1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Constants.h" 23 #include "llvm/CallingConv.h" 24 #include "llvm/DerivedTypes.h" 25 #include "llvm/Function.h" 26 #include "llvm/GlobalVariable.h" 27 #include "llvm/InlineAsm.h" 28 #include "llvm/Instructions.h" 29 #include "llvm/Intrinsics.h" 30 #include "llvm/IntrinsicInst.h" 31 #include "llvm/LLVMContext.h" 32 #include "llvm/Module.h" 33 #include "llvm/CodeGen/Analysis.h" 34 #include "llvm/CodeGen/FastISel.h" 35 #include "llvm/CodeGen/FunctionLoweringInfo.h" 36 #include "llvm/CodeGen/GCStrategy.h" 37 #include "llvm/CodeGen/GCMetadata.h" 38 #include "llvm/CodeGen/MachineFunction.h" 39 #include "llvm/CodeGen/MachineFrameInfo.h" 40 #include "llvm/CodeGen/MachineInstrBuilder.h" 41 #include "llvm/CodeGen/MachineJumpTableInfo.h" 42 #include "llvm/CodeGen/MachineModuleInfo.h" 43 #include "llvm/CodeGen/MachineRegisterInfo.h" 44 #include "llvm/CodeGen/PseudoSourceValue.h" 45 #include "llvm/CodeGen/SelectionDAG.h" 46 #include "llvm/Analysis/DebugInfo.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLowering.h" 52 #include "llvm/Target/TargetOptions.h" 53 #include "llvm/Support/CommandLine.h" 54 #include "llvm/Support/Debug.h" 55 #include "llvm/Support/ErrorHandling.h" 56 #include "llvm/Support/MathExtras.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 using namespace llvm; 60 61 /// LimitFloatPrecision - Generate low-precision inline sequences for 62 /// some float libcalls (6, 8 or 12 bits). 63 static unsigned LimitFloatPrecision; 64 65 static cl::opt<unsigned, true> 66 LimitFPPrecision("limit-float-precision", 67 cl::desc("Generate low-precision inline sequences " 68 "for some float libcalls"), 69 cl::location(LimitFloatPrecision), 70 cl::init(0)); 71 72 // Limit the width of DAG chains. This is important in general to prevent 73 // prevent DAG-based analysis from blowing up. For example, alias analysis and 74 // load clustering may not complete in reasonable time. It is difficult to 75 // recognize and avoid this situation within each individual analysis, and 76 // future analyses are likely to have the same behavior. Limiting DAG width is 77 // the safe approach, and will be especially important with global DAGs. 78 // 79 // MaxParallelChains default is arbitrarily high to avoid affecting 80 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 81 // sequence over this should have been converted to llvm.memcpy by the 82 // frontend. It easy to induce this behavior with .ll code such as: 83 // %buffer = alloca [4096 x i8] 84 // %data = load [4096 x i8]* %argPtr 85 // store [4096 x i8] %data, [4096 x i8]* %buffer 86 static const unsigned MaxParallelChains = 64; 87 88 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 89 const SDValue *Parts, unsigned NumParts, 90 EVT PartVT, EVT ValueVT); 91 92 /// getCopyFromParts - Create a value that contains the specified legal parts 93 /// combined into the value they represent. If the parts combine to a type 94 /// larger then ValueVT then AssertOp can be used to specify whether the extra 95 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 96 /// (ISD::AssertSext). 97 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 98 const SDValue *Parts, 99 unsigned NumParts, EVT PartVT, EVT ValueVT, 100 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 101 if (ValueVT.isVector()) 102 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT); 103 104 assert(NumParts > 0 && "No parts to assemble!"); 105 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 106 SDValue Val = Parts[0]; 107 108 if (NumParts > 1) { 109 // Assemble the value from multiple parts. 110 if (ValueVT.isInteger()) { 111 unsigned PartBits = PartVT.getSizeInBits(); 112 unsigned ValueBits = ValueVT.getSizeInBits(); 113 114 // Assemble the power of 2 part. 115 unsigned RoundParts = NumParts & (NumParts - 1) ? 116 1 << Log2_32(NumParts) : NumParts; 117 unsigned RoundBits = PartBits * RoundParts; 118 EVT RoundVT = RoundBits == ValueBits ? 119 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 120 SDValue Lo, Hi; 121 122 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 123 124 if (RoundParts > 2) { 125 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 126 PartVT, HalfVT); 127 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 128 RoundParts / 2, PartVT, HalfVT); 129 } else { 130 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 131 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 132 } 133 134 if (TLI.isBigEndian()) 135 std::swap(Lo, Hi); 136 137 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 138 139 if (RoundParts < NumParts) { 140 // Assemble the trailing non-power-of-2 part. 141 unsigned OddParts = NumParts - RoundParts; 142 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 143 Hi = getCopyFromParts(DAG, DL, 144 Parts + RoundParts, OddParts, PartVT, OddVT); 145 146 // Combine the round and odd parts. 147 Lo = Val; 148 if (TLI.isBigEndian()) 149 std::swap(Lo, Hi); 150 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 151 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 152 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 153 DAG.getConstant(Lo.getValueType().getSizeInBits(), 154 TLI.getPointerTy())); 155 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 156 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 157 } 158 } else if (PartVT.isFloatingPoint()) { 159 // FP split into multiple FP parts (for ppcf128) 160 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 161 "Unexpected split"); 162 SDValue Lo, Hi; 163 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 164 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 165 if (TLI.isBigEndian()) 166 std::swap(Lo, Hi); 167 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 168 } else { 169 // FP split into integer parts (soft fp) 170 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 171 !PartVT.isVector() && "Unexpected split"); 172 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 173 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT); 174 } 175 } 176 177 // There is now one part, held in Val. Correct it to match ValueVT. 178 PartVT = Val.getValueType(); 179 180 if (PartVT == ValueVT) 181 return Val; 182 183 if (PartVT.isInteger() && ValueVT.isInteger()) { 184 if (ValueVT.bitsLT(PartVT)) { 185 // For a truncate, see if we have any information to 186 // indicate whether the truncated bits will always be 187 // zero or sign-extension. 188 if (AssertOp != ISD::DELETED_NODE) 189 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 190 DAG.getValueType(ValueVT)); 191 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 192 } 193 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 194 } 195 196 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 197 // FP_ROUND's are always exact here. 198 if (ValueVT.bitsLT(Val.getValueType())) 199 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 200 DAG.getIntPtrConstant(1)); 201 202 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 203 } 204 205 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 206 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 207 208 llvm_unreachable("Unknown mismatch!"); 209 return SDValue(); 210 } 211 212 /// getCopyFromParts - Create a value that contains the specified legal parts 213 /// combined into the value they represent. If the parts combine to a type 214 /// larger then ValueVT then AssertOp can be used to specify whether the extra 215 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 216 /// (ISD::AssertSext). 217 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 218 const SDValue *Parts, unsigned NumParts, 219 EVT PartVT, EVT ValueVT) { 220 assert(ValueVT.isVector() && "Not a vector value"); 221 assert(NumParts > 0 && "No parts to assemble!"); 222 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 223 SDValue Val = Parts[0]; 224 225 // Handle a multi-element vector. 226 if (NumParts > 1) { 227 EVT IntermediateVT, RegisterVT; 228 unsigned NumIntermediates; 229 unsigned NumRegs = 230 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 231 NumIntermediates, RegisterVT); 232 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 233 NumParts = NumRegs; // Silence a compiler warning. 234 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 235 assert(RegisterVT == Parts[0].getValueType() && 236 "Part type doesn't match part!"); 237 238 // Assemble the parts into intermediate operands. 239 SmallVector<SDValue, 8> Ops(NumIntermediates); 240 if (NumIntermediates == NumParts) { 241 // If the register was not expanded, truncate or copy the value, 242 // as appropriate. 243 for (unsigned i = 0; i != NumParts; ++i) 244 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 245 PartVT, IntermediateVT); 246 } else if (NumParts > 0) { 247 // If the intermediate type was expanded, build the intermediate 248 // operands from the parts. 249 assert(NumParts % NumIntermediates == 0 && 250 "Must expand into a divisible number of parts!"); 251 unsigned Factor = NumParts / NumIntermediates; 252 for (unsigned i = 0; i != NumIntermediates; ++i) 253 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 254 PartVT, IntermediateVT); 255 } 256 257 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 258 // intermediate operands. 259 Val = DAG.getNode(IntermediateVT.isVector() ? 260 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 261 ValueVT, &Ops[0], NumIntermediates); 262 } 263 264 // There is now one part, held in Val. Correct it to match ValueVT. 265 PartVT = Val.getValueType(); 266 267 if (PartVT == ValueVT) 268 return Val; 269 270 if (PartVT.isVector()) { 271 // If the element type of the source/dest vectors are the same, but the 272 // parts vector has more elements than the value vector, then we have a 273 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 274 // elements we want. 275 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 276 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 277 "Cannot narrow, it would be a lossy transformation"); 278 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 279 DAG.getIntPtrConstant(0)); 280 } 281 282 // Vector/Vector bitcast. 283 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 284 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 285 286 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 287 "Cannot handle this kind of promotion"); 288 // Promoted vector extract 289 bool Smaller = ValueVT.bitsLE(PartVT); 290 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 291 DL, ValueVT, Val); 292 293 } 294 295 // Trivial bitcast if the types are the same size and the destination 296 // vector type is legal. 297 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 298 TLI.isTypeLegal(ValueVT)) 299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 300 301 // Handle cases such as i8 -> <1 x i1> 302 assert(ValueVT.getVectorNumElements() == 1 && 303 "Only trivial scalar-to-vector conversions should get here!"); 304 305 if (ValueVT.getVectorNumElements() == 1 && 306 ValueVT.getVectorElementType() != PartVT) { 307 bool Smaller = ValueVT.bitsLE(PartVT); 308 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 309 DL, ValueVT.getScalarType(), Val); 310 } 311 312 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 313 } 314 315 316 317 318 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 319 SDValue Val, SDValue *Parts, unsigned NumParts, 320 EVT PartVT); 321 322 /// getCopyToParts - Create a series of nodes that contain the specified value 323 /// split into legal parts. If the parts contain more bits than Val, then, for 324 /// integers, ExtendKind can be used to specify how to generate the extra bits. 325 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 326 SDValue Val, SDValue *Parts, unsigned NumParts, 327 EVT PartVT, 328 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 329 EVT ValueVT = Val.getValueType(); 330 331 // Handle the vector case separately. 332 if (ValueVT.isVector()) 333 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 334 335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 336 unsigned PartBits = PartVT.getSizeInBits(); 337 unsigned OrigNumParts = NumParts; 338 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 339 340 if (NumParts == 0) 341 return; 342 343 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 344 if (PartVT == ValueVT) { 345 assert(NumParts == 1 && "No-op copy with multiple parts!"); 346 Parts[0] = Val; 347 return; 348 } 349 350 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 351 // If the parts cover more bits than the value has, promote the value. 352 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 353 assert(NumParts == 1 && "Do not know what to promote to!"); 354 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 355 } else { 356 assert(PartVT.isInteger() && ValueVT.isInteger() && 357 "Unknown mismatch!"); 358 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 359 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 360 } 361 } else if (PartBits == ValueVT.getSizeInBits()) { 362 // Different types of the same size. 363 assert(NumParts == 1 && PartVT != ValueVT); 364 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 365 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 366 // If the parts cover less bits than value has, truncate the value. 367 assert(PartVT.isInteger() && ValueVT.isInteger() && 368 "Unknown mismatch!"); 369 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 370 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 371 } 372 373 // The value may have changed - recompute ValueVT. 374 ValueVT = Val.getValueType(); 375 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 376 "Failed to tile the value with PartVT!"); 377 378 if (NumParts == 1) { 379 assert(PartVT == ValueVT && "Type conversion failed!"); 380 Parts[0] = Val; 381 return; 382 } 383 384 // Expand the value into multiple parts. 385 if (NumParts & (NumParts - 1)) { 386 // The number of parts is not a power of 2. Split off and copy the tail. 387 assert(PartVT.isInteger() && ValueVT.isInteger() && 388 "Do not know what to expand to!"); 389 unsigned RoundParts = 1 << Log2_32(NumParts); 390 unsigned RoundBits = RoundParts * PartBits; 391 unsigned OddParts = NumParts - RoundParts; 392 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 393 DAG.getIntPtrConstant(RoundBits)); 394 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 395 396 if (TLI.isBigEndian()) 397 // The odd parts were reversed by getCopyToParts - unreverse them. 398 std::reverse(Parts + RoundParts, Parts + NumParts); 399 400 NumParts = RoundParts; 401 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 402 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 403 } 404 405 // The number of parts is a power of 2. Repeatedly bisect the value using 406 // EXTRACT_ELEMENT. 407 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 408 EVT::getIntegerVT(*DAG.getContext(), 409 ValueVT.getSizeInBits()), 410 Val); 411 412 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 413 for (unsigned i = 0; i < NumParts; i += StepSize) { 414 unsigned ThisBits = StepSize * PartBits / 2; 415 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 416 SDValue &Part0 = Parts[i]; 417 SDValue &Part1 = Parts[i+StepSize/2]; 418 419 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 420 ThisVT, Part0, DAG.getIntPtrConstant(1)); 421 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 422 ThisVT, Part0, DAG.getIntPtrConstant(0)); 423 424 if (ThisBits == PartBits && ThisVT != PartVT) { 425 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 426 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 427 } 428 } 429 } 430 431 if (TLI.isBigEndian()) 432 std::reverse(Parts, Parts + OrigNumParts); 433 } 434 435 436 /// getCopyToPartsVector - Create a series of nodes that contain the specified 437 /// value split into legal parts. 438 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 439 SDValue Val, SDValue *Parts, unsigned NumParts, 440 EVT PartVT) { 441 EVT ValueVT = Val.getValueType(); 442 assert(ValueVT.isVector() && "Not a vector"); 443 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 444 445 if (NumParts == 1) { 446 if (PartVT == ValueVT) { 447 // Nothing to do. 448 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 449 // Bitconvert vector->vector case. 450 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 451 } else if (PartVT.isVector() && 452 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 453 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 454 EVT ElementVT = PartVT.getVectorElementType(); 455 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 456 // undef elements. 457 SmallVector<SDValue, 16> Ops; 458 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 459 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 460 ElementVT, Val, DAG.getIntPtrConstant(i))); 461 462 for (unsigned i = ValueVT.getVectorNumElements(), 463 e = PartVT.getVectorNumElements(); i != e; ++i) 464 Ops.push_back(DAG.getUNDEF(ElementVT)); 465 466 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 467 468 // FIXME: Use CONCAT for 2x -> 4x. 469 470 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 471 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 472 } else if (PartVT.isVector() && 473 PartVT.getVectorElementType().bitsGE( 474 ValueVT.getVectorElementType()) && 475 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 476 477 // Promoted vector extract 478 bool Smaller = PartVT.bitsLE(ValueVT); 479 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 480 DL, PartVT, Val); 481 } else{ 482 // Vector -> scalar conversion. 483 assert(ValueVT.getVectorNumElements() == 1 && 484 "Only trivial vector-to-scalar conversions should get here!"); 485 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 486 PartVT, Val, DAG.getIntPtrConstant(0)); 487 488 bool Smaller = ValueVT.bitsLE(PartVT); 489 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 490 DL, PartVT, Val); 491 } 492 493 Parts[0] = Val; 494 return; 495 } 496 497 // Handle a multi-element vector. 498 EVT IntermediateVT, RegisterVT; 499 unsigned NumIntermediates; 500 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 501 IntermediateVT, 502 NumIntermediates, RegisterVT); 503 unsigned NumElements = ValueVT.getVectorNumElements(); 504 505 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 506 NumParts = NumRegs; // Silence a compiler warning. 507 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 508 509 // Split the vector into intermediate operands. 510 SmallVector<SDValue, 8> Ops(NumIntermediates); 511 for (unsigned i = 0; i != NumIntermediates; ++i) { 512 if (IntermediateVT.isVector()) 513 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 514 IntermediateVT, Val, 515 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 516 else 517 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 518 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 519 } 520 521 // Split the intermediate operands into legal parts. 522 if (NumParts == NumIntermediates) { 523 // If the register was not expanded, promote or copy the value, 524 // as appropriate. 525 for (unsigned i = 0; i != NumParts; ++i) 526 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 527 } else if (NumParts > 0) { 528 // If the intermediate type was expanded, split each the value into 529 // legal parts. 530 assert(NumParts % NumIntermediates == 0 && 531 "Must expand into a divisible number of parts!"); 532 unsigned Factor = NumParts / NumIntermediates; 533 for (unsigned i = 0; i != NumIntermediates; ++i) 534 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 535 } 536 } 537 538 539 540 541 namespace { 542 /// RegsForValue - This struct represents the registers (physical or virtual) 543 /// that a particular set of values is assigned, and the type information 544 /// about the value. The most common situation is to represent one value at a 545 /// time, but struct or array values are handled element-wise as multiple 546 /// values. The splitting of aggregates is performed recursively, so that we 547 /// never have aggregate-typed registers. The values at this point do not 548 /// necessarily have legal types, so each value may require one or more 549 /// registers of some legal type. 550 /// 551 struct RegsForValue { 552 /// ValueVTs - The value types of the values, which may not be legal, and 553 /// may need be promoted or synthesized from one or more registers. 554 /// 555 SmallVector<EVT, 4> ValueVTs; 556 557 /// RegVTs - The value types of the registers. This is the same size as 558 /// ValueVTs and it records, for each value, what the type of the assigned 559 /// register or registers are. (Individual values are never synthesized 560 /// from more than one type of register.) 561 /// 562 /// With virtual registers, the contents of RegVTs is redundant with TLI's 563 /// getRegisterType member function, however when with physical registers 564 /// it is necessary to have a separate record of the types. 565 /// 566 SmallVector<EVT, 4> RegVTs; 567 568 /// Regs - This list holds the registers assigned to the values. 569 /// Each legal or promoted value requires one register, and each 570 /// expanded value requires multiple registers. 571 /// 572 SmallVector<unsigned, 4> Regs; 573 574 RegsForValue() {} 575 576 RegsForValue(const SmallVector<unsigned, 4> ®s, 577 EVT regvt, EVT valuevt) 578 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 579 580 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 581 unsigned Reg, Type *Ty) { 582 ComputeValueVTs(tli, Ty, ValueVTs); 583 584 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 585 EVT ValueVT = ValueVTs[Value]; 586 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 587 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 588 for (unsigned i = 0; i != NumRegs; ++i) 589 Regs.push_back(Reg + i); 590 RegVTs.push_back(RegisterVT); 591 Reg += NumRegs; 592 } 593 } 594 595 /// areValueTypesLegal - Return true if types of all the values are legal. 596 bool areValueTypesLegal(const TargetLowering &TLI) { 597 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 598 EVT RegisterVT = RegVTs[Value]; 599 if (!TLI.isTypeLegal(RegisterVT)) 600 return false; 601 } 602 return true; 603 } 604 605 /// append - Add the specified values to this one. 606 void append(const RegsForValue &RHS) { 607 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 608 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 609 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 610 } 611 612 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 613 /// this value and returns the result as a ValueVTs value. This uses 614 /// Chain/Flag as the input and updates them for the output Chain/Flag. 615 /// If the Flag pointer is NULL, no flag is used. 616 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 617 DebugLoc dl, 618 SDValue &Chain, SDValue *Flag) const; 619 620 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 621 /// specified value into the registers specified by this object. This uses 622 /// Chain/Flag as the input and updates them for the output Chain/Flag. 623 /// If the Flag pointer is NULL, no flag is used. 624 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 625 SDValue &Chain, SDValue *Flag) const; 626 627 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 628 /// operand list. This adds the code marker, matching input operand index 629 /// (if applicable), and includes the number of values added into it. 630 void AddInlineAsmOperands(unsigned Kind, 631 bool HasMatching, unsigned MatchingIdx, 632 SelectionDAG &DAG, 633 std::vector<SDValue> &Ops) const; 634 }; 635 } 636 637 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 638 /// this value and returns the result as a ValueVT value. This uses 639 /// Chain/Flag as the input and updates them for the output Chain/Flag. 640 /// If the Flag pointer is NULL, no flag is used. 641 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 642 FunctionLoweringInfo &FuncInfo, 643 DebugLoc dl, 644 SDValue &Chain, SDValue *Flag) const { 645 // A Value with type {} or [0 x %t] needs no registers. 646 if (ValueVTs.empty()) 647 return SDValue(); 648 649 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 650 651 // Assemble the legal parts into the final values. 652 SmallVector<SDValue, 4> Values(ValueVTs.size()); 653 SmallVector<SDValue, 8> Parts; 654 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 655 // Copy the legal parts from the registers. 656 EVT ValueVT = ValueVTs[Value]; 657 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 658 EVT RegisterVT = RegVTs[Value]; 659 660 Parts.resize(NumRegs); 661 for (unsigned i = 0; i != NumRegs; ++i) { 662 SDValue P; 663 if (Flag == 0) { 664 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 665 } else { 666 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 667 *Flag = P.getValue(2); 668 } 669 670 Chain = P.getValue(1); 671 Parts[i] = P; 672 673 // If the source register was virtual and if we know something about it, 674 // add an assert node. 675 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 676 !RegisterVT.isInteger() || RegisterVT.isVector()) 677 continue; 678 679 const FunctionLoweringInfo::LiveOutInfo *LOI = 680 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 681 if (!LOI) 682 continue; 683 684 unsigned RegSize = RegisterVT.getSizeInBits(); 685 unsigned NumSignBits = LOI->NumSignBits; 686 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 687 688 // FIXME: We capture more information than the dag can represent. For 689 // now, just use the tightest assertzext/assertsext possible. 690 bool isSExt = true; 691 EVT FromVT(MVT::Other); 692 if (NumSignBits == RegSize) 693 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 694 else if (NumZeroBits >= RegSize-1) 695 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 696 else if (NumSignBits > RegSize-8) 697 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 698 else if (NumZeroBits >= RegSize-8) 699 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 700 else if (NumSignBits > RegSize-16) 701 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 702 else if (NumZeroBits >= RegSize-16) 703 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 704 else if (NumSignBits > RegSize-32) 705 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 706 else if (NumZeroBits >= RegSize-32) 707 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 708 else 709 continue; 710 711 // Add an assertion node. 712 assert(FromVT != MVT::Other); 713 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 714 RegisterVT, P, DAG.getValueType(FromVT)); 715 } 716 717 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 718 NumRegs, RegisterVT, ValueVT); 719 Part += NumRegs; 720 Parts.clear(); 721 } 722 723 return DAG.getNode(ISD::MERGE_VALUES, dl, 724 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 725 &Values[0], ValueVTs.size()); 726 } 727 728 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 729 /// specified value into the registers specified by this object. This uses 730 /// Chain/Flag as the input and updates them for the output Chain/Flag. 731 /// If the Flag pointer is NULL, no flag is used. 732 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 733 SDValue &Chain, SDValue *Flag) const { 734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 735 736 // Get the list of the values's legal parts. 737 unsigned NumRegs = Regs.size(); 738 SmallVector<SDValue, 8> Parts(NumRegs); 739 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 740 EVT ValueVT = ValueVTs[Value]; 741 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 742 EVT RegisterVT = RegVTs[Value]; 743 744 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 745 &Parts[Part], NumParts, RegisterVT); 746 Part += NumParts; 747 } 748 749 // Copy the parts into the registers. 750 SmallVector<SDValue, 8> Chains(NumRegs); 751 for (unsigned i = 0; i != NumRegs; ++i) { 752 SDValue Part; 753 if (Flag == 0) { 754 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 755 } else { 756 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 757 *Flag = Part.getValue(1); 758 } 759 760 Chains[i] = Part.getValue(0); 761 } 762 763 if (NumRegs == 1 || Flag) 764 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 765 // flagged to it. That is the CopyToReg nodes and the user are considered 766 // a single scheduling unit. If we create a TokenFactor and return it as 767 // chain, then the TokenFactor is both a predecessor (operand) of the 768 // user as well as a successor (the TF operands are flagged to the user). 769 // c1, f1 = CopyToReg 770 // c2, f2 = CopyToReg 771 // c3 = TokenFactor c1, c2 772 // ... 773 // = op c3, ..., f2 774 Chain = Chains[NumRegs-1]; 775 else 776 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 777 } 778 779 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 780 /// operand list. This adds the code marker and includes the number of 781 /// values added into it. 782 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 783 unsigned MatchingIdx, 784 SelectionDAG &DAG, 785 std::vector<SDValue> &Ops) const { 786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 787 788 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 789 if (HasMatching) 790 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 791 else if (!Regs.empty() && 792 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 793 // Put the register class of the virtual registers in the flag word. That 794 // way, later passes can recompute register class constraints for inline 795 // assembly as well as normal instructions. 796 // Don't do this for tied operands that can use the regclass information 797 // from the def. 798 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 799 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 800 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 801 } 802 803 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 804 Ops.push_back(Res); 805 806 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 807 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 808 EVT RegisterVT = RegVTs[Value]; 809 for (unsigned i = 0; i != NumRegs; ++i) { 810 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 811 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 812 } 813 } 814 } 815 816 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa) { 817 AA = &aa; 818 GFI = gfi; 819 TD = DAG.getTarget().getTargetData(); 820 LPadToCallSiteMap.clear(); 821 } 822 823 /// clear - Clear out the current SelectionDAG and the associated 824 /// state and prepare this SelectionDAGBuilder object to be used 825 /// for a new block. This doesn't clear out information about 826 /// additional blocks that are needed to complete switch lowering 827 /// or PHI node updating; that information is cleared out as it is 828 /// consumed. 829 void SelectionDAGBuilder::clear() { 830 NodeMap.clear(); 831 UnusedArgNodeMap.clear(); 832 PendingLoads.clear(); 833 PendingExports.clear(); 834 CurDebugLoc = DebugLoc(); 835 HasTailCall = false; 836 } 837 838 /// clearDanglingDebugInfo - Clear the dangling debug information 839 /// map. This function is seperated from the clear so that debug 840 /// information that is dangling in a basic block can be properly 841 /// resolved in a different basic block. This allows the 842 /// SelectionDAG to resolve dangling debug information attached 843 /// to PHI nodes. 844 void SelectionDAGBuilder::clearDanglingDebugInfo() { 845 DanglingDebugInfoMap.clear(); 846 } 847 848 /// getRoot - Return the current virtual root of the Selection DAG, 849 /// flushing any PendingLoad items. This must be done before emitting 850 /// a store or any other node that may need to be ordered after any 851 /// prior load instructions. 852 /// 853 SDValue SelectionDAGBuilder::getRoot() { 854 if (PendingLoads.empty()) 855 return DAG.getRoot(); 856 857 if (PendingLoads.size() == 1) { 858 SDValue Root = PendingLoads[0]; 859 DAG.setRoot(Root); 860 PendingLoads.clear(); 861 return Root; 862 } 863 864 // Otherwise, we have to make a token factor node. 865 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 866 &PendingLoads[0], PendingLoads.size()); 867 PendingLoads.clear(); 868 DAG.setRoot(Root); 869 return Root; 870 } 871 872 /// getControlRoot - Similar to getRoot, but instead of flushing all the 873 /// PendingLoad items, flush all the PendingExports items. It is necessary 874 /// to do this before emitting a terminator instruction. 875 /// 876 SDValue SelectionDAGBuilder::getControlRoot() { 877 SDValue Root = DAG.getRoot(); 878 879 if (PendingExports.empty()) 880 return Root; 881 882 // Turn all of the CopyToReg chains into one factored node. 883 if (Root.getOpcode() != ISD::EntryToken) { 884 unsigned i = 0, e = PendingExports.size(); 885 for (; i != e; ++i) { 886 assert(PendingExports[i].getNode()->getNumOperands() > 1); 887 if (PendingExports[i].getNode()->getOperand(0) == Root) 888 break; // Don't add the root if we already indirectly depend on it. 889 } 890 891 if (i == e) 892 PendingExports.push_back(Root); 893 } 894 895 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 896 &PendingExports[0], 897 PendingExports.size()); 898 PendingExports.clear(); 899 DAG.setRoot(Root); 900 return Root; 901 } 902 903 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 904 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 905 DAG.AssignOrdering(Node, SDNodeOrder); 906 907 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 908 AssignOrderingToNode(Node->getOperand(I).getNode()); 909 } 910 911 void SelectionDAGBuilder::visit(const Instruction &I) { 912 // Set up outgoing PHI node register values before emitting the terminator. 913 if (isa<TerminatorInst>(&I)) 914 HandlePHINodesInSuccessorBlocks(I.getParent()); 915 916 CurDebugLoc = I.getDebugLoc(); 917 918 visit(I.getOpcode(), I); 919 920 if (!isa<TerminatorInst>(&I) && !HasTailCall) 921 CopyToExportRegsIfNeeded(&I); 922 923 CurDebugLoc = DebugLoc(); 924 } 925 926 void SelectionDAGBuilder::visitPHI(const PHINode &) { 927 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 928 } 929 930 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 931 // Note: this doesn't use InstVisitor, because it has to work with 932 // ConstantExpr's in addition to instructions. 933 switch (Opcode) { 934 default: llvm_unreachable("Unknown instruction type encountered!"); 935 // Build the switch statement using the Instruction.def file. 936 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 937 case Instruction::OPCODE: visit##OPCODE((CLASS&)I); break; 938 #include "llvm/Instruction.def" 939 } 940 941 // Assign the ordering to the freshly created DAG nodes. 942 if (NodeMap.count(&I)) { 943 ++SDNodeOrder; 944 AssignOrderingToNode(getValue(&I).getNode()); 945 } 946 } 947 948 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 949 // generate the debug data structures now that we've seen its definition. 950 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 951 SDValue Val) { 952 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 953 if (DDI.getDI()) { 954 const DbgValueInst *DI = DDI.getDI(); 955 DebugLoc dl = DDI.getdl(); 956 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 957 MDNode *Variable = DI->getVariable(); 958 uint64_t Offset = DI->getOffset(); 959 SDDbgValue *SDV; 960 if (Val.getNode()) { 961 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 962 SDV = DAG.getDbgValue(Variable, Val.getNode(), 963 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 964 DAG.AddDbgValue(SDV, Val.getNode(), false); 965 } 966 } else 967 DEBUG(dbgs() << "Dropping debug info for " << DI); 968 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 969 } 970 } 971 972 /// getValue - Return an SDValue for the given Value. 973 SDValue SelectionDAGBuilder::getValue(const Value *V) { 974 // If we already have an SDValue for this value, use it. It's important 975 // to do this first, so that we don't create a CopyFromReg if we already 976 // have a regular SDValue. 977 SDValue &N = NodeMap[V]; 978 if (N.getNode()) return N; 979 980 // If there's a virtual register allocated and initialized for this 981 // value, use it. 982 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 983 if (It != FuncInfo.ValueMap.end()) { 984 unsigned InReg = It->second; 985 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 986 SDValue Chain = DAG.getEntryNode(); 987 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 988 resolveDanglingDebugInfo(V, N); 989 return N; 990 } 991 992 // Otherwise create a new SDValue and remember it. 993 SDValue Val = getValueImpl(V); 994 NodeMap[V] = Val; 995 resolveDanglingDebugInfo(V, Val); 996 return Val; 997 } 998 999 /// getNonRegisterValue - Return an SDValue for the given Value, but 1000 /// don't look in FuncInfo.ValueMap for a virtual register. 1001 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1002 // If we already have an SDValue for this value, use it. 1003 SDValue &N = NodeMap[V]; 1004 if (N.getNode()) return N; 1005 1006 // Otherwise create a new SDValue and remember it. 1007 SDValue Val = getValueImpl(V); 1008 NodeMap[V] = Val; 1009 resolveDanglingDebugInfo(V, Val); 1010 return Val; 1011 } 1012 1013 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1014 /// Create an SDValue for the given value. 1015 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1016 if (const Constant *C = dyn_cast<Constant>(V)) { 1017 EVT VT = TLI.getValueType(V->getType(), true); 1018 1019 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1020 return DAG.getConstant(*CI, VT); 1021 1022 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1023 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1024 1025 if (isa<ConstantPointerNull>(C)) 1026 return DAG.getConstant(0, TLI.getPointerTy()); 1027 1028 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1029 return DAG.getConstantFP(*CFP, VT); 1030 1031 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1032 return DAG.getUNDEF(VT); 1033 1034 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1035 visit(CE->getOpcode(), *CE); 1036 SDValue N1 = NodeMap[V]; 1037 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1038 return N1; 1039 } 1040 1041 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1042 SmallVector<SDValue, 4> Constants; 1043 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1044 OI != OE; ++OI) { 1045 SDNode *Val = getValue(*OI).getNode(); 1046 // If the operand is an empty aggregate, there are no values. 1047 if (!Val) continue; 1048 // Add each leaf value from the operand to the Constants list 1049 // to form a flattened list of all the values. 1050 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1051 Constants.push_back(SDValue(Val, i)); 1052 } 1053 1054 return DAG.getMergeValues(&Constants[0], Constants.size(), 1055 getCurDebugLoc()); 1056 } 1057 1058 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1059 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1060 "Unknown struct or array constant!"); 1061 1062 SmallVector<EVT, 4> ValueVTs; 1063 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1064 unsigned NumElts = ValueVTs.size(); 1065 if (NumElts == 0) 1066 return SDValue(); // empty struct 1067 SmallVector<SDValue, 4> Constants(NumElts); 1068 for (unsigned i = 0; i != NumElts; ++i) { 1069 EVT EltVT = ValueVTs[i]; 1070 if (isa<UndefValue>(C)) 1071 Constants[i] = DAG.getUNDEF(EltVT); 1072 else if (EltVT.isFloatingPoint()) 1073 Constants[i] = DAG.getConstantFP(0, EltVT); 1074 else 1075 Constants[i] = DAG.getConstant(0, EltVT); 1076 } 1077 1078 return DAG.getMergeValues(&Constants[0], NumElts, 1079 getCurDebugLoc()); 1080 } 1081 1082 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1083 return DAG.getBlockAddress(BA, VT); 1084 1085 VectorType *VecTy = cast<VectorType>(V->getType()); 1086 unsigned NumElements = VecTy->getNumElements(); 1087 1088 // Now that we know the number and type of the elements, get that number of 1089 // elements into the Ops array based on what kind of constant it is. 1090 SmallVector<SDValue, 16> Ops; 1091 if (const ConstantVector *CP = dyn_cast<ConstantVector>(C)) { 1092 for (unsigned i = 0; i != NumElements; ++i) 1093 Ops.push_back(getValue(CP->getOperand(i))); 1094 } else { 1095 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1096 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1097 1098 SDValue Op; 1099 if (EltVT.isFloatingPoint()) 1100 Op = DAG.getConstantFP(0, EltVT); 1101 else 1102 Op = DAG.getConstant(0, EltVT); 1103 Ops.assign(NumElements, Op); 1104 } 1105 1106 // Create a BUILD_VECTOR node. 1107 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1108 VT, &Ops[0], Ops.size()); 1109 } 1110 1111 // If this is a static alloca, generate it as the frameindex instead of 1112 // computation. 1113 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1114 DenseMap<const AllocaInst*, int>::iterator SI = 1115 FuncInfo.StaticAllocaMap.find(AI); 1116 if (SI != FuncInfo.StaticAllocaMap.end()) 1117 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1118 } 1119 1120 // If this is an instruction which fast-isel has deferred, select it now. 1121 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1122 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1123 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1124 SDValue Chain = DAG.getEntryNode(); 1125 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL); 1126 } 1127 1128 llvm_unreachable("Can't get register for value!"); 1129 return SDValue(); 1130 } 1131 1132 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1133 SDValue Chain = getControlRoot(); 1134 SmallVector<ISD::OutputArg, 8> Outs; 1135 SmallVector<SDValue, 8> OutVals; 1136 1137 if (!FuncInfo.CanLowerReturn) { 1138 unsigned DemoteReg = FuncInfo.DemoteRegister; 1139 const Function *F = I.getParent()->getParent(); 1140 1141 // Emit a store of the return value through the virtual register. 1142 // Leave Outs empty so that LowerReturn won't try to load return 1143 // registers the usual way. 1144 SmallVector<EVT, 1> PtrValueVTs; 1145 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1146 PtrValueVTs); 1147 1148 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1149 SDValue RetOp = getValue(I.getOperand(0)); 1150 1151 SmallVector<EVT, 4> ValueVTs; 1152 SmallVector<uint64_t, 4> Offsets; 1153 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1154 unsigned NumValues = ValueVTs.size(); 1155 1156 SmallVector<SDValue, 4> Chains(NumValues); 1157 for (unsigned i = 0; i != NumValues; ++i) { 1158 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1159 RetPtr.getValueType(), RetPtr, 1160 DAG.getIntPtrConstant(Offsets[i])); 1161 Chains[i] = 1162 DAG.getStore(Chain, getCurDebugLoc(), 1163 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1164 // FIXME: better loc info would be nice. 1165 Add, MachinePointerInfo(), false, false, 0); 1166 } 1167 1168 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1169 MVT::Other, &Chains[0], NumValues); 1170 } else if (I.getNumOperands() != 0) { 1171 SmallVector<EVT, 4> ValueVTs; 1172 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1173 unsigned NumValues = ValueVTs.size(); 1174 if (NumValues) { 1175 SDValue RetOp = getValue(I.getOperand(0)); 1176 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1177 EVT VT = ValueVTs[j]; 1178 1179 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1180 1181 const Function *F = I.getParent()->getParent(); 1182 if (F->paramHasAttr(0, Attribute::SExt)) 1183 ExtendKind = ISD::SIGN_EXTEND; 1184 else if (F->paramHasAttr(0, Attribute::ZExt)) 1185 ExtendKind = ISD::ZERO_EXTEND; 1186 1187 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1188 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1189 1190 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1191 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1192 SmallVector<SDValue, 4> Parts(NumParts); 1193 getCopyToParts(DAG, getCurDebugLoc(), 1194 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1195 &Parts[0], NumParts, PartVT, ExtendKind); 1196 1197 // 'inreg' on function refers to return value 1198 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1199 if (F->paramHasAttr(0, Attribute::InReg)) 1200 Flags.setInReg(); 1201 1202 // Propagate extension type if any 1203 if (ExtendKind == ISD::SIGN_EXTEND) 1204 Flags.setSExt(); 1205 else if (ExtendKind == ISD::ZERO_EXTEND) 1206 Flags.setZExt(); 1207 1208 for (unsigned i = 0; i < NumParts; ++i) { 1209 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1210 /*isfixed=*/true)); 1211 OutVals.push_back(Parts[i]); 1212 } 1213 } 1214 } 1215 } 1216 1217 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1218 CallingConv::ID CallConv = 1219 DAG.getMachineFunction().getFunction()->getCallingConv(); 1220 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1221 Outs, OutVals, getCurDebugLoc(), DAG); 1222 1223 // Verify that the target's LowerReturn behaved as expected. 1224 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1225 "LowerReturn didn't return a valid chain!"); 1226 1227 // Update the DAG with the new chain value resulting from return lowering. 1228 DAG.setRoot(Chain); 1229 } 1230 1231 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1232 /// created for it, emit nodes to copy the value into the virtual 1233 /// registers. 1234 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1235 // Skip empty types 1236 if (V->getType()->isEmptyTy()) 1237 return; 1238 1239 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1240 if (VMI != FuncInfo.ValueMap.end()) { 1241 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1242 CopyValueToVirtualRegister(V, VMI->second); 1243 } 1244 } 1245 1246 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1247 /// the current basic block, add it to ValueMap now so that we'll get a 1248 /// CopyTo/FromReg. 1249 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1250 // No need to export constants. 1251 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1252 1253 // Already exported? 1254 if (FuncInfo.isExportedInst(V)) return; 1255 1256 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1257 CopyValueToVirtualRegister(V, Reg); 1258 } 1259 1260 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1261 const BasicBlock *FromBB) { 1262 // The operands of the setcc have to be in this block. We don't know 1263 // how to export them from some other block. 1264 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1265 // Can export from current BB. 1266 if (VI->getParent() == FromBB) 1267 return true; 1268 1269 // Is already exported, noop. 1270 return FuncInfo.isExportedInst(V); 1271 } 1272 1273 // If this is an argument, we can export it if the BB is the entry block or 1274 // if it is already exported. 1275 if (isa<Argument>(V)) { 1276 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1277 return true; 1278 1279 // Otherwise, can only export this if it is already exported. 1280 return FuncInfo.isExportedInst(V); 1281 } 1282 1283 // Otherwise, constants can always be exported. 1284 return true; 1285 } 1286 1287 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1288 uint32_t SelectionDAGBuilder::getEdgeWeight(MachineBasicBlock *Src, 1289 MachineBasicBlock *Dst) { 1290 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1291 if (!BPI) 1292 return 0; 1293 const BasicBlock *SrcBB = Src->getBasicBlock(); 1294 const BasicBlock *DstBB = Dst->getBasicBlock(); 1295 return BPI->getEdgeWeight(SrcBB, DstBB); 1296 } 1297 1298 void SelectionDAGBuilder:: 1299 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1300 uint32_t Weight /* = 0 */) { 1301 if (!Weight) 1302 Weight = getEdgeWeight(Src, Dst); 1303 Src->addSuccessor(Dst, Weight); 1304 } 1305 1306 1307 static bool InBlock(const Value *V, const BasicBlock *BB) { 1308 if (const Instruction *I = dyn_cast<Instruction>(V)) 1309 return I->getParent() == BB; 1310 return true; 1311 } 1312 1313 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1314 /// This function emits a branch and is used at the leaves of an OR or an 1315 /// AND operator tree. 1316 /// 1317 void 1318 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1319 MachineBasicBlock *TBB, 1320 MachineBasicBlock *FBB, 1321 MachineBasicBlock *CurBB, 1322 MachineBasicBlock *SwitchBB) { 1323 const BasicBlock *BB = CurBB->getBasicBlock(); 1324 1325 // If the leaf of the tree is a comparison, merge the condition into 1326 // the caseblock. 1327 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1328 // The operands of the cmp have to be in this block. We don't know 1329 // how to export them from some other block. If this is the first block 1330 // of the sequence, no exporting is needed. 1331 if (CurBB == SwitchBB || 1332 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1333 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1334 ISD::CondCode Condition; 1335 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1336 Condition = getICmpCondCode(IC->getPredicate()); 1337 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1338 Condition = getFCmpCondCode(FC->getPredicate()); 1339 } else { 1340 Condition = ISD::SETEQ; // silence warning. 1341 llvm_unreachable("Unknown compare instruction"); 1342 } 1343 1344 CaseBlock CB(Condition, BOp->getOperand(0), 1345 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1346 SwitchCases.push_back(CB); 1347 return; 1348 } 1349 } 1350 1351 // Create a CaseBlock record representing this branch. 1352 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1353 NULL, TBB, FBB, CurBB); 1354 SwitchCases.push_back(CB); 1355 } 1356 1357 /// FindMergedConditions - If Cond is an expression like 1358 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1359 MachineBasicBlock *TBB, 1360 MachineBasicBlock *FBB, 1361 MachineBasicBlock *CurBB, 1362 MachineBasicBlock *SwitchBB, 1363 unsigned Opc) { 1364 // If this node is not part of the or/and tree, emit it as a branch. 1365 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1366 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1367 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1368 BOp->getParent() != CurBB->getBasicBlock() || 1369 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1370 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1371 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1372 return; 1373 } 1374 1375 // Create TmpBB after CurBB. 1376 MachineFunction::iterator BBI = CurBB; 1377 MachineFunction &MF = DAG.getMachineFunction(); 1378 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1379 CurBB->getParent()->insert(++BBI, TmpBB); 1380 1381 if (Opc == Instruction::Or) { 1382 // Codegen X | Y as: 1383 // jmp_if_X TBB 1384 // jmp TmpBB 1385 // TmpBB: 1386 // jmp_if_Y TBB 1387 // jmp FBB 1388 // 1389 1390 // Emit the LHS condition. 1391 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1392 1393 // Emit the RHS condition into TmpBB. 1394 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1395 } else { 1396 assert(Opc == Instruction::And && "Unknown merge op!"); 1397 // Codegen X & Y as: 1398 // jmp_if_X TmpBB 1399 // jmp FBB 1400 // TmpBB: 1401 // jmp_if_Y TBB 1402 // jmp FBB 1403 // 1404 // This requires creation of TmpBB after CurBB. 1405 1406 // Emit the LHS condition. 1407 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1408 1409 // Emit the RHS condition into TmpBB. 1410 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1411 } 1412 } 1413 1414 /// If the set of cases should be emitted as a series of branches, return true. 1415 /// If we should emit this as a bunch of and/or'd together conditions, return 1416 /// false. 1417 bool 1418 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1419 if (Cases.size() != 2) return true; 1420 1421 // If this is two comparisons of the same values or'd or and'd together, they 1422 // will get folded into a single comparison, so don't emit two blocks. 1423 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1424 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1425 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1426 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1427 return false; 1428 } 1429 1430 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1431 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1432 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1433 Cases[0].CC == Cases[1].CC && 1434 isa<Constant>(Cases[0].CmpRHS) && 1435 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1436 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1437 return false; 1438 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1439 return false; 1440 } 1441 1442 return true; 1443 } 1444 1445 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1446 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1447 1448 // Update machine-CFG edges. 1449 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1450 1451 // Figure out which block is immediately after the current one. 1452 MachineBasicBlock *NextBlock = 0; 1453 MachineFunction::iterator BBI = BrMBB; 1454 if (++BBI != FuncInfo.MF->end()) 1455 NextBlock = BBI; 1456 1457 if (I.isUnconditional()) { 1458 // Update machine-CFG edges. 1459 BrMBB->addSuccessor(Succ0MBB); 1460 1461 // If this is not a fall-through branch, emit the branch. 1462 if (Succ0MBB != NextBlock) 1463 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1464 MVT::Other, getControlRoot(), 1465 DAG.getBasicBlock(Succ0MBB))); 1466 1467 return; 1468 } 1469 1470 // If this condition is one of the special cases we handle, do special stuff 1471 // now. 1472 const Value *CondVal = I.getCondition(); 1473 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1474 1475 // If this is a series of conditions that are or'd or and'd together, emit 1476 // this as a sequence of branches instead of setcc's with and/or operations. 1477 // As long as jumps are not expensive, this should improve performance. 1478 // For example, instead of something like: 1479 // cmp A, B 1480 // C = seteq 1481 // cmp D, E 1482 // F = setle 1483 // or C, F 1484 // jnz foo 1485 // Emit: 1486 // cmp A, B 1487 // je foo 1488 // cmp D, E 1489 // jle foo 1490 // 1491 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1492 if (!TLI.isJumpExpensive() && 1493 BOp->hasOneUse() && 1494 (BOp->getOpcode() == Instruction::And || 1495 BOp->getOpcode() == Instruction::Or)) { 1496 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1497 BOp->getOpcode()); 1498 // If the compares in later blocks need to use values not currently 1499 // exported from this block, export them now. This block should always 1500 // be the first entry. 1501 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1502 1503 // Allow some cases to be rejected. 1504 if (ShouldEmitAsBranches(SwitchCases)) { 1505 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1506 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1507 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1508 } 1509 1510 // Emit the branch for this block. 1511 visitSwitchCase(SwitchCases[0], BrMBB); 1512 SwitchCases.erase(SwitchCases.begin()); 1513 return; 1514 } 1515 1516 // Okay, we decided not to do this, remove any inserted MBB's and clear 1517 // SwitchCases. 1518 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1519 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1520 1521 SwitchCases.clear(); 1522 } 1523 } 1524 1525 // Create a CaseBlock record representing this branch. 1526 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1527 NULL, Succ0MBB, Succ1MBB, BrMBB); 1528 1529 // Use visitSwitchCase to actually insert the fast branch sequence for this 1530 // cond branch. 1531 visitSwitchCase(CB, BrMBB); 1532 } 1533 1534 /// visitSwitchCase - Emits the necessary code to represent a single node in 1535 /// the binary search tree resulting from lowering a switch instruction. 1536 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1537 MachineBasicBlock *SwitchBB) { 1538 SDValue Cond; 1539 SDValue CondLHS = getValue(CB.CmpLHS); 1540 DebugLoc dl = getCurDebugLoc(); 1541 1542 // Build the setcc now. 1543 if (CB.CmpMHS == NULL) { 1544 // Fold "(X == true)" to X and "(X == false)" to !X to 1545 // handle common cases produced by branch lowering. 1546 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1547 CB.CC == ISD::SETEQ) 1548 Cond = CondLHS; 1549 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1550 CB.CC == ISD::SETEQ) { 1551 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1552 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1553 } else 1554 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1555 } else { 1556 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 1557 1558 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1559 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1560 1561 SDValue CmpOp = getValue(CB.CmpMHS); 1562 EVT VT = CmpOp.getValueType(); 1563 1564 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 1565 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1566 ISD::SETLE); 1567 } else { 1568 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1569 VT, CmpOp, DAG.getConstant(Low, VT)); 1570 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1571 DAG.getConstant(High-Low, VT), ISD::SETULE); 1572 } 1573 } 1574 1575 // Update successor info 1576 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1577 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1578 1579 // Set NextBlock to be the MBB immediately after the current one, if any. 1580 // This is used to avoid emitting unnecessary branches to the next block. 1581 MachineBasicBlock *NextBlock = 0; 1582 MachineFunction::iterator BBI = SwitchBB; 1583 if (++BBI != FuncInfo.MF->end()) 1584 NextBlock = BBI; 1585 1586 // If the lhs block is the next block, invert the condition so that we can 1587 // fall through to the lhs instead of the rhs block. 1588 if (CB.TrueBB == NextBlock) { 1589 std::swap(CB.TrueBB, CB.FalseBB); 1590 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1591 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1592 } 1593 1594 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1595 MVT::Other, getControlRoot(), Cond, 1596 DAG.getBasicBlock(CB.TrueBB)); 1597 1598 // Insert the false branch. Do this even if it's a fall through branch, 1599 // this makes it easier to do DAG optimizations which require inverting 1600 // the branch condition. 1601 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1602 DAG.getBasicBlock(CB.FalseBB)); 1603 1604 DAG.setRoot(BrCond); 1605 } 1606 1607 /// visitJumpTable - Emit JumpTable node in the current MBB 1608 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1609 // Emit the code for the jump table 1610 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1611 EVT PTy = TLI.getPointerTy(); 1612 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1613 JT.Reg, PTy); 1614 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1615 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1616 MVT::Other, Index.getValue(1), 1617 Table, Index); 1618 DAG.setRoot(BrJumpTable); 1619 } 1620 1621 /// visitJumpTableHeader - This function emits necessary code to produce index 1622 /// in the JumpTable from switch case. 1623 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1624 JumpTableHeader &JTH, 1625 MachineBasicBlock *SwitchBB) { 1626 // Subtract the lowest switch case value from the value being switched on and 1627 // conditional branch to default mbb if the result is greater than the 1628 // difference between smallest and largest cases. 1629 SDValue SwitchOp = getValue(JTH.SValue); 1630 EVT VT = SwitchOp.getValueType(); 1631 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1632 DAG.getConstant(JTH.First, VT)); 1633 1634 // The SDNode we just created, which holds the value being switched on minus 1635 // the smallest case value, needs to be copied to a virtual register so it 1636 // can be used as an index into the jump table in a subsequent basic block. 1637 // This value may be smaller or larger than the target's pointer type, and 1638 // therefore require extension or truncating. 1639 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1640 1641 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1642 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1643 JumpTableReg, SwitchOp); 1644 JT.Reg = JumpTableReg; 1645 1646 // Emit the range check for the jump table, and branch to the default block 1647 // for the switch statement if the value being switched on exceeds the largest 1648 // case in the switch. 1649 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1650 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1651 DAG.getConstant(JTH.Last-JTH.First,VT), 1652 ISD::SETUGT); 1653 1654 // Set NextBlock to be the MBB immediately after the current one, if any. 1655 // This is used to avoid emitting unnecessary branches to the next block. 1656 MachineBasicBlock *NextBlock = 0; 1657 MachineFunction::iterator BBI = SwitchBB; 1658 1659 if (++BBI != FuncInfo.MF->end()) 1660 NextBlock = BBI; 1661 1662 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1663 MVT::Other, CopyTo, CMP, 1664 DAG.getBasicBlock(JT.Default)); 1665 1666 if (JT.MBB != NextBlock) 1667 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1668 DAG.getBasicBlock(JT.MBB)); 1669 1670 DAG.setRoot(BrCond); 1671 } 1672 1673 /// visitBitTestHeader - This function emits necessary code to produce value 1674 /// suitable for "bit tests" 1675 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1676 MachineBasicBlock *SwitchBB) { 1677 // Subtract the minimum value 1678 SDValue SwitchOp = getValue(B.SValue); 1679 EVT VT = SwitchOp.getValueType(); 1680 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1681 DAG.getConstant(B.First, VT)); 1682 1683 // Check range 1684 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1685 TLI.getSetCCResultType(Sub.getValueType()), 1686 Sub, DAG.getConstant(B.Range, VT), 1687 ISD::SETUGT); 1688 1689 // Determine the type of the test operands. 1690 bool UsePtrType = false; 1691 if (!TLI.isTypeLegal(VT)) 1692 UsePtrType = true; 1693 else { 1694 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1695 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1696 // Switch table case range are encoded into series of masks. 1697 // Just use pointer type, it's guaranteed to fit. 1698 UsePtrType = true; 1699 break; 1700 } 1701 } 1702 if (UsePtrType) { 1703 VT = TLI.getPointerTy(); 1704 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1705 } 1706 1707 B.RegVT = VT; 1708 B.Reg = FuncInfo.CreateReg(VT); 1709 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1710 B.Reg, Sub); 1711 1712 // Set NextBlock to be the MBB immediately after the current one, if any. 1713 // This is used to avoid emitting unnecessary branches to the next block. 1714 MachineBasicBlock *NextBlock = 0; 1715 MachineFunction::iterator BBI = SwitchBB; 1716 if (++BBI != FuncInfo.MF->end()) 1717 NextBlock = BBI; 1718 1719 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1720 1721 addSuccessorWithWeight(SwitchBB, B.Default); 1722 addSuccessorWithWeight(SwitchBB, MBB); 1723 1724 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1725 MVT::Other, CopyTo, RangeCmp, 1726 DAG.getBasicBlock(B.Default)); 1727 1728 if (MBB != NextBlock) 1729 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1730 DAG.getBasicBlock(MBB)); 1731 1732 DAG.setRoot(BrRange); 1733 } 1734 1735 /// visitBitTestCase - this function produces one "bit test" 1736 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1737 MachineBasicBlock* NextMBB, 1738 unsigned Reg, 1739 BitTestCase &B, 1740 MachineBasicBlock *SwitchBB) { 1741 EVT VT = BB.RegVT; 1742 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1743 Reg, VT); 1744 SDValue Cmp; 1745 unsigned PopCount = CountPopulation_64(B.Mask); 1746 if (PopCount == 1) { 1747 // Testing for a single bit; just compare the shift count with what it 1748 // would need to be to shift a 1 bit in that position. 1749 Cmp = DAG.getSetCC(getCurDebugLoc(), 1750 TLI.getSetCCResultType(VT), 1751 ShiftOp, 1752 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1753 ISD::SETEQ); 1754 } else if (PopCount == BB.Range) { 1755 // There is only one zero bit in the range, test for it directly. 1756 Cmp = DAG.getSetCC(getCurDebugLoc(), 1757 TLI.getSetCCResultType(VT), 1758 ShiftOp, 1759 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1760 ISD::SETNE); 1761 } else { 1762 // Make desired shift 1763 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1764 DAG.getConstant(1, VT), ShiftOp); 1765 1766 // Emit bit tests and jumps 1767 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1768 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1769 Cmp = DAG.getSetCC(getCurDebugLoc(), 1770 TLI.getSetCCResultType(VT), 1771 AndOp, DAG.getConstant(0, VT), 1772 ISD::SETNE); 1773 } 1774 1775 addSuccessorWithWeight(SwitchBB, B.TargetBB); 1776 addSuccessorWithWeight(SwitchBB, NextMBB); 1777 1778 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1779 MVT::Other, getControlRoot(), 1780 Cmp, DAG.getBasicBlock(B.TargetBB)); 1781 1782 // Set NextBlock to be the MBB immediately after the current one, if any. 1783 // This is used to avoid emitting unnecessary branches to the next block. 1784 MachineBasicBlock *NextBlock = 0; 1785 MachineFunction::iterator BBI = SwitchBB; 1786 if (++BBI != FuncInfo.MF->end()) 1787 NextBlock = BBI; 1788 1789 if (NextMBB != NextBlock) 1790 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1791 DAG.getBasicBlock(NextMBB)); 1792 1793 DAG.setRoot(BrAnd); 1794 } 1795 1796 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1797 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1798 1799 // Retrieve successors. 1800 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1801 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1802 1803 const Value *Callee(I.getCalledValue()); 1804 if (isa<InlineAsm>(Callee)) 1805 visitInlineAsm(&I); 1806 else 1807 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1808 1809 // If the value of the invoke is used outside of its defining block, make it 1810 // available as a virtual register. 1811 CopyToExportRegsIfNeeded(&I); 1812 1813 // Update successor info 1814 InvokeMBB->addSuccessor(Return); 1815 InvokeMBB->addSuccessor(LandingPad); 1816 1817 // Drop into normal successor. 1818 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1819 MVT::Other, getControlRoot(), 1820 DAG.getBasicBlock(Return))); 1821 } 1822 1823 void SelectionDAGBuilder::visitUnwind(const UnwindInst &I) { 1824 } 1825 1826 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1827 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1828 } 1829 1830 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1831 assert(FuncInfo.MBB->isLandingPad() && 1832 "Call to landingpad not in landing pad!"); 1833 1834 MachineBasicBlock *MBB = FuncInfo.MBB; 1835 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1836 AddLandingPadInfo(LP, MMI, MBB); 1837 1838 SmallVector<EVT, 2> ValueVTs; 1839 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1840 1841 // Insert the EXCEPTIONADDR instruction. 1842 assert(FuncInfo.MBB->isLandingPad() && 1843 "Call to eh.exception not in landing pad!"); 1844 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1845 SDValue Ops[2]; 1846 Ops[0] = DAG.getRoot(); 1847 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1848 SDValue Chain = Op1.getValue(1); 1849 1850 // Insert the EHSELECTION instruction. 1851 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1852 Ops[0] = Op1; 1853 Ops[1] = Chain; 1854 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1855 Chain = Op2.getValue(1); 1856 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1857 1858 Ops[0] = Op1; 1859 Ops[1] = Op2; 1860 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1861 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1862 &Ops[0], 2); 1863 1864 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1865 setValue(&LP, RetPair.first); 1866 DAG.setRoot(RetPair.second); 1867 } 1868 1869 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1870 /// small case ranges). 1871 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1872 CaseRecVector& WorkList, 1873 const Value* SV, 1874 MachineBasicBlock *Default, 1875 MachineBasicBlock *SwitchBB) { 1876 Case& BackCase = *(CR.Range.second-1); 1877 1878 // Size is the number of Cases represented by this range. 1879 size_t Size = CR.Range.second - CR.Range.first; 1880 if (Size > 3) 1881 return false; 1882 1883 // Get the MachineFunction which holds the current MBB. This is used when 1884 // inserting any additional MBBs necessary to represent the switch. 1885 MachineFunction *CurMF = FuncInfo.MF; 1886 1887 // Figure out which block is immediately after the current one. 1888 MachineBasicBlock *NextBlock = 0; 1889 MachineFunction::iterator BBI = CR.CaseBB; 1890 1891 if (++BBI != FuncInfo.MF->end()) 1892 NextBlock = BBI; 1893 1894 // If any two of the cases has the same destination, and if one value 1895 // is the same as the other, but has one bit unset that the other has set, 1896 // use bit manipulation to do two compares at once. For example: 1897 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1898 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1899 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1900 if (Size == 2 && CR.CaseBB == SwitchBB) { 1901 Case &Small = *CR.Range.first; 1902 Case &Big = *(CR.Range.second-1); 1903 1904 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1905 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1906 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1907 1908 // Check that there is only one bit different. 1909 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1910 (SmallValue | BigValue) == BigValue) { 1911 // Isolate the common bit. 1912 APInt CommonBit = BigValue & ~SmallValue; 1913 assert((SmallValue | CommonBit) == BigValue && 1914 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1915 1916 SDValue CondLHS = getValue(SV); 1917 EVT VT = CondLHS.getValueType(); 1918 DebugLoc DL = getCurDebugLoc(); 1919 1920 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1921 DAG.getConstant(CommonBit, VT)); 1922 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1923 Or, DAG.getConstant(BigValue, VT), 1924 ISD::SETEQ); 1925 1926 // Update successor info. 1927 addSuccessorWithWeight(SwitchBB, Small.BB); 1928 addSuccessorWithWeight(SwitchBB, Default); 1929 1930 // Insert the true branch. 1931 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1932 getControlRoot(), Cond, 1933 DAG.getBasicBlock(Small.BB)); 1934 1935 // Insert the false branch. 1936 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1937 DAG.getBasicBlock(Default)); 1938 1939 DAG.setRoot(BrCond); 1940 return true; 1941 } 1942 } 1943 } 1944 1945 // Rearrange the case blocks so that the last one falls through if possible. 1946 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 1947 // The last case block won't fall through into 'NextBlock' if we emit the 1948 // branches in this order. See if rearranging a case value would help. 1949 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) { 1950 if (I->BB == NextBlock) { 1951 std::swap(*I, BackCase); 1952 break; 1953 } 1954 } 1955 } 1956 1957 // Create a CaseBlock record representing a conditional branch to 1958 // the Case's target mbb if the value being switched on SV is equal 1959 // to C. 1960 MachineBasicBlock *CurBlock = CR.CaseBB; 1961 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 1962 MachineBasicBlock *FallThrough; 1963 if (I != E-1) { 1964 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 1965 CurMF->insert(BBI, FallThrough); 1966 1967 // Put SV in a virtual register to make it available from the new blocks. 1968 ExportFromCurrentBlock(SV); 1969 } else { 1970 // If the last case doesn't match, go to the default block. 1971 FallThrough = Default; 1972 } 1973 1974 const Value *RHS, *LHS, *MHS; 1975 ISD::CondCode CC; 1976 if (I->High == I->Low) { 1977 // This is just small small case range :) containing exactly 1 case 1978 CC = ISD::SETEQ; 1979 LHS = SV; RHS = I->High; MHS = NULL; 1980 } else { 1981 CC = ISD::SETLE; 1982 LHS = I->Low; MHS = SV; RHS = I->High; 1983 } 1984 1985 uint32_t ExtraWeight = I->ExtraWeight; 1986 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 1987 /* me */ CurBlock, 1988 /* trueweight */ ExtraWeight / 2, /* falseweight */ ExtraWeight / 2); 1989 1990 // If emitting the first comparison, just call visitSwitchCase to emit the 1991 // code into the current block. Otherwise, push the CaseBlock onto the 1992 // vector to be later processed by SDISel, and insert the node's MBB 1993 // before the next MBB. 1994 if (CurBlock == SwitchBB) 1995 visitSwitchCase(CB, SwitchBB); 1996 else 1997 SwitchCases.push_back(CB); 1998 1999 CurBlock = FallThrough; 2000 } 2001 2002 return true; 2003 } 2004 2005 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2006 return !DisableJumpTables && 2007 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2008 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2009 } 2010 2011 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2012 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2013 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth); 2014 return (LastExt - FirstExt + 1ULL); 2015 } 2016 2017 /// handleJTSwitchCase - Emit jumptable for current switch case range 2018 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2019 CaseRecVector &WorkList, 2020 const Value *SV, 2021 MachineBasicBlock *Default, 2022 MachineBasicBlock *SwitchBB) { 2023 Case& FrontCase = *CR.Range.first; 2024 Case& BackCase = *(CR.Range.second-1); 2025 2026 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2027 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2028 2029 APInt TSize(First.getBitWidth(), 0); 2030 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2031 TSize += I->size(); 2032 2033 if (!areJTsAllowed(TLI) || TSize.ult(4)) 2034 return false; 2035 2036 APInt Range = ComputeRange(First, Last); 2037 // The density is TSize / Range. Require at least 40%. 2038 // It should not be possible for IntTSize to saturate for sane code, but make 2039 // sure we handle Range saturation correctly. 2040 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2041 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2042 if (IntTSize * 10 < IntRange * 4) 2043 return false; 2044 2045 DEBUG(dbgs() << "Lowering jump table\n" 2046 << "First entry: " << First << ". Last entry: " << Last << '\n' 2047 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2048 2049 // Get the MachineFunction which holds the current MBB. This is used when 2050 // inserting any additional MBBs necessary to represent the switch. 2051 MachineFunction *CurMF = FuncInfo.MF; 2052 2053 // Figure out which block is immediately after the current one. 2054 MachineFunction::iterator BBI = CR.CaseBB; 2055 ++BBI; 2056 2057 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2058 2059 // Create a new basic block to hold the code for loading the address 2060 // of the jump table, and jumping to it. Update successor information; 2061 // we will either branch to the default case for the switch, or the jump 2062 // table. 2063 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2064 CurMF->insert(BBI, JumpTableBB); 2065 2066 addSuccessorWithWeight(CR.CaseBB, Default); 2067 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2068 2069 // Build a vector of destination BBs, corresponding to each target 2070 // of the jump table. If the value of the jump table slot corresponds to 2071 // a case statement, push the case's BB onto the vector, otherwise, push 2072 // the default BB. 2073 std::vector<MachineBasicBlock*> DestBBs; 2074 APInt TEI = First; 2075 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2076 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2077 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2078 2079 if (Low.sle(TEI) && TEI.sle(High)) { 2080 DestBBs.push_back(I->BB); 2081 if (TEI==High) 2082 ++I; 2083 } else { 2084 DestBBs.push_back(Default); 2085 } 2086 } 2087 2088 // Update successor info. Add one edge to each unique successor. 2089 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2090 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2091 E = DestBBs.end(); I != E; ++I) { 2092 if (!SuccsHandled[(*I)->getNumber()]) { 2093 SuccsHandled[(*I)->getNumber()] = true; 2094 addSuccessorWithWeight(JumpTableBB, *I); 2095 } 2096 } 2097 2098 // Create a jump table index for this jump table. 2099 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2100 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2101 ->createJumpTableIndex(DestBBs); 2102 2103 // Set the jump table information so that we can codegen it as a second 2104 // MachineBasicBlock 2105 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2106 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2107 if (CR.CaseBB == SwitchBB) 2108 visitJumpTableHeader(JT, JTH, SwitchBB); 2109 2110 JTCases.push_back(JumpTableBlock(JTH, JT)); 2111 return true; 2112 } 2113 2114 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2115 /// 2 subtrees. 2116 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2117 CaseRecVector& WorkList, 2118 const Value* SV, 2119 MachineBasicBlock *Default, 2120 MachineBasicBlock *SwitchBB) { 2121 // Get the MachineFunction which holds the current MBB. This is used when 2122 // inserting any additional MBBs necessary to represent the switch. 2123 MachineFunction *CurMF = FuncInfo.MF; 2124 2125 // Figure out which block is immediately after the current one. 2126 MachineFunction::iterator BBI = CR.CaseBB; 2127 ++BBI; 2128 2129 Case& FrontCase = *CR.Range.first; 2130 Case& BackCase = *(CR.Range.second-1); 2131 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2132 2133 // Size is the number of Cases represented by this range. 2134 unsigned Size = CR.Range.second - CR.Range.first; 2135 2136 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2137 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2138 double FMetric = 0; 2139 CaseItr Pivot = CR.Range.first + Size/2; 2140 2141 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2142 // (heuristically) allow us to emit JumpTable's later. 2143 APInt TSize(First.getBitWidth(), 0); 2144 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2145 I!=E; ++I) 2146 TSize += I->size(); 2147 2148 APInt LSize = FrontCase.size(); 2149 APInt RSize = TSize-LSize; 2150 DEBUG(dbgs() << "Selecting best pivot: \n" 2151 << "First: " << First << ", Last: " << Last <<'\n' 2152 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2153 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2154 J!=E; ++I, ++J) { 2155 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2156 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2157 APInt Range = ComputeRange(LEnd, RBegin); 2158 assert((Range - 2ULL).isNonNegative() && 2159 "Invalid case distance"); 2160 // Use volatile double here to avoid excess precision issues on some hosts, 2161 // e.g. that use 80-bit X87 registers. 2162 volatile double LDensity = 2163 (double)LSize.roundToDouble() / 2164 (LEnd - First + 1ULL).roundToDouble(); 2165 volatile double RDensity = 2166 (double)RSize.roundToDouble() / 2167 (Last - RBegin + 1ULL).roundToDouble(); 2168 double Metric = Range.logBase2()*(LDensity+RDensity); 2169 // Should always split in some non-trivial place 2170 DEBUG(dbgs() <<"=>Step\n" 2171 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2172 << "LDensity: " << LDensity 2173 << ", RDensity: " << RDensity << '\n' 2174 << "Metric: " << Metric << '\n'); 2175 if (FMetric < Metric) { 2176 Pivot = J; 2177 FMetric = Metric; 2178 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2179 } 2180 2181 LSize += J->size(); 2182 RSize -= J->size(); 2183 } 2184 if (areJTsAllowed(TLI)) { 2185 // If our case is dense we *really* should handle it earlier! 2186 assert((FMetric > 0) && "Should handle dense range earlier!"); 2187 } else { 2188 Pivot = CR.Range.first + Size/2; 2189 } 2190 2191 CaseRange LHSR(CR.Range.first, Pivot); 2192 CaseRange RHSR(Pivot, CR.Range.second); 2193 Constant *C = Pivot->Low; 2194 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2195 2196 // We know that we branch to the LHS if the Value being switched on is 2197 // less than the Pivot value, C. We use this to optimize our binary 2198 // tree a bit, by recognizing that if SV is greater than or equal to the 2199 // LHS's Case Value, and that Case Value is exactly one less than the 2200 // Pivot's Value, then we can branch directly to the LHS's Target, 2201 // rather than creating a leaf node for it. 2202 if ((LHSR.second - LHSR.first) == 1 && 2203 LHSR.first->High == CR.GE && 2204 cast<ConstantInt>(C)->getValue() == 2205 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2206 TrueBB = LHSR.first->BB; 2207 } else { 2208 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2209 CurMF->insert(BBI, TrueBB); 2210 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2211 2212 // Put SV in a virtual register to make it available from the new blocks. 2213 ExportFromCurrentBlock(SV); 2214 } 2215 2216 // Similar to the optimization above, if the Value being switched on is 2217 // known to be less than the Constant CR.LT, and the current Case Value 2218 // is CR.LT - 1, then we can branch directly to the target block for 2219 // the current Case Value, rather than emitting a RHS leaf node for it. 2220 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2221 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2222 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2223 FalseBB = RHSR.first->BB; 2224 } else { 2225 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2226 CurMF->insert(BBI, FalseBB); 2227 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2228 2229 // Put SV in a virtual register to make it available from the new blocks. 2230 ExportFromCurrentBlock(SV); 2231 } 2232 2233 // Create a CaseBlock record representing a conditional branch to 2234 // the LHS node if the value being switched on SV is less than C. 2235 // Otherwise, branch to LHS. 2236 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2237 2238 if (CR.CaseBB == SwitchBB) 2239 visitSwitchCase(CB, SwitchBB); 2240 else 2241 SwitchCases.push_back(CB); 2242 2243 return true; 2244 } 2245 2246 /// handleBitTestsSwitchCase - if current case range has few destination and 2247 /// range span less, than machine word bitwidth, encode case range into series 2248 /// of masks and emit bit tests with these masks. 2249 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2250 CaseRecVector& WorkList, 2251 const Value* SV, 2252 MachineBasicBlock* Default, 2253 MachineBasicBlock *SwitchBB){ 2254 EVT PTy = TLI.getPointerTy(); 2255 unsigned IntPtrBits = PTy.getSizeInBits(); 2256 2257 Case& FrontCase = *CR.Range.first; 2258 Case& BackCase = *(CR.Range.second-1); 2259 2260 // Get the MachineFunction which holds the current MBB. This is used when 2261 // inserting any additional MBBs necessary to represent the switch. 2262 MachineFunction *CurMF = FuncInfo.MF; 2263 2264 // If target does not have legal shift left, do not emit bit tests at all. 2265 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2266 return false; 2267 2268 size_t numCmps = 0; 2269 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2270 I!=E; ++I) { 2271 // Single case counts one, case range - two. 2272 numCmps += (I->Low == I->High ? 1 : 2); 2273 } 2274 2275 // Count unique destinations 2276 SmallSet<MachineBasicBlock*, 4> Dests; 2277 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2278 Dests.insert(I->BB); 2279 if (Dests.size() > 3) 2280 // Don't bother the code below, if there are too much unique destinations 2281 return false; 2282 } 2283 DEBUG(dbgs() << "Total number of unique destinations: " 2284 << Dests.size() << '\n' 2285 << "Total number of comparisons: " << numCmps << '\n'); 2286 2287 // Compute span of values. 2288 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2289 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2290 APInt cmpRange = maxValue - minValue; 2291 2292 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2293 << "Low bound: " << minValue << '\n' 2294 << "High bound: " << maxValue << '\n'); 2295 2296 if (cmpRange.uge(IntPtrBits) || 2297 (!(Dests.size() == 1 && numCmps >= 3) && 2298 !(Dests.size() == 2 && numCmps >= 5) && 2299 !(Dests.size() >= 3 && numCmps >= 6))) 2300 return false; 2301 2302 DEBUG(dbgs() << "Emitting bit tests\n"); 2303 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2304 2305 // Optimize the case where all the case values fit in a 2306 // word without having to subtract minValue. In this case, 2307 // we can optimize away the subtraction. 2308 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) { 2309 cmpRange = maxValue; 2310 } else { 2311 lowBound = minValue; 2312 } 2313 2314 CaseBitsVector CasesBits; 2315 unsigned i, count = 0; 2316 2317 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2318 MachineBasicBlock* Dest = I->BB; 2319 for (i = 0; i < count; ++i) 2320 if (Dest == CasesBits[i].BB) 2321 break; 2322 2323 if (i == count) { 2324 assert((count < 3) && "Too much destinations to test!"); 2325 CasesBits.push_back(CaseBits(0, Dest, 0)); 2326 count++; 2327 } 2328 2329 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2330 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2331 2332 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2333 uint64_t hi = (highValue - lowBound).getZExtValue(); 2334 2335 for (uint64_t j = lo; j <= hi; j++) { 2336 CasesBits[i].Mask |= 1ULL << j; 2337 CasesBits[i].Bits++; 2338 } 2339 2340 } 2341 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2342 2343 BitTestInfo BTC; 2344 2345 // Figure out which block is immediately after the current one. 2346 MachineFunction::iterator BBI = CR.CaseBB; 2347 ++BBI; 2348 2349 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2350 2351 DEBUG(dbgs() << "Cases:\n"); 2352 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2353 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2354 << ", Bits: " << CasesBits[i].Bits 2355 << ", BB: " << CasesBits[i].BB << '\n'); 2356 2357 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2358 CurMF->insert(BBI, CaseBB); 2359 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2360 CaseBB, 2361 CasesBits[i].BB)); 2362 2363 // Put SV in a virtual register to make it available from the new blocks. 2364 ExportFromCurrentBlock(SV); 2365 } 2366 2367 BitTestBlock BTB(lowBound, cmpRange, SV, 2368 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2369 CR.CaseBB, Default, BTC); 2370 2371 if (CR.CaseBB == SwitchBB) 2372 visitBitTestHeader(BTB, SwitchBB); 2373 2374 BitTestCases.push_back(BTB); 2375 2376 return true; 2377 } 2378 2379 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2380 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2381 const SwitchInst& SI) { 2382 size_t numCmps = 0; 2383 2384 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2385 // Start with "simple" cases 2386 for (size_t i = 1; i < SI.getNumSuccessors(); ++i) { 2387 BasicBlock *SuccBB = SI.getSuccessor(i); 2388 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2389 2390 uint32_t ExtraWeight = BPI ? BPI->getEdgeWeight(SI.getParent(), SuccBB) : 0; 2391 2392 Cases.push_back(Case(SI.getSuccessorValue(i), 2393 SI.getSuccessorValue(i), 2394 SMBB, ExtraWeight)); 2395 } 2396 std::sort(Cases.begin(), Cases.end(), CaseCmp()); 2397 2398 // Merge case into clusters 2399 if (Cases.size() >= 2) 2400 // Must recompute end() each iteration because it may be 2401 // invalidated by erase if we hold on to it 2402 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin()); 2403 J != Cases.end(); ) { 2404 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue(); 2405 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue(); 2406 MachineBasicBlock* nextBB = J->BB; 2407 MachineBasicBlock* currentBB = I->BB; 2408 2409 // If the two neighboring cases go to the same destination, merge them 2410 // into a single case. 2411 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) { 2412 I->High = J->High; 2413 J = Cases.erase(J); 2414 2415 if (BranchProbabilityInfo *BPI = FuncInfo.BPI) { 2416 uint32_t CurWeight = currentBB->getBasicBlock() ? 2417 BPI->getEdgeWeight(SI.getParent(), currentBB->getBasicBlock()) : 16; 2418 uint32_t NextWeight = nextBB->getBasicBlock() ? 2419 BPI->getEdgeWeight(SI.getParent(), nextBB->getBasicBlock()) : 16; 2420 2421 BPI->setEdgeWeight(SI.getParent(), currentBB->getBasicBlock(), 2422 CurWeight + NextWeight); 2423 } 2424 } else { 2425 I = J++; 2426 } 2427 } 2428 2429 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) { 2430 if (I->Low != I->High) 2431 // A range counts double, since it requires two compares. 2432 ++numCmps; 2433 } 2434 2435 return numCmps; 2436 } 2437 2438 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2439 MachineBasicBlock *Last) { 2440 // Update JTCases. 2441 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2442 if (JTCases[i].first.HeaderBB == First) 2443 JTCases[i].first.HeaderBB = Last; 2444 2445 // Update BitTestCases. 2446 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2447 if (BitTestCases[i].Parent == First) 2448 BitTestCases[i].Parent = Last; 2449 } 2450 2451 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2452 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2453 2454 // Figure out which block is immediately after the current one. 2455 MachineBasicBlock *NextBlock = 0; 2456 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2457 2458 // If there is only the default destination, branch to it if it is not the 2459 // next basic block. Otherwise, just fall through. 2460 if (SI.getNumCases() == 1) { 2461 // Update machine-CFG edges. 2462 2463 // If this is not a fall-through branch, emit the branch. 2464 SwitchMBB->addSuccessor(Default); 2465 if (Default != NextBlock) 2466 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2467 MVT::Other, getControlRoot(), 2468 DAG.getBasicBlock(Default))); 2469 2470 return; 2471 } 2472 2473 // If there are any non-default case statements, create a vector of Cases 2474 // representing each one, and sort the vector so that we can efficiently 2475 // create a binary search tree from them. 2476 CaseVector Cases; 2477 size_t numCmps = Clusterify(Cases, SI); 2478 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2479 << ". Total compares: " << numCmps << '\n'); 2480 (void)numCmps; 2481 2482 // Get the Value to be switched on and default basic blocks, which will be 2483 // inserted into CaseBlock records, representing basic blocks in the binary 2484 // search tree. 2485 const Value *SV = SI.getCondition(); 2486 2487 // Push the initial CaseRec onto the worklist 2488 CaseRecVector WorkList; 2489 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2490 CaseRange(Cases.begin(),Cases.end()))); 2491 2492 while (!WorkList.empty()) { 2493 // Grab a record representing a case range to process off the worklist 2494 CaseRec CR = WorkList.back(); 2495 WorkList.pop_back(); 2496 2497 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2498 continue; 2499 2500 // If the range has few cases (two or less) emit a series of specific 2501 // tests. 2502 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2503 continue; 2504 2505 // If the switch has more than 5 blocks, and at least 40% dense, and the 2506 // target supports indirect branches, then emit a jump table rather than 2507 // lowering the switch to a binary tree of conditional branches. 2508 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2509 continue; 2510 2511 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2512 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2513 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2514 } 2515 } 2516 2517 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2518 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2519 2520 // Update machine-CFG edges with unique successors. 2521 SmallVector<BasicBlock*, 32> succs; 2522 succs.reserve(I.getNumSuccessors()); 2523 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2524 succs.push_back(I.getSuccessor(i)); 2525 array_pod_sort(succs.begin(), succs.end()); 2526 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2527 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2528 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2529 addSuccessorWithWeight(IndirectBrMBB, Succ); 2530 } 2531 2532 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2533 MVT::Other, getControlRoot(), 2534 getValue(I.getAddress()))); 2535 } 2536 2537 void SelectionDAGBuilder::visitFSub(const User &I) { 2538 // -0.0 - X --> fneg 2539 Type *Ty = I.getType(); 2540 if (isa<Constant>(I.getOperand(0)) && 2541 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2542 SDValue Op2 = getValue(I.getOperand(1)); 2543 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2544 Op2.getValueType(), Op2)); 2545 return; 2546 } 2547 2548 visitBinary(I, ISD::FSUB); 2549 } 2550 2551 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2552 SDValue Op1 = getValue(I.getOperand(0)); 2553 SDValue Op2 = getValue(I.getOperand(1)); 2554 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2555 Op1.getValueType(), Op1, Op2)); 2556 } 2557 2558 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2559 SDValue Op1 = getValue(I.getOperand(0)); 2560 SDValue Op2 = getValue(I.getOperand(1)); 2561 2562 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2563 2564 // Coerce the shift amount to the right type if we can. 2565 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2566 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2567 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2568 DebugLoc DL = getCurDebugLoc(); 2569 2570 // If the operand is smaller than the shift count type, promote it. 2571 if (ShiftSize > Op2Size) 2572 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2573 2574 // If the operand is larger than the shift count type but the shift 2575 // count type has enough bits to represent any shift value, truncate 2576 // it now. This is a common case and it exposes the truncate to 2577 // optimization early. 2578 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2579 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2580 // Otherwise we'll need to temporarily settle for some other convenient 2581 // type. Type legalization will make adjustments once the shiftee is split. 2582 else 2583 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2584 } 2585 2586 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2587 Op1.getValueType(), Op1, Op2)); 2588 } 2589 2590 void SelectionDAGBuilder::visitSDiv(const User &I) { 2591 SDValue Op1 = getValue(I.getOperand(0)); 2592 SDValue Op2 = getValue(I.getOperand(1)); 2593 2594 // Turn exact SDivs into multiplications. 2595 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2596 // exact bit. 2597 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2598 !isa<ConstantSDNode>(Op1) && 2599 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2600 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2601 else 2602 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2603 Op1, Op2)); 2604 } 2605 2606 void SelectionDAGBuilder::visitICmp(const User &I) { 2607 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2608 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2609 predicate = IC->getPredicate(); 2610 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2611 predicate = ICmpInst::Predicate(IC->getPredicate()); 2612 SDValue Op1 = getValue(I.getOperand(0)); 2613 SDValue Op2 = getValue(I.getOperand(1)); 2614 ISD::CondCode Opcode = getICmpCondCode(predicate); 2615 2616 EVT DestVT = TLI.getValueType(I.getType()); 2617 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2618 } 2619 2620 void SelectionDAGBuilder::visitFCmp(const User &I) { 2621 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2622 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2623 predicate = FC->getPredicate(); 2624 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2625 predicate = FCmpInst::Predicate(FC->getPredicate()); 2626 SDValue Op1 = getValue(I.getOperand(0)); 2627 SDValue Op2 = getValue(I.getOperand(1)); 2628 ISD::CondCode Condition = getFCmpCondCode(predicate); 2629 EVT DestVT = TLI.getValueType(I.getType()); 2630 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2631 } 2632 2633 void SelectionDAGBuilder::visitSelect(const User &I) { 2634 SmallVector<EVT, 4> ValueVTs; 2635 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2636 unsigned NumValues = ValueVTs.size(); 2637 if (NumValues == 0) return; 2638 2639 SmallVector<SDValue, 4> Values(NumValues); 2640 SDValue Cond = getValue(I.getOperand(0)); 2641 SDValue TrueVal = getValue(I.getOperand(1)); 2642 SDValue FalseVal = getValue(I.getOperand(2)); 2643 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2644 ISD::VSELECT : ISD::SELECT; 2645 2646 for (unsigned i = 0; i != NumValues; ++i) 2647 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2648 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2649 Cond, 2650 SDValue(TrueVal.getNode(), 2651 TrueVal.getResNo() + i), 2652 SDValue(FalseVal.getNode(), 2653 FalseVal.getResNo() + i)); 2654 2655 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2656 DAG.getVTList(&ValueVTs[0], NumValues), 2657 &Values[0], NumValues)); 2658 } 2659 2660 void SelectionDAGBuilder::visitTrunc(const User &I) { 2661 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2662 SDValue N = getValue(I.getOperand(0)); 2663 EVT DestVT = TLI.getValueType(I.getType()); 2664 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2665 } 2666 2667 void SelectionDAGBuilder::visitZExt(const User &I) { 2668 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2669 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2670 SDValue N = getValue(I.getOperand(0)); 2671 EVT DestVT = TLI.getValueType(I.getType()); 2672 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2673 } 2674 2675 void SelectionDAGBuilder::visitSExt(const User &I) { 2676 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2677 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2678 SDValue N = getValue(I.getOperand(0)); 2679 EVT DestVT = TLI.getValueType(I.getType()); 2680 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2681 } 2682 2683 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2684 // FPTrunc is never a no-op cast, no need to check 2685 SDValue N = getValue(I.getOperand(0)); 2686 EVT DestVT = TLI.getValueType(I.getType()); 2687 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2688 DestVT, N, DAG.getIntPtrConstant(0))); 2689 } 2690 2691 void SelectionDAGBuilder::visitFPExt(const User &I){ 2692 // FPExt is never a no-op cast, no need to check 2693 SDValue N = getValue(I.getOperand(0)); 2694 EVT DestVT = TLI.getValueType(I.getType()); 2695 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2696 } 2697 2698 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2699 // FPToUI is never a no-op cast, no need to check 2700 SDValue N = getValue(I.getOperand(0)); 2701 EVT DestVT = TLI.getValueType(I.getType()); 2702 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2703 } 2704 2705 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2706 // FPToSI is never a no-op cast, no need to check 2707 SDValue N = getValue(I.getOperand(0)); 2708 EVT DestVT = TLI.getValueType(I.getType()); 2709 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2710 } 2711 2712 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2713 // UIToFP is never a no-op cast, no need to check 2714 SDValue N = getValue(I.getOperand(0)); 2715 EVT DestVT = TLI.getValueType(I.getType()); 2716 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2717 } 2718 2719 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2720 // SIToFP is never a no-op cast, no need to check 2721 SDValue N = getValue(I.getOperand(0)); 2722 EVT DestVT = TLI.getValueType(I.getType()); 2723 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2724 } 2725 2726 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2727 // What to do depends on the size of the integer and the size of the pointer. 2728 // We can either truncate, zero extend, or no-op, accordingly. 2729 SDValue N = getValue(I.getOperand(0)); 2730 EVT DestVT = TLI.getValueType(I.getType()); 2731 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2732 } 2733 2734 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2735 // What to do depends on the size of the integer and the size of the pointer. 2736 // We can either truncate, zero extend, or no-op, accordingly. 2737 SDValue N = getValue(I.getOperand(0)); 2738 EVT DestVT = TLI.getValueType(I.getType()); 2739 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2740 } 2741 2742 void SelectionDAGBuilder::visitBitCast(const User &I) { 2743 SDValue N = getValue(I.getOperand(0)); 2744 EVT DestVT = TLI.getValueType(I.getType()); 2745 2746 // BitCast assures us that source and destination are the same size so this is 2747 // either a BITCAST or a no-op. 2748 if (DestVT != N.getValueType()) 2749 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2750 DestVT, N)); // convert types. 2751 else 2752 setValue(&I, N); // noop cast. 2753 } 2754 2755 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2756 SDValue InVec = getValue(I.getOperand(0)); 2757 SDValue InVal = getValue(I.getOperand(1)); 2758 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2759 TLI.getPointerTy(), 2760 getValue(I.getOperand(2))); 2761 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2762 TLI.getValueType(I.getType()), 2763 InVec, InVal, InIdx)); 2764 } 2765 2766 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2767 SDValue InVec = getValue(I.getOperand(0)); 2768 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2769 TLI.getPointerTy(), 2770 getValue(I.getOperand(1))); 2771 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2772 TLI.getValueType(I.getType()), InVec, InIdx)); 2773 } 2774 2775 // Utility for visitShuffleVector - Returns true if the mask is mask starting 2776 // from SIndx and increasing to the element length (undefs are allowed). 2777 static bool SequentialMask(SmallVectorImpl<int> &Mask, unsigned SIndx) { 2778 unsigned MaskNumElts = Mask.size(); 2779 for (unsigned i = 0; i != MaskNumElts; ++i) 2780 if ((Mask[i] >= 0) && (Mask[i] != (int)(i + SIndx))) 2781 return false; 2782 return true; 2783 } 2784 2785 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2786 SmallVector<int, 8> Mask; 2787 SDValue Src1 = getValue(I.getOperand(0)); 2788 SDValue Src2 = getValue(I.getOperand(1)); 2789 2790 // Convert the ConstantVector mask operand into an array of ints, with -1 2791 // representing undef values. 2792 SmallVector<Constant*, 8> MaskElts; 2793 cast<Constant>(I.getOperand(2))->getVectorElements(MaskElts); 2794 unsigned MaskNumElts = MaskElts.size(); 2795 for (unsigned i = 0; i != MaskNumElts; ++i) { 2796 if (isa<UndefValue>(MaskElts[i])) 2797 Mask.push_back(-1); 2798 else 2799 Mask.push_back(cast<ConstantInt>(MaskElts[i])->getSExtValue()); 2800 } 2801 2802 EVT VT = TLI.getValueType(I.getType()); 2803 EVT SrcVT = Src1.getValueType(); 2804 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2805 2806 if (SrcNumElts == MaskNumElts) { 2807 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2808 &Mask[0])); 2809 return; 2810 } 2811 2812 // Normalize the shuffle vector since mask and vector length don't match. 2813 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2814 // Mask is longer than the source vectors and is a multiple of the source 2815 // vectors. We can use concatenate vector to make the mask and vectors 2816 // lengths match. 2817 if (SrcNumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) { 2818 // The shuffle is concatenating two vectors together. 2819 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2820 VT, Src1, Src2)); 2821 return; 2822 } 2823 2824 // Pad both vectors with undefs to make them the same length as the mask. 2825 unsigned NumConcat = MaskNumElts / SrcNumElts; 2826 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2827 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2828 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2829 2830 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2831 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2832 MOps1[0] = Src1; 2833 MOps2[0] = Src2; 2834 2835 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2836 getCurDebugLoc(), VT, 2837 &MOps1[0], NumConcat); 2838 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2839 getCurDebugLoc(), VT, 2840 &MOps2[0], NumConcat); 2841 2842 // Readjust mask for new input vector length. 2843 SmallVector<int, 8> MappedOps; 2844 for (unsigned i = 0; i != MaskNumElts; ++i) { 2845 int Idx = Mask[i]; 2846 if (Idx < (int)SrcNumElts) 2847 MappedOps.push_back(Idx); 2848 else 2849 MappedOps.push_back(Idx + MaskNumElts - SrcNumElts); 2850 } 2851 2852 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2853 &MappedOps[0])); 2854 return; 2855 } 2856 2857 if (SrcNumElts > MaskNumElts) { 2858 // Analyze the access pattern of the vector to see if we can extract 2859 // two subvectors and do the shuffle. The analysis is done by calculating 2860 // the range of elements the mask access on both vectors. 2861 int MinRange[2] = { static_cast<int>(SrcNumElts+1), 2862 static_cast<int>(SrcNumElts+1)}; 2863 int MaxRange[2] = {-1, -1}; 2864 2865 for (unsigned i = 0; i != MaskNumElts; ++i) { 2866 int Idx = Mask[i]; 2867 int Input = 0; 2868 if (Idx < 0) 2869 continue; 2870 2871 if (Idx >= (int)SrcNumElts) { 2872 Input = 1; 2873 Idx -= SrcNumElts; 2874 } 2875 if (Idx > MaxRange[Input]) 2876 MaxRange[Input] = Idx; 2877 if (Idx < MinRange[Input]) 2878 MinRange[Input] = Idx; 2879 } 2880 2881 // Check if the access is smaller than the vector size and can we find 2882 // a reasonable extract index. 2883 int RangeUse[2] = { 2, 2 }; // 0 = Unused, 1 = Extract, 2 = Can not 2884 // Extract. 2885 int StartIdx[2]; // StartIdx to extract from 2886 for (int Input=0; Input < 2; ++Input) { 2887 if (MinRange[Input] == (int)(SrcNumElts+1) && MaxRange[Input] == -1) { 2888 RangeUse[Input] = 0; // Unused 2889 StartIdx[Input] = 0; 2890 } else if (MaxRange[Input] - MinRange[Input] < (int)MaskNumElts) { 2891 // Fits within range but we should see if we can find a good 2892 // start index that is a multiple of the mask length. 2893 if (MaxRange[Input] < (int)MaskNumElts) { 2894 RangeUse[Input] = 1; // Extract from beginning of the vector 2895 StartIdx[Input] = 0; 2896 } else { 2897 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2898 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2899 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2900 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2901 } 2902 } 2903 } 2904 2905 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2906 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2907 return; 2908 } 2909 else if (RangeUse[0] < 2 && RangeUse[1] < 2) { 2910 // Extract appropriate subvector and generate a vector shuffle 2911 for (int Input=0; Input < 2; ++Input) { 2912 SDValue &Src = Input == 0 ? Src1 : Src2; 2913 if (RangeUse[Input] == 0) 2914 Src = DAG.getUNDEF(VT); 2915 else 2916 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2917 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2918 } 2919 2920 // Calculate new mask. 2921 SmallVector<int, 8> MappedOps; 2922 for (unsigned i = 0; i != MaskNumElts; ++i) { 2923 int Idx = Mask[i]; 2924 if (Idx < 0) 2925 MappedOps.push_back(Idx); 2926 else if (Idx < (int)SrcNumElts) 2927 MappedOps.push_back(Idx - StartIdx[0]); 2928 else 2929 MappedOps.push_back(Idx - SrcNumElts - StartIdx[1] + MaskNumElts); 2930 } 2931 2932 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2933 &MappedOps[0])); 2934 return; 2935 } 2936 } 2937 2938 // We can't use either concat vectors or extract subvectors so fall back to 2939 // replacing the shuffle with extract and build vector. 2940 // to insert and build vector. 2941 EVT EltVT = VT.getVectorElementType(); 2942 EVT PtrVT = TLI.getPointerTy(); 2943 SmallVector<SDValue,8> Ops; 2944 for (unsigned i = 0; i != MaskNumElts; ++i) { 2945 if (Mask[i] < 0) { 2946 Ops.push_back(DAG.getUNDEF(EltVT)); 2947 } else { 2948 int Idx = Mask[i]; 2949 SDValue Res; 2950 2951 if (Idx < (int)SrcNumElts) 2952 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2953 EltVT, Src1, DAG.getConstant(Idx, PtrVT)); 2954 else 2955 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2956 EltVT, Src2, 2957 DAG.getConstant(Idx - SrcNumElts, PtrVT)); 2958 2959 Ops.push_back(Res); 2960 } 2961 } 2962 2963 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 2964 VT, &Ops[0], Ops.size())); 2965 } 2966 2967 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 2968 const Value *Op0 = I.getOperand(0); 2969 const Value *Op1 = I.getOperand(1); 2970 Type *AggTy = I.getType(); 2971 Type *ValTy = Op1->getType(); 2972 bool IntoUndef = isa<UndefValue>(Op0); 2973 bool FromUndef = isa<UndefValue>(Op1); 2974 2975 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 2976 2977 SmallVector<EVT, 4> AggValueVTs; 2978 ComputeValueVTs(TLI, AggTy, AggValueVTs); 2979 SmallVector<EVT, 4> ValValueVTs; 2980 ComputeValueVTs(TLI, ValTy, ValValueVTs); 2981 2982 unsigned NumAggValues = AggValueVTs.size(); 2983 unsigned NumValValues = ValValueVTs.size(); 2984 SmallVector<SDValue, 4> Values(NumAggValues); 2985 2986 SDValue Agg = getValue(Op0); 2987 unsigned i = 0; 2988 // Copy the beginning value(s) from the original aggregate. 2989 for (; i != LinearIndex; ++i) 2990 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2991 SDValue(Agg.getNode(), Agg.getResNo() + i); 2992 // Copy values from the inserted value(s). 2993 if (NumValValues) { 2994 SDValue Val = getValue(Op1); 2995 for (; i != LinearIndex + NumValValues; ++i) 2996 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 2997 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 2998 } 2999 // Copy remaining value(s) from the original aggregate. 3000 for (; i != NumAggValues; ++i) 3001 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3002 SDValue(Agg.getNode(), Agg.getResNo() + i); 3003 3004 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3005 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3006 &Values[0], NumAggValues)); 3007 } 3008 3009 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3010 const Value *Op0 = I.getOperand(0); 3011 Type *AggTy = Op0->getType(); 3012 Type *ValTy = I.getType(); 3013 bool OutOfUndef = isa<UndefValue>(Op0); 3014 3015 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3016 3017 SmallVector<EVT, 4> ValValueVTs; 3018 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3019 3020 unsigned NumValValues = ValValueVTs.size(); 3021 3022 // Ignore a extractvalue that produces an empty object 3023 if (!NumValValues) { 3024 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3025 return; 3026 } 3027 3028 SmallVector<SDValue, 4> Values(NumValValues); 3029 3030 SDValue Agg = getValue(Op0); 3031 // Copy out the selected value(s). 3032 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3033 Values[i - LinearIndex] = 3034 OutOfUndef ? 3035 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3036 SDValue(Agg.getNode(), Agg.getResNo() + i); 3037 3038 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3039 DAG.getVTList(&ValValueVTs[0], NumValValues), 3040 &Values[0], NumValValues)); 3041 } 3042 3043 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3044 SDValue N = getValue(I.getOperand(0)); 3045 Type *Ty = I.getOperand(0)->getType(); 3046 3047 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3048 OI != E; ++OI) { 3049 const Value *Idx = *OI; 3050 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3051 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3052 if (Field) { 3053 // N = N + Offset 3054 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3055 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3056 DAG.getIntPtrConstant(Offset)); 3057 } 3058 3059 Ty = StTy->getElementType(Field); 3060 } else { 3061 Ty = cast<SequentialType>(Ty)->getElementType(); 3062 3063 // If this is a constant subscript, handle it quickly. 3064 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3065 if (CI->isZero()) continue; 3066 uint64_t Offs = 3067 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3068 SDValue OffsVal; 3069 EVT PTy = TLI.getPointerTy(); 3070 unsigned PtrBits = PTy.getSizeInBits(); 3071 if (PtrBits < 64) 3072 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3073 TLI.getPointerTy(), 3074 DAG.getConstant(Offs, MVT::i64)); 3075 else 3076 OffsVal = DAG.getIntPtrConstant(Offs); 3077 3078 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3079 OffsVal); 3080 continue; 3081 } 3082 3083 // N = N + Idx * ElementSize; 3084 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3085 TD->getTypeAllocSize(Ty)); 3086 SDValue IdxN = getValue(Idx); 3087 3088 // If the index is smaller or larger than intptr_t, truncate or extend 3089 // it. 3090 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3091 3092 // If this is a multiply by a power of two, turn it into a shl 3093 // immediately. This is a very common case. 3094 if (ElementSize != 1) { 3095 if (ElementSize.isPowerOf2()) { 3096 unsigned Amt = ElementSize.logBase2(); 3097 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3098 N.getValueType(), IdxN, 3099 DAG.getConstant(Amt, TLI.getPointerTy())); 3100 } else { 3101 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3102 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3103 N.getValueType(), IdxN, Scale); 3104 } 3105 } 3106 3107 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3108 N.getValueType(), N, IdxN); 3109 } 3110 } 3111 3112 setValue(&I, N); 3113 } 3114 3115 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3116 // If this is a fixed sized alloca in the entry block of the function, 3117 // allocate it statically on the stack. 3118 if (FuncInfo.StaticAllocaMap.count(&I)) 3119 return; // getValue will auto-populate this. 3120 3121 Type *Ty = I.getAllocatedType(); 3122 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3123 unsigned Align = 3124 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3125 I.getAlignment()); 3126 3127 SDValue AllocSize = getValue(I.getArraySize()); 3128 3129 EVT IntPtr = TLI.getPointerTy(); 3130 if (AllocSize.getValueType() != IntPtr) 3131 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3132 3133 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3134 AllocSize, 3135 DAG.getConstant(TySize, IntPtr)); 3136 3137 // Handle alignment. If the requested alignment is less than or equal to 3138 // the stack alignment, ignore it. If the size is greater than or equal to 3139 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3140 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3141 if (Align <= StackAlign) 3142 Align = 0; 3143 3144 // Round the size of the allocation up to the stack alignment size 3145 // by add SA-1 to the size. 3146 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3147 AllocSize.getValueType(), AllocSize, 3148 DAG.getIntPtrConstant(StackAlign-1)); 3149 3150 // Mask out the low bits for alignment purposes. 3151 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3152 AllocSize.getValueType(), AllocSize, 3153 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3154 3155 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3156 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3157 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3158 VTs, Ops, 3); 3159 setValue(&I, DSA); 3160 DAG.setRoot(DSA.getValue(1)); 3161 3162 // Inform the Frame Information that we have just allocated a variable-sized 3163 // object. 3164 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3165 } 3166 3167 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3168 if (I.isAtomic()) 3169 return visitAtomicLoad(I); 3170 3171 const Value *SV = I.getOperand(0); 3172 SDValue Ptr = getValue(SV); 3173 3174 Type *Ty = I.getType(); 3175 3176 bool isVolatile = I.isVolatile(); 3177 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3178 bool isInvariant = I.getMetadata("invariant.load") != 0; 3179 unsigned Alignment = I.getAlignment(); 3180 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3181 3182 SmallVector<EVT, 4> ValueVTs; 3183 SmallVector<uint64_t, 4> Offsets; 3184 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3185 unsigned NumValues = ValueVTs.size(); 3186 if (NumValues == 0) 3187 return; 3188 3189 SDValue Root; 3190 bool ConstantMemory = false; 3191 if (I.isVolatile() || NumValues > MaxParallelChains) 3192 // Serialize volatile loads with other side effects. 3193 Root = getRoot(); 3194 else if (AA->pointsToConstantMemory( 3195 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3196 // Do not serialize (non-volatile) loads of constant memory with anything. 3197 Root = DAG.getEntryNode(); 3198 ConstantMemory = true; 3199 } else { 3200 // Do not serialize non-volatile loads against each other. 3201 Root = DAG.getRoot(); 3202 } 3203 3204 SmallVector<SDValue, 4> Values(NumValues); 3205 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3206 NumValues)); 3207 EVT PtrVT = Ptr.getValueType(); 3208 unsigned ChainI = 0; 3209 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3210 // Serializing loads here may result in excessive register pressure, and 3211 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3212 // could recover a bit by hoisting nodes upward in the chain by recognizing 3213 // they are side-effect free or do not alias. The optimizer should really 3214 // avoid this case by converting large object/array copies to llvm.memcpy 3215 // (MaxParallelChains should always remain as failsafe). 3216 if (ChainI == MaxParallelChains) { 3217 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3218 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3219 MVT::Other, &Chains[0], ChainI); 3220 Root = Chain; 3221 ChainI = 0; 3222 } 3223 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3224 PtrVT, Ptr, 3225 DAG.getConstant(Offsets[i], PtrVT)); 3226 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3227 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3228 isNonTemporal, isInvariant, Alignment, TBAAInfo); 3229 3230 Values[i] = L; 3231 Chains[ChainI] = L.getValue(1); 3232 } 3233 3234 if (!ConstantMemory) { 3235 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3236 MVT::Other, &Chains[0], ChainI); 3237 if (isVolatile) 3238 DAG.setRoot(Chain); 3239 else 3240 PendingLoads.push_back(Chain); 3241 } 3242 3243 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3244 DAG.getVTList(&ValueVTs[0], NumValues), 3245 &Values[0], NumValues)); 3246 } 3247 3248 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3249 if (I.isAtomic()) 3250 return visitAtomicStore(I); 3251 3252 const Value *SrcV = I.getOperand(0); 3253 const Value *PtrV = I.getOperand(1); 3254 3255 SmallVector<EVT, 4> ValueVTs; 3256 SmallVector<uint64_t, 4> Offsets; 3257 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3258 unsigned NumValues = ValueVTs.size(); 3259 if (NumValues == 0) 3260 return; 3261 3262 // Get the lowered operands. Note that we do this after 3263 // checking if NumResults is zero, because with zero results 3264 // the operands won't have values in the map. 3265 SDValue Src = getValue(SrcV); 3266 SDValue Ptr = getValue(PtrV); 3267 3268 SDValue Root = getRoot(); 3269 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3270 NumValues)); 3271 EVT PtrVT = Ptr.getValueType(); 3272 bool isVolatile = I.isVolatile(); 3273 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3274 unsigned Alignment = I.getAlignment(); 3275 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3276 3277 unsigned ChainI = 0; 3278 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3279 // See visitLoad comments. 3280 if (ChainI == MaxParallelChains) { 3281 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3282 MVT::Other, &Chains[0], ChainI); 3283 Root = Chain; 3284 ChainI = 0; 3285 } 3286 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3287 DAG.getConstant(Offsets[i], PtrVT)); 3288 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3289 SDValue(Src.getNode(), Src.getResNo() + i), 3290 Add, MachinePointerInfo(PtrV, Offsets[i]), 3291 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3292 Chains[ChainI] = St; 3293 } 3294 3295 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3296 MVT::Other, &Chains[0], ChainI); 3297 ++SDNodeOrder; 3298 AssignOrderingToNode(StoreNode.getNode()); 3299 DAG.setRoot(StoreNode); 3300 } 3301 3302 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3303 SynchronizationScope Scope, 3304 bool Before, DebugLoc dl, 3305 SelectionDAG &DAG, 3306 const TargetLowering &TLI) { 3307 // Fence, if necessary 3308 if (Before) { 3309 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3310 Order = Release; 3311 else if (Order == Acquire || Order == Monotonic) 3312 return Chain; 3313 } else { 3314 if (Order == AcquireRelease) 3315 Order = Acquire; 3316 else if (Order == Release || Order == Monotonic) 3317 return Chain; 3318 } 3319 SDValue Ops[3]; 3320 Ops[0] = Chain; 3321 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3322 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3323 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3324 } 3325 3326 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3327 DebugLoc dl = getCurDebugLoc(); 3328 AtomicOrdering Order = I.getOrdering(); 3329 SynchronizationScope Scope = I.getSynchScope(); 3330 3331 SDValue InChain = getRoot(); 3332 3333 if (TLI.getInsertFencesForAtomic()) 3334 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3335 DAG, TLI); 3336 3337 SDValue L = 3338 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3339 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3340 InChain, 3341 getValue(I.getPointerOperand()), 3342 getValue(I.getCompareOperand()), 3343 getValue(I.getNewValOperand()), 3344 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3345 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3346 Scope); 3347 3348 SDValue OutChain = L.getValue(1); 3349 3350 if (TLI.getInsertFencesForAtomic()) 3351 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3352 DAG, TLI); 3353 3354 setValue(&I, L); 3355 DAG.setRoot(OutChain); 3356 } 3357 3358 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3359 DebugLoc dl = getCurDebugLoc(); 3360 ISD::NodeType NT; 3361 switch (I.getOperation()) { 3362 default: llvm_unreachable("Unknown atomicrmw operation"); return; 3363 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3364 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3365 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3366 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3367 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3368 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3369 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3370 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3371 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3372 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3373 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3374 } 3375 AtomicOrdering Order = I.getOrdering(); 3376 SynchronizationScope Scope = I.getSynchScope(); 3377 3378 SDValue InChain = getRoot(); 3379 3380 if (TLI.getInsertFencesForAtomic()) 3381 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3382 DAG, TLI); 3383 3384 SDValue L = 3385 DAG.getAtomic(NT, dl, 3386 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3387 InChain, 3388 getValue(I.getPointerOperand()), 3389 getValue(I.getValOperand()), 3390 I.getPointerOperand(), 0 /* Alignment */, 3391 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3392 Scope); 3393 3394 SDValue OutChain = L.getValue(1); 3395 3396 if (TLI.getInsertFencesForAtomic()) 3397 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3398 DAG, TLI); 3399 3400 setValue(&I, L); 3401 DAG.setRoot(OutChain); 3402 } 3403 3404 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3405 DebugLoc dl = getCurDebugLoc(); 3406 SDValue Ops[3]; 3407 Ops[0] = getRoot(); 3408 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3409 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3410 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3411 } 3412 3413 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3414 DebugLoc dl = getCurDebugLoc(); 3415 AtomicOrdering Order = I.getOrdering(); 3416 SynchronizationScope Scope = I.getSynchScope(); 3417 3418 SDValue InChain = getRoot(); 3419 3420 EVT VT = EVT::getEVT(I.getType()); 3421 3422 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3423 report_fatal_error("Cannot generate unaligned atomic load"); 3424 3425 SDValue L = 3426 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3427 getValue(I.getPointerOperand()), 3428 I.getPointerOperand(), I.getAlignment(), 3429 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3430 Scope); 3431 3432 SDValue OutChain = L.getValue(1); 3433 3434 if (TLI.getInsertFencesForAtomic()) 3435 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3436 DAG, TLI); 3437 3438 setValue(&I, L); 3439 DAG.setRoot(OutChain); 3440 } 3441 3442 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3443 DebugLoc dl = getCurDebugLoc(); 3444 3445 AtomicOrdering Order = I.getOrdering(); 3446 SynchronizationScope Scope = I.getSynchScope(); 3447 3448 SDValue InChain = getRoot(); 3449 3450 EVT VT = EVT::getEVT(I.getValueOperand()->getType()); 3451 3452 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3453 report_fatal_error("Cannot generate unaligned atomic store"); 3454 3455 if (TLI.getInsertFencesForAtomic()) 3456 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3457 DAG, TLI); 3458 3459 SDValue OutChain = 3460 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3461 InChain, 3462 getValue(I.getPointerOperand()), 3463 getValue(I.getValueOperand()), 3464 I.getPointerOperand(), I.getAlignment(), 3465 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3466 Scope); 3467 3468 if (TLI.getInsertFencesForAtomic()) 3469 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3470 DAG, TLI); 3471 3472 DAG.setRoot(OutChain); 3473 } 3474 3475 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3476 /// node. 3477 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3478 unsigned Intrinsic) { 3479 bool HasChain = !I.doesNotAccessMemory(); 3480 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3481 3482 // Build the operand list. 3483 SmallVector<SDValue, 8> Ops; 3484 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3485 if (OnlyLoad) { 3486 // We don't need to serialize loads against other loads. 3487 Ops.push_back(DAG.getRoot()); 3488 } else { 3489 Ops.push_back(getRoot()); 3490 } 3491 } 3492 3493 // Info is set by getTgtMemInstrinsic 3494 TargetLowering::IntrinsicInfo Info; 3495 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3496 3497 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3498 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3499 Info.opc == ISD::INTRINSIC_W_CHAIN) 3500 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy())); 3501 3502 // Add all operands of the call to the operand list. 3503 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3504 SDValue Op = getValue(I.getArgOperand(i)); 3505 assert(TLI.isTypeLegal(Op.getValueType()) && 3506 "Intrinsic uses a non-legal type?"); 3507 Ops.push_back(Op); 3508 } 3509 3510 SmallVector<EVT, 4> ValueVTs; 3511 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3512 #ifndef NDEBUG 3513 for (unsigned Val = 0, E = ValueVTs.size(); Val != E; ++Val) { 3514 assert(TLI.isTypeLegal(ValueVTs[Val]) && 3515 "Intrinsic uses a non-legal type?"); 3516 } 3517 #endif // NDEBUG 3518 3519 if (HasChain) 3520 ValueVTs.push_back(MVT::Other); 3521 3522 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3523 3524 // Create the node. 3525 SDValue Result; 3526 if (IsTgtIntrinsic) { 3527 // This is target intrinsic that touches memory 3528 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3529 VTs, &Ops[0], Ops.size(), 3530 Info.memVT, 3531 MachinePointerInfo(Info.ptrVal, Info.offset), 3532 Info.align, Info.vol, 3533 Info.readMem, Info.writeMem); 3534 } else if (!HasChain) { 3535 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3536 VTs, &Ops[0], Ops.size()); 3537 } else if (!I.getType()->isVoidTy()) { 3538 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3539 VTs, &Ops[0], Ops.size()); 3540 } else { 3541 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3542 VTs, &Ops[0], Ops.size()); 3543 } 3544 3545 if (HasChain) { 3546 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3547 if (OnlyLoad) 3548 PendingLoads.push_back(Chain); 3549 else 3550 DAG.setRoot(Chain); 3551 } 3552 3553 if (!I.getType()->isVoidTy()) { 3554 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3555 EVT VT = TLI.getValueType(PTy); 3556 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3557 } 3558 3559 setValue(&I, Result); 3560 } 3561 } 3562 3563 /// GetSignificand - Get the significand and build it into a floating-point 3564 /// number with exponent of 1: 3565 /// 3566 /// Op = (Op & 0x007fffff) | 0x3f800000; 3567 /// 3568 /// where Op is the hexidecimal representation of floating point value. 3569 static SDValue 3570 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3571 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3572 DAG.getConstant(0x007fffff, MVT::i32)); 3573 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3574 DAG.getConstant(0x3f800000, MVT::i32)); 3575 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3576 } 3577 3578 /// GetExponent - Get the exponent: 3579 /// 3580 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3581 /// 3582 /// where Op is the hexidecimal representation of floating point value. 3583 static SDValue 3584 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3585 DebugLoc dl) { 3586 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3587 DAG.getConstant(0x7f800000, MVT::i32)); 3588 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3589 DAG.getConstant(23, TLI.getPointerTy())); 3590 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3591 DAG.getConstant(127, MVT::i32)); 3592 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3593 } 3594 3595 /// getF32Constant - Get 32-bit floating point constant. 3596 static SDValue 3597 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3598 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3599 } 3600 3601 // implVisitAluOverflow - Lower arithmetic overflow instrinsics. 3602 const char * 3603 SelectionDAGBuilder::implVisitAluOverflow(const CallInst &I, ISD::NodeType Op) { 3604 SDValue Op1 = getValue(I.getArgOperand(0)); 3605 SDValue Op2 = getValue(I.getArgOperand(1)); 3606 3607 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 3608 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 3609 return 0; 3610 } 3611 3612 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3613 /// limited-precision mode. 3614 void 3615 SelectionDAGBuilder::visitExp(const CallInst &I) { 3616 SDValue result; 3617 DebugLoc dl = getCurDebugLoc(); 3618 3619 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3620 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3621 SDValue Op = getValue(I.getArgOperand(0)); 3622 3623 // Put the exponent in the right bit position for later addition to the 3624 // final result: 3625 // 3626 // #define LOG2OFe 1.4426950f 3627 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3628 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3629 getF32Constant(DAG, 0x3fb8aa3b)); 3630 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3631 3632 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3633 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3634 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3635 3636 // IntegerPartOfX <<= 23; 3637 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3638 DAG.getConstant(23, TLI.getPointerTy())); 3639 3640 if (LimitFloatPrecision <= 6) { 3641 // For floating-point precision of 6: 3642 // 3643 // TwoToFractionalPartOfX = 3644 // 0.997535578f + 3645 // (0.735607626f + 0.252464424f * x) * x; 3646 // 3647 // error 0.0144103317, which is 6 bits 3648 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3649 getF32Constant(DAG, 0x3e814304)); 3650 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3651 getF32Constant(DAG, 0x3f3c50c8)); 3652 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3653 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3654 getF32Constant(DAG, 0x3f7f5e7e)); 3655 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3656 3657 // Add the exponent into the result in integer domain. 3658 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3659 TwoToFracPartOfX, IntegerPartOfX); 3660 3661 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3662 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3663 // For floating-point precision of 12: 3664 // 3665 // TwoToFractionalPartOfX = 3666 // 0.999892986f + 3667 // (0.696457318f + 3668 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3669 // 3670 // 0.000107046256 error, which is 13 to 14 bits 3671 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3672 getF32Constant(DAG, 0x3da235e3)); 3673 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3674 getF32Constant(DAG, 0x3e65b8f3)); 3675 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3676 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3677 getF32Constant(DAG, 0x3f324b07)); 3678 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3679 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3680 getF32Constant(DAG, 0x3f7ff8fd)); 3681 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3682 3683 // Add the exponent into the result in integer domain. 3684 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3685 TwoToFracPartOfX, IntegerPartOfX); 3686 3687 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3688 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3689 // For floating-point precision of 18: 3690 // 3691 // TwoToFractionalPartOfX = 3692 // 0.999999982f + 3693 // (0.693148872f + 3694 // (0.240227044f + 3695 // (0.554906021e-1f + 3696 // (0.961591928e-2f + 3697 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3698 // 3699 // error 2.47208000*10^(-7), which is better than 18 bits 3700 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3701 getF32Constant(DAG, 0x3924b03e)); 3702 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3703 getF32Constant(DAG, 0x3ab24b87)); 3704 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3705 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3706 getF32Constant(DAG, 0x3c1d8c17)); 3707 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3708 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3709 getF32Constant(DAG, 0x3d634a1d)); 3710 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3711 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3712 getF32Constant(DAG, 0x3e75fe14)); 3713 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3714 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3715 getF32Constant(DAG, 0x3f317234)); 3716 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3717 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3718 getF32Constant(DAG, 0x3f800000)); 3719 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3720 MVT::i32, t13); 3721 3722 // Add the exponent into the result in integer domain. 3723 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3724 TwoToFracPartOfX, IntegerPartOfX); 3725 3726 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3727 } 3728 } else { 3729 // No special expansion. 3730 result = DAG.getNode(ISD::FEXP, dl, 3731 getValue(I.getArgOperand(0)).getValueType(), 3732 getValue(I.getArgOperand(0))); 3733 } 3734 3735 setValue(&I, result); 3736 } 3737 3738 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3739 /// limited-precision mode. 3740 void 3741 SelectionDAGBuilder::visitLog(const CallInst &I) { 3742 SDValue result; 3743 DebugLoc dl = getCurDebugLoc(); 3744 3745 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3746 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3747 SDValue Op = getValue(I.getArgOperand(0)); 3748 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3749 3750 // Scale the exponent by log(2) [0.69314718f]. 3751 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3752 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3753 getF32Constant(DAG, 0x3f317218)); 3754 3755 // Get the significand and build it into a floating-point number with 3756 // exponent of 1. 3757 SDValue X = GetSignificand(DAG, Op1, dl); 3758 3759 if (LimitFloatPrecision <= 6) { 3760 // For floating-point precision of 6: 3761 // 3762 // LogofMantissa = 3763 // -1.1609546f + 3764 // (1.4034025f - 0.23903021f * x) * x; 3765 // 3766 // error 0.0034276066, which is better than 8 bits 3767 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3768 getF32Constant(DAG, 0xbe74c456)); 3769 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3770 getF32Constant(DAG, 0x3fb3a2b1)); 3771 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3772 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3773 getF32Constant(DAG, 0x3f949a29)); 3774 3775 result = DAG.getNode(ISD::FADD, dl, 3776 MVT::f32, LogOfExponent, LogOfMantissa); 3777 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3778 // For floating-point precision of 12: 3779 // 3780 // LogOfMantissa = 3781 // -1.7417939f + 3782 // (2.8212026f + 3783 // (-1.4699568f + 3784 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3785 // 3786 // error 0.000061011436, which is 14 bits 3787 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3788 getF32Constant(DAG, 0xbd67b6d6)); 3789 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3790 getF32Constant(DAG, 0x3ee4f4b8)); 3791 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3792 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3793 getF32Constant(DAG, 0x3fbc278b)); 3794 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3795 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3796 getF32Constant(DAG, 0x40348e95)); 3797 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3798 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3799 getF32Constant(DAG, 0x3fdef31a)); 3800 3801 result = DAG.getNode(ISD::FADD, dl, 3802 MVT::f32, LogOfExponent, LogOfMantissa); 3803 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3804 // For floating-point precision of 18: 3805 // 3806 // LogOfMantissa = 3807 // -2.1072184f + 3808 // (4.2372794f + 3809 // (-3.7029485f + 3810 // (2.2781945f + 3811 // (-0.87823314f + 3812 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3813 // 3814 // error 0.0000023660568, which is better than 18 bits 3815 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3816 getF32Constant(DAG, 0xbc91e5ac)); 3817 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3818 getF32Constant(DAG, 0x3e4350aa)); 3819 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3820 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3821 getF32Constant(DAG, 0x3f60d3e3)); 3822 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3823 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3824 getF32Constant(DAG, 0x4011cdf0)); 3825 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3826 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3827 getF32Constant(DAG, 0x406cfd1c)); 3828 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3829 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3830 getF32Constant(DAG, 0x408797cb)); 3831 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3832 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3833 getF32Constant(DAG, 0x4006dcab)); 3834 3835 result = DAG.getNode(ISD::FADD, dl, 3836 MVT::f32, LogOfExponent, LogOfMantissa); 3837 } 3838 } else { 3839 // No special expansion. 3840 result = DAG.getNode(ISD::FLOG, dl, 3841 getValue(I.getArgOperand(0)).getValueType(), 3842 getValue(I.getArgOperand(0))); 3843 } 3844 3845 setValue(&I, result); 3846 } 3847 3848 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3849 /// limited-precision mode. 3850 void 3851 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3852 SDValue result; 3853 DebugLoc dl = getCurDebugLoc(); 3854 3855 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3856 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3857 SDValue Op = getValue(I.getArgOperand(0)); 3858 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3859 3860 // Get the exponent. 3861 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3862 3863 // Get the significand and build it into a floating-point number with 3864 // exponent of 1. 3865 SDValue X = GetSignificand(DAG, Op1, dl); 3866 3867 // Different possible minimax approximations of significand in 3868 // floating-point for various degrees of accuracy over [1,2]. 3869 if (LimitFloatPrecision <= 6) { 3870 // For floating-point precision of 6: 3871 // 3872 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3873 // 3874 // error 0.0049451742, which is more than 7 bits 3875 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3876 getF32Constant(DAG, 0xbeb08fe0)); 3877 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3878 getF32Constant(DAG, 0x40019463)); 3879 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3880 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3881 getF32Constant(DAG, 0x3fd6633d)); 3882 3883 result = DAG.getNode(ISD::FADD, dl, 3884 MVT::f32, LogOfExponent, Log2ofMantissa); 3885 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3886 // For floating-point precision of 12: 3887 // 3888 // Log2ofMantissa = 3889 // -2.51285454f + 3890 // (4.07009056f + 3891 // (-2.12067489f + 3892 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3893 // 3894 // error 0.0000876136000, which is better than 13 bits 3895 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3896 getF32Constant(DAG, 0xbda7262e)); 3897 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3898 getF32Constant(DAG, 0x3f25280b)); 3899 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3900 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3901 getF32Constant(DAG, 0x4007b923)); 3902 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3903 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3904 getF32Constant(DAG, 0x40823e2f)); 3905 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3906 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3907 getF32Constant(DAG, 0x4020d29c)); 3908 3909 result = DAG.getNode(ISD::FADD, dl, 3910 MVT::f32, LogOfExponent, Log2ofMantissa); 3911 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3912 // For floating-point precision of 18: 3913 // 3914 // Log2ofMantissa = 3915 // -3.0400495f + 3916 // (6.1129976f + 3917 // (-5.3420409f + 3918 // (3.2865683f + 3919 // (-1.2669343f + 3920 // (0.27515199f - 3921 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3922 // 3923 // error 0.0000018516, which is better than 18 bits 3924 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3925 getF32Constant(DAG, 0xbcd2769e)); 3926 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3927 getF32Constant(DAG, 0x3e8ce0b9)); 3928 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3929 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3930 getF32Constant(DAG, 0x3fa22ae7)); 3931 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3932 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3933 getF32Constant(DAG, 0x40525723)); 3934 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3935 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3936 getF32Constant(DAG, 0x40aaf200)); 3937 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3938 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3939 getF32Constant(DAG, 0x40c39dad)); 3940 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3941 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3942 getF32Constant(DAG, 0x4042902c)); 3943 3944 result = DAG.getNode(ISD::FADD, dl, 3945 MVT::f32, LogOfExponent, Log2ofMantissa); 3946 } 3947 } else { 3948 // No special expansion. 3949 result = DAG.getNode(ISD::FLOG2, dl, 3950 getValue(I.getArgOperand(0)).getValueType(), 3951 getValue(I.getArgOperand(0))); 3952 } 3953 3954 setValue(&I, result); 3955 } 3956 3957 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 3958 /// limited-precision mode. 3959 void 3960 SelectionDAGBuilder::visitLog10(const CallInst &I) { 3961 SDValue result; 3962 DebugLoc dl = getCurDebugLoc(); 3963 3964 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3965 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3966 SDValue Op = getValue(I.getArgOperand(0)); 3967 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3968 3969 // Scale the exponent by log10(2) [0.30102999f]. 3970 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3971 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3972 getF32Constant(DAG, 0x3e9a209a)); 3973 3974 // Get the significand and build it into a floating-point number with 3975 // exponent of 1. 3976 SDValue X = GetSignificand(DAG, Op1, dl); 3977 3978 if (LimitFloatPrecision <= 6) { 3979 // For floating-point precision of 6: 3980 // 3981 // Log10ofMantissa = 3982 // -0.50419619f + 3983 // (0.60948995f - 0.10380950f * x) * x; 3984 // 3985 // error 0.0014886165, which is 6 bits 3986 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3987 getF32Constant(DAG, 0xbdd49a13)); 3988 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3989 getF32Constant(DAG, 0x3f1c0789)); 3990 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3991 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3992 getF32Constant(DAG, 0x3f011300)); 3993 3994 result = DAG.getNode(ISD::FADD, dl, 3995 MVT::f32, LogOfExponent, Log10ofMantissa); 3996 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3997 // For floating-point precision of 12: 3998 // 3999 // Log10ofMantissa = 4000 // -0.64831180f + 4001 // (0.91751397f + 4002 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4003 // 4004 // error 0.00019228036, which is better than 12 bits 4005 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4006 getF32Constant(DAG, 0x3d431f31)); 4007 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4008 getF32Constant(DAG, 0x3ea21fb2)); 4009 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4010 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4011 getF32Constant(DAG, 0x3f6ae232)); 4012 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4013 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4014 getF32Constant(DAG, 0x3f25f7c3)); 4015 4016 result = DAG.getNode(ISD::FADD, dl, 4017 MVT::f32, LogOfExponent, Log10ofMantissa); 4018 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4019 // For floating-point precision of 18: 4020 // 4021 // Log10ofMantissa = 4022 // -0.84299375f + 4023 // (1.5327582f + 4024 // (-1.0688956f + 4025 // (0.49102474f + 4026 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4027 // 4028 // error 0.0000037995730, which is better than 18 bits 4029 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4030 getF32Constant(DAG, 0x3c5d51ce)); 4031 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4032 getF32Constant(DAG, 0x3e00685a)); 4033 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4034 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4035 getF32Constant(DAG, 0x3efb6798)); 4036 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4037 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4038 getF32Constant(DAG, 0x3f88d192)); 4039 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4040 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4041 getF32Constant(DAG, 0x3fc4316c)); 4042 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4043 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4044 getF32Constant(DAG, 0x3f57ce70)); 4045 4046 result = DAG.getNode(ISD::FADD, dl, 4047 MVT::f32, LogOfExponent, Log10ofMantissa); 4048 } 4049 } else { 4050 // No special expansion. 4051 result = DAG.getNode(ISD::FLOG10, dl, 4052 getValue(I.getArgOperand(0)).getValueType(), 4053 getValue(I.getArgOperand(0))); 4054 } 4055 4056 setValue(&I, result); 4057 } 4058 4059 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4060 /// limited-precision mode. 4061 void 4062 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4063 SDValue result; 4064 DebugLoc dl = getCurDebugLoc(); 4065 4066 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4067 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4068 SDValue Op = getValue(I.getArgOperand(0)); 4069 4070 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4071 4072 // FractionalPartOfX = x - (float)IntegerPartOfX; 4073 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4074 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4075 4076 // IntegerPartOfX <<= 23; 4077 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4078 DAG.getConstant(23, TLI.getPointerTy())); 4079 4080 if (LimitFloatPrecision <= 6) { 4081 // For floating-point precision of 6: 4082 // 4083 // TwoToFractionalPartOfX = 4084 // 0.997535578f + 4085 // (0.735607626f + 0.252464424f * x) * x; 4086 // 4087 // error 0.0144103317, which is 6 bits 4088 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4089 getF32Constant(DAG, 0x3e814304)); 4090 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4091 getF32Constant(DAG, 0x3f3c50c8)); 4092 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4093 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4094 getF32Constant(DAG, 0x3f7f5e7e)); 4095 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4096 SDValue TwoToFractionalPartOfX = 4097 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4098 4099 result = DAG.getNode(ISD::BITCAST, dl, 4100 MVT::f32, TwoToFractionalPartOfX); 4101 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4102 // For floating-point precision of 12: 4103 // 4104 // TwoToFractionalPartOfX = 4105 // 0.999892986f + 4106 // (0.696457318f + 4107 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4108 // 4109 // error 0.000107046256, which is 13 to 14 bits 4110 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4111 getF32Constant(DAG, 0x3da235e3)); 4112 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4113 getF32Constant(DAG, 0x3e65b8f3)); 4114 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4115 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4116 getF32Constant(DAG, 0x3f324b07)); 4117 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4118 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4119 getF32Constant(DAG, 0x3f7ff8fd)); 4120 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4121 SDValue TwoToFractionalPartOfX = 4122 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4123 4124 result = DAG.getNode(ISD::BITCAST, dl, 4125 MVT::f32, TwoToFractionalPartOfX); 4126 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4127 // For floating-point precision of 18: 4128 // 4129 // TwoToFractionalPartOfX = 4130 // 0.999999982f + 4131 // (0.693148872f + 4132 // (0.240227044f + 4133 // (0.554906021e-1f + 4134 // (0.961591928e-2f + 4135 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4136 // error 2.47208000*10^(-7), which is better than 18 bits 4137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4138 getF32Constant(DAG, 0x3924b03e)); 4139 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4140 getF32Constant(DAG, 0x3ab24b87)); 4141 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4142 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4143 getF32Constant(DAG, 0x3c1d8c17)); 4144 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4145 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4146 getF32Constant(DAG, 0x3d634a1d)); 4147 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4148 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4149 getF32Constant(DAG, 0x3e75fe14)); 4150 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4151 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4152 getF32Constant(DAG, 0x3f317234)); 4153 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4154 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4155 getF32Constant(DAG, 0x3f800000)); 4156 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4157 SDValue TwoToFractionalPartOfX = 4158 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4159 4160 result = DAG.getNode(ISD::BITCAST, dl, 4161 MVT::f32, TwoToFractionalPartOfX); 4162 } 4163 } else { 4164 // No special expansion. 4165 result = DAG.getNode(ISD::FEXP2, dl, 4166 getValue(I.getArgOperand(0)).getValueType(), 4167 getValue(I.getArgOperand(0))); 4168 } 4169 4170 setValue(&I, result); 4171 } 4172 4173 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4174 /// limited-precision mode with x == 10.0f. 4175 void 4176 SelectionDAGBuilder::visitPow(const CallInst &I) { 4177 SDValue result; 4178 const Value *Val = I.getArgOperand(0); 4179 DebugLoc dl = getCurDebugLoc(); 4180 bool IsExp10 = false; 4181 4182 if (getValue(Val).getValueType() == MVT::f32 && 4183 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4184 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4185 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4186 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4187 APFloat Ten(10.0f); 4188 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4189 } 4190 } 4191 } 4192 4193 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4194 SDValue Op = getValue(I.getArgOperand(1)); 4195 4196 // Put the exponent in the right bit position for later addition to the 4197 // final result: 4198 // 4199 // #define LOG2OF10 3.3219281f 4200 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4201 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4202 getF32Constant(DAG, 0x40549a78)); 4203 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4204 4205 // FractionalPartOfX = x - (float)IntegerPartOfX; 4206 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4207 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4208 4209 // IntegerPartOfX <<= 23; 4210 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4211 DAG.getConstant(23, TLI.getPointerTy())); 4212 4213 if (LimitFloatPrecision <= 6) { 4214 // For floating-point precision of 6: 4215 // 4216 // twoToFractionalPartOfX = 4217 // 0.997535578f + 4218 // (0.735607626f + 0.252464424f * x) * x; 4219 // 4220 // error 0.0144103317, which is 6 bits 4221 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4222 getF32Constant(DAG, 0x3e814304)); 4223 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4224 getF32Constant(DAG, 0x3f3c50c8)); 4225 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4226 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4227 getF32Constant(DAG, 0x3f7f5e7e)); 4228 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4229 SDValue TwoToFractionalPartOfX = 4230 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4231 4232 result = DAG.getNode(ISD::BITCAST, dl, 4233 MVT::f32, TwoToFractionalPartOfX); 4234 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4235 // For floating-point precision of 12: 4236 // 4237 // TwoToFractionalPartOfX = 4238 // 0.999892986f + 4239 // (0.696457318f + 4240 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4241 // 4242 // error 0.000107046256, which is 13 to 14 bits 4243 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4244 getF32Constant(DAG, 0x3da235e3)); 4245 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4246 getF32Constant(DAG, 0x3e65b8f3)); 4247 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4248 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4249 getF32Constant(DAG, 0x3f324b07)); 4250 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4251 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4252 getF32Constant(DAG, 0x3f7ff8fd)); 4253 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4254 SDValue TwoToFractionalPartOfX = 4255 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4256 4257 result = DAG.getNode(ISD::BITCAST, dl, 4258 MVT::f32, TwoToFractionalPartOfX); 4259 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4260 // For floating-point precision of 18: 4261 // 4262 // TwoToFractionalPartOfX = 4263 // 0.999999982f + 4264 // (0.693148872f + 4265 // (0.240227044f + 4266 // (0.554906021e-1f + 4267 // (0.961591928e-2f + 4268 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4269 // error 2.47208000*10^(-7), which is better than 18 bits 4270 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4271 getF32Constant(DAG, 0x3924b03e)); 4272 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4273 getF32Constant(DAG, 0x3ab24b87)); 4274 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4275 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4276 getF32Constant(DAG, 0x3c1d8c17)); 4277 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4278 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4279 getF32Constant(DAG, 0x3d634a1d)); 4280 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4281 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4282 getF32Constant(DAG, 0x3e75fe14)); 4283 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4284 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4285 getF32Constant(DAG, 0x3f317234)); 4286 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4287 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4288 getF32Constant(DAG, 0x3f800000)); 4289 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4290 SDValue TwoToFractionalPartOfX = 4291 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4292 4293 result = DAG.getNode(ISD::BITCAST, dl, 4294 MVT::f32, TwoToFractionalPartOfX); 4295 } 4296 } else { 4297 // No special expansion. 4298 result = DAG.getNode(ISD::FPOW, dl, 4299 getValue(I.getArgOperand(0)).getValueType(), 4300 getValue(I.getArgOperand(0)), 4301 getValue(I.getArgOperand(1))); 4302 } 4303 4304 setValue(&I, result); 4305 } 4306 4307 4308 /// ExpandPowI - Expand a llvm.powi intrinsic. 4309 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4310 SelectionDAG &DAG) { 4311 // If RHS is a constant, we can expand this out to a multiplication tree, 4312 // otherwise we end up lowering to a call to __powidf2 (for example). When 4313 // optimizing for size, we only want to do this if the expansion would produce 4314 // a small number of multiplies, otherwise we do the full expansion. 4315 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4316 // Get the exponent as a positive value. 4317 unsigned Val = RHSC->getSExtValue(); 4318 if ((int)Val < 0) Val = -Val; 4319 4320 // powi(x, 0) -> 1.0 4321 if (Val == 0) 4322 return DAG.getConstantFP(1.0, LHS.getValueType()); 4323 4324 const Function *F = DAG.getMachineFunction().getFunction(); 4325 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4326 // If optimizing for size, don't insert too many multiplies. This 4327 // inserts up to 5 multiplies. 4328 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4329 // We use the simple binary decomposition method to generate the multiply 4330 // sequence. There are more optimal ways to do this (for example, 4331 // powi(x,15) generates one more multiply than it should), but this has 4332 // the benefit of being both really simple and much better than a libcall. 4333 SDValue Res; // Logically starts equal to 1.0 4334 SDValue CurSquare = LHS; 4335 while (Val) { 4336 if (Val & 1) { 4337 if (Res.getNode()) 4338 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4339 else 4340 Res = CurSquare; // 1.0*CurSquare. 4341 } 4342 4343 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4344 CurSquare, CurSquare); 4345 Val >>= 1; 4346 } 4347 4348 // If the original was negative, invert the result, producing 1/(x*x*x). 4349 if (RHSC->getSExtValue() < 0) 4350 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4351 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4352 return Res; 4353 } 4354 } 4355 4356 // Otherwise, expand to a libcall. 4357 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4358 } 4359 4360 // getTruncatedArgReg - Find underlying register used for an truncated 4361 // argument. 4362 static unsigned getTruncatedArgReg(const SDValue &N) { 4363 if (N.getOpcode() != ISD::TRUNCATE) 4364 return 0; 4365 4366 const SDValue &Ext = N.getOperand(0); 4367 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4368 const SDValue &CFR = Ext.getOperand(0); 4369 if (CFR.getOpcode() == ISD::CopyFromReg) 4370 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4371 else 4372 if (CFR.getOpcode() == ISD::TRUNCATE) 4373 return getTruncatedArgReg(CFR); 4374 } 4375 return 0; 4376 } 4377 4378 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4379 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4380 /// At the end of instruction selection, they will be inserted to the entry BB. 4381 bool 4382 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4383 int64_t Offset, 4384 const SDValue &N) { 4385 const Argument *Arg = dyn_cast<Argument>(V); 4386 if (!Arg) 4387 return false; 4388 4389 MachineFunction &MF = DAG.getMachineFunction(); 4390 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4391 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4392 4393 // Ignore inlined function arguments here. 4394 DIVariable DV(Variable); 4395 if (DV.isInlinedFnArgument(MF.getFunction())) 4396 return false; 4397 4398 unsigned Reg = 0; 4399 // Some arguments' frame index is recorded during argument lowering. 4400 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4401 if (Offset) 4402 Reg = TRI->getFrameRegister(MF); 4403 4404 if (!Reg && N.getNode()) { 4405 if (N.getOpcode() == ISD::CopyFromReg) 4406 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4407 else 4408 Reg = getTruncatedArgReg(N); 4409 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4410 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4411 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4412 if (PR) 4413 Reg = PR; 4414 } 4415 } 4416 4417 if (!Reg) { 4418 // Check if ValueMap has reg number. 4419 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4420 if (VMI != FuncInfo.ValueMap.end()) 4421 Reg = VMI->second; 4422 } 4423 4424 if (!Reg && N.getNode()) { 4425 // Check if frame index is available. 4426 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4427 if (FrameIndexSDNode *FINode = 4428 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4429 Reg = TRI->getFrameRegister(MF); 4430 Offset = FINode->getIndex(); 4431 } 4432 } 4433 4434 if (!Reg) 4435 return false; 4436 4437 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4438 TII->get(TargetOpcode::DBG_VALUE)) 4439 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4440 FuncInfo.ArgDbgValues.push_back(&*MIB); 4441 return true; 4442 } 4443 4444 // VisualStudio defines setjmp as _setjmp 4445 #if defined(_MSC_VER) && defined(setjmp) && \ 4446 !defined(setjmp_undefined_for_msvc) 4447 # pragma push_macro("setjmp") 4448 # undef setjmp 4449 # define setjmp_undefined_for_msvc 4450 #endif 4451 4452 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4453 /// we want to emit this as a call to a named external function, return the name 4454 /// otherwise lower it and return null. 4455 const char * 4456 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4457 DebugLoc dl = getCurDebugLoc(); 4458 SDValue Res; 4459 4460 switch (Intrinsic) { 4461 default: 4462 // By default, turn this into a target intrinsic node. 4463 visitTargetIntrinsic(I, Intrinsic); 4464 return 0; 4465 case Intrinsic::vastart: visitVAStart(I); return 0; 4466 case Intrinsic::vaend: visitVAEnd(I); return 0; 4467 case Intrinsic::vacopy: visitVACopy(I); return 0; 4468 case Intrinsic::returnaddress: 4469 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4470 getValue(I.getArgOperand(0)))); 4471 return 0; 4472 case Intrinsic::frameaddress: 4473 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4474 getValue(I.getArgOperand(0)))); 4475 return 0; 4476 case Intrinsic::setjmp: 4477 return "_setjmp"+!TLI.usesUnderscoreSetJmp(); 4478 case Intrinsic::longjmp: 4479 return "_longjmp"+!TLI.usesUnderscoreLongJmp(); 4480 case Intrinsic::memcpy: { 4481 // Assert for address < 256 since we support only user defined address 4482 // spaces. 4483 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4484 < 256 && 4485 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4486 < 256 && 4487 "Unknown address space"); 4488 SDValue Op1 = getValue(I.getArgOperand(0)); 4489 SDValue Op2 = getValue(I.getArgOperand(1)); 4490 SDValue Op3 = getValue(I.getArgOperand(2)); 4491 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4492 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4493 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4494 MachinePointerInfo(I.getArgOperand(0)), 4495 MachinePointerInfo(I.getArgOperand(1)))); 4496 return 0; 4497 } 4498 case Intrinsic::memset: { 4499 // Assert for address < 256 since we support only user defined address 4500 // spaces. 4501 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4502 < 256 && 4503 "Unknown address space"); 4504 SDValue Op1 = getValue(I.getArgOperand(0)); 4505 SDValue Op2 = getValue(I.getArgOperand(1)); 4506 SDValue Op3 = getValue(I.getArgOperand(2)); 4507 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4508 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4509 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4510 MachinePointerInfo(I.getArgOperand(0)))); 4511 return 0; 4512 } 4513 case Intrinsic::memmove: { 4514 // Assert for address < 256 since we support only user defined address 4515 // spaces. 4516 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4517 < 256 && 4518 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4519 < 256 && 4520 "Unknown address space"); 4521 SDValue Op1 = getValue(I.getArgOperand(0)); 4522 SDValue Op2 = getValue(I.getArgOperand(1)); 4523 SDValue Op3 = getValue(I.getArgOperand(2)); 4524 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4525 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4526 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4527 MachinePointerInfo(I.getArgOperand(0)), 4528 MachinePointerInfo(I.getArgOperand(1)))); 4529 return 0; 4530 } 4531 case Intrinsic::dbg_declare: { 4532 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4533 MDNode *Variable = DI.getVariable(); 4534 const Value *Address = DI.getAddress(); 4535 if (!Address || !DIVariable(Variable).Verify()) 4536 return 0; 4537 4538 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4539 // but do not always have a corresponding SDNode built. The SDNodeOrder 4540 // absolute, but not relative, values are different depending on whether 4541 // debug info exists. 4542 ++SDNodeOrder; 4543 4544 // Check if address has undef value. 4545 if (isa<UndefValue>(Address) || 4546 (Address->use_empty() && !isa<Argument>(Address))) { 4547 DEBUG(dbgs() << "Dropping debug info for " << DI); 4548 return 0; 4549 } 4550 4551 SDValue &N = NodeMap[Address]; 4552 if (!N.getNode() && isa<Argument>(Address)) 4553 // Check unused arguments map. 4554 N = UnusedArgNodeMap[Address]; 4555 SDDbgValue *SDV; 4556 if (N.getNode()) { 4557 // Parameters are handled specially. 4558 bool isParameter = 4559 DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable; 4560 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4561 Address = BCI->getOperand(0); 4562 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4563 4564 if (isParameter && !AI) { 4565 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4566 if (FINode) 4567 // Byval parameter. We have a frame index at this point. 4568 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4569 0, dl, SDNodeOrder); 4570 else { 4571 // Address is an argument, so try to emit its dbg value using 4572 // virtual register info from the FuncInfo.ValueMap. 4573 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4574 return 0; 4575 } 4576 } else if (AI) 4577 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4578 0, dl, SDNodeOrder); 4579 else { 4580 // Can't do anything with other non-AI cases yet. 4581 DEBUG(dbgs() << "Dropping debug info for " << DI); 4582 return 0; 4583 } 4584 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4585 } else { 4586 // If Address is an argument then try to emit its dbg value using 4587 // virtual register info from the FuncInfo.ValueMap. 4588 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4589 // If variable is pinned by a alloca in dominating bb then 4590 // use StaticAllocaMap. 4591 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4592 if (AI->getParent() != DI.getParent()) { 4593 DenseMap<const AllocaInst*, int>::iterator SI = 4594 FuncInfo.StaticAllocaMap.find(AI); 4595 if (SI != FuncInfo.StaticAllocaMap.end()) { 4596 SDV = DAG.getDbgValue(Variable, SI->second, 4597 0, dl, SDNodeOrder); 4598 DAG.AddDbgValue(SDV, 0, false); 4599 return 0; 4600 } 4601 } 4602 } 4603 DEBUG(dbgs() << "Dropping debug info for " << DI); 4604 } 4605 } 4606 return 0; 4607 } 4608 case Intrinsic::dbg_value: { 4609 const DbgValueInst &DI = cast<DbgValueInst>(I); 4610 if (!DIVariable(DI.getVariable()).Verify()) 4611 return 0; 4612 4613 MDNode *Variable = DI.getVariable(); 4614 uint64_t Offset = DI.getOffset(); 4615 const Value *V = DI.getValue(); 4616 if (!V) 4617 return 0; 4618 4619 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4620 // but do not always have a corresponding SDNode built. The SDNodeOrder 4621 // absolute, but not relative, values are different depending on whether 4622 // debug info exists. 4623 ++SDNodeOrder; 4624 SDDbgValue *SDV; 4625 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4626 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4627 DAG.AddDbgValue(SDV, 0, false); 4628 } else { 4629 // Do not use getValue() in here; we don't want to generate code at 4630 // this point if it hasn't been done yet. 4631 SDValue N = NodeMap[V]; 4632 if (!N.getNode() && isa<Argument>(V)) 4633 // Check unused arguments map. 4634 N = UnusedArgNodeMap[V]; 4635 if (N.getNode()) { 4636 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4637 SDV = DAG.getDbgValue(Variable, N.getNode(), 4638 N.getResNo(), Offset, dl, SDNodeOrder); 4639 DAG.AddDbgValue(SDV, N.getNode(), false); 4640 } 4641 } else if (!V->use_empty() ) { 4642 // Do not call getValue(V) yet, as we don't want to generate code. 4643 // Remember it for later. 4644 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4645 DanglingDebugInfoMap[V] = DDI; 4646 } else { 4647 // We may expand this to cover more cases. One case where we have no 4648 // data available is an unreferenced parameter. 4649 DEBUG(dbgs() << "Dropping debug info for " << DI); 4650 } 4651 } 4652 4653 // Build a debug info table entry. 4654 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4655 V = BCI->getOperand(0); 4656 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4657 // Don't handle byval struct arguments or VLAs, for example. 4658 if (!AI) 4659 return 0; 4660 DenseMap<const AllocaInst*, int>::iterator SI = 4661 FuncInfo.StaticAllocaMap.find(AI); 4662 if (SI == FuncInfo.StaticAllocaMap.end()) 4663 return 0; // VLAs. 4664 int FI = SI->second; 4665 4666 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4667 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4668 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4669 return 0; 4670 } 4671 case Intrinsic::eh_exception: { 4672 // Insert the EXCEPTIONADDR instruction. 4673 assert(FuncInfo.MBB->isLandingPad() && 4674 "Call to eh.exception not in landing pad!"); 4675 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4676 SDValue Ops[1]; 4677 Ops[0] = DAG.getRoot(); 4678 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, dl, VTs, Ops, 1); 4679 setValue(&I, Op); 4680 DAG.setRoot(Op.getValue(1)); 4681 return 0; 4682 } 4683 4684 case Intrinsic::eh_selector: { 4685 MachineBasicBlock *CallMBB = FuncInfo.MBB; 4686 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4687 if (CallMBB->isLandingPad()) 4688 AddCatchInfo(I, &MMI, CallMBB); 4689 else { 4690 #ifndef NDEBUG 4691 FuncInfo.CatchInfoLost.insert(&I); 4692 #endif 4693 // FIXME: Mark exception selector register as live in. Hack for PR1508. 4694 unsigned Reg = TLI.getExceptionSelectorRegister(); 4695 if (Reg) FuncInfo.MBB->addLiveIn(Reg); 4696 } 4697 4698 // Insert the EHSELECTION instruction. 4699 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 4700 SDValue Ops[2]; 4701 Ops[0] = getValue(I.getArgOperand(0)); 4702 Ops[1] = getRoot(); 4703 SDValue Op = DAG.getNode(ISD::EHSELECTION, dl, VTs, Ops, 2); 4704 DAG.setRoot(Op.getValue(1)); 4705 setValue(&I, DAG.getSExtOrTrunc(Op, dl, MVT::i32)); 4706 return 0; 4707 } 4708 4709 case Intrinsic::eh_typeid_for: { 4710 // Find the type id for the given typeinfo. 4711 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4712 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4713 Res = DAG.getConstant(TypeID, MVT::i32); 4714 setValue(&I, Res); 4715 return 0; 4716 } 4717 4718 case Intrinsic::eh_return_i32: 4719 case Intrinsic::eh_return_i64: 4720 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4721 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4722 MVT::Other, 4723 getControlRoot(), 4724 getValue(I.getArgOperand(0)), 4725 getValue(I.getArgOperand(1)))); 4726 return 0; 4727 case Intrinsic::eh_unwind_init: 4728 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4729 return 0; 4730 case Intrinsic::eh_dwarf_cfa: { 4731 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4732 TLI.getPointerTy()); 4733 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4734 TLI.getPointerTy(), 4735 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4736 TLI.getPointerTy()), 4737 CfaArg); 4738 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4739 TLI.getPointerTy(), 4740 DAG.getConstant(0, TLI.getPointerTy())); 4741 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4742 FA, Offset)); 4743 return 0; 4744 } 4745 case Intrinsic::eh_sjlj_callsite: { 4746 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4747 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4748 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4749 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4750 4751 MMI.setCurrentCallSite(CI->getZExtValue()); 4752 return 0; 4753 } 4754 case Intrinsic::eh_sjlj_functioncontext: { 4755 // Get and store the index of the function context. 4756 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4757 AllocaInst *FnCtx = 4758 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4759 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4760 MFI->setFunctionContextIndex(FI); 4761 return 0; 4762 } 4763 case Intrinsic::eh_sjlj_setjmp: { 4764 SDValue Ops[2]; 4765 Ops[0] = getRoot(); 4766 Ops[1] = getValue(I.getArgOperand(0)); 4767 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4768 DAG.getVTList(MVT::i32, MVT::Other), 4769 Ops, 2); 4770 setValue(&I, Op.getValue(0)); 4771 DAG.setRoot(Op.getValue(1)); 4772 return 0; 4773 } 4774 case Intrinsic::eh_sjlj_longjmp: { 4775 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4776 getRoot(), getValue(I.getArgOperand(0)))); 4777 return 0; 4778 } 4779 case Intrinsic::eh_sjlj_dispatch_setup: { 4780 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_DISPATCHSETUP, dl, MVT::Other, 4781 getRoot(), getValue(I.getArgOperand(0)))); 4782 return 0; 4783 } 4784 4785 case Intrinsic::x86_mmx_pslli_w: 4786 case Intrinsic::x86_mmx_pslli_d: 4787 case Intrinsic::x86_mmx_pslli_q: 4788 case Intrinsic::x86_mmx_psrli_w: 4789 case Intrinsic::x86_mmx_psrli_d: 4790 case Intrinsic::x86_mmx_psrli_q: 4791 case Intrinsic::x86_mmx_psrai_w: 4792 case Intrinsic::x86_mmx_psrai_d: { 4793 SDValue ShAmt = getValue(I.getArgOperand(1)); 4794 if (isa<ConstantSDNode>(ShAmt)) { 4795 visitTargetIntrinsic(I, Intrinsic); 4796 return 0; 4797 } 4798 unsigned NewIntrinsic = 0; 4799 EVT ShAmtVT = MVT::v2i32; 4800 switch (Intrinsic) { 4801 case Intrinsic::x86_mmx_pslli_w: 4802 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4803 break; 4804 case Intrinsic::x86_mmx_pslli_d: 4805 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4806 break; 4807 case Intrinsic::x86_mmx_pslli_q: 4808 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4809 break; 4810 case Intrinsic::x86_mmx_psrli_w: 4811 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4812 break; 4813 case Intrinsic::x86_mmx_psrli_d: 4814 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4815 break; 4816 case Intrinsic::x86_mmx_psrli_q: 4817 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4818 break; 4819 case Intrinsic::x86_mmx_psrai_w: 4820 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4821 break; 4822 case Intrinsic::x86_mmx_psrai_d: 4823 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4824 break; 4825 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4826 } 4827 4828 // The vector shift intrinsics with scalars uses 32b shift amounts but 4829 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4830 // to be zero. 4831 // We must do this early because v2i32 is not a legal type. 4832 DebugLoc dl = getCurDebugLoc(); 4833 SDValue ShOps[2]; 4834 ShOps[0] = ShAmt; 4835 ShOps[1] = DAG.getConstant(0, MVT::i32); 4836 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4837 EVT DestVT = TLI.getValueType(I.getType()); 4838 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4839 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4840 DAG.getConstant(NewIntrinsic, MVT::i32), 4841 getValue(I.getArgOperand(0)), ShAmt); 4842 setValue(&I, Res); 4843 return 0; 4844 } 4845 case Intrinsic::convertff: 4846 case Intrinsic::convertfsi: 4847 case Intrinsic::convertfui: 4848 case Intrinsic::convertsif: 4849 case Intrinsic::convertuif: 4850 case Intrinsic::convertss: 4851 case Intrinsic::convertsu: 4852 case Intrinsic::convertus: 4853 case Intrinsic::convertuu: { 4854 ISD::CvtCode Code = ISD::CVT_INVALID; 4855 switch (Intrinsic) { 4856 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4857 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4858 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4859 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4860 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4861 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4862 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4863 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4864 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4865 } 4866 EVT DestVT = TLI.getValueType(I.getType()); 4867 const Value *Op1 = I.getArgOperand(0); 4868 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4869 DAG.getValueType(DestVT), 4870 DAG.getValueType(getValue(Op1).getValueType()), 4871 getValue(I.getArgOperand(1)), 4872 getValue(I.getArgOperand(2)), 4873 Code); 4874 setValue(&I, Res); 4875 return 0; 4876 } 4877 case Intrinsic::sqrt: 4878 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4879 getValue(I.getArgOperand(0)).getValueType(), 4880 getValue(I.getArgOperand(0)))); 4881 return 0; 4882 case Intrinsic::powi: 4883 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4884 getValue(I.getArgOperand(1)), DAG)); 4885 return 0; 4886 case Intrinsic::sin: 4887 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4888 getValue(I.getArgOperand(0)).getValueType(), 4889 getValue(I.getArgOperand(0)))); 4890 return 0; 4891 case Intrinsic::cos: 4892 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4893 getValue(I.getArgOperand(0)).getValueType(), 4894 getValue(I.getArgOperand(0)))); 4895 return 0; 4896 case Intrinsic::log: 4897 visitLog(I); 4898 return 0; 4899 case Intrinsic::log2: 4900 visitLog2(I); 4901 return 0; 4902 case Intrinsic::log10: 4903 visitLog10(I); 4904 return 0; 4905 case Intrinsic::exp: 4906 visitExp(I); 4907 return 0; 4908 case Intrinsic::exp2: 4909 visitExp2(I); 4910 return 0; 4911 case Intrinsic::pow: 4912 visitPow(I); 4913 return 0; 4914 case Intrinsic::fma: 4915 setValue(&I, DAG.getNode(ISD::FMA, dl, 4916 getValue(I.getArgOperand(0)).getValueType(), 4917 getValue(I.getArgOperand(0)), 4918 getValue(I.getArgOperand(1)), 4919 getValue(I.getArgOperand(2)))); 4920 return 0; 4921 case Intrinsic::convert_to_fp16: 4922 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 4923 MVT::i16, getValue(I.getArgOperand(0)))); 4924 return 0; 4925 case Intrinsic::convert_from_fp16: 4926 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 4927 MVT::f32, getValue(I.getArgOperand(0)))); 4928 return 0; 4929 case Intrinsic::pcmarker: { 4930 SDValue Tmp = getValue(I.getArgOperand(0)); 4931 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 4932 return 0; 4933 } 4934 case Intrinsic::readcyclecounter: { 4935 SDValue Op = getRoot(); 4936 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 4937 DAG.getVTList(MVT::i64, MVT::Other), 4938 &Op, 1); 4939 setValue(&I, Res); 4940 DAG.setRoot(Res.getValue(1)); 4941 return 0; 4942 } 4943 case Intrinsic::bswap: 4944 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 4945 getValue(I.getArgOperand(0)).getValueType(), 4946 getValue(I.getArgOperand(0)))); 4947 return 0; 4948 case Intrinsic::cttz: { 4949 SDValue Arg = getValue(I.getArgOperand(0)); 4950 EVT Ty = Arg.getValueType(); 4951 setValue(&I, DAG.getNode(ISD::CTTZ, dl, Ty, Arg)); 4952 return 0; 4953 } 4954 case Intrinsic::ctlz: { 4955 SDValue Arg = getValue(I.getArgOperand(0)); 4956 EVT Ty = Arg.getValueType(); 4957 setValue(&I, DAG.getNode(ISD::CTLZ, dl, Ty, Arg)); 4958 return 0; 4959 } 4960 case Intrinsic::ctpop: { 4961 SDValue Arg = getValue(I.getArgOperand(0)); 4962 EVT Ty = Arg.getValueType(); 4963 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 4964 return 0; 4965 } 4966 case Intrinsic::stacksave: { 4967 SDValue Op = getRoot(); 4968 Res = DAG.getNode(ISD::STACKSAVE, dl, 4969 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 4970 setValue(&I, Res); 4971 DAG.setRoot(Res.getValue(1)); 4972 return 0; 4973 } 4974 case Intrinsic::stackrestore: { 4975 Res = getValue(I.getArgOperand(0)); 4976 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 4977 return 0; 4978 } 4979 case Intrinsic::stackprotector: { 4980 // Emit code into the DAG to store the stack guard onto the stack. 4981 MachineFunction &MF = DAG.getMachineFunction(); 4982 MachineFrameInfo *MFI = MF.getFrameInfo(); 4983 EVT PtrTy = TLI.getPointerTy(); 4984 4985 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 4986 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 4987 4988 int FI = FuncInfo.StaticAllocaMap[Slot]; 4989 MFI->setStackProtectorIndex(FI); 4990 4991 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 4992 4993 // Store the stack protector onto the stack. 4994 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 4995 MachinePointerInfo::getFixedStack(FI), 4996 true, false, 0); 4997 setValue(&I, Res); 4998 DAG.setRoot(Res); 4999 return 0; 5000 } 5001 case Intrinsic::objectsize: { 5002 // If we don't know by now, we're never going to know. 5003 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5004 5005 assert(CI && "Non-constant type in __builtin_object_size?"); 5006 5007 SDValue Arg = getValue(I.getCalledValue()); 5008 EVT Ty = Arg.getValueType(); 5009 5010 if (CI->isZero()) 5011 Res = DAG.getConstant(-1ULL, Ty); 5012 else 5013 Res = DAG.getConstant(0, Ty); 5014 5015 setValue(&I, Res); 5016 return 0; 5017 } 5018 case Intrinsic::var_annotation: 5019 // Discard annotate attributes 5020 return 0; 5021 5022 case Intrinsic::init_trampoline: { 5023 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5024 5025 SDValue Ops[6]; 5026 Ops[0] = getRoot(); 5027 Ops[1] = getValue(I.getArgOperand(0)); 5028 Ops[2] = getValue(I.getArgOperand(1)); 5029 Ops[3] = getValue(I.getArgOperand(2)); 5030 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5031 Ops[5] = DAG.getSrcValue(F); 5032 5033 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5034 5035 DAG.setRoot(Res); 5036 return 0; 5037 } 5038 case Intrinsic::adjust_trampoline: { 5039 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5040 TLI.getPointerTy(), 5041 getValue(I.getArgOperand(0)))); 5042 return 0; 5043 } 5044 case Intrinsic::gcroot: 5045 if (GFI) { 5046 const Value *Alloca = I.getArgOperand(0); 5047 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5048 5049 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5050 GFI->addStackRoot(FI->getIndex(), TypeMap); 5051 } 5052 return 0; 5053 case Intrinsic::gcread: 5054 case Intrinsic::gcwrite: 5055 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5056 return 0; 5057 case Intrinsic::flt_rounds: 5058 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5059 return 0; 5060 5061 case Intrinsic::expect: { 5062 // Just replace __builtin_expect(exp, c) with EXP. 5063 setValue(&I, getValue(I.getArgOperand(0))); 5064 return 0; 5065 } 5066 5067 case Intrinsic::trap: { 5068 StringRef TrapFuncName = getTrapFunctionName(); 5069 if (TrapFuncName.empty()) { 5070 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5071 return 0; 5072 } 5073 TargetLowering::ArgListTy Args; 5074 std::pair<SDValue, SDValue> Result = 5075 TLI.LowerCallTo(getRoot(), I.getType(), 5076 false, false, false, false, 0, CallingConv::C, 5077 /*isTailCall=*/false, /*isReturnValueUsed=*/true, 5078 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5079 Args, DAG, getCurDebugLoc()); 5080 DAG.setRoot(Result.second); 5081 return 0; 5082 } 5083 case Intrinsic::uadd_with_overflow: 5084 return implVisitAluOverflow(I, ISD::UADDO); 5085 case Intrinsic::sadd_with_overflow: 5086 return implVisitAluOverflow(I, ISD::SADDO); 5087 case Intrinsic::usub_with_overflow: 5088 return implVisitAluOverflow(I, ISD::USUBO); 5089 case Intrinsic::ssub_with_overflow: 5090 return implVisitAluOverflow(I, ISD::SSUBO); 5091 case Intrinsic::umul_with_overflow: 5092 return implVisitAluOverflow(I, ISD::UMULO); 5093 case Intrinsic::smul_with_overflow: 5094 return implVisitAluOverflow(I, ISD::SMULO); 5095 5096 case Intrinsic::prefetch: { 5097 SDValue Ops[5]; 5098 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5099 Ops[0] = getRoot(); 5100 Ops[1] = getValue(I.getArgOperand(0)); 5101 Ops[2] = getValue(I.getArgOperand(1)); 5102 Ops[3] = getValue(I.getArgOperand(2)); 5103 Ops[4] = getValue(I.getArgOperand(3)); 5104 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5105 DAG.getVTList(MVT::Other), 5106 &Ops[0], 5, 5107 EVT::getIntegerVT(*Context, 8), 5108 MachinePointerInfo(I.getArgOperand(0)), 5109 0, /* align */ 5110 false, /* volatile */ 5111 rw==0, /* read */ 5112 rw==1)); /* write */ 5113 return 0; 5114 } 5115 5116 case Intrinsic::invariant_start: 5117 case Intrinsic::lifetime_start: 5118 // Discard region information. 5119 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5120 return 0; 5121 case Intrinsic::invariant_end: 5122 case Intrinsic::lifetime_end: 5123 // Discard region information. 5124 return 0; 5125 } 5126 } 5127 5128 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5129 bool isTailCall, 5130 MachineBasicBlock *LandingPad) { 5131 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5132 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5133 Type *RetTy = FTy->getReturnType(); 5134 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5135 MCSymbol *BeginLabel = 0; 5136 5137 TargetLowering::ArgListTy Args; 5138 TargetLowering::ArgListEntry Entry; 5139 Args.reserve(CS.arg_size()); 5140 5141 // Check whether the function can return without sret-demotion. 5142 SmallVector<ISD::OutputArg, 4> Outs; 5143 SmallVector<uint64_t, 4> Offsets; 5144 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5145 Outs, TLI, &Offsets); 5146 5147 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5148 DAG.getMachineFunction(), 5149 FTy->isVarArg(), Outs, 5150 FTy->getContext()); 5151 5152 SDValue DemoteStackSlot; 5153 int DemoteStackIdx = -100; 5154 5155 if (!CanLowerReturn) { 5156 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5157 FTy->getReturnType()); 5158 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5159 FTy->getReturnType()); 5160 MachineFunction &MF = DAG.getMachineFunction(); 5161 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5162 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5163 5164 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5165 Entry.Node = DemoteStackSlot; 5166 Entry.Ty = StackSlotPtrType; 5167 Entry.isSExt = false; 5168 Entry.isZExt = false; 5169 Entry.isInReg = false; 5170 Entry.isSRet = true; 5171 Entry.isNest = false; 5172 Entry.isByVal = false; 5173 Entry.Alignment = Align; 5174 Args.push_back(Entry); 5175 RetTy = Type::getVoidTy(FTy->getContext()); 5176 } 5177 5178 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5179 i != e; ++i) { 5180 const Value *V = *i; 5181 5182 // Skip empty types 5183 if (V->getType()->isEmptyTy()) 5184 continue; 5185 5186 SDValue ArgNode = getValue(V); 5187 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5188 5189 unsigned attrInd = i - CS.arg_begin() + 1; 5190 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5191 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5192 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5193 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5194 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5195 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5196 Entry.Alignment = CS.getParamAlignment(attrInd); 5197 Args.push_back(Entry); 5198 } 5199 5200 if (LandingPad) { 5201 // Insert a label before the invoke call to mark the try range. This can be 5202 // used to detect deletion of the invoke via the MachineModuleInfo. 5203 BeginLabel = MMI.getContext().CreateTempSymbol(); 5204 5205 // For SjLj, keep track of which landing pads go with which invokes 5206 // so as to maintain the ordering of pads in the LSDA. 5207 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5208 if (CallSiteIndex) { 5209 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5210 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5211 5212 // Now that the call site is handled, stop tracking it. 5213 MMI.setCurrentCallSite(0); 5214 } 5215 5216 // Both PendingLoads and PendingExports must be flushed here; 5217 // this call might not return. 5218 (void)getRoot(); 5219 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5220 } 5221 5222 // Check if target-independent constraints permit a tail call here. 5223 // Target-dependent constraints are checked within TLI.LowerCallTo. 5224 if (isTailCall && 5225 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5226 isTailCall = false; 5227 5228 // If there's a possibility that fast-isel has already selected some amount 5229 // of the current basic block, don't emit a tail call. 5230 if (isTailCall && EnableFastISel) 5231 isTailCall = false; 5232 5233 std::pair<SDValue,SDValue> Result = 5234 TLI.LowerCallTo(getRoot(), RetTy, 5235 CS.paramHasAttr(0, Attribute::SExt), 5236 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(), 5237 CS.paramHasAttr(0, Attribute::InReg), FTy->getNumParams(), 5238 CS.getCallingConv(), 5239 isTailCall, 5240 !CS.getInstruction()->use_empty(), 5241 Callee, Args, DAG, getCurDebugLoc()); 5242 assert((isTailCall || Result.second.getNode()) && 5243 "Non-null chain expected with non-tail call!"); 5244 assert((Result.second.getNode() || !Result.first.getNode()) && 5245 "Null value expected with tail call!"); 5246 if (Result.first.getNode()) { 5247 setValue(CS.getInstruction(), Result.first); 5248 } else if (!CanLowerReturn && Result.second.getNode()) { 5249 // The instruction result is the result of loading from the 5250 // hidden sret parameter. 5251 SmallVector<EVT, 1> PVTs; 5252 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5253 5254 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5255 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5256 EVT PtrVT = PVTs[0]; 5257 unsigned NumValues = Outs.size(); 5258 SmallVector<SDValue, 4> Values(NumValues); 5259 SmallVector<SDValue, 4> Chains(NumValues); 5260 5261 for (unsigned i = 0; i < NumValues; ++i) { 5262 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5263 DemoteStackSlot, 5264 DAG.getConstant(Offsets[i], PtrVT)); 5265 SDValue L = DAG.getLoad(Outs[i].VT, getCurDebugLoc(), Result.second, 5266 Add, 5267 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5268 false, false, false, 1); 5269 Values[i] = L; 5270 Chains[i] = L.getValue(1); 5271 } 5272 5273 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5274 MVT::Other, &Chains[0], NumValues); 5275 PendingLoads.push_back(Chain); 5276 5277 // Collect the legal value parts into potentially illegal values 5278 // that correspond to the original function's return values. 5279 SmallVector<EVT, 4> RetTys; 5280 RetTy = FTy->getReturnType(); 5281 ComputeValueVTs(TLI, RetTy, RetTys); 5282 ISD::NodeType AssertOp = ISD::DELETED_NODE; 5283 SmallVector<SDValue, 4> ReturnValues; 5284 unsigned CurReg = 0; 5285 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 5286 EVT VT = RetTys[I]; 5287 EVT RegisterVT = TLI.getRegisterType(RetTy->getContext(), VT); 5288 unsigned NumRegs = TLI.getNumRegisters(RetTy->getContext(), VT); 5289 5290 SDValue ReturnValue = 5291 getCopyFromParts(DAG, getCurDebugLoc(), &Values[CurReg], NumRegs, 5292 RegisterVT, VT, AssertOp); 5293 ReturnValues.push_back(ReturnValue); 5294 CurReg += NumRegs; 5295 } 5296 5297 setValue(CS.getInstruction(), 5298 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5299 DAG.getVTList(&RetTys[0], RetTys.size()), 5300 &ReturnValues[0], ReturnValues.size())); 5301 } 5302 5303 // Assign order to nodes here. If the call does not produce a result, it won't 5304 // be mapped to a SDNode and visit() will not assign it an order number. 5305 if (!Result.second.getNode()) { 5306 // As a special case, a null chain means that a tail call has been emitted and 5307 // the DAG root is already updated. 5308 HasTailCall = true; 5309 ++SDNodeOrder; 5310 AssignOrderingToNode(DAG.getRoot().getNode()); 5311 } else { 5312 DAG.setRoot(Result.second); 5313 ++SDNodeOrder; 5314 AssignOrderingToNode(Result.second.getNode()); 5315 } 5316 5317 if (LandingPad) { 5318 // Insert a label at the end of the invoke call to mark the try range. This 5319 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5320 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5321 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5322 5323 // Inform MachineModuleInfo of range. 5324 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5325 } 5326 } 5327 5328 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5329 /// value is equal or not-equal to zero. 5330 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5331 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5332 UI != E; ++UI) { 5333 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5334 if (IC->isEquality()) 5335 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5336 if (C->isNullValue()) 5337 continue; 5338 // Unknown instruction. 5339 return false; 5340 } 5341 return true; 5342 } 5343 5344 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5345 Type *LoadTy, 5346 SelectionDAGBuilder &Builder) { 5347 5348 // Check to see if this load can be trivially constant folded, e.g. if the 5349 // input is from a string literal. 5350 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5351 // Cast pointer to the type we really want to load. 5352 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5353 PointerType::getUnqual(LoadTy)); 5354 5355 if (const Constant *LoadCst = 5356 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5357 Builder.TD)) 5358 return Builder.getValue(LoadCst); 5359 } 5360 5361 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5362 // still constant memory, the input chain can be the entry node. 5363 SDValue Root; 5364 bool ConstantMemory = false; 5365 5366 // Do not serialize (non-volatile) loads of constant memory with anything. 5367 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5368 Root = Builder.DAG.getEntryNode(); 5369 ConstantMemory = true; 5370 } else { 5371 // Do not serialize non-volatile loads against each other. 5372 Root = Builder.DAG.getRoot(); 5373 } 5374 5375 SDValue Ptr = Builder.getValue(PtrVal); 5376 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5377 Ptr, MachinePointerInfo(PtrVal), 5378 false /*volatile*/, 5379 false /*nontemporal*/, 5380 false /*isinvariant*/, 1 /* align=1 */); 5381 5382 if (!ConstantMemory) 5383 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5384 return LoadVal; 5385 } 5386 5387 5388 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5389 /// If so, return true and lower it, otherwise return false and it will be 5390 /// lowered like a normal call. 5391 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5392 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5393 if (I.getNumArgOperands() != 3) 5394 return false; 5395 5396 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5397 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5398 !I.getArgOperand(2)->getType()->isIntegerTy() || 5399 !I.getType()->isIntegerTy()) 5400 return false; 5401 5402 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5403 5404 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5405 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5406 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5407 bool ActuallyDoIt = true; 5408 MVT LoadVT; 5409 Type *LoadTy; 5410 switch (Size->getZExtValue()) { 5411 default: 5412 LoadVT = MVT::Other; 5413 LoadTy = 0; 5414 ActuallyDoIt = false; 5415 break; 5416 case 2: 5417 LoadVT = MVT::i16; 5418 LoadTy = Type::getInt16Ty(Size->getContext()); 5419 break; 5420 case 4: 5421 LoadVT = MVT::i32; 5422 LoadTy = Type::getInt32Ty(Size->getContext()); 5423 break; 5424 case 8: 5425 LoadVT = MVT::i64; 5426 LoadTy = Type::getInt64Ty(Size->getContext()); 5427 break; 5428 /* 5429 case 16: 5430 LoadVT = MVT::v4i32; 5431 LoadTy = Type::getInt32Ty(Size->getContext()); 5432 LoadTy = VectorType::get(LoadTy, 4); 5433 break; 5434 */ 5435 } 5436 5437 // This turns into unaligned loads. We only do this if the target natively 5438 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5439 // we'll only produce a small number of byte loads. 5440 5441 // Require that we can find a legal MVT, and only do this if the target 5442 // supports unaligned loads of that type. Expanding into byte loads would 5443 // bloat the code. 5444 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5445 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5446 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5447 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5448 ActuallyDoIt = false; 5449 } 5450 5451 if (ActuallyDoIt) { 5452 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5453 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5454 5455 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5456 ISD::SETNE); 5457 EVT CallVT = TLI.getValueType(I.getType(), true); 5458 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5459 return true; 5460 } 5461 } 5462 5463 5464 return false; 5465 } 5466 5467 5468 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5469 // Handle inline assembly differently. 5470 if (isa<InlineAsm>(I.getCalledValue())) { 5471 visitInlineAsm(&I); 5472 return; 5473 } 5474 5475 // See if any floating point values are being passed to this function. This is 5476 // used to emit an undefined reference to fltused on Windows. 5477 FunctionType *FT = 5478 cast<FunctionType>(I.getCalledValue()->getType()->getContainedType(0)); 5479 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5480 if (FT->isVarArg() && 5481 !MMI.callsExternalVAFunctionWithFloatingPointArguments()) { 5482 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 5483 Type* T = I.getArgOperand(i)->getType(); 5484 for (po_iterator<Type*> i = po_begin(T), e = po_end(T); 5485 i != e; ++i) { 5486 if (!i->isFloatingPointTy()) continue; 5487 MMI.setCallsExternalVAFunctionWithFloatingPointArguments(true); 5488 break; 5489 } 5490 } 5491 } 5492 5493 const char *RenameFn = 0; 5494 if (Function *F = I.getCalledFunction()) { 5495 if (F->isDeclaration()) { 5496 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5497 if (unsigned IID = II->getIntrinsicID(F)) { 5498 RenameFn = visitIntrinsicCall(I, IID); 5499 if (!RenameFn) 5500 return; 5501 } 5502 } 5503 if (unsigned IID = F->getIntrinsicID()) { 5504 RenameFn = visitIntrinsicCall(I, IID); 5505 if (!RenameFn) 5506 return; 5507 } 5508 } 5509 5510 // Check for well-known libc/libm calls. If the function is internal, it 5511 // can't be a library call. 5512 if (!F->hasLocalLinkage() && F->hasName()) { 5513 StringRef Name = F->getName(); 5514 if (Name == "copysign" || Name == "copysignf" || Name == "copysignl") { 5515 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5516 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5517 I.getType() == I.getArgOperand(0)->getType() && 5518 I.getType() == I.getArgOperand(1)->getType()) { 5519 SDValue LHS = getValue(I.getArgOperand(0)); 5520 SDValue RHS = getValue(I.getArgOperand(1)); 5521 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5522 LHS.getValueType(), LHS, RHS)); 5523 return; 5524 } 5525 } else if (Name == "fabs" || Name == "fabsf" || Name == "fabsl") { 5526 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5527 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5528 I.getType() == I.getArgOperand(0)->getType()) { 5529 SDValue Tmp = getValue(I.getArgOperand(0)); 5530 setValue(&I, DAG.getNode(ISD::FABS, getCurDebugLoc(), 5531 Tmp.getValueType(), Tmp)); 5532 return; 5533 } 5534 } else if (Name == "sin" || Name == "sinf" || Name == "sinl") { 5535 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5536 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5537 I.getType() == I.getArgOperand(0)->getType() && 5538 I.onlyReadsMemory()) { 5539 SDValue Tmp = getValue(I.getArgOperand(0)); 5540 setValue(&I, DAG.getNode(ISD::FSIN, getCurDebugLoc(), 5541 Tmp.getValueType(), Tmp)); 5542 return; 5543 } 5544 } else if (Name == "cos" || Name == "cosf" || Name == "cosl") { 5545 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5546 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5547 I.getType() == I.getArgOperand(0)->getType() && 5548 I.onlyReadsMemory()) { 5549 SDValue Tmp = getValue(I.getArgOperand(0)); 5550 setValue(&I, DAG.getNode(ISD::FCOS, getCurDebugLoc(), 5551 Tmp.getValueType(), Tmp)); 5552 return; 5553 } 5554 } else if (Name == "sqrt" || Name == "sqrtf" || Name == "sqrtl") { 5555 if (I.getNumArgOperands() == 1 && // Basic sanity checks. 5556 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5557 I.getType() == I.getArgOperand(0)->getType() && 5558 I.onlyReadsMemory()) { 5559 SDValue Tmp = getValue(I.getArgOperand(0)); 5560 setValue(&I, DAG.getNode(ISD::FSQRT, getCurDebugLoc(), 5561 Tmp.getValueType(), Tmp)); 5562 return; 5563 } 5564 } else if (Name == "memcmp") { 5565 if (visitMemCmpCall(I)) 5566 return; 5567 } 5568 } 5569 } 5570 5571 SDValue Callee; 5572 if (!RenameFn) 5573 Callee = getValue(I.getCalledValue()); 5574 else 5575 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5576 5577 // Check if we can potentially perform a tail call. More detailed checking is 5578 // be done within LowerCallTo, after more information about the call is known. 5579 LowerCallTo(&I, Callee, I.isTailCall()); 5580 } 5581 5582 namespace { 5583 5584 /// AsmOperandInfo - This contains information for each constraint that we are 5585 /// lowering. 5586 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5587 public: 5588 /// CallOperand - If this is the result output operand or a clobber 5589 /// this is null, otherwise it is the incoming operand to the CallInst. 5590 /// This gets modified as the asm is processed. 5591 SDValue CallOperand; 5592 5593 /// AssignedRegs - If this is a register or register class operand, this 5594 /// contains the set of register corresponding to the operand. 5595 RegsForValue AssignedRegs; 5596 5597 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5598 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5599 } 5600 5601 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers 5602 /// busy in OutputRegs/InputRegs. 5603 void MarkAllocatedRegs(bool isOutReg, bool isInReg, 5604 std::set<unsigned> &OutputRegs, 5605 std::set<unsigned> &InputRegs, 5606 const TargetRegisterInfo &TRI) const { 5607 if (isOutReg) { 5608 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5609 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI); 5610 } 5611 if (isInReg) { 5612 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i) 5613 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI); 5614 } 5615 } 5616 5617 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5618 /// corresponds to. If there is no Value* for this operand, it returns 5619 /// MVT::Other. 5620 EVT getCallOperandValEVT(LLVMContext &Context, 5621 const TargetLowering &TLI, 5622 const TargetData *TD) const { 5623 if (CallOperandVal == 0) return MVT::Other; 5624 5625 if (isa<BasicBlock>(CallOperandVal)) 5626 return TLI.getPointerTy(); 5627 5628 llvm::Type *OpTy = CallOperandVal->getType(); 5629 5630 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5631 // If this is an indirect operand, the operand is a pointer to the 5632 // accessed type. 5633 if (isIndirect) { 5634 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5635 if (!PtrTy) 5636 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5637 OpTy = PtrTy->getElementType(); 5638 } 5639 5640 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5641 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5642 if (STy->getNumElements() == 1) 5643 OpTy = STy->getElementType(0); 5644 5645 // If OpTy is not a single value, it may be a struct/union that we 5646 // can tile with integers. 5647 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5648 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5649 switch (BitSize) { 5650 default: break; 5651 case 1: 5652 case 8: 5653 case 16: 5654 case 32: 5655 case 64: 5656 case 128: 5657 OpTy = IntegerType::get(Context, BitSize); 5658 break; 5659 } 5660 } 5661 5662 return TLI.getValueType(OpTy, true); 5663 } 5664 5665 private: 5666 /// MarkRegAndAliases - Mark the specified register and all aliases in the 5667 /// specified set. 5668 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs, 5669 const TargetRegisterInfo &TRI) { 5670 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg"); 5671 Regs.insert(Reg); 5672 if (const unsigned *Aliases = TRI.getAliasSet(Reg)) 5673 for (; *Aliases; ++Aliases) 5674 Regs.insert(*Aliases); 5675 } 5676 }; 5677 5678 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5679 5680 } // end anonymous namespace 5681 5682 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5683 /// specified operand. We prefer to assign virtual registers, to allow the 5684 /// register allocator to handle the assignment process. However, if the asm 5685 /// uses features that we can't model on machineinstrs, we have SDISel do the 5686 /// allocation. This produces generally horrible, but correct, code. 5687 /// 5688 /// OpInfo describes the operand. 5689 /// Input and OutputRegs are the set of already allocated physical registers. 5690 /// 5691 static void GetRegistersForValue(SelectionDAG &DAG, 5692 const TargetLowering &TLI, 5693 DebugLoc DL, 5694 SDISelAsmOperandInfo &OpInfo, 5695 std::set<unsigned> &OutputRegs, 5696 std::set<unsigned> &InputRegs) { 5697 LLVMContext &Context = *DAG.getContext(); 5698 5699 // Compute whether this value requires an input register, an output register, 5700 // or both. 5701 bool isOutReg = false; 5702 bool isInReg = false; 5703 switch (OpInfo.Type) { 5704 case InlineAsm::isOutput: 5705 isOutReg = true; 5706 5707 // If there is an input constraint that matches this, we need to reserve 5708 // the input register so no other inputs allocate to it. 5709 isInReg = OpInfo.hasMatchingInput(); 5710 break; 5711 case InlineAsm::isInput: 5712 isInReg = true; 5713 isOutReg = false; 5714 break; 5715 case InlineAsm::isClobber: 5716 isOutReg = true; 5717 isInReg = true; 5718 break; 5719 } 5720 5721 5722 MachineFunction &MF = DAG.getMachineFunction(); 5723 SmallVector<unsigned, 4> Regs; 5724 5725 // If this is a constraint for a single physreg, or a constraint for a 5726 // register class, find it. 5727 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5728 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5729 OpInfo.ConstraintVT); 5730 5731 unsigned NumRegs = 1; 5732 if (OpInfo.ConstraintVT != MVT::Other) { 5733 // If this is a FP input in an integer register (or visa versa) insert a bit 5734 // cast of the input value. More generally, handle any case where the input 5735 // value disagrees with the register class we plan to stick this in. 5736 if (OpInfo.Type == InlineAsm::isInput && 5737 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5738 // Try to convert to the first EVT that the reg class contains. If the 5739 // types are identical size, use a bitcast to convert (e.g. two differing 5740 // vector types). 5741 EVT RegVT = *PhysReg.second->vt_begin(); 5742 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5743 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5744 RegVT, OpInfo.CallOperand); 5745 OpInfo.ConstraintVT = RegVT; 5746 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5747 // If the input is a FP value and we want it in FP registers, do a 5748 // bitcast to the corresponding integer type. This turns an f64 value 5749 // into i64, which can be passed with two i32 values on a 32-bit 5750 // machine. 5751 RegVT = EVT::getIntegerVT(Context, 5752 OpInfo.ConstraintVT.getSizeInBits()); 5753 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5754 RegVT, OpInfo.CallOperand); 5755 OpInfo.ConstraintVT = RegVT; 5756 } 5757 } 5758 5759 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5760 } 5761 5762 EVT RegVT; 5763 EVT ValueVT = OpInfo.ConstraintVT; 5764 5765 // If this is a constraint for a specific physical register, like {r17}, 5766 // assign it now. 5767 if (unsigned AssignedReg = PhysReg.first) { 5768 const TargetRegisterClass *RC = PhysReg.second; 5769 if (OpInfo.ConstraintVT == MVT::Other) 5770 ValueVT = *RC->vt_begin(); 5771 5772 // Get the actual register value type. This is important, because the user 5773 // may have asked for (e.g.) the AX register in i32 type. We need to 5774 // remember that AX is actually i16 to get the right extension. 5775 RegVT = *RC->vt_begin(); 5776 5777 // This is a explicit reference to a physical register. 5778 Regs.push_back(AssignedReg); 5779 5780 // If this is an expanded reference, add the rest of the regs to Regs. 5781 if (NumRegs != 1) { 5782 TargetRegisterClass::iterator I = RC->begin(); 5783 for (; *I != AssignedReg; ++I) 5784 assert(I != RC->end() && "Didn't find reg!"); 5785 5786 // Already added the first reg. 5787 --NumRegs; ++I; 5788 for (; NumRegs; --NumRegs, ++I) { 5789 assert(I != RC->end() && "Ran out of registers to allocate!"); 5790 Regs.push_back(*I); 5791 } 5792 } 5793 5794 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5795 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 5796 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI); 5797 return; 5798 } 5799 5800 // Otherwise, if this was a reference to an LLVM register class, create vregs 5801 // for this reference. 5802 if (const TargetRegisterClass *RC = PhysReg.second) { 5803 RegVT = *RC->vt_begin(); 5804 if (OpInfo.ConstraintVT == MVT::Other) 5805 ValueVT = RegVT; 5806 5807 // Create the appropriate number of virtual registers. 5808 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5809 for (; NumRegs; --NumRegs) 5810 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5811 5812 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5813 return; 5814 } 5815 5816 // Otherwise, we couldn't allocate enough registers for this. 5817 } 5818 5819 /// visitInlineAsm - Handle a call to an InlineAsm object. 5820 /// 5821 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5822 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5823 5824 /// ConstraintOperands - Information about all of the constraints. 5825 SDISelAsmOperandInfoVector ConstraintOperands; 5826 5827 std::set<unsigned> OutputRegs, InputRegs; 5828 5829 TargetLowering::AsmOperandInfoVector 5830 TargetConstraints = TLI.ParseConstraints(CS); 5831 5832 bool hasMemory = false; 5833 5834 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5835 unsigned ResNo = 0; // ResNo - The result number of the next output. 5836 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5837 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5838 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5839 5840 EVT OpVT = MVT::Other; 5841 5842 // Compute the value type for each operand. 5843 switch (OpInfo.Type) { 5844 case InlineAsm::isOutput: 5845 // Indirect outputs just consume an argument. 5846 if (OpInfo.isIndirect) { 5847 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5848 break; 5849 } 5850 5851 // The return value of the call is this value. As such, there is no 5852 // corresponding argument. 5853 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5854 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5855 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5856 } else { 5857 assert(ResNo == 0 && "Asm only has one result!"); 5858 OpVT = TLI.getValueType(CS.getType()); 5859 } 5860 ++ResNo; 5861 break; 5862 case InlineAsm::isInput: 5863 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5864 break; 5865 case InlineAsm::isClobber: 5866 // Nothing to do. 5867 break; 5868 } 5869 5870 // If this is an input or an indirect output, process the call argument. 5871 // BasicBlocks are labels, currently appearing only in asm's. 5872 if (OpInfo.CallOperandVal) { 5873 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5874 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5875 } else { 5876 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5877 } 5878 5879 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5880 } 5881 5882 OpInfo.ConstraintVT = OpVT; 5883 5884 // Indirect operand accesses access memory. 5885 if (OpInfo.isIndirect) 5886 hasMemory = true; 5887 else { 5888 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5889 TargetLowering::ConstraintType 5890 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5891 if (CType == TargetLowering::C_Memory) { 5892 hasMemory = true; 5893 break; 5894 } 5895 } 5896 } 5897 } 5898 5899 SDValue Chain, Flag; 5900 5901 // We won't need to flush pending loads if this asm doesn't touch 5902 // memory and is nonvolatile. 5903 if (hasMemory || IA->hasSideEffects()) 5904 Chain = getRoot(); 5905 else 5906 Chain = DAG.getRoot(); 5907 5908 // Second pass over the constraints: compute which constraint option to use 5909 // and assign registers to constraints that want a specific physreg. 5910 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5911 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5912 5913 // If this is an output operand with a matching input operand, look up the 5914 // matching input. If their types mismatch, e.g. one is an integer, the 5915 // other is floating point, or their sizes are different, flag it as an 5916 // error. 5917 if (OpInfo.hasMatchingInput()) { 5918 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 5919 5920 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 5921 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 5922 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5923 OpInfo.ConstraintVT); 5924 std::pair<unsigned, const TargetRegisterClass*> InputRC = 5925 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 5926 Input.ConstraintVT); 5927 if ((OpInfo.ConstraintVT.isInteger() != 5928 Input.ConstraintVT.isInteger()) || 5929 (MatchRC.second != InputRC.second)) { 5930 report_fatal_error("Unsupported asm: input constraint" 5931 " with a matching output constraint of" 5932 " incompatible type!"); 5933 } 5934 Input.ConstraintVT = OpInfo.ConstraintVT; 5935 } 5936 } 5937 5938 // Compute the constraint code and ConstraintType to use. 5939 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 5940 5941 // If this is a memory input, and if the operand is not indirect, do what we 5942 // need to to provide an address for the memory input. 5943 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 5944 !OpInfo.isIndirect) { 5945 assert((OpInfo.isMultipleAlternative || 5946 (OpInfo.Type == InlineAsm::isInput)) && 5947 "Can only indirectify direct input operands!"); 5948 5949 // Memory operands really want the address of the value. If we don't have 5950 // an indirect input, put it in the constpool if we can, otherwise spill 5951 // it to a stack slot. 5952 // TODO: This isn't quite right. We need to handle these according to 5953 // the addressing mode that the constraint wants. Also, this may take 5954 // an additional register for the computation and we don't want that 5955 // either. 5956 5957 // If the operand is a float, integer, or vector constant, spill to a 5958 // constant pool entry to get its address. 5959 const Value *OpVal = OpInfo.CallOperandVal; 5960 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 5961 isa<ConstantVector>(OpVal)) { 5962 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 5963 TLI.getPointerTy()); 5964 } else { 5965 // Otherwise, create a stack slot and emit a store to it before the 5966 // asm. 5967 Type *Ty = OpVal->getType(); 5968 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 5969 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 5970 MachineFunction &MF = DAG.getMachineFunction(); 5971 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5972 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 5973 Chain = DAG.getStore(Chain, getCurDebugLoc(), 5974 OpInfo.CallOperand, StackSlot, 5975 MachinePointerInfo::getFixedStack(SSFI), 5976 false, false, 0); 5977 OpInfo.CallOperand = StackSlot; 5978 } 5979 5980 // There is no longer a Value* corresponding to this operand. 5981 OpInfo.CallOperandVal = 0; 5982 5983 // It is now an indirect operand. 5984 OpInfo.isIndirect = true; 5985 } 5986 5987 // If this constraint is for a specific register, allocate it before 5988 // anything else. 5989 if (OpInfo.ConstraintType == TargetLowering::C_Register) 5990 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 5991 InputRegs); 5992 } 5993 5994 // Second pass - Loop over all of the operands, assigning virtual or physregs 5995 // to register class operands. 5996 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 5997 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 5998 5999 // C_Register operands have already been allocated, Other/Memory don't need 6000 // to be. 6001 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6002 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo, OutputRegs, 6003 InputRegs); 6004 } 6005 6006 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6007 std::vector<SDValue> AsmNodeOperands; 6008 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6009 AsmNodeOperands.push_back( 6010 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6011 TLI.getPointerTy())); 6012 6013 // If we have a !srcloc metadata node associated with it, we want to attach 6014 // this to the ultimately generated inline asm machineinstr. To do this, we 6015 // pass in the third operand as this (potentially null) inline asm MDNode. 6016 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6017 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6018 6019 // Remember the HasSideEffect and AlignStack bits as operand 3. 6020 unsigned ExtraInfo = 0; 6021 if (IA->hasSideEffects()) 6022 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6023 if (IA->isAlignStack()) 6024 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6025 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6026 TLI.getPointerTy())); 6027 6028 // Loop over all of the inputs, copying the operand values into the 6029 // appropriate registers and processing the output regs. 6030 RegsForValue RetValRegs; 6031 6032 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6033 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6034 6035 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6036 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6037 6038 switch (OpInfo.Type) { 6039 case InlineAsm::isOutput: { 6040 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6041 OpInfo.ConstraintType != TargetLowering::C_Register) { 6042 // Memory output, or 'other' output (e.g. 'X' constraint). 6043 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6044 6045 // Add information to the INLINEASM node to know about this output. 6046 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6047 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6048 TLI.getPointerTy())); 6049 AsmNodeOperands.push_back(OpInfo.CallOperand); 6050 break; 6051 } 6052 6053 // Otherwise, this is a register or register class output. 6054 6055 // Copy the output from the appropriate register. Find a register that 6056 // we can use. 6057 if (OpInfo.AssignedRegs.Regs.empty()) 6058 report_fatal_error("Couldn't allocate output reg for constraint '" + 6059 Twine(OpInfo.ConstraintCode) + "'!"); 6060 6061 // If this is an indirect operand, store through the pointer after the 6062 // asm. 6063 if (OpInfo.isIndirect) { 6064 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6065 OpInfo.CallOperandVal)); 6066 } else { 6067 // This is the result value of the call. 6068 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6069 // Concatenate this output onto the outputs list. 6070 RetValRegs.append(OpInfo.AssignedRegs); 6071 } 6072 6073 // Add information to the INLINEASM node to know that this register is 6074 // set. 6075 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6076 InlineAsm::Kind_RegDefEarlyClobber : 6077 InlineAsm::Kind_RegDef, 6078 false, 6079 0, 6080 DAG, 6081 AsmNodeOperands); 6082 break; 6083 } 6084 case InlineAsm::isInput: { 6085 SDValue InOperandVal = OpInfo.CallOperand; 6086 6087 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6088 // If this is required to match an output register we have already set, 6089 // just use its register. 6090 unsigned OperandNo = OpInfo.getMatchedOperand(); 6091 6092 // Scan until we find the definition we already emitted of this operand. 6093 // When we find it, create a RegsForValue operand. 6094 unsigned CurOp = InlineAsm::Op_FirstOperand; 6095 for (; OperandNo; --OperandNo) { 6096 // Advance to the next operand. 6097 unsigned OpFlag = 6098 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6099 assert((InlineAsm::isRegDefKind(OpFlag) || 6100 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6101 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6102 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6103 } 6104 6105 unsigned OpFlag = 6106 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6107 if (InlineAsm::isRegDefKind(OpFlag) || 6108 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6109 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6110 if (OpInfo.isIndirect) { 6111 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6112 LLVMContext &Ctx = *DAG.getContext(); 6113 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6114 " don't know how to handle tied " 6115 "indirect register inputs"); 6116 } 6117 6118 RegsForValue MatchedRegs; 6119 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6120 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6121 MatchedRegs.RegVTs.push_back(RegVT); 6122 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6123 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6124 i != e; ++i) 6125 MatchedRegs.Regs.push_back 6126 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6127 6128 // Use the produced MatchedRegs object to 6129 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6130 Chain, &Flag); 6131 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6132 true, OpInfo.getMatchedOperand(), 6133 DAG, AsmNodeOperands); 6134 break; 6135 } 6136 6137 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6138 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6139 "Unexpected number of operands"); 6140 // Add information to the INLINEASM node to know about this input. 6141 // See InlineAsm.h isUseOperandTiedToDef. 6142 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6143 OpInfo.getMatchedOperand()); 6144 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6145 TLI.getPointerTy())); 6146 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6147 break; 6148 } 6149 6150 // Treat indirect 'X' constraint as memory. 6151 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6152 OpInfo.isIndirect) 6153 OpInfo.ConstraintType = TargetLowering::C_Memory; 6154 6155 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6156 std::vector<SDValue> Ops; 6157 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6158 Ops, DAG); 6159 if (Ops.empty()) 6160 report_fatal_error("Invalid operand for inline asm constraint '" + 6161 Twine(OpInfo.ConstraintCode) + "'!"); 6162 6163 // Add information to the INLINEASM node to know about this input. 6164 unsigned ResOpType = 6165 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6166 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6167 TLI.getPointerTy())); 6168 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6169 break; 6170 } 6171 6172 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6173 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6174 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6175 "Memory operands expect pointer values"); 6176 6177 // Add information to the INLINEASM node to know about this input. 6178 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6179 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6180 TLI.getPointerTy())); 6181 AsmNodeOperands.push_back(InOperandVal); 6182 break; 6183 } 6184 6185 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6186 OpInfo.ConstraintType == TargetLowering::C_Register) && 6187 "Unknown constraint type!"); 6188 assert(!OpInfo.isIndirect && 6189 "Don't know how to handle indirect register inputs yet!"); 6190 6191 // Copy the input into the appropriate registers. 6192 if (OpInfo.AssignedRegs.Regs.empty()) 6193 report_fatal_error("Couldn't allocate input reg for constraint '" + 6194 Twine(OpInfo.ConstraintCode) + "'!"); 6195 6196 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6197 Chain, &Flag); 6198 6199 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6200 DAG, AsmNodeOperands); 6201 break; 6202 } 6203 case InlineAsm::isClobber: { 6204 // Add the clobbered value to the operand list, so that the register 6205 // allocator is aware that the physreg got clobbered. 6206 if (!OpInfo.AssignedRegs.Regs.empty()) 6207 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6208 false, 0, DAG, 6209 AsmNodeOperands); 6210 break; 6211 } 6212 } 6213 } 6214 6215 // Finish up input operands. Set the input chain and add the flag last. 6216 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6217 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6218 6219 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6220 DAG.getVTList(MVT::Other, MVT::Glue), 6221 &AsmNodeOperands[0], AsmNodeOperands.size()); 6222 Flag = Chain.getValue(1); 6223 6224 // If this asm returns a register value, copy the result from that register 6225 // and set it as the value of the call. 6226 if (!RetValRegs.Regs.empty()) { 6227 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6228 Chain, &Flag); 6229 6230 // FIXME: Why don't we do this for inline asms with MRVs? 6231 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6232 EVT ResultType = TLI.getValueType(CS.getType()); 6233 6234 // If any of the results of the inline asm is a vector, it may have the 6235 // wrong width/num elts. This can happen for register classes that can 6236 // contain multiple different value types. The preg or vreg allocated may 6237 // not have the same VT as was expected. Convert it to the right type 6238 // with bit_convert. 6239 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6240 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6241 ResultType, Val); 6242 6243 } else if (ResultType != Val.getValueType() && 6244 ResultType.isInteger() && Val.getValueType().isInteger()) { 6245 // If a result value was tied to an input value, the computed result may 6246 // have a wider width than the expected result. Extract the relevant 6247 // portion. 6248 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6249 } 6250 6251 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6252 } 6253 6254 setValue(CS.getInstruction(), Val); 6255 // Don't need to use this as a chain in this case. 6256 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6257 return; 6258 } 6259 6260 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6261 6262 // Process indirect outputs, first output all of the flagged copies out of 6263 // physregs. 6264 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6265 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6266 const Value *Ptr = IndirectStoresToEmit[i].second; 6267 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6268 Chain, &Flag); 6269 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6270 } 6271 6272 // Emit the non-flagged stores from the physregs. 6273 SmallVector<SDValue, 8> OutChains; 6274 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6275 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6276 StoresToEmit[i].first, 6277 getValue(StoresToEmit[i].second), 6278 MachinePointerInfo(StoresToEmit[i].second), 6279 false, false, 0); 6280 OutChains.push_back(Val); 6281 } 6282 6283 if (!OutChains.empty()) 6284 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6285 &OutChains[0], OutChains.size()); 6286 6287 DAG.setRoot(Chain); 6288 } 6289 6290 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6291 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6292 MVT::Other, getRoot(), 6293 getValue(I.getArgOperand(0)), 6294 DAG.getSrcValue(I.getArgOperand(0)))); 6295 } 6296 6297 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6298 const TargetData &TD = *TLI.getTargetData(); 6299 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6300 getRoot(), getValue(I.getOperand(0)), 6301 DAG.getSrcValue(I.getOperand(0)), 6302 TD.getABITypeAlignment(I.getType())); 6303 setValue(&I, V); 6304 DAG.setRoot(V.getValue(1)); 6305 } 6306 6307 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6308 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6309 MVT::Other, getRoot(), 6310 getValue(I.getArgOperand(0)), 6311 DAG.getSrcValue(I.getArgOperand(0)))); 6312 } 6313 6314 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6315 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6316 MVT::Other, getRoot(), 6317 getValue(I.getArgOperand(0)), 6318 getValue(I.getArgOperand(1)), 6319 DAG.getSrcValue(I.getArgOperand(0)), 6320 DAG.getSrcValue(I.getArgOperand(1)))); 6321 } 6322 6323 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6324 /// implementation, which just calls LowerCall. 6325 /// FIXME: When all targets are 6326 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6327 std::pair<SDValue, SDValue> 6328 TargetLowering::LowerCallTo(SDValue Chain, Type *RetTy, 6329 bool RetSExt, bool RetZExt, bool isVarArg, 6330 bool isInreg, unsigned NumFixedArgs, 6331 CallingConv::ID CallConv, bool isTailCall, 6332 bool isReturnValueUsed, 6333 SDValue Callee, 6334 ArgListTy &Args, SelectionDAG &DAG, 6335 DebugLoc dl) const { 6336 // Handle all of the outgoing arguments. 6337 SmallVector<ISD::OutputArg, 32> Outs; 6338 SmallVector<SDValue, 32> OutVals; 6339 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6340 SmallVector<EVT, 4> ValueVTs; 6341 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6342 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6343 Value != NumValues; ++Value) { 6344 EVT VT = ValueVTs[Value]; 6345 Type *ArgTy = VT.getTypeForEVT(RetTy->getContext()); 6346 SDValue Op = SDValue(Args[i].Node.getNode(), 6347 Args[i].Node.getResNo() + Value); 6348 ISD::ArgFlagsTy Flags; 6349 unsigned OriginalAlignment = 6350 getTargetData()->getABITypeAlignment(ArgTy); 6351 6352 if (Args[i].isZExt) 6353 Flags.setZExt(); 6354 if (Args[i].isSExt) 6355 Flags.setSExt(); 6356 if (Args[i].isInReg) 6357 Flags.setInReg(); 6358 if (Args[i].isSRet) 6359 Flags.setSRet(); 6360 if (Args[i].isByVal) { 6361 Flags.setByVal(); 6362 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6363 Type *ElementTy = Ty->getElementType(); 6364 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6365 // For ByVal, alignment should come from FE. BE will guess if this 6366 // info is not there but there are cases it cannot get right. 6367 unsigned FrameAlign; 6368 if (Args[i].Alignment) 6369 FrameAlign = Args[i].Alignment; 6370 else 6371 FrameAlign = getByValTypeAlignment(ElementTy); 6372 Flags.setByValAlign(FrameAlign); 6373 } 6374 if (Args[i].isNest) 6375 Flags.setNest(); 6376 Flags.setOrigAlign(OriginalAlignment); 6377 6378 EVT PartVT = getRegisterType(RetTy->getContext(), VT); 6379 unsigned NumParts = getNumRegisters(RetTy->getContext(), VT); 6380 SmallVector<SDValue, 4> Parts(NumParts); 6381 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6382 6383 if (Args[i].isSExt) 6384 ExtendKind = ISD::SIGN_EXTEND; 6385 else if (Args[i].isZExt) 6386 ExtendKind = ISD::ZERO_EXTEND; 6387 6388 getCopyToParts(DAG, dl, Op, &Parts[0], NumParts, 6389 PartVT, ExtendKind); 6390 6391 for (unsigned j = 0; j != NumParts; ++j) { 6392 // if it isn't first piece, alignment must be 1 6393 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6394 i < NumFixedArgs); 6395 if (NumParts > 1 && j == 0) 6396 MyFlags.Flags.setSplit(); 6397 else if (j != 0) 6398 MyFlags.Flags.setOrigAlign(1); 6399 6400 Outs.push_back(MyFlags); 6401 OutVals.push_back(Parts[j]); 6402 } 6403 } 6404 } 6405 6406 // Handle the incoming return values from the call. 6407 SmallVector<ISD::InputArg, 32> Ins; 6408 SmallVector<EVT, 4> RetTys; 6409 ComputeValueVTs(*this, RetTy, RetTys); 6410 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6411 EVT VT = RetTys[I]; 6412 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6413 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6414 for (unsigned i = 0; i != NumRegs; ++i) { 6415 ISD::InputArg MyFlags; 6416 MyFlags.VT = RegisterVT.getSimpleVT(); 6417 MyFlags.Used = isReturnValueUsed; 6418 if (RetSExt) 6419 MyFlags.Flags.setSExt(); 6420 if (RetZExt) 6421 MyFlags.Flags.setZExt(); 6422 if (isInreg) 6423 MyFlags.Flags.setInReg(); 6424 Ins.push_back(MyFlags); 6425 } 6426 } 6427 6428 SmallVector<SDValue, 4> InVals; 6429 Chain = LowerCall(Chain, Callee, CallConv, isVarArg, isTailCall, 6430 Outs, OutVals, Ins, dl, DAG, InVals); 6431 6432 // Verify that the target's LowerCall behaved as expected. 6433 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 6434 "LowerCall didn't return a valid chain!"); 6435 assert((!isTailCall || InVals.empty()) && 6436 "LowerCall emitted a return value for a tail call!"); 6437 assert((isTailCall || InVals.size() == Ins.size()) && 6438 "LowerCall didn't emit the correct number of values!"); 6439 6440 // For a tail call, the return value is merely live-out and there aren't 6441 // any nodes in the DAG representing it. Return a special value to 6442 // indicate that a tail call has been emitted and no more Instructions 6443 // should be processed in the current block. 6444 if (isTailCall) { 6445 DAG.setRoot(Chain); 6446 return std::make_pair(SDValue(), SDValue()); 6447 } 6448 6449 DEBUG(for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6450 assert(InVals[i].getNode() && 6451 "LowerCall emitted a null value!"); 6452 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6453 "LowerCall emitted a value with the wrong type!"); 6454 }); 6455 6456 // Collect the legal value parts into potentially illegal values 6457 // that correspond to the original function's return values. 6458 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6459 if (RetSExt) 6460 AssertOp = ISD::AssertSext; 6461 else if (RetZExt) 6462 AssertOp = ISD::AssertZext; 6463 SmallVector<SDValue, 4> ReturnValues; 6464 unsigned CurReg = 0; 6465 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6466 EVT VT = RetTys[I]; 6467 EVT RegisterVT = getRegisterType(RetTy->getContext(), VT); 6468 unsigned NumRegs = getNumRegisters(RetTy->getContext(), VT); 6469 6470 ReturnValues.push_back(getCopyFromParts(DAG, dl, &InVals[CurReg], 6471 NumRegs, RegisterVT, VT, 6472 AssertOp)); 6473 CurReg += NumRegs; 6474 } 6475 6476 // For a function returning void, there is no return value. We can't create 6477 // such a node, so we just return a null return value in that case. In 6478 // that case, nothing will actually look at the value. 6479 if (ReturnValues.empty()) 6480 return std::make_pair(SDValue(), Chain); 6481 6482 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 6483 DAG.getVTList(&RetTys[0], RetTys.size()), 6484 &ReturnValues[0], ReturnValues.size()); 6485 return std::make_pair(Res, Chain); 6486 } 6487 6488 void TargetLowering::LowerOperationWrapper(SDNode *N, 6489 SmallVectorImpl<SDValue> &Results, 6490 SelectionDAG &DAG) const { 6491 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6492 if (Res.getNode()) 6493 Results.push_back(Res); 6494 } 6495 6496 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6497 llvm_unreachable("LowerOperation not implemented for this target!"); 6498 return SDValue(); 6499 } 6500 6501 void 6502 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6503 SDValue Op = getNonRegisterValue(V); 6504 assert((Op.getOpcode() != ISD::CopyFromReg || 6505 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6506 "Copy from a reg to the same reg!"); 6507 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6508 6509 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6510 SDValue Chain = DAG.getEntryNode(); 6511 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6512 PendingExports.push_back(Chain); 6513 } 6514 6515 #include "llvm/CodeGen/SelectionDAGISel.h" 6516 6517 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6518 /// entry block, return true. This includes arguments used by switches, since 6519 /// the switch may expand into multiple basic blocks. 6520 static bool isOnlyUsedInEntryBlock(const Argument *A) { 6521 // With FastISel active, we may be splitting blocks, so force creation 6522 // of virtual registers for all non-dead arguments. 6523 if (EnableFastISel) 6524 return A->use_empty(); 6525 6526 const BasicBlock *Entry = A->getParent()->begin(); 6527 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6528 UI != E; ++UI) { 6529 const User *U = *UI; 6530 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6531 return false; // Use not in entry block. 6532 } 6533 return true; 6534 } 6535 6536 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6537 // If this is the entry block, emit arguments. 6538 const Function &F = *LLVMBB->getParent(); 6539 SelectionDAG &DAG = SDB->DAG; 6540 DebugLoc dl = SDB->getCurDebugLoc(); 6541 const TargetData *TD = TLI.getTargetData(); 6542 SmallVector<ISD::InputArg, 16> Ins; 6543 6544 // Check whether the function can return without sret-demotion. 6545 SmallVector<ISD::OutputArg, 4> Outs; 6546 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6547 Outs, TLI); 6548 6549 if (!FuncInfo->CanLowerReturn) { 6550 // Put in an sret pointer parameter before all the other parameters. 6551 SmallVector<EVT, 1> ValueVTs; 6552 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6553 6554 // NOTE: Assuming that a pointer will never break down to more than one VT 6555 // or one register. 6556 ISD::ArgFlagsTy Flags; 6557 Flags.setSRet(); 6558 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6559 ISD::InputArg RetArg(Flags, RegisterVT, true); 6560 Ins.push_back(RetArg); 6561 } 6562 6563 // Set up the incoming argument description vector. 6564 unsigned Idx = 1; 6565 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6566 I != E; ++I, ++Idx) { 6567 SmallVector<EVT, 4> ValueVTs; 6568 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6569 bool isArgValueUsed = !I->use_empty(); 6570 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6571 Value != NumValues; ++Value) { 6572 EVT VT = ValueVTs[Value]; 6573 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6574 ISD::ArgFlagsTy Flags; 6575 unsigned OriginalAlignment = 6576 TD->getABITypeAlignment(ArgTy); 6577 6578 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6579 Flags.setZExt(); 6580 if (F.paramHasAttr(Idx, Attribute::SExt)) 6581 Flags.setSExt(); 6582 if (F.paramHasAttr(Idx, Attribute::InReg)) 6583 Flags.setInReg(); 6584 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6585 Flags.setSRet(); 6586 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6587 Flags.setByVal(); 6588 PointerType *Ty = cast<PointerType>(I->getType()); 6589 Type *ElementTy = Ty->getElementType(); 6590 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6591 // For ByVal, alignment should be passed from FE. BE will guess if 6592 // this info is not there but there are cases it cannot get right. 6593 unsigned FrameAlign; 6594 if (F.getParamAlignment(Idx)) 6595 FrameAlign = F.getParamAlignment(Idx); 6596 else 6597 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6598 Flags.setByValAlign(FrameAlign); 6599 } 6600 if (F.paramHasAttr(Idx, Attribute::Nest)) 6601 Flags.setNest(); 6602 Flags.setOrigAlign(OriginalAlignment); 6603 6604 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6605 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6606 for (unsigned i = 0; i != NumRegs; ++i) { 6607 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6608 if (NumRegs > 1 && i == 0) 6609 MyFlags.Flags.setSplit(); 6610 // if it isn't first piece, alignment must be 1 6611 else if (i > 0) 6612 MyFlags.Flags.setOrigAlign(1); 6613 Ins.push_back(MyFlags); 6614 } 6615 } 6616 } 6617 6618 // Call the target to set up the argument values. 6619 SmallVector<SDValue, 8> InVals; 6620 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6621 F.isVarArg(), Ins, 6622 dl, DAG, InVals); 6623 6624 // Verify that the target's LowerFormalArguments behaved as expected. 6625 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6626 "LowerFormalArguments didn't return a valid chain!"); 6627 assert(InVals.size() == Ins.size() && 6628 "LowerFormalArguments didn't emit the correct number of values!"); 6629 DEBUG({ 6630 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6631 assert(InVals[i].getNode() && 6632 "LowerFormalArguments emitted a null value!"); 6633 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6634 "LowerFormalArguments emitted a value with the wrong type!"); 6635 } 6636 }); 6637 6638 // Update the DAG with the new chain value resulting from argument lowering. 6639 DAG.setRoot(NewRoot); 6640 6641 // Set up the argument values. 6642 unsigned i = 0; 6643 Idx = 1; 6644 if (!FuncInfo->CanLowerReturn) { 6645 // Create a virtual register for the sret pointer, and put in a copy 6646 // from the sret argument into it. 6647 SmallVector<EVT, 1> ValueVTs; 6648 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6649 EVT VT = ValueVTs[0]; 6650 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6651 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6652 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6653 RegVT, VT, AssertOp); 6654 6655 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6656 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6657 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6658 FuncInfo->DemoteRegister = SRetReg; 6659 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6660 SRetReg, ArgValue); 6661 DAG.setRoot(NewRoot); 6662 6663 // i indexes lowered arguments. Bump it past the hidden sret argument. 6664 // Idx indexes LLVM arguments. Don't touch it. 6665 ++i; 6666 } 6667 6668 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6669 ++I, ++Idx) { 6670 SmallVector<SDValue, 4> ArgValues; 6671 SmallVector<EVT, 4> ValueVTs; 6672 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6673 unsigned NumValues = ValueVTs.size(); 6674 6675 // If this argument is unused then remember its value. It is used to generate 6676 // debugging information. 6677 if (I->use_empty() && NumValues) 6678 SDB->setUnusedArgValue(I, InVals[i]); 6679 6680 for (unsigned Val = 0; Val != NumValues; ++Val) { 6681 EVT VT = ValueVTs[Val]; 6682 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6683 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6684 6685 if (!I->use_empty()) { 6686 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6687 if (F.paramHasAttr(Idx, Attribute::SExt)) 6688 AssertOp = ISD::AssertSext; 6689 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6690 AssertOp = ISD::AssertZext; 6691 6692 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6693 NumParts, PartVT, VT, 6694 AssertOp)); 6695 } 6696 6697 i += NumParts; 6698 } 6699 6700 // We don't need to do anything else for unused arguments. 6701 if (ArgValues.empty()) 6702 continue; 6703 6704 // Note down frame index. 6705 if (FrameIndexSDNode *FI = 6706 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6707 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6708 6709 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6710 SDB->getCurDebugLoc()); 6711 6712 SDB->setValue(I, Res); 6713 if (!EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6714 if (LoadSDNode *LNode = 6715 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6716 if (FrameIndexSDNode *FI = 6717 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6718 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6719 } 6720 6721 // If this argument is live outside of the entry block, insert a copy from 6722 // wherever we got it to the vreg that other BB's will reference it as. 6723 if (!EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6724 // If we can, though, try to skip creating an unnecessary vreg. 6725 // FIXME: This isn't very clean... it would be nice to make this more 6726 // general. It's also subtly incompatible with the hacks FastISel 6727 // uses with vregs. 6728 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6729 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6730 FuncInfo->ValueMap[I] = Reg; 6731 continue; 6732 } 6733 } 6734 if (!isOnlyUsedInEntryBlock(I)) { 6735 FuncInfo->InitializeRegForValue(I); 6736 SDB->CopyToExportRegsIfNeeded(I); 6737 } 6738 } 6739 6740 assert(i == InVals.size() && "Argument register count mismatch!"); 6741 6742 // Finally, if the target has anything special to do, allow it to do so. 6743 // FIXME: this should insert code into the DAG! 6744 EmitFunctionEntryCode(); 6745 } 6746 6747 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6748 /// ensure constants are generated when needed. Remember the virtual registers 6749 /// that need to be added to the Machine PHI nodes as input. We cannot just 6750 /// directly add them, because expansion might result in multiple MBB's for one 6751 /// BB. As such, the start of the BB might correspond to a different MBB than 6752 /// the end. 6753 /// 6754 void 6755 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6756 const TerminatorInst *TI = LLVMBB->getTerminator(); 6757 6758 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6759 6760 // Check successor nodes' PHI nodes that expect a constant to be available 6761 // from this block. 6762 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6763 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6764 if (!isa<PHINode>(SuccBB->begin())) continue; 6765 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6766 6767 // If this terminator has multiple identical successors (common for 6768 // switches), only handle each succ once. 6769 if (!SuccsHandled.insert(SuccMBB)) continue; 6770 6771 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6772 6773 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6774 // nodes and Machine PHI nodes, but the incoming operands have not been 6775 // emitted yet. 6776 for (BasicBlock::const_iterator I = SuccBB->begin(); 6777 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6778 // Ignore dead phi's. 6779 if (PN->use_empty()) continue; 6780 6781 // Skip empty types 6782 if (PN->getType()->isEmptyTy()) 6783 continue; 6784 6785 unsigned Reg; 6786 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6787 6788 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6789 unsigned &RegOut = ConstantsOut[C]; 6790 if (RegOut == 0) { 6791 RegOut = FuncInfo.CreateRegs(C->getType()); 6792 CopyValueToVirtualRegister(C, RegOut); 6793 } 6794 Reg = RegOut; 6795 } else { 6796 DenseMap<const Value *, unsigned>::iterator I = 6797 FuncInfo.ValueMap.find(PHIOp); 6798 if (I != FuncInfo.ValueMap.end()) 6799 Reg = I->second; 6800 else { 6801 assert(isa<AllocaInst>(PHIOp) && 6802 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6803 "Didn't codegen value into a register!??"); 6804 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6805 CopyValueToVirtualRegister(PHIOp, Reg); 6806 } 6807 } 6808 6809 // Remember that this register needs to added to the machine PHI node as 6810 // the input for this MBB. 6811 SmallVector<EVT, 4> ValueVTs; 6812 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6813 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6814 EVT VT = ValueVTs[vti]; 6815 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6816 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6817 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6818 Reg += NumRegisters; 6819 } 6820 } 6821 } 6822 ConstantsOut.clear(); 6823 } 6824