.getNode(ISD::BR, dl,
2788                            MVT::Other, BrCond,
2789                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2790 
2791   DAG.setRoot(Br);
2792 }
2793 
2794 /// Codegen the failure basic block for a stack protector check.
2795 ///
2796 /// A failure stack protector machine basic block consists simply of a call to
2797 /// __stack_chk_fail().
2798 ///
2799 /// For a high level explanation of how this fits into the stack protector
2800 /// generation see the comment on the declaration of class
2801 /// StackProtectorDescriptor.
2802 void
2803 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2804   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2805   TargetLowering::MakeLibCallOptions CallOptions;
2806   CallOptions.setDiscardResult(true);
2807   SDValue Chain =
2808       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2809                       std::nullopt, CallOptions, getCurSDLoc())
2810           .second;
2811   // On PS4/PS5, the "return address" must still be within the calling
2812   // function, even if it's at the very end, so emit an explicit TRAP here.
2813   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2814   if (TM.getTargetTriple().isPS())
2815     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2816   // WebAssembly needs an unreachable instruction after a non-returning call,
2817   // because the function return type can be different from __stack_chk_fail's
2818   // return type (void).
2819   if (TM.getTargetTriple().isWasm())
2820     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2821 
2822   DAG.setRoot(Chain);
2823 }
2824 
2825 /// visitBitTestHeader - This function emits necessary code to produce value
2826 /// suitable for "bit tests"
2827 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2828                                              MachineBasicBlock *SwitchBB) {
2829   SDLoc dl = getCurSDLoc();
2830 
2831   // Subtract the minimum value.
2832   SDValue SwitchOp = getValue(B.SValue);
2833   EVT VT = SwitchOp.getValueType();
2834   SDValue RangeSub =
2835       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2836 
2837   // Determine the type of the test operands.
2838   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2839   bool UsePtrType = false;
2840   if (!TLI.isTypeLegal(VT)) {
2841     UsePtrType = true;
2842   } else {
2843     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2844       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2845         // Switch table case range are encoded into series of masks.
2846         // Just use pointer type, it's guaranteed to fit.
2847         UsePtrType = true;
2848         break;
2849       }
2850   }
2851   SDValue Sub = RangeSub;
2852   if (UsePtrType) {
2853     VT = TLI.getPointerTy(DAG.getDataLayout());
2854     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2855   }
2856 
2857   B.RegVT = VT.getSimpleVT();
2858   B.Reg = FuncInfo.CreateReg(B.RegVT);
2859   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2860 
2861   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2862 
2863   if (!B.FallthroughUnreachable)
2864     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2865   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2866   SwitchBB->normalizeSuccProbs();
2867 
2868   SDValue Root = CopyTo;
2869   if (!B.FallthroughUnreachable) {
2870     // Conditional branch to the default block.
2871     SDValue RangeCmp = DAG.getSetCC(dl,
2872         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2873                                RangeSub.getValueType()),
2874         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2875         ISD::SETUGT);
2876 
2877     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2878                        DAG.getBasicBlock(B.Default));
2879   }
2880 
2881   // Avoid emitting unnecessary branches to the next block.
2882   if (MBB != NextBlock(SwitchBB))
2883     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2884 
2885   DAG.setRoot(Root);
2886 }
2887 
2888 /// visitBitTestCase - this function produces one "bit test"
2889 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2890                                            MachineBasicBlock* NextMBB,
2891                                            BranchProbability BranchProbToNext,
2892                                            unsigned Reg,
2893                                            BitTestCase &B,
2894                                            MachineBasicBlock *SwitchBB) {
2895   SDLoc dl = getCurSDLoc();
2896   MVT VT = BB.RegVT;
2897   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2898   SDValue Cmp;
2899   unsigned PopCount = llvm::popcount(B.Mask);
2900   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2901   if (PopCount == 1) {
2902     // Testing for a single bit; just compare the shift count with what it
2903     // would need to be to shift a 1 bit in that position.
2904     Cmp = DAG.getSetCC(
2905         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2906         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
2907         ISD::SETEQ);
2908   } else if (PopCount == BB.Range) {
2909     // There is only one zero bit in the range, test for it directly.
2910     Cmp = DAG.getSetCC(
2911         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2912         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
2913   } else {
2914     // Make desired shift
2915     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2916                                     DAG.getConstant(1, dl, VT), ShiftOp);
2917 
2918     // Emit bit tests and jumps
2919     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2920                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2921     Cmp = DAG.getSetCC(
2922         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2923         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2924   }
2925 
2926   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2927   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2928   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2929   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2930   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2931   // one as they are relative probabilities (and thus work more like weights),
2932   // and hence we need to normalize them to let the sum of them become one.
2933   SwitchBB->normalizeSuccProbs();
2934 
2935   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2936                               MVT::Other, getControlRoot(),
2937                               Cmp, DAG.getBasicBlock(B.TargetBB));
2938 
2939   // Avoid emitting unnecessary branches to the next block.
2940   if (NextMBB != NextBlock(SwitchBB))
2941     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2942                         DAG.getBasicBlock(NextMBB));
2943 
2944   DAG.setRoot(BrAnd);
2945 }
2946 
2947 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2948   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2949 
2950   // Retrieve successors. Look through artificial IR level blocks like
2951   // catchswitch for successors.
2952   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2953   const BasicBlock *EHPadBB = I.getSuccessor(1);
2954 
2955   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2956   // have to do anything here to lower funclet bundles.
2957   assert(!I.hasOperandBundlesOtherThan(
2958              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
2959               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
2960               LLVMContext::OB_cfguardtarget,
2961               LLVMContext::OB_clang_arc_attachedcall}) &&
2962          "Cannot lower invokes with arbitrary operand bundles yet!");
2963 
2964   const Value *Callee(I.getCalledOperand());
2965   const Function *Fn = dyn_cast<Function>(Callee);
2966   if (isa<InlineAsm>(Callee))
2967     visitInlineAsm(I, EHPadBB);
2968   else if (Fn && Fn->isIntrinsic()) {
2969     switch (Fn->getIntrinsicID()) {
2970     default:
2971       llvm_unreachable("Cannot invoke this intrinsic");
2972     case Intrinsic::donothing:
2973       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2974     case Intrinsic::seh_try_begin:
2975     case Intrinsic::seh_scope_begin:
2976     case Intrinsic::seh_try_end:
2977     case Intrinsic::seh_scope_end:
2978       break;
2979     case Intrinsic::experimental_patchpoint_void:
2980     case Intrinsic::experimental_patchpoint_i64:
2981       visitPatchpoint(I, EHPadBB);
2982       break;
2983     case Intrinsic::experimental_gc_statepoint:
2984       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
2985       break;
2986     case Intrinsic::wasm_rethrow: {
2987       // This is usually done in visitTargetIntrinsic, but this intrinsic is
2988       // special because it can be invoked, so we manually lower it to a DAG
2989       // node here.
2990       SmallVector<SDValue, 8> Ops;
2991       Ops.push_back(getRoot()); // inchain
2992       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2993       Ops.push_back(
2994           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
2995                                 TLI.getPointerTy(DAG.getDataLayout())));
2996       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2997       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2998       break;
2999     }
3000     }
3001   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3002     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3003     // Eventually we will support lowering the @llvm.experimental.deoptimize
3004     // intrinsic, and right now there are no plans to support other intrinsics
3005     // with deopt state.
3006     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3007   } else {
3008     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3009   }
3010 
3011   // If the value of the invoke is used outside of its defining block, make it
3012   // available as a virtual register.
3013   // We already took care of the exported value for the statepoint instruction
3014   // during call to the LowerStatepoint.
3015   if (!isa<GCStatepointInst>(I)) {
3016     CopyToExportRegsIfNeeded(&I);
3017   }
3018 
3019   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3020   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3021   BranchProbability EHPadBBProb =
3022       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3023           : BranchProbability::getZero();
3024   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3025 
3026   // Update successor info.
3027   addSuccessorWithProb(InvokeMBB, Return);
3028   for (auto &UnwindDest : UnwindDests) {
3029     UnwindDest.first->setIsEHPad();
3030     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3031   }
3032   InvokeMBB->normalizeSuccProbs();
3033 
3034   // Drop into normal successor.
3035   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3036                           DAG.getBasicBlock(Return)));
3037 }
3038 
3039 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3040   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3041 
3042   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3043   // have to do anything here to lower funclet bundles.
3044   assert(!I.hasOperandBundlesOtherThan(
3045              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3046          "Cannot lower callbrs with arbitrary operand bundles yet!");
3047 
3048   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3049   visitInlineAsm(I);
3050   CopyToExportRegsIfNeeded(&I);
3051 
3052   // Retrieve successors.
3053   SmallPtrSet<BasicBlock *, 8> Dests;
3054   Dests.insert(I.getDefaultDest());
3055   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3056 
3057   // Update successor info.
3058   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3059   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3060     BasicBlock *Dest = I.getIndirectDest(i);
3061     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3062     Target->setIsInlineAsmBrIndirectTarget();
3063     Target->setMachineBlockAddressTaken();
3064     Target->setLabelMustBeEmitted();
3065     // Don't add duplicate machine successors.
3066     if (Dests.insert(Dest).second)
3067       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3068   }
3069   CallBrMBB->normalizeSuccProbs();
3070 
3071   // Drop into default successor.
3072   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3073                           MVT::Other, getControlRoot(),
3074                           DAG.getBasicBlock(Return)));
3075 }
3076 
3077 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3078   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3079 }
3080 
3081 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3082   assert(FuncInfo.MBB->isEHPad() &&
3083          "Call to landingpad not in landing pad!");
3084 
3085   // If there aren't registers to copy the values into (e.g., during SjLj
3086   // exceptions), then don't bother to create these DAG nodes.
3087   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3088   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3089   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3090       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3091     return;
3092 
3093   // If landingpad's return type is token type, we don't create DAG nodes
3094   // for its exception pointer and selector value. The extraction of exception
3095   // pointer or selector value from token type landingpads is not currently
3096   // supported.
3097   if (LP.getType()->isTokenTy())
3098     return;
3099 
3100   SmallVector<EVT, 2> ValueVTs;
3101   SDLoc dl = getCurSDLoc();
3102   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3103   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3104 
3105   // Get the two live-in registers as SDValues. The physregs have already been
3106   // copied into virtual registers.
3107   SDValue Ops[2];
3108   if (FuncInfo.ExceptionPointerVirtReg) {
3109     Ops[0] = DAG.getZExtOrTrunc(
3110         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3111                            FuncInfo.ExceptionPointerVirtReg,
3112                            TLI.getPointerTy(DAG.getDataLayout())),
3113         dl, ValueVTs[0]);
3114   } else {
3115     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3116   }
3117   Ops[1] = DAG.getZExtOrTrunc(
3118       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3119                          FuncInfo.ExceptionSelectorVirtReg,
3120                          TLI.getPointerTy(DAG.getDataLayout())),
3121       dl, ValueVTs[1]);
3122 
3123   // Merge into one.
3124   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3125                             DAG.getVTList(ValueVTs), Ops);
3126   setValue(&LP, Res);
3127 }
3128 
3129 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3130                                            MachineBasicBlock *Last) {
3131   // Update JTCases.
3132   for (JumpTableBlock &JTB : SL->JTCases)
3133     if (JTB.first.HeaderBB == First)
3134       JTB.first.HeaderBB = Last;
3135 
3136   // Update BitTestCases.
3137   for (BitTestBlock &BTB : SL->BitTestCases)
3138     if (BTB.Parent == First)
3139       BTB.Parent = Last;
3140 }
3141 
3142 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3143   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3144 
3145   // Update machine-CFG edges with unique successors.
3146   SmallSet<BasicBlock*, 32> Done;
3147   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3148     BasicBlock *BB = I.getSuccessor(i);
3149     bool Inserted = Done.insert(BB).second;
3150     if (!Inserted)
3151         continue;
3152 
3153     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3154     addSuccessorWithProb(IndirectBrMBB, Succ);
3155   }
3156   IndirectBrMBB->normalizeSuccProbs();
3157 
3158   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3159                           MVT::Other, getControlRoot(),
3160                           getValue(I.getAddress())));
3161 }
3162 
3163 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3164   if (!DAG.getTarget().Options.TrapUnreachable)
3165     return;
3166 
3167   // We may be able to ignore unreachable behind a noreturn call.
3168   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3169     const BasicBlock &BB = *I.getParent();
3170     if (&I != &BB.front()) {
3171       BasicBlock::const_iterator PredI =
3172         std::prev(BasicBlock::const_iterator(&I));
3173       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3174         if (Call->doesNotReturn())
3175           return;
3176       }
3177     }
3178   }
3179 
3180   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3181 }
3182 
3183 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3184   SDNodeFlags Flags;
3185   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3186     Flags.copyFMF(*FPOp);
3187 
3188   SDValue Op = getValue(I.getOperand(0));
3189   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3190                                     Op, Flags);
3191   setValue(&I, UnNodeValue);
3192 }
3193 
3194 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3195   SDNodeFlags Flags;
3196   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3197     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3198     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3199   }
3200   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3201     Flags.setExact(ExactOp->isExact());
3202   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3203     Flags.copyFMF(*FPOp);
3204 
3205   SDValue Op1 = getValue(I.getOperand(0));
3206   SDValue Op2 = getValue(I.getOperand(1));
3207   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3208                                      Op1, Op2, Flags);
3209   setValue(&I, BinNodeValue);
3210 }
3211 
3212 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3213   SDValue Op1 = getValue(I.getOperand(0));
3214   SDValue Op2 = getValue(I.getOperand(1));
3215 
3216   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3217       Op1.getValueType(), DAG.getDataLayout());
3218 
3219   // Coerce the shift amount to the right type if we can. This exposes the
3220   // truncate or zext to optimization early.
3221   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3222     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3223            "Unexpected shift type");
3224     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3225   }
3226 
3227   bool nuw = false;
3228   bool nsw = false;
3229   bool exact = false;
3230 
3231   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3232 
3233     if (const OverflowingBinaryOperator *OFBinOp =
3234             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3235       nuw = OFBinOp->hasNoUnsignedWrap();
3236       nsw = OFBinOp->hasNoSignedWrap();
3237     }
3238     if (const PossiblyExactOperator *ExactOp =
3239             dyn_cast<const PossiblyExactOperator>(&I))
3240       exact = ExactOp->isExact();
3241   }
3242   SDNodeFlags Flags;
3243   Flags.setExact(exact);
3244   Flags.setNoSignedWrap(nsw);
3245   Flags.setNoUnsignedWrap(nuw);
3246   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3247                             Flags);
3248   setValue(&I, Res);
3249 }
3250 
3251 void SelectionDAGBuilder::visitSDiv(const User &I) {
3252   SDValue Op1 = getValue(I.getOperand(0));
3253   SDValue Op2 = getValue(I.getOperand(1));
3254 
3255   SDNodeFlags Flags;
3256   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3257                  cast<PossiblyExactOperator>(&I)->isExact());
3258   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3259                            Op2, Flags));
3260 }
3261 
3262 void SelectionDAGBuilder::visitICmp(const User &I) {
3263   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3264   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3265     predicate = IC->getPredicate();
3266   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3267     predicate = ICmpInst::Predicate(IC->getPredicate());
3268   SDValue Op1 = getValue(I.getOperand(0));
3269   SDValue Op2 = getValue(I.getOperand(1));
3270   ISD::CondCode Opcode = getICmpCondCode(predicate);
3271 
3272   auto &TLI = DAG.getTargetLoweringInfo();
3273   EVT MemVT =
3274       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3275 
3276   // If a pointer's DAG type is larger than its memory type then the DAG values
3277   // are zero-extended. This breaks signed comparisons so truncate back to the
3278   // underlying type before doing the compare.
3279   if (Op1.getValueType() != MemVT) {
3280     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3281     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3282   }
3283 
3284   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3285                                                         I.getType());
3286   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3287 }
3288 
3289 void SelectionDAGBuilder::visitFCmp(const User &I) {
3290   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3291   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3292     predicate = FC->getPredicate();
3293   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3294     predicate = FCmpInst::Predicate(FC->getPredicate());
3295   SDValue Op1 = getValue(I.getOperand(0));
3296   SDValue Op2 = getValue(I.getOperand(1));
3297 
3298   ISD::CondCode Condition = getFCmpCondCode(predicate);
3299   auto *FPMO = cast<FPMathOperator>(&I);
3300   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3301     Condition = getFCmpCodeWithoutNaN(Condition);
3302 
3303   SDNodeFlags Flags;
3304   Flags.copyFMF(*FPMO);
3305   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3306 
3307   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3308                                                         I.getType());
3309   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3310 }
3311 
3312 // Check if the condition of the select has one use or two users that are both
3313 // selects with the same condition.
3314 static bool hasOnlySelectUsers(const Value *Cond) {
3315   return llvm::all_of(Cond->users(), [](const Value *V) {
3316     return isa<SelectInst>(V);
3317   });
3318 }
3319 
3320 void SelectionDAGBuilder::visitSelect(const User &I) {
3321   SmallVector<EVT, 4> ValueVTs;
3322   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3323                   ValueVTs);
3324   unsigned NumValues = ValueVTs.size();
3325   if (NumValues == 0) return;
3326 
3327   SmallVector<SDValue, 4> Values(NumValues);
3328   SDValue Cond     = getValue(I.getOperand(0));
3329   SDValue LHSVal   = getValue(I.getOperand(1));
3330   SDValue RHSVal   = getValue(I.getOperand(2));
3331   SmallVector<SDValue, 1> BaseOps(1, Cond);
3332   ISD::NodeType OpCode =
3333       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3334 
3335   bool IsUnaryAbs = false;
3336   bool Negate = false;
3337 
3338   SDNodeFlags Flags;
3339   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3340     Flags.copyFMF(*FPOp);
3341 
3342   // Min/max matching is only viable if all output VTs are the same.
3343   if (all_equal(ValueVTs)) {
3344     EVT VT = ValueVTs[0];
3345     LLVMContext &Ctx = *DAG.getContext();
3346     auto &TLI = DAG.getTargetLoweringInfo();
3347 
3348     // We care about the legality of the operation after it has been type
3349     // legalized.
3350     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3351       VT = TLI.getTypeToTransformTo(Ctx, VT);
3352 
3353     // If the vselect is legal, assume we want to leave this as a vector setcc +
3354     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3355     // min/max is legal on the scalar type.
3356     bool UseScalarMinMax = VT.isVector() &&
3357       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3358 
3359     // ValueTracking's select pattern matching does not account for -0.0,
3360     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3361     // -0.0 is less than +0.0.
3362     Value *LHS, *RHS;
3363     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3364     ISD::NodeType Opc = ISD::DELETED_NODE;
3365     switch (SPR.Flavor) {
3366     case SPF_UMAX:    Opc = ISD::UMAX; break;
3367     case SPF_UMIN:    Opc = ISD::UMIN; break;
3368     case SPF_SMAX:    Opc = ISD::SMAX; break;
3369     case SPF_SMIN:    Opc = ISD::SMIN; break;
3370     case SPF_FMINNUM:
3371       switch (SPR.NaNBehavior) {
3372       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3373       case SPNB_RETURNS_NAN: break;
3374       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3375       case SPNB_RETURNS_ANY:
3376         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3377             (UseScalarMinMax &&
3378              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3379           Opc = ISD::FMINNUM;
3380         break;
3381       }
3382       break;
3383     case SPF_FMAXNUM:
3384       switch (SPR.NaNBehavior) {
3385       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3386       case SPNB_RETURNS_NAN: break;
3387       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3388       case SPNB_RETURNS_ANY:
3389         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3390             (UseScalarMinMax &&
3391              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3392           Opc = ISD::FMAXNUM;
3393         break;
3394       }
3395       break;
3396     case SPF_NABS:
3397       Negate = true;
3398       [[fallthrough]];
3399     case SPF_ABS:
3400       IsUnaryAbs = true;
3401       Opc = ISD::ABS;
3402       break;
3403     default: break;
3404     }
3405 
3406     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3407         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3408          (UseScalarMinMax &&
3409           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3410         // If the underlying comparison instruction is used by any other
3411         // instruction, the consumed instructions won't be destroyed, so it is
3412         // not profitable to convert to a min/max.
3413         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3414       OpCode = Opc;
3415       LHSVal = getValue(LHS);
3416       RHSVal = getValue(RHS);
3417       BaseOps.clear();
3418     }
3419 
3420     if (IsUnaryAbs) {
3421       OpCode = Opc;
3422       LHSVal = getValue(LHS);
3423       BaseOps.clear();
3424     }
3425   }
3426 
3427   if (IsUnaryAbs) {
3428     for (unsigned i = 0; i != NumValues; ++i) {
3429       SDLoc dl = getCurSDLoc();
3430       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3431       Values[i] =
3432           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3433       if (Negate)
3434         Values[i] = DAG.getNegative(Values[i], dl, VT);
3435     }
3436   } else {
3437     for (unsigned i = 0; i != NumValues; ++i) {
3438       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3439       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3440       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3441       Values[i] = DAG.getNode(
3442           OpCode, getCurSDLoc(),
3443           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3444     }
3445   }
3446 
3447   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3448                            DAG.getVTList(ValueVTs), Values));
3449 }
3450 
3451 void SelectionDAGBuilder::visitTrunc(const User &I) {
3452   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3453   SDValue N = getValue(I.getOperand(0));
3454   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3455                                                         I.getType());
3456   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3457 }
3458 
3459 void SelectionDAGBuilder::visitZExt(const User &I) {
3460   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3461   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3462   SDValue N = getValue(I.getOperand(0));
3463   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3464                                                         I.getType());
3465   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3466 }
3467 
3468 void SelectionDAGBuilder::visitSExt(const User &I) {
3469   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3470   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3471   SDValue N = getValue(I.getOperand(0));
3472   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3473                                                         I.getType());
3474   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3475 }
3476 
3477 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3478   // FPTrunc is never a no-op cast, no need to check
3479   SDValue N = getValue(I.getOperand(0));
3480   SDLoc dl = getCurSDLoc();
3481   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3482   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3483   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3484                            DAG.getTargetConstant(
3485                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3486 }
3487 
3488 void SelectionDAGBuilder::visitFPExt(const User &I) {
3489   // FPExt is never a no-op cast, no need to check
3490   SDValue N = getValue(I.getOperand(0));
3491   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3492                                                         I.getType());
3493   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3494 }
3495 
3496 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3497   // FPToUI is never a no-op cast, no need to check
3498   SDValue N = getValue(I.getOperand(0));
3499   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3500                                                         I.getType());
3501   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3502 }
3503 
3504 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3505   // FPToSI is never a no-op cast, no need to check
3506   SDValue N = getValue(I.getOperand(0));
3507   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3508                                                         I.getType());
3509   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3510 }
3511 
3512 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3513   // UIToFP is never a no-op cast, no need to check
3514   SDValue N = getValue(I.getOperand(0));
3515   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3516                                                         I.getType());
3517   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3518 }
3519 
3520 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3521   // SIToFP is never a no-op cast, no need to check
3522   SDValue N = getValue(I.getOperand(0));
3523   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3524                                                         I.getType());
3525   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3526 }
3527 
3528 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3529   // What to do depends on the size of the integer and the size of the pointer.
3530   // We can either truncate, zero extend, or no-op, accordingly.
3531   SDValue N = getValue(I.getOperand(0));
3532   auto &TLI = DAG.getTargetLoweringInfo();
3533   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3534                                                         I.getType());
3535   EVT PtrMemVT =
3536       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3537   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3538   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3539   setValue(&I, N);
3540 }
3541 
3542 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3543   // What to do depends on the size of the integer and the size of the pointer.
3544   // We can either truncate, zero extend, or no-op, accordingly.
3545   SDValue N = getValue(I.getOperand(0));
3546   auto &TLI = DAG.getTargetLoweringInfo();
3547   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3548   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3549   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3550   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3551   setValue(&I, N);
3552 }
3553 
3554 void SelectionDAGBuilder::visitBitCast(const User &I) {
3555   SDValue N = getValue(I.getOperand(0));
3556   SDLoc dl = getCurSDLoc();
3557   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3558                                                         I.getType());
3559 
3560   // BitCast assures us that source and destination are the same size so this is
3561   // either a BITCAST or a no-op.
3562   if (DestVT != N.getValueType())
3563     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3564                              DestVT, N)); // convert types.
3565   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3566   // might fold any kind of constant expression to an integer constant and that
3567   // is not what we are looking for. Only recognize a bitcast of a genuine
3568   // constant integer as an opaque constant.
3569   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3570     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3571                                  /*isOpaque*/true));
3572   else
3573     setValue(&I, N);            // noop cast.
3574 }
3575 
3576 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3577   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3578   const Value *SV = I.getOperand(0);
3579   SDValue N = getValue(SV);
3580   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3581 
3582   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3583   unsigned DestAS = I.getType()->getPointerAddressSpace();
3584 
3585   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3586     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3587 
3588   setValue(&I, N);
3589 }
3590 
3591 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3592   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3593   SDValue InVec = getValue(I.getOperand(0));
3594   SDValue InVal = getValue(I.getOperand(1));
3595   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3596                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3597   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3598                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3599                            InVec, InVal, InIdx));
3600 }
3601 
3602 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3603   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3604   SDValue InVec = getValue(I.getOperand(0));
3605   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3606                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3607   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3608                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3609                            InVec, InIdx));
3610 }
3611 
3612 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3613   SDValue Src1 = getValue(I.getOperand(0));
3614   SDValue Src2 = getValue(I.getOperand(1));
3615   ArrayRef<int> Mask;
3616   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3617     Mask = SVI->getShuffleMask();
3618   else
3619     Mask = cast<ConstantExpr>(I).getShuffleMask();
3620   SDLoc DL = getCurSDLoc();
3621   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3622   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3623   EVT SrcVT = Src1.getValueType();
3624 
3625   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3626       VT.isScalableVector()) {
3627     // Canonical splat form of first element of first input vector.
3628     SDValue FirstElt =
3629         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3630                     DAG.getVectorIdxConstant(0, DL));
3631     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3632     return;
3633   }
3634 
3635   // For now, we only handle splats for scalable vectors.
3636   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3637   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3638   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3639 
3640   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3641   unsigned MaskNumElts = Mask.size();
3642 
3643   if (SrcNumElts == MaskNumElts) {
3644     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3645     return;
3646   }
3647 
3648   // Normalize the shuffle vector since mask and vector length don't match.
3649   if (SrcNumElts < MaskNumElts) {
3650     // Mask is longer than the source vectors. We can use concatenate vector to
3651     // make the mask and vectors lengths match.
3652 
3653     if (MaskNumElts % SrcNumElts == 0) {
3654       // Mask length is a multiple of the source vector length.
3655       // Check if the shuffle is some kind of concatenation of the input
3656       // vectors.
3657       unsigned NumConcat = MaskNumElts / SrcNumElts;
3658       bool IsConcat = true;
3659       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3660       for (unsigned i = 0; i != MaskNumElts; ++i) {
3661         int Idx = Mask[i];
3662         if (Idx < 0)
3663           continue;
3664         // Ensure the indices in each SrcVT sized piece are sequential and that
3665         // the same source is used for the whole piece.
3666         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3667             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3668              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3669           IsConcat = false;
3670           break;
3671         }
3672         // Remember which source this index came from.
3673         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3674       }
3675 
3676       // The shuffle is concatenating multiple vectors together. Just emit
3677       // a CONCAT_VECTORS operation.
3678       if (IsConcat) {
3679         SmallVector<SDValue, 8> ConcatOps;
3680         for (auto Src : ConcatSrcs) {
3681           if (Src < 0)
3682             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3683           else if (Src == 0)
3684             ConcatOps.push_back(Src1);
3685           else
3686             ConcatOps.push_back(Src2);
3687         }
3688         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3689         return;
3690       }
3691     }
3692 
3693     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3694     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3695     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3696                                     PaddedMaskNumElts);
3697 
3698     // Pad both vectors with undefs to make them the same length as the mask.
3699     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3700 
3701     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3702     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3703     MOps1[0] = Src1;
3704     MOps2[0] = Src2;
3705 
3706     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3707     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3708 
3709     // Readjust mask for new input vector length.
3710     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3711     for (unsigned i = 0; i != MaskNumElts; ++i) {
3712       int Idx = Mask[i];
3713       if (Idx >= (int)SrcNumElts)
3714         Idx -= SrcNumElts - PaddedMaskNumElts;
3715       MappedOps[i] = Idx;
3716     }
3717 
3718     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3719 
3720     // If the concatenated vector was padded, extract a subvector with the
3721     // correct number of elements.
3722     if (MaskNumElts != PaddedMaskNumElts)
3723       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3724                            DAG.getVectorIdxConstant(0, DL));
3725 
3726     setValue(&I, Result);
3727     return;
3728   }
3729 
3730   if (SrcNumElts > MaskNumElts) {
3731     // Analyze the access pattern of the vector to see if we can extract
3732     // two subvectors and do the shuffle.
3733     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3734     bool CanExtract = true;
3735     for (int Idx : Mask) {
3736       unsigned Input = 0;
3737       if (Idx < 0)
3738         continue;
3739 
3740       if (Idx >= (int)SrcNumElts) {
3741         Input = 1;
3742         Idx -= SrcNumElts;
3743       }
3744 
3745       // If all the indices come from the same MaskNumElts sized portion of
3746       // the sources we can use extract. Also make sure the extract wouldn't
3747       // extract past the end of the source.
3748       int NewStartIdx = alignDown(Idx, MaskNumElts);
3749       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3750           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3751         CanExtract = false;
3752       // Make sure we always update StartIdx as we use it to track if all
3753       // elements are undef.
3754       StartIdx[Input] = NewStartIdx;
3755     }
3756 
3757     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3758       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3759       return;
3760     }
3761     if (CanExtract) {
3762       // Extract appropriate subvector and generate a vector shuffle
3763       for (unsigned Input = 0; Input < 2; ++Input) {
3764         SDValue &Src = Input == 0 ? Src1 : Src2;
3765         if (StartIdx[Input] < 0)
3766           Src = DAG.getUNDEF(VT);
3767         else {
3768           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3769                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3770         }
3771       }
3772 
3773       // Calculate new mask.
3774       SmallVector<int, 8> MappedOps(Mask);
3775       for (int &Idx : MappedOps) {
3776         if (Idx >= (int)SrcNumElts)
3777           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3778         else if (Idx >= 0)
3779           Idx -= StartIdx[0];
3780       }
3781 
3782       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3783       return;
3784     }
3785   }
3786 
3787   // We can't use either concat vectors or extract subvectors so fall back to
3788   // replacing the shuffle with extract and build vector.
3789   // to insert and build vector.
3790   EVT EltVT = VT.getVectorElementType();
3791   SmallVector<SDValue,8> Ops;
3792   for (int Idx : Mask) {
3793     SDValue Res;
3794 
3795     if (Idx < 0) {
3796       Res = DAG.getUNDEF(EltVT);
3797     } else {
3798       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3799       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3800 
3801       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3802                         DAG.getVectorIdxConstant(Idx, DL));
3803     }
3804 
3805     Ops.push_back(Res);
3806   }
3807 
3808   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3809 }
3810 
3811 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3812   ArrayRef<unsigned> Indices = I.getIndices();
3813   const Value *Op0 = I.getOperand(0);
3814   const Value *Op1 = I.getOperand(1);
3815   Type *AggTy = I.getType();
3816   Type *ValTy = Op1->getType();
3817   bool IntoUndef = isa<UndefValue>(Op0);
3818   bool FromUndef = isa<UndefValue>(Op1);
3819 
3820   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3821 
3822   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3823   SmallVector<EVT, 4> AggValueVTs;
3824   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3825   SmallVector<EVT, 4> ValValueVTs;
3826   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3827 
3828   unsigned NumAggValues = AggValueVTs.size();
3829   unsigned NumValValues = ValValueVTs.size();
3830   SmallVector<SDValue, 4> Values(NumAggValues);
3831 
3832   // Ignore an insertvalue that produces an empty object
3833   if (!NumAggValues) {
3834     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3835     return;
3836   }
3837 
3838   SDValue Agg = getValue(Op0);
3839   unsigned i = 0;
3840   // Copy the beginning value(s) from the original aggregate.
3841   for (; i != LinearIndex; ++i)
3842     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3843                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3844   // Copy values from the inserted value(s).
3845   if (NumValValues) {
3846     SDValue Val = getValue(Op1);
3847     for (; i != LinearIndex + NumValValues; ++i)
3848       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3849                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3850   }
3851   // Copy remaining value(s) from the original aggregate.
3852   for (; i != NumAggValues; ++i)
3853     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3854                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3855 
3856   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3857                            DAG.getVTList(AggValueVTs), Values));
3858 }
3859 
3860 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3861   ArrayRef<unsigned> Indices = I.getIndices();
3862   const Value *Op0 = I.getOperand(0);
3863   Type *AggTy = Op0->getType();
3864   Type *ValTy = I.getType();
3865   bool OutOfUndef = isa<UndefValue>(Op0);
3866 
3867   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3868 
3869   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3870   SmallVector<EVT, 4> ValValueVTs;
3871   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3872 
3873   unsigned NumValValues = ValValueVTs.size();
3874 
3875   // Ignore a extractvalue that produces an empty object
3876   if (!NumValValues) {
3877     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3878     return;
3879   }
3880 
3881   SmallVector<SDValue, 4> Values(NumValValues);
3882 
3883   SDValue Agg = getValue(Op0);
3884   // Copy out the selected value(s).
3885   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3886     Values[i - LinearIndex] =
3887       OutOfUndef ?
3888         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3889         SDValue(Agg.getNode(), Agg.getResNo() + i);
3890 
3891   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3892                            DAG.getVTList(ValValueVTs), Values));
3893 }
3894 
3895 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3896   Value *Op0 = I.getOperand(0);
3897   // Note that the pointer operand may be a vector of pointers. Take the scalar
3898   // element which holds a pointer.
3899   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3900   SDValue N = getValue(Op0);
3901   SDLoc dl = getCurSDLoc();
3902   auto &TLI = DAG.getTargetLoweringInfo();
3903 
3904   // Normalize Vector GEP - all scalar operands should be converted to the
3905   // splat vector.
3906   bool IsVectorGEP = I.getType()->isVectorTy();
3907   ElementCount VectorElementCount =
3908       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3909                   : ElementCount::getFixed(0);
3910 
3911   if (IsVectorGEP && !N.getValueType().isVector()) {
3912     LLVMContext &Context = *DAG.getContext();
3913     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3914     N = DAG.getSplat(VT, dl, N);
3915   }
3916 
3917   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3918        GTI != E; ++GTI) {
3919     const Value *Idx = GTI.getOperand();
3920     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3921       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3922       if (Field) {
3923         // N = N + Offset
3924         uint64_t Offset =
3925             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3926 
3927         // In an inbounds GEP with an offset that is nonnegative even when
3928         // interpreted as signed, assume there is no unsigned overflow.
3929         SDNodeFlags Flags;
3930         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3931           Flags.setNoUnsignedWrap(true);
3932 
3933         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3934                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3935       }
3936     } else {
3937       // IdxSize is the width of the arithmetic according to IR semantics.
3938       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3939       // (and fix up the result later).
3940       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3941       MVT IdxTy = MVT::getIntegerVT(IdxSize);
3942       TypeSize ElementSize =
3943           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
3944       // We intentionally mask away the high bits here; ElementSize may not
3945       // fit in IdxTy.
3946       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
3947       bool ElementScalable = ElementSize.isScalable();
3948 
3949       // If this is a scalar constant or a splat vector of constants,
3950       // handle it quickly.
3951       const auto *C = dyn_cast<Constant>(Idx);
3952       if (C && isa<VectorType>(C->getType()))
3953         C = C->getSplatValue();
3954 
3955       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
3956       if (CI && CI->isZero())
3957         continue;
3958       if (CI && !ElementScalable) {
3959         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
3960         LLVMContext &Context = *DAG.getContext();
3961         SDValue OffsVal;
3962         if (IsVectorGEP)
3963           OffsVal = DAG.getConstant(
3964               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
3965         else
3966           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
3967 
3968         // In an inbounds GEP with an offset that is nonnegative even when
3969         // interpreted as signed, assume there is no unsigned overflow.
3970         SDNodeFlags Flags;
3971         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3972           Flags.setNoUnsignedWrap(true);
3973 
3974         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3975 
3976         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3977         continue;
3978       }
3979 
3980       // N = N + Idx * ElementMul;
3981       SDValue IdxN = getValue(Idx);
3982 
3983       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
3984         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
3985                                   VectorElementCount);
3986         IdxN = DAG.getSplat(VT, dl, IdxN);
3987       }
3988 
3989       // If the index is smaller or larger than intptr_t, truncate or extend
3990       // it.
3991       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3992 
3993       if (ElementScalable) {
3994         EVT VScaleTy = N.getValueType().getScalarType();
3995         SDValue VScale = DAG.getNode(
3996             ISD::VSCALE, dl, VScaleTy,
3997             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
3998         if (IsVectorGEP)
3999           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4000         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4001       } else {
4002         // If this is a multiply by a power of two, turn it into a shl
4003         // immediately.  This is a very common case.
4004         if (ElementMul != 1) {
4005           if (ElementMul.isPowerOf2()) {
4006             unsigned Amt = ElementMul.logBase2();
4007             IdxN = DAG.getNode(ISD::SHL, dl,
4008                                N.getValueType(), IdxN,
4009                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4010           } else {
4011             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4012                                             IdxN.getValueType());
4013             IdxN = DAG.getNode(ISD::MUL, dl,
4014                                N.getValueType(), IdxN, Scale);
4015           }
4016         }
4017       }
4018 
4019       N = DAG.getNode(ISD::ADD, dl,
4020                       N.getValueType(), N, IdxN);
4021     }
4022   }
4023 
4024   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4025   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4026   if (IsVectorGEP) {
4027     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4028     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4029   }
4030 
4031   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4032     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4033 
4034   setValue(&I, N);
4035 }
4036 
4037 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4038   // If this is a fixed sized alloca in the entry block of the function,
4039   // allocate it statically on the stack.
4040   if (FuncInfo.StaticAllocaMap.count(&I))
4041     return;   // getValue will auto-populate this.
4042 
4043   SDLoc dl = getCurSDLoc();
4044   Type *Ty = I.getAllocatedType();
4045   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4046   auto &DL = DAG.getDataLayout();
4047   TypeSize TySize = DL.getTypeAllocSize(Ty);
4048   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4049 
4050   SDValue AllocSize = getValue(I.getArraySize());
4051 
4052   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4053   if (AllocSize.getValueType() != IntPtr)
4054     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4055 
4056   if (TySize.isScalable())
4057     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4058                             DAG.getVScale(dl, IntPtr,
4059                                           APInt(IntPtr.getScalarSizeInBits(),
4060                                                 TySize.getKnownMinValue())));
4061   else
4062     AllocSize =
4063         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4064                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4065 
4066   // Handle alignment.  If the requested alignment is less than or equal to
4067   // the stack alignment, ignore it.  If the size is greater than or equal to
4068   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4069   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4070   if (*Alignment <= StackAlign)
4071     Alignment = std::nullopt;
4072 
4073   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4074   // Round the size of the allocation up to the stack alignment size
4075   // by add SA-1 to the size. This doesn't overflow because we're computing
4076   // an address inside an alloca.
4077   SDNodeFlags Flags;
4078   Flags.setNoUnsignedWrap(true);
4079   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4080                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4081 
4082   // Mask out the low bits for alignment purposes.
4083   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4084                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4085 
4086   SDValue Ops[] = {
4087       getRoot(), AllocSize,
4088       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4089   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4090   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4091   setValue(&I, DSA);
4092   DAG.setRoot(DSA.getValue(1));
4093 
4094   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4095 }
4096 
4097 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4098   if (I.isAtomic())
4099     return visitAtomicLoad(I);
4100 
4101   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4102   const Value *SV = I.getOperand(0);
4103   if (TLI.supportSwiftError()) {
4104     // Swifterror values can come from either a function parameter with
4105     // swifterror attribute or an alloca with swifterror attribute.
4106     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4107       if (Arg->hasSwiftErrorAttr())
4108         return visitLoadFromSwiftError(I);
4109     }
4110 
4111     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4112       if (Alloca->isSwiftError())
4113         return visitLoadFromSwiftError(I);
4114     }
4115   }
4116 
4117   SDValue Ptr = getValue(SV);
4118 
4119   Type *Ty = I.getType();
4120   SmallVector<EVT, 4> ValueVTs, MemVTs;
4121   SmallVector<uint64_t, 4> Offsets;
4122   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4123   unsigned NumValues = ValueVTs.size();
4124   if (NumValues == 0)
4125     return;
4126 
4127   Align Alignment = I.getAlign();
4128   AAMDNodes AAInfo = I.getAAMetadata();
4129   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4130   bool isVolatile = I.isVolatile();
4131   MachineMemOperand::Flags MMOFlags =
4132       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4133 
4134   SDValue Root;
4135   bool ConstantMemory = false;
4136   if (isVolatile)
4137     // Serialize volatile loads with other side effects.
4138     Root = getRoot();
4139   else if (NumValues > MaxParallelChains)
4140     Root = getMemoryRoot();
4141   else if (AA &&
4142            AA->pointsToConstantMemory(MemoryLocation(
4143                SV,
4144                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4145                AAInfo))) {
4146     // Do not serialize (non-volatile) loads of constant memory with anything.
4147     Root = DAG.getEntryNode();
4148     ConstantMemory = true;
4149     MMOFlags |= MachineMemOperand::MOInvariant;
4150   } else {
4151     // Do not serialize non-volatile loads against each other.
4152     Root = DAG.getRoot();
4153   }
4154 
4155   SDLoc dl = getCurSDLoc();
4156 
4157   if (isVolatile)
4158     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4159 
4160   // An aggregate load cannot wrap around the address space, so offsets to its
4161   // parts don't wrap either.
4162   SDNodeFlags Flags;
4163   Flags.setNoUnsignedWrap(true);
4164 
4165   SmallVector<SDValue, 4> Values(NumValues);
4166   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4167   EVT PtrVT = Ptr.getValueType();
4168 
4169   unsigned ChainI = 0;
4170   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4171     // Serializing loads here may result in excessive register pressure, and
4172     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4173     // could recover a bit by hoisting nodes upward in the chain by recognizing
4174     // they are side-effect free or do not alias. The optimizer should really
4175     // avoid this case by converting large object/array copies to llvm.memcpy
4176     // (MaxParallelChains should always remain as failsafe).
4177     if (ChainI == MaxParallelChains) {
4178       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4179       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4180                                   ArrayRef(Chains.data(), ChainI));
4181       Root = Chain;
4182       ChainI = 0;
4183     }
4184     SDValue A = DAG.getNode(ISD::ADD, dl,
4185                             PtrVT, Ptr,
4186                             DAG.getConstant(Offsets[i], dl, PtrVT),
4187                             Flags);
4188 
4189     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4190                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4191                             MMOFlags, AAInfo, Ranges);
4192     Chains[ChainI] = L.getValue(1);
4193 
4194     if (MemVTs[i] != ValueVTs[i])
4195       L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4196 
4197     Values[i] = L;
4198   }
4199 
4200   if (!ConstantMemory) {
4201     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4202                                 ArrayRef(Chains.data(), ChainI));
4203     if (isVolatile)
4204       DAG.setRoot(Chain);
4205     else
4206       PendingLoads.push_back(Chain);
4207   }
4208 
4209   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4210                            DAG.getVTList(ValueVTs), Values));
4211 }
4212 
4213 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4214   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4215          "call visitStoreToSwiftError when backend supports swifterror");
4216 
4217   SmallVector<EVT, 4> ValueVTs;
4218   SmallVector<uint64_t, 4> Offsets;
4219   const Value *SrcV = I.getOperand(0);
4220   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4221                   SrcV->getType(), ValueVTs, &Offsets);
4222   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4223          "expect a single EVT for swifterror");
4224 
4225   SDValue Src = getValue(SrcV);
4226   // Create a virtual register, then update the virtual register.
4227   Register VReg =
4228       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4229   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4230   // Chain can be getRoot or getControlRoot.
4231   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4232                                       SDValue(Src.getNode(), Src.getResNo()));
4233   DAG.setRoot(CopyNode);
4234 }
4235 
4236 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4237   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4238          "call visitLoadFromSwiftError when backend supports swifterror");
4239 
4240   assert(!I.isVolatile() &&
4241          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4242          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4243          "Support volatile, non temporal, invariant for load_from_swift_error");
4244 
4245   const Value *SV = I.getOperand(0);
4246   Type *Ty = I.getType();
4247   assert(
4248       (!AA ||
4249        !AA->pointsToConstantMemory(MemoryLocation(
4250            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4251            I.getAAMetadata()))) &&
4252       "load_from_swift_error should not be constant memory");
4253 
4254   SmallVector<EVT, 4> ValueVTs;
4255   SmallVector<uint64_t, 4> Offsets;
4256   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4257                   ValueVTs, &Offsets);
4258   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4259          "expect a single EVT for swifterror");
4260 
4261   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4262   SDValue L = DAG.getCopyFromReg(
4263       getRoot(), getCurSDLoc(),
4264       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4265 
4266   setValue(&I, L);
4267 }
4268 
4269 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4270   if (I.isAtomic())
4271     return visitAtomicStore(I);
4272 
4273   const Value *SrcV = I.getOperand(0);
4274   const Value *PtrV = I.getOperand(1);
4275 
4276   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4277   if (TLI.supportSwiftError()) {
4278     // Swifterror values can come from either a function parameter with
4279     // swifterror attribute or an alloca with swifterror attribute.
4280     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4281       if (Arg->hasSwiftErrorAttr())
4282         return visitStoreToSwiftError(I);
4283     }
4284 
4285     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4286       if (Alloca->isSwiftError())
4287         return visitStoreToSwiftError(I);
4288     }
4289   }
4290 
4291   SmallVector<EVT, 4> ValueVTs, MemVTs;
4292   SmallVector<uint64_t, 4> Offsets;
4293   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4294                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4295   unsigned NumValues = ValueVTs.size();
4296   if (NumValues == 0)
4297     return;
4298 
4299   // Get the lowered operands. Note that we do this after
4300   // checking if NumResults is zero, because with zero results
4301   // the operands won't have values in the map.
4302   SDValue Src = getValue(SrcV);
4303   SDValue Ptr = getValue(PtrV);
4304 
4305   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4306   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4307   SDLoc dl = getCurSDLoc();
4308   Align Alignment = I.getAlign();
4309   AAMDNodes AAInfo = I.getAAMetadata();
4310 
4311   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4312 
4313   // An aggregate load cannot wrap around the address space, so offsets to its
4314   // parts don't wrap either.
4315   SDNodeFlags Flags;
4316   Flags.setNoUnsignedWrap(true);
4317 
4318   unsigned ChainI = 0;
4319   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4320     // See visitLoad comments.
4321     if (ChainI == MaxParallelChains) {
4322       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4323                                   ArrayRef(Chains.data(), ChainI));
4324       Root = Chain;
4325       ChainI = 0;
4326     }
4327     SDValue Add =
4328         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4329     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4330     if (MemVTs[i] != ValueVTs[i])
4331       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4332     SDValue St =
4333         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4334                      Alignment, MMOFlags, AAInfo);
4335     Chains[ChainI] = St;
4336   }
4337 
4338   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4339                                   ArrayRef(Chains.data(), ChainI));
4340   setValue(&I, StoreNode);
4341   DAG.setRoot(StoreNode);
4342 }
4343 
4344 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4345                                            bool IsCompressing) {
4346   SDLoc sdl = getCurSDLoc();
4347 
4348   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4349                                MaybeAlign &Alignment) {
4350     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4351     Src0 = I.getArgOperand(0);
4352     Ptr = I.getArgOperand(1);
4353     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4354     Mask = I.getArgOperand(3);
4355   };
4356   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4357                                     MaybeAlign &Alignment) {
4358     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4359     Src0 = I.getArgOperand(0);
4360     Ptr = I.getArgOperand(1);
4361     Mask = I.getArgOperand(2);
4362     Alignment = std::nullopt;
4363   };
4364 
4365   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4366   MaybeAlign Alignment;
4367   if (IsCompressing)
4368     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4369   else
4370     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4371 
4372   SDValue Ptr = getValue(PtrOperand);
4373   SDValue Src0 = getValue(Src0Operand);
4374   SDValue Mask = getValue(MaskOperand);
4375   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4376 
4377   EVT VT = Src0.getValueType();
4378   if (!Alignment)
4379     Alignment = DAG.getEVTAlign(VT);
4380 
4381   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4382       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4383       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4384   SDValue StoreNode =
4385       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4386                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4387   DAG.setRoot(StoreNode);
4388   setValue(&I, StoreNode);
4389 }
4390 
4391 // Get a uniform base for the Gather/Scatter intrinsic.
4392 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4393 // We try to represent it as a base pointer + vector of indices.
4394 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4395 // The first operand of the GEP may be a single pointer or a vector of pointers
4396 // Example:
4397 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4398 //  or
4399 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4400 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4401 //
4402 // When the first GEP operand is a single pointer - it is the uniform base we
4403 // are looking for. If first operand of the GEP is a splat vector - we
4404 // extract the splat value and use it as a uniform base.
4405 // In all other cases the function returns 'false'.
4406 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4407                            ISD::MemIndexType &IndexType, SDValue &Scale,
4408                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4409                            uint64_t ElemSize) {
4410   SelectionDAG& DAG = SDB->DAG;
4411   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4412   const DataLayout &DL = DAG.getDataLayout();
4413 
4414   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4415 
4416   // Handle splat constant pointer.
4417   if (auto *C = dyn_cast<Constant>(Ptr)) {
4418     C = C->getSplatValue();
4419     if (!C)
4420       return false;
4421 
4422     Base = SDB->getValue(C);
4423 
4424     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4425     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4426     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4427     IndexType = ISD::SIGNED_SCALED;
4428     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4429     return true;
4430   }
4431 
4432   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4433   if (!GEP || GEP->getParent() != CurBB)
4434     return false;
4435 
4436   if (GEP->getNumOperands() != 2)
4437     return false;
4438 
4439   const Value *BasePtr = GEP->getPointerOperand();
4440   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4441 
4442   // Make sure the base is scalar and the index is a vector.
4443   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4444     return false;
4445 
4446   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4447 
4448   // Target may not support the required addressing mode.
4449   if (ScaleVal != 1 &&
4450       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4451     return false;
4452 
4453   Base = SDB->getValue(BasePtr);
4454   Index = SDB->getValue(IndexVal);
4455   IndexType = ISD::SIGNED_SCALED;
4456 
4457   Scale =
4458       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4459   return true;
4460 }
4461 
4462 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4463   SDLoc sdl = getCurSDLoc();
4464 
4465   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4466   const Value *Ptr = I.getArgOperand(1);
4467   SDValue Src0 = getValue(I.getArgOperand(0));
4468   SDValue Mask = getValue(I.getArgOperand(3));
4469   EVT VT = Src0.getValueType();
4470   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4471                         ->getMaybeAlignValue()
4472                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4473   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4474 
4475   SDValue Base;
4476   SDValue Index;
4477   ISD::MemIndexType IndexType;
4478   SDValue Scale;
4479   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4480                                     I.getParent(), VT.getScalarStoreSize());
4481 
4482   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4483   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4484       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4485       // TODO: Make MachineMemOperands aware of scalable
4486       // vectors.
4487       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4488   if (!UniformBase) {
4489     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4490     Index = getValue(Ptr);
4491     IndexType = ISD::SIGNED_SCALED;
4492     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4493   }
4494 
4495   EVT IdxVT = Index.getValueType();
4496   EVT EltTy = IdxVT.getVectorElementType();
4497   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4498     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4499     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4500   }
4501 
4502   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4503   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4504                                          Ops, MMO, IndexType, false);
4505   DAG.setRoot(Scatter);
4506   setValue(&I, Scatter);
4507 }
4508 
4509 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4510   SDLoc sdl = getCurSDLoc();
4511 
4512   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4513                               MaybeAlign &Alignment) {
4514     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4515     Ptr = I.getArgOperand(0);
4516     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4517     Mask = I.getArgOperand(2);
4518     Src0 = I.getArgOperand(3);
4519   };
4520   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4521                                  MaybeAlign &Alignment) {
4522     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4523     Ptr = I.getArgOperand(0);
4524     Alignment = std::nullopt;
4525     Mask = I.getArgOperand(1);
4526     Src0 = I.getArgOperand(2);
4527   };
4528 
4529   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4530   MaybeAlign Alignment;
4531   if (IsExpanding)
4532     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4533   else
4534     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4535 
4536   SDValue Ptr = getValue(PtrOperand);
4537   SDValue Src0 = getValue(Src0Operand);
4538   SDValue Mask = getValue(MaskOperand);
4539   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4540 
4541   EVT VT = Src0.getValueType();
4542   if (!Alignment)
4543     Alignment = DAG.getEVTAlign(VT);
4544 
4545   AAMDNodes AAInfo = I.getAAMetadata();
4546   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4547 
4548   // Do not serialize masked loads of constant memory with anything.
4549   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4550   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4551 
4552   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4553 
4554   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4555       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4556       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4557 
4558   SDValue Load =
4559       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4560                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4561   if (AddToChain)
4562     PendingLoads.push_back(Load.getValue(1));
4563   setValue(&I, Load);
4564 }
4565 
4566 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4567   SDLoc sdl = getCurSDLoc();
4568 
4569   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4570   const Value *Ptr = I.getArgOperand(0);
4571   SDValue Src0 = getValue(I.getArgOperand(3));
4572   SDValue Mask = getValue(I.getArgOperand(2));
4573 
4574   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4575   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4576   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4577                         ->getMaybeAlignValue()
4578                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4579 
4580   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4581 
4582   SDValue Root = DAG.getRoot();
4583   SDValue Base;
4584   SDValue Index;
4585   ISD::MemIndexType IndexType;
4586   SDValue Scale;
4587   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4588                                     I.getParent(), VT.getScalarStoreSize());
4589   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4590   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4591       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4592       // TODO: Make MachineMemOperands aware of scalable
4593       // vectors.
4594       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4595 
4596   if (!UniformBase) {
4597     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4598     Index = getValue(Ptr);
4599     IndexType = ISD::SIGNED_SCALED;
4600     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4601   }
4602 
4603   EVT IdxVT = Index.getValueType();
4604   EVT EltTy = IdxVT.getVectorElementType();
4605   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4606     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4607     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4608   }
4609 
4610   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4611   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4612                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4613 
4614   PendingLoads.push_back(Gather.getValue(1));
4615   setValue(&I, Gather);
4616 }
4617 
4618 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4619   SDLoc dl = getCurSDLoc();
4620   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4621   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4622   SyncScope::ID SSID = I.getSyncScopeID();
4623 
4624   SDValue InChain = getRoot();
4625 
4626   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4627   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4628 
4629   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4630   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4631 
4632   MachineFunction &MF = DAG.getMachineFunction();
4633   MachineMemOperand *MMO = MF.getMachineMemOperand(
4634       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4635       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4636       FailureOrdering);
4637 
4638   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4639                                    dl, MemVT, VTs, InChain,
4640                                    getValue(I.getPointerOperand()),
4641                                    getValue(I.getCompareOperand()),
4642                                    getValue(I.getNewValOperand()), MMO);
4643 
4644   SDValue OutChain = L.getValue(2);
4645 
4646   setValue(&I, L);
4647   DAG.setRoot(OutChain);
4648 }
4649 
4650 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4651   SDLoc dl = getCurSDLoc();
4652   ISD::NodeType NT;
4653   switch (I.getOperation()) {
4654   default: llvm_unreachable("Unknown atomicrmw operation");
4655   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4656   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4657   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4658   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4659   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4660   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4661   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4662   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4663   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4664   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4665   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4666   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4667   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4668   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4669   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4670   case AtomicRMWInst::UIncWrap:
4671     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4672     break;
4673   case AtomicRMWInst::UDecWrap:
4674     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4675     break;
4676   }
4677   AtomicOrdering Ordering = I.getOrdering();
4678   SyncScope::ID SSID = I.getSyncScopeID();
4679 
4680   SDValue InChain = getRoot();
4681 
4682   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4683   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4684   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4685 
4686   MachineFunction &MF = DAG.getMachineFunction();
4687   MachineMemOperand *MMO = MF.getMachineMemOperand(
4688       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4689       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4690 
4691   SDValue L =
4692     DAG.getAtomic(NT, dl, MemVT, InChain,
4693                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4694                   MMO);
4695 
4696   SDValue OutChain = L.getValue(1);
4697 
4698   setValue(&I, L);
4699   DAG.setRoot(OutChain);
4700 }
4701 
4702 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4703   SDLoc dl = getCurSDLoc();
4704   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4705   SDValue Ops[3];
4706   Ops[0] = getRoot();
4707   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4708                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4709   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4710                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4711   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4712   setValue(&I, N);
4713   DAG.setRoot(N);
4714 }
4715 
4716 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4717   SDLoc dl = getCurSDLoc();
4718   AtomicOrdering Order = I.getOrdering();
4719   SyncScope::ID SSID = I.getSyncScopeID();
4720 
4721   SDValue InChain = getRoot();
4722 
4723   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4724   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4725   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4726 
4727   if (!TLI.supportsUnalignedAtomics() &&
4728       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4729     report_fatal_error("Cannot generate unaligned atomic load");
4730 
4731   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4732 
4733   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4734       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4735       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4736 
4737   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4738 
4739   SDValue Ptr = getValue(I.getPointerOperand());
4740 
4741   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4742     // TODO: Once this is better exercised by tests, it should be merged with
4743     // the normal path for loads to prevent future divergence.
4744     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4745     if (MemVT != VT)
4746       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4747 
4748     setValue(&I, L);
4749     SDValue OutChain = L.getValue(1);
4750     if (!I.isUnordered())
4751       DAG.setRoot(OutChain);
4752     else
4753       PendingLoads.push_back(OutChain);
4754     return;
4755   }
4756 
4757   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4758                             Ptr, MMO);
4759 
4760   SDValue OutChain = L.getValue(1);
4761   if (MemVT != VT)
4762     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4763 
4764   setValue(&I, L);
4765   DAG.setRoot(OutChain);
4766 }
4767 
4768 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4769   SDLoc dl = getCurSDLoc();
4770 
4771   AtomicOrdering Ordering = I.getOrdering();
4772   SyncScope::ID SSID = I.getSyncScopeID();
4773 
4774   SDValue InChain = getRoot();
4775 
4776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4777   EVT MemVT =
4778       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4779 
4780   if (!TLI.supportsUnalignedAtomics() &&
4781       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4782     report_fatal_error("Cannot generate unaligned atomic store");
4783 
4784   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4785 
4786   MachineFunction &MF = DAG.getMachineFunction();
4787   MachineMemOperand *MMO = MF.getMachineMemOperand(
4788       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4789       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4790 
4791   SDValue Val = getValue(I.getValueOperand());
4792   if (Val.getValueType() != MemVT)
4793     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4794   SDValue Ptr = getValue(I.getPointerOperand());
4795 
4796   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4797     // TODO: Once this is better exercised by tests, it should be merged with
4798     // the normal path for stores to prevent future divergence.
4799     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4800     setValue(&I, S);
4801     DAG.setRoot(S);
4802     return;
4803   }
4804   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4805                                    Ptr, Val, MMO);
4806 
4807   setValue(&I, OutChain);
4808   DAG.setRoot(OutChain);
4809 }
4810 
4811 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4812 /// node.
4813 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4814                                                unsigned Intrinsic) {
4815   // Ignore the callsite's attributes. A specific call site may be marked with
4816   // readnone, but the lowering code will expect the chain based on the
4817   // definition.
4818   const Function *F = I.getCalledFunction();
4819   bool HasChain = !F->doesNotAccessMemory();
4820   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4821 
4822   // Build the operand list.
4823   SmallVector<SDValue, 8> Ops;
4824   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4825     if (OnlyLoad) {
4826       // We don't need to serialize loads against other loads.
4827       Ops.push_back(DAG.getRoot());
4828     } else {
4829       Ops.push_back(getRoot());
4830     }
4831   }
4832 
4833   // Info is set by getTgtMemIntrinsic
4834   TargetLowering::IntrinsicInfo Info;
4835   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4836   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4837                                                DAG.getMachineFunction(),
4838                                                Intrinsic);
4839 
4840   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4841   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4842       Info.opc == ISD::INTRINSIC_W_CHAIN)
4843     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4844                                         TLI.getPointerTy(DAG.getDataLayout())));
4845 
4846   // Add all operands of the call to the operand list.
4847   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4848     const Value *Arg = I.getArgOperand(i);
4849     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4850       Ops.push_back(getValue(Arg));
4851       continue;
4852     }
4853 
4854     // Use TargetConstant instead of a regular constant for immarg.
4855     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4856     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4857       assert(CI->getBitWidth() <= 64 &&
4858              "large intrinsic immediates not handled");
4859       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4860     } else {
4861       Ops.push_back(
4862           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4863     }
4864   }
4865 
4866   SmallVector<EVT, 4> ValueVTs;
4867   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4868 
4869   if (HasChain)
4870     ValueVTs.push_back(MVT::Other);
4871 
4872   SDVTList VTs = DAG.getVTList(ValueVTs);
4873 
4874   // Propagate fast-math-flags from IR to node(s).
4875   SDNodeFlags Flags;
4876   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4877     Flags.copyFMF(*FPMO);
4878   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4879 
4880   // Create the node.
4881   SDValue Result;
4882   // In some cases, custom collection of operands from CallInst I may be needed.
4883   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4884   if (IsTgtIntrinsic) {
4885     // This is target intrinsic that touches memory
4886     //
4887     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4888     //       didn't yield anything useful.
4889     MachinePointerInfo MPI;
4890     if (Info.ptrVal)
4891       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4892     else if (Info.fallbackAddressSpace)
4893       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4894     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4895                                      Info.memVT, MPI, Info.align, Info.flags,
4896                                      Info.size, I.getAAMetadata());
4897   } else if (!HasChain) {
4898     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4899   } else if (!I.getType()->isVoidTy()) {
4900     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4901   } else {
4902     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4903   }
4904 
4905   if (HasChain) {
4906     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4907     if (OnlyLoad)
4908       PendingLoads.push_back(Chain);
4909     else
4910       DAG.setRoot(Chain);
4911   }
4912 
4913   if (!I.getType()->isVoidTy()) {
4914     if (!isa<VectorType>(I.getType()))
4915       Result = lowerRangeToAssertZExt(DAG, I, Result);
4916 
4917     MaybeAlign Alignment = I.getRetAlign();
4918 
4919     // Insert `assertalign` node if there's an alignment.
4920     if (InsertAssertAlign && Alignment) {
4921       Result =
4922           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4923     }
4924 
4925     setValue(&I, Result);
4926   }
4927 }
4928 
4929 /// GetSignificand - Get the significand and build it into a floating-point
4930 /// number with exponent of 1:
4931 ///
4932 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4933 ///
4934 /// where Op is the hexadecimal representation of floating point value.
4935 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4936   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4937                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4938   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4939                            DAG.getConstant(0x3f800000, dl, MVT::i32));
4940   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4941 }
4942 
4943 /// GetExponent - Get the exponent:
4944 ///
4945 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4946 ///
4947 /// where Op is the hexadecimal representation of floating point value.
4948 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4949                            const TargetLowering &TLI, const SDLoc &dl) {
4950   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4951                            DAG.getConstant(0x7f800000, dl, MVT::i32));
4952   SDValue t1 = DAG.getNode(
4953       ISD::SRL, dl, MVT::i32, t0,
4954       DAG.getConstant(23, dl,
4955                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
4956   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4957                            DAG.getConstant(127, dl, MVT::i32));
4958   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4959 }
4960 
4961 /// getF32Constant - Get 32-bit floating point constant.
4962 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4963                               const SDLoc &dl) {
4964   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4965                            MVT::f32);
4966 }
4967 
4968 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4969                                        SelectionDAG &DAG) {
4970   // TODO: What fast-math-flags should be set on the floating-point nodes?
4971 
4972   //   IntegerPartOfX = ((int32_t)(t0);
4973   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4974 
4975   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
4976   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4977   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4978 
4979   //   IntegerPartOfX <<= 23;
4980   IntegerPartOfX =
4981       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4982                   DAG.getConstant(23, dl,
4983                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
4984                                       MVT::i32, DAG.getDataLayout())));
4985 
4986   SDValue TwoToFractionalPartOfX;
4987   if (LimitFloatPrecision <= 6) {
4988     // For floating-point precision of 6:
4989     //
4990     //   TwoToFractionalPartOfX =
4991     //     0.997535578f +
4992     //       (0.735607626f + 0.252464424f * x) * x;
4993     //
4994     // error 0.0144103317, which is 6 bits
4995     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4996                              getF32Constant(DAG, 0x3e814304, dl));
4997     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4998                              getF32Constant(DAG, 0x3f3c50c8, dl));
4999     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5000     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5001                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5002   } else if (LimitFloatPrecision <= 12) {
5003     // For floating-point precision of 12:
5004     //
5005     //   TwoToFractionalPartOfX =
5006     //     0.999892986f +
5007     //       (0.696457318f +
5008     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5009     //
5010     // error 0.000107046256, which is 13 to 14 bits
5011     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5012                              getF32Constant(DAG, 0x3da235e3, dl));
5013     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5014                              getF32Constant(DAG, 0x3e65b8f3, dl));
5015     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5016     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5017                              getF32Constant(DAG, 0x3f324b07, dl));
5018     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5019     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5020                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5021   } else { // LimitFloatPrecision <= 18
5022     // For floating-point precision of 18:
5023     //
5024     //   TwoToFractionalPartOfX =
5025     //     0.999999982f +
5026     //       (0.693148872f +
5027     //         (0.240227044f +
5028     //           (0.554906021e-1f +
5029     //             (0.961591928e-2f +
5030     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5031     // error 2.47208000*10^(-7), which is better than 18 bits
5032     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5033                              getF32Constant(DAG, 0x3924b03e, dl));
5034     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5035                              getF32Constant(DAG, 0x3ab24b87, dl));
5036     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5037     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5038                              getF32Constant(DAG, 0x3c1d8c17, dl));
5039     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5040     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5041                              getF32Constant(DAG, 0x3d634a1d, dl));
5042     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5043     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5044                              getF32Constant(DAG, 0x3e75fe14, dl));
5045     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5046     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5047                               getF32Constant(DAG, 0x3f317234, dl));
5048     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5049     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5050                                          getF32Constant(DAG, 0x3f800000, dl));
5051   }
5052 
5053   // Add the exponent into the result in integer domain.
5054   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5055   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5056                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5057 }
5058 
5059 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5060 /// limited-precision mode.
5061 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5062                          const TargetLowering &TLI, SDNodeFlags Flags) {
5063   if (Op.getValueType() == MVT::f32 &&
5064       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5065 
5066     // Put the exponent in the right bit position for later addition to the
5067     // final result:
5068     //
5069     // t0 = Op * log2(e)
5070 
5071     // TODO: What fast-math-flags should be set here?
5072     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5073                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5074     return getLimitedPrecisionExp2(t0, dl, DAG);
5075   }
5076 
5077   // No special expansion.
5078   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5079 }
5080 
5081 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5082 /// limited-precision mode.
5083 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5084                          const TargetLowering &TLI, SDNodeFlags Flags) {
5085   // TODO: What fast-math-flags should be set on the floating-point nodes?
5086 
5087   if (Op.getValueType() == MVT::f32 &&
5088       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5089     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5090 
5091     // Scale the exponent by log(2).
5092     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5093     SDValue LogOfExponent =
5094         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5095                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5096 
5097     // Get the significand and build it into a floating-point number with
5098     // exponent of 1.
5099     SDValue X = GetSignificand(DAG, Op1, dl);
5100 
5101     SDValue LogOfMantissa;
5102     if (LimitFloatPrecision <= 6) {
5103       // For floating-point precision of 6:
5104       //
5105       //   LogofMantissa =
5106       //     -1.1609546f +
5107       //       (1.4034025f - 0.23903021f * x) * x;
5108       //
5109       // error 0.0034276066, which is better than 8 bits
5110       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5111                                getF32Constant(DAG, 0xbe74c456, dl));
5112       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5113                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5114       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5115       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5116                                   getF32Constant(DAG, 0x3f949a29, dl));
5117     } else if (LimitFloatPrecision <= 12) {
5118       // For floating-point precision of 12:
5119       //
5120       //   LogOfMantissa =
5121       //     -1.7417939f +
5122       //       (2.8212026f +
5123       //         (-1.4699568f +
5124       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5125       //
5126       // error 0.000061011436, which is 14 bits
5127       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5128                                getF32Constant(DAG, 0xbd67b6d6, dl));
5129       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5130                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5131       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5132       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5133                                getF32Constant(DAG, 0x3fbc278b, dl));
5134       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5135       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5136                                getF32Constant(DAG, 0x40348e95, dl));
5137       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5138       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5139                                   getF32Constant(DAG, 0x3fdef31a, dl));
5140     } else { // LimitFloatPrecision <= 18
5141       // For floating-point precision of 18:
5142       //
5143       //   LogOfMantissa =
5144       //     -2.1072184f +
5145       //       (4.2372794f +
5146       //         (-3.7029485f +
5147       //           (2.2781945f +
5148       //             (-0.87823314f +
5149       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5150       //
5151       // error 0.0000023660568, which is better than 18 bits
5152       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5153                                getF32Constant(DAG, 0xbc91e5ac, dl));
5154       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5155                                getF32Constant(DAG, 0x3e4350aa, dl));
5156       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5157       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5158                                getF32Constant(DAG, 0x3f60d3e3, dl));
5159       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5160       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5161                                getF32Constant(DAG, 0x4011cdf0, dl));
5162       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5163       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5164                                getF32Constant(DAG, 0x406cfd1c, dl));
5165       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5166       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5167                                getF32Constant(DAG, 0x408797cb, dl));
5168       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5169       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5170                                   getF32Constant(DAG, 0x4006dcab, dl));
5171     }
5172 
5173     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5174   }
5175 
5176   // No special expansion.
5177   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5178 }
5179 
5180 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5181 /// limited-precision mode.
5182 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5183                           const TargetLowering &TLI, SDNodeFlags Flags) {
5184   // TODO: What fast-math-flags should be set on the floating-point nodes?
5185 
5186   if (Op.getValueType() == MVT::f32 &&
5187       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5188     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5189 
5190     // Get the exponent.
5191     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5192 
5193     // Get the significand and build it into a floating-point number with
5194     // exponent of 1.
5195     SDValue X = GetSignificand(DAG, Op1, dl);
5196 
5197     // Different possible minimax approximations of significand in
5198     // floating-point for various degrees of accuracy over [1,2].
5199     SDValue Log2ofMantissa;
5200     if (LimitFloatPrecision <= 6) {
5201       // For floating-point precision of 6:
5202       //
5203       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5204       //
5205       // error 0.0049451742, which is more than 7 bits
5206       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5207                                getF32Constant(DAG, 0xbeb08fe0, dl));
5208       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5209                                getF32Constant(DAG, 0x40019463, dl));
5210       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5211       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5212                                    getF32Constant(DAG, 0x3fd6633d, dl));
5213     } else if (LimitFloatPrecision <= 12) {
5214       // For floating-point precision of 12:
5215       //
5216       //   Log2ofMantissa =
5217       //     -2.51285454f +
5218       //       (4.07009056f +
5219       //         (-2.12067489f +
5220       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5221       //
5222       // error 0.0000876136000, which is better than 13 bits
5223       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5224                                getF32Constant(DAG, 0xbda7262e, dl));
5225       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5226                                getF32Constant(DAG, 0x3f25280b, dl));
5227       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5228       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5229                                getF32Constant(DAG, 0x4007b923, dl));
5230       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5231       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5232                                getF32Constant(DAG, 0x40823e2f, dl));
5233       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5234       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5235                                    getF32Constant(DAG, 0x4020d29c, dl));
5236     } else { // LimitFloatPrecision <= 18
5237       // For floating-point precision of 18:
5238       //
5239       //   Log2ofMantissa =
5240       //     -3.0400495f +
5241       //       (6.1129976f +
5242       //         (-5.3420409f +
5243       //           (3.2865683f +
5244       //             (-1.2669343f +
5245       //               (0.27515199f -
5246       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5247       //
5248       // error 0.0000018516, which is better than 18 bits
5249       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5250                                getF32Constant(DAG, 0xbcd2769e, dl));
5251       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5252                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5253       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5254       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5255                                getF32Constant(DAG, 0x3fa22ae7, dl));
5256       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5257       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5258                                getF32Constant(DAG, 0x40525723, dl));
5259       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5260       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5261                                getF32Constant(DAG, 0x40aaf200, dl));
5262       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5263       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5264                                getF32Constant(DAG, 0x40c39dad, dl));
5265       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5266       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5267                                    getF32Constant(DAG, 0x4042902c, dl));
5268     }
5269 
5270     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5271   }
5272 
5273   // No special expansion.
5274   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5275 }
5276 
5277 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5278 /// limited-precision mode.
5279 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5280                            const TargetLowering &TLI, SDNodeFlags Flags) {
5281   // TODO: What fast-math-flags should be set on the floating-point nodes?
5282 
5283   if (Op.getValueType() == MVT::f32 &&
5284       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5285     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5286 
5287     // Scale the exponent by log10(2) [0.30102999f].
5288     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5289     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5290                                         getF32Constant(DAG, 0x3e9a209a, dl));
5291 
5292     // Get the significand and build it into a floating-point number with
5293     // exponent of 1.
5294     SDValue X = GetSignificand(DAG, Op1, dl);
5295 
5296     SDValue Log10ofMantissa;
5297     if (LimitFloatPrecision <= 6) {
5298       // For floating-point precision of 6:
5299       //
5300       //   Log10ofMantissa =
5301       //     -0.50419619f +
5302       //       (0.60948995f - 0.10380950f * x) * x;
5303       //
5304       // error 0.0014886165, which is 6 bits
5305       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5306                                getF32Constant(DAG, 0xbdd49a13, dl));
5307       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5308                                getF32Constant(DAG, 0x3f1c0789, dl));
5309       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5310       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5311                                     getF32Constant(DAG, 0x3f011300, dl));
5312     } else if (LimitFloatPrecision <= 12) {
5313       // For floating-point precision of 12:
5314       //
5315       //   Log10ofMantissa =
5316       //     -0.64831180f +
5317       //       (0.91751397f +
5318       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5319       //
5320       // error 0.00019228036, which is better than 12 bits
5321       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5322                                getF32Constant(DAG, 0x3d431f31, dl));
5323       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5324                                getF32Constant(DAG, 0x3ea21fb2, dl));
5325       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5326       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5327                                getF32Constant(DAG, 0x3f6ae232, dl));
5328       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5329       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5330                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5331     } else { // LimitFloatPrecision <= 18
5332       // For floating-point precision of 18:
5333       //
5334       //   Log10ofMantissa =
5335       //     -0.84299375f +
5336       //       (1.5327582f +
5337       //         (-1.0688956f +
5338       //           (0.49102474f +
5339       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5340       //
5341       // error 0.0000037995730, which is better than 18 bits
5342       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5343                                getF32Constant(DAG, 0x3c5d51ce, dl));
5344       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5345                                getF32Constant(DAG, 0x3e00685a, dl));
5346       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5347       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5348                                getF32Constant(DAG, 0x3efb6798, dl));
5349       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5350       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5351                                getF32Constant(DAG, 0x3f88d192, dl));
5352       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5353       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5354                                getF32Constant(DAG, 0x3fc4316c, dl));
5355       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5356       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5357                                     getF32Constant(DAG, 0x3f57ce70, dl));
5358     }
5359 
5360     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5361   }
5362 
5363   // No special expansion.
5364   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5365 }
5366 
5367 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5368 /// limited-precision mode.
5369 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5370                           const TargetLowering &TLI, SDNodeFlags Flags) {
5371   if (Op.getValueType() == MVT::f32 &&
5372       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5373     return getLimitedPrecisionExp2(Op, dl, DAG);
5374 
5375   // No special expansion.
5376   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5377 }
5378 
5379 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5380 /// limited-precision mode with x == 10.0f.
5381 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5382                          SelectionDAG &DAG, const TargetLowering &TLI,
5383                          SDNodeFlags Flags) {
5384   bool IsExp10 = false;
5385   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5386       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5387     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5388       APFloat Ten(10.0f);
5389       IsExp10 = LHSC->isExactlyValue(Ten);
5390     }
5391   }
5392 
5393   // TODO: What fast-math-flags should be set on the FMUL node?
5394   if (IsExp10) {
5395     // Put the exponent in the right bit position for later addition to the
5396     // final result:
5397     //
5398     //   #define LOG2OF10 3.3219281f
5399     //   t0 = Op * LOG2OF10;
5400     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5401                              getF32Constant(DAG, 0x40549a78, dl));
5402     return getLimitedPrecisionExp2(t0, dl, DAG);
5403   }
5404 
5405   // No special expansion.
5406   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5407 }
5408 
5409 /// ExpandPowI - Expand a llvm.powi intrinsic.
5410 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5411                           SelectionDAG &DAG) {
5412   // If RHS is a constant, we can expand this out to a multiplication tree if
5413   // it's beneficial on the target, otherwise we end up lowering to a call to
5414   // __powidf2 (for example).
5415   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5416     unsigned Val = RHSC->getSExtValue();
5417 
5418     // powi(x, 0) -> 1.0
5419     if (Val == 0)
5420       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5421 
5422     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5423             Val, DAG.shouldOptForSize())) {
5424       // Get the exponent as a positive value.
5425       if ((int)Val < 0)
5426         Val = -Val;
5427       // We use the simple binary decomposition method to generate the multiply
5428       // sequence.  There are more optimal ways to do this (for example,
5429       // powi(x,15) generates one more multiply than it should), but this has
5430       // the benefit of being both really simple and much better than a libcall.
5431       SDValue Res; // Logically starts equal to 1.0
5432       SDValue CurSquare = LHS;
5433       // TODO: Intrinsics should have fast-math-flags that propagate to these
5434       // nodes.
5435       while (Val) {
5436         if (Val & 1) {
5437           if (Res.getNode())
5438             Res =
5439                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5440           else
5441             Res = CurSquare; // 1.0*CurSquare.
5442         }
5443 
5444         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5445                                 CurSquare, CurSquare);
5446         Val >>= 1;
5447       }
5448 
5449       // If the original was negative, invert the result, producing 1/(x*x*x).
5450       if (RHSC->getSExtValue() < 0)
5451         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5452                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5453       return Res;
5454     }
5455   }
5456 
5457   // Otherwise, expand to a libcall.
5458   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5459 }
5460 
5461 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5462                             SDValue LHS, SDValue RHS, SDValue Scale,
5463                             SelectionDAG &DAG, const TargetLowering &TLI) {
5464   EVT VT = LHS.getValueType();
5465   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5466   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5467   LLVMContext &Ctx = *DAG.getContext();
5468 
5469   // If the type is legal but the operation isn't, this node might survive all
5470   // the way to operation legalization. If we end up there and we do not have
5471   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5472   // node.
5473 
5474   // Coax the legalizer into expanding the node during type legalization instead
5475   // by bumping the size by one bit. This will force it to Promote, enabling the
5476   // early expansion and avoiding the need to expand later.
5477 
5478   // We don't have to do this if Scale is 0; that can always be expanded, unless
5479   // it's a saturating signed operation. Those can experience true integer
5480   // division overflow, a case which we must avoid.
5481 
5482   // FIXME: We wouldn't have to do this (or any of the early
5483   // expansion/promotion) if it was possible to expand a libcall of an
5484   // illegal type during operation legalization. But it's not, so things
5485   // get a bit hacky.
5486   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5487   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5488       (TLI.isTypeLegal(VT) ||
5489        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5490     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5491         Opcode, VT, ScaleInt);
5492     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5493       EVT PromVT;
5494       if (VT.isScalarInteger())
5495         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5496       else if (VT.isVector()) {
5497         PromVT = VT.getVectorElementType();
5498         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5499         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5500       } else
5501         llvm_unreachable("Wrong VT for DIVFIX?");
5502       if (Signed) {
5503         LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT);
5504         RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT);
5505       } else {
5506         LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT);
5507         RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT);
5508       }
5509       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5510       // For saturating operations, we need to shift up the LHS to get the
5511       // proper saturation width, and then shift down again afterwards.
5512       if (Saturating)
5513         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5514                           DAG.getConstant(1, DL, ShiftTy));
5515       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5516       if (Saturating)
5517         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5518                           DAG.getConstant(1, DL, ShiftTy));
5519       return DAG.getZExtOrTrunc(Res, DL, VT);
5520     }
5521   }
5522 
5523   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5524 }
5525 
5526 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5527 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5528 static void
5529 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5530                      const SDValue &N) {
5531   switch (N.getOpcode()) {
5532   case ISD::CopyFromReg: {
5533     SDValue Op = N.getOperand(1);
5534     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5535                       Op.getValueType().getSizeInBits());
5536     return;
5537   }
5538   case ISD::BITCAST:
5539   case ISD::AssertZext:
5540   case ISD::AssertSext:
5541   case ISD::TRUNCATE:
5542     getUnderlyingArgRegs(Regs, N.getOperand(0));
5543     return;
5544   case ISD::BUILD_PAIR:
5545   case ISD::BUILD_VECTOR:
5546   case ISD::CONCAT_VECTORS:
5547     for (SDValue Op : N->op_values())
5548       getUnderlyingArgRegs(Regs, Op);
5549     return;
5550   default:
5551     return;
5552   }
5553 }
5554 
5555 /// If the DbgValueInst is a dbg_value of a function argument, create the
5556 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5557 /// instruction selection, they will be inserted to the entry BB.
5558 /// We don't currently support this for variadic dbg_values, as they shouldn't
5559 /// appear for function arguments or in the prologue.
5560 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5561     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5562     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5563   const Argument *Arg = dyn_cast<Argument>(V);
5564   if (!Arg)
5565     return false;
5566 
5567   MachineFunction &MF = DAG.getMachineFunction();
5568   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5569 
5570   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5571   // we've been asked to pursue.
5572   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5573                               bool Indirect) {
5574     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5575       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5576       // pointing at the VReg, which will be patched up later.
5577       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5578       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5579           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5580           /* isKill */ false, /* isDead */ false,
5581           /* isUndef */ false, /* isEarlyClobber */ false,
5582           /* SubReg */ 0, /* isDebug */ true)});
5583 
5584       auto *NewDIExpr = FragExpr;
5585       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5586       // the DIExpression.
5587       if (Indirect)
5588         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5589       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5590       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5591       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5592     } else {
5593       // Create a completely standard DBG_VALUE.
5594       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5595       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5596     }
5597   };
5598 
5599   if (Kind == FuncArgumentDbgValueKind::Value) {
5600     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5601     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5602     // the entry block.
5603     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5604     if (!IsInEntryBlock)
5605       return false;
5606 
5607     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5608     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5609     // variable that also is a param.
5610     //
5611     // Although, if we are at the top of the entry block already, we can still
5612     // emit using ArgDbgValue. This might catch some situations when the
5613     // dbg.value refers to an argument that isn't used in the entry block, so
5614     // any CopyToReg node would be optimized out and the only way to express
5615     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5616     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5617     // we should only emit as ArgDbgValue if the Variable is an argument to the
5618     // current function, and the dbg.value intrinsic is found in the entry
5619     // block.
5620     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5621         !DL->getInlinedAt();
5622     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5623     if (!IsInPrologue && !VariableIsFunctionInputArg)
5624       return false;
5625 
5626     // Here we assume that a function argument on IR level only can be used to
5627     // describe one input parameter on source level. If we for example have
5628     // source code like this
5629     //
5630     //    struct A { long x, y; };
5631     //    void foo(struct A a, long b) {
5632     //      ...
5633     //      b = a.x;
5634     //      ...
5635     //    }
5636     //
5637     // and IR like this
5638     //
5639     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5640     //  entry:
5641     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5642     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5643     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5644     //    ...
5645     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5646     //    ...
5647     //
5648     // then the last dbg.value is describing a parameter "b" using a value that
5649     // is an argument. But since we already has used %a1 to describe a parameter
5650     // we should not handle that last dbg.value here (that would result in an
5651     // incorrect hoisting of the DBG_VALUE to the function entry).
5652     // Notice that we allow one dbg.value per IR level argument, to accommodate
5653     // for the situation with fragments above.
5654     if (VariableIsFunctionInputArg) {
5655       unsigned ArgNo = Arg->getArgNo();
5656       if (ArgNo >= FuncInfo.DescribedArgs.size())
5657         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5658       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5659         return false;
5660       FuncInfo.DescribedArgs.set(ArgNo);
5661     }
5662   }
5663 
5664   bool IsIndirect = false;
5665   std::optional<MachineOperand> Op;
5666   // Some arguments' frame index is recorded during argument lowering.
5667   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5668   if (FI != std::numeric_limits<int>::max())
5669     Op = MachineOperand::CreateFI(FI);
5670 
5671   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5672   if (!Op && N.getNode()) {
5673     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5674     Register Reg;
5675     if (ArgRegsAndSizes.size() == 1)
5676       Reg = ArgRegsAndSizes.front().first;
5677 
5678     if (Reg && Reg.isVirtual()) {
5679       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5680       Register PR = RegInfo.getLiveInPhysReg(Reg);
5681       if (PR)
5682         Reg = PR;
5683     }
5684     if (Reg) {
5685       Op = MachineOperand::CreateReg(Reg, false);
5686       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5687     }
5688   }
5689 
5690   if (!Op && N.getNode()) {
5691     // Check if frame index is available.
5692     SDValue LCandidate = peekThroughBitcasts(N);
5693     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5694       if (FrameIndexSDNode *FINode =
5695           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5696         Op = MachineOperand::CreateFI(FINode->getIndex());
5697   }
5698 
5699   if (!Op) {
5700     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5701     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5702                                          SplitRegs) {
5703       unsigned Offset = 0;
5704       for (const auto &RegAndSize : SplitRegs) {
5705         // If the expression is already a fragment, the current register
5706         // offset+size might extend beyond the fragment. In this case, only
5707         // the register bits that are inside the fragment are relevant.
5708         int RegFragmentSizeInBits = RegAndSize.second;
5709         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5710           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5711           // The register is entirely outside the expression fragment,
5712           // so is irrelevant for debug info.
5713           if (Offset >= ExprFragmentSizeInBits)
5714             break;
5715           // The register is partially outside the expression fragment, only
5716           // the low bits within the fragment are relevant for debug info.
5717           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5718             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5719           }
5720         }
5721 
5722         auto FragmentExpr = DIExpression::createFragmentExpression(
5723             Expr, Offset, RegFragmentSizeInBits);
5724         Offset += RegAndSize.second;
5725         // If a valid fragment expression cannot be created, the variable's
5726         // correct value cannot be determined and so it is set as Undef.
5727         if (!FragmentExpr) {
5728           SDDbgValue *SDV = DAG.getConstantDbgValue(
5729               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5730           DAG.AddDbgValue(SDV, false);
5731           continue;
5732         }
5733         MachineInstr *NewMI =
5734             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5735                              Kind != FuncArgumentDbgValueKind::Value);
5736         FuncInfo.ArgDbgValues.push_back(NewMI);
5737       }
5738     };
5739 
5740     // Check if ValueMap has reg number.
5741     DenseMap<const Value *, Register>::const_iterator
5742       VMI = FuncInfo.ValueMap.find(V);
5743     if (VMI != FuncInfo.ValueMap.end()) {
5744       const auto &TLI = DAG.getTargetLoweringInfo();
5745       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5746                        V->getType(), std::nullopt);
5747       if (RFV.occupiesMultipleRegs()) {
5748         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5749         return true;
5750       }
5751 
5752       Op = MachineOperand::CreateReg(VMI->second, false);
5753       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5754     } else if (ArgRegsAndSizes.size() > 1) {
5755       // This was split due to the calling convention, and no virtual register
5756       // mapping exists for the value.
5757       splitMultiRegDbgValue(ArgRegsAndSizes);
5758       return true;
5759     }
5760   }
5761 
5762   if (!Op)
5763     return false;
5764 
5765   assert(Variable->isValidLocationForIntrinsic(DL) &&
5766          "Expected inlined-at fields to agree");
5767   MachineInstr *NewMI = nullptr;
5768 
5769   if (Op->isReg())
5770     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5771   else
5772     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5773                     Variable, Expr);
5774 
5775   // Otherwise, use ArgDbgValues.
5776   FuncInfo.ArgDbgValues.push_back(NewMI);
5777   return true;
5778 }
5779 
5780 /// Return the appropriate SDDbgValue based on N.
5781 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5782                                              DILocalVariable *Variable,
5783                                              DIExpression *Expr,
5784                                              const DebugLoc &dl,
5785                                              unsigned DbgSDNodeOrder) {
5786   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5787     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5788     // stack slot locations.
5789     //
5790     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5791     // debug values here after optimization:
5792     //
5793     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5794     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5795     //
5796     // Both describe the direct values of their associated variables.
5797     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5798                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5799   }
5800   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5801                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5802 }
5803 
5804 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5805   switch (Intrinsic) {
5806   case Intrinsic::smul_fix:
5807     return ISD::SMULFIX;
5808   case Intrinsic::umul_fix:
5809     return ISD::UMULFIX;
5810   case Intrinsic::smul_fix_sat:
5811     return ISD::SMULFIXSAT;
5812   case Intrinsic::umul_fix_sat:
5813     return ISD::UMULFIXSAT;
5814   case Intrinsic::sdiv_fix:
5815     return ISD::SDIVFIX;
5816   case Intrinsic::udiv_fix:
5817     return ISD::UDIVFIX;
5818   case Intrinsic::sdiv_fix_sat:
5819     return ISD::SDIVFIXSAT;
5820   case Intrinsic::udiv_fix_sat:
5821     return ISD::UDIVFIXSAT;
5822   default:
5823     llvm_unreachable("Unhandled fixed point intrinsic");
5824   }
5825 }
5826 
5827 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5828                                            const char *FunctionName) {
5829   assert(FunctionName && "FunctionName must not be nullptr");
5830   SDValue Callee = DAG.getExternalSymbol(
5831       FunctionName,
5832       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5833   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5834 }
5835 
5836 /// Given a @llvm.call.preallocated.setup, return the corresponding
5837 /// preallocated call.
5838 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5839   assert(cast<CallBase>(PreallocatedSetup)
5840                  ->getCalledFunction()
5841                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5842          "expected call_preallocated_setup Value");
5843   for (const auto *U : PreallocatedSetup->users()) {
5844     auto *UseCall = cast<CallBase>(U);
5845     const Function *Fn = UseCall->getCalledFunction();
5846     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5847       return UseCall;
5848     }
5849   }
5850   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5851 }
5852 
5853 /// Lower the call to the specified intrinsic function.
5854 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5855                                              unsigned Intrinsic) {
5856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5857   SDLoc sdl = getCurSDLoc();
5858   DebugLoc dl = getCurDebugLoc();
5859   SDValue Res;
5860 
5861   SDNodeFlags Flags;
5862   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5863     Flags.copyFMF(*FPOp);
5864 
5865   switch (Intrinsic) {
5866   default:
5867     // By default, turn this into a target intrinsic node.
5868     visitTargetIntrinsic(I, Intrinsic);
5869     return;
5870   case Intrinsic::vscale: {
5871     match(&I, m_VScale(DAG.getDataLayout()));
5872     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5873     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5874     return;
5875   }
5876   case Intrinsic::vastart:  visitVAStart(I); return;
5877   case Intrinsic::vaend:    visitVAEnd(I); return;
5878   case Intrinsic::vacopy:   visitVACopy(I); return;
5879   case Intrinsic::returnaddress:
5880     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5881                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5882                              getValue(I.getArgOperand(0))));
5883     return;
5884   case Intrinsic::addressofreturnaddress:
5885     setValue(&I,
5886              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5887                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5888     return;
5889   case Intrinsic::sponentry:
5890     setValue(&I,
5891              DAG.getNode(ISD::SPONENTRY, sdl,
5892                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5893     return;
5894   case Intrinsic::frameaddress:
5895     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5896                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5897                              getValue(I.getArgOperand(0))));
5898     return;
5899   case Intrinsic::read_volatile_register:
5900   case Intrinsic::read_register: {
5901     Value *Reg = I.getArgOperand(0);
5902     SDValue Chain = getRoot();
5903     SDValue RegName =
5904         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5905     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5906     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5907       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5908     setValue(&I, Res);
5909     DAG.setRoot(Res.getValue(1));
5910     return;
5911   }
5912   case Intrinsic::write_register: {
5913     Value *Reg = I.getArgOperand(0);
5914     Value *RegValue = I.getArgOperand(1);
5915     SDValue Chain = getRoot();
5916     SDValue RegName =
5917         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5918     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5919                             RegName, getValue(RegValue)));
5920     return;
5921   }
5922   case Intrinsic::memcpy: {
5923     const auto &MCI = cast<MemCpyInst>(I);
5924     SDValue Op1 = getValue(I.getArgOperand(0));
5925     SDValue Op2 = getValue(I.getArgOperand(1));
5926     SDValue Op3 = getValue(I.getArgOperand(2));
5927     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5928     Align DstAlign = MCI.getDestAlign().valueOrOne();
5929     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5930     Align Alignment = std::min(DstAlign, SrcAlign);
5931     bool isVol = MCI.isVolatile();
5932     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5933     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5934     // node.
5935     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5936     SDValue MC = DAG.getMemcpy(
5937         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
5938         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
5939         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5940     updateDAGForMaybeTailCall(MC);
5941     return;
5942   }
5943   case Intrinsic::memcpy_inline: {
5944     const auto &MCI = cast<MemCpyInlineInst>(I);
5945     SDValue Dst = getValue(I.getArgOperand(0));
5946     SDValue Src = getValue(I.getArgOperand(1));
5947     SDValue Size = getValue(I.getArgOperand(2));
5948     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
5949     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
5950     Align DstAlign = MCI.getDestAlign().valueOrOne();
5951     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
5952     Align Alignment = std::min(DstAlign, SrcAlign);
5953     bool isVol = MCI.isVolatile();
5954     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5955     // FIXME: Support passing different dest/src alignments to the memcpy DAG
5956     // node.
5957     SDValue MC = DAG.getMemcpy(
5958         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
5959         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
5960         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
5961     updateDAGForMaybeTailCall(MC);
5962     return;
5963   }
5964   case Intrinsic::memset: {
5965     const auto &MSI = cast<MemSetInst>(I);
5966     SDValue Op1 = getValue(I.getArgOperand(0));
5967     SDValue Op2 = getValue(I.getArgOperand(1));
5968     SDValue Op3 = getValue(I.getArgOperand(2));
5969     // @llvm.memset defines 0 and 1 to both mean no alignment.
5970     Align Alignment = MSI.getDestAlign().valueOrOne();
5971     bool isVol = MSI.isVolatile();
5972     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5973     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5974     SDValue MS = DAG.getMemset(
5975         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
5976         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
5977     updateDAGForMaybeTailCall(MS);
5978     return;
5979   }
5980   case Intrinsic::memset_inline: {
5981     const auto &MSII = cast<MemSetInlineInst>(I);
5982     SDValue Dst = getValue(I.getArgOperand(0));
5983     SDValue Value = getValue(I.getArgOperand(1));
5984     SDValue Size = getValue(I.getArgOperand(2));
5985     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
5986     // @llvm.memset defines 0 and 1 to both mean no alignment.
5987     Align DstAlign = MSII.getDestAlign().valueOrOne();
5988     bool isVol = MSII.isVolatile();
5989     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
5990     SDValue Root = isVol ? getRoot() : getMemoryRoot();
5991     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
5992                                /* AlwaysInline */ true, isTC,
5993                                MachinePointerInfo(I.getArgOperand(0)),
5994                                I.getAAMetadata());
5995     updateDAGForMaybeTailCall(MC);
5996     return;
5997   }
5998   case Intrinsic::memmove: {
5999     const auto &MMI = cast<MemMoveInst>(I);
6000     SDValue Op1 = getValue(I.getArgOperand(0));
6001     SDValue Op2 = getValue(I.getArgOperand(1));
6002     SDValue Op3 = getValue(I.getArgOperand(2));
6003     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6004     Align DstAlign = MMI.getDestAlign().valueOrOne();
6005     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6006     Align Alignment = std::min(DstAlign, SrcAlign);
6007     bool isVol = MMI.isVolatile();
6008     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6009     // FIXME: Support passing different dest/src alignments to the memmove DAG
6010     // node.
6011     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6012     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6013                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6014                                 MachinePointerInfo(I.getArgOperand(1)),
6015                                 I.getAAMetadata(), AA);
6016     updateDAGForMaybeTailCall(MM);
6017     return;
6018   }
6019   case Intrinsic::memcpy_element_unordered_atomic: {
6020     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6021     SDValue Dst = getValue(MI.getRawDest());
6022     SDValue Src = getValue(MI.getRawSource());
6023     SDValue Length = getValue(MI.getLength());
6024 
6025     Type *LengthTy = MI.getLength()->getType();
6026     unsigned ElemSz = MI.getElementSizeInBytes();
6027     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6028     SDValue MC =
6029         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6030                             isTC, MachinePointerInfo(MI.getRawDest()),
6031                             MachinePointerInfo(MI.getRawSource()));
6032     updateDAGForMaybeTailCall(MC);
6033     return;
6034   }
6035   case Intrinsic::memmove_element_unordered_atomic: {
6036     auto &MI = cast<AtomicMemMoveInst>(I);
6037     SDValue Dst = getValue(MI.getRawDest());
6038     SDValue Src = getValue(MI.getRawSource());
6039     SDValue Length = getValue(MI.getLength());
6040 
6041     Type *LengthTy = MI.getLength()->getType();
6042     unsigned ElemSz = MI.getElementSizeInBytes();
6043     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6044     SDValue MC =
6045         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6046                              isTC, MachinePointerInfo(MI.getRawDest()),
6047                              MachinePointerInfo(MI.getRawSource()));
6048     updateDAGForMaybeTailCall(MC);
6049     return;
6050   }
6051   case Intrinsic::memset_element_unordered_atomic: {
6052     auto &MI = cast<AtomicMemSetInst>(I);
6053     SDValue Dst = getValue(MI.getRawDest());
6054     SDValue Val = getValue(MI.getValue());
6055     SDValue Length = getValue(MI.getLength());
6056 
6057     Type *LengthTy = MI.getLength()->getType();
6058     unsigned ElemSz = MI.getElementSizeInBytes();
6059     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6060     SDValue MC =
6061         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6062                             isTC, MachinePointerInfo(MI.getRawDest()));
6063     updateDAGForMaybeTailCall(MC);
6064     return;
6065   }
6066   case Intrinsic::call_preallocated_setup: {
6067     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6068     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6069     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6070                               getRoot(), SrcValue);
6071     setValue(&I, Res);
6072     DAG.setRoot(Res);
6073     return;
6074   }
6075   case Intrinsic::call_preallocated_arg: {
6076     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6077     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6078     SDValue Ops[3];
6079     Ops[0] = getRoot();
6080     Ops[1] = SrcValue;
6081     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6082                                    MVT::i32); // arg index
6083     SDValue Res = DAG.getNode(
6084         ISD::PREALLOCATED_ARG, sdl,
6085         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6086     setValue(&I, Res);
6087     DAG.setRoot(Res.getValue(1));
6088     return;
6089   }
6090   case Intrinsic::dbg_addr:
6091   case Intrinsic::dbg_declare: {
6092     // Debug intrinsics are handled seperately in assignment tracking mode.
6093     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6094       return;
6095     // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e.
6096     // they are non-variadic.
6097     const auto &DI = cast<DbgVariableIntrinsic>(I);
6098     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6099     DILocalVariable *Variable = DI.getVariable();
6100     DIExpression *Expression = DI.getExpression();
6101     dropDanglingDebugInfo(Variable, Expression);
6102     assert(Variable && "Missing variable");
6103     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6104                       << "\n");
6105     // Check if address has undef value.
6106     const Value *Address = DI.getVariableLocationOp(0);
6107     if (!Address || isa<UndefValue>(Address) ||
6108         (Address->use_empty() && !isa<Argument>(Address))) {
6109       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6110                         << " (bad/undef/unused-arg address)\n");
6111       return;
6112     }
6113 
6114     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6115 
6116     // Check if this variable can be described by a frame index, typically
6117     // either as a static alloca or a byval parameter.
6118     int FI = std::numeric_limits<int>::max();
6119     if (const auto *AI =
6120             dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
6121       if (AI->isStaticAlloca()) {
6122         auto I = FuncInfo.StaticAllocaMap.find(AI);
6123         if (I != FuncInfo.StaticAllocaMap.end())
6124           FI = I->second;
6125       }
6126     } else if (const auto *Arg = dyn_cast<Argument>(
6127                    Address->stripInBoundsConstantOffsets())) {
6128       FI = FuncInfo.getArgumentFrameIndex(Arg);
6129     }
6130 
6131     // llvm.dbg.addr is control dependent and always generates indirect
6132     // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
6133     // the MachineFunction variable table.
6134     if (FI != std::numeric_limits<int>::max()) {
6135       if (Intrinsic == Intrinsic::dbg_addr) {
6136         SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
6137             Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true,
6138             dl, SDNodeOrder);
6139         DAG.AddDbgValue(SDV, isParameter);
6140       } else {
6141         LLVM_DEBUG(dbgs() << "Skipping " << DI
6142                           << " (variable info stashed in MF side table)\n");
6143       }
6144       return;
6145     }
6146 
6147     SDValue &N = NodeMap[Address];
6148     if (!N.getNode() && isa<Argument>(Address))
6149       // Check unused arguments map.
6150       N = UnusedArgNodeMap[Address];
6151     SDDbgValue *SDV;
6152     if (N.getNode()) {
6153       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6154         Address = BCI->getOperand(0);
6155       // Parameters are handled specially.
6156       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6157       if (isParameter && FINode) {
6158         // Byval parameter. We have a frame index at this point.
6159         SDV =
6160             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6161                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6162       } else if (isa<Argument>(Address)) {
6163         // Address is an argument, so try to emit its dbg value using
6164         // virtual register info from the FuncInfo.ValueMap.
6165         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6166                                  FuncArgumentDbgValueKind::Declare, N);
6167         return;
6168       } else {
6169         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6170                               true, dl, SDNodeOrder);
6171       }
6172       DAG.AddDbgValue(SDV, isParameter);
6173     } else {
6174       // If Address is an argument then try to emit its dbg value using
6175       // virtual register info from the FuncInfo.ValueMap.
6176       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6177                                     FuncArgumentDbgValueKind::Declare, N)) {
6178         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6179                           << " (could not emit func-arg dbg_value)\n");
6180       }
6181     }
6182     return;
6183   }
6184   case Intrinsic::dbg_label: {
6185     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6186     DILabel *Label = DI.getLabel();
6187     assert(Label && "Missing label");
6188 
6189     SDDbgLabel *SDV;
6190     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6191     DAG.AddDbgLabel(SDV);
6192     return;
6193   }
6194   case Intrinsic::dbg_assign: {
6195     // Debug intrinsics are handled seperately in assignment tracking mode.
6196     assert(isAssignmentTrackingEnabled(*I.getFunction()->getParent()) &&
6197            "expected assignment tracking to be enabled");
6198     return;
6199   }
6200   case Intrinsic::dbg_value: {
6201     // Debug intrinsics are handled seperately in assignment tracking mode.
6202     if (isAssignmentTrackingEnabled(*I.getFunction()->getParent()))
6203       return;
6204     const DbgValueInst &DI = cast<DbgValueInst>(I);
6205     assert(DI.getVariable() && "Missing variable");
6206 
6207     DILocalVariable *Variable = DI.getVariable();
6208     DIExpression *Expression = DI.getExpression();
6209     dropDanglingDebugInfo(Variable, Expression);
6210     SmallVector<Value *, 4> Values(DI.getValues());
6211     if (Values.empty())
6212       return;
6213 
6214     if (llvm::is_contained(Values, nullptr))
6215       return;
6216 
6217     bool IsVariadic = DI.hasArgList();
6218     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6219                           SDNodeOrder, IsVariadic))
6220       addDanglingDebugInfo(&DI, SDNodeOrder);
6221     return;
6222   }
6223 
6224   case Intrinsic::eh_typeid_for: {
6225     // Find the type id for the given typeinfo.
6226     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6227     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6228     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6229     setValue(&I, Res);
6230     return;
6231   }
6232 
6233   case Intrinsic::eh_return_i32:
6234   case Intrinsic::eh_return_i64:
6235     DAG.getMachineFunction().setCallsEHReturn(true);
6236     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6237                             MVT::Other,
6238                             getControlRoot(),
6239                             getValue(I.getArgOperand(0)),
6240                             getValue(I.getArgOperand(1))));
6241     return;
6242   case Intrinsic::eh_unwind_init:
6243     DAG.getMachineFunction().setCallsUnwindInit(true);
6244     return;
6245   case Intrinsic::eh_dwarf_cfa:
6246     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6247                              TLI.getPointerTy(DAG.getDataLayout()),
6248                              getValue(I.getArgOperand(0))));
6249     return;
6250   case Intrinsic::eh_sjlj_callsite: {
6251     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6252     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6253     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6254 
6255     MMI.setCurrentCallSite(CI->getZExtValue());
6256     return;
6257   }
6258   case Intrinsic::eh_sjlj_functioncontext: {
6259     // Get and store the index of the function context.
6260     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6261     AllocaInst *FnCtx =
6262       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6263     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6264     MFI.setFunctionContextIndex(FI);
6265     return;
6266   }
6267   case Intrinsic::eh_sjlj_setjmp: {
6268     SDValue Ops[2];
6269     Ops[0] = getRoot();
6270     Ops[1] = getValue(I.getArgOperand(0));
6271     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6272                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6273     setValue(&I, Op.getValue(0));
6274     DAG.setRoot(Op.getValue(1));
6275     return;
6276   }
6277   case Intrinsic::eh_sjlj_longjmp:
6278     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6279                             getRoot(), getValue(I.getArgOperand(0))));
6280     return;
6281   case Intrinsic::eh_sjlj_setup_dispatch:
6282     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6283                             getRoot()));
6284     return;
6285   case Intrinsic::masked_gather:
6286     visitMaskedGather(I);
6287     return;
6288   case Intrinsic::masked_load:
6289     visitMaskedLoad(I);
6290     return;
6291   case Intrinsic::masked_scatter:
6292     visitMaskedScatter(I);
6293     return;
6294   case Intrinsic::masked_store:
6295     visitMaskedStore(I);
6296     return;
6297   case Intrinsic::masked_expandload:
6298     visitMaskedLoad(I, true /* IsExpanding */);
6299     return;
6300   case Intrinsic::masked_compressstore:
6301     visitMaskedStore(I, true /* IsCompressing */);
6302     return;
6303   case Intrinsic::powi:
6304     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6305                             getValue(I.getArgOperand(1)), DAG));
6306     return;
6307   case Intrinsic::log:
6308     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6309     return;
6310   case Intrinsic::log2:
6311     setValue(&I,
6312              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6313     return;
6314   case Intrinsic::log10:
6315     setValue(&I,
6316              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6317     return;
6318   case Intrinsic::exp:
6319     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6320     return;
6321   case Intrinsic::exp2:
6322     setValue(&I,
6323              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6324     return;
6325   case Intrinsic::pow:
6326     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6327                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6328     return;
6329   case Intrinsic::sqrt:
6330   case Intrinsic::fabs:
6331   case Intrinsic::sin:
6332   case Intrinsic::cos:
6333   case Intrinsic::floor:
6334   case Intrinsic::ceil:
6335   case Intrinsic::trunc:
6336   case Intrinsic::rint:
6337   case Intrinsic::nearbyint:
6338   case Intrinsic::round:
6339   case Intrinsic::roundeven:
6340   case Intrinsic::canonicalize: {
6341     unsigned Opcode;
6342     switch (Intrinsic) {
6343     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6344     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6345     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6346     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6347     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6348     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6349     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6350     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6351     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6352     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6353     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6354     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6355     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6356     }
6357 
6358     setValue(&I, DAG.getNode(Opcode, sdl,
6359                              getValue(I.getArgOperand(0)).getValueType(),
6360                              getValue(I.getArgOperand(0)), Flags));
6361     return;
6362   }
6363   case Intrinsic::lround:
6364   case Intrinsic::llround:
6365   case Intrinsic::lrint:
6366   case Intrinsic::llrint: {
6367     unsigned Opcode;
6368     switch (Intrinsic) {
6369     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6370     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6371     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6372     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6373     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6374     }
6375 
6376     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6377     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6378                              getValue(I.getArgOperand(0))));
6379     return;
6380   }
6381   case Intrinsic::minnum:
6382     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6383                              getValue(I.getArgOperand(0)).getValueType(),
6384                              getValue(I.getArgOperand(0)),
6385                              getValue(I.getArgOperand(1)), Flags));
6386     return;
6387   case Intrinsic::maxnum:
6388     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6389                              getValue(I.getArgOperand(0)).getValueType(),
6390                              getValue(I.getArgOperand(0)),
6391                              getValue(I.getArgOperand(1)), Flags));
6392     return;
6393   case Intrinsic::minimum:
6394     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6395                              getValue(I.getArgOperand(0)).getValueType(),
6396                              getValue(I.getArgOperand(0)),
6397                              getValue(I.getArgOperand(1)), Flags));
6398     return;
6399   case Intrinsic::maximum:
6400     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6401                              getValue(I.getArgOperand(0)).getValueType(),
6402                              getValue(I.getArgOperand(0)),
6403                              getValue(I.getArgOperand(1)), Flags));
6404     return;
6405   case Intrinsic::copysign:
6406     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6407                              getValue(I.getArgOperand(0)).getValueType(),
6408                              getValue(I.getArgOperand(0)),
6409                              getValue(I.getArgOperand(1)), Flags));
6410     return;
6411   case Intrinsic::arithmetic_fence: {
6412     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6413                              getValue(I.getArgOperand(0)).getValueType(),
6414                              getValue(I.getArgOperand(0)), Flags));
6415     return;
6416   }
6417   case Intrinsic::fma:
6418     setValue(&I, DAG.getNode(
6419                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6420                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6421                      getValue(I.getArgOperand(2)), Flags));
6422     return;
6423 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6424   case Intrinsic::INTRINSIC:
6425 #include "llvm/IR/ConstrainedOps.def"
6426     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6427     return;
6428 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6429 #include "llvm/IR/VPIntrinsics.def"
6430     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6431     return;
6432   case Intrinsic::fptrunc_round: {
6433     // Get the last argument, the metadata and convert it to an integer in the
6434     // call
6435     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6436     std::optional<RoundingMode> RoundMode =
6437         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6438 
6439     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6440 
6441     // Propagate fast-math-flags from IR to node(s).
6442     SDNodeFlags Flags;
6443     Flags.copyFMF(*cast<FPMathOperator>(&I));
6444     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6445 
6446     SDValue Result;
6447     Result = DAG.getNode(
6448         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6449         DAG.getTargetConstant((int)*RoundMode, sdl,
6450                               TLI.getPointerTy(DAG.getDataLayout())));
6451     setValue(&I, Result);
6452 
6453     return;
6454   }
6455   case Intrinsic::fmuladd: {
6456     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6457     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6458         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6459       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6460                                getValue(I.getArgOperand(0)).getValueType(),
6461                                getValue(I.getArgOperand(0)),
6462                                getValue(I.getArgOperand(1)),
6463                                getValue(I.getArgOperand(2)), Flags));
6464     } else {
6465       // TODO: Intrinsic calls should have fast-math-flags.
6466       SDValue Mul = DAG.getNode(
6467           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6468           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6469       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6470                                 getValue(I.getArgOperand(0)).getValueType(),
6471                                 Mul, getValue(I.getArgOperand(2)), Flags);
6472       setValue(&I, Add);
6473     }
6474     return;
6475   }
6476   case Intrinsic::convert_to_fp16:
6477     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6478                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6479                                          getValue(I.getArgOperand(0)),
6480                                          DAG.getTargetConstant(0, sdl,
6481                                                                MVT::i32))));
6482     return;
6483   case Intrinsic::convert_from_fp16:
6484     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6485                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6486                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6487                                          getValue(I.getArgOperand(0)))));
6488     return;
6489   case Intrinsic::fptosi_sat: {
6490     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6491     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6492                              getValue(I.getArgOperand(0)),
6493                              DAG.getValueType(VT.getScalarType())));
6494     return;
6495   }
6496   case Intrinsic::fptoui_sat: {
6497     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6498     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6499                              getValue(I.getArgOperand(0)),
6500                              DAG.getValueType(VT.getScalarType())));
6501     return;
6502   }
6503   case Intrinsic::set_rounding:
6504     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6505                       {getRoot(), getValue(I.getArgOperand(0))});
6506     setValue(&I, Res);
6507     DAG.setRoot(Res.getValue(0));
6508     return;
6509   case Intrinsic::is_fpclass: {
6510     const DataLayout DLayout = DAG.getDataLayout();
6511     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6512     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6513     unsigned Test = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6514     MachineFunction &MF = DAG.getMachineFunction();
6515     const Function &F = MF.getFunction();
6516     SDValue Op = getValue(I.getArgOperand(0));
6517     SDNodeFlags Flags;
6518     Flags.setNoFPExcept(
6519         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6520     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6521     // expansion can use illegal types. Making expansion early allows
6522     // legalizing these types prior to selection.
6523     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6524       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6525       setValue(&I, Result);
6526       return;
6527     }
6528 
6529     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6530     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6531     setValue(&I, V);
6532     return;
6533   }
6534   case Intrinsic::pcmarker: {
6535     SDValue Tmp = getValue(I.getArgOperand(0));
6536     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6537     return;
6538   }
6539   case Intrinsic::readcyclecounter: {
6540     SDValue Op = getRoot();
6541     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6542                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6543     setValue(&I, Res);
6544     DAG.setRoot(Res.getValue(1));
6545     return;
6546   }
6547   case Intrinsic::bitreverse:
6548     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6549                              getValue(I.getArgOperand(0)).getValueType(),
6550                              getValue(I.getArgOperand(0))));
6551     return;
6552   case Intrinsic::bswap:
6553     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6554                              getValue(I.getArgOperand(0)).getValueType(),
6555                              getValue(I.getArgOperand(0))));
6556     return;
6557   case Intrinsic::cttz: {
6558     SDValue Arg = getValue(I.getArgOperand(0));
6559     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6560     EVT Ty = Arg.getValueType();
6561     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6562                              sdl, Ty, Arg));
6563     return;
6564   }
6565   case Intrinsic::ctlz: {
6566     SDValue Arg = getValue(I.getArgOperand(0));
6567     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6568     EVT Ty = Arg.getValueType();
6569     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6570                              sdl, Ty, Arg));
6571     return;
6572   }
6573   case Intrinsic::ctpop: {
6574     SDValue Arg = getValue(I.getArgOperand(0));
6575     EVT Ty = Arg.getValueType();
6576     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6577     return;
6578   }
6579   case Intrinsic::fshl:
6580   case Intrinsic::fshr: {
6581     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6582     SDValue X = getValue(I.getArgOperand(0));
6583     SDValue Y = getValue(I.getArgOperand(1));
6584     SDValue Z = getValue(I.getArgOperand(2));
6585     EVT VT = X.getValueType();
6586 
6587     if (X == Y) {
6588       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6589       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6590     } else {
6591       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6592       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6593     }
6594     return;
6595   }
6596   case Intrinsic::sadd_sat: {
6597     SDValue Op1 = getValue(I.getArgOperand(0));
6598     SDValue Op2 = getValue(I.getArgOperand(1));
6599     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6600     return;
6601   }
6602   case Intrinsic::uadd_sat: {
6603     SDValue Op1 = getValue(I.getArgOperand(0));
6604     SDValue Op2 = getValue(I.getArgOperand(1));
6605     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6606     return;
6607   }
6608   case Intrinsic::ssub_sat: {
6609     SDValue Op1 = getValue(I.getArgOperand(0));
6610     SDValue Op2 = getValue(I.getArgOperand(1));
6611     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6612     return;
6613   }
6614   case Intrinsic::usub_sat: {
6615     SDValue Op1 = getValue(I.getArgOperand(0));
6616     SDValue Op2 = getValue(I.getArgOperand(1));
6617     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6618     return;
6619   }
6620   case Intrinsic::sshl_sat: {
6621     SDValue Op1 = getValue(I.getArgOperand(0));
6622     SDValue Op2 = getValue(I.getArgOperand(1));
6623     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6624     return;
6625   }
6626   case Intrinsic::ushl_sat: {
6627     SDValue Op1 = getValue(I.getArgOperand(0));
6628     SDValue Op2 = getValue(I.getArgOperand(1));
6629     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6630     return;
6631   }
6632   case Intrinsic::smul_fix:
6633   case Intrinsic::umul_fix:
6634   case Intrinsic::smul_fix_sat:
6635   case Intrinsic::umul_fix_sat: {
6636     SDValue Op1 = getValue(I.getArgOperand(0));
6637     SDValue Op2 = getValue(I.getArgOperand(1));
6638     SDValue Op3 = getValue(I.getArgOperand(2));
6639     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6640                              Op1.getValueType(), Op1, Op2, Op3));
6641     return;
6642   }
6643   case Intrinsic::sdiv_fix:
6644   case Intrinsic::udiv_fix:
6645   case Intrinsic::sdiv_fix_sat:
6646   case Intrinsic::udiv_fix_sat: {
6647     SDValue Op1 = getValue(I.getArgOperand(0));
6648     SDValue Op2 = getValue(I.getArgOperand(1));
6649     SDValue Op3 = getValue(I.getArgOperand(2));
6650     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6651                               Op1, Op2, Op3, DAG, TLI));
6652     return;
6653   }
6654   case Intrinsic::smax: {
6655     SDValue Op1 = getValue(I.getArgOperand(0));
6656     SDValue Op2 = getValue(I.getArgOperand(1));
6657     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6658     return;
6659   }
6660   case Intrinsic::smin: {
6661     SDValue Op1 = getValue(I.getArgOperand(0));
6662     SDValue Op2 = getValue(I.getArgOperand(1));
6663     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6664     return;
6665   }
6666   case Intrinsic::umax: {
6667     SDValue Op1 = getValue(I.getArgOperand(0));
6668     SDValue Op2 = getValue(I.getArgOperand(1));
6669     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6670     return;
6671   }
6672   case Intrinsic::umin: {
6673     SDValue Op1 = getValue(I.getArgOperand(0));
6674     SDValue Op2 = getValue(I.getArgOperand(1));
6675     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6676     return;
6677   }
6678   case Intrinsic::abs: {
6679     // TODO: Preserve "int min is poison" arg in SDAG?
6680     SDValue Op1 = getValue(I.getArgOperand(0));
6681     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6682     return;
6683   }
6684   case Intrinsic::stacksave: {
6685     SDValue Op = getRoot();
6686     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6687     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6688     setValue(&I, Res);
6689     DAG.setRoot(Res.getValue(1));
6690     return;
6691   }
6692   case Intrinsic::stackrestore:
6693     Res = getValue(I.getArgOperand(0));
6694     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6695     return;
6696   case Intrinsic::get_dynamic_area_offset: {
6697     SDValue Op = getRoot();
6698     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6699     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6700     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6701     // target.
6702     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6703       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6704                          " intrinsic!");
6705     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6706                       Op);
6707     DAG.setRoot(Op);
6708     setValue(&I, Res);
6709     return;
6710   }
6711   case Intrinsic::stackguard: {
6712     MachineFunction &MF = DAG.getMachineFunction();
6713     const Module &M = *MF.getFunction().getParent();
6714     SDValue Chain = getRoot();
6715     if (TLI.useLoadStackGuardNode()) {
6716       Res = getLoadStackGuard(DAG, sdl, Chain);
6717     } else {
6718       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6719       const Value *Global = TLI.getSDagStackGuard(M);
6720       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6721       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6722                         MachinePointerInfo(Global, 0), Align,
6723                         MachineMemOperand::MOVolatile);
6724     }
6725     if (TLI.useStackGuardXorFP())
6726       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6727     DAG.setRoot(Chain);
6728     setValue(&I, Res);
6729     return;
6730   }
6731   case Intrinsic::stackprotector: {
6732     // Emit code into the DAG to store the stack guard onto the stack.
6733     MachineFunction &MF = DAG.getMachineFunction();
6734     MachineFrameInfo &MFI = MF.getFrameInfo();
6735     SDValue Src, Chain = getRoot();
6736 
6737     if (TLI.useLoadStackGuardNode())
6738       Src = getLoadStackGuard(DAG, sdl, Chain);
6739     else
6740       Src = getValue(I.getArgOperand(0));   // The guard's value.
6741 
6742     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6743 
6744     int FI = FuncInfo.StaticAllocaMap[Slot];
6745     MFI.setStackProtectorIndex(FI);
6746     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6747 
6748     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6749 
6750     // Store the stack protector onto the stack.
6751     Res = DAG.getStore(
6752         Chain, sdl, Src, FIN,
6753         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6754         MaybeAlign(), MachineMemOperand::MOVolatile);
6755     setValue(&I, Res);
6756     DAG.setRoot(Res);
6757     return;
6758   }
6759   case Intrinsic::objectsize:
6760     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6761 
6762   case Intrinsic::is_constant:
6763     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6764 
6765   case Intrinsic::annotation:
6766   case Intrinsic::ptr_annotation:
6767   case Intrinsic::launder_invariant_group:
6768   case Intrinsic::strip_invariant_group:
6769     // Drop the intrinsic, but forward the value
6770     setValue(&I, getValue(I.getOperand(0)));
6771     return;
6772 
6773   case Intrinsic::assume:
6774   case Intrinsic::experimental_noalias_scope_decl:
6775   case Intrinsic::var_annotation:
6776   case Intrinsic::sideeffect:
6777     // Discard annotate attributes, noalias scope declarations, assumptions, and
6778     // artificial side-effects.
6779     return;
6780 
6781   case Intrinsic::codeview_annotation: {
6782     // Emit a label associated with this metadata.
6783     MachineFunction &MF = DAG.getMachineFunction();
6784     MCSymbol *Label =
6785         MF.getMMI().getContext().createTempSymbol("annotation", true);
6786     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6787     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6788     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6789     DAG.setRoot(Res);
6790     return;
6791   }
6792 
6793   case Intrinsic::init_trampoline: {
6794     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6795 
6796     SDValue Ops[6];
6797     Ops[0] = getRoot();
6798     Ops[1] = getValue(I.getArgOperand(0));
6799     Ops[2] = getValue(I.getArgOperand(1));
6800     Ops[3] = getValue(I.getArgOperand(2));
6801     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6802     Ops[5] = DAG.getSrcValue(F);
6803 
6804     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6805 
6806     DAG.setRoot(Res);
6807     return;
6808   }
6809   case Intrinsic::adjust_trampoline:
6810     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6811                              TLI.getPointerTy(DAG.getDataLayout()),
6812                              getValue(I.getArgOperand(0))));
6813     return;
6814   case Intrinsic::gcroot: {
6815     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6816            "only valid in functions with gc specified, enforced by Verifier");
6817     assert(GFI && "implied by previous");
6818     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6819     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6820 
6821     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6822     GFI->addStackRoot(FI->getIndex(), TypeMap);
6823     return;
6824   }
6825   case Intrinsic::gcread:
6826   case Intrinsic::gcwrite:
6827     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6828   case Intrinsic::get_rounding:
6829     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6830     setValue(&I, Res);
6831     DAG.setRoot(Res.getValue(1));
6832     return;
6833 
6834   case Intrinsic::expect:
6835     // Just replace __builtin_expect(exp, c) with EXP.
6836     setValue(&I, getValue(I.getArgOperand(0)));
6837     return;
6838 
6839   case Intrinsic::ubsantrap:
6840   case Intrinsic::debugtrap:
6841   case Intrinsic::trap: {
6842     StringRef TrapFuncName =
6843         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6844     if (TrapFuncName.empty()) {
6845       switch (Intrinsic) {
6846       case Intrinsic::trap:
6847         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6848         break;
6849       case Intrinsic::debugtrap:
6850         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6851         break;
6852       case Intrinsic::ubsantrap:
6853         DAG.setRoot(DAG.getNode(
6854             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6855             DAG.getTargetConstant(
6856                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6857                 MVT::i32)));
6858         break;
6859       default: llvm_unreachable("unknown trap intrinsic");
6860       }
6861       return;
6862     }
6863     TargetLowering::ArgListTy Args;
6864     if (Intrinsic == Intrinsic::ubsantrap) {
6865       Args.push_back(TargetLoweringBase::ArgListEntry());
6866       Args[0].Val = I.getArgOperand(0);
6867       Args[0].Node = getValue(Args[0].Val);
6868       Args[0].Ty = Args[0].Val->getType();
6869     }
6870 
6871     TargetLowering::CallLoweringInfo CLI(DAG);
6872     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6873         CallingConv::C, I.getType(),
6874         DAG.getExternalSymbol(TrapFuncName.data(),
6875                               TLI.getPointerTy(DAG.getDataLayout())),
6876         std::move(Args));
6877 
6878     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6879     DAG.setRoot(Result.second);
6880     return;
6881   }
6882 
6883   case Intrinsic::uadd_with_overflow:
6884   case Intrinsic::sadd_with_overflow:
6885   case Intrinsic::usub_with_overflow:
6886   case Intrinsic::ssub_with_overflow:
6887   case Intrinsic::umul_with_overflow:
6888   case Intrinsic::smul_with_overflow: {
6889     ISD::NodeType Op;
6890     switch (Intrinsic) {
6891     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6892     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6893     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6894     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6895     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6896     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6897     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6898     }
6899     SDValue Op1 = getValue(I.getArgOperand(0));
6900     SDValue Op2 = getValue(I.getArgOperand(1));
6901 
6902     EVT ResultVT = Op1.getValueType();
6903     EVT OverflowVT = MVT::i1;
6904     if (ResultVT.isVector())
6905       OverflowVT = EVT::getVectorVT(
6906           *Context, OverflowVT, ResultVT.getVectorElementCount());
6907 
6908     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6909     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6910     return;
6911   }
6912   case Intrinsic::prefetch: {
6913     SDValue Ops[5];
6914     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6915     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6916     Ops[0] = DAG.getRoot();
6917     Ops[1] = getValue(I.getArgOperand(0));
6918     Ops[2] = getValue(I.getArgOperand(1));
6919     Ops[3] = getValue(I.getArgOperand(2));
6920     Ops[4] = getValue(I.getArgOperand(3));
6921     SDValue Result = DAG.getMemIntrinsicNode(
6922         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
6923         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
6924         /* align */ std::nullopt, Flags);
6925 
6926     // Chain the prefetch in parallell with any pending loads, to stay out of
6927     // the way of later optimizations.
6928     PendingLoads.push_back(Result);
6929     Result = getRoot();
6930     DAG.setRoot(Result);
6931     return;
6932   }
6933   case Intrinsic::lifetime_start:
6934   case Intrinsic::lifetime_end: {
6935     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6936     // Stack coloring is not enabled in O0, discard region information.
6937     if (TM.getOptLevel() == CodeGenOpt::None)
6938       return;
6939 
6940     const int64_t ObjectSize =
6941         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6942     Value *const ObjectPtr = I.getArgOperand(1);
6943     SmallVector<const Value *, 4> Allocas;
6944     getUnderlyingObjects(ObjectPtr, Allocas);
6945 
6946     for (const Value *Alloca : Allocas) {
6947       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
6948 
6949       // Could not find an Alloca.
6950       if (!LifetimeObject)
6951         continue;
6952 
6953       // First check that the Alloca is static, otherwise it won't have a
6954       // valid frame index.
6955       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6956       if (SI == FuncInfo.StaticAllocaMap.end())
6957         return;
6958 
6959       const int FrameIndex = SI->second;
6960       int64_t Offset;
6961       if (GetPointerBaseWithConstantOffset(
6962               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6963         Offset = -1; // Cannot determine offset from alloca to lifetime object.
6964       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6965                                 Offset);
6966       DAG.setRoot(Res);
6967     }
6968     return;
6969   }
6970   case Intrinsic::pseudoprobe: {
6971     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
6972     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6973     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
6974     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
6975     DAG.setRoot(Res);
6976     return;
6977   }
6978   case Intrinsic::invariant_start:
6979     // Discard region information.
6980     setValue(&I,
6981              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
6982     return;
6983   case Intrinsic::invariant_end:
6984     // Discard region information.
6985     return;
6986   case Intrinsic::clear_cache:
6987     /// FunctionName may be null.
6988     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6989       lowerCallToExternalSymbol(I, FunctionName);
6990     return;
6991   case Intrinsic::donothing:
6992   case Intrinsic::seh_try_begin:
6993   case Intrinsic::seh_scope_begin:
6994   case Intrinsic::seh_try_end:
6995   case Intrinsic::seh_scope_end:
6996     // ignore
6997     return;
6998   case Intrinsic::experimental_stackmap:
6999     visitStackmap(I);
7000     return;
7001   case Intrinsic::experimental_patchpoint_void:
7002   case Intrinsic::experimental_patchpoint_i64:
7003     visitPatchpoint(I);
7004     return;
7005   case Intrinsic::experimental_gc_statepoint:
7006     LowerStatepoint(cast<GCStatepointInst>(I));
7007     return;
7008   case Intrinsic::experimental_gc_result:
7009     visitGCResult(cast<GCResultInst>(I));
7010     return;
7011   case Intrinsic::experimental_gc_relocate:
7012     visitGCRelocate(cast<GCRelocateInst>(I));
7013     return;
7014   case Intrinsic::instrprof_cover:
7015     llvm_unreachable("instrprof failed to lower a cover");
7016   case Intrinsic::instrprof_increment:
7017     llvm_unreachable("instrprof failed to lower an increment");
7018   case Intrinsic::instrprof_value_profile:
7019     llvm_unreachable("instrprof failed to lower a value profiling call");
7020   case Intrinsic::localescape: {
7021     MachineFunction &MF = DAG.getMachineFunction();
7022     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7023 
7024     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7025     // is the same on all targets.
7026     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7027       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7028       if (isa<ConstantPointerNull>(Arg))
7029         continue; // Skip null pointers. They represent a hole in index space.
7030       AllocaInst *Slot = cast<AllocaInst>(Arg);
7031       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7032              "can only escape static allocas");
7033       int FI = FuncInfo.StaticAllocaMap[Slot];
7034       MCSymbol *FrameAllocSym =
7035           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7036               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7037       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7038               TII->get(TargetOpcode::LOCAL_ESCAPE))
7039           .addSym(FrameAllocSym)
7040           .addFrameIndex(FI);
7041     }
7042 
7043     return;
7044   }
7045 
7046   case Intrinsic::localrecover: {
7047     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7048     MachineFunction &MF = DAG.getMachineFunction();
7049 
7050     // Get the symbol that defines the frame offset.
7051     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7052     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7053     unsigned IdxVal =
7054         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7055     MCSymbol *FrameAllocSym =
7056         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7057             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7058 
7059     Value *FP = I.getArgOperand(1);
7060     SDValue FPVal = getValue(FP);
7061     EVT PtrVT = FPVal.getValueType();
7062 
7063     // Create a MCSymbol for the label to avoid any target lowering
7064     // that would make this PC relative.
7065     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7066     SDValue OffsetVal =
7067         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7068 
7069     // Add the offset to the FP.
7070     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7071     setValue(&I, Add);
7072 
7073     return;
7074   }
7075 
7076   case Intrinsic::eh_exceptionpointer:
7077   case Intrinsic::eh_exceptioncode: {
7078     // Get the exception pointer vreg, copy from it, and resize it to fit.
7079     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7080     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7081     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7082     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7083     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7084     if (Intrinsic == Intrinsic::eh_exceptioncode)
7085       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7086     setValue(&I, N);
7087     return;
7088   }
7089   case Intrinsic::xray_customevent: {
7090     // Here we want to make sure that the intrinsic behaves as if it has a
7091     // specific calling convention, and only for x86_64.
7092     // FIXME: Support other platforms later.
7093     const auto &Triple = DAG.getTarget().getTargetTriple();
7094     if (Triple.getArch() != Triple::x86_64)
7095       return;
7096 
7097     SmallVector<SDValue, 8> Ops;
7098 
7099     // We want to say that we always want the arguments in registers.
7100     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7101     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7102     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7103     SDValue Chain = getRoot();
7104     Ops.push_back(LogEntryVal);
7105     Ops.push_back(StrSizeVal);
7106     Ops.push_back(Chain);
7107 
7108     // We need to enforce the calling convention for the callsite, so that
7109     // argument ordering is enforced correctly, and that register allocation can
7110     // see that some registers may be assumed clobbered and have to preserve
7111     // them across calls to the intrinsic.
7112     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7113                                            sdl, NodeTys, Ops);
7114     SDValue patchableNode = SDValue(MN, 0);
7115     DAG.setRoot(patchableNode);
7116     setValue(&I, patchableNode);
7117     return;
7118   }
7119   case Intrinsic::xray_typedevent: {
7120     // Here we want to make sure that the intrinsic behaves as if it has a
7121     // specific calling convention, and only for x86_64.
7122     // FIXME: Support other platforms later.
7123     const auto &Triple = DAG.getTarget().getTargetTriple();
7124     if (Triple.getArch() != Triple::x86_64)
7125       return;
7126 
7127     SmallVector<SDValue, 8> Ops;
7128 
7129     // We want to say that we always want the arguments in registers.
7130     // It's unclear to me how manipulating the selection DAG here forces callers
7131     // to provide arguments in registers instead of on the stack.
7132     SDValue LogTypeId = getValue(I.getArgOperand(0));
7133     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7134     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7135     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7136     SDValue Chain = getRoot();
7137     Ops.push_back(LogTypeId);
7138     Ops.push_back(LogEntryVal);
7139     Ops.push_back(StrSizeVal);
7140     Ops.push_back(Chain);
7141 
7142     // We need to enforce the calling convention for the callsite, so that
7143     // argument ordering is enforced correctly, and that register allocation can
7144     // see that some registers may be assumed clobbered and have to preserve
7145     // them across calls to the intrinsic.
7146     MachineSDNode *MN = DAG.getMachineNode(
7147         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7148     SDValue patchableNode = SDValue(MN, 0);
7149     DAG.setRoot(patchableNode);
7150     setValue(&I, patchableNode);
7151     return;
7152   }
7153   case Intrinsic::experimental_deoptimize:
7154     LowerDeoptimizeCall(&I);
7155     return;
7156   case Intrinsic::experimental_stepvector:
7157     visitStepVector(I);
7158     return;
7159   case Intrinsic::vector_reduce_fadd:
7160   case Intrinsic::vector_reduce_fmul:
7161   case Intrinsic::vector_reduce_add:
7162   case Intrinsic::vector_reduce_mul:
7163   case Intrinsic::vector_reduce_and:
7164   case Intrinsic::vector_reduce_or:
7165   case Intrinsic::vector_reduce_xor:
7166   case Intrinsic::vector_reduce_smax:
7167   case Intrinsic::vector_reduce_smin:
7168   case Intrinsic::vector_reduce_umax:
7169   case Intrinsic::vector_reduce_umin:
7170   case Intrinsic::vector_reduce_fmax:
7171   case Intrinsic::vector_reduce_fmin:
7172     visitVectorReduce(I, Intrinsic);
7173     return;
7174 
7175   case Intrinsic::icall_branch_funnel: {
7176     SmallVector<SDValue, 16> Ops;
7177     Ops.push_back(getValue(I.getArgOperand(0)));
7178 
7179     int64_t Offset;
7180     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7181         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7182     if (!Base)
7183       report_fatal_error(
7184           "llvm.icall.branch.funnel operand must be a GlobalValue");
7185     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7186 
7187     struct BranchFunnelTarget {
7188       int64_t Offset;
7189       SDValue Target;
7190     };
7191     SmallVector<BranchFunnelTarget, 8> Targets;
7192 
7193     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7194       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7195           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7196       if (ElemBase != Base)
7197         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7198                            "to the same GlobalValue");
7199 
7200       SDValue Val = getValue(I.getArgOperand(Op + 1));
7201       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7202       if (!GA)
7203         report_fatal_error(
7204             "llvm.icall.branch.funnel operand must be a GlobalValue");
7205       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7206                                      GA->getGlobal(), sdl, Val.getValueType(),
7207                                      GA->getOffset())});
7208     }
7209     llvm::sort(Targets,
7210                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7211                  return T1.Offset < T2.Offset;
7212                });
7213 
7214     for (auto &T : Targets) {
7215       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7216       Ops.push_back(T.Target);
7217     }
7218 
7219     Ops.push_back(DAG.getRoot()); // Chain
7220     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7221                                  MVT::Other, Ops),
7222               0);
7223     DAG.setRoot(N);
7224     setValue(&I, N);
7225     HasTailCall = true;
7226     return;
7227   }
7228 
7229   case Intrinsic::wasm_landingpad_index:
7230     // Information this intrinsic contained has been transferred to
7231     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7232     // delete it now.
7233     return;
7234 
7235   case Intrinsic::aarch64_settag:
7236   case Intrinsic::aarch64_settag_zero: {
7237     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7238     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7239     SDValue Val = TSI.EmitTargetCodeForSetTag(
7240         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7241         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7242         ZeroMemory);
7243     DAG.setRoot(Val);
7244     setValue(&I, Val);
7245     return;
7246   }
7247   case Intrinsic::ptrmask: {
7248     SDValue Ptr = getValue(I.getOperand(0));
7249     SDValue Const = getValue(I.getOperand(1));
7250 
7251     EVT PtrVT = Ptr.getValueType();
7252     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7253                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7254     return;
7255   }
7256   case Intrinsic::threadlocal_address: {
7257     setValue(&I, getValue(I.getOperand(0)));
7258     return;
7259   }
7260   case Intrinsic::get_active_lane_mask: {
7261     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7262     SDValue Index = getValue(I.getOperand(0));
7263     EVT ElementVT = Index.getValueType();
7264 
7265     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7266       visitTargetIntrinsic(I, Intrinsic);
7267       return;
7268     }
7269 
7270     SDValue TripCount = getValue(I.getOperand(1));
7271     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7272 
7273     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7274     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7275     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7276     SDValue VectorInduction = DAG.getNode(
7277         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7278     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7279                                  VectorTripCount, ISD::CondCode::SETULT);
7280     setValue(&I, SetCC);
7281     return;
7282   }
7283   case Intrinsic::vector_insert: {
7284     SDValue Vec = getValue(I.getOperand(0));
7285     SDValue SubVec = getValue(I.getOperand(1));
7286     SDValue Index = getValue(I.getOperand(2));
7287 
7288     // The intrinsic's index type is i64, but the SDNode requires an index type
7289     // suitable for the target. Convert the index as required.
7290     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7291     if (Index.getValueType() != VectorIdxTy)
7292       Index = DAG.getVectorIdxConstant(
7293           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7294 
7295     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7296     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7297                              Index));
7298     return;
7299   }
7300   case Intrinsic::vector_extract: {
7301     SDValue Vec = getValue(I.getOperand(0));
7302     SDValue Index = getValue(I.getOperand(1));
7303     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7304 
7305     // The intrinsic's index type is i64, but the SDNode requires an index type
7306     // suitable for the target. Convert the index as required.
7307     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7308     if (Index.getValueType() != VectorIdxTy)
7309       Index = DAG.getVectorIdxConstant(
7310           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7311 
7312     setValue(&I,
7313              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7314     return;
7315   }
7316   case Intrinsic::experimental_vector_reverse:
7317     visitVectorReverse(I);
7318     return;
7319   case Intrinsic::experimental_vector_splice:
7320     visitVectorSplice(I);
7321     return;
7322   case Intrinsic::callbr_landingpad:
7323     visitCallBrLandingPad(I);
7324     return;
7325   case Intrinsic::experimental_vector_interleave2:
7326     visitVectorInterleave(I);
7327     return;
7328   case Intrinsic::experimental_vector_deinterleave2:
7329     visitVectorDeinterleave(I);
7330     return;
7331   }
7332 }
7333 
7334 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7335     const ConstrainedFPIntrinsic &FPI) {
7336   SDLoc sdl = getCurSDLoc();
7337 
7338   // We do not need to serialize constrained FP intrinsics against
7339   // each other or against (nonvolatile) loads, so they can be
7340   // chained like loads.
7341   SDValue Chain = DAG.getRoot();
7342   SmallVector<SDValue, 4> Opers;
7343   Opers.push_back(Chain);
7344   if (FPI.isUnaryOp()) {
7345     Opers.push_back(getValue(FPI.getArgOperand(0)));
7346   } else if (FPI.isTernaryOp()) {
7347     Opers.push_back(getValue(FPI.getArgOperand(0)));
7348     Opers.push_back(getValue(FPI.getArgOperand(1)));
7349     Opers.push_back(getValue(FPI.getArgOperand(2)));
7350   } else {
7351     Opers.push_back(getValue(FPI.getArgOperand(0)));
7352     Opers.push_back(getValue(FPI.getArgOperand(1)));
7353   }
7354 
7355   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7356     assert(Result.getNode()->getNumValues() == 2);
7357 
7358     // Push node to the appropriate list so that future instructions can be
7359     // chained up correctly.
7360     SDValue OutChain = Result.getValue(1);
7361     switch (EB) {
7362     case fp::ExceptionBehavior::ebIgnore:
7363       // The only reason why ebIgnore nodes still need to be chained is that
7364       // they might depend on the current rounding mode, and therefore must
7365       // not be moved across instruction that may change that mode.
7366       [[fallthrough]];
7367     case fp::ExceptionBehavior::ebMayTrap:
7368       // These must not be moved across calls or instructions that may change
7369       // floating-point exception masks.
7370       PendingConstrainedFP.push_back(OutChain);
7371       break;
7372     case fp::ExceptionBehavior::ebStrict:
7373       // These must not be moved across calls or instructions that may change
7374       // floating-point exception masks or read floating-point exception flags.
7375       // In addition, they cannot be optimized out even if unused.
7376       PendingConstrainedFPStrict.push_back(OutChain);
7377       break;
7378     }
7379   };
7380 
7381   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7382   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7383   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7384   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7385 
7386   SDNodeFlags Flags;
7387   if (EB == fp::ExceptionBehavior::ebIgnore)
7388     Flags.setNoFPExcept(true);
7389 
7390   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7391     Flags.copyFMF(*FPOp);
7392 
7393   unsigned Opcode;
7394   switch (FPI.getIntrinsicID()) {
7395   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7396 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7397   case Intrinsic::INTRINSIC:                                                   \
7398     Opcode = ISD::STRICT_##DAGN;                                               \
7399     break;
7400 #include "llvm/IR/ConstrainedOps.def"
7401   case Intrinsic::experimental_constrained_fmuladd: {
7402     Opcode = ISD::STRICT_FMA;
7403     // Break fmuladd into fmul and fadd.
7404     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7405         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7406       Opers.pop_back();
7407       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7408       pushOutChain(Mul, EB);
7409       Opcode = ISD::STRICT_FADD;
7410       Opers.clear();
7411       Opers.push_back(Mul.getValue(1));
7412       Opers.push_back(Mul.getValue(0));
7413       Opers.push_back(getValue(FPI.getArgOperand(2)));
7414     }
7415     break;
7416   }
7417   }
7418 
7419   // A few strict DAG nodes carry additional operands that are not
7420   // set up by the default code above.
7421   switch (Opcode) {
7422   default: break;
7423   case ISD::STRICT_FP_ROUND:
7424     Opers.push_back(
7425         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7426     break;
7427   case ISD::STRICT_FSETCC:
7428   case ISD::STRICT_FSETCCS: {
7429     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7430     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7431     if (TM.Options.NoNaNsFPMath)
7432       Condition = getFCmpCodeWithoutNaN(Condition);
7433     Opers.push_back(DAG.getCondCode(Condition));
7434     break;
7435   }
7436   }
7437 
7438   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7439   pushOutChain(Result, EB);
7440 
7441   SDValue FPResult = Result.getValue(0);
7442   setValue(&FPI, FPResult);
7443 }
7444 
7445 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7446   std::optional<unsigned> ResOPC;
7447   switch (VPIntrin.getIntrinsicID()) {
7448   case Intrinsic::vp_ctlz: {
7449     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7450     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7451     break;
7452   }
7453   case Intrinsic::vp_cttz: {
7454     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(3))->isOne();
7455     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7456     break;
7457   }
7458 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7459   case Intrinsic::VPID:                                                        \
7460     ResOPC = ISD::VPSD;                                                        \
7461     break;
7462 #include "llvm/IR/VPIntrinsics.def"
7463   }
7464 
7465   if (!ResOPC)
7466     llvm_unreachable(
7467         "Inconsistency: no SDNode available for this VPIntrinsic!");
7468 
7469   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7470       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7471     if (VPIntrin.getFastMathFlags().allowReassoc())
7472       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7473                                                 : ISD::VP_REDUCE_FMUL;
7474   }
7475 
7476   return *ResOPC;
7477 }
7478 
7479 void SelectionDAGBuilder::visitVPLoad(const VPIntrinsic &VPIntrin, EVT VT,
7480                                       SmallVector<SDValue, 7> &OpValues) {
7481   SDLoc DL = getCurSDLoc();
7482   Value *PtrOperand = VPIntrin.getArgOperand(0);
7483   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7484   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7485   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7486   SDValue LD;
7487   bool AddToChain = true;
7488   // Do not serialize variable-length loads of constant memory with
7489   // anything.
7490   if (!Alignment)
7491     Alignment = DAG.getEVTAlign(VT);
7492   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7493   AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7494   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7495   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7496       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7497       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7498   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7499                      MMO, false /*IsExpanding */);
7500   if (AddToChain)
7501     PendingLoads.push_back(LD.getValue(1));
7502   setValue(&VPIntrin, LD);
7503 }
7504 
7505 void SelectionDAGBuilder::visitVPGather(const VPIntrinsic &VPIntrin, EVT VT,
7506                                         SmallVector<SDValue, 7> &OpValues) {
7507   SDLoc DL = getCurSDLoc();
7508   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7509   Value *PtrOperand = VPIntrin.getArgOperand(0);
7510   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7511   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7512   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7513   SDValue LD;
7514   if (!Alignment)
7515     Alignment = DAG.getEVTAlign(VT.getScalarType());
7516   unsigned AS =
7517     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7518   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7519      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7520      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7521   SDValue Base, Index, Scale;
7522   ISD::MemIndexType IndexType;
7523   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7524                                     this, VPIntrin.getParent(),
7525                                     VT.getScalarStoreSize());
7526   if (!UniformBase) {
7527     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7528     Index = getValue(PtrOperand);
7529     IndexType = ISD::SIGNED_SCALED;
7530     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7531   }
7532   EVT IdxVT = Index.getValueType();
7533   EVT EltTy = IdxVT.getVectorElementType();
7534   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7535     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7536     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7537   }
7538   LD = DAG.getGatherVP(
7539       DAG.getVTList(VT, MVT::Other), VT, DL,
7540       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7541       IndexType);
7542   PendingLoads.push_back(LD.getValue(1));
7543   setValue(&VPIntrin, LD);
7544 }
7545 
7546 void SelectionDAGBuilder::visitVPStore(const VPIntrinsic &VPIntrin,
7547                                        SmallVector<SDValue, 7> &OpValues) {
7548   SDLoc DL = getCurSDLoc();
7549   Value *PtrOperand = VPIntrin.getArgOperand(1);
7550   EVT VT = OpValues[0].getValueType();
7551   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7552   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7553   SDValue ST;
7554   if (!Alignment)
7555     Alignment = DAG.getEVTAlign(VT);
7556   SDValue Ptr = OpValues[1];
7557   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7558   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7559       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7560       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7561   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7562                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7563                       /* IsTruncating */ false, /*IsCompressing*/ false);
7564   DAG.setRoot(ST);
7565   setValue(&VPIntrin, ST);
7566 }
7567 
7568 void SelectionDAGBuilder::visitVPScatter(const VPIntrinsic &VPIntrin,
7569                                               SmallVector<SDValue, 7> &OpValues) {
7570   SDLoc DL = getCurSDLoc();
7571   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7572   Value *PtrOperand = VPIntrin.getArgOperand(1);
7573   EVT VT = OpValues[0].getValueType();
7574   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7575   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7576   SDValue ST;
7577   if (!Alignment)
7578     Alignment = DAG.getEVTAlign(VT.getScalarType());
7579   unsigned AS =
7580       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7581   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7582       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7583       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7584   SDValue Base, Index, Scale;
7585   ISD::MemIndexType IndexType;
7586   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7587                                     this, VPIntrin.getParent(),
7588                                     VT.getScalarStoreSize());
7589   if (!UniformBase) {
7590     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7591     Index = getValue(PtrOperand);
7592     IndexType = ISD::SIGNED_SCALED;
7593     Scale =
7594       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7595   }
7596   EVT IdxVT = Index.getValueType();
7597   EVT EltTy = IdxVT.getVectorElementType();
7598   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7599     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7600     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7601   }
7602   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7603                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7604                          OpValues[2], OpValues[3]},
7605                         MMO, IndexType);
7606   DAG.setRoot(ST);
7607   setValue(&VPIntrin, ST);
7608 }
7609 
7610 void SelectionDAGBuilder::visitVPStridedLoad(
7611     const VPIntrinsic &VPIntrin, EVT VT, SmallVectorImpl<SDValue> &OpValues) {
7612   SDLoc DL = getCurSDLoc();
7613   Value *PtrOperand = VPIntrin.getArgOperand(0);
7614   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7615   if (!Alignment)
7616     Alignment = DAG.getEVTAlign(VT.getScalarType());
7617   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7618   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7619   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7620   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7621   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7622   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7623       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7624       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7625 
7626   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7627                                     OpValues[2], OpValues[3], MMO,
7628                                     false /*IsExpanding*/);
7629 
7630   if (AddToChain)
7631     PendingLoads.push_back(LD.getValue(1));
7632   setValue(&VPIntrin, LD);
7633 }
7634 
7635 void SelectionDAGBuilder::visitVPStridedStore(
7636     const VPIntrinsic &VPIntrin, SmallVectorImpl<SDValue> &OpValues) {
7637   SDLoc DL = getCurSDLoc();
7638   Value *PtrOperand = VPIntrin.getArgOperand(1);
7639   EVT VT = OpValues[0].getValueType();
7640   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7641   if (!Alignment)
7642     Alignment = DAG.getEVTAlign(VT.getScalarType());
7643   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7644   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7645       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7646       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7647 
7648   SDValue ST = DAG.getStridedStoreVP(
7649       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7650       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7651       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7652       /*IsCompressing*/ false);
7653 
7654   DAG.setRoot(ST);
7655   setValue(&VPIntrin, ST);
7656 }
7657 
7658 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7659   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7660   SDLoc DL = getCurSDLoc();
7661 
7662   ISD::CondCode Condition;
7663   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7664   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7665   if (IsFP) {
7666     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7667     // flags, but calls that don't return floating-point types can't be
7668     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7669     Condition = getFCmpCondCode(CondCode);
7670     if (TM.Options.NoNaNsFPMath)
7671       Condition = getFCmpCodeWithoutNaN(Condition);
7672   } else {
7673     Condition = getICmpCondCode(CondCode);
7674   }
7675 
7676   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7677   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7678   // #2 is the condition code
7679   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7680   SDValue EVL = getValue(VPIntrin.getOperand(4));
7681   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7682   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7683          "Unexpected target EVL type");
7684   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7685 
7686   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7687                                                         VPIntrin.getType());
7688   setValue(&VPIntrin,
7689            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7690 }
7691 
7692 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7693     const VPIntrinsic &VPIntrin) {
7694   SDLoc DL = getCurSDLoc();
7695   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7696 
7697   auto IID = VPIntrin.getIntrinsicID();
7698 
7699   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7700     return visitVPCmp(*CmpI);
7701 
7702   SmallVector<EVT, 4> ValueVTs;
7703   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7704   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7705   SDVTList VTs = DAG.getVTList(ValueVTs);
7706 
7707   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7708 
7709   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7710   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7711          "Unexpected target EVL type");
7712 
7713   // Request operands.
7714   SmallVector<SDValue, 7> OpValues;
7715   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7716     auto Op = getValue(VPIntrin.getArgOperand(I));
7717     if (I == EVLParamPos)
7718       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7719     OpValues.push_back(Op);
7720   }
7721 
7722   switch (Opcode) {
7723   default: {
7724     SDNodeFlags SDFlags;
7725     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7726       SDFlags.copyFMF(*FPMO);
7727     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7728     setValue(&VPIntrin, Result);
7729     break;
7730   }
7731   case ISD::VP_LOAD:
7732     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7733     break;
7734   case ISD::VP_GATHER:
7735     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7736     break;
7737   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7738     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7739     break;
7740   case ISD::VP_STORE:
7741     visitVPStore(VPIntrin, OpValues);
7742     break;
7743   case ISD::VP_SCATTER:
7744     visitVPScatter(VPIntrin, OpValues);
7745     break;
7746   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7747     visitVPStridedStore(VPIntrin, OpValues);
7748     break;
7749   case ISD::VP_FMULADD: {
7750     assert(OpValues.size() == 5 && "Unexpected number of operands");
7751     SDNodeFlags SDFlags;
7752     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7753       SDFlags.copyFMF(*FPMO);
7754     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7755         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7756       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7757     } else {
7758       SDValue Mul = DAG.getNode(
7759           ISD::VP_FMUL, DL, VTs,
7760           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7761       SDValue Add =
7762           DAG.getNode(ISD::VP_FADD, DL, VTs,
7763                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7764       setValue(&VPIntrin, Add);
7765     }
7766     break;
7767   }
7768   case ISD::VP_INTTOPTR: {
7769     SDValue N = OpValues[0];
7770     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7771     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7772     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7773                                OpValues[2]);
7774     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7775                              OpValues[2]);
7776     setValue(&VPIntrin, N);
7777     break;
7778   }
7779   case ISD::VP_PTRTOINT: {
7780     SDValue N = OpValues[0];
7781     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7782                                                           VPIntrin.getType());
7783     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7784                                        VPIntrin.getOperand(0)->getType());
7785     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7786                                OpValues[2]);
7787     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7788                              OpValues[2]);
7789     setValue(&VPIntrin, N);
7790     break;
7791   }
7792   case ISD::VP_ABS:
7793   case ISD::VP_CTLZ:
7794   case ISD::VP_CTLZ_ZERO_UNDEF:
7795   case ISD::VP_CTTZ:
7796   case ISD::VP_CTTZ_ZERO_UNDEF: {
7797     // Pop is_zero_poison operand for cp.ctlz/cttz or
7798     // is_int_min_poison operand for vp.abs.
7799     OpValues.pop_back();
7800     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues);
7801     setValue(&VPIntrin, Result);
7802     break;
7803   }
7804   }
7805 }
7806 
7807 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7808                                           const BasicBlock *EHPadBB,
7809                                           MCSymbol *&BeginLabel) {
7810   MachineFunction &MF = DAG.getMachineFunction();
7811   MachineModuleInfo &MMI = MF.getMMI();
7812 
7813   // Insert a label before the invoke call to mark the try range.  This can be
7814   // used to detect deletion of the invoke via the MachineModuleInfo.
7815   BeginLabel = MMI.getContext().createTempSymbol();
7816 
7817   // For SjLj, keep track of which landing pads go with which invokes
7818   // so as to maintain the ordering of pads in the LSDA.
7819   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7820   if (CallSiteIndex) {
7821     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7822     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7823 
7824     // Now that the call site is handled, stop tracking it.
7825     MMI.setCurrentCallSite(0);
7826   }
7827 
7828   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7829 }
7830 
7831 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7832                                         const BasicBlock *EHPadBB,
7833                                         MCSymbol *BeginLabel) {
7834   assert(BeginLabel && "BeginLabel should've been set");
7835 
7836   MachineFunction &MF = DAG.getMachineFunction();
7837   MachineModuleInfo &MMI = MF.getMMI();
7838 
7839   // Insert a label at the end of the invoke call to mark the try range.  This
7840   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7841   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7842   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7843 
7844   // Inform MachineModuleInfo of range.
7845   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7846   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7847   // actually use outlined funclets and their LSDA info style.
7848   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7849     assert(II && "II should've been set");
7850     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
7851     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
7852   } else if (!isScopedEHPersonality(Pers)) {
7853     assert(EHPadBB);
7854     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7855   }
7856 
7857   return Chain;
7858 }
7859 
7860 std::pair<SDValue, SDValue>
7861 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
7862                                     const BasicBlock *EHPadBB) {
7863   MCSymbol *BeginLabel = nullptr;
7864 
7865   if (EHPadBB) {
7866     // Both PendingLoads and PendingExports must be flushed here;
7867     // this call might not return.
7868     (void)getRoot();
7869     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
7870     CLI.setChain(getRoot());
7871   }
7872 
7873   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7874   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
7875 
7876   assert((CLI.IsTailCall || Result.second.getNode()) &&
7877          "Non-null chain expected with non-tail call!");
7878   assert((Result.second.getNode() || !Result.first.getNode()) &&
7879          "Null value expected with tail call!");
7880 
7881   if (!Result.second.getNode()) {
7882     // As a special case, a null chain means that a tail call has been emitted
7883     // and the DAG root is already updated.
7884     HasTailCall = true;
7885 
7886     // Since there's no actual continuation from this block, nothing can be
7887     // relying on us setting vregs for them.
7888     PendingExports.clear();
7889   } else {
7890     DAG.setRoot(Result.second);
7891   }
7892 
7893   if (EHPadBB) {
7894     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
7895                            BeginLabel));
7896   }
7897 
7898   return Result;
7899 }
7900 
7901 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
7902                                       bool isTailCall,
7903                                       bool isMustTailCall,
7904                                       const BasicBlock *EHPadBB) {
7905   auto &DL = DAG.getDataLayout();
7906   FunctionType *FTy = CB.getFunctionType();
7907   Type *RetTy = CB.getType();
7908 
7909   TargetLowering::ArgListTy Args;
7910   Args.reserve(CB.arg_size());
7911 
7912   const Value *SwiftErrorVal = nullptr;
7913   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7914 
7915   if (isTailCall) {
7916     // Avoid emitting tail calls in functions with the disable-tail-calls
7917     // attribute.
7918     auto *Caller = CB.getParent()->getParent();
7919     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
7920         "true" && !isMustTailCall)
7921       isTailCall = false;
7922 
7923     // We can't tail call inside a function with a swifterror argument. Lowering
7924     // does not support this yet. It would have to move into the swifterror
7925     // register before the call.
7926     if (TLI.supportSwiftError() &&
7927         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7928       isTailCall = false;
7929   }
7930 
7931   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
7932     TargetLowering::ArgListEntry Entry;
7933     const Value *V = *I;
7934 
7935     // Skip empty types
7936     if (V->getType()->isEmptyTy())
7937       continue;
7938 
7939     SDValue ArgNode = getValue(V);
7940     Entry.Node = ArgNode; Entry.Ty = V->getType();
7941 
7942     Entry.setAttributes(&CB, I - CB.arg_begin());
7943 
7944     // Use swifterror virtual register as input to the call.
7945     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7946       SwiftErrorVal = V;
7947       // We find the virtual register for the actual swifterror argument.
7948       // Instead of using the Value, we use the virtual register instead.
7949       Entry.Node =
7950           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
7951                           EVT(TLI.getPointerTy(DL)));
7952     }
7953 
7954     Args.push_back(Entry);
7955 
7956     // If we have an explicit sret argument that is an Instruction, (i.e., it
7957     // might point to function-local memory), we can't meaningfully tail-call.
7958     if (Entry.IsSRet && isa<Instruction>(V))
7959       isTailCall = false;
7960   }
7961 
7962   // If call site has a cfguardtarget operand bundle, create and add an
7963   // additional ArgListEntry.
7964   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
7965     TargetLowering::ArgListEntry Entry;
7966     Value *V = Bundle->Inputs[0];
7967     SDValue ArgNode = getValue(V);
7968     Entry.Node = ArgNode;
7969     Entry.Ty = V->getType();
7970     Entry.IsCFGuardTarget = true;
7971     Args.push_back(Entry);
7972   }
7973 
7974   // Check if target-independent constraints permit a tail call here.
7975   // Target-dependent constraints are checked within TLI->LowerCallTo.
7976   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
7977     isTailCall = false;
7978 
7979   // Disable tail calls if there is an swifterror argument. Targets have not
7980   // been updated to support tail calls.
7981   if (TLI.supportSwiftError() && SwiftErrorVal)
7982     isTailCall = false;
7983 
7984   ConstantInt *CFIType = nullptr;
7985   if (CB.isIndirectCall()) {
7986     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
7987       if (!TLI.supportKCFIBundles())
7988         report_fatal_error(
7989             "Target doesn't support calls with kcfi operand bundles.");
7990       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
7991       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
7992     }
7993   }
7994 
7995   TargetLowering::CallLoweringInfo CLI(DAG);
7996   CLI.setDebugLoc(getCurSDLoc())
7997       .setChain(getRoot())
7998       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
7999       .setTailCall(isTailCall)
8000       .setConvergent(CB.isConvergent())
8001       .setIsPreallocated(
8002           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8003       .setCFIType(CFIType);
8004   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8005 
8006   if (Result.first.getNode()) {
8007     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8008     setValue(&CB, Result.first);
8009   }
8010 
8011   // The last element of CLI.InVals has the SDValue for swifterror return.
8012   // Here we copy it to a virtual register and update SwiftErrorMap for
8013   // book-keeping.
8014   if (SwiftErrorVal && TLI.supportSwiftError()) {
8015     // Get the last element of InVals.
8016     SDValue Src = CLI.InVals.back();
8017     Register VReg =
8018         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8019     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8020     DAG.setRoot(CopyNode);
8021   }
8022 }
8023 
8024 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8025                              SelectionDAGBuilder &Builder) {
8026   // Check to see if this load can be trivially constant folded, e.g. if the
8027   // input is from a string literal.
8028   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8029     // Cast pointer to the type we really want to load.
8030     Type *LoadTy =
8031         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8032     if (LoadVT.isVector())
8033       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8034 
8035     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8036                                          PointerType::getUnqual(LoadTy));
8037 
8038     if (const Constant *LoadCst =
8039             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8040                                          LoadTy, Builder.DAG.getDataLayout()))
8041       return Builder.getValue(LoadCst);
8042   }
8043 
8044   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8045   // still constant memory, the input chain can be the entry node.
8046   SDValue Root;
8047   bool ConstantMemory = false;
8048 
8049   // Do not serialize (non-volatile) loads of constant memory with anything.
8050   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8051     Root = Builder.DAG.getEntryNode();
8052     ConstantMemory = true;
8053   } else {
8054     // Do not serialize non-volatile loads against each other.
8055     Root = Builder.DAG.getRoot();
8056   }
8057 
8058   SDValue Ptr = Builder.getValue(PtrVal);
8059   SDValue LoadVal =
8060       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8061                           MachinePointerInfo(PtrVal), Align(1));
8062 
8063   if (!ConstantMemory)
8064     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8065   return LoadVal;
8066 }
8067 
8068 /// Record the value for an instruction that produces an integer result,
8069 /// converting the type where necessary.
8070 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8071                                                   SDValue Value,
8072                                                   bool IsSigned) {
8073   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8074                                                     I.getType(), true);
8075   if (IsSigned)
8076     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
8077   else
8078     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
8079   setValue(&I, Value);
8080 }
8081 
8082 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8083 /// true and lower it. Otherwise return false, and it will be lowered like a
8084 /// normal call.
8085 /// The caller already checked that \p I calls the appropriate LibFunc with a
8086 /// correct prototype.
8087 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8088   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8089   const Value *Size = I.getArgOperand(2);
8090   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8091   if (CSize && CSize->getZExtValue() == 0) {
8092     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8093                                                           I.getType(), true);
8094     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8095     return true;
8096   }
8097 
8098   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8099   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8100       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8101       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8102   if (Res.first.getNode()) {
8103     processIntegerCallValue(I, Res.first, true);
8104     PendingLoads.push_back(Res.second);
8105     return true;
8106   }
8107 
8108   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8109   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8110   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8111     return false;
8112 
8113   // If the target has a fast compare for the given size, it will return a
8114   // preferred load type for that size. Require that the load VT is legal and
8115   // that the target supports unaligned loads of that type. Otherwise, return
8116   // INVALID.
8117   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8118     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8119     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8120     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8121       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8122       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8123       // TODO: Check alignment of src and dest ptrs.
8124       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8125       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8126       if (!TLI.isTypeLegal(LVT) ||
8127           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8128           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8129         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8130     }
8131 
8132     return LVT;
8133   };
8134 
8135   // This turns into unaligned loads. We only do this if the target natively
8136   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8137   // we'll only produce a small number of byte loads.
8138   MVT LoadVT;
8139   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8140   switch (NumBitsToCompare) {
8141   default:
8142     return false;
8143   case 16:
8144     LoadVT = MVT::i16;
8145     break;
8146   case 32:
8147     LoadVT = MVT::i32;
8148     break;
8149   case 64:
8150   case 128:
8151   case 256:
8152     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8153     break;
8154   }
8155 
8156   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8157     return false;
8158 
8159   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8160   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8161 
8162   // Bitcast to a wide integer type if the loads are vectors.
8163   if (LoadVT.isVector()) {
8164     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8165     LoadL = DAG.getBitcast(CmpVT, LoadL);
8166     LoadR = DAG.getBitcast(CmpVT, LoadR);
8167   }
8168 
8169   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8170   processIntegerCallValue(I, Cmp, false);
8171   return true;
8172 }
8173 
8174 /// See if we can lower a memchr call into an optimized form. If so, return
8175 /// true and lower it. Otherwise return false, and it will be lowered like a
8176 /// normal call.
8177 /// The caller already checked that \p I calls the appropriate LibFunc with a
8178 /// correct prototype.
8179 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8180   const Value *Src = I.getArgOperand(0);
8181   const Value *Char = I.getArgOperand(1);
8182   const Value *Length = I.getArgOperand(2);
8183 
8184   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8185   std::pair<SDValue, SDValue> Res =
8186     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8187                                 getValue(Src), getValue(Char), getValue(Length),
8188                                 MachinePointerInfo(Src));
8189   if (Res.first.getNode()) {
8190     setValue(&I, Res.first);
8191     PendingLoads.push_back(Res.second);
8192     return true;
8193   }
8194 
8195   return false;
8196 }
8197 
8198 /// See if we can lower a mempcpy call into an optimized form. If so, return
8199 /// true and lower it. Otherwise return false, and it will be lowered like a
8200 /// normal call.
8201 /// The caller already checked that \p I calls the appropriate LibFunc with a
8202 /// correct prototype.
8203 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8204   SDValue Dst = getValue(I.getArgOperand(0));
8205   SDValue Src = getValue(I.getArgOperand(1));
8206   SDValue Size = getValue(I.getArgOperand(2));
8207 
8208   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8209   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8210   // DAG::getMemcpy needs Alignment to be defined.
8211   Align Alignment = std::min(DstAlign, SrcAlign);
8212 
8213   bool isVol = false;
8214   SDLoc sdl = getCurSDLoc();
8215 
8216   // In the mempcpy context we need to pass in a false value for isTailCall
8217   // because the return pointer needs to be adjusted by the size of
8218   // the copied memory.
8219   SDValue Root = isVol ? getRoot() : getMemoryRoot();
8220   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false,
8221                              /*isTailCall=*/false,
8222                              MachinePointerInfo(I.getArgOperand(0)),
8223                              MachinePointerInfo(I.getArgOperand(1)),
8224                              I.getAAMetadata());
8225   assert(MC.getNode() != nullptr &&
8226          "** memcpy should not be lowered as TailCall in mempcpy context **");
8227   DAG.setRoot(MC);
8228 
8229   // Check if Size needs to be truncated or extended.
8230   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8231 
8232   // Adjust return pointer to point just past the last dst byte.
8233   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8234                                     Dst, Size);
8235   setValue(&I, DstPlusSize);
8236   return true;
8237 }
8238 
8239 /// See if we can lower a strcpy call into an optimized form.  If so, return
8240 /// true and lower it, otherwise return false and it will be lowered like a
8241 /// normal call.
8242 /// The caller already checked that \p I calls the appropriate LibFunc with a
8243 /// correct prototype.
8244 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8245   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8246 
8247   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8248   std::pair<SDValue, SDValue> Res =
8249     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8250                                 getValue(Arg0), getValue(Arg1),
8251                                 MachinePointerInfo(Arg0),
8252                                 MachinePointerInfo(Arg1), isStpcpy);
8253   if (Res.first.getNode()) {
8254     setValue(&I, Res.first);
8255     DAG.setRoot(Res.second);
8256     return true;
8257   }
8258 
8259   return false;
8260 }
8261 
8262 /// See if we can lower a strcmp call into an optimized form.  If so, return
8263 /// true and lower it, otherwise return false and it will be lowered like a
8264 /// normal call.
8265 /// The caller already checked that \p I calls the appropriate LibFunc with a
8266 /// correct prototype.
8267 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8268   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8269 
8270   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8271   std::pair<SDValue, SDValue> Res =
8272     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8273                                 getValue(Arg0), getValue(Arg1),
8274                                 MachinePointerInfo(Arg0),
8275                                 MachinePointerInfo(Arg1));
8276   if (Res.first.getNode()) {
8277     processIntegerCallValue(I, Res.first, true);
8278     PendingLoads.push_back(Res.second);
8279     return true;
8280   }
8281 
8282   return false;
8283 }
8284 
8285 /// See if we can lower a strlen call into an optimized form.  If so, return
8286 /// true and lower it, otherwise return false and it will be lowered like a
8287 /// normal call.
8288 /// The caller already checked that \p I calls the appropriate LibFunc with a
8289 /// correct prototype.
8290 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8291   const Value *Arg0 = I.getArgOperand(0);
8292 
8293   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8294   std::pair<SDValue, SDValue> Res =
8295     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8296                                 getValue(Arg0), MachinePointerInfo(Arg0));
8297   if (Res.first.getNode()) {
8298     processIntegerCallValue(I, Res.first, false);
8299     PendingLoads.push_back(Res.second);
8300     return true;
8301   }
8302 
8303   return false;
8304 }
8305 
8306 /// See if we can lower a strnlen call into an optimized form.  If so, return
8307 /// true and lower it, otherwise return false and it will be lowered like a
8308 /// normal call.
8309 /// The caller already checked that \p I calls the appropriate LibFunc with a
8310 /// correct prototype.
8311 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8312   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8313 
8314   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8315   std::pair<SDValue, SDValue> Res =
8316     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8317                                  getValue(Arg0), getValue(Arg1),
8318                                  MachinePointerInfo(Arg0));
8319   if (Res.first.getNode()) {
8320     processIntegerCallValue(I, Res.first, false);
8321     PendingLoads.push_back(Res.second);
8322     return true;
8323   }
8324 
8325   return false;
8326 }
8327 
8328 /// See if we can lower a unary floating-point operation into an SDNode with
8329 /// the specified Opcode.  If so, return true and lower it, otherwise return
8330 /// false and it will be lowered like a normal call.
8331 /// The caller already checked that \p I calls the appropriate LibFunc with a
8332 /// correct prototype.
8333 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8334                                               unsigned Opcode) {
8335   // We already checked this call's prototype; verify it doesn't modify errno.
8336   if (!I.onlyReadsMemory())
8337     return false;
8338 
8339   SDNodeFlags Flags;
8340   Flags.copyFMF(cast<FPMathOperator>(I));
8341 
8342   SDValue Tmp = getValue(I.getArgOperand(0));
8343   setValue(&I,
8344            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8345   return true;
8346 }
8347 
8348 /// See if we can lower a binary floating-point operation into an SDNode with
8349 /// the specified Opcode. If so, return true and lower it. Otherwise return
8350 /// false, and it will be lowered like a normal call.
8351 /// The caller already checked that \p I calls the appropriate LibFunc with a
8352 /// correct prototype.
8353 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8354                                                unsigned Opcode) {
8355   // We already checked this call's prototype; verify it doesn't modify errno.
8356   if (!I.onlyReadsMemory())
8357     return false;
8358 
8359   SDNodeFlags Flags;
8360   Flags.copyFMF(cast<FPMathOperator>(I));
8361 
8362   SDValue Tmp0 = getValue(I.getArgOperand(0));
8363   SDValue Tmp1 = getValue(I.getArgOperand(1));
8364   EVT VT = Tmp0.getValueType();
8365   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8366   return true;
8367 }
8368 
8369 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8370   // Handle inline assembly differently.
8371   if (I.isInlineAsm()) {
8372     visitInlineAsm(I);
8373     return;
8374   }
8375 
8376   diagnoseDontCall(I);
8377 
8378   if (Function *F = I.getCalledFunction()) {
8379     if (F->isDeclaration()) {
8380       // Is this an LLVM intrinsic or a target-specific intrinsic?
8381       unsigned IID = F->getIntrinsicID();
8382       if (!IID)
8383         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8384           IID = II->getIntrinsicID(F);
8385 
8386       if (IID) {
8387         visitIntrinsicCall(I, IID);
8388         return;
8389       }
8390     }
8391 
8392     // Check for well-known libc/libm calls.  If the function is internal, it
8393     // can't be a library call.  Don't do the check if marked as nobuiltin for
8394     // some reason or the call site requires strict floating point semantics.
8395     LibFunc Func;
8396     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8397         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8398         LibInfo->hasOptimizedCodeGen(Func)) {
8399       switch (Func) {
8400       default: break;
8401       case LibFunc_bcmp:
8402         if (visitMemCmpBCmpCall(I))
8403           return;
8404         break;
8405       case LibFunc_copysign:
8406       case LibFunc_copysignf:
8407       case LibFunc_copysignl:
8408         // We already checked this call's prototype; verify it doesn't modify
8409         // errno.
8410         if (I.onlyReadsMemory()) {
8411           SDValue LHS = getValue(I.getArgOperand(0));
8412           SDValue RHS = getValue(I.getArgOperand(1));
8413           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8414                                    LHS.getValueType(), LHS, RHS));
8415           return;
8416         }
8417         break;
8418       case LibFunc_fabs:
8419       case LibFunc_fabsf:
8420       case LibFunc_fabsl:
8421         if (visitUnaryFloatCall(I, ISD::FABS))
8422           return;
8423         break;
8424       case LibFunc_fmin:
8425       case LibFunc_fminf:
8426       case LibFunc_fminl:
8427         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8428           return;
8429         break;
8430       case LibFunc_fmax:
8431       case LibFunc_fmaxf:
8432       case LibFunc_fmaxl:
8433         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8434           return;
8435         break;
8436       case LibFunc_sin:
8437       case LibFunc_sinf:
8438       case LibFunc_sinl:
8439         if (visitUnaryFloatCall(I, ISD::FSIN))
8440           return;
8441         break;
8442       case LibFunc_cos:
8443       case LibFunc_cosf:
8444       case LibFunc_cosl:
8445         if (visitUnaryFloatCall(I, ISD::FCOS))
8446           return;
8447         break;
8448       case LibFunc_sqrt:
8449       case LibFunc_sqrtf:
8450       case LibFunc_sqrtl:
8451       case LibFunc_sqrt_finite:
8452       case LibFunc_sqrtf_finite:
8453       case LibFunc_sqrtl_finite:
8454         if (visitUnaryFloatCall(I, ISD::FSQRT))
8455           return;
8456         break;
8457       case LibFunc_floor:
8458       case LibFunc_floorf:
8459       case LibFunc_floorl:
8460         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8461           return;
8462         break;
8463       case LibFunc_nearbyint:
8464       case LibFunc_nearbyintf:
8465       case LibFunc_nearbyintl:
8466         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8467           return;
8468         break;
8469       case LibFunc_ceil:
8470       case LibFunc_ceilf:
8471       case LibFunc_ceill:
8472         if (visitUnaryFloatCall(I, ISD::FCEIL))
8473           return;
8474         break;
8475       case LibFunc_rint:
8476       case LibFunc_rintf:
8477       case LibFunc_rintl:
8478         if (visitUnaryFloatCall(I, ISD::FRINT))
8479           return;
8480         break;
8481       case LibFunc_round:
8482       case LibFunc_roundf:
8483       case LibFunc_roundl:
8484         if (visitUnaryFloatCall(I, ISD::FROUND))
8485           return;
8486         break;
8487       case LibFunc_trunc:
8488       case LibFunc_truncf:
8489       case LibFunc_truncl:
8490         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8491           return;
8492         break;
8493       case LibFunc_log2:
8494       case LibFunc_log2f:
8495       case LibFunc_log2l:
8496         if (visitUnaryFloatCall(I, ISD::FLOG2))
8497           return;
8498         break;
8499       case LibFunc_exp2:
8500       case LibFunc_exp2f:
8501       case LibFunc_exp2l:
8502         if (visitUnaryFloatCall(I, ISD::FEXP2))
8503           return;
8504         break;
8505       case LibFunc_memcmp:
8506         if (visitMemCmpBCmpCall(I))
8507           return;
8508         break;
8509       case LibFunc_mempcpy:
8510         if (visitMemPCpyCall(I))
8511           return;
8512         break;
8513       case LibFunc_memchr:
8514         if (visitMemChrCall(I))
8515           return;
8516         break;
8517       case LibFunc_strcpy:
8518         if (visitStrCpyCall(I, false))
8519           return;
8520         break;
8521       case LibFunc_stpcpy:
8522         if (visitStrCpyCall(I, true))
8523           return;
8524         break;
8525       case LibFunc_strcmp:
8526         if (visitStrCmpCall(I))
8527           return;
8528         break;
8529       case LibFunc_strlen:
8530         if (visitStrLenCall(I))
8531           return;
8532         break;
8533       case LibFunc_strnlen:
8534         if (visitStrNLenCall(I))
8535           return;
8536         break;
8537       }
8538     }
8539   }
8540 
8541   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8542   // have to do anything here to lower funclet bundles.
8543   // CFGuardTarget bundles are lowered in LowerCallTo.
8544   assert(!I.hasOperandBundlesOtherThan(
8545              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8546               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8547               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8548          "Cannot lower calls with arbitrary operand bundles!");
8549 
8550   SDValue Callee = getValue(I.getCalledOperand());
8551 
8552   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8553     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8554   else
8555     // Check if we can potentially perform a tail call. More detailed checking
8556     // is be done within LowerCallTo, after more information about the call is
8557     // known.
8558     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8559 }
8560 
8561 namespace {
8562 
8563 /// AsmOperandInfo - This contains information for each constraint that we are
8564 /// lowering.
8565 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8566 public:
8567   /// CallOperand - If this is the result output operand or a clobber
8568   /// this is null, otherwise it is the incoming operand to the CallInst.
8569   /// This gets modified as the asm is processed.
8570   SDValue CallOperand;
8571 
8572   /// AssignedRegs - If this is a register or register class operand, this
8573   /// contains the set of register corresponding to the operand.
8574   RegsForValue AssignedRegs;
8575 
8576   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8577     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8578   }
8579 
8580   /// Whether or not this operand accesses memory
8581   bool hasMemory(const TargetLowering &TLI) const {
8582     // Indirect operand accesses access memory.
8583     if (isIndirect)
8584       return true;
8585 
8586     for (const auto &Code : Codes)
8587       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8588         return true;
8589 
8590     return false;
8591   }
8592 };
8593 
8594 
8595 } // end anonymous namespace
8596 
8597 /// Make sure that the output operand \p OpInfo and its corresponding input
8598 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8599 /// out).
8600 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8601                                SDISelAsmOperandInfo &MatchingOpInfo,
8602                                SelectionDAG &DAG) {
8603   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8604     return;
8605 
8606   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8607   const auto &TLI = DAG.getTargetLoweringInfo();
8608 
8609   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8610       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8611                                        OpInfo.ConstraintVT);
8612   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8613       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8614                                        MatchingOpInfo.ConstraintVT);
8615   if ((OpInfo.ConstraintVT.isInteger() !=
8616        MatchingOpInfo.ConstraintVT.isInteger()) ||
8617       (MatchRC.second != InputRC.second)) {
8618     // FIXME: error out in a more elegant fashion
8619     report_fatal_error("Unsupported asm: input constraint"
8620                        " with a matching output constraint of"
8621                        " incompatible type!");
8622   }
8623   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8624 }
8625 
8626 /// Get a direct memory input to behave well as an indirect operand.
8627 /// This may introduce stores, hence the need for a \p Chain.
8628 /// \return The (possibly updated) chain.
8629 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8630                                         SDISelAsmOperandInfo &OpInfo,
8631                                         SelectionDAG &DAG) {
8632   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8633 
8634   // If we don't have an indirect input, put it in the constpool if we can,
8635   // otherwise spill it to a stack slot.
8636   // TODO: This isn't quite right. We need to handle these according to
8637   // the addressing mode that the constraint wants. Also, this may take
8638   // an additional register for the computation and we don't want that
8639   // either.
8640 
8641   // If the operand is a float, integer, or vector constant, spill to a
8642   // constant pool entry to get its address.
8643   const Value *OpVal = OpInfo.CallOperandVal;
8644   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8645       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8646     OpInfo.CallOperand = DAG.getConstantPool(
8647         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8648     return Chain;
8649   }
8650 
8651   // Otherwise, create a stack slot and emit a store to it before the asm.
8652   Type *Ty = OpVal->getType();
8653   auto &DL = DAG.getDataLayout();
8654   uint64_t TySize = DL.getTypeAllocSize(Ty);
8655   MachineFunction &MF = DAG.getMachineFunction();
8656   int SSFI = MF.getFrameInfo().CreateStackObject(
8657       TySize, DL.getPrefTypeAlign(Ty), false);
8658   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8659   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8660                             MachinePointerInfo::getFixedStack(MF, SSFI),
8661                             TLI.getMemValueType(DL, Ty));
8662   OpInfo.CallOperand = StackSlot;
8663 
8664   return Chain;
8665 }
8666 
8667 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8668 /// specified operand.  We prefer to assign virtual registers, to allow the
8669 /// register allocator to handle the assignment process.  However, if the asm
8670 /// uses features that we can't model on machineinstrs, we have SDISel do the
8671 /// allocation.  This produces generally horrible, but correct, code.
8672 ///
8673 ///   OpInfo describes the operand
8674 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8675 static std::optional<unsigned>
8676 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8677                      SDISelAsmOperandInfo &OpInfo,
8678                      SDISelAsmOperandInfo &RefOpInfo) {
8679   LLVMContext &Context = *DAG.getContext();
8680   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8681 
8682   MachineFunction &MF = DAG.getMachineFunction();
8683   SmallVector<unsigned, 4> Regs;
8684   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8685 
8686   // No work to do for memory/address operands.
8687   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8688       OpInfo.ConstraintType == TargetLowering::C_Address)
8689     return std::nullopt;
8690 
8691   // If this is a constraint for a single physreg, or a constraint for a
8692   // register class, find it.
8693   unsigned AssignedReg;
8694   const TargetRegisterClass *RC;
8695   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8696       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8697   // RC is unset only on failure. Return immediately.
8698   if (!RC)
8699     return std::nullopt;
8700 
8701   // Get the actual register value type.  This is important, because the user
8702   // may have asked for (e.g.) the AX register in i32 type.  We need to
8703   // remember that AX is actually i16 to get the right extension.
8704   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8705 
8706   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8707     // If this is an FP operand in an integer register (or visa versa), or more
8708     // generally if the operand value disagrees with the register class we plan
8709     // to stick it in, fix the operand type.
8710     //
8711     // If this is an input value, the bitcast to the new type is done now.
8712     // Bitcast for output value is done at the end of visitInlineAsm().
8713     if ((OpInfo.Type == InlineAsm::isOutput ||
8714          OpInfo.Type == InlineAsm::isInput) &&
8715         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8716       // Try to convert to the first EVT that the reg class contains.  If the
8717       // types are identical size, use a bitcast to convert (e.g. two differing
8718       // vector types).  Note: output bitcast is done at the end of
8719       // visitInlineAsm().
8720       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8721         // Exclude indirect inputs while they are unsupported because the code
8722         // to perform the load is missing and thus OpInfo.CallOperand still
8723         // refers to the input address rather than the pointed-to value.
8724         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8725           OpInfo.CallOperand =
8726               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8727         OpInfo.ConstraintVT = RegVT;
8728         // If the operand is an FP value and we want it in integer registers,
8729         // use the corresponding integer type. This turns an f64 value into
8730         // i64, which can be passed with two i32 values on a 32-bit machine.
8731       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8732         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8733         if (OpInfo.Type == InlineAsm::isInput)
8734           OpInfo.CallOperand =
8735               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8736         OpInfo.ConstraintVT = VT;
8737       }
8738     }
8739   }
8740 
8741   // No need to allocate a matching input constraint since the constraint it's
8742   // matching to has already been allocated.
8743   if (OpInfo.isMatchingInputConstraint())
8744     return std::nullopt;
8745 
8746   EVT ValueVT = OpInfo.ConstraintVT;
8747   if (OpInfo.ConstraintVT == MVT::Other)
8748     ValueVT = RegVT;
8749 
8750   // Initialize NumRegs.
8751   unsigned NumRegs = 1;
8752   if (OpInfo.ConstraintVT != MVT::Other)
8753     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8754 
8755   // If this is a constraint for a specific physical register, like {r17},
8756   // assign it now.
8757 
8758   // If this associated to a specific register, initialize iterator to correct
8759   // place. If virtual, make sure we have enough registers
8760 
8761   // Initialize iterator if necessary
8762   TargetRegisterClass::iterator I = RC->begin();
8763   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8764 
8765   // Do not check for single registers.
8766   if (AssignedReg) {
8767     I = std::find(I, RC->end(), AssignedReg);
8768     if (I == RC->end()) {
8769       // RC does not contain the selected register, which indicates a
8770       // mismatch between the register and the required type/bitwidth.
8771       return {AssignedReg};
8772     }
8773   }
8774 
8775   for (; NumRegs; --NumRegs, ++I) {
8776     assert(I != RC->end() && "Ran out of registers to allocate!");
8777     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8778     Regs.push_back(R);
8779   }
8780 
8781   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8782   return std::nullopt;
8783 }
8784 
8785 static unsigned
8786 findMatchingInlineAsmOperand(unsigned OperandNo,
8787                              const std::vector<SDValue> &AsmNodeOperands) {
8788   // Scan until we find the definition we already emitted of this operand.
8789   unsigned CurOp = InlineAsm::Op_FirstOperand;
8790   for (; OperandNo; --OperandNo) {
8791     // Advance to the next operand.
8792     unsigned OpFlag =
8793         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8794     assert((InlineAsm::isRegDefKind(OpFlag) ||
8795             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8796             InlineAsm::isMemKind(OpFlag)) &&
8797            "Skipped past definitions?");
8798     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8799   }
8800   return CurOp;
8801 }
8802 
8803 namespace {
8804 
8805 class ExtraFlags {
8806   unsigned Flags = 0;
8807 
8808 public:
8809   explicit ExtraFlags(const CallBase &Call) {
8810     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8811     if (IA->hasSideEffects())
8812       Flags |= InlineAsm::Extra_HasSideEffects;
8813     if (IA->isAlignStack())
8814       Flags |= InlineAsm::Extra_IsAlignStack;
8815     if (Call.isConvergent())
8816       Flags |= InlineAsm::Extra_IsConvergent;
8817     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8818   }
8819 
8820   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8821     // Ideally, we would only check against memory constraints.  However, the
8822     // meaning of an Other constraint can be target-specific and we can't easily
8823     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8824     // for Other constraints as well.
8825     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8826         OpInfo.ConstraintType == TargetLowering::C_Other) {
8827       if (OpInfo.Type == InlineAsm::isInput)
8828         Flags |= InlineAsm::Extra_MayLoad;
8829       else if (OpInfo.Type == InlineAsm::isOutput)
8830         Flags |= InlineAsm::Extra_MayStore;
8831       else if (OpInfo.Type == InlineAsm::isClobber)
8832         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8833     }
8834   }
8835 
8836   unsigned get() const { return Flags; }
8837 };
8838 
8839 } // end anonymous namespace
8840 
8841 static bool isFunction(SDValue Op) {
8842   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
8843     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8844       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
8845 
8846       // In normal "call dllimport func" instruction (non-inlineasm) it force
8847       // indirect access by specifing call opcode. And usually specially print
8848       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
8849       // not do in this way now. (In fact, this is similar with "Data Access"
8850       // action). So here we ignore dllimport function.
8851       if (Fn && !Fn->hasDLLImportStorageClass())
8852         return true;
8853     }
8854   }
8855   return false;
8856 }
8857 
8858 /// visitInlineAsm - Handle a call to an InlineAsm object.
8859 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
8860                                          const BasicBlock *EHPadBB) {
8861   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8862 
8863   /// ConstraintOperands - Information about all of the constraints.
8864   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
8865 
8866   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8867   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
8868       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
8869 
8870   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
8871   // AsmDialect, MayLoad, MayStore).
8872   bool HasSideEffect = IA->hasSideEffects();
8873   ExtraFlags ExtraInfo(Call);
8874 
8875   for (auto &T : TargetConstraints) {
8876     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
8877     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
8878 
8879     if (OpInfo.CallOperandVal)
8880       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8881 
8882     if (!HasSideEffect)
8883       HasSideEffect = OpInfo.hasMemory(TLI);
8884 
8885     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8886     // FIXME: Could we compute this on OpInfo rather than T?
8887 
8888     // Compute the constraint code and ConstraintType to use.
8889     TLI.ComputeConstraintToUse(T, SDValue());
8890 
8891     if (T.ConstraintType == TargetLowering::C_Immediate &&
8892         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
8893       // We've delayed emitting a diagnostic like the "n" constraint because
8894       // inlining could cause an integer showing up.
8895       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
8896                                           "' expects an integer constant "
8897                                           "expression");
8898 
8899     ExtraInfo.update(T);
8900   }
8901 
8902   // We won't need to flush pending loads if this asm doesn't touch
8903   // memory and is nonvolatile.
8904   SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8905 
8906   bool EmitEHLabels = isa<InvokeInst>(Call);
8907   if (EmitEHLabels) {
8908     assert(EHPadBB && "InvokeInst must have an EHPadBB");
8909   }
8910   bool IsCallBr = isa<CallBrInst>(Call);
8911 
8912   if (IsCallBr || EmitEHLabels) {
8913     // If this is a callbr or invoke we need to flush pending exports since
8914     // inlineasm_br and invoke are terminators.
8915     // We need to do this before nodes are glued to the inlineasm_br node.
8916     Chain = getControlRoot();
8917   }
8918 
8919   MCSymbol *BeginLabel = nullptr;
8920   if (EmitEHLabels) {
8921     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
8922   }
8923 
8924   int OpNo = -1;
8925   SmallVector<StringRef> AsmStrs;
8926   IA->collectAsmStrs(AsmStrs);
8927 
8928   // Second pass over the constraints: compute which constraint option to use.
8929   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8930     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
8931       OpNo++;
8932 
8933     // If this is an output operand with a matching input operand, look up the
8934     // matching input. If their types mismatch, e.g. one is an integer, the
8935     // other is floating point, or their sizes are different, flag it as an
8936     // error.
8937     if (OpInfo.hasMatchingInput()) {
8938       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8939       patchMatchingInput(OpInfo, Input, DAG);
8940     }
8941 
8942     // Compute the constraint code and ConstraintType to use.
8943     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8944 
8945     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
8946          OpInfo.Type == InlineAsm::isClobber) ||
8947         OpInfo.ConstraintType == TargetLowering::C_Address)
8948       continue;
8949 
8950     // In Linux PIC model, there are 4 cases about value/label addressing:
8951     //
8952     // 1: Function call or Label jmp inside the module.
8953     // 2: Data access (such as global variable, static variable) inside module.
8954     // 3: Function call or Label jmp outside the module.
8955     // 4: Data access (such as global variable) outside the module.
8956     //
8957     // Due to current llvm inline asm architecture designed to not "recognize"
8958     // the asm code, there are quite troubles for us to treat mem addressing
8959     // differently for same value/adress used in different instuctions.
8960     // For example, in pic model, call a func may in plt way or direclty
8961     // pc-related, but lea/mov a function adress may use got.
8962     //
8963     // Here we try to "recognize" function call for the case 1 and case 3 in
8964     // inline asm. And try to adjust the constraint for them.
8965     //
8966     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
8967     // label, so here we don't handle jmp function label now, but we need to
8968     // enhance it (especilly in PIC model) if we meet meaningful requirements.
8969     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
8970         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
8971         TM.getCodeModel() != CodeModel::Large) {
8972       OpInfo.isIndirect = false;
8973       OpInfo.ConstraintType = TargetLowering::C_Address;
8974     }
8975 
8976     // If this is a memory input, and if the operand is not indirect, do what we
8977     // need to provide an address for the memory input.
8978     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8979         !OpInfo.isIndirect) {
8980       assert((OpInfo.isMultipleAlternative ||
8981               (OpInfo.Type == InlineAsm::isInput)) &&
8982              "Can only indirectify direct input operands!");
8983 
8984       // Memory operands really want the address of the value.
8985       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8986 
8987       // There is no longer a Value* corresponding to this operand.
8988       OpInfo.CallOperandVal = nullptr;
8989 
8990       // It is now an indirect operand.
8991       OpInfo.isIndirect = true;
8992     }
8993 
8994   }
8995 
8996   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8997   std::vector<SDValue> AsmNodeOperands;
8998   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
8999   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9000       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9001 
9002   // If we have a !srcloc metadata node associated with it, we want to attach
9003   // this to the ultimately generated inline asm machineinstr.  To do this, we
9004   // pass in the third operand as this (potentially null) inline asm MDNode.
9005   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9006   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9007 
9008   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9009   // bits as operand 3.
9010   AsmNodeOperands.push_back(DAG.getTargetConstant(
9011       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9012 
9013   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9014   // this, assign virtual and physical registers for inputs and otput.
9015   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9016     // Assign Registers.
9017     SDISelAsmOperandInfo &RefOpInfo =
9018         OpInfo.isMatchingInputConstraint()
9019             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9020             : OpInfo;
9021     const auto RegError =
9022         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9023     if (RegError) {
9024       const MachineFunction &MF = DAG.getMachineFunction();
9025       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9026       const char *RegName = TRI.getName(*RegError);
9027       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9028                                    "' allocated for constraint '" +
9029                                    Twine(OpInfo.ConstraintCode) +
9030                                    "' does not match required type");
9031       return;
9032     }
9033 
9034     auto DetectWriteToReservedRegister = [&]() {
9035       const MachineFunction &MF = DAG.getMachineFunction();
9036       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9037       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9038         if (Register::isPhysicalRegister(Reg) &&
9039             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9040           const char *RegName = TRI.getName(Reg);
9041           emitInlineAsmError(Call, "write to reserved register '" +
9042                                        Twine(RegName) + "'");
9043           return true;
9044         }
9045       }
9046       return false;
9047     };
9048     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9049             (OpInfo.Type == InlineAsm::isInput &&
9050              !OpInfo.isMatchingInputConstraint())) &&
9051            "Only address as input operand is allowed.");
9052 
9053     switch (OpInfo.Type) {
9054     case InlineAsm::isOutput:
9055       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9056         unsigned ConstraintID =
9057             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9058         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9059                "Failed to convert memory constraint code to constraint id.");
9060 
9061         // Add information to the INLINEASM node to know about this output.
9062         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9063         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9064         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9065                                                         MVT::i32));
9066         AsmNodeOperands.push_back(OpInfo.CallOperand);
9067       } else {
9068         // Otherwise, this outputs to a register (directly for C_Register /
9069         // C_RegisterClass, and a target-defined fashion for
9070         // C_Immediate/C_Other). Find a register that we can use.
9071         if (OpInfo.AssignedRegs.Regs.empty()) {
9072           emitInlineAsmError(
9073               Call, "couldn't allocate output register for constraint '" +
9074                         Twine(OpInfo.ConstraintCode) + "'");
9075           return;
9076         }
9077 
9078         if (DetectWriteToReservedRegister())
9079           return;
9080 
9081         // Add information to the INLINEASM node to know that this register is
9082         // set.
9083         OpInfo.AssignedRegs.AddInlineAsmOperands(
9084             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9085                                   : InlineAsm::Kind_RegDef,
9086             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9087       }
9088       break;
9089 
9090     case InlineAsm::isInput:
9091     case InlineAsm::isLabel: {
9092       SDValue InOperandVal = OpInfo.CallOperand;
9093 
9094       if (OpInfo.isMatchingInputConstraint()) {
9095         // If this is required to match an output register we have already set,
9096         // just use its register.
9097         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9098                                                   AsmNodeOperands);
9099         unsigned OpFlag =
9100           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9101         if (InlineAsm::isRegDefKind(OpFlag) ||
9102             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9103           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9104           if (OpInfo.isIndirect) {
9105             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9106             emitInlineAsmError(Call, "inline asm not supported yet: "
9107                                      "don't know how to handle tied "
9108                                      "indirect register inputs");
9109             return;
9110           }
9111 
9112           SmallVector<unsigned, 4> Regs;
9113           MachineFunction &MF = DAG.getMachineFunction();
9114           MachineRegisterInfo &MRI = MF.getRegInfo();
9115           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9116           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9117           Register TiedReg = R->getReg();
9118           MVT RegVT = R->getSimpleValueType(0);
9119           const TargetRegisterClass *RC =
9120               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9121               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9122                                       : TRI.getMinimalPhysRegClass(TiedReg);
9123           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9124           for (unsigned i = 0; i != NumRegs; ++i)
9125             Regs.push_back(MRI.createVirtualRegister(RC));
9126 
9127           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9128 
9129           SDLoc dl = getCurSDLoc();
9130           // Use the produced MatchedRegs object to
9131           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call);
9132           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9133                                            true, OpInfo.getMatchedOperand(), dl,
9134                                            DAG, AsmNodeOperands);
9135           break;
9136         }
9137 
9138         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9139         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9140                "Unexpected number of operands");
9141         // Add information to the INLINEASM node to know about this input.
9142         // See InlineAsm.h isUseOperandTiedToDef.
9143         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9144         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9145                                                     OpInfo.getMatchedOperand());
9146         AsmNodeOperands.push_back(DAG.getTargetConstant(
9147             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9148         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9149         break;
9150       }
9151 
9152       // Treat indirect 'X' constraint as memory.
9153       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9154           OpInfo.isIndirect)
9155         OpInfo.ConstraintType = TargetLowering::C_Memory;
9156 
9157       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9158           OpInfo.ConstraintType == TargetLowering::C_Other) {
9159         std::vector<SDValue> Ops;
9160         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9161                                           Ops, DAG);
9162         if (Ops.empty()) {
9163           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9164             if (isa<ConstantSDNode>(InOperandVal)) {
9165               emitInlineAsmError(Call, "value out of range for constraint '" +
9166                                            Twine(OpInfo.ConstraintCode) + "'");
9167               return;
9168             }
9169 
9170           emitInlineAsmError(Call,
9171                              "invalid operand for inline asm constraint '" +
9172                                  Twine(OpInfo.ConstraintCode) + "'");
9173           return;
9174         }
9175 
9176         // Add information to the INLINEASM node to know about this input.
9177         unsigned ResOpType =
9178           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9179         AsmNodeOperands.push_back(DAG.getTargetConstant(
9180             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9181         llvm::append_range(AsmNodeOperands, Ops);
9182         break;
9183       }
9184 
9185       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9186         assert((OpInfo.isIndirect ||
9187                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9188                "Operand must be indirect to be a mem!");
9189         assert(InOperandVal.getValueType() ==
9190                    TLI.getPointerTy(DAG.getDataLayout()) &&
9191                "Memory operands expect pointer values");
9192 
9193         unsigned ConstraintID =
9194             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9195         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9196                "Failed to convert memory constraint code to constraint id.");
9197 
9198         // Add information to the INLINEASM node to know about this input.
9199         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9200         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9201         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9202                                                         getCurSDLoc(),
9203                                                         MVT::i32));
9204         AsmNodeOperands.push_back(InOperandVal);
9205         break;
9206       }
9207 
9208       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9209         assert(InOperandVal.getValueType() ==
9210                    TLI.getPointerTy(DAG.getDataLayout()) &&
9211                "Address operands expect pointer values");
9212 
9213         unsigned ConstraintID =
9214             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9215         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9216                "Failed to convert memory constraint code to constraint id.");
9217 
9218         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9219 
9220         SDValue AsmOp = InOperandVal;
9221         if (isFunction(InOperandVal)) {
9222           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9223           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9224           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9225                                              InOperandVal.getValueType(),
9226                                              GA->getOffset());
9227         }
9228 
9229         // Add information to the INLINEASM node to know about this input.
9230         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9231 
9232         AsmNodeOperands.push_back(
9233             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9234 
9235         AsmNodeOperands.push_back(AsmOp);
9236         break;
9237       }
9238 
9239       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9240               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9241              "Unknown constraint type!");
9242 
9243       // TODO: Support this.
9244       if (OpInfo.isIndirect) {
9245         emitInlineAsmError(
9246             Call, "Don't know how to handle indirect register inputs yet "
9247                   "for constraint '" +
9248                       Twine(OpInfo.ConstraintCode) + "'");
9249         return;
9250       }
9251 
9252       // Copy the input into the appropriate registers.
9253       if (OpInfo.AssignedRegs.Regs.empty()) {
9254         emitInlineAsmError(Call,
9255                            "couldn't allocate input reg for constraint '" +
9256                                Twine(OpInfo.ConstraintCode) + "'");
9257         return;
9258       }
9259 
9260       if (DetectWriteToReservedRegister())
9261         return;
9262 
9263       SDLoc dl = getCurSDLoc();
9264 
9265       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
9266                                         &Call);
9267 
9268       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9269                                                dl, DAG, AsmNodeOperands);
9270       break;
9271     }
9272     case InlineAsm::isClobber:
9273       // Add the clobbered value to the operand list, so that the register
9274       // allocator is aware that the physreg got clobbered.
9275       if (!OpInfo.AssignedRegs.Regs.empty())
9276         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9277                                                  false, 0, getCurSDLoc(), DAG,
9278                                                  AsmNodeOperands);
9279       break;
9280     }
9281   }
9282 
9283   // Finish up input operands.  Set the input chain and add the flag last.
9284   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9285   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
9286 
9287   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9288   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9289                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9290   Flag = Chain.getValue(1);
9291 
9292   // Do additional work to generate outputs.
9293 
9294   SmallVector<EVT, 1> ResultVTs;
9295   SmallVector<SDValue, 1> ResultValues;
9296   SmallVector<SDValue, 8> OutChains;
9297 
9298   llvm::Type *CallResultType = Call.getType();
9299   ArrayRef<Type *> ResultTypes;
9300   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9301     ResultTypes = StructResult->elements();
9302   else if (!CallResultType->isVoidTy())
9303     ResultTypes = ArrayRef(CallResultType);
9304 
9305   auto CurResultType = ResultTypes.begin();
9306   auto handleRegAssign = [&](SDValue V) {
9307     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9308     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9309     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9310     ++CurResultType;
9311     // If the type of the inline asm call site return value is different but has
9312     // same size as the type of the asm output bitcast it.  One example of this
9313     // is for vectors with different width / number of elements.  This can
9314     // happen for register classes that can contain multiple different value
9315     // types.  The preg or vreg allocated may not have the same VT as was
9316     // expected.
9317     //
9318     // This can also happen for a return value that disagrees with the register
9319     // class it is put in, eg. a double in a general-purpose register on a
9320     // 32-bit machine.
9321     if (ResultVT != V.getValueType() &&
9322         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9323       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9324     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9325              V.getValueType().isInteger()) {
9326       // If a result value was tied to an input value, the computed result
9327       // may have a wider width than the expected result.  Extract the
9328       // relevant portion.
9329       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9330     }
9331     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9332     ResultVTs.push_back(ResultVT);
9333     ResultValues.push_back(V);
9334   };
9335 
9336   // Deal with output operands.
9337   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9338     if (OpInfo.Type == InlineAsm::isOutput) {
9339       SDValue Val;
9340       // Skip trivial output operands.
9341       if (OpInfo.AssignedRegs.Regs.empty())
9342         continue;
9343 
9344       switch (OpInfo.ConstraintType) {
9345       case TargetLowering::C_Register:
9346       case TargetLowering::C_RegisterClass:
9347         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9348                                                   Chain, &Flag, &Call);
9349         break;
9350       case TargetLowering::C_Immediate:
9351       case TargetLowering::C_Other:
9352         Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
9353                                               OpInfo, DAG);
9354         break;
9355       case TargetLowering::C_Memory:
9356         break; // Already handled.
9357       case TargetLowering::C_Address:
9358         break; // Silence warning.
9359       case TargetLowering::C_Unknown:
9360         assert(false && "Unexpected unknown constraint");
9361       }
9362 
9363       // Indirect output manifest as stores. Record output chains.
9364       if (OpInfo.isIndirect) {
9365         const Value *Ptr = OpInfo.CallOperandVal;
9366         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9367         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9368                                      MachinePointerInfo(Ptr));
9369         OutChains.push_back(Store);
9370       } else {
9371         // generate CopyFromRegs to associated registers.
9372         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9373         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9374           for (const SDValue &V : Val->op_values())
9375             handleRegAssign(V);
9376         } else
9377           handleRegAssign(Val);
9378       }
9379     }
9380   }
9381 
9382   // Set results.
9383   if (!ResultValues.empty()) {
9384     assert(CurResultType == ResultTypes.end() &&
9385            "Mismatch in number of ResultTypes");
9386     assert(ResultValues.size() == ResultTypes.size() &&
9387            "Mismatch in number of output operands in asm result");
9388 
9389     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9390                             DAG.getVTList(ResultVTs), ResultValues);
9391     setValue(&Call, V);
9392   }
9393 
9394   // Collect store chains.
9395   if (!OutChains.empty())
9396     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9397 
9398   if (EmitEHLabels) {
9399     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9400   }
9401 
9402   // Only Update Root if inline assembly has a memory effect.
9403   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9404       EmitEHLabels)
9405     DAG.setRoot(Chain);
9406 }
9407 
9408 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9409                                              const Twine &Message) {
9410   LLVMContext &Ctx = *DAG.getContext();
9411   Ctx.emitError(&Call, Message);
9412 
9413   // Make sure we leave the DAG in a valid state
9414   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9415   SmallVector<EVT, 1> ValueVTs;
9416   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9417 
9418   if (ValueVTs.empty())
9419     return;
9420 
9421   SmallVector<SDValue, 1> Ops;
9422   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9423     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9424 
9425   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9426 }
9427 
9428 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9429   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9430                           MVT::Other, getRoot(),
9431                           getValue(I.getArgOperand(0)),
9432                           DAG.getSrcValue(I.getArgOperand(0))));
9433 }
9434 
9435 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9436   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9437   const DataLayout &DL = DAG.getDataLayout();
9438   SDValue V = DAG.getVAArg(
9439       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9440       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9441       DL.getABITypeAlign(I.getType()).value());
9442   DAG.setRoot(V.getValue(1));
9443 
9444   if (I.getType()->isPointerTy())
9445     V = DAG.getPtrExtOrTrunc(
9446         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9447   setValue(&I, V);
9448 }
9449 
9450 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9451   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9452                           MVT::Other, getRoot(),
9453                           getValue(I.getArgOperand(0)),
9454                           DAG.getSrcValue(I.getArgOperand(0))));
9455 }
9456 
9457 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9458   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9459                           MVT::Other, getRoot(),
9460                           getValue(I.getArgOperand(0)),
9461                           getValue(I.getArgOperand(1)),
9462                           DAG.getSrcValue(I.getArgOperand(0)),
9463                           DAG.getSrcValue(I.getArgOperand(1))));
9464 }
9465 
9466 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9467                                                     const Instruction &I,
9468                                                     SDValue Op) {
9469   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9470   if (!Range)
9471     return Op;
9472 
9473   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9474   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9475     return Op;
9476 
9477   APInt Lo = CR.getUnsignedMin();
9478   if (!Lo.isMinValue())
9479     return Op;
9480 
9481   APInt Hi = CR.getUnsignedMax();
9482   unsigned Bits = std::max(Hi.getActiveBits(),
9483                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9484 
9485   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9486 
9487   SDLoc SL = getCurSDLoc();
9488 
9489   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9490                              DAG.getValueType(SmallVT));
9491   unsigned NumVals = Op.getNode()->getNumValues();
9492   if (NumVals == 1)
9493     return ZExt;
9494 
9495   SmallVector<SDValue, 4> Ops;
9496 
9497   Ops.push_back(ZExt);
9498   for (unsigned I = 1; I != NumVals; ++I)
9499     Ops.push_back(Op.getValue(I));
9500 
9501   return DAG.getMergeValues(Ops, SL);
9502 }
9503 
9504 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9505 /// the call being lowered.
9506 ///
9507 /// This is a helper for lowering intrinsics that follow a target calling
9508 /// convention or require stack pointer adjustment. Only a subset of the
9509 /// intrinsic's operands need to participate in the calling convention.
9510 void SelectionDAGBuilder::populateCallLoweringInfo(
9511     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9512     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9513     bool IsPatchPoint) {
9514   TargetLowering::ArgListTy Args;
9515   Args.reserve(NumArgs);
9516 
9517   // Populate the argument list.
9518   // Attributes for args start at offset 1, after the return attribute.
9519   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9520        ArgI != ArgE; ++ArgI) {
9521     const Value *V = Call->getOperand(ArgI);
9522 
9523     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9524 
9525     TargetLowering::ArgListEntry Entry;
9526     Entry.Node = getValue(V);
9527     Entry.Ty = V->getType();
9528     Entry.setAttributes(Call, ArgI);
9529     Args.push_back(Entry);
9530   }
9531 
9532   CLI.setDebugLoc(getCurSDLoc())
9533       .setChain(getRoot())
9534       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9535       .setDiscardResult(Call->use_empty())
9536       .setIsPatchPoint(IsPatchPoint)
9537       .setIsPreallocated(
9538           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9539 }
9540 
9541 /// Add a stack map intrinsic call's live variable operands to a stackmap
9542 /// or patchpoint target node's operand list.
9543 ///
9544 /// Constants are converted to TargetConstants purely as an optimization to
9545 /// avoid constant materialization and register allocation.
9546 ///
9547 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9548 /// generate addess computation nodes, and so FinalizeISel can convert the
9549 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9550 /// address materialization and register allocation, but may also be required
9551 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9552 /// alloca in the entry block, then the runtime may assume that the alloca's
9553 /// StackMap location can be read immediately after compilation and that the
9554 /// location is valid at any point during execution (this is similar to the
9555 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9556 /// only available in a register, then the runtime would need to trap when
9557 /// execution reaches the StackMap in order to read the alloca's location.
9558 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9559                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9560                                 SelectionDAGBuilder &Builder) {
9561   SelectionDAG &DAG = Builder.DAG;
9562   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9563     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9564 
9565     // Things on the stack are pointer-typed, meaning that they are already
9566     // legal and can be emitted directly to target nodes.
9567     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9568       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9569     } else {
9570       // Otherwise emit a target independent node to be legalised.
9571       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9572     }
9573   }
9574 }
9575 
9576 /// Lower llvm.experimental.stackmap.
9577 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9578   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9579   //                                  [live variables...])
9580 
9581   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9582 
9583   SDValue Chain, InFlag, Callee;
9584   SmallVector<SDValue, 32> Ops;
9585 
9586   SDLoc DL = getCurSDLoc();
9587   Callee = getValue(CI.getCalledOperand());
9588 
9589   // The stackmap intrinsic only records the live variables (the arguments
9590   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9591   // intrinsic, this won't be lowered to a function call. This means we don't
9592   // have to worry about calling conventions and target specific lowering code.
9593   // Instead we perform the call lowering right here.
9594   //
9595   // chain, flag = CALLSEQ_START(chain, 0, 0)
9596   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9597   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9598   //
9599   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9600   InFlag = Chain.getValue(1);
9601 
9602   // Add the STACKMAP operands, starting with DAG house-keeping.
9603   Ops.push_back(Chain);
9604   Ops.push_back(InFlag);
9605 
9606   // Add the <id>, <numShadowBytes> operands.
9607   //
9608   // These do not require legalisation, and can be emitted directly to target
9609   // constant nodes.
9610   SDValue ID = getValue(CI.getArgOperand(0));
9611   assert(ID.getValueType() == MVT::i64);
9612   SDValue IDConst = DAG.getTargetConstant(
9613       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9614   Ops.push_back(IDConst);
9615 
9616   SDValue Shad = getValue(CI.getArgOperand(1));
9617   assert(Shad.getValueType() == MVT::i32);
9618   SDValue ShadConst = DAG.getTargetConstant(
9619       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9620   Ops.push_back(ShadConst);
9621 
9622   // Add the live variables.
9623   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9624 
9625   // Create the STACKMAP node.
9626   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9627   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9628   InFlag = Chain.getValue(1);
9629 
9630   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InFlag, DL);
9631 
9632   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9633 
9634   // Set the root to the target-lowered call chain.
9635   DAG.setRoot(Chain);
9636 
9637   // Inform the Frame Information that we have a stackmap in this function.
9638   FuncInfo.MF->getFrameInfo().setHasStackMap();
9639 }
9640 
9641 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9642 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9643                                           const BasicBlock *EHPadBB) {
9644   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9645   //                                                 i32 <numBytes>,
9646   //                                                 i8* <target>,
9647   //                                                 i32 <numArgs>,
9648   //                                                 [Args...],
9649   //                                                 [live variables...])
9650 
9651   CallingConv::ID CC = CB.getCallingConv();
9652   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9653   bool HasDef = !CB.getType()->isVoidTy();
9654   SDLoc dl = getCurSDLoc();
9655   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9656 
9657   // Handle immediate and symbolic callees.
9658   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9659     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9660                                    /*isTarget=*/true);
9661   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9662     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9663                                          SDLoc(SymbolicCallee),
9664                                          SymbolicCallee->getValueType(0));
9665 
9666   // Get the real number of arguments participating in the call <numArgs>
9667   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9668   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9669 
9670   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9671   // Intrinsics include all meta-operands up to but not including CC.
9672   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9673   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9674          "Not enough arguments provided to the patchpoint intrinsic");
9675 
9676   // For AnyRegCC the arguments are lowered later on manually.
9677   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9678   Type *ReturnTy =
9679       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9680 
9681   TargetLowering::CallLoweringInfo CLI(DAG);
9682   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9683                            ReturnTy, true);
9684   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9685 
9686   SDNode *CallEnd = Result.second.getNode();
9687   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9688     CallEnd = CallEnd->getOperand(0).getNode();
9689 
9690   /// Get a call instruction from the call sequence chain.
9691   /// Tail calls are not allowed.
9692   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9693          "Expected a callseq node.");
9694   SDNode *Call = CallEnd->getOperand(0).getNode();
9695   bool HasGlue = Call->getGluedNode();
9696 
9697   // Replace the target specific call node with the patchable intrinsic.
9698   SmallVector<SDValue, 8> Ops;
9699 
9700   // Push the chain.
9701   Ops.push_back(*(Call->op_begin()));
9702 
9703   // Optionally, push the glue (if any).
9704   if (HasGlue)
9705     Ops.push_back(*(Call->op_end() - 1));
9706 
9707   // Push the register mask info.
9708   if (HasGlue)
9709     Ops.push_back(*(Call->op_end() - 2));
9710   else
9711     Ops.push_back(*(Call->op_end() - 1));
9712 
9713   // Add the <id> and <numBytes> constants.
9714   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9715   Ops.push_back(DAG.getTargetConstant(
9716                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9717   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9718   Ops.push_back(DAG.getTargetConstant(
9719                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9720                   MVT::i32));
9721 
9722   // Add the callee.
9723   Ops.push_back(Callee);
9724 
9725   // Adjust <numArgs> to account for any arguments that have been passed on the
9726   // stack instead.
9727   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9728   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9729   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9730   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9731 
9732   // Add the calling convention
9733   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9734 
9735   // Add the arguments we omitted previously. The register allocator should
9736   // place these in any free register.
9737   if (IsAnyRegCC)
9738     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9739       Ops.push_back(getValue(CB.getArgOperand(i)));
9740 
9741   // Push the arguments from the call instruction.
9742   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9743   Ops.append(Call->op_begin() + 2, e);
9744 
9745   // Push live variables for the stack map.
9746   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9747 
9748   SDVTList NodeTys;
9749   if (IsAnyRegCC && HasDef) {
9750     // Create the return types based on the intrinsic definition
9751     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9752     SmallVector<EVT, 3> ValueVTs;
9753     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9754     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9755 
9756     // There is always a chain and a glue type at the end
9757     ValueVTs.push_back(MVT::Other);
9758     ValueVTs.push_back(MVT::Glue);
9759     NodeTys = DAG.getVTList(ValueVTs);
9760   } else
9761     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9762 
9763   // Replace the target specific call node with a PATCHPOINT node.
9764   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9765 
9766   // Update the NodeMap.
9767   if (HasDef) {
9768     if (IsAnyRegCC)
9769       setValue(&CB, SDValue(PPV.getNode(), 0));
9770     else
9771       setValue(&CB, Result.first);
9772   }
9773 
9774   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9775   // call sequence. Furthermore the location of the chain and glue can change
9776   // when the AnyReg calling convention is used and the intrinsic returns a
9777   // value.
9778   if (IsAnyRegCC && HasDef) {
9779     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9780     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9781     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9782   } else
9783     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9784   DAG.DeleteNode(Call);
9785 
9786   // Inform the Frame Information that we have a patchpoint in this function.
9787   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9788 }
9789 
9790 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9791                                             unsigned Intrinsic) {
9792   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9793   SDValue Op1 = getValue(I.getArgOperand(0));
9794   SDValue Op2;
9795   if (I.arg_size() > 1)
9796     Op2 = getValue(I.getArgOperand(1));
9797   SDLoc dl = getCurSDLoc();
9798   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9799   SDValue Res;
9800   SDNodeFlags SDFlags;
9801   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9802     SDFlags.copyFMF(*FPMO);
9803 
9804   switch (Intrinsic) {
9805   case Intrinsic::vector_reduce_fadd:
9806     if (SDFlags.hasAllowReassociation())
9807       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9808                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9809                         SDFlags);
9810     else
9811       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9812     break;
9813   case Intrinsic::vector_reduce_fmul:
9814     if (SDFlags.hasAllowReassociation())
9815       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9816                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9817                         SDFlags);
9818     else
9819       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9820     break;
9821   case Intrinsic::vector_reduce_add:
9822     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9823     break;
9824   case Intrinsic::vector_reduce_mul:
9825     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9826     break;
9827   case Intrinsic::vector_reduce_and:
9828     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9829     break;
9830   case Intrinsic::vector_reduce_or:
9831     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9832     break;
9833   case Intrinsic::vector_reduce_xor:
9834     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9835     break;
9836   case Intrinsic::vector_reduce_smax:
9837     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9838     break;
9839   case Intrinsic::vector_reduce_smin:
9840     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9841     break;
9842   case Intrinsic::vector_reduce_umax:
9843     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9844     break;
9845   case Intrinsic::vector_reduce_umin:
9846     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
9847     break;
9848   case Intrinsic::vector_reduce_fmax:
9849     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
9850     break;
9851   case Intrinsic::vector_reduce_fmin:
9852     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
9853     break;
9854   default:
9855     llvm_unreachable("Unhandled vector reduce intrinsic");
9856   }
9857   setValue(&I, Res);
9858 }
9859 
9860 /// Returns an AttributeList representing the attributes applied to the return
9861 /// value of the given call.
9862 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
9863   SmallVector<Attribute::AttrKind, 2> Attrs;
9864   if (CLI.RetSExt)
9865     Attrs.push_back(Attribute::SExt);
9866   if (CLI.RetZExt)
9867     Attrs.push_back(Attribute::ZExt);
9868   if (CLI.IsInReg)
9869     Attrs.push_back(Attribute::InReg);
9870 
9871   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
9872                             Attrs);
9873 }
9874 
9875 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
9876 /// implementation, which just calls LowerCall.
9877 /// FIXME: When all targets are
9878 /// migrated to using LowerCall, this hook should be integrated into SDISel.
9879 std::pair<SDValue, SDValue>
9880 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
9881   // Handle the incoming return values from the call.
9882   CLI.Ins.clear();
9883   Type *OrigRetTy = CLI.RetTy;
9884   SmallVector<EVT, 4> RetTys;
9885   SmallVector<uint64_t, 4> Offsets;
9886   auto &DL = CLI.DAG.getDataLayout();
9887   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
9888 
9889   if (CLI.IsPostTypeLegalization) {
9890     // If we are lowering a libcall after legalization, split the return type.
9891     SmallVector<EVT, 4> OldRetTys;
9892     SmallVector<uint64_t, 4> OldOffsets;
9893     RetTys.swap(OldRetTys);
9894     Offsets.swap(OldOffsets);
9895 
9896     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
9897       EVT RetVT = OldRetTys[i];
9898       uint64_t Offset = OldOffsets[i];
9899       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
9900       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
9901       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
9902       RetTys.append(NumRegs, RegisterVT);
9903       for (unsigned j = 0; j != NumRegs; ++j)
9904         Offsets.push_back(Offset + j * RegisterVTByteSZ);
9905     }
9906   }
9907 
9908   SmallVector<ISD::OutputArg, 4> Outs;
9909   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
9910 
9911   bool CanLowerReturn =
9912       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
9913                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
9914 
9915   SDValue DemoteStackSlot;
9916   int DemoteStackIdx = -100;
9917   if (!CanLowerReturn) {
9918     // FIXME: equivalent assert?
9919     // assert(!CS.hasInAllocaArgument() &&
9920     //        "sret demotion is incompatible with inalloca");
9921     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
9922     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
9923     MachineFunction &MF = CLI.DAG.getMachineFunction();
9924     DemoteStackIdx =
9925         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
9926     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
9927                                               DL.getAllocaAddrSpace());
9928 
9929     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
9930     ArgListEntry Entry;
9931     Entry.Node = DemoteStackSlot;
9932     Entry.Ty = StackSlotPtrType;
9933     Entry.IsSExt = false;
9934     Entry.IsZExt = false;
9935     Entry.IsInReg = false;
9936     Entry.IsSRet = true;
9937     Entry.IsNest = false;
9938     Entry.IsByVal = false;
9939     Entry.IsByRef = false;
9940     Entry.IsReturned = false;
9941     Entry.IsSwiftSelf = false;
9942     Entry.IsSwiftAsync = false;
9943     Entry.IsSwiftError = false;
9944     Entry.IsCFGuardTarget = false;
9945     Entry.Alignment = Alignment;
9946     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
9947     CLI.NumFixedArgs += 1;
9948     CLI.getArgs()[0].IndirectType = CLI.RetTy;
9949     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
9950 
9951     // sret demotion isn't compatible with tail-calls, since the sret argument
9952     // points into the callers stack frame.
9953     CLI.IsTailCall = false;
9954   } else {
9955     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9956         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
9957     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9958       ISD::ArgFlagsTy Flags;
9959       if (NeedsRegBlock) {
9960         Flags.setInConsecutiveRegs();
9961         if (I == RetTys.size() - 1)
9962           Flags.setInConsecutiveRegsLast();
9963       }
9964       EVT VT = RetTys[I];
9965       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9966                                                      CLI.CallConv, VT);
9967       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9968                                                        CLI.CallConv, VT);
9969       for (unsigned i = 0; i != NumRegs; ++i) {
9970         ISD::InputArg MyFlags;
9971         MyFlags.Flags = Flags;
9972         MyFlags.VT = RegisterVT;
9973         MyFlags.ArgVT = VT;
9974         MyFlags.Used = CLI.IsReturnValueUsed;
9975         if (CLI.RetTy->isPointerTy()) {
9976           MyFlags.Flags.setPointer();
9977           MyFlags.Flags.setPointerAddrSpace(
9978               cast<PointerType>(CLI.RetTy)->getAddressSpace());
9979         }
9980         if (CLI.RetSExt)
9981           MyFlags.Flags.setSExt();
9982         if (CLI.RetZExt)
9983           MyFlags.Flags.setZExt();
9984         if (CLI.IsInReg)
9985           MyFlags.Flags.setInReg();
9986         CLI.Ins.push_back(MyFlags);
9987       }
9988     }
9989   }
9990 
9991   // We push in swifterror return as the last element of CLI.Ins.
9992   ArgListTy &Args = CLI.getArgs();
9993   if (supportSwiftError()) {
9994     for (const ArgListEntry &Arg : Args) {
9995       if (Arg.IsSwiftError) {
9996         ISD::InputArg MyFlags;
9997         MyFlags.VT = getPointerTy(DL);
9998         MyFlags.ArgVT = EVT(getPointerTy(DL));
9999         MyFlags.Flags.setSwiftError();
10000         CLI.Ins.push_back(MyFlags);
10001       }
10002     }
10003   }
10004 
10005   // Handle all of the outgoing arguments.
10006   CLI.Outs.clear();
10007   CLI.OutVals.clear();
10008   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10009     SmallVector<EVT, 4> ValueVTs;
10010     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10011     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10012     Type *FinalType = Args[i].Ty;
10013     if (Args[i].IsByVal)
10014       FinalType = Args[i].IndirectType;
10015     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10016         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10017     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10018          ++Value) {
10019       EVT VT = ValueVTs[Value];
10020       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10021       SDValue Op = SDValue(Args[i].Node.getNode(),
10022                            Args[i].Node.getResNo() + Value);
10023       ISD::ArgFlagsTy Flags;
10024 
10025       // Certain targets (such as MIPS), may have a different ABI alignment
10026       // for a type depending on the context. Give the target a chance to
10027       // specify the alignment it wants.
10028       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10029       Flags.setOrigAlign(OriginalAlignment);
10030 
10031       if (Args[i].Ty->isPointerTy()) {
10032         Flags.setPointer();
10033         Flags.setPointerAddrSpace(
10034             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10035       }
10036       if (Args[i].IsZExt)
10037         Flags.setZExt();
10038       if (Args[i].IsSExt)
10039         Flags.setSExt();
10040       if (Args[i].IsInReg) {
10041         // If we are using vectorcall calling convention, a structure that is
10042         // passed InReg - is surely an HVA
10043         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10044             isa<StructType>(FinalType)) {
10045           // The first value of a structure is marked
10046           if (0 == Value)
10047             Flags.setHvaStart();
10048           Flags.setHva();
10049         }
10050         // Set InReg Flag
10051         Flags.setInReg();
10052       }
10053       if (Args[i].IsSRet)
10054         Flags.setSRet();
10055       if (Args[i].IsSwiftSelf)
10056         Flags.setSwiftSelf();
10057       if (Args[i].IsSwiftAsync)
10058         Flags.setSwiftAsync();
10059       if (Args[i].IsSwiftError)
10060         Flags.setSwiftError();
10061       if (Args[i].IsCFGuardTarget)
10062         Flags.setCFGuardTarget();
10063       if (Args[i].IsByVal)
10064         Flags.setByVal();
10065       if (Args[i].IsByRef)
10066         Flags.setByRef();
10067       if (Args[i].IsPreallocated) {
10068         Flags.setPreallocated();
10069         // Set the byval flag for CCAssignFn callbacks that don't know about
10070         // preallocated.  This way we can know how many bytes we should've
10071         // allocated and how many bytes a callee cleanup function will pop.  If
10072         // we port preallocated to more targets, we'll have to add custom
10073         // preallocated handling in the various CC lowering callbacks.
10074         Flags.setByVal();
10075       }
10076       if (Args[i].IsInAlloca) {
10077         Flags.setInAlloca();
10078         // Set the byval flag for CCAssignFn callbacks that don't know about
10079         // inalloca.  This way we can know how many bytes we should've allocated
10080         // and how many bytes a callee cleanup function will pop.  If we port
10081         // inalloca to more targets, we'll have to add custom inalloca handling
10082         // in the various CC lowering callbacks.
10083         Flags.setByVal();
10084       }
10085       Align MemAlign;
10086       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10087         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10088         Flags.setByValSize(FrameSize);
10089 
10090         // info is not there but there are cases it cannot get right.
10091         if (auto MA = Args[i].Alignment)
10092           MemAlign = *MA;
10093         else
10094           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10095       } else if (auto MA = Args[i].Alignment) {
10096         MemAlign = *MA;
10097       } else {
10098         MemAlign = OriginalAlignment;
10099       }
10100       Flags.setMemAlign(MemAlign);
10101       if (Args[i].IsNest)
10102         Flags.setNest();
10103       if (NeedsRegBlock)
10104         Flags.setInConsecutiveRegs();
10105 
10106       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10107                                                  CLI.CallConv, VT);
10108       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10109                                                         CLI.CallConv, VT);
10110       SmallVector<SDValue, 4> Parts(NumParts);
10111       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10112 
10113       if (Args[i].IsSExt)
10114         ExtendKind = ISD::SIGN_EXTEND;
10115       else if (Args[i].IsZExt)
10116         ExtendKind = ISD::ZERO_EXTEND;
10117 
10118       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10119       // for now.
10120       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10121           CanLowerReturn) {
10122         assert((CLI.RetTy == Args[i].Ty ||
10123                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10124                  CLI.RetTy->getPointerAddressSpace() ==
10125                      Args[i].Ty->getPointerAddressSpace())) &&
10126                RetTys.size() == NumValues && "unexpected use of 'returned'");
10127         // Before passing 'returned' to the target lowering code, ensure that
10128         // either the register MVT and the actual EVT are the same size or that
10129         // the return value and argument are extended in the same way; in these
10130         // cases it's safe to pass the argument register value unchanged as the
10131         // return register value (although it's at the target's option whether
10132         // to do so)
10133         // TODO: allow code generation to take advantage of partially preserved
10134         // registers rather than clobbering the entire register when the
10135         // parameter extension method is not compatible with the return
10136         // extension method
10137         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10138             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10139              CLI.RetZExt == Args[i].IsZExt))
10140           Flags.setReturned();
10141       }
10142 
10143       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10144                      CLI.CallConv, ExtendKind);
10145 
10146       for (unsigned j = 0; j != NumParts; ++j) {
10147         // if it isn't first piece, alignment must be 1
10148         // For scalable vectors the scalable part is currently handled
10149         // by individual targets, so we just use the known minimum size here.
10150         ISD::OutputArg MyFlags(
10151             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10152             i < CLI.NumFixedArgs, i,
10153             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10154         if (NumParts > 1 && j == 0)
10155           MyFlags.Flags.setSplit();
10156         else if (j != 0) {
10157           MyFlags.Flags.setOrigAlign(Align(1));
10158           if (j == NumParts - 1)
10159             MyFlags.Flags.setSplitEnd();
10160         }
10161 
10162         CLI.Outs.push_back(MyFlags);
10163         CLI.OutVals.push_back(Parts[j]);
10164       }
10165 
10166       if (NeedsRegBlock && Value == NumValues - 1)
10167         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10168     }
10169   }
10170 
10171   SmallVector<SDValue, 4> InVals;
10172   CLI.Chain = LowerCall(CLI, InVals);
10173 
10174   // Update CLI.InVals to use outside of this function.
10175   CLI.InVals = InVals;
10176 
10177   // Verify that the target's LowerCall behaved as expected.
10178   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10179          "LowerCall didn't return a valid chain!");
10180   assert((!CLI.IsTailCall || InVals.empty()) &&
10181          "LowerCall emitted a return value for a tail call!");
10182   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10183          "LowerCall didn't emit the correct number of values!");
10184 
10185   // For a tail call, the return value is merely live-out and there aren't
10186   // any nodes in the DAG representing it. Return a special value to
10187   // indicate that a tail call has been emitted and no more Instructions
10188   // should be processed in the current block.
10189   if (CLI.IsTailCall) {
10190     CLI.DAG.setRoot(CLI.Chain);
10191     return std::make_pair(SDValue(), SDValue());
10192   }
10193 
10194 #ifndef NDEBUG
10195   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10196     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10197     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10198            "LowerCall emitted a value with the wrong type!");
10199   }
10200 #endif
10201 
10202   SmallVector<SDValue, 4> ReturnValues;
10203   if (!CanLowerReturn) {
10204     // The instruction result is the result of loading from the
10205     // hidden sret parameter.
10206     SmallVector<EVT, 1> PVTs;
10207     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10208 
10209     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10210     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10211     EVT PtrVT = PVTs[0];
10212 
10213     unsigned NumValues = RetTys.size();
10214     ReturnValues.resize(NumValues);
10215     SmallVector<SDValue, 4> Chains(NumValues);
10216 
10217     // An aggregate return value cannot wrap around the address space, so
10218     // offsets to its parts don't wrap either.
10219     SDNodeFlags Flags;
10220     Flags.setNoUnsignedWrap(true);
10221 
10222     MachineFunction &MF = CLI.DAG.getMachineFunction();
10223     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10224     for (unsigned i = 0; i < NumValues; ++i) {
10225       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10226                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10227                                                         PtrVT), Flags);
10228       SDValue L = CLI.DAG.getLoad(
10229           RetTys[i], CLI.DL, CLI.Chain, Add,
10230           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10231                                             DemoteStackIdx, Offsets[i]),
10232           HiddenSRetAlign);
10233       ReturnValues[i] = L;
10234       Chains[i] = L.getValue(1);
10235     }
10236 
10237     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10238   } else {
10239     // Collect the legal value parts into potentially illegal values
10240     // that correspond to the original function's return values.
10241     std::optional<ISD::NodeType> AssertOp;
10242     if (CLI.RetSExt)
10243       AssertOp = ISD::AssertSext;
10244     else if (CLI.RetZExt)
10245       AssertOp = ISD::AssertZext;
10246     unsigned CurReg = 0;
10247     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10248       EVT VT = RetTys[I];
10249       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10250                                                      CLI.CallConv, VT);
10251       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10252                                                        CLI.CallConv, VT);
10253 
10254       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10255                                               NumRegs, RegisterVT, VT, nullptr,
10256                                               CLI.CallConv, AssertOp));
10257       CurReg += NumRegs;
10258     }
10259 
10260     // For a function returning void, there is no return value. We can't create
10261     // such a node, so we just return a null return value in that case. In
10262     // that case, nothing will actually look at the value.
10263     if (ReturnValues.empty())
10264       return std::make_pair(SDValue(), CLI.Chain);
10265   }
10266 
10267   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10268                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10269   return std::make_pair(Res, CLI.Chain);
10270 }
10271 
10272 /// Places new result values for the node in Results (their number
10273 /// and types must exactly match those of the original return values of
10274 /// the node), or leaves Results empty, which indicates that the node is not
10275 /// to be custom lowered after all.
10276 void TargetLowering::LowerOperationWrapper(SDNode *N,
10277                                            SmallVectorImpl<SDValue> &Results,
10278                                            SelectionDAG &DAG) const {
10279   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10280 
10281   if (!Res.getNode())
10282     return;
10283 
10284   // If the original node has one result, take the return value from
10285   // LowerOperation as is. It might not be result number 0.
10286   if (N->getNumValues() == 1) {
10287     Results.push_back(Res);
10288     return;
10289   }
10290 
10291   // If the original node has multiple results, then the return node should
10292   // have the same number of results.
10293   assert((N->getNumValues() == Res->getNumValues()) &&
10294       "Lowering returned the wrong number of results!");
10295 
10296   // Places new result values base on N result number.
10297   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10298     Results.push_back(Res.getValue(I));
10299 }
10300 
10301 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10302   llvm_unreachable("LowerOperation not implemented for this target!");
10303 }
10304 
10305 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10306                                                      unsigned Reg,
10307                                                      ISD::NodeType ExtendType) {
10308   SDValue Op = getNonRegisterValue(V);
10309   assert((Op.getOpcode() != ISD::CopyFromReg ||
10310           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10311          "Copy from a reg to the same reg!");
10312   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10313 
10314   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10315   // If this is an InlineAsm we have to match the registers required, not the
10316   // notional registers required by the type.
10317 
10318   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10319                    std::nullopt); // This is not an ABI copy.
10320   SDValue Chain = DAG.getEntryNode();
10321 
10322   if (ExtendType == ISD::ANY_EXTEND) {
10323     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10324     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10325       ExtendType = PreferredExtendIt->second;
10326   }
10327   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10328   PendingExports.push_back(Chain);
10329 }
10330 
10331 #include "llvm/CodeGen/SelectionDAGISel.h"
10332 
10333 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10334 /// entry block, return true.  This includes arguments used by switches, since
10335 /// the switch may expand into multiple basic blocks.
10336 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10337   // With FastISel active, we may be splitting blocks, so force creation
10338   // of virtual registers for all non-dead arguments.
10339   if (FastISel)
10340     return A->use_empty();
10341 
10342   const BasicBlock &Entry = A->getParent()->front();
10343   for (const User *U : A->users())
10344     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10345       return false;  // Use not in entry block.
10346 
10347   return true;
10348 }
10349 
10350 using ArgCopyElisionMapTy =
10351     DenseMap<const Argument *,
10352              std::pair<const AllocaInst *, const StoreInst *>>;
10353 
10354 /// Scan the entry block of the function in FuncInfo for arguments that look
10355 /// like copies into a local alloca. Record any copied arguments in
10356 /// ArgCopyElisionCandidates.
10357 static void
10358 findArgumentCopyElisionCandidates(const DataLayout &DL,
10359                                   FunctionLoweringInfo *FuncInfo,
10360                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10361   // Record the state of every static alloca used in the entry block. Argument
10362   // allocas are all used in the entry block, so we need approximately as many
10363   // entries as we have arguments.
10364   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10365   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10366   unsigned NumArgs = FuncInfo->Fn->arg_size();
10367   StaticAllocas.reserve(NumArgs * 2);
10368 
10369   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10370     if (!V)
10371       return nullptr;
10372     V = V->stripPointerCasts();
10373     const auto *AI = dyn_cast<AllocaInst>(V);
10374     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10375       return nullptr;
10376     auto Iter = StaticAllocas.insert({AI, Unknown});
10377     return &Iter.first->second;
10378   };
10379 
10380   // Look for stores of arguments to static allocas. Look through bitcasts and
10381   // GEPs to handle type coercions, as long as the alloca is fully initialized
10382   // by the store. Any non-store use of an alloca escapes it and any subsequent
10383   // unanalyzed store might write it.
10384   // FIXME: Handle structs initialized with multiple stores.
10385   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10386     // Look for stores, and handle non-store uses conservatively.
10387     const auto *SI = dyn_cast<StoreInst>(&I);
10388     if (!SI) {
10389       // We will look through cast uses, so ignore them completely.
10390       if (I.isCast())
10391         continue;
10392       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10393       // to allocas.
10394       if (I.isDebugOrPseudoInst())
10395         continue;
10396       // This is an unknown instruction. Assume it escapes or writes to all
10397       // static alloca operands.
10398       for (const Use &U : I.operands()) {
10399         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10400           *Info = StaticAllocaInfo::Clobbered;
10401       }
10402       continue;
10403     }
10404 
10405     // If the stored value is a static alloca, mark it as escaped.
10406     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10407       *Info = StaticAllocaInfo::Clobbered;
10408 
10409     // Check if the destination is a static alloca.
10410     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10411     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10412     if (!Info)
10413       continue;
10414     const AllocaInst *AI = cast<AllocaInst>(Dst);
10415 
10416     // Skip allocas that have been initialized or clobbered.
10417     if (*Info != StaticAllocaInfo::Unknown)
10418       continue;
10419 
10420     // Check if the stored value is an argument, and that this store fully
10421     // initializes the alloca.
10422     // If the argument type has padding bits we can't directly forward a pointer
10423     // as the upper bits may contain garbage.
10424     // Don't elide copies from the same argument twice.
10425     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10426     const auto *Arg = dyn_cast<Argument>(Val);
10427     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10428         Arg->getType()->isEmptyTy() ||
10429         DL.getTypeStoreSize(Arg->getType()) !=
10430             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10431         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10432         ArgCopyElisionCandidates.count(Arg)) {
10433       *Info = StaticAllocaInfo::Clobbered;
10434       continue;
10435     }
10436 
10437     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10438                       << '\n');
10439 
10440     // Mark this alloca and store for argument copy elision.
10441     *Info = StaticAllocaInfo::Elidable;
10442     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10443 
10444     // Stop scanning if we've seen all arguments. This will happen early in -O0
10445     // builds, which is useful, because -O0 builds have large entry blocks and
10446     // many allocas.
10447     if (ArgCopyElisionCandidates.size() == NumArgs)
10448       break;
10449   }
10450 }
10451 
10452 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10453 /// ArgVal is a load from a suitable fixed stack object.
10454 static void tryToElideArgumentCopy(
10455     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10456     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10457     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10458     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10459     SDValue ArgVal, bool &ArgHasUses) {
10460   // Check if this is a load from a fixed stack object.
10461   auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
10462   if (!LNode)
10463     return;
10464   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10465   if (!FINode)
10466     return;
10467 
10468   // Check that the fixed stack object is the right size and alignment.
10469   // Look at the alignment that the user wrote on the alloca instead of looking
10470   // at the stack object.
10471   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10472   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10473   const AllocaInst *AI = ArgCopyIter->second.first;
10474   int FixedIndex = FINode->getIndex();
10475   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10476   int OldIndex = AllocaIndex;
10477   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10478   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10479     LLVM_DEBUG(
10480         dbgs() << "  argument copy elision failed due to bad fixed stack "
10481                   "object size\n");
10482     return;
10483   }
10484   Align RequiredAlignment = AI->getAlign();
10485   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10486     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10487                          "greater than stack argument alignment ("
10488                       << DebugStr(RequiredAlignment) << " vs "
10489                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10490     return;
10491   }
10492 
10493   // Perform the elision. Delete the old stack object and replace its only use
10494   // in the variable info map. Mark the stack object as mutable.
10495   LLVM_DEBUG({
10496     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10497            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10498            << '\n';
10499   });
10500   MFI.RemoveStackObject(OldIndex);
10501   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10502   AllocaIndex = FixedIndex;
10503   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10504   Chains.push_back(ArgVal.getValue(1));
10505 
10506   // Avoid emitting code for the store implementing the copy.
10507   const StoreInst *SI = ArgCopyIter->second.second;
10508   ElidedArgCopyInstrs.insert(SI);
10509 
10510   // Check for uses of the argument again so that we can avoid exporting ArgVal
10511   // if it is't used by anything other than the store.
10512   for (const Value *U : Arg.users()) {
10513     if (U != SI) {
10514       ArgHasUses = true;
10515       break;
10516     }
10517   }
10518 }
10519 
10520 void SelectionDAGISel::LowerArguments(const Function &F) {
10521   SelectionDAG &DAG = SDB->DAG;
10522   SDLoc dl = SDB->getCurSDLoc();
10523   const DataLayout &DL = DAG.getDataLayout();
10524   SmallVector<ISD::InputArg, 16> Ins;
10525 
10526   // In Naked functions we aren't going to save any registers.
10527   if (F.hasFnAttribute(Attribute::Naked))
10528     return;
10529 
10530   if (!FuncInfo->CanLowerReturn) {
10531     // Put in an sret pointer parameter before all the other parameters.
10532     SmallVector<EVT, 1> ValueVTs;
10533     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10534                     F.getReturnType()->getPointerTo(
10535                         DAG.getDataLayout().getAllocaAddrSpace()),
10536                     ValueVTs);
10537 
10538     // NOTE: Assuming that a pointer will never break down to more than one VT
10539     // or one register.
10540     ISD::ArgFlagsTy Flags;
10541     Flags.setSRet();
10542     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10543     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10544                          ISD::InputArg::NoArgIndex, 0);
10545     Ins.push_back(RetArg);
10546   }
10547 
10548   // Look for stores of arguments to static allocas. Mark such arguments with a
10549   // flag to ask the target to give us the memory location of that argument if
10550   // available.
10551   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10552   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10553                                     ArgCopyElisionCandidates);
10554 
10555   // Set up the incoming argument description vector.
10556   for (const Argument &Arg : F.args()) {
10557     unsigned ArgNo = Arg.getArgNo();
10558     SmallVector<EVT, 4> ValueVTs;
10559     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10560     bool isArgValueUsed = !Arg.use_empty();
10561     unsigned PartBase = 0;
10562     Type *FinalType = Arg.getType();
10563     if (Arg.hasAttribute(Attribute::ByVal))
10564       FinalType = Arg.getParamByValType();
10565     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10566         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10567     for (unsigned Value = 0, NumValues = ValueVTs.size();
10568          Value != NumValues; ++Value) {
10569       EVT VT = ValueVTs[Value];
10570       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10571       ISD::ArgFlagsTy Flags;
10572 
10573 
10574       if (Arg.getType()->isPointerTy()) {
10575         Flags.setPointer();
10576         Flags.setPointerAddrSpace(
10577             cast<PointerType>(Arg.getType())->getAddressSpace());
10578       }
10579       if (Arg.hasAttribute(Attribute::ZExt))
10580         Flags.setZExt();
10581       if (Arg.hasAttribute(Attribute::SExt))
10582         Flags.setSExt();
10583       if (Arg.hasAttribute(Attribute::InReg)) {
10584         // If we are using vectorcall calling convention, a structure that is
10585         // passed InReg - is surely an HVA
10586         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10587             isa<StructType>(Arg.getType())) {
10588           // The first value of a structure is marked
10589           if (0 == Value)
10590             Flags.setHvaStart();
10591           Flags.setHva();
10592         }
10593         // Set InReg Flag
10594         Flags.setInReg();
10595       }
10596       if (Arg.hasAttribute(Attribute::StructRet))
10597         Flags.setSRet();
10598       if (Arg.hasAttribute(Attribute::SwiftSelf))
10599         Flags.setSwiftSelf();
10600       if (Arg.hasAttribute(Attribute::SwiftAsync))
10601         Flags.setSwiftAsync();
10602       if (Arg.hasAttribute(Attribute::SwiftError))
10603         Flags.setSwiftError();
10604       if (Arg.hasAttribute(Attribute::ByVal))
10605         Flags.setByVal();
10606       if (Arg.hasAttribute(Attribute::ByRef))
10607         Flags.setByRef();
10608       if (Arg.hasAttribute(Attribute::InAlloca)) {
10609         Flags.setInAlloca();
10610         // Set the byval flag for CCAssignFn callbacks that don't know about
10611         // inalloca.  This way we can know how many bytes we should've allocated
10612         // and how many bytes a callee cleanup function will pop.  If we port
10613         // inalloca to more targets, we'll have to add custom inalloca handling
10614         // in the various CC lowering callbacks.
10615         Flags.setByVal();
10616       }
10617       if (Arg.hasAttribute(Attribute::Preallocated)) {
10618         Flags.setPreallocated();
10619         // Set the byval flag for CCAssignFn callbacks that don't know about
10620         // preallocated.  This way we can know how many bytes we should've
10621         // allocated and how many bytes a callee cleanup function will pop.  If
10622         // we port preallocated to more targets, we'll have to add custom
10623         // preallocated handling in the various CC lowering callbacks.
10624         Flags.setByVal();
10625       }
10626 
10627       // Certain targets (such as MIPS), may have a different ABI alignment
10628       // for a type depending on the context. Give the target a chance to
10629       // specify the alignment it wants.
10630       const Align OriginalAlignment(
10631           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10632       Flags.setOrigAlign(OriginalAlignment);
10633 
10634       Align MemAlign;
10635       Type *ArgMemTy = nullptr;
10636       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10637           Flags.isByRef()) {
10638         if (!ArgMemTy)
10639           ArgMemTy = Arg.getPointeeInMemoryValueType();
10640 
10641         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10642 
10643         // For in-memory arguments, size and alignment should be passed from FE.
10644         // BE will guess if this info is not there but there are cases it cannot
10645         // get right.
10646         if (auto ParamAlign = Arg.getParamStackAlign())
10647           MemAlign = *ParamAlign;
10648         else if ((ParamAlign = Arg.getParamAlign()))
10649           MemAlign = *ParamAlign;
10650         else
10651           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10652         if (Flags.isByRef())
10653           Flags.setByRefSize(MemSize);
10654         else
10655           Flags.setByValSize(MemSize);
10656       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10657         MemAlign = *ParamAlign;
10658       } else {
10659         MemAlign = OriginalAlignment;
10660       }
10661       Flags.setMemAlign(MemAlign);
10662 
10663       if (Arg.hasAttribute(Attribute::Nest))
10664         Flags.setNest();
10665       if (NeedsRegBlock)
10666         Flags.setInConsecutiveRegs();
10667       if (ArgCopyElisionCandidates.count(&Arg))
10668         Flags.setCopyElisionCandidate();
10669       if (Arg.hasAttribute(Attribute::Returned))
10670         Flags.setReturned();
10671 
10672       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10673           *CurDAG->getContext(), F.getCallingConv(), VT);
10674       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10675           *CurDAG->getContext(), F.getCallingConv(), VT);
10676       for (unsigned i = 0; i != NumRegs; ++i) {
10677         // For scalable vectors, use the minimum size; individual targets
10678         // are responsible for handling scalable vector arguments and
10679         // return values.
10680         ISD::InputArg MyFlags(
10681             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10682             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10683         if (NumRegs > 1 && i == 0)
10684           MyFlags.Flags.setSplit();
10685         // if it isn't first piece, alignment must be 1
10686         else if (i > 0) {
10687           MyFlags.Flags.setOrigAlign(Align(1));
10688           if (i == NumRegs - 1)
10689             MyFlags.Flags.setSplitEnd();
10690         }
10691         Ins.push_back(MyFlags);
10692       }
10693       if (NeedsRegBlock && Value == NumValues - 1)
10694         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10695       PartBase += VT.getStoreSize().getKnownMinValue();
10696     }
10697   }
10698 
10699   // Call the target to set up the argument values.
10700   SmallVector<SDValue, 8> InVals;
10701   SDValue NewRoot = TLI->LowerFormalArguments(
10702       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10703 
10704   // Verify that the target's LowerFormalArguments behaved as expected.
10705   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10706          "LowerFormalArguments didn't return a valid chain!");
10707   assert(InVals.size() == Ins.size() &&
10708          "LowerFormalArguments didn't emit the correct number of values!");
10709   LLVM_DEBUG({
10710     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10711       assert(InVals[i].getNode() &&
10712              "LowerFormalArguments emitted a null value!");
10713       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10714              "LowerFormalArguments emitted a value with the wrong type!");
10715     }
10716   });
10717 
10718   // Update the DAG with the new chain value resulting from argument lowering.
10719   DAG.setRoot(NewRoot);
10720 
10721   // Set up the argument values.
10722   unsigned i = 0;
10723   if (!FuncInfo->CanLowerReturn) {
10724     // Create a virtual register for the sret pointer, and put in a copy
10725     // from the sret argument into it.
10726     SmallVector<EVT, 1> ValueVTs;
10727     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10728                     F.getReturnType()->getPointerTo(
10729                         DAG.getDataLayout().getAllocaAddrSpace()),
10730                     ValueVTs);
10731     MVT VT = ValueVTs[0].getSimpleVT();
10732     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10733     std::optional<ISD::NodeType> AssertOp;
10734     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10735                                         nullptr, F.getCallingConv(), AssertOp);
10736 
10737     MachineFunction& MF = SDB->DAG.getMachineFunction();
10738     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10739     Register SRetReg =
10740         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10741     FuncInfo->DemoteRegister = SRetReg;
10742     NewRoot =
10743         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10744     DAG.setRoot(NewRoot);
10745 
10746     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10747     ++i;
10748   }
10749 
10750   SmallVector<SDValue, 4> Chains;
10751   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10752   for (const Argument &Arg : F.args()) {
10753     SmallVector<SDValue, 4> ArgValues;
10754     SmallVector<EVT, 4> ValueVTs;
10755     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10756     unsigned NumValues = ValueVTs.size();
10757     if (NumValues == 0)
10758       continue;
10759 
10760     bool ArgHasUses = !Arg.use_empty();
10761 
10762     // Elide the copying store if the target loaded this argument from a
10763     // suitable fixed stack object.
10764     if (Ins[i].Flags.isCopyElisionCandidate()) {
10765       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10766                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10767                              InVals[i], ArgHasUses);
10768     }
10769 
10770     // If this argument is unused then remember its value. It is used to generate
10771     // debugging information.
10772     bool isSwiftErrorArg =
10773         TLI->supportSwiftError() &&
10774         Arg.hasAttribute(Attribute::SwiftError);
10775     if (!ArgHasUses && !isSwiftErrorArg) {
10776       SDB->setUnusedArgValue(&Arg, InVals[i]);
10777 
10778       // Also remember any frame index for use in FastISel.
10779       if (FrameIndexSDNode *FI =
10780           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10781         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10782     }
10783 
10784     for (unsigned Val = 0; Val != NumValues; ++Val) {
10785       EVT VT = ValueVTs[Val];
10786       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10787                                                       F.getCallingConv(), VT);
10788       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10789           *CurDAG->getContext(), F.getCallingConv(), VT);
10790 
10791       // Even an apparent 'unused' swifterror argument needs to be returned. So
10792       // we do generate a copy for it that can be used on return from the
10793       // function.
10794       if (ArgHasUses || isSwiftErrorArg) {
10795         std::optional<ISD::NodeType> AssertOp;
10796         if (Arg.hasAttribute(Attribute::SExt))
10797           AssertOp = ISD::AssertSext;
10798         else if (Arg.hasAttribute(Attribute::ZExt))
10799           AssertOp = ISD::AssertZext;
10800 
10801         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10802                                              PartVT, VT, nullptr,
10803                                              F.getCallingConv(), AssertOp));
10804       }
10805 
10806       i += NumParts;
10807     }
10808 
10809     // We don't need to do anything else for unused arguments.
10810     if (ArgValues.empty())
10811       continue;
10812 
10813     // Note down frame index.
10814     if (FrameIndexSDNode *FI =
10815         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10816       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10817 
10818     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10819                                      SDB->getCurSDLoc());
10820 
10821     SDB->setValue(&Arg, Res);
10822     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10823       // We want to associate the argument with the frame index, among
10824       // involved operands, that correspond to the lowest address. The
10825       // getCopyFromParts function, called earlier, is swapping the order of
10826       // the operands to BUILD_PAIR depending on endianness. The result of
10827       // that swapping is that the least significant bits of the argument will
10828       // be in the first operand of the BUILD_PAIR node, and the most
10829       // significant bits will be in the second operand.
10830       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10831       if (LoadSDNode *LNode =
10832           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10833         if (FrameIndexSDNode *FI =
10834             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
10835           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10836     }
10837 
10838     // Analyses past this point are naive and don't expect an assertion.
10839     if (Res.getOpcode() == ISD::AssertZext)
10840       Res = Res.getOperand(0);
10841 
10842     // Update the SwiftErrorVRegDefMap.
10843     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
10844       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10845       if (Register::isVirtualRegister(Reg))
10846         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
10847                                    Reg);
10848     }
10849 
10850     // If this argument is live outside of the entry block, insert a copy from
10851     // wherever we got it to the vreg that other BB's will reference it as.
10852     if (Res.getOpcode() == ISD::CopyFromReg) {
10853       // If we can, though, try to skip creating an unnecessary vreg.
10854       // FIXME: This isn't very clean... it would be nice to make this more
10855       // general.
10856       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
10857       if (Register::isVirtualRegister(Reg)) {
10858         FuncInfo->ValueMap[&Arg] = Reg;
10859         continue;
10860       }
10861     }
10862     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
10863       FuncInfo->InitializeRegForValue(&Arg);
10864       SDB->CopyToExportRegsIfNeeded(&Arg);
10865     }
10866   }
10867 
10868   if (!Chains.empty()) {
10869     Chains.push_back(NewRoot);
10870     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
10871   }
10872 
10873   DAG.setRoot(NewRoot);
10874 
10875   assert(i == InVals.size() && "Argument register count mismatch!");
10876 
10877   // If any argument copy elisions occurred and we have debug info, update the
10878   // stale frame indices used in the dbg.declare variable info table.
10879   MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
10880   if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
10881     for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
10882       auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
10883       if (I != ArgCopyElisionFrameIndexMap.end())
10884         VI.Slot = I->second;
10885     }
10886   }
10887 
10888   // Finally, if the target has anything special to do, allow it to do so.
10889   emitFunctionEntryCode();
10890 }
10891 
10892 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
10893 /// ensure constants are generated when needed.  Remember the virtual registers
10894 /// that need to be added to the Machine PHI nodes as input.  We cannot just
10895 /// directly add them, because expansion might result in multiple MBB's for one
10896 /// BB.  As such, the start of the BB might correspond to a different MBB than
10897 /// the end.
10898 void
10899 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
10900   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10901 
10902   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
10903 
10904   // Check PHI nodes in successors that expect a value to be available from this
10905   // block.
10906   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
10907     if (!isa<PHINode>(SuccBB->begin())) continue;
10908     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
10909 
10910     // If this terminator has multiple identical successors (common for
10911     // switches), only handle each succ once.
10912     if (!SuccsHandled.insert(SuccMBB).second)
10913       continue;
10914 
10915     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
10916 
10917     // At this point we know that there is a 1-1 correspondence between LLVM PHI
10918     // nodes and Machine PHI nodes, but the incoming operands have not been
10919     // emitted yet.
10920     for (const PHINode &PN : SuccBB->phis()) {
10921       // Ignore dead phi's.
10922       if (PN.use_empty())
10923         continue;
10924 
10925       // Skip empty types
10926       if (PN.getType()->isEmptyTy())
10927         continue;
10928 
10929       unsigned Reg;
10930       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
10931 
10932       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
10933         unsigned &RegOut = ConstantsOut[C];
10934         if (RegOut == 0) {
10935           RegOut = FuncInfo.CreateRegs(C);
10936           // We need to zero/sign extend ConstantInt phi operands to match
10937           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
10938           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
10939           if (auto *CI = dyn_cast<ConstantInt>(C))
10940             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
10941                                                     : ISD::ZERO_EXTEND;
10942           CopyValueToVirtualRegister(C, RegOut, ExtendType);
10943         }
10944         Reg = RegOut;
10945       } else {
10946         DenseMap<const Value *, Register>::iterator I =
10947           FuncInfo.ValueMap.find(PHIOp);
10948         if (I != FuncInfo.ValueMap.end())
10949           Reg = I->second;
10950         else {
10951           assert(isa<AllocaInst>(PHIOp) &&
10952                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
10953                  "Didn't codegen value into a register!??");
10954           Reg = FuncInfo.CreateRegs(PHIOp);
10955           CopyValueToVirtualRegister(PHIOp, Reg);
10956         }
10957       }
10958 
10959       // Remember that this register needs to added to the machine PHI node as
10960       // the input for this MBB.
10961       SmallVector<EVT, 4> ValueVTs;
10962       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
10963       for (EVT VT : ValueVTs) {
10964         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
10965         for (unsigned i = 0; i != NumRegisters; ++i)
10966           FuncInfo.PHINodesToUpdate.push_back(
10967               std::make_pair(&*MBBI++, Reg + i));
10968         Reg += NumRegisters;
10969       }
10970     }
10971   }
10972 
10973   ConstantsOut.clear();
10974 }
10975 
10976 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
10977   MachineFunction::iterator I(MBB);
10978   if (++I == FuncInfo.MF->end())
10979     return nullptr;
10980   return &*I;
10981 }
10982 
10983 /// During lowering new call nodes can be created (such as memset, etc.).
10984 /// Those will become new roots of the current DAG, but complications arise
10985 /// when they are tail calls. In such cases, the call lowering will update
10986 /// the root, but the builder still needs to know that a tail call has been
10987 /// lowered in order to avoid generating an additional return.
10988 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
10989   // If the node is null, we do have a tail call.
10990   if (MaybeTC.getNode() != nullptr)
10991     DAG.setRoot(MaybeTC);
10992   else
10993     HasTailCall = true;
10994 }
10995 
10996 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10997                                         MachineBasicBlock *SwitchMBB,
10998                                         MachineBasicBlock *DefaultMBB) {
10999   MachineFunction *CurMF = FuncInfo.MF;
11000   MachineBasicBlock *NextMBB = nullptr;
11001   MachineFunction::iterator BBI(W.MBB);
11002   if (++BBI != FuncInfo.MF->end())
11003     NextMBB = &*BBI;
11004 
11005   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11006 
11007   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11008 
11009   if (Size == 2 && W.MBB == SwitchMBB) {
11010     // If any two of the cases has the same destination, and if one value
11011     // is the same as the other, but has one bit unset that the other has set,
11012     // use bit manipulation to do two compares at once.  For example:
11013     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11014     // TODO: This could be extended to merge any 2 cases in switches with 3
11015     // cases.
11016     // TODO: Handle cases where W.CaseBB != SwitchBB.
11017     CaseCluster &Small = *W.FirstCluster;
11018     CaseCluster &Big = *W.LastCluster;
11019 
11020     if (Small.Low == Small.High && Big.Low == Big.High &&
11021         Small.MBB == Big.MBB) {
11022       const APInt &SmallValue = Small.Low->getValue();
11023       const APInt &BigValue = Big.Low->getValue();
11024 
11025       // Check that there is only one bit different.
11026       APInt CommonBit = BigValue ^ SmallValue;
11027       if (CommonBit.isPowerOf2()) {
11028         SDValue CondLHS = getValue(Cond);
11029         EVT VT = CondLHS.getValueType();
11030         SDLoc DL = getCurSDLoc();
11031 
11032         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11033                                  DAG.getConstant(CommonBit, DL, VT));
11034         SDValue Cond = DAG.getSetCC(
11035             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11036             ISD::SETEQ);
11037 
11038         // Update successor info.
11039         // Both Small and Big will jump to Small.BB, so we sum up the
11040         // probabilities.
11041         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11042         if (BPI)
11043           addSuccessorWithProb(
11044               SwitchMBB, DefaultMBB,
11045               // The default destination is the first successor in IR.
11046               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11047         else
11048           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11049 
11050         // Insert the true branch.
11051         SDValue BrCond =
11052             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11053                         DAG.getBasicBlock(Small.MBB));
11054         // Insert the false branch.
11055         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11056                              DAG.getBasicBlock(DefaultMBB));
11057 
11058         DAG.setRoot(BrCond);
11059         return;
11060       }
11061     }
11062   }
11063 
11064   if (TM.getOptLevel() != CodeGenOpt::None) {
11065     // Here, we order cases by probability so the most likely case will be
11066     // checked first. However, two clusters can have the same probability in
11067     // which case their relative ordering is non-deterministic. So we use Low
11068     // as a tie-breaker as clusters are guaranteed to never overlap.
11069     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11070                [](const CaseCluster &a, const CaseCluster &b) {
11071       return a.Prob != b.Prob ?
11072              a.Prob > b.Prob :
11073              a.Low->getValue().slt(b.Low->getValue());
11074     });
11075 
11076     // Rearrange the case blocks so that the last one falls through if possible
11077     // without changing the order of probabilities.
11078     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11079       --I;
11080       if (I->Prob > W.LastCluster->Prob)
11081         break;
11082       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11083         std::swap(*I, *W.LastCluster);
11084         break;
11085       }
11086     }
11087   }
11088 
11089   // Compute total probability.
11090   BranchProbability DefaultProb = W.DefaultProb;
11091   BranchProbability UnhandledProbs = DefaultProb;
11092   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11093     UnhandledProbs += I->Prob;
11094 
11095   MachineBasicBlock *CurMBB = W.MBB;
11096   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11097     bool FallthroughUnreachable = false;
11098     MachineBasicBlock *Fallthrough;
11099     if (I == W.LastCluster) {
11100       // For the last cluster, fall through to the default destination.
11101       Fallthrough = DefaultMBB;
11102       FallthroughUnreachable = isa<UnreachableInst>(
11103           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11104     } else {
11105       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11106       CurMF->insert(BBI, Fallthrough);
11107       // Put Cond in a virtual register to make it available from the new blocks.
11108       ExportFromCurrentBlock(Cond);
11109     }
11110     UnhandledProbs -= I->Prob;
11111 
11112     switch (I->Kind) {
11113       case CC_JumpTable: {
11114         // FIXME: Optimize away range check based on pivot comparisons.
11115         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11116         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11117 
11118         // The jump block hasn't been inserted yet; insert it here.
11119         MachineBasicBlock *JumpMBB = JT->MBB;
11120         CurMF->insert(BBI, JumpMBB);
11121 
11122         auto JumpProb = I->Prob;
11123         auto FallthroughProb = UnhandledProbs;
11124 
11125         // If the default statement is a target of the jump table, we evenly
11126         // distribute the default probability to successors of CurMBB. Also
11127         // update the probability on the edge from JumpMBB to Fallthrough.
11128         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11129                                               SE = JumpMBB->succ_end();
11130              SI != SE; ++SI) {
11131           if (*SI == DefaultMBB) {
11132             JumpProb += DefaultProb / 2;
11133             FallthroughProb -= DefaultProb / 2;
11134             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11135             JumpMBB->normalizeSuccProbs();
11136             break;
11137           }
11138         }
11139 
11140         if (FallthroughUnreachable)
11141           JTH->FallthroughUnreachable = true;
11142 
11143         if (!JTH->FallthroughUnreachable)
11144           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11145         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11146         CurMBB->normalizeSuccProbs();
11147 
11148         // The jump table header will be inserted in our current block, do the
11149         // range check, and fall through to our fallthrough block.
11150         JTH->HeaderBB = CurMBB;
11151         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11152 
11153         // If we're in the right place, emit the jump table header right now.
11154         if (CurMBB == SwitchMBB) {
11155           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11156           JTH->Emitted = true;
11157         }
11158         break;
11159       }
11160       case CC_BitTests: {
11161         // FIXME: Optimize away range check based on pivot comparisons.
11162         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11163 
11164         // The bit test blocks haven't been inserted yet; insert them here.
11165         for (BitTestCase &BTC : BTB->Cases)
11166           CurMF->insert(BBI, BTC.ThisBB);
11167 
11168         // Fill in fields of the BitTestBlock.
11169         BTB->Parent = CurMBB;
11170         BTB->Default = Fallthrough;
11171 
11172         BTB->DefaultProb = UnhandledProbs;
11173         // If the cases in bit test don't form a contiguous range, we evenly
11174         // distribute the probability on the edge to Fallthrough to two
11175         // successors of CurMBB.
11176         if (!BTB->ContiguousRange) {
11177           BTB->Prob += DefaultProb / 2;
11178           BTB->DefaultProb -= DefaultProb / 2;
11179         }
11180 
11181         if (FallthroughUnreachable)
11182           BTB->FallthroughUnreachable = true;
11183 
11184         // If we're in the right place, emit the bit test header right now.
11185         if (CurMBB == SwitchMBB) {
11186           visitBitTestHeader(*BTB, SwitchMBB);
11187           BTB->Emitted = true;
11188         }
11189         break;
11190       }
11191       case CC_Range: {
11192         const Value *RHS, *LHS, *MHS;
11193         ISD::CondCode CC;
11194         if (I->Low == I->High) {
11195           // Check Cond == I->Low.
11196           CC = ISD::SETEQ;
11197           LHS = Cond;
11198           RHS=I->Low;
11199           MHS = nullptr;
11200         } else {
11201           // Check I->Low <= Cond <= I->High.
11202           CC = ISD::SETLE;
11203           LHS = I->Low;
11204           MHS = Cond;
11205           RHS = I->High;
11206         }
11207 
11208         // If Fallthrough is unreachable, fold away the comparison.
11209         if (FallthroughUnreachable)
11210           CC = ISD::SETTRUE;
11211 
11212         // The false probability is the sum of all unhandled cases.
11213         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11214                      getCurSDLoc(), I->Prob, UnhandledProbs);
11215 
11216         if (CurMBB == SwitchMBB)
11217           visitSwitchCase(CB, SwitchMBB);
11218         else
11219           SL->SwitchCases.push_back(CB);
11220 
11221         break;
11222       }
11223     }
11224     CurMBB = Fallthrough;
11225   }
11226 }
11227 
11228 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11229                                               CaseClusterIt First,
11230                                               CaseClusterIt Last) {
11231   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11232     if (X.Prob != CC.Prob)
11233       return X.Prob > CC.Prob;
11234 
11235     // Ties are broken by comparing the case value.
11236     return X.Low->getValue().slt(CC.Low->getValue());
11237   });
11238 }
11239 
11240 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11241                                         const SwitchWorkListItem &W,
11242                                         Value *Cond,
11243                                         MachineBasicBlock *SwitchMBB) {
11244   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11245          "Clusters not sorted?");
11246 
11247   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11248 
11249   // Balance the tree based on branch probabilities to create a near-optimal (in
11250   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11251   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11252   CaseClusterIt LastLeft = W.FirstCluster;
11253   CaseClusterIt FirstRight = W.LastCluster;
11254   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11255   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11256 
11257   // Move LastLeft and FirstRight towards each other from opposite directions to
11258   // find a partitioning of the clusters which balances the probability on both
11259   // sides. If LeftProb and RightProb are equal, alternate which side is
11260   // taken to ensure 0-probability nodes are distributed evenly.
11261   unsigned I = 0;
11262   while (LastLeft + 1 < FirstRight) {
11263     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11264       LeftProb += (++LastLeft)->Prob;
11265     else
11266       RightProb += (--FirstRight)->Prob;
11267     I++;
11268   }
11269 
11270   while (true) {
11271     // Our binary search tree differs from a typical BST in that ours can have up
11272     // to three values in each leaf. The pivot selection above doesn't take that
11273     // into account, which means the tree might require more nodes and be less
11274     // efficient. We compensate for this here.
11275 
11276     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11277     unsigned NumRight = W.LastCluster - FirstRight + 1;
11278 
11279     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11280       // If one side has less than 3 clusters, and the other has more than 3,
11281       // consider taking a cluster from the other side.
11282 
11283       if (NumLeft < NumRight) {
11284         // Consider moving the first cluster on the right to the left side.
11285         CaseCluster &CC = *FirstRight;
11286         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11287         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11288         if (LeftSideRank <= RightSideRank) {
11289           // Moving the cluster to the left does not demote it.
11290           ++LastLeft;
11291           ++FirstRight;
11292           continue;
11293         }
11294       } else {
11295         assert(NumRight < NumLeft);
11296         // Consider moving the last element on the left to the right side.
11297         CaseCluster &CC = *LastLeft;
11298         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11299         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11300         if (RightSideRank <= LeftSideRank) {
11301           // Moving the cluster to the right does not demot it.
11302           --LastLeft;
11303           --FirstRight;
11304           continue;
11305         }
11306       }
11307     }
11308     break;
11309   }
11310 
11311   assert(LastLeft + 1 == FirstRight);
11312   assert(LastLeft >= W.FirstCluster);
11313   assert(FirstRight <= W.LastCluster);
11314 
11315   // Use the first element on the right as pivot since we will make less-than
11316   // comparisons against it.
11317   CaseClusterIt PivotCluster = FirstRight;
11318   assert(PivotCluster > W.FirstCluster);
11319   assert(PivotCluster <= W.LastCluster);
11320 
11321   CaseClusterIt FirstLeft = W.FirstCluster;
11322   CaseClusterIt LastRight = W.LastCluster;
11323 
11324   const ConstantInt *Pivot = PivotCluster->Low;
11325 
11326   // New blocks will be inserted immediately after the current one.
11327   MachineFunction::iterator BBI(W.MBB);
11328   ++BBI;
11329 
11330   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11331   // we can branch to its destination directly if it's squeezed exactly in
11332   // between the known lower bound and Pivot - 1.
11333   MachineBasicBlock *LeftMBB;
11334   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11335       FirstLeft->Low == W.GE &&
11336       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11337     LeftMBB = FirstLeft->MBB;
11338   } else {
11339     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11340     FuncInfo.MF->insert(BBI, LeftMBB);
11341     WorkList.push_back(
11342         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11343     // Put Cond in a virtual register to make it available from the new blocks.
11344     ExportFromCurrentBlock(Cond);
11345   }
11346 
11347   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11348   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11349   // directly if RHS.High equals the current upper bound.
11350   MachineBasicBlock *RightMBB;
11351   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11352       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11353     RightMBB = FirstRight->MBB;
11354   } else {
11355     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11356     FuncInfo.MF->insert(BBI, RightMBB);
11357     WorkList.push_back(
11358         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11359     // Put Cond in a virtual register to make it available from the new blocks.
11360     ExportFromCurrentBlock(Cond);
11361   }
11362 
11363   // Create the CaseBlock record that will be used to lower the branch.
11364   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11365                getCurSDLoc(), LeftProb, RightProb);
11366 
11367   if (W.MBB == SwitchMBB)
11368     visitSwitchCase(CB, SwitchMBB);
11369   else
11370     SL->SwitchCases.push_back(CB);
11371 }
11372 
11373 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11374 // from the swith statement.
11375 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11376                                             BranchProbability PeeledCaseProb) {
11377   if (PeeledCaseProb == BranchProbability::getOne())
11378     return BranchProbability::getZero();
11379   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11380 
11381   uint32_t Numerator = CaseProb.getNumerator();
11382   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11383   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11384 }
11385 
11386 // Try to peel the top probability case if it exceeds the threshold.
11387 // Return current MachineBasicBlock for the switch statement if the peeling
11388 // does not occur.
11389 // If the peeling is performed, return the newly created MachineBasicBlock
11390 // for the peeled switch statement. Also update Clusters to remove the peeled
11391 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11392 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11393     const SwitchInst &SI, CaseClusterVector &Clusters,
11394     BranchProbability &PeeledCaseProb) {
11395   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11396   // Don't perform if there is only one cluster or optimizing for size.
11397   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11398       TM.getOptLevel() == CodeGenOpt::None ||
11399       SwitchMBB->getParent()->getFunction().hasMinSize())
11400     return SwitchMBB;
11401 
11402   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11403   unsigned PeeledCaseIndex = 0;
11404   bool SwitchPeeled = false;
11405   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11406     CaseCluster &CC = Clusters[Index];
11407     if (CC.Prob < TopCaseProb)
11408       continue;
11409     TopCaseProb = CC.Prob;
11410     PeeledCaseIndex = Index;
11411     SwitchPeeled = true;
11412   }
11413   if (!SwitchPeeled)
11414     return SwitchMBB;
11415 
11416   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11417                     << TopCaseProb << "\n");
11418 
11419   // Record the MBB for the peeled switch statement.
11420   MachineFunction::iterator BBI(SwitchMBB);
11421   ++BBI;
11422   MachineBasicBlock *PeeledSwitchMBB =
11423       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11424   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11425 
11426   ExportFromCurrentBlock(SI.getCondition());
11427   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11428   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11429                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11430   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11431 
11432   Clusters.erase(PeeledCaseIt);
11433   for (CaseCluster &CC : Clusters) {
11434     LLVM_DEBUG(
11435         dbgs() << "Scale the probablity for one cluster, before scaling: "
11436                << CC.Prob << "\n");
11437     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11438     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11439   }
11440   PeeledCaseProb = TopCaseProb;
11441   return PeeledSwitchMBB;
11442 }
11443 
11444 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11445   // Extract cases from the switch.
11446   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11447   CaseClusterVector Clusters;
11448   Clusters.reserve(SI.getNumCases());
11449   for (auto I : SI.cases()) {
11450     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11451     const ConstantInt *CaseVal = I.getCaseValue();
11452     BranchProbability Prob =
11453         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11454             : BranchProbability(1, SI.getNumCases() + 1);
11455     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11456   }
11457 
11458   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11459 
11460   // Cluster adjacent cases with the same destination. We do this at all
11461   // optimization levels because it's cheap to do and will make codegen faster
11462   // if there are many clusters.
11463   sortAndRangeify(Clusters);
11464 
11465   // The branch probablity of the peeled case.
11466   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11467   MachineBasicBlock *PeeledSwitchMBB =
11468       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11469 
11470   // If there is only the default destination, jump there directly.
11471   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11472   if (Clusters.empty()) {
11473     assert(PeeledSwitchMBB == SwitchMBB);
11474     SwitchMBB->addSuccessor(DefaultMBB);
11475     if (DefaultMBB != NextBlock(SwitchMBB)) {
11476       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11477                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11478     }
11479     return;
11480   }
11481 
11482   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11483   SL->findBitTestClusters(Clusters, &SI);
11484 
11485   LLVM_DEBUG({
11486     dbgs() << "Case clusters: ";
11487     for (const CaseCluster &C : Clusters) {
11488       if (C.Kind == CC_JumpTable)
11489         dbgs() << "JT:";
11490       if (C.Kind == CC_BitTests)
11491         dbgs() << "BT:";
11492 
11493       C.Low->getValue().print(dbgs(), true);
11494       if (C.Low != C.High) {
11495         dbgs() << '-';
11496         C.High->getValue().print(dbgs(), true);
11497       }
11498       dbgs() << ' ';
11499     }
11500     dbgs() << '\n';
11501   });
11502 
11503   assert(!Clusters.empty());
11504   SwitchWorkList WorkList;
11505   CaseClusterIt First = Clusters.begin();
11506   CaseClusterIt Last = Clusters.end() - 1;
11507   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11508   // Scale the branchprobability for DefaultMBB if the peel occurs and
11509   // DefaultMBB is not replaced.
11510   if (PeeledCaseProb != BranchProbability::getZero() &&
11511       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11512     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11513   WorkList.push_back(
11514       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11515 
11516   while (!WorkList.empty()) {
11517     SwitchWorkListItem W = WorkList.pop_back_val();
11518     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11519 
11520     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11521         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11522       // For optimized builds, lower large range as a balanced binary tree.
11523       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11524       continue;
11525     }
11526 
11527     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11528   }
11529 }
11530 
11531 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11532   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11533   auto DL = getCurSDLoc();
11534   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11535   setValue(&I, DAG.getStepVector(DL, ResultVT));
11536 }
11537 
11538 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11539   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11540   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11541 
11542   SDLoc DL = getCurSDLoc();
11543   SDValue V = getValue(I.getOperand(0));
11544   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11545 
11546   if (VT.isScalableVector()) {
11547     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11548     return;
11549   }
11550 
11551   // Use VECTOR_SHUFFLE for the fixed-length vector
11552   // to maintain existing behavior.
11553   SmallVector<int, 8> Mask;
11554   unsigned NumElts = VT.getVectorMinNumElements();
11555   for (unsigned i = 0; i != NumElts; ++i)
11556     Mask.push_back(NumElts - 1 - i);
11557 
11558   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11559 }
11560 
11561 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11562   auto DL = getCurSDLoc();
11563   SDValue InVec = getValue(I.getOperand(0));
11564   EVT OutVT =
11565       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11566 
11567   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11568 
11569   // ISD Node needs the input vectors split into two equal parts
11570   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11571                            DAG.getVectorIdxConstant(0, DL));
11572   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11573                            DAG.getVectorIdxConstant(OutNumElts, DL));
11574 
11575   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11576   // legalisation and combines.
11577   if (OutVT.isFixedLengthVector()) {
11578     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11579                                         createStrideMask(0, 2, OutNumElts));
11580     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11581                                        createStrideMask(1, 2, OutNumElts));
11582     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11583     setValue(&I, Res);
11584     return;
11585   }
11586 
11587   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11588                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11589   setValue(&I, Res);
11590   return;
11591 }
11592 
11593 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11594   auto DL = getCurSDLoc();
11595   EVT InVT = getValue(I.getOperand(0)).getValueType();
11596   SDValue InVec0 = getValue(I.getOperand(0));
11597   SDValue InVec1 = getValue(I.getOperand(1));
11598   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11599   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11600 
11601   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11602   // legalisation and combines.
11603   if (OutVT.isFixedLengthVector()) {
11604     unsigned NumElts = InVT.getVectorMinNumElements();
11605     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11606     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11607                                       createInterleaveMask(NumElts, 2)));
11608     return;
11609   }
11610 
11611   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11612                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
11613   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11614                     Res.getValue(1));
11615   setValue(&I, Res);
11616   return;
11617 }
11618 
11619 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11620   SmallVector<EVT, 4> ValueVTs;
11621   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11622                   ValueVTs);
11623   unsigned NumValues = ValueVTs.size();
11624   if (NumValues == 0) return;
11625 
11626   SmallVector<SDValue, 4> Values(NumValues);
11627   SDValue Op = getValue(I.getOperand(0));
11628 
11629   for (unsigned i = 0; i != NumValues; ++i)
11630     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11631                             SDValue(Op.getNode(), Op.getResNo() + i));
11632 
11633   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11634                            DAG.getVTList(ValueVTs), Values));
11635 }
11636 
11637 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11638   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11639   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11640 
11641   SDLoc DL = getCurSDLoc();
11642   SDValue V1 = getValue(I.getOperand(0));
11643   SDValue V2 = getValue(I.getOperand(1));
11644   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11645 
11646   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11647   if (VT.isScalableVector()) {
11648     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11649     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11650                              DAG.getConstant(Imm, DL, IdxVT)));
11651     return;
11652   }
11653 
11654   unsigned NumElts = VT.getVectorNumElements();
11655 
11656   uint64_t Idx = (NumElts + Imm) % NumElts;
11657 
11658   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11659   SmallVector<int, 8> Mask;
11660   for (unsigned i = 0; i < NumElts; ++i)
11661     Mask.push_back(Idx + i);
11662   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11663 }
11664 
11665 // Consider the following MIR after SelectionDAG, which produces output in
11666 // phyregs in the first case or virtregs in the second case.
11667 //
11668 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
11669 // %5:gr32 = COPY $ebx
11670 // %6:gr32 = COPY $edx
11671 // %1:gr32 = COPY %6:gr32
11672 // %0:gr32 = COPY %5:gr32
11673 //
11674 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
11675 // %1:gr32 = COPY %6:gr32
11676 // %0:gr32 = COPY %5:gr32
11677 //
11678 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
11679 // Given %1, we'd like to return $edx in the first case and %6 in the second.
11680 //
11681 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
11682 // to a single virtreg (such as %0). The remaining outputs monotonically
11683 // increase in virtreg number from there. If a callbr has no outputs, then it
11684 // should not have a corresponding callbr landingpad; in fact, the callbr
11685 // landingpad would not even be able to refer to such a callbr.
11686 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
11687   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
11688   // There is definitely at least one copy.
11689   assert(MI->getOpcode() == TargetOpcode::COPY &&
11690          "start of copy chain MUST be COPY");
11691   Reg = MI->getOperand(1).getReg();
11692   MI = MRI.def_begin(Reg)->getParent();
11693   // There may be an optional second copy.
11694   if (MI->getOpcode() == TargetOpcode::COPY) {
11695     assert(Reg.isVirtual() && "expected COPY of virtual register");
11696     Reg = MI->getOperand(1).getReg();
11697     assert(Reg.isPhysical() && "expected COPY of physical register");
11698     MI = MRI.def_begin(Reg)->getParent();
11699   }
11700   // The start of the chain must be an INLINEASM_BR.
11701   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
11702          "end of copy chain MUST be INLINEASM_BR");
11703   return Reg;
11704 }
11705 
11706 // We must do this walk rather than the simpler
11707 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
11708 // otherwise we will end up with copies of virtregs only valid along direct
11709 // edges.
11710 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
11711   SmallVector<EVT, 8> ResultVTs;
11712   SmallVector<SDValue, 8> ResultValues;
11713   const auto *CBR =
11714       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
11715 
11716   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11717   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
11718   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11719 
11720   unsigned InitialDef = FuncInfo.ValueMap[CBR];
11721   SDValue Chain = DAG.getRoot();
11722 
11723   // Re-parse the asm constraints string.
11724   TargetLowering::AsmOperandInfoVector TargetConstraints =
11725       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
11726   for (auto &T : TargetConstraints) {
11727     SDISelAsmOperandInfo OpInfo(T);
11728     if (OpInfo.Type != InlineAsm::isOutput)
11729       continue;
11730 
11731     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
11732     // individual constraint.
11733     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
11734 
11735     switch (OpInfo.ConstraintType) {
11736     case TargetLowering::C_Register:
11737     case TargetLowering::C_RegisterClass: {
11738       // Fill in OpInfo.AssignedRegs.Regs.
11739       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
11740 
11741       // getRegistersForValue may produce 1 to many registers based on whether
11742       // the OpInfo.ConstraintVT is legal on the target or not.
11743       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
11744         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
11745         if (Register::isPhysicalRegister(OriginalDef))
11746           FuncInfo.MBB->addLiveIn(OriginalDef);
11747         // Update the assigned registers to use the original defs.
11748         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
11749       }
11750 
11751       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
11752           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
11753       ResultValues.push_back(V);
11754       ResultVTs.push_back(OpInfo.ConstraintVT);
11755       break;
11756     }
11757     case TargetLowering::C_Other: {
11758       SDValue Flag;
11759       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
11760                                                   OpInfo, DAG);
11761       ++InitialDef;
11762       ResultValues.push_back(V);
11763       ResultVTs.push_back(OpInfo.ConstraintVT);
11764       break;
11765     }
11766     default:
11767       break;
11768     }
11769   }
11770   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11771                           DAG.getVTList(ResultVTs), ResultValues);
11772   setValue(&I, V);
11773 }
11774