1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SelectionDAGBuilder.h" 15 #include "SDNodeDbgValue.h" 16 #include "llvm/ADT/BitVector.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/BranchProbabilityInfo.h" 22 #include "llvm/Analysis/ConstantFolding.h" 23 #include "llvm/Analysis/TargetLibraryInfo.h" 24 #include "llvm/Analysis/ValueTracking.h" 25 #include "llvm/CodeGen/Analysis.h" 26 #include "llvm/CodeGen/FastISel.h" 27 #include "llvm/CodeGen/FunctionLoweringInfo.h" 28 #include "llvm/CodeGen/GCMetadata.h" 29 #include "llvm/CodeGen/GCStrategy.h" 30 #include "llvm/CodeGen/MachineFrameInfo.h" 31 #include "llvm/CodeGen/MachineFunction.h" 32 #include "llvm/CodeGen/MachineInstrBuilder.h" 33 #include "llvm/CodeGen/MachineJumpTableInfo.h" 34 #include "llvm/CodeGen/MachineModuleInfo.h" 35 #include "llvm/CodeGen/MachineRegisterInfo.h" 36 #include "llvm/CodeGen/SelectionDAG.h" 37 #include "llvm/CodeGen/StackMaps.h" 38 #include "llvm/CodeGen/WinEHFuncInfo.h" 39 #include "llvm/IR/CallingConv.h" 40 #include "llvm/IR/Constants.h" 41 #include "llvm/IR/DataLayout.h" 42 #include "llvm/IR/DebugInfo.h" 43 #include "llvm/IR/DerivedTypes.h" 44 #include "llvm/IR/Function.h" 45 #include "llvm/IR/GlobalVariable.h" 46 #include "llvm/IR/InlineAsm.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/IntrinsicInst.h" 49 #include "llvm/IR/Intrinsics.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/Statepoint.h" 53 #include "llvm/MC/MCSymbol.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/MathExtras.h" 58 #include "llvm/Support/raw_ostream.h" 59 #include "llvm/Target/TargetFrameLowering.h" 60 #include "llvm/Target/TargetInstrInfo.h" 61 #include "llvm/Target/TargetIntrinsicInfo.h" 62 #include "llvm/Target/TargetLowering.h" 63 #include "llvm/Target/TargetOptions.h" 64 #include "llvm/Target/TargetSelectionDAGInfo.h" 65 #include "llvm/Target/TargetSubtargetInfo.h" 66 #include <algorithm> 67 using namespace llvm; 68 69 #define DEBUG_TYPE "isel" 70 71 /// LimitFloatPrecision - Generate low-precision inline sequences for 72 /// some float libcalls (6, 8 or 12 bits). 73 static unsigned LimitFloatPrecision; 74 75 static cl::opt<unsigned, true> 76 LimitFPPrecision("limit-float-precision", 77 cl::desc("Generate low-precision inline sequences " 78 "for some float libcalls"), 79 cl::location(LimitFloatPrecision), 80 cl::init(0)); 81 82 // Limit the width of DAG chains. This is important in general to prevent 83 // prevent DAG-based analysis from blowing up. For example, alias analysis and 84 // load clustering may not complete in reasonable time. It is difficult to 85 // recognize and avoid this situation within each individual analysis, and 86 // future analyses are likely to have the same behavior. Limiting DAG width is 87 // the safe approach, and will be especially important with global DAGs. 88 // 89 // MaxParallelChains default is arbitrarily high to avoid affecting 90 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 91 // sequence over this should have been converted to llvm.memcpy by the 92 // frontend. It easy to induce this behavior with .ll code such as: 93 // %buffer = alloca [4096 x i8] 94 // %data = load [4096 x i8]* %argPtr 95 // store [4096 x i8] %data, [4096 x i8]* %buffer 96 static const unsigned MaxParallelChains = 64; 97 98 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 99 const SDValue *Parts, unsigned NumParts, 100 MVT PartVT, EVT ValueVT, const Value *V); 101 102 /// getCopyFromParts - Create a value that contains the specified legal parts 103 /// combined into the value they represent. If the parts combine to a type 104 /// larger then ValueVT then AssertOp can be used to specify whether the extra 105 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 106 /// (ISD::AssertSext). 107 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL, 108 const SDValue *Parts, 109 unsigned NumParts, MVT PartVT, EVT ValueVT, 110 const Value *V, 111 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 112 if (ValueVT.isVector()) 113 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 114 PartVT, ValueVT, V); 115 116 assert(NumParts > 0 && "No parts to assemble!"); 117 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 118 SDValue Val = Parts[0]; 119 120 if (NumParts > 1) { 121 // Assemble the value from multiple parts. 122 if (ValueVT.isInteger()) { 123 unsigned PartBits = PartVT.getSizeInBits(); 124 unsigned ValueBits = ValueVT.getSizeInBits(); 125 126 // Assemble the power of 2 part. 127 unsigned RoundParts = NumParts & (NumParts - 1) ? 128 1 << Log2_32(NumParts) : NumParts; 129 unsigned RoundBits = PartBits * RoundParts; 130 EVT RoundVT = RoundBits == ValueBits ? 131 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 132 SDValue Lo, Hi; 133 134 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 135 136 if (RoundParts > 2) { 137 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 138 PartVT, HalfVT, V); 139 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 140 RoundParts / 2, PartVT, HalfVT, V); 141 } else { 142 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 143 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 144 } 145 146 if (TLI.isBigEndian()) 147 std::swap(Lo, Hi); 148 149 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 150 151 if (RoundParts < NumParts) { 152 // Assemble the trailing non-power-of-2 part. 153 unsigned OddParts = NumParts - RoundParts; 154 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 155 Hi = getCopyFromParts(DAG, DL, 156 Parts + RoundParts, OddParts, PartVT, OddVT, V); 157 158 // Combine the round and odd parts. 159 Lo = Val; 160 if (TLI.isBigEndian()) 161 std::swap(Lo, Hi); 162 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 163 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 164 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 165 DAG.getConstant(Lo.getValueType().getSizeInBits(), DL, 166 TLI.getPointerTy())); 167 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 168 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 169 } 170 } else if (PartVT.isFloatingPoint()) { 171 // FP split into multiple FP parts (for ppcf128) 172 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 173 "Unexpected split"); 174 SDValue Lo, Hi; 175 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 176 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 177 if (TLI.hasBigEndianPartOrdering(ValueVT)) 178 std::swap(Lo, Hi); 179 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 180 } else { 181 // FP split into integer parts (soft fp) 182 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 183 !PartVT.isVector() && "Unexpected split"); 184 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 185 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 186 } 187 } 188 189 // There is now one part, held in Val. Correct it to match ValueVT. 190 EVT PartEVT = Val.getValueType(); 191 192 if (PartEVT == ValueVT) 193 return Val; 194 195 if (PartEVT.isInteger() && ValueVT.isInteger()) { 196 if (ValueVT.bitsLT(PartEVT)) { 197 // For a truncate, see if we have any information to 198 // indicate whether the truncated bits will always be 199 // zero or sign-extension. 200 if (AssertOp != ISD::DELETED_NODE) 201 Val = DAG.getNode(AssertOp, DL, PartEVT, Val, 202 DAG.getValueType(ValueVT)); 203 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 204 } 205 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 206 } 207 208 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 209 // FP_ROUND's are always exact here. 210 if (ValueVT.bitsLT(Val.getValueType())) 211 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 212 DAG.getTargetConstant(1, DL, TLI.getPointerTy())); 213 214 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 215 } 216 217 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 218 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 219 220 llvm_unreachable("Unknown mismatch!"); 221 } 222 223 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 224 const Twine &ErrMsg) { 225 const Instruction *I = dyn_cast_or_null<Instruction>(V); 226 if (!V) 227 return Ctx.emitError(ErrMsg); 228 229 const char *AsmError = ", possible invalid constraint for vector type"; 230 if (const CallInst *CI = dyn_cast<CallInst>(I)) 231 if (isa<InlineAsm>(CI->getCalledValue())) 232 return Ctx.emitError(I, ErrMsg + AsmError); 233 234 return Ctx.emitError(I, ErrMsg); 235 } 236 237 /// getCopyFromPartsVector - Create a value that contains the specified legal 238 /// parts combined into the value they represent. If the parts combine to a 239 /// type larger then ValueVT then AssertOp can be used to specify whether the 240 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 241 /// ValueVT (ISD::AssertSext). 242 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL, 243 const SDValue *Parts, unsigned NumParts, 244 MVT PartVT, EVT ValueVT, const Value *V) { 245 assert(ValueVT.isVector() && "Not a vector value"); 246 assert(NumParts > 0 && "No parts to assemble!"); 247 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 248 SDValue Val = Parts[0]; 249 250 // Handle a multi-element vector. 251 if (NumParts > 1) { 252 EVT IntermediateVT; 253 MVT RegisterVT; 254 unsigned NumIntermediates; 255 unsigned NumRegs = 256 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 257 NumIntermediates, RegisterVT); 258 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 259 NumParts = NumRegs; // Silence a compiler warning. 260 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 261 assert(RegisterVT == Parts[0].getSimpleValueType() && 262 "Part type doesn't match part!"); 263 264 // Assemble the parts into intermediate operands. 265 SmallVector<SDValue, 8> Ops(NumIntermediates); 266 if (NumIntermediates == NumParts) { 267 // If the register was not expanded, truncate or copy the value, 268 // as appropriate. 269 for (unsigned i = 0; i != NumParts; ++i) 270 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 271 PartVT, IntermediateVT, V); 272 } else if (NumParts > 0) { 273 // If the intermediate type was expanded, build the intermediate 274 // operands from the parts. 275 assert(NumParts % NumIntermediates == 0 && 276 "Must expand into a divisible number of parts!"); 277 unsigned Factor = NumParts / NumIntermediates; 278 for (unsigned i = 0; i != NumIntermediates; ++i) 279 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 280 PartVT, IntermediateVT, V); 281 } 282 283 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 284 // intermediate operands. 285 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 286 : ISD::BUILD_VECTOR, 287 DL, ValueVT, Ops); 288 } 289 290 // There is now one part, held in Val. Correct it to match ValueVT. 291 EVT PartEVT = Val.getValueType(); 292 293 if (PartEVT == ValueVT) 294 return Val; 295 296 if (PartEVT.isVector()) { 297 // If the element type of the source/dest vectors are the same, but the 298 // parts vector has more elements than the value vector, then we have a 299 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 300 // elements we want. 301 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 302 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 303 "Cannot narrow, it would be a lossy transformation"); 304 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 305 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 306 } 307 308 // Vector/Vector bitcast. 309 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 310 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 311 312 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 313 "Cannot handle this kind of promotion"); 314 // Promoted vector extract 315 bool Smaller = ValueVT.bitsLE(PartEVT); 316 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 317 DL, ValueVT, Val); 318 319 } 320 321 // Trivial bitcast if the types are the same size and the destination 322 // vector type is legal. 323 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 324 TLI.isTypeLegal(ValueVT)) 325 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 326 327 // Handle cases such as i8 -> <1 x i1> 328 if (ValueVT.getVectorNumElements() != 1) { 329 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 330 "non-trivial scalar-to-vector conversion"); 331 return DAG.getUNDEF(ValueVT); 332 } 333 334 if (ValueVT.getVectorNumElements() == 1 && 335 ValueVT.getVectorElementType() != PartEVT) { 336 bool Smaller = ValueVT.bitsLE(PartEVT); 337 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 338 DL, ValueVT.getScalarType(), Val); 339 } 340 341 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 342 } 343 344 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl, 345 SDValue Val, SDValue *Parts, unsigned NumParts, 346 MVT PartVT, const Value *V); 347 348 /// getCopyToParts - Create a series of nodes that contain the specified value 349 /// split into legal parts. If the parts contain more bits than Val, then, for 350 /// integers, ExtendKind can be used to specify how to generate the extra bits. 351 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL, 352 SDValue Val, SDValue *Parts, unsigned NumParts, 353 MVT PartVT, const Value *V, 354 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 355 EVT ValueVT = Val.getValueType(); 356 357 // Handle the vector case separately. 358 if (ValueVT.isVector()) 359 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V); 360 361 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 362 unsigned PartBits = PartVT.getSizeInBits(); 363 unsigned OrigNumParts = NumParts; 364 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 365 366 if (NumParts == 0) 367 return; 368 369 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 370 EVT PartEVT = PartVT; 371 if (PartEVT == ValueVT) { 372 assert(NumParts == 1 && "No-op copy with multiple parts!"); 373 Parts[0] = Val; 374 return; 375 } 376 377 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 378 // If the parts cover more bits than the value has, promote the value. 379 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 380 assert(NumParts == 1 && "Do not know what to promote to!"); 381 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 382 } else { 383 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 384 ValueVT.isInteger() && 385 "Unknown mismatch!"); 386 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 387 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 388 if (PartVT == MVT::x86mmx) 389 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 390 } 391 } else if (PartBits == ValueVT.getSizeInBits()) { 392 // Different types of the same size. 393 assert(NumParts == 1 && PartEVT != ValueVT); 394 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 395 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 396 // If the parts cover less bits than value has, truncate the value. 397 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 398 ValueVT.isInteger() && 399 "Unknown mismatch!"); 400 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 401 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 402 if (PartVT == MVT::x86mmx) 403 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 404 } 405 406 // The value may have changed - recompute ValueVT. 407 ValueVT = Val.getValueType(); 408 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 409 "Failed to tile the value with PartVT!"); 410 411 if (NumParts == 1) { 412 if (PartEVT != ValueVT) 413 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 414 "scalar-to-vector conversion failed"); 415 416 Parts[0] = Val; 417 return; 418 } 419 420 // Expand the value into multiple parts. 421 if (NumParts & (NumParts - 1)) { 422 // The number of parts is not a power of 2. Split off and copy the tail. 423 assert(PartVT.isInteger() && ValueVT.isInteger() && 424 "Do not know what to expand to!"); 425 unsigned RoundParts = 1 << Log2_32(NumParts); 426 unsigned RoundBits = RoundParts * PartBits; 427 unsigned OddParts = NumParts - RoundParts; 428 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 429 DAG.getIntPtrConstant(RoundBits, DL)); 430 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V); 431 432 if (TLI.isBigEndian()) 433 // The odd parts were reversed by getCopyToParts - unreverse them. 434 std::reverse(Parts + RoundParts, Parts + NumParts); 435 436 NumParts = RoundParts; 437 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 438 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 439 } 440 441 // The number of parts is a power of 2. Repeatedly bisect the value using 442 // EXTRACT_ELEMENT. 443 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 444 EVT::getIntegerVT(*DAG.getContext(), 445 ValueVT.getSizeInBits()), 446 Val); 447 448 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 449 for (unsigned i = 0; i < NumParts; i += StepSize) { 450 unsigned ThisBits = StepSize * PartBits / 2; 451 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 452 SDValue &Part0 = Parts[i]; 453 SDValue &Part1 = Parts[i+StepSize/2]; 454 455 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 456 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 457 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 458 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 459 460 if (ThisBits == PartBits && ThisVT != PartVT) { 461 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 462 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 463 } 464 } 465 } 466 467 if (TLI.isBigEndian()) 468 std::reverse(Parts, Parts + OrigNumParts); 469 } 470 471 472 /// getCopyToPartsVector - Create a series of nodes that contain the specified 473 /// value split into legal parts. 474 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL, 475 SDValue Val, SDValue *Parts, unsigned NumParts, 476 MVT PartVT, const Value *V) { 477 EVT ValueVT = Val.getValueType(); 478 assert(ValueVT.isVector() && "Not a vector"); 479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 480 481 if (NumParts == 1) { 482 EVT PartEVT = PartVT; 483 if (PartEVT == ValueVT) { 484 // Nothing to do. 485 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 486 // Bitconvert vector->vector case. 487 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 488 } else if (PartVT.isVector() && 489 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() && 490 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 491 EVT ElementVT = PartVT.getVectorElementType(); 492 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 493 // undef elements. 494 SmallVector<SDValue, 16> Ops; 495 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 496 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 497 ElementVT, Val, DAG.getConstant(i, DL, 498 TLI.getVectorIdxTy()))); 499 500 for (unsigned i = ValueVT.getVectorNumElements(), 501 e = PartVT.getVectorNumElements(); i != e; ++i) 502 Ops.push_back(DAG.getUNDEF(ElementVT)); 503 504 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops); 505 506 // FIXME: Use CONCAT for 2x -> 4x. 507 508 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 509 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 510 } else if (PartVT.isVector() && 511 PartEVT.getVectorElementType().bitsGE( 512 ValueVT.getVectorElementType()) && 513 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 514 515 // Promoted vector extract 516 bool Smaller = PartEVT.bitsLE(ValueVT); 517 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 518 DL, PartVT, Val); 519 } else{ 520 // Vector -> scalar conversion. 521 assert(ValueVT.getVectorNumElements() == 1 && 522 "Only trivial vector-to-scalar conversions should get here!"); 523 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 524 PartVT, Val, 525 DAG.getConstant(0, DL, TLI.getVectorIdxTy())); 526 527 bool Smaller = ValueVT.bitsLE(PartVT); 528 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 529 DL, PartVT, Val); 530 } 531 532 Parts[0] = Val; 533 return; 534 } 535 536 // Handle a multi-element vector. 537 EVT IntermediateVT; 538 MVT RegisterVT; 539 unsigned NumIntermediates; 540 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 541 IntermediateVT, 542 NumIntermediates, RegisterVT); 543 unsigned NumElements = ValueVT.getVectorNumElements(); 544 545 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 546 NumParts = NumRegs; // Silence a compiler warning. 547 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 548 549 // Split the vector into intermediate operands. 550 SmallVector<SDValue, 8> Ops(NumIntermediates); 551 for (unsigned i = 0; i != NumIntermediates; ++i) { 552 if (IntermediateVT.isVector()) 553 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 554 IntermediateVT, Val, 555 DAG.getConstant(i * (NumElements / NumIntermediates), DL, 556 TLI.getVectorIdxTy())); 557 else 558 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 559 IntermediateVT, Val, 560 DAG.getConstant(i, DL, TLI.getVectorIdxTy())); 561 } 562 563 // Split the intermediate operands into legal parts. 564 if (NumParts == NumIntermediates) { 565 // If the register was not expanded, promote or copy the value, 566 // as appropriate. 567 for (unsigned i = 0; i != NumParts; ++i) 568 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V); 569 } else if (NumParts > 0) { 570 // If the intermediate type was expanded, split each the value into 571 // legal parts. 572 assert(NumIntermediates != 0 && "division by zero"); 573 assert(NumParts % NumIntermediates == 0 && 574 "Must expand into a divisible number of parts!"); 575 unsigned Factor = NumParts / NumIntermediates; 576 for (unsigned i = 0; i != NumIntermediates; ++i) 577 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V); 578 } 579 } 580 581 namespace { 582 /// RegsForValue - This struct represents the registers (physical or virtual) 583 /// that a particular set of values is assigned, and the type information 584 /// about the value. The most common situation is to represent one value at a 585 /// time, but struct or array values are handled element-wise as multiple 586 /// values. The splitting of aggregates is performed recursively, so that we 587 /// never have aggregate-typed registers. The values at this point do not 588 /// necessarily have legal types, so each value may require one or more 589 /// registers of some legal type. 590 /// 591 struct RegsForValue { 592 /// ValueVTs - The value types of the values, which may not be legal, and 593 /// may need be promoted or synthesized from one or more registers. 594 /// 595 SmallVector<EVT, 4> ValueVTs; 596 597 /// RegVTs - The value types of the registers. This is the same size as 598 /// ValueVTs and it records, for each value, what the type of the assigned 599 /// register or registers are. (Individual values are never synthesized 600 /// from more than one type of register.) 601 /// 602 /// With virtual registers, the contents of RegVTs is redundant with TLI's 603 /// getRegisterType member function, however when with physical registers 604 /// it is necessary to have a separate record of the types. 605 /// 606 SmallVector<MVT, 4> RegVTs; 607 608 /// Regs - This list holds the registers assigned to the values. 609 /// Each legal or promoted value requires one register, and each 610 /// expanded value requires multiple registers. 611 /// 612 SmallVector<unsigned, 4> Regs; 613 614 RegsForValue() {} 615 616 RegsForValue(const SmallVector<unsigned, 4> ®s, 617 MVT regvt, EVT valuevt) 618 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 619 620 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 621 unsigned Reg, Type *Ty) { 622 ComputeValueVTs(tli, Ty, ValueVTs); 623 624 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 625 EVT ValueVT = ValueVTs[Value]; 626 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 627 MVT RegisterVT = tli.getRegisterType(Context, ValueVT); 628 for (unsigned i = 0; i != NumRegs; ++i) 629 Regs.push_back(Reg + i); 630 RegVTs.push_back(RegisterVT); 631 Reg += NumRegs; 632 } 633 } 634 635 /// append - Add the specified values to this one. 636 void append(const RegsForValue &RHS) { 637 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 638 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 639 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 640 } 641 642 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 643 /// this value and returns the result as a ValueVTs value. This uses 644 /// Chain/Flag as the input and updates them for the output Chain/Flag. 645 /// If the Flag pointer is NULL, no flag is used. 646 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 647 SDLoc dl, 648 SDValue &Chain, SDValue *Flag, 649 const Value *V = nullptr) const; 650 651 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 652 /// specified value into the registers specified by this object. This uses 653 /// Chain/Flag as the input and updates them for the output Chain/Flag. 654 /// If the Flag pointer is NULL, no flag is used. 655 void 656 getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain, 657 SDValue *Flag, const Value *V, 658 ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const; 659 660 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 661 /// operand list. This adds the code marker, matching input operand index 662 /// (if applicable), and includes the number of values added into it. 663 void AddInlineAsmOperands(unsigned Kind, 664 bool HasMatching, unsigned MatchingIdx, SDLoc dl, 665 SelectionDAG &DAG, 666 std::vector<SDValue> &Ops) const; 667 }; 668 } 669 670 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 671 /// this value and returns the result as a ValueVT value. This uses 672 /// Chain/Flag as the input and updates them for the output Chain/Flag. 673 /// If the Flag pointer is NULL, no flag is used. 674 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 675 FunctionLoweringInfo &FuncInfo, 676 SDLoc dl, 677 SDValue &Chain, SDValue *Flag, 678 const Value *V) const { 679 // A Value with type {} or [0 x %t] needs no registers. 680 if (ValueVTs.empty()) 681 return SDValue(); 682 683 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 684 685 // Assemble the legal parts into the final values. 686 SmallVector<SDValue, 4> Values(ValueVTs.size()); 687 SmallVector<SDValue, 8> Parts; 688 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 689 // Copy the legal parts from the registers. 690 EVT ValueVT = ValueVTs[Value]; 691 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 692 MVT RegisterVT = RegVTs[Value]; 693 694 Parts.resize(NumRegs); 695 for (unsigned i = 0; i != NumRegs; ++i) { 696 SDValue P; 697 if (!Flag) { 698 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 699 } else { 700 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 701 *Flag = P.getValue(2); 702 } 703 704 Chain = P.getValue(1); 705 Parts[i] = P; 706 707 // If the source register was virtual and if we know something about it, 708 // add an assert node. 709 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 710 !RegisterVT.isInteger() || RegisterVT.isVector()) 711 continue; 712 713 const FunctionLoweringInfo::LiveOutInfo *LOI = 714 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 715 if (!LOI) 716 continue; 717 718 unsigned RegSize = RegisterVT.getSizeInBits(); 719 unsigned NumSignBits = LOI->NumSignBits; 720 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 721 722 if (NumZeroBits == RegSize) { 723 // The current value is a zero. 724 // Explicitly express that as it would be easier for 725 // optimizations to kick in. 726 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 727 continue; 728 } 729 730 // FIXME: We capture more information than the dag can represent. For 731 // now, just use the tightest assertzext/assertsext possible. 732 bool isSExt = true; 733 EVT FromVT(MVT::Other); 734 if (NumSignBits == RegSize) 735 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 736 else if (NumZeroBits >= RegSize-1) 737 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 738 else if (NumSignBits > RegSize-8) 739 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 740 else if (NumZeroBits >= RegSize-8) 741 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 742 else if (NumSignBits > RegSize-16) 743 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 744 else if (NumZeroBits >= RegSize-16) 745 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 746 else if (NumSignBits > RegSize-32) 747 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 748 else if (NumZeroBits >= RegSize-32) 749 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 750 else 751 continue; 752 753 // Add an assertion node. 754 assert(FromVT != MVT::Other); 755 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 756 RegisterVT, P, DAG.getValueType(FromVT)); 757 } 758 759 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 760 NumRegs, RegisterVT, ValueVT, V); 761 Part += NumRegs; 762 Parts.clear(); 763 } 764 765 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 766 } 767 768 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 769 /// specified value into the registers specified by this object. This uses 770 /// Chain/Flag as the input and updates them for the output Chain/Flag. 771 /// If the Flag pointer is NULL, no flag is used. 772 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, 773 SDValue &Chain, SDValue *Flag, const Value *V, 774 ISD::NodeType PreferredExtendType) const { 775 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 776 ISD::NodeType ExtendKind = PreferredExtendType; 777 778 // Get the list of the values's legal parts. 779 unsigned NumRegs = Regs.size(); 780 SmallVector<SDValue, 8> Parts(NumRegs); 781 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 782 EVT ValueVT = ValueVTs[Value]; 783 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 784 MVT RegisterVT = RegVTs[Value]; 785 786 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 787 ExtendKind = ISD::ZERO_EXTEND; 788 789 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 790 &Parts[Part], NumParts, RegisterVT, V, ExtendKind); 791 Part += NumParts; 792 } 793 794 // Copy the parts into the registers. 795 SmallVector<SDValue, 8> Chains(NumRegs); 796 for (unsigned i = 0; i != NumRegs; ++i) { 797 SDValue Part; 798 if (!Flag) { 799 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 800 } else { 801 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 802 *Flag = Part.getValue(1); 803 } 804 805 Chains[i] = Part.getValue(0); 806 } 807 808 if (NumRegs == 1 || Flag) 809 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 810 // flagged to it. That is the CopyToReg nodes and the user are considered 811 // a single scheduling unit. If we create a TokenFactor and return it as 812 // chain, then the TokenFactor is both a predecessor (operand) of the 813 // user as well as a successor (the TF operands are flagged to the user). 814 // c1, f1 = CopyToReg 815 // c2, f2 = CopyToReg 816 // c3 = TokenFactor c1, c2 817 // ... 818 // = op c3, ..., f2 819 Chain = Chains[NumRegs-1]; 820 else 821 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 822 } 823 824 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 825 /// operand list. This adds the code marker and includes the number of 826 /// values added into it. 827 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 828 unsigned MatchingIdx, SDLoc dl, 829 SelectionDAG &DAG, 830 std::vector<SDValue> &Ops) const { 831 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 832 833 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 834 if (HasMatching) 835 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 836 else if (!Regs.empty() && 837 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 838 // Put the register class of the virtual registers in the flag word. That 839 // way, later passes can recompute register class constraints for inline 840 // assembly as well as normal instructions. 841 // Don't do this for tied operands that can use the regclass information 842 // from the def. 843 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 844 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 845 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 846 } 847 848 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 849 Ops.push_back(Res); 850 851 unsigned SP = TLI.getStackPointerRegisterToSaveRestore(); 852 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 853 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 854 MVT RegisterVT = RegVTs[Value]; 855 for (unsigned i = 0; i != NumRegs; ++i) { 856 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 857 unsigned TheReg = Regs[Reg++]; 858 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 859 860 if (TheReg == SP && Code == InlineAsm::Kind_Clobber) { 861 // If we clobbered the stack pointer, MFI should know about it. 862 assert(DAG.getMachineFunction().getFrameInfo()-> 863 hasInlineAsmWithSPAdjust()); 864 } 865 } 866 } 867 } 868 869 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 870 const TargetLibraryInfo *li) { 871 AA = &aa; 872 GFI = gfi; 873 LibInfo = li; 874 DL = DAG.getTarget().getDataLayout(); 875 Context = DAG.getContext(); 876 LPadToCallSiteMap.clear(); 877 } 878 879 /// clear - Clear out the current SelectionDAG and the associated 880 /// state and prepare this SelectionDAGBuilder object to be used 881 /// for a new block. This doesn't clear out information about 882 /// additional blocks that are needed to complete switch lowering 883 /// or PHI node updating; that information is cleared out as it is 884 /// consumed. 885 void SelectionDAGBuilder::clear() { 886 NodeMap.clear(); 887 UnusedArgNodeMap.clear(); 888 PendingLoads.clear(); 889 PendingExports.clear(); 890 CurInst = nullptr; 891 HasTailCall = false; 892 SDNodeOrder = LowestSDNodeOrder; 893 StatepointLowering.clear(); 894 } 895 896 /// clearDanglingDebugInfo - Clear the dangling debug information 897 /// map. This function is separated from the clear so that debug 898 /// information that is dangling in a basic block can be properly 899 /// resolved in a different basic block. This allows the 900 /// SelectionDAG to resolve dangling debug information attached 901 /// to PHI nodes. 902 void SelectionDAGBuilder::clearDanglingDebugInfo() { 903 DanglingDebugInfoMap.clear(); 904 } 905 906 /// getRoot - Return the current virtual root of the Selection DAG, 907 /// flushing any PendingLoad items. This must be done before emitting 908 /// a store or any other node that may need to be ordered after any 909 /// prior load instructions. 910 /// 911 SDValue SelectionDAGBuilder::getRoot() { 912 if (PendingLoads.empty()) 913 return DAG.getRoot(); 914 915 if (PendingLoads.size() == 1) { 916 SDValue Root = PendingLoads[0]; 917 DAG.setRoot(Root); 918 PendingLoads.clear(); 919 return Root; 920 } 921 922 // Otherwise, we have to make a token factor node. 923 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 924 PendingLoads); 925 PendingLoads.clear(); 926 DAG.setRoot(Root); 927 return Root; 928 } 929 930 /// getControlRoot - Similar to getRoot, but instead of flushing all the 931 /// PendingLoad items, flush all the PendingExports items. It is necessary 932 /// to do this before emitting a terminator instruction. 933 /// 934 SDValue SelectionDAGBuilder::getControlRoot() { 935 SDValue Root = DAG.getRoot(); 936 937 if (PendingExports.empty()) 938 return Root; 939 940 // Turn all of the CopyToReg chains into one factored node. 941 if (Root.getOpcode() != ISD::EntryToken) { 942 unsigned i = 0, e = PendingExports.size(); 943 for (; i != e; ++i) { 944 assert(PendingExports[i].getNode()->getNumOperands() > 1); 945 if (PendingExports[i].getNode()->getOperand(0) == Root) 946 break; // Don't add the root if we already indirectly depend on it. 947 } 948 949 if (i == e) 950 PendingExports.push_back(Root); 951 } 952 953 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, 954 PendingExports); 955 PendingExports.clear(); 956 DAG.setRoot(Root); 957 return Root; 958 } 959 960 void SelectionDAGBuilder::visit(const Instruction &I) { 961 // Set up outgoing PHI node register values before emitting the terminator. 962 if (isa<TerminatorInst>(&I)) 963 HandlePHINodesInSuccessorBlocks(I.getParent()); 964 965 ++SDNodeOrder; 966 967 CurInst = &I; 968 969 visit(I.getOpcode(), I); 970 971 if (!isa<TerminatorInst>(&I) && !HasTailCall) 972 CopyToExportRegsIfNeeded(&I); 973 974 CurInst = nullptr; 975 } 976 977 void SelectionDAGBuilder::visitPHI(const PHINode &) { 978 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 979 } 980 981 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 982 // Note: this doesn't use InstVisitor, because it has to work with 983 // ConstantExpr's in addition to instructions. 984 switch (Opcode) { 985 default: llvm_unreachable("Unknown instruction type encountered!"); 986 // Build the switch statement using the Instruction.def file. 987 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 988 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 989 #include "llvm/IR/Instruction.def" 990 } 991 } 992 993 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 994 // generate the debug data structures now that we've seen its definition. 995 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 996 SDValue Val) { 997 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 998 if (DDI.getDI()) { 999 const DbgValueInst *DI = DDI.getDI(); 1000 DebugLoc dl = DDI.getdl(); 1001 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1002 MDLocalVariable *Variable = DI->getVariable(); 1003 MDExpression *Expr = DI->getExpression(); 1004 assert(Variable->isValidLocationForIntrinsic(dl) && 1005 "Expected inlined-at fields to agree"); 1006 uint64_t Offset = DI->getOffset(); 1007 // A dbg.value for an alloca is always indirect. 1008 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 1009 SDDbgValue *SDV; 1010 if (Val.getNode()) { 1011 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, Offset, IsIndirect, 1012 Val)) { 1013 SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(), 1014 IsIndirect, Offset, dl, DbgSDNodeOrder); 1015 DAG.AddDbgValue(SDV, Val.getNode(), false); 1016 } 1017 } else 1018 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1019 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 1020 } 1021 } 1022 1023 /// getCopyFromRegs - If there was virtual register allocated for the value V 1024 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1025 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1026 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1027 SDValue res; 1028 1029 if (It != FuncInfo.ValueMap.end()) { 1030 unsigned InReg = It->second; 1031 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg, 1032 Ty); 1033 SDValue Chain = DAG.getEntryNode(); 1034 res = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1035 resolveDanglingDebugInfo(V, res); 1036 } 1037 1038 return res; 1039 } 1040 1041 /// getValue - Return an SDValue for the given Value. 1042 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1043 // If we already have an SDValue for this value, use it. It's important 1044 // to do this first, so that we don't create a CopyFromReg if we already 1045 // have a regular SDValue. 1046 SDValue &N = NodeMap[V]; 1047 if (N.getNode()) return N; 1048 1049 // If there's a virtual register allocated and initialized for this 1050 // value, use it. 1051 SDValue copyFromReg = getCopyFromRegs(V, V->getType()); 1052 if (copyFromReg.getNode()) { 1053 return copyFromReg; 1054 } 1055 1056 // Otherwise create a new SDValue and remember it. 1057 SDValue Val = getValueImpl(V); 1058 NodeMap[V] = Val; 1059 resolveDanglingDebugInfo(V, Val); 1060 return Val; 1061 } 1062 1063 // Return true if SDValue exists for the given Value 1064 bool SelectionDAGBuilder::findValue(const Value *V) const { 1065 return (NodeMap.find(V) != NodeMap.end()) || 1066 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end()); 1067 } 1068 1069 /// getNonRegisterValue - Return an SDValue for the given Value, but 1070 /// don't look in FuncInfo.ValueMap for a virtual register. 1071 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1072 // If we already have an SDValue for this value, use it. 1073 SDValue &N = NodeMap[V]; 1074 if (N.getNode()) return N; 1075 1076 // Otherwise create a new SDValue and remember it. 1077 SDValue Val = getValueImpl(V); 1078 NodeMap[V] = Val; 1079 resolveDanglingDebugInfo(V, Val); 1080 return Val; 1081 } 1082 1083 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1084 /// Create an SDValue for the given value. 1085 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1086 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1087 1088 if (const Constant *C = dyn_cast<Constant>(V)) { 1089 EVT VT = TLI.getValueType(V->getType(), true); 1090 1091 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1092 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1093 1094 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1095 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1096 1097 if (isa<ConstantPointerNull>(C)) { 1098 unsigned AS = V->getType()->getPointerAddressSpace(); 1099 return DAG.getConstant(0, getCurSDLoc(), TLI.getPointerTy(AS)); 1100 } 1101 1102 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1103 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1104 1105 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1106 return DAG.getUNDEF(VT); 1107 1108 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1109 visit(CE->getOpcode(), *CE); 1110 SDValue N1 = NodeMap[V]; 1111 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1112 return N1; 1113 } 1114 1115 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1116 SmallVector<SDValue, 4> Constants; 1117 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1118 OI != OE; ++OI) { 1119 SDNode *Val = getValue(*OI).getNode(); 1120 // If the operand is an empty aggregate, there are no values. 1121 if (!Val) continue; 1122 // Add each leaf value from the operand to the Constants list 1123 // to form a flattened list of all the values. 1124 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1125 Constants.push_back(SDValue(Val, i)); 1126 } 1127 1128 return DAG.getMergeValues(Constants, getCurSDLoc()); 1129 } 1130 1131 if (const ConstantDataSequential *CDS = 1132 dyn_cast<ConstantDataSequential>(C)) { 1133 SmallVector<SDValue, 4> Ops; 1134 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1135 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1136 // Add each leaf value from the operand to the Constants list 1137 // to form a flattened list of all the values. 1138 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1139 Ops.push_back(SDValue(Val, i)); 1140 } 1141 1142 if (isa<ArrayType>(CDS->getType())) 1143 return DAG.getMergeValues(Ops, getCurSDLoc()); 1144 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), 1145 VT, Ops); 1146 } 1147 1148 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1149 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1150 "Unknown struct or array constant!"); 1151 1152 SmallVector<EVT, 4> ValueVTs; 1153 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1154 unsigned NumElts = ValueVTs.size(); 1155 if (NumElts == 0) 1156 return SDValue(); // empty struct 1157 SmallVector<SDValue, 4> Constants(NumElts); 1158 for (unsigned i = 0; i != NumElts; ++i) { 1159 EVT EltVT = ValueVTs[i]; 1160 if (isa<UndefValue>(C)) 1161 Constants[i] = DAG.getUNDEF(EltVT); 1162 else if (EltVT.isFloatingPoint()) 1163 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1164 else 1165 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1166 } 1167 1168 return DAG.getMergeValues(Constants, getCurSDLoc()); 1169 } 1170 1171 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1172 return DAG.getBlockAddress(BA, VT); 1173 1174 VectorType *VecTy = cast<VectorType>(V->getType()); 1175 unsigned NumElements = VecTy->getNumElements(); 1176 1177 // Now that we know the number and type of the elements, get that number of 1178 // elements into the Ops array based on what kind of constant it is. 1179 SmallVector<SDValue, 16> Ops; 1180 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1181 for (unsigned i = 0; i != NumElements; ++i) 1182 Ops.push_back(getValue(CV->getOperand(i))); 1183 } else { 1184 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1185 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1186 1187 SDValue Op; 1188 if (EltVT.isFloatingPoint()) 1189 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1190 else 1191 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1192 Ops.assign(NumElements, Op); 1193 } 1194 1195 // Create a BUILD_VECTOR node. 1196 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops); 1197 } 1198 1199 // If this is a static alloca, generate it as the frameindex instead of 1200 // computation. 1201 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1202 DenseMap<const AllocaInst*, int>::iterator SI = 1203 FuncInfo.StaticAllocaMap.find(AI); 1204 if (SI != FuncInfo.StaticAllocaMap.end()) 1205 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1206 } 1207 1208 // If this is an instruction which fast-isel has deferred, select it now. 1209 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1210 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1211 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1212 SDValue Chain = DAG.getEntryNode(); 1213 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1214 } 1215 1216 llvm_unreachable("Can't get register for value!"); 1217 } 1218 1219 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1220 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1221 SDValue Chain = getControlRoot(); 1222 SmallVector<ISD::OutputArg, 8> Outs; 1223 SmallVector<SDValue, 8> OutVals; 1224 1225 if (!FuncInfo.CanLowerReturn) { 1226 unsigned DemoteReg = FuncInfo.DemoteRegister; 1227 const Function *F = I.getParent()->getParent(); 1228 1229 // Emit a store of the return value through the virtual register. 1230 // Leave Outs empty so that LowerReturn won't try to load return 1231 // registers the usual way. 1232 SmallVector<EVT, 1> PtrValueVTs; 1233 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1234 PtrValueVTs); 1235 1236 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1237 SDValue RetOp = getValue(I.getOperand(0)); 1238 1239 SmallVector<EVT, 4> ValueVTs; 1240 SmallVector<uint64_t, 4> Offsets; 1241 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1242 unsigned NumValues = ValueVTs.size(); 1243 1244 SmallVector<SDValue, 4> Chains(NumValues); 1245 for (unsigned i = 0; i != NumValues; ++i) { 1246 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), 1247 RetPtr.getValueType(), RetPtr, 1248 DAG.getIntPtrConstant(Offsets[i], 1249 getCurSDLoc())); 1250 Chains[i] = 1251 DAG.getStore(Chain, getCurSDLoc(), 1252 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1253 // FIXME: better loc info would be nice. 1254 Add, MachinePointerInfo(), false, false, 0); 1255 } 1256 1257 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1258 MVT::Other, Chains); 1259 } else if (I.getNumOperands() != 0) { 1260 SmallVector<EVT, 4> ValueVTs; 1261 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1262 unsigned NumValues = ValueVTs.size(); 1263 if (NumValues) { 1264 SDValue RetOp = getValue(I.getOperand(0)); 1265 1266 const Function *F = I.getParent()->getParent(); 1267 1268 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1269 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1270 Attribute::SExt)) 1271 ExtendKind = ISD::SIGN_EXTEND; 1272 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1273 Attribute::ZExt)) 1274 ExtendKind = ISD::ZERO_EXTEND; 1275 1276 LLVMContext &Context = F->getContext(); 1277 bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex, 1278 Attribute::InReg); 1279 1280 for (unsigned j = 0; j != NumValues; ++j) { 1281 EVT VT = ValueVTs[j]; 1282 1283 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1284 VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind); 1285 1286 unsigned NumParts = TLI.getNumRegisters(Context, VT); 1287 MVT PartVT = TLI.getRegisterType(Context, VT); 1288 SmallVector<SDValue, 4> Parts(NumParts); 1289 getCopyToParts(DAG, getCurSDLoc(), 1290 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1291 &Parts[0], NumParts, PartVT, &I, ExtendKind); 1292 1293 // 'inreg' on function refers to return value 1294 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1295 if (RetInReg) 1296 Flags.setInReg(); 1297 1298 // Propagate extension type if any 1299 if (ExtendKind == ISD::SIGN_EXTEND) 1300 Flags.setSExt(); 1301 else if (ExtendKind == ISD::ZERO_EXTEND) 1302 Flags.setZExt(); 1303 1304 for (unsigned i = 0; i < NumParts; ++i) { 1305 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1306 VT, /*isfixed=*/true, 0, 0)); 1307 OutVals.push_back(Parts[i]); 1308 } 1309 } 1310 } 1311 } 1312 1313 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1314 CallingConv::ID CallConv = 1315 DAG.getMachineFunction().getFunction()->getCallingConv(); 1316 Chain = DAG.getTargetLoweringInfo().LowerReturn( 1317 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 1318 1319 // Verify that the target's LowerReturn behaved as expected. 1320 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1321 "LowerReturn didn't return a valid chain!"); 1322 1323 // Update the DAG with the new chain value resulting from return lowering. 1324 DAG.setRoot(Chain); 1325 } 1326 1327 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1328 /// created for it, emit nodes to copy the value into the virtual 1329 /// registers. 1330 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1331 // Skip empty types 1332 if (V->getType()->isEmptyTy()) 1333 return; 1334 1335 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1336 if (VMI != FuncInfo.ValueMap.end()) { 1337 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1338 CopyValueToVirtualRegister(V, VMI->second); 1339 } 1340 } 1341 1342 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1343 /// the current basic block, add it to ValueMap now so that we'll get a 1344 /// CopyTo/FromReg. 1345 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1346 // No need to export constants. 1347 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1348 1349 // Already exported? 1350 if (FuncInfo.isExportedInst(V)) return; 1351 1352 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1353 CopyValueToVirtualRegister(V, Reg); 1354 } 1355 1356 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1357 const BasicBlock *FromBB) { 1358 // The operands of the setcc have to be in this block. We don't know 1359 // how to export them from some other block. 1360 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1361 // Can export from current BB. 1362 if (VI->getParent() == FromBB) 1363 return true; 1364 1365 // Is already exported, noop. 1366 return FuncInfo.isExportedInst(V); 1367 } 1368 1369 // If this is an argument, we can export it if the BB is the entry block or 1370 // if it is already exported. 1371 if (isa<Argument>(V)) { 1372 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1373 return true; 1374 1375 // Otherwise, can only export this if it is already exported. 1376 return FuncInfo.isExportedInst(V); 1377 } 1378 1379 // Otherwise, constants can always be exported. 1380 return true; 1381 } 1382 1383 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1384 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1385 const MachineBasicBlock *Dst) const { 1386 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1387 if (!BPI) 1388 return 0; 1389 const BasicBlock *SrcBB = Src->getBasicBlock(); 1390 const BasicBlock *DstBB = Dst->getBasicBlock(); 1391 return BPI->getEdgeWeight(SrcBB, DstBB); 1392 } 1393 1394 void SelectionDAGBuilder:: 1395 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1396 uint32_t Weight /* = 0 */) { 1397 if (!Weight) 1398 Weight = getEdgeWeight(Src, Dst); 1399 Src->addSuccessor(Dst, Weight); 1400 } 1401 1402 1403 static bool InBlock(const Value *V, const BasicBlock *BB) { 1404 if (const Instruction *I = dyn_cast<Instruction>(V)) 1405 return I->getParent() == BB; 1406 return true; 1407 } 1408 1409 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1410 /// This function emits a branch and is used at the leaves of an OR or an 1411 /// AND operator tree. 1412 /// 1413 void 1414 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1415 MachineBasicBlock *TBB, 1416 MachineBasicBlock *FBB, 1417 MachineBasicBlock *CurBB, 1418 MachineBasicBlock *SwitchBB, 1419 uint32_t TWeight, 1420 uint32_t FWeight) { 1421 const BasicBlock *BB = CurBB->getBasicBlock(); 1422 1423 // If the leaf of the tree is a comparison, merge the condition into 1424 // the caseblock. 1425 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1426 // The operands of the cmp have to be in this block. We don't know 1427 // how to export them from some other block. If this is the first block 1428 // of the sequence, no exporting is needed. 1429 if (CurBB == SwitchBB || 1430 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1431 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1432 ISD::CondCode Condition; 1433 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1434 Condition = getICmpCondCode(IC->getPredicate()); 1435 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1436 Condition = getFCmpCondCode(FC->getPredicate()); 1437 if (TM.Options.NoNaNsFPMath) 1438 Condition = getFCmpCodeWithoutNaN(Condition); 1439 } else { 1440 (void)Condition; // silence warning. 1441 llvm_unreachable("Unknown compare instruction"); 1442 } 1443 1444 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 1445 TBB, FBB, CurBB, TWeight, FWeight); 1446 SwitchCases.push_back(CB); 1447 return; 1448 } 1449 } 1450 1451 // Create a CaseBlock record representing this branch. 1452 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1453 nullptr, TBB, FBB, CurBB, TWeight, FWeight); 1454 SwitchCases.push_back(CB); 1455 } 1456 1457 /// Scale down both weights to fit into uint32_t. 1458 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) { 1459 uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse; 1460 uint32_t Scale = (NewMax / UINT32_MAX) + 1; 1461 NewTrue = NewTrue / Scale; 1462 NewFalse = NewFalse / Scale; 1463 } 1464 1465 /// FindMergedConditions - If Cond is an expression like 1466 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1467 MachineBasicBlock *TBB, 1468 MachineBasicBlock *FBB, 1469 MachineBasicBlock *CurBB, 1470 MachineBasicBlock *SwitchBB, 1471 unsigned Opc, uint32_t TWeight, 1472 uint32_t FWeight) { 1473 // If this node is not part of the or/and tree, emit it as a branch. 1474 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1475 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1476 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1477 BOp->getParent() != CurBB->getBasicBlock() || 1478 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1479 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1480 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 1481 TWeight, FWeight); 1482 return; 1483 } 1484 1485 // Create TmpBB after CurBB. 1486 MachineFunction::iterator BBI = CurBB; 1487 MachineFunction &MF = DAG.getMachineFunction(); 1488 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1489 CurBB->getParent()->insert(++BBI, TmpBB); 1490 1491 if (Opc == Instruction::Or) { 1492 // Codegen X | Y as: 1493 // BB1: 1494 // jmp_if_X TBB 1495 // jmp TmpBB 1496 // TmpBB: 1497 // jmp_if_Y TBB 1498 // jmp FBB 1499 // 1500 1501 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1502 // The requirement is that 1503 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 1504 // = TrueProb for orignal BB. 1505 // Assuming the orignal weights are A and B, one choice is to set BB1's 1506 // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice 1507 // assumes that 1508 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 1509 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 1510 // TmpBB, but the math is more complicated. 1511 1512 uint64_t NewTrueWeight = TWeight; 1513 uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight; 1514 ScaleWeights(NewTrueWeight, NewFalseWeight); 1515 // Emit the LHS condition. 1516 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc, 1517 NewTrueWeight, NewFalseWeight); 1518 1519 NewTrueWeight = TWeight; 1520 NewFalseWeight = 2 * (uint64_t)FWeight; 1521 ScaleWeights(NewTrueWeight, NewFalseWeight); 1522 // Emit the RHS condition into TmpBB. 1523 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1524 NewTrueWeight, NewFalseWeight); 1525 } else { 1526 assert(Opc == Instruction::And && "Unknown merge op!"); 1527 // Codegen X & Y as: 1528 // BB1: 1529 // jmp_if_X TmpBB 1530 // jmp FBB 1531 // TmpBB: 1532 // jmp_if_Y TBB 1533 // jmp FBB 1534 // 1535 // This requires creation of TmpBB after CurBB. 1536 1537 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 1538 // The requirement is that 1539 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 1540 // = FalseProb for orignal BB. 1541 // Assuming the orignal weights are A and B, one choice is to set BB1's 1542 // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice 1543 // assumes that 1544 // FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB. 1545 1546 uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight; 1547 uint64_t NewFalseWeight = FWeight; 1548 ScaleWeights(NewTrueWeight, NewFalseWeight); 1549 // Emit the LHS condition. 1550 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc, 1551 NewTrueWeight, NewFalseWeight); 1552 1553 NewTrueWeight = 2 * (uint64_t)TWeight; 1554 NewFalseWeight = FWeight; 1555 ScaleWeights(NewTrueWeight, NewFalseWeight); 1556 // Emit the RHS condition into TmpBB. 1557 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc, 1558 NewTrueWeight, NewFalseWeight); 1559 } 1560 } 1561 1562 /// If the set of cases should be emitted as a series of branches, return true. 1563 /// If we should emit this as a bunch of and/or'd together conditions, return 1564 /// false. 1565 bool 1566 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 1567 if (Cases.size() != 2) return true; 1568 1569 // If this is two comparisons of the same values or'd or and'd together, they 1570 // will get folded into a single comparison, so don't emit two blocks. 1571 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1572 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1573 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1574 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1575 return false; 1576 } 1577 1578 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1579 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1580 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1581 Cases[0].CC == Cases[1].CC && 1582 isa<Constant>(Cases[0].CmpRHS) && 1583 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1584 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1585 return false; 1586 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1587 return false; 1588 } 1589 1590 return true; 1591 } 1592 1593 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1594 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1595 1596 // Update machine-CFG edges. 1597 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1598 1599 if (I.isUnconditional()) { 1600 // Update machine-CFG edges. 1601 BrMBB->addSuccessor(Succ0MBB); 1602 1603 // If this is not a fall-through branch or optimizations are switched off, 1604 // emit the branch. 1605 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 1606 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 1607 MVT::Other, getControlRoot(), 1608 DAG.getBasicBlock(Succ0MBB))); 1609 1610 return; 1611 } 1612 1613 // If this condition is one of the special cases we handle, do special stuff 1614 // now. 1615 const Value *CondVal = I.getCondition(); 1616 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1617 1618 // If this is a series of conditions that are or'd or and'd together, emit 1619 // this as a sequence of branches instead of setcc's with and/or operations. 1620 // As long as jumps are not expensive, this should improve performance. 1621 // For example, instead of something like: 1622 // cmp A, B 1623 // C = seteq 1624 // cmp D, E 1625 // F = setle 1626 // or C, F 1627 // jnz foo 1628 // Emit: 1629 // cmp A, B 1630 // je foo 1631 // cmp D, E 1632 // jle foo 1633 // 1634 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1635 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && 1636 BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And || 1637 BOp->getOpcode() == Instruction::Or)) { 1638 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1639 BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB), 1640 getEdgeWeight(BrMBB, Succ1MBB)); 1641 // If the compares in later blocks need to use values not currently 1642 // exported from this block, export them now. This block should always 1643 // be the first entry. 1644 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1645 1646 // Allow some cases to be rejected. 1647 if (ShouldEmitAsBranches(SwitchCases)) { 1648 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1649 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1650 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1651 } 1652 1653 // Emit the branch for this block. 1654 visitSwitchCase(SwitchCases[0], BrMBB); 1655 SwitchCases.erase(SwitchCases.begin()); 1656 return; 1657 } 1658 1659 // Okay, we decided not to do this, remove any inserted MBB's and clear 1660 // SwitchCases. 1661 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1662 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1663 1664 SwitchCases.clear(); 1665 } 1666 } 1667 1668 // Create a CaseBlock record representing this branch. 1669 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1670 nullptr, Succ0MBB, Succ1MBB, BrMBB); 1671 1672 // Use visitSwitchCase to actually insert the fast branch sequence for this 1673 // cond branch. 1674 visitSwitchCase(CB, BrMBB); 1675 } 1676 1677 /// visitSwitchCase - Emits the necessary code to represent a single node in 1678 /// the binary search tree resulting from lowering a switch instruction. 1679 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1680 MachineBasicBlock *SwitchBB) { 1681 SDValue Cond; 1682 SDValue CondLHS = getValue(CB.CmpLHS); 1683 SDLoc dl = getCurSDLoc(); 1684 1685 // Build the setcc now. 1686 if (!CB.CmpMHS) { 1687 // Fold "(X == true)" to X and "(X == false)" to !X to 1688 // handle common cases produced by branch lowering. 1689 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1690 CB.CC == ISD::SETEQ) 1691 Cond = CondLHS; 1692 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1693 CB.CC == ISD::SETEQ) { 1694 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 1695 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1696 } else 1697 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1698 } else { 1699 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1700 1701 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1702 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1703 1704 SDValue CmpOp = getValue(CB.CmpMHS); 1705 EVT VT = CmpOp.getValueType(); 1706 1707 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1708 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 1709 ISD::SETLE); 1710 } else { 1711 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1712 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 1713 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1714 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 1715 } 1716 } 1717 1718 // Update successor info 1719 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1720 // TrueBB and FalseBB are always different unless the incoming IR is 1721 // degenerate. This only happens when running llc on weird IR. 1722 if (CB.TrueBB != CB.FalseBB) 1723 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1724 1725 // If the lhs block is the next block, invert the condition so that we can 1726 // fall through to the lhs instead of the rhs block. 1727 if (CB.TrueBB == NextBlock(SwitchBB)) { 1728 std::swap(CB.TrueBB, CB.FalseBB); 1729 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 1730 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1731 } 1732 1733 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1734 MVT::Other, getControlRoot(), Cond, 1735 DAG.getBasicBlock(CB.TrueBB)); 1736 1737 // Insert the false branch. Do this even if it's a fall through branch, 1738 // this makes it easier to do DAG optimizations which require inverting 1739 // the branch condition. 1740 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1741 DAG.getBasicBlock(CB.FalseBB)); 1742 1743 DAG.setRoot(BrCond); 1744 } 1745 1746 /// visitJumpTable - Emit JumpTable node in the current MBB 1747 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1748 // Emit the code for the jump table 1749 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1750 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(); 1751 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 1752 JT.Reg, PTy); 1753 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1754 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 1755 MVT::Other, Index.getValue(1), 1756 Table, Index); 1757 DAG.setRoot(BrJumpTable); 1758 } 1759 1760 /// visitJumpTableHeader - This function emits necessary code to produce index 1761 /// in the JumpTable from switch case. 1762 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1763 JumpTableHeader &JTH, 1764 MachineBasicBlock *SwitchBB) { 1765 SDLoc dl = getCurSDLoc(); 1766 1767 // Subtract the lowest switch case value from the value being switched on and 1768 // conditional branch to default mbb if the result is greater than the 1769 // difference between smallest and largest cases. 1770 SDValue SwitchOp = getValue(JTH.SValue); 1771 EVT VT = SwitchOp.getValueType(); 1772 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1773 DAG.getConstant(JTH.First, dl, VT)); 1774 1775 // The SDNode we just created, which holds the value being switched on minus 1776 // the smallest case value, needs to be copied to a virtual register so it 1777 // can be used as an index into the jump table in a subsequent basic block. 1778 // This value may be smaller or larger than the target's pointer type, and 1779 // therefore require extension or truncating. 1780 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1781 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy()); 1782 1783 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1784 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 1785 JumpTableReg, SwitchOp); 1786 JT.Reg = JumpTableReg; 1787 1788 // Emit the range check for the jump table, and branch to the default block 1789 // for the switch statement if the value being switched on exceeds the largest 1790 // case in the switch. 1791 SDValue CMP = 1792 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1793 Sub.getValueType()), 1794 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), 1795 ISD::SETUGT); 1796 1797 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1798 MVT::Other, CopyTo, CMP, 1799 DAG.getBasicBlock(JT.Default)); 1800 1801 // Avoid emitting unnecessary branches to the next block. 1802 if (JT.MBB != NextBlock(SwitchBB)) 1803 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1804 DAG.getBasicBlock(JT.MBB)); 1805 1806 DAG.setRoot(BrCond); 1807 } 1808 1809 /// Codegen a new tail for a stack protector check ParentMBB which has had its 1810 /// tail spliced into a stack protector check success bb. 1811 /// 1812 /// For a high level explanation of how this fits into the stack protector 1813 /// generation see the comment on the declaration of class 1814 /// StackProtectorDescriptor. 1815 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 1816 MachineBasicBlock *ParentBB) { 1817 1818 // First create the loads to the guard/stack slot for the comparison. 1819 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1820 EVT PtrTy = TLI.getPointerTy(); 1821 1822 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo(); 1823 int FI = MFI->getStackProtectorIndex(); 1824 1825 const Value *IRGuard = SPD.getGuard(); 1826 SDValue GuardPtr = getValue(IRGuard); 1827 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 1828 1829 unsigned Align = 1830 TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType()); 1831 1832 SDValue Guard; 1833 SDLoc dl = getCurSDLoc(); 1834 1835 // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the 1836 // guard value from the virtual register holding the value. Otherwise, emit a 1837 // volatile load to retrieve the stack guard value. 1838 unsigned GuardReg = SPD.getGuardReg(); 1839 1840 if (GuardReg && TLI.useLoadStackGuardNode()) 1841 Guard = DAG.getCopyFromReg(DAG.getEntryNode(), dl, GuardReg, 1842 PtrTy); 1843 else 1844 Guard = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1845 GuardPtr, MachinePointerInfo(IRGuard, 0), 1846 true, false, false, Align); 1847 1848 SDValue StackSlot = DAG.getLoad(PtrTy, dl, DAG.getEntryNode(), 1849 StackSlotPtr, 1850 MachinePointerInfo::getFixedStack(FI), 1851 true, false, false, Align); 1852 1853 // Perform the comparison via a subtract/getsetcc. 1854 EVT VT = Guard.getValueType(); 1855 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, StackSlot); 1856 1857 SDValue Cmp = 1858 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1859 Sub.getValueType()), 1860 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE); 1861 1862 // If the sub is not 0, then we know the guard/stackslot do not equal, so 1863 // branch to failure MBB. 1864 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1865 MVT::Other, StackSlot.getOperand(0), 1866 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 1867 // Otherwise branch to success MBB. 1868 SDValue Br = DAG.getNode(ISD::BR, dl, 1869 MVT::Other, BrCond, 1870 DAG.getBasicBlock(SPD.getSuccessMBB())); 1871 1872 DAG.setRoot(Br); 1873 } 1874 1875 /// Codegen the failure basic block for a stack protector check. 1876 /// 1877 /// A failure stack protector machine basic block consists simply of a call to 1878 /// __stack_chk_fail(). 1879 /// 1880 /// For a high level explanation of how this fits into the stack protector 1881 /// generation see the comment on the declaration of class 1882 /// StackProtectorDescriptor. 1883 void 1884 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 1885 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1886 SDValue Chain = 1887 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 1888 nullptr, 0, false, getCurSDLoc(), false, false).second; 1889 DAG.setRoot(Chain); 1890 } 1891 1892 /// visitBitTestHeader - This function emits necessary code to produce value 1893 /// suitable for "bit tests" 1894 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1895 MachineBasicBlock *SwitchBB) { 1896 SDLoc dl = getCurSDLoc(); 1897 1898 // Subtract the minimum value 1899 SDValue SwitchOp = getValue(B.SValue); 1900 EVT VT = SwitchOp.getValueType(); 1901 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 1902 DAG.getConstant(B.First, dl, VT)); 1903 1904 // Check range 1905 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1906 SDValue RangeCmp = 1907 DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), 1908 Sub.getValueType()), 1909 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT); 1910 1911 // Determine the type of the test operands. 1912 bool UsePtrType = false; 1913 if (!TLI.isTypeLegal(VT)) 1914 UsePtrType = true; 1915 else { 1916 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1917 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1918 // Switch table case range are encoded into series of masks. 1919 // Just use pointer type, it's guaranteed to fit. 1920 UsePtrType = true; 1921 break; 1922 } 1923 } 1924 if (UsePtrType) { 1925 VT = TLI.getPointerTy(); 1926 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 1927 } 1928 1929 B.RegVT = VT.getSimpleVT(); 1930 B.Reg = FuncInfo.CreateReg(B.RegVT); 1931 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 1932 1933 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1934 1935 addSuccessorWithWeight(SwitchBB, B.Default); 1936 addSuccessorWithWeight(SwitchBB, MBB); 1937 1938 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl, 1939 MVT::Other, CopyTo, RangeCmp, 1940 DAG.getBasicBlock(B.Default)); 1941 1942 // Avoid emitting unnecessary branches to the next block. 1943 if (MBB != NextBlock(SwitchBB)) 1944 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange, 1945 DAG.getBasicBlock(MBB)); 1946 1947 DAG.setRoot(BrRange); 1948 } 1949 1950 /// visitBitTestCase - this function produces one "bit test" 1951 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1952 MachineBasicBlock* NextMBB, 1953 uint32_t BranchWeightToNext, 1954 unsigned Reg, 1955 BitTestCase &B, 1956 MachineBasicBlock *SwitchBB) { 1957 SDLoc dl = getCurSDLoc(); 1958 MVT VT = BB.RegVT; 1959 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 1960 SDValue Cmp; 1961 unsigned PopCount = countPopulation(B.Mask); 1962 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1963 if (PopCount == 1) { 1964 // Testing for a single bit; just compare the shift count with what it 1965 // would need to be to shift a 1 bit in that position. 1966 Cmp = DAG.getSetCC( 1967 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1968 DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), ISD::SETEQ); 1969 } else if (PopCount == BB.Range) { 1970 // There is only one zero bit in the range, test for it directly. 1971 Cmp = DAG.getSetCC( 1972 dl, TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp, 1973 DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), ISD::SETNE); 1974 } else { 1975 // Make desired shift 1976 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 1977 DAG.getConstant(1, dl, VT), ShiftOp); 1978 1979 // Emit bit tests and jumps 1980 SDValue AndOp = DAG.getNode(ISD::AND, dl, 1981 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 1982 Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp, 1983 DAG.getConstant(0, dl, VT), ISD::SETNE); 1984 } 1985 1986 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1987 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1988 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1989 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1990 1991 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 1992 MVT::Other, getControlRoot(), 1993 Cmp, DAG.getBasicBlock(B.TargetBB)); 1994 1995 // Avoid emitting unnecessary branches to the next block. 1996 if (NextMBB != NextBlock(SwitchBB)) 1997 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 1998 DAG.getBasicBlock(NextMBB)); 1999 2000 DAG.setRoot(BrAnd); 2001 } 2002 2003 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2004 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2005 2006 // Retrieve successors. 2007 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2008 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 2009 2010 const Value *Callee(I.getCalledValue()); 2011 const Function *Fn = dyn_cast<Function>(Callee); 2012 if (isa<InlineAsm>(Callee)) 2013 visitInlineAsm(&I); 2014 else if (Fn && Fn->isIntrinsic()) { 2015 switch (Fn->getIntrinsicID()) { 2016 default: 2017 llvm_unreachable("Cannot invoke this intrinsic"); 2018 case Intrinsic::donothing: 2019 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2020 break; 2021 case Intrinsic::experimental_patchpoint_void: 2022 case Intrinsic::experimental_patchpoint_i64: 2023 visitPatchpoint(&I, LandingPad); 2024 break; 2025 case Intrinsic::experimental_gc_statepoint: 2026 LowerStatepoint(ImmutableStatepoint(&I), LandingPad); 2027 break; 2028 } 2029 } else 2030 LowerCallTo(&I, getValue(Callee), false, LandingPad); 2031 2032 // If the value of the invoke is used outside of its defining block, make it 2033 // available as a virtual register. 2034 // We already took care of the exported value for the statepoint instruction 2035 // during call to the LowerStatepoint. 2036 if (!isStatepoint(I)) { 2037 CopyToExportRegsIfNeeded(&I); 2038 } 2039 2040 // Update successor info 2041 addSuccessorWithWeight(InvokeMBB, Return); 2042 addSuccessorWithWeight(InvokeMBB, LandingPad); 2043 2044 // Drop into normal successor. 2045 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2046 MVT::Other, getControlRoot(), 2047 DAG.getBasicBlock(Return))); 2048 } 2049 2050 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2051 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2052 } 2053 2054 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2055 assert(FuncInfo.MBB->isLandingPad() && 2056 "Call to landingpad not in landing pad!"); 2057 2058 MachineBasicBlock *MBB = FuncInfo.MBB; 2059 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 2060 AddLandingPadInfo(LP, MMI, MBB); 2061 2062 // If there aren't registers to copy the values into (e.g., during SjLj 2063 // exceptions), then don't bother to create these DAG nodes. 2064 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2065 if (TLI.getExceptionPointerRegister() == 0 && 2066 TLI.getExceptionSelectorRegister() == 0) 2067 return; 2068 2069 SmallVector<EVT, 2> ValueVTs; 2070 SDLoc dl = getCurSDLoc(); 2071 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 2072 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2073 2074 // Get the two live-in registers as SDValues. The physregs have already been 2075 // copied into virtual registers. 2076 SDValue Ops[2]; 2077 if (FuncInfo.ExceptionPointerVirtReg) { 2078 Ops[0] = DAG.getZExtOrTrunc( 2079 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2080 FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()), 2081 dl, ValueVTs[0]); 2082 } else { 2083 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy()); 2084 } 2085 Ops[1] = DAG.getZExtOrTrunc( 2086 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 2087 FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()), 2088 dl, ValueVTs[1]); 2089 2090 // Merge into one. 2091 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 2092 DAG.getVTList(ValueVTs), Ops); 2093 setValue(&LP, Res); 2094 } 2095 2096 unsigned 2097 SelectionDAGBuilder::visitLandingPadClauseBB(GlobalValue *ClauseGV, 2098 MachineBasicBlock *LPadBB) { 2099 SDValue Chain = getControlRoot(); 2100 SDLoc dl = getCurSDLoc(); 2101 2102 // Get the typeid that we will dispatch on later. 2103 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2104 const TargetRegisterClass *RC = TLI.getRegClassFor(TLI.getPointerTy()); 2105 unsigned VReg = FuncInfo.MF->getRegInfo().createVirtualRegister(RC); 2106 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(ClauseGV); 2107 SDValue Sel = DAG.getConstant(TypeID, dl, TLI.getPointerTy()); 2108 Chain = DAG.getCopyToReg(Chain, dl, VReg, Sel); 2109 2110 // Branch to the main landing pad block. 2111 MachineBasicBlock *ClauseMBB = FuncInfo.MBB; 2112 ClauseMBB->addSuccessor(LPadBB); 2113 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, Chain, 2114 DAG.getBasicBlock(LPadBB))); 2115 return VReg; 2116 } 2117 2118 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) { 2119 #ifndef NDEBUG 2120 for (const CaseCluster &CC : Clusters) 2121 assert(CC.Low == CC.High && "Input clusters must be single-case"); 2122 #endif 2123 2124 std::sort(Clusters.begin(), Clusters.end(), 2125 [](const CaseCluster &a, const CaseCluster &b) { 2126 return a.Low->getValue().slt(b.Low->getValue()); 2127 }); 2128 2129 // Merge adjacent clusters with the same destination. 2130 const unsigned N = Clusters.size(); 2131 unsigned DstIndex = 0; 2132 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) { 2133 CaseCluster &CC = Clusters[SrcIndex]; 2134 const ConstantInt *CaseVal = CC.Low; 2135 MachineBasicBlock *Succ = CC.MBB; 2136 2137 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ && 2138 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) { 2139 // If this case has the same successor and is a neighbour, merge it into 2140 // the previous cluster. 2141 Clusters[DstIndex - 1].High = CaseVal; 2142 Clusters[DstIndex - 1].Weight += CC.Weight; 2143 assert(Clusters[DstIndex - 1].Weight >= CC.Weight && "Weight overflow!"); 2144 } else { 2145 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex], 2146 sizeof(Clusters[SrcIndex])); 2147 } 2148 } 2149 Clusters.resize(DstIndex); 2150 } 2151 2152 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2153 MachineBasicBlock *Last) { 2154 // Update JTCases. 2155 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2156 if (JTCases[i].first.HeaderBB == First) 2157 JTCases[i].first.HeaderBB = Last; 2158 2159 // Update BitTestCases. 2160 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2161 if (BitTestCases[i].Parent == First) 2162 BitTestCases[i].Parent = Last; 2163 } 2164 2165 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2166 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2167 2168 // Update machine-CFG edges with unique successors. 2169 SmallSet<BasicBlock*, 32> Done; 2170 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 2171 BasicBlock *BB = I.getSuccessor(i); 2172 bool Inserted = Done.insert(BB).second; 2173 if (!Inserted) 2174 continue; 2175 2176 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 2177 addSuccessorWithWeight(IndirectBrMBB, Succ); 2178 } 2179 2180 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 2181 MVT::Other, getControlRoot(), 2182 getValue(I.getAddress()))); 2183 } 2184 2185 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 2186 if (DAG.getTarget().Options.TrapUnreachable) 2187 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 2188 } 2189 2190 void SelectionDAGBuilder::visitFSub(const User &I) { 2191 // -0.0 - X --> fneg 2192 Type *Ty = I.getType(); 2193 if (isa<Constant>(I.getOperand(0)) && 2194 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2195 SDValue Op2 = getValue(I.getOperand(1)); 2196 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(), 2197 Op2.getValueType(), Op2)); 2198 return; 2199 } 2200 2201 visitBinary(I, ISD::FSUB); 2202 } 2203 2204 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2205 SDValue Op1 = getValue(I.getOperand(0)); 2206 SDValue Op2 = getValue(I.getOperand(1)); 2207 2208 bool nuw = false; 2209 bool nsw = false; 2210 bool exact = false; 2211 if (const OverflowingBinaryOperator *OFBinOp = 2212 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2213 nuw = OFBinOp->hasNoUnsignedWrap(); 2214 nsw = OFBinOp->hasNoSignedWrap(); 2215 } 2216 if (const PossiblyExactOperator *ExactOp = 2217 dyn_cast<const PossiblyExactOperator>(&I)) 2218 exact = ExactOp->isExact(); 2219 2220 SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(), 2221 Op1, Op2, nuw, nsw, exact); 2222 setValue(&I, BinNodeValue); 2223 } 2224 2225 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2226 SDValue Op1 = getValue(I.getOperand(0)); 2227 SDValue Op2 = getValue(I.getOperand(1)); 2228 2229 EVT ShiftTy = 2230 DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType()); 2231 2232 // Coerce the shift amount to the right type if we can. 2233 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2234 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2235 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2236 SDLoc DL = getCurSDLoc(); 2237 2238 // If the operand is smaller than the shift count type, promote it. 2239 if (ShiftSize > Op2Size) 2240 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2241 2242 // If the operand is larger than the shift count type but the shift 2243 // count type has enough bits to represent any shift value, truncate 2244 // it now. This is a common case and it exposes the truncate to 2245 // optimization early. 2246 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2247 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2248 // Otherwise we'll need to temporarily settle for some other convenient 2249 // type. Type legalization will make adjustments once the shiftee is split. 2250 else 2251 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2252 } 2253 2254 bool nuw = false; 2255 bool nsw = false; 2256 bool exact = false; 2257 2258 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 2259 2260 if (const OverflowingBinaryOperator *OFBinOp = 2261 dyn_cast<const OverflowingBinaryOperator>(&I)) { 2262 nuw = OFBinOp->hasNoUnsignedWrap(); 2263 nsw = OFBinOp->hasNoSignedWrap(); 2264 } 2265 if (const PossiblyExactOperator *ExactOp = 2266 dyn_cast<const PossiblyExactOperator>(&I)) 2267 exact = ExactOp->isExact(); 2268 } 2269 2270 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 2271 nuw, nsw, exact); 2272 setValue(&I, Res); 2273 } 2274 2275 void SelectionDAGBuilder::visitSDiv(const User &I) { 2276 SDValue Op1 = getValue(I.getOperand(0)); 2277 SDValue Op2 = getValue(I.getOperand(1)); 2278 2279 // Turn exact SDivs into multiplications. 2280 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2281 // exact bit. 2282 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2283 !isa<ConstantSDNode>(Op1) && 2284 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2285 setValue(&I, DAG.getTargetLoweringInfo() 2286 .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG)); 2287 else 2288 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), 2289 Op1, Op2)); 2290 } 2291 2292 void SelectionDAGBuilder::visitICmp(const User &I) { 2293 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2294 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2295 predicate = IC->getPredicate(); 2296 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2297 predicate = ICmpInst::Predicate(IC->getPredicate()); 2298 SDValue Op1 = getValue(I.getOperand(0)); 2299 SDValue Op2 = getValue(I.getOperand(1)); 2300 ISD::CondCode Opcode = getICmpCondCode(predicate); 2301 2302 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2303 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 2304 } 2305 2306 void SelectionDAGBuilder::visitFCmp(const User &I) { 2307 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2308 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2309 predicate = FC->getPredicate(); 2310 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2311 predicate = FCmpInst::Predicate(FC->getPredicate()); 2312 SDValue Op1 = getValue(I.getOperand(0)); 2313 SDValue Op2 = getValue(I.getOperand(1)); 2314 ISD::CondCode Condition = getFCmpCondCode(predicate); 2315 if (TM.Options.NoNaNsFPMath) 2316 Condition = getFCmpCodeWithoutNaN(Condition); 2317 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2318 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 2319 } 2320 2321 void SelectionDAGBuilder::visitSelect(const User &I) { 2322 SmallVector<EVT, 4> ValueVTs; 2323 ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs); 2324 unsigned NumValues = ValueVTs.size(); 2325 if (NumValues == 0) return; 2326 2327 SmallVector<SDValue, 4> Values(NumValues); 2328 SDValue Cond = getValue(I.getOperand(0)); 2329 SDValue TrueVal = getValue(I.getOperand(1)); 2330 SDValue FalseVal = getValue(I.getOperand(2)); 2331 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2332 ISD::VSELECT : ISD::SELECT; 2333 2334 for (unsigned i = 0; i != NumValues; ++i) 2335 Values[i] = DAG.getNode(OpCode, getCurSDLoc(), 2336 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2337 Cond, 2338 SDValue(TrueVal.getNode(), 2339 TrueVal.getResNo() + i), 2340 SDValue(FalseVal.getNode(), 2341 FalseVal.getResNo() + i)); 2342 2343 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2344 DAG.getVTList(ValueVTs), Values)); 2345 } 2346 2347 void SelectionDAGBuilder::visitTrunc(const User &I) { 2348 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2349 SDValue N = getValue(I.getOperand(0)); 2350 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2351 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 2352 } 2353 2354 void SelectionDAGBuilder::visitZExt(const User &I) { 2355 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2356 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2357 SDValue N = getValue(I.getOperand(0)); 2358 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2359 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 2360 } 2361 2362 void SelectionDAGBuilder::visitSExt(const User &I) { 2363 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2364 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2365 SDValue N = getValue(I.getOperand(0)); 2366 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2367 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 2368 } 2369 2370 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2371 // FPTrunc is never a no-op cast, no need to check 2372 SDValue N = getValue(I.getOperand(0)); 2373 SDLoc dl = getCurSDLoc(); 2374 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2375 EVT DestVT = TLI.getValueType(I.getType()); 2376 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 2377 DAG.getTargetConstant(0, dl, TLI.getPointerTy()))); 2378 } 2379 2380 void SelectionDAGBuilder::visitFPExt(const User &I) { 2381 // FPExt is never a no-op cast, no need to check 2382 SDValue N = getValue(I.getOperand(0)); 2383 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2384 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 2385 } 2386 2387 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2388 // FPToUI is never a no-op cast, no need to check 2389 SDValue N = getValue(I.getOperand(0)); 2390 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2391 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 2392 } 2393 2394 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2395 // FPToSI is never a no-op cast, no need to check 2396 SDValue N = getValue(I.getOperand(0)); 2397 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2398 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 2399 } 2400 2401 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2402 // UIToFP is never a no-op cast, no need to check 2403 SDValue N = getValue(I.getOperand(0)); 2404 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2405 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 2406 } 2407 2408 void SelectionDAGBuilder::visitSIToFP(const User &I) { 2409 // SIToFP is never a no-op cast, no need to check 2410 SDValue N = getValue(I.getOperand(0)); 2411 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2412 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 2413 } 2414 2415 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2416 // What to do depends on the size of the integer and the size of the pointer. 2417 // We can either truncate, zero extend, or no-op, accordingly. 2418 SDValue N = getValue(I.getOperand(0)); 2419 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2420 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2421 } 2422 2423 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2424 // What to do depends on the size of the integer and the size of the pointer. 2425 // We can either truncate, zero extend, or no-op, accordingly. 2426 SDValue N = getValue(I.getOperand(0)); 2427 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2428 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT)); 2429 } 2430 2431 void SelectionDAGBuilder::visitBitCast(const User &I) { 2432 SDValue N = getValue(I.getOperand(0)); 2433 SDLoc dl = getCurSDLoc(); 2434 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType()); 2435 2436 // BitCast assures us that source and destination are the same size so this is 2437 // either a BITCAST or a no-op. 2438 if (DestVT != N.getValueType()) 2439 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 2440 DestVT, N)); // convert types. 2441 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 2442 // might fold any kind of constant expression to an integer constant and that 2443 // is not what we are looking for. Only regcognize a bitcast of a genuine 2444 // constant integer as an opaque constant. 2445 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 2446 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 2447 /*isOpaque*/true)); 2448 else 2449 setValue(&I, N); // noop cast. 2450 } 2451 2452 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 2453 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2454 const Value *SV = I.getOperand(0); 2455 SDValue N = getValue(SV); 2456 EVT DestVT = TLI.getValueType(I.getType()); 2457 2458 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 2459 unsigned DestAS = I.getType()->getPointerAddressSpace(); 2460 2461 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS)) 2462 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 2463 2464 setValue(&I, N); 2465 } 2466 2467 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2468 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2469 SDValue InVec = getValue(I.getOperand(0)); 2470 SDValue InVal = getValue(I.getOperand(1)); 2471 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), 2472 getCurSDLoc(), TLI.getVectorIdxTy()); 2473 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 2474 TLI.getValueType(I.getType()), InVec, InVal, InIdx)); 2475 } 2476 2477 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2478 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2479 SDValue InVec = getValue(I.getOperand(0)); 2480 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), 2481 getCurSDLoc(), TLI.getVectorIdxTy()); 2482 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 2483 TLI.getValueType(I.getType()), InVec, InIdx)); 2484 } 2485 2486 // Utility for visitShuffleVector - Return true if every element in Mask, 2487 // beginning from position Pos and ending in Pos+Size, falls within the 2488 // specified sequential range [L, L+Pos). or is undef. 2489 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2490 unsigned Pos, unsigned Size, int Low) { 2491 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2492 if (Mask[i] >= 0 && Mask[i] != Low) 2493 return false; 2494 return true; 2495 } 2496 2497 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2498 SDValue Src1 = getValue(I.getOperand(0)); 2499 SDValue Src2 = getValue(I.getOperand(1)); 2500 2501 SmallVector<int, 8> Mask; 2502 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2503 unsigned MaskNumElts = Mask.size(); 2504 2505 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2506 EVT VT = TLI.getValueType(I.getType()); 2507 EVT SrcVT = Src1.getValueType(); 2508 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2509 2510 if (SrcNumElts == MaskNumElts) { 2511 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2512 &Mask[0])); 2513 return; 2514 } 2515 2516 // Normalize the shuffle vector since mask and vector length don't match. 2517 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2518 // Mask is longer than the source vectors and is a multiple of the source 2519 // vectors. We can use concatenate vector to make the mask and vectors 2520 // lengths match. 2521 if (SrcNumElts*2 == MaskNumElts) { 2522 // First check for Src1 in low and Src2 in high 2523 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2524 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2525 // The shuffle is concatenating two vectors together. 2526 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2527 VT, Src1, Src2)); 2528 return; 2529 } 2530 // Then check for Src2 in low and Src1 in high 2531 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2532 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2533 // The shuffle is concatenating two vectors together. 2534 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(), 2535 VT, Src2, Src1)); 2536 return; 2537 } 2538 } 2539 2540 // Pad both vectors with undefs to make them the same length as the mask. 2541 unsigned NumConcat = MaskNumElts / SrcNumElts; 2542 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2543 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2544 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2545 2546 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2547 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2548 MOps1[0] = Src1; 2549 MOps2[0] = Src2; 2550 2551 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2552 getCurSDLoc(), VT, MOps1); 2553 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2554 getCurSDLoc(), VT, MOps2); 2555 2556 // Readjust mask for new input vector length. 2557 SmallVector<int, 8> MappedOps; 2558 for (unsigned i = 0; i != MaskNumElts; ++i) { 2559 int Idx = Mask[i]; 2560 if (Idx >= (int)SrcNumElts) 2561 Idx -= SrcNumElts - MaskNumElts; 2562 MappedOps.push_back(Idx); 2563 } 2564 2565 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2566 &MappedOps[0])); 2567 return; 2568 } 2569 2570 if (SrcNumElts > MaskNumElts) { 2571 // Analyze the access pattern of the vector to see if we can extract 2572 // two subvectors and do the shuffle. The analysis is done by calculating 2573 // the range of elements the mask access on both vectors. 2574 int MinRange[2] = { static_cast<int>(SrcNumElts), 2575 static_cast<int>(SrcNumElts)}; 2576 int MaxRange[2] = {-1, -1}; 2577 2578 for (unsigned i = 0; i != MaskNumElts; ++i) { 2579 int Idx = Mask[i]; 2580 unsigned Input = 0; 2581 if (Idx < 0) 2582 continue; 2583 2584 if (Idx >= (int)SrcNumElts) { 2585 Input = 1; 2586 Idx -= SrcNumElts; 2587 } 2588 if (Idx > MaxRange[Input]) 2589 MaxRange[Input] = Idx; 2590 if (Idx < MinRange[Input]) 2591 MinRange[Input] = Idx; 2592 } 2593 2594 // Check if the access is smaller than the vector size and can we find 2595 // a reasonable extract index. 2596 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2597 // Extract. 2598 int StartIdx[2]; // StartIdx to extract from 2599 for (unsigned Input = 0; Input < 2; ++Input) { 2600 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2601 RangeUse[Input] = 0; // Unused 2602 StartIdx[Input] = 0; 2603 continue; 2604 } 2605 2606 // Find a good start index that is a multiple of the mask length. Then 2607 // see if the rest of the elements are in range. 2608 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2609 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2610 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2611 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2612 } 2613 2614 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2615 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2616 return; 2617 } 2618 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2619 // Extract appropriate subvector and generate a vector shuffle 2620 for (unsigned Input = 0; Input < 2; ++Input) { 2621 SDValue &Src = Input == 0 ? Src1 : Src2; 2622 if (RangeUse[Input] == 0) 2623 Src = DAG.getUNDEF(VT); 2624 else { 2625 SDLoc dl = getCurSDLoc(); 2626 Src = DAG.getNode( 2627 ISD::EXTRACT_SUBVECTOR, dl, VT, Src, 2628 DAG.getConstant(StartIdx[Input], dl, TLI.getVectorIdxTy())); 2629 } 2630 } 2631 2632 // Calculate new mask. 2633 SmallVector<int, 8> MappedOps; 2634 for (unsigned i = 0; i != MaskNumElts; ++i) { 2635 int Idx = Mask[i]; 2636 if (Idx >= 0) { 2637 if (Idx < (int)SrcNumElts) 2638 Idx -= StartIdx[0]; 2639 else 2640 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 2641 } 2642 MappedOps.push_back(Idx); 2643 } 2644 2645 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2, 2646 &MappedOps[0])); 2647 return; 2648 } 2649 } 2650 2651 // We can't use either concat vectors or extract subvectors so fall back to 2652 // replacing the shuffle with extract and build vector. 2653 // to insert and build vector. 2654 EVT EltVT = VT.getVectorElementType(); 2655 EVT IdxVT = TLI.getVectorIdxTy(); 2656 SDLoc dl = getCurSDLoc(); 2657 SmallVector<SDValue,8> Ops; 2658 for (unsigned i = 0; i != MaskNumElts; ++i) { 2659 int Idx = Mask[i]; 2660 SDValue Res; 2661 2662 if (Idx < 0) { 2663 Res = DAG.getUNDEF(EltVT); 2664 } else { 2665 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 2666 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 2667 2668 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, 2669 EltVT, Src, DAG.getConstant(Idx, dl, IdxVT)); 2670 } 2671 2672 Ops.push_back(Res); 2673 } 2674 2675 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops)); 2676 } 2677 2678 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2679 const Value *Op0 = I.getOperand(0); 2680 const Value *Op1 = I.getOperand(1); 2681 Type *AggTy = I.getType(); 2682 Type *ValTy = Op1->getType(); 2683 bool IntoUndef = isa<UndefValue>(Op0); 2684 bool FromUndef = isa<UndefValue>(Op1); 2685 2686 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2687 2688 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2689 SmallVector<EVT, 4> AggValueVTs; 2690 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2691 SmallVector<EVT, 4> ValValueVTs; 2692 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2693 2694 unsigned NumAggValues = AggValueVTs.size(); 2695 unsigned NumValValues = ValValueVTs.size(); 2696 SmallVector<SDValue, 4> Values(NumAggValues); 2697 2698 // Ignore an insertvalue that produces an empty object 2699 if (!NumAggValues) { 2700 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2701 return; 2702 } 2703 2704 SDValue Agg = getValue(Op0); 2705 unsigned i = 0; 2706 // Copy the beginning value(s) from the original aggregate. 2707 for (; i != LinearIndex; ++i) 2708 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2709 SDValue(Agg.getNode(), Agg.getResNo() + i); 2710 // Copy values from the inserted value(s). 2711 if (NumValValues) { 2712 SDValue Val = getValue(Op1); 2713 for (; i != LinearIndex + NumValValues; ++i) 2714 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2715 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2716 } 2717 // Copy remaining value(s) from the original aggregate. 2718 for (; i != NumAggValues; ++i) 2719 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2720 SDValue(Agg.getNode(), Agg.getResNo() + i); 2721 2722 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2723 DAG.getVTList(AggValueVTs), Values)); 2724 } 2725 2726 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 2727 const Value *Op0 = I.getOperand(0); 2728 Type *AggTy = Op0->getType(); 2729 Type *ValTy = I.getType(); 2730 bool OutOfUndef = isa<UndefValue>(Op0); 2731 2732 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2733 2734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2735 SmallVector<EVT, 4> ValValueVTs; 2736 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2737 2738 unsigned NumValValues = ValValueVTs.size(); 2739 2740 // Ignore a extractvalue that produces an empty object 2741 if (!NumValValues) { 2742 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 2743 return; 2744 } 2745 2746 SmallVector<SDValue, 4> Values(NumValValues); 2747 2748 SDValue Agg = getValue(Op0); 2749 // Copy out the selected value(s). 2750 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 2751 Values[i - LinearIndex] = 2752 OutOfUndef ? 2753 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 2754 SDValue(Agg.getNode(), Agg.getResNo() + i); 2755 2756 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 2757 DAG.getVTList(ValValueVTs), Values)); 2758 } 2759 2760 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 2761 Value *Op0 = I.getOperand(0); 2762 // Note that the pointer operand may be a vector of pointers. Take the scalar 2763 // element which holds a pointer. 2764 Type *Ty = Op0->getType()->getScalarType(); 2765 unsigned AS = Ty->getPointerAddressSpace(); 2766 SDValue N = getValue(Op0); 2767 SDLoc dl = getCurSDLoc(); 2768 2769 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 2770 OI != E; ++OI) { 2771 const Value *Idx = *OI; 2772 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 2773 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 2774 if (Field) { 2775 // N = N + Offset 2776 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 2777 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 2778 DAG.getConstant(Offset, dl, N.getValueType())); 2779 } 2780 2781 Ty = StTy->getElementType(Field); 2782 } else { 2783 Ty = cast<SequentialType>(Ty)->getElementType(); 2784 MVT PtrTy = DAG.getTargetLoweringInfo().getPointerTy(AS); 2785 unsigned PtrSize = PtrTy.getSizeInBits(); 2786 APInt ElementSize(PtrSize, DL->getTypeAllocSize(Ty)); 2787 2788 // If this is a constant subscript, handle it quickly. 2789 if (const auto *CI = dyn_cast<ConstantInt>(Idx)) { 2790 if (CI->isZero()) 2791 continue; 2792 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(PtrSize); 2793 SDValue OffsVal = DAG.getConstant(Offs, dl, PtrTy); 2794 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal); 2795 continue; 2796 } 2797 2798 // N = N + Idx * ElementSize; 2799 SDValue IdxN = getValue(Idx); 2800 2801 // If the index is smaller or larger than intptr_t, truncate or extend 2802 // it. 2803 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 2804 2805 // If this is a multiply by a power of two, turn it into a shl 2806 // immediately. This is a very common case. 2807 if (ElementSize != 1) { 2808 if (ElementSize.isPowerOf2()) { 2809 unsigned Amt = ElementSize.logBase2(); 2810 IdxN = DAG.getNode(ISD::SHL, dl, 2811 N.getValueType(), IdxN, 2812 DAG.getConstant(Amt, dl, IdxN.getValueType())); 2813 } else { 2814 SDValue Scale = DAG.getConstant(ElementSize, dl, IdxN.getValueType()); 2815 IdxN = DAG.getNode(ISD::MUL, dl, 2816 N.getValueType(), IdxN, Scale); 2817 } 2818 } 2819 2820 N = DAG.getNode(ISD::ADD, dl, 2821 N.getValueType(), N, IdxN); 2822 } 2823 } 2824 2825 setValue(&I, N); 2826 } 2827 2828 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 2829 // If this is a fixed sized alloca in the entry block of the function, 2830 // allocate it statically on the stack. 2831 if (FuncInfo.StaticAllocaMap.count(&I)) 2832 return; // getValue will auto-populate this. 2833 2834 SDLoc dl = getCurSDLoc(); 2835 Type *Ty = I.getAllocatedType(); 2836 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2837 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 2838 unsigned Align = 2839 std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), 2840 I.getAlignment()); 2841 2842 SDValue AllocSize = getValue(I.getArraySize()); 2843 2844 EVT IntPtr = TLI.getPointerTy(); 2845 if (AllocSize.getValueType() != IntPtr) 2846 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 2847 2848 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 2849 AllocSize, 2850 DAG.getConstant(TySize, dl, IntPtr)); 2851 2852 // Handle alignment. If the requested alignment is less than or equal to 2853 // the stack alignment, ignore it. If the size is greater than or equal to 2854 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 2855 unsigned StackAlign = 2856 DAG.getSubtarget().getFrameLowering()->getStackAlignment(); 2857 if (Align <= StackAlign) 2858 Align = 0; 2859 2860 // Round the size of the allocation up to the stack alignment size 2861 // by add SA-1 to the size. 2862 AllocSize = DAG.getNode(ISD::ADD, dl, 2863 AllocSize.getValueType(), AllocSize, 2864 DAG.getIntPtrConstant(StackAlign - 1, dl)); 2865 2866 // Mask out the low bits for alignment purposes. 2867 AllocSize = DAG.getNode(ISD::AND, dl, 2868 AllocSize.getValueType(), AllocSize, 2869 DAG.getIntPtrConstant(~(uint64_t)(StackAlign - 1), 2870 dl)); 2871 2872 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align, dl) }; 2873 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 2874 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 2875 setValue(&I, DSA); 2876 DAG.setRoot(DSA.getValue(1)); 2877 2878 assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects()); 2879 } 2880 2881 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 2882 if (I.isAtomic()) 2883 return visitAtomicLoad(I); 2884 2885 const Value *SV = I.getOperand(0); 2886 SDValue Ptr = getValue(SV); 2887 2888 Type *Ty = I.getType(); 2889 2890 bool isVolatile = I.isVolatile(); 2891 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2892 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr; 2893 unsigned Alignment = I.getAlignment(); 2894 2895 AAMDNodes AAInfo; 2896 I.getAAMetadata(AAInfo); 2897 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 2898 2899 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2900 SmallVector<EVT, 4> ValueVTs; 2901 SmallVector<uint64_t, 4> Offsets; 2902 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 2903 unsigned NumValues = ValueVTs.size(); 2904 if (NumValues == 0) 2905 return; 2906 2907 SDValue Root; 2908 bool ConstantMemory = false; 2909 if (isVolatile || NumValues > MaxParallelChains) 2910 // Serialize volatile loads with other side effects. 2911 Root = getRoot(); 2912 else if (AA->pointsToConstantMemory( 2913 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) { 2914 // Do not serialize (non-volatile) loads of constant memory with anything. 2915 Root = DAG.getEntryNode(); 2916 ConstantMemory = true; 2917 } else { 2918 // Do not serialize non-volatile loads against each other. 2919 Root = DAG.getRoot(); 2920 } 2921 2922 SDLoc dl = getCurSDLoc(); 2923 2924 if (isVolatile) 2925 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 2926 2927 SmallVector<SDValue, 4> Values(NumValues); 2928 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2929 NumValues)); 2930 EVT PtrVT = Ptr.getValueType(); 2931 unsigned ChainI = 0; 2932 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 2933 // Serializing loads here may result in excessive register pressure, and 2934 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 2935 // could recover a bit by hoisting nodes upward in the chain by recognizing 2936 // they are side-effect free or do not alias. The optimizer should really 2937 // avoid this case by converting large object/array copies to llvm.memcpy 2938 // (MaxParallelChains should always remain as failsafe). 2939 if (ChainI == MaxParallelChains) { 2940 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 2941 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2942 makeArrayRef(Chains.data(), ChainI)); 2943 Root = Chain; 2944 ChainI = 0; 2945 } 2946 SDValue A = DAG.getNode(ISD::ADD, dl, 2947 PtrVT, Ptr, 2948 DAG.getConstant(Offsets[i], dl, PtrVT)); 2949 SDValue L = DAG.getLoad(ValueVTs[i], dl, Root, 2950 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 2951 isNonTemporal, isInvariant, Alignment, AAInfo, 2952 Ranges); 2953 2954 Values[i] = L; 2955 Chains[ChainI] = L.getValue(1); 2956 } 2957 2958 if (!ConstantMemory) { 2959 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 2960 makeArrayRef(Chains.data(), ChainI)); 2961 if (isVolatile) 2962 DAG.setRoot(Chain); 2963 else 2964 PendingLoads.push_back(Chain); 2965 } 2966 2967 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 2968 DAG.getVTList(ValueVTs), Values)); 2969 } 2970 2971 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 2972 if (I.isAtomic()) 2973 return visitAtomicStore(I); 2974 2975 const Value *SrcV = I.getOperand(0); 2976 const Value *PtrV = I.getOperand(1); 2977 2978 SmallVector<EVT, 4> ValueVTs; 2979 SmallVector<uint64_t, 4> Offsets; 2980 ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(), 2981 ValueVTs, &Offsets); 2982 unsigned NumValues = ValueVTs.size(); 2983 if (NumValues == 0) 2984 return; 2985 2986 // Get the lowered operands. Note that we do this after 2987 // checking if NumResults is zero, because with zero results 2988 // the operands won't have values in the map. 2989 SDValue Src = getValue(SrcV); 2990 SDValue Ptr = getValue(PtrV); 2991 2992 SDValue Root = getRoot(); 2993 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 2994 NumValues)); 2995 EVT PtrVT = Ptr.getValueType(); 2996 bool isVolatile = I.isVolatile(); 2997 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr; 2998 unsigned Alignment = I.getAlignment(); 2999 SDLoc dl = getCurSDLoc(); 3000 3001 AAMDNodes AAInfo; 3002 I.getAAMetadata(AAInfo); 3003 3004 unsigned ChainI = 0; 3005 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3006 // See visitLoad comments. 3007 if (ChainI == MaxParallelChains) { 3008 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3009 makeArrayRef(Chains.data(), ChainI)); 3010 Root = Chain; 3011 ChainI = 0; 3012 } 3013 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr, 3014 DAG.getConstant(Offsets[i], dl, PtrVT)); 3015 SDValue St = DAG.getStore(Root, dl, 3016 SDValue(Src.getNode(), Src.getResNo() + i), 3017 Add, MachinePointerInfo(PtrV, Offsets[i]), 3018 isVolatile, isNonTemporal, Alignment, AAInfo); 3019 Chains[ChainI] = St; 3020 } 3021 3022 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 3023 makeArrayRef(Chains.data(), ChainI)); 3024 DAG.setRoot(StoreNode); 3025 } 3026 3027 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) { 3028 SDLoc sdl = getCurSDLoc(); 3029 3030 // llvm.masked.store.*(Src0, Ptr, alignemt, Mask) 3031 Value *PtrOperand = I.getArgOperand(1); 3032 SDValue Ptr = getValue(PtrOperand); 3033 SDValue Src0 = getValue(I.getArgOperand(0)); 3034 SDValue Mask = getValue(I.getArgOperand(3)); 3035 EVT VT = Src0.getValueType(); 3036 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3037 if (!Alignment) 3038 Alignment = DAG.getEVTAlignment(VT); 3039 3040 AAMDNodes AAInfo; 3041 I.getAAMetadata(AAInfo); 3042 3043 MachineMemOperand *MMO = 3044 DAG.getMachineFunction(). 3045 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3046 MachineMemOperand::MOStore, VT.getStoreSize(), 3047 Alignment, AAInfo); 3048 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT, 3049 MMO, false); 3050 DAG.setRoot(StoreNode); 3051 setValue(&I, StoreNode); 3052 } 3053 3054 // Gather/scatter receive a vector of pointers. 3055 // This vector of pointers may be represented as a base pointer + vector of 3056 // indices, it depends on GEP and instruction preceeding GEP 3057 // that calculates indices 3058 static bool getUniformBase(Value *& Ptr, SDValue& Base, SDValue& Index, 3059 SelectionDAGBuilder* SDB) { 3060 3061 assert (Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 3062 GetElementPtrInst *Gep = dyn_cast<GetElementPtrInst>(Ptr); 3063 if (!Gep || Gep->getNumOperands() > 2) 3064 return false; 3065 ShuffleVectorInst *ShuffleInst = 3066 dyn_cast<ShuffleVectorInst>(Gep->getPointerOperand()); 3067 if (!ShuffleInst || !ShuffleInst->getMask()->isNullValue() || 3068 cast<Instruction>(ShuffleInst->getOperand(0))->getOpcode() != 3069 Instruction::InsertElement) 3070 return false; 3071 3072 Ptr = cast<InsertElementInst>(ShuffleInst->getOperand(0))->getOperand(1); 3073 3074 SelectionDAG& DAG = SDB->DAG; 3075 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3076 // Check is the Ptr is inside current basic block 3077 // If not, look for the shuffle instruction 3078 if (SDB->findValue(Ptr)) 3079 Base = SDB->getValue(Ptr); 3080 else if (SDB->findValue(ShuffleInst)) { 3081 SDValue ShuffleNode = SDB->getValue(ShuffleInst); 3082 SDLoc sdl = ShuffleNode; 3083 Base = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, sdl, 3084 ShuffleNode.getValueType().getScalarType(), ShuffleNode, 3085 DAG.getConstant(0, sdl, TLI.getVectorIdxTy())); 3086 SDB->setValue(Ptr, Base); 3087 } 3088 else 3089 return false; 3090 3091 Value *IndexVal = Gep->getOperand(1); 3092 if (SDB->findValue(IndexVal)) { 3093 Index = SDB->getValue(IndexVal); 3094 3095 if (SExtInst* Sext = dyn_cast<SExtInst>(IndexVal)) { 3096 IndexVal = Sext->getOperand(0); 3097 if (SDB->findValue(IndexVal)) 3098 Index = SDB->getValue(IndexVal); 3099 } 3100 return true; 3101 } 3102 return false; 3103 } 3104 3105 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 3106 SDLoc sdl = getCurSDLoc(); 3107 3108 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask) 3109 Value *Ptr = I.getArgOperand(1); 3110 SDValue Src0 = getValue(I.getArgOperand(0)); 3111 SDValue Mask = getValue(I.getArgOperand(3)); 3112 EVT VT = Src0.getValueType(); 3113 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue(); 3114 if (!Alignment) 3115 Alignment = DAG.getEVTAlignment(VT); 3116 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3117 3118 AAMDNodes AAInfo; 3119 I.getAAMetadata(AAInfo); 3120 3121 SDValue Base; 3122 SDValue Index; 3123 Value *BasePtr = Ptr; 3124 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3125 3126 Value *MemOpBasePtr = UniformBase ? BasePtr : NULL; 3127 MachineMemOperand *MMO = DAG.getMachineFunction(). 3128 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr), 3129 MachineMemOperand::MOStore, VT.getStoreSize(), 3130 Alignment, AAInfo); 3131 if (!UniformBase) { 3132 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3133 Index = getValue(Ptr); 3134 } 3135 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index }; 3136 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 3137 Ops, MMO); 3138 DAG.setRoot(Scatter); 3139 setValue(&I, Scatter); 3140 } 3141 3142 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) { 3143 SDLoc sdl = getCurSDLoc(); 3144 3145 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 3146 Value *PtrOperand = I.getArgOperand(0); 3147 SDValue Ptr = getValue(PtrOperand); 3148 SDValue Src0 = getValue(I.getArgOperand(3)); 3149 SDValue Mask = getValue(I.getArgOperand(2)); 3150 3151 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3152 EVT VT = TLI.getValueType(I.getType()); 3153 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3154 if (!Alignment) 3155 Alignment = DAG.getEVTAlignment(VT); 3156 3157 AAMDNodes AAInfo; 3158 I.getAAMetadata(AAInfo); 3159 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3160 3161 SDValue InChain = DAG.getRoot(); 3162 if (AA->pointsToConstantMemory( 3163 AliasAnalysis::Location(PtrOperand, 3164 AA->getTypeStoreSize(I.getType()), 3165 AAInfo))) { 3166 // Do not serialize (non-volatile) loads of constant memory with anything. 3167 InChain = DAG.getEntryNode(); 3168 } 3169 3170 MachineMemOperand *MMO = 3171 DAG.getMachineFunction(). 3172 getMachineMemOperand(MachinePointerInfo(PtrOperand), 3173 MachineMemOperand::MOLoad, VT.getStoreSize(), 3174 Alignment, AAInfo, Ranges); 3175 3176 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO, 3177 ISD::NON_EXTLOAD); 3178 SDValue OutChain = Load.getValue(1); 3179 DAG.setRoot(OutChain); 3180 setValue(&I, Load); 3181 } 3182 3183 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 3184 SDLoc sdl = getCurSDLoc(); 3185 3186 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 3187 Value *Ptr = I.getArgOperand(0); 3188 SDValue Src0 = getValue(I.getArgOperand(3)); 3189 SDValue Mask = getValue(I.getArgOperand(2)); 3190 3191 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3192 EVT VT = TLI.getValueType(I.getType()); 3193 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue(); 3194 if (!Alignment) 3195 Alignment = DAG.getEVTAlignment(VT); 3196 3197 AAMDNodes AAInfo; 3198 I.getAAMetadata(AAInfo); 3199 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3200 3201 SDValue Root = DAG.getRoot(); 3202 SDValue Base; 3203 SDValue Index; 3204 Value *BasePtr = Ptr; 3205 bool UniformBase = getUniformBase(BasePtr, Base, Index, this); 3206 bool ConstantMemory = false; 3207 if (UniformBase && AA->pointsToConstantMemory( 3208 AliasAnalysis::Location(BasePtr, 3209 AA->getTypeStoreSize(I.getType()), 3210 AAInfo))) { 3211 // Do not serialize (non-volatile) loads of constant memory with anything. 3212 Root = DAG.getEntryNode(); 3213 ConstantMemory = true; 3214 } 3215 3216 MachineMemOperand *MMO = 3217 DAG.getMachineFunction(). 3218 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : NULL), 3219 MachineMemOperand::MOLoad, VT.getStoreSize(), 3220 Alignment, AAInfo, Ranges); 3221 3222 if (!UniformBase) { 3223 Base = DAG.getTargetConstant(0, sdl, TLI.getPointerTy()); 3224 Index = getValue(Ptr); 3225 } 3226 3227 SDValue Ops[] = { Root, Src0, Mask, Base, Index }; 3228 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 3229 Ops, MMO); 3230 3231 SDValue OutChain = Gather.getValue(1); 3232 if (!ConstantMemory) 3233 PendingLoads.push_back(OutChain); 3234 setValue(&I, Gather); 3235 } 3236 3237 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3238 SDLoc dl = getCurSDLoc(); 3239 AtomicOrdering SuccessOrder = I.getSuccessOrdering(); 3240 AtomicOrdering FailureOrder = I.getFailureOrdering(); 3241 SynchronizationScope Scope = I.getSynchScope(); 3242 3243 SDValue InChain = getRoot(); 3244 3245 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 3246 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 3247 SDValue L = DAG.getAtomicCmpSwap( 3248 ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain, 3249 getValue(I.getPointerOperand()), getValue(I.getCompareOperand()), 3250 getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()), 3251 /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope); 3252 3253 SDValue OutChain = L.getValue(2); 3254 3255 setValue(&I, L); 3256 DAG.setRoot(OutChain); 3257 } 3258 3259 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3260 SDLoc dl = getCurSDLoc(); 3261 ISD::NodeType NT; 3262 switch (I.getOperation()) { 3263 default: llvm_unreachable("Unknown atomicrmw operation"); 3264 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3265 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3266 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3267 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3268 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3269 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3270 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3271 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3272 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3273 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3274 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3275 } 3276 AtomicOrdering Order = I.getOrdering(); 3277 SynchronizationScope Scope = I.getSynchScope(); 3278 3279 SDValue InChain = getRoot(); 3280 3281 SDValue L = 3282 DAG.getAtomic(NT, dl, 3283 getValue(I.getValOperand()).getSimpleValueType(), 3284 InChain, 3285 getValue(I.getPointerOperand()), 3286 getValue(I.getValOperand()), 3287 I.getPointerOperand(), 3288 /* Alignment=*/ 0, Order, Scope); 3289 3290 SDValue OutChain = L.getValue(1); 3291 3292 setValue(&I, L); 3293 DAG.setRoot(OutChain); 3294 } 3295 3296 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3297 SDLoc dl = getCurSDLoc(); 3298 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3299 SDValue Ops[3]; 3300 Ops[0] = getRoot(); 3301 Ops[1] = DAG.getConstant(I.getOrdering(), dl, TLI.getPointerTy()); 3302 Ops[2] = DAG.getConstant(I.getSynchScope(), dl, TLI.getPointerTy()); 3303 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 3304 } 3305 3306 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3307 SDLoc dl = getCurSDLoc(); 3308 AtomicOrdering Order = I.getOrdering(); 3309 SynchronizationScope Scope = I.getSynchScope(); 3310 3311 SDValue InChain = getRoot(); 3312 3313 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3314 EVT VT = TLI.getValueType(I.getType()); 3315 3316 if (I.getAlignment() < VT.getSizeInBits() / 8) 3317 report_fatal_error("Cannot generate unaligned atomic load"); 3318 3319 MachineMemOperand *MMO = 3320 DAG.getMachineFunction(). 3321 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), 3322 MachineMemOperand::MOVolatile | 3323 MachineMemOperand::MOLoad, 3324 VT.getStoreSize(), 3325 I.getAlignment() ? I.getAlignment() : 3326 DAG.getEVTAlignment(VT)); 3327 3328 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 3329 SDValue L = 3330 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3331 getValue(I.getPointerOperand()), MMO, 3332 Order, Scope); 3333 3334 SDValue OutChain = L.getValue(1); 3335 3336 setValue(&I, L); 3337 DAG.setRoot(OutChain); 3338 } 3339 3340 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3341 SDLoc dl = getCurSDLoc(); 3342 3343 AtomicOrdering Order = I.getOrdering(); 3344 SynchronizationScope Scope = I.getSynchScope(); 3345 3346 SDValue InChain = getRoot(); 3347 3348 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3349 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3350 3351 if (I.getAlignment() < VT.getSizeInBits() / 8) 3352 report_fatal_error("Cannot generate unaligned atomic store"); 3353 3354 SDValue OutChain = 3355 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3356 InChain, 3357 getValue(I.getPointerOperand()), 3358 getValue(I.getValueOperand()), 3359 I.getPointerOperand(), I.getAlignment(), 3360 Order, Scope); 3361 3362 DAG.setRoot(OutChain); 3363 } 3364 3365 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3366 /// node. 3367 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3368 unsigned Intrinsic) { 3369 bool HasChain = !I.doesNotAccessMemory(); 3370 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3371 3372 // Build the operand list. 3373 SmallVector<SDValue, 8> Ops; 3374 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3375 if (OnlyLoad) { 3376 // We don't need to serialize loads against other loads. 3377 Ops.push_back(DAG.getRoot()); 3378 } else { 3379 Ops.push_back(getRoot()); 3380 } 3381 } 3382 3383 // Info is set by getTgtMemInstrinsic 3384 TargetLowering::IntrinsicInfo Info; 3385 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3386 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3387 3388 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3389 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3390 Info.opc == ISD::INTRINSIC_W_CHAIN) 3391 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 3392 TLI.getPointerTy())); 3393 3394 // Add all operands of the call to the operand list. 3395 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3396 SDValue Op = getValue(I.getArgOperand(i)); 3397 Ops.push_back(Op); 3398 } 3399 3400 SmallVector<EVT, 4> ValueVTs; 3401 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3402 3403 if (HasChain) 3404 ValueVTs.push_back(MVT::Other); 3405 3406 SDVTList VTs = DAG.getVTList(ValueVTs); 3407 3408 // Create the node. 3409 SDValue Result; 3410 if (IsTgtIntrinsic) { 3411 // This is target intrinsic that touches memory 3412 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), 3413 VTs, Ops, Info.memVT, 3414 MachinePointerInfo(Info.ptrVal, Info.offset), 3415 Info.align, Info.vol, 3416 Info.readMem, Info.writeMem, Info.size); 3417 } else if (!HasChain) { 3418 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 3419 } else if (!I.getType()->isVoidTy()) { 3420 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 3421 } else { 3422 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 3423 } 3424 3425 if (HasChain) { 3426 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3427 if (OnlyLoad) 3428 PendingLoads.push_back(Chain); 3429 else 3430 DAG.setRoot(Chain); 3431 } 3432 3433 if (!I.getType()->isVoidTy()) { 3434 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3435 EVT VT = TLI.getValueType(PTy); 3436 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 3437 } 3438 3439 setValue(&I, Result); 3440 } 3441 } 3442 3443 /// GetSignificand - Get the significand and build it into a floating-point 3444 /// number with exponent of 1: 3445 /// 3446 /// Op = (Op & 0x007fffff) | 0x3f800000; 3447 /// 3448 /// where Op is the hexadecimal representation of floating point value. 3449 static SDValue 3450 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) { 3451 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3452 DAG.getConstant(0x007fffff, dl, MVT::i32)); 3453 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3454 DAG.getConstant(0x3f800000, dl, MVT::i32)); 3455 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3456 } 3457 3458 /// GetExponent - Get the exponent: 3459 /// 3460 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3461 /// 3462 /// where Op is the hexadecimal representation of floating point value. 3463 static SDValue 3464 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3465 SDLoc dl) { 3466 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3467 DAG.getConstant(0x7f800000, dl, MVT::i32)); 3468 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3469 DAG.getConstant(23, dl, TLI.getPointerTy())); 3470 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3471 DAG.getConstant(127, dl, MVT::i32)); 3472 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3473 } 3474 3475 /// getF32Constant - Get 32-bit floating point constant. 3476 static SDValue 3477 getF32Constant(SelectionDAG &DAG, unsigned Flt, SDLoc dl) { 3478 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)), dl, 3479 MVT::f32); 3480 } 3481 3482 static SDValue getLimitedPrecisionExp2(SDValue t0, SDLoc dl, 3483 SelectionDAG &DAG) { 3484 // IntegerPartOfX = ((int32_t)(t0); 3485 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3486 3487 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 3488 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3489 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3490 3491 // IntegerPartOfX <<= 23; 3492 IntegerPartOfX = DAG.getNode( 3493 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3494 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy())); 3495 3496 SDValue TwoToFractionalPartOfX; 3497 if (LimitFloatPrecision <= 6) { 3498 // For floating-point precision of 6: 3499 // 3500 // TwoToFractionalPartOfX = 3501 // 0.997535578f + 3502 // (0.735607626f + 0.252464424f * x) * x; 3503 // 3504 // error 0.0144103317, which is 6 bits 3505 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3506 getF32Constant(DAG, 0x3e814304, dl)); 3507 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3508 getF32Constant(DAG, 0x3f3c50c8, dl)); 3509 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3510 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3511 getF32Constant(DAG, 0x3f7f5e7e, dl)); 3512 } else if (LimitFloatPrecision <= 12) { 3513 // For floating-point precision of 12: 3514 // 3515 // TwoToFractionalPartOfX = 3516 // 0.999892986f + 3517 // (0.696457318f + 3518 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3519 // 3520 // error 0.000107046256, which is 13 to 14 bits 3521 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3522 getF32Constant(DAG, 0x3da235e3, dl)); 3523 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3524 getF32Constant(DAG, 0x3e65b8f3, dl)); 3525 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3526 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3527 getF32Constant(DAG, 0x3f324b07, dl)); 3528 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3529 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3530 getF32Constant(DAG, 0x3f7ff8fd, dl)); 3531 } else { // LimitFloatPrecision <= 18 3532 // For floating-point precision of 18: 3533 // 3534 // TwoToFractionalPartOfX = 3535 // 0.999999982f + 3536 // (0.693148872f + 3537 // (0.240227044f + 3538 // (0.554906021e-1f + 3539 // (0.961591928e-2f + 3540 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3541 // error 2.47208000*10^(-7), which is better than 18 bits 3542 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3543 getF32Constant(DAG, 0x3924b03e, dl)); 3544 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3545 getF32Constant(DAG, 0x3ab24b87, dl)); 3546 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3547 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3548 getF32Constant(DAG, 0x3c1d8c17, dl)); 3549 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3550 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3551 getF32Constant(DAG, 0x3d634a1d, dl)); 3552 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3553 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3554 getF32Constant(DAG, 0x3e75fe14, dl)); 3555 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3556 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3557 getF32Constant(DAG, 0x3f317234, dl)); 3558 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3559 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3560 getF32Constant(DAG, 0x3f800000, dl)); 3561 } 3562 3563 // Add the exponent into the result in integer domain. 3564 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 3565 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 3566 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 3567 } 3568 3569 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 3570 /// limited-precision mode. 3571 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3572 const TargetLowering &TLI) { 3573 if (Op.getValueType() == MVT::f32 && 3574 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3575 3576 // Put the exponent in the right bit position for later addition to the 3577 // final result: 3578 // 3579 // #define LOG2OFe 1.4426950f 3580 // t0 = Op * LOG2OFe 3581 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3582 getF32Constant(DAG, 0x3fb8aa3b, dl)); 3583 return getLimitedPrecisionExp2(t0, dl, DAG); 3584 } 3585 3586 // No special expansion. 3587 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op); 3588 } 3589 3590 /// expandLog - Lower a log intrinsic. Handles the special sequences for 3591 /// limited-precision mode. 3592 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3593 const TargetLowering &TLI) { 3594 if (Op.getValueType() == MVT::f32 && 3595 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3596 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3597 3598 // Scale the exponent by log(2) [0.69314718f]. 3599 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3600 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3601 getF32Constant(DAG, 0x3f317218, dl)); 3602 3603 // Get the significand and build it into a floating-point number with 3604 // exponent of 1. 3605 SDValue X = GetSignificand(DAG, Op1, dl); 3606 3607 SDValue LogOfMantissa; 3608 if (LimitFloatPrecision <= 6) { 3609 // For floating-point precision of 6: 3610 // 3611 // LogofMantissa = 3612 // -1.1609546f + 3613 // (1.4034025f - 0.23903021f * x) * x; 3614 // 3615 // error 0.0034276066, which is better than 8 bits 3616 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3617 getF32Constant(DAG, 0xbe74c456, dl)); 3618 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3619 getF32Constant(DAG, 0x3fb3a2b1, dl)); 3620 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3621 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3622 getF32Constant(DAG, 0x3f949a29, dl)); 3623 } else if (LimitFloatPrecision <= 12) { 3624 // For floating-point precision of 12: 3625 // 3626 // LogOfMantissa = 3627 // -1.7417939f + 3628 // (2.8212026f + 3629 // (-1.4699568f + 3630 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3631 // 3632 // error 0.000061011436, which is 14 bits 3633 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3634 getF32Constant(DAG, 0xbd67b6d6, dl)); 3635 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3636 getF32Constant(DAG, 0x3ee4f4b8, dl)); 3637 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3638 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3639 getF32Constant(DAG, 0x3fbc278b, dl)); 3640 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3641 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3642 getF32Constant(DAG, 0x40348e95, dl)); 3643 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3644 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3645 getF32Constant(DAG, 0x3fdef31a, dl)); 3646 } else { // LimitFloatPrecision <= 18 3647 // For floating-point precision of 18: 3648 // 3649 // LogOfMantissa = 3650 // -2.1072184f + 3651 // (4.2372794f + 3652 // (-3.7029485f + 3653 // (2.2781945f + 3654 // (-0.87823314f + 3655 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3656 // 3657 // error 0.0000023660568, which is better than 18 bits 3658 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3659 getF32Constant(DAG, 0xbc91e5ac, dl)); 3660 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3661 getF32Constant(DAG, 0x3e4350aa, dl)); 3662 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3663 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3664 getF32Constant(DAG, 0x3f60d3e3, dl)); 3665 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3666 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3667 getF32Constant(DAG, 0x4011cdf0, dl)); 3668 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3669 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3670 getF32Constant(DAG, 0x406cfd1c, dl)); 3671 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3672 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3673 getF32Constant(DAG, 0x408797cb, dl)); 3674 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3675 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3676 getF32Constant(DAG, 0x4006dcab, dl)); 3677 } 3678 3679 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 3680 } 3681 3682 // No special expansion. 3683 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op); 3684 } 3685 3686 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 3687 /// limited-precision mode. 3688 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3689 const TargetLowering &TLI) { 3690 if (Op.getValueType() == MVT::f32 && 3691 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3692 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3693 3694 // Get the exponent. 3695 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3696 3697 // Get the significand and build it into a floating-point number with 3698 // exponent of 1. 3699 SDValue X = GetSignificand(DAG, Op1, dl); 3700 3701 // Different possible minimax approximations of significand in 3702 // floating-point for various degrees of accuracy over [1,2]. 3703 SDValue Log2ofMantissa; 3704 if (LimitFloatPrecision <= 6) { 3705 // For floating-point precision of 6: 3706 // 3707 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3708 // 3709 // error 0.0049451742, which is more than 7 bits 3710 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3711 getF32Constant(DAG, 0xbeb08fe0, dl)); 3712 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3713 getF32Constant(DAG, 0x40019463, dl)); 3714 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3715 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3716 getF32Constant(DAG, 0x3fd6633d, dl)); 3717 } else if (LimitFloatPrecision <= 12) { 3718 // For floating-point precision of 12: 3719 // 3720 // Log2ofMantissa = 3721 // -2.51285454f + 3722 // (4.07009056f + 3723 // (-2.12067489f + 3724 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3725 // 3726 // error 0.0000876136000, which is better than 13 bits 3727 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3728 getF32Constant(DAG, 0xbda7262e, dl)); 3729 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3730 getF32Constant(DAG, 0x3f25280b, dl)); 3731 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3732 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3733 getF32Constant(DAG, 0x4007b923, dl)); 3734 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3735 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3736 getF32Constant(DAG, 0x40823e2f, dl)); 3737 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3738 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3739 getF32Constant(DAG, 0x4020d29c, dl)); 3740 } else { // LimitFloatPrecision <= 18 3741 // For floating-point precision of 18: 3742 // 3743 // Log2ofMantissa = 3744 // -3.0400495f + 3745 // (6.1129976f + 3746 // (-5.3420409f + 3747 // (3.2865683f + 3748 // (-1.2669343f + 3749 // (0.27515199f - 3750 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3751 // 3752 // error 0.0000018516, which is better than 18 bits 3753 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3754 getF32Constant(DAG, 0xbcd2769e, dl)); 3755 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3756 getF32Constant(DAG, 0x3e8ce0b9, dl)); 3757 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3758 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3759 getF32Constant(DAG, 0x3fa22ae7, dl)); 3760 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3761 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3762 getF32Constant(DAG, 0x40525723, dl)); 3763 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3764 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3765 getF32Constant(DAG, 0x40aaf200, dl)); 3766 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3767 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3768 getF32Constant(DAG, 0x40c39dad, dl)); 3769 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3770 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3771 getF32Constant(DAG, 0x4042902c, dl)); 3772 } 3773 3774 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 3775 } 3776 3777 // No special expansion. 3778 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op); 3779 } 3780 3781 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 3782 /// limited-precision mode. 3783 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3784 const TargetLowering &TLI) { 3785 if (Op.getValueType() == MVT::f32 && 3786 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3787 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3788 3789 // Scale the exponent by log10(2) [0.30102999f]. 3790 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3791 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3792 getF32Constant(DAG, 0x3e9a209a, dl)); 3793 3794 // Get the significand and build it into a floating-point number with 3795 // exponent of 1. 3796 SDValue X = GetSignificand(DAG, Op1, dl); 3797 3798 SDValue Log10ofMantissa; 3799 if (LimitFloatPrecision <= 6) { 3800 // For floating-point precision of 6: 3801 // 3802 // Log10ofMantissa = 3803 // -0.50419619f + 3804 // (0.60948995f - 0.10380950f * x) * x; 3805 // 3806 // error 0.0014886165, which is 6 bits 3807 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3808 getF32Constant(DAG, 0xbdd49a13, dl)); 3809 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3810 getF32Constant(DAG, 0x3f1c0789, dl)); 3811 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3812 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3813 getF32Constant(DAG, 0x3f011300, dl)); 3814 } else if (LimitFloatPrecision <= 12) { 3815 // For floating-point precision of 12: 3816 // 3817 // Log10ofMantissa = 3818 // -0.64831180f + 3819 // (0.91751397f + 3820 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 3821 // 3822 // error 0.00019228036, which is better than 12 bits 3823 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3824 getF32Constant(DAG, 0x3d431f31, dl)); 3825 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3826 getF32Constant(DAG, 0x3ea21fb2, dl)); 3827 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3828 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3829 getF32Constant(DAG, 0x3f6ae232, dl)); 3830 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3831 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3832 getF32Constant(DAG, 0x3f25f7c3, dl)); 3833 } else { // LimitFloatPrecision <= 18 3834 // For floating-point precision of 18: 3835 // 3836 // Log10ofMantissa = 3837 // -0.84299375f + 3838 // (1.5327582f + 3839 // (-1.0688956f + 3840 // (0.49102474f + 3841 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 3842 // 3843 // error 0.0000037995730, which is better than 18 bits 3844 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3845 getF32Constant(DAG, 0x3c5d51ce, dl)); 3846 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 3847 getF32Constant(DAG, 0x3e00685a, dl)); 3848 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3849 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3850 getF32Constant(DAG, 0x3efb6798, dl)); 3851 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3852 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 3853 getF32Constant(DAG, 0x3f88d192, dl)); 3854 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3855 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3856 getF32Constant(DAG, 0x3fc4316c, dl)); 3857 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3858 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 3859 getF32Constant(DAG, 0x3f57ce70, dl)); 3860 } 3861 3862 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 3863 } 3864 3865 // No special expansion. 3866 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op); 3867 } 3868 3869 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 3870 /// limited-precision mode. 3871 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG, 3872 const TargetLowering &TLI) { 3873 if (Op.getValueType() == MVT::f32 && 3874 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 3875 return getLimitedPrecisionExp2(Op, dl, DAG); 3876 3877 // No special expansion. 3878 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op); 3879 } 3880 3881 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 3882 /// limited-precision mode with x == 10.0f. 3883 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS, 3884 SelectionDAG &DAG, const TargetLowering &TLI) { 3885 bool IsExp10 = false; 3886 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 3887 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3888 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 3889 APFloat Ten(10.0f); 3890 IsExp10 = LHSC->isExactlyValue(Ten); 3891 } 3892 } 3893 3894 if (IsExp10) { 3895 // Put the exponent in the right bit position for later addition to the 3896 // final result: 3897 // 3898 // #define LOG2OF10 3.3219281f 3899 // t0 = Op * LOG2OF10; 3900 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 3901 getF32Constant(DAG, 0x40549a78, dl)); 3902 return getLimitedPrecisionExp2(t0, dl, DAG); 3903 } 3904 3905 // No special expansion. 3906 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS); 3907 } 3908 3909 3910 /// ExpandPowI - Expand a llvm.powi intrinsic. 3911 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS, 3912 SelectionDAG &DAG) { 3913 // If RHS is a constant, we can expand this out to a multiplication tree, 3914 // otherwise we end up lowering to a call to __powidf2 (for example). When 3915 // optimizing for size, we only want to do this if the expansion would produce 3916 // a small number of multiplies, otherwise we do the full expansion. 3917 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 3918 // Get the exponent as a positive value. 3919 unsigned Val = RHSC->getSExtValue(); 3920 if ((int)Val < 0) Val = -Val; 3921 3922 // powi(x, 0) -> 1.0 3923 if (Val == 0) 3924 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 3925 3926 const Function *F = DAG.getMachineFunction().getFunction(); 3927 if (!F->hasFnAttribute(Attribute::OptimizeForSize) || 3928 // If optimizing for size, don't insert too many multiplies. This 3929 // inserts up to 5 multiplies. 3930 countPopulation(Val) + Log2_32(Val) < 7) { 3931 // We use the simple binary decomposition method to generate the multiply 3932 // sequence. There are more optimal ways to do this (for example, 3933 // powi(x,15) generates one more multiply than it should), but this has 3934 // the benefit of being both really simple and much better than a libcall. 3935 SDValue Res; // Logically starts equal to 1.0 3936 SDValue CurSquare = LHS; 3937 while (Val) { 3938 if (Val & 1) { 3939 if (Res.getNode()) 3940 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 3941 else 3942 Res = CurSquare; // 1.0*CurSquare. 3943 } 3944 3945 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 3946 CurSquare, CurSquare); 3947 Val >>= 1; 3948 } 3949 3950 // If the original was negative, invert the result, producing 1/(x*x*x). 3951 if (RHSC->getSExtValue() < 0) 3952 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 3953 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 3954 return Res; 3955 } 3956 } 3957 3958 // Otherwise, expand to a libcall. 3959 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 3960 } 3961 3962 // getTruncatedArgReg - Find underlying register used for an truncated 3963 // argument. 3964 static unsigned getTruncatedArgReg(const SDValue &N) { 3965 if (N.getOpcode() != ISD::TRUNCATE) 3966 return 0; 3967 3968 const SDValue &Ext = N.getOperand(0); 3969 if (Ext.getOpcode() == ISD::AssertZext || 3970 Ext.getOpcode() == ISD::AssertSext) { 3971 const SDValue &CFR = Ext.getOperand(0); 3972 if (CFR.getOpcode() == ISD::CopyFromReg) 3973 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 3974 if (CFR.getOpcode() == ISD::TRUNCATE) 3975 return getTruncatedArgReg(CFR); 3976 } 3977 return 0; 3978 } 3979 3980 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 3981 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 3982 /// At the end of instruction selection, they will be inserted to the entry BB. 3983 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 3984 const Value *V, MDLocalVariable *Variable, MDExpression *Expr, 3985 MDLocation *DL, int64_t Offset, bool IsIndirect, const SDValue &N) { 3986 const Argument *Arg = dyn_cast<Argument>(V); 3987 if (!Arg) 3988 return false; 3989 3990 MachineFunction &MF = DAG.getMachineFunction(); 3991 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 3992 3993 // Ignore inlined function arguments here. 3994 // 3995 // FIXME: Should we be checking DL->inlinedAt() to determine this? 3996 if (!Variable->getScope()->getSubprogram()->describes(MF.getFunction())) 3997 return false; 3998 3999 Optional<MachineOperand> Op; 4000 // Some arguments' frame index is recorded during argument lowering. 4001 if (int FI = FuncInfo.getArgumentFrameIndex(Arg)) 4002 Op = MachineOperand::CreateFI(FI); 4003 4004 if (!Op && N.getNode()) { 4005 unsigned Reg; 4006 if (N.getOpcode() == ISD::CopyFromReg) 4007 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4008 else 4009 Reg = getTruncatedArgReg(N); 4010 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4011 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4012 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4013 if (PR) 4014 Reg = PR; 4015 } 4016 if (Reg) 4017 Op = MachineOperand::CreateReg(Reg, false); 4018 } 4019 4020 if (!Op) { 4021 // Check if ValueMap has reg number. 4022 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4023 if (VMI != FuncInfo.ValueMap.end()) 4024 Op = MachineOperand::CreateReg(VMI->second, false); 4025 } 4026 4027 if (!Op && N.getNode()) 4028 // Check if frame index is available. 4029 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4030 if (FrameIndexSDNode *FINode = 4031 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 4032 Op = MachineOperand::CreateFI(FINode->getIndex()); 4033 4034 if (!Op) 4035 return false; 4036 4037 assert(Variable->isValidLocationForIntrinsic(DL) && 4038 "Expected inlined-at fields to agree"); 4039 if (Op->isReg()) 4040 FuncInfo.ArgDbgValues.push_back( 4041 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 4042 Op->getReg(), Offset, Variable, Expr)); 4043 else 4044 FuncInfo.ArgDbgValues.push_back( 4045 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)) 4046 .addOperand(*Op) 4047 .addImm(Offset) 4048 .addMetadata(Variable) 4049 .addMetadata(Expr)); 4050 4051 return true; 4052 } 4053 4054 // VisualStudio defines setjmp as _setjmp 4055 #if defined(_MSC_VER) && defined(setjmp) && \ 4056 !defined(setjmp_undefined_for_msvc) 4057 # pragma push_macro("setjmp") 4058 # undef setjmp 4059 # define setjmp_undefined_for_msvc 4060 #endif 4061 4062 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4063 /// we want to emit this as a call to a named external function, return the name 4064 /// otherwise lower it and return null. 4065 const char * 4066 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4067 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4068 SDLoc sdl = getCurSDLoc(); 4069 DebugLoc dl = getCurDebugLoc(); 4070 SDValue Res; 4071 4072 switch (Intrinsic) { 4073 default: 4074 // By default, turn this into a target intrinsic node. 4075 visitTargetIntrinsic(I, Intrinsic); 4076 return nullptr; 4077 case Intrinsic::vastart: visitVAStart(I); return nullptr; 4078 case Intrinsic::vaend: visitVAEnd(I); return nullptr; 4079 case Intrinsic::vacopy: visitVACopy(I); return nullptr; 4080 case Intrinsic::returnaddress: 4081 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(), 4082 getValue(I.getArgOperand(0)))); 4083 return nullptr; 4084 case Intrinsic::frameaddress: 4085 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4086 getValue(I.getArgOperand(0)))); 4087 return nullptr; 4088 case Intrinsic::read_register: { 4089 Value *Reg = I.getArgOperand(0); 4090 SDValue RegName = 4091 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4092 EVT VT = TLI.getValueType(I.getType()); 4093 setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName)); 4094 return nullptr; 4095 } 4096 case Intrinsic::write_register: { 4097 Value *Reg = I.getArgOperand(0); 4098 Value *RegValue = I.getArgOperand(1); 4099 SDValue Chain = getValue(RegValue).getOperand(0); 4100 SDValue RegName = 4101 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 4102 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 4103 RegName, getValue(RegValue))); 4104 return nullptr; 4105 } 4106 case Intrinsic::setjmp: 4107 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4108 case Intrinsic::longjmp: 4109 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4110 case Intrinsic::memcpy: { 4111 // FIXME: this definition of "user defined address space" is x86-specific 4112 // Assert for address < 256 since we support only user defined address 4113 // spaces. 4114 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4115 < 256 && 4116 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4117 < 256 && 4118 "Unknown address space"); 4119 SDValue Op1 = getValue(I.getArgOperand(0)); 4120 SDValue Op2 = getValue(I.getArgOperand(1)); 4121 SDValue Op3 = getValue(I.getArgOperand(2)); 4122 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4123 if (!Align) 4124 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment. 4125 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4126 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4127 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4128 false, isTC, 4129 MachinePointerInfo(I.getArgOperand(0)), 4130 MachinePointerInfo(I.getArgOperand(1))); 4131 updateDAGForMaybeTailCall(MC); 4132 return nullptr; 4133 } 4134 case Intrinsic::memset: { 4135 // FIXME: this definition of "user defined address space" is x86-specific 4136 // Assert for address < 256 since we support only user defined address 4137 // spaces. 4138 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4139 < 256 && 4140 "Unknown address space"); 4141 SDValue Op1 = getValue(I.getArgOperand(0)); 4142 SDValue Op2 = getValue(I.getArgOperand(1)); 4143 SDValue Op3 = getValue(I.getArgOperand(2)); 4144 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4145 if (!Align) 4146 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment. 4147 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4148 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4149 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4150 isTC, MachinePointerInfo(I.getArgOperand(0))); 4151 updateDAGForMaybeTailCall(MS); 4152 return nullptr; 4153 } 4154 case Intrinsic::memmove: { 4155 // FIXME: this definition of "user defined address space" is x86-specific 4156 // Assert for address < 256 since we support only user defined address 4157 // spaces. 4158 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4159 < 256 && 4160 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4161 < 256 && 4162 "Unknown address space"); 4163 SDValue Op1 = getValue(I.getArgOperand(0)); 4164 SDValue Op2 = getValue(I.getArgOperand(1)); 4165 SDValue Op3 = getValue(I.getArgOperand(2)); 4166 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4167 if (!Align) 4168 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment. 4169 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4170 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget()); 4171 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, 4172 isTC, MachinePointerInfo(I.getArgOperand(0)), 4173 MachinePointerInfo(I.getArgOperand(1))); 4174 updateDAGForMaybeTailCall(MM); 4175 return nullptr; 4176 } 4177 case Intrinsic::dbg_declare: { 4178 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4179 MDLocalVariable *Variable = DI.getVariable(); 4180 MDExpression *Expression = DI.getExpression(); 4181 const Value *Address = DI.getAddress(); 4182 assert(Variable && "Missing variable"); 4183 if (!Address) { 4184 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4185 return nullptr; 4186 } 4187 4188 // Check if address has undef value. 4189 if (isa<UndefValue>(Address) || 4190 (Address->use_empty() && !isa<Argument>(Address))) { 4191 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4192 return nullptr; 4193 } 4194 4195 SDValue &N = NodeMap[Address]; 4196 if (!N.getNode() && isa<Argument>(Address)) 4197 // Check unused arguments map. 4198 N = UnusedArgNodeMap[Address]; 4199 SDDbgValue *SDV; 4200 if (N.getNode()) { 4201 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4202 Address = BCI->getOperand(0); 4203 // Parameters are handled specially. 4204 bool isParameter = Variable->getTag() == dwarf::DW_TAG_arg_variable || 4205 isa<Argument>(Address); 4206 4207 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4208 4209 if (isParameter && !AI) { 4210 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4211 if (FINode) 4212 // Byval parameter. We have a frame index at this point. 4213 SDV = DAG.getFrameIndexDbgValue( 4214 Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder); 4215 else { 4216 // Address is an argument, so try to emit its dbg value using 4217 // virtual register info from the FuncInfo.ValueMap. 4218 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4219 N); 4220 return nullptr; 4221 } 4222 } else if (AI) 4223 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4224 true, 0, dl, SDNodeOrder); 4225 else { 4226 // Can't do anything with other non-AI cases yet. 4227 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4228 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4229 DEBUG(Address->dump()); 4230 return nullptr; 4231 } 4232 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4233 } else { 4234 // If Address is an argument then try to emit its dbg value using 4235 // virtual register info from the FuncInfo.ValueMap. 4236 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, 0, false, 4237 N)) { 4238 // If variable is pinned by a alloca in dominating bb then 4239 // use StaticAllocaMap. 4240 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4241 if (AI->getParent() != DI.getParent()) { 4242 DenseMap<const AllocaInst*, int>::iterator SI = 4243 FuncInfo.StaticAllocaMap.find(AI); 4244 if (SI != FuncInfo.StaticAllocaMap.end()) { 4245 SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second, 4246 0, dl, SDNodeOrder); 4247 DAG.AddDbgValue(SDV, nullptr, false); 4248 return nullptr; 4249 } 4250 } 4251 } 4252 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4253 } 4254 } 4255 return nullptr; 4256 } 4257 case Intrinsic::dbg_value: { 4258 const DbgValueInst &DI = cast<DbgValueInst>(I); 4259 assert(DI.getVariable() && "Missing variable"); 4260 4261 MDLocalVariable *Variable = DI.getVariable(); 4262 MDExpression *Expression = DI.getExpression(); 4263 uint64_t Offset = DI.getOffset(); 4264 const Value *V = DI.getValue(); 4265 if (!V) 4266 return nullptr; 4267 4268 SDDbgValue *SDV; 4269 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4270 SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl, 4271 SDNodeOrder); 4272 DAG.AddDbgValue(SDV, nullptr, false); 4273 } else { 4274 // Do not use getValue() in here; we don't want to generate code at 4275 // this point if it hasn't been done yet. 4276 SDValue N = NodeMap[V]; 4277 if (!N.getNode() && isa<Argument>(V)) 4278 // Check unused arguments map. 4279 N = UnusedArgNodeMap[V]; 4280 if (N.getNode()) { 4281 // A dbg.value for an alloca is always indirect. 4282 bool IsIndirect = isa<AllocaInst>(V) || Offset != 0; 4283 if (!EmitFuncArgumentDbgValue(V, Variable, Expression, dl, Offset, 4284 IsIndirect, N)) { 4285 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 4286 IsIndirect, Offset, dl, SDNodeOrder); 4287 DAG.AddDbgValue(SDV, N.getNode(), false); 4288 } 4289 } else if (!V->use_empty() ) { 4290 // Do not call getValue(V) yet, as we don't want to generate code. 4291 // Remember it for later. 4292 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4293 DanglingDebugInfoMap[V] = DDI; 4294 } else { 4295 // We may expand this to cover more cases. One case where we have no 4296 // data available is an unreferenced parameter. 4297 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4298 } 4299 } 4300 4301 // Build a debug info table entry. 4302 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4303 V = BCI->getOperand(0); 4304 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4305 // Don't handle byval struct arguments or VLAs, for example. 4306 if (!AI) { 4307 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4308 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4309 return nullptr; 4310 } 4311 DenseMap<const AllocaInst*, int>::iterator SI = 4312 FuncInfo.StaticAllocaMap.find(AI); 4313 if (SI == FuncInfo.StaticAllocaMap.end()) 4314 return nullptr; // VLAs. 4315 return nullptr; 4316 } 4317 4318 case Intrinsic::eh_typeid_for: { 4319 // Find the type id for the given typeinfo. 4320 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 4321 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4322 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 4323 setValue(&I, Res); 4324 return nullptr; 4325 } 4326 4327 case Intrinsic::eh_return_i32: 4328 case Intrinsic::eh_return_i64: 4329 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4330 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 4331 MVT::Other, 4332 getControlRoot(), 4333 getValue(I.getArgOperand(0)), 4334 getValue(I.getArgOperand(1)))); 4335 return nullptr; 4336 case Intrinsic::eh_unwind_init: 4337 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4338 return nullptr; 4339 case Intrinsic::eh_dwarf_cfa: { 4340 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl, 4341 TLI.getPointerTy()); 4342 SDValue Offset = DAG.getNode(ISD::ADD, sdl, 4343 CfaArg.getValueType(), 4344 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl, 4345 CfaArg.getValueType()), 4346 CfaArg); 4347 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(), 4348 DAG.getConstant(0, sdl, TLI.getPointerTy())); 4349 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(), 4350 FA, Offset)); 4351 return nullptr; 4352 } 4353 case Intrinsic::eh_sjlj_callsite: { 4354 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4355 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4356 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4357 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4358 4359 MMI.setCurrentCallSite(CI->getZExtValue()); 4360 return nullptr; 4361 } 4362 case Intrinsic::eh_sjlj_functioncontext: { 4363 // Get and store the index of the function context. 4364 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4365 AllocaInst *FnCtx = 4366 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4367 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4368 MFI->setFunctionContextIndex(FI); 4369 return nullptr; 4370 } 4371 case Intrinsic::eh_sjlj_setjmp: { 4372 SDValue Ops[2]; 4373 Ops[0] = getRoot(); 4374 Ops[1] = getValue(I.getArgOperand(0)); 4375 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 4376 DAG.getVTList(MVT::i32, MVT::Other), Ops); 4377 setValue(&I, Op.getValue(0)); 4378 DAG.setRoot(Op.getValue(1)); 4379 return nullptr; 4380 } 4381 case Intrinsic::eh_sjlj_longjmp: { 4382 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 4383 getRoot(), getValue(I.getArgOperand(0)))); 4384 return nullptr; 4385 } 4386 4387 case Intrinsic::masked_gather: 4388 visitMaskedGather(I); 4389 case Intrinsic::masked_load: 4390 visitMaskedLoad(I); 4391 return nullptr; 4392 case Intrinsic::masked_scatter: 4393 visitMaskedScatter(I); 4394 case Intrinsic::masked_store: 4395 visitMaskedStore(I); 4396 return nullptr; 4397 case Intrinsic::x86_mmx_pslli_w: 4398 case Intrinsic::x86_mmx_pslli_d: 4399 case Intrinsic::x86_mmx_pslli_q: 4400 case Intrinsic::x86_mmx_psrli_w: 4401 case Intrinsic::x86_mmx_psrli_d: 4402 case Intrinsic::x86_mmx_psrli_q: 4403 case Intrinsic::x86_mmx_psrai_w: 4404 case Intrinsic::x86_mmx_psrai_d: { 4405 SDValue ShAmt = getValue(I.getArgOperand(1)); 4406 if (isa<ConstantSDNode>(ShAmt)) { 4407 visitTargetIntrinsic(I, Intrinsic); 4408 return nullptr; 4409 } 4410 unsigned NewIntrinsic = 0; 4411 EVT ShAmtVT = MVT::v2i32; 4412 switch (Intrinsic) { 4413 case Intrinsic::x86_mmx_pslli_w: 4414 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4415 break; 4416 case Intrinsic::x86_mmx_pslli_d: 4417 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4418 break; 4419 case Intrinsic::x86_mmx_pslli_q: 4420 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4421 break; 4422 case Intrinsic::x86_mmx_psrli_w: 4423 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4424 break; 4425 case Intrinsic::x86_mmx_psrli_d: 4426 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4427 break; 4428 case Intrinsic::x86_mmx_psrli_q: 4429 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4430 break; 4431 case Intrinsic::x86_mmx_psrai_w: 4432 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4433 break; 4434 case Intrinsic::x86_mmx_psrai_d: 4435 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4436 break; 4437 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4438 } 4439 4440 // The vector shift intrinsics with scalars uses 32b shift amounts but 4441 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4442 // to be zero. 4443 // We must do this early because v2i32 is not a legal type. 4444 SDValue ShOps[2]; 4445 ShOps[0] = ShAmt; 4446 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32); 4447 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps); 4448 EVT DestVT = TLI.getValueType(I.getType()); 4449 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt); 4450 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT, 4451 DAG.getConstant(NewIntrinsic, sdl, MVT::i32), 4452 getValue(I.getArgOperand(0)), ShAmt); 4453 setValue(&I, Res); 4454 return nullptr; 4455 } 4456 case Intrinsic::convertff: 4457 case Intrinsic::convertfsi: 4458 case Intrinsic::convertfui: 4459 case Intrinsic::convertsif: 4460 case Intrinsic::convertuif: 4461 case Intrinsic::convertss: 4462 case Intrinsic::convertsu: 4463 case Intrinsic::convertus: 4464 case Intrinsic::convertuu: { 4465 ISD::CvtCode Code = ISD::CVT_INVALID; 4466 switch (Intrinsic) { 4467 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4468 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4469 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4470 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4471 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4472 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4473 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4474 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4475 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4476 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4477 } 4478 EVT DestVT = TLI.getValueType(I.getType()); 4479 const Value *Op1 = I.getArgOperand(0); 4480 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1), 4481 DAG.getValueType(DestVT), 4482 DAG.getValueType(getValue(Op1).getValueType()), 4483 getValue(I.getArgOperand(1)), 4484 getValue(I.getArgOperand(2)), 4485 Code); 4486 setValue(&I, Res); 4487 return nullptr; 4488 } 4489 case Intrinsic::powi: 4490 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 4491 getValue(I.getArgOperand(1)), DAG)); 4492 return nullptr; 4493 case Intrinsic::log: 4494 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4495 return nullptr; 4496 case Intrinsic::log2: 4497 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4498 return nullptr; 4499 case Intrinsic::log10: 4500 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4501 return nullptr; 4502 case Intrinsic::exp: 4503 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4504 return nullptr; 4505 case Intrinsic::exp2: 4506 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI)); 4507 return nullptr; 4508 case Intrinsic::pow: 4509 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 4510 getValue(I.getArgOperand(1)), DAG, TLI)); 4511 return nullptr; 4512 case Intrinsic::sqrt: 4513 case Intrinsic::fabs: 4514 case Intrinsic::sin: 4515 case Intrinsic::cos: 4516 case Intrinsic::floor: 4517 case Intrinsic::ceil: 4518 case Intrinsic::trunc: 4519 case Intrinsic::rint: 4520 case Intrinsic::nearbyint: 4521 case Intrinsic::round: { 4522 unsigned Opcode; 4523 switch (Intrinsic) { 4524 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4525 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 4526 case Intrinsic::fabs: Opcode = ISD::FABS; break; 4527 case Intrinsic::sin: Opcode = ISD::FSIN; break; 4528 case Intrinsic::cos: Opcode = ISD::FCOS; break; 4529 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 4530 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 4531 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 4532 case Intrinsic::rint: Opcode = ISD::FRINT; break; 4533 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 4534 case Intrinsic::round: Opcode = ISD::FROUND; break; 4535 } 4536 4537 setValue(&I, DAG.getNode(Opcode, sdl, 4538 getValue(I.getArgOperand(0)).getValueType(), 4539 getValue(I.getArgOperand(0)))); 4540 return nullptr; 4541 } 4542 case Intrinsic::minnum: 4543 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 4544 getValue(I.getArgOperand(0)).getValueType(), 4545 getValue(I.getArgOperand(0)), 4546 getValue(I.getArgOperand(1)))); 4547 return nullptr; 4548 case Intrinsic::maxnum: 4549 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 4550 getValue(I.getArgOperand(0)).getValueType(), 4551 getValue(I.getArgOperand(0)), 4552 getValue(I.getArgOperand(1)))); 4553 return nullptr; 4554 case Intrinsic::copysign: 4555 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 4556 getValue(I.getArgOperand(0)).getValueType(), 4557 getValue(I.getArgOperand(0)), 4558 getValue(I.getArgOperand(1)))); 4559 return nullptr; 4560 case Intrinsic::fma: 4561 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4562 getValue(I.getArgOperand(0)).getValueType(), 4563 getValue(I.getArgOperand(0)), 4564 getValue(I.getArgOperand(1)), 4565 getValue(I.getArgOperand(2)))); 4566 return nullptr; 4567 case Intrinsic::fmuladd: { 4568 EVT VT = TLI.getValueType(I.getType()); 4569 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4570 TLI.isFMAFasterThanFMulAndFAdd(VT)) { 4571 setValue(&I, DAG.getNode(ISD::FMA, sdl, 4572 getValue(I.getArgOperand(0)).getValueType(), 4573 getValue(I.getArgOperand(0)), 4574 getValue(I.getArgOperand(1)), 4575 getValue(I.getArgOperand(2)))); 4576 } else { 4577 SDValue Mul = DAG.getNode(ISD::FMUL, sdl, 4578 getValue(I.getArgOperand(0)).getValueType(), 4579 getValue(I.getArgOperand(0)), 4580 getValue(I.getArgOperand(1))); 4581 SDValue Add = DAG.getNode(ISD::FADD, sdl, 4582 getValue(I.getArgOperand(0)).getValueType(), 4583 Mul, 4584 getValue(I.getArgOperand(2))); 4585 setValue(&I, Add); 4586 } 4587 return nullptr; 4588 } 4589 case Intrinsic::convert_to_fp16: 4590 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 4591 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 4592 getValue(I.getArgOperand(0)), 4593 DAG.getTargetConstant(0, sdl, 4594 MVT::i32)))); 4595 return nullptr; 4596 case Intrinsic::convert_from_fp16: 4597 setValue(&I, 4598 DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()), 4599 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 4600 getValue(I.getArgOperand(0))))); 4601 return nullptr; 4602 case Intrinsic::pcmarker: { 4603 SDValue Tmp = getValue(I.getArgOperand(0)); 4604 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 4605 return nullptr; 4606 } 4607 case Intrinsic::readcyclecounter: { 4608 SDValue Op = getRoot(); 4609 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 4610 DAG.getVTList(MVT::i64, MVT::Other), Op); 4611 setValue(&I, Res); 4612 DAG.setRoot(Res.getValue(1)); 4613 return nullptr; 4614 } 4615 case Intrinsic::bswap: 4616 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 4617 getValue(I.getArgOperand(0)).getValueType(), 4618 getValue(I.getArgOperand(0)))); 4619 return nullptr; 4620 case Intrinsic::cttz: { 4621 SDValue Arg = getValue(I.getArgOperand(0)); 4622 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4623 EVT Ty = Arg.getValueType(); 4624 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 4625 sdl, Ty, Arg)); 4626 return nullptr; 4627 } 4628 case Intrinsic::ctlz: { 4629 SDValue Arg = getValue(I.getArgOperand(0)); 4630 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 4631 EVT Ty = Arg.getValueType(); 4632 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 4633 sdl, Ty, Arg)); 4634 return nullptr; 4635 } 4636 case Intrinsic::ctpop: { 4637 SDValue Arg = getValue(I.getArgOperand(0)); 4638 EVT Ty = Arg.getValueType(); 4639 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 4640 return nullptr; 4641 } 4642 case Intrinsic::stacksave: { 4643 SDValue Op = getRoot(); 4644 Res = DAG.getNode(ISD::STACKSAVE, sdl, 4645 DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op); 4646 setValue(&I, Res); 4647 DAG.setRoot(Res.getValue(1)); 4648 return nullptr; 4649 } 4650 case Intrinsic::stackrestore: { 4651 Res = getValue(I.getArgOperand(0)); 4652 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 4653 return nullptr; 4654 } 4655 case Intrinsic::stackprotector: { 4656 // Emit code into the DAG to store the stack guard onto the stack. 4657 MachineFunction &MF = DAG.getMachineFunction(); 4658 MachineFrameInfo *MFI = MF.getFrameInfo(); 4659 EVT PtrTy = TLI.getPointerTy(); 4660 SDValue Src, Chain = getRoot(); 4661 const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand(); 4662 const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr); 4663 4664 // See if Ptr is a bitcast. If it is, look through it and see if we can get 4665 // global variable __stack_chk_guard. 4666 if (!GV) 4667 if (const Operator *BC = dyn_cast<Operator>(Ptr)) 4668 if (BC->getOpcode() == Instruction::BitCast) 4669 GV = dyn_cast<GlobalVariable>(BC->getOperand(0)); 4670 4671 if (GV && TLI.useLoadStackGuardNode()) { 4672 // Emit a LOAD_STACK_GUARD node. 4673 MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, 4674 sdl, PtrTy, Chain); 4675 MachinePointerInfo MPInfo(GV); 4676 MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1); 4677 unsigned Flags = MachineMemOperand::MOLoad | 4678 MachineMemOperand::MOInvariant; 4679 *MemRefs = MF.getMachineMemOperand(MPInfo, Flags, 4680 PtrTy.getSizeInBits() / 8, 4681 DAG.getEVTAlignment(PtrTy)); 4682 Node->setMemRefs(MemRefs, MemRefs + 1); 4683 4684 // Copy the guard value to a virtual register so that it can be 4685 // retrieved in the epilogue. 4686 Src = SDValue(Node, 0); 4687 const TargetRegisterClass *RC = 4688 TLI.getRegClassFor(Src.getSimpleValueType()); 4689 unsigned Reg = MF.getRegInfo().createVirtualRegister(RC); 4690 4691 SPDescriptor.setGuardReg(Reg); 4692 Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src); 4693 } else { 4694 Src = getValue(I.getArgOperand(0)); // The guard's value. 4695 } 4696 4697 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4698 4699 int FI = FuncInfo.StaticAllocaMap[Slot]; 4700 MFI->setStackProtectorIndex(FI); 4701 4702 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4703 4704 // Store the stack protector onto the stack. 4705 Res = DAG.getStore(Chain, sdl, Src, FIN, 4706 MachinePointerInfo::getFixedStack(FI), 4707 true, false, 0); 4708 setValue(&I, Res); 4709 DAG.setRoot(Res); 4710 return nullptr; 4711 } 4712 case Intrinsic::objectsize: { 4713 // If we don't know by now, we're never going to know. 4714 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 4715 4716 assert(CI && "Non-constant type in __builtin_object_size?"); 4717 4718 SDValue Arg = getValue(I.getCalledValue()); 4719 EVT Ty = Arg.getValueType(); 4720 4721 if (CI->isZero()) 4722 Res = DAG.getConstant(-1ULL, sdl, Ty); 4723 else 4724 Res = DAG.getConstant(0, sdl, Ty); 4725 4726 setValue(&I, Res); 4727 return nullptr; 4728 } 4729 case Intrinsic::annotation: 4730 case Intrinsic::ptr_annotation: 4731 // Drop the intrinsic, but forward the value 4732 setValue(&I, getValue(I.getOperand(0))); 4733 return nullptr; 4734 case Intrinsic::assume: 4735 case Intrinsic::var_annotation: 4736 // Discard annotate attributes and assumptions 4737 return nullptr; 4738 4739 case Intrinsic::init_trampoline: { 4740 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 4741 4742 SDValue Ops[6]; 4743 Ops[0] = getRoot(); 4744 Ops[1] = getValue(I.getArgOperand(0)); 4745 Ops[2] = getValue(I.getArgOperand(1)); 4746 Ops[3] = getValue(I.getArgOperand(2)); 4747 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 4748 Ops[5] = DAG.getSrcValue(F); 4749 4750 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 4751 4752 DAG.setRoot(Res); 4753 return nullptr; 4754 } 4755 case Intrinsic::adjust_trampoline: { 4756 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 4757 TLI.getPointerTy(), 4758 getValue(I.getArgOperand(0)))); 4759 return nullptr; 4760 } 4761 case Intrinsic::gcroot: 4762 if (GFI) { 4763 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 4764 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 4765 4766 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 4767 GFI->addStackRoot(FI->getIndex(), TypeMap); 4768 } 4769 return nullptr; 4770 case Intrinsic::gcread: 4771 case Intrinsic::gcwrite: 4772 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 4773 case Intrinsic::flt_rounds: 4774 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32)); 4775 return nullptr; 4776 4777 case Intrinsic::expect: { 4778 // Just replace __builtin_expect(exp, c) with EXP. 4779 setValue(&I, getValue(I.getArgOperand(0))); 4780 return nullptr; 4781 } 4782 4783 case Intrinsic::debugtrap: 4784 case Intrinsic::trap: { 4785 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 4786 if (TrapFuncName.empty()) { 4787 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ? 4788 ISD::TRAP : ISD::DEBUGTRAP; 4789 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot())); 4790 return nullptr; 4791 } 4792 TargetLowering::ArgListTy Args; 4793 4794 TargetLowering::CallLoweringInfo CLI(DAG); 4795 CLI.setDebugLoc(sdl).setChain(getRoot()) 4796 .setCallee(CallingConv::C, I.getType(), 4797 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 4798 std::move(Args), 0); 4799 4800 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 4801 DAG.setRoot(Result.second); 4802 return nullptr; 4803 } 4804 4805 case Intrinsic::uadd_with_overflow: 4806 case Intrinsic::sadd_with_overflow: 4807 case Intrinsic::usub_with_overflow: 4808 case Intrinsic::ssub_with_overflow: 4809 case Intrinsic::umul_with_overflow: 4810 case Intrinsic::smul_with_overflow: { 4811 ISD::NodeType Op; 4812 switch (Intrinsic) { 4813 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4814 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 4815 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 4816 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 4817 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 4818 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 4819 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 4820 } 4821 SDValue Op1 = getValue(I.getArgOperand(0)); 4822 SDValue Op2 = getValue(I.getArgOperand(1)); 4823 4824 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 4825 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 4826 return nullptr; 4827 } 4828 case Intrinsic::prefetch: { 4829 SDValue Ops[5]; 4830 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 4831 Ops[0] = getRoot(); 4832 Ops[1] = getValue(I.getArgOperand(0)); 4833 Ops[2] = getValue(I.getArgOperand(1)); 4834 Ops[3] = getValue(I.getArgOperand(2)); 4835 Ops[4] = getValue(I.getArgOperand(3)); 4836 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl, 4837 DAG.getVTList(MVT::Other), Ops, 4838 EVT::getIntegerVT(*Context, 8), 4839 MachinePointerInfo(I.getArgOperand(0)), 4840 0, /* align */ 4841 false, /* volatile */ 4842 rw==0, /* read */ 4843 rw==1)); /* write */ 4844 return nullptr; 4845 } 4846 case Intrinsic::lifetime_start: 4847 case Intrinsic::lifetime_end: { 4848 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 4849 // Stack coloring is not enabled in O0, discard region information. 4850 if (TM.getOptLevel() == CodeGenOpt::None) 4851 return nullptr; 4852 4853 SmallVector<Value *, 4> Allocas; 4854 GetUnderlyingObjects(I.getArgOperand(1), Allocas, *DL); 4855 4856 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(), 4857 E = Allocas.end(); Object != E; ++Object) { 4858 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 4859 4860 // Could not find an Alloca. 4861 if (!LifetimeObject) 4862 continue; 4863 4864 // First check that the Alloca is static, otherwise it won't have a 4865 // valid frame index. 4866 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 4867 if (SI == FuncInfo.StaticAllocaMap.end()) 4868 return nullptr; 4869 4870 int FI = SI->second; 4871 4872 SDValue Ops[2]; 4873 Ops[0] = getRoot(); 4874 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 4875 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 4876 4877 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops); 4878 DAG.setRoot(Res); 4879 } 4880 return nullptr; 4881 } 4882 case Intrinsic::invariant_start: 4883 // Discard region information. 4884 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4885 return nullptr; 4886 case Intrinsic::invariant_end: 4887 // Discard region information. 4888 return nullptr; 4889 case Intrinsic::stackprotectorcheck: { 4890 // Do not actually emit anything for this basic block. Instead we initialize 4891 // the stack protector descriptor and export the guard variable so we can 4892 // access it in FinishBasicBlock. 4893 const BasicBlock *BB = I.getParent(); 4894 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I); 4895 ExportFromCurrentBlock(SPDescriptor.getGuard()); 4896 4897 // Flush our exports since we are going to process a terminator. 4898 (void)getControlRoot(); 4899 return nullptr; 4900 } 4901 case Intrinsic::clear_cache: 4902 return TLI.getClearCacheBuiltinName(); 4903 case Intrinsic::eh_actions: 4904 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 4905 return nullptr; 4906 case Intrinsic::donothing: 4907 // ignore 4908 return nullptr; 4909 case Intrinsic::experimental_stackmap: { 4910 visitStackmap(I); 4911 return nullptr; 4912 } 4913 case Intrinsic::experimental_patchpoint_void: 4914 case Intrinsic::experimental_patchpoint_i64: { 4915 visitPatchpoint(&I); 4916 return nullptr; 4917 } 4918 case Intrinsic::experimental_gc_statepoint: { 4919 visitStatepoint(I); 4920 return nullptr; 4921 } 4922 case Intrinsic::experimental_gc_result_int: 4923 case Intrinsic::experimental_gc_result_float: 4924 case Intrinsic::experimental_gc_result_ptr: 4925 case Intrinsic::experimental_gc_result: { 4926 visitGCResult(I); 4927 return nullptr; 4928 } 4929 case Intrinsic::experimental_gc_relocate: { 4930 visitGCRelocate(I); 4931 return nullptr; 4932 } 4933 case Intrinsic::instrprof_increment: 4934 llvm_unreachable("instrprof failed to lower an increment"); 4935 4936 case Intrinsic::frameescape: { 4937 MachineFunction &MF = DAG.getMachineFunction(); 4938 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 4939 4940 // Directly emit some FRAME_ALLOC machine instrs. Label assignment emission 4941 // is the same on all targets. 4942 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 4943 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 4944 if (isa<ConstantPointerNull>(Arg)) 4945 continue; // Skip null pointers. They represent a hole in index space. 4946 AllocaInst *Slot = cast<AllocaInst>(Arg); 4947 assert(FuncInfo.StaticAllocaMap.count(Slot) && 4948 "can only escape static allocas"); 4949 int FI = FuncInfo.StaticAllocaMap[Slot]; 4950 MCSymbol *FrameAllocSym = 4951 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4952 GlobalValue::getRealLinkageName(MF.getName()), Idx); 4953 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 4954 TII->get(TargetOpcode::FRAME_ALLOC)) 4955 .addSym(FrameAllocSym) 4956 .addFrameIndex(FI); 4957 } 4958 4959 return nullptr; 4960 } 4961 4962 case Intrinsic::framerecover: { 4963 // i8* @llvm.framerecover(i8* %fn, i8* %fp, i32 %idx) 4964 MachineFunction &MF = DAG.getMachineFunction(); 4965 MVT PtrVT = TLI.getPointerTy(0); 4966 4967 // Get the symbol that defines the frame offset. 4968 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 4969 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 4970 unsigned IdxVal = unsigned(Idx->getLimitedValue(INT_MAX)); 4971 MCSymbol *FrameAllocSym = 4972 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 4973 GlobalValue::getRealLinkageName(Fn->getName()), IdxVal); 4974 4975 // Create a TargetExternalSymbol for the label to avoid any target lowering 4976 // that would make this PC relative. 4977 StringRef Name = FrameAllocSym->getName(); 4978 assert(Name.data()[Name.size()] == '\0' && "not null terminated"); 4979 SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT); 4980 SDValue OffsetVal = 4981 DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym); 4982 4983 // Add the offset to the FP. 4984 Value *FP = I.getArgOperand(1); 4985 SDValue FPVal = getValue(FP); 4986 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal); 4987 setValue(&I, Add); 4988 4989 return nullptr; 4990 } 4991 case Intrinsic::eh_begincatch: 4992 case Intrinsic::eh_endcatch: 4993 llvm_unreachable("begin/end catch intrinsics not lowered in codegen"); 4994 case Intrinsic::eh_exceptioncode: { 4995 unsigned Reg = TLI.getExceptionPointerRegister(); 4996 assert(Reg && "cannot get exception code on this platform"); 4997 MVT PtrVT = TLI.getPointerTy(); 4998 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 4999 unsigned VReg = FuncInfo.MBB->addLiveIn(Reg, PtrRC); 5000 SDValue N = 5001 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 5002 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 5003 setValue(&I, N); 5004 return nullptr; 5005 } 5006 } 5007 } 5008 5009 std::pair<SDValue, SDValue> 5010 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 5011 MachineBasicBlock *LandingPad) { 5012 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5013 MCSymbol *BeginLabel = nullptr; 5014 5015 if (LandingPad) { 5016 // Insert a label before the invoke call to mark the try range. This can be 5017 // used to detect deletion of the invoke via the MachineModuleInfo. 5018 BeginLabel = MMI.getContext().CreateTempSymbol(); 5019 5020 // For SjLj, keep track of which landing pads go with which invokes 5021 // so as to maintain the ordering of pads in the LSDA. 5022 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5023 if (CallSiteIndex) { 5024 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5025 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5026 5027 // Now that the call site is handled, stop tracking it. 5028 MMI.setCurrentCallSite(0); 5029 } 5030 5031 // Both PendingLoads and PendingExports must be flushed here; 5032 // this call might not return. 5033 (void)getRoot(); 5034 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 5035 5036 CLI.setChain(getRoot()); 5037 } 5038 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5039 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5040 5041 assert((CLI.IsTailCall || Result.second.getNode()) && 5042 "Non-null chain expected with non-tail call!"); 5043 assert((Result.second.getNode() || !Result.first.getNode()) && 5044 "Null value expected with tail call!"); 5045 5046 if (!Result.second.getNode()) { 5047 // As a special case, a null chain means that a tail call has been emitted 5048 // and the DAG root is already updated. 5049 HasTailCall = true; 5050 5051 // Since there's no actual continuation from this block, nothing can be 5052 // relying on us setting vregs for them. 5053 PendingExports.clear(); 5054 } else { 5055 DAG.setRoot(Result.second); 5056 } 5057 5058 if (LandingPad) { 5059 // Insert a label at the end of the invoke call to mark the try range. This 5060 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5061 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5062 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 5063 5064 // Inform MachineModuleInfo of range. 5065 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5066 } 5067 5068 return Result; 5069 } 5070 5071 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5072 bool isTailCall, 5073 MachineBasicBlock *LandingPad) { 5074 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5075 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5076 Type *RetTy = FTy->getReturnType(); 5077 5078 TargetLowering::ArgListTy Args; 5079 TargetLowering::ArgListEntry Entry; 5080 Args.reserve(CS.arg_size()); 5081 5082 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5083 i != e; ++i) { 5084 const Value *V = *i; 5085 5086 // Skip empty types 5087 if (V->getType()->isEmptyTy()) 5088 continue; 5089 5090 SDValue ArgNode = getValue(V); 5091 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5092 5093 // Skip the first return-type Attribute to get to params. 5094 Entry.setAttributes(&CS, i - CS.arg_begin() + 1); 5095 Args.push_back(Entry); 5096 5097 // If we have an explicit sret argument that is an Instruction, (i.e., it 5098 // might point to function-local memory), we can't meaningfully tail-call. 5099 if (Entry.isSRet && isa<Instruction>(V)) 5100 isTailCall = false; 5101 } 5102 5103 // Check if target-independent constraints permit a tail call here. 5104 // Target-dependent constraints are checked within TLI->LowerCallTo. 5105 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget())) 5106 isTailCall = false; 5107 5108 TargetLowering::CallLoweringInfo CLI(DAG); 5109 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 5110 .setCallee(RetTy, FTy, Callee, std::move(Args), CS) 5111 .setTailCall(isTailCall); 5112 std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad); 5113 5114 if (Result.first.getNode()) 5115 setValue(CS.getInstruction(), Result.first); 5116 } 5117 5118 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5119 /// value is equal or not-equal to zero. 5120 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5121 for (const User *U : V->users()) { 5122 if (const ICmpInst *IC = dyn_cast<ICmpInst>(U)) 5123 if (IC->isEquality()) 5124 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5125 if (C->isNullValue()) 5126 continue; 5127 // Unknown instruction. 5128 return false; 5129 } 5130 return true; 5131 } 5132 5133 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5134 Type *LoadTy, 5135 SelectionDAGBuilder &Builder) { 5136 5137 // Check to see if this load can be trivially constant folded, e.g. if the 5138 // input is from a string literal. 5139 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5140 // Cast pointer to the type we really want to load. 5141 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5142 PointerType::getUnqual(LoadTy)); 5143 5144 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 5145 const_cast<Constant *>(LoadInput), *Builder.DL)) 5146 return Builder.getValue(LoadCst); 5147 } 5148 5149 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5150 // still constant memory, the input chain can be the entry node. 5151 SDValue Root; 5152 bool ConstantMemory = false; 5153 5154 // Do not serialize (non-volatile) loads of constant memory with anything. 5155 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5156 Root = Builder.DAG.getEntryNode(); 5157 ConstantMemory = true; 5158 } else { 5159 // Do not serialize non-volatile loads against each other. 5160 Root = Builder.DAG.getRoot(); 5161 } 5162 5163 SDValue Ptr = Builder.getValue(PtrVal); 5164 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, 5165 Ptr, MachinePointerInfo(PtrVal), 5166 false /*volatile*/, 5167 false /*nontemporal*/, 5168 false /*isinvariant*/, 1 /* align=1 */); 5169 5170 if (!ConstantMemory) 5171 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5172 return LoadVal; 5173 } 5174 5175 /// processIntegerCallValue - Record the value for an instruction that 5176 /// produces an integer result, converting the type where necessary. 5177 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 5178 SDValue Value, 5179 bool IsSigned) { 5180 EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5181 if (IsSigned) 5182 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 5183 else 5184 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 5185 setValue(&I, Value); 5186 } 5187 5188 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5189 /// If so, return true and lower it, otherwise return false and it will be 5190 /// lowered like a normal call. 5191 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5192 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5193 if (I.getNumArgOperands() != 3) 5194 return false; 5195 5196 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5197 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5198 !I.getArgOperand(2)->getType()->isIntegerTy() || 5199 !I.getType()->isIntegerTy()) 5200 return false; 5201 5202 const Value *Size = I.getArgOperand(2); 5203 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 5204 if (CSize && CSize->getZExtValue() == 0) { 5205 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true); 5206 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 5207 return true; 5208 } 5209 5210 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5211 std::pair<SDValue, SDValue> Res = 5212 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5213 getValue(LHS), getValue(RHS), getValue(Size), 5214 MachinePointerInfo(LHS), 5215 MachinePointerInfo(RHS)); 5216 if (Res.first.getNode()) { 5217 processIntegerCallValue(I, Res.first, true); 5218 PendingLoads.push_back(Res.second); 5219 return true; 5220 } 5221 5222 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5223 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5224 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) { 5225 bool ActuallyDoIt = true; 5226 MVT LoadVT; 5227 Type *LoadTy; 5228 switch (CSize->getZExtValue()) { 5229 default: 5230 LoadVT = MVT::Other; 5231 LoadTy = nullptr; 5232 ActuallyDoIt = false; 5233 break; 5234 case 2: 5235 LoadVT = MVT::i16; 5236 LoadTy = Type::getInt16Ty(CSize->getContext()); 5237 break; 5238 case 4: 5239 LoadVT = MVT::i32; 5240 LoadTy = Type::getInt32Ty(CSize->getContext()); 5241 break; 5242 case 8: 5243 LoadVT = MVT::i64; 5244 LoadTy = Type::getInt64Ty(CSize->getContext()); 5245 break; 5246 /* 5247 case 16: 5248 LoadVT = MVT::v4i32; 5249 LoadTy = Type::getInt32Ty(CSize->getContext()); 5250 LoadTy = VectorType::get(LoadTy, 4); 5251 break; 5252 */ 5253 } 5254 5255 // This turns into unaligned loads. We only do this if the target natively 5256 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5257 // we'll only produce a small number of byte loads. 5258 5259 // Require that we can find a legal MVT, and only do this if the target 5260 // supports unaligned loads of that type. Expanding into byte loads would 5261 // bloat the code. 5262 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5263 if (ActuallyDoIt && CSize->getZExtValue() > 4) { 5264 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 5265 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 5266 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5267 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5268 // TODO: Check alignment of src and dest ptrs. 5269 if (!TLI.isTypeLegal(LoadVT) || 5270 !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) || 5271 !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS)) 5272 ActuallyDoIt = false; 5273 } 5274 5275 if (ActuallyDoIt) { 5276 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5277 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5278 5279 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal, 5280 ISD::SETNE); 5281 processIntegerCallValue(I, Res, false); 5282 return true; 5283 } 5284 } 5285 5286 5287 return false; 5288 } 5289 5290 /// visitMemChrCall -- See if we can lower a memchr call into an optimized 5291 /// form. If so, return true and lower it, otherwise return false and it 5292 /// will be lowered like a normal call. 5293 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 5294 // Verify that the prototype makes sense. void *memchr(void *, int, size_t) 5295 if (I.getNumArgOperands() != 3) 5296 return false; 5297 5298 const Value *Src = I.getArgOperand(0); 5299 const Value *Char = I.getArgOperand(1); 5300 const Value *Length = I.getArgOperand(2); 5301 if (!Src->getType()->isPointerTy() || 5302 !Char->getType()->isIntegerTy() || 5303 !Length->getType()->isIntegerTy() || 5304 !I.getType()->isPointerTy()) 5305 return false; 5306 5307 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5308 std::pair<SDValue, SDValue> Res = 5309 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 5310 getValue(Src), getValue(Char), getValue(Length), 5311 MachinePointerInfo(Src)); 5312 if (Res.first.getNode()) { 5313 setValue(&I, Res.first); 5314 PendingLoads.push_back(Res.second); 5315 return true; 5316 } 5317 5318 return false; 5319 } 5320 5321 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an 5322 /// optimized form. If so, return true and lower it, otherwise return false 5323 /// and it will be lowered like a normal call. 5324 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 5325 // Verify that the prototype makes sense. char *strcpy(char *, char *) 5326 if (I.getNumArgOperands() != 2) 5327 return false; 5328 5329 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5330 if (!Arg0->getType()->isPointerTy() || 5331 !Arg1->getType()->isPointerTy() || 5332 !I.getType()->isPointerTy()) 5333 return false; 5334 5335 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5336 std::pair<SDValue, SDValue> Res = 5337 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 5338 getValue(Arg0), getValue(Arg1), 5339 MachinePointerInfo(Arg0), 5340 MachinePointerInfo(Arg1), isStpcpy); 5341 if (Res.first.getNode()) { 5342 setValue(&I, Res.first); 5343 DAG.setRoot(Res.second); 5344 return true; 5345 } 5346 5347 return false; 5348 } 5349 5350 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form. 5351 /// If so, return true and lower it, otherwise return false and it will be 5352 /// lowered like a normal call. 5353 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 5354 // Verify that the prototype makes sense. int strcmp(void*,void*) 5355 if (I.getNumArgOperands() != 2) 5356 return false; 5357 5358 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5359 if (!Arg0->getType()->isPointerTy() || 5360 !Arg1->getType()->isPointerTy() || 5361 !I.getType()->isIntegerTy()) 5362 return false; 5363 5364 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5365 std::pair<SDValue, SDValue> Res = 5366 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 5367 getValue(Arg0), getValue(Arg1), 5368 MachinePointerInfo(Arg0), 5369 MachinePointerInfo(Arg1)); 5370 if (Res.first.getNode()) { 5371 processIntegerCallValue(I, Res.first, true); 5372 PendingLoads.push_back(Res.second); 5373 return true; 5374 } 5375 5376 return false; 5377 } 5378 5379 /// visitStrLenCall -- See if we can lower a strlen call into an optimized 5380 /// form. If so, return true and lower it, otherwise return false and it 5381 /// will be lowered like a normal call. 5382 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 5383 // Verify that the prototype makes sense. size_t strlen(char *) 5384 if (I.getNumArgOperands() != 1) 5385 return false; 5386 5387 const Value *Arg0 = I.getArgOperand(0); 5388 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy()) 5389 return false; 5390 5391 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5392 std::pair<SDValue, SDValue> Res = 5393 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 5394 getValue(Arg0), MachinePointerInfo(Arg0)); 5395 if (Res.first.getNode()) { 5396 processIntegerCallValue(I, Res.first, false); 5397 PendingLoads.push_back(Res.second); 5398 return true; 5399 } 5400 5401 return false; 5402 } 5403 5404 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized 5405 /// form. If so, return true and lower it, otherwise return false and it 5406 /// will be lowered like a normal call. 5407 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 5408 // Verify that the prototype makes sense. size_t strnlen(char *, size_t) 5409 if (I.getNumArgOperands() != 2) 5410 return false; 5411 5412 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 5413 if (!Arg0->getType()->isPointerTy() || 5414 !Arg1->getType()->isIntegerTy() || 5415 !I.getType()->isIntegerTy()) 5416 return false; 5417 5418 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo(); 5419 std::pair<SDValue, SDValue> Res = 5420 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 5421 getValue(Arg0), getValue(Arg1), 5422 MachinePointerInfo(Arg0)); 5423 if (Res.first.getNode()) { 5424 processIntegerCallValue(I, Res.first, false); 5425 PendingLoads.push_back(Res.second); 5426 return true; 5427 } 5428 5429 return false; 5430 } 5431 5432 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5433 /// operation (as expected), translate it to an SDNode with the specified opcode 5434 /// and return true. 5435 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5436 unsigned Opcode) { 5437 // Sanity check that it really is a unary floating-point call. 5438 if (I.getNumArgOperands() != 1 || 5439 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5440 I.getType() != I.getArgOperand(0)->getType() || 5441 !I.onlyReadsMemory()) 5442 return false; 5443 5444 SDValue Tmp = getValue(I.getArgOperand(0)); 5445 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp)); 5446 return true; 5447 } 5448 5449 /// visitBinaryFloatCall - If a call instruction is a binary floating-point 5450 /// operation (as expected), translate it to an SDNode with the specified opcode 5451 /// and return true. 5452 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 5453 unsigned Opcode) { 5454 // Sanity check that it really is a binary floating-point call. 5455 if (I.getNumArgOperands() != 2 || 5456 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5457 I.getType() != I.getArgOperand(0)->getType() || 5458 I.getType() != I.getArgOperand(1)->getType() || 5459 !I.onlyReadsMemory()) 5460 return false; 5461 5462 SDValue Tmp0 = getValue(I.getArgOperand(0)); 5463 SDValue Tmp1 = getValue(I.getArgOperand(1)); 5464 EVT VT = Tmp0.getValueType(); 5465 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1)); 5466 return true; 5467 } 5468 5469 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5470 // Handle inline assembly differently. 5471 if (isa<InlineAsm>(I.getCalledValue())) { 5472 visitInlineAsm(&I); 5473 return; 5474 } 5475 5476 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5477 ComputeUsesVAFloatArgument(I, &MMI); 5478 5479 const char *RenameFn = nullptr; 5480 if (Function *F = I.getCalledFunction()) { 5481 if (F->isDeclaration()) { 5482 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5483 if (unsigned IID = II->getIntrinsicID(F)) { 5484 RenameFn = visitIntrinsicCall(I, IID); 5485 if (!RenameFn) 5486 return; 5487 } 5488 } 5489 if (unsigned IID = F->getIntrinsicID()) { 5490 RenameFn = visitIntrinsicCall(I, IID); 5491 if (!RenameFn) 5492 return; 5493 } 5494 } 5495 5496 // Check for well-known libc/libm calls. If the function is internal, it 5497 // can't be a library call. 5498 LibFunc::Func Func; 5499 if (!F->hasLocalLinkage() && F->hasName() && 5500 LibInfo->getLibFunc(F->getName(), Func) && 5501 LibInfo->hasOptimizedCodeGen(Func)) { 5502 switch (Func) { 5503 default: break; 5504 case LibFunc::copysign: 5505 case LibFunc::copysignf: 5506 case LibFunc::copysignl: 5507 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5508 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5509 I.getType() == I.getArgOperand(0)->getType() && 5510 I.getType() == I.getArgOperand(1)->getType() && 5511 I.onlyReadsMemory()) { 5512 SDValue LHS = getValue(I.getArgOperand(0)); 5513 SDValue RHS = getValue(I.getArgOperand(1)); 5514 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 5515 LHS.getValueType(), LHS, RHS)); 5516 return; 5517 } 5518 break; 5519 case LibFunc::fabs: 5520 case LibFunc::fabsf: 5521 case LibFunc::fabsl: 5522 if (visitUnaryFloatCall(I, ISD::FABS)) 5523 return; 5524 break; 5525 case LibFunc::fmin: 5526 case LibFunc::fminf: 5527 case LibFunc::fminl: 5528 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 5529 return; 5530 break; 5531 case LibFunc::fmax: 5532 case LibFunc::fmaxf: 5533 case LibFunc::fmaxl: 5534 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 5535 return; 5536 break; 5537 case LibFunc::sin: 5538 case LibFunc::sinf: 5539 case LibFunc::sinl: 5540 if (visitUnaryFloatCall(I, ISD::FSIN)) 5541 return; 5542 break; 5543 case LibFunc::cos: 5544 case LibFunc::cosf: 5545 case LibFunc::cosl: 5546 if (visitUnaryFloatCall(I, ISD::FCOS)) 5547 return; 5548 break; 5549 case LibFunc::sqrt: 5550 case LibFunc::sqrtf: 5551 case LibFunc::sqrtl: 5552 case LibFunc::sqrt_finite: 5553 case LibFunc::sqrtf_finite: 5554 case LibFunc::sqrtl_finite: 5555 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5556 return; 5557 break; 5558 case LibFunc::floor: 5559 case LibFunc::floorf: 5560 case LibFunc::floorl: 5561 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5562 return; 5563 break; 5564 case LibFunc::nearbyint: 5565 case LibFunc::nearbyintf: 5566 case LibFunc::nearbyintl: 5567 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5568 return; 5569 break; 5570 case LibFunc::ceil: 5571 case LibFunc::ceilf: 5572 case LibFunc::ceill: 5573 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5574 return; 5575 break; 5576 case LibFunc::rint: 5577 case LibFunc::rintf: 5578 case LibFunc::rintl: 5579 if (visitUnaryFloatCall(I, ISD::FRINT)) 5580 return; 5581 break; 5582 case LibFunc::round: 5583 case LibFunc::roundf: 5584 case LibFunc::roundl: 5585 if (visitUnaryFloatCall(I, ISD::FROUND)) 5586 return; 5587 break; 5588 case LibFunc::trunc: 5589 case LibFunc::truncf: 5590 case LibFunc::truncl: 5591 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5592 return; 5593 break; 5594 case LibFunc::log2: 5595 case LibFunc::log2f: 5596 case LibFunc::log2l: 5597 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5598 return; 5599 break; 5600 case LibFunc::exp2: 5601 case LibFunc::exp2f: 5602 case LibFunc::exp2l: 5603 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5604 return; 5605 break; 5606 case LibFunc::memcmp: 5607 if (visitMemCmpCall(I)) 5608 return; 5609 break; 5610 case LibFunc::memchr: 5611 if (visitMemChrCall(I)) 5612 return; 5613 break; 5614 case LibFunc::strcpy: 5615 if (visitStrCpyCall(I, false)) 5616 return; 5617 break; 5618 case LibFunc::stpcpy: 5619 if (visitStrCpyCall(I, true)) 5620 return; 5621 break; 5622 case LibFunc::strcmp: 5623 if (visitStrCmpCall(I)) 5624 return; 5625 break; 5626 case LibFunc::strlen: 5627 if (visitStrLenCall(I)) 5628 return; 5629 break; 5630 case LibFunc::strnlen: 5631 if (visitStrNLenCall(I)) 5632 return; 5633 break; 5634 } 5635 } 5636 } 5637 5638 SDValue Callee; 5639 if (!RenameFn) 5640 Callee = getValue(I.getCalledValue()); 5641 else 5642 Callee = DAG.getExternalSymbol(RenameFn, 5643 DAG.getTargetLoweringInfo().getPointerTy()); 5644 5645 // Check if we can potentially perform a tail call. More detailed checking is 5646 // be done within LowerCallTo, after more information about the call is known. 5647 LowerCallTo(&I, Callee, I.isTailCall()); 5648 } 5649 5650 namespace { 5651 5652 /// AsmOperandInfo - This contains information for each constraint that we are 5653 /// lowering. 5654 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5655 public: 5656 /// CallOperand - If this is the result output operand or a clobber 5657 /// this is null, otherwise it is the incoming operand to the CallInst. 5658 /// This gets modified as the asm is processed. 5659 SDValue CallOperand; 5660 5661 /// AssignedRegs - If this is a register or register class operand, this 5662 /// contains the set of register corresponding to the operand. 5663 RegsForValue AssignedRegs; 5664 5665 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5666 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) { 5667 } 5668 5669 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5670 /// corresponds to. If there is no Value* for this operand, it returns 5671 /// MVT::Other. 5672 EVT getCallOperandValEVT(LLVMContext &Context, 5673 const TargetLowering &TLI, 5674 const DataLayout *DL) const { 5675 if (!CallOperandVal) return MVT::Other; 5676 5677 if (isa<BasicBlock>(CallOperandVal)) 5678 return TLI.getPointerTy(); 5679 5680 llvm::Type *OpTy = CallOperandVal->getType(); 5681 5682 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5683 // If this is an indirect operand, the operand is a pointer to the 5684 // accessed type. 5685 if (isIndirect) { 5686 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5687 if (!PtrTy) 5688 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5689 OpTy = PtrTy->getElementType(); 5690 } 5691 5692 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5693 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5694 if (STy->getNumElements() == 1) 5695 OpTy = STy->getElementType(0); 5696 5697 // If OpTy is not a single value, it may be a struct/union that we 5698 // can tile with integers. 5699 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5700 unsigned BitSize = DL->getTypeSizeInBits(OpTy); 5701 switch (BitSize) { 5702 default: break; 5703 case 1: 5704 case 8: 5705 case 16: 5706 case 32: 5707 case 64: 5708 case 128: 5709 OpTy = IntegerType::get(Context, BitSize); 5710 break; 5711 } 5712 } 5713 5714 return TLI.getValueType(OpTy, true); 5715 } 5716 }; 5717 5718 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5719 5720 } // end anonymous namespace 5721 5722 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5723 /// specified operand. We prefer to assign virtual registers, to allow the 5724 /// register allocator to handle the assignment process. However, if the asm 5725 /// uses features that we can't model on machineinstrs, we have SDISel do the 5726 /// allocation. This produces generally horrible, but correct, code. 5727 /// 5728 /// OpInfo describes the operand. 5729 /// 5730 static void GetRegistersForValue(SelectionDAG &DAG, 5731 const TargetLowering &TLI, 5732 SDLoc DL, 5733 SDISelAsmOperandInfo &OpInfo) { 5734 LLVMContext &Context = *DAG.getContext(); 5735 5736 MachineFunction &MF = DAG.getMachineFunction(); 5737 SmallVector<unsigned, 4> Regs; 5738 5739 // If this is a constraint for a single physreg, or a constraint for a 5740 // register class, find it. 5741 std::pair<unsigned, const TargetRegisterClass *> PhysReg = 5742 TLI.getRegForInlineAsmConstraint(MF.getSubtarget().getRegisterInfo(), 5743 OpInfo.ConstraintCode, 5744 OpInfo.ConstraintVT); 5745 5746 unsigned NumRegs = 1; 5747 if (OpInfo.ConstraintVT != MVT::Other) { 5748 // If this is a FP input in an integer register (or visa versa) insert a bit 5749 // cast of the input value. More generally, handle any case where the input 5750 // value disagrees with the register class we plan to stick this in. 5751 if (OpInfo.Type == InlineAsm::isInput && 5752 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5753 // Try to convert to the first EVT that the reg class contains. If the 5754 // types are identical size, use a bitcast to convert (e.g. two differing 5755 // vector types). 5756 MVT RegVT = *PhysReg.second->vt_begin(); 5757 if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) { 5758 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5759 RegVT, OpInfo.CallOperand); 5760 OpInfo.ConstraintVT = RegVT; 5761 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5762 // If the input is a FP value and we want it in FP registers, do a 5763 // bitcast to the corresponding integer type. This turns an f64 value 5764 // into i64, which can be passed with two i32 values on a 32-bit 5765 // machine. 5766 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 5767 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5768 RegVT, OpInfo.CallOperand); 5769 OpInfo.ConstraintVT = RegVT; 5770 } 5771 } 5772 5773 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5774 } 5775 5776 MVT RegVT; 5777 EVT ValueVT = OpInfo.ConstraintVT; 5778 5779 // If this is a constraint for a specific physical register, like {r17}, 5780 // assign it now. 5781 if (unsigned AssignedReg = PhysReg.first) { 5782 const TargetRegisterClass *RC = PhysReg.second; 5783 if (OpInfo.ConstraintVT == MVT::Other) 5784 ValueVT = *RC->vt_begin(); 5785 5786 // Get the actual register value type. This is important, because the user 5787 // may have asked for (e.g.) the AX register in i32 type. We need to 5788 // remember that AX is actually i16 to get the right extension. 5789 RegVT = *RC->vt_begin(); 5790 5791 // This is a explicit reference to a physical register. 5792 Regs.push_back(AssignedReg); 5793 5794 // If this is an expanded reference, add the rest of the regs to Regs. 5795 if (NumRegs != 1) { 5796 TargetRegisterClass::iterator I = RC->begin(); 5797 for (; *I != AssignedReg; ++I) 5798 assert(I != RC->end() && "Didn't find reg!"); 5799 5800 // Already added the first reg. 5801 --NumRegs; ++I; 5802 for (; NumRegs; --NumRegs, ++I) { 5803 assert(I != RC->end() && "Ran out of registers to allocate!"); 5804 Regs.push_back(*I); 5805 } 5806 } 5807 5808 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5809 return; 5810 } 5811 5812 // Otherwise, if this was a reference to an LLVM register class, create vregs 5813 // for this reference. 5814 if (const TargetRegisterClass *RC = PhysReg.second) { 5815 RegVT = *RC->vt_begin(); 5816 if (OpInfo.ConstraintVT == MVT::Other) 5817 ValueVT = RegVT; 5818 5819 // Create the appropriate number of virtual registers. 5820 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5821 for (; NumRegs; --NumRegs) 5822 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5823 5824 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5825 return; 5826 } 5827 5828 // Otherwise, we couldn't allocate enough registers for this. 5829 } 5830 5831 /// visitInlineAsm - Handle a call to an InlineAsm object. 5832 /// 5833 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5834 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5835 5836 /// ConstraintOperands - Information about all of the constraints. 5837 SDISelAsmOperandInfoVector ConstraintOperands; 5838 5839 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5840 TargetLowering::AsmOperandInfoVector TargetConstraints = 5841 TLI.ParseConstraints(DAG.getSubtarget().getRegisterInfo(), CS); 5842 5843 bool hasMemory = false; 5844 5845 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5846 unsigned ResNo = 0; // ResNo - The result number of the next output. 5847 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5848 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5849 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5850 5851 MVT OpVT = MVT::Other; 5852 5853 // Compute the value type for each operand. 5854 switch (OpInfo.Type) { 5855 case InlineAsm::isOutput: 5856 // Indirect outputs just consume an argument. 5857 if (OpInfo.isIndirect) { 5858 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5859 break; 5860 } 5861 5862 // The return value of the call is this value. As such, there is no 5863 // corresponding argument. 5864 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5865 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5866 OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo)); 5867 } else { 5868 assert(ResNo == 0 && "Asm only has one result!"); 5869 OpVT = TLI.getSimpleValueType(CS.getType()); 5870 } 5871 ++ResNo; 5872 break; 5873 case InlineAsm::isInput: 5874 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5875 break; 5876 case InlineAsm::isClobber: 5877 // Nothing to do. 5878 break; 5879 } 5880 5881 // If this is an input or an indirect output, process the call argument. 5882 // BasicBlocks are labels, currently appearing only in asm's. 5883 if (OpInfo.CallOperandVal) { 5884 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5885 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5886 } else { 5887 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5888 } 5889 5890 OpVT = 5891 OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT(); 5892 } 5893 5894 OpInfo.ConstraintVT = OpVT; 5895 5896 // Indirect operand accesses access memory. 5897 if (OpInfo.isIndirect) 5898 hasMemory = true; 5899 else { 5900 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5901 TargetLowering::ConstraintType 5902 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5903 if (CType == TargetLowering::C_Memory) { 5904 hasMemory = true; 5905 break; 5906 } 5907 } 5908 } 5909 } 5910 5911 SDValue Chain, Flag; 5912 5913 // We won't need to flush pending loads if this asm doesn't touch 5914 // memory and is nonvolatile. 5915 if (hasMemory || IA->hasSideEffects()) 5916 Chain = getRoot(); 5917 else 5918 Chain = DAG.getRoot(); 5919 5920 // Second pass over the constraints: compute which constraint option to use 5921 // and assign registers to constraints that want a specific physreg. 5922 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5923 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5924 5925 // If this is an output operand with a matching input operand, look up the 5926 // matching input. If their types mismatch, e.g. one is an integer, the 5927 // other is floating point, or their sizes are different, flag it as an 5928 // error. 5929 if (OpInfo.hasMatchingInput()) { 5930 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5931 5932 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5933 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 5934 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 5935 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 5936 OpInfo.ConstraintVT); 5937 std::pair<unsigned, const TargetRegisterClass *> InputRC = 5938 TLI.getRegForInlineAsmConstraint(TRI, Input.ConstraintCode, 5939 Input.ConstraintVT); 5940 if ((OpInfo.ConstraintVT.isInteger() != 5941 Input.ConstraintVT.isInteger()) || 5942 (MatchRC.second != InputRC.second)) { 5943 report_fatal_error("Unsupported asm: input constraint" 5944 " with a matching output constraint of" 5945 " incompatible type!"); 5946 } 5947 Input.ConstraintVT = OpInfo.ConstraintVT; 5948 } 5949 } 5950 5951 // Compute the constraint code and ConstraintType to use. 5952 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5953 5954 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5955 OpInfo.Type == InlineAsm::isClobber) 5956 continue; 5957 5958 // If this is a memory input, and if the operand is not indirect, do what we 5959 // need to to provide an address for the memory input. 5960 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5961 !OpInfo.isIndirect) { 5962 assert((OpInfo.isMultipleAlternative || 5963 (OpInfo.Type == InlineAsm::isInput)) && 5964 "Can only indirectify direct input operands!"); 5965 5966 // Memory operands really want the address of the value. If we don't have 5967 // an indirect input, put it in the constpool if we can, otherwise spill 5968 // it to a stack slot. 5969 // TODO: This isn't quite right. We need to handle these according to 5970 // the addressing mode that the constraint wants. Also, this may take 5971 // an additional register for the computation and we don't want that 5972 // either. 5973 5974 // If the operand is a float, integer, or vector constant, spill to a 5975 // constant pool entry to get its address. 5976 const Value *OpVal = OpInfo.CallOperandVal; 5977 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5978 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 5979 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5980 TLI.getPointerTy()); 5981 } else { 5982 // Otherwise, create a stack slot and emit a store to it before the 5983 // asm. 5984 Type *Ty = OpVal->getType(); 5985 uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty); 5986 unsigned Align = TLI.getDataLayout()->getPrefTypeAlignment(Ty); 5987 MachineFunction &MF = DAG.getMachineFunction(); 5988 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5989 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5990 Chain = DAG.getStore(Chain, getCurSDLoc(), 5991 OpInfo.CallOperand, StackSlot, 5992 MachinePointerInfo::getFixedStack(SSFI), 5993 false, false, 0); 5994 OpInfo.CallOperand = StackSlot; 5995 } 5996 5997 // There is no longer a Value* corresponding to this operand. 5998 OpInfo.CallOperandVal = nullptr; 5999 6000 // It is now an indirect operand. 6001 OpInfo.isIndirect = true; 6002 } 6003 6004 // If this constraint is for a specific register, allocate it before 6005 // anything else. 6006 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6007 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6008 } 6009 6010 // Second pass - Loop over all of the operands, assigning virtual or physregs 6011 // to register class operands. 6012 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6013 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6014 6015 // C_Register operands have already been allocated, Other/Memory don't need 6016 // to be. 6017 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6018 GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo); 6019 } 6020 6021 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6022 std::vector<SDValue> AsmNodeOperands; 6023 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6024 AsmNodeOperands.push_back( 6025 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6026 TLI.getPointerTy())); 6027 6028 // If we have a !srcloc metadata node associated with it, we want to attach 6029 // this to the ultimately generated inline asm machineinstr. To do this, we 6030 // pass in the third operand as this (potentially null) inline asm MDNode. 6031 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6032 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6033 6034 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 6035 // bits as operand 3. 6036 unsigned ExtraInfo = 0; 6037 if (IA->hasSideEffects()) 6038 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6039 if (IA->isAlignStack()) 6040 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6041 // Set the asm dialect. 6042 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6043 6044 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 6045 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 6046 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; 6047 6048 // Compute the constraint code and ConstraintType to use. 6049 TLI.ComputeConstraintToUse(OpInfo, SDValue()); 6050 6051 // Ideally, we would only check against memory constraints. However, the 6052 // meaning of an other constraint can be target-specific and we can't easily 6053 // reason about it. Therefore, be conservative and set MayLoad/MayStore 6054 // for other constriants as well. 6055 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 6056 OpInfo.ConstraintType == TargetLowering::C_Other) { 6057 if (OpInfo.Type == InlineAsm::isInput) 6058 ExtraInfo |= InlineAsm::Extra_MayLoad; 6059 else if (OpInfo.Type == InlineAsm::isOutput) 6060 ExtraInfo |= InlineAsm::Extra_MayStore; 6061 else if (OpInfo.Type == InlineAsm::isClobber) 6062 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 6063 } 6064 } 6065 6066 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, getCurSDLoc(), 6067 TLI.getPointerTy())); 6068 6069 // Loop over all of the inputs, copying the operand values into the 6070 // appropriate registers and processing the output regs. 6071 RegsForValue RetValRegs; 6072 6073 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6074 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6075 6076 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6077 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6078 6079 switch (OpInfo.Type) { 6080 case InlineAsm::isOutput: { 6081 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6082 OpInfo.ConstraintType != TargetLowering::C_Register) { 6083 // Memory output, or 'other' output (e.g. 'X' constraint). 6084 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6085 6086 unsigned ConstraintID = 6087 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6088 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6089 "Failed to convert memory constraint code to constraint id."); 6090 6091 // Add information to the INLINEASM node to know about this output. 6092 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6093 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 6094 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 6095 MVT::i32)); 6096 AsmNodeOperands.push_back(OpInfo.CallOperand); 6097 break; 6098 } 6099 6100 // Otherwise, this is a register or register class output. 6101 6102 // Copy the output from the appropriate register. Find a register that 6103 // we can use. 6104 if (OpInfo.AssignedRegs.Regs.empty()) { 6105 LLVMContext &Ctx = *DAG.getContext(); 6106 Ctx.emitError(CS.getInstruction(), 6107 "couldn't allocate output register for constraint '" + 6108 Twine(OpInfo.ConstraintCode) + "'"); 6109 return; 6110 } 6111 6112 // If this is an indirect operand, store through the pointer after the 6113 // asm. 6114 if (OpInfo.isIndirect) { 6115 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6116 OpInfo.CallOperandVal)); 6117 } else { 6118 // This is the result value of the call. 6119 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6120 // Concatenate this output onto the outputs list. 6121 RetValRegs.append(OpInfo.AssignedRegs); 6122 } 6123 6124 // Add information to the INLINEASM node to know that this register is 6125 // set. 6126 OpInfo.AssignedRegs 6127 .AddInlineAsmOperands(OpInfo.isEarlyClobber 6128 ? InlineAsm::Kind_RegDefEarlyClobber 6129 : InlineAsm::Kind_RegDef, 6130 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 6131 break; 6132 } 6133 case InlineAsm::isInput: { 6134 SDValue InOperandVal = OpInfo.CallOperand; 6135 6136 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6137 // If this is required to match an output register we have already set, 6138 // just use its register. 6139 unsigned OperandNo = OpInfo.getMatchedOperand(); 6140 6141 // Scan until we find the definition we already emitted of this operand. 6142 // When we find it, create a RegsForValue operand. 6143 unsigned CurOp = InlineAsm::Op_FirstOperand; 6144 for (; OperandNo; --OperandNo) { 6145 // Advance to the next operand. 6146 unsigned OpFlag = 6147 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6148 assert((InlineAsm::isRegDefKind(OpFlag) || 6149 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6150 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6151 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6152 } 6153 6154 unsigned OpFlag = 6155 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6156 if (InlineAsm::isRegDefKind(OpFlag) || 6157 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6158 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6159 if (OpInfo.isIndirect) { 6160 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6161 LLVMContext &Ctx = *DAG.getContext(); 6162 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6163 " don't know how to handle tied " 6164 "indirect register inputs"); 6165 return; 6166 } 6167 6168 RegsForValue MatchedRegs; 6169 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6170 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 6171 MatchedRegs.RegVTs.push_back(RegVT); 6172 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6173 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6174 i != e; ++i) { 6175 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) 6176 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC)); 6177 else { 6178 LLVMContext &Ctx = *DAG.getContext(); 6179 Ctx.emitError(CS.getInstruction(), 6180 "inline asm error: This value" 6181 " type register class is not natively supported!"); 6182 return; 6183 } 6184 } 6185 SDLoc dl = getCurSDLoc(); 6186 // Use the produced MatchedRegs object to 6187 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6188 Chain, &Flag, CS.getInstruction()); 6189 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6190 true, OpInfo.getMatchedOperand(), dl, 6191 DAG, AsmNodeOperands); 6192 break; 6193 } 6194 6195 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6196 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6197 "Unexpected number of operands"); 6198 // Add information to the INLINEASM node to know about this input. 6199 // See InlineAsm.h isUseOperandTiedToDef. 6200 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 6201 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6202 OpInfo.getMatchedOperand()); 6203 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, getCurSDLoc(), 6204 TLI.getPointerTy())); 6205 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6206 break; 6207 } 6208 6209 // Treat indirect 'X' constraint as memory. 6210 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6211 OpInfo.isIndirect) 6212 OpInfo.ConstraintType = TargetLowering::C_Memory; 6213 6214 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6215 std::vector<SDValue> Ops; 6216 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6217 Ops, DAG); 6218 if (Ops.empty()) { 6219 LLVMContext &Ctx = *DAG.getContext(); 6220 Ctx.emitError(CS.getInstruction(), 6221 "invalid operand for inline asm constraint '" + 6222 Twine(OpInfo.ConstraintCode) + "'"); 6223 return; 6224 } 6225 6226 // Add information to the INLINEASM node to know about this input. 6227 unsigned ResOpType = 6228 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6229 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6230 getCurSDLoc(), 6231 TLI.getPointerTy())); 6232 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6233 break; 6234 } 6235 6236 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6237 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6238 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6239 "Memory operands expect pointer values"); 6240 6241 unsigned ConstraintID = 6242 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 6243 assert(ConstraintID != InlineAsm::Constraint_Unknown && 6244 "Failed to convert memory constraint code to constraint id."); 6245 6246 // Add information to the INLINEASM node to know about this input. 6247 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6248 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 6249 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6250 getCurSDLoc(), 6251 MVT::i32)); 6252 AsmNodeOperands.push_back(InOperandVal); 6253 break; 6254 } 6255 6256 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6257 OpInfo.ConstraintType == TargetLowering::C_Register) && 6258 "Unknown constraint type!"); 6259 6260 // TODO: Support this. 6261 if (OpInfo.isIndirect) { 6262 LLVMContext &Ctx = *DAG.getContext(); 6263 Ctx.emitError(CS.getInstruction(), 6264 "Don't know how to handle indirect register inputs yet " 6265 "for constraint '" + 6266 Twine(OpInfo.ConstraintCode) + "'"); 6267 return; 6268 } 6269 6270 // Copy the input into the appropriate registers. 6271 if (OpInfo.AssignedRegs.Regs.empty()) { 6272 LLVMContext &Ctx = *DAG.getContext(); 6273 Ctx.emitError(CS.getInstruction(), 6274 "couldn't allocate input reg for constraint '" + 6275 Twine(OpInfo.ConstraintCode) + "'"); 6276 return; 6277 } 6278 6279 SDLoc dl = getCurSDLoc(); 6280 6281 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, 6282 Chain, &Flag, CS.getInstruction()); 6283 6284 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6285 dl, DAG, AsmNodeOperands); 6286 break; 6287 } 6288 case InlineAsm::isClobber: { 6289 // Add the clobbered value to the operand list, so that the register 6290 // allocator is aware that the physreg got clobbered. 6291 if (!OpInfo.AssignedRegs.Regs.empty()) 6292 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6293 false, 0, getCurSDLoc(), DAG, 6294 AsmNodeOperands); 6295 break; 6296 } 6297 } 6298 } 6299 6300 // Finish up input operands. Set the input chain and add the flag last. 6301 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6302 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6303 6304 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(), 6305 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 6306 Flag = Chain.getValue(1); 6307 6308 // If this asm returns a register value, copy the result from that register 6309 // and set it as the value of the call. 6310 if (!RetValRegs.Regs.empty()) { 6311 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6312 Chain, &Flag, CS.getInstruction()); 6313 6314 // FIXME: Why don't we do this for inline asms with MRVs? 6315 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6316 EVT ResultType = TLI.getValueType(CS.getType()); 6317 6318 // If any of the results of the inline asm is a vector, it may have the 6319 // wrong width/num elts. This can happen for register classes that can 6320 // contain multiple different value types. The preg or vreg allocated may 6321 // not have the same VT as was expected. Convert it to the right type 6322 // with bit_convert. 6323 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6324 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(), 6325 ResultType, Val); 6326 6327 } else if (ResultType != Val.getValueType() && 6328 ResultType.isInteger() && Val.getValueType().isInteger()) { 6329 // If a result value was tied to an input value, the computed result may 6330 // have a wider width than the expected result. Extract the relevant 6331 // portion. 6332 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val); 6333 } 6334 6335 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6336 } 6337 6338 setValue(CS.getInstruction(), Val); 6339 // Don't need to use this as a chain in this case. 6340 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6341 return; 6342 } 6343 6344 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6345 6346 // Process indirect outputs, first output all of the flagged copies out of 6347 // physregs. 6348 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6349 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6350 const Value *Ptr = IndirectStoresToEmit[i].second; 6351 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 6352 Chain, &Flag, IA); 6353 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6354 } 6355 6356 // Emit the non-flagged stores from the physregs. 6357 SmallVector<SDValue, 8> OutChains; 6358 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6359 SDValue Val = DAG.getStore(Chain, getCurSDLoc(), 6360 StoresToEmit[i].first, 6361 getValue(StoresToEmit[i].second), 6362 MachinePointerInfo(StoresToEmit[i].second), 6363 false, false, 0); 6364 OutChains.push_back(Val); 6365 } 6366 6367 if (!OutChains.empty()) 6368 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 6369 6370 DAG.setRoot(Chain); 6371 } 6372 6373 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6374 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 6375 MVT::Other, getRoot(), 6376 getValue(I.getArgOperand(0)), 6377 DAG.getSrcValue(I.getArgOperand(0)))); 6378 } 6379 6380 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6381 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6382 const DataLayout &DL = *TLI.getDataLayout(); 6383 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(), 6384 getRoot(), getValue(I.getOperand(0)), 6385 DAG.getSrcValue(I.getOperand(0)), 6386 DL.getABITypeAlignment(I.getType())); 6387 setValue(&I, V); 6388 DAG.setRoot(V.getValue(1)); 6389 } 6390 6391 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6392 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 6393 MVT::Other, getRoot(), 6394 getValue(I.getArgOperand(0)), 6395 DAG.getSrcValue(I.getArgOperand(0)))); 6396 } 6397 6398 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6399 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 6400 MVT::Other, getRoot(), 6401 getValue(I.getArgOperand(0)), 6402 getValue(I.getArgOperand(1)), 6403 DAG.getSrcValue(I.getArgOperand(0)), 6404 DAG.getSrcValue(I.getArgOperand(1)))); 6405 } 6406 6407 /// \brief Lower an argument list according to the target calling convention. 6408 /// 6409 /// \return A tuple of <return-value, token-chain> 6410 /// 6411 /// This is a helper for lowering intrinsics that follow a target calling 6412 /// convention or require stack pointer adjustment. Only a subset of the 6413 /// intrinsic's operands need to participate in the calling convention. 6414 std::pair<SDValue, SDValue> 6415 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx, 6416 unsigned NumArgs, SDValue Callee, 6417 bool UseVoidTy, 6418 MachineBasicBlock *LandingPad, 6419 bool IsPatchPoint) { 6420 TargetLowering::ArgListTy Args; 6421 Args.reserve(NumArgs); 6422 6423 // Populate the argument list. 6424 // Attributes for args start at offset 1, after the return attribute. 6425 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1; 6426 ArgI != ArgE; ++ArgI) { 6427 const Value *V = CS->getOperand(ArgI); 6428 6429 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 6430 6431 TargetLowering::ArgListEntry Entry; 6432 Entry.Node = getValue(V); 6433 Entry.Ty = V->getType(); 6434 Entry.setAttributes(&CS, AttrI); 6435 Args.push_back(Entry); 6436 } 6437 6438 Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType(); 6439 TargetLowering::CallLoweringInfo CLI(DAG); 6440 CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot()) 6441 .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs) 6442 .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint); 6443 6444 return lowerInvokable(CLI, LandingPad); 6445 } 6446 6447 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap 6448 /// or patchpoint target node's operand list. 6449 /// 6450 /// Constants are converted to TargetConstants purely as an optimization to 6451 /// avoid constant materialization and register allocation. 6452 /// 6453 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 6454 /// generate addess computation nodes, and so ExpandISelPseudo can convert the 6455 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 6456 /// address materialization and register allocation, but may also be required 6457 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 6458 /// alloca in the entry block, then the runtime may assume that the alloca's 6459 /// StackMap location can be read immediately after compilation and that the 6460 /// location is valid at any point during execution (this is similar to the 6461 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 6462 /// only available in a register, then the runtime would need to trap when 6463 /// execution reaches the StackMap in order to read the alloca's location. 6464 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx, 6465 SDLoc DL, SmallVectorImpl<SDValue> &Ops, 6466 SelectionDAGBuilder &Builder) { 6467 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) { 6468 SDValue OpVal = Builder.getValue(CS.getArgument(i)); 6469 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 6470 Ops.push_back( 6471 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 6472 Ops.push_back( 6473 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 6474 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 6475 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 6476 Ops.push_back( 6477 Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy())); 6478 } else 6479 Ops.push_back(OpVal); 6480 } 6481 } 6482 6483 /// \brief Lower llvm.experimental.stackmap directly to its target opcode. 6484 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 6485 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 6486 // [live variables...]) 6487 6488 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 6489 6490 SDValue Chain, InFlag, Callee, NullPtr; 6491 SmallVector<SDValue, 32> Ops; 6492 6493 SDLoc DL = getCurSDLoc(); 6494 Callee = getValue(CI.getCalledValue()); 6495 NullPtr = DAG.getIntPtrConstant(0, DL, true); 6496 6497 // The stackmap intrinsic only records the live variables (the arguemnts 6498 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 6499 // intrinsic, this won't be lowered to a function call. This means we don't 6500 // have to worry about calling conventions and target specific lowering code. 6501 // Instead we perform the call lowering right here. 6502 // 6503 // chain, flag = CALLSEQ_START(chain, 0) 6504 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 6505 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 6506 // 6507 Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL); 6508 InFlag = Chain.getValue(1); 6509 6510 // Add the <id> and <numBytes> constants. 6511 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 6512 Ops.push_back(DAG.getTargetConstant( 6513 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 6514 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 6515 Ops.push_back(DAG.getTargetConstant( 6516 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 6517 MVT::i32)); 6518 6519 // Push live variables for the stack map. 6520 addStackMapLiveVars(&CI, 2, DL, Ops, *this); 6521 6522 // We are not pushing any register mask info here on the operands list, 6523 // because the stackmap doesn't clobber anything. 6524 6525 // Push the chain and the glue flag. 6526 Ops.push_back(Chain); 6527 Ops.push_back(InFlag); 6528 6529 // Create the STACKMAP node. 6530 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6531 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 6532 Chain = SDValue(SM, 0); 6533 InFlag = Chain.getValue(1); 6534 6535 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 6536 6537 // Stackmaps don't generate values, so nothing goes into the NodeMap. 6538 6539 // Set the root to the target-lowered call chain. 6540 DAG.setRoot(Chain); 6541 6542 // Inform the Frame Information that we have a stackmap in this function. 6543 FuncInfo.MF->getFrameInfo()->setHasStackMap(); 6544 } 6545 6546 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode. 6547 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS, 6548 MachineBasicBlock *LandingPad) { 6549 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 6550 // i32 <numBytes>, 6551 // i8* <target>, 6552 // i32 <numArgs>, 6553 // [Args...], 6554 // [live variables...]) 6555 6556 CallingConv::ID CC = CS.getCallingConv(); 6557 bool IsAnyRegCC = CC == CallingConv::AnyReg; 6558 bool HasDef = !CS->getType()->isVoidTy(); 6559 SDLoc dl = getCurSDLoc(); 6560 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos)); 6561 6562 // Handle immediate and symbolic callees. 6563 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 6564 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 6565 /*isTarget=*/true); 6566 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 6567 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 6568 SDLoc(SymbolicCallee), 6569 SymbolicCallee->getValueType(0)); 6570 6571 // Get the real number of arguments participating in the call <numArgs> 6572 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos)); 6573 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 6574 6575 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 6576 // Intrinsics include all meta-operands up to but not including CC. 6577 unsigned NumMetaOpers = PatchPointOpers::CCPos; 6578 assert(CS.arg_size() >= NumMetaOpers + NumArgs && 6579 "Not enough arguments provided to the patchpoint intrinsic"); 6580 6581 // For AnyRegCC the arguments are lowered later on manually. 6582 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 6583 std::pair<SDValue, SDValue> Result = 6584 lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC, 6585 LandingPad, true); 6586 6587 SDNode *CallEnd = Result.second.getNode(); 6588 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 6589 CallEnd = CallEnd->getOperand(0).getNode(); 6590 6591 /// Get a call instruction from the call sequence chain. 6592 /// Tail calls are not allowed. 6593 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 6594 "Expected a callseq node."); 6595 SDNode *Call = CallEnd->getOperand(0).getNode(); 6596 bool HasGlue = Call->getGluedNode(); 6597 6598 // Replace the target specific call node with the patchable intrinsic. 6599 SmallVector<SDValue, 8> Ops; 6600 6601 // Add the <id> and <numBytes> constants. 6602 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos)); 6603 Ops.push_back(DAG.getTargetConstant( 6604 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 6605 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos)); 6606 Ops.push_back(DAG.getTargetConstant( 6607 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 6608 MVT::i32)); 6609 6610 // Add the callee. 6611 Ops.push_back(Callee); 6612 6613 // Adjust <numArgs> to account for any arguments that have been passed on the 6614 // stack instead. 6615 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 6616 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 6617 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 6618 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 6619 6620 // Add the calling convention 6621 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 6622 6623 // Add the arguments we omitted previously. The register allocator should 6624 // place these in any free register. 6625 if (IsAnyRegCC) 6626 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 6627 Ops.push_back(getValue(CS.getArgument(i))); 6628 6629 // Push the arguments from the call instruction up to the register mask. 6630 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 6631 Ops.append(Call->op_begin() + 2, e); 6632 6633 // Push live variables for the stack map. 6634 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this); 6635 6636 // Push the register mask info. 6637 if (HasGlue) 6638 Ops.push_back(*(Call->op_end()-2)); 6639 else 6640 Ops.push_back(*(Call->op_end()-1)); 6641 6642 // Push the chain (this is originally the first operand of the call, but 6643 // becomes now the last or second to last operand). 6644 Ops.push_back(*(Call->op_begin())); 6645 6646 // Push the glue flag (last operand). 6647 if (HasGlue) 6648 Ops.push_back(*(Call->op_end()-1)); 6649 6650 SDVTList NodeTys; 6651 if (IsAnyRegCC && HasDef) { 6652 // Create the return types based on the intrinsic definition 6653 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6654 SmallVector<EVT, 3> ValueVTs; 6655 ComputeValueVTs(TLI, CS->getType(), ValueVTs); 6656 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 6657 6658 // There is always a chain and a glue type at the end 6659 ValueVTs.push_back(MVT::Other); 6660 ValueVTs.push_back(MVT::Glue); 6661 NodeTys = DAG.getVTList(ValueVTs); 6662 } else 6663 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6664 6665 // Replace the target specific call node with a PATCHPOINT node. 6666 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 6667 dl, NodeTys, Ops); 6668 6669 // Update the NodeMap. 6670 if (HasDef) { 6671 if (IsAnyRegCC) 6672 setValue(CS.getInstruction(), SDValue(MN, 0)); 6673 else 6674 setValue(CS.getInstruction(), Result.first); 6675 } 6676 6677 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 6678 // call sequence. Furthermore the location of the chain and glue can change 6679 // when the AnyReg calling convention is used and the intrinsic returns a 6680 // value. 6681 if (IsAnyRegCC && HasDef) { 6682 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 6683 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 6684 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 6685 } else 6686 DAG.ReplaceAllUsesWith(Call, MN); 6687 DAG.DeleteNode(Call); 6688 6689 // Inform the Frame Information that we have a patchpoint in this function. 6690 FuncInfo.MF->getFrameInfo()->setHasPatchPoint(); 6691 } 6692 6693 /// Returns an AttributeSet representing the attributes applied to the return 6694 /// value of the given call. 6695 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 6696 SmallVector<Attribute::AttrKind, 2> Attrs; 6697 if (CLI.RetSExt) 6698 Attrs.push_back(Attribute::SExt); 6699 if (CLI.RetZExt) 6700 Attrs.push_back(Attribute::ZExt); 6701 if (CLI.IsInReg) 6702 Attrs.push_back(Attribute::InReg); 6703 6704 return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex, 6705 Attrs); 6706 } 6707 6708 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6709 /// implementation, which just calls LowerCall. 6710 /// FIXME: When all targets are 6711 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6712 std::pair<SDValue, SDValue> 6713 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6714 // Handle the incoming return values from the call. 6715 CLI.Ins.clear(); 6716 Type *OrigRetTy = CLI.RetTy; 6717 SmallVector<EVT, 4> RetTys; 6718 SmallVector<uint64_t, 4> Offsets; 6719 ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets); 6720 6721 SmallVector<ISD::OutputArg, 4> Outs; 6722 GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this); 6723 6724 bool CanLowerReturn = 6725 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 6726 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 6727 6728 SDValue DemoteStackSlot; 6729 int DemoteStackIdx = -100; 6730 if (!CanLowerReturn) { 6731 // FIXME: equivalent assert? 6732 // assert(!CS.hasInAllocaArgument() && 6733 // "sret demotion is incompatible with inalloca"); 6734 uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy); 6735 unsigned Align = getDataLayout()->getPrefTypeAlignment(CLI.RetTy); 6736 MachineFunction &MF = CLI.DAG.getMachineFunction(); 6737 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6738 Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy); 6739 6740 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy()); 6741 ArgListEntry Entry; 6742 Entry.Node = DemoteStackSlot; 6743 Entry.Ty = StackSlotPtrType; 6744 Entry.isSExt = false; 6745 Entry.isZExt = false; 6746 Entry.isInReg = false; 6747 Entry.isSRet = true; 6748 Entry.isNest = false; 6749 Entry.isByVal = false; 6750 Entry.isReturned = false; 6751 Entry.Alignment = Align; 6752 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 6753 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 6754 6755 // sret demotion isn't compatible with tail-calls, since the sret argument 6756 // points into the callers stack frame. 6757 CLI.IsTailCall = false; 6758 } else { 6759 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6760 EVT VT = RetTys[I]; 6761 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6762 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6763 for (unsigned i = 0; i != NumRegs; ++i) { 6764 ISD::InputArg MyFlags; 6765 MyFlags.VT = RegisterVT; 6766 MyFlags.ArgVT = VT; 6767 MyFlags.Used = CLI.IsReturnValueUsed; 6768 if (CLI.RetSExt) 6769 MyFlags.Flags.setSExt(); 6770 if (CLI.RetZExt) 6771 MyFlags.Flags.setZExt(); 6772 if (CLI.IsInReg) 6773 MyFlags.Flags.setInReg(); 6774 CLI.Ins.push_back(MyFlags); 6775 } 6776 } 6777 } 6778 6779 // Handle all of the outgoing arguments. 6780 CLI.Outs.clear(); 6781 CLI.OutVals.clear(); 6782 ArgListTy &Args = CLI.getArgs(); 6783 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6784 SmallVector<EVT, 4> ValueVTs; 6785 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6786 Type *FinalType = Args[i].Ty; 6787 if (Args[i].isByVal) 6788 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 6789 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 6790 FinalType, CLI.CallConv, CLI.IsVarArg); 6791 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 6792 ++Value) { 6793 EVT VT = ValueVTs[Value]; 6794 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6795 SDValue Op = SDValue(Args[i].Node.getNode(), 6796 Args[i].Node.getResNo() + Value); 6797 ISD::ArgFlagsTy Flags; 6798 unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy); 6799 6800 if (Args[i].isZExt) 6801 Flags.setZExt(); 6802 if (Args[i].isSExt) 6803 Flags.setSExt(); 6804 if (Args[i].isInReg) 6805 Flags.setInReg(); 6806 if (Args[i].isSRet) 6807 Flags.setSRet(); 6808 if (Args[i].isByVal) 6809 Flags.setByVal(); 6810 if (Args[i].isInAlloca) { 6811 Flags.setInAlloca(); 6812 // Set the byval flag for CCAssignFn callbacks that don't know about 6813 // inalloca. This way we can know how many bytes we should've allocated 6814 // and how many bytes a callee cleanup function will pop. If we port 6815 // inalloca to more targets, we'll have to add custom inalloca handling 6816 // in the various CC lowering callbacks. 6817 Flags.setByVal(); 6818 } 6819 if (Args[i].isByVal || Args[i].isInAlloca) { 6820 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6821 Type *ElementTy = Ty->getElementType(); 6822 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy)); 6823 // For ByVal, alignment should come from FE. BE will guess if this 6824 // info is not there but there are cases it cannot get right. 6825 unsigned FrameAlign; 6826 if (Args[i].Alignment) 6827 FrameAlign = Args[i].Alignment; 6828 else 6829 FrameAlign = getByValTypeAlignment(ElementTy); 6830 Flags.setByValAlign(FrameAlign); 6831 } 6832 if (Args[i].isNest) 6833 Flags.setNest(); 6834 if (NeedsRegBlock) 6835 Flags.setInConsecutiveRegs(); 6836 Flags.setOrigAlign(OriginalAlignment); 6837 6838 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6839 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6840 SmallVector<SDValue, 4> Parts(NumParts); 6841 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6842 6843 if (Args[i].isSExt) 6844 ExtendKind = ISD::SIGN_EXTEND; 6845 else if (Args[i].isZExt) 6846 ExtendKind = ISD::ZERO_EXTEND; 6847 6848 // Conservatively only handle 'returned' on non-vectors for now 6849 if (Args[i].isReturned && !Op.getValueType().isVector()) { 6850 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues && 6851 "unexpected use of 'returned'"); 6852 // Before passing 'returned' to the target lowering code, ensure that 6853 // either the register MVT and the actual EVT are the same size or that 6854 // the return value and argument are extended in the same way; in these 6855 // cases it's safe to pass the argument register value unchanged as the 6856 // return register value (although it's at the target's option whether 6857 // to do so) 6858 // TODO: allow code generation to take advantage of partially preserved 6859 // registers rather than clobbering the entire register when the 6860 // parameter extension method is not compatible with the return 6861 // extension method 6862 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 6863 (ExtendKind != ISD::ANY_EXTEND && 6864 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt)) 6865 Flags.setReturned(); 6866 } 6867 6868 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, 6869 CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind); 6870 6871 for (unsigned j = 0; j != NumParts; ++j) { 6872 // if it isn't first piece, alignment must be 1 6873 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 6874 i < CLI.NumFixedArgs, 6875 i, j*Parts[j].getValueType().getStoreSize()); 6876 if (NumParts > 1 && j == 0) 6877 MyFlags.Flags.setSplit(); 6878 else if (j != 0) 6879 MyFlags.Flags.setOrigAlign(1); 6880 6881 CLI.Outs.push_back(MyFlags); 6882 CLI.OutVals.push_back(Parts[j]); 6883 } 6884 6885 if (NeedsRegBlock && Value == NumValues - 1) 6886 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 6887 } 6888 } 6889 6890 SmallVector<SDValue, 4> InVals; 6891 CLI.Chain = LowerCall(CLI, InVals); 6892 6893 // Verify that the target's LowerCall behaved as expected. 6894 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6895 "LowerCall didn't return a valid chain!"); 6896 assert((!CLI.IsTailCall || InVals.empty()) && 6897 "LowerCall emitted a return value for a tail call!"); 6898 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6899 "LowerCall didn't emit the correct number of values!"); 6900 6901 // For a tail call, the return value is merely live-out and there aren't 6902 // any nodes in the DAG representing it. Return a special value to 6903 // indicate that a tail call has been emitted and no more Instructions 6904 // should be processed in the current block. 6905 if (CLI.IsTailCall) { 6906 CLI.DAG.setRoot(CLI.Chain); 6907 return std::make_pair(SDValue(), SDValue()); 6908 } 6909 6910 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6911 assert(InVals[i].getNode() && 6912 "LowerCall emitted a null value!"); 6913 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6914 "LowerCall emitted a value with the wrong type!"); 6915 }); 6916 6917 SmallVector<SDValue, 4> ReturnValues; 6918 if (!CanLowerReturn) { 6919 // The instruction result is the result of loading from the 6920 // hidden sret parameter. 6921 SmallVector<EVT, 1> PVTs; 6922 Type *PtrRetTy = PointerType::getUnqual(OrigRetTy); 6923 6924 ComputeValueVTs(*this, PtrRetTy, PVTs); 6925 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 6926 EVT PtrVT = PVTs[0]; 6927 6928 unsigned NumValues = RetTys.size(); 6929 ReturnValues.resize(NumValues); 6930 SmallVector<SDValue, 4> Chains(NumValues); 6931 6932 for (unsigned i = 0; i < NumValues; ++i) { 6933 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 6934 CLI.DAG.getConstant(Offsets[i], CLI.DL, 6935 PtrVT)); 6936 SDValue L = CLI.DAG.getLoad( 6937 RetTys[i], CLI.DL, CLI.Chain, Add, 6938 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false, 6939 false, false, 1); 6940 ReturnValues[i] = L; 6941 Chains[i] = L.getValue(1); 6942 } 6943 6944 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 6945 } else { 6946 // Collect the legal value parts into potentially illegal values 6947 // that correspond to the original function's return values. 6948 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6949 if (CLI.RetSExt) 6950 AssertOp = ISD::AssertSext; 6951 else if (CLI.RetZExt) 6952 AssertOp = ISD::AssertZext; 6953 unsigned CurReg = 0; 6954 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6955 EVT VT = RetTys[I]; 6956 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6957 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6958 6959 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6960 NumRegs, RegisterVT, VT, nullptr, 6961 AssertOp)); 6962 CurReg += NumRegs; 6963 } 6964 6965 // For a function returning void, there is no return value. We can't create 6966 // such a node, so we just return a null return value in that case. In 6967 // that case, nothing will actually look at the value. 6968 if (ReturnValues.empty()) 6969 return std::make_pair(SDValue(), CLI.Chain); 6970 } 6971 6972 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6973 CLI.DAG.getVTList(RetTys), ReturnValues); 6974 return std::make_pair(Res, CLI.Chain); 6975 } 6976 6977 void TargetLowering::LowerOperationWrapper(SDNode *N, 6978 SmallVectorImpl<SDValue> &Results, 6979 SelectionDAG &DAG) const { 6980 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6981 if (Res.getNode()) 6982 Results.push_back(Res); 6983 } 6984 6985 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6986 llvm_unreachable("LowerOperation not implemented for this target!"); 6987 } 6988 6989 void 6990 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6991 SDValue Op = getNonRegisterValue(V); 6992 assert((Op.getOpcode() != ISD::CopyFromReg || 6993 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6994 "Copy from a reg to the same reg!"); 6995 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6996 6997 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 6998 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6999 SDValue Chain = DAG.getEntryNode(); 7000 7001 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 7002 FuncInfo.PreferredExtendType.end()) 7003 ? ISD::ANY_EXTEND 7004 : FuncInfo.PreferredExtendType[V]; 7005 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 7006 PendingExports.push_back(Chain); 7007 } 7008 7009 #include "llvm/CodeGen/SelectionDAGISel.h" 7010 7011 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 7012 /// entry block, return true. This includes arguments used by switches, since 7013 /// the switch may expand into multiple basic blocks. 7014 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 7015 // With FastISel active, we may be splitting blocks, so force creation 7016 // of virtual registers for all non-dead arguments. 7017 if (FastISel) 7018 return A->use_empty(); 7019 7020 const BasicBlock *Entry = A->getParent()->begin(); 7021 for (const User *U : A->users()) 7022 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 7023 return false; // Use not in entry block. 7024 7025 return true; 7026 } 7027 7028 void SelectionDAGISel::LowerArguments(const Function &F) { 7029 SelectionDAG &DAG = SDB->DAG; 7030 SDLoc dl = SDB->getCurSDLoc(); 7031 const DataLayout *DL = TLI->getDataLayout(); 7032 SmallVector<ISD::InputArg, 16> Ins; 7033 7034 if (!FuncInfo->CanLowerReturn) { 7035 // Put in an sret pointer parameter before all the other parameters. 7036 SmallVector<EVT, 1> ValueVTs; 7037 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7038 7039 // NOTE: Assuming that a pointer will never break down to more than one VT 7040 // or one register. 7041 ISD::ArgFlagsTy Flags; 7042 Flags.setSRet(); 7043 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 7044 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 7045 ISD::InputArg::NoArgIndex, 0); 7046 Ins.push_back(RetArg); 7047 } 7048 7049 // Set up the incoming argument description vector. 7050 unsigned Idx = 1; 7051 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 7052 I != E; ++I, ++Idx) { 7053 SmallVector<EVT, 4> ValueVTs; 7054 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7055 bool isArgValueUsed = !I->use_empty(); 7056 unsigned PartBase = 0; 7057 Type *FinalType = I->getType(); 7058 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7059 FinalType = cast<PointerType>(FinalType)->getElementType(); 7060 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 7061 FinalType, F.getCallingConv(), F.isVarArg()); 7062 for (unsigned Value = 0, NumValues = ValueVTs.size(); 7063 Value != NumValues; ++Value) { 7064 EVT VT = ValueVTs[Value]; 7065 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 7066 ISD::ArgFlagsTy Flags; 7067 unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy); 7068 7069 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7070 Flags.setZExt(); 7071 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7072 Flags.setSExt(); 7073 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg)) 7074 Flags.setInReg(); 7075 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet)) 7076 Flags.setSRet(); 7077 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) 7078 Flags.setByVal(); 7079 if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) { 7080 Flags.setInAlloca(); 7081 // Set the byval flag for CCAssignFn callbacks that don't know about 7082 // inalloca. This way we can know how many bytes we should've allocated 7083 // and how many bytes a callee cleanup function will pop. If we port 7084 // inalloca to more targets, we'll have to add custom inalloca handling 7085 // in the various CC lowering callbacks. 7086 Flags.setByVal(); 7087 } 7088 if (Flags.isByVal() || Flags.isInAlloca()) { 7089 PointerType *Ty = cast<PointerType>(I->getType()); 7090 Type *ElementTy = Ty->getElementType(); 7091 Flags.setByValSize(DL->getTypeAllocSize(ElementTy)); 7092 // For ByVal, alignment should be passed from FE. BE will guess if 7093 // this info is not there but there are cases it cannot get right. 7094 unsigned FrameAlign; 7095 if (F.getParamAlignment(Idx)) 7096 FrameAlign = F.getParamAlignment(Idx); 7097 else 7098 FrameAlign = TLI->getByValTypeAlignment(ElementTy); 7099 Flags.setByValAlign(FrameAlign); 7100 } 7101 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest)) 7102 Flags.setNest(); 7103 if (NeedsRegBlock) 7104 Flags.setInConsecutiveRegs(); 7105 Flags.setOrigAlign(OriginalAlignment); 7106 7107 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7108 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7109 for (unsigned i = 0; i != NumRegs; ++i) { 7110 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 7111 Idx-1, PartBase+i*RegisterVT.getStoreSize()); 7112 if (NumRegs > 1 && i == 0) 7113 MyFlags.Flags.setSplit(); 7114 // if it isn't first piece, alignment must be 1 7115 else if (i > 0) 7116 MyFlags.Flags.setOrigAlign(1); 7117 Ins.push_back(MyFlags); 7118 } 7119 if (NeedsRegBlock && Value == NumValues - 1) 7120 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 7121 PartBase += VT.getStoreSize(); 7122 } 7123 } 7124 7125 // Call the target to set up the argument values. 7126 SmallVector<SDValue, 8> InVals; 7127 SDValue NewRoot = TLI->LowerFormalArguments( 7128 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 7129 7130 // Verify that the target's LowerFormalArguments behaved as expected. 7131 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 7132 "LowerFormalArguments didn't return a valid chain!"); 7133 assert(InVals.size() == Ins.size() && 7134 "LowerFormalArguments didn't emit the correct number of values!"); 7135 DEBUG({ 7136 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 7137 assert(InVals[i].getNode() && 7138 "LowerFormalArguments emitted a null value!"); 7139 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 7140 "LowerFormalArguments emitted a value with the wrong type!"); 7141 } 7142 }); 7143 7144 // Update the DAG with the new chain value resulting from argument lowering. 7145 DAG.setRoot(NewRoot); 7146 7147 // Set up the argument values. 7148 unsigned i = 0; 7149 Idx = 1; 7150 if (!FuncInfo->CanLowerReturn) { 7151 // Create a virtual register for the sret pointer, and put in a copy 7152 // from the sret argument into it. 7153 SmallVector<EVT, 1> ValueVTs; 7154 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 7155 MVT VT = ValueVTs[0].getSimpleVT(); 7156 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7157 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7158 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 7159 RegVT, VT, nullptr, AssertOp); 7160 7161 MachineFunction& MF = SDB->DAG.getMachineFunction(); 7162 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 7163 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 7164 FuncInfo->DemoteRegister = SRetReg; 7165 NewRoot = 7166 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 7167 DAG.setRoot(NewRoot); 7168 7169 // i indexes lowered arguments. Bump it past the hidden sret argument. 7170 // Idx indexes LLVM arguments. Don't touch it. 7171 ++i; 7172 } 7173 7174 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 7175 ++I, ++Idx) { 7176 SmallVector<SDValue, 4> ArgValues; 7177 SmallVector<EVT, 4> ValueVTs; 7178 ComputeValueVTs(*TLI, I->getType(), ValueVTs); 7179 unsigned NumValues = ValueVTs.size(); 7180 7181 // If this argument is unused then remember its value. It is used to generate 7182 // debugging information. 7183 if (I->use_empty() && NumValues) { 7184 SDB->setUnusedArgValue(I, InVals[i]); 7185 7186 // Also remember any frame index for use in FastISel. 7187 if (FrameIndexSDNode *FI = 7188 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 7189 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7190 } 7191 7192 for (unsigned Val = 0; Val != NumValues; ++Val) { 7193 EVT VT = ValueVTs[Val]; 7194 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 7195 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT); 7196 7197 if (!I->use_empty()) { 7198 ISD::NodeType AssertOp = ISD::DELETED_NODE; 7199 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt)) 7200 AssertOp = ISD::AssertSext; 7201 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt)) 7202 AssertOp = ISD::AssertZext; 7203 7204 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 7205 NumParts, PartVT, VT, 7206 nullptr, AssertOp)); 7207 } 7208 7209 i += NumParts; 7210 } 7211 7212 // We don't need to do anything else for unused arguments. 7213 if (ArgValues.empty()) 7214 continue; 7215 7216 // Note down frame index. 7217 if (FrameIndexSDNode *FI = 7218 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 7219 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7220 7221 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 7222 SDB->getCurSDLoc()); 7223 7224 SDB->setValue(I, Res); 7225 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 7226 if (LoadSDNode *LNode = 7227 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 7228 if (FrameIndexSDNode *FI = 7229 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 7230 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 7231 } 7232 7233 // If this argument is live outside of the entry block, insert a copy from 7234 // wherever we got it to the vreg that other BB's will reference it as. 7235 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 7236 // If we can, though, try to skip creating an unnecessary vreg. 7237 // FIXME: This isn't very clean... it would be nice to make this more 7238 // general. It's also subtly incompatible with the hacks FastISel 7239 // uses with vregs. 7240 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 7241 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 7242 FuncInfo->ValueMap[I] = Reg; 7243 continue; 7244 } 7245 } 7246 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 7247 FuncInfo->InitializeRegForValue(I); 7248 SDB->CopyToExportRegsIfNeeded(I); 7249 } 7250 } 7251 7252 assert(i == InVals.size() && "Argument register count mismatch!"); 7253 7254 // Finally, if the target has anything special to do, allow it to do so. 7255 EmitFunctionEntryCode(); 7256 } 7257 7258 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 7259 /// ensure constants are generated when needed. Remember the virtual registers 7260 /// that need to be added to the Machine PHI nodes as input. We cannot just 7261 /// directly add them, because expansion might result in multiple MBB's for one 7262 /// BB. As such, the start of the BB might correspond to a different MBB than 7263 /// the end. 7264 /// 7265 void 7266 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 7267 const TerminatorInst *TI = LLVMBB->getTerminator(); 7268 7269 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 7270 7271 // Check PHI nodes in successors that expect a value to be available from this 7272 // block. 7273 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 7274 const BasicBlock *SuccBB = TI->getSuccessor(succ); 7275 if (!isa<PHINode>(SuccBB->begin())) continue; 7276 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 7277 7278 // If this terminator has multiple identical successors (common for 7279 // switches), only handle each succ once. 7280 if (!SuccsHandled.insert(SuccMBB).second) 7281 continue; 7282 7283 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 7284 7285 // At this point we know that there is a 1-1 correspondence between LLVM PHI 7286 // nodes and Machine PHI nodes, but the incoming operands have not been 7287 // emitted yet. 7288 for (BasicBlock::const_iterator I = SuccBB->begin(); 7289 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 7290 // Ignore dead phi's. 7291 if (PN->use_empty()) continue; 7292 7293 // Skip empty types 7294 if (PN->getType()->isEmptyTy()) 7295 continue; 7296 7297 unsigned Reg; 7298 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 7299 7300 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 7301 unsigned &RegOut = ConstantsOut[C]; 7302 if (RegOut == 0) { 7303 RegOut = FuncInfo.CreateRegs(C->getType()); 7304 CopyValueToVirtualRegister(C, RegOut); 7305 } 7306 Reg = RegOut; 7307 } else { 7308 DenseMap<const Value *, unsigned>::iterator I = 7309 FuncInfo.ValueMap.find(PHIOp); 7310 if (I != FuncInfo.ValueMap.end()) 7311 Reg = I->second; 7312 else { 7313 assert(isa<AllocaInst>(PHIOp) && 7314 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 7315 "Didn't codegen value into a register!??"); 7316 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 7317 CopyValueToVirtualRegister(PHIOp, Reg); 7318 } 7319 } 7320 7321 // Remember that this register needs to added to the machine PHI node as 7322 // the input for this MBB. 7323 SmallVector<EVT, 4> ValueVTs; 7324 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7325 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 7326 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 7327 EVT VT = ValueVTs[vti]; 7328 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 7329 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 7330 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 7331 Reg += NumRegisters; 7332 } 7333 } 7334 } 7335 7336 ConstantsOut.clear(); 7337 } 7338 7339 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 7340 /// is 0. 7341 MachineBasicBlock * 7342 SelectionDAGBuilder::StackProtectorDescriptor:: 7343 AddSuccessorMBB(const BasicBlock *BB, 7344 MachineBasicBlock *ParentMBB, 7345 bool IsLikely, 7346 MachineBasicBlock *SuccMBB) { 7347 // If SuccBB has not been created yet, create it. 7348 if (!SuccMBB) { 7349 MachineFunction *MF = ParentMBB->getParent(); 7350 MachineFunction::iterator BBI = ParentMBB; 7351 SuccMBB = MF->CreateMachineBasicBlock(BB); 7352 MF->insert(++BBI, SuccMBB); 7353 } 7354 // Add it as a successor of ParentMBB. 7355 ParentMBB->addSuccessor( 7356 SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely)); 7357 return SuccMBB; 7358 } 7359 7360 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 7361 MachineFunction::iterator I = MBB; 7362 if (++I == FuncInfo.MF->end()) 7363 return nullptr; 7364 return I; 7365 } 7366 7367 /// During lowering new call nodes can be created (such as memset, etc.). 7368 /// Those will become new roots of the current DAG, but complications arise 7369 /// when they are tail calls. In such cases, the call lowering will update 7370 /// the root, but the builder still needs to know that a tail call has been 7371 /// lowered in order to avoid generating an additional return. 7372 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 7373 // If the node is null, we do have a tail call. 7374 if (MaybeTC.getNode() != nullptr) 7375 DAG.setRoot(MaybeTC); 7376 else 7377 HasTailCall = true; 7378 } 7379 7380 bool SelectionDAGBuilder::isDense(const CaseClusterVector &Clusters, 7381 unsigned *TotalCases, unsigned First, 7382 unsigned Last) { 7383 assert(Last >= First); 7384 assert(TotalCases[Last] >= TotalCases[First]); 7385 7386 APInt LowCase = Clusters[First].Low->getValue(); 7387 APInt HighCase = Clusters[Last].High->getValue(); 7388 assert(LowCase.getBitWidth() == HighCase.getBitWidth()); 7389 7390 // FIXME: A range of consecutive cases has 100% density, but only requires one 7391 // comparison to lower. We should discriminate against such consecutive ranges 7392 // in jump tables. 7393 7394 uint64_t Diff = (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100); 7395 uint64_t Range = Diff + 1; 7396 7397 uint64_t NumCases = 7398 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]); 7399 7400 assert(NumCases < UINT64_MAX / 100); 7401 assert(Range >= NumCases); 7402 7403 return NumCases * 100 >= Range * MinJumpTableDensity; 7404 } 7405 7406 static inline bool areJTsAllowed(const TargetLowering &TLI) { 7407 return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 7408 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other); 7409 } 7410 7411 bool SelectionDAGBuilder::buildJumpTable(CaseClusterVector &Clusters, 7412 unsigned First, unsigned Last, 7413 const SwitchInst *SI, 7414 MachineBasicBlock *DefaultMBB, 7415 CaseCluster &JTCluster) { 7416 assert(First <= Last); 7417 7418 uint32_t Weight = 0; 7419 unsigned NumCmps = 0; 7420 std::vector<MachineBasicBlock*> Table; 7421 DenseMap<MachineBasicBlock*, uint32_t> JTWeights; 7422 for (unsigned I = First; I <= Last; ++I) { 7423 assert(Clusters[I].Kind == CC_Range); 7424 Weight += Clusters[I].Weight; 7425 assert(Weight >= Clusters[I].Weight && "Weight overflow!"); 7426 APInt Low = Clusters[I].Low->getValue(); 7427 APInt High = Clusters[I].High->getValue(); 7428 NumCmps += (Low == High) ? 1 : 2; 7429 if (I != First) { 7430 // Fill the gap between this and the previous cluster. 7431 APInt PreviousHigh = Clusters[I - 1].High->getValue(); 7432 assert(PreviousHigh.slt(Low)); 7433 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1; 7434 for (uint64_t J = 0; J < Gap; J++) 7435 Table.push_back(DefaultMBB); 7436 } 7437 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1; 7438 for (uint64_t J = 0; J < ClusterSize; ++J) 7439 Table.push_back(Clusters[I].MBB); 7440 JTWeights[Clusters[I].MBB] += Clusters[I].Weight; 7441 } 7442 7443 unsigned NumDests = JTWeights.size(); 7444 if (isSuitableForBitTests(NumDests, NumCmps, 7445 Clusters[First].Low->getValue(), 7446 Clusters[Last].High->getValue())) { 7447 // Clusters[First..Last] should be lowered as bit tests instead. 7448 return false; 7449 } 7450 7451 // Create the MBB that will load from and jump through the table. 7452 // Note: We create it here, but it's not inserted into the function yet. 7453 MachineFunction *CurMF = FuncInfo.MF; 7454 MachineBasicBlock *JumpTableMBB = 7455 CurMF->CreateMachineBasicBlock(SI->getParent()); 7456 7457 // Add successors. Note: use table order for determinism. 7458 SmallPtrSet<MachineBasicBlock *, 8> Done; 7459 for (MachineBasicBlock *Succ : Table) { 7460 if (Done.count(Succ)) 7461 continue; 7462 addSuccessorWithWeight(JumpTableMBB, Succ, JTWeights[Succ]); 7463 Done.insert(Succ); 7464 } 7465 7466 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7467 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding()) 7468 ->createJumpTableIndex(Table); 7469 7470 // Set up the jump table info. 7471 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr); 7472 JumpTableHeader JTH(Clusters[First].Low->getValue(), 7473 Clusters[Last].High->getValue(), SI->getCondition(), 7474 nullptr, false); 7475 JTCases.push_back(JumpTableBlock(JTH, JT)); 7476 7477 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High, 7478 JTCases.size() - 1, Weight); 7479 return true; 7480 } 7481 7482 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters, 7483 const SwitchInst *SI, 7484 MachineBasicBlock *DefaultMBB) { 7485 #ifndef NDEBUG 7486 // Clusters must be non-empty, sorted, and only contain Range clusters. 7487 assert(!Clusters.empty()); 7488 for (CaseCluster &C : Clusters) 7489 assert(C.Kind == CC_Range); 7490 for (unsigned i = 1, e = Clusters.size(); i < e; ++i) 7491 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue())); 7492 #endif 7493 7494 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7495 if (!areJTsAllowed(TLI)) 7496 return; 7497 7498 const int64_t N = Clusters.size(); 7499 const unsigned MinJumpTableSize = TLI.getMinimumJumpTableEntries(); 7500 7501 // Split Clusters into minimum number of dense partitions. The algorithm uses 7502 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code 7503 // for the Case Statement'" (1994), but builds the MinPartitions array in 7504 // reverse order to make it easier to reconstruct the partitions in ascending 7505 // order. In the choice between two optimal partitionings, it picks the one 7506 // which yields more jump tables. 7507 7508 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7509 SmallVector<unsigned, 8> MinPartitions(N); 7510 // LastElement[i] is the last element of the partition starting at i. 7511 SmallVector<unsigned, 8> LastElement(N); 7512 // NumTables[i]: nbr of >= MinJumpTableSize partitions from Clusters[i..N-1]. 7513 SmallVector<unsigned, 8> NumTables(N); 7514 // TotalCases[i]: Total nbr of cases in Clusters[0..i]. 7515 SmallVector<unsigned, 8> TotalCases(N); 7516 7517 for (unsigned i = 0; i < N; ++i) { 7518 APInt Hi = Clusters[i].High->getValue(); 7519 APInt Lo = Clusters[i].Low->getValue(); 7520 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1; 7521 if (i != 0) 7522 TotalCases[i] += TotalCases[i - 1]; 7523 } 7524 7525 // Base case: There is only one way to partition Clusters[N-1]. 7526 MinPartitions[N - 1] = 1; 7527 LastElement[N - 1] = N - 1; 7528 assert(MinJumpTableSize > 1); 7529 NumTables[N - 1] = 0; 7530 7531 // Note: loop indexes are signed to avoid underflow. 7532 for (int64_t i = N - 2; i >= 0; i--) { 7533 // Find optimal partitioning of Clusters[i..N-1]. 7534 // Baseline: Put Clusters[i] into a partition on its own. 7535 MinPartitions[i] = MinPartitions[i + 1] + 1; 7536 LastElement[i] = i; 7537 NumTables[i] = NumTables[i + 1]; 7538 7539 // Search for a solution that results in fewer partitions. 7540 for (int64_t j = N - 1; j > i; j--) { 7541 // Try building a partition from Clusters[i..j]. 7542 if (isDense(Clusters, &TotalCases[0], i, j)) { 7543 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7544 bool IsTable = j - i + 1 >= MinJumpTableSize; 7545 unsigned Tables = IsTable + (j == N - 1 ? 0 : NumTables[j + 1]); 7546 7547 // If this j leads to fewer partitions, or same number of partitions 7548 // with more lookup tables, it is a better partitioning. 7549 if (NumPartitions < MinPartitions[i] || 7550 (NumPartitions == MinPartitions[i] && Tables > NumTables[i])) { 7551 MinPartitions[i] = NumPartitions; 7552 LastElement[i] = j; 7553 NumTables[i] = Tables; 7554 } 7555 } 7556 } 7557 } 7558 7559 // Iterate over the partitions, replacing some with jump tables in-place. 7560 unsigned DstIndex = 0; 7561 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7562 Last = LastElement[First]; 7563 assert(Last >= First); 7564 assert(DstIndex <= First); 7565 unsigned NumClusters = Last - First + 1; 7566 7567 CaseCluster JTCluster; 7568 if (NumClusters >= MinJumpTableSize && 7569 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) { 7570 Clusters[DstIndex++] = JTCluster; 7571 } else { 7572 for (unsigned I = First; I <= Last; ++I) 7573 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7574 } 7575 } 7576 Clusters.resize(DstIndex); 7577 } 7578 7579 bool SelectionDAGBuilder::rangeFitsInWord(const APInt &Low, const APInt &High) { 7580 // FIXME: Using the pointer type doesn't seem ideal. 7581 uint64_t BW = DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7582 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1; 7583 return Range <= BW; 7584 } 7585 7586 bool SelectionDAGBuilder::isSuitableForBitTests(unsigned NumDests, 7587 unsigned NumCmps, 7588 const APInt &Low, 7589 const APInt &High) { 7590 // FIXME: I don't think NumCmps is the correct metric: a single case and a 7591 // range of cases both require only one branch to lower. Just looking at the 7592 // number of clusters and destinations should be enough to decide whether to 7593 // build bit tests. 7594 7595 // To lower a range with bit tests, the range must fit the bitwidth of a 7596 // machine word. 7597 if (!rangeFitsInWord(Low, High)) 7598 return false; 7599 7600 // Decide whether it's profitable to lower this range with bit tests. Each 7601 // destination requires a bit test and branch, and there is an overall range 7602 // check branch. For a small number of clusters, separate comparisons might be 7603 // cheaper, and for many destinations, splitting the range might be better. 7604 return (NumDests == 1 && NumCmps >= 3) || 7605 (NumDests == 2 && NumCmps >= 5) || 7606 (NumDests == 3 && NumCmps >= 6); 7607 } 7608 7609 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters, 7610 unsigned First, unsigned Last, 7611 const SwitchInst *SI, 7612 CaseCluster &BTCluster) { 7613 assert(First <= Last); 7614 if (First == Last) 7615 return false; 7616 7617 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7618 unsigned NumCmps = 0; 7619 for (int64_t I = First; I <= Last; ++I) { 7620 assert(Clusters[I].Kind == CC_Range); 7621 Dests.set(Clusters[I].MBB->getNumber()); 7622 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2; 7623 } 7624 unsigned NumDests = Dests.count(); 7625 7626 APInt Low = Clusters[First].Low->getValue(); 7627 APInt High = Clusters[Last].High->getValue(); 7628 assert(Low.slt(High)); 7629 7630 if (!isSuitableForBitTests(NumDests, NumCmps, Low, High)) 7631 return false; 7632 7633 APInt LowBound; 7634 APInt CmpRange; 7635 7636 const int BitWidth = 7637 DAG.getTargetLoweringInfo().getPointerTy().getSizeInBits(); 7638 assert((High - Low + 1).sle(BitWidth) && "Case range must fit in bit mask!"); 7639 7640 if (Low.isNonNegative() && High.slt(BitWidth)) { 7641 // Optimize the case where all the case values fit in a 7642 // word without having to subtract minValue. In this case, 7643 // we can optimize away the subtraction. 7644 LowBound = APInt::getNullValue(Low.getBitWidth()); 7645 CmpRange = High; 7646 } else { 7647 LowBound = Low; 7648 CmpRange = High - Low; 7649 } 7650 7651 CaseBitsVector CBV; 7652 uint32_t TotalWeight = 0; 7653 for (unsigned i = First; i <= Last; ++i) { 7654 // Find the CaseBits for this destination. 7655 unsigned j; 7656 for (j = 0; j < CBV.size(); ++j) 7657 if (CBV[j].BB == Clusters[i].MBB) 7658 break; 7659 if (j == CBV.size()) 7660 CBV.push_back(CaseBits(0, Clusters[i].MBB, 0, 0)); 7661 CaseBits *CB = &CBV[j]; 7662 7663 // Update Mask, Bits and ExtraWeight. 7664 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue(); 7665 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue(); 7666 for (uint64_t j = Lo; j <= Hi; ++j) { 7667 CB->Mask |= 1ULL << j; 7668 CB->Bits++; 7669 } 7670 CB->ExtraWeight += Clusters[i].Weight; 7671 TotalWeight += Clusters[i].Weight; 7672 assert(TotalWeight >= Clusters[i].Weight && "Weight overflow!"); 7673 } 7674 7675 BitTestInfo BTI; 7676 std::sort(CBV.begin(), CBV.end(), [](const CaseBits &a, const CaseBits &b) { 7677 // Sort by weight first, number of bits second. 7678 if (a.ExtraWeight != b.ExtraWeight) 7679 return a.ExtraWeight > b.ExtraWeight; 7680 return a.Bits > b.Bits; 7681 }); 7682 7683 for (auto &CB : CBV) { 7684 MachineBasicBlock *BitTestBB = 7685 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent()); 7686 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraWeight)); 7687 } 7688 BitTestCases.push_back(BitTestBlock(LowBound, CmpRange, SI->getCondition(), 7689 -1U, MVT::Other, false, nullptr, 7690 nullptr, std::move(BTI))); 7691 7692 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High, 7693 BitTestCases.size() - 1, TotalWeight); 7694 return true; 7695 } 7696 7697 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters, 7698 const SwitchInst *SI) { 7699 // Partition Clusters into as few subsets as possible, where each subset has a 7700 // range that fits in a machine word and has <= 3 unique destinations. 7701 7702 #ifndef NDEBUG 7703 // Clusters must be sorted and contain Range or JumpTable clusters. 7704 assert(!Clusters.empty()); 7705 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable); 7706 for (const CaseCluster &C : Clusters) 7707 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable); 7708 for (unsigned i = 1; i < Clusters.size(); ++i) 7709 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue())); 7710 #endif 7711 7712 // If target does not have legal shift left, do not emit bit tests at all. 7713 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7714 EVT PTy = TLI.getPointerTy(); 7715 if (!TLI.isOperationLegal(ISD::SHL, PTy)) 7716 return; 7717 7718 int BitWidth = PTy.getSizeInBits(); 7719 const int64_t N = Clusters.size(); 7720 7721 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1]. 7722 SmallVector<unsigned, 8> MinPartitions(N); 7723 // LastElement[i] is the last element of the partition starting at i. 7724 SmallVector<unsigned, 8> LastElement(N); 7725 7726 // FIXME: This might not be the best algorithm for finding bit test clusters. 7727 7728 // Base case: There is only one way to partition Clusters[N-1]. 7729 MinPartitions[N - 1] = 1; 7730 LastElement[N - 1] = N - 1; 7731 7732 // Note: loop indexes are signed to avoid underflow. 7733 for (int64_t i = N - 2; i >= 0; --i) { 7734 // Find optimal partitioning of Clusters[i..N-1]. 7735 // Baseline: Put Clusters[i] into a partition on its own. 7736 MinPartitions[i] = MinPartitions[i + 1] + 1; 7737 LastElement[i] = i; 7738 7739 // Search for a solution that results in fewer partitions. 7740 // Note: the search is limited by BitWidth, reducing time complexity. 7741 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) { 7742 // Try building a partition from Clusters[i..j]. 7743 7744 // Check the range. 7745 if (!rangeFitsInWord(Clusters[i].Low->getValue(), 7746 Clusters[j].High->getValue())) 7747 continue; 7748 7749 // Check nbr of destinations and cluster types. 7750 // FIXME: This works, but doesn't seem very efficient. 7751 bool RangesOnly = true; 7752 BitVector Dests(FuncInfo.MF->getNumBlockIDs()); 7753 for (int64_t k = i; k <= j; k++) { 7754 if (Clusters[k].Kind != CC_Range) { 7755 RangesOnly = false; 7756 break; 7757 } 7758 Dests.set(Clusters[k].MBB->getNumber()); 7759 } 7760 if (!RangesOnly || Dests.count() > 3) 7761 break; 7762 7763 // Check if it's a better partition. 7764 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]); 7765 if (NumPartitions < MinPartitions[i]) { 7766 // Found a better partition. 7767 MinPartitions[i] = NumPartitions; 7768 LastElement[i] = j; 7769 } 7770 } 7771 } 7772 7773 // Iterate over the partitions, replacing with bit-test clusters in-place. 7774 unsigned DstIndex = 0; 7775 for (unsigned First = 0, Last; First < N; First = Last + 1) { 7776 Last = LastElement[First]; 7777 assert(First <= Last); 7778 assert(DstIndex <= First); 7779 7780 CaseCluster BitTestCluster; 7781 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) { 7782 Clusters[DstIndex++] = BitTestCluster; 7783 } else { 7784 for (unsigned I = First; I <= Last; ++I) 7785 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I])); 7786 } 7787 } 7788 Clusters.resize(DstIndex); 7789 } 7790 7791 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 7792 MachineBasicBlock *SwitchMBB, 7793 MachineBasicBlock *DefaultMBB) { 7794 MachineFunction *CurMF = FuncInfo.MF; 7795 MachineBasicBlock *NextMBB = nullptr; 7796 MachineFunction::iterator BBI = W.MBB; 7797 if (++BBI != FuncInfo.MF->end()) 7798 NextMBB = BBI; 7799 7800 unsigned Size = W.LastCluster - W.FirstCluster + 1; 7801 7802 BranchProbabilityInfo *BPI = FuncInfo.BPI; 7803 7804 if (Size == 2 && W.MBB == SwitchMBB) { 7805 // If any two of the cases has the same destination, and if one value 7806 // is the same as the other, but has one bit unset that the other has set, 7807 // use bit manipulation to do two compares at once. For example: 7808 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 7809 // TODO: This could be extended to merge any 2 cases in switches with 3 7810 // cases. 7811 // TODO: Handle cases where W.CaseBB != SwitchBB. 7812 CaseCluster &Small = *W.FirstCluster; 7813 CaseCluster &Big = *W.LastCluster; 7814 7815 if (Small.Low == Small.High && Big.Low == Big.High && 7816 Small.MBB == Big.MBB) { 7817 const APInt &SmallValue = Small.Low->getValue(); 7818 const APInt &BigValue = Big.Low->getValue(); 7819 7820 // Check that there is only one bit different. 7821 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 7822 (SmallValue | BigValue) == BigValue) { 7823 // Isolate the common bit. 7824 APInt CommonBit = BigValue & ~SmallValue; 7825 assert((SmallValue | CommonBit) == BigValue && 7826 CommonBit.countPopulation() == 1 && "Not a common bit?"); 7827 7828 SDValue CondLHS = getValue(Cond); 7829 EVT VT = CondLHS.getValueType(); 7830 SDLoc DL = getCurSDLoc(); 7831 7832 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 7833 DAG.getConstant(CommonBit, DL, VT)); 7834 SDValue Cond = DAG.getSetCC(DL, MVT::i1, Or, 7835 DAG.getConstant(BigValue, DL, VT), 7836 ISD::SETEQ); 7837 7838 // Update successor info. 7839 // Both Small and Big will jump to Small.BB, so we sum up the weights. 7840 addSuccessorWithWeight(SwitchMBB, Small.MBB, Small.Weight + Big.Weight); 7841 addSuccessorWithWeight( 7842 SwitchMBB, DefaultMBB, 7843 // The default destination is the first successor in IR. 7844 BPI ? BPI->getEdgeWeight(SwitchMBB->getBasicBlock(), (unsigned)0) 7845 : 0); 7846 7847 // Insert the true branch. 7848 SDValue BrCond = 7849 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 7850 DAG.getBasicBlock(Small.MBB)); 7851 // Insert the false branch. 7852 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 7853 DAG.getBasicBlock(DefaultMBB)); 7854 7855 DAG.setRoot(BrCond); 7856 return; 7857 } 7858 } 7859 } 7860 7861 if (TM.getOptLevel() != CodeGenOpt::None) { 7862 // Order cases by weight so the most likely case will be checked first. 7863 std::sort(W.FirstCluster, W.LastCluster + 1, 7864 [](const CaseCluster &a, const CaseCluster &b) { 7865 return a.Weight > b.Weight; 7866 }); 7867 7868 // Rearrange the case blocks so that the last one falls through if possible 7869 // without without changing the order of weights. 7870 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 7871 --I; 7872 if (I->Weight > W.LastCluster->Weight) 7873 break; 7874 if (I->Kind == CC_Range && I->MBB == NextMBB) { 7875 std::swap(*I, *W.LastCluster); 7876 break; 7877 } 7878 } 7879 } 7880 7881 // Compute total weight. 7882 uint32_t UnhandledWeights = 0; 7883 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) { 7884 UnhandledWeights += I->Weight; 7885 assert(UnhandledWeights >= I->Weight && "Weight overflow!"); 7886 } 7887 7888 MachineBasicBlock *CurMBB = W.MBB; 7889 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 7890 MachineBasicBlock *Fallthrough; 7891 if (I == W.LastCluster) { 7892 // For the last cluster, fall through to the default destination. 7893 Fallthrough = DefaultMBB; 7894 } else { 7895 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 7896 CurMF->insert(BBI, Fallthrough); 7897 // Put Cond in a virtual register to make it available from the new blocks. 7898 ExportFromCurrentBlock(Cond); 7899 } 7900 7901 switch (I->Kind) { 7902 case CC_JumpTable: { 7903 // FIXME: Optimize away range check based on pivot comparisons. 7904 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first; 7905 JumpTable *JT = &JTCases[I->JTCasesIndex].second; 7906 7907 // The jump block hasn't been inserted yet; insert it here. 7908 MachineBasicBlock *JumpMBB = JT->MBB; 7909 CurMF->insert(BBI, JumpMBB); 7910 addSuccessorWithWeight(CurMBB, Fallthrough); 7911 addSuccessorWithWeight(CurMBB, JumpMBB); 7912 7913 // The jump table header will be inserted in our current block, do the 7914 // range check, and fall through to our fallthrough block. 7915 JTH->HeaderBB = CurMBB; 7916 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 7917 7918 // If we're in the right place, emit the jump table header right now. 7919 if (CurMBB == SwitchMBB) { 7920 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 7921 JTH->Emitted = true; 7922 } 7923 break; 7924 } 7925 case CC_BitTests: { 7926 // FIXME: Optimize away range check based on pivot comparisons. 7927 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex]; 7928 7929 // The bit test blocks haven't been inserted yet; insert them here. 7930 for (BitTestCase &BTC : BTB->Cases) 7931 CurMF->insert(BBI, BTC.ThisBB); 7932 7933 // Fill in fields of the BitTestBlock. 7934 BTB->Parent = CurMBB; 7935 BTB->Default = Fallthrough; 7936 7937 // If we're in the right place, emit the bit test header header right now. 7938 if (CurMBB ==SwitchMBB) { 7939 visitBitTestHeader(*BTB, SwitchMBB); 7940 BTB->Emitted = true; 7941 } 7942 break; 7943 } 7944 case CC_Range: { 7945 const Value *RHS, *LHS, *MHS; 7946 ISD::CondCode CC; 7947 if (I->Low == I->High) { 7948 // Check Cond == I->Low. 7949 CC = ISD::SETEQ; 7950 LHS = Cond; 7951 RHS=I->Low; 7952 MHS = nullptr; 7953 } else { 7954 // Check I->Low <= Cond <= I->High. 7955 CC = ISD::SETLE; 7956 LHS = I->Low; 7957 MHS = Cond; 7958 RHS = I->High; 7959 } 7960 7961 // The false weight is the sum of all unhandled cases. 7962 UnhandledWeights -= I->Weight; 7963 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, I->Weight, 7964 UnhandledWeights); 7965 7966 if (CurMBB == SwitchMBB) 7967 visitSwitchCase(CB, SwitchMBB); 7968 else 7969 SwitchCases.push_back(CB); 7970 7971 break; 7972 } 7973 } 7974 CurMBB = Fallthrough; 7975 } 7976 } 7977 7978 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 7979 const SwitchWorkListItem &W, 7980 Value *Cond, 7981 MachineBasicBlock *SwitchMBB) { 7982 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 7983 "Clusters not sorted?"); 7984 7985 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 7986 assert(NumClusters >= 2 && "Too small to split!"); 7987 7988 // FIXME: When we have profile info, we might want to balance the tree based 7989 // on weights instead of node count. 7990 7991 CaseClusterIt PivotCluster = W.FirstCluster + NumClusters / 2; 7992 CaseClusterIt FirstLeft = W.FirstCluster; 7993 CaseClusterIt LastLeft = PivotCluster - 1; 7994 CaseClusterIt FirstRight = PivotCluster; 7995 CaseClusterIt LastRight = W.LastCluster; 7996 const ConstantInt *Pivot = PivotCluster->Low; 7997 7998 // New blocks will be inserted immediately after the current one. 7999 MachineFunction::iterator BBI = W.MBB; 8000 ++BBI; 8001 8002 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 8003 // we can branch to its destination directly if it's squeezed exactly in 8004 // between the known lower bound and Pivot - 1. 8005 MachineBasicBlock *LeftMBB; 8006 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 8007 FirstLeft->Low == W.GE && 8008 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 8009 LeftMBB = FirstLeft->MBB; 8010 } else { 8011 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8012 FuncInfo.MF->insert(BBI, LeftMBB); 8013 WorkList.push_back({LeftMBB, FirstLeft, LastLeft, W.GE, Pivot}); 8014 // Put Cond in a virtual register to make it available from the new blocks. 8015 ExportFromCurrentBlock(Cond); 8016 } 8017 8018 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 8019 // single cluster, RHS.Low == Pivot, and we can branch to its destination 8020 // directly if RHS.High equals the current upper bound. 8021 MachineBasicBlock *RightMBB; 8022 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 8023 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 8024 RightMBB = FirstRight->MBB; 8025 } else { 8026 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 8027 FuncInfo.MF->insert(BBI, RightMBB); 8028 WorkList.push_back({RightMBB, FirstRight, LastRight, Pivot, W.LT}); 8029 // Put Cond in a virtual register to make it available from the new blocks. 8030 ExportFromCurrentBlock(Cond); 8031 } 8032 8033 // Create the CaseBlock record that will be used to lower the branch. 8034 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB); 8035 8036 if (W.MBB == SwitchMBB) 8037 visitSwitchCase(CB, SwitchMBB); 8038 else 8039 SwitchCases.push_back(CB); 8040 } 8041 8042 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 8043 // Extract cases from the switch. 8044 BranchProbabilityInfo *BPI = FuncInfo.BPI; 8045 CaseClusterVector Clusters; 8046 Clusters.reserve(SI.getNumCases()); 8047 for (auto I : SI.cases()) { 8048 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 8049 const ConstantInt *CaseVal = I.getCaseValue(); 8050 uint32_t Weight = 0; // FIXME: Use 1 instead? 8051 if (BPI) { 8052 Weight = BPI->getEdgeWeight(SI.getParent(), I.getSuccessorIndex()); 8053 assert(Weight <= UINT32_MAX / SI.getNumSuccessors()); 8054 } 8055 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Weight)); 8056 } 8057 8058 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 8059 8060 if (TM.getOptLevel() != CodeGenOpt::None) { 8061 // Cluster adjacent cases with the same destination. 8062 sortAndRangeify(Clusters); 8063 8064 // Replace an unreachable default with the most popular destination. 8065 // FIXME: Exploit unreachable default more aggressively. 8066 bool UnreachableDefault = 8067 isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()); 8068 if (UnreachableDefault && !Clusters.empty()) { 8069 DenseMap<const BasicBlock *, unsigned> Popularity; 8070 unsigned MaxPop = 0; 8071 const BasicBlock *MaxBB = nullptr; 8072 for (auto I : SI.cases()) { 8073 const BasicBlock *BB = I.getCaseSuccessor(); 8074 if (++Popularity[BB] > MaxPop) { 8075 MaxPop = Popularity[BB]; 8076 MaxBB = BB; 8077 } 8078 } 8079 // Set new default. 8080 assert(MaxPop > 0 && MaxBB); 8081 DefaultMBB = FuncInfo.MBBMap[MaxBB]; 8082 8083 // Remove cases that were pointing to the destination that is now the 8084 // default. 8085 CaseClusterVector New; 8086 New.reserve(Clusters.size()); 8087 for (CaseCluster &CC : Clusters) { 8088 if (CC.MBB != DefaultMBB) 8089 New.push_back(CC); 8090 } 8091 Clusters = std::move(New); 8092 } 8093 } 8094 8095 // If there is only the default destination, jump there directly. 8096 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 8097 if (Clusters.empty()) { 8098 SwitchMBB->addSuccessor(DefaultMBB); 8099 if (DefaultMBB != NextBlock(SwitchMBB)) { 8100 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 8101 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 8102 } 8103 return; 8104 } 8105 8106 if (TM.getOptLevel() != CodeGenOpt::None) { 8107 findJumpTables(Clusters, &SI, DefaultMBB); 8108 findBitTestClusters(Clusters, &SI); 8109 } 8110 8111 8112 DEBUG({ 8113 dbgs() << "Case clusters: "; 8114 for (const CaseCluster &C : Clusters) { 8115 if (C.Kind == CC_JumpTable) dbgs() << "JT:"; 8116 if (C.Kind == CC_BitTests) dbgs() << "BT:"; 8117 8118 C.Low->getValue().print(dbgs(), true); 8119 if (C.Low != C.High) { 8120 dbgs() << '-'; 8121 C.High->getValue().print(dbgs(), true); 8122 } 8123 dbgs() << ' '; 8124 } 8125 dbgs() << '\n'; 8126 }); 8127 8128 assert(!Clusters.empty()); 8129 SwitchWorkList WorkList; 8130 CaseClusterIt First = Clusters.begin(); 8131 CaseClusterIt Last = Clusters.end() - 1; 8132 WorkList.push_back({SwitchMBB, First, Last, nullptr, nullptr}); 8133 8134 while (!WorkList.empty()) { 8135 SwitchWorkListItem W = WorkList.back(); 8136 WorkList.pop_back(); 8137 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 8138 8139 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None) { 8140 // For optimized builds, lower large range as a balanced binary tree. 8141 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 8142 continue; 8143 } 8144 8145 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 8146 } 8147 } 8148