1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/Analysis/VectorUtils.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 38 #include "llvm/CodeGen/StackMaps.h" 39 #include "llvm/CodeGen/WinEHFuncInfo.h" 40 #include "llvm/IR/CallingConv.h" 41 #include "llvm/IR/Constants.h" 42 #include "llvm/IR/DataLayout.h" 43 #include "llvm/IR/DebugInfo.h" 44 #include "llvm/IR/DerivedTypes.h" 45 #include "llvm/IR/Function.h" 46 #include "llvm/IR/GetElementPtrTypeIterator.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/Instructions.h" 50 #include "llvm/IR/IntrinsicInst.h" 51 #include "llvm/IR/Intrinsics.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/Module.h" 54 #include "llvm/IR/Statepoint.h" 55 #include "llvm/MC/MCSymbol.h" 56 #include "llvm/Support/CommandLine.h" 57 #include "llvm/Support/Debug.h" 58 #include "llvm/Support/ErrorHandling.h" 59 #include "llvm/Support/MathExtras.h" 60 #include "llvm/Support/raw_ostream.h" 61 #include "llvm/Target/TargetFrameLowering.h" 62 #include "llvm/Target/TargetInstrInfo.h" 63 #include "llvm/Target/TargetIntrinsicInfo.h" 64 #include "llvm/Target/TargetLowering.h" 65 #include "llvm/Target/TargetOptions.h" 66 #include "llvm/Target/TargetSubtargetInfo.h" 67 #include <algorithm> 68 #include <utility> 69 using namespace llvm; 70 71 #define DEBUG_TYPE "isel" 72 73 /// LimitFloatPrecision - Generate low-precision inline sequences for 74 /// some float libcalls (6, 8 or 12 bits). 75 static unsigned LimitFloatPrecision; 76 77 static cl::opt<unsigned, true> 78 LimitFPPrecision("limit-float-precision", 79 cl::desc("Generate low-precision inline sequences " 80 "for some float libcalls"), 81 cl::location(LimitFloatPrecision), 82 cl::init(0)); 83 84 static cl::opt<bool> 85 EnableFMFInDAG("enable-fmf-dag", cl::init(true), cl::Hidden, 86 cl::desc("Enable fast-math-flags for DAG nodes")); 87 88 // Limit the width of DAG chains. This is important in general to prevent 89 // DAG-based analysis from blowing up. For example, alias analysis and 90 // load clustering may not complete in reasonable time. It is difficult to 91 // recognize and avoid this situation within each individual analysis, and 92 // future analyses are likely to have the same behavior. Limiting DAG width is 93 // the safe approach and will be especially important with global DAGs. 94 // 95 // MaxParallelChains default is arbitrarily high to avoid affecting 96 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 97 // sequence over this should have been converted to llvm.memcpy by the 98 // frontend. It easy to induce this behavior with .ll code such as: 99 // %buffer = alloca [4096 x i8] 100 // %data = load [4096 x i8]* %argPtr 101 // store [4096 x i8] %data, [4096 x i8]* %buffer 102 static const unsigned MaxParallelChains = 64; 103 104 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 105 const SDValue *Parts, unsigned NumParts, 106 MVT PartVT, EVT ValueVT, const Value *V); 107 108 /// getCopyFromParts - Create a value that contains the specified legal parts 109 /// combined into the value they represent. If the parts combine to a type 110 /// larger then ValueVT then AssertOp can be used to specify whether the extra 111 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 112 /// (ISD::AssertSext). 113 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 114 const SDValue *Parts, 115 unsigned NumParts, MVT PartVT, EVT ValueVT, 116 const Value *V, 117 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 118 if (ValueVT.isVector()) 119 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 120 PartVT, ValueVT, V); 121 122 assert(NumParts > 0 && "No parts to assemble!"); 123 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 124 SDValue Val = Parts[0]; 125 126 if (NumParts > 1) { 127 // Assemble the value from multiple parts. 128 if (ValueVT.isInteger()) { 129 unsigned PartBits = PartVT.getSizeInBits(); 130 unsigned ValueBits = ValueVT.getSizeInBits(); 131 132 // Assemble the power of 2 part. 133 unsigned RoundParts = NumParts & (NumParts - 1) ? 134 1 << Log2_32(NumParts) : NumParts; 135 unsigned RoundBits = PartBits * RoundParts; 136 EVT RoundVT = RoundBits == ValueBits ? 137 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 138 SDValue Lo, Hi; 139 140 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 141 142 if (RoundParts > 2) { 143 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 144 PartVT, HalfVT, V); 145 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 146 RoundParts / 2, PartVT, HalfVT, V); 147 } else { 148 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 149 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 150 } 151 152 if (DAG.getDataLayout().isBigEndian()) 153 std::swap(Lo, Hi); 154 155 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 156 157 if (RoundParts < NumParts) { 158 // Assemble the trailing non-power-of-2 part. 159 unsigned OddParts = NumParts - RoundParts; 160 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 161 Hi = getCopyFromParts(DAG, DL, 162 Parts + RoundParts, OddParts, PartVT, OddVT, V); 163 164 // Combine the round and odd parts. 165 Lo = Val; 166 if (DAG.getDataLayout().isBigEndian()) 167 std::swap(Lo, Hi); 168 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 169 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 170 Hi = 171 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 172 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 173 TLI.getPointerTy(DAG.getDataLayout()))); 174 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 175 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 176 } 177 } else if (PartVT.isFloatingPoint()) { 178 // FP split into multiple FP parts (for ppcf128) 179 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 180 "Unexpected split"); 181 SDValue Lo, Hi; 182 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 183 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 184 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 185 std::swap(Lo, Hi); 186 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 187 } else { 188 // FP split into integer parts (soft fp) 189 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 190 !PartVT.isVector() && "Unexpected split"); 191 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 192 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 193 } 194 } 195 196 // There is now one part, held in Val. Correct it to match ValueVT. 197 EVT PartEVT = Val.getValueType(); 198 199 if (PartEVT == ValueVT) 200 return Val; 201 202 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 203 ValueVT.bitsLT(PartEVT)) { 204 // For an FP value in an integer part, we need to truncate to the right 205 // width first. 206 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 207 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 208 } 209 210 if (PartEVT.isInteger() && ValueVT.isInteger()) { 211 if (ValueVT.bitsLT(PartEVT)) { 212 // For a truncate, see if we have any information to 213 // indicate whether the truncated bits will always be 214 // zero or sign-extension. 215 if (AssertOp != ISD::DELETED_NODE) 216 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 217 DAG.getValueType(ValueVT)); 218 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 219 } 220 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 221 } 222 223 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 224 // FP_ROUND's are always exact here. 225 if (ValueVT.bitsLT(Val.getValueType())) 226 return DAG.getNode( 227 ISD::FP_ROUND, DL, ValueVT, Val, 228 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 229 230 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 231 } 232 233 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 234 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 235 236 llvm_unreachable("Unknown mismatch!"); 237 } 238 239 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 240 const Twine &ErrMsg) { 241 const Instruction *I = dyn_cast_or_null<Instruction>(V); 242 if (!V) 243 return Ctx.emitError(ErrMsg); 244 245 const char *AsmError = ", possible invalid constraint for vector type"; 246 if (const CallInst *CI = dyn_cast<CallInst>(I)) 247 if (isa<InlineAsm>(CI->getCalledValue())) 248 return Ctx.emitError(I, ErrMsg + AsmError); 249 250 return Ctx.emitError(I, ErrMsg); 251 } 252 253 /// getCopyFromPartsVector - Create a value that contains the specified legal 254 /// parts combined into the value they represent. If the parts combine to a 255 /// type larger then ValueVT then AssertOp can be used to specify whether the 256 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 257 /// ValueVT (ISD::AssertSext). 258 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 259 const SDValue *Parts, unsigned NumParts, 260 MVT PartVT, EVT ValueVT, const Value *V) { 261 assert(ValueVT.isVector() && "Not a vector value"); 262 assert(NumParts > 0 && "No parts to assemble!"); 263 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 264 SDValue Val = Parts[0]; 265 266 // Handle a multi-element vector. 267 if (NumParts > 1) { 268 EVT IntermediateVT; 269 MVT RegisterVT; 270 unsigned NumIntermediates; 271 unsigned NumRegs = 272 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 273 NumIntermediates, RegisterVT); 274 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 275 NumParts = NumRegs; // Silence a compiler warning. 276 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 277 assert(RegisterVT.getSizeInBits() == 278 Parts[0].getSimpleValueType().getSizeInBits() && 279 "Part type sizes don't match!"); 280 281 // Assemble the parts into intermediate operands. 282 SmallVector<SDValue, 8> Ops(NumIntermediates); 283 if (NumIntermediates == NumParts) { 284 // If the register was not expanded, truncate or copy the value, 285 // as appropriate. 286 for (unsigned i = 0; i != NumParts; ++i) 287 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 288 PartVT, IntermediateVT, V); 289 } else if (NumParts > 0) { 290 // If the intermediate type was expanded, build the intermediate 291 // operands from the parts. 292 assert(NumParts % NumIntermediates == 0 && 293 "Must expand into a divisible number of parts!"); 294 unsigned Factor = NumParts / NumIntermediates; 295 for (unsigned i = 0; i != NumIntermediates; ++i) 296 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 297 PartVT, IntermediateVT, V); 298 } 299 300 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 301 // intermediate operands. 302 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 303 : ISD::BUILD_VECTOR, 304 DL, ValueVT, Ops); 305 } 306 307 // There is now one part, held in Val. Correct it to match ValueVT. 308 EVT PartEVT = Val.getValueType(); 309 310 if (PartEVT == ValueVT) 311 return Val; 312 313 if (PartEVT.isVector()) { 314 // If the element type of the source/dest vectors are the same, but the 315 // parts vector has more elements than the value vector, then we have a 316 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 317 // elements we want. 318 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 319 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 320 "Cannot narrow, it would be a lossy transformation"); 321 return DAG.getNode( 322 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 323 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 324 } 325 326 // Vector/Vector bitcast. 327 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 328 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 329 330 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 331 "Cannot handle this kind of promotion"); 332 // Promoted vector extract 333 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 334 335 } 336 337 // Trivial bitcast if the types are the same size and the destination 338 // vector type is legal. 339 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 340 TLI.isTypeLegal(ValueVT)) 341 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 342 343 // Handle cases such as i8 -> <1 x i1> 344 if (ValueVT.getVectorNumElements() != 1) { 345 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 346 "non-trivial scalar-to-vector conversion"); 347 return DAG.getUNDEF(ValueVT); 348 } 349 350 if (ValueVT.getVectorNumElements() == 1 && 351 ValueVT.getVectorElementType() != PartEVT) 352 Val = DAG.getAnyExtOrTrunc(Val, DL, ValueVT.getScalarType()); 353 354 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 355 } 356 357 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 358 SDValue Val, SDValue *Parts, unsigned NumParts, 359 MVT PartVT, const Value *V); 360 361 /// getCopyToParts - Create a series of nodes that contain the specified value 362 /// split into legal parts. If the parts contain more bits than Val, then, for 363 /// integers, ExtendKind can be used to specify how to generate the extra bits. 364 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 365 SDValue Val, SDValue *Parts, unsigned NumParts, 366 MVT PartVT, const Value *V, 367 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 368 EVT ValueVT = Val.getValueType(); 369 370 // Handle the vector case separately. 371 if (ValueVT.isVector()) 372 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 373 374 unsigned PartBits = PartVT.getSizeInBits(); 375 unsigned OrigNumParts = NumParts; 376 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 377 "Copying to an illegal type!"); 378 379 if (NumParts == 0) 380 return; 381 382 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 383 EVT PartEVT = PartVT; 384 if (PartEVT == ValueVT) { 385 assert(NumParts == 1 && "No-op copy with multiple parts!"); 386 Parts[0] = Val; 387 return; 388 } 389 390 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 391 // If the parts cover more bits than the value has, promote the value. 392 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 393 assert(NumParts == 1 && "Do not know what to promote to!"); 394 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 395 } else { 396 if (ValueVT.isFloatingPoint()) { 397 // FP values need to be bitcast, then extended if they are being put 398 // into a larger container. 399 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 400 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 401 } 402 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 403 ValueVT.isInteger() && 404 "Unknown mismatch!"); 405 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 406 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 407 if (PartVT == MVT::x86mmx) 408 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 409 } 410 } else if (PartBits == ValueVT.getSizeInBits()) { 411 // Different types of the same size. 412 assert(NumParts == 1 && PartEVT != ValueVT); 413 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 414 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 415 // If the parts cover less bits than value has, truncate the value. 416 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 417 ValueVT.isInteger() && 418 "Unknown mismatch!"); 419 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 420 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 421 if (PartVT == MVT::x86mmx) 422 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 423 } 424 425 // The value may have changed - recompute ValueVT. 426 ValueVT = Val.getValueType(); 427 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 428 "Failed to tile the value with PartVT!"); 429 430 if (NumParts == 1) { 431 if (PartEVT != ValueVT) 432 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 433 "scalar-to-vector conversion failed"); 434 435 Parts[0] = Val; 436 return; 437 } 438 439 // Expand the value into multiple parts. 440 if (NumParts & (NumParts - 1)) { 441 // The number of parts is not a power of 2. Split off and copy the tail. 442 assert(PartVT.isInteger() && ValueVT.isInteger() && 443 "Do not know what to expand to!"); 444 unsigned RoundParts = 1 << Log2_32(NumParts); 445 unsigned RoundBits = RoundParts * PartBits; 446 unsigned OddParts = NumParts - RoundParts; 447 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 448 DAG.getIntPtrConstant(RoundBits, DL)); 449 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 450 451 if (DAG.getDataLayout().isBigEndian()) 452 // The odd parts were reversed by getCopyToParts - unreverse them. 453 std::reverse(Parts + RoundParts, Parts + NumParts); 454 455 NumParts = RoundParts; 456 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 457 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 458 } 459 460 // The number of parts is a power of 2. Repeatedly bisect the value using 461 // EXTRACT_ELEMENT. 462 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 463 EVT::getIntegerVT(*DAG.getContext(), 464 ValueVT.getSizeInBits()), 465 Val); 466 467 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 468 for (unsigned i = 0; i < NumParts; i += StepSize) { 469 unsigned ThisBits = StepSize * PartBits / 2; 470 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 471 SDValue &Part0 = Parts[i]; 472 SDValue &Part1 = Parts[i+StepSize/2]; 473 474 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 475 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 476 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 477 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 478 479 if (ThisBits == PartBits && ThisVT != PartVT) { 480 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 481 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 482 } 483 } 484 } 485 486 if (DAG.getDataLayout().isBigEndian()) 487 std::reverse(Parts, Parts + OrigNumParts); 488 } 489 490 491 /// getCopyToPartsVector - Create a series of nodes that contain the specified 492 /// value split into legal parts. 493 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 494 SDValue Val, SDValue *Parts, unsigned NumParts, 495 MVT PartVT, const Value *V) { 496 EVT ValueVT = Val.getValueType(); 497 assert(ValueVT.isVector() && "Not a vector"); 498 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 499 500 if (NumParts == 1) { 501 EVT PartEVT = PartVT; 502 if (PartEVT == ValueVT) { 503 // Nothing to do. 504 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 505 // Bitconvert vector->vector case. 506 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 507 } else if (PartVT.isVector() && 508 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 509 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 510 EVT ElementVT = PartVT.getVectorElementType(); 511 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 512 // undef elements. 513 SmallVector<SDValue, 16> Ops; 514 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 515 Ops.push_back(DAG.getNode( 516 ISD::EXTRACT_VECTOR_ELT, DL, ElementVT, Val, 517 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout())))); 518 519 for (unsigned i = ValueVT.getVectorNumElements(), 520 e = PartVT.getVectorNumElements(); i != e; ++i) 521 Ops.push_back(DAG.getUNDEF(ElementVT)); 522 523 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 524 525 // FIXME: Use CONCAT for 2x -> 4x. 526 527 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 528 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 529 } else if (PartVT.isVector() && 530 PartEVT.getVectorElementType().bitsGE( 531 ValueVT.getVectorElementType()) && 532 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 533 534 // Promoted vector extract 535 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 536 } else{ 537 // Vector -> scalar conversion. 538 assert(ValueVT.getVectorNumElements() == 1 && 539 "Only trivial vector-to-scalar conversions should get here!"); 540 Val = DAG.getNode( 541 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 542 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 543 544 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 545 } 546 547 Parts[0] = Val; 548 return; 549 } 550 551 // Handle a multi-element vector. 552 EVT IntermediateVT; 553 MVT RegisterVT; 554 unsigned NumIntermediates; 555 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 556 IntermediateVT, 557 NumIntermediates, RegisterVT); 558 unsigned NumElements = ValueVT.getVectorNumElements(); 559 560 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 561 NumParts = NumRegs; // Silence a compiler warning. 562 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 563 564 // Split the vector into intermediate operands. 565 SmallVector<SDValue, 8> Ops(NumIntermediates); 566 for (unsigned i = 0; i != NumIntermediates; ++i) { 567 if (IntermediateVT.isVector()) 568 Ops[i] = 569 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 570 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 571 TLI.getVectorIdxTy(DAG.getDataLayout()))); 572 else 573 Ops[i] = DAG.getNode( 574 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 575 DAG.getConstant(i, DL, TLI.getVectorIdxTy(DAG.getDataLayout()))); 576 } 577 578 // Split the intermediate operands into legal parts. 579 if (NumParts == NumIntermediates) { 580 // If the register was not expanded, promote or copy the value, 581 // as appropriate. 582 for (unsigned i = 0; i != NumParts; ++i) 583 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 584 } else if (NumParts > 0) { 585 // If the intermediate type was expanded, split each the value into 586 // legal parts. 587 assert(NumIntermediates != 0 && "division by zero"); 588 assert(NumParts % NumIntermediates == 0 && 589 "Must expand into a divisible number of parts!"); 590 unsigned Factor = NumParts / NumIntermediates; 591 for (unsigned i = 0; i != NumIntermediates; ++i) 592 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 593 } 594 } 595 596 RegsForValue::RegsForValue() {} 597 598 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 599 EVT valuevt) 600 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 601 602 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 603 const DataLayout &DL, unsigned Reg, Type *Ty) { 604 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 605 606 for (EVT ValueVT : ValueVTs) { 607 unsigned NumRegs = TLI.getNumRegisters(Context, ValueVT); 608 MVT RegisterVT = TLI.getRegisterType(Context, ValueVT); 609 for (unsigned i = 0; i != NumRegs; ++i) 610 Regs.push_back(Reg + i); 611 RegVTs.push_back(RegisterVT); 612 Reg += NumRegs; 613 } 614 } 615 616 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 617 /// this value and returns the result as a ValueVT value. This uses 618 /// Chain/Flag as the input and updates them for the output Chain/Flag. 619 /// If the Flag pointer is NULL, no flag is used. 620 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 621 FunctionLoweringInfo &FuncInfo, 622 SDLoc dl, 623 SDValue &Chain, SDValue *Flag, 624 const Value *V) const { 625 // A Value with type {} or [0 x %t] needs no registers. 626 if (ValueVTs.empty()) 627 return SDValue(); 628 629 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 630 631 // Assemble the legal parts into the final values. 632 SmallVector<SDValue, 4> Values(ValueVTs.size()); 633 SmallVector<SDValue, 8> Parts; 634 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 635 // Copy the legal parts from the registers. 636 EVT ValueVT = ValueVTs[Value]; 637 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 638 MVT RegisterVT = RegVTs[Value]; 639 640 Parts.resize(NumRegs); 641 for (unsigned i = 0; i != NumRegs; ++i) { 642 SDValue P; 643 if (!Flag) { 644 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 645 } else { 646 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 647 *Flag = P.getValue(2); 648 } 649 650 Chain = P.getValue(1); 651 Parts[i] = P; 652 653 // If the source register was virtual and if we know something about it, 654 // add an assert node. 655 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 656 !RegisterVT.isInteger() || RegisterVT.isVector()) 657 continue; 658 659 const FunctionLoweringInfo::LiveOutInfo *LOI = 660 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 661 if (!LOI) 662 continue; 663 664 unsigned RegSize = RegisterVT.getSizeInBits(); 665 unsigned NumSignBits = LOI->NumSignBits; 666 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 667 668 if (NumZeroBits == RegSize) { 669 // The current value is a zero. 670 // Explicitly express that as it would be easier for 671 // optimizations to kick in. 672 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 673 continue; 674 } 675 676 // FIXME: We capture more information than the dag can represent. For 677 // now, just use the tightest assertzext/assertsext possible. 678 bool isSExt = true; 679 EVT FromVT(MVT::Other); 680 if (NumSignBits == RegSize) 681 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 682 else if (NumZeroBits >= RegSize-1) 683 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 684 else if (NumSignBits > RegSize-8) 685 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 686 else if (NumZeroBits >= RegSize-8) 687 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 688 else if (NumSignBits > RegSize-16) 689 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 690 else if (NumZeroBits >= RegSize-16) 691 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 692 else if (NumSignBits > RegSize-32) 693 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 694 else if (NumZeroBits >= RegSize-32) 695 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 696 else 697 continue; 698 699 // Add an assertion node. 700 assert(FromVT != MVT::Other); 701 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 702 RegisterVT, P, DAG.getValueType(FromVT)); 703 } 704 705 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 706 NumRegs, RegisterVT, ValueVT, V); 707 Part += NumRegs; 708 Parts.clear(); 709 } 710 711 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 712 } 713 714 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 715 /// specified value into the registers specified by this object. This uses 716 /// Chain/Flag as the input and updates them for the output Chain/Flag. 717 /// If the Flag pointer is NULL, no flag is used. 718 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 719 SDValue &Chain, SDValue *Flag, const Value *V, 720 ISD::NodeType PreferredExtendType) const { 721 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 722 ISD::NodeType ExtendKind = PreferredExtendType; 723 724 // Get the list of the values's legal parts. 725 unsigned NumRegs = Regs.size(); 726 SmallVector<SDValue, 8> Parts(NumRegs); 727 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 728 EVT ValueVT = ValueVTs[Value]; 729 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 730 MVT RegisterVT = RegVTs[Value]; 731 732 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 733 ExtendKind = ISD::ZERO_EXTEND; 734 735 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 736 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 737 Part += NumParts; 738 } 739 740 // Copy the parts into the registers. 741 SmallVector<SDValue, 8> Chains(NumRegs); 742 for (unsigned i = 0; i != NumRegs; ++i) { 743 SDValue Part; 744 if (!Flag) { 745 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 746 } else { 747 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 748 *Flag = Part.getValue(1); 749 } 750 751 Chains[i] = Part.getValue(0); 752 } 753 754 if (NumRegs == 1 || Flag) 755 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 756 // flagged to it. That is the CopyToReg nodes and the user are considered 757 // a single scheduling unit. If we create a TokenFactor and return it as 758 // chain, then the TokenFactor is both a predecessor (operand) of the 759 // user as well as a successor (the TF operands are flagged to the user). 760 // c1, f1 = CopyToReg 761 // c2, f2 = CopyToReg 762 // c3 = TokenFactor c1, c2 763 // ... 764 // = op c3, ..., f2 765 Chain = Chains[NumRegs-1]; 766 else 767 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 768 } 769 770 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 771 /// operand list. This adds the code marker and includes the number of 772 /// values added into it. 773 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 774 unsigned MatchingIdx, SDLoc dl, 775 SelectionDAG &DAG, 776 std::vector<SDValue> &Ops) const { 777 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 778 779 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 780 if (HasMatching) 781 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 782 else if (!Regs.empty() && 783 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 784 // Put the register class of the virtual registers in the flag word. That 785 // way, later passes can recompute register class constraints for inline 786 // assembly as well as normal instructions. 787 // Don't do this for tied operands that can use the regclass information 788 // from the def. 789 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 790 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 791 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 792 } 793 794 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 795 Ops.push_back(Res); 796 797 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 798 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 799 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 800 MVT RegisterVT = RegVTs[Value]; 801 for (unsigned i = 0; i != NumRegs; ++i) { 802 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 803 unsigned TheReg = Regs[Reg++]; 804 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 805 806 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 807 // If we clobbered the stack pointer, MFI should know about it. 808 assert(DAG.getMachineFunction().getFrameInfo()-> 809 hasOpaqueSPAdjustment()); 810 } 811 } 812 } 813 } 814 815 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 816 const TargetLibraryInfo *li) { 817 AA = &aa; 818 GFI = gfi; 819 LibInfo = li; 820 DL = &DAG.getDataLayout(); 821 Context = DAG.getContext(); 822 LPadToCallSiteMap.clear(); 823 } 824 825 /// clear - Clear out the current SelectionDAG and the associated 826 /// state and prepare this SelectionDAGBuilder object to be used 827 /// for a new block. This doesn't clear out information about 828 /// additional blocks that are needed to complete switch lowering 829 /// or PHI node updating; that information is cleared out as it is 830 /// consumed. 831 void SelectionDAGBuilder::clear() { 832 NodeMap.clear(); 833 UnusedArgNodeMap.clear(); 834 PendingLoads.clear(); 835 PendingExports.clear(); 836 CurInst = nullptr; 837 HasTailCall = false; 838 SDNodeOrder = LowestSDNodeOrder; 839 StatepointLowering.clear(); 840 } 841 842 /// clearDanglingDebugInfo - Clear the dangling debug information 843 /// map. This function is separated from the clear so that debug 844 /// information that is dangling in a basic block can be properly 845 /// resolved in a different basic block. This allows the 846 /// SelectionDAG to resolve dangling debug information attached 847 /// to PHI nodes. 848 void SelectionDAGBuilder::clearDanglingDebugInfo() { 849 DanglingDebugInfoMap.clear(); 850 } 851 852 /// getRoot - Return the current virtual root of the Selection DAG, 853 /// flushing any PendingLoad items. This must be done before emitting 854 /// a store or any other node that may need to be ordered after any 855 /// prior load instructions. 856 /// 857 SDValue SelectionDAGBuilder::getRoot() { 858 if (PendingLoads.empty()) 859 return DAG.getRoot(); 860 861 if (PendingLoads.size() == 1) { 862 SDValue Root = PendingLoads[0]; 863 DAG.setRoot(Root); 864 PendingLoads.clear(); 865 return Root; 866 } 867 868 // Otherwise, we have to make a token factor node. 869 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 870 PendingLoads); 871 PendingLoads.clear(); 872 DAG.setRoot(Root); 873 return Root; 874 } 875 876 /// getControlRoot - Similar to getRoot, but instead of flushing all the 877 /// PendingLoad items, flush all the PendingExports items. It is necessary 878 /// to do this before emitting a terminator instruction. 879 /// 880 SDValue SelectionDAGBuilder::getControlRoot() { 881 SDValue Root = DAG.getRoot(); 882 883 if (PendingExports.empty()) 884 return Root; 885 886 // Turn all of the CopyToReg chains into one factored node. 887 if (Root.getOpcode() != ISD::EntryToken) { 888 unsigned i = 0, e = PendingExports.size(); 889 for (; i != e; ++i) { 890 assert(PendingExports[i].getNode()->getNumOperands() > 1); 891 if (PendingExports[i].getNode()->getOperand(0) == Root) 892 break; // Don't add the root if we already indirectly depend on it. 893 } 894 895 if (i == e) 896 PendingExports.push_back(Root); 897 } 898 899 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 900 PendingExports); 901 PendingExports.clear(); 902 DAG.setRoot(Root); 903 return Root; 904 } 905 906 void SelectionDAGBuilder::visit(const Instruction &I) { 907 // Set up outgoing PHI node register values before emitting the terminator. 908 if (isa<TerminatorInst>(&I)) 909 HandlePHINodesInSuccessorBlocks(I.getParent()); 910 911 ++SDNodeOrder; 912 913 CurInst = &I; 914 915 visit(I.getOpcode(), I); 916 917 if (!isa<TerminatorInst>(&I) && !HasTailCall && 918 !isStatepoint(&I)) // statepoints handle their exports internally 919 CopyToExportRegsIfNeeded(&I); 920 921 CurInst = nullptr; 922 } 923 924 void SelectionDAGBuilder::visitPHI(const PHINode &) { 925 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 926 } 927 928 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 929 // Note: this doesn't use InstVisitor, because it has to work with 930 // ConstantExpr's in addition to instructions. 931 switch (Opcode) { 932 default: llvm_unreachable("Unknown instruction type encountered!"); 933 // Build the switch statement using the Instruction.def file. 934 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 935 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 936 #include "llvm/IR/Instruction.def" 937 } 938 } 939 940 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 941 // generate the debug data structures now that we've seen its definition. 942 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 943 SDValue Val) { 944 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 945 if (DDI.getDI()) { 946 const DbgValueInst *DI = DDI.getDI(); 947 DebugLoc dl = DDI.getdl(); 948 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 949 DILocalVariable *Variable = DI->getVariable(); 950 DIExpression *Expr = DI->getExpression(); 951 assert(Variable->isValidLocationForIntrinsic(dl) && 952 "Expected inlined-at fields to agree"); 953 uint64_t Offset = DI->getOffset(); 954 SDDbgValue *SDV; 955 if (Val.getNode()) { 956 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, false, 957 Val)) { 958 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 959 false, Offset, dl, DbgSDNodeOrder); 960 DAG.AddDbgValue(SDV, Val.getNode(), false); 961 } 962 } else 963 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 964 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 965 } 966 } 967 968 /// getCopyFromRegs - If there was virtual register allocated for the value V 969 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 970 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 971 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 972 SDValue Result; 973 974 if (It != FuncInfo.ValueMap.end()) { 975 unsigned InReg = It->second; 976 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 977 DAG.getDataLayout(), InReg, Ty); 978 SDValue Chain = DAG.getEntryNode(); 979 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 980 resolveDanglingDebugInfo(V, Result); 981 } 982 983 return Result; 984 } 985 986 /// getValue - Return an SDValue for the given Value. 987 SDValue SelectionDAGBuilder::getValue(const Value *V) { 988 // If we already have an SDValue for this value, use it. It's important 989 // to do this first, so that we don't create a CopyFromReg if we already 990 // have a regular SDValue. 991 SDValue &N = NodeMap[V]; 992 if (N.getNode()) return N; 993 994 // If there's a virtual register allocated and initialized for this 995 // value, use it. 996 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 997 if (copyFromReg.getNode()) { 998 return copyFromReg; 999 } 1000 1001 // Otherwise create a new SDValue and remember it. 1002 SDValue Val = getValueImpl(V); 1003 NodeMap[V] = Val; 1004 resolveDanglingDebugInfo(V, Val); 1005 return Val; 1006 } 1007 1008 // Return true if SDValue exists for the given Value 1009 bool SelectionDAGBuilder::findValue(const Value *V) const { 1010 return (NodeMap.find(V) != NodeMap.end()) || 1011 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1012 } 1013 1014 /// getNonRegisterValue - Return an SDValue for the given Value, but 1015 /// don't look in FuncInfo.ValueMap for a virtual register. 1016 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1017 // If we already have an SDValue for this value, use it. 1018 SDValue &N = NodeMap[V]; 1019 if (N.getNode()) { 1020 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1021 // Remove the debug location from the node as the node is about to be used 1022 // in a location which may differ from the original debug location. This 1023 // is relevant to Constant and ConstantFP nodes because they can appear 1024 // as constant expressions inside PHI nodes. 1025 N->setDebugLoc(DebugLoc()); 1026 } 1027 return N; 1028 } 1029 1030 // Otherwise create a new SDValue and remember it. 1031 SDValue Val = getValueImpl(V); 1032 NodeMap[V] = Val; 1033 resolveDanglingDebugInfo(V, Val); 1034 return Val; 1035 } 1036 1037 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1038 /// Create an SDValue for the given value. 1039 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1040 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1041 1042 if (const Constant *C = dyn_cast<Constant>(V)) { 1043 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1044 1045 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1046 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1047 1048 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1049 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1050 1051 if (isa<ConstantPointerNull>(C)) { 1052 unsigned AS = V->getType()->getPointerAddressSpace(); 1053 return DAG.getConstant(0, getCurSDLoc(), 1054 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1055 } 1056 1057 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1058 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1059 1060 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1061 return DAG.getUNDEF(VT); 1062 1063 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1064 visit(CE->getOpcode(), *CE); 1065 SDValue N1 = NodeMap[V]; 1066 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1067 return N1; 1068 } 1069 1070 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1071 SmallVector<SDValue, 4> Constants; 1072 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1073 OI != OE; ++OI) { 1074 SDNode *Val = getValue(*OI).getNode(); 1075 // If the operand is an empty aggregate, there are no values. 1076 if (!Val) continue; 1077 // Add each leaf value from the operand to the Constants list 1078 // to form a flattened list of all the values. 1079 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1080 Constants.push_back(SDValue(Val, i)); 1081 } 1082 1083 return DAG.getMergeValues(Constants, getCurSDLoc()); 1084 } 1085 1086 if (const ConstantDataSequential *CDS = 1087 dyn_cast<ConstantDataSequential>(C)) { 1088 SmallVector<SDValue, 4> Ops; 1089 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1090 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1091 // Add each leaf value from the operand to the Constants list 1092 // to form a flattened list of all the values. 1093 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1094 Ops.push_back(SDValue(Val, i)); 1095 } 1096 1097 if (isa<ArrayType>(CDS->getType())) 1098 return DAG.getMergeValues(Ops, getCurSDLoc()); 1099 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1100 VT, Ops); 1101 } 1102 1103 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1104 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1105 "Unknown struct or array constant!"); 1106 1107 SmallVector<EVT, 4> ValueVTs; 1108 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1109 unsigned NumElts = ValueVTs.size(); 1110 if (NumElts == 0) 1111 return SDValue(); // empty struct 1112 SmallVector<SDValue, 4> Constants(NumElts); 1113 for (unsigned i = 0; i != NumElts; ++i) { 1114 EVT EltVT = ValueVTs[i]; 1115 if (isa<UndefValue>(C)) 1116 Constants[i] = DAG.getUNDEF(EltVT); 1117 else if (EltVT.isFloatingPoint()) 1118 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1119 else 1120 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1121 } 1122 1123 return DAG.getMergeValues(Constants, getCurSDLoc()); 1124 } 1125 1126 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1127 return DAG.getBlockAddress(BA, VT); 1128 1129 VectorType *VecTy = cast<VectorType>(V->getType()); 1130 unsigned NumElements = VecTy->getNumElements(); 1131 1132 // Now that we know the number and type of the elements, get that number of 1133 // elements into the Ops array based on what kind of constant it is. 1134 SmallVector<SDValue, 16> Ops; 1135 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1136 for (unsigned i = 0; i != NumElements; ++i) 1137 Ops.push_back(getValue(CV->getOperand(i))); 1138 } else { 1139 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1140 EVT EltVT = 1141 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1142 1143 SDValue Op; 1144 if (EltVT.isFloatingPoint()) 1145 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1146 else 1147 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1148 Ops.assign(NumElements, Op); 1149 } 1150 1151 // Create a BUILD_VECTOR node. 1152 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1153 } 1154 1155 // If this is a static alloca, generate it as the frameindex instead of 1156 // computation. 1157 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1158 DenseMap<const AllocaInst*, int>::iterator SI = 1159 FuncInfo.StaticAllocaMap.find(AI); 1160 if (SI != FuncInfo.StaticAllocaMap.end()) 1161 return DAG.getFrameIndex(SI->second, 1162 TLI.getPointerTy(DAG.getDataLayout())); 1163 } 1164 1165 // If this is an instruction which fast-isel has deferred, select it now. 1166 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1167 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1168 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1169 Inst->getType()); 1170 SDValue Chain = DAG.getEntryNode(); 1171 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1172 } 1173 1174 llvm_unreachable("Can't get register for value!"); 1175 } 1176 1177 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1178 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1179 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1180 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1181 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1182 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1183 if (IsMSVCCXX || IsCoreCLR) 1184 CatchPadMBB->setIsEHFuncletEntry(); 1185 1186 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other, getControlRoot())); 1187 } 1188 1189 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1190 // Update machine-CFG edge. 1191 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1192 FuncInfo.MBB->addSuccessor(TargetMBB); 1193 1194 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1195 bool IsSEH = isAsynchronousEHPersonality(Pers); 1196 if (IsSEH) { 1197 // If this is not a fall-through branch or optimizations are switched off, 1198 // emit the branch. 1199 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1200 TM.getOptLevel() == CodeGenOpt::None) 1201 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1202 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1203 return; 1204 } 1205 1206 // Figure out the funclet membership for the catchret's successor. 1207 // This will be used by the FuncletLayout pass to determine how to order the 1208 // BB's. 1209 // A 'catchret' returns to the outer scope's color. 1210 Value *ParentPad = I.getCatchSwitchParentPad(); 1211 const BasicBlock *SuccessorColor; 1212 if (isa<ConstantTokenNone>(ParentPad)) 1213 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1214 else 1215 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1216 assert(SuccessorColor && "No parent funclet for catchret!"); 1217 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1218 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1219 1220 // Create the terminator node. 1221 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1222 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1223 DAG.getBasicBlock(SuccessorColorMBB)); 1224 DAG.setRoot(Ret); 1225 } 1226 1227 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1228 // Don't emit any special code for the cleanuppad instruction. It just marks 1229 // the start of a funclet. 1230 FuncInfo.MBB->setIsEHFuncletEntry(); 1231 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1232 } 1233 1234 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1235 /// many places it could ultimately go. In the IR, we have a single unwind 1236 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1237 /// This function skips over imaginary basic blocks that hold catchswitch 1238 /// instructions, and finds all the "real" machine 1239 /// basic block destinations. As those destinations may not be successors of 1240 /// EHPadBB, here we also calculate the edge probability to those destinations. 1241 /// The passed-in Prob is the edge probability to EHPadBB. 1242 static void findUnwindDestinations( 1243 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1244 BranchProbability Prob, 1245 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1246 &UnwindDests) { 1247 EHPersonality Personality = 1248 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1249 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1250 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1251 1252 while (EHPadBB) { 1253 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1254 BasicBlock *NewEHPadBB = nullptr; 1255 if (isa<LandingPadInst>(Pad)) { 1256 // Stop on landingpads. They are not funclets. 1257 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1258 break; 1259 } else if (isa<CleanupPadInst>(Pad)) { 1260 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1261 // personalities. 1262 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1263 UnwindDests.back().first->setIsEHFuncletEntry(); 1264 break; 1265 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1266 // Add the catchpad handlers to the possible destinations. 1267 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1268 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1269 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1270 if (IsMSVCCXX || IsCoreCLR) 1271 UnwindDests.back().first->setIsEHFuncletEntry(); 1272 } 1273 NewEHPadBB = CatchSwitch->getUnwindDest(); 1274 } else { 1275 continue; 1276 } 1277 1278 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1279 if (BPI && NewEHPadBB) 1280 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1281 EHPadBB = NewEHPadBB; 1282 } 1283 } 1284 1285 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1286 // Update successor info. 1287 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1288 auto UnwindDest = I.getUnwindDest(); 1289 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1290 BranchProbability UnwindDestProb = 1291 (BPI && UnwindDest) 1292 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1293 : BranchProbability::getZero(); 1294 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1295 for (auto &UnwindDest : UnwindDests) { 1296 UnwindDest.first->setIsEHPad(); 1297 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1298 } 1299 FuncInfo.MBB->normalizeSuccProbs(); 1300 1301 // Create the terminator node. 1302 SDValue Ret = 1303 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1304 DAG.setRoot(Ret); 1305 } 1306 1307 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1308 report_fatal_error("visitCatchSwitch not yet implemented!"); 1309 } 1310 1311 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1312 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1313 auto &DL = DAG.getDataLayout(); 1314 SDValue Chain = getControlRoot(); 1315 SmallVector<ISD::OutputArg, 8> Outs; 1316 SmallVector<SDValue, 8> OutVals; 1317 1318 if (!FuncInfo.CanLowerReturn) { 1319 unsigned DemoteReg = FuncInfo.DemoteRegister; 1320 const Function *F = I.getParent()->getParent(); 1321 1322 // Emit a store of the return value through the virtual register. 1323 // Leave Outs empty so that LowerReturn won't try to load return 1324 // registers the usual way. 1325 SmallVector<EVT, 1> PtrValueVTs; 1326 ComputeValueVTs(TLI, DL, PointerType::getUnqual(F->getReturnType()), 1327 PtrValueVTs); 1328 1329 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1330 DemoteReg, PtrValueVTs[0]); 1331 SDValue RetOp = getValue(I.getOperand(0)); 1332 1333 SmallVector<EVT, 4> ValueVTs; 1334 SmallVector<uint64_t, 4> Offsets; 1335 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1336 unsigned NumValues = ValueVTs.size(); 1337 1338 // An aggregate return value cannot wrap around the address space, so 1339 // offsets to its parts don't wrap either. 1340 SDNodeFlags Flags; 1341 Flags.setNoUnsignedWrap(true); 1342 1343 SmallVector<SDValue, 4> Chains(NumValues); 1344 for (unsigned i = 0; i != NumValues; ++i) { 1345 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1346 RetPtr.getValueType(), RetPtr, 1347 DAG.getIntPtrConstant(Offsets[i], 1348 getCurSDLoc()), 1349 &Flags); 1350 Chains[i] = 1351 DAG.getStore(Chain, getCurSDLoc(), 1352 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1353 // FIXME: better loc info would be nice. 1354 Add, MachinePointerInfo(), false, false, 0); 1355 } 1356 1357 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1358 MVT::Other, Chains); 1359 } else if (I.getNumOperands() != 0) { 1360 SmallVector<EVT, 4> ValueVTs; 1361 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1362 unsigned NumValues = ValueVTs.size(); 1363 if (NumValues) { 1364 SDValue RetOp = getValue(I.getOperand(0)); 1365 1366 const Function *F = I.getParent()->getParent(); 1367 1368 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1369 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1370 Attribute::SExt)) 1371 ExtendKind = ISD::SIGN_EXTEND; 1372 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1373 Attribute::ZExt)) 1374 ExtendKind = ISD::ZERO_EXTEND; 1375 1376 LLVMContext &Context = F->getContext(); 1377 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1378 Attribute::InReg); 1379 1380 for (unsigned j = 0; j != NumValues; ++j) { 1381 EVT VT = ValueVTs[j]; 1382 1383 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1384 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1385 1386 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1387 MVT PartVT = TLI.getRegisterType(Context, VT); 1388 SmallVector<SDValue, 4> Parts(NumParts); 1389 getCopyToParts(DAG, getCurSDLoc(), 1390 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1391 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1392 1393 // 'inreg' on function refers to return value 1394 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1395 if (RetInReg) 1396 Flags.setInReg(); 1397 1398 // Propagate extension type if any 1399 if (ExtendKind == ISD::SIGN_EXTEND) 1400 Flags.setSExt(); 1401 else if (ExtendKind == ISD::ZERO_EXTEND) 1402 Flags.setZExt(); 1403 1404 for (unsigned i = 0; i < NumParts; ++i) { 1405 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1406 VT, /*isfixed=*/true, 0, 0)); 1407 OutVals.push_back(Parts[i]); 1408 } 1409 } 1410 } 1411 } 1412 1413 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1414 CallingConv::ID CallConv = 1415 DAG.getMachineFunction().getFunction()->getCallingConv(); 1416 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1417 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1418 1419 // Verify that the target's LowerReturn behaved as expected. 1420 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1421 "LowerReturn didn't return a valid chain!"); 1422 1423 // Update the DAG with the new chain value resulting from return lowering. 1424 DAG.setRoot(Chain); 1425 } 1426 1427 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1428 /// created for it, emit nodes to copy the value into the virtual 1429 /// registers. 1430 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1431 // Skip empty types 1432 if (V->getType()->isEmptyTy()) 1433 return; 1434 1435 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1436 if (VMI != FuncInfo.ValueMap.end()) { 1437 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1438 CopyValueToVirtualRegister(V, VMI->second); 1439 } 1440 } 1441 1442 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1443 /// the current basic block, add it to ValueMap now so that we'll get a 1444 /// CopyTo/FromReg. 1445 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1446 // No need to export constants. 1447 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1448 1449 // Already exported? 1450 if (FuncInfo.isExportedInst(V)) return; 1451 1452 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1453 CopyValueToVirtualRegister(V, Reg); 1454 } 1455 1456 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1457 const BasicBlock *FromBB) { 1458 // The operands of the setcc have to be in this block. We don't know 1459 // how to export them from some other block. 1460 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1461 // Can export from current BB. 1462 if (VI->getParent() == FromBB) 1463 return true; 1464 1465 // Is already exported, noop. 1466 return FuncInfo.isExportedInst(V); 1467 } 1468 1469 // If this is an argument, we can export it if the BB is the entry block or 1470 // if it is already exported. 1471 if (isa<Argument>(V)) { 1472 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1473 return true; 1474 1475 // Otherwise, can only export this if it is already exported. 1476 return FuncInfo.isExportedInst(V); 1477 } 1478 1479 // Otherwise, constants can always be exported. 1480 return true; 1481 } 1482 1483 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1484 BranchProbability 1485 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 1486 const MachineBasicBlock *Dst) const { 1487 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1488 const BasicBlock *SrcBB = Src->getBasicBlock(); 1489 const BasicBlock *DstBB = Dst->getBasicBlock(); 1490 if (!BPI) { 1491 // If BPI is not available, set the default probability as 1 / N, where N is 1492 // the number of successors. 1493 auto SuccSize = std::max<uint32_t>( 1494 std::distance(succ_begin(SrcBB), succ_end(SrcBB)), 1); 1495 return BranchProbability(1, SuccSize); 1496 } 1497 return BPI->getEdgeProbability(SrcBB, DstBB); 1498 } 1499 1500 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 1501 MachineBasicBlock *Dst, 1502 BranchProbability Prob) { 1503 if (!FuncInfo.BPI) 1504 Src->addSuccessorWithoutProb(Dst); 1505 else { 1506 if (Prob.isUnknown()) 1507 Prob = getEdgeProbability(Src, Dst); 1508 Src->addSuccessor(Dst, Prob); 1509 } 1510 } 1511 1512 static bool InBlock(const Value *V, const BasicBlock *BB) { 1513 if (const Instruction *I = dyn_cast<Instruction>(V)) 1514 return I->getParent() == BB; 1515 return true; 1516 } 1517 1518 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1519 /// This function emits a branch and is used at the leaves of an OR or an 1520 /// AND operator tree. 1521 /// 1522 void 1523 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1524 MachineBasicBlock *TBB, 1525 MachineBasicBlock *FBB, 1526 MachineBasicBlock *CurBB, 1527 MachineBasicBlock *SwitchBB, 1528 BranchProbability TProb, 1529 BranchProbability FProb) { 1530 const BasicBlock *BB = CurBB->getBasicBlock(); 1531 1532 // If the leaf of the tree is a comparison, merge the condition into 1533 // the caseblock. 1534 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1535 // The operands of the cmp have to be in this block. We don't know 1536 // how to export them from some other block. If this is the first block 1537 // of the sequence, no exporting is needed. 1538 if (CurBB == SwitchBB || 1539 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1540 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1541 ISD::CondCode Condition; 1542 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1543 Condition = getICmpCondCode(IC->getPredicate()); 1544 } else { 1545 const FCmpInst *FC = cast<FCmpInst>(Cond); 1546 Condition = getFCmpCondCode(FC->getPredicate()); 1547 if (TM.Options.NoNaNsFPMath) 1548 Condition = getFCmpCodeWithoutNaN(Condition); 1549 } 1550 1551 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1552 TBB, FBB, CurBB, TProb, FProb); 1553 SwitchCases.push_back(CB); 1554 return; 1555 } 1556 } 1557 1558 // Create a CaseBlock record representing this branch. 1559 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1560 nullptr, TBB, FBB, CurBB, TProb, FProb); 1561 SwitchCases.push_back(CB); 1562 } 1563 1564 /// FindMergedConditions - If Cond is an expression like 1565 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1566 MachineBasicBlock *TBB, 1567 MachineBasicBlock *FBB, 1568 MachineBasicBlock *CurBB, 1569 MachineBasicBlock *SwitchBB, 1570 Instruction::BinaryOps Opc, 1571 BranchProbability TProb, 1572 BranchProbability FProb) { 1573 // If this node is not part of the or/and tree, emit it as a branch. 1574 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1575 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1576 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1577 BOp->getParent() != CurBB->getBasicBlock() || 1578 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1579 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1580 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1581 TProb, FProb); 1582 return; 1583 } 1584 1585 // Create TmpBB after CurBB. 1586 MachineFunction::iterator BBI(CurBB); 1587 MachineFunction &MF = DAG.getMachineFunction(); 1588 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1589 CurBB->getParent()->insert(++BBI, TmpBB); 1590 1591 if (Opc == Instruction::Or) { 1592 // Codegen X | Y as: 1593 // BB1: 1594 // jmp_if_X TBB 1595 // jmp TmpBB 1596 // TmpBB: 1597 // jmp_if_Y TBB 1598 // jmp FBB 1599 // 1600 1601 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1602 // The requirement is that 1603 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1604 // = TrueProb for original BB. 1605 // Assuming the original probabilities are A and B, one choice is to set 1606 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 1607 // A/(1+B) and 2B/(1+B). This choice assumes that 1608 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1609 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1610 // TmpBB, but the math is more complicated. 1611 1612 auto NewTrueProb = TProb / 2; 1613 auto NewFalseProb = TProb / 2 + FProb; 1614 // Emit the LHS condition. 1615 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1616 NewTrueProb, NewFalseProb); 1617 1618 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 1619 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 1620 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1621 // Emit the RHS condition into TmpBB. 1622 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1623 Probs[0], Probs[1]); 1624 } else { 1625 assert(Opc == Instruction::And && "Unknown merge op!"); 1626 // Codegen X & Y as: 1627 // BB1: 1628 // jmp_if_X TmpBB 1629 // jmp FBB 1630 // TmpBB: 1631 // jmp_if_Y TBB 1632 // jmp FBB 1633 // 1634 // This requires creation of TmpBB after CurBB. 1635 1636 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1637 // The requirement is that 1638 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1639 // = FalseProb for original BB. 1640 // Assuming the original probabilities are A and B, one choice is to set 1641 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 1642 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 1643 // TrueProb for BB1 * FalseProb for TmpBB. 1644 1645 auto NewTrueProb = TProb + FProb / 2; 1646 auto NewFalseProb = FProb / 2; 1647 // Emit the LHS condition. 1648 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1649 NewTrueProb, NewFalseProb); 1650 1651 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 1652 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 1653 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 1654 // Emit the RHS condition into TmpBB. 1655 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1656 Probs[0], Probs[1]); 1657 } 1658 } 1659 1660 /// If the set of cases should be emitted as a series of branches, return true. 1661 /// If we should emit this as a bunch of and/or'd together conditions, return 1662 /// false. 1663 bool 1664 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1665 if (Cases.size() != 2) return true; 1666 1667 // If this is two comparisons of the same values or'd or and'd together, they 1668 // will get folded into a single comparison, so don't emit two blocks. 1669 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1670 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1671 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1672 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1673 return false; 1674 } 1675 1676 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1677 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1678 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1679 Cases[0].CC == Cases[1].CC && 1680 isa<Constant>(Cases[0].CmpRHS) && 1681 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1682 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1683 return false; 1684 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1685 return false; 1686 } 1687 1688 return true; 1689 } 1690 1691 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1692 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1693 1694 // Update machine-CFG edges. 1695 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1696 1697 if (I.isUnconditional()) { 1698 // Update machine-CFG edges. 1699 BrMBB->addSuccessor(Succ0MBB); 1700 1701 // If this is not a fall-through branch or optimizations are switched off, 1702 // emit the branch. 1703 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1704 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1705 MVT::Other, getControlRoot(), 1706 DAG.getBasicBlock(Succ0MBB))); 1707 1708 return; 1709 } 1710 1711 // If this condition is one of the special cases we handle, do special stuff 1712 // now. 1713 const Value *CondVal = I.getCondition(); 1714 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1715 1716 // If this is a series of conditions that are or'd or and'd together, emit 1717 // this as a sequence of branches instead of setcc's with and/or operations. 1718 // As long as jumps are not expensive, this should improve performance. 1719 // For example, instead of something like: 1720 // cmp A, B 1721 // C = seteq 1722 // cmp D, E 1723 // F = setle 1724 // or C, F 1725 // jnz foo 1726 // Emit: 1727 // cmp A, B 1728 // je foo 1729 // cmp D, E 1730 // jle foo 1731 // 1732 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1733 Instruction::BinaryOps Opcode = BOp->getOpcode(); 1734 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() && 1735 !I.getMetadata(LLVMContext::MD_unpredictable) && 1736 (Opcode == Instruction::And || Opcode == Instruction::Or)) { 1737 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1738 Opcode, 1739 getEdgeProbability(BrMBB, Succ0MBB), 1740 getEdgeProbability(BrMBB, Succ1MBB)); 1741 // If the compares in later blocks need to use values not currently 1742 // exported from this block, export them now. This block should always 1743 // be the first entry. 1744 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1745 1746 // Allow some cases to be rejected. 1747 if (ShouldEmitAsBranches(SwitchCases)) { 1748 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1749 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1750 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1751 } 1752 1753 // Emit the branch for this block. 1754 visitSwitchCase(SwitchCases[0], BrMBB); 1755 SwitchCases.erase(SwitchCases.begin()); 1756 return; 1757 } 1758 1759 // Okay, we decided not to do this, remove any inserted MBB's and clear 1760 // SwitchCases. 1761 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1762 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1763 1764 SwitchCases.clear(); 1765 } 1766 } 1767 1768 // Create a CaseBlock record representing this branch. 1769 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1770 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1771 1772 // Use visitSwitchCase to actually insert the fast branch sequence for this 1773 // cond branch. 1774 visitSwitchCase(CB, BrMBB); 1775 } 1776 1777 /// visitSwitchCase - Emits the necessary code to represent a single node in 1778 /// the binary search tree resulting from lowering a switch instruction. 1779 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1780 MachineBasicBlock *SwitchBB) { 1781 SDValue Cond; 1782 SDValue CondLHS = getValue(CB.CmpLHS); 1783 SDLoc dl = getCurSDLoc(); 1784 1785 // Build the setcc now. 1786 if (!CB.CmpMHS) { 1787 // Fold "(X == true)" to X and "(X == false)" to !X to 1788 // handle common cases produced by branch lowering. 1789 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1790 CB.CC == ISD::SETEQ) 1791 Cond = CondLHS; 1792 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1793 CB.CC == ISD::SETEQ) { 1794 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1795 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1796 } else 1797 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1798 } else { 1799 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1800 1801 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1802 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1803 1804 SDValue CmpOp = getValue(CB.CmpMHS); 1805 EVT VT = CmpOp.getValueType(); 1806 1807 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1808 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1809 ISD::SETLE); 1810 } else { 1811 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1812 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1813 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1814 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1815 } 1816 } 1817 1818 // Update successor info 1819 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 1820 // TrueBB and FalseBB are always different unless the incoming IR is 1821 // degenerate. This only happens when running llc on weird IR. 1822 if (CB.TrueBB != CB.FalseBB) 1823 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 1824 SwitchBB->normalizeSuccProbs(); 1825 1826 // If the lhs block is the next block, invert the condition so that we can 1827 // fall through to the lhs instead of the rhs block. 1828 if (CB.TrueBB == NextBlock(SwitchBB)) { 1829 std::swap(CB.TrueBB, CB.FalseBB); 1830 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1831 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1832 } 1833 1834 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1835 MVT::Other, getControlRoot(), Cond, 1836 DAG.getBasicBlock(CB.TrueBB)); 1837 1838 // Insert the false branch. Do this even if it's a fall through branch, 1839 // this makes it easier to do DAG optimizations which require inverting 1840 // the branch condition. 1841 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1842 DAG.getBasicBlock(CB.FalseBB)); 1843 1844 DAG.setRoot(BrCond); 1845 } 1846 1847 /// visitJumpTable - Emit JumpTable node in the current MBB 1848 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1849 // Emit the code for the jump table 1850 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1851 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 1852 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1853 JT.Reg, PTy); 1854 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1855 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1856 MVT::Other, Index.getValue(1), 1857 Table, Index); 1858 DAG.setRoot(BrJumpTable); 1859 } 1860 1861 /// visitJumpTableHeader - This function emits necessary code to produce index 1862 /// in the JumpTable from switch case. 1863 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1864 JumpTableHeader &JTH, 1865 MachineBasicBlock *SwitchBB) { 1866 SDLoc dl = getCurSDLoc(); 1867 1868 // Subtract the lowest switch case value from the value being switched on and 1869 // conditional branch to default mbb if the result is greater than the 1870 // difference between smallest and largest cases. 1871 SDValue SwitchOp = getValue(JTH.SValue); 1872 EVT VT = SwitchOp.getValueType(); 1873 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1874 DAG.getConstant(JTH.First, dl, VT)); 1875 1876 // The SDNode we just created, which holds the value being switched on minus 1877 // the smallest case value, needs to be copied to a virtual register so it 1878 // can be used as an index into the jump table in a subsequent basic block. 1879 // This value may be smaller or larger than the target's pointer type, and 1880 // therefore require extension or truncating. 1881 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1882 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 1883 1884 unsigned JumpTableReg = 1885 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 1886 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1887 JumpTableReg, SwitchOp); 1888 JT.Reg = JumpTableReg; 1889 1890 // Emit the range check for the jump table, and branch to the default block 1891 // for the switch statement if the value being switched on exceeds the largest 1892 // case in the switch. 1893 SDValue CMP = DAG.getSetCC( 1894 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 1895 Sub.getValueType()), 1896 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 1897 1898 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1899 MVT::Other, CopyTo, CMP, 1900 DAG.getBasicBlock(JT.Default)); 1901 1902 // Avoid emitting unnecessary branches to the next block. 1903 if (JT.MBB != NextBlock(SwitchBB)) 1904 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1905 DAG.getBasicBlock(JT.MBB)); 1906 1907 DAG.setRoot(BrCond); 1908 } 1909 1910 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1911 /// tail spliced into a stack protector check success bb. 1912 /// 1913 /// For a high level explanation of how this fits into the stack protector 1914 /// generation see the comment on the declaration of class 1915 /// StackProtectorDescriptor. 1916 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1917 MachineBasicBlock *ParentBB) { 1918 1919 // First create the loads to the guard/stack slot for the comparison. 1920 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1921 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 1922 1923 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1924 int FI = MFI->getStackProtectorIndex(); 1925 1926 const Value *IRGuard = SPD.getGuard(); 1927 SDValue GuardPtr = getValue(IRGuard); 1928 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1929 1930 unsigned Align = DL->getPrefTypeAlignment(IRGuard->getType()); 1931 1932 SDValue Guard; 1933 SDLoc dl = getCurSDLoc(); 1934 1935 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1936 // guard value from the virtual register holding the value. Otherwise, emit a 1937 // volatile load to retrieve the stack guard value. 1938 unsigned GuardReg = SPD.getGuardReg(); 1939 1940 if (GuardReg && TLI.useLoadStackGuardNode()) 1941 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1942 PtrTy); 1943 else 1944 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1945 GuardPtr, MachinePointerInfo(IRGuard, 0), 1946 true, false, false, Align); 1947 1948 SDValue StackSlot = DAG.getLoad( 1949 PtrTy, dl, DAG.getEntryNode(), StackSlotPtr, 1950 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), true, 1951 false, false, Align); 1952 1953 // Perform the comparison via a subtract/getsetcc. 1954 EVT VT = Guard.getValueType(); 1955 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1956 1957 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 1958 *DAG.getContext(), 1959 Sub.getValueType()), 1960 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1961 1962 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1963 // branch to failure MBB. 1964 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1965 MVT::Other, StackSlot.getOperand(0), 1966 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1967 // Otherwise branch to success MBB. 1968 SDValue Br = DAG.getNode(ISD::BR, dl, 1969 MVT::Other, BrCond, 1970 DAG.getBasicBlock(SPD.getSuccessMBB())); 1971 1972 DAG.setRoot(Br); 1973 } 1974 1975 /// Codegen the failure basic block for a stack protector check. 1976 /// 1977 /// A failure stack protector machine basic block consists simply of a call to 1978 /// __stack_chk_fail(). 1979 /// 1980 /// For a high level explanation of how this fits into the stack protector 1981 /// generation see the comment on the declaration of class 1982 /// StackProtectorDescriptor. 1983 void 1984 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1985 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1986 SDValue Chain = 1987 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1988 None, false, getCurSDLoc(), false, false).second; 1989 DAG.setRoot(Chain); 1990 } 1991 1992 /// visitBitTestHeader - This function emits necessary code to produce value 1993 /// suitable for "bit tests" 1994 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1995 MachineBasicBlock *SwitchBB) { 1996 SDLoc dl = getCurSDLoc(); 1997 1998 // Subtract the minimum value 1999 SDValue SwitchOp = getValue(B.SValue); 2000 EVT VT = SwitchOp.getValueType(); 2001 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2002 DAG.getConstant(B.First, dl, VT)); 2003 2004 // Check range 2005 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2006 SDValue RangeCmp = DAG.getSetCC( 2007 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2008 Sub.getValueType()), 2009 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 2010 2011 // Determine the type of the test operands. 2012 bool UsePtrType = false; 2013 if (!TLI.isTypeLegal(VT)) 2014 UsePtrType = true; 2015 else { 2016 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2017 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2018 // Switch table case range are encoded into series of masks. 2019 // Just use pointer type, it's guaranteed to fit. 2020 UsePtrType = true; 2021 break; 2022 } 2023 } 2024 if (UsePtrType) { 2025 VT = TLI.getPointerTy(DAG.getDataLayout()); 2026 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2027 } 2028 2029 B.RegVT = VT.getSimpleVT(); 2030 B.Reg = FuncInfo.CreateReg(B.RegVT); 2031 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2032 2033 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2034 2035 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2036 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2037 SwitchBB->normalizeSuccProbs(); 2038 2039 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 2040 MVT::Other, CopyTo, RangeCmp, 2041 DAG.getBasicBlock(B.Default)); 2042 2043 // Avoid emitting unnecessary branches to the next block. 2044 if (MBB != NextBlock(SwitchBB)) 2045 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 2046 DAG.getBasicBlock(MBB)); 2047 2048 DAG.setRoot(BrRange); 2049 } 2050 2051 /// visitBitTestCase - this function produces one "bit test" 2052 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2053 MachineBasicBlock* NextMBB, 2054 BranchProbability BranchProbToNext, 2055 unsigned Reg, 2056 BitTestCase &B, 2057 MachineBasicBlock *SwitchBB) { 2058 SDLoc dl = getCurSDLoc(); 2059 MVT VT = BB.RegVT; 2060 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2061 SDValue Cmp; 2062 unsigned PopCount = countPopulation(B.Mask); 2063 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2064 if (PopCount == 1) { 2065 // Testing for a single bit; just compare the shift count with what it 2066 // would need to be to shift a 1 bit in that position. 2067 Cmp = DAG.getSetCC( 2068 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2069 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2070 ISD::SETEQ); 2071 } else if (PopCount == BB.Range) { 2072 // There is only one zero bit in the range, test for it directly. 2073 Cmp = DAG.getSetCC( 2074 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2075 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2076 ISD::SETNE); 2077 } else { 2078 // Make desired shift 2079 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2080 DAG.getConstant(1, dl, VT), ShiftOp); 2081 2082 // Emit bit tests and jumps 2083 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2084 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2085 Cmp = DAG.getSetCC( 2086 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2087 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2088 } 2089 2090 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2091 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2092 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2093 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2094 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2095 // one as they are relative probabilities (and thus work more like weights), 2096 // and hence we need to normalize them to let the sum of them become one. 2097 SwitchBB->normalizeSuccProbs(); 2098 2099 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2100 MVT::Other, getControlRoot(), 2101 Cmp, DAG.getBasicBlock(B.TargetBB)); 2102 2103 // Avoid emitting unnecessary branches to the next block. 2104 if (NextMBB != NextBlock(SwitchBB)) 2105 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2106 DAG.getBasicBlock(NextMBB)); 2107 2108 DAG.setRoot(BrAnd); 2109 } 2110 2111 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2112 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2113 2114 // Retrieve successors. Look through artificial IR level blocks like 2115 // catchswitch for successors. 2116 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2117 const BasicBlock *EHPadBB = I.getSuccessor(1); 2118 2119 const Value *Callee(I.getCalledValue()); 2120 const Function *Fn = dyn_cast<Function>(Callee); 2121 if (isa<InlineAsm>(Callee)) 2122 visitInlineAsm(&I); 2123 else if (Fn && Fn->isIntrinsic()) { 2124 switch (Fn->getIntrinsicID()) { 2125 default: 2126 llvm_unreachable("Cannot invoke this intrinsic"); 2127 case Intrinsic::donothing: 2128 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2129 break; 2130 case Intrinsic::experimental_patchpoint_void: 2131 case Intrinsic::experimental_patchpoint_i64: 2132 visitPatchpoint(&I, EHPadBB); 2133 break; 2134 case Intrinsic::experimental_gc_statepoint: 2135 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB); 2136 break; 2137 } 2138 } else 2139 LowerCallTo(&I, getValue(Callee), false, EHPadBB); 2140 2141 // If the value of the invoke is used outside of its defining block, make it 2142 // available as a virtual register. 2143 // We already took care of the exported value for the statepoint instruction 2144 // during call to the LowerStatepoint. 2145 if (!isStatepoint(I)) { 2146 CopyToExportRegsIfNeeded(&I); 2147 } 2148 2149 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2150 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2151 BranchProbability EHPadBBProb = 2152 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2153 : BranchProbability::getZero(); 2154 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2155 2156 // Update successor info. 2157 addSuccessorWithProb(InvokeMBB, Return); 2158 for (auto &UnwindDest : UnwindDests) { 2159 UnwindDest.first->setIsEHPad(); 2160 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2161 } 2162 InvokeMBB->normalizeSuccProbs(); 2163 2164 // Drop into normal successor. 2165 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2166 MVT::Other, getControlRoot(), 2167 DAG.getBasicBlock(Return))); 2168 } 2169 2170 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2171 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2172 } 2173 2174 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2175 assert(FuncInfo.MBB->isEHPad() && 2176 "Call to landingpad not in landing pad!"); 2177 2178 MachineBasicBlock *MBB = FuncInfo.MBB; 2179 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2180 AddLandingPadInfo(LP, MMI, MBB); 2181 2182 // If there aren't registers to copy the values into (e.g., during SjLj 2183 // exceptions), then don't bother to create these DAG nodes. 2184 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2185 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2186 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2187 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2188 return; 2189 2190 // If landingpad's return type is token type, we don't create DAG nodes 2191 // for its exception pointer and selector value. The extraction of exception 2192 // pointer or selector value from token type landingpads is not currently 2193 // supported. 2194 if (LP.getType()->isTokenTy()) 2195 return; 2196 2197 SmallVector<EVT, 2> ValueVTs; 2198 SDLoc dl = getCurSDLoc(); 2199 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2200 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2201 2202 // Get the two live-in registers as SDValues. The physregs have already been 2203 // copied into virtual registers. 2204 SDValue Ops[2]; 2205 if (FuncInfo.ExceptionPointerVirtReg) { 2206 Ops[0] = DAG.getZExtOrTrunc( 2207 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2208 FuncInfo.ExceptionPointerVirtReg, 2209 TLI.getPointerTy(DAG.getDataLayout())), 2210 dl, ValueVTs[0]); 2211 } else { 2212 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 2213 } 2214 Ops[1] = DAG.getZExtOrTrunc( 2215 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2216 FuncInfo.ExceptionSelectorVirtReg, 2217 TLI.getPointerTy(DAG.getDataLayout())), 2218 dl, ValueVTs[1]); 2219 2220 // Merge into one. 2221 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2222 DAG.getVTList(ValueVTs), Ops); 2223 setValue(&LP, Res); 2224 } 2225 2226 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2227 #ifndef NDEBUG 2228 for (const CaseCluster &CC : Clusters) 2229 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2230 #endif 2231 2232 std::sort(Clusters.begin(), Clusters.end(), 2233 [](const CaseCluster &a, const CaseCluster &b) { 2234 return a.Low->getValue().slt(b.Low->getValue()); 2235 }); 2236 2237 // Merge adjacent clusters with the same destination. 2238 const unsigned N = Clusters.size(); 2239 unsigned DstIndex = 0; 2240 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2241 CaseCluster &CC = Clusters[SrcIndex]; 2242 const ConstantInt *CaseVal = CC.Low; 2243 MachineBasicBlock *Succ = CC.MBB; 2244 2245 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2246 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2247 // If this case has the same successor and is a neighbour, merge it into 2248 // the previous cluster. 2249 Clusters[DstIndex - 1].High = CaseVal; 2250 Clusters[DstIndex - 1].Prob += CC.Prob; 2251 } else { 2252 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2253 sizeof(Clusters[SrcIndex])); 2254 } 2255 } 2256 Clusters.resize(DstIndex); 2257 } 2258 2259 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2260 MachineBasicBlock *Last) { 2261 // Update JTCases. 2262 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2263 if (JTCases[i].first.HeaderBB == First) 2264 JTCases[i].first.HeaderBB = Last; 2265 2266 // Update BitTestCases. 2267 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2268 if (BitTestCases[i].Parent == First) 2269 BitTestCases[i].Parent = Last; 2270 } 2271 2272 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2273 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2274 2275 // Update machine-CFG edges with unique successors. 2276 SmallSet<BasicBlock*, 32> Done; 2277 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2278 BasicBlock *BB = I.getSuccessor(i); 2279 bool Inserted = Done.insert(BB).second; 2280 if (!Inserted) 2281 continue; 2282 2283 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2284 addSuccessorWithProb(IndirectBrMBB, Succ); 2285 } 2286 IndirectBrMBB->normalizeSuccProbs(); 2287 2288 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2289 MVT::Other, getControlRoot(), 2290 getValue(I.getAddress()))); 2291 } 2292 2293 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2294 if (DAG.getTarget().Options.TrapUnreachable) 2295 DAG.setRoot( 2296 DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2297 } 2298 2299 void SelectionDAGBuilder::visitFSub(const User &I) { 2300 // -0.0 - X --> fneg 2301 Type *Ty = I.getType(); 2302 if (isa<Constant>(I.getOperand(0)) && 2303 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2304 SDValue Op2 = getValue(I.getOperand(1)); 2305 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2306 Op2.getValueType(), Op2)); 2307 return; 2308 } 2309 2310 visitBinary(I, ISD::FSUB); 2311 } 2312 2313 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2314 SDValue Op1 = getValue(I.getOperand(0)); 2315 SDValue Op2 = getValue(I.getOperand(1)); 2316 2317 bool nuw = false; 2318 bool nsw = false; 2319 bool exact = false; 2320 FastMathFlags FMF; 2321 2322 if (const OverflowingBinaryOperator *OFBinOp = 2323 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2324 nuw = OFBinOp->hasNoUnsignedWrap(); 2325 nsw = OFBinOp->hasNoSignedWrap(); 2326 } 2327 if (const PossiblyExactOperator *ExactOp = 2328 dyn_cast<const PossiblyExactOperator>(&I)) 2329 exact = ExactOp->isExact(); 2330 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(&I)) 2331 FMF = FPOp->getFastMathFlags(); 2332 2333 SDNodeFlags Flags; 2334 Flags.setExact(exact); 2335 Flags.setNoSignedWrap(nsw); 2336 Flags.setNoUnsignedWrap(nuw); 2337 if (EnableFMFInDAG) { 2338 Flags.setAllowReciprocal(FMF.allowReciprocal()); 2339 Flags.setNoInfs(FMF.noInfs()); 2340 Flags.setNoNaNs(FMF.noNaNs()); 2341 Flags.setNoSignedZeros(FMF.noSignedZeros()); 2342 Flags.setUnsafeAlgebra(FMF.unsafeAlgebra()); 2343 } 2344 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2345 Op1, Op2, &Flags); 2346 setValue(&I, BinNodeValue); 2347 } 2348 2349 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2350 SDValue Op1 = getValue(I.getOperand(0)); 2351 SDValue Op2 = getValue(I.getOperand(1)); 2352 2353 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 2354 Op2.getValueType(), DAG.getDataLayout()); 2355 2356 // Coerce the shift amount to the right type if we can. 2357 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2358 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2359 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2360 SDLoc DL = getCurSDLoc(); 2361 2362 // If the operand is smaller than the shift count type, promote it. 2363 if (ShiftSize > Op2Size) 2364 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2365 2366 // If the operand is larger than the shift count type but the shift 2367 // count type has enough bits to represent any shift value, truncate 2368 // it now. This is a common case and it exposes the truncate to 2369 // optimization early. 2370 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2371 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2372 // Otherwise we'll need to temporarily settle for some other convenient 2373 // type. Type legalization will make adjustments once the shiftee is split. 2374 else 2375 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2376 } 2377 2378 bool nuw = false; 2379 bool nsw = false; 2380 bool exact = false; 2381 2382 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2383 2384 if (const OverflowingBinaryOperator *OFBinOp = 2385 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2386 nuw = OFBinOp->hasNoUnsignedWrap(); 2387 nsw = OFBinOp->hasNoSignedWrap(); 2388 } 2389 if (const PossiblyExactOperator *ExactOp = 2390 dyn_cast<const PossiblyExactOperator>(&I)) 2391 exact = ExactOp->isExact(); 2392 } 2393 SDNodeFlags Flags; 2394 Flags.setExact(exact); 2395 Flags.setNoSignedWrap(nsw); 2396 Flags.setNoUnsignedWrap(nuw); 2397 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2398 &Flags); 2399 setValue(&I, Res); 2400 } 2401 2402 void SelectionDAGBuilder::visitSDiv(const User &I) { 2403 SDValue Op1 = getValue(I.getOperand(0)); 2404 SDValue Op2 = getValue(I.getOperand(1)); 2405 2406 SDNodeFlags Flags; 2407 Flags.setExact(isa<PossiblyExactOperator>(&I) && 2408 cast<PossiblyExactOperator>(&I)->isExact()); 2409 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 2410 Op2, &Flags)); 2411 } 2412 2413 void SelectionDAGBuilder::visitICmp(const User &I) { 2414 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2415 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2416 predicate = IC->getPredicate(); 2417 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2418 predicate = ICmpInst::Predicate(IC->getPredicate()); 2419 SDValue Op1 = getValue(I.getOperand(0)); 2420 SDValue Op2 = getValue(I.getOperand(1)); 2421 ISD::CondCode Opcode = getICmpCondCode(predicate); 2422 2423 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2424 I.getType()); 2425 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2426 } 2427 2428 void SelectionDAGBuilder::visitFCmp(const User &I) { 2429 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2430 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2431 predicate = FC->getPredicate(); 2432 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2433 predicate = FCmpInst::Predicate(FC->getPredicate()); 2434 SDValue Op1 = getValue(I.getOperand(0)); 2435 SDValue Op2 = getValue(I.getOperand(1)); 2436 ISD::CondCode Condition = getFCmpCondCode(predicate); 2437 2438 // FIXME: Fcmp instructions have fast-math-flags in IR, so we should use them. 2439 // FIXME: We should propagate the fast-math-flags to the DAG node itself for 2440 // further optimization, but currently FMF is only applicable to binary nodes. 2441 if (TM.Options.NoNaNsFPMath) 2442 Condition = getFCmpCodeWithoutNaN(Condition); 2443 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2444 I.getType()); 2445 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2446 } 2447 2448 void SelectionDAGBuilder::visitSelect(const User &I) { 2449 SmallVector<EVT, 4> ValueVTs; 2450 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 2451 ValueVTs); 2452 unsigned NumValues = ValueVTs.size(); 2453 if (NumValues == 0) return; 2454 2455 SmallVector<SDValue, 4> Values(NumValues); 2456 SDValue Cond = getValue(I.getOperand(0)); 2457 SDValue LHSVal = getValue(I.getOperand(1)); 2458 SDValue RHSVal = getValue(I.getOperand(2)); 2459 auto BaseOps = {Cond}; 2460 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2461 ISD::VSELECT : ISD::SELECT; 2462 2463 // Min/max matching is only viable if all output VTs are the same. 2464 if (std::equal(ValueVTs.begin(), ValueVTs.end(), ValueVTs.begin())) { 2465 EVT VT = ValueVTs[0]; 2466 LLVMContext &Ctx = *DAG.getContext(); 2467 auto &TLI = DAG.getTargetLoweringInfo(); 2468 2469 // We care about the legality of the operation after it has been type 2470 // legalized. 2471 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal && 2472 VT != TLI.getTypeToTransformTo(Ctx, VT)) 2473 VT = TLI.getTypeToTransformTo(Ctx, VT); 2474 2475 // If the vselect is legal, assume we want to leave this as a vector setcc + 2476 // vselect. Otherwise, if this is going to be scalarized, we want to see if 2477 // min/max is legal on the scalar type. 2478 bool UseScalarMinMax = VT.isVector() && 2479 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 2480 2481 Value *LHS, *RHS; 2482 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 2483 ISD::NodeType Opc = ISD::DELETED_NODE; 2484 switch (SPR.Flavor) { 2485 case SPF_UMAX: Opc = ISD::UMAX; break; 2486 case SPF_UMIN: Opc = ISD::UMIN; break; 2487 case SPF_SMAX: Opc = ISD::SMAX; break; 2488 case SPF_SMIN: Opc = ISD::SMIN; break; 2489 case SPF_FMINNUM: 2490 switch (SPR.NaNBehavior) { 2491 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2492 case SPNB_RETURNS_NAN: Opc = ISD::FMINNAN; break; 2493 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 2494 case SPNB_RETURNS_ANY: { 2495 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 2496 Opc = ISD::FMINNUM; 2497 else if (TLI.isOperationLegalOrCustom(ISD::FMINNAN, VT)) 2498 Opc = ISD::FMINNAN; 2499 else if (UseScalarMinMax) 2500 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 2501 ISD::FMINNUM : ISD::FMINNAN; 2502 break; 2503 } 2504 } 2505 break; 2506 case SPF_FMAXNUM: 2507 switch (SPR.NaNBehavior) { 2508 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 2509 case SPNB_RETURNS_NAN: Opc = ISD::FMAXNAN; break; 2510 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 2511 case SPNB_RETURNS_ANY: 2512 2513 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 2514 Opc = ISD::FMAXNUM; 2515 else if (TLI.isOperationLegalOrCustom(ISD::FMAXNAN, VT)) 2516 Opc = ISD::FMAXNAN; 2517 else if (UseScalarMinMax) 2518 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 2519 ISD::FMAXNUM : ISD::FMAXNAN; 2520 break; 2521 } 2522 break; 2523 default: break; 2524 } 2525 2526 if (Opc != ISD::DELETED_NODE && 2527 (TLI.isOperationLegalOrCustom(Opc, VT) || 2528 (UseScalarMinMax && 2529 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 2530 // If the underlying comparison instruction is used by any other 2531 // instruction, the consumed instructions won't be destroyed, so it is 2532 // not profitable to convert to a min/max. 2533 cast<SelectInst>(&I)->getCondition()->hasOneUse()) { 2534 OpCode = Opc; 2535 LHSVal = getValue(LHS); 2536 RHSVal = getValue(RHS); 2537 BaseOps = {}; 2538 } 2539 } 2540 2541 for (unsigned i = 0; i != NumValues; ++i) { 2542 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 2543 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 2544 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 2545 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2546 LHSVal.getNode()->getValueType(LHSVal.getResNo()+i), 2547 Ops); 2548 } 2549 2550 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2551 DAG.getVTList(ValueVTs), Values)); 2552 } 2553 2554 void SelectionDAGBuilder::visitTrunc(const User &I) { 2555 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2556 SDValue N = getValue(I.getOperand(0)); 2557 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2558 I.getType()); 2559 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2560 } 2561 2562 void SelectionDAGBuilder::visitZExt(const User &I) { 2563 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2564 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2565 SDValue N = getValue(I.getOperand(0)); 2566 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2567 I.getType()); 2568 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2569 } 2570 2571 void SelectionDAGBuilder::visitSExt(const User &I) { 2572 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2573 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2574 SDValue N = getValue(I.getOperand(0)); 2575 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2576 I.getType()); 2577 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2578 } 2579 2580 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2581 // FPTrunc is never a no-op cast, no need to check 2582 SDValue N = getValue(I.getOperand(0)); 2583 SDLoc dl = getCurSDLoc(); 2584 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2585 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2586 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2587 DAG.getTargetConstant( 2588 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 2589 } 2590 2591 void SelectionDAGBuilder::visitFPExt(const User &I) { 2592 // FPExt is never a no-op cast, no need to check 2593 SDValue N = getValue(I.getOperand(0)); 2594 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2595 I.getType()); 2596 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2597 } 2598 2599 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2600 // FPToUI is never a no-op cast, no need to check 2601 SDValue N = getValue(I.getOperand(0)); 2602 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2603 I.getType()); 2604 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2605 } 2606 2607 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2608 // FPToSI is never a no-op cast, no need to check 2609 SDValue N = getValue(I.getOperand(0)); 2610 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2611 I.getType()); 2612 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2613 } 2614 2615 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2616 // UIToFP is never a no-op cast, no need to check 2617 SDValue N = getValue(I.getOperand(0)); 2618 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2619 I.getType()); 2620 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2621 } 2622 2623 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2624 // SIToFP is never a no-op cast, no need to check 2625 SDValue N = getValue(I.getOperand(0)); 2626 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2627 I.getType()); 2628 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2629 } 2630 2631 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2632 // What to do depends on the size of the integer and the size of the pointer. 2633 // We can either truncate, zero extend, or no-op, accordingly. 2634 SDValue N = getValue(I.getOperand(0)); 2635 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2636 I.getType()); 2637 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2638 } 2639 2640 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2641 // What to do depends on the size of the integer and the size of the pointer. 2642 // We can either truncate, zero extend, or no-op, accordingly. 2643 SDValue N = getValue(I.getOperand(0)); 2644 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2645 I.getType()); 2646 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2647 } 2648 2649 void SelectionDAGBuilder::visitBitCast(const User &I) { 2650 SDValue N = getValue(I.getOperand(0)); 2651 SDLoc dl = getCurSDLoc(); 2652 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 2653 I.getType()); 2654 2655 // BitCast assures us that source and destination are the same size so this is 2656 // either a BITCAST or a no-op. 2657 if (DestVT != N.getValueType()) 2658 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2659 DestVT, N)); // convert types. 2660 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2661 // might fold any kind of constant expression to an integer constant and that 2662 // is not what we are looking for. Only regcognize a bitcast of a genuine 2663 // constant integer as an opaque constant. 2664 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2665 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2666 /*isOpaque*/true)); 2667 else 2668 setValue(&I, N); // noop cast. 2669 } 2670 2671 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2672 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2673 const Value *SV = I.getOperand(0); 2674 SDValue N = getValue(SV); 2675 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2676 2677 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2678 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2679 2680 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2681 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2682 2683 setValue(&I, N); 2684 } 2685 2686 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2687 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2688 SDValue InVec = getValue(I.getOperand(0)); 2689 SDValue InVal = getValue(I.getOperand(1)); 2690 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 2691 TLI.getVectorIdxTy(DAG.getDataLayout())); 2692 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2693 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2694 InVec, InVal, InIdx)); 2695 } 2696 2697 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2698 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2699 SDValue InVec = getValue(I.getOperand(0)); 2700 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 2701 TLI.getVectorIdxTy(DAG.getDataLayout())); 2702 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2703 TLI.getValueType(DAG.getDataLayout(), I.getType()), 2704 InVec, InIdx)); 2705 } 2706 2707 // Utility for visitShuffleVector - Return true if every element in Mask, 2708 // beginning from position Pos and ending in Pos+Size, falls within the 2709 // specified sequential range [L, L+Pos). or is undef. 2710 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2711 unsigned Pos, unsigned Size, int Low) { 2712 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2713 if (Mask[i] >= 0 && Mask[i] != Low) 2714 return false; 2715 return true; 2716 } 2717 2718 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2719 SDValue Src1 = getValue(I.getOperand(0)); 2720 SDValue Src2 = getValue(I.getOperand(1)); 2721 2722 SmallVector<int, 8> Mask; 2723 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2724 unsigned MaskNumElts = Mask.size(); 2725 2726 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2727 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 2728 EVT SrcVT = Src1.getValueType(); 2729 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2730 2731 if (SrcNumElts == MaskNumElts) { 2732 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2733 &Mask[0])); 2734 return; 2735 } 2736 2737 // Normalize the shuffle vector since mask and vector length don't match. 2738 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2739 // Mask is longer than the source vectors and is a multiple of the source 2740 // vectors. We can use concatenate vector to make the mask and vectors 2741 // lengths match. 2742 if (SrcNumElts*2 == MaskNumElts) { 2743 // First check for Src1 in low and Src2 in high 2744 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2745 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2746 // The shuffle is concatenating two vectors together. 2747 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2748 VT, Src1, Src2)); 2749 return; 2750 } 2751 // Then check for Src2 in low and Src1 in high 2752 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2753 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2754 // The shuffle is concatenating two vectors together. 2755 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2756 VT, Src2, Src1)); 2757 return; 2758 } 2759 } 2760 2761 // Pad both vectors with undefs to make them the same length as the mask. 2762 unsigned NumConcat = MaskNumElts / SrcNumElts; 2763 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2764 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2765 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2766 2767 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2768 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2769 MOps1[0] = Src1; 2770 MOps2[0] = Src2; 2771 2772 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2773 getCurSDLoc(), VT, MOps1); 2774 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2775 getCurSDLoc(), VT, MOps2); 2776 2777 // Readjust mask for new input vector length. 2778 SmallVector<int, 8> MappedOps; 2779 for (unsigned i = 0; i != MaskNumElts; ++i) { 2780 int Idx = Mask[i]; 2781 if (Idx >= (int)SrcNumElts) 2782 Idx -= SrcNumElts - MaskNumElts; 2783 MappedOps.push_back(Idx); 2784 } 2785 2786 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2787 &MappedOps[0])); 2788 return; 2789 } 2790 2791 if (SrcNumElts > MaskNumElts) { 2792 // Analyze the access pattern of the vector to see if we can extract 2793 // two subvectors and do the shuffle. The analysis is done by calculating 2794 // the range of elements the mask access on both vectors. 2795 int MinRange[2] = { static_cast<int>(SrcNumElts), 2796 static_cast<int>(SrcNumElts)}; 2797 int MaxRange[2] = {-1, -1}; 2798 2799 for (unsigned i = 0; i != MaskNumElts; ++i) { 2800 int Idx = Mask[i]; 2801 unsigned Input = 0; 2802 if (Idx < 0) 2803 continue; 2804 2805 if (Idx >= (int)SrcNumElts) { 2806 Input = 1; 2807 Idx -= SrcNumElts; 2808 } 2809 if (Idx > MaxRange[Input]) 2810 MaxRange[Input] = Idx; 2811 if (Idx < MinRange[Input]) 2812 MinRange[Input] = Idx; 2813 } 2814 2815 // Check if the access is smaller than the vector size and can we find 2816 // a reasonable extract index. 2817 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2818 // Extract. 2819 int StartIdx[2]; // StartIdx to extract from 2820 for (unsigned Input = 0; Input < 2; ++Input) { 2821 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2822 RangeUse[Input] = 0; // Unused 2823 StartIdx[Input] = 0; 2824 continue; 2825 } 2826 2827 // Find a good start index that is a multiple of the mask length. Then 2828 // see if the rest of the elements are in range. 2829 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2830 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2831 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2832 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2833 } 2834 2835 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2836 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2837 return; 2838 } 2839 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2840 // Extract appropriate subvector and generate a vector shuffle 2841 for (unsigned Input = 0; Input < 2; ++Input) { 2842 SDValue &Src = Input == 0 ? Src1 : Src2; 2843 if (RangeUse[Input] == 0) 2844 Src = DAG.getUNDEF(VT); 2845 else { 2846 SDLoc dl = getCurSDLoc(); 2847 Src = DAG.getNode( 2848 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2849 DAG.getConstant(StartIdx[Input], dl, 2850 TLI.getVectorIdxTy(DAG.getDataLayout()))); 2851 } 2852 } 2853 2854 // Calculate new mask. 2855 SmallVector<int, 8> MappedOps; 2856 for (unsigned i = 0; i != MaskNumElts; ++i) { 2857 int Idx = Mask[i]; 2858 if (Idx >= 0) { 2859 if (Idx < (int)SrcNumElts) 2860 Idx -= StartIdx[0]; 2861 else 2862 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2863 } 2864 MappedOps.push_back(Idx); 2865 } 2866 2867 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2868 &MappedOps[0])); 2869 return; 2870 } 2871 } 2872 2873 // We can't use either concat vectors or extract subvectors so fall back to 2874 // replacing the shuffle with extract and build vector. 2875 // to insert and build vector. 2876 EVT EltVT = VT.getVectorElementType(); 2877 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 2878 SDLoc dl = getCurSDLoc(); 2879 SmallVector<SDValue,8> Ops; 2880 for (unsigned i = 0; i != MaskNumElts; ++i) { 2881 int Idx = Mask[i]; 2882 SDValue Res; 2883 2884 if (Idx < 0) { 2885 Res = DAG.getUNDEF(EltVT); 2886 } else { 2887 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2888 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2889 2890 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2891 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2892 } 2893 2894 Ops.push_back(Res); 2895 } 2896 2897 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2898 } 2899 2900 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2901 const Value *Op0 = I.getOperand(0); 2902 const Value *Op1 = I.getOperand(1); 2903 Type *AggTy = I.getType(); 2904 Type *ValTy = Op1->getType(); 2905 bool IntoUndef = isa<UndefValue>(Op0); 2906 bool FromUndef = isa<UndefValue>(Op1); 2907 2908 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2909 2910 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2911 SmallVector<EVT, 4> AggValueVTs; 2912 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 2913 SmallVector<EVT, 4> ValValueVTs; 2914 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2915 2916 unsigned NumAggValues = AggValueVTs.size(); 2917 unsigned NumValValues = ValValueVTs.size(); 2918 SmallVector<SDValue, 4> Values(NumAggValues); 2919 2920 // Ignore an insertvalue that produces an empty object 2921 if (!NumAggValues) { 2922 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2923 return; 2924 } 2925 2926 SDValue Agg = getValue(Op0); 2927 unsigned i = 0; 2928 // Copy the beginning value(s) from the original aggregate. 2929 for (; i != LinearIndex; ++i) 2930 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2931 SDValue(Agg.getNode(), Agg.getResNo() + i); 2932 // Copy values from the inserted value(s). 2933 if (NumValValues) { 2934 SDValue Val = getValue(Op1); 2935 for (; i != LinearIndex + NumValValues; ++i) 2936 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2937 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2938 } 2939 // Copy remaining value(s) from the original aggregate. 2940 for (; i != NumAggValues; ++i) 2941 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2942 SDValue(Agg.getNode(), Agg.getResNo() + i); 2943 2944 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2945 DAG.getVTList(AggValueVTs), Values)); 2946 } 2947 2948 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2949 const Value *Op0 = I.getOperand(0); 2950 Type *AggTy = Op0->getType(); 2951 Type *ValTy = I.getType(); 2952 bool OutOfUndef = isa<UndefValue>(Op0); 2953 2954 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2955 2956 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2957 SmallVector<EVT, 4> ValValueVTs; 2958 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 2959 2960 unsigned NumValValues = ValValueVTs.size(); 2961 2962 // Ignore a extractvalue that produces an empty object 2963 if (!NumValValues) { 2964 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2965 return; 2966 } 2967 2968 SmallVector<SDValue, 4> Values(NumValValues); 2969 2970 SDValue Agg = getValue(Op0); 2971 // Copy out the selected value(s). 2972 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2973 Values[i - LinearIndex] = 2974 OutOfUndef ? 2975 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2976 SDValue(Agg.getNode(), Agg.getResNo() + i); 2977 2978 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2979 DAG.getVTList(ValValueVTs), Values)); 2980 } 2981 2982 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2983 Value *Op0 = I.getOperand(0); 2984 // Note that the pointer operand may be a vector of pointers. Take the scalar 2985 // element which holds a pointer. 2986 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 2987 SDValue N = getValue(Op0); 2988 SDLoc dl = getCurSDLoc(); 2989 2990 // Normalize Vector GEP - all scalar operands should be converted to the 2991 // splat vector. 2992 unsigned VectorWidth = I.getType()->isVectorTy() ? 2993 cast<VectorType>(I.getType())->getVectorNumElements() : 0; 2994 2995 if (VectorWidth && !N.getValueType().isVector()) { 2996 MVT VT = MVT::getVectorVT(N.getValueType().getSimpleVT(), VectorWidth); 2997 SmallVector<SDValue, 16> Ops(VectorWidth, N); 2998 N = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 2999 } 3000 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3001 GTI != E; ++GTI) { 3002 const Value *Idx = GTI.getOperand(); 3003 if (StructType *StTy = dyn_cast<StructType>(*GTI)) { 3004 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3005 if (Field) { 3006 // N = N + Offset 3007 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3008 3009 // In an inbouds GEP with an offset that is nonnegative even when 3010 // interpreted as signed, assume there is no unsigned overflow. 3011 SDNodeFlags Flags; 3012 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3013 Flags.setNoUnsignedWrap(true); 3014 3015 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3016 DAG.getConstant(Offset, dl, N.getValueType()), &Flags); 3017 } 3018 } else { 3019 MVT PtrTy = 3020 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout(), AS); 3021 unsigned PtrSize = PtrTy.getSizeInBits(); 3022 APInt ElementSize(PtrSize, DL->getTypeAllocSize(GTI.getIndexedType())); 3023 3024 // If this is a scalar constant or a splat vector of constants, 3025 // handle it quickly. 3026 const auto *CI = dyn_cast<ConstantInt>(Idx); 3027 if (!CI && isa<ConstantDataVector>(Idx) && 3028 cast<ConstantDataVector>(Idx)->getSplatValue()) 3029 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue()); 3030 3031 if (CI) { 3032 if (CI->isZero()) 3033 continue; 3034 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 3035 SDValue OffsVal = VectorWidth ? 3036 DAG.getConstant(Offs, dl, MVT::getVectorVT(PtrTy, VectorWidth)) : 3037 DAG.getConstant(Offs, dl, PtrTy); 3038 3039 // In an inbouds GEP with an offset that is nonnegative even when 3040 // interpreted as signed, assume there is no unsigned overflow. 3041 SDNodeFlags Flags; 3042 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3043 Flags.setNoUnsignedWrap(true); 3044 3045 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, &Flags); 3046 continue; 3047 } 3048 3049 // N = N + Idx * ElementSize; 3050 SDValue IdxN = getValue(Idx); 3051 3052 if (!IdxN.getValueType().isVector() && VectorWidth) { 3053 MVT VT = MVT::getVectorVT(IdxN.getValueType().getSimpleVT(), VectorWidth); 3054 SmallVector<SDValue, 16> Ops(VectorWidth, IdxN); 3055 IdxN = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops); 3056 } 3057 // If the index is smaller or larger than intptr_t, truncate or extend 3058 // it. 3059 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3060 3061 // If this is a multiply by a power of two, turn it into a shl 3062 // immediately. This is a very common case. 3063 if (ElementSize != 1) { 3064 if (ElementSize.isPowerOf2()) { 3065 unsigned Amt = ElementSize.logBase2(); 3066 IdxN = DAG.getNode(ISD::SHL, dl, 3067 N.getValueType(), IdxN, 3068 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3069 } else { 3070 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 3071 IdxN = DAG.getNode(ISD::MUL, dl, 3072 N.getValueType(), IdxN, Scale); 3073 } 3074 } 3075 3076 N = DAG.getNode(ISD::ADD, dl, 3077 N.getValueType(), N, IdxN); 3078 } 3079 } 3080 3081 setValue(&I, N); 3082 } 3083 3084 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3085 // If this is a fixed sized alloca in the entry block of the function, 3086 // allocate it statically on the stack. 3087 if (FuncInfo.StaticAllocaMap.count(&I)) 3088 return; // getValue will auto-populate this. 3089 3090 SDLoc dl = getCurSDLoc(); 3091 Type *Ty = I.getAllocatedType(); 3092 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3093 auto &DL = DAG.getDataLayout(); 3094 uint64_t TySize = DL.getTypeAllocSize(Ty); 3095 unsigned Align = 3096 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment()); 3097 3098 SDValue AllocSize = getValue(I.getArraySize()); 3099 3100 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout()); 3101 if (AllocSize.getValueType() != IntPtr) 3102 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3103 3104 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3105 AllocSize, 3106 DAG.getConstant(TySize, dl, IntPtr)); 3107 3108 // Handle alignment. If the requested alignment is less than or equal to 3109 // the stack alignment, ignore it. If the size is greater than or equal to 3110 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3111 unsigned StackAlign = 3112 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 3113 if (Align <= StackAlign) 3114 Align = 0; 3115 3116 // Round the size of the allocation up to the stack alignment size 3117 // by add SA-1 to the size. This doesn't overflow because we're computing 3118 // an address inside an alloca. 3119 SDNodeFlags Flags; 3120 Flags.setNoUnsignedWrap(true); 3121 AllocSize = DAG.getNode(ISD::ADD, dl, 3122 AllocSize.getValueType(), AllocSize, 3123 DAG.getIntPtrConstant(StackAlign - 1, dl), &Flags); 3124 3125 // Mask out the low bits for alignment purposes. 3126 AllocSize = DAG.getNode(ISD::AND, dl, 3127 AllocSize.getValueType(), AllocSize, 3128 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 3129 dl)); 3130 3131 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 3132 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3133 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 3134 setValue(&I, DSA); 3135 DAG.setRoot(DSA.getValue(1)); 3136 3137 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 3138 } 3139 3140 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3141 if (I.isAtomic()) 3142 return visitAtomicLoad(I); 3143 3144 const Value *SV = I.getOperand(0); 3145 SDValue Ptr = getValue(SV); 3146 3147 Type *Ty = I.getType(); 3148 3149 bool isVolatile = I.isVolatile(); 3150 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3151 3152 // The IR notion of invariant_load only guarantees that all *non-faulting* 3153 // invariant loads result in the same value. The MI notion of invariant load 3154 // guarantees that the load can be legally moved to any location within its 3155 // containing function. The MI notion of invariant_load is stronger than the 3156 // IR notion of invariant_load -- an MI invariant_load is an IR invariant_load 3157 // with a guarantee that the location being loaded from is dereferenceable 3158 // throughout the function's lifetime. 3159 3160 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr && 3161 isDereferenceablePointer(SV, DAG.getDataLayout()); 3162 unsigned Alignment = I.getAlignment(); 3163 3164 AAMDNodes AAInfo; 3165 I.getAAMetadata(AAInfo); 3166 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3167 3168 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3169 SmallVector<EVT, 4> ValueVTs; 3170 SmallVector<uint64_t, 4> Offsets; 3171 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &Offsets); 3172 unsigned NumValues = ValueVTs.size(); 3173 if (NumValues == 0) 3174 return; 3175 3176 SDValue Root; 3177 bool ConstantMemory = false; 3178 if (isVolatile || NumValues > MaxParallelChains) 3179 // Serialize volatile loads with other side effects. 3180 Root = getRoot(); 3181 else if (AA->pointsToConstantMemory(MemoryLocation( 3182 SV, DAG.getDataLayout().getTypeStoreSize(Ty), AAInfo))) { 3183 // Do not serialize (non-volatile) loads of constant memory with anything. 3184 Root = DAG.getEntryNode(); 3185 ConstantMemory = true; 3186 } else { 3187 // Do not serialize non-volatile loads against each other. 3188 Root = DAG.getRoot(); 3189 } 3190 3191 SDLoc dl = getCurSDLoc(); 3192 3193 if (isVolatile) 3194 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 3195 3196 // An aggregate load cannot wrap around the address space, so offsets to its 3197 // parts don't wrap either. 3198 SDNodeFlags Flags; 3199 Flags.setNoUnsignedWrap(true); 3200 3201 SmallVector<SDValue, 4> Values(NumValues); 3202 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3203 EVT PtrVT = Ptr.getValueType(); 3204 unsigned ChainI = 0; 3205 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3206 // Serializing loads here may result in excessive register pressure, and 3207 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3208 // could recover a bit by hoisting nodes upward in the chain by recognizing 3209 // they are side-effect free or do not alias. The optimizer should really 3210 // avoid this case by converting large object/array copies to llvm.memcpy 3211 // (MaxParallelChains should always remain as failsafe). 3212 if (ChainI == MaxParallelChains) { 3213 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3214 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3215 makeArrayRef(Chains.data(), ChainI)); 3216 Root = Chain; 3217 ChainI = 0; 3218 } 3219 SDValue A = DAG.getNode(ISD::ADD, dl, 3220 PtrVT, Ptr, 3221 DAG.getConstant(Offsets[i], dl, PtrVT), 3222 &Flags); 3223 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 3224 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3225 isNonTemporal, isInvariant, Alignment, AAInfo, 3226 Ranges); 3227 3228 Values[i] = L; 3229 Chains[ChainI] = L.getValue(1); 3230 } 3231 3232 if (!ConstantMemory) { 3233 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3234 makeArrayRef(Chains.data(), ChainI)); 3235 if (isVolatile) 3236 DAG.setRoot(Chain); 3237 else 3238 PendingLoads.push_back(Chain); 3239 } 3240 3241 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 3242 DAG.getVTList(ValueVTs), Values)); 3243 } 3244 3245 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3246 if (I.isAtomic()) 3247 return visitAtomicStore(I); 3248 3249 const Value *SrcV = I.getOperand(0); 3250 const Value *PtrV = I.getOperand(1); 3251 3252 SmallVector<EVT, 4> ValueVTs; 3253 SmallVector<uint64_t, 4> Offsets; 3254 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 3255 SrcV->getType(), ValueVTs, &Offsets); 3256 unsigned NumValues = ValueVTs.size(); 3257 if (NumValues == 0) 3258 return; 3259 3260 // Get the lowered operands. Note that we do this after 3261 // checking if NumResults is zero, because with zero results 3262 // the operands won't have values in the map. 3263 SDValue Src = getValue(SrcV); 3264 SDValue Ptr = getValue(PtrV); 3265 3266 SDValue Root = getRoot(); 3267 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 3268 EVT PtrVT = Ptr.getValueType(); 3269 bool isVolatile = I.isVolatile(); 3270 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 3271 unsigned Alignment = I.getAlignment(); 3272 SDLoc dl = getCurSDLoc(); 3273 3274 AAMDNodes AAInfo; 3275 I.getAAMetadata(AAInfo); 3276 3277 // An aggregate load cannot wrap around the address space, so offsets to its 3278 // parts don't wrap either. 3279 SDNodeFlags Flags; 3280 Flags.setNoUnsignedWrap(true); 3281 3282 unsigned ChainI = 0; 3283 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3284 // See visitLoad comments. 3285 if (ChainI == MaxParallelChains) { 3286 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3287 makeArrayRef(Chains.data(), ChainI)); 3288 Root = Chain; 3289 ChainI = 0; 3290 } 3291 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3292 DAG.getConstant(Offsets[i], dl, PtrVT), &Flags); 3293 SDValue St = DAG.getStore(Root, dl, 3294 SDValue(Src.getNode(), Src.getResNo() + i), 3295 Add, MachinePointerInfo(PtrV, Offsets[i]), 3296 isVolatile, isNonTemporal, Alignment, AAInfo); 3297 Chains[ChainI] = St; 3298 } 3299 3300 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3301 makeArrayRef(Chains.data(), ChainI)); 3302 DAG.setRoot(StoreNode); 3303 } 3304 3305 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3306 SDLoc sdl = getCurSDLoc(); 3307 3308 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 3309 Value *PtrOperand = I.getArgOperand(1); 3310 SDValue Ptr = getValue(PtrOperand); 3311 SDValue Src0 = getValue(I.getArgOperand(0)); 3312 SDValue Mask = getValue(I.getArgOperand(3)); 3313 EVT VT = Src0.getValueType(); 3314 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3315 if (!Alignment) 3316 Alignment = DAG.getEVTAlignment(VT); 3317 3318 AAMDNodes AAInfo; 3319 I.getAAMetadata(AAInfo); 3320 3321 MachineMemOperand *MMO = 3322 DAG.getMachineFunction(). 3323 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3324 MachineMemOperand::MOStore, VT.getStoreSize(), 3325 Alignment, AAInfo); 3326 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3327 MMO, false); 3328 DAG.setRoot(StoreNode); 3329 setValue(&I, StoreNode); 3330 } 3331 3332 // Get a uniform base for the Gather/Scatter intrinsic. 3333 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 3334 // We try to represent it as a base pointer + vector of indices. 3335 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 3336 // The first operand of the GEP may be a single pointer or a vector of pointers 3337 // Example: 3338 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 3339 // or 3340 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 3341 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 3342 // 3343 // When the first GEP operand is a single pointer - it is the uniform base we 3344 // are looking for. If first operand of the GEP is a splat vector - we 3345 // extract the spalt value and use it as a uniform base. 3346 // In all other cases the function returns 'false'. 3347 // 3348 static bool getUniformBase(const Value *& Ptr, SDValue& Base, SDValue& Index, 3349 SelectionDAGBuilder* SDB) { 3350 3351 SelectionDAG& DAG = SDB->DAG; 3352 LLVMContext &Context = *DAG.getContext(); 3353 3354 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3355 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 3356 if (!GEP || GEP->getNumOperands() > 2) 3357 return false; 3358 3359 const Value *GEPPtr = GEP->getPointerOperand(); 3360 if (!GEPPtr->getType()->isVectorTy()) 3361 Ptr = GEPPtr; 3362 else if (!(Ptr = getSplatValue(GEPPtr))) 3363 return false; 3364 3365 Value *IndexVal = GEP->getOperand(1); 3366 3367 // The operands of the GEP may be defined in another basic block. 3368 // In this case we'll not find nodes for the operands. 3369 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal)) 3370 return false; 3371 3372 Base = SDB->getValue(Ptr); 3373 Index = SDB->getValue(IndexVal); 3374 3375 // Suppress sign extension. 3376 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3377 if (SDB->findValue(Sext->getOperand(0))) { 3378 IndexVal = Sext->getOperand(0); 3379 Index = SDB->getValue(IndexVal); 3380 } 3381 } 3382 if (!Index.getValueType().isVector()) { 3383 unsigned GEPWidth = GEP->getType()->getVectorNumElements(); 3384 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth); 3385 SmallVector<SDValue, 16> Ops(GEPWidth, Index); 3386 Index = DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Index), VT, Ops); 3387 } 3388 return true; 3389 } 3390 3391 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3392 SDLoc sdl = getCurSDLoc(); 3393 3394 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3395 const Value *Ptr = I.getArgOperand(1); 3396 SDValue Src0 = getValue(I.getArgOperand(0)); 3397 SDValue Mask = getValue(I.getArgOperand(3)); 3398 EVT VT = Src0.getValueType(); 3399 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3400 if (!Alignment) 3401 Alignment = DAG.getEVTAlignment(VT); 3402 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3403 3404 AAMDNodes AAInfo; 3405 I.getAAMetadata(AAInfo); 3406 3407 SDValue Base; 3408 SDValue Index; 3409 const Value *BasePtr = Ptr; 3410 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3411 3412 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr; 3413 MachineMemOperand *MMO = DAG.getMachineFunction(). 3414 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3415 MachineMemOperand::MOStore, VT.getStoreSize(), 3416 Alignment, AAInfo); 3417 if (!UniformBase) { 3418 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3419 Index = getValue(Ptr); 3420 } 3421 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3422 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3423 Ops, MMO); 3424 DAG.setRoot(Scatter); 3425 setValue(&I, Scatter); 3426 } 3427 3428 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3429 SDLoc sdl = getCurSDLoc(); 3430 3431 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3432 Value *PtrOperand = I.getArgOperand(0); 3433 SDValue Ptr = getValue(PtrOperand); 3434 SDValue Src0 = getValue(I.getArgOperand(3)); 3435 SDValue Mask = getValue(I.getArgOperand(2)); 3436 3437 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3438 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3439 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3440 if (!Alignment) 3441 Alignment = DAG.getEVTAlignment(VT); 3442 3443 AAMDNodes AAInfo; 3444 I.getAAMetadata(AAInfo); 3445 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3446 3447 SDValue InChain = DAG.getRoot(); 3448 if (AA->pointsToConstantMemory(MemoryLocation( 3449 PtrOperand, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3450 AAInfo))) { 3451 // Do not serialize (non-volatile) loads of constant memory with anything. 3452 InChain = DAG.getEntryNode(); 3453 } 3454 3455 MachineMemOperand *MMO = 3456 DAG.getMachineFunction(). 3457 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3458 MachineMemOperand::MOLoad, VT.getStoreSize(), 3459 Alignment, AAInfo, Ranges); 3460 3461 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3462 ISD::NON_EXTLOAD); 3463 SDValue OutChain = Load.getValue(1); 3464 DAG.setRoot(OutChain); 3465 setValue(&I, Load); 3466 } 3467 3468 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3469 SDLoc sdl = getCurSDLoc(); 3470 3471 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3472 const Value *Ptr = I.getArgOperand(0); 3473 SDValue Src0 = getValue(I.getArgOperand(3)); 3474 SDValue Mask = getValue(I.getArgOperand(2)); 3475 3476 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3477 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3478 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3479 if (!Alignment) 3480 Alignment = DAG.getEVTAlignment(VT); 3481 3482 AAMDNodes AAInfo; 3483 I.getAAMetadata(AAInfo); 3484 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3485 3486 SDValue Root = DAG.getRoot(); 3487 SDValue Base; 3488 SDValue Index; 3489 const Value *BasePtr = Ptr; 3490 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3491 bool ConstantMemory = false; 3492 if (UniformBase && 3493 AA->pointsToConstantMemory(MemoryLocation( 3494 BasePtr, DAG.getDataLayout().getTypeStoreSize(I.getType()), 3495 AAInfo))) { 3496 // Do not serialize (non-volatile) loads of constant memory with anything. 3497 Root = DAG.getEntryNode(); 3498 ConstantMemory = true; 3499 } 3500 3501 MachineMemOperand *MMO = 3502 DAG.getMachineFunction(). 3503 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr), 3504 MachineMemOperand::MOLoad, VT.getStoreSize(), 3505 Alignment, AAInfo, Ranges); 3506 3507 if (!UniformBase) { 3508 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 3509 Index = getValue(Ptr); 3510 } 3511 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3512 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3513 Ops, MMO); 3514 3515 SDValue OutChain = Gather.getValue(1); 3516 if (!ConstantMemory) 3517 PendingLoads.push_back(OutChain); 3518 setValue(&I, Gather); 3519 } 3520 3521 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3522 SDLoc dl = getCurSDLoc(); 3523 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3524 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3525 SynchronizationScope Scope = I.getSynchScope(); 3526 3527 SDValue InChain = getRoot(); 3528 3529 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3530 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3531 SDValue L = DAG.getAtomicCmpSwap( 3532 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3533 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3534 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3535 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3536 3537 SDValue OutChain = L.getValue(2); 3538 3539 setValue(&I, L); 3540 DAG.setRoot(OutChain); 3541 } 3542 3543 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3544 SDLoc dl = getCurSDLoc(); 3545 ISD::NodeType NT; 3546 switch (I.getOperation()) { 3547 default: llvm_unreachable("Unknown atomicrmw operation"); 3548 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3549 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3550 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3551 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3552 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3553 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3554 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3555 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3556 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3557 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3558 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3559 } 3560 AtomicOrdering Order = I.getOrdering(); 3561 SynchronizationScope Scope = I.getSynchScope(); 3562 3563 SDValue InChain = getRoot(); 3564 3565 SDValue L = 3566 DAG.getAtomic(NT, dl, 3567 getValue(I.getValOperand()).getSimpleValueType(), 3568 InChain, 3569 getValue(I.getPointerOperand()), 3570 getValue(I.getValOperand()), 3571 I.getPointerOperand(), 3572 /* Alignment=*/ 0, Order, Scope); 3573 3574 SDValue OutChain = L.getValue(1); 3575 3576 setValue(&I, L); 3577 DAG.setRoot(OutChain); 3578 } 3579 3580 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3581 SDLoc dl = getCurSDLoc(); 3582 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3583 SDValue Ops[3]; 3584 Ops[0] = getRoot(); 3585 Ops[1] = DAG.getConstant(I.getOrdering(), dl, 3586 TLI.getPointerTy(DAG.getDataLayout())); 3587 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, 3588 TLI.getPointerTy(DAG.getDataLayout())); 3589 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3590 } 3591 3592 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3593 SDLoc dl = getCurSDLoc(); 3594 AtomicOrdering Order = I.getOrdering(); 3595 SynchronizationScope Scope = I.getSynchScope(); 3596 3597 SDValue InChain = getRoot(); 3598 3599 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3600 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3601 3602 if (I.getAlignment() < VT.getSizeInBits() / 8) 3603 report_fatal_error("Cannot generate unaligned atomic load"); 3604 3605 MachineMemOperand *MMO = 3606 DAG.getMachineFunction(). 3607 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3608 MachineMemOperand::MOVolatile | 3609 MachineMemOperand::MOLoad, 3610 VT.getStoreSize(), 3611 I.getAlignment() ? I.getAlignment() : 3612 DAG.getEVTAlignment(VT)); 3613 3614 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3615 SDValue L = 3616 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3617 getValue(I.getPointerOperand()), MMO, 3618 Order, Scope); 3619 3620 SDValue OutChain = L.getValue(1); 3621 3622 setValue(&I, L); 3623 DAG.setRoot(OutChain); 3624 } 3625 3626 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3627 SDLoc dl = getCurSDLoc(); 3628 3629 AtomicOrdering Order = I.getOrdering(); 3630 SynchronizationScope Scope = I.getSynchScope(); 3631 3632 SDValue InChain = getRoot(); 3633 3634 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3635 EVT VT = 3636 TLI.getValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 3637 3638 if (I.getAlignment() < VT.getSizeInBits() / 8) 3639 report_fatal_error("Cannot generate unaligned atomic store"); 3640 3641 SDValue OutChain = 3642 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3643 InChain, 3644 getValue(I.getPointerOperand()), 3645 getValue(I.getValueOperand()), 3646 I.getPointerOperand(), I.getAlignment(), 3647 Order, Scope); 3648 3649 DAG.setRoot(OutChain); 3650 } 3651 3652 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3653 /// node. 3654 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3655 unsigned Intrinsic) { 3656 bool HasChain = !I.doesNotAccessMemory(); 3657 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3658 3659 // Build the operand list. 3660 SmallVector<SDValue, 8> Ops; 3661 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3662 if (OnlyLoad) { 3663 // We don't need to serialize loads against other loads. 3664 Ops.push_back(DAG.getRoot()); 3665 } else { 3666 Ops.push_back(getRoot()); 3667 } 3668 } 3669 3670 // Info is set by getTgtMemInstrinsic 3671 TargetLowering::IntrinsicInfo Info; 3672 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3673 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3674 3675 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3676 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3677 Info.opc == ISD::INTRINSIC_W_CHAIN) 3678 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3679 TLI.getPointerTy(DAG.getDataLayout()))); 3680 3681 // Add all operands of the call to the operand list. 3682 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3683 SDValue Op = getValue(I.getArgOperand(i)); 3684 Ops.push_back(Op); 3685 } 3686 3687 SmallVector<EVT, 4> ValueVTs; 3688 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 3689 3690 if (HasChain) 3691 ValueVTs.push_back(MVT::Other); 3692 3693 SDVTList VTs = DAG.getVTList(ValueVTs); 3694 3695 // Create the node. 3696 SDValue Result; 3697 if (IsTgtIntrinsic) { 3698 // This is target intrinsic that touches memory 3699 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3700 VTs, Ops, Info.memVT, 3701 MachinePointerInfo(Info.ptrVal, Info.offset), 3702 Info.align, Info.vol, 3703 Info.readMem, Info.writeMem, Info.size); 3704 } else if (!HasChain) { 3705 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3706 } else if (!I.getType()->isVoidTy()) { 3707 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3708 } else { 3709 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3710 } 3711 3712 if (HasChain) { 3713 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3714 if (OnlyLoad) 3715 PendingLoads.push_back(Chain); 3716 else 3717 DAG.setRoot(Chain); 3718 } 3719 3720 if (!I.getType()->isVoidTy()) { 3721 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3722 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 3723 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3724 } else 3725 Result = lowerRangeToAssertZExt(DAG, I, Result); 3726 3727 setValue(&I, Result); 3728 } 3729 } 3730 3731 /// GetSignificand - Get the significand and build it into a floating-point 3732 /// number with exponent of 1: 3733 /// 3734 /// Op = (Op & 0x007fffff) | 0x3f800000; 3735 /// 3736 /// where Op is the hexadecimal representation of floating point value. 3737 static SDValue 3738 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3739 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3740 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3741 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3742 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3743 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3744 } 3745 3746 /// GetExponent - Get the exponent: 3747 /// 3748 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3749 /// 3750 /// where Op is the hexadecimal representation of floating point value. 3751 static SDValue 3752 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3753 SDLoc dl) { 3754 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3755 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3756 SDValue t1 = DAG.getNode( 3757 ISD::SRL, dl, MVT::i32, t0, 3758 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 3759 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3760 DAG.getConstant(127, dl, MVT::i32)); 3761 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3762 } 3763 3764 /// getF32Constant - Get 32-bit floating point constant. 3765 static SDValue 3766 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3767 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3768 MVT::f32); 3769 } 3770 3771 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3772 SelectionDAG &DAG) { 3773 // TODO: What fast-math-flags should be set on the floating-point nodes? 3774 3775 // IntegerPartOfX = ((int32_t)(t0); 3776 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3777 3778 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3779 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3780 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3781 3782 // IntegerPartOfX <<= 23; 3783 IntegerPartOfX = DAG.getNode( 3784 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3785 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 3786 DAG.getDataLayout()))); 3787 3788 SDValue TwoToFractionalPartOfX; 3789 if (LimitFloatPrecision <= 6) { 3790 // For floating-point precision of 6: 3791 // 3792 // TwoToFractionalPartOfX = 3793 // 0.997535578f + 3794 // (0.735607626f + 0.252464424f * x) * x; 3795 // 3796 // error 0.0144103317, which is 6 bits 3797 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3798 getF32Constant(DAG, 0x3e814304, dl)); 3799 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3800 getF32Constant(DAG, 0x3f3c50c8, dl)); 3801 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3802 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3803 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3804 } else if (LimitFloatPrecision <= 12) { 3805 // For floating-point precision of 12: 3806 // 3807 // TwoToFractionalPartOfX = 3808 // 0.999892986f + 3809 // (0.696457318f + 3810 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3811 // 3812 // error 0.000107046256, which is 13 to 14 bits 3813 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3814 getF32Constant(DAG, 0x3da235e3, dl)); 3815 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3816 getF32Constant(DAG, 0x3e65b8f3, dl)); 3817 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3818 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3819 getF32Constant(DAG, 0x3f324b07, dl)); 3820 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3821 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3822 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3823 } else { // LimitFloatPrecision <= 18 3824 // For floating-point precision of 18: 3825 // 3826 // TwoToFractionalPartOfX = 3827 // 0.999999982f + 3828 // (0.693148872f + 3829 // (0.240227044f + 3830 // (0.554906021e-1f + 3831 // (0.961591928e-2f + 3832 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3833 // error 2.47208000*10^(-7), which is better than 18 bits 3834 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3835 getF32Constant(DAG, 0x3924b03e, dl)); 3836 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3837 getF32Constant(DAG, 0x3ab24b87, dl)); 3838 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3839 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3840 getF32Constant(DAG, 0x3c1d8c17, dl)); 3841 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3842 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3843 getF32Constant(DAG, 0x3d634a1d, dl)); 3844 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3845 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3846 getF32Constant(DAG, 0x3e75fe14, dl)); 3847 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3848 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3849 getF32Constant(DAG, 0x3f317234, dl)); 3850 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3851 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3852 getF32Constant(DAG, 0x3f800000, dl)); 3853 } 3854 3855 // Add the exponent into the result in integer domain. 3856 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3857 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3858 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3859 } 3860 3861 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3862 /// limited-precision mode. 3863 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3864 const TargetLowering &TLI) { 3865 if (Op.getValueType() == MVT::f32 && 3866 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3867 3868 // Put the exponent in the right bit position for later addition to the 3869 // final result: 3870 // 3871 // #define LOG2OFe 1.4426950f 3872 // t0 = Op * LOG2OFe 3873 3874 // TODO: What fast-math-flags should be set here? 3875 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3876 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3877 return getLimitedPrecisionExp2(t0, dl, DAG); 3878 } 3879 3880 // No special expansion. 3881 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3882 } 3883 3884 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3885 /// limited-precision mode. 3886 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3887 const TargetLowering &TLI) { 3888 3889 // TODO: What fast-math-flags should be set on the floating-point nodes? 3890 3891 if (Op.getValueType() == MVT::f32 && 3892 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3893 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3894 3895 // Scale the exponent by log(2) [0.69314718f]. 3896 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3897 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3898 getF32Constant(DAG, 0x3f317218, dl)); 3899 3900 // Get the significand and build it into a floating-point number with 3901 // exponent of 1. 3902 SDValue X = GetSignificand(DAG, Op1, dl); 3903 3904 SDValue LogOfMantissa; 3905 if (LimitFloatPrecision <= 6) { 3906 // For floating-point precision of 6: 3907 // 3908 // LogofMantissa = 3909 // -1.1609546f + 3910 // (1.4034025f - 0.23903021f * x) * x; 3911 // 3912 // error 0.0034276066, which is better than 8 bits 3913 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3914 getF32Constant(DAG, 0xbe74c456, dl)); 3915 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3916 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3917 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3918 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3919 getF32Constant(DAG, 0x3f949a29, dl)); 3920 } else if (LimitFloatPrecision <= 12) { 3921 // For floating-point precision of 12: 3922 // 3923 // LogOfMantissa = 3924 // -1.7417939f + 3925 // (2.8212026f + 3926 // (-1.4699568f + 3927 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3928 // 3929 // error 0.000061011436, which is 14 bits 3930 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3931 getF32Constant(DAG, 0xbd67b6d6, dl)); 3932 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3933 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3934 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3935 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3936 getF32Constant(DAG, 0x3fbc278b, dl)); 3937 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3938 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3939 getF32Constant(DAG, 0x40348e95, dl)); 3940 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3941 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3942 getF32Constant(DAG, 0x3fdef31a, dl)); 3943 } else { // LimitFloatPrecision <= 18 3944 // For floating-point precision of 18: 3945 // 3946 // LogOfMantissa = 3947 // -2.1072184f + 3948 // (4.2372794f + 3949 // (-3.7029485f + 3950 // (2.2781945f + 3951 // (-0.87823314f + 3952 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3953 // 3954 // error 0.0000023660568, which is better than 18 bits 3955 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3956 getF32Constant(DAG, 0xbc91e5ac, dl)); 3957 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3958 getF32Constant(DAG, 0x3e4350aa, dl)); 3959 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3960 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3961 getF32Constant(DAG, 0x3f60d3e3, dl)); 3962 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3963 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3964 getF32Constant(DAG, 0x4011cdf0, dl)); 3965 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3966 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3967 getF32Constant(DAG, 0x406cfd1c, dl)); 3968 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3969 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3970 getF32Constant(DAG, 0x408797cb, dl)); 3971 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3972 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3973 getF32Constant(DAG, 0x4006dcab, dl)); 3974 } 3975 3976 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3977 } 3978 3979 // No special expansion. 3980 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3981 } 3982 3983 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3984 /// limited-precision mode. 3985 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3986 const TargetLowering &TLI) { 3987 3988 // TODO: What fast-math-flags should be set on the floating-point nodes? 3989 3990 if (Op.getValueType() == MVT::f32 && 3991 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3992 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3993 3994 // Get the exponent. 3995 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3996 3997 // Get the significand and build it into a floating-point number with 3998 // exponent of 1. 3999 SDValue X = GetSignificand(DAG, Op1, dl); 4000 4001 // Different possible minimax approximations of significand in 4002 // floating-point for various degrees of accuracy over [1,2]. 4003 SDValue Log2ofMantissa; 4004 if (LimitFloatPrecision <= 6) { 4005 // For floating-point precision of 6: 4006 // 4007 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 4008 // 4009 // error 0.0049451742, which is more than 7 bits 4010 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4011 getF32Constant(DAG, 0xbeb08fe0, dl)); 4012 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4013 getF32Constant(DAG, 0x40019463, dl)); 4014 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4015 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4016 getF32Constant(DAG, 0x3fd6633d, dl)); 4017 } else if (LimitFloatPrecision <= 12) { 4018 // For floating-point precision of 12: 4019 // 4020 // Log2ofMantissa = 4021 // -2.51285454f + 4022 // (4.07009056f + 4023 // (-2.12067489f + 4024 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 4025 // 4026 // error 0.0000876136000, which is better than 13 bits 4027 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4028 getF32Constant(DAG, 0xbda7262e, dl)); 4029 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4030 getF32Constant(DAG, 0x3f25280b, dl)); 4031 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4032 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4033 getF32Constant(DAG, 0x4007b923, dl)); 4034 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4035 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4036 getF32Constant(DAG, 0x40823e2f, dl)); 4037 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4038 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4039 getF32Constant(DAG, 0x4020d29c, dl)); 4040 } else { // LimitFloatPrecision <= 18 4041 // For floating-point precision of 18: 4042 // 4043 // Log2ofMantissa = 4044 // -3.0400495f + 4045 // (6.1129976f + 4046 // (-5.3420409f + 4047 // (3.2865683f + 4048 // (-1.2669343f + 4049 // (0.27515199f - 4050 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 4051 // 4052 // error 0.0000018516, which is better than 18 bits 4053 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4054 getF32Constant(DAG, 0xbcd2769e, dl)); 4055 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4056 getF32Constant(DAG, 0x3e8ce0b9, dl)); 4057 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4058 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4059 getF32Constant(DAG, 0x3fa22ae7, dl)); 4060 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4061 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4062 getF32Constant(DAG, 0x40525723, dl)); 4063 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4064 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4065 getF32Constant(DAG, 0x40aaf200, dl)); 4066 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4067 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4068 getF32Constant(DAG, 0x40c39dad, dl)); 4069 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4070 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4071 getF32Constant(DAG, 0x4042902c, dl)); 4072 } 4073 4074 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 4075 } 4076 4077 // No special expansion. 4078 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 4079 } 4080 4081 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 4082 /// limited-precision mode. 4083 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4084 const TargetLowering &TLI) { 4085 4086 // TODO: What fast-math-flags should be set on the floating-point nodes? 4087 4088 if (Op.getValueType() == MVT::f32 && 4089 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4090 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4091 4092 // Scale the exponent by log10(2) [0.30102999f]. 4093 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4094 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4095 getF32Constant(DAG, 0x3e9a209a, dl)); 4096 4097 // Get the significand and build it into a floating-point number with 4098 // exponent of 1. 4099 SDValue X = GetSignificand(DAG, Op1, dl); 4100 4101 SDValue Log10ofMantissa; 4102 if (LimitFloatPrecision <= 6) { 4103 // For floating-point precision of 6: 4104 // 4105 // Log10ofMantissa = 4106 // -0.50419619f + 4107 // (0.60948995f - 0.10380950f * x) * x; 4108 // 4109 // error 0.0014886165, which is 6 bits 4110 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4111 getF32Constant(DAG, 0xbdd49a13, dl)); 4112 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4113 getF32Constant(DAG, 0x3f1c0789, dl)); 4114 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4115 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4116 getF32Constant(DAG, 0x3f011300, dl)); 4117 } else if (LimitFloatPrecision <= 12) { 4118 // For floating-point precision of 12: 4119 // 4120 // Log10ofMantissa = 4121 // -0.64831180f + 4122 // (0.91751397f + 4123 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4124 // 4125 // error 0.00019228036, which is better than 12 bits 4126 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4127 getF32Constant(DAG, 0x3d431f31, dl)); 4128 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4129 getF32Constant(DAG, 0x3ea21fb2, dl)); 4130 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4131 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4132 getF32Constant(DAG, 0x3f6ae232, dl)); 4133 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4134 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4135 getF32Constant(DAG, 0x3f25f7c3, dl)); 4136 } else { // LimitFloatPrecision <= 18 4137 // For floating-point precision of 18: 4138 // 4139 // Log10ofMantissa = 4140 // -0.84299375f + 4141 // (1.5327582f + 4142 // (-1.0688956f + 4143 // (0.49102474f + 4144 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4145 // 4146 // error 0.0000037995730, which is better than 18 bits 4147 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4148 getF32Constant(DAG, 0x3c5d51ce, dl)); 4149 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4150 getF32Constant(DAG, 0x3e00685a, dl)); 4151 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4152 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4153 getF32Constant(DAG, 0x3efb6798, dl)); 4154 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4155 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4156 getF32Constant(DAG, 0x3f88d192, dl)); 4157 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4158 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4159 getF32Constant(DAG, 0x3fc4316c, dl)); 4160 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4161 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4162 getF32Constant(DAG, 0x3f57ce70, dl)); 4163 } 4164 4165 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 4166 } 4167 4168 // No special expansion. 4169 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 4170 } 4171 4172 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4173 /// limited-precision mode. 4174 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 4175 const TargetLowering &TLI) { 4176 if (Op.getValueType() == MVT::f32 && 4177 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 4178 return getLimitedPrecisionExp2(Op, dl, DAG); 4179 4180 // No special expansion. 4181 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 4182 } 4183 4184 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4185 /// limited-precision mode with x == 10.0f. 4186 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 4187 SelectionDAG &DAG, const TargetLowering &TLI) { 4188 bool IsExp10 = false; 4189 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 4190 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4191 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 4192 APFloat Ten(10.0f); 4193 IsExp10 = LHSC->isExactlyValue(Ten); 4194 } 4195 } 4196 4197 // TODO: What fast-math-flags should be set on the FMUL node? 4198 if (IsExp10) { 4199 // Put the exponent in the right bit position for later addition to the 4200 // final result: 4201 // 4202 // #define LOG2OF10 3.3219281f 4203 // t0 = Op * LOG2OF10; 4204 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 4205 getF32Constant(DAG, 0x40549a78, dl)); 4206 return getLimitedPrecisionExp2(t0, dl, DAG); 4207 } 4208 4209 // No special expansion. 4210 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 4211 } 4212 4213 4214 /// ExpandPowI - Expand a llvm.powi intrinsic. 4215 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 4216 SelectionDAG &DAG) { 4217 // If RHS is a constant, we can expand this out to a multiplication tree, 4218 // otherwise we end up lowering to a call to __powidf2 (for example). When 4219 // optimizing for size, we only want to do this if the expansion would produce 4220 // a small number of multiplies, otherwise we do the full expansion. 4221 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4222 // Get the exponent as a positive value. 4223 unsigned Val = RHSC->getSExtValue(); 4224 if ((int)Val < 0) Val = -Val; 4225 4226 // powi(x, 0) -> 1.0 4227 if (Val == 0) 4228 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 4229 4230 const Function *F = DAG.getMachineFunction().getFunction(); 4231 if (!F->optForSize() || 4232 // If optimizing for size, don't insert too many multiplies. 4233 // This inserts up to 5 multiplies. 4234 countPopulation(Val) + Log2_32(Val) < 7) { 4235 // We use the simple binary decomposition method to generate the multiply 4236 // sequence. There are more optimal ways to do this (for example, 4237 // powi(x,15) generates one more multiply than it should), but this has 4238 // the benefit of being both really simple and much better than a libcall. 4239 SDValue Res; // Logically starts equal to 1.0 4240 SDValue CurSquare = LHS; 4241 // TODO: Intrinsics should have fast-math-flags that propagate to these 4242 // nodes. 4243 while (Val) { 4244 if (Val & 1) { 4245 if (Res.getNode()) 4246 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4247 else 4248 Res = CurSquare; // 1.0*CurSquare. 4249 } 4250 4251 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4252 CurSquare, CurSquare); 4253 Val >>= 1; 4254 } 4255 4256 // If the original was negative, invert the result, producing 1/(x*x*x). 4257 if (RHSC->getSExtValue() < 0) 4258 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4259 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 4260 return Res; 4261 } 4262 } 4263 4264 // Otherwise, expand to a libcall. 4265 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4266 } 4267 4268 // getUnderlyingArgReg - Find underlying register used for a truncated or 4269 // bitcasted argument. 4270 static unsigned getUnderlyingArgReg(const SDValue &N) { 4271 switch (N.getOpcode()) { 4272 case ISD::CopyFromReg: 4273 return cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4274 case ISD::BITCAST: 4275 case ISD::AssertZext: 4276 case ISD::AssertSext: 4277 case ISD::TRUNCATE: 4278 return getUnderlyingArgReg(N.getOperand(0)); 4279 default: 4280 return 0; 4281 } 4282 } 4283 4284 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4285 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4286 /// At the end of instruction selection, they will be inserted to the entry BB. 4287 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 4288 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 4289 DILocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 4290 const Argument *Arg = dyn_cast<Argument>(V); 4291 if (!Arg) 4292 return false; 4293 4294 MachineFunction &MF = DAG.getMachineFunction(); 4295 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4296 4297 // Ignore inlined function arguments here. 4298 // 4299 // FIXME: Should we be checking DL->inlinedAt() to determine this? 4300 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 4301 return false; 4302 4303 Optional<MachineOperand> Op; 4304 // Some arguments' frame index is recorded during argument lowering. 4305 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4306 Op = MachineOperand::CreateFI(FI); 4307 4308 if (!Op && N.getNode()) { 4309 unsigned Reg = getUnderlyingArgReg(N); 4310 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4311 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4312 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4313 if (PR) 4314 Reg = PR; 4315 } 4316 if (Reg) 4317 Op = MachineOperand::CreateReg(Reg, false); 4318 } 4319 4320 if (!Op) { 4321 // Check if ValueMap has reg number. 4322 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4323 if (VMI != FuncInfo.ValueMap.end()) 4324 Op = MachineOperand::CreateReg(VMI->second, false); 4325 } 4326 4327 if (!Op && N.getNode()) 4328 // Check if frame index is available. 4329 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4330 if (FrameIndexSDNode *FINode = 4331 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4332 Op = MachineOperand::CreateFI(FINode->getIndex()); 4333 4334 if (!Op) 4335 return false; 4336 4337 assert(Variable->isValidLocationForIntrinsic(DL) && 4338 "Expected inlined-at fields to agree"); 4339 if (Op->isReg()) 4340 FuncInfo.ArgDbgValues.push_back( 4341 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4342 Op->getReg(), Offset, Variable, Expr)); 4343 else 4344 FuncInfo.ArgDbgValues.push_back( 4345 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4346 .addOperand(*Op) 4347 .addImm(Offset) 4348 .addMetadata(Variable) 4349 .addMetadata(Expr)); 4350 4351 return true; 4352 } 4353 4354 // VisualStudio defines setjmp as _setjmp 4355 #if defined(_MSC_VER) && defined(setjmp) && \ 4356 !defined(setjmp_undefined_for_msvc) 4357 # pragma push_macro("setjmp") 4358 # undef setjmp 4359 # define setjmp_undefined_for_msvc 4360 #endif 4361 4362 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4363 /// we want to emit this as a call to a named external function, return the name 4364 /// otherwise lower it and return null. 4365 const char * 4366 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4367 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4368 SDLoc sdl = getCurSDLoc(); 4369 DebugLoc dl = getCurDebugLoc(); 4370 SDValue Res; 4371 4372 switch (Intrinsic) { 4373 default: 4374 // By default, turn this into a target intrinsic node. 4375 visitTargetIntrinsic(I, Intrinsic); 4376 return nullptr; 4377 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4378 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4379 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4380 case Intrinsic::returnaddress: 4381 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 4382 TLI.getPointerTy(DAG.getDataLayout()), 4383 getValue(I.getArgOperand(0)))); 4384 return nullptr; 4385 case Intrinsic::frameaddress: 4386 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 4387 TLI.getPointerTy(DAG.getDataLayout()), 4388 getValue(I.getArgOperand(0)))); 4389 return nullptr; 4390 case Intrinsic::read_register: { 4391 Value *Reg = I.getArgOperand(0); 4392 SDValue Chain = getRoot(); 4393 SDValue RegName = 4394 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4395 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4396 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 4397 DAG.getVTList(VT, MVT::Other), Chain, RegName); 4398 setValue(&I, Res); 4399 DAG.setRoot(Res.getValue(1)); 4400 return nullptr; 4401 } 4402 case Intrinsic::write_register: { 4403 Value *Reg = I.getArgOperand(0); 4404 Value *RegValue = I.getArgOperand(1); 4405 SDValue Chain = getRoot(); 4406 SDValue RegName = 4407 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4408 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4409 RegName, getValue(RegValue))); 4410 return nullptr; 4411 } 4412 case Intrinsic::setjmp: 4413 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4414 case Intrinsic::longjmp: 4415 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4416 case Intrinsic::memcpy: { 4417 SDValue Op1 = getValue(I.getArgOperand(0)); 4418 SDValue Op2 = getValue(I.getArgOperand(1)); 4419 SDValue Op3 = getValue(I.getArgOperand(2)); 4420 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4421 if (!Align) 4422 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4423 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4424 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4425 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4426 false, isTC, 4427 MachinePointerInfo(I.getArgOperand(0)), 4428 MachinePointerInfo(I.getArgOperand(1))); 4429 updateDAGForMaybeTailCall(MC); 4430 return nullptr; 4431 } 4432 case Intrinsic::memset: { 4433 SDValue Op1 = getValue(I.getArgOperand(0)); 4434 SDValue Op2 = getValue(I.getArgOperand(1)); 4435 SDValue Op3 = getValue(I.getArgOperand(2)); 4436 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4437 if (!Align) 4438 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4439 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4440 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4441 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4442 isTC, MachinePointerInfo(I.getArgOperand(0))); 4443 updateDAGForMaybeTailCall(MS); 4444 return nullptr; 4445 } 4446 case Intrinsic::memmove: { 4447 SDValue Op1 = getValue(I.getArgOperand(0)); 4448 SDValue Op2 = getValue(I.getArgOperand(1)); 4449 SDValue Op3 = getValue(I.getArgOperand(2)); 4450 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4451 if (!Align) 4452 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4453 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4454 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4455 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4456 isTC, MachinePointerInfo(I.getArgOperand(0)), 4457 MachinePointerInfo(I.getArgOperand(1))); 4458 updateDAGForMaybeTailCall(MM); 4459 return nullptr; 4460 } 4461 case Intrinsic::dbg_declare: { 4462 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4463 DILocalVariable *Variable = DI.getVariable(); 4464 DIExpression *Expression = DI.getExpression(); 4465 const Value *Address = DI.getAddress(); 4466 assert(Variable && "Missing variable"); 4467 if (!Address) { 4468 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4469 return nullptr; 4470 } 4471 4472 // Check if address has undef value. 4473 if (isa<UndefValue>(Address) || 4474 (Address->use_empty() && !isa<Argument>(Address))) { 4475 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4476 return nullptr; 4477 } 4478 4479 SDValue &N = NodeMap[Address]; 4480 if (!N.getNode() && isa<Argument>(Address)) 4481 // Check unused arguments map. 4482 N = UnusedArgNodeMap[Address]; 4483 SDDbgValue *SDV; 4484 if (N.getNode()) { 4485 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4486 Address = BCI->getOperand(0); 4487 // Parameters are handled specially. 4488 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 4489 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4490 if (isParameter && FINode) { 4491 // Byval parameter. We have a frame index at this point. 4492 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, 4493 FINode->getIndex(), 0, dl, SDNodeOrder); 4494 } else if (isa<Argument>(Address)) { 4495 // Address is an argument, so try to emit its dbg value using 4496 // virtual register info from the FuncInfo.ValueMap. 4497 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4498 N); 4499 return nullptr; 4500 } else { 4501 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4502 true, 0, dl, SDNodeOrder); 4503 } 4504 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4505 } else { 4506 // If Address is an argument then try to emit its dbg value using 4507 // virtual register info from the FuncInfo.ValueMap. 4508 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4509 N)) { 4510 // If variable is pinned by a alloca in dominating bb then 4511 // use StaticAllocaMap. 4512 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4513 if (AI->getParent() != DI.getParent()) { 4514 DenseMap<const AllocaInst*, int>::iterator SI = 4515 FuncInfo.StaticAllocaMap.find(AI); 4516 if (SI != FuncInfo.StaticAllocaMap.end()) { 4517 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4518 0, dl, SDNodeOrder); 4519 DAG.AddDbgValue(SDV, nullptr, false); 4520 return nullptr; 4521 } 4522 } 4523 } 4524 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4525 } 4526 } 4527 return nullptr; 4528 } 4529 case Intrinsic::dbg_value: { 4530 const DbgValueInst &DI = cast<DbgValueInst>(I); 4531 assert(DI.getVariable() && "Missing variable"); 4532 4533 DILocalVariable *Variable = DI.getVariable(); 4534 DIExpression *Expression = DI.getExpression(); 4535 uint64_t Offset = DI.getOffset(); 4536 const Value *V = DI.getValue(); 4537 if (!V) 4538 return nullptr; 4539 4540 SDDbgValue *SDV; 4541 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4542 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4543 SDNodeOrder); 4544 DAG.AddDbgValue(SDV, nullptr, false); 4545 } else { 4546 // Do not use getValue() in here; we don't want to generate code at 4547 // this point if it hasn't been done yet. 4548 SDValue N = NodeMap[V]; 4549 if (!N.getNode() && isa<Argument>(V)) 4550 // Check unused arguments map. 4551 N = UnusedArgNodeMap[V]; 4552 if (N.getNode()) { 4553 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4554 false, N)) { 4555 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4556 false, Offset, dl, SDNodeOrder); 4557 DAG.AddDbgValue(SDV, N.getNode(), false); 4558 } 4559 } else if (!V->use_empty() ) { 4560 // Do not call getValue(V) yet, as we don't want to generate code. 4561 // Remember it for later. 4562 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4563 DanglingDebugInfoMap[V] = DDI; 4564 } else { 4565 // We may expand this to cover more cases. One case where we have no 4566 // data available is an unreferenced parameter. 4567 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4568 } 4569 } 4570 4571 // Build a debug info table entry. 4572 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4573 V = BCI->getOperand(0); 4574 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4575 // Don't handle byval struct arguments or VLAs, for example. 4576 if (!AI) { 4577 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4578 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4579 return nullptr; 4580 } 4581 DenseMap<const AllocaInst*, int>::iterator SI = 4582 FuncInfo.StaticAllocaMap.find(AI); 4583 if (SI == FuncInfo.StaticAllocaMap.end()) 4584 return nullptr; // VLAs. 4585 return nullptr; 4586 } 4587 4588 case Intrinsic::eh_typeid_for: { 4589 // Find the type id for the given typeinfo. 4590 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4591 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4592 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4593 setValue(&I, Res); 4594 return nullptr; 4595 } 4596 4597 case Intrinsic::eh_return_i32: 4598 case Intrinsic::eh_return_i64: 4599 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4600 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4601 MVT::Other, 4602 getControlRoot(), 4603 getValue(I.getArgOperand(0)), 4604 getValue(I.getArgOperand(1)))); 4605 return nullptr; 4606 case Intrinsic::eh_unwind_init: 4607 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4608 return nullptr; 4609 case Intrinsic::eh_dwarf_cfa: { 4610 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4611 TLI.getPointerTy(DAG.getDataLayout())); 4612 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4613 CfaArg.getValueType(), 4614 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4615 CfaArg.getValueType()), 4616 CfaArg); 4617 SDValue FA = DAG.getNode( 4618 ISD::FRAMEADDR, sdl, TLI.getPointerTy(DAG.getDataLayout()), 4619 DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 4620 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4621 FA, Offset)); 4622 return nullptr; 4623 } 4624 case Intrinsic::eh_sjlj_callsite: { 4625 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4626 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4627 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4628 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4629 4630 MMI.setCurrentCallSite(CI->getZExtValue()); 4631 return nullptr; 4632 } 4633 case Intrinsic::eh_sjlj_functioncontext: { 4634 // Get and store the index of the function context. 4635 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4636 AllocaInst *FnCtx = 4637 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4638 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4639 MFI->setFunctionContextIndex(FI); 4640 return nullptr; 4641 } 4642 case Intrinsic::eh_sjlj_setjmp: { 4643 SDValue Ops[2]; 4644 Ops[0] = getRoot(); 4645 Ops[1] = getValue(I.getArgOperand(0)); 4646 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4647 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4648 setValue(&I, Op.getValue(0)); 4649 DAG.setRoot(Op.getValue(1)); 4650 return nullptr; 4651 } 4652 case Intrinsic::eh_sjlj_longjmp: { 4653 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4654 getRoot(), getValue(I.getArgOperand(0)))); 4655 return nullptr; 4656 } 4657 case Intrinsic::eh_sjlj_setup_dispatch: { 4658 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 4659 getRoot())); 4660 return nullptr; 4661 } 4662 4663 case Intrinsic::masked_gather: 4664 visitMaskedGather(I); 4665 return nullptr; 4666 case Intrinsic::masked_load: 4667 visitMaskedLoad(I); 4668 return nullptr; 4669 case Intrinsic::masked_scatter: 4670 visitMaskedScatter(I); 4671 return nullptr; 4672 case Intrinsic::masked_store: 4673 visitMaskedStore(I); 4674 return nullptr; 4675 case Intrinsic::x86_mmx_pslli_w: 4676 case Intrinsic::x86_mmx_pslli_d: 4677 case Intrinsic::x86_mmx_pslli_q: 4678 case Intrinsic::x86_mmx_psrli_w: 4679 case Intrinsic::x86_mmx_psrli_d: 4680 case Intrinsic::x86_mmx_psrli_q: 4681 case Intrinsic::x86_mmx_psrai_w: 4682 case Intrinsic::x86_mmx_psrai_d: { 4683 SDValue ShAmt = getValue(I.getArgOperand(1)); 4684 if (isa<ConstantSDNode>(ShAmt)) { 4685 visitTargetIntrinsic(I, Intrinsic); 4686 return nullptr; 4687 } 4688 unsigned NewIntrinsic = 0; 4689 EVT ShAmtVT = MVT::v2i32; 4690 switch (Intrinsic) { 4691 case Intrinsic::x86_mmx_pslli_w: 4692 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4693 break; 4694 case Intrinsic::x86_mmx_pslli_d: 4695 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4696 break; 4697 case Intrinsic::x86_mmx_pslli_q: 4698 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4699 break; 4700 case Intrinsic::x86_mmx_psrli_w: 4701 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4702 break; 4703 case Intrinsic::x86_mmx_psrli_d: 4704 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4705 break; 4706 case Intrinsic::x86_mmx_psrli_q: 4707 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4708 break; 4709 case Intrinsic::x86_mmx_psrai_w: 4710 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4711 break; 4712 case Intrinsic::x86_mmx_psrai_d: 4713 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4714 break; 4715 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4716 } 4717 4718 // The vector shift intrinsics with scalars uses 32b shift amounts but 4719 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4720 // to be zero. 4721 // We must do this early because v2i32 is not a legal type. 4722 SDValue ShOps[2]; 4723 ShOps[0] = ShAmt; 4724 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4725 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4726 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4727 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4728 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4729 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4730 getValue(I.getArgOperand(0)), ShAmt); 4731 setValue(&I, Res); 4732 return nullptr; 4733 } 4734 case Intrinsic::convertff: 4735 case Intrinsic::convertfsi: 4736 case Intrinsic::convertfui: 4737 case Intrinsic::convertsif: 4738 case Intrinsic::convertuif: 4739 case Intrinsic::convertss: 4740 case Intrinsic::convertsu: 4741 case Intrinsic::convertus: 4742 case Intrinsic::convertuu: { 4743 ISD::CvtCode Code = ISD::CVT_INVALID; 4744 switch (Intrinsic) { 4745 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4746 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4747 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4748 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4749 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4750 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4751 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4752 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4753 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4754 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4755 } 4756 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4757 const Value *Op1 = I.getArgOperand(0); 4758 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4759 DAG.getValueType(DestVT), 4760 DAG.getValueType(getValue(Op1).getValueType()), 4761 getValue(I.getArgOperand(1)), 4762 getValue(I.getArgOperand(2)), 4763 Code); 4764 setValue(&I, Res); 4765 return nullptr; 4766 } 4767 case Intrinsic::powi: 4768 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4769 getValue(I.getArgOperand(1)), DAG)); 4770 return nullptr; 4771 case Intrinsic::log: 4772 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4773 return nullptr; 4774 case Intrinsic::log2: 4775 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4776 return nullptr; 4777 case Intrinsic::log10: 4778 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4779 return nullptr; 4780 case Intrinsic::exp: 4781 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4782 return nullptr; 4783 case Intrinsic::exp2: 4784 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4785 return nullptr; 4786 case Intrinsic::pow: 4787 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4788 getValue(I.getArgOperand(1)), DAG, TLI)); 4789 return nullptr; 4790 case Intrinsic::sqrt: 4791 case Intrinsic::fabs: 4792 case Intrinsic::sin: 4793 case Intrinsic::cos: 4794 case Intrinsic::floor: 4795 case Intrinsic::ceil: 4796 case Intrinsic::trunc: 4797 case Intrinsic::rint: 4798 case Intrinsic::nearbyint: 4799 case Intrinsic::round: { 4800 unsigned Opcode; 4801 switch (Intrinsic) { 4802 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4803 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4804 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4805 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4806 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4807 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4808 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4809 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4810 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4811 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4812 case Intrinsic::round: Opcode = ISD::FROUND; break; 4813 } 4814 4815 setValue(&I, DAG.getNode(Opcode, sdl, 4816 getValue(I.getArgOperand(0)).getValueType(), 4817 getValue(I.getArgOperand(0)))); 4818 return nullptr; 4819 } 4820 case Intrinsic::minnum: 4821 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4822 getValue(I.getArgOperand(0)).getValueType(), 4823 getValue(I.getArgOperand(0)), 4824 getValue(I.getArgOperand(1)))); 4825 return nullptr; 4826 case Intrinsic::maxnum: 4827 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4828 getValue(I.getArgOperand(0)).getValueType(), 4829 getValue(I.getArgOperand(0)), 4830 getValue(I.getArgOperand(1)))); 4831 return nullptr; 4832 case Intrinsic::copysign: 4833 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4834 getValue(I.getArgOperand(0)).getValueType(), 4835 getValue(I.getArgOperand(0)), 4836 getValue(I.getArgOperand(1)))); 4837 return nullptr; 4838 case Intrinsic::fma: 4839 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4840 getValue(I.getArgOperand(0)).getValueType(), 4841 getValue(I.getArgOperand(0)), 4842 getValue(I.getArgOperand(1)), 4843 getValue(I.getArgOperand(2)))); 4844 return nullptr; 4845 case Intrinsic::fmuladd: { 4846 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4847 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4848 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4849 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4850 getValue(I.getArgOperand(0)).getValueType(), 4851 getValue(I.getArgOperand(0)), 4852 getValue(I.getArgOperand(1)), 4853 getValue(I.getArgOperand(2)))); 4854 } else { 4855 // TODO: Intrinsic calls should have fast-math-flags. 4856 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4857 getValue(I.getArgOperand(0)).getValueType(), 4858 getValue(I.getArgOperand(0)), 4859 getValue(I.getArgOperand(1))); 4860 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4861 getValue(I.getArgOperand(0)).getValueType(), 4862 Mul, 4863 getValue(I.getArgOperand(2))); 4864 setValue(&I, Add); 4865 } 4866 return nullptr; 4867 } 4868 case Intrinsic::convert_to_fp16: 4869 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4870 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4871 getValue(I.getArgOperand(0)), 4872 DAG.getTargetConstant(0, sdl, 4873 MVT::i32)))); 4874 return nullptr; 4875 case Intrinsic::convert_from_fp16: 4876 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 4877 TLI.getValueType(DAG.getDataLayout(), I.getType()), 4878 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4879 getValue(I.getArgOperand(0))))); 4880 return nullptr; 4881 case Intrinsic::pcmarker: { 4882 SDValue Tmp = getValue(I.getArgOperand(0)); 4883 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4884 return nullptr; 4885 } 4886 case Intrinsic::readcyclecounter: { 4887 SDValue Op = getRoot(); 4888 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4889 DAG.getVTList(MVT::i64, MVT::Other), Op); 4890 setValue(&I, Res); 4891 DAG.setRoot(Res.getValue(1)); 4892 return nullptr; 4893 } 4894 case Intrinsic::bitreverse: 4895 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 4896 getValue(I.getArgOperand(0)).getValueType(), 4897 getValue(I.getArgOperand(0)))); 4898 return nullptr; 4899 case Intrinsic::bswap: 4900 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4901 getValue(I.getArgOperand(0)).getValueType(), 4902 getValue(I.getArgOperand(0)))); 4903 return nullptr; 4904 case Intrinsic::cttz: { 4905 SDValue Arg = getValue(I.getArgOperand(0)); 4906 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4907 EVT Ty = Arg.getValueType(); 4908 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4909 sdl, Ty, Arg)); 4910 return nullptr; 4911 } 4912 case Intrinsic::ctlz: { 4913 SDValue Arg = getValue(I.getArgOperand(0)); 4914 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4915 EVT Ty = Arg.getValueType(); 4916 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4917 sdl, Ty, Arg)); 4918 return nullptr; 4919 } 4920 case Intrinsic::ctpop: { 4921 SDValue Arg = getValue(I.getArgOperand(0)); 4922 EVT Ty = Arg.getValueType(); 4923 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4924 return nullptr; 4925 } 4926 case Intrinsic::stacksave: { 4927 SDValue Op = getRoot(); 4928 Res = DAG.getNode( 4929 ISD::STACKSAVE, sdl, 4930 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op); 4931 setValue(&I, Res); 4932 DAG.setRoot(Res.getValue(1)); 4933 return nullptr; 4934 } 4935 case Intrinsic::stackrestore: { 4936 Res = getValue(I.getArgOperand(0)); 4937 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4938 return nullptr; 4939 } 4940 case Intrinsic::get_dynamic_area_offset: { 4941 SDValue Op = getRoot(); 4942 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4943 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4944 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 4945 // target. 4946 if (PtrTy != ResTy) 4947 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 4948 " intrinsic!"); 4949 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 4950 Op); 4951 DAG.setRoot(Op); 4952 setValue(&I, Res); 4953 return nullptr; 4954 } 4955 case Intrinsic::stackprotector: { 4956 // Emit code into the DAG to store the stack guard onto the stack. 4957 MachineFunction &MF = DAG.getMachineFunction(); 4958 MachineFrameInfo *MFI = MF.getFrameInfo(); 4959 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 4960 SDValue Src, Chain = getRoot(); 4961 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4962 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4963 4964 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4965 // global variable __stack_chk_guard. 4966 if (!GV) 4967 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4968 if (BC->getOpcode() == Instruction::BitCast) 4969 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4970 4971 if (GV && TLI.useLoadStackGuardNode()) { 4972 // Emit a LOAD_STACK_GUARD node. 4973 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4974 sdl, PtrTy, Chain); 4975 MachinePointerInfo MPInfo(GV); 4976 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4977 unsigned Flags = MachineMemOperand::MOLoad | 4978 MachineMemOperand::MOInvariant; 4979 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4980 PtrTy.getSizeInBits() / 8, 4981 DAG.getEVTAlignment(PtrTy)); 4982 Node->setMemRefs(MemRefs, MemRefs + 1); 4983 4984 // Copy the guard value to a virtual register so that it can be 4985 // retrieved in the epilogue. 4986 Src = SDValue(Node, 0); 4987 const TargetRegisterClass *RC = 4988 TLI.getRegClassFor(Src.getSimpleValueType()); 4989 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4990 4991 SPDescriptor.setGuardReg(Reg); 4992 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4993 } else { 4994 Src = getValue(I.getArgOperand(0)); // The guard's value. 4995 } 4996 4997 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4998 4999 int FI = FuncInfo.StaticAllocaMap[Slot]; 5000 MFI->setStackProtectorIndex(FI); 5001 5002 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5003 5004 // Store the stack protector onto the stack. 5005 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack( 5006 DAG.getMachineFunction(), FI), 5007 true, false, 0); 5008 setValue(&I, Res); 5009 DAG.setRoot(Res); 5010 return nullptr; 5011 } 5012 case Intrinsic::objectsize: { 5013 // If we don't know by now, we're never going to know. 5014 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5015 5016 assert(CI && "Non-constant type in __builtin_object_size?"); 5017 5018 SDValue Arg = getValue(I.getCalledValue()); 5019 EVT Ty = Arg.getValueType(); 5020 5021 if (CI->isZero()) 5022 Res = DAG.getConstant(-1ULL, sdl, Ty); 5023 else 5024 Res = DAG.getConstant(0, sdl, Ty); 5025 5026 setValue(&I, Res); 5027 return nullptr; 5028 } 5029 case Intrinsic::annotation: 5030 case Intrinsic::ptr_annotation: 5031 // Drop the intrinsic, but forward the value 5032 setValue(&I, getValue(I.getOperand(0))); 5033 return nullptr; 5034 case Intrinsic::assume: 5035 case Intrinsic::var_annotation: 5036 // Discard annotate attributes and assumptions 5037 return nullptr; 5038 5039 case Intrinsic::init_trampoline: { 5040 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5041 5042 SDValue Ops[6]; 5043 Ops[0] = getRoot(); 5044 Ops[1] = getValue(I.getArgOperand(0)); 5045 Ops[2] = getValue(I.getArgOperand(1)); 5046 Ops[3] = getValue(I.getArgOperand(2)); 5047 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5048 Ops[5] = DAG.getSrcValue(F); 5049 5050 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 5051 5052 DAG.setRoot(Res); 5053 return nullptr; 5054 } 5055 case Intrinsic::adjust_trampoline: { 5056 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 5057 TLI.getPointerTy(DAG.getDataLayout()), 5058 getValue(I.getArgOperand(0)))); 5059 return nullptr; 5060 } 5061 case Intrinsic::gcroot: { 5062 MachineFunction &MF = DAG.getMachineFunction(); 5063 const Function *F = MF.getFunction(); 5064 (void)F; 5065 assert(F->hasGC() && 5066 "only valid in functions with gc specified, enforced by Verifier"); 5067 assert(GFI && "implied by previous"); 5068 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5069 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5070 5071 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5072 GFI->addStackRoot(FI->getIndex(), TypeMap); 5073 return nullptr; 5074 } 5075 case Intrinsic::gcread: 5076 case Intrinsic::gcwrite: 5077 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5078 case Intrinsic::flt_rounds: 5079 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 5080 return nullptr; 5081 5082 case Intrinsic::expect: { 5083 // Just replace __builtin_expect(exp, c) with EXP. 5084 setValue(&I, getValue(I.getArgOperand(0))); 5085 return nullptr; 5086 } 5087 5088 case Intrinsic::debugtrap: 5089 case Intrinsic::trap: { 5090 StringRef TrapFuncName = 5091 I.getAttributes() 5092 .getAttribute(AttributeSet::FunctionIndex, "trap-func-name") 5093 .getValueAsString(); 5094 if (TrapFuncName.empty()) { 5095 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 5096 ISD::TRAP : ISD::DEBUGTRAP; 5097 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 5098 return nullptr; 5099 } 5100 TargetLowering::ArgListTy Args; 5101 5102 TargetLowering::CallLoweringInfo CLI(DAG); 5103 CLI.setDebugLoc(sdl).setChain(getRoot()).setCallee( 5104 CallingConv::C, I.getType(), 5105 DAG.getExternalSymbol(TrapFuncName.data(), 5106 TLI.getPointerTy(DAG.getDataLayout())), 5107 std::move(Args), 0); 5108 5109 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5110 DAG.setRoot(Result.second); 5111 return nullptr; 5112 } 5113 5114 case Intrinsic::uadd_with_overflow: 5115 case Intrinsic::sadd_with_overflow: 5116 case Intrinsic::usub_with_overflow: 5117 case Intrinsic::ssub_with_overflow: 5118 case Intrinsic::umul_with_overflow: 5119 case Intrinsic::smul_with_overflow: { 5120 ISD::NodeType Op; 5121 switch (Intrinsic) { 5122 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5123 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5124 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5125 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5126 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5127 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5128 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5129 } 5130 SDValue Op1 = getValue(I.getArgOperand(0)); 5131 SDValue Op2 = getValue(I.getArgOperand(1)); 5132 5133 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5134 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 5135 return nullptr; 5136 } 5137 case Intrinsic::prefetch: { 5138 SDValue Ops[5]; 5139 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5140 Ops[0] = getRoot(); 5141 Ops[1] = getValue(I.getArgOperand(0)); 5142 Ops[2] = getValue(I.getArgOperand(1)); 5143 Ops[3] = getValue(I.getArgOperand(2)); 5144 Ops[4] = getValue(I.getArgOperand(3)); 5145 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 5146 DAG.getVTList(MVT::Other), Ops, 5147 EVT::getIntegerVT(*Context, 8), 5148 MachinePointerInfo(I.getArgOperand(0)), 5149 0, /* align */ 5150 false, /* volatile */ 5151 rw==0, /* read */ 5152 rw==1)); /* write */ 5153 return nullptr; 5154 } 5155 case Intrinsic::lifetime_start: 5156 case Intrinsic::lifetime_end: { 5157 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5158 // Stack coloring is not enabled in O0, discard region information. 5159 if (TM.getOptLevel() == CodeGenOpt::None) 5160 return nullptr; 5161 5162 SmallVector<Value *, 4> Allocas; 5163 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 5164 5165 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 5166 E = Allocas.end(); Object != E; ++Object) { 5167 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5168 5169 // Could not find an Alloca. 5170 if (!LifetimeObject) 5171 continue; 5172 5173 // First check that the Alloca is static, otherwise it won't have a 5174 // valid frame index. 5175 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 5176 if (SI == FuncInfo.StaticAllocaMap.end()) 5177 return nullptr; 5178 5179 int FI = SI->second; 5180 5181 SDValue Ops[2]; 5182 Ops[0] = getRoot(); 5183 Ops[1] = 5184 DAG.getFrameIndex(FI, TLI.getPointerTy(DAG.getDataLayout()), true); 5185 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5186 5187 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 5188 DAG.setRoot(Res); 5189 } 5190 return nullptr; 5191 } 5192 case Intrinsic::invariant_start: 5193 // Discard region information. 5194 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 5195 return nullptr; 5196 case Intrinsic::invariant_end: 5197 // Discard region information. 5198 return nullptr; 5199 case Intrinsic::stackprotectorcheck: { 5200 // Do not actually emit anything for this basic block. Instead we initialize 5201 // the stack protector descriptor and export the guard variable so we can 5202 // access it in FinishBasicBlock. 5203 const BasicBlock *BB = I.getParent(); 5204 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 5205 ExportFromCurrentBlock(SPDescriptor.getGuard()); 5206 5207 // Flush our exports since we are going to process a terminator. 5208 (void)getControlRoot(); 5209 return nullptr; 5210 } 5211 case Intrinsic::clear_cache: 5212 return TLI.getClearCacheBuiltinName(); 5213 case Intrinsic::donothing: 5214 // ignore 5215 return nullptr; 5216 case Intrinsic::experimental_stackmap: { 5217 visitStackmap(I); 5218 return nullptr; 5219 } 5220 case Intrinsic::experimental_patchpoint_void: 5221 case Intrinsic::experimental_patchpoint_i64: { 5222 visitPatchpoint(&I); 5223 return nullptr; 5224 } 5225 case Intrinsic::experimental_gc_statepoint: { 5226 visitStatepoint(I); 5227 return nullptr; 5228 } 5229 case Intrinsic::experimental_gc_result: { 5230 visitGCResult(I); 5231 return nullptr; 5232 } 5233 case Intrinsic::experimental_gc_relocate: { 5234 visitGCRelocate(cast<GCRelocateInst>(I)); 5235 return nullptr; 5236 } 5237 case Intrinsic::instrprof_increment: 5238 llvm_unreachable("instrprof failed to lower an increment"); 5239 case Intrinsic::instrprof_value_profile: 5240 llvm_unreachable("instrprof failed to lower a value profiling call"); 5241 case Intrinsic::localescape: { 5242 MachineFunction &MF = DAG.getMachineFunction(); 5243 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5244 5245 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 5246 // is the same on all targets. 5247 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 5248 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 5249 if (isa<ConstantPointerNull>(Arg)) 5250 continue; // Skip null pointers. They represent a hole in index space. 5251 AllocaInst *Slot = cast<AllocaInst>(Arg); 5252 assert(FuncInfo.StaticAllocaMap.count(Slot) && 5253 "can only escape static allocas"); 5254 int FI = FuncInfo.StaticAllocaMap[Slot]; 5255 MCSymbol *FrameAllocSym = 5256 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5257 GlobalValue::getRealLinkageName(MF.getName()), Idx); 5258 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 5259 TII->get(TargetOpcode::LOCAL_ESCAPE)) 5260 .addSym(FrameAllocSym) 5261 .addFrameIndex(FI); 5262 } 5263 5264 return nullptr; 5265 } 5266 5267 case Intrinsic::localrecover: { 5268 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 5269 MachineFunction &MF = DAG.getMachineFunction(); 5270 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0); 5271 5272 // Get the symbol that defines the frame offset. 5273 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 5274 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 5275 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 5276 MCSymbol *FrameAllocSym = 5277 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 5278 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 5279 5280 // Create a MCSymbol for the label to avoid any target lowering 5281 // that would make this PC relative. 5282 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 5283 SDValue OffsetVal = 5284 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 5285 5286 // Add the offset to the FP. 5287 Value *FP = I.getArgOperand(1); 5288 SDValue FPVal = getValue(FP); 5289 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 5290 setValue(&I, Add); 5291 5292 return nullptr; 5293 } 5294 5295 case Intrinsic::eh_exceptionpointer: 5296 case Intrinsic::eh_exceptioncode: { 5297 // Get the exception pointer vreg, copy from it, and resize it to fit. 5298 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 5299 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 5300 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 5301 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 5302 SDValue N = 5303 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5304 if (Intrinsic == Intrinsic::eh_exceptioncode) 5305 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5306 setValue(&I, N); 5307 return nullptr; 5308 } 5309 } 5310 } 5311 5312 std::pair<SDValue, SDValue> 5313 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5314 const BasicBlock *EHPadBB) { 5315 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5316 MCSymbol *BeginLabel = nullptr; 5317 5318 if (EHPadBB) { 5319 // Insert a label before the invoke call to mark the try range. This can be 5320 // used to detect deletion of the invoke via the MachineModuleInfo. 5321 BeginLabel = MMI.getContext().createTempSymbol(); 5322 5323 // For SjLj, keep track of which landing pads go with which invokes 5324 // so as to maintain the ordering of pads in the LSDA. 5325 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5326 if (CallSiteIndex) { 5327 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5328 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 5329 5330 // Now that the call site is handled, stop tracking it. 5331 MMI.setCurrentCallSite(0); 5332 } 5333 5334 // Both PendingLoads and PendingExports must be flushed here; 5335 // this call might not return. 5336 (void)getRoot(); 5337 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5338 5339 CLI.setChain(getRoot()); 5340 } 5341 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5342 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5343 5344 assert((CLI.IsTailCall || Result.second.getNode()) && 5345 "Non-null chain expected with non-tail call!"); 5346 assert((Result.second.getNode() || !Result.first.getNode()) && 5347 "Null value expected with tail call!"); 5348 5349 if (!Result.second.getNode()) { 5350 // As a special case, a null chain means that a tail call has been emitted 5351 // and the DAG root is already updated. 5352 HasTailCall = true; 5353 5354 // Since there's no actual continuation from this block, nothing can be 5355 // relying on us setting vregs for them. 5356 PendingExports.clear(); 5357 } else { 5358 DAG.setRoot(Result.second); 5359 } 5360 5361 if (EHPadBB) { 5362 // Insert a label at the end of the invoke call to mark the try range. This 5363 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5364 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 5365 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5366 5367 // Inform MachineModuleInfo of range. 5368 if (MMI.hasEHFunclets()) { 5369 assert(CLI.CS); 5370 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 5371 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS->getInstruction()), 5372 BeginLabel, EndLabel); 5373 } else { 5374 MMI.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 5375 } 5376 } 5377 5378 return Result; 5379 } 5380 5381 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5382 bool isTailCall, 5383 const BasicBlock *EHPadBB) { 5384 FunctionType *FTy = CS.getFunctionType(); 5385 Type *RetTy = CS.getType(); 5386 5387 TargetLowering::ArgListTy Args; 5388 TargetLowering::ArgListEntry Entry; 5389 Args.reserve(CS.arg_size()); 5390 5391 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5392 i != e; ++i) { 5393 const Value *V = *i; 5394 5395 // Skip empty types 5396 if (V->getType()->isEmptyTy()) 5397 continue; 5398 5399 SDValue ArgNode = getValue(V); 5400 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5401 5402 // Skip the first return-type Attribute to get to params. 5403 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5404 Args.push_back(Entry); 5405 5406 // If we have an explicit sret argument that is an Instruction, (i.e., it 5407 // might point to function-local memory), we can't meaningfully tail-call. 5408 if (Entry.isSRet && isa<Instruction>(V)) 5409 isTailCall = false; 5410 } 5411 5412 // Check if target-independent constraints permit a tail call here. 5413 // Target-dependent constraints are checked within TLI->LowerCallTo. 5414 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5415 isTailCall = false; 5416 5417 TargetLowering::CallLoweringInfo CLI(DAG); 5418 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5419 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5420 .setTailCall(isTailCall); 5421 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 5422 5423 if (Result.first.getNode()) { 5424 const Instruction *Inst = CS.getInstruction(); 5425 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first); 5426 setValue(Inst, Result.first); 5427 } 5428 } 5429 5430 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5431 /// value is equal or not-equal to zero. 5432 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5433 for (const User *U : V->users()) { 5434 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5435 if (IC->isEquality()) 5436 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5437 if (C->isNullValue()) 5438 continue; 5439 // Unknown instruction. 5440 return false; 5441 } 5442 return true; 5443 } 5444 5445 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5446 Type *LoadTy, 5447 SelectionDAGBuilder &Builder) { 5448 5449 // Check to see if this load can be trivially constant folded, e.g. if the 5450 // input is from a string literal. 5451 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5452 // Cast pointer to the type we really want to load. 5453 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5454 PointerType::getUnqual(LoadTy)); 5455 5456 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5457 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 5458 return Builder.getValue(LoadCst); 5459 } 5460 5461 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5462 // still constant memory, the input chain can be the entry node. 5463 SDValue Root; 5464 bool ConstantMemory = false; 5465 5466 // Do not serialize (non-volatile) loads of constant memory with anything. 5467 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5468 Root = Builder.DAG.getEntryNode(); 5469 ConstantMemory = true; 5470 } else { 5471 // Do not serialize non-volatile loads against each other. 5472 Root = Builder.DAG.getRoot(); 5473 } 5474 5475 SDValue Ptr = Builder.getValue(PtrVal); 5476 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5477 Ptr, MachinePointerInfo(PtrVal), 5478 false /*volatile*/, 5479 false /*nontemporal*/, 5480 false /*isinvariant*/, 1 /* align=1 */); 5481 5482 if (!ConstantMemory) 5483 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5484 return LoadVal; 5485 } 5486 5487 /// processIntegerCallValue - Record the value for an instruction that 5488 /// produces an integer result, converting the type where necessary. 5489 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5490 SDValue Value, 5491 bool IsSigned) { 5492 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5493 I.getType(), true); 5494 if (IsSigned) 5495 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5496 else 5497 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5498 setValue(&I, Value); 5499 } 5500 5501 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5502 /// If so, return true and lower it, otherwise return false and it will be 5503 /// lowered like a normal call. 5504 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5505 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5506 if (I.getNumArgOperands() != 3) 5507 return false; 5508 5509 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5510 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5511 !I.getArgOperand(2)->getType()->isIntegerTy() || 5512 !I.getType()->isIntegerTy()) 5513 return false; 5514 5515 const Value *Size = I.getArgOperand(2); 5516 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5517 if (CSize && CSize->getZExtValue() == 0) { 5518 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 5519 I.getType(), true); 5520 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5521 return true; 5522 } 5523 5524 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5525 std::pair<SDValue, SDValue> Res = 5526 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5527 getValue(LHS), getValue(RHS), getValue(Size), 5528 MachinePointerInfo(LHS), 5529 MachinePointerInfo(RHS)); 5530 if (Res.first.getNode()) { 5531 processIntegerCallValue(I, Res.first, true); 5532 PendingLoads.push_back(Res.second); 5533 return true; 5534 } 5535 5536 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5537 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5538 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5539 bool ActuallyDoIt = true; 5540 MVT LoadVT; 5541 Type *LoadTy; 5542 switch (CSize->getZExtValue()) { 5543 default: 5544 LoadVT = MVT::Other; 5545 LoadTy = nullptr; 5546 ActuallyDoIt = false; 5547 break; 5548 case 2: 5549 LoadVT = MVT::i16; 5550 LoadTy = Type::getInt16Ty(CSize->getContext()); 5551 break; 5552 case 4: 5553 LoadVT = MVT::i32; 5554 LoadTy = Type::getInt32Ty(CSize->getContext()); 5555 break; 5556 case 8: 5557 LoadVT = MVT::i64; 5558 LoadTy = Type::getInt64Ty(CSize->getContext()); 5559 break; 5560 /* 5561 case 16: 5562 LoadVT = MVT::v4i32; 5563 LoadTy = Type::getInt32Ty(CSize->getContext()); 5564 LoadTy = VectorType::get(LoadTy, 4); 5565 break; 5566 */ 5567 } 5568 5569 // This turns into unaligned loads. We only do this if the target natively 5570 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5571 // we'll only produce a small number of byte loads. 5572 5573 // Require that we can find a legal MVT, and only do this if the target 5574 // supports unaligned loads of that type. Expanding into byte loads would 5575 // bloat the code. 5576 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5577 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5578 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5579 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5580 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5581 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5582 // TODO: Check alignment of src and dest ptrs. 5583 if (!TLI.isTypeLegal(LoadVT) || 5584 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5585 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5586 ActuallyDoIt = false; 5587 } 5588 5589 if (ActuallyDoIt) { 5590 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5591 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5592 5593 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5594 ISD::SETNE); 5595 processIntegerCallValue(I, Res, false); 5596 return true; 5597 } 5598 } 5599 5600 5601 return false; 5602 } 5603 5604 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5605 /// form. If so, return true and lower it, otherwise return false and it 5606 /// will be lowered like a normal call. 5607 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5608 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5609 if (I.getNumArgOperands() != 3) 5610 return false; 5611 5612 const Value *Src = I.getArgOperand(0); 5613 const Value *Char = I.getArgOperand(1); 5614 const Value *Length = I.getArgOperand(2); 5615 if (!Src->getType()->isPointerTy() || 5616 !Char->getType()->isIntegerTy() || 5617 !Length->getType()->isIntegerTy() || 5618 !I.getType()->isPointerTy()) 5619 return false; 5620 5621 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5622 std::pair<SDValue, SDValue> Res = 5623 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5624 getValue(Src), getValue(Char), getValue(Length), 5625 MachinePointerInfo(Src)); 5626 if (Res.first.getNode()) { 5627 setValue(&I, Res.first); 5628 PendingLoads.push_back(Res.second); 5629 return true; 5630 } 5631 5632 return false; 5633 } 5634 5635 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5636 /// optimized form. If so, return true and lower it, otherwise return false 5637 /// and it will be lowered like a normal call. 5638 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5639 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5640 if (I.getNumArgOperands() != 2) 5641 return false; 5642 5643 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5644 if (!Arg0->getType()->isPointerTy() || 5645 !Arg1->getType()->isPointerTy() || 5646 !I.getType()->isPointerTy()) 5647 return false; 5648 5649 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5650 std::pair<SDValue, SDValue> Res = 5651 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5652 getValue(Arg0), getValue(Arg1), 5653 MachinePointerInfo(Arg0), 5654 MachinePointerInfo(Arg1), isStpcpy); 5655 if (Res.first.getNode()) { 5656 setValue(&I, Res.first); 5657 DAG.setRoot(Res.second); 5658 return true; 5659 } 5660 5661 return false; 5662 } 5663 5664 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5665 /// If so, return true and lower it, otherwise return false and it will be 5666 /// lowered like a normal call. 5667 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5668 // Verify that the prototype makes sense. int strcmp(void*,void*) 5669 if (I.getNumArgOperands() != 2) 5670 return false; 5671 5672 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5673 if (!Arg0->getType()->isPointerTy() || 5674 !Arg1->getType()->isPointerTy() || 5675 !I.getType()->isIntegerTy()) 5676 return false; 5677 5678 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5679 std::pair<SDValue, SDValue> Res = 5680 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5681 getValue(Arg0), getValue(Arg1), 5682 MachinePointerInfo(Arg0), 5683 MachinePointerInfo(Arg1)); 5684 if (Res.first.getNode()) { 5685 processIntegerCallValue(I, Res.first, true); 5686 PendingLoads.push_back(Res.second); 5687 return true; 5688 } 5689 5690 return false; 5691 } 5692 5693 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5694 /// form. If so, return true and lower it, otherwise return false and it 5695 /// will be lowered like a normal call. 5696 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5697 // Verify that the prototype makes sense. size_t strlen(char *) 5698 if (I.getNumArgOperands() != 1) 5699 return false; 5700 5701 const Value *Arg0 = I.getArgOperand(0); 5702 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5703 return false; 5704 5705 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5706 std::pair<SDValue, SDValue> Res = 5707 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5708 getValue(Arg0), MachinePointerInfo(Arg0)); 5709 if (Res.first.getNode()) { 5710 processIntegerCallValue(I, Res.first, false); 5711 PendingLoads.push_back(Res.second); 5712 return true; 5713 } 5714 5715 return false; 5716 } 5717 5718 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5719 /// form. If so, return true and lower it, otherwise return false and it 5720 /// will be lowered like a normal call. 5721 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5722 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5723 if (I.getNumArgOperands() != 2) 5724 return false; 5725 5726 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5727 if (!Arg0->getType()->isPointerTy() || 5728 !Arg1->getType()->isIntegerTy() || 5729 !I.getType()->isIntegerTy()) 5730 return false; 5731 5732 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 5733 std::pair<SDValue, SDValue> Res = 5734 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5735 getValue(Arg0), getValue(Arg1), 5736 MachinePointerInfo(Arg0)); 5737 if (Res.first.getNode()) { 5738 processIntegerCallValue(I, Res.first, false); 5739 PendingLoads.push_back(Res.second); 5740 return true; 5741 } 5742 5743 return false; 5744 } 5745 5746 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5747 /// operation (as expected), translate it to an SDNode with the specified opcode 5748 /// and return true. 5749 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5750 unsigned Opcode) { 5751 // Sanity check that it really is a unary floating-point call. 5752 if (I.getNumArgOperands() != 1 || 5753 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5754 I.getType() != I.getArgOperand(0)->getType() || 5755 !I.onlyReadsMemory()) 5756 return false; 5757 5758 SDValue Tmp = getValue(I.getArgOperand(0)); 5759 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5760 return true; 5761 } 5762 5763 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5764 /// operation (as expected), translate it to an SDNode with the specified opcode 5765 /// and return true. 5766 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5767 unsigned Opcode) { 5768 // Sanity check that it really is a binary floating-point call. 5769 if (I.getNumArgOperands() != 2 || 5770 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5771 I.getType() != I.getArgOperand(0)->getType() || 5772 I.getType() != I.getArgOperand(1)->getType() || 5773 !I.onlyReadsMemory()) 5774 return false; 5775 5776 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5777 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5778 EVT VT = Tmp0.getValueType(); 5779 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5780 return true; 5781 } 5782 5783 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5784 // Handle inline assembly differently. 5785 if (isa<InlineAsm>(I.getCalledValue())) { 5786 visitInlineAsm(&I); 5787 return; 5788 } 5789 5790 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5791 ComputeUsesVAFloatArgument(I, &MMI); 5792 5793 const char *RenameFn = nullptr; 5794 if (Function *F = I.getCalledFunction()) { 5795 if (F->isDeclaration()) { 5796 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5797 if (unsigned IID = II->getIntrinsicID(F)) { 5798 RenameFn = visitIntrinsicCall(I, IID); 5799 if (!RenameFn) 5800 return; 5801 } 5802 } 5803 if (Intrinsic::ID IID = F->getIntrinsicID()) { 5804 RenameFn = visitIntrinsicCall(I, IID); 5805 if (!RenameFn) 5806 return; 5807 } 5808 } 5809 5810 // Check for well-known libc/libm calls. If the function is internal, it 5811 // can't be a library call. 5812 LibFunc::Func Func; 5813 if (!F->hasLocalLinkage() && F->hasName() && 5814 LibInfo->getLibFunc(F->getName(), Func) && 5815 LibInfo->hasOptimizedCodeGen(Func)) { 5816 switch (Func) { 5817 default: break; 5818 case LibFunc::copysign: 5819 case LibFunc::copysignf: 5820 case LibFunc::copysignl: 5821 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5822 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5823 I.getType() == I.getArgOperand(0)->getType() && 5824 I.getType() == I.getArgOperand(1)->getType() && 5825 I.onlyReadsMemory()) { 5826 SDValue LHS = getValue(I.getArgOperand(0)); 5827 SDValue RHS = getValue(I.getArgOperand(1)); 5828 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5829 LHS.getValueType(), LHS, RHS)); 5830 return; 5831 } 5832 break; 5833 case LibFunc::fabs: 5834 case LibFunc::fabsf: 5835 case LibFunc::fabsl: 5836 if (visitUnaryFloatCall(I, ISD::FABS)) 5837 return; 5838 break; 5839 case LibFunc::fmin: 5840 case LibFunc::fminf: 5841 case LibFunc::fminl: 5842 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5843 return; 5844 break; 5845 case LibFunc::fmax: 5846 case LibFunc::fmaxf: 5847 case LibFunc::fmaxl: 5848 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5849 return; 5850 break; 5851 case LibFunc::sin: 5852 case LibFunc::sinf: 5853 case LibFunc::sinl: 5854 if (visitUnaryFloatCall(I, ISD::FSIN)) 5855 return; 5856 break; 5857 case LibFunc::cos: 5858 case LibFunc::cosf: 5859 case LibFunc::cosl: 5860 if (visitUnaryFloatCall(I, ISD::FCOS)) 5861 return; 5862 break; 5863 case LibFunc::sqrt: 5864 case LibFunc::sqrtf: 5865 case LibFunc::sqrtl: 5866 case LibFunc::sqrt_finite: 5867 case LibFunc::sqrtf_finite: 5868 case LibFunc::sqrtl_finite: 5869 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5870 return; 5871 break; 5872 case LibFunc::floor: 5873 case LibFunc::floorf: 5874 case LibFunc::floorl: 5875 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5876 return; 5877 break; 5878 case LibFunc::nearbyint: 5879 case LibFunc::nearbyintf: 5880 case LibFunc::nearbyintl: 5881 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5882 return; 5883 break; 5884 case LibFunc::ceil: 5885 case LibFunc::ceilf: 5886 case LibFunc::ceill: 5887 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5888 return; 5889 break; 5890 case LibFunc::rint: 5891 case LibFunc::rintf: 5892 case LibFunc::rintl: 5893 if (visitUnaryFloatCall(I, ISD::FRINT)) 5894 return; 5895 break; 5896 case LibFunc::round: 5897 case LibFunc::roundf: 5898 case LibFunc::roundl: 5899 if (visitUnaryFloatCall(I, ISD::FROUND)) 5900 return; 5901 break; 5902 case LibFunc::trunc: 5903 case LibFunc::truncf: 5904 case LibFunc::truncl: 5905 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5906 return; 5907 break; 5908 case LibFunc::log2: 5909 case LibFunc::log2f: 5910 case LibFunc::log2l: 5911 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5912 return; 5913 break; 5914 case LibFunc::exp2: 5915 case LibFunc::exp2f: 5916 case LibFunc::exp2l: 5917 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5918 return; 5919 break; 5920 case LibFunc::memcmp: 5921 if (visitMemCmpCall(I)) 5922 return; 5923 break; 5924 case LibFunc::memchr: 5925 if (visitMemChrCall(I)) 5926 return; 5927 break; 5928 case LibFunc::strcpy: 5929 if (visitStrCpyCall(I, false)) 5930 return; 5931 break; 5932 case LibFunc::stpcpy: 5933 if (visitStrCpyCall(I, true)) 5934 return; 5935 break; 5936 case LibFunc::strcmp: 5937 if (visitStrCmpCall(I)) 5938 return; 5939 break; 5940 case LibFunc::strlen: 5941 if (visitStrLenCall(I)) 5942 return; 5943 break; 5944 case LibFunc::strnlen: 5945 if (visitStrNLenCall(I)) 5946 return; 5947 break; 5948 } 5949 } 5950 } 5951 5952 SDValue Callee; 5953 if (!RenameFn) 5954 Callee = getValue(I.getCalledValue()); 5955 else 5956 Callee = DAG.getExternalSymbol( 5957 RenameFn, 5958 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5959 5960 // Check if we can potentially perform a tail call. More detailed checking is 5961 // be done within LowerCallTo, after more information about the call is known. 5962 LowerCallTo(&I, Callee, I.isTailCall()); 5963 } 5964 5965 namespace { 5966 5967 /// AsmOperandInfo - This contains information for each constraint that we are 5968 /// lowering. 5969 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5970 public: 5971 /// CallOperand - If this is the result output operand or a clobber 5972 /// this is null, otherwise it is the incoming operand to the CallInst. 5973 /// This gets modified as the asm is processed. 5974 SDValue CallOperand; 5975 5976 /// AssignedRegs - If this is a register or register class operand, this 5977 /// contains the set of register corresponding to the operand. 5978 RegsForValue AssignedRegs; 5979 5980 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5981 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5982 } 5983 5984 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5985 /// corresponds to. If there is no Value* for this operand, it returns 5986 /// MVT::Other. 5987 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 5988 const DataLayout &DL) const { 5989 if (!CallOperandVal) return MVT::Other; 5990 5991 if (isa<BasicBlock>(CallOperandVal)) 5992 return TLI.getPointerTy(DL); 5993 5994 llvm::Type *OpTy = CallOperandVal->getType(); 5995 5996 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5997 // If this is an indirect operand, the operand is a pointer to the 5998 // accessed type. 5999 if (isIndirect) { 6000 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 6001 if (!PtrTy) 6002 report_fatal_error("Indirect operand for inline asm not a pointer!"); 6003 OpTy = PtrTy->getElementType(); 6004 } 6005 6006 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 6007 if (StructType *STy = dyn_cast<StructType>(OpTy)) 6008 if (STy->getNumElements() == 1) 6009 OpTy = STy->getElementType(0); 6010 6011 // If OpTy is not a single value, it may be a struct/union that we 6012 // can tile with integers. 6013 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 6014 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 6015 switch (BitSize) { 6016 default: break; 6017 case 1: 6018 case 8: 6019 case 16: 6020 case 32: 6021 case 64: 6022 case 128: 6023 OpTy = IntegerType::get(Context, BitSize); 6024 break; 6025 } 6026 } 6027 6028 return TLI.getValueType(DL, OpTy, true); 6029 } 6030 }; 6031 6032 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 6033 6034 } // end anonymous namespace 6035 6036 /// GetRegistersForValue - Assign registers (virtual or physical) for the 6037 /// specified operand. We prefer to assign virtual registers, to allow the 6038 /// register allocator to handle the assignment process. However, if the asm 6039 /// uses features that we can't model on machineinstrs, we have SDISel do the 6040 /// allocation. This produces generally horrible, but correct, code. 6041 /// 6042 /// OpInfo describes the operand. 6043 /// 6044 static void GetRegistersForValue(SelectionDAG &DAG, 6045 const TargetLowering &TLI, 6046 SDLoc DL, 6047 SDISelAsmOperandInfo &OpInfo) { 6048 LLVMContext &Context = *DAG.getContext(); 6049 6050 MachineFunction &MF = DAG.getMachineFunction(); 6051 SmallVector<unsigned, 4> Regs; 6052 6053 // If this is a constraint for a single physreg, or a constraint for a 6054 // register class, find it. 6055 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 6056 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 6057 OpInfo.ConstraintCode, 6058 OpInfo.ConstraintVT); 6059 6060 unsigned NumRegs = 1; 6061 if (OpInfo.ConstraintVT != MVT::Other) { 6062 // If this is a FP input in an integer register (or visa versa) insert a bit 6063 // cast of the input value. More generally, handle any case where the input 6064 // value disagrees with the register class we plan to stick this in. 6065 if (OpInfo.Type == InlineAsm::isInput && 6066 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 6067 // Try to convert to the first EVT that the reg class contains. If the 6068 // types are identical size, use a bitcast to convert (e.g. two differing 6069 // vector types). 6070 MVT RegVT = *PhysReg.second->vt_begin(); 6071 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 6072 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6073 RegVT, OpInfo.CallOperand); 6074 OpInfo.ConstraintVT = RegVT; 6075 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 6076 // If the input is a FP value and we want it in FP registers, do a 6077 // bitcast to the corresponding integer type. This turns an f64 value 6078 // into i64, which can be passed with two i32 values on a 32-bit 6079 // machine. 6080 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 6081 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 6082 RegVT, OpInfo.CallOperand); 6083 OpInfo.ConstraintVT = RegVT; 6084 } 6085 } 6086 6087 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 6088 } 6089 6090 MVT RegVT; 6091 EVT ValueVT = OpInfo.ConstraintVT; 6092 6093 // If this is a constraint for a specific physical register, like {r17}, 6094 // assign it now. 6095 if (unsigned AssignedReg = PhysReg.first) { 6096 const TargetRegisterClass *RC = PhysReg.second; 6097 if (OpInfo.ConstraintVT == MVT::Other) 6098 ValueVT = *RC->vt_begin(); 6099 6100 // Get the actual register value type. This is important, because the user 6101 // may have asked for (e.g.) the AX register in i32 type. We need to 6102 // remember that AX is actually i16 to get the right extension. 6103 RegVT = *RC->vt_begin(); 6104 6105 // This is a explicit reference to a physical register. 6106 Regs.push_back(AssignedReg); 6107 6108 // If this is an expanded reference, add the rest of the regs to Regs. 6109 if (NumRegs != 1) { 6110 TargetRegisterClass::iterator I = RC->begin(); 6111 for (; *I != AssignedReg; ++I) 6112 assert(I != RC->end() && "Didn't find reg!"); 6113 6114 // Already added the first reg. 6115 --NumRegs; ++I; 6116 for (; NumRegs; --NumRegs, ++I) { 6117 assert(I != RC->end() && "Ran out of registers to allocate!"); 6118 Regs.push_back(*I); 6119 } 6120 } 6121 6122 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6123 return; 6124 } 6125 6126 // Otherwise, if this was a reference to an LLVM register class, create vregs 6127 // for this reference. 6128 if (const TargetRegisterClass *RC = PhysReg.second) { 6129 RegVT = *RC->vt_begin(); 6130 if (OpInfo.ConstraintVT == MVT::Other) 6131 ValueVT = RegVT; 6132 6133 // Create the appropriate number of virtual registers. 6134 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 6135 for (; NumRegs; --NumRegs) 6136 Regs.push_back(RegInfo.createVirtualRegister(RC)); 6137 6138 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 6139 return; 6140 } 6141 6142 // Otherwise, we couldn't allocate enough registers for this. 6143 } 6144 6145 /// visitInlineAsm - Handle a call to an InlineAsm object. 6146 /// 6147 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 6148 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 6149 6150 /// ConstraintOperands - Information about all of the constraints. 6151 SDISelAsmOperandInfoVector ConstraintOperands; 6152 6153 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6154 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 6155 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS); 6156 6157 bool hasMemory = false; 6158 6159 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 6160 unsigned ResNo = 0; // ResNo - The result number of the next output. 6161 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6162 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 6163 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 6164 6165 MVT OpVT = MVT::Other; 6166 6167 // Compute the value type for each operand. 6168 switch (OpInfo.Type) { 6169 case InlineAsm::isOutput: 6170 // Indirect outputs just consume an argument. 6171 if (OpInfo.isIndirect) { 6172 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6173 break; 6174 } 6175 6176 // The return value of the call is this value. As such, there is no 6177 // corresponding argument. 6178 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6179 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 6180 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), 6181 STy->getElementType(ResNo)); 6182 } else { 6183 assert(ResNo == 0 && "Asm only has one result!"); 6184 OpVT = TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType()); 6185 } 6186 ++ResNo; 6187 break; 6188 case InlineAsm::isInput: 6189 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 6190 break; 6191 case InlineAsm::isClobber: 6192 // Nothing to do. 6193 break; 6194 } 6195 6196 // If this is an input or an indirect output, process the call argument. 6197 // BasicBlocks are labels, currently appearing only in asm's. 6198 if (OpInfo.CallOperandVal) { 6199 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 6200 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 6201 } else { 6202 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 6203 } 6204 6205 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 6206 DAG.getDataLayout()).getSimpleVT(); 6207 } 6208 6209 OpInfo.ConstraintVT = OpVT; 6210 6211 // Indirect operand accesses access memory. 6212 if (OpInfo.isIndirect) 6213 hasMemory = true; 6214 else { 6215 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 6216 TargetLowering::ConstraintType 6217 CType = TLI.getConstraintType(OpInfo.Codes[j]); 6218 if (CType == TargetLowering::C_Memory) { 6219 hasMemory = true; 6220 break; 6221 } 6222 } 6223 } 6224 } 6225 6226 SDValue Chain, Flag; 6227 6228 // We won't need to flush pending loads if this asm doesn't touch 6229 // memory and is nonvolatile. 6230 if (hasMemory || IA->hasSideEffects()) 6231 Chain = getRoot(); 6232 else 6233 Chain = DAG.getRoot(); 6234 6235 // Second pass over the constraints: compute which constraint option to use 6236 // and assign registers to constraints that want a specific physreg. 6237 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6238 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6239 6240 // If this is an output operand with a matching input operand, look up the 6241 // matching input. If their types mismatch, e.g. one is an integer, the 6242 // other is floating point, or their sizes are different, flag it as an 6243 // error. 6244 if (OpInfo.hasMatchingInput()) { 6245 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6246 6247 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6248 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 6249 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 6250 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 6251 OpInfo.ConstraintVT); 6252 std::pair<unsigned, const TargetRegisterClass *> InputRC = 6253 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 6254 Input.ConstraintVT); 6255 if ((OpInfo.ConstraintVT.isInteger() != 6256 Input.ConstraintVT.isInteger()) || 6257 (MatchRC.second != InputRC.second)) { 6258 report_fatal_error("Unsupported asm: input constraint" 6259 " with a matching output constraint of" 6260 " incompatible type!"); 6261 } 6262 Input.ConstraintVT = OpInfo.ConstraintVT; 6263 } 6264 } 6265 6266 // Compute the constraint code and ConstraintType to use. 6267 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6268 6269 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6270 OpInfo.Type == InlineAsm::isClobber) 6271 continue; 6272 6273 // If this is a memory input, and if the operand is not indirect, do what we 6274 // need to to provide an address for the memory input. 6275 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6276 !OpInfo.isIndirect) { 6277 assert((OpInfo.isMultipleAlternative || 6278 (OpInfo.Type == InlineAsm::isInput)) && 6279 "Can only indirectify direct input operands!"); 6280 6281 // Memory operands really want the address of the value. If we don't have 6282 // an indirect input, put it in the constpool if we can, otherwise spill 6283 // it to a stack slot. 6284 // TODO: This isn't quite right. We need to handle these according to 6285 // the addressing mode that the constraint wants. Also, this may take 6286 // an additional register for the computation and we don't want that 6287 // either. 6288 6289 // If the operand is a float, integer, or vector constant, spill to a 6290 // constant pool entry to get its address. 6291 const Value *OpVal = OpInfo.CallOperandVal; 6292 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6293 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6294 OpInfo.CallOperand = DAG.getConstantPool( 6295 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 6296 } else { 6297 // Otherwise, create a stack slot and emit a store to it before the 6298 // asm. 6299 Type *Ty = OpVal->getType(); 6300 auto &DL = DAG.getDataLayout(); 6301 uint64_t TySize = DL.getTypeAllocSize(Ty); 6302 unsigned Align = DL.getPrefTypeAlignment(Ty); 6303 MachineFunction &MF = DAG.getMachineFunction(); 6304 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6305 SDValue StackSlot = 6306 DAG.getFrameIndex(SSFI, TLI.getPointerTy(DAG.getDataLayout())); 6307 Chain = DAG.getStore( 6308 Chain, getCurSDLoc(), OpInfo.CallOperand, StackSlot, 6309 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SSFI), 6310 false, false, 0); 6311 OpInfo.CallOperand = StackSlot; 6312 } 6313 6314 // There is no longer a Value* corresponding to this operand. 6315 OpInfo.CallOperandVal = nullptr; 6316 6317 // It is now an indirect operand. 6318 OpInfo.isIndirect = true; 6319 } 6320 6321 // If this constraint is for a specific register, allocate it before 6322 // anything else. 6323 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6324 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6325 } 6326 6327 // Second pass - Loop over all of the operands, assigning virtual or physregs 6328 // to register class operands. 6329 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6330 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6331 6332 // C_Register operands have already been allocated, Other/Memory don't need 6333 // to be. 6334 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6335 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6336 } 6337 6338 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6339 std::vector<SDValue> AsmNodeOperands; 6340 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6341 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 6342 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout()))); 6343 6344 // If we have a !srcloc metadata node associated with it, we want to attach 6345 // this to the ultimately generated inline asm machineinstr. To do this, we 6346 // pass in the third operand as this (potentially null) inline asm MDNode. 6347 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6348 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6349 6350 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6351 // bits as operand 3. 6352 unsigned ExtraInfo = 0; 6353 if (IA->hasSideEffects()) 6354 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6355 if (IA->isAlignStack()) 6356 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6357 // Set the asm dialect. 6358 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6359 6360 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6361 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6362 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6363 6364 // Compute the constraint code and ConstraintType to use. 6365 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6366 6367 // Ideally, we would only check against memory constraints. However, the 6368 // meaning of an other constraint can be target-specific and we can't easily 6369 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6370 // for other constriants as well. 6371 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6372 OpInfo.ConstraintType == TargetLowering::C_Other) { 6373 if (OpInfo.Type == InlineAsm::isInput) 6374 ExtraInfo |= InlineAsm::Extra_MayLoad; 6375 else if (OpInfo.Type == InlineAsm::isOutput) 6376 ExtraInfo |= InlineAsm::Extra_MayStore; 6377 else if (OpInfo.Type == InlineAsm::isClobber) 6378 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6379 } 6380 } 6381 6382 AsmNodeOperands.push_back(DAG.getTargetConstant( 6383 ExtraInfo, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6384 6385 // Loop over all of the inputs, copying the operand values into the 6386 // appropriate registers and processing the output regs. 6387 RegsForValue RetValRegs; 6388 6389 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6390 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6391 6392 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6393 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6394 6395 switch (OpInfo.Type) { 6396 case InlineAsm::isOutput: { 6397 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6398 OpInfo.ConstraintType != TargetLowering::C_Register) { 6399 // Memory output, or 'other' output (e.g. 'X' constraint). 6400 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6401 6402 unsigned ConstraintID = 6403 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6404 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6405 "Failed to convert memory constraint code to constraint id."); 6406 6407 // Add information to the INLINEASM node to know about this output. 6408 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6409 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6410 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6411 MVT::i32)); 6412 AsmNodeOperands.push_back(OpInfo.CallOperand); 6413 break; 6414 } 6415 6416 // Otherwise, this is a register or register class output. 6417 6418 // Copy the output from the appropriate register. Find a register that 6419 // we can use. 6420 if (OpInfo.AssignedRegs.Regs.empty()) { 6421 LLVMContext &Ctx = *DAG.getContext(); 6422 Ctx.emitError(CS.getInstruction(), 6423 "couldn't allocate output register for constraint '" + 6424 Twine(OpInfo.ConstraintCode) + "'"); 6425 return; 6426 } 6427 6428 // If this is an indirect operand, store through the pointer after the 6429 // asm. 6430 if (OpInfo.isIndirect) { 6431 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6432 OpInfo.CallOperandVal)); 6433 } else { 6434 // This is the result value of the call. 6435 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6436 // Concatenate this output onto the outputs list. 6437 RetValRegs.append(OpInfo.AssignedRegs); 6438 } 6439 6440 // Add information to the INLINEASM node to know that this register is 6441 // set. 6442 OpInfo.AssignedRegs 6443 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6444 ? InlineAsm::Kind_RegDefEarlyClobber 6445 : InlineAsm::Kind_RegDef, 6446 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6447 break; 6448 } 6449 case InlineAsm::isInput: { 6450 SDValue InOperandVal = OpInfo.CallOperand; 6451 6452 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6453 // If this is required to match an output register we have already set, 6454 // just use its register. 6455 unsigned OperandNo = OpInfo.getMatchedOperand(); 6456 6457 // Scan until we find the definition we already emitted of this operand. 6458 // When we find it, create a RegsForValue operand. 6459 unsigned CurOp = InlineAsm::Op_FirstOperand; 6460 for (; OperandNo; --OperandNo) { 6461 // Advance to the next operand. 6462 unsigned OpFlag = 6463 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6464 assert((InlineAsm::isRegDefKind(OpFlag) || 6465 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6466 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6467 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6468 } 6469 6470 unsigned OpFlag = 6471 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6472 if (InlineAsm::isRegDefKind(OpFlag) || 6473 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6474 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6475 if (OpInfo.isIndirect) { 6476 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6477 LLVMContext &Ctx = *DAG.getContext(); 6478 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6479 " don't know how to handle tied " 6480 "indirect register inputs"); 6481 return; 6482 } 6483 6484 RegsForValue MatchedRegs; 6485 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6486 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6487 MatchedRegs.RegVTs.push_back(RegVT); 6488 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6489 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6490 i != e; ++i) { 6491 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6492 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6493 else { 6494 LLVMContext &Ctx = *DAG.getContext(); 6495 Ctx.emitError(CS.getInstruction(), 6496 "inline asm error: This value" 6497 " type register class is not natively supported!"); 6498 return; 6499 } 6500 } 6501 SDLoc dl = getCurSDLoc(); 6502 // Use the produced MatchedRegs object to 6503 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6504 Chain, &Flag, CS.getInstruction()); 6505 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6506 true, OpInfo.getMatchedOperand(), dl, 6507 DAG, AsmNodeOperands); 6508 break; 6509 } 6510 6511 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6512 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6513 "Unexpected number of operands"); 6514 // Add information to the INLINEASM node to know about this input. 6515 // See InlineAsm.h isUseOperandTiedToDef. 6516 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6517 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6518 OpInfo.getMatchedOperand()); 6519 AsmNodeOperands.push_back(DAG.getTargetConstant( 6520 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6521 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6522 break; 6523 } 6524 6525 // Treat indirect 'X' constraint as memory. 6526 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6527 OpInfo.isIndirect) 6528 OpInfo.ConstraintType = TargetLowering::C_Memory; 6529 6530 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6531 std::vector<SDValue> Ops; 6532 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6533 Ops, DAG); 6534 if (Ops.empty()) { 6535 LLVMContext &Ctx = *DAG.getContext(); 6536 Ctx.emitError(CS.getInstruction(), 6537 "invalid operand for inline asm constraint '" + 6538 Twine(OpInfo.ConstraintCode) + "'"); 6539 return; 6540 } 6541 6542 // Add information to the INLINEASM node to know about this input. 6543 unsigned ResOpType = 6544 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6545 AsmNodeOperands.push_back(DAG.getTargetConstant( 6546 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 6547 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6548 break; 6549 } 6550 6551 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6552 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6553 assert(InOperandVal.getValueType() == 6554 TLI.getPointerTy(DAG.getDataLayout()) && 6555 "Memory operands expect pointer values"); 6556 6557 unsigned ConstraintID = 6558 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6559 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6560 "Failed to convert memory constraint code to constraint id."); 6561 6562 // Add information to the INLINEASM node to know about this input. 6563 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6564 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6565 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6566 getCurSDLoc(), 6567 MVT::i32)); 6568 AsmNodeOperands.push_back(InOperandVal); 6569 break; 6570 } 6571 6572 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6573 OpInfo.ConstraintType == TargetLowering::C_Register) && 6574 "Unknown constraint type!"); 6575 6576 // TODO: Support this. 6577 if (OpInfo.isIndirect) { 6578 LLVMContext &Ctx = *DAG.getContext(); 6579 Ctx.emitError(CS.getInstruction(), 6580 "Don't know how to handle indirect register inputs yet " 6581 "for constraint '" + 6582 Twine(OpInfo.ConstraintCode) + "'"); 6583 return; 6584 } 6585 6586 // Copy the input into the appropriate registers. 6587 if (OpInfo.AssignedRegs.Regs.empty()) { 6588 LLVMContext &Ctx = *DAG.getContext(); 6589 Ctx.emitError(CS.getInstruction(), 6590 "couldn't allocate input reg for constraint '" + 6591 Twine(OpInfo.ConstraintCode) + "'"); 6592 return; 6593 } 6594 6595 SDLoc dl = getCurSDLoc(); 6596 6597 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6598 Chain, &Flag, CS.getInstruction()); 6599 6600 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6601 dl, DAG, AsmNodeOperands); 6602 break; 6603 } 6604 case InlineAsm::isClobber: { 6605 // Add the clobbered value to the operand list, so that the register 6606 // allocator is aware that the physreg got clobbered. 6607 if (!OpInfo.AssignedRegs.Regs.empty()) 6608 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6609 false, 0, getCurSDLoc(), DAG, 6610 AsmNodeOperands); 6611 break; 6612 } 6613 } 6614 } 6615 6616 // Finish up input operands. Set the input chain and add the flag last. 6617 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6618 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6619 6620 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6621 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6622 Flag = Chain.getValue(1); 6623 6624 // If this asm returns a register value, copy the result from that register 6625 // and set it as the value of the call. 6626 if (!RetValRegs.Regs.empty()) { 6627 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6628 Chain, &Flag, CS.getInstruction()); 6629 6630 // FIXME: Why don't we do this for inline asms with MRVs? 6631 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6632 EVT ResultType = TLI.getValueType(DAG.getDataLayout(), CS.getType()); 6633 6634 // If any of the results of the inline asm is a vector, it may have the 6635 // wrong width/num elts. This can happen for register classes that can 6636 // contain multiple different value types. The preg or vreg allocated may 6637 // not have the same VT as was expected. Convert it to the right type 6638 // with bit_convert. 6639 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6640 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6641 ResultType, Val); 6642 6643 } else if (ResultType != Val.getValueType() && 6644 ResultType.isInteger() && Val.getValueType().isInteger()) { 6645 // If a result value was tied to an input value, the computed result may 6646 // have a wider width than the expected result. Extract the relevant 6647 // portion. 6648 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6649 } 6650 6651 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6652 } 6653 6654 setValue(CS.getInstruction(), Val); 6655 // Don't need to use this as a chain in this case. 6656 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6657 return; 6658 } 6659 6660 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6661 6662 // Process indirect outputs, first output all of the flagged copies out of 6663 // physregs. 6664 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6665 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6666 const Value *Ptr = IndirectStoresToEmit[i].second; 6667 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6668 Chain, &Flag, IA); 6669 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6670 } 6671 6672 // Emit the non-flagged stores from the physregs. 6673 SmallVector<SDValue, 8> OutChains; 6674 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6675 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6676 StoresToEmit[i].first, 6677 getValue(StoresToEmit[i].second), 6678 MachinePointerInfo(StoresToEmit[i].second), 6679 false, false, 0); 6680 OutChains.push_back(Val); 6681 } 6682 6683 if (!OutChains.empty()) 6684 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6685 6686 DAG.setRoot(Chain); 6687 } 6688 6689 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6690 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6691 MVT::Other, getRoot(), 6692 getValue(I.getArgOperand(0)), 6693 DAG.getSrcValue(I.getArgOperand(0)))); 6694 } 6695 6696 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6698 const DataLayout &DL = DAG.getDataLayout(); 6699 SDValue V = DAG.getVAArg(TLI.getValueType(DAG.getDataLayout(), I.getType()), 6700 getCurSDLoc(), getRoot(), getValue(I.getOperand(0)), 6701 DAG.getSrcValue(I.getOperand(0)), 6702 DL.getABITypeAlignment(I.getType())); 6703 setValue(&I, V); 6704 DAG.setRoot(V.getValue(1)); 6705 } 6706 6707 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6708 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6709 MVT::Other, getRoot(), 6710 getValue(I.getArgOperand(0)), 6711 DAG.getSrcValue(I.getArgOperand(0)))); 6712 } 6713 6714 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6715 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6716 MVT::Other, getRoot(), 6717 getValue(I.getArgOperand(0)), 6718 getValue(I.getArgOperand(1)), 6719 DAG.getSrcValue(I.getArgOperand(0)), 6720 DAG.getSrcValue(I.getArgOperand(1)))); 6721 } 6722 6723 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 6724 const Instruction &I, 6725 SDValue Op) { 6726 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 6727 if (!Range) 6728 return Op; 6729 6730 Constant *Lo = cast<ConstantAsMetadata>(Range->getOperand(0))->getValue(); 6731 if (!Lo->isNullValue()) 6732 return Op; 6733 6734 Constant *Hi = cast<ConstantAsMetadata>(Range->getOperand(1))->getValue(); 6735 unsigned Bits = cast<ConstantInt>(Hi)->getValue().logBase2(); 6736 6737 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 6738 6739 SDLoc SL = getCurSDLoc(); 6740 6741 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), 6742 Op, DAG.getValueType(SmallVT)); 6743 unsigned NumVals = Op.getNode()->getNumValues(); 6744 if (NumVals == 1) 6745 return ZExt; 6746 6747 SmallVector<SDValue, 4> Ops; 6748 6749 Ops.push_back(ZExt); 6750 for (unsigned I = 1; I != NumVals; ++I) 6751 Ops.push_back(Op.getValue(I)); 6752 6753 return DAG.getMergeValues(Ops, SL); 6754 } 6755 6756 /// \brief Lower an argument list according to the target calling convention. 6757 /// 6758 /// \return A tuple of <return-value, token-chain> 6759 /// 6760 /// This is a helper for lowering intrinsics that follow a target calling 6761 /// convention or require stack pointer adjustment. Only a subset of the 6762 /// intrinsic's operands need to participate in the calling convention. 6763 std::pair<SDValue, SDValue> SelectionDAGBuilder::lowerCallOperands( 6764 ImmutableCallSite CS, unsigned ArgIdx, unsigned NumArgs, SDValue Callee, 6765 Type *ReturnTy, const BasicBlock *EHPadBB, bool IsPatchPoint) { 6766 TargetLowering::ArgListTy Args; 6767 Args.reserve(NumArgs); 6768 6769 // Populate the argument list. 6770 // Attributes for args start at offset 1, after the return attribute. 6771 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6772 ArgI != ArgE; ++ArgI) { 6773 const Value *V = CS->getOperand(ArgI); 6774 6775 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6776 6777 TargetLowering::ArgListEntry Entry; 6778 Entry.Node = getValue(V); 6779 Entry.Ty = V->getType(); 6780 Entry.setAttributes(&CS, AttrI); 6781 Args.push_back(Entry); 6782 } 6783 6784 TargetLowering::CallLoweringInfo CLI(DAG); 6785 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6786 .setCallee(CS.getCallingConv(), ReturnTy, Callee, std::move(Args), NumArgs) 6787 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6788 6789 return lowerInvokable(CLI, EHPadBB); 6790 } 6791 6792 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6793 /// or patchpoint target node's operand list. 6794 /// 6795 /// Constants are converted to TargetConstants purely as an optimization to 6796 /// avoid constant materialization and register allocation. 6797 /// 6798 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6799 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6800 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6801 /// address materialization and register allocation, but may also be required 6802 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6803 /// alloca in the entry block, then the runtime may assume that the alloca's 6804 /// StackMap location can be read immediately after compilation and that the 6805 /// location is valid at any point during execution (this is similar to the 6806 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6807 /// only available in a register, then the runtime would need to trap when 6808 /// execution reaches the StackMap in order to read the alloca's location. 6809 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6810 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6811 SelectionDAGBuilder &Builder) { 6812 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6813 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6814 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6815 Ops.push_back( 6816 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6817 Ops.push_back( 6818 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6819 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6820 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6821 Ops.push_back(Builder.DAG.getTargetFrameIndex( 6822 FI->getIndex(), TLI.getPointerTy(Builder.DAG.getDataLayout()))); 6823 } else 6824 Ops.push_back(OpVal); 6825 } 6826 } 6827 6828 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6829 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6830 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6831 // [live variables...]) 6832 6833 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6834 6835 SDValue Chain, InFlag, Callee, NullPtr; 6836 SmallVector<SDValue, 32> Ops; 6837 6838 SDLoc DL = getCurSDLoc(); 6839 Callee = getValue(CI.getCalledValue()); 6840 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6841 6842 // The stackmap intrinsic only records the live variables (the arguemnts 6843 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6844 // intrinsic, this won't be lowered to a function call. This means we don't 6845 // have to worry about calling conventions and target specific lowering code. 6846 // Instead we perform the call lowering right here. 6847 // 6848 // chain, flag = CALLSEQ_START(chain, 0) 6849 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6850 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6851 // 6852 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6853 InFlag = Chain.getValue(1); 6854 6855 // Add the <id> and <numBytes> constants. 6856 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6857 Ops.push_back(DAG.getTargetConstant( 6858 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6859 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6860 Ops.push_back(DAG.getTargetConstant( 6861 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6862 MVT::i32)); 6863 6864 // Push live variables for the stack map. 6865 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6866 6867 // We are not pushing any register mask info here on the operands list, 6868 // because the stackmap doesn't clobber anything. 6869 6870 // Push the chain and the glue flag. 6871 Ops.push_back(Chain); 6872 Ops.push_back(InFlag); 6873 6874 // Create the STACKMAP node. 6875 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6876 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6877 Chain = SDValue(SM, 0); 6878 InFlag = Chain.getValue(1); 6879 6880 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6881 6882 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6883 6884 // Set the root to the target-lowered call chain. 6885 DAG.setRoot(Chain); 6886 6887 // Inform the Frame Information that we have a stackmap in this function. 6888 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6889 } 6890 6891 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6892 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6893 const BasicBlock *EHPadBB) { 6894 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6895 // i32 <numBytes>, 6896 // i8* <target>, 6897 // i32 <numArgs>, 6898 // [Args...], 6899 // [live variables...]) 6900 6901 CallingConv::ID CC = CS.getCallingConv(); 6902 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6903 bool HasDef = !CS->getType()->isVoidTy(); 6904 SDLoc dl = getCurSDLoc(); 6905 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6906 6907 // Handle immediate and symbolic callees. 6908 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6909 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6910 /*isTarget=*/true); 6911 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6912 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6913 SDLoc(SymbolicCallee), 6914 SymbolicCallee->getValueType(0)); 6915 6916 // Get the real number of arguments participating in the call <numArgs> 6917 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6918 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6919 6920 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6921 // Intrinsics include all meta-operands up to but not including CC. 6922 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6923 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6924 "Not enough arguments provided to the patchpoint intrinsic"); 6925 6926 // For AnyRegCC the arguments are lowered later on manually. 6927 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6928 Type *ReturnTy = 6929 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6930 std::pair<SDValue, SDValue> Result = lowerCallOperands( 6931 CS, NumMetaOpers, NumCallArgs, Callee, ReturnTy, EHPadBB, true); 6932 6933 SDNode *CallEnd = Result.second.getNode(); 6934 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6935 CallEnd = CallEnd->getOperand(0).getNode(); 6936 6937 /// Get a call instruction from the call sequence chain. 6938 /// Tail calls are not allowed. 6939 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6940 "Expected a callseq node."); 6941 SDNode *Call = CallEnd->getOperand(0).getNode(); 6942 bool HasGlue = Call->getGluedNode(); 6943 6944 // Replace the target specific call node with the patchable intrinsic. 6945 SmallVector<SDValue, 8> Ops; 6946 6947 // Add the <id> and <numBytes> constants. 6948 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6949 Ops.push_back(DAG.getTargetConstant( 6950 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6951 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6952 Ops.push_back(DAG.getTargetConstant( 6953 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6954 MVT::i32)); 6955 6956 // Add the callee. 6957 Ops.push_back(Callee); 6958 6959 // Adjust <numArgs> to account for any arguments that have been passed on the 6960 // stack instead. 6961 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6962 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6963 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6964 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6965 6966 // Add the calling convention 6967 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6968 6969 // Add the arguments we omitted previously. The register allocator should 6970 // place these in any free register. 6971 if (IsAnyRegCC) 6972 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6973 Ops.push_back(getValue(CS.getArgument(i))); 6974 6975 // Push the arguments from the call instruction up to the register mask. 6976 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6977 Ops.append(Call->op_begin() + 2, e); 6978 6979 // Push live variables for the stack map. 6980 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6981 6982 // Push the register mask info. 6983 if (HasGlue) 6984 Ops.push_back(*(Call->op_end()-2)); 6985 else 6986 Ops.push_back(*(Call->op_end()-1)); 6987 6988 // Push the chain (this is originally the first operand of the call, but 6989 // becomes now the last or second to last operand). 6990 Ops.push_back(*(Call->op_begin())); 6991 6992 // Push the glue flag (last operand). 6993 if (HasGlue) 6994 Ops.push_back(*(Call->op_end()-1)); 6995 6996 SDVTList NodeTys; 6997 if (IsAnyRegCC && HasDef) { 6998 // Create the return types based on the intrinsic definition 6999 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7000 SmallVector<EVT, 3> ValueVTs; 7001 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs); 7002 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 7003 7004 // There is always a chain and a glue type at the end 7005 ValueVTs.push_back(MVT::Other); 7006 ValueVTs.push_back(MVT::Glue); 7007 NodeTys = DAG.getVTList(ValueVTs); 7008 } else 7009 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 7010 7011 // Replace the target specific call node with a PATCHPOINT node. 7012 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 7013 dl, NodeTys, Ops); 7014 7015 // Update the NodeMap. 7016 if (HasDef) { 7017 if (IsAnyRegCC) 7018 setValue(CS.getInstruction(), SDValue(MN, 0)); 7019 else 7020 setValue(CS.getInstruction(), Result.first); 7021 } 7022 7023 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 7024 // call sequence. Furthermore the location of the chain and glue can change 7025 // when the AnyReg calling convention is used and the intrinsic returns a 7026 // value. 7027 if (IsAnyRegCC && HasDef) { 7028 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 7029 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 7030 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 7031 } else 7032 DAG.ReplaceAllUsesWith(Call, MN); 7033 DAG.DeleteNode(Call); 7034 7035 // Inform the Frame Information that we have a patchpoint in this function. 7036 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 7037 } 7038 7039 /// Returns an AttributeSet representing the attributes applied to the return 7040 /// value of the given call. 7041 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 7042 SmallVector<Attribute::AttrKind, 2> Attrs; 7043 if (CLI.RetSExt) 7044 Attrs.push_back(Attribute::SExt); 7045 if (CLI.RetZExt) 7046 Attrs.push_back(Attribute::ZExt); 7047 if (CLI.IsInReg) 7048 Attrs.push_back(Attribute::InReg); 7049 7050 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 7051 Attrs); 7052 } 7053 7054 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 7055 /// implementation, which just calls LowerCall. 7056 /// FIXME: When all targets are 7057 /// migrated to using LowerCall, this hook should be integrated into SDISel. 7058 std::pair<SDValue, SDValue> 7059 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 7060 // Handle the incoming return values from the call. 7061 CLI.Ins.clear(); 7062 Type *OrigRetTy = CLI.RetTy; 7063 SmallVector<EVT, 4> RetTys; 7064 SmallVector<uint64_t, 4> Offsets; 7065 auto &DL = CLI.DAG.getDataLayout(); 7066 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 7067 7068 SmallVector<ISD::OutputArg, 4> Outs; 7069 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 7070 7071 bool CanLowerReturn = 7072 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 7073 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 7074 7075 SDValue DemoteStackSlot; 7076 int DemoteStackIdx = -100; 7077 if (!CanLowerReturn) { 7078 // FIXME: equivalent assert? 7079 // assert(!CS.hasInAllocaArgument() && 7080 // "sret demotion is incompatible with inalloca"); 7081 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 7082 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy); 7083 MachineFunction &MF = CLI.DAG.getMachineFunction(); 7084 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 7085 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 7086 7087 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy(DL)); 7088 ArgListEntry Entry; 7089 Entry.Node = DemoteStackSlot; 7090 Entry.Ty = StackSlotPtrType; 7091 Entry.isSExt = false; 7092 Entry.isZExt = false; 7093 Entry.isInReg = false; 7094 Entry.isSRet = true; 7095 Entry.isNest = false; 7096 Entry.isByVal = false; 7097 Entry.isReturned = false; 7098 Entry.Alignment = Align; 7099 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 7100 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 7101 7102 // sret demotion isn't compatible with tail-calls, since the sret argument 7103 // points into the callers stack frame. 7104 CLI.IsTailCall = false; 7105 } else { 7106 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7107 EVT VT = RetTys[I]; 7108 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7109 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7110 for (unsigned i = 0; i != NumRegs; ++i) { 7111 ISD::InputArg MyFlags; 7112 MyFlags.VT = RegisterVT; 7113 MyFlags.ArgVT = VT; 7114 MyFlags.Used = CLI.IsReturnValueUsed; 7115 if (CLI.RetSExt) 7116 MyFlags.Flags.setSExt(); 7117 if (CLI.RetZExt) 7118 MyFlags.Flags.setZExt(); 7119 if (CLI.IsInReg) 7120 MyFlags.Flags.setInReg(); 7121 CLI.Ins.push_back(MyFlags); 7122 } 7123 } 7124 } 7125 7126 // Handle all of the outgoing arguments. 7127 CLI.Outs.clear(); 7128 CLI.OutVals.clear(); 7129 ArgListTy &Args = CLI.getArgs(); 7130 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 7131 SmallVector<EVT, 4> ValueVTs; 7132 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 7133 Type *FinalType = Args[i].Ty; 7134 if (Args[i].isByVal) 7135 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 7136 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 7137 FinalType, CLI.CallConv, CLI.IsVarArg); 7138 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 7139 ++Value) { 7140 EVT VT = ValueVTs[Value]; 7141 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 7142 SDValue Op = SDValue(Args[i].Node.getNode(), 7143 Args[i].Node.getResNo() + Value); 7144 ISD::ArgFlagsTy Flags; 7145 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7146 7147 if (Args[i].isZExt) 7148 Flags.setZExt(); 7149 if (Args[i].isSExt) 7150 Flags.setSExt(); 7151 if (Args[i].isInReg) 7152 Flags.setInReg(); 7153 if (Args[i].isSRet) 7154 Flags.setSRet(); 7155 if (Args[i].isByVal) 7156 Flags.setByVal(); 7157 if (Args[i].isInAlloca) { 7158 Flags.setInAlloca(); 7159 // Set the byval flag for CCAssignFn callbacks that don't know about 7160 // inalloca. This way we can know how many bytes we should've allocated 7161 // and how many bytes a callee cleanup function will pop. If we port 7162 // inalloca to more targets, we'll have to add custom inalloca handling 7163 // in the various CC lowering callbacks. 7164 Flags.setByVal(); 7165 } 7166 if (Args[i].isByVal || Args[i].isInAlloca) { 7167 PointerType *Ty = cast<PointerType>(Args[i].Ty); 7168 Type *ElementTy = Ty->getElementType(); 7169 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7170 // For ByVal, alignment should come from FE. BE will guess if this 7171 // info is not there but there are cases it cannot get right. 7172 unsigned FrameAlign; 7173 if (Args[i].Alignment) 7174 FrameAlign = Args[i].Alignment; 7175 else 7176 FrameAlign = getByValTypeAlignment(ElementTy, DL); 7177 Flags.setByValAlign(FrameAlign); 7178 } 7179 if (Args[i].isNest) 7180 Flags.setNest(); 7181 if (NeedsRegBlock) 7182 Flags.setInConsecutiveRegs(); 7183 Flags.setOrigAlign(OriginalAlignment); 7184 7185 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 7186 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 7187 SmallVector<SDValue, 4> Parts(NumParts); 7188 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 7189 7190 if (Args[i].isSExt) 7191 ExtendKind = ISD::SIGN_EXTEND; 7192 else if (Args[i].isZExt) 7193 ExtendKind = ISD::ZERO_EXTEND; 7194 7195 // Conservatively only handle 'returned' on non-vectors for now 7196 if (Args[i].isReturned && !Op.getValueType().isVector()) { 7197 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 7198 "unexpected use of 'returned'"); 7199 // Before passing 'returned' to the target lowering code, ensure that 7200 // either the register MVT and the actual EVT are the same size or that 7201 // the return value and argument are extended in the same way; in these 7202 // cases it's safe to pass the argument register value unchanged as the 7203 // return register value (although it's at the target's option whether 7204 // to do so) 7205 // TODO: allow code generation to take advantage of partially preserved 7206 // registers rather than clobbering the entire register when the 7207 // parameter extension method is not compatible with the return 7208 // extension method 7209 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 7210 (ExtendKind != ISD::ANY_EXTEND && 7211 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 7212 Flags.setReturned(); 7213 } 7214 7215 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 7216 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 7217 7218 for (unsigned j = 0; j != NumParts; ++j) { 7219 // if it isn't first piece, alignment must be 1 7220 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 7221 i < CLI.NumFixedArgs, 7222 i, j*Parts[j].getValueType().getStoreSize()); 7223 if (NumParts > 1 && j == 0) 7224 MyFlags.Flags.setSplit(); 7225 else if (j != 0) { 7226 MyFlags.Flags.setOrigAlign(1); 7227 if (j == NumParts - 1) 7228 MyFlags.Flags.setSplitEnd(); 7229 } 7230 7231 CLI.Outs.push_back(MyFlags); 7232 CLI.OutVals.push_back(Parts[j]); 7233 } 7234 7235 if (NeedsRegBlock && Value == NumValues - 1) 7236 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 7237 } 7238 } 7239 7240 SmallVector<SDValue, 4> InVals; 7241 CLI.Chain = LowerCall(CLI, InVals); 7242 7243 // Verify that the target's LowerCall behaved as expected. 7244 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 7245 "LowerCall didn't return a valid chain!"); 7246 assert((!CLI.IsTailCall || InVals.empty()) && 7247 "LowerCall emitted a return value for a tail call!"); 7248 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 7249 "LowerCall didn't emit the correct number of values!"); 7250 7251 // For a tail call, the return value is merely live-out and there aren't 7252 // any nodes in the DAG representing it. Return a special value to 7253 // indicate that a tail call has been emitted and no more Instructions 7254 // should be processed in the current block. 7255 if (CLI.IsTailCall) { 7256 CLI.DAG.setRoot(CLI.Chain); 7257 return std::make_pair(SDValue(), SDValue()); 7258 } 7259 7260 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 7261 assert(InVals[i].getNode() && 7262 "LowerCall emitted a null value!"); 7263 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 7264 "LowerCall emitted a value with the wrong type!"); 7265 }); 7266 7267 SmallVector<SDValue, 4> ReturnValues; 7268 if (!CanLowerReturn) { 7269 // The instruction result is the result of loading from the 7270 // hidden sret parameter. 7271 SmallVector<EVT, 1> PVTs; 7272 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 7273 7274 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 7275 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 7276 EVT PtrVT = PVTs[0]; 7277 7278 unsigned NumValues = RetTys.size(); 7279 ReturnValues.resize(NumValues); 7280 SmallVector<SDValue, 4> Chains(NumValues); 7281 7282 // An aggregate return value cannot wrap around the address space, so 7283 // offsets to its parts don't wrap either. 7284 SDNodeFlags Flags; 7285 Flags.setNoUnsignedWrap(true); 7286 7287 for (unsigned i = 0; i < NumValues; ++i) { 7288 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 7289 CLI.DAG.getConstant(Offsets[i], CLI.DL, 7290 PtrVT), &Flags); 7291 SDValue L = CLI.DAG.getLoad( 7292 RetTys[i], CLI.DL, CLI.Chain, Add, 7293 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 7294 DemoteStackIdx, Offsets[i]), 7295 false, false, false, 1); 7296 ReturnValues[i] = L; 7297 Chains[i] = L.getValue(1); 7298 } 7299 7300 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 7301 } else { 7302 // Collect the legal value parts into potentially illegal values 7303 // that correspond to the original function's return values. 7304 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7305 if (CLI.RetSExt) 7306 AssertOp = ISD::AssertSext; 7307 else if (CLI.RetZExt) 7308 AssertOp = ISD::AssertZext; 7309 unsigned CurReg = 0; 7310 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 7311 EVT VT = RetTys[I]; 7312 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 7313 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 7314 7315 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 7316 NumRegs, RegisterVT, VT, nullptr, 7317 AssertOp)); 7318 CurReg += NumRegs; 7319 } 7320 7321 // For a function returning void, there is no return value. We can't create 7322 // such a node, so we just return a null return value in that case. In 7323 // that case, nothing will actually look at the value. 7324 if (ReturnValues.empty()) 7325 return std::make_pair(SDValue(), CLI.Chain); 7326 } 7327 7328 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 7329 CLI.DAG.getVTList(RetTys), ReturnValues); 7330 return std::make_pair(Res, CLI.Chain); 7331 } 7332 7333 void TargetLowering::LowerOperationWrapper(SDNode *N, 7334 SmallVectorImpl<SDValue> &Results, 7335 SelectionDAG &DAG) const { 7336 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 7337 if (Res.getNode()) 7338 Results.push_back(Res); 7339 } 7340 7341 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 7342 llvm_unreachable("LowerOperation not implemented for this target!"); 7343 } 7344 7345 void 7346 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 7347 SDValue Op = getNonRegisterValue(V); 7348 assert((Op.getOpcode() != ISD::CopyFromReg || 7349 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 7350 "Copy from a reg to the same reg!"); 7351 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 7352 7353 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7354 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 7355 V->getType()); 7356 SDValue Chain = DAG.getEntryNode(); 7357 7358 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7359 FuncInfo.PreferredExtendType.end()) 7360 ? ISD::ANY_EXTEND 7361 : FuncInfo.PreferredExtendType[V]; 7362 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7363 PendingExports.push_back(Chain); 7364 } 7365 7366 #include "llvm/CodeGen/SelectionDAGISel.h" 7367 7368 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7369 /// entry block, return true. This includes arguments used by switches, since 7370 /// the switch may expand into multiple basic blocks. 7371 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7372 // With FastISel active, we may be splitting blocks, so force creation 7373 // of virtual registers for all non-dead arguments. 7374 if (FastISel) 7375 return A->use_empty(); 7376 7377 const BasicBlock &Entry = A->getParent()->front(); 7378 for (const User *U : A->users()) 7379 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 7380 return false; // Use not in entry block. 7381 7382 return true; 7383 } 7384 7385 void SelectionDAGISel::LowerArguments(const Function &F) { 7386 SelectionDAG &DAG = SDB->DAG; 7387 SDLoc dl = SDB->getCurSDLoc(); 7388 const DataLayout &DL = DAG.getDataLayout(); 7389 SmallVector<ISD::InputArg, 16> Ins; 7390 7391 if (!FuncInfo->CanLowerReturn) { 7392 // Put in an sret pointer parameter before all the other parameters. 7393 SmallVector<EVT, 1> ValueVTs; 7394 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7395 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7396 7397 // NOTE: Assuming that a pointer will never break down to more than one VT 7398 // or one register. 7399 ISD::ArgFlagsTy Flags; 7400 Flags.setSRet(); 7401 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7402 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7403 ISD::InputArg::NoArgIndex, 0); 7404 Ins.push_back(RetArg); 7405 } 7406 7407 // Set up the incoming argument description vector. 7408 unsigned Idx = 1; 7409 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7410 I != E; ++I, ++Idx) { 7411 SmallVector<EVT, 4> ValueVTs; 7412 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7413 bool isArgValueUsed = !I->use_empty(); 7414 unsigned PartBase = 0; 7415 Type *FinalType = I->getType(); 7416 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7417 FinalType = cast<PointerType>(FinalType)->getElementType(); 7418 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7419 FinalType, F.getCallingConv(), F.isVarArg()); 7420 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7421 Value != NumValues; ++Value) { 7422 EVT VT = ValueVTs[Value]; 7423 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7424 ISD::ArgFlagsTy Flags; 7425 unsigned OriginalAlignment = DL.getABITypeAlignment(ArgTy); 7426 7427 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7428 Flags.setZExt(); 7429 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7430 Flags.setSExt(); 7431 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7432 Flags.setInReg(); 7433 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7434 Flags.setSRet(); 7435 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7436 Flags.setByVal(); 7437 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7438 Flags.setInAlloca(); 7439 // Set the byval flag for CCAssignFn callbacks that don't know about 7440 // inalloca. This way we can know how many bytes we should've allocated 7441 // and how many bytes a callee cleanup function will pop. If we port 7442 // inalloca to more targets, we'll have to add custom inalloca handling 7443 // in the various CC lowering callbacks. 7444 Flags.setByVal(); 7445 } 7446 if (F.getCallingConv() == CallingConv::X86_INTR) { 7447 // IA Interrupt passes frame (1st parameter) by value in the stack. 7448 if (Idx == 1) 7449 Flags.setByVal(); 7450 } 7451 if (Flags.isByVal() || Flags.isInAlloca()) { 7452 PointerType *Ty = cast<PointerType>(I->getType()); 7453 Type *ElementTy = Ty->getElementType(); 7454 Flags.setByValSize(DL.getTypeAllocSize(ElementTy)); 7455 // For ByVal, alignment should be passed from FE. BE will guess if 7456 // this info is not there but there are cases it cannot get right. 7457 unsigned FrameAlign; 7458 if (F.getParamAlignment(Idx)) 7459 FrameAlign = F.getParamAlignment(Idx); 7460 else 7461 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL); 7462 Flags.setByValAlign(FrameAlign); 7463 } 7464 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7465 Flags.setNest(); 7466 if (NeedsRegBlock) 7467 Flags.setInConsecutiveRegs(); 7468 Flags.setOrigAlign(OriginalAlignment); 7469 7470 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7471 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7472 for (unsigned i = 0; i != NumRegs; ++i) { 7473 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7474 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7475 if (NumRegs > 1 && i == 0) 7476 MyFlags.Flags.setSplit(); 7477 // if it isn't first piece, alignment must be 1 7478 else if (i > 0) { 7479 MyFlags.Flags.setOrigAlign(1); 7480 if (i == NumRegs - 1) 7481 MyFlags.Flags.setSplitEnd(); 7482 } 7483 Ins.push_back(MyFlags); 7484 } 7485 if (NeedsRegBlock && Value == NumValues - 1) 7486 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7487 PartBase += VT.getStoreSize(); 7488 } 7489 } 7490 7491 // Call the target to set up the argument values. 7492 SmallVector<SDValue, 8> InVals; 7493 SDValue NewRoot = TLI->LowerFormalArguments( 7494 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7495 7496 // Verify that the target's LowerFormalArguments behaved as expected. 7497 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7498 "LowerFormalArguments didn't return a valid chain!"); 7499 assert(InVals.size() == Ins.size() && 7500 "LowerFormalArguments didn't emit the correct number of values!"); 7501 DEBUG({ 7502 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7503 assert(InVals[i].getNode() && 7504 "LowerFormalArguments emitted a null value!"); 7505 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7506 "LowerFormalArguments emitted a value with the wrong type!"); 7507 } 7508 }); 7509 7510 // Update the DAG with the new chain value resulting from argument lowering. 7511 DAG.setRoot(NewRoot); 7512 7513 // Set up the argument values. 7514 unsigned i = 0; 7515 Idx = 1; 7516 if (!FuncInfo->CanLowerReturn) { 7517 // Create a virtual register for the sret pointer, and put in a copy 7518 // from the sret argument into it. 7519 SmallVector<EVT, 1> ValueVTs; 7520 ComputeValueVTs(*TLI, DAG.getDataLayout(), 7521 PointerType::getUnqual(F.getReturnType()), ValueVTs); 7522 MVT VT = ValueVTs[0].getSimpleVT(); 7523 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7524 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7525 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7526 RegVT, VT, nullptr, AssertOp); 7527 7528 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7529 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7530 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7531 FuncInfo->DemoteRegister = SRetReg; 7532 NewRoot = 7533 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7534 DAG.setRoot(NewRoot); 7535 7536 // i indexes lowered arguments. Bump it past the hidden sret argument. 7537 // Idx indexes LLVM arguments. Don't touch it. 7538 ++i; 7539 } 7540 7541 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7542 ++I, ++Idx) { 7543 SmallVector<SDValue, 4> ArgValues; 7544 SmallVector<EVT, 4> ValueVTs; 7545 ComputeValueVTs(*TLI, DAG.getDataLayout(), I->getType(), ValueVTs); 7546 unsigned NumValues = ValueVTs.size(); 7547 7548 // If this argument is unused then remember its value. It is used to generate 7549 // debugging information. 7550 if (I->use_empty() && NumValues) { 7551 SDB->setUnusedArgValue(&*I, InVals[i]); 7552 7553 // Also remember any frame index for use in FastISel. 7554 if (FrameIndexSDNode *FI = 7555 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7556 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7557 } 7558 7559 for (unsigned Val = 0; Val != NumValues; ++Val) { 7560 EVT VT = ValueVTs[Val]; 7561 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7562 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7563 7564 if (!I->use_empty()) { 7565 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7566 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7567 AssertOp = ISD::AssertSext; 7568 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7569 AssertOp = ISD::AssertZext; 7570 7571 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7572 NumParts, PartVT, VT, 7573 nullptr, AssertOp)); 7574 } 7575 7576 i += NumParts; 7577 } 7578 7579 // We don't need to do anything else for unused arguments. 7580 if (ArgValues.empty()) 7581 continue; 7582 7583 // Note down frame index. 7584 if (FrameIndexSDNode *FI = 7585 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7586 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7587 7588 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7589 SDB->getCurSDLoc()); 7590 7591 SDB->setValue(&*I, Res); 7592 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7593 if (LoadSDNode *LNode = 7594 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7595 if (FrameIndexSDNode *FI = 7596 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7597 FuncInfo->setArgumentFrameIndex(&*I, FI->getIndex()); 7598 } 7599 7600 // If this argument is live outside of the entry block, insert a copy from 7601 // wherever we got it to the vreg that other BB's will reference it as. 7602 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7603 // If we can, though, try to skip creating an unnecessary vreg. 7604 // FIXME: This isn't very clean... it would be nice to make this more 7605 // general. It's also subtly incompatible with the hacks FastISel 7606 // uses with vregs. 7607 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7608 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7609 FuncInfo->ValueMap[&*I] = Reg; 7610 continue; 7611 } 7612 } 7613 if (!isOnlyUsedInEntryBlock(&*I, TM.Options.EnableFastISel)) { 7614 FuncInfo->InitializeRegForValue(&*I); 7615 SDB->CopyToExportRegsIfNeeded(&*I); 7616 } 7617 } 7618 7619 assert(i == InVals.size() && "Argument register count mismatch!"); 7620 7621 // Finally, if the target has anything special to do, allow it to do so. 7622 EmitFunctionEntryCode(); 7623 } 7624 7625 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7626 /// ensure constants are generated when needed. Remember the virtual registers 7627 /// that need to be added to the Machine PHI nodes as input. We cannot just 7628 /// directly add them, because expansion might result in multiple MBB's for one 7629 /// BB. As such, the start of the BB might correspond to a different MBB than 7630 /// the end. 7631 /// 7632 void 7633 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7634 const TerminatorInst *TI = LLVMBB->getTerminator(); 7635 7636 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7637 7638 // Check PHI nodes in successors that expect a value to be available from this 7639 // block. 7640 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7641 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7642 if (!isa<PHINode>(SuccBB->begin())) continue; 7643 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7644 7645 // If this terminator has multiple identical successors (common for 7646 // switches), only handle each succ once. 7647 if (!SuccsHandled.insert(SuccMBB).second) 7648 continue; 7649 7650 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7651 7652 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7653 // nodes and Machine PHI nodes, but the incoming operands have not been 7654 // emitted yet. 7655 for (BasicBlock::const_iterator I = SuccBB->begin(); 7656 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7657 // Ignore dead phi's. 7658 if (PN->use_empty()) continue; 7659 7660 // Skip empty types 7661 if (PN->getType()->isEmptyTy()) 7662 continue; 7663 7664 unsigned Reg; 7665 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7666 7667 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7668 unsigned &RegOut = ConstantsOut[C]; 7669 if (RegOut == 0) { 7670 RegOut = FuncInfo.CreateRegs(C->getType()); 7671 CopyValueToVirtualRegister(C, RegOut); 7672 } 7673 Reg = RegOut; 7674 } else { 7675 DenseMap<const Value *, unsigned>::iterator I = 7676 FuncInfo.ValueMap.find(PHIOp); 7677 if (I != FuncInfo.ValueMap.end()) 7678 Reg = I->second; 7679 else { 7680 assert(isa<AllocaInst>(PHIOp) && 7681 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7682 "Didn't codegen value into a register!??"); 7683 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7684 CopyValueToVirtualRegister(PHIOp, Reg); 7685 } 7686 } 7687 7688 // Remember that this register needs to added to the machine PHI node as 7689 // the input for this MBB. 7690 SmallVector<EVT, 4> ValueVTs; 7691 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7692 ComputeValueVTs(TLI, DAG.getDataLayout(), PN->getType(), ValueVTs); 7693 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7694 EVT VT = ValueVTs[vti]; 7695 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7696 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7697 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7698 Reg += NumRegisters; 7699 } 7700 } 7701 } 7702 7703 ConstantsOut.clear(); 7704 } 7705 7706 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7707 /// is 0. 7708 MachineBasicBlock * 7709 SelectionDAGBuilder::StackProtectorDescriptor:: 7710 AddSuccessorMBB(const BasicBlock *BB, 7711 MachineBasicBlock *ParentMBB, 7712 bool IsLikely, 7713 MachineBasicBlock *SuccMBB) { 7714 // If SuccBB has not been created yet, create it. 7715 if (!SuccMBB) { 7716 MachineFunction *MF = ParentMBB->getParent(); 7717 MachineFunction::iterator BBI(ParentMBB); 7718 SuccMBB = MF->CreateMachineBasicBlock(BB); 7719 MF->insert(++BBI, SuccMBB); 7720 } 7721 // Add it as a successor of ParentMBB. 7722 ParentMBB->addSuccessor( 7723 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 7724 return SuccMBB; 7725 } 7726 7727 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7728 MachineFunction::iterator I(MBB); 7729 if (++I == FuncInfo.MF->end()) 7730 return nullptr; 7731 return &*I; 7732 } 7733 7734 /// During lowering new call nodes can be created (such as memset, etc.). 7735 /// Those will become new roots of the current DAG, but complications arise 7736 /// when they are tail calls. In such cases, the call lowering will update 7737 /// the root, but the builder still needs to know that a tail call has been 7738 /// lowered in order to avoid generating an additional return. 7739 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7740 // If the node is null, we do have a tail call. 7741 if (MaybeTC.getNode() != nullptr) 7742 DAG.setRoot(MaybeTC); 7743 else 7744 HasTailCall = true; 7745 } 7746 7747 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7748 unsigned *TotalCases, unsigned First, 7749 unsigned Last) { 7750 assert(Last >= First); 7751 assert(TotalCases[Last] >= TotalCases[First]); 7752 7753 APInt LowCase = Clusters[First].Low->getValue(); 7754 APInt HighCase = Clusters[Last].High->getValue(); 7755 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7756 7757 // FIXME: A range of consecutive cases has 100% density, but only requires one 7758 // comparison to lower. We should discriminate against such consecutive ranges 7759 // in jump tables. 7760 7761 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7762 uint64_t Range = Diff + 1; 7763 7764 uint64_t NumCases = 7765 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7766 7767 assert(NumCases < UINT64_MAX / 100); 7768 assert(Range >= NumCases); 7769 7770 return NumCases * 100 >= Range * MinJumpTableDensity; 7771 } 7772 7773 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7774 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7775 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7776 } 7777 7778 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7779 unsigned First, unsigned Last, 7780 const SwitchInst *SI, 7781 MachineBasicBlock *DefaultMBB, 7782 CaseCluster &JTCluster) { 7783 assert(First <= Last); 7784 7785 auto Prob = BranchProbability::getZero(); 7786 unsigned NumCmps = 0; 7787 std::vector<MachineBasicBlock*> Table; 7788 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs; 7789 7790 // Initialize probabilities in JTProbs. 7791 for (unsigned I = First; I <= Last; ++I) 7792 JTProbs[Clusters[I].MBB] = BranchProbability::getZero(); 7793 7794 for (unsigned I = First; I <= Last; ++I) { 7795 assert(Clusters[I].Kind == CC_Range); 7796 Prob += Clusters[I].Prob; 7797 APInt Low = Clusters[I].Low->getValue(); 7798 APInt High = Clusters[I].High->getValue(); 7799 NumCmps += (Low == High) ? 1 : 2; 7800 if (I != First) { 7801 // Fill the gap between this and the previous cluster. 7802 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7803 assert(PreviousHigh.slt(Low)); 7804 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7805 for (uint64_t J = 0; J < Gap; J++) 7806 Table.push_back(DefaultMBB); 7807 } 7808 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7809 for (uint64_t J = 0; J < ClusterSize; ++J) 7810 Table.push_back(Clusters[I].MBB); 7811 JTProbs[Clusters[I].MBB] += Clusters[I].Prob; 7812 } 7813 7814 unsigned NumDests = JTProbs.size(); 7815 if (isSuitableForBitTests(NumDests, NumCmps, 7816 Clusters[First].Low->getValue(), 7817 Clusters[Last].High->getValue())) { 7818 // Clusters[First..Last] should be lowered as bit tests instead. 7819 return false; 7820 } 7821 7822 // Create the MBB that will load from and jump through the table. 7823 // Note: We create it here, but it's not inserted into the function yet. 7824 MachineFunction *CurMF = FuncInfo.MF; 7825 MachineBasicBlock *JumpTableMBB = 7826 CurMF->CreateMachineBasicBlock(SI->getParent()); 7827 7828 // Add successors. Note: use table order for determinism. 7829 SmallPtrSet<MachineBasicBlock *, 8> Done; 7830 for (MachineBasicBlock *Succ : Table) { 7831 if (Done.count(Succ)) 7832 continue; 7833 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]); 7834 Done.insert(Succ); 7835 } 7836 JumpTableMBB->normalizeSuccProbs(); 7837 7838 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7839 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7840 ->createJumpTableIndex(Table); 7841 7842 // Set up the jump table info. 7843 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7844 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7845 Clusters[Last].High->getValue(), SI->getCondition(), 7846 nullptr, false); 7847 JTCases.emplace_back(std::move(JTH), std::move(JT)); 7848 7849 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7850 JTCases.size() - 1, Prob); 7851 return true; 7852 } 7853 7854 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7855 const SwitchInst *SI, 7856 MachineBasicBlock *DefaultMBB) { 7857 #ifndef NDEBUG 7858 // Clusters must be non-empty, sorted, and only contain Range clusters. 7859 assert(!Clusters.empty()); 7860 for (CaseCluster &C : Clusters) 7861 assert(C.Kind == CC_Range); 7862 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7863 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7864 #endif 7865 7866 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7867 if (!areJTsAllowed(TLI)) 7868 return; 7869 7870 const int64_t N = Clusters.size(); 7871 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7872 7873 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7874 SmallVector<unsigned, 8> TotalCases(N); 7875 7876 for (unsigned i = 0; i < N; ++i) { 7877 APInt Hi = Clusters[i].High->getValue(); 7878 APInt Lo = Clusters[i].Low->getValue(); 7879 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7880 if (i != 0) 7881 TotalCases[i] += TotalCases[i - 1]; 7882 } 7883 7884 if (N >= MinJumpTableSize && isDense(Clusters, &TotalCases[0], 0, N - 1)) { 7885 // Cheap case: the whole range might be suitable for jump table. 7886 CaseCluster JTCluster; 7887 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) { 7888 Clusters[0] = JTCluster; 7889 Clusters.resize(1); 7890 return; 7891 } 7892 } 7893 7894 // The algorithm below is not suitable for -O0. 7895 if (TM.getOptLevel() == CodeGenOpt::None) 7896 return; 7897 7898 // Split Clusters into minimum number of dense partitions. The algorithm uses 7899 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7900 // for the Case Statement'" (1994), but builds the MinPartitions array in 7901 // reverse order to make it easier to reconstruct the partitions in ascending 7902 // order. In the choice between two optimal partitionings, it picks the one 7903 // which yields more jump tables. 7904 7905 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7906 SmallVector<unsigned, 8> MinPartitions(N); 7907 // LastElement[i] is the last element of the partition starting at i. 7908 SmallVector<unsigned, 8> LastElement(N); 7909 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7910 SmallVector<unsigned, 8> NumTables(N); 7911 7912 // Base case: There is only one way to partition Clusters[N-1]. 7913 MinPartitions[N - 1] = 1; 7914 LastElement[N - 1] = N - 1; 7915 assert(MinJumpTableSize > 1); 7916 NumTables[N - 1] = 0; 7917 7918 // Note: loop indexes are signed to avoid underflow. 7919 for (int64_t i = N - 2; i >= 0; i--) { 7920 // Find optimal partitioning of Clusters[i..N-1]. 7921 // Baseline: Put Clusters[i] into a partition on its own. 7922 MinPartitions[i] = MinPartitions[i + 1] + 1; 7923 LastElement[i] = i; 7924 NumTables[i] = NumTables[i + 1]; 7925 7926 // Search for a solution that results in fewer partitions. 7927 for (int64_t j = N - 1; j > i; j--) { 7928 // Try building a partition from Clusters[i..j]. 7929 if (isDense(Clusters, &TotalCases[0], i, j)) { 7930 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7931 bool IsTable = j - i + 1 >= MinJumpTableSize; 7932 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7933 7934 // If this j leads to fewer partitions, or same number of partitions 7935 // with more lookup tables, it is a better partitioning. 7936 if (NumPartitions < MinPartitions[i] || 7937 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7938 MinPartitions[i] = NumPartitions; 7939 LastElement[i] = j; 7940 NumTables[i] = Tables; 7941 } 7942 } 7943 } 7944 } 7945 7946 // Iterate over the partitions, replacing some with jump tables in-place. 7947 unsigned DstIndex = 0; 7948 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7949 Last = LastElement[First]; 7950 assert(Last >= First); 7951 assert(DstIndex <= First); 7952 unsigned NumClusters = Last - First + 1; 7953 7954 CaseCluster JTCluster; 7955 if (NumClusters >= MinJumpTableSize && 7956 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7957 Clusters[DstIndex++] = JTCluster; 7958 } else { 7959 for (unsigned I = First; I <= Last; ++I) 7960 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7961 } 7962 } 7963 Clusters.resize(DstIndex); 7964 } 7965 7966 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7967 // FIXME: Using the pointer type doesn't seem ideal. 7968 uint64_t BW = DAG.getDataLayout().getPointerSizeInBits(); 7969 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7970 return Range <= BW; 7971 } 7972 7973 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7974 unsigned NumCmps, 7975 const APInt &Low, 7976 const APInt &High) { 7977 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7978 // range of cases both require only one branch to lower. Just looking at the 7979 // number of clusters and destinations should be enough to decide whether to 7980 // build bit tests. 7981 7982 // To lower a range with bit tests, the range must fit the bitwidth of a 7983 // machine word. 7984 if (!rangeFitsInWord(Low, High)) 7985 return false; 7986 7987 // Decide whether it's profitable to lower this range with bit tests. Each 7988 // destination requires a bit test and branch, and there is an overall range 7989 // check branch. For a small number of clusters, separate comparisons might be 7990 // cheaper, and for many destinations, splitting the range might be better. 7991 return (NumDests == 1 && NumCmps >= 3) || 7992 (NumDests == 2 && NumCmps >= 5) || 7993 (NumDests == 3 && NumCmps >= 6); 7994 } 7995 7996 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7997 unsigned First, unsigned Last, 7998 const SwitchInst *SI, 7999 CaseCluster &BTCluster) { 8000 assert(First <= Last); 8001 if (First == Last) 8002 return false; 8003 8004 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8005 unsigned NumCmps = 0; 8006 for (int64_t I = First; I <= Last; ++I) { 8007 assert(Clusters[I].Kind == CC_Range); 8008 Dests.set(Clusters[I].MBB->getNumber()); 8009 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 8010 } 8011 unsigned NumDests = Dests.count(); 8012 8013 APInt Low = Clusters[First].Low->getValue(); 8014 APInt High = Clusters[Last].High->getValue(); 8015 assert(Low.slt(High)); 8016 8017 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 8018 return false; 8019 8020 APInt LowBound; 8021 APInt CmpRange; 8022 8023 const int BitWidth = DAG.getTargetLoweringInfo() 8024 .getPointerTy(DAG.getDataLayout()) 8025 .getSizeInBits(); 8026 assert(rangeFitsInWord(Low, High) && "Case range must fit in bit mask!"); 8027 8028 // Check if the clusters cover a contiguous range such that no value in the 8029 // range will jump to the default statement. 8030 bool ContiguousRange = true; 8031 for (int64_t I = First + 1; I <= Last; ++I) { 8032 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) { 8033 ContiguousRange = false; 8034 break; 8035 } 8036 } 8037 8038 if (Low.isStrictlyPositive() && High.slt(BitWidth)) { 8039 // Optimize the case where all the case values fit in a word without having 8040 // to subtract minValue. In this case, we can optimize away the subtraction. 8041 LowBound = APInt::getNullValue(Low.getBitWidth()); 8042 CmpRange = High; 8043 ContiguousRange = false; 8044 } else { 8045 LowBound = Low; 8046 CmpRange = High - Low; 8047 } 8048 8049 CaseBitsVector CBV; 8050 auto TotalProb = BranchProbability::getZero(); 8051 for (unsigned i = First; i <= Last; ++i) { 8052 // Find the CaseBits for this destination. 8053 unsigned j; 8054 for (j = 0; j < CBV.size(); ++j) 8055 if (CBV[j].BB == Clusters[i].MBB) 8056 break; 8057 if (j == CBV.size()) 8058 CBV.push_back( 8059 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero())); 8060 CaseBits *CB = &CBV[j]; 8061 8062 // Update Mask, Bits and ExtraProb. 8063 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 8064 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 8065 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!"); 8066 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo; 8067 CB->Bits += Hi - Lo + 1; 8068 CB->ExtraProb += Clusters[i].Prob; 8069 TotalProb += Clusters[i].Prob; 8070 } 8071 8072 BitTestInfo BTI; 8073 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 8074 // Sort by probability first, number of bits second. 8075 if (a.ExtraProb != b.ExtraProb) 8076 return a.ExtraProb > b.ExtraProb; 8077 return a.Bits > b.Bits; 8078 }); 8079 8080 for (auto &CB : CBV) { 8081 MachineBasicBlock *BitTestBB = 8082 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 8083 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb)); 8084 } 8085 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange), 8086 SI->getCondition(), -1U, MVT::Other, false, 8087 ContiguousRange, nullptr, nullptr, std::move(BTI), 8088 TotalProb); 8089 8090 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 8091 BitTestCases.size() - 1, TotalProb); 8092 return true; 8093 } 8094 8095 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 8096 const SwitchInst *SI) { 8097 // Partition Clusters into as few subsets as possible, where each subset has a 8098 // range that fits in a machine word and has <= 3 unique destinations. 8099 8100 #ifndef NDEBUG 8101 // Clusters must be sorted and contain Range or JumpTable clusters. 8102 assert(!Clusters.empty()); 8103 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 8104 for (const CaseCluster &C : Clusters) 8105 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 8106 for (unsigned i = 1; i < Clusters.size(); ++i) 8107 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 8108 #endif 8109 8110 // The algorithm below is not suitable for -O0. 8111 if (TM.getOptLevel() == CodeGenOpt::None) 8112 return; 8113 8114 // If target does not have legal shift left, do not emit bit tests at all. 8115 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8116 EVT PTy = TLI.getPointerTy(DAG.getDataLayout()); 8117 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 8118 return; 8119 8120 int BitWidth = PTy.getSizeInBits(); 8121 const int64_t N = Clusters.size(); 8122 8123 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 8124 SmallVector<unsigned, 8> MinPartitions(N); 8125 // LastElement[i] is the last element of the partition starting at i. 8126 SmallVector<unsigned, 8> LastElement(N); 8127 8128 // FIXME: This might not be the best algorithm for finding bit test clusters. 8129 8130 // Base case: There is only one way to partition Clusters[N-1]. 8131 MinPartitions[N - 1] = 1; 8132 LastElement[N - 1] = N - 1; 8133 8134 // Note: loop indexes are signed to avoid underflow. 8135 for (int64_t i = N - 2; i >= 0; --i) { 8136 // Find optimal partitioning of Clusters[i..N-1]. 8137 // Baseline: Put Clusters[i] into a partition on its own. 8138 MinPartitions[i] = MinPartitions[i + 1] + 1; 8139 LastElement[i] = i; 8140 8141 // Search for a solution that results in fewer partitions. 8142 // Note: the search is limited by BitWidth, reducing time complexity. 8143 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 8144 // Try building a partition from Clusters[i..j]. 8145 8146 // Check the range. 8147 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 8148 Clusters[j].High->getValue())) 8149 continue; 8150 8151 // Check nbr of destinations and cluster types. 8152 // FIXME: This works, but doesn't seem very efficient. 8153 bool RangesOnly = true; 8154 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 8155 for (int64_t k = i; k <= j; k++) { 8156 if (Clusters[k].Kind != CC_Range) { 8157 RangesOnly = false; 8158 break; 8159 } 8160 Dests.set(Clusters[k].MBB->getNumber()); 8161 } 8162 if (!RangesOnly || Dests.count() > 3) 8163 break; 8164 8165 // Check if it's a better partition. 8166 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 8167 if (NumPartitions < MinPartitions[i]) { 8168 // Found a better partition. 8169 MinPartitions[i] = NumPartitions; 8170 LastElement[i] = j; 8171 } 8172 } 8173 } 8174 8175 // Iterate over the partitions, replacing with bit-test clusters in-place. 8176 unsigned DstIndex = 0; 8177 for (unsigned First = 0, Last; First < N; First = Last + 1) { 8178 Last = LastElement[First]; 8179 assert(First <= Last); 8180 assert(DstIndex <= First); 8181 8182 CaseCluster BitTestCluster; 8183 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 8184 Clusters[DstIndex++] = BitTestCluster; 8185 } else { 8186 size_t NumClusters = Last - First + 1; 8187 std::memmove(&Clusters[DstIndex], &Clusters[First], 8188 sizeof(Clusters[0]) * NumClusters); 8189 DstIndex += NumClusters; 8190 } 8191 } 8192 Clusters.resize(DstIndex); 8193 } 8194 8195 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 8196 MachineBasicBlock *SwitchMBB, 8197 MachineBasicBlock *DefaultMBB) { 8198 MachineFunction *CurMF = FuncInfo.MF; 8199 MachineBasicBlock *NextMBB = nullptr; 8200 MachineFunction::iterator BBI(W.MBB); 8201 if (++BBI != FuncInfo.MF->end()) 8202 NextMBB = &*BBI; 8203 8204 unsigned Size = W.LastCluster - W.FirstCluster + 1; 8205 8206 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8207 8208 if (Size == 2 && W.MBB == SwitchMBB) { 8209 // If any two of the cases has the same destination, and if one value 8210 // is the same as the other, but has one bit unset that the other has set, 8211 // use bit manipulation to do two compares at once. For example: 8212 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 8213 // TODO: This could be extended to merge any 2 cases in switches with 3 8214 // cases. 8215 // TODO: Handle cases where W.CaseBB != SwitchBB. 8216 CaseCluster &Small = *W.FirstCluster; 8217 CaseCluster &Big = *W.LastCluster; 8218 8219 if (Small.Low == Small.High && Big.Low == Big.High && 8220 Small.MBB == Big.MBB) { 8221 const APInt &SmallValue = Small.Low->getValue(); 8222 const APInt &BigValue = Big.Low->getValue(); 8223 8224 // Check that there is only one bit different. 8225 APInt CommonBit = BigValue ^ SmallValue; 8226 if (CommonBit.isPowerOf2()) { 8227 SDValue CondLHS = getValue(Cond); 8228 EVT VT = CondLHS.getValueType(); 8229 SDLoc DL = getCurSDLoc(); 8230 8231 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 8232 DAG.getConstant(CommonBit, DL, VT)); 8233 SDValue Cond = DAG.getSetCC( 8234 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 8235 ISD::SETEQ); 8236 8237 // Update successor info. 8238 // Both Small and Big will jump to Small.BB, so we sum up the 8239 // probabilities. 8240 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 8241 if (BPI) 8242 addSuccessorWithProb( 8243 SwitchMBB, DefaultMBB, 8244 // The default destination is the first successor in IR. 8245 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 8246 else 8247 addSuccessorWithProb(SwitchMBB, DefaultMBB); 8248 8249 // Insert the true branch. 8250 SDValue BrCond = 8251 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 8252 DAG.getBasicBlock(Small.MBB)); 8253 // Insert the false branch. 8254 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 8255 DAG.getBasicBlock(DefaultMBB)); 8256 8257 DAG.setRoot(BrCond); 8258 return; 8259 } 8260 } 8261 } 8262 8263 if (TM.getOptLevel() != CodeGenOpt::None) { 8264 // Order cases by probability so the most likely case will be checked first. 8265 std::sort(W.FirstCluster, W.LastCluster + 1, 8266 [](const CaseCluster &a, const CaseCluster &b) { 8267 return a.Prob > b.Prob; 8268 }); 8269 8270 // Rearrange the case blocks so that the last one falls through if possible 8271 // without without changing the order of probabilities. 8272 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 8273 --I; 8274 if (I->Prob > W.LastCluster->Prob) 8275 break; 8276 if (I->Kind == CC_Range && I->MBB == NextMBB) { 8277 std::swap(*I, *W.LastCluster); 8278 break; 8279 } 8280 } 8281 } 8282 8283 // Compute total probability. 8284 BranchProbability DefaultProb = W.DefaultProb; 8285 BranchProbability UnhandledProbs = DefaultProb; 8286 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 8287 UnhandledProbs += I->Prob; 8288 8289 MachineBasicBlock *CurMBB = W.MBB; 8290 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 8291 MachineBasicBlock *Fallthrough; 8292 if (I == W.LastCluster) { 8293 // For the last cluster, fall through to the default destination. 8294 Fallthrough = DefaultMBB; 8295 } else { 8296 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 8297 CurMF->insert(BBI, Fallthrough); 8298 // Put Cond in a virtual register to make it available from the new blocks. 8299 ExportFromCurrentBlock(Cond); 8300 } 8301 UnhandledProbs -= I->Prob; 8302 8303 switch (I->Kind) { 8304 case CC_JumpTable: { 8305 // FIXME: Optimize away range check based on pivot comparisons. 8306 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 8307 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 8308 8309 // The jump block hasn't been inserted yet; insert it here. 8310 MachineBasicBlock *JumpMBB = JT->MBB; 8311 CurMF->insert(BBI, JumpMBB); 8312 8313 auto JumpProb = I->Prob; 8314 auto FallthroughProb = UnhandledProbs; 8315 8316 // If the default statement is a target of the jump table, we evenly 8317 // distribute the default probability to successors of CurMBB. Also 8318 // update the probability on the edge from JumpMBB to Fallthrough. 8319 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 8320 SE = JumpMBB->succ_end(); 8321 SI != SE; ++SI) { 8322 if (*SI == DefaultMBB) { 8323 JumpProb += DefaultProb / 2; 8324 FallthroughProb -= DefaultProb / 2; 8325 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 8326 JumpMBB->normalizeSuccProbs(); 8327 break; 8328 } 8329 } 8330 8331 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 8332 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 8333 CurMBB->normalizeSuccProbs(); 8334 8335 // The jump table header will be inserted in our current block, do the 8336 // range check, and fall through to our fallthrough block. 8337 JTH->HeaderBB = CurMBB; 8338 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 8339 8340 // If we're in the right place, emit the jump table header right now. 8341 if (CurMBB == SwitchMBB) { 8342 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 8343 JTH->Emitted = true; 8344 } 8345 break; 8346 } 8347 case CC_BitTests: { 8348 // FIXME: Optimize away range check based on pivot comparisons. 8349 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 8350 8351 // The bit test blocks haven't been inserted yet; insert them here. 8352 for (BitTestCase &BTC : BTB->Cases) 8353 CurMF->insert(BBI, BTC.ThisBB); 8354 8355 // Fill in fields of the BitTestBlock. 8356 BTB->Parent = CurMBB; 8357 BTB->Default = Fallthrough; 8358 8359 BTB->DefaultProb = UnhandledProbs; 8360 // If the cases in bit test don't form a contiguous range, we evenly 8361 // distribute the probability on the edge to Fallthrough to two 8362 // successors of CurMBB. 8363 if (!BTB->ContiguousRange) { 8364 BTB->Prob += DefaultProb / 2; 8365 BTB->DefaultProb -= DefaultProb / 2; 8366 } 8367 8368 // If we're in the right place, emit the bit test header right now. 8369 if (CurMBB == SwitchMBB) { 8370 visitBitTestHeader(*BTB, SwitchMBB); 8371 BTB->Emitted = true; 8372 } 8373 break; 8374 } 8375 case CC_Range: { 8376 const Value *RHS, *LHS, *MHS; 8377 ISD::CondCode CC; 8378 if (I->Low == I->High) { 8379 // Check Cond == I->Low. 8380 CC = ISD::SETEQ; 8381 LHS = Cond; 8382 RHS=I->Low; 8383 MHS = nullptr; 8384 } else { 8385 // Check I->Low <= Cond <= I->High. 8386 CC = ISD::SETLE; 8387 LHS = I->Low; 8388 MHS = Cond; 8389 RHS = I->High; 8390 } 8391 8392 // The false probability is the sum of all unhandled cases. 8393 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Prob, 8394 UnhandledProbs); 8395 8396 if (CurMBB == SwitchMBB) 8397 visitSwitchCase(CB, SwitchMBB); 8398 else 8399 SwitchCases.push_back(CB); 8400 8401 break; 8402 } 8403 } 8404 CurMBB = Fallthrough; 8405 } 8406 } 8407 8408 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 8409 CaseClusterIt First, 8410 CaseClusterIt Last) { 8411 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 8412 if (X.Prob != CC.Prob) 8413 return X.Prob > CC.Prob; 8414 8415 // Ties are broken by comparing the case value. 8416 return X.Low->getValue().slt(CC.Low->getValue()); 8417 }); 8418 } 8419 8420 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 8421 const SwitchWorkListItem &W, 8422 Value *Cond, 8423 MachineBasicBlock *SwitchMBB) { 8424 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 8425 "Clusters not sorted?"); 8426 8427 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 8428 8429 // Balance the tree based on branch probabilities to create a near-optimal (in 8430 // terms of search time given key frequency) binary search tree. See e.g. Kurt 8431 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 8432 CaseClusterIt LastLeft = W.FirstCluster; 8433 CaseClusterIt FirstRight = W.LastCluster; 8434 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 8435 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 8436 8437 // Move LastLeft and FirstRight towards each other from opposite directions to 8438 // find a partitioning of the clusters which balances the probability on both 8439 // sides. If LeftProb and RightProb are equal, alternate which side is 8440 // taken to ensure 0-probability nodes are distributed evenly. 8441 unsigned I = 0; 8442 while (LastLeft + 1 < FirstRight) { 8443 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 8444 LeftProb += (++LastLeft)->Prob; 8445 else 8446 RightProb += (--FirstRight)->Prob; 8447 I++; 8448 } 8449 8450 for (;;) { 8451 // Our binary search tree differs from a typical BST in that ours can have up 8452 // to three values in each leaf. The pivot selection above doesn't take that 8453 // into account, which means the tree might require more nodes and be less 8454 // efficient. We compensate for this here. 8455 8456 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 8457 unsigned NumRight = W.LastCluster - FirstRight + 1; 8458 8459 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 8460 // If one side has less than 3 clusters, and the other has more than 3, 8461 // consider taking a cluster from the other side. 8462 8463 if (NumLeft < NumRight) { 8464 // Consider moving the first cluster on the right to the left side. 8465 CaseCluster &CC = *FirstRight; 8466 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8467 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8468 if (LeftSideRank <= RightSideRank) { 8469 // Moving the cluster to the left does not demote it. 8470 ++LastLeft; 8471 ++FirstRight; 8472 continue; 8473 } 8474 } else { 8475 assert(NumRight < NumLeft); 8476 // Consider moving the last element on the left to the right side. 8477 CaseCluster &CC = *LastLeft; 8478 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 8479 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 8480 if (RightSideRank <= LeftSideRank) { 8481 // Moving the cluster to the right does not demot it. 8482 --LastLeft; 8483 --FirstRight; 8484 continue; 8485 } 8486 } 8487 } 8488 break; 8489 } 8490 8491 assert(LastLeft + 1 == FirstRight); 8492 assert(LastLeft >= W.FirstCluster); 8493 assert(FirstRight <= W.LastCluster); 8494 8495 // Use the first element on the right as pivot since we will make less-than 8496 // comparisons against it. 8497 CaseClusterIt PivotCluster = FirstRight; 8498 assert(PivotCluster > W.FirstCluster); 8499 assert(PivotCluster <= W.LastCluster); 8500 8501 CaseClusterIt FirstLeft = W.FirstCluster; 8502 CaseClusterIt LastRight = W.LastCluster; 8503 8504 const ConstantInt *Pivot = PivotCluster->Low; 8505 8506 // New blocks will be inserted immediately after the current one. 8507 MachineFunction::iterator BBI(W.MBB); 8508 ++BBI; 8509 8510 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8511 // we can branch to its destination directly if it's squeezed exactly in 8512 // between the known lower bound and Pivot - 1. 8513 MachineBasicBlock *LeftMBB; 8514 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8515 FirstLeft->Low == W.GE && 8516 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8517 LeftMBB = FirstLeft->MBB; 8518 } else { 8519 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8520 FuncInfo.MF->insert(BBI, LeftMBB); 8521 WorkList.push_back( 8522 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 8523 // Put Cond in a virtual register to make it available from the new blocks. 8524 ExportFromCurrentBlock(Cond); 8525 } 8526 8527 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8528 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8529 // directly if RHS.High equals the current upper bound. 8530 MachineBasicBlock *RightMBB; 8531 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8532 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8533 RightMBB = FirstRight->MBB; 8534 } else { 8535 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8536 FuncInfo.MF->insert(BBI, RightMBB); 8537 WorkList.push_back( 8538 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 8539 // Put Cond in a virtual register to make it available from the new blocks. 8540 ExportFromCurrentBlock(Cond); 8541 } 8542 8543 // Create the CaseBlock record that will be used to lower the branch. 8544 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 8545 LeftProb, RightProb); 8546 8547 if (W.MBB == SwitchMBB) 8548 visitSwitchCase(CB, SwitchMBB); 8549 else 8550 SwitchCases.push_back(CB); 8551 } 8552 8553 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8554 // Extract cases from the switch. 8555 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8556 CaseClusterVector Clusters; 8557 Clusters.reserve(SI.getNumCases()); 8558 for (auto I : SI.cases()) { 8559 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8560 const ConstantInt *CaseVal = I.getCaseValue(); 8561 BranchProbability Prob = 8562 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 8563 : BranchProbability(1, SI.getNumCases() + 1); 8564 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 8565 } 8566 8567 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8568 8569 // Cluster adjacent cases with the same destination. We do this at all 8570 // optimization levels because it's cheap to do and will make codegen faster 8571 // if there are many clusters. 8572 sortAndRangeify(Clusters); 8573 8574 if (TM.getOptLevel() != CodeGenOpt::None) { 8575 // Replace an unreachable default with the most popular destination. 8576 // FIXME: Exploit unreachable default more aggressively. 8577 bool UnreachableDefault = 8578 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8579 if (UnreachableDefault && !Clusters.empty()) { 8580 DenseMap<const BasicBlock *, unsigned> Popularity; 8581 unsigned MaxPop = 0; 8582 const BasicBlock *MaxBB = nullptr; 8583 for (auto I : SI.cases()) { 8584 const BasicBlock *BB = I.getCaseSuccessor(); 8585 if (++Popularity[BB] > MaxPop) { 8586 MaxPop = Popularity[BB]; 8587 MaxBB = BB; 8588 } 8589 } 8590 // Set new default. 8591 assert(MaxPop > 0 && MaxBB); 8592 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8593 8594 // Remove cases that were pointing to the destination that is now the 8595 // default. 8596 CaseClusterVector New; 8597 New.reserve(Clusters.size()); 8598 for (CaseCluster &CC : Clusters) { 8599 if (CC.MBB != DefaultMBB) 8600 New.push_back(CC); 8601 } 8602 Clusters = std::move(New); 8603 } 8604 } 8605 8606 // If there is only the default destination, jump there directly. 8607 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8608 if (Clusters.empty()) { 8609 SwitchMBB->addSuccessor(DefaultMBB); 8610 if (DefaultMBB != NextBlock(SwitchMBB)) { 8611 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8612 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8613 } 8614 return; 8615 } 8616 8617 findJumpTables(Clusters, &SI, DefaultMBB); 8618 findBitTestClusters(Clusters, &SI); 8619 8620 DEBUG({ 8621 dbgs() << "Case clusters: "; 8622 for (const CaseCluster &C : Clusters) { 8623 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8624 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8625 8626 C.Low->getValue().print(dbgs(), true); 8627 if (C.Low != C.High) { 8628 dbgs() << '-'; 8629 C.High->getValue().print(dbgs(), true); 8630 } 8631 dbgs() << ' '; 8632 } 8633 dbgs() << '\n'; 8634 }); 8635 8636 assert(!Clusters.empty()); 8637 SwitchWorkList WorkList; 8638 CaseClusterIt First = Clusters.begin(); 8639 CaseClusterIt Last = Clusters.end() - 1; 8640 auto DefaultProb = getEdgeProbability(SwitchMBB, DefaultMBB); 8641 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 8642 8643 while (!WorkList.empty()) { 8644 SwitchWorkListItem W = WorkList.back(); 8645 WorkList.pop_back(); 8646 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8647 8648 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8649 // For optimized builds, lower large range as a balanced binary tree. 8650 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8651 continue; 8652 } 8653 8654 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8655 } 8656 } 8657