xref: /llvm-project/llvm/lib/CodeGen/SelectionDAG/SelectionDAGBuilder.cpp (revision 81ec494c363d4934e692e8b35e0b3fbbc3de1c2b)
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/Analysis/BranchProbabilityInfo.h"
25 #include "llvm/Analysis/ConstantFolding.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/MemoryLocation.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Analysis/ValueTracking.h"
30 #include "llvm/Analysis/VectorUtils.h"
31 #include "llvm/CodeGen/Analysis.h"
32 #include "llvm/CodeGen/AssignmentTrackingAnalysis.h"
33 #include "llvm/CodeGen/CodeGenCommonISel.h"
34 #include "llvm/CodeGen/FunctionLoweringInfo.h"
35 #include "llvm/CodeGen/GCMetadata.h"
36 #include "llvm/CodeGen/ISDOpcodes.h"
37 #include "llvm/CodeGen/MachineBasicBlock.h"
38 #include "llvm/CodeGen/MachineFrameInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
42 #include "llvm/CodeGen/MachineMemOperand.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachineOperand.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/RuntimeLibcalls.h"
47 #include "llvm/CodeGen/SelectionDAG.h"
48 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
49 #include "llvm/CodeGen/StackMaps.h"
50 #include "llvm/CodeGen/SwiftErrorValueTracking.h"
51 #include "llvm/CodeGen/TargetFrameLowering.h"
52 #include "llvm/CodeGen/TargetInstrInfo.h"
53 #include "llvm/CodeGen/TargetOpcodes.h"
54 #include "llvm/CodeGen/TargetRegisterInfo.h"
55 #include "llvm/CodeGen/TargetSubtargetInfo.h"
56 #include "llvm/CodeGen/WinEHFuncInfo.h"
57 #include "llvm/IR/Argument.h"
58 #include "llvm/IR/Attributes.h"
59 #include "llvm/IR/BasicBlock.h"
60 #include "llvm/IR/CFG.h"
61 #include "llvm/IR/CallingConv.h"
62 #include "llvm/IR/Constant.h"
63 #include "llvm/IR/ConstantRange.h"
64 #include "llvm/IR/Constants.h"
65 #include "llvm/IR/DataLayout.h"
66 #include "llvm/IR/DebugInfo.h"
67 #include "llvm/IR/DebugInfoMetadata.h"
68 #include "llvm/IR/DerivedTypes.h"
69 #include "llvm/IR/DiagnosticInfo.h"
70 #include "llvm/IR/EHPersonalities.h"
71 #include "llvm/IR/Function.h"
72 #include "llvm/IR/GetElementPtrTypeIterator.h"
73 #include "llvm/IR/InlineAsm.h"
74 #include "llvm/IR/InstrTypes.h"
75 #include "llvm/IR/Instructions.h"
76 #include "llvm/IR/IntrinsicInst.h"
77 #include "llvm/IR/Intrinsics.h"
78 #include "llvm/IR/IntrinsicsAArch64.h"
79 #include "llvm/IR/IntrinsicsWebAssembly.h"
80 #include "llvm/IR/LLVMContext.h"
81 #include "llvm/IR/Metadata.h"
82 #include "llvm/IR/Module.h"
83 #include "llvm/IR/Operator.h"
84 #include "llvm/IR/PatternMatch.h"
85 #include "llvm/IR/Statepoint.h"
86 #include "llvm/IR/Type.h"
87 #include "llvm/IR/User.h"
88 #include "llvm/IR/Value.h"
89 #include "llvm/MC/MCContext.h"
90 #include "llvm/Support/AtomicOrdering.h"
91 #include "llvm/Support/Casting.h"
92 #include "llvm/Support/CommandLine.h"
93 #include "llvm/Support/Compiler.h"
94 #include "llvm/Support/Debug.h"
95 #include "llvm/Support/MathExtras.h"
96 #include "llvm/Support/raw_ostream.h"
97 #include "llvm/Target/TargetIntrinsicInfo.h"
98 #include "llvm/Target/TargetMachine.h"
99 #include "llvm/Target/TargetOptions.h"
100 #include "llvm/TargetParser/Triple.h"
101 #include "llvm/Transforms/Utils/Local.h"
102 #include <cstddef>
103 #include <iterator>
104 #include <limits>
105 #include <optional>
106 #include <tuple>
107 
108 using namespace llvm;
109 using namespace PatternMatch;
110 using namespace SwitchCG;
111 
112 #define DEBUG_TYPE "isel"
113 
114 /// LimitFloatPrecision - Generate low-precision inline sequences for
115 /// some float libcalls (6, 8 or 12 bits).
116 static unsigned LimitFloatPrecision;
117 
118 static cl::opt<bool>
119     InsertAssertAlign("insert-assert-align", cl::init(true),
120                       cl::desc("Insert the experimental `assertalign` node."),
121                       cl::ReallyHidden);
122 
123 static cl::opt<unsigned, true>
124     LimitFPPrecision("limit-float-precision",
125                      cl::desc("Generate low-precision inline sequences "
126                               "for some float libcalls"),
127                      cl::location(LimitFloatPrecision), cl::Hidden,
128                      cl::init(0));
129 
130 static cl::opt<unsigned> SwitchPeelThreshold(
131     "switch-peel-threshold", cl::Hidden, cl::init(66),
132     cl::desc("Set the case probability threshold for peeling the case from a "
133              "switch statement. A value greater than 100 will void this "
134              "optimization"));
135 
136 // Limit the width of DAG chains. This is important in general to prevent
137 // DAG-based analysis from blowing up. For example, alias analysis and
138 // load clustering may not complete in reasonable time. It is difficult to
139 // recognize and avoid this situation within each individual analysis, and
140 // future analyses are likely to have the same behavior. Limiting DAG width is
141 // the safe approach and will be especially important with global DAGs.
142 //
143 // MaxParallelChains default is arbitrarily high to avoid affecting
144 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
145 // sequence over this should have been converted to llvm.memcpy by the
146 // frontend. It is easy to induce this behavior with .ll code such as:
147 // %buffer = alloca [4096 x i8]
148 // %data = load [4096 x i8]* %argPtr
149 // store [4096 x i8] %data, [4096 x i8]* %buffer
150 static const unsigned MaxParallelChains = 64;
151 
152 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
153                                       const SDValue *Parts, unsigned NumParts,
154                                       MVT PartVT, EVT ValueVT, const Value *V,
155                                       std::optional<CallingConv::ID> CC);
156 
157 /// getCopyFromParts - Create a value that contains the specified legal parts
158 /// combined into the value they represent.  If the parts combine to a type
159 /// larger than ValueVT then AssertOp can be used to specify whether the extra
160 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
161 /// (ISD::AssertSext).
162 static SDValue
163 getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts,
164                  unsigned NumParts, MVT PartVT, EVT ValueVT, const Value *V,
165                  std::optional<CallingConv::ID> CC = std::nullopt,
166                  std::optional<ISD::NodeType> AssertOp = std::nullopt) {
167   // Let the target assemble the parts if it wants to
168   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
169   if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts,
170                                                    PartVT, ValueVT, CC))
171     return Val;
172 
173   if (ValueVT.isVector())
174     return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
175                                   CC);
176 
177   assert(NumParts > 0 && "No parts to assemble!");
178   SDValue Val = Parts[0];
179 
180   if (NumParts > 1) {
181     // Assemble the value from multiple parts.
182     if (ValueVT.isInteger()) {
183       unsigned PartBits = PartVT.getSizeInBits();
184       unsigned ValueBits = ValueVT.getSizeInBits();
185 
186       // Assemble the power of 2 part.
187       unsigned RoundParts = llvm::bit_floor(NumParts);
188       unsigned RoundBits = PartBits * RoundParts;
189       EVT RoundVT = RoundBits == ValueBits ?
190         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
191       SDValue Lo, Hi;
192 
193       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
194 
195       if (RoundParts > 2) {
196         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
197                               PartVT, HalfVT, V);
198         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
199                               RoundParts / 2, PartVT, HalfVT, V);
200       } else {
201         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
202         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
203       }
204 
205       if (DAG.getDataLayout().isBigEndian())
206         std::swap(Lo, Hi);
207 
208       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
209 
210       if (RoundParts < NumParts) {
211         // Assemble the trailing non-power-of-2 part.
212         unsigned OddParts = NumParts - RoundParts;
213         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
214         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
215                               OddVT, V, CC);
216 
217         // Combine the round and odd parts.
218         Lo = Val;
219         if (DAG.getDataLayout().isBigEndian())
220           std::swap(Lo, Hi);
221         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
222         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
223         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
224                          DAG.getConstant(Lo.getValueSizeInBits(), DL,
225                                          TLI.getShiftAmountTy(
226                                              TotalVT, DAG.getDataLayout())));
227         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
228         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
229       }
230     } else if (PartVT.isFloatingPoint()) {
231       // FP split into multiple FP parts (for ppcf128)
232       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
233              "Unexpected split");
234       SDValue Lo, Hi;
235       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
236       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
237       if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
238         std::swap(Lo, Hi);
239       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
240     } else {
241       // FP split into integer parts (soft fp)
242       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
243              !PartVT.isVector() && "Unexpected split");
244       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
245       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
246     }
247   }
248 
249   // There is now one part, held in Val.  Correct it to match ValueVT.
250   // PartEVT is the type of the register class that holds the value.
251   // ValueVT is the type of the inline asm operation.
252   EVT PartEVT = Val.getValueType();
253 
254   if (PartEVT == ValueVT)
255     return Val;
256 
257   if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
258       ValueVT.bitsLT(PartEVT)) {
259     // For an FP value in an integer part, we need to truncate to the right
260     // width first.
261     PartEVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
262     Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
263   }
264 
265   // Handle types that have the same size.
266   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
267     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
268 
269   // Handle types with different sizes.
270   if (PartEVT.isInteger() && ValueVT.isInteger()) {
271     if (ValueVT.bitsLT(PartEVT)) {
272       // For a truncate, see if we have any information to
273       // indicate whether the truncated bits will always be
274       // zero or sign-extension.
275       if (AssertOp)
276         Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
277                           DAG.getValueType(ValueVT));
278       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
279     }
280     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
281   }
282 
283   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
284     // FP_ROUND's are always exact here.
285     if (ValueVT.bitsLT(Val.getValueType()))
286       return DAG.getNode(
287           ISD::FP_ROUND, DL, ValueVT, Val,
288           DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
289 
290     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
291   }
292 
293   // Handle MMX to a narrower integer type by bitcasting MMX to integer and
294   // then truncating.
295   if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
296       ValueVT.bitsLT(PartEVT)) {
297     Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
298     return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
299   }
300 
301   report_fatal_error("Unknown mismatch in getCopyFromParts!");
302 }
303 
304 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
305                                               const Twine &ErrMsg) {
306   const Instruction *I = dyn_cast_or_null<Instruction>(V);
307   if (!V)
308     return Ctx.emitError(ErrMsg);
309 
310   const char *AsmError = ", possible invalid constraint for vector type";
311   if (const CallInst *CI = dyn_cast<CallInst>(I))
312     if (CI->isInlineAsm())
313       return Ctx.emitError(I, ErrMsg + AsmError);
314 
315   return Ctx.emitError(I, ErrMsg);
316 }
317 
318 /// getCopyFromPartsVector - Create a value that contains the specified legal
319 /// parts combined into the value they represent.  If the parts combine to a
320 /// type larger than ValueVT then AssertOp can be used to specify whether the
321 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
322 /// ValueVT (ISD::AssertSext).
323 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
324                                       const SDValue *Parts, unsigned NumParts,
325                                       MVT PartVT, EVT ValueVT, const Value *V,
326                                       std::optional<CallingConv::ID> CallConv) {
327   assert(ValueVT.isVector() && "Not a vector value");
328   assert(NumParts > 0 && "No parts to assemble!");
329   const bool IsABIRegCopy = CallConv.has_value();
330 
331   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
332   SDValue Val = Parts[0];
333 
334   // Handle a multi-element vector.
335   if (NumParts > 1) {
336     EVT IntermediateVT;
337     MVT RegisterVT;
338     unsigned NumIntermediates;
339     unsigned NumRegs;
340 
341     if (IsABIRegCopy) {
342       NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
343           *DAG.getContext(), *CallConv, ValueVT, IntermediateVT,
344           NumIntermediates, RegisterVT);
345     } else {
346       NumRegs =
347           TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
348                                      NumIntermediates, RegisterVT);
349     }
350 
351     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
352     NumParts = NumRegs; // Silence a compiler warning.
353     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
354     assert(RegisterVT.getSizeInBits() ==
355            Parts[0].getSimpleValueType().getSizeInBits() &&
356            "Part type sizes don't match!");
357 
358     // Assemble the parts into intermediate operands.
359     SmallVector<SDValue, 8> Ops(NumIntermediates);
360     if (NumIntermediates == NumParts) {
361       // If the register was not expanded, truncate or copy the value,
362       // as appropriate.
363       for (unsigned i = 0; i != NumParts; ++i)
364         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
365                                   PartVT, IntermediateVT, V, CallConv);
366     } else if (NumParts > 0) {
367       // If the intermediate type was expanded, build the intermediate
368       // operands from the parts.
369       assert(NumParts % NumIntermediates == 0 &&
370              "Must expand into a divisible number of parts!");
371       unsigned Factor = NumParts / NumIntermediates;
372       for (unsigned i = 0; i != NumIntermediates; ++i)
373         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
374                                   PartVT, IntermediateVT, V, CallConv);
375     }
376 
377     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
378     // intermediate operands.
379     EVT BuiltVectorTy =
380         IntermediateVT.isVector()
381             ? EVT::getVectorVT(
382                   *DAG.getContext(), IntermediateVT.getScalarType(),
383                   IntermediateVT.getVectorElementCount() * NumParts)
384             : EVT::getVectorVT(*DAG.getContext(),
385                                IntermediateVT.getScalarType(),
386                                NumIntermediates);
387     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
388                                                 : ISD::BUILD_VECTOR,
389                       DL, BuiltVectorTy, Ops);
390   }
391 
392   // There is now one part, held in Val.  Correct it to match ValueVT.
393   EVT PartEVT = Val.getValueType();
394 
395   if (PartEVT == ValueVT)
396     return Val;
397 
398   if (PartEVT.isVector()) {
399     // Vector/Vector bitcast.
400     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
401       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
402 
403     // If the parts vector has more elements than the value vector, then we
404     // have a vector widening case (e.g. <2 x float> -> <4 x float>).
405     // Extract the elements we want.
406     if (PartEVT.getVectorElementCount() != ValueVT.getVectorElementCount()) {
407       assert((PartEVT.getVectorElementCount().getKnownMinValue() >
408               ValueVT.getVectorElementCount().getKnownMinValue()) &&
409              (PartEVT.getVectorElementCount().isScalable() ==
410               ValueVT.getVectorElementCount().isScalable()) &&
411              "Cannot narrow, it would be a lossy transformation");
412       PartEVT =
413           EVT::getVectorVT(*DAG.getContext(), PartEVT.getVectorElementType(),
414                            ValueVT.getVectorElementCount());
415       Val = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, PartEVT, Val,
416                         DAG.getVectorIdxConstant(0, DL));
417       if (PartEVT == ValueVT)
418         return Val;
419       if (PartEVT.isInteger() && ValueVT.isFloatingPoint())
420         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
421 
422       // Vector/Vector bitcast (e.g. <2 x bfloat> -> <2 x half>).
423       if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
424         return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
425     }
426 
427     // Promoted vector extract
428     return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
429   }
430 
431   // Trivial bitcast if the types are the same size and the destination
432   // vector type is legal.
433   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
434       TLI.isTypeLegal(ValueVT))
435     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
436 
437   if (ValueVT.getVectorNumElements() != 1) {
438      // Certain ABIs require that vectors are passed as integers. For vectors
439      // are the same size, this is an obvious bitcast.
440      if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
441        return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
442      } else if (ValueVT.bitsLT(PartEVT)) {
443        const uint64_t ValueSize = ValueVT.getFixedSizeInBits();
444        EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
445        // Drop the extra bits.
446        Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
447        return DAG.getBitcast(ValueVT, Val);
448      }
449 
450      diagnosePossiblyInvalidConstraint(
451          *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
452      return DAG.getUNDEF(ValueVT);
453   }
454 
455   // Handle cases such as i8 -> <1 x i1>
456   EVT ValueSVT = ValueVT.getVectorElementType();
457   if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) {
458     unsigned ValueSize = ValueSVT.getSizeInBits();
459     if (ValueSize == PartEVT.getSizeInBits()) {
460       Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val);
461     } else if (ValueSVT.isFloatingPoint() && PartEVT.isInteger()) {
462       // It's possible a scalar floating point type gets softened to integer and
463       // then promoted to a larger integer. If PartEVT is the larger integer
464       // we need to truncate it and then bitcast to the FP type.
465       assert(ValueSVT.bitsLT(PartEVT) && "Unexpected types");
466       EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
467       Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val);
468       Val = DAG.getBitcast(ValueSVT, Val);
469     } else {
470       Val = ValueVT.isFloatingPoint()
471                 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
472                 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
473     }
474   }
475 
476   return DAG.getBuildVector(ValueVT, DL, Val);
477 }
478 
479 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
480                                  SDValue Val, SDValue *Parts, unsigned NumParts,
481                                  MVT PartVT, const Value *V,
482                                  std::optional<CallingConv::ID> CallConv);
483 
484 /// getCopyToParts - Create a series of nodes that contain the specified value
485 /// split into legal parts.  If the parts contain more bits than Val, then, for
486 /// integers, ExtendKind can be used to specify how to generate the extra bits.
487 static void
488 getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
489                unsigned NumParts, MVT PartVT, const Value *V,
490                std::optional<CallingConv::ID> CallConv = std::nullopt,
491                ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
492   // Let the target split the parts if it wants to
493   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
494   if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT,
495                                       CallConv))
496     return;
497   EVT ValueVT = Val.getValueType();
498 
499   // Handle the vector case separately.
500   if (ValueVT.isVector())
501     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
502                                 CallConv);
503 
504   unsigned OrigNumParts = NumParts;
505   assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
506          "Copying to an illegal type!");
507 
508   if (NumParts == 0)
509     return;
510 
511   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
512   EVT PartEVT = PartVT;
513   if (PartEVT == ValueVT) {
514     assert(NumParts == 1 && "No-op copy with multiple parts!");
515     Parts[0] = Val;
516     return;
517   }
518 
519   unsigned PartBits = PartVT.getSizeInBits();
520   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
521     // If the parts cover more bits than the value has, promote the value.
522     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
523       assert(NumParts == 1 && "Do not know what to promote to!");
524       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
525     } else {
526       if (ValueVT.isFloatingPoint()) {
527         // FP values need to be bitcast, then extended if they are being put
528         // into a larger container.
529         ValueVT = EVT::getIntegerVT(*DAG.getContext(),  ValueVT.getSizeInBits());
530         Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
531       }
532       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
533              ValueVT.isInteger() &&
534              "Unknown mismatch!");
535       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
536       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
537       if (PartVT == MVT::x86mmx)
538         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
539     }
540   } else if (PartBits == ValueVT.getSizeInBits()) {
541     // Different types of the same size.
542     assert(NumParts == 1 && PartEVT != ValueVT);
543     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
544   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
545     // If the parts cover less bits than value has, truncate the value.
546     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
547            ValueVT.isInteger() &&
548            "Unknown mismatch!");
549     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
550     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
551     if (PartVT == MVT::x86mmx)
552       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
553   }
554 
555   // The value may have changed - recompute ValueVT.
556   ValueVT = Val.getValueType();
557   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
558          "Failed to tile the value with PartVT!");
559 
560   if (NumParts == 1) {
561     if (PartEVT != ValueVT) {
562       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
563                                         "scalar-to-vector conversion failed");
564       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
565     }
566 
567     Parts[0] = Val;
568     return;
569   }
570 
571   // Expand the value into multiple parts.
572   if (NumParts & (NumParts - 1)) {
573     // The number of parts is not a power of 2.  Split off and copy the tail.
574     assert(PartVT.isInteger() && ValueVT.isInteger() &&
575            "Do not know what to expand to!");
576     unsigned RoundParts = llvm::bit_floor(NumParts);
577     unsigned RoundBits = RoundParts * PartBits;
578     unsigned OddParts = NumParts - RoundParts;
579     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
580       DAG.getShiftAmountConstant(RoundBits, ValueVT, DL));
581 
582     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
583                    CallConv);
584 
585     if (DAG.getDataLayout().isBigEndian())
586       // The odd parts were reversed by getCopyToParts - unreverse them.
587       std::reverse(Parts + RoundParts, Parts + NumParts);
588 
589     NumParts = RoundParts;
590     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
591     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
592   }
593 
594   // The number of parts is a power of 2.  Repeatedly bisect the value using
595   // EXTRACT_ELEMENT.
596   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
597                          EVT::getIntegerVT(*DAG.getContext(),
598                                            ValueVT.getSizeInBits()),
599                          Val);
600 
601   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
602     for (unsigned i = 0; i < NumParts; i += StepSize) {
603       unsigned ThisBits = StepSize * PartBits / 2;
604       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
605       SDValue &Part0 = Parts[i];
606       SDValue &Part1 = Parts[i+StepSize/2];
607 
608       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
609                           ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
610       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
611                           ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
612 
613       if (ThisBits == PartBits && ThisVT != PartVT) {
614         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
615         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
616       }
617     }
618   }
619 
620   if (DAG.getDataLayout().isBigEndian())
621     std::reverse(Parts, Parts + OrigNumParts);
622 }
623 
624 static SDValue widenVectorToPartType(SelectionDAG &DAG, SDValue Val,
625                                      const SDLoc &DL, EVT PartVT) {
626   if (!PartVT.isVector())
627     return SDValue();
628 
629   EVT ValueVT = Val.getValueType();
630   EVT PartEVT = PartVT.getVectorElementType();
631   EVT ValueEVT = ValueVT.getVectorElementType();
632   ElementCount PartNumElts = PartVT.getVectorElementCount();
633   ElementCount ValueNumElts = ValueVT.getVectorElementCount();
634 
635   // We only support widening vectors with equivalent element types and
636   // fixed/scalable properties. If a target needs to widen a fixed-length type
637   // to a scalable one, it should be possible to use INSERT_SUBVECTOR below.
638   if (ElementCount::isKnownLE(PartNumElts, ValueNumElts) ||
639       PartNumElts.isScalable() != ValueNumElts.isScalable())
640     return SDValue();
641 
642   // Have a try for bf16 because some targets share its ABI with fp16.
643   if (ValueEVT == MVT::bf16 && PartEVT == MVT::f16) {
644     assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
645            "Cannot widen to illegal type");
646     Val = DAG.getNode(ISD::BITCAST, DL,
647                       ValueVT.changeVectorElementType(MVT::f16), Val);
648   } else if (PartEVT != ValueEVT) {
649     return SDValue();
650   }
651 
652   // Widening a scalable vector to another scalable vector is done by inserting
653   // the vector into a larger undef one.
654   if (PartNumElts.isScalable())
655     return DAG.getNode(ISD::INSERT_SUBVECTOR, DL, PartVT, DAG.getUNDEF(PartVT),
656                        Val, DAG.getVectorIdxConstant(0, DL));
657 
658   // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
659   // undef elements.
660   SmallVector<SDValue, 16> Ops;
661   DAG.ExtractVectorElements(Val, Ops);
662   SDValue EltUndef = DAG.getUNDEF(PartEVT);
663   Ops.append((PartNumElts - ValueNumElts).getFixedValue(), EltUndef);
664 
665   // FIXME: Use CONCAT for 2x -> 4x.
666   return DAG.getBuildVector(PartVT, DL, Ops);
667 }
668 
669 /// getCopyToPartsVector - Create a series of nodes that contain the specified
670 /// value split into legal parts.
671 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
672                                  SDValue Val, SDValue *Parts, unsigned NumParts,
673                                  MVT PartVT, const Value *V,
674                                  std::optional<CallingConv::ID> CallConv) {
675   EVT ValueVT = Val.getValueType();
676   assert(ValueVT.isVector() && "Not a vector");
677   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
678   const bool IsABIRegCopy = CallConv.has_value();
679 
680   if (NumParts == 1) {
681     EVT PartEVT = PartVT;
682     if (PartEVT == ValueVT) {
683       // Nothing to do.
684     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
685       // Bitconvert vector->vector case.
686       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
687     } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
688       Val = Widened;
689     } else if (PartVT.isVector() &&
690                PartEVT.getVectorElementType().bitsGE(
691                    ValueVT.getVectorElementType()) &&
692                PartEVT.getVectorElementCount() ==
693                    ValueVT.getVectorElementCount()) {
694 
695       // Promoted vector extract
696       Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
697     } else if (PartEVT.isVector() &&
698                PartEVT.getVectorElementType() !=
699                    ValueVT.getVectorElementType() &&
700                TLI.getTypeAction(*DAG.getContext(), ValueVT) ==
701                    TargetLowering::TypeWidenVector) {
702       // Combination of widening and promotion.
703       EVT WidenVT =
704           EVT::getVectorVT(*DAG.getContext(), ValueVT.getVectorElementType(),
705                            PartVT.getVectorElementCount());
706       SDValue Widened = widenVectorToPartType(DAG, Val, DL, WidenVT);
707       Val = DAG.getAnyExtOrTrunc(Widened, DL, PartVT);
708     } else {
709       // Don't extract an integer from a float vector. This can happen if the
710       // FP type gets softened to integer and then promoted. The promotion
711       // prevents it from being picked up by the earlier bitcast case.
712       if (ValueVT.getVectorElementCount().isScalar() &&
713           (!ValueVT.isFloatingPoint() || !PartVT.isInteger())) {
714         Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
715                           DAG.getVectorIdxConstant(0, DL));
716       } else {
717         uint64_t ValueSize = ValueVT.getFixedSizeInBits();
718         assert(PartVT.getFixedSizeInBits() > ValueSize &&
719                "lossy conversion of vector to scalar type");
720         EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize);
721         Val = DAG.getBitcast(IntermediateType, Val);
722         Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
723       }
724     }
725 
726     assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
727     Parts[0] = Val;
728     return;
729   }
730 
731   // Handle a multi-element vector.
732   EVT IntermediateVT;
733   MVT RegisterVT;
734   unsigned NumIntermediates;
735   unsigned NumRegs;
736   if (IsABIRegCopy) {
737     NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
738         *DAG.getContext(), *CallConv, ValueVT, IntermediateVT, NumIntermediates,
739         RegisterVT);
740   } else {
741     NumRegs =
742         TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
743                                    NumIntermediates, RegisterVT);
744   }
745 
746   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
747   NumParts = NumRegs; // Silence a compiler warning.
748   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
749 
750   assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() &&
751          "Mixing scalable and fixed vectors when copying in parts");
752 
753   std::optional<ElementCount> DestEltCnt;
754 
755   if (IntermediateVT.isVector())
756     DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates;
757   else
758     DestEltCnt = ElementCount::getFixed(NumIntermediates);
759 
760   EVT BuiltVectorTy = EVT::getVectorVT(
761       *DAG.getContext(), IntermediateVT.getScalarType(), *DestEltCnt);
762 
763   if (ValueVT == BuiltVectorTy) {
764     // Nothing to do.
765   } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) {
766     // Bitconvert vector->vector case.
767     Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
768   } else {
769     if (BuiltVectorTy.getVectorElementType().bitsGT(
770             ValueVT.getVectorElementType())) {
771       // Integer promotion.
772       ValueVT = EVT::getVectorVT(*DAG.getContext(),
773                                  BuiltVectorTy.getVectorElementType(),
774                                  ValueVT.getVectorElementCount());
775       Val = DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
776     }
777 
778     if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) {
779       Val = Widened;
780     }
781   }
782 
783   assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type");
784 
785   // Split the vector into intermediate operands.
786   SmallVector<SDValue, 8> Ops(NumIntermediates);
787   for (unsigned i = 0; i != NumIntermediates; ++i) {
788     if (IntermediateVT.isVector()) {
789       // This does something sensible for scalable vectors - see the
790       // definition of EXTRACT_SUBVECTOR for further details.
791       unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements();
792       Ops[i] =
793           DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
794                       DAG.getVectorIdxConstant(i * IntermediateNumElts, DL));
795     } else {
796       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
797                            DAG.getVectorIdxConstant(i, DL));
798     }
799   }
800 
801   // Split the intermediate operands into legal parts.
802   if (NumParts == NumIntermediates) {
803     // If the register was not expanded, promote or copy the value,
804     // as appropriate.
805     for (unsigned i = 0; i != NumParts; ++i)
806       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
807   } else if (NumParts > 0) {
808     // If the intermediate type was expanded, split each the value into
809     // legal parts.
810     assert(NumIntermediates != 0 && "division by zero");
811     assert(NumParts % NumIntermediates == 0 &&
812            "Must expand into a divisible number of parts!");
813     unsigned Factor = NumParts / NumIntermediates;
814     for (unsigned i = 0; i != NumIntermediates; ++i)
815       getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
816                      CallConv);
817   }
818 }
819 
820 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
821                            EVT valuevt, std::optional<CallingConv::ID> CC)
822     : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
823       RegCount(1, regs.size()), CallConv(CC) {}
824 
825 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
826                            const DataLayout &DL, unsigned Reg, Type *Ty,
827                            std::optional<CallingConv::ID> CC) {
828   ComputeValueVTs(TLI, DL, Ty, ValueVTs);
829 
830   CallConv = CC;
831 
832   for (EVT ValueVT : ValueVTs) {
833     unsigned NumRegs =
834         isABIMangled()
835             ? TLI.getNumRegistersForCallingConv(Context, *CC, ValueVT)
836             : TLI.getNumRegisters(Context, ValueVT);
837     MVT RegisterVT =
838         isABIMangled()
839             ? TLI.getRegisterTypeForCallingConv(Context, *CC, ValueVT)
840             : TLI.getRegisterType(Context, ValueVT);
841     for (unsigned i = 0; i != NumRegs; ++i)
842       Regs.push_back(Reg + i);
843     RegVTs.push_back(RegisterVT);
844     RegCount.push_back(NumRegs);
845     Reg += NumRegs;
846   }
847 }
848 
849 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
850                                       FunctionLoweringInfo &FuncInfo,
851                                       const SDLoc &dl, SDValue &Chain,
852                                       SDValue *Glue, const Value *V) const {
853   // A Value with type {} or [0 x %t] needs no registers.
854   if (ValueVTs.empty())
855     return SDValue();
856 
857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
858 
859   // Assemble the legal parts into the final values.
860   SmallVector<SDValue, 4> Values(ValueVTs.size());
861   SmallVector<SDValue, 8> Parts;
862   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
863     // Copy the legal parts from the registers.
864     EVT ValueVT = ValueVTs[Value];
865     unsigned NumRegs = RegCount[Value];
866     MVT RegisterVT = isABIMangled()
867                          ? TLI.getRegisterTypeForCallingConv(
868                                *DAG.getContext(), *CallConv, RegVTs[Value])
869                          : RegVTs[Value];
870 
871     Parts.resize(NumRegs);
872     for (unsigned i = 0; i != NumRegs; ++i) {
873       SDValue P;
874       if (!Glue) {
875         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
876       } else {
877         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Glue);
878         *Glue = P.getValue(2);
879       }
880 
881       Chain = P.getValue(1);
882       Parts[i] = P;
883 
884       // If the source register was virtual and if we know something about it,
885       // add an assert node.
886       if (!Register::isVirtualRegister(Regs[Part + i]) ||
887           !RegisterVT.isInteger())
888         continue;
889 
890       const FunctionLoweringInfo::LiveOutInfo *LOI =
891         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
892       if (!LOI)
893         continue;
894 
895       unsigned RegSize = RegisterVT.getScalarSizeInBits();
896       unsigned NumSignBits = LOI->NumSignBits;
897       unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
898 
899       if (NumZeroBits == RegSize) {
900         // The current value is a zero.
901         // Explicitly express that as it would be easier for
902         // optimizations to kick in.
903         Parts[i] = DAG.getConstant(0, dl, RegisterVT);
904         continue;
905       }
906 
907       // FIXME: We capture more information than the dag can represent.  For
908       // now, just use the tightest assertzext/assertsext possible.
909       bool isSExt;
910       EVT FromVT(MVT::Other);
911       if (NumZeroBits) {
912         FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
913         isSExt = false;
914       } else if (NumSignBits > 1) {
915         FromVT =
916             EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
917         isSExt = true;
918       } else {
919         continue;
920       }
921       // Add an assertion node.
922       assert(FromVT != MVT::Other);
923       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
924                              RegisterVT, P, DAG.getValueType(FromVT));
925     }
926 
927     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
928                                      RegisterVT, ValueVT, V, CallConv);
929     Part += NumRegs;
930     Parts.clear();
931   }
932 
933   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
934 }
935 
936 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
937                                  const SDLoc &dl, SDValue &Chain, SDValue *Glue,
938                                  const Value *V,
939                                  ISD::NodeType PreferredExtendType) const {
940   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
941   ISD::NodeType ExtendKind = PreferredExtendType;
942 
943   // Get the list of the values's legal parts.
944   unsigned NumRegs = Regs.size();
945   SmallVector<SDValue, 8> Parts(NumRegs);
946   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
947     unsigned NumParts = RegCount[Value];
948 
949     MVT RegisterVT = isABIMangled()
950                          ? TLI.getRegisterTypeForCallingConv(
951                                *DAG.getContext(), *CallConv, RegVTs[Value])
952                          : RegVTs[Value];
953 
954     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
955       ExtendKind = ISD::ZERO_EXTEND;
956 
957     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
958                    NumParts, RegisterVT, V, CallConv, ExtendKind);
959     Part += NumParts;
960   }
961 
962   // Copy the parts into the registers.
963   SmallVector<SDValue, 8> Chains(NumRegs);
964   for (unsigned i = 0; i != NumRegs; ++i) {
965     SDValue Part;
966     if (!Glue) {
967       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
968     } else {
969       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Glue);
970       *Glue = Part.getValue(1);
971     }
972 
973     Chains[i] = Part.getValue(0);
974   }
975 
976   if (NumRegs == 1 || Glue)
977     // If NumRegs > 1 && Glue is used then the use of the last CopyToReg is
978     // flagged to it. That is the CopyToReg nodes and the user are considered
979     // a single scheduling unit. If we create a TokenFactor and return it as
980     // chain, then the TokenFactor is both a predecessor (operand) of the
981     // user as well as a successor (the TF operands are flagged to the user).
982     // c1, f1 = CopyToReg
983     // c2, f2 = CopyToReg
984     // c3     = TokenFactor c1, c2
985     // ...
986     //        = op c3, ..., f2
987     Chain = Chains[NumRegs-1];
988   else
989     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
990 }
991 
992 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
993                                         unsigned MatchingIdx, const SDLoc &dl,
994                                         SelectionDAG &DAG,
995                                         std::vector<SDValue> &Ops) const {
996   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
997 
998   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
999   if (HasMatching)
1000     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
1001   else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) {
1002     // Put the register class of the virtual registers in the flag word.  That
1003     // way, later passes can recompute register class constraints for inline
1004     // assembly as well as normal instructions.
1005     // Don't do this for tied operands that can use the regclass information
1006     // from the def.
1007     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
1008     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
1009     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
1010   }
1011 
1012   SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
1013   Ops.push_back(Res);
1014 
1015   if (Code == InlineAsm::Kind_Clobber) {
1016     // Clobbers should always have a 1:1 mapping with registers, and may
1017     // reference registers that have illegal (e.g. vector) types. Hence, we
1018     // shouldn't try to apply any sort of splitting logic to them.
1019     assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
1020            "No 1:1 mapping from clobbers to regs?");
1021     Register SP = TLI.getStackPointerRegisterToSaveRestore();
1022     (void)SP;
1023     for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
1024       Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
1025       assert(
1026           (Regs[I] != SP ||
1027            DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
1028           "If we clobbered the stack pointer, MFI should know about it.");
1029     }
1030     return;
1031   }
1032 
1033   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
1034     MVT RegisterVT = RegVTs[Value];
1035     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value],
1036                                            RegisterVT);
1037     for (unsigned i = 0; i != NumRegs; ++i) {
1038       assert(Reg < Regs.size() && "Mismatch in # registers expected");
1039       unsigned TheReg = Regs[Reg++];
1040       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
1041     }
1042   }
1043 }
1044 
1045 SmallVector<std::pair<unsigned, TypeSize>, 4>
1046 RegsForValue::getRegsAndSizes() const {
1047   SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec;
1048   unsigned I = 0;
1049   for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
1050     unsigned RegCount = std::get<0>(CountAndVT);
1051     MVT RegisterVT = std::get<1>(CountAndVT);
1052     TypeSize RegisterSize = RegisterVT.getSizeInBits();
1053     for (unsigned E = I + RegCount; I != E; ++I)
1054       OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1055   }
1056   return OutVec;
1057 }
1058 
1059 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1060                                AssumptionCache *ac,
1061                                const TargetLibraryInfo *li) {
1062   AA = aa;
1063   AC = ac;
1064   GFI = gfi;
1065   LibInfo = li;
1066   Context = DAG.getContext();
1067   LPadToCallSiteMap.clear();
1068   SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout());
1069   AssignmentTrackingEnabled = isAssignmentTrackingEnabled(
1070       *DAG.getMachineFunction().getFunction().getParent());
1071 }
1072 
1073 void SelectionDAGBuilder::clear() {
1074   NodeMap.clear();
1075   UnusedArgNodeMap.clear();
1076   PendingLoads.clear();
1077   PendingExports.clear();
1078   PendingConstrainedFP.clear();
1079   PendingConstrainedFPStrict.clear();
1080   CurInst = nullptr;
1081   HasTailCall = false;
1082   SDNodeOrder = LowestSDNodeOrder;
1083   StatepointLowering.clear();
1084 }
1085 
1086 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1087   DanglingDebugInfoMap.clear();
1088 }
1089 
1090 // Update DAG root to include dependencies on Pending chains.
1091 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) {
1092   SDValue Root = DAG.getRoot();
1093 
1094   if (Pending.empty())
1095     return Root;
1096 
1097   // Add current root to PendingChains, unless we already indirectly
1098   // depend on it.
1099   if (Root.getOpcode() != ISD::EntryToken) {
1100     unsigned i = 0, e = Pending.size();
1101     for (; i != e; ++i) {
1102       assert(Pending[i].getNode()->getNumOperands() > 1);
1103       if (Pending[i].getNode()->getOperand(0) == Root)
1104         break;  // Don't add the root if we already indirectly depend on it.
1105     }
1106 
1107     if (i == e)
1108       Pending.push_back(Root);
1109   }
1110 
1111   if (Pending.size() == 1)
1112     Root = Pending[0];
1113   else
1114     Root = DAG.getTokenFactor(getCurSDLoc(), Pending);
1115 
1116   DAG.setRoot(Root);
1117   Pending.clear();
1118   return Root;
1119 }
1120 
1121 SDValue SelectionDAGBuilder::getMemoryRoot() {
1122   return updateRoot(PendingLoads);
1123 }
1124 
1125 SDValue SelectionDAGBuilder::getRoot() {
1126   // Chain up all pending constrained intrinsics together with all
1127   // pending loads, by simply appending them to PendingLoads and
1128   // then calling getMemoryRoot().
1129   PendingLoads.reserve(PendingLoads.size() +
1130                        PendingConstrainedFP.size() +
1131                        PendingConstrainedFPStrict.size());
1132   PendingLoads.append(PendingConstrainedFP.begin(),
1133                       PendingConstrainedFP.end());
1134   PendingLoads.append(PendingConstrainedFPStrict.begin(),
1135                       PendingConstrainedFPStrict.end());
1136   PendingConstrainedFP.clear();
1137   PendingConstrainedFPStrict.clear();
1138   return getMemoryRoot();
1139 }
1140 
1141 SDValue SelectionDAGBuilder::getControlRoot() {
1142   // We need to emit pending fpexcept.strict constrained intrinsics,
1143   // so append them to the PendingExports list.
1144   PendingExports.append(PendingConstrainedFPStrict.begin(),
1145                         PendingConstrainedFPStrict.end());
1146   PendingConstrainedFPStrict.clear();
1147   return updateRoot(PendingExports);
1148 }
1149 
1150 void SelectionDAGBuilder::visit(const Instruction &I) {
1151   // Set up outgoing PHI node register values before emitting the terminator.
1152   if (I.isTerminator()) {
1153     HandlePHINodesInSuccessorBlocks(I.getParent());
1154   }
1155 
1156   // Add SDDbgValue nodes for any var locs here. Do so before updating
1157   // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1158   if (FunctionVarLocs const *FnVarLocs = DAG.getFunctionVarLocs()) {
1159     // Add SDDbgValue nodes for any var locs here. Do so before updating
1160     // SDNodeOrder, as this mapping is {Inst -> Locs BEFORE Inst}.
1161     for (auto It = FnVarLocs->locs_begin(&I), End = FnVarLocs->locs_end(&I);
1162          It != End; ++It) {
1163       auto *Var = FnVarLocs->getDILocalVariable(It->VariableID);
1164       dropDanglingDebugInfo(Var, It->Expr);
1165       if (It->Values.isKillLocation(It->Expr)) {
1166         handleKillDebugValue(Var, It->Expr, It->DL, SDNodeOrder);
1167         continue;
1168       }
1169       SmallVector<Value *> Values(It->Values.location_ops());
1170       if (!handleDebugValue(Values, Var, It->Expr, It->DL, SDNodeOrder,
1171                             It->Values.hasArgList()))
1172         addDanglingDebugInfo(It, SDNodeOrder);
1173     }
1174   }
1175 
1176   // Increase the SDNodeOrder if dealing with a non-debug instruction.
1177   if (!isa<DbgInfoIntrinsic>(I))
1178     ++SDNodeOrder;
1179 
1180   CurInst = &I;
1181 
1182   // Set inserted listener only if required.
1183   bool NodeInserted = false;
1184   std::unique_ptr<SelectionDAG::DAGNodeInsertedListener> InsertedListener;
1185   MDNode *PCSectionsMD = I.getMetadata(LLVMContext::MD_pcsections);
1186   if (PCSectionsMD) {
1187     InsertedListener = std::make_unique<SelectionDAG::DAGNodeInsertedListener>(
1188         DAG, [&](SDNode *) { NodeInserted = true; });
1189   }
1190 
1191   visit(I.getOpcode(), I);
1192 
1193   if (!I.isTerminator() && !HasTailCall &&
1194       !isa<GCStatepointInst>(I)) // statepoints handle their exports internally
1195     CopyToExportRegsIfNeeded(&I);
1196 
1197   // Handle metadata.
1198   if (PCSectionsMD) {
1199     auto It = NodeMap.find(&I);
1200     if (It != NodeMap.end()) {
1201       DAG.addPCSections(It->second.getNode(), PCSectionsMD);
1202     } else if (NodeInserted) {
1203       // This should not happen; if it does, don't let it go unnoticed so we can
1204       // fix it. Relevant visit*() function is probably missing a setValue().
1205       errs() << "warning: loosing !pcsections metadata ["
1206              << I.getModule()->getName() << "]\n";
1207       LLVM_DEBUG(I.dump());
1208       assert(false);
1209     }
1210   }
1211 
1212   CurInst = nullptr;
1213 }
1214 
1215 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1216   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1217 }
1218 
1219 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1220   // Note: this doesn't use InstVisitor, because it has to work with
1221   // ConstantExpr's in addition to instructions.
1222   switch (Opcode) {
1223   default: llvm_unreachable("Unknown instruction type encountered!");
1224     // Build the switch statement using the Instruction.def file.
1225 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1226     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1227 #include "llvm/IR/Instruction.def"
1228   }
1229 }
1230 
1231 static bool handleDanglingVariadicDebugInfo(SelectionDAG &DAG,
1232                                             DILocalVariable *Variable,
1233                                             DebugLoc DL, unsigned Order,
1234                                             RawLocationWrapper Values,
1235                                             DIExpression *Expression) {
1236   if (!Values.hasArgList())
1237     return false;
1238   // For variadic dbg_values we will now insert an undef.
1239   // FIXME: We can potentially recover these!
1240   SmallVector<SDDbgOperand, 2> Locs;
1241   for (const Value *V : Values.location_ops()) {
1242     auto *Undef = UndefValue::get(V->getType());
1243     Locs.push_back(SDDbgOperand::fromConst(Undef));
1244   }
1245   SDDbgValue *SDV = DAG.getDbgValueList(Variable, Expression, Locs, {},
1246                                         /*IsIndirect=*/false, DL, Order,
1247                                         /*IsVariadic=*/true);
1248   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1249   return true;
1250 }
1251 
1252 void SelectionDAGBuilder::addDanglingDebugInfo(const VarLocInfo *VarLoc,
1253                                                unsigned Order) {
1254   if (!handleDanglingVariadicDebugInfo(
1255           DAG,
1256           const_cast<DILocalVariable *>(DAG.getFunctionVarLocs()
1257                                             ->getVariable(VarLoc->VariableID)
1258                                             .getVariable()),
1259           VarLoc->DL, Order, VarLoc->Values, VarLoc->Expr)) {
1260     DanglingDebugInfoMap[VarLoc->Values.getVariableLocationOp(0)].emplace_back(
1261         VarLoc, Order);
1262   }
1263 }
1264 
1265 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI,
1266                                                unsigned Order) {
1267   // We treat variadic dbg_values differently at this stage.
1268   if (!handleDanglingVariadicDebugInfo(
1269           DAG, DI->getVariable(), DI->getDebugLoc(), Order,
1270           DI->getWrappedLocation(), DI->getExpression())) {
1271     // TODO: Dangling debug info will eventually either be resolved or produce
1272     // an Undef DBG_VALUE. However in the resolution case, a gap may appear
1273     // between the original dbg.value location and its resolved DBG_VALUE,
1274     // which we should ideally fill with an extra Undef DBG_VALUE.
1275     assert(DI->getNumVariableLocationOps() == 1 &&
1276            "DbgValueInst without an ArgList should have a single location "
1277            "operand.");
1278     DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, Order);
1279   }
1280 }
1281 
1282 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1283                                                 const DIExpression *Expr) {
1284   auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1285     DIVariable *DanglingVariable = DDI.getVariable(DAG.getFunctionVarLocs());
1286     DIExpression *DanglingExpr = DDI.getExpression();
1287     if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1288       LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << printDDI(DDI)
1289                         << "\n");
1290       return true;
1291     }
1292     return false;
1293   };
1294 
1295   for (auto &DDIMI : DanglingDebugInfoMap) {
1296     DanglingDebugInfoVector &DDIV = DDIMI.second;
1297 
1298     // If debug info is to be dropped, run it through final checks to see
1299     // whether it can be salvaged.
1300     for (auto &DDI : DDIV)
1301       if (isMatchingDbgValue(DDI))
1302         salvageUnresolvedDbgValue(DDI);
1303 
1304     erase_if(DDIV, isMatchingDbgValue);
1305   }
1306 }
1307 
1308 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1309 // generate the debug data structures now that we've seen its definition.
1310 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1311                                                    SDValue Val) {
1312   auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1313   if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1314     return;
1315 
1316   DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1317   for (auto &DDI : DDIV) {
1318     DebugLoc DL = DDI.getDebugLoc();
1319     unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1320     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1321     DILocalVariable *Variable = DDI.getVariable(DAG.getFunctionVarLocs());
1322     DIExpression *Expr = DDI.getExpression();
1323     assert(Variable->isValidLocationForIntrinsic(DL) &&
1324            "Expected inlined-at fields to agree");
1325     SDDbgValue *SDV;
1326     if (Val.getNode()) {
1327       // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1328       // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1329       // we couldn't resolve it directly when examining the DbgValue intrinsic
1330       // in the first place we should not be more successful here). Unless we
1331       // have some test case that prove this to be correct we should avoid
1332       // calling EmitFuncArgumentDbgValue here.
1333       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, DL,
1334                                     FuncArgumentDbgValueKind::Value, Val)) {
1335         LLVM_DEBUG(dbgs() << "Resolve dangling debug info for " << printDDI(DDI)
1336                           << "\n");
1337         LLVM_DEBUG(dbgs() << "  By mapping to:\n    "; Val.dump());
1338         // Increase the SDNodeOrder for the DbgValue here to make sure it is
1339         // inserted after the definition of Val when emitting the instructions
1340         // after ISel. An alternative could be to teach
1341         // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1342         LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1343                    << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1344                    << ValSDNodeOrder << "\n");
1345         SDV = getDbgValue(Val, Variable, Expr, DL,
1346                           std::max(DbgSDNodeOrder, ValSDNodeOrder));
1347         DAG.AddDbgValue(SDV, false);
1348       } else
1349         LLVM_DEBUG(dbgs() << "Resolved dangling debug info for "
1350                           << printDDI(DDI) << " in EmitFuncArgumentDbgValue\n");
1351     } else {
1352       LLVM_DEBUG(dbgs() << "Dropping debug info for " << printDDI(DDI) << "\n");
1353       auto Undef = UndefValue::get(V->getType());
1354       auto SDV =
1355           DAG.getConstantDbgValue(Variable, Expr, Undef, DL, DbgSDNodeOrder);
1356       DAG.AddDbgValue(SDV, false);
1357     }
1358   }
1359   DDIV.clear();
1360 }
1361 
1362 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1363   // TODO: For the variadic implementation, instead of only checking the fail
1364   // state of `handleDebugValue`, we need know specifically which values were
1365   // invalid, so that we attempt to salvage only those values when processing
1366   // a DIArgList.
1367   Value *V = DDI.getVariableLocationOp(0);
1368   Value *OrigV = V;
1369   DILocalVariable *Var = DDI.getVariable(DAG.getFunctionVarLocs());
1370   DIExpression *Expr = DDI.getExpression();
1371   DebugLoc DL = DDI.getDebugLoc();
1372   unsigned SDOrder = DDI.getSDNodeOrder();
1373 
1374   // Currently we consider only dbg.value intrinsics -- we tell the salvager
1375   // that DW_OP_stack_value is desired.
1376   bool StackValue = true;
1377 
1378   // Can this Value can be encoded without any further work?
1379   if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false))
1380     return;
1381 
1382   // Attempt to salvage back through as many instructions as possible. Bail if
1383   // a non-instruction is seen, such as a constant expression or global
1384   // variable. FIXME: Further work could recover those too.
1385   while (isa<Instruction>(V)) {
1386     Instruction &VAsInst = *cast<Instruction>(V);
1387     // Temporary "0", awaiting real implementation.
1388     SmallVector<uint64_t, 16> Ops;
1389     SmallVector<Value *, 4> AdditionalValues;
1390     V = salvageDebugInfoImpl(VAsInst, Expr->getNumLocationOperands(), Ops,
1391                              AdditionalValues);
1392     // If we cannot salvage any further, and haven't yet found a suitable debug
1393     // expression, bail out.
1394     if (!V)
1395       break;
1396 
1397     // TODO: If AdditionalValues isn't empty, then the salvage can only be
1398     // represented with a DBG_VALUE_LIST, so we give up. When we have support
1399     // here for variadic dbg_values, remove that condition.
1400     if (!AdditionalValues.empty())
1401       break;
1402 
1403     // New value and expr now represent this debuginfo.
1404     Expr = DIExpression::appendOpsToArg(Expr, Ops, 0, StackValue);
1405 
1406     // Some kind of simplification occurred: check whether the operand of the
1407     // salvaged debug expression can be encoded in this DAG.
1408     if (handleDebugValue(V, Var, Expr, DL, SDOrder, /*IsVariadic=*/false)) {
1409       LLVM_DEBUG(
1410           dbgs() << "Salvaged debug location info for:\n  " << *Var << "\n"
1411                  << *OrigV << "\nBy stripping back to:\n  " << *V << "\n");
1412       return;
1413     }
1414   }
1415 
1416   // This was the final opportunity to salvage this debug information, and it
1417   // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1418   // any earlier variable location.
1419   assert(OrigV && "V shouldn't be null");
1420   auto *Undef = UndefValue::get(OrigV->getType());
1421   auto *SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1422   DAG.AddDbgValue(SDV, false);
1423   LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n  " << printDDI(DDI)
1424                     << "\n");
1425 }
1426 
1427 void SelectionDAGBuilder::handleKillDebugValue(DILocalVariable *Var,
1428                                                DIExpression *Expr,
1429                                                DebugLoc DbgLoc,
1430                                                unsigned Order) {
1431   Value *Poison = PoisonValue::get(Type::getInt1Ty(*Context));
1432   DIExpression *NewExpr =
1433       const_cast<DIExpression *>(DIExpression::convertToUndefExpression(Expr));
1434   handleDebugValue(Poison, Var, NewExpr, DbgLoc, Order,
1435                    /*IsVariadic*/ false);
1436 }
1437 
1438 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values,
1439                                            DILocalVariable *Var,
1440                                            DIExpression *Expr, DebugLoc DbgLoc,
1441                                            unsigned Order, bool IsVariadic) {
1442   if (Values.empty())
1443     return true;
1444   SmallVector<SDDbgOperand> LocationOps;
1445   SmallVector<SDNode *> Dependencies;
1446   for (const Value *V : Values) {
1447     // Constant value.
1448     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1449         isa<ConstantPointerNull>(V)) {
1450       LocationOps.emplace_back(SDDbgOperand::fromConst(V));
1451       continue;
1452     }
1453 
1454     // Look through IntToPtr constants.
1455     if (auto *CE = dyn_cast<ConstantExpr>(V))
1456       if (CE->getOpcode() == Instruction::IntToPtr) {
1457         LocationOps.emplace_back(SDDbgOperand::fromConst(CE->getOperand(0)));
1458         continue;
1459       }
1460 
1461     // If the Value is a frame index, we can create a FrameIndex debug value
1462     // without relying on the DAG at all.
1463     if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1464       auto SI = FuncInfo.StaticAllocaMap.find(AI);
1465       if (SI != FuncInfo.StaticAllocaMap.end()) {
1466         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second));
1467         continue;
1468       }
1469     }
1470 
1471     // Do not use getValue() in here; we don't want to generate code at
1472     // this point if it hasn't been done yet.
1473     SDValue N = NodeMap[V];
1474     if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1475       N = UnusedArgNodeMap[V];
1476     if (N.getNode()) {
1477       // Only emit func arg dbg value for non-variadic dbg.values for now.
1478       if (!IsVariadic &&
1479           EmitFuncArgumentDbgValue(V, Var, Expr, DbgLoc,
1480                                    FuncArgumentDbgValueKind::Value, N))
1481         return true;
1482       if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
1483         // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can
1484         // describe stack slot locations.
1485         //
1486         // Consider "int x = 0; int *px = &x;". There are two kinds of
1487         // interesting debug values here after optimization:
1488         //
1489         //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
1490         //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
1491         //
1492         // Both describe the direct values of their associated variables.
1493         Dependencies.push_back(N.getNode());
1494         LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex()));
1495         continue;
1496       }
1497       LocationOps.emplace_back(
1498           SDDbgOperand::fromNode(N.getNode(), N.getResNo()));
1499       continue;
1500     }
1501 
1502     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1503     // Special rules apply for the first dbg.values of parameter variables in a
1504     // function. Identify them by the fact they reference Argument Values, that
1505     // they're parameters, and they are parameters of the current function. We
1506     // need to let them dangle until they get an SDNode.
1507     bool IsParamOfFunc =
1508         isa<Argument>(V) && Var->isParameter() && !DbgLoc.getInlinedAt();
1509     if (IsParamOfFunc)
1510       return false;
1511 
1512     // The value is not used in this block yet (or it would have an SDNode).
1513     // We still want the value to appear for the user if possible -- if it has
1514     // an associated VReg, we can refer to that instead.
1515     auto VMI = FuncInfo.ValueMap.find(V);
1516     if (VMI != FuncInfo.ValueMap.end()) {
1517       unsigned Reg = VMI->second;
1518       // If this is a PHI node, it may be split up into several MI PHI nodes
1519       // (in FunctionLoweringInfo::set).
1520       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1521                        V->getType(), std::nullopt);
1522       if (RFV.occupiesMultipleRegs()) {
1523         // FIXME: We could potentially support variadic dbg_values here.
1524         if (IsVariadic)
1525           return false;
1526         unsigned Offset = 0;
1527         unsigned BitsToDescribe = 0;
1528         if (auto VarSize = Var->getSizeInBits())
1529           BitsToDescribe = *VarSize;
1530         if (auto Fragment = Expr->getFragmentInfo())
1531           BitsToDescribe = Fragment->SizeInBits;
1532         for (const auto &RegAndSize : RFV.getRegsAndSizes()) {
1533           // Bail out if all bits are described already.
1534           if (Offset >= BitsToDescribe)
1535             break;
1536           // TODO: handle scalable vectors.
1537           unsigned RegisterSize = RegAndSize.second;
1538           unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1539                                       ? BitsToDescribe - Offset
1540                                       : RegisterSize;
1541           auto FragmentExpr = DIExpression::createFragmentExpression(
1542               Expr, Offset, FragmentSize);
1543           if (!FragmentExpr)
1544             continue;
1545           SDDbgValue *SDV = DAG.getVRegDbgValue(
1546               Var, *FragmentExpr, RegAndSize.first, false, DbgLoc, SDNodeOrder);
1547           DAG.AddDbgValue(SDV, false);
1548           Offset += RegisterSize;
1549         }
1550         return true;
1551       }
1552       // We can use simple vreg locations for variadic dbg_values as well.
1553       LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg));
1554       continue;
1555     }
1556     // We failed to create a SDDbgOperand for V.
1557     return false;
1558   }
1559 
1560   // We have created a SDDbgOperand for each Value in Values.
1561   // Should use Order instead of SDNodeOrder?
1562   assert(!LocationOps.empty());
1563   SDDbgValue *SDV = DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies,
1564                                         /*IsIndirect=*/false, DbgLoc,
1565                                         SDNodeOrder, IsVariadic);
1566   DAG.AddDbgValue(SDV, /*isParameter=*/false);
1567   return true;
1568 }
1569 
1570 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1571   // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1572   for (auto &Pair : DanglingDebugInfoMap)
1573     for (auto &DDI : Pair.second)
1574       salvageUnresolvedDbgValue(DDI);
1575   clearDanglingDebugInfo();
1576 }
1577 
1578 /// getCopyFromRegs - If there was virtual register allocated for the value V
1579 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1580 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1581   DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V);
1582   SDValue Result;
1583 
1584   if (It != FuncInfo.ValueMap.end()) {
1585     Register InReg = It->second;
1586 
1587     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1588                      DAG.getDataLayout(), InReg, Ty,
1589                      std::nullopt); // This is not an ABI copy.
1590     SDValue Chain = DAG.getEntryNode();
1591     Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1592                                  V);
1593     resolveDanglingDebugInfo(V, Result);
1594   }
1595 
1596   return Result;
1597 }
1598 
1599 /// getValue - Return an SDValue for the given Value.
1600 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1601   // If we already have an SDValue for this value, use it. It's important
1602   // to do this first, so that we don't create a CopyFromReg if we already
1603   // have a regular SDValue.
1604   SDValue &N = NodeMap[V];
1605   if (N.getNode()) return N;
1606 
1607   // If there's a virtual register allocated and initialized for this
1608   // value, use it.
1609   if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1610     return copyFromReg;
1611 
1612   // Otherwise create a new SDValue and remember it.
1613   SDValue Val = getValueImpl(V);
1614   NodeMap[V] = Val;
1615   resolveDanglingDebugInfo(V, Val);
1616   return Val;
1617 }
1618 
1619 /// getNonRegisterValue - Return an SDValue for the given Value, but
1620 /// don't look in FuncInfo.ValueMap for a virtual register.
1621 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1622   // If we already have an SDValue for this value, use it.
1623   SDValue &N = NodeMap[V];
1624   if (N.getNode()) {
1625     if (isIntOrFPConstant(N)) {
1626       // Remove the debug location from the node as the node is about to be used
1627       // in a location which may differ from the original debug location.  This
1628       // is relevant to Constant and ConstantFP nodes because they can appear
1629       // as constant expressions inside PHI nodes.
1630       N->setDebugLoc(DebugLoc());
1631     }
1632     return N;
1633   }
1634 
1635   // Otherwise create a new SDValue and remember it.
1636   SDValue Val = getValueImpl(V);
1637   NodeMap[V] = Val;
1638   resolveDanglingDebugInfo(V, Val);
1639   return Val;
1640 }
1641 
1642 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1643 /// Create an SDValue for the given value.
1644 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1645   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1646 
1647   if (const Constant *C = dyn_cast<Constant>(V)) {
1648     EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1649 
1650     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1651       return DAG.getConstant(*CI, getCurSDLoc(), VT);
1652 
1653     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1654       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1655 
1656     if (isa<ConstantPointerNull>(C)) {
1657       unsigned AS = V->getType()->getPointerAddressSpace();
1658       return DAG.getConstant(0, getCurSDLoc(),
1659                              TLI.getPointerTy(DAG.getDataLayout(), AS));
1660     }
1661 
1662     if (match(C, m_VScale()))
1663       return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1));
1664 
1665     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1666       return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1667 
1668     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1669       return DAG.getUNDEF(VT);
1670 
1671     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1672       visit(CE->getOpcode(), *CE);
1673       SDValue N1 = NodeMap[V];
1674       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1675       return N1;
1676     }
1677 
1678     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1679       SmallVector<SDValue, 4> Constants;
1680       for (const Use &U : C->operands()) {
1681         SDNode *Val = getValue(U).getNode();
1682         // If the operand is an empty aggregate, there are no values.
1683         if (!Val) continue;
1684         // Add each leaf value from the operand to the Constants list
1685         // to form a flattened list of all the values.
1686         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1687           Constants.push_back(SDValue(Val, i));
1688       }
1689 
1690       return DAG.getMergeValues(Constants, getCurSDLoc());
1691     }
1692 
1693     if (const ConstantDataSequential *CDS =
1694           dyn_cast<ConstantDataSequential>(C)) {
1695       SmallVector<SDValue, 4> Ops;
1696       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1697         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1698         // Add each leaf value from the operand to the Constants list
1699         // to form a flattened list of all the values.
1700         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1701           Ops.push_back(SDValue(Val, i));
1702       }
1703 
1704       if (isa<ArrayType>(CDS->getType()))
1705         return DAG.getMergeValues(Ops, getCurSDLoc());
1706       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1707     }
1708 
1709     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1710       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1711              "Unknown struct or array constant!");
1712 
1713       SmallVector<EVT, 4> ValueVTs;
1714       ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1715       unsigned NumElts = ValueVTs.size();
1716       if (NumElts == 0)
1717         return SDValue(); // empty struct
1718       SmallVector<SDValue, 4> Constants(NumElts);
1719       for (unsigned i = 0; i != NumElts; ++i) {
1720         EVT EltVT = ValueVTs[i];
1721         if (isa<UndefValue>(C))
1722           Constants[i] = DAG.getUNDEF(EltVT);
1723         else if (EltVT.isFloatingPoint())
1724           Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1725         else
1726           Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1727       }
1728 
1729       return DAG.getMergeValues(Constants, getCurSDLoc());
1730     }
1731 
1732     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1733       return DAG.getBlockAddress(BA, VT);
1734 
1735     if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C))
1736       return getValue(Equiv->getGlobalValue());
1737 
1738     if (const auto *NC = dyn_cast<NoCFIValue>(C))
1739       return getValue(NC->getGlobalValue());
1740 
1741     VectorType *VecTy = cast<VectorType>(V->getType());
1742 
1743     // Now that we know the number and type of the elements, get that number of
1744     // elements into the Ops array based on what kind of constant it is.
1745     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1746       SmallVector<SDValue, 16> Ops;
1747       unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements();
1748       for (unsigned i = 0; i != NumElements; ++i)
1749         Ops.push_back(getValue(CV->getOperand(i)));
1750 
1751       return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1752     }
1753 
1754     if (isa<ConstantAggregateZero>(C)) {
1755       EVT EltVT =
1756           TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1757 
1758       SDValue Op;
1759       if (EltVT.isFloatingPoint())
1760         Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1761       else
1762         Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1763 
1764       return NodeMap[V] = DAG.getSplat(VT, getCurSDLoc(), Op);
1765     }
1766 
1767     llvm_unreachable("Unknown vector constant");
1768   }
1769 
1770   // If this is a static alloca, generate it as the frameindex instead of
1771   // computation.
1772   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1773     DenseMap<const AllocaInst*, int>::iterator SI =
1774       FuncInfo.StaticAllocaMap.find(AI);
1775     if (SI != FuncInfo.StaticAllocaMap.end())
1776       return DAG.getFrameIndex(
1777           SI->second, TLI.getValueType(DAG.getDataLayout(), AI->getType()));
1778   }
1779 
1780   // If this is an instruction which fast-isel has deferred, select it now.
1781   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1782     Register InReg = FuncInfo.InitializeRegForValue(Inst);
1783 
1784     RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1785                      Inst->getType(), std::nullopt);
1786     SDValue Chain = DAG.getEntryNode();
1787     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1788   }
1789 
1790   if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V))
1791     return DAG.getMDNode(cast<MDNode>(MD->getMetadata()));
1792 
1793   if (const auto *BB = dyn_cast<BasicBlock>(V))
1794     return DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
1795 
1796   llvm_unreachable("Can't get register for value!");
1797 }
1798 
1799 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1800   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1801   bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1802   bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1803   bool IsSEH = isAsynchronousEHPersonality(Pers);
1804   MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1805   if (!IsSEH)
1806     CatchPadMBB->setIsEHScopeEntry();
1807   // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1808   if (IsMSVCCXX || IsCoreCLR)
1809     CatchPadMBB->setIsEHFuncletEntry();
1810 }
1811 
1812 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1813   // Update machine-CFG edge.
1814   MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1815   FuncInfo.MBB->addSuccessor(TargetMBB);
1816   TargetMBB->setIsEHCatchretTarget(true);
1817   DAG.getMachineFunction().setHasEHCatchret(true);
1818 
1819   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1820   bool IsSEH = isAsynchronousEHPersonality(Pers);
1821   if (IsSEH) {
1822     // If this is not a fall-through branch or optimizations are switched off,
1823     // emit the branch.
1824     if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1825         TM.getOptLevel() == CodeGenOpt::None)
1826       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1827                               getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1828     return;
1829   }
1830 
1831   // Figure out the funclet membership for the catchret's successor.
1832   // This will be used by the FuncletLayout pass to determine how to order the
1833   // BB's.
1834   // A 'catchret' returns to the outer scope's color.
1835   Value *ParentPad = I.getCatchSwitchParentPad();
1836   const BasicBlock *SuccessorColor;
1837   if (isa<ConstantTokenNone>(ParentPad))
1838     SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1839   else
1840     SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1841   assert(SuccessorColor && "No parent funclet for catchret!");
1842   MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1843   assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1844 
1845   // Create the terminator node.
1846   SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1847                             getControlRoot(), DAG.getBasicBlock(TargetMBB),
1848                             DAG.getBasicBlock(SuccessorColorMBB));
1849   DAG.setRoot(Ret);
1850 }
1851 
1852 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1853   // Don't emit any special code for the cleanuppad instruction. It just marks
1854   // the start of an EH scope/funclet.
1855   FuncInfo.MBB->setIsEHScopeEntry();
1856   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1857   if (Pers != EHPersonality::Wasm_CXX) {
1858     FuncInfo.MBB->setIsEHFuncletEntry();
1859     FuncInfo.MBB->setIsCleanupFuncletEntry();
1860   }
1861 }
1862 
1863 // In wasm EH, even though a catchpad may not catch an exception if a tag does
1864 // not match, it is OK to add only the first unwind destination catchpad to the
1865 // successors, because there will be at least one invoke instruction within the
1866 // catch scope that points to the next unwind destination, if one exists, so
1867 // CFGSort cannot mess up with BB sorting order.
1868 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic
1869 // call within them, and catchpads only consisting of 'catch (...)' have a
1870 // '__cxa_end_catch' call within them, both of which generate invokes in case
1871 // the next unwind destination exists, i.e., the next unwind destination is not
1872 // the caller.)
1873 //
1874 // Having at most one EH pad successor is also simpler and helps later
1875 // transformations.
1876 //
1877 // For example,
1878 // current:
1879 //   invoke void @foo to ... unwind label %catch.dispatch
1880 // catch.dispatch:
1881 //   %0 = catchswitch within ... [label %catch.start] unwind label %next
1882 // catch.start:
1883 //   ...
1884 //   ... in this BB or some other child BB dominated by this BB there will be an
1885 //   invoke that points to 'next' BB as an unwind destination
1886 //
1887 // next: ; We don't need to add this to 'current' BB's successor
1888 //   ...
1889 static void findWasmUnwindDestinations(
1890     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1891     BranchProbability Prob,
1892     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1893         &UnwindDests) {
1894   while (EHPadBB) {
1895     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1896     if (isa<CleanupPadInst>(Pad)) {
1897       // Stop on cleanup pads.
1898       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1899       UnwindDests.back().first->setIsEHScopeEntry();
1900       break;
1901     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1902       // Add the catchpad handlers to the possible destinations. We don't
1903       // continue to the unwind destination of the catchswitch for wasm.
1904       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1905         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1906         UnwindDests.back().first->setIsEHScopeEntry();
1907       }
1908       break;
1909     } else {
1910       continue;
1911     }
1912   }
1913 }
1914 
1915 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1916 /// many places it could ultimately go. In the IR, we have a single unwind
1917 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1918 /// This function skips over imaginary basic blocks that hold catchswitch
1919 /// instructions, and finds all the "real" machine
1920 /// basic block destinations. As those destinations may not be successors of
1921 /// EHPadBB, here we also calculate the edge probability to those destinations.
1922 /// The passed-in Prob is the edge probability to EHPadBB.
1923 static void findUnwindDestinations(
1924     FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1925     BranchProbability Prob,
1926     SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1927         &UnwindDests) {
1928   EHPersonality Personality =
1929     classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1930   bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1931   bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1932   bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1933   bool IsSEH = isAsynchronousEHPersonality(Personality);
1934 
1935   if (IsWasmCXX) {
1936     findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1937     assert(UnwindDests.size() <= 1 &&
1938            "There should be at most one unwind destination for wasm");
1939     return;
1940   }
1941 
1942   while (EHPadBB) {
1943     const Instruction *Pad = EHPadBB->getFirstNonPHI();
1944     BasicBlock *NewEHPadBB = nullptr;
1945     if (isa<LandingPadInst>(Pad)) {
1946       // Stop on landingpads. They are not funclets.
1947       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1948       break;
1949     } else if (isa<CleanupPadInst>(Pad)) {
1950       // Stop on cleanup pads. Cleanups are always funclet entries for all known
1951       // personalities.
1952       UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1953       UnwindDests.back().first->setIsEHScopeEntry();
1954       UnwindDests.back().first->setIsEHFuncletEntry();
1955       break;
1956     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1957       // Add the catchpad handlers to the possible destinations.
1958       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1959         UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1960         // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1961         if (IsMSVCCXX || IsCoreCLR)
1962           UnwindDests.back().first->setIsEHFuncletEntry();
1963         if (!IsSEH)
1964           UnwindDests.back().first->setIsEHScopeEntry();
1965       }
1966       NewEHPadBB = CatchSwitch->getUnwindDest();
1967     } else {
1968       continue;
1969     }
1970 
1971     BranchProbabilityInfo *BPI = FuncInfo.BPI;
1972     if (BPI && NewEHPadBB)
1973       Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1974     EHPadBB = NewEHPadBB;
1975   }
1976 }
1977 
1978 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1979   // Update successor info.
1980   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1981   auto UnwindDest = I.getUnwindDest();
1982   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1983   BranchProbability UnwindDestProb =
1984       (BPI && UnwindDest)
1985           ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1986           : BranchProbability::getZero();
1987   findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1988   for (auto &UnwindDest : UnwindDests) {
1989     UnwindDest.first->setIsEHPad();
1990     addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1991   }
1992   FuncInfo.MBB->normalizeSuccProbs();
1993 
1994   // Create the terminator node.
1995   SDValue Ret =
1996       DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1997   DAG.setRoot(Ret);
1998 }
1999 
2000 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
2001   report_fatal_error("visitCatchSwitch not yet implemented!");
2002 }
2003 
2004 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
2005   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2006   auto &DL = DAG.getDataLayout();
2007   SDValue Chain = getControlRoot();
2008   SmallVector<ISD::OutputArg, 8> Outs;
2009   SmallVector<SDValue, 8> OutVals;
2010 
2011   // Calls to @llvm.experimental.deoptimize don't generate a return value, so
2012   // lower
2013   //
2014   //   %val = call <ty> @llvm.experimental.deoptimize()
2015   //   ret <ty> %val
2016   //
2017   // differently.
2018   if (I.getParent()->getTerminatingDeoptimizeCall()) {
2019     LowerDeoptimizingReturn();
2020     return;
2021   }
2022 
2023   if (!FuncInfo.CanLowerReturn) {
2024     unsigned DemoteReg = FuncInfo.DemoteRegister;
2025     const Function *F = I.getParent()->getParent();
2026 
2027     // Emit a store of the return value through the virtual register.
2028     // Leave Outs empty so that LowerReturn won't try to load return
2029     // registers the usual way.
2030     SmallVector<EVT, 1> PtrValueVTs;
2031     ComputeValueVTs(TLI, DL,
2032                     F->getReturnType()->getPointerTo(
2033                         DAG.getDataLayout().getAllocaAddrSpace()),
2034                     PtrValueVTs);
2035 
2036     SDValue RetPtr =
2037         DAG.getCopyFromReg(Chain, getCurSDLoc(), DemoteReg, PtrValueVTs[0]);
2038     SDValue RetOp = getValue(I.getOperand(0));
2039 
2040     SmallVector<EVT, 4> ValueVTs, MemVTs;
2041     SmallVector<uint64_t, 4> Offsets;
2042     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
2043                     &Offsets, 0);
2044     unsigned NumValues = ValueVTs.size();
2045 
2046     SmallVector<SDValue, 4> Chains(NumValues);
2047     Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType());
2048     for (unsigned i = 0; i != NumValues; ++i) {
2049       // An aggregate return value cannot wrap around the address space, so
2050       // offsets to its parts don't wrap either.
2051       SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr,
2052                                            TypeSize::Fixed(Offsets[i]));
2053 
2054       SDValue Val = RetOp.getValue(RetOp.getResNo() + i);
2055       if (MemVTs[i] != ValueVTs[i])
2056         Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
2057       Chains[i] = DAG.getStore(
2058           Chain, getCurSDLoc(), Val,
2059           // FIXME: better loc info would be nice.
2060           Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()),
2061           commonAlignment(BaseAlign, Offsets[i]));
2062     }
2063 
2064     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
2065                         MVT::Other, Chains);
2066   } else if (I.getNumOperands() != 0) {
2067     SmallVector<EVT, 4> ValueVTs;
2068     ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
2069     unsigned NumValues = ValueVTs.size();
2070     if (NumValues) {
2071       SDValue RetOp = getValue(I.getOperand(0));
2072 
2073       const Function *F = I.getParent()->getParent();
2074 
2075       bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
2076           I.getOperand(0)->getType(), F->getCallingConv(),
2077           /*IsVarArg*/ false, DL);
2078 
2079       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
2080       if (F->getAttributes().hasRetAttr(Attribute::SExt))
2081         ExtendKind = ISD::SIGN_EXTEND;
2082       else if (F->getAttributes().hasRetAttr(Attribute::ZExt))
2083         ExtendKind = ISD::ZERO_EXTEND;
2084 
2085       LLVMContext &Context = F->getContext();
2086       bool RetInReg = F->getAttributes().hasRetAttr(Attribute::InReg);
2087 
2088       for (unsigned j = 0; j != NumValues; ++j) {
2089         EVT VT = ValueVTs[j];
2090 
2091         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2092           VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
2093 
2094         CallingConv::ID CC = F->getCallingConv();
2095 
2096         unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
2097         MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
2098         SmallVector<SDValue, 4> Parts(NumParts);
2099         getCopyToParts(DAG, getCurSDLoc(),
2100                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
2101                        &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
2102 
2103         // 'inreg' on function refers to return value
2104         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2105         if (RetInReg)
2106           Flags.setInReg();
2107 
2108         if (I.getOperand(0)->getType()->isPointerTy()) {
2109           Flags.setPointer();
2110           Flags.setPointerAddrSpace(
2111               cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
2112         }
2113 
2114         if (NeedsRegBlock) {
2115           Flags.setInConsecutiveRegs();
2116           if (j == NumValues - 1)
2117             Flags.setInConsecutiveRegsLast();
2118         }
2119 
2120         // Propagate extension type if any
2121         if (ExtendKind == ISD::SIGN_EXTEND)
2122           Flags.setSExt();
2123         else if (ExtendKind == ISD::ZERO_EXTEND)
2124           Flags.setZExt();
2125 
2126         for (unsigned i = 0; i < NumParts; ++i) {
2127           Outs.push_back(ISD::OutputArg(Flags,
2128                                         Parts[i].getValueType().getSimpleVT(),
2129                                         VT, /*isfixed=*/true, 0, 0));
2130           OutVals.push_back(Parts[i]);
2131         }
2132       }
2133     }
2134   }
2135 
2136   // Push in swifterror virtual register as the last element of Outs. This makes
2137   // sure swifterror virtual register will be returned in the swifterror
2138   // physical register.
2139   const Function *F = I.getParent()->getParent();
2140   if (TLI.supportSwiftError() &&
2141       F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
2142     assert(SwiftError.getFunctionArg() && "Need a swift error argument");
2143     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2144     Flags.setSwiftError();
2145     Outs.push_back(ISD::OutputArg(
2146         Flags, /*vt=*/TLI.getPointerTy(DL), /*argvt=*/EVT(TLI.getPointerTy(DL)),
2147         /*isfixed=*/true, /*origidx=*/1, /*partOffs=*/0));
2148     // Create SDNode for the swifterror virtual register.
2149     OutVals.push_back(
2150         DAG.getRegister(SwiftError.getOrCreateVRegUseAt(
2151                             &I, FuncInfo.MBB, SwiftError.getFunctionArg()),
2152                         EVT(TLI.getPointerTy(DL))));
2153   }
2154 
2155   bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
2156   CallingConv::ID CallConv =
2157     DAG.getMachineFunction().getFunction().getCallingConv();
2158   Chain = DAG.getTargetLoweringInfo().LowerReturn(
2159       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
2160 
2161   // Verify that the target's LowerReturn behaved as expected.
2162   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
2163          "LowerReturn didn't return a valid chain!");
2164 
2165   // Update the DAG with the new chain value resulting from return lowering.
2166   DAG.setRoot(Chain);
2167 }
2168 
2169 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
2170 /// created for it, emit nodes to copy the value into the virtual
2171 /// registers.
2172 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
2173   // Skip empty types
2174   if (V->getType()->isEmptyTy())
2175     return;
2176 
2177   DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V);
2178   if (VMI != FuncInfo.ValueMap.end()) {
2179     assert((!V->use_empty() || isa<CallBrInst>(V)) &&
2180            "Unused value assigned virtual registers!");
2181     CopyValueToVirtualRegister(V, VMI->second);
2182   }
2183 }
2184 
2185 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
2186 /// the current basic block, add it to ValueMap now so that we'll get a
2187 /// CopyTo/FromReg.
2188 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
2189   // No need to export constants.
2190   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
2191 
2192   // Already exported?
2193   if (FuncInfo.isExportedInst(V)) return;
2194 
2195   Register Reg = FuncInfo.InitializeRegForValue(V);
2196   CopyValueToVirtualRegister(V, Reg);
2197 }
2198 
2199 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
2200                                                      const BasicBlock *FromBB) {
2201   // The operands of the setcc have to be in this block.  We don't know
2202   // how to export them from some other block.
2203   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
2204     // Can export from current BB.
2205     if (VI->getParent() == FromBB)
2206       return true;
2207 
2208     // Is already exported, noop.
2209     return FuncInfo.isExportedInst(V);
2210   }
2211 
2212   // If this is an argument, we can export it if the BB is the entry block or
2213   // if it is already exported.
2214   if (isa<Argument>(V)) {
2215     if (FromBB->isEntryBlock())
2216       return true;
2217 
2218     // Otherwise, can only export this if it is already exported.
2219     return FuncInfo.isExportedInst(V);
2220   }
2221 
2222   // Otherwise, constants can always be exported.
2223   return true;
2224 }
2225 
2226 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
2227 BranchProbability
2228 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
2229                                         const MachineBasicBlock *Dst) const {
2230   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2231   const BasicBlock *SrcBB = Src->getBasicBlock();
2232   const BasicBlock *DstBB = Dst->getBasicBlock();
2233   if (!BPI) {
2234     // If BPI is not available, set the default probability as 1 / N, where N is
2235     // the number of successors.
2236     auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
2237     return BranchProbability(1, SuccSize);
2238   }
2239   return BPI->getEdgeProbability(SrcBB, DstBB);
2240 }
2241 
2242 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
2243                                                MachineBasicBlock *Dst,
2244                                                BranchProbability Prob) {
2245   if (!FuncInfo.BPI)
2246     Src->addSuccessorWithoutProb(Dst);
2247   else {
2248     if (Prob.isUnknown())
2249       Prob = getEdgeProbability(Src, Dst);
2250     Src->addSuccessor(Dst, Prob);
2251   }
2252 }
2253 
2254 static bool InBlock(const Value *V, const BasicBlock *BB) {
2255   if (const Instruction *I = dyn_cast<Instruction>(V))
2256     return I->getParent() == BB;
2257   return true;
2258 }
2259 
2260 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2261 /// This function emits a branch and is used at the leaves of an OR or an
2262 /// AND operator tree.
2263 void
2264 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2265                                                   MachineBasicBlock *TBB,
2266                                                   MachineBasicBlock *FBB,
2267                                                   MachineBasicBlock *CurBB,
2268                                                   MachineBasicBlock *SwitchBB,
2269                                                   BranchProbability TProb,
2270                                                   BranchProbability FProb,
2271                                                   bool InvertCond) {
2272   const BasicBlock *BB = CurBB->getBasicBlock();
2273 
2274   // If the leaf of the tree is a comparison, merge the condition into
2275   // the caseblock.
2276   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2277     // The operands of the cmp have to be in this block.  We don't know
2278     // how to export them from some other block.  If this is the first block
2279     // of the sequence, no exporting is needed.
2280     if (CurBB == SwitchBB ||
2281         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2282          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2283       ISD::CondCode Condition;
2284       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2285         ICmpInst::Predicate Pred =
2286             InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2287         Condition = getICmpCondCode(Pred);
2288       } else {
2289         const FCmpInst *FC = cast<FCmpInst>(Cond);
2290         FCmpInst::Predicate Pred =
2291             InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2292         Condition = getFCmpCondCode(Pred);
2293         if (TM.Options.NoNaNsFPMath)
2294           Condition = getFCmpCodeWithoutNaN(Condition);
2295       }
2296 
2297       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2298                    TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2299       SL->SwitchCases.push_back(CB);
2300       return;
2301     }
2302   }
2303 
2304   // Create a CaseBlock record representing this branch.
2305   ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2306   CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2307                nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2308   SL->SwitchCases.push_back(CB);
2309 }
2310 
2311 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2312                                                MachineBasicBlock *TBB,
2313                                                MachineBasicBlock *FBB,
2314                                                MachineBasicBlock *CurBB,
2315                                                MachineBasicBlock *SwitchBB,
2316                                                Instruction::BinaryOps Opc,
2317                                                BranchProbability TProb,
2318                                                BranchProbability FProb,
2319                                                bool InvertCond) {
2320   // Skip over not part of the tree and remember to invert op and operands at
2321   // next level.
2322   Value *NotCond;
2323   if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2324       InBlock(NotCond, CurBB->getBasicBlock())) {
2325     FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2326                          !InvertCond);
2327     return;
2328   }
2329 
2330   const Instruction *BOp = dyn_cast<Instruction>(Cond);
2331   const Value *BOpOp0, *BOpOp1;
2332   // Compute the effective opcode for Cond, taking into account whether it needs
2333   // to be inverted, e.g.
2334   //   and (not (or A, B)), C
2335   // gets lowered as
2336   //   and (and (not A, not B), C)
2337   Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0;
2338   if (BOp) {
2339     BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1)))
2340                ? Instruction::And
2341                : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1)))
2342                       ? Instruction::Or
2343                       : (Instruction::BinaryOps)0);
2344     if (InvertCond) {
2345       if (BOpc == Instruction::And)
2346         BOpc = Instruction::Or;
2347       else if (BOpc == Instruction::Or)
2348         BOpc = Instruction::And;
2349     }
2350   }
2351 
2352   // If this node is not part of the or/and tree, emit it as a branch.
2353   // Note that all nodes in the tree should have same opcode.
2354   bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse();
2355   if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() ||
2356       !InBlock(BOpOp0, CurBB->getBasicBlock()) ||
2357       !InBlock(BOpOp1, CurBB->getBasicBlock())) {
2358     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2359                                  TProb, FProb, InvertCond);
2360     return;
2361   }
2362 
2363   //  Create TmpBB after CurBB.
2364   MachineFunction::iterator BBI(CurBB);
2365   MachineFunction &MF = DAG.getMachineFunction();
2366   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2367   CurBB->getParent()->insert(++BBI, TmpBB);
2368 
2369   if (Opc == Instruction::Or) {
2370     // Codegen X | Y as:
2371     // BB1:
2372     //   jmp_if_X TBB
2373     //   jmp TmpBB
2374     // TmpBB:
2375     //   jmp_if_Y TBB
2376     //   jmp FBB
2377     //
2378 
2379     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2380     // The requirement is that
2381     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2382     //     = TrueProb for original BB.
2383     // Assuming the original probabilities are A and B, one choice is to set
2384     // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2385     // A/(1+B) and 2B/(1+B). This choice assumes that
2386     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2387     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2388     // TmpBB, but the math is more complicated.
2389 
2390     auto NewTrueProb = TProb / 2;
2391     auto NewFalseProb = TProb / 2 + FProb;
2392     // Emit the LHS condition.
2393     FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb,
2394                          NewFalseProb, InvertCond);
2395 
2396     // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2397     SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2398     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2399     // Emit the RHS condition into TmpBB.
2400     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2401                          Probs[1], InvertCond);
2402   } else {
2403     assert(Opc == Instruction::And && "Unknown merge op!");
2404     // Codegen X & Y as:
2405     // BB1:
2406     //   jmp_if_X TmpBB
2407     //   jmp FBB
2408     // TmpBB:
2409     //   jmp_if_Y TBB
2410     //   jmp FBB
2411     //
2412     //  This requires creation of TmpBB after CurBB.
2413 
2414     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2415     // The requirement is that
2416     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2417     //     = FalseProb for original BB.
2418     // Assuming the original probabilities are A and B, one choice is to set
2419     // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2420     // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2421     // TrueProb for BB1 * FalseProb for TmpBB.
2422 
2423     auto NewTrueProb = TProb + FProb / 2;
2424     auto NewFalseProb = FProb / 2;
2425     // Emit the LHS condition.
2426     FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb,
2427                          NewFalseProb, InvertCond);
2428 
2429     // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2430     SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2431     BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2432     // Emit the RHS condition into TmpBB.
2433     FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0],
2434                          Probs[1], InvertCond);
2435   }
2436 }
2437 
2438 /// If the set of cases should be emitted as a series of branches, return true.
2439 /// If we should emit this as a bunch of and/or'd together conditions, return
2440 /// false.
2441 bool
2442 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2443   if (Cases.size() != 2) return true;
2444 
2445   // If this is two comparisons of the same values or'd or and'd together, they
2446   // will get folded into a single comparison, so don't emit two blocks.
2447   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2448        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2449       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2450        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2451     return false;
2452   }
2453 
2454   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2455   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2456   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2457       Cases[0].CC == Cases[1].CC &&
2458       isa<Constant>(Cases[0].CmpRHS) &&
2459       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2460     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2461       return false;
2462     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2463       return false;
2464   }
2465 
2466   return true;
2467 }
2468 
2469 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2470   MachineBasicBlock *BrMBB = FuncInfo.MBB;
2471 
2472   // Update machine-CFG edges.
2473   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2474 
2475   if (I.isUnconditional()) {
2476     // Update machine-CFG edges.
2477     BrMBB->addSuccessor(Succ0MBB);
2478 
2479     // If this is not a fall-through branch or optimizations are switched off,
2480     // emit the branch.
2481     if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2482       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2483                               MVT::Other, getControlRoot(),
2484                               DAG.getBasicBlock(Succ0MBB)));
2485 
2486     return;
2487   }
2488 
2489   // If this condition is one of the special cases we handle, do special stuff
2490   // now.
2491   const Value *CondVal = I.getCondition();
2492   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2493 
2494   // If this is a series of conditions that are or'd or and'd together, emit
2495   // this as a sequence of branches instead of setcc's with and/or operations.
2496   // As long as jumps are not expensive (exceptions for multi-use logic ops,
2497   // unpredictable branches, and vector extracts because those jumps are likely
2498   // expensive for any target), this should improve performance.
2499   // For example, instead of something like:
2500   //     cmp A, B
2501   //     C = seteq
2502   //     cmp D, E
2503   //     F = setle
2504   //     or C, F
2505   //     jnz foo
2506   // Emit:
2507   //     cmp A, B
2508   //     je foo
2509   //     cmp D, E
2510   //     jle foo
2511   const Instruction *BOp = dyn_cast<Instruction>(CondVal);
2512   if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp &&
2513       BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) {
2514     Value *Vec;
2515     const Value *BOp0, *BOp1;
2516     Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0;
2517     if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1))))
2518       Opcode = Instruction::And;
2519     else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1))))
2520       Opcode = Instruction::Or;
2521 
2522     if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) &&
2523                     match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) {
2524       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode,
2525                            getEdgeProbability(BrMBB, Succ0MBB),
2526                            getEdgeProbability(BrMBB, Succ1MBB),
2527                            /*InvertCond=*/false);
2528       // If the compares in later blocks need to use values not currently
2529       // exported from this block, export them now.  This block should always
2530       // be the first entry.
2531       assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2532 
2533       // Allow some cases to be rejected.
2534       if (ShouldEmitAsBranches(SL->SwitchCases)) {
2535         for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) {
2536           ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS);
2537           ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS);
2538         }
2539 
2540         // Emit the branch for this block.
2541         visitSwitchCase(SL->SwitchCases[0], BrMBB);
2542         SL->SwitchCases.erase(SL->SwitchCases.begin());
2543         return;
2544       }
2545 
2546       // Okay, we decided not to do this, remove any inserted MBB's and clear
2547       // SwitchCases.
2548       for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i)
2549         FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB);
2550 
2551       SL->SwitchCases.clear();
2552     }
2553   }
2554 
2555   // Create a CaseBlock record representing this branch.
2556   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2557                nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2558 
2559   // Use visitSwitchCase to actually insert the fast branch sequence for this
2560   // cond branch.
2561   visitSwitchCase(CB, BrMBB);
2562 }
2563 
2564 /// visitSwitchCase - Emits the necessary code to represent a single node in
2565 /// the binary search tree resulting from lowering a switch instruction.
2566 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2567                                           MachineBasicBlock *SwitchBB) {
2568   SDValue Cond;
2569   SDValue CondLHS = getValue(CB.CmpLHS);
2570   SDLoc dl = CB.DL;
2571 
2572   if (CB.CC == ISD::SETTRUE) {
2573     // Branch or fall through to TrueBB.
2574     addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2575     SwitchBB->normalizeSuccProbs();
2576     if (CB.TrueBB != NextBlock(SwitchBB)) {
2577       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2578                               DAG.getBasicBlock(CB.TrueBB)));
2579     }
2580     return;
2581   }
2582 
2583   auto &TLI = DAG.getTargetLoweringInfo();
2584   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2585 
2586   // Build the setcc now.
2587   if (!CB.CmpMHS) {
2588     // Fold "(X == true)" to X and "(X == false)" to !X to
2589     // handle common cases produced by branch lowering.
2590     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2591         CB.CC == ISD::SETEQ)
2592       Cond = CondLHS;
2593     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2594              CB.CC == ISD::SETEQ) {
2595       SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2596       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2597     } else {
2598       SDValue CondRHS = getValue(CB.CmpRHS);
2599 
2600       // If a pointer's DAG type is larger than its memory type then the DAG
2601       // values are zero-extended. This breaks signed comparisons so truncate
2602       // back to the underlying type before doing the compare.
2603       if (CondLHS.getValueType() != MemVT) {
2604         CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2605         CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2606       }
2607       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2608     }
2609   } else {
2610     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2611 
2612     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2613     const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2614 
2615     SDValue CmpOp = getValue(CB.CmpMHS);
2616     EVT VT = CmpOp.getValueType();
2617 
2618     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2619       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2620                           ISD::SETLE);
2621     } else {
2622       SDValue SUB = DAG.getNode(ISD::SUB, dl,
2623                                 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2624       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2625                           DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2626     }
2627   }
2628 
2629   // Update successor info
2630   addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2631   // TrueBB and FalseBB are always different unless the incoming IR is
2632   // degenerate. This only happens when running llc on weird IR.
2633   if (CB.TrueBB != CB.FalseBB)
2634     addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2635   SwitchBB->normalizeSuccProbs();
2636 
2637   // If the lhs block is the next block, invert the condition so that we can
2638   // fall through to the lhs instead of the rhs block.
2639   if (CB.TrueBB == NextBlock(SwitchBB)) {
2640     std::swap(CB.TrueBB, CB.FalseBB);
2641     SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2642     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2643   }
2644 
2645   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2646                                MVT::Other, getControlRoot(), Cond,
2647                                DAG.getBasicBlock(CB.TrueBB));
2648 
2649   setValue(CurInst, BrCond);
2650 
2651   // Insert the false branch. Do this even if it's a fall through branch,
2652   // this makes it easier to do DAG optimizations which require inverting
2653   // the branch condition.
2654   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2655                        DAG.getBasicBlock(CB.FalseBB));
2656 
2657   DAG.setRoot(BrCond);
2658 }
2659 
2660 /// visitJumpTable - Emit JumpTable node in the current MBB
2661 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) {
2662   // Emit the code for the jump table
2663   assert(JT.Reg != -1U && "Should lower JT Header first!");
2664   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2665   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2666                                      JT.Reg, PTy);
2667   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2668   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2669                                     MVT::Other, Index.getValue(1),
2670                                     Table, Index);
2671   DAG.setRoot(BrJumpTable);
2672 }
2673 
2674 /// visitJumpTableHeader - This function emits necessary code to produce index
2675 /// in the JumpTable from switch case.
2676 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT,
2677                                                JumpTableHeader &JTH,
2678                                                MachineBasicBlock *SwitchBB) {
2679   SDLoc dl = getCurSDLoc();
2680 
2681   // Subtract the lowest switch case value from the value being switched on.
2682   SDValue SwitchOp = getValue(JTH.SValue);
2683   EVT VT = SwitchOp.getValueType();
2684   SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2685                             DAG.getConstant(JTH.First, dl, VT));
2686 
2687   // The SDNode we just created, which holds the value being switched on minus
2688   // the smallest case value, needs to be copied to a virtual register so it
2689   // can be used as an index into the jump table in a subsequent basic block.
2690   // This value may be smaller or larger than the target's pointer type, and
2691   // therefore require extension or truncating.
2692   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2693   SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2694 
2695   unsigned JumpTableReg =
2696       FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2697   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2698                                     JumpTableReg, SwitchOp);
2699   JT.Reg = JumpTableReg;
2700 
2701   if (!JTH.FallthroughUnreachable) {
2702     // Emit the range check for the jump table, and branch to the default block
2703     // for the switch statement if the value being switched on exceeds the
2704     // largest case in the switch.
2705     SDValue CMP = DAG.getSetCC(
2706         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2707                                    Sub.getValueType()),
2708         Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2709 
2710     SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2711                                  MVT::Other, CopyTo, CMP,
2712                                  DAG.getBasicBlock(JT.Default));
2713 
2714     // Avoid emitting unnecessary branches to the next block.
2715     if (JT.MBB != NextBlock(SwitchBB))
2716       BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2717                            DAG.getBasicBlock(JT.MBB));
2718 
2719     DAG.setRoot(BrCond);
2720   } else {
2721     // Avoid emitting unnecessary branches to the next block.
2722     if (JT.MBB != NextBlock(SwitchBB))
2723       DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2724                               DAG.getBasicBlock(JT.MBB)));
2725     else
2726       DAG.setRoot(CopyTo);
2727   }
2728 }
2729 
2730 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2731 /// variable if there exists one.
2732 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2733                                  SDValue &Chain) {
2734   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2735   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2736   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2737   MachineFunction &MF = DAG.getMachineFunction();
2738   Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2739   MachineSDNode *Node =
2740       DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2741   if (Global) {
2742     MachinePointerInfo MPInfo(Global);
2743     auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2744                  MachineMemOperand::MODereferenceable;
2745     MachineMemOperand *MemRef = MF.getMachineMemOperand(
2746         MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy));
2747     DAG.setNodeMemRefs(Node, {MemRef});
2748   }
2749   if (PtrTy != PtrMemTy)
2750     return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2751   return SDValue(Node, 0);
2752 }
2753 
2754 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2755 /// tail spliced into a stack protector check success bb.
2756 ///
2757 /// For a high level explanation of how this fits into the stack protector
2758 /// generation see the comment on the declaration of class
2759 /// StackProtectorDescriptor.
2760 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2761                                                   MachineBasicBlock *ParentBB) {
2762 
2763   // First create the loads to the guard/stack slot for the comparison.
2764   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2765   EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2766   EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2767 
2768   MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2769   int FI = MFI.getStackProtectorIndex();
2770 
2771   SDValue Guard;
2772   SDLoc dl = getCurSDLoc();
2773   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2774   const Module &M = *ParentBB->getParent()->getFunction().getParent();
2775   Align Align =
2776       DAG.getDataLayout().getPrefTypeAlign(Type::getInt8PtrTy(M.getContext()));
2777 
2778   // Generate code to load the content of the guard slot.
2779   SDValue GuardVal = DAG.getLoad(
2780       PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2781       MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2782       MachineMemOperand::MOVolatile);
2783 
2784   if (TLI.useStackGuardXorFP())
2785     GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2786 
2787   // Retrieve guard check function, nullptr if instrumentation is inlined.
2788   if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2789     // The target provides a guard check function to validate the guard value.
2790     // Generate a call to that function with the content of the guard slot as
2791     // argument.
2792     FunctionType *FnTy = GuardCheckFn->getFunctionType();
2793     assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2794 
2795     TargetLowering::ArgListTy Args;
2796     TargetLowering::ArgListEntry Entry;
2797     Entry.Node = GuardVal;
2798     Entry.Ty = FnTy->getParamType(0);
2799     if (GuardCheckFn->hasParamAttribute(0, Attribute::AttrKind::InReg))
2800       Entry.IsInReg = true;
2801     Args.push_back(Entry);
2802 
2803     TargetLowering::CallLoweringInfo CLI(DAG);
2804     CLI.setDebugLoc(getCurSDLoc())
2805         .setChain(DAG.getEntryNode())
2806         .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2807                    getValue(GuardCheckFn), std::move(Args));
2808 
2809     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2810     DAG.setRoot(Result.second);
2811     return;
2812   }
2813 
2814   // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2815   // Otherwise, emit a volatile load to retrieve the stack guard value.
2816   SDValue Chain = DAG.getEntryNode();
2817   if (TLI.useLoadStackGuardNode()) {
2818     Guard = getLoadStackGuard(DAG, dl, Chain);
2819   } else {
2820     const Value *IRGuard = TLI.getSDagStackGuard(M);
2821     SDValue GuardPtr = getValue(IRGuard);
2822 
2823     Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2824                         MachinePointerInfo(IRGuard, 0), Align,
2825                         MachineMemOperand::MOVolatile);
2826   }
2827 
2828   // Perform the comparison via a getsetcc.
2829   SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2830                                                         *DAG.getContext(),
2831                                                         Guard.getValueType()),
2832                              Guard, GuardVal, ISD::SETNE);
2833 
2834   // If the guard/stackslot do not equal, branch to failure MBB.
2835   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2836                                MVT::Other, GuardVal.getOperand(0),
2837                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2838   // Otherwise branch to success MBB.
2839   SDValue Br = DAG.getNode(ISD::BR, dl,
2840                            MVT::Other, BrCond,
2841                            DAG.getBasicBlock(SPD.getSuccessMBB()));
2842 
2843   DAG.setRoot(Br);
2844 }
2845 
2846 /// Codegen the failure basic block for a stack protector check.
2847 ///
2848 /// A failure stack protector machine basic block consists simply of a call to
2849 /// __stack_chk_fail().
2850 ///
2851 /// For a high level explanation of how this fits into the stack protector
2852 /// generation see the comment on the declaration of class
2853 /// StackProtectorDescriptor.
2854 void
2855 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2856   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2857   TargetLowering::MakeLibCallOptions CallOptions;
2858   CallOptions.setDiscardResult(true);
2859   SDValue Chain =
2860       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2861                       std::nullopt, CallOptions, getCurSDLoc())
2862           .second;
2863   // On PS4/PS5, the "return address" must still be within the calling
2864   // function, even if it's at the very end, so emit an explicit TRAP here.
2865   // Passing 'true' for doesNotReturn above won't generate the trap for us.
2866   if (TM.getTargetTriple().isPS())
2867     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2868   // WebAssembly needs an unreachable instruction after a non-returning call,
2869   // because the function return type can be different from __stack_chk_fail's
2870   // return type (void).
2871   if (TM.getTargetTriple().isWasm())
2872     Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2873 
2874   DAG.setRoot(Chain);
2875 }
2876 
2877 /// visitBitTestHeader - This function emits necessary code to produce value
2878 /// suitable for "bit tests"
2879 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2880                                              MachineBasicBlock *SwitchBB) {
2881   SDLoc dl = getCurSDLoc();
2882 
2883   // Subtract the minimum value.
2884   SDValue SwitchOp = getValue(B.SValue);
2885   EVT VT = SwitchOp.getValueType();
2886   SDValue RangeSub =
2887       DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT));
2888 
2889   // Determine the type of the test operands.
2890   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2891   bool UsePtrType = false;
2892   if (!TLI.isTypeLegal(VT)) {
2893     UsePtrType = true;
2894   } else {
2895     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2896       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2897         // Switch table case range are encoded into series of masks.
2898         // Just use pointer type, it's guaranteed to fit.
2899         UsePtrType = true;
2900         break;
2901       }
2902   }
2903   SDValue Sub = RangeSub;
2904   if (UsePtrType) {
2905     VT = TLI.getPointerTy(DAG.getDataLayout());
2906     Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2907   }
2908 
2909   B.RegVT = VT.getSimpleVT();
2910   B.Reg = FuncInfo.CreateReg(B.RegVT);
2911   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2912 
2913   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2914 
2915   if (!B.FallthroughUnreachable)
2916     addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2917   addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2918   SwitchBB->normalizeSuccProbs();
2919 
2920   SDValue Root = CopyTo;
2921   if (!B.FallthroughUnreachable) {
2922     // Conditional branch to the default block.
2923     SDValue RangeCmp = DAG.getSetCC(dl,
2924         TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2925                                RangeSub.getValueType()),
2926         RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()),
2927         ISD::SETUGT);
2928 
2929     Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp,
2930                        DAG.getBasicBlock(B.Default));
2931   }
2932 
2933   // Avoid emitting unnecessary branches to the next block.
2934   if (MBB != NextBlock(SwitchBB))
2935     Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB));
2936 
2937   DAG.setRoot(Root);
2938 }
2939 
2940 /// visitBitTestCase - this function produces one "bit test"
2941 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2942                                            MachineBasicBlock* NextMBB,
2943                                            BranchProbability BranchProbToNext,
2944                                            unsigned Reg,
2945                                            BitTestCase &B,
2946                                            MachineBasicBlock *SwitchBB) {
2947   SDLoc dl = getCurSDLoc();
2948   MVT VT = BB.RegVT;
2949   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2950   SDValue Cmp;
2951   unsigned PopCount = llvm::popcount(B.Mask);
2952   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2953   if (PopCount == 1) {
2954     // Testing for a single bit; just compare the shift count with what it
2955     // would need to be to shift a 1 bit in that position.
2956     Cmp = DAG.getSetCC(
2957         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2958         ShiftOp, DAG.getConstant(llvm::countr_zero(B.Mask), dl, VT),
2959         ISD::SETEQ);
2960   } else if (PopCount == BB.Range) {
2961     // There is only one zero bit in the range, test for it directly.
2962     Cmp = DAG.getSetCC(
2963         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2964         ShiftOp, DAG.getConstant(llvm::countr_one(B.Mask), dl, VT), ISD::SETNE);
2965   } else {
2966     // Make desired shift
2967     SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2968                                     DAG.getConstant(1, dl, VT), ShiftOp);
2969 
2970     // Emit bit tests and jumps
2971     SDValue AndOp = DAG.getNode(ISD::AND, dl,
2972                                 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2973     Cmp = DAG.getSetCC(
2974         dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2975         AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2976   }
2977 
2978   // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2979   addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2980   // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2981   addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2982   // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2983   // one as they are relative probabilities (and thus work more like weights),
2984   // and hence we need to normalize them to let the sum of them become one.
2985   SwitchBB->normalizeSuccProbs();
2986 
2987   SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2988                               MVT::Other, getControlRoot(),
2989                               Cmp, DAG.getBasicBlock(B.TargetBB));
2990 
2991   // Avoid emitting unnecessary branches to the next block.
2992   if (NextMBB != NextBlock(SwitchBB))
2993     BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2994                         DAG.getBasicBlock(NextMBB));
2995 
2996   DAG.setRoot(BrAnd);
2997 }
2998 
2999 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
3000   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
3001 
3002   // Retrieve successors. Look through artificial IR level blocks like
3003   // catchswitch for successors.
3004   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
3005   const BasicBlock *EHPadBB = I.getSuccessor(1);
3006   MachineBasicBlock *EHPadMBB = FuncInfo.MBBMap[EHPadBB];
3007 
3008   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3009   // have to do anything here to lower funclet bundles.
3010   assert(!I.hasOperandBundlesOtherThan(
3011              {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition,
3012               LLVMContext::OB_gc_live, LLVMContext::OB_funclet,
3013               LLVMContext::OB_cfguardtarget,
3014               LLVMContext::OB_clang_arc_attachedcall}) &&
3015          "Cannot lower invokes with arbitrary operand bundles yet!");
3016 
3017   const Value *Callee(I.getCalledOperand());
3018   const Function *Fn = dyn_cast<Function>(Callee);
3019   if (isa<InlineAsm>(Callee))
3020     visitInlineAsm(I, EHPadBB);
3021   else if (Fn && Fn->isIntrinsic()) {
3022     switch (Fn->getIntrinsicID()) {
3023     default:
3024       llvm_unreachable("Cannot invoke this intrinsic");
3025     case Intrinsic::donothing:
3026       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
3027     case Intrinsic::seh_try_begin:
3028     case Intrinsic::seh_scope_begin:
3029     case Intrinsic::seh_try_end:
3030     case Intrinsic::seh_scope_end:
3031       if (EHPadMBB)
3032           // a block referenced by EH table
3033           // so dtor-funclet not removed by opts
3034           EHPadMBB->setMachineBlockAddressTaken();
3035       break;
3036     case Intrinsic::experimental_patchpoint_void:
3037     case Intrinsic::experimental_patchpoint_i64:
3038       visitPatchpoint(I, EHPadBB);
3039       break;
3040     case Intrinsic::experimental_gc_statepoint:
3041       LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB);
3042       break;
3043     case Intrinsic::wasm_rethrow: {
3044       // This is usually done in visitTargetIntrinsic, but this intrinsic is
3045       // special because it can be invoked, so we manually lower it to a DAG
3046       // node here.
3047       SmallVector<SDValue, 8> Ops;
3048       Ops.push_back(getRoot()); // inchain
3049       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3050       Ops.push_back(
3051           DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(),
3052                                 TLI.getPointerTy(DAG.getDataLayout())));
3053       SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
3054       DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
3055       break;
3056     }
3057     }
3058   } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
3059     // Currently we do not lower any intrinsic calls with deopt operand bundles.
3060     // Eventually we will support lowering the @llvm.experimental.deoptimize
3061     // intrinsic, and right now there are no plans to support other intrinsics
3062     // with deopt state.
3063     LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
3064   } else {
3065     LowerCallTo(I, getValue(Callee), false, false, EHPadBB);
3066   }
3067 
3068   // If the value of the invoke is used outside of its defining block, make it
3069   // available as a virtual register.
3070   // We already took care of the exported value for the statepoint instruction
3071   // during call to the LowerStatepoint.
3072   if (!isa<GCStatepointInst>(I)) {
3073     CopyToExportRegsIfNeeded(&I);
3074   }
3075 
3076   SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
3077   BranchProbabilityInfo *BPI = FuncInfo.BPI;
3078   BranchProbability EHPadBBProb =
3079       BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
3080           : BranchProbability::getZero();
3081   findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
3082 
3083   // Update successor info.
3084   addSuccessorWithProb(InvokeMBB, Return);
3085   for (auto &UnwindDest : UnwindDests) {
3086     UnwindDest.first->setIsEHPad();
3087     addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
3088   }
3089   InvokeMBB->normalizeSuccProbs();
3090 
3091   // Drop into normal successor.
3092   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
3093                           DAG.getBasicBlock(Return)));
3094 }
3095 
3096 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
3097   MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
3098 
3099   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
3100   // have to do anything here to lower funclet bundles.
3101   assert(!I.hasOperandBundlesOtherThan(
3102              {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
3103          "Cannot lower callbrs with arbitrary operand bundles yet!");
3104 
3105   assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr");
3106   visitInlineAsm(I);
3107   CopyToExportRegsIfNeeded(&I);
3108 
3109   // Retrieve successors.
3110   SmallPtrSet<BasicBlock *, 8> Dests;
3111   Dests.insert(I.getDefaultDest());
3112   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
3113 
3114   // Update successor info.
3115   addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne());
3116   for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
3117     BasicBlock *Dest = I.getIndirectDest(i);
3118     MachineBasicBlock *Target = FuncInfo.MBBMap[Dest];
3119     Target->setIsInlineAsmBrIndirectTarget();
3120     Target->setMachineBlockAddressTaken();
3121     Target->setLabelMustBeEmitted();
3122     // Don't add duplicate machine successors.
3123     if (Dests.insert(Dest).second)
3124       addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero());
3125   }
3126   CallBrMBB->normalizeSuccProbs();
3127 
3128   // Drop into default successor.
3129   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
3130                           MVT::Other, getControlRoot(),
3131                           DAG.getBasicBlock(Return)));
3132 }
3133 
3134 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
3135   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
3136 }
3137 
3138 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
3139   assert(FuncInfo.MBB->isEHPad() &&
3140          "Call to landingpad not in landing pad!");
3141 
3142   // If there aren't registers to copy the values into (e.g., during SjLj
3143   // exceptions), then don't bother to create these DAG nodes.
3144   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3145   const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
3146   if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
3147       TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
3148     return;
3149 
3150   // If landingpad's return type is token type, we don't create DAG nodes
3151   // for its exception pointer and selector value. The extraction of exception
3152   // pointer or selector value from token type landingpads is not currently
3153   // supported.
3154   if (LP.getType()->isTokenTy())
3155     return;
3156 
3157   SmallVector<EVT, 2> ValueVTs;
3158   SDLoc dl = getCurSDLoc();
3159   ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
3160   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
3161 
3162   // Get the two live-in registers as SDValues. The physregs have already been
3163   // copied into virtual registers.
3164   SDValue Ops[2];
3165   if (FuncInfo.ExceptionPointerVirtReg) {
3166     Ops[0] = DAG.getZExtOrTrunc(
3167         DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3168                            FuncInfo.ExceptionPointerVirtReg,
3169                            TLI.getPointerTy(DAG.getDataLayout())),
3170         dl, ValueVTs[0]);
3171   } else {
3172     Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
3173   }
3174   Ops[1] = DAG.getZExtOrTrunc(
3175       DAG.getCopyFromReg(DAG.getEntryNode(), dl,
3176                          FuncInfo.ExceptionSelectorVirtReg,
3177                          TLI.getPointerTy(DAG.getDataLayout())),
3178       dl, ValueVTs[1]);
3179 
3180   // Merge into one.
3181   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
3182                             DAG.getVTList(ValueVTs), Ops);
3183   setValue(&LP, Res);
3184 }
3185 
3186 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
3187                                            MachineBasicBlock *Last) {
3188   // Update JTCases.
3189   for (JumpTableBlock &JTB : SL->JTCases)
3190     if (JTB.first.HeaderBB == First)
3191       JTB.first.HeaderBB = Last;
3192 
3193   // Update BitTestCases.
3194   for (BitTestBlock &BTB : SL->BitTestCases)
3195     if (BTB.Parent == First)
3196       BTB.Parent = Last;
3197 }
3198 
3199 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
3200   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
3201 
3202   // Update machine-CFG edges with unique successors.
3203   SmallSet<BasicBlock*, 32> Done;
3204   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
3205     BasicBlock *BB = I.getSuccessor(i);
3206     bool Inserted = Done.insert(BB).second;
3207     if (!Inserted)
3208         continue;
3209 
3210     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
3211     addSuccessorWithProb(IndirectBrMBB, Succ);
3212   }
3213   IndirectBrMBB->normalizeSuccProbs();
3214 
3215   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
3216                           MVT::Other, getControlRoot(),
3217                           getValue(I.getAddress())));
3218 }
3219 
3220 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
3221   if (!DAG.getTarget().Options.TrapUnreachable)
3222     return;
3223 
3224   // We may be able to ignore unreachable behind a noreturn call.
3225   if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
3226     const BasicBlock &BB = *I.getParent();
3227     if (&I != &BB.front()) {
3228       BasicBlock::const_iterator PredI =
3229         std::prev(BasicBlock::const_iterator(&I));
3230       if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
3231         if (Call->doesNotReturn())
3232           return;
3233       }
3234     }
3235   }
3236 
3237   DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
3238 }
3239 
3240 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3241   SDNodeFlags Flags;
3242   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3243     Flags.copyFMF(*FPOp);
3244 
3245   SDValue Op = getValue(I.getOperand(0));
3246   SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3247                                     Op, Flags);
3248   setValue(&I, UnNodeValue);
3249 }
3250 
3251 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3252   SDNodeFlags Flags;
3253   if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3254     Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3255     Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3256   }
3257   if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I))
3258     Flags.setExact(ExactOp->isExact());
3259   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3260     Flags.copyFMF(*FPOp);
3261 
3262   SDValue Op1 = getValue(I.getOperand(0));
3263   SDValue Op2 = getValue(I.getOperand(1));
3264   SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3265                                      Op1, Op2, Flags);
3266   setValue(&I, BinNodeValue);
3267 }
3268 
3269 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3270   SDValue Op1 = getValue(I.getOperand(0));
3271   SDValue Op2 = getValue(I.getOperand(1));
3272 
3273   EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3274       Op1.getValueType(), DAG.getDataLayout());
3275 
3276   // Coerce the shift amount to the right type if we can. This exposes the
3277   // truncate or zext to optimization early.
3278   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3279     assert(ShiftTy.getSizeInBits() >= Log2_32_Ceil(Op1.getValueSizeInBits()) &&
3280            "Unexpected shift type");
3281     Op2 = DAG.getZExtOrTrunc(Op2, getCurSDLoc(), ShiftTy);
3282   }
3283 
3284   bool nuw = false;
3285   bool nsw = false;
3286   bool exact = false;
3287 
3288   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3289 
3290     if (const OverflowingBinaryOperator *OFBinOp =
3291             dyn_cast<const OverflowingBinaryOperator>(&I)) {
3292       nuw = OFBinOp->hasNoUnsignedWrap();
3293       nsw = OFBinOp->hasNoSignedWrap();
3294     }
3295     if (const PossiblyExactOperator *ExactOp =
3296             dyn_cast<const PossiblyExactOperator>(&I))
3297       exact = ExactOp->isExact();
3298   }
3299   SDNodeFlags Flags;
3300   Flags.setExact(exact);
3301   Flags.setNoSignedWrap(nsw);
3302   Flags.setNoUnsignedWrap(nuw);
3303   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3304                             Flags);
3305   setValue(&I, Res);
3306 }
3307 
3308 void SelectionDAGBuilder::visitSDiv(const User &I) {
3309   SDValue Op1 = getValue(I.getOperand(0));
3310   SDValue Op2 = getValue(I.getOperand(1));
3311 
3312   SDNodeFlags Flags;
3313   Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3314                  cast<PossiblyExactOperator>(&I)->isExact());
3315   setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3316                            Op2, Flags));
3317 }
3318 
3319 void SelectionDAGBuilder::visitICmp(const User &I) {
3320   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3321   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3322     predicate = IC->getPredicate();
3323   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3324     predicate = ICmpInst::Predicate(IC->getPredicate());
3325   SDValue Op1 = getValue(I.getOperand(0));
3326   SDValue Op2 = getValue(I.getOperand(1));
3327   ISD::CondCode Opcode = getICmpCondCode(predicate);
3328 
3329   auto &TLI = DAG.getTargetLoweringInfo();
3330   EVT MemVT =
3331       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3332 
3333   // If a pointer's DAG type is larger than its memory type then the DAG values
3334   // are zero-extended. This breaks signed comparisons so truncate back to the
3335   // underlying type before doing the compare.
3336   if (Op1.getValueType() != MemVT) {
3337     Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3338     Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3339   }
3340 
3341   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3342                                                         I.getType());
3343   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3344 }
3345 
3346 void SelectionDAGBuilder::visitFCmp(const User &I) {
3347   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3348   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3349     predicate = FC->getPredicate();
3350   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3351     predicate = FCmpInst::Predicate(FC->getPredicate());
3352   SDValue Op1 = getValue(I.getOperand(0));
3353   SDValue Op2 = getValue(I.getOperand(1));
3354 
3355   ISD::CondCode Condition = getFCmpCondCode(predicate);
3356   auto *FPMO = cast<FPMathOperator>(&I);
3357   if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath)
3358     Condition = getFCmpCodeWithoutNaN(Condition);
3359 
3360   SDNodeFlags Flags;
3361   Flags.copyFMF(*FPMO);
3362   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
3363 
3364   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3365                                                         I.getType());
3366   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3367 }
3368 
3369 // Check if the condition of the select has one use or two users that are both
3370 // selects with the same condition.
3371 static bool hasOnlySelectUsers(const Value *Cond) {
3372   return llvm::all_of(Cond->users(), [](const Value *V) {
3373     return isa<SelectInst>(V);
3374   });
3375 }
3376 
3377 void SelectionDAGBuilder::visitSelect(const User &I) {
3378   SmallVector<EVT, 4> ValueVTs;
3379   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3380                   ValueVTs);
3381   unsigned NumValues = ValueVTs.size();
3382   if (NumValues == 0) return;
3383 
3384   SmallVector<SDValue, 4> Values(NumValues);
3385   SDValue Cond     = getValue(I.getOperand(0));
3386   SDValue LHSVal   = getValue(I.getOperand(1));
3387   SDValue RHSVal   = getValue(I.getOperand(2));
3388   SmallVector<SDValue, 1> BaseOps(1, Cond);
3389   ISD::NodeType OpCode =
3390       Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT;
3391 
3392   bool IsUnaryAbs = false;
3393   bool Negate = false;
3394 
3395   SDNodeFlags Flags;
3396   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
3397     Flags.copyFMF(*FPOp);
3398 
3399   Flags.setUnpredictable(
3400       cast<SelectInst>(I).getMetadata(LLVMContext::MD_unpredictable));
3401 
3402   // Min/max matching is only viable if all output VTs are the same.
3403   if (all_equal(ValueVTs)) {
3404     EVT VT = ValueVTs[0];
3405     LLVMContext &Ctx = *DAG.getContext();
3406     auto &TLI = DAG.getTargetLoweringInfo();
3407 
3408     // We care about the legality of the operation after it has been type
3409     // legalized.
3410     while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal)
3411       VT = TLI.getTypeToTransformTo(Ctx, VT);
3412 
3413     // If the vselect is legal, assume we want to leave this as a vector setcc +
3414     // vselect. Otherwise, if this is going to be scalarized, we want to see if
3415     // min/max is legal on the scalar type.
3416     bool UseScalarMinMax = VT.isVector() &&
3417       !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3418 
3419     // ValueTracking's select pattern matching does not account for -0.0,
3420     // so we can't lower to FMINIMUM/FMAXIMUM because those nodes specify that
3421     // -0.0 is less than +0.0.
3422     Value *LHS, *RHS;
3423     auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3424     ISD::NodeType Opc = ISD::DELETED_NODE;
3425     switch (SPR.Flavor) {
3426     case SPF_UMAX:    Opc = ISD::UMAX; break;
3427     case SPF_UMIN:    Opc = ISD::UMIN; break;
3428     case SPF_SMAX:    Opc = ISD::SMAX; break;
3429     case SPF_SMIN:    Opc = ISD::SMIN; break;
3430     case SPF_FMINNUM:
3431       switch (SPR.NaNBehavior) {
3432       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3433       case SPNB_RETURNS_NAN: break;
3434       case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3435       case SPNB_RETURNS_ANY:
3436         if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT) ||
3437             (UseScalarMinMax &&
3438              TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType())))
3439           Opc = ISD::FMINNUM;
3440         break;
3441       }
3442       break;
3443     case SPF_FMAXNUM:
3444       switch (SPR.NaNBehavior) {
3445       case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3446       case SPNB_RETURNS_NAN: break;
3447       case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3448       case SPNB_RETURNS_ANY:
3449         if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT) ||
3450             (UseScalarMinMax &&
3451              TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType())))
3452           Opc = ISD::FMAXNUM;
3453         break;
3454       }
3455       break;
3456     case SPF_NABS:
3457       Negate = true;
3458       [[fallthrough]];
3459     case SPF_ABS:
3460       IsUnaryAbs = true;
3461       Opc = ISD::ABS;
3462       break;
3463     default: break;
3464     }
3465 
3466     if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3467         (TLI.isOperationLegalOrCustom(Opc, VT) ||
3468          (UseScalarMinMax &&
3469           TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3470         // If the underlying comparison instruction is used by any other
3471         // instruction, the consumed instructions won't be destroyed, so it is
3472         // not profitable to convert to a min/max.
3473         hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3474       OpCode = Opc;
3475       LHSVal = getValue(LHS);
3476       RHSVal = getValue(RHS);
3477       BaseOps.clear();
3478     }
3479 
3480     if (IsUnaryAbs) {
3481       OpCode = Opc;
3482       LHSVal = getValue(LHS);
3483       BaseOps.clear();
3484     }
3485   }
3486 
3487   if (IsUnaryAbs) {
3488     for (unsigned i = 0; i != NumValues; ++i) {
3489       SDLoc dl = getCurSDLoc();
3490       EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i);
3491       Values[i] =
3492           DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i));
3493       if (Negate)
3494         Values[i] = DAG.getNegative(Values[i], dl, VT);
3495     }
3496   } else {
3497     for (unsigned i = 0; i != NumValues; ++i) {
3498       SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3499       Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3500       Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3501       Values[i] = DAG.getNode(
3502           OpCode, getCurSDLoc(),
3503           LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags);
3504     }
3505   }
3506 
3507   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3508                            DAG.getVTList(ValueVTs), Values));
3509 }
3510 
3511 void SelectionDAGBuilder::visitTrunc(const User &I) {
3512   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3513   SDValue N = getValue(I.getOperand(0));
3514   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3515                                                         I.getType());
3516   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3517 }
3518 
3519 void SelectionDAGBuilder::visitZExt(const User &I) {
3520   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3521   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3522   SDValue N = getValue(I.getOperand(0));
3523   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3524                                                         I.getType());
3525   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3526 }
3527 
3528 void SelectionDAGBuilder::visitSExt(const User &I) {
3529   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3530   // SExt also can't be a cast to bool for same reason. So, nothing much to do
3531   SDValue N = getValue(I.getOperand(0));
3532   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3533                                                         I.getType());
3534   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3535 }
3536 
3537 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3538   // FPTrunc is never a no-op cast, no need to check
3539   SDValue N = getValue(I.getOperand(0));
3540   SDLoc dl = getCurSDLoc();
3541   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3542   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3543   setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3544                            DAG.getTargetConstant(
3545                                0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3546 }
3547 
3548 void SelectionDAGBuilder::visitFPExt(const User &I) {
3549   // FPExt is never a no-op cast, no need to check
3550   SDValue N = getValue(I.getOperand(0));
3551   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3552                                                         I.getType());
3553   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3554 }
3555 
3556 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3557   // FPToUI is never a no-op cast, no need to check
3558   SDValue N = getValue(I.getOperand(0));
3559   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3560                                                         I.getType());
3561   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3562 }
3563 
3564 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3565   // FPToSI is never a no-op cast, no need to check
3566   SDValue N = getValue(I.getOperand(0));
3567   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3568                                                         I.getType());
3569   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3570 }
3571 
3572 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3573   // UIToFP is never a no-op cast, no need to check
3574   SDValue N = getValue(I.getOperand(0));
3575   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3576                                                         I.getType());
3577   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3578 }
3579 
3580 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3581   // SIToFP is never a no-op cast, no need to check
3582   SDValue N = getValue(I.getOperand(0));
3583   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3584                                                         I.getType());
3585   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3586 }
3587 
3588 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3589   // What to do depends on the size of the integer and the size of the pointer.
3590   // We can either truncate, zero extend, or no-op, accordingly.
3591   SDValue N = getValue(I.getOperand(0));
3592   auto &TLI = DAG.getTargetLoweringInfo();
3593   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3594                                                         I.getType());
3595   EVT PtrMemVT =
3596       TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3597   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3598   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3599   setValue(&I, N);
3600 }
3601 
3602 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3603   // What to do depends on the size of the integer and the size of the pointer.
3604   // We can either truncate, zero extend, or no-op, accordingly.
3605   SDValue N = getValue(I.getOperand(0));
3606   auto &TLI = DAG.getTargetLoweringInfo();
3607   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3608   EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3609   N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3610   N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3611   setValue(&I, N);
3612 }
3613 
3614 void SelectionDAGBuilder::visitBitCast(const User &I) {
3615   SDValue N = getValue(I.getOperand(0));
3616   SDLoc dl = getCurSDLoc();
3617   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3618                                                         I.getType());
3619 
3620   // BitCast assures us that source and destination are the same size so this is
3621   // either a BITCAST or a no-op.
3622   if (DestVT != N.getValueType())
3623     setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3624                              DestVT, N)); // convert types.
3625   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3626   // might fold any kind of constant expression to an integer constant and that
3627   // is not what we are looking for. Only recognize a bitcast of a genuine
3628   // constant integer as an opaque constant.
3629   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3630     setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3631                                  /*isOpaque*/true));
3632   else
3633     setValue(&I, N);            // noop cast.
3634 }
3635 
3636 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3637   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3638   const Value *SV = I.getOperand(0);
3639   SDValue N = getValue(SV);
3640   EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3641 
3642   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3643   unsigned DestAS = I.getType()->getPointerAddressSpace();
3644 
3645   if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS))
3646     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3647 
3648   setValue(&I, N);
3649 }
3650 
3651 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3652   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3653   SDValue InVec = getValue(I.getOperand(0));
3654   SDValue InVal = getValue(I.getOperand(1));
3655   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3656                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3657   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3658                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3659                            InVec, InVal, InIdx));
3660 }
3661 
3662 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3663   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3664   SDValue InVec = getValue(I.getOperand(0));
3665   SDValue InIdx = DAG.getZExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3666                                      TLI.getVectorIdxTy(DAG.getDataLayout()));
3667   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3668                            TLI.getValueType(DAG.getDataLayout(), I.getType()),
3669                            InVec, InIdx));
3670 }
3671 
3672 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3673   SDValue Src1 = getValue(I.getOperand(0));
3674   SDValue Src2 = getValue(I.getOperand(1));
3675   ArrayRef<int> Mask;
3676   if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
3677     Mask = SVI->getShuffleMask();
3678   else
3679     Mask = cast<ConstantExpr>(I).getShuffleMask();
3680   SDLoc DL = getCurSDLoc();
3681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3682   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3683   EVT SrcVT = Src1.getValueType();
3684 
3685   if (all_of(Mask, [](int Elem) { return Elem == 0; }) &&
3686       VT.isScalableVector()) {
3687     // Canonical splat form of first element of first input vector.
3688     SDValue FirstElt =
3689         DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1,
3690                     DAG.getVectorIdxConstant(0, DL));
3691     setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt));
3692     return;
3693   }
3694 
3695   // For now, we only handle splats for scalable vectors.
3696   // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation
3697   // for targets that support a SPLAT_VECTOR for non-scalable vector types.
3698   assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle");
3699 
3700   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3701   unsigned MaskNumElts = Mask.size();
3702 
3703   if (SrcNumElts == MaskNumElts) {
3704     setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3705     return;
3706   }
3707 
3708   // Normalize the shuffle vector since mask and vector length don't match.
3709   if (SrcNumElts < MaskNumElts) {
3710     // Mask is longer than the source vectors. We can use concatenate vector to
3711     // make the mask and vectors lengths match.
3712 
3713     if (MaskNumElts % SrcNumElts == 0) {
3714       // Mask length is a multiple of the source vector length.
3715       // Check if the shuffle is some kind of concatenation of the input
3716       // vectors.
3717       unsigned NumConcat = MaskNumElts / SrcNumElts;
3718       bool IsConcat = true;
3719       SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3720       for (unsigned i = 0; i != MaskNumElts; ++i) {
3721         int Idx = Mask[i];
3722         if (Idx < 0)
3723           continue;
3724         // Ensure the indices in each SrcVT sized piece are sequential and that
3725         // the same source is used for the whole piece.
3726         if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3727             (ConcatSrcs[i / SrcNumElts] >= 0 &&
3728              ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3729           IsConcat = false;
3730           break;
3731         }
3732         // Remember which source this index came from.
3733         ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3734       }
3735 
3736       // The shuffle is concatenating multiple vectors together. Just emit
3737       // a CONCAT_VECTORS operation.
3738       if (IsConcat) {
3739         SmallVector<SDValue, 8> ConcatOps;
3740         for (auto Src : ConcatSrcs) {
3741           if (Src < 0)
3742             ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3743           else if (Src == 0)
3744             ConcatOps.push_back(Src1);
3745           else
3746             ConcatOps.push_back(Src2);
3747         }
3748         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3749         return;
3750       }
3751     }
3752 
3753     unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3754     unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3755     EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3756                                     PaddedMaskNumElts);
3757 
3758     // Pad both vectors with undefs to make them the same length as the mask.
3759     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3760 
3761     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3762     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3763     MOps1[0] = Src1;
3764     MOps2[0] = Src2;
3765 
3766     Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3767     Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3768 
3769     // Readjust mask for new input vector length.
3770     SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3771     for (unsigned i = 0; i != MaskNumElts; ++i) {
3772       int Idx = Mask[i];
3773       if (Idx >= (int)SrcNumElts)
3774         Idx -= SrcNumElts - PaddedMaskNumElts;
3775       MappedOps[i] = Idx;
3776     }
3777 
3778     SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3779 
3780     // If the concatenated vector was padded, extract a subvector with the
3781     // correct number of elements.
3782     if (MaskNumElts != PaddedMaskNumElts)
3783       Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3784                            DAG.getVectorIdxConstant(0, DL));
3785 
3786     setValue(&I, Result);
3787     return;
3788   }
3789 
3790   if (SrcNumElts > MaskNumElts) {
3791     // Analyze the access pattern of the vector to see if we can extract
3792     // two subvectors and do the shuffle.
3793     int StartIdx[2] = { -1, -1 };  // StartIdx to extract from
3794     bool CanExtract = true;
3795     for (int Idx : Mask) {
3796       unsigned Input = 0;
3797       if (Idx < 0)
3798         continue;
3799 
3800       if (Idx >= (int)SrcNumElts) {
3801         Input = 1;
3802         Idx -= SrcNumElts;
3803       }
3804 
3805       // If all the indices come from the same MaskNumElts sized portion of
3806       // the sources we can use extract. Also make sure the extract wouldn't
3807       // extract past the end of the source.
3808       int NewStartIdx = alignDown(Idx, MaskNumElts);
3809       if (NewStartIdx + MaskNumElts > SrcNumElts ||
3810           (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3811         CanExtract = false;
3812       // Make sure we always update StartIdx as we use it to track if all
3813       // elements are undef.
3814       StartIdx[Input] = NewStartIdx;
3815     }
3816 
3817     if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3818       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3819       return;
3820     }
3821     if (CanExtract) {
3822       // Extract appropriate subvector and generate a vector shuffle
3823       for (unsigned Input = 0; Input < 2; ++Input) {
3824         SDValue &Src = Input == 0 ? Src1 : Src2;
3825         if (StartIdx[Input] < 0)
3826           Src = DAG.getUNDEF(VT);
3827         else {
3828           Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3829                             DAG.getVectorIdxConstant(StartIdx[Input], DL));
3830         }
3831       }
3832 
3833       // Calculate new mask.
3834       SmallVector<int, 8> MappedOps(Mask);
3835       for (int &Idx : MappedOps) {
3836         if (Idx >= (int)SrcNumElts)
3837           Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3838         else if (Idx >= 0)
3839           Idx -= StartIdx[0];
3840       }
3841 
3842       setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3843       return;
3844     }
3845   }
3846 
3847   // We can't use either concat vectors or extract subvectors so fall back to
3848   // replacing the shuffle with extract and build vector.
3849   // to insert and build vector.
3850   EVT EltVT = VT.getVectorElementType();
3851   SmallVector<SDValue,8> Ops;
3852   for (int Idx : Mask) {
3853     SDValue Res;
3854 
3855     if (Idx < 0) {
3856       Res = DAG.getUNDEF(EltVT);
3857     } else {
3858       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3859       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3860 
3861       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src,
3862                         DAG.getVectorIdxConstant(Idx, DL));
3863     }
3864 
3865     Ops.push_back(Res);
3866   }
3867 
3868   setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3869 }
3870 
3871 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3872   ArrayRef<unsigned> Indices = I.getIndices();
3873   const Value *Op0 = I.getOperand(0);
3874   const Value *Op1 = I.getOperand(1);
3875   Type *AggTy = I.getType();
3876   Type *ValTy = Op1->getType();
3877   bool IntoUndef = isa<UndefValue>(Op0);
3878   bool FromUndef = isa<UndefValue>(Op1);
3879 
3880   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3881 
3882   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3883   SmallVector<EVT, 4> AggValueVTs;
3884   ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3885   SmallVector<EVT, 4> ValValueVTs;
3886   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3887 
3888   unsigned NumAggValues = AggValueVTs.size();
3889   unsigned NumValValues = ValValueVTs.size();
3890   SmallVector<SDValue, 4> Values(NumAggValues);
3891 
3892   // Ignore an insertvalue that produces an empty object
3893   if (!NumAggValues) {
3894     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3895     return;
3896   }
3897 
3898   SDValue Agg = getValue(Op0);
3899   unsigned i = 0;
3900   // Copy the beginning value(s) from the original aggregate.
3901   for (; i != LinearIndex; ++i)
3902     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3903                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3904   // Copy values from the inserted value(s).
3905   if (NumValValues) {
3906     SDValue Val = getValue(Op1);
3907     for (; i != LinearIndex + NumValValues; ++i)
3908       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3909                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3910   }
3911   // Copy remaining value(s) from the original aggregate.
3912   for (; i != NumAggValues; ++i)
3913     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3914                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3915 
3916   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3917                            DAG.getVTList(AggValueVTs), Values));
3918 }
3919 
3920 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3921   ArrayRef<unsigned> Indices = I.getIndices();
3922   const Value *Op0 = I.getOperand(0);
3923   Type *AggTy = Op0->getType();
3924   Type *ValTy = I.getType();
3925   bool OutOfUndef = isa<UndefValue>(Op0);
3926 
3927   unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3928 
3929   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3930   SmallVector<EVT, 4> ValValueVTs;
3931   ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3932 
3933   unsigned NumValValues = ValValueVTs.size();
3934 
3935   // Ignore a extractvalue that produces an empty object
3936   if (!NumValValues) {
3937     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3938     return;
3939   }
3940 
3941   SmallVector<SDValue, 4> Values(NumValValues);
3942 
3943   SDValue Agg = getValue(Op0);
3944   // Copy out the selected value(s).
3945   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3946     Values[i - LinearIndex] =
3947       OutOfUndef ?
3948         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3949         SDValue(Agg.getNode(), Agg.getResNo() + i);
3950 
3951   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3952                            DAG.getVTList(ValValueVTs), Values));
3953 }
3954 
3955 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3956   Value *Op0 = I.getOperand(0);
3957   // Note that the pointer operand may be a vector of pointers. Take the scalar
3958   // element which holds a pointer.
3959   unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3960   SDValue N = getValue(Op0);
3961   SDLoc dl = getCurSDLoc();
3962   auto &TLI = DAG.getTargetLoweringInfo();
3963 
3964   // Normalize Vector GEP - all scalar operands should be converted to the
3965   // splat vector.
3966   bool IsVectorGEP = I.getType()->isVectorTy();
3967   ElementCount VectorElementCount =
3968       IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount()
3969                   : ElementCount::getFixed(0);
3970 
3971   if (IsVectorGEP && !N.getValueType().isVector()) {
3972     LLVMContext &Context = *DAG.getContext();
3973     EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount);
3974     N = DAG.getSplat(VT, dl, N);
3975   }
3976 
3977   for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3978        GTI != E; ++GTI) {
3979     const Value *Idx = GTI.getOperand();
3980     if (StructType *StTy = GTI.getStructTypeOrNull()) {
3981       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3982       if (Field) {
3983         // N = N + Offset
3984         uint64_t Offset =
3985             DAG.getDataLayout().getStructLayout(StTy)->getElementOffset(Field);
3986 
3987         // In an inbounds GEP with an offset that is nonnegative even when
3988         // interpreted as signed, assume there is no unsigned overflow.
3989         SDNodeFlags Flags;
3990         if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3991           Flags.setNoUnsignedWrap(true);
3992 
3993         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3994                         DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3995       }
3996     } else {
3997       // IdxSize is the width of the arithmetic according to IR semantics.
3998       // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth
3999       // (and fix up the result later).
4000       unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
4001       MVT IdxTy = MVT::getIntegerVT(IdxSize);
4002       TypeSize ElementSize =
4003           DAG.getDataLayout().getTypeAllocSize(GTI.getIndexedType());
4004       // We intentionally mask away the high bits here; ElementSize may not
4005       // fit in IdxTy.
4006       APInt ElementMul(IdxSize, ElementSize.getKnownMinValue());
4007       bool ElementScalable = ElementSize.isScalable();
4008 
4009       // If this is a scalar constant or a splat vector of constants,
4010       // handle it quickly.
4011       const auto *C = dyn_cast<Constant>(Idx);
4012       if (C && isa<VectorType>(C->getType()))
4013         C = C->getSplatValue();
4014 
4015       const auto *CI = dyn_cast_or_null<ConstantInt>(C);
4016       if (CI && CI->isZero())
4017         continue;
4018       if (CI && !ElementScalable) {
4019         APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize);
4020         LLVMContext &Context = *DAG.getContext();
4021         SDValue OffsVal;
4022         if (IsVectorGEP)
4023           OffsVal = DAG.getConstant(
4024               Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount));
4025         else
4026           OffsVal = DAG.getConstant(Offs, dl, IdxTy);
4027 
4028         // In an inbounds GEP with an offset that is nonnegative even when
4029         // interpreted as signed, assume there is no unsigned overflow.
4030         SDNodeFlags Flags;
4031         if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
4032           Flags.setNoUnsignedWrap(true);
4033 
4034         OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
4035 
4036         N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
4037         continue;
4038       }
4039 
4040       // N = N + Idx * ElementMul;
4041       SDValue IdxN = getValue(Idx);
4042 
4043       if (!IdxN.getValueType().isVector() && IsVectorGEP) {
4044         EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(),
4045                                   VectorElementCount);
4046         IdxN = DAG.getSplat(VT, dl, IdxN);
4047       }
4048 
4049       // If the index is smaller or larger than intptr_t, truncate or extend
4050       // it.
4051       IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
4052 
4053       if (ElementScalable) {
4054         EVT VScaleTy = N.getValueType().getScalarType();
4055         SDValue VScale = DAG.getNode(
4056             ISD::VSCALE, dl, VScaleTy,
4057             DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy));
4058         if (IsVectorGEP)
4059           VScale = DAG.getSplatVector(N.getValueType(), dl, VScale);
4060         IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale);
4061       } else {
4062         // If this is a multiply by a power of two, turn it into a shl
4063         // immediately.  This is a very common case.
4064         if (ElementMul != 1) {
4065           if (ElementMul.isPowerOf2()) {
4066             unsigned Amt = ElementMul.logBase2();
4067             IdxN = DAG.getNode(ISD::SHL, dl,
4068                                N.getValueType(), IdxN,
4069                                DAG.getConstant(Amt, dl, IdxN.getValueType()));
4070           } else {
4071             SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl,
4072                                             IdxN.getValueType());
4073             IdxN = DAG.getNode(ISD::MUL, dl,
4074                                N.getValueType(), IdxN, Scale);
4075           }
4076         }
4077       }
4078 
4079       N = DAG.getNode(ISD::ADD, dl,
4080                       N.getValueType(), N, IdxN);
4081     }
4082   }
4083 
4084   MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
4085   MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
4086   if (IsVectorGEP) {
4087     PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount);
4088     PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount);
4089   }
4090 
4091   if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
4092     N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
4093 
4094   setValue(&I, N);
4095 }
4096 
4097 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
4098   // If this is a fixed sized alloca in the entry block of the function,
4099   // allocate it statically on the stack.
4100   if (FuncInfo.StaticAllocaMap.count(&I))
4101     return;   // getValue will auto-populate this.
4102 
4103   SDLoc dl = getCurSDLoc();
4104   Type *Ty = I.getAllocatedType();
4105   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4106   auto &DL = DAG.getDataLayout();
4107   TypeSize TySize = DL.getTypeAllocSize(Ty);
4108   MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign());
4109 
4110   SDValue AllocSize = getValue(I.getArraySize());
4111 
4112   EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), I.getAddressSpace());
4113   if (AllocSize.getValueType() != IntPtr)
4114     AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
4115 
4116   if (TySize.isScalable())
4117     AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4118                             DAG.getVScale(dl, IntPtr,
4119                                           APInt(IntPtr.getScalarSizeInBits(),
4120                                                 TySize.getKnownMinValue())));
4121   else
4122     AllocSize =
4123         DAG.getNode(ISD::MUL, dl, IntPtr, AllocSize,
4124                     DAG.getConstant(TySize.getFixedValue(), dl, IntPtr));
4125 
4126   // Handle alignment.  If the requested alignment is less than or equal to
4127   // the stack alignment, ignore it.  If the size is greater than or equal to
4128   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
4129   Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign();
4130   if (*Alignment <= StackAlign)
4131     Alignment = std::nullopt;
4132 
4133   const uint64_t StackAlignMask = StackAlign.value() - 1U;
4134   // Round the size of the allocation up to the stack alignment size
4135   // by add SA-1 to the size. This doesn't overflow because we're computing
4136   // an address inside an alloca.
4137   SDNodeFlags Flags;
4138   Flags.setNoUnsignedWrap(true);
4139   AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
4140                           DAG.getConstant(StackAlignMask, dl, IntPtr), Flags);
4141 
4142   // Mask out the low bits for alignment purposes.
4143   AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4144                           DAG.getConstant(~StackAlignMask, dl, IntPtr));
4145 
4146   SDValue Ops[] = {
4147       getRoot(), AllocSize,
4148       DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)};
4149   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4150   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4151   setValue(&I, DSA);
4152   DAG.setRoot(DSA.getValue(1));
4153 
4154   assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4155 }
4156 
4157 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4158   if (I.isAtomic())
4159     return visitAtomicLoad(I);
4160 
4161   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4162   const Value *SV = I.getOperand(0);
4163   if (TLI.supportSwiftError()) {
4164     // Swifterror values can come from either a function parameter with
4165     // swifterror attribute or an alloca with swifterror attribute.
4166     if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4167       if (Arg->hasSwiftErrorAttr())
4168         return visitLoadFromSwiftError(I);
4169     }
4170 
4171     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4172       if (Alloca->isSwiftError())
4173         return visitLoadFromSwiftError(I);
4174     }
4175   }
4176 
4177   SDValue Ptr = getValue(SV);
4178 
4179   Type *Ty = I.getType();
4180   SmallVector<EVT, 4> ValueVTs, MemVTs;
4181   SmallVector<uint64_t, 4> Offsets;
4182   ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets, 0);
4183   unsigned NumValues = ValueVTs.size();
4184   if (NumValues == 0)
4185     return;
4186 
4187   Align Alignment = I.getAlign();
4188   AAMDNodes AAInfo = I.getAAMetadata();
4189   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4190   bool isVolatile = I.isVolatile();
4191   MachineMemOperand::Flags MMOFlags =
4192       TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4193 
4194   SDValue Root;
4195   bool ConstantMemory = false;
4196   if (isVolatile)
4197     // Serialize volatile loads with other side effects.
4198     Root = getRoot();
4199   else if (NumValues > MaxParallelChains)
4200     Root = getMemoryRoot();
4201   else if (AA &&
4202            AA->pointsToConstantMemory(MemoryLocation(
4203                SV,
4204                LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4205                AAInfo))) {
4206     // Do not serialize (non-volatile) loads of constant memory with anything.
4207     Root = DAG.getEntryNode();
4208     ConstantMemory = true;
4209     MMOFlags |= MachineMemOperand::MOInvariant;
4210   } else {
4211     // Do not serialize non-volatile loads against each other.
4212     Root = DAG.getRoot();
4213   }
4214 
4215   SDLoc dl = getCurSDLoc();
4216 
4217   if (isVolatile)
4218     Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4219 
4220   // An aggregate load cannot wrap around the address space, so offsets to its
4221   // parts don't wrap either.
4222   SDNodeFlags Flags;
4223   Flags.setNoUnsignedWrap(true);
4224 
4225   SmallVector<SDValue, 4> Values(NumValues);
4226   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4227   EVT PtrVT = Ptr.getValueType();
4228 
4229   unsigned ChainI = 0;
4230   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4231     // Serializing loads here may result in excessive register pressure, and
4232     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4233     // could recover a bit by hoisting nodes upward in the chain by recognizing
4234     // they are side-effect free or do not alias. The optimizer should really
4235     // avoid this case by converting large object/array copies to llvm.memcpy
4236     // (MaxParallelChains should always remain as failsafe).
4237     if (ChainI == MaxParallelChains) {
4238       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4239       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4240                                   ArrayRef(Chains.data(), ChainI));
4241       Root = Chain;
4242       ChainI = 0;
4243     }
4244     SDValue A = DAG.getNode(ISD::ADD, dl,
4245                             PtrVT, Ptr,
4246                             DAG.getConstant(Offsets[i], dl, PtrVT),
4247                             Flags);
4248 
4249     SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4250                             MachinePointerInfo(SV, Offsets[i]), Alignment,
4251                             MMOFlags, AAInfo, Ranges);
4252     Chains[ChainI] = L.getValue(1);
4253 
4254     if (MemVTs[i] != ValueVTs[i])
4255       L = DAG.getPtrExtOrTrunc(L, dl, ValueVTs[i]);
4256 
4257     Values[i] = L;
4258   }
4259 
4260   if (!ConstantMemory) {
4261     SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4262                                 ArrayRef(Chains.data(), ChainI));
4263     if (isVolatile)
4264       DAG.setRoot(Chain);
4265     else
4266       PendingLoads.push_back(Chain);
4267   }
4268 
4269   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4270                            DAG.getVTList(ValueVTs), Values));
4271 }
4272 
4273 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4274   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4275          "call visitStoreToSwiftError when backend supports swifterror");
4276 
4277   SmallVector<EVT, 4> ValueVTs;
4278   SmallVector<uint64_t, 4> Offsets;
4279   const Value *SrcV = I.getOperand(0);
4280   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4281                   SrcV->getType(), ValueVTs, &Offsets, 0);
4282   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4283          "expect a single EVT for swifterror");
4284 
4285   SDValue Src = getValue(SrcV);
4286   // Create a virtual register, then update the virtual register.
4287   Register VReg =
4288       SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand());
4289   // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4290   // Chain can be getRoot or getControlRoot.
4291   SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4292                                       SDValue(Src.getNode(), Src.getResNo()));
4293   DAG.setRoot(CopyNode);
4294 }
4295 
4296 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4297   assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4298          "call visitLoadFromSwiftError when backend supports swifterror");
4299 
4300   assert(!I.isVolatile() &&
4301          !I.hasMetadata(LLVMContext::MD_nontemporal) &&
4302          !I.hasMetadata(LLVMContext::MD_invariant_load) &&
4303          "Support volatile, non temporal, invariant for load_from_swift_error");
4304 
4305   const Value *SV = I.getOperand(0);
4306   Type *Ty = I.getType();
4307   assert(
4308       (!AA ||
4309        !AA->pointsToConstantMemory(MemoryLocation(
4310            SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4311            I.getAAMetadata()))) &&
4312       "load_from_swift_error should not be constant memory");
4313 
4314   SmallVector<EVT, 4> ValueVTs;
4315   SmallVector<uint64_t, 4> Offsets;
4316   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4317                   ValueVTs, &Offsets, 0);
4318   assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4319          "expect a single EVT for swifterror");
4320 
4321   // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4322   SDValue L = DAG.getCopyFromReg(
4323       getRoot(), getCurSDLoc(),
4324       SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]);
4325 
4326   setValue(&I, L);
4327 }
4328 
4329 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4330   if (I.isAtomic())
4331     return visitAtomicStore(I);
4332 
4333   const Value *SrcV = I.getOperand(0);
4334   const Value *PtrV = I.getOperand(1);
4335 
4336   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4337   if (TLI.supportSwiftError()) {
4338     // Swifterror values can come from either a function parameter with
4339     // swifterror attribute or an alloca with swifterror attribute.
4340     if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4341       if (Arg->hasSwiftErrorAttr())
4342         return visitStoreToSwiftError(I);
4343     }
4344 
4345     if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4346       if (Alloca->isSwiftError())
4347         return visitStoreToSwiftError(I);
4348     }
4349   }
4350 
4351   SmallVector<EVT, 4> ValueVTs, MemVTs;
4352   SmallVector<uint64_t, 4> Offsets;
4353   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4354                   SrcV->getType(), ValueVTs, &MemVTs, &Offsets, 0);
4355   unsigned NumValues = ValueVTs.size();
4356   if (NumValues == 0)
4357     return;
4358 
4359   // Get the lowered operands. Note that we do this after
4360   // checking if NumResults is zero, because with zero results
4361   // the operands won't have values in the map.
4362   SDValue Src = getValue(SrcV);
4363   SDValue Ptr = getValue(PtrV);
4364 
4365   SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot();
4366   SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4367   SDLoc dl = getCurSDLoc();
4368   Align Alignment = I.getAlign();
4369   AAMDNodes AAInfo = I.getAAMetadata();
4370 
4371   auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4372 
4373   // An aggregate load cannot wrap around the address space, so offsets to its
4374   // parts don't wrap either.
4375   SDNodeFlags Flags;
4376   Flags.setNoUnsignedWrap(true);
4377 
4378   unsigned ChainI = 0;
4379   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4380     // See visitLoad comments.
4381     if (ChainI == MaxParallelChains) {
4382       SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4383                                   ArrayRef(Chains.data(), ChainI));
4384       Root = Chain;
4385       ChainI = 0;
4386     }
4387     SDValue Add =
4388         DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags);
4389     SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4390     if (MemVTs[i] != ValueVTs[i])
4391       Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4392     SDValue St =
4393         DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4394                      Alignment, MMOFlags, AAInfo);
4395     Chains[ChainI] = St;
4396   }
4397 
4398   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4399                                   ArrayRef(Chains.data(), ChainI));
4400   setValue(&I, StoreNode);
4401   DAG.setRoot(StoreNode);
4402 }
4403 
4404 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4405                                            bool IsCompressing) {
4406   SDLoc sdl = getCurSDLoc();
4407 
4408   auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4409                                MaybeAlign &Alignment) {
4410     // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4411     Src0 = I.getArgOperand(0);
4412     Ptr = I.getArgOperand(1);
4413     Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue();
4414     Mask = I.getArgOperand(3);
4415   };
4416   auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4417                                     MaybeAlign &Alignment) {
4418     // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4419     Src0 = I.getArgOperand(0);
4420     Ptr = I.getArgOperand(1);
4421     Mask = I.getArgOperand(2);
4422     Alignment = std::nullopt;
4423   };
4424 
4425   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4426   MaybeAlign Alignment;
4427   if (IsCompressing)
4428     getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4429   else
4430     getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4431 
4432   SDValue Ptr = getValue(PtrOperand);
4433   SDValue Src0 = getValue(Src0Operand);
4434   SDValue Mask = getValue(MaskOperand);
4435   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4436 
4437   EVT VT = Src0.getValueType();
4438   if (!Alignment)
4439     Alignment = DAG.getEVTAlign(VT);
4440 
4441   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4442       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
4443       MemoryLocation::UnknownSize, *Alignment, I.getAAMetadata());
4444   SDValue StoreNode =
4445       DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO,
4446                          ISD::UNINDEXED, false /* Truncating */, IsCompressing);
4447   DAG.setRoot(StoreNode);
4448   setValue(&I, StoreNode);
4449 }
4450 
4451 // Get a uniform base for the Gather/Scatter intrinsic.
4452 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4453 // We try to represent it as a base pointer + vector of indices.
4454 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4455 // The first operand of the GEP may be a single pointer or a vector of pointers
4456 // Example:
4457 //   %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4458 //  or
4459 //   %gep.ptr = getelementptr i32, i32* %ptr,        <8 x i32> %ind
4460 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4461 //
4462 // When the first GEP operand is a single pointer - it is the uniform base we
4463 // are looking for. If first operand of the GEP is a splat vector - we
4464 // extract the splat value and use it as a uniform base.
4465 // In all other cases the function returns 'false'.
4466 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index,
4467                            ISD::MemIndexType &IndexType, SDValue &Scale,
4468                            SelectionDAGBuilder *SDB, const BasicBlock *CurBB,
4469                            uint64_t ElemSize) {
4470   SelectionDAG& DAG = SDB->DAG;
4471   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4472   const DataLayout &DL = DAG.getDataLayout();
4473 
4474   assert(Ptr->getType()->isVectorTy() && "Unexpected pointer type");
4475 
4476   // Handle splat constant pointer.
4477   if (auto *C = dyn_cast<Constant>(Ptr)) {
4478     C = C->getSplatValue();
4479     if (!C)
4480       return false;
4481 
4482     Base = SDB->getValue(C);
4483 
4484     ElementCount NumElts = cast<VectorType>(Ptr->getType())->getElementCount();
4485     EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts);
4486     Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT);
4487     IndexType = ISD::SIGNED_SCALED;
4488     Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4489     return true;
4490   }
4491 
4492   const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4493   if (!GEP || GEP->getParent() != CurBB)
4494     return false;
4495 
4496   if (GEP->getNumOperands() != 2)
4497     return false;
4498 
4499   const Value *BasePtr = GEP->getPointerOperand();
4500   const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1);
4501 
4502   // Make sure the base is scalar and the index is a vector.
4503   if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy())
4504     return false;
4505 
4506   uint64_t ScaleVal = DL.getTypeAllocSize(GEP->getResultElementType());
4507 
4508   // Target may not support the required addressing mode.
4509   if (ScaleVal != 1 &&
4510       !TLI.isLegalScaleForGatherScatter(ScaleVal, ElemSize))
4511     return false;
4512 
4513   Base = SDB->getValue(BasePtr);
4514   Index = SDB->getValue(IndexVal);
4515   IndexType = ISD::SIGNED_SCALED;
4516 
4517   Scale =
4518       DAG.getTargetConstant(ScaleVal, SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4519   return true;
4520 }
4521 
4522 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4523   SDLoc sdl = getCurSDLoc();
4524 
4525   // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask)
4526   const Value *Ptr = I.getArgOperand(1);
4527   SDValue Src0 = getValue(I.getArgOperand(0));
4528   SDValue Mask = getValue(I.getArgOperand(3));
4529   EVT VT = Src0.getValueType();
4530   Align Alignment = cast<ConstantInt>(I.getArgOperand(2))
4531                         ->getMaybeAlignValue()
4532                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4534 
4535   SDValue Base;
4536   SDValue Index;
4537   ISD::MemIndexType IndexType;
4538   SDValue Scale;
4539   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4540                                     I.getParent(), VT.getScalarStoreSize());
4541 
4542   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4543   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4544       MachinePointerInfo(AS), MachineMemOperand::MOStore,
4545       // TODO: Make MachineMemOperands aware of scalable
4546       // vectors.
4547       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata());
4548   if (!UniformBase) {
4549     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4550     Index = getValue(Ptr);
4551     IndexType = ISD::SIGNED_SCALED;
4552     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4553   }
4554 
4555   EVT IdxVT = Index.getValueType();
4556   EVT EltTy = IdxVT.getVectorElementType();
4557   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4558     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4559     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4560   }
4561 
4562   SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale };
4563   SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4564                                          Ops, MMO, IndexType, false);
4565   DAG.setRoot(Scatter);
4566   setValue(&I, Scatter);
4567 }
4568 
4569 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4570   SDLoc sdl = getCurSDLoc();
4571 
4572   auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4573                               MaybeAlign &Alignment) {
4574     // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4575     Ptr = I.getArgOperand(0);
4576     Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue();
4577     Mask = I.getArgOperand(2);
4578     Src0 = I.getArgOperand(3);
4579   };
4580   auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0,
4581                                  MaybeAlign &Alignment) {
4582     // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4583     Ptr = I.getArgOperand(0);
4584     Alignment = std::nullopt;
4585     Mask = I.getArgOperand(1);
4586     Src0 = I.getArgOperand(2);
4587   };
4588 
4589   Value  *PtrOperand, *MaskOperand, *Src0Operand;
4590   MaybeAlign Alignment;
4591   if (IsExpanding)
4592     getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4593   else
4594     getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4595 
4596   SDValue Ptr = getValue(PtrOperand);
4597   SDValue Src0 = getValue(Src0Operand);
4598   SDValue Mask = getValue(MaskOperand);
4599   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
4600 
4601   EVT VT = Src0.getValueType();
4602   if (!Alignment)
4603     Alignment = DAG.getEVTAlign(VT);
4604 
4605   AAMDNodes AAInfo = I.getAAMetadata();
4606   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4607 
4608   // Do not serialize masked loads of constant memory with anything.
4609   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
4610   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
4611 
4612   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4613 
4614   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4615       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
4616       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
4617 
4618   SDValue Load =
4619       DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO,
4620                         ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding);
4621   if (AddToChain)
4622     PendingLoads.push_back(Load.getValue(1));
4623   setValue(&I, Load);
4624 }
4625 
4626 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4627   SDLoc sdl = getCurSDLoc();
4628 
4629   // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4630   const Value *Ptr = I.getArgOperand(0);
4631   SDValue Src0 = getValue(I.getArgOperand(3));
4632   SDValue Mask = getValue(I.getArgOperand(2));
4633 
4634   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4635   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4636   Align Alignment = cast<ConstantInt>(I.getArgOperand(1))
4637                         ->getMaybeAlignValue()
4638                         .value_or(DAG.getEVTAlign(VT.getScalarType()));
4639 
4640   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4641 
4642   SDValue Root = DAG.getRoot();
4643   SDValue Base;
4644   SDValue Index;
4645   ISD::MemIndexType IndexType;
4646   SDValue Scale;
4647   bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this,
4648                                     I.getParent(), VT.getScalarStoreSize());
4649   unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace();
4650   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4651       MachinePointerInfo(AS), MachineMemOperand::MOLoad,
4652       // TODO: Make MachineMemOperands aware of scalable
4653       // vectors.
4654       MemoryLocation::UnknownSize, Alignment, I.getAAMetadata(), Ranges);
4655 
4656   if (!UniformBase) {
4657     Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4658     Index = getValue(Ptr);
4659     IndexType = ISD::SIGNED_SCALED;
4660     Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4661   }
4662 
4663   EVT IdxVT = Index.getValueType();
4664   EVT EltTy = IdxVT.getVectorElementType();
4665   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
4666     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
4667     Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index);
4668   }
4669 
4670   SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4671   SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4672                                        Ops, MMO, IndexType, ISD::NON_EXTLOAD);
4673 
4674   PendingLoads.push_back(Gather.getValue(1));
4675   setValue(&I, Gather);
4676 }
4677 
4678 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4679   SDLoc dl = getCurSDLoc();
4680   AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4681   AtomicOrdering FailureOrdering = I.getFailureOrdering();
4682   SyncScope::ID SSID = I.getSyncScopeID();
4683 
4684   SDValue InChain = getRoot();
4685 
4686   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4687   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4688 
4689   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4690   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4691 
4692   MachineFunction &MF = DAG.getMachineFunction();
4693   MachineMemOperand *MMO = MF.getMachineMemOperand(
4694       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4695       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering,
4696       FailureOrdering);
4697 
4698   SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4699                                    dl, MemVT, VTs, InChain,
4700                                    getValue(I.getPointerOperand()),
4701                                    getValue(I.getCompareOperand()),
4702                                    getValue(I.getNewValOperand()), MMO);
4703 
4704   SDValue OutChain = L.getValue(2);
4705 
4706   setValue(&I, L);
4707   DAG.setRoot(OutChain);
4708 }
4709 
4710 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4711   SDLoc dl = getCurSDLoc();
4712   ISD::NodeType NT;
4713   switch (I.getOperation()) {
4714   default: llvm_unreachable("Unknown atomicrmw operation");
4715   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4716   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
4717   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
4718   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
4719   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4720   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
4721   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
4722   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
4723   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
4724   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4725   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4726   case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4727   case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4728   case AtomicRMWInst::FMax: NT = ISD::ATOMIC_LOAD_FMAX; break;
4729   case AtomicRMWInst::FMin: NT = ISD::ATOMIC_LOAD_FMIN; break;
4730   case AtomicRMWInst::UIncWrap:
4731     NT = ISD::ATOMIC_LOAD_UINC_WRAP;
4732     break;
4733   case AtomicRMWInst::UDecWrap:
4734     NT = ISD::ATOMIC_LOAD_UDEC_WRAP;
4735     break;
4736   }
4737   AtomicOrdering Ordering = I.getOrdering();
4738   SyncScope::ID SSID = I.getSyncScopeID();
4739 
4740   SDValue InChain = getRoot();
4741 
4742   auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4743   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4744   auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout());
4745 
4746   MachineFunction &MF = DAG.getMachineFunction();
4747   MachineMemOperand *MMO = MF.getMachineMemOperand(
4748       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4749       DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering);
4750 
4751   SDValue L =
4752     DAG.getAtomic(NT, dl, MemVT, InChain,
4753                   getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4754                   MMO);
4755 
4756   SDValue OutChain = L.getValue(1);
4757 
4758   setValue(&I, L);
4759   DAG.setRoot(OutChain);
4760 }
4761 
4762 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4763   SDLoc dl = getCurSDLoc();
4764   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4765   SDValue Ops[3];
4766   Ops[0] = getRoot();
4767   Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl,
4768                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4769   Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl,
4770                                  TLI.getFenceOperandTy(DAG.getDataLayout()));
4771   SDValue N = DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops);
4772   setValue(&I, N);
4773   DAG.setRoot(N);
4774 }
4775 
4776 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4777   SDLoc dl = getCurSDLoc();
4778   AtomicOrdering Order = I.getOrdering();
4779   SyncScope::ID SSID = I.getSyncScopeID();
4780 
4781   SDValue InChain = getRoot();
4782 
4783   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4784   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4785   EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4786 
4787   if (!TLI.supportsUnalignedAtomics() &&
4788       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4789     report_fatal_error("Cannot generate unaligned atomic load");
4790 
4791   auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout(), AC, LibInfo);
4792 
4793   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
4794       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4795       I.getAlign(), AAMDNodes(), nullptr, SSID, Order);
4796 
4797   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4798 
4799   SDValue Ptr = getValue(I.getPointerOperand());
4800 
4801   if (TLI.lowerAtomicLoadAsLoadSDNode(I)) {
4802     // TODO: Once this is better exercised by tests, it should be merged with
4803     // the normal path for loads to prevent future divergence.
4804     SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO);
4805     if (MemVT != VT)
4806       L = DAG.getPtrExtOrTrunc(L, dl, VT);
4807 
4808     setValue(&I, L);
4809     SDValue OutChain = L.getValue(1);
4810     if (!I.isUnordered())
4811       DAG.setRoot(OutChain);
4812     else
4813       PendingLoads.push_back(OutChain);
4814     return;
4815   }
4816 
4817   SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4818                             Ptr, MMO);
4819 
4820   SDValue OutChain = L.getValue(1);
4821   if (MemVT != VT)
4822     L = DAG.getPtrExtOrTrunc(L, dl, VT);
4823 
4824   setValue(&I, L);
4825   DAG.setRoot(OutChain);
4826 }
4827 
4828 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4829   SDLoc dl = getCurSDLoc();
4830 
4831   AtomicOrdering Ordering = I.getOrdering();
4832   SyncScope::ID SSID = I.getSyncScopeID();
4833 
4834   SDValue InChain = getRoot();
4835 
4836   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4837   EVT MemVT =
4838       TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4839 
4840   if (!TLI.supportsUnalignedAtomics() &&
4841       I.getAlign().value() < MemVT.getSizeInBits() / 8)
4842     report_fatal_error("Cannot generate unaligned atomic store");
4843 
4844   auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout());
4845 
4846   MachineFunction &MF = DAG.getMachineFunction();
4847   MachineMemOperand *MMO = MF.getMachineMemOperand(
4848       MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(),
4849       I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering);
4850 
4851   SDValue Val = getValue(I.getValueOperand());
4852   if (Val.getValueType() != MemVT)
4853     Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4854   SDValue Ptr = getValue(I.getPointerOperand());
4855 
4856   if (TLI.lowerAtomicStoreAsStoreSDNode(I)) {
4857     // TODO: Once this is better exercised by tests, it should be merged with
4858     // the normal path for stores to prevent future divergence.
4859     SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO);
4860     setValue(&I, S);
4861     DAG.setRoot(S);
4862     return;
4863   }
4864   SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4865                                    Ptr, Val, MMO);
4866 
4867   setValue(&I, OutChain);
4868   DAG.setRoot(OutChain);
4869 }
4870 
4871 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4872 /// node.
4873 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4874                                                unsigned Intrinsic) {
4875   // Ignore the callsite's attributes. A specific call site may be marked with
4876   // readnone, but the lowering code will expect the chain based on the
4877   // definition.
4878   const Function *F = I.getCalledFunction();
4879   bool HasChain = !F->doesNotAccessMemory();
4880   bool OnlyLoad = HasChain && F->onlyReadsMemory();
4881 
4882   // Build the operand list.
4883   SmallVector<SDValue, 8> Ops;
4884   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
4885     if (OnlyLoad) {
4886       // We don't need to serialize loads against other loads.
4887       Ops.push_back(DAG.getRoot());
4888     } else {
4889       Ops.push_back(getRoot());
4890     }
4891   }
4892 
4893   // Info is set by getTgtMemIntrinsic
4894   TargetLowering::IntrinsicInfo Info;
4895   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4896   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4897                                                DAG.getMachineFunction(),
4898                                                Intrinsic);
4899 
4900   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4901   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4902       Info.opc == ISD::INTRINSIC_W_CHAIN)
4903     Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4904                                         TLI.getPointerTy(DAG.getDataLayout())));
4905 
4906   // Add all operands of the call to the operand list.
4907   for (unsigned i = 0, e = I.arg_size(); i != e; ++i) {
4908     const Value *Arg = I.getArgOperand(i);
4909     if (!I.paramHasAttr(i, Attribute::ImmArg)) {
4910       Ops.push_back(getValue(Arg));
4911       continue;
4912     }
4913 
4914     // Use TargetConstant instead of a regular constant for immarg.
4915     EVT VT = TLI.getValueType(DAG.getDataLayout(), Arg->getType(), true);
4916     if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) {
4917       assert(CI->getBitWidth() <= 64 &&
4918              "large intrinsic immediates not handled");
4919       Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT));
4920     } else {
4921       Ops.push_back(
4922           DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT));
4923     }
4924   }
4925 
4926   SmallVector<EVT, 4> ValueVTs;
4927   ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4928 
4929   if (HasChain)
4930     ValueVTs.push_back(MVT::Other);
4931 
4932   SDVTList VTs = DAG.getVTList(ValueVTs);
4933 
4934   // Propagate fast-math-flags from IR to node(s).
4935   SDNodeFlags Flags;
4936   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
4937     Flags.copyFMF(*FPMO);
4938   SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
4939 
4940   // Create the node.
4941   SDValue Result;
4942   // In some cases, custom collection of operands from CallInst I may be needed.
4943   TLI.CollectTargetIntrinsicOperands(I, Ops, DAG);
4944   if (IsTgtIntrinsic) {
4945     // This is target intrinsic that touches memory
4946     //
4947     // TODO: We currently just fallback to address space 0 if getTgtMemIntrinsic
4948     //       didn't yield anything useful.
4949     MachinePointerInfo MPI;
4950     if (Info.ptrVal)
4951       MPI = MachinePointerInfo(Info.ptrVal, Info.offset);
4952     else if (Info.fallbackAddressSpace)
4953       MPI = MachinePointerInfo(*Info.fallbackAddressSpace);
4954     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops,
4955                                      Info.memVT, MPI, Info.align, Info.flags,
4956                                      Info.size, I.getAAMetadata());
4957   } else if (!HasChain) {
4958     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4959   } else if (!I.getType()->isVoidTy()) {
4960     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4961   } else {
4962     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4963   }
4964 
4965   if (HasChain) {
4966     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4967     if (OnlyLoad)
4968       PendingLoads.push_back(Chain);
4969     else
4970       DAG.setRoot(Chain);
4971   }
4972 
4973   if (!I.getType()->isVoidTy()) {
4974     if (!isa<VectorType>(I.getType()))
4975       Result = lowerRangeToAssertZExt(DAG, I, Result);
4976 
4977     MaybeAlign Alignment = I.getRetAlign();
4978 
4979     // Insert `assertalign` node if there's an alignment.
4980     if (InsertAssertAlign && Alignment) {
4981       Result =
4982           DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne());
4983     }
4984 
4985     setValue(&I, Result);
4986   }
4987 }
4988 
4989 /// GetSignificand - Get the significand and build it into a floating-point
4990 /// number with exponent of 1:
4991 ///
4992 ///   Op = (Op & 0x007fffff) | 0x3f800000;
4993 ///
4994 /// where Op is the hexadecimal representation of floating point value.
4995 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4996   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4997                            DAG.getConstant(0x007fffff, dl, MVT::i32));
4998   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4999                            DAG.getConstant(0x3f800000, dl, MVT::i32));
5000   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
5001 }
5002 
5003 /// GetExponent - Get the exponent:
5004 ///
5005 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
5006 ///
5007 /// where Op is the hexadecimal representation of floating point value.
5008 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
5009                            const TargetLowering &TLI, const SDLoc &dl) {
5010   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
5011                            DAG.getConstant(0x7f800000, dl, MVT::i32));
5012   SDValue t1 = DAG.getNode(
5013       ISD::SRL, dl, MVT::i32, t0,
5014       DAG.getConstant(23, dl,
5015                       TLI.getShiftAmountTy(MVT::i32, DAG.getDataLayout())));
5016   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
5017                            DAG.getConstant(127, dl, MVT::i32));
5018   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
5019 }
5020 
5021 /// getF32Constant - Get 32-bit floating point constant.
5022 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
5023                               const SDLoc &dl) {
5024   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
5025                            MVT::f32);
5026 }
5027 
5028 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
5029                                        SelectionDAG &DAG) {
5030   // TODO: What fast-math-flags should be set on the floating-point nodes?
5031 
5032   //   IntegerPartOfX = ((int32_t)(t0);
5033   SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
5034 
5035   //   FractionalPartOfX = t0 - (float)IntegerPartOfX;
5036   SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
5037   SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
5038 
5039   //   IntegerPartOfX <<= 23;
5040   IntegerPartOfX =
5041       DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
5042                   DAG.getConstant(23, dl,
5043                                   DAG.getTargetLoweringInfo().getShiftAmountTy(
5044                                       MVT::i32, DAG.getDataLayout())));
5045 
5046   SDValue TwoToFractionalPartOfX;
5047   if (LimitFloatPrecision <= 6) {
5048     // For floating-point precision of 6:
5049     //
5050     //   TwoToFractionalPartOfX =
5051     //     0.997535578f +
5052     //       (0.735607626f + 0.252464424f * x) * x;
5053     //
5054     // error 0.0144103317, which is 6 bits
5055     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5056                              getF32Constant(DAG, 0x3e814304, dl));
5057     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5058                              getF32Constant(DAG, 0x3f3c50c8, dl));
5059     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5060     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5061                                          getF32Constant(DAG, 0x3f7f5e7e, dl));
5062   } else if (LimitFloatPrecision <= 12) {
5063     // For floating-point precision of 12:
5064     //
5065     //   TwoToFractionalPartOfX =
5066     //     0.999892986f +
5067     //       (0.696457318f +
5068     //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
5069     //
5070     // error 0.000107046256, which is 13 to 14 bits
5071     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5072                              getF32Constant(DAG, 0x3da235e3, dl));
5073     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5074                              getF32Constant(DAG, 0x3e65b8f3, dl));
5075     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5076     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5077                              getF32Constant(DAG, 0x3f324b07, dl));
5078     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5079     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5080                                          getF32Constant(DAG, 0x3f7ff8fd, dl));
5081   } else { // LimitFloatPrecision <= 18
5082     // For floating-point precision of 18:
5083     //
5084     //   TwoToFractionalPartOfX =
5085     //     0.999999982f +
5086     //       (0.693148872f +
5087     //         (0.240227044f +
5088     //           (0.554906021e-1f +
5089     //             (0.961591928e-2f +
5090     //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
5091     // error 2.47208000*10^(-7), which is better than 18 bits
5092     SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5093                              getF32Constant(DAG, 0x3924b03e, dl));
5094     SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5095                              getF32Constant(DAG, 0x3ab24b87, dl));
5096     SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5097     SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5098                              getF32Constant(DAG, 0x3c1d8c17, dl));
5099     SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5100     SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5101                              getF32Constant(DAG, 0x3d634a1d, dl));
5102     SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5103     SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5104                              getF32Constant(DAG, 0x3e75fe14, dl));
5105     SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5106     SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
5107                               getF32Constant(DAG, 0x3f317234, dl));
5108     SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
5109     TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
5110                                          getF32Constant(DAG, 0x3f800000, dl));
5111   }
5112 
5113   // Add the exponent into the result in integer domain.
5114   SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
5115   return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
5116                      DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
5117 }
5118 
5119 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
5120 /// limited-precision mode.
5121 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5122                          const TargetLowering &TLI, SDNodeFlags Flags) {
5123   if (Op.getValueType() == MVT::f32 &&
5124       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5125 
5126     // Put the exponent in the right bit position for later addition to the
5127     // final result:
5128     //
5129     // t0 = Op * log2(e)
5130 
5131     // TODO: What fast-math-flags should be set here?
5132     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
5133                              DAG.getConstantFP(numbers::log2ef, dl, MVT::f32));
5134     return getLimitedPrecisionExp2(t0, dl, DAG);
5135   }
5136 
5137   // No special expansion.
5138   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags);
5139 }
5140 
5141 /// expandLog - Lower a log intrinsic. Handles the special sequences for
5142 /// limited-precision mode.
5143 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5144                          const TargetLowering &TLI, SDNodeFlags Flags) {
5145   // TODO: What fast-math-flags should be set on the floating-point nodes?
5146 
5147   if (Op.getValueType() == MVT::f32 &&
5148       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5149     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5150 
5151     // Scale the exponent by log(2).
5152     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5153     SDValue LogOfExponent =
5154         DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5155                     DAG.getConstantFP(numbers::ln2f, dl, MVT::f32));
5156 
5157     // Get the significand and build it into a floating-point number with
5158     // exponent of 1.
5159     SDValue X = GetSignificand(DAG, Op1, dl);
5160 
5161     SDValue LogOfMantissa;
5162     if (LimitFloatPrecision <= 6) {
5163       // For floating-point precision of 6:
5164       //
5165       //   LogofMantissa =
5166       //     -1.1609546f +
5167       //       (1.4034025f - 0.23903021f * x) * x;
5168       //
5169       // error 0.0034276066, which is better than 8 bits
5170       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5171                                getF32Constant(DAG, 0xbe74c456, dl));
5172       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5173                                getF32Constant(DAG, 0x3fb3a2b1, dl));
5174       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5175       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5176                                   getF32Constant(DAG, 0x3f949a29, dl));
5177     } else if (LimitFloatPrecision <= 12) {
5178       // For floating-point precision of 12:
5179       //
5180       //   LogOfMantissa =
5181       //     -1.7417939f +
5182       //       (2.8212026f +
5183       //         (-1.4699568f +
5184       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5185       //
5186       // error 0.000061011436, which is 14 bits
5187       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5188                                getF32Constant(DAG, 0xbd67b6d6, dl));
5189       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5190                                getF32Constant(DAG, 0x3ee4f4b8, dl));
5191       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5192       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5193                                getF32Constant(DAG, 0x3fbc278b, dl));
5194       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5195       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5196                                getF32Constant(DAG, 0x40348e95, dl));
5197       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5198       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5199                                   getF32Constant(DAG, 0x3fdef31a, dl));
5200     } else { // LimitFloatPrecision <= 18
5201       // For floating-point precision of 18:
5202       //
5203       //   LogOfMantissa =
5204       //     -2.1072184f +
5205       //       (4.2372794f +
5206       //         (-3.7029485f +
5207       //           (2.2781945f +
5208       //             (-0.87823314f +
5209       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5210       //
5211       // error 0.0000023660568, which is better than 18 bits
5212       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5213                                getF32Constant(DAG, 0xbc91e5ac, dl));
5214       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5215                                getF32Constant(DAG, 0x3e4350aa, dl));
5216       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5217       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5218                                getF32Constant(DAG, 0x3f60d3e3, dl));
5219       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5220       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5221                                getF32Constant(DAG, 0x4011cdf0, dl));
5222       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5223       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5224                                getF32Constant(DAG, 0x406cfd1c, dl));
5225       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5226       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5227                                getF32Constant(DAG, 0x408797cb, dl));
5228       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5229       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5230                                   getF32Constant(DAG, 0x4006dcab, dl));
5231     }
5232 
5233     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5234   }
5235 
5236   // No special expansion.
5237   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags);
5238 }
5239 
5240 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5241 /// limited-precision mode.
5242 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5243                           const TargetLowering &TLI, SDNodeFlags Flags) {
5244   // TODO: What fast-math-flags should be set on the floating-point nodes?
5245 
5246   if (Op.getValueType() == MVT::f32 &&
5247       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5248     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5249 
5250     // Get the exponent.
5251     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5252 
5253     // Get the significand and build it into a floating-point number with
5254     // exponent of 1.
5255     SDValue X = GetSignificand(DAG, Op1, dl);
5256 
5257     // Different possible minimax approximations of significand in
5258     // floating-point for various degrees of accuracy over [1,2].
5259     SDValue Log2ofMantissa;
5260     if (LimitFloatPrecision <= 6) {
5261       // For floating-point precision of 6:
5262       //
5263       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5264       //
5265       // error 0.0049451742, which is more than 7 bits
5266       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5267                                getF32Constant(DAG, 0xbeb08fe0, dl));
5268       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5269                                getF32Constant(DAG, 0x40019463, dl));
5270       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5271       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5272                                    getF32Constant(DAG, 0x3fd6633d, dl));
5273     } else if (LimitFloatPrecision <= 12) {
5274       // For floating-point precision of 12:
5275       //
5276       //   Log2ofMantissa =
5277       //     -2.51285454f +
5278       //       (4.07009056f +
5279       //         (-2.12067489f +
5280       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5281       //
5282       // error 0.0000876136000, which is better than 13 bits
5283       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5284                                getF32Constant(DAG, 0xbda7262e, dl));
5285       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5286                                getF32Constant(DAG, 0x3f25280b, dl));
5287       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5288       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5289                                getF32Constant(DAG, 0x4007b923, dl));
5290       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5291       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5292                                getF32Constant(DAG, 0x40823e2f, dl));
5293       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5294       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5295                                    getF32Constant(DAG, 0x4020d29c, dl));
5296     } else { // LimitFloatPrecision <= 18
5297       // For floating-point precision of 18:
5298       //
5299       //   Log2ofMantissa =
5300       //     -3.0400495f +
5301       //       (6.1129976f +
5302       //         (-5.3420409f +
5303       //           (3.2865683f +
5304       //             (-1.2669343f +
5305       //               (0.27515199f -
5306       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5307       //
5308       // error 0.0000018516, which is better than 18 bits
5309       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5310                                getF32Constant(DAG, 0xbcd2769e, dl));
5311       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5312                                getF32Constant(DAG, 0x3e8ce0b9, dl));
5313       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5314       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5315                                getF32Constant(DAG, 0x3fa22ae7, dl));
5316       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5317       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5318                                getF32Constant(DAG, 0x40525723, dl));
5319       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5320       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5321                                getF32Constant(DAG, 0x40aaf200, dl));
5322       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5323       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5324                                getF32Constant(DAG, 0x40c39dad, dl));
5325       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5326       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5327                                    getF32Constant(DAG, 0x4042902c, dl));
5328     }
5329 
5330     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5331   }
5332 
5333   // No special expansion.
5334   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags);
5335 }
5336 
5337 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5338 /// limited-precision mode.
5339 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5340                            const TargetLowering &TLI, SDNodeFlags Flags) {
5341   // TODO: What fast-math-flags should be set on the floating-point nodes?
5342 
5343   if (Op.getValueType() == MVT::f32 &&
5344       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5345     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5346 
5347     // Scale the exponent by log10(2) [0.30102999f].
5348     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5349     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5350                                         getF32Constant(DAG, 0x3e9a209a, dl));
5351 
5352     // Get the significand and build it into a floating-point number with
5353     // exponent of 1.
5354     SDValue X = GetSignificand(DAG, Op1, dl);
5355 
5356     SDValue Log10ofMantissa;
5357     if (LimitFloatPrecision <= 6) {
5358       // For floating-point precision of 6:
5359       //
5360       //   Log10ofMantissa =
5361       //     -0.50419619f +
5362       //       (0.60948995f - 0.10380950f * x) * x;
5363       //
5364       // error 0.0014886165, which is 6 bits
5365       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5366                                getF32Constant(DAG, 0xbdd49a13, dl));
5367       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5368                                getF32Constant(DAG, 0x3f1c0789, dl));
5369       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5370       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5371                                     getF32Constant(DAG, 0x3f011300, dl));
5372     } else if (LimitFloatPrecision <= 12) {
5373       // For floating-point precision of 12:
5374       //
5375       //   Log10ofMantissa =
5376       //     -0.64831180f +
5377       //       (0.91751397f +
5378       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5379       //
5380       // error 0.00019228036, which is better than 12 bits
5381       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5382                                getF32Constant(DAG, 0x3d431f31, dl));
5383       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5384                                getF32Constant(DAG, 0x3ea21fb2, dl));
5385       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5386       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5387                                getF32Constant(DAG, 0x3f6ae232, dl));
5388       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5389       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5390                                     getF32Constant(DAG, 0x3f25f7c3, dl));
5391     } else { // LimitFloatPrecision <= 18
5392       // For floating-point precision of 18:
5393       //
5394       //   Log10ofMantissa =
5395       //     -0.84299375f +
5396       //       (1.5327582f +
5397       //         (-1.0688956f +
5398       //           (0.49102474f +
5399       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5400       //
5401       // error 0.0000037995730, which is better than 18 bits
5402       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5403                                getF32Constant(DAG, 0x3c5d51ce, dl));
5404       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5405                                getF32Constant(DAG, 0x3e00685a, dl));
5406       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5407       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5408                                getF32Constant(DAG, 0x3efb6798, dl));
5409       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5410       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5411                                getF32Constant(DAG, 0x3f88d192, dl));
5412       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5413       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5414                                getF32Constant(DAG, 0x3fc4316c, dl));
5415       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5416       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5417                                     getF32Constant(DAG, 0x3f57ce70, dl));
5418     }
5419 
5420     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5421   }
5422 
5423   // No special expansion.
5424   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags);
5425 }
5426 
5427 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5428 /// limited-precision mode.
5429 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5430                           const TargetLowering &TLI, SDNodeFlags Flags) {
5431   if (Op.getValueType() == MVT::f32 &&
5432       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5433     return getLimitedPrecisionExp2(Op, dl, DAG);
5434 
5435   // No special expansion.
5436   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags);
5437 }
5438 
5439 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5440 /// limited-precision mode with x == 10.0f.
5441 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5442                          SelectionDAG &DAG, const TargetLowering &TLI,
5443                          SDNodeFlags Flags) {
5444   bool IsExp10 = false;
5445   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5446       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5447     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5448       APFloat Ten(10.0f);
5449       IsExp10 = LHSC->isExactlyValue(Ten);
5450     }
5451   }
5452 
5453   // TODO: What fast-math-flags should be set on the FMUL node?
5454   if (IsExp10) {
5455     // Put the exponent in the right bit position for later addition to the
5456     // final result:
5457     //
5458     //   #define LOG2OF10 3.3219281f
5459     //   t0 = Op * LOG2OF10;
5460     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5461                              getF32Constant(DAG, 0x40549a78, dl));
5462     return getLimitedPrecisionExp2(t0, dl, DAG);
5463   }
5464 
5465   // No special expansion.
5466   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags);
5467 }
5468 
5469 /// ExpandPowI - Expand a llvm.powi intrinsic.
5470 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5471                           SelectionDAG &DAG) {
5472   // If RHS is a constant, we can expand this out to a multiplication tree if
5473   // it's beneficial on the target, otherwise we end up lowering to a call to
5474   // __powidf2 (for example).
5475   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5476     unsigned Val = RHSC->getSExtValue();
5477 
5478     // powi(x, 0) -> 1.0
5479     if (Val == 0)
5480       return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5481 
5482     if (DAG.getTargetLoweringInfo().isBeneficialToExpandPowI(
5483             Val, DAG.shouldOptForSize())) {
5484       // Get the exponent as a positive value.
5485       if ((int)Val < 0)
5486         Val = -Val;
5487       // We use the simple binary decomposition method to generate the multiply
5488       // sequence.  There are more optimal ways to do this (for example,
5489       // powi(x,15) generates one more multiply than it should), but this has
5490       // the benefit of being both really simple and much better than a libcall.
5491       SDValue Res; // Logically starts equal to 1.0
5492       SDValue CurSquare = LHS;
5493       // TODO: Intrinsics should have fast-math-flags that propagate to these
5494       // nodes.
5495       while (Val) {
5496         if (Val & 1) {
5497           if (Res.getNode())
5498             Res =
5499                 DAG.getNode(ISD::FMUL, DL, Res.getValueType(), Res, CurSquare);
5500           else
5501             Res = CurSquare; // 1.0*CurSquare.
5502         }
5503 
5504         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5505                                 CurSquare, CurSquare);
5506         Val >>= 1;
5507       }
5508 
5509       // If the original was negative, invert the result, producing 1/(x*x*x).
5510       if (RHSC->getSExtValue() < 0)
5511         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5512                           DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5513       return Res;
5514     }
5515   }
5516 
5517   // Otherwise, expand to a libcall.
5518   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5519 }
5520 
5521 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL,
5522                             SDValue LHS, SDValue RHS, SDValue Scale,
5523                             SelectionDAG &DAG, const TargetLowering &TLI) {
5524   EVT VT = LHS.getValueType();
5525   bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT;
5526   bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT;
5527   LLVMContext &Ctx = *DAG.getContext();
5528 
5529   // If the type is legal but the operation isn't, this node might survive all
5530   // the way to operation legalization. If we end up there and we do not have
5531   // the ability to widen the type (if VT*2 is not legal), we cannot expand the
5532   // node.
5533 
5534   // Coax the legalizer into expanding the node during type legalization instead
5535   // by bumping the size by one bit. This will force it to Promote, enabling the
5536   // early expansion and avoiding the need to expand later.
5537 
5538   // We don't have to do this if Scale is 0; that can always be expanded, unless
5539   // it's a saturating signed operation. Those can experience true integer
5540   // division overflow, a case which we must avoid.
5541 
5542   // FIXME: We wouldn't have to do this (or any of the early
5543   // expansion/promotion) if it was possible to expand a libcall of an
5544   // illegal type during operation legalization. But it's not, so things
5545   // get a bit hacky.
5546   unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue();
5547   if ((ScaleInt > 0 || (Saturating && Signed)) &&
5548       (TLI.isTypeLegal(VT) ||
5549        (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) {
5550     TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction(
5551         Opcode, VT, ScaleInt);
5552     if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) {
5553       EVT PromVT;
5554       if (VT.isScalarInteger())
5555         PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1);
5556       else if (VT.isVector()) {
5557         PromVT = VT.getVectorElementType();
5558         PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1);
5559         PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount());
5560       } else
5561         llvm_unreachable("Wrong VT for DIVFIX?");
5562       LHS = DAG.getExtOrTrunc(Signed, LHS, DL, PromVT);
5563       RHS = DAG.getExtOrTrunc(Signed, RHS, DL, PromVT);
5564       EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout());
5565       // For saturating operations, we need to shift up the LHS to get the
5566       // proper saturation width, and then shift down again afterwards.
5567       if (Saturating)
5568         LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS,
5569                           DAG.getConstant(1, DL, ShiftTy));
5570       SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale);
5571       if (Saturating)
5572         Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res,
5573                           DAG.getConstant(1, DL, ShiftTy));
5574       return DAG.getZExtOrTrunc(Res, DL, VT);
5575     }
5576   }
5577 
5578   return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale);
5579 }
5580 
5581 // getUnderlyingArgRegs - Find underlying registers used for a truncated,
5582 // bitcasted, or split argument. Returns a list of <Register, size in bits>
5583 static void
5584 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs,
5585                      const SDValue &N) {
5586   switch (N.getOpcode()) {
5587   case ISD::CopyFromReg: {
5588     SDValue Op = N.getOperand(1);
5589     Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(),
5590                       Op.getValueType().getSizeInBits());
5591     return;
5592   }
5593   case ISD::BITCAST:
5594   case ISD::AssertZext:
5595   case ISD::AssertSext:
5596   case ISD::TRUNCATE:
5597     getUnderlyingArgRegs(Regs, N.getOperand(0));
5598     return;
5599   case ISD::BUILD_PAIR:
5600   case ISD::BUILD_VECTOR:
5601   case ISD::CONCAT_VECTORS:
5602     for (SDValue Op : N->op_values())
5603       getUnderlyingArgRegs(Regs, Op);
5604     return;
5605   default:
5606     return;
5607   }
5608 }
5609 
5610 /// If the DbgValueInst is a dbg_value of a function argument, create the
5611 /// corresponding DBG_VALUE machine instruction for it now.  At the end of
5612 /// instruction selection, they will be inserted to the entry BB.
5613 /// We don't currently support this for variadic dbg_values, as they shouldn't
5614 /// appear for function arguments or in the prologue.
5615 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5616     const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5617     DILocation *DL, FuncArgumentDbgValueKind Kind, const SDValue &N) {
5618   const Argument *Arg = dyn_cast<Argument>(V);
5619   if (!Arg)
5620     return false;
5621 
5622   MachineFunction &MF = DAG.getMachineFunction();
5623   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5624 
5625   // Helper to create DBG_INSTR_REFs or DBG_VALUEs, depending on what kind
5626   // we've been asked to pursue.
5627   auto MakeVRegDbgValue = [&](Register Reg, DIExpression *FragExpr,
5628                               bool Indirect) {
5629     if (Reg.isVirtual() && MF.useDebugInstrRef()) {
5630       // For VRegs, in instruction referencing mode, create a DBG_INSTR_REF
5631       // pointing at the VReg, which will be patched up later.
5632       auto &Inst = TII->get(TargetOpcode::DBG_INSTR_REF);
5633       SmallVector<MachineOperand, 1> MOs({MachineOperand::CreateReg(
5634           /* Reg */ Reg, /* isDef */ false, /* isImp */ false,
5635           /* isKill */ false, /* isDead */ false,
5636           /* isUndef */ false, /* isEarlyClobber */ false,
5637           /* SubReg */ 0, /* isDebug */ true)});
5638 
5639       auto *NewDIExpr = FragExpr;
5640       // We don't have an "Indirect" field in DBG_INSTR_REF, fold that into
5641       // the DIExpression.
5642       if (Indirect)
5643         NewDIExpr = DIExpression::prepend(FragExpr, DIExpression::DerefBefore);
5644       SmallVector<uint64_t, 2> Ops({dwarf::DW_OP_LLVM_arg, 0});
5645       NewDIExpr = DIExpression::prependOpcodes(NewDIExpr, Ops);
5646       return BuildMI(MF, DL, Inst, false, MOs, Variable, NewDIExpr);
5647     } else {
5648       // Create a completely standard DBG_VALUE.
5649       auto &Inst = TII->get(TargetOpcode::DBG_VALUE);
5650       return BuildMI(MF, DL, Inst, Indirect, Reg, Variable, FragExpr);
5651     }
5652   };
5653 
5654   if (Kind == FuncArgumentDbgValueKind::Value) {
5655     // ArgDbgValues are hoisted to the beginning of the entry block. So we
5656     // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5657     // the entry block.
5658     bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5659     if (!IsInEntryBlock)
5660       return false;
5661 
5662     // ArgDbgValues are hoisted to the beginning of the entry block.  So we
5663     // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5664     // variable that also is a param.
5665     //
5666     // Although, if we are at the top of the entry block already, we can still
5667     // emit using ArgDbgValue. This might catch some situations when the
5668     // dbg.value refers to an argument that isn't used in the entry block, so
5669     // any CopyToReg node would be optimized out and the only way to express
5670     // this DBG_VALUE is by using the physical reg (or FI) as done in this
5671     // method.  ArgDbgValues are hoisted to the beginning of the entry block. So
5672     // we should only emit as ArgDbgValue if the Variable is an argument to the
5673     // current function, and the dbg.value intrinsic is found in the entry
5674     // block.
5675     bool VariableIsFunctionInputArg = Variable->isParameter() &&
5676         !DL->getInlinedAt();
5677     bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5678     if (!IsInPrologue && !VariableIsFunctionInputArg)
5679       return false;
5680 
5681     // Here we assume that a function argument on IR level only can be used to
5682     // describe one input parameter on source level. If we for example have
5683     // source code like this
5684     //
5685     //    struct A { long x, y; };
5686     //    void foo(struct A a, long b) {
5687     //      ...
5688     //      b = a.x;
5689     //      ...
5690     //    }
5691     //
5692     // and IR like this
5693     //
5694     //  define void @foo(i32 %a1, i32 %a2, i32 %b)  {
5695     //  entry:
5696     //    call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5697     //    call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5698     //    call void @llvm.dbg.value(metadata i32 %b, "b",
5699     //    ...
5700     //    call void @llvm.dbg.value(metadata i32 %a1, "b"
5701     //    ...
5702     //
5703     // then the last dbg.value is describing a parameter "b" using a value that
5704     // is an argument. But since we already has used %a1 to describe a parameter
5705     // we should not handle that last dbg.value here (that would result in an
5706     // incorrect hoisting of the DBG_VALUE to the function entry).
5707     // Notice that we allow one dbg.value per IR level argument, to accommodate
5708     // for the situation with fragments above.
5709     if (VariableIsFunctionInputArg) {
5710       unsigned ArgNo = Arg->getArgNo();
5711       if (ArgNo >= FuncInfo.DescribedArgs.size())
5712         FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5713       else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5714         return false;
5715       FuncInfo.DescribedArgs.set(ArgNo);
5716     }
5717   }
5718 
5719   bool IsIndirect = false;
5720   std::optional<MachineOperand> Op;
5721   // Some arguments' frame index is recorded during argument lowering.
5722   int FI = FuncInfo.getArgumentFrameIndex(Arg);
5723   if (FI != std::numeric_limits<int>::max())
5724     Op = MachineOperand::CreateFI(FI);
5725 
5726   SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes;
5727   if (!Op && N.getNode()) {
5728     getUnderlyingArgRegs(ArgRegsAndSizes, N);
5729     Register Reg;
5730     if (ArgRegsAndSizes.size() == 1)
5731       Reg = ArgRegsAndSizes.front().first;
5732 
5733     if (Reg && Reg.isVirtual()) {
5734       MachineRegisterInfo &RegInfo = MF.getRegInfo();
5735       Register PR = RegInfo.getLiveInPhysReg(Reg);
5736       if (PR)
5737         Reg = PR;
5738     }
5739     if (Reg) {
5740       Op = MachineOperand::CreateReg(Reg, false);
5741       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5742     }
5743   }
5744 
5745   if (!Op && N.getNode()) {
5746     // Check if frame index is available.
5747     SDValue LCandidate = peekThroughBitcasts(N);
5748     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5749       if (FrameIndexSDNode *FINode =
5750           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5751         Op = MachineOperand::CreateFI(FINode->getIndex());
5752   }
5753 
5754   if (!Op) {
5755     // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg
5756     auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>>
5757                                          SplitRegs) {
5758       unsigned Offset = 0;
5759       for (const auto &RegAndSize : SplitRegs) {
5760         // If the expression is already a fragment, the current register
5761         // offset+size might extend beyond the fragment. In this case, only
5762         // the register bits that are inside the fragment are relevant.
5763         int RegFragmentSizeInBits = RegAndSize.second;
5764         if (auto ExprFragmentInfo = Expr->getFragmentInfo()) {
5765           uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits;
5766           // The register is entirely outside the expression fragment,
5767           // so is irrelevant for debug info.
5768           if (Offset >= ExprFragmentSizeInBits)
5769             break;
5770           // The register is partially outside the expression fragment, only
5771           // the low bits within the fragment are relevant for debug info.
5772           if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) {
5773             RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset;
5774           }
5775         }
5776 
5777         auto FragmentExpr = DIExpression::createFragmentExpression(
5778             Expr, Offset, RegFragmentSizeInBits);
5779         Offset += RegAndSize.second;
5780         // If a valid fragment expression cannot be created, the variable's
5781         // correct value cannot be determined and so it is set as Undef.
5782         if (!FragmentExpr) {
5783           SDDbgValue *SDV = DAG.getConstantDbgValue(
5784               Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder);
5785           DAG.AddDbgValue(SDV, false);
5786           continue;
5787         }
5788         MachineInstr *NewMI =
5789             MakeVRegDbgValue(RegAndSize.first, *FragmentExpr,
5790                              Kind != FuncArgumentDbgValueKind::Value);
5791         FuncInfo.ArgDbgValues.push_back(NewMI);
5792       }
5793     };
5794 
5795     // Check if ValueMap has reg number.
5796     DenseMap<const Value *, Register>::const_iterator
5797       VMI = FuncInfo.ValueMap.find(V);
5798     if (VMI != FuncInfo.ValueMap.end()) {
5799       const auto &TLI = DAG.getTargetLoweringInfo();
5800       RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5801                        V->getType(), std::nullopt);
5802       if (RFV.occupiesMultipleRegs()) {
5803         splitMultiRegDbgValue(RFV.getRegsAndSizes());
5804         return true;
5805       }
5806 
5807       Op = MachineOperand::CreateReg(VMI->second, false);
5808       IsIndirect = Kind != FuncArgumentDbgValueKind::Value;
5809     } else if (ArgRegsAndSizes.size() > 1) {
5810       // This was split due to the calling convention, and no virtual register
5811       // mapping exists for the value.
5812       splitMultiRegDbgValue(ArgRegsAndSizes);
5813       return true;
5814     }
5815   }
5816 
5817   if (!Op)
5818     return false;
5819 
5820   // If the expression refers to the entry value of an Argument, use the
5821   // corresponding livein physical register. As per the Verifier, this is only
5822   // allowed for swiftasync Arguments.
5823   if (Op->isReg() && Expr->isEntryValue()) {
5824     assert(Arg->hasAttribute(Attribute::AttrKind::SwiftAsync));
5825     auto OpReg = Op->getReg();
5826     for (auto [PhysReg, VirtReg] : FuncInfo.RegInfo->liveins())
5827       if (OpReg == VirtReg || OpReg == PhysReg) {
5828         SDDbgValue *SDV = DAG.getVRegDbgValue(
5829             Variable, Expr, PhysReg,
5830             Kind != FuncArgumentDbgValueKind::Value /*is indirect*/, DL,
5831             SDNodeOrder);
5832         DAG.AddDbgValue(SDV, false /*treat as dbg.declare byval parameter*/);
5833         return true;
5834       }
5835     LLVM_DEBUG(dbgs() << "Dropping dbg.value: expression is entry_value but "
5836                          "couldn't find a physical register\n");
5837     return true;
5838   }
5839 
5840   assert(Variable->isValidLocationForIntrinsic(DL) &&
5841          "Expected inlined-at fields to agree");
5842   MachineInstr *NewMI = nullptr;
5843 
5844   if (Op->isReg())
5845     NewMI = MakeVRegDbgValue(Op->getReg(), Expr, IsIndirect);
5846   else
5847     NewMI = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), true, *Op,
5848                     Variable, Expr);
5849 
5850   // Otherwise, use ArgDbgValues.
5851   FuncInfo.ArgDbgValues.push_back(NewMI);
5852   return true;
5853 }
5854 
5855 /// Return the appropriate SDDbgValue based on N.
5856 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5857                                              DILocalVariable *Variable,
5858                                              DIExpression *Expr,
5859                                              const DebugLoc &dl,
5860                                              unsigned DbgSDNodeOrder) {
5861   if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5862     // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5863     // stack slot locations.
5864     //
5865     // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5866     // debug values here after optimization:
5867     //
5868     //   dbg.value(i32* %px, !"int *px", !DIExpression()), and
5869     //   dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5870     //
5871     // Both describe the direct values of their associated variables.
5872     return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5873                                      /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5874   }
5875   return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5876                          /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5877 }
5878 
5879 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5880   switch (Intrinsic) {
5881   case Intrinsic::smul_fix:
5882     return ISD::SMULFIX;
5883   case Intrinsic::umul_fix:
5884     return ISD::UMULFIX;
5885   case Intrinsic::smul_fix_sat:
5886     return ISD::SMULFIXSAT;
5887   case Intrinsic::umul_fix_sat:
5888     return ISD::UMULFIXSAT;
5889   case Intrinsic::sdiv_fix:
5890     return ISD::SDIVFIX;
5891   case Intrinsic::udiv_fix:
5892     return ISD::UDIVFIX;
5893   case Intrinsic::sdiv_fix_sat:
5894     return ISD::SDIVFIXSAT;
5895   case Intrinsic::udiv_fix_sat:
5896     return ISD::UDIVFIXSAT;
5897   default:
5898     llvm_unreachable("Unhandled fixed point intrinsic");
5899   }
5900 }
5901 
5902 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5903                                            const char *FunctionName) {
5904   assert(FunctionName && "FunctionName must not be nullptr");
5905   SDValue Callee = DAG.getExternalSymbol(
5906       FunctionName,
5907       DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5908   LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
5909 }
5910 
5911 /// Given a @llvm.call.preallocated.setup, return the corresponding
5912 /// preallocated call.
5913 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) {
5914   assert(cast<CallBase>(PreallocatedSetup)
5915                  ->getCalledFunction()
5916                  ->getIntrinsicID() == Intrinsic::call_preallocated_setup &&
5917          "expected call_preallocated_setup Value");
5918   for (const auto *U : PreallocatedSetup->users()) {
5919     auto *UseCall = cast<CallBase>(U);
5920     const Function *Fn = UseCall->getCalledFunction();
5921     if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) {
5922       return UseCall;
5923     }
5924   }
5925   llvm_unreachable("expected corresponding call to preallocated setup/arg");
5926 }
5927 
5928 /// Lower the call to the specified intrinsic function.
5929 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5930                                              unsigned Intrinsic) {
5931   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5932   SDLoc sdl = getCurSDLoc();
5933   DebugLoc dl = getCurDebugLoc();
5934   SDValue Res;
5935 
5936   SDNodeFlags Flags;
5937   if (auto *FPOp = dyn_cast<FPMathOperator>(&I))
5938     Flags.copyFMF(*FPOp);
5939 
5940   switch (Intrinsic) {
5941   default:
5942     // By default, turn this into a target intrinsic node.
5943     visitTargetIntrinsic(I, Intrinsic);
5944     return;
5945   case Intrinsic::vscale: {
5946     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5947     setValue(&I, DAG.getVScale(sdl, VT, APInt(VT.getSizeInBits(), 1)));
5948     return;
5949   }
5950   case Intrinsic::vastart:  visitVAStart(I); return;
5951   case Intrinsic::vaend:    visitVAEnd(I); return;
5952   case Intrinsic::vacopy:   visitVACopy(I); return;
5953   case Intrinsic::returnaddress:
5954     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5955                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
5956                              getValue(I.getArgOperand(0))));
5957     return;
5958   case Intrinsic::addressofreturnaddress:
5959     setValue(&I,
5960              DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5961                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5962     return;
5963   case Intrinsic::sponentry:
5964     setValue(&I,
5965              DAG.getNode(ISD::SPONENTRY, sdl,
5966                          TLI.getValueType(DAG.getDataLayout(), I.getType())));
5967     return;
5968   case Intrinsic::frameaddress:
5969     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5970                              TLI.getFrameIndexTy(DAG.getDataLayout()),
5971                              getValue(I.getArgOperand(0))));
5972     return;
5973   case Intrinsic::read_volatile_register:
5974   case Intrinsic::read_register: {
5975     Value *Reg = I.getArgOperand(0);
5976     SDValue Chain = getRoot();
5977     SDValue RegName =
5978         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5979     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5980     Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5981       DAG.getVTList(VT, MVT::Other), Chain, RegName);
5982     setValue(&I, Res);
5983     DAG.setRoot(Res.getValue(1));
5984     return;
5985   }
5986   case Intrinsic::write_register: {
5987     Value *Reg = I.getArgOperand(0);
5988     Value *RegValue = I.getArgOperand(1);
5989     SDValue Chain = getRoot();
5990     SDValue RegName =
5991         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5992     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5993                             RegName, getValue(RegValue)));
5994     return;
5995   }
5996   case Intrinsic::memcpy: {
5997     const auto &MCI = cast<MemCpyInst>(I);
5998     SDValue Op1 = getValue(I.getArgOperand(0));
5999     SDValue Op2 = getValue(I.getArgOperand(1));
6000     SDValue Op3 = getValue(I.getArgOperand(2));
6001     // @llvm.memcpy defines 0 and 1 to both mean no alignment.
6002     Align DstAlign = MCI.getDestAlign().valueOrOne();
6003     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6004     Align Alignment = std::min(DstAlign, SrcAlign);
6005     bool isVol = MCI.isVolatile();
6006     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6007     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6008     // node.
6009     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6010     SDValue MC = DAG.getMemcpy(
6011         Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6012         /* AlwaysInline */ false, isTC, MachinePointerInfo(I.getArgOperand(0)),
6013         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6014     updateDAGForMaybeTailCall(MC);
6015     return;
6016   }
6017   case Intrinsic::memcpy_inline: {
6018     const auto &MCI = cast<MemCpyInlineInst>(I);
6019     SDValue Dst = getValue(I.getArgOperand(0));
6020     SDValue Src = getValue(I.getArgOperand(1));
6021     SDValue Size = getValue(I.getArgOperand(2));
6022     assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size");
6023     // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment.
6024     Align DstAlign = MCI.getDestAlign().valueOrOne();
6025     Align SrcAlign = MCI.getSourceAlign().valueOrOne();
6026     Align Alignment = std::min(DstAlign, SrcAlign);
6027     bool isVol = MCI.isVolatile();
6028     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6029     // FIXME: Support passing different dest/src alignments to the memcpy DAG
6030     // node.
6031     SDValue MC = DAG.getMemcpy(
6032         getRoot(), sdl, Dst, Src, Size, Alignment, isVol,
6033         /* AlwaysInline */ true, isTC, MachinePointerInfo(I.getArgOperand(0)),
6034         MachinePointerInfo(I.getArgOperand(1)), I.getAAMetadata(), AA);
6035     updateDAGForMaybeTailCall(MC);
6036     return;
6037   }
6038   case Intrinsic::memset: {
6039     const auto &MSI = cast<MemSetInst>(I);
6040     SDValue Op1 = getValue(I.getArgOperand(0));
6041     SDValue Op2 = getValue(I.getArgOperand(1));
6042     SDValue Op3 = getValue(I.getArgOperand(2));
6043     // @llvm.memset defines 0 and 1 to both mean no alignment.
6044     Align Alignment = MSI.getDestAlign().valueOrOne();
6045     bool isVol = MSI.isVolatile();
6046     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6047     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6048     SDValue MS = DAG.getMemset(
6049         Root, sdl, Op1, Op2, Op3, Alignment, isVol, /* AlwaysInline */ false,
6050         isTC, MachinePointerInfo(I.getArgOperand(0)), I.getAAMetadata());
6051     updateDAGForMaybeTailCall(MS);
6052     return;
6053   }
6054   case Intrinsic::memset_inline: {
6055     const auto &MSII = cast<MemSetInlineInst>(I);
6056     SDValue Dst = getValue(I.getArgOperand(0));
6057     SDValue Value = getValue(I.getArgOperand(1));
6058     SDValue Size = getValue(I.getArgOperand(2));
6059     assert(isa<ConstantSDNode>(Size) && "memset_inline needs constant size");
6060     // @llvm.memset defines 0 and 1 to both mean no alignment.
6061     Align DstAlign = MSII.getDestAlign().valueOrOne();
6062     bool isVol = MSII.isVolatile();
6063     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6064     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6065     SDValue MC = DAG.getMemset(Root, sdl, Dst, Value, Size, DstAlign, isVol,
6066                                /* AlwaysInline */ true, isTC,
6067                                MachinePointerInfo(I.getArgOperand(0)),
6068                                I.getAAMetadata());
6069     updateDAGForMaybeTailCall(MC);
6070     return;
6071   }
6072   case Intrinsic::memmove: {
6073     const auto &MMI = cast<MemMoveInst>(I);
6074     SDValue Op1 = getValue(I.getArgOperand(0));
6075     SDValue Op2 = getValue(I.getArgOperand(1));
6076     SDValue Op3 = getValue(I.getArgOperand(2));
6077     // @llvm.memmove defines 0 and 1 to both mean no alignment.
6078     Align DstAlign = MMI.getDestAlign().valueOrOne();
6079     Align SrcAlign = MMI.getSourceAlign().valueOrOne();
6080     Align Alignment = std::min(DstAlign, SrcAlign);
6081     bool isVol = MMI.isVolatile();
6082     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6083     // FIXME: Support passing different dest/src alignments to the memmove DAG
6084     // node.
6085     SDValue Root = isVol ? getRoot() : getMemoryRoot();
6086     SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol,
6087                                 isTC, MachinePointerInfo(I.getArgOperand(0)),
6088                                 MachinePointerInfo(I.getArgOperand(1)),
6089                                 I.getAAMetadata(), AA);
6090     updateDAGForMaybeTailCall(MM);
6091     return;
6092   }
6093   case Intrinsic::memcpy_element_unordered_atomic: {
6094     const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
6095     SDValue Dst = getValue(MI.getRawDest());
6096     SDValue Src = getValue(MI.getRawSource());
6097     SDValue Length = getValue(MI.getLength());
6098 
6099     Type *LengthTy = MI.getLength()->getType();
6100     unsigned ElemSz = MI.getElementSizeInBytes();
6101     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6102     SDValue MC =
6103         DAG.getAtomicMemcpy(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6104                             isTC, MachinePointerInfo(MI.getRawDest()),
6105                             MachinePointerInfo(MI.getRawSource()));
6106     updateDAGForMaybeTailCall(MC);
6107     return;
6108   }
6109   case Intrinsic::memmove_element_unordered_atomic: {
6110     auto &MI = cast<AtomicMemMoveInst>(I);
6111     SDValue Dst = getValue(MI.getRawDest());
6112     SDValue Src = getValue(MI.getRawSource());
6113     SDValue Length = getValue(MI.getLength());
6114 
6115     Type *LengthTy = MI.getLength()->getType();
6116     unsigned ElemSz = MI.getElementSizeInBytes();
6117     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6118     SDValue MC =
6119         DAG.getAtomicMemmove(getRoot(), sdl, Dst, Src, Length, LengthTy, ElemSz,
6120                              isTC, MachinePointerInfo(MI.getRawDest()),
6121                              MachinePointerInfo(MI.getRawSource()));
6122     updateDAGForMaybeTailCall(MC);
6123     return;
6124   }
6125   case Intrinsic::memset_element_unordered_atomic: {
6126     auto &MI = cast<AtomicMemSetInst>(I);
6127     SDValue Dst = getValue(MI.getRawDest());
6128     SDValue Val = getValue(MI.getValue());
6129     SDValue Length = getValue(MI.getLength());
6130 
6131     Type *LengthTy = MI.getLength()->getType();
6132     unsigned ElemSz = MI.getElementSizeInBytes();
6133     bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget());
6134     SDValue MC =
6135         DAG.getAtomicMemset(getRoot(), sdl, Dst, Val, Length, LengthTy, ElemSz,
6136                             isTC, MachinePointerInfo(MI.getRawDest()));
6137     updateDAGForMaybeTailCall(MC);
6138     return;
6139   }
6140   case Intrinsic::call_preallocated_setup: {
6141     const CallBase *PreallocatedCall = FindPreallocatedCall(&I);
6142     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6143     SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other,
6144                               getRoot(), SrcValue);
6145     setValue(&I, Res);
6146     DAG.setRoot(Res);
6147     return;
6148   }
6149   case Intrinsic::call_preallocated_arg: {
6150     const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0));
6151     SDValue SrcValue = DAG.getSrcValue(PreallocatedCall);
6152     SDValue Ops[3];
6153     Ops[0] = getRoot();
6154     Ops[1] = SrcValue;
6155     Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl,
6156                                    MVT::i32); // arg index
6157     SDValue Res = DAG.getNode(
6158         ISD::PREALLOCATED_ARG, sdl,
6159         DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops);
6160     setValue(&I, Res);
6161     DAG.setRoot(Res.getValue(1));
6162     return;
6163   }
6164   case Intrinsic::dbg_declare: {
6165     const auto &DI = cast<DbgDeclareInst>(I);
6166     // Debug intrinsics are handled separately in assignment tracking mode.
6167     // Some intrinsics are handled right after Argument lowering.
6168     if (AssignmentTrackingEnabled ||
6169         FuncInfo.PreprocessedDbgDeclares.count(&DI))
6170       return;
6171     // Assume dbg.declare can not currently use DIArgList, i.e.
6172     // it is non-variadic.
6173     assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList");
6174     DILocalVariable *Variable = DI.getVariable();
6175     DIExpression *Expression = DI.getExpression();
6176     dropDanglingDebugInfo(Variable, Expression);
6177     assert(Variable && "Missing variable");
6178     LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI
6179                       << "\n");
6180     // Check if address has undef value.
6181     const Value *Address = DI.getVariableLocationOp(0);
6182     if (!Address || isa<UndefValue>(Address) ||
6183         (Address->use_empty() && !isa<Argument>(Address))) {
6184       LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6185                         << " (bad/undef/unused-arg address)\n");
6186       return;
6187     }
6188 
6189     bool isParameter = Variable->isParameter() || isa<Argument>(Address);
6190 
6191     SDValue &N = NodeMap[Address];
6192     if (!N.getNode() && isa<Argument>(Address))
6193       // Check unused arguments map.
6194       N = UnusedArgNodeMap[Address];
6195     SDDbgValue *SDV;
6196     if (N.getNode()) {
6197       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
6198         Address = BCI->getOperand(0);
6199       // Parameters are handled specially.
6200       auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
6201       if (isParameter && FINode) {
6202         // Byval parameter. We have a frame index at this point.
6203         SDV =
6204             DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
6205                                       /*IsIndirect*/ true, dl, SDNodeOrder);
6206       } else if (isa<Argument>(Address)) {
6207         // Address is an argument, so try to emit its dbg value using
6208         // virtual register info from the FuncInfo.ValueMap.
6209         EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6210                                  FuncArgumentDbgValueKind::Declare, N);
6211         return;
6212       } else {
6213         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
6214                               true, dl, SDNodeOrder);
6215       }
6216       DAG.AddDbgValue(SDV, isParameter);
6217     } else {
6218       // If Address is an argument then try to emit its dbg value using
6219       // virtual register info from the FuncInfo.ValueMap.
6220       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl,
6221                                     FuncArgumentDbgValueKind::Declare, N)) {
6222         LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
6223                           << " (could not emit func-arg dbg_value)\n");
6224       }
6225     }
6226     return;
6227   }
6228   case Intrinsic::dbg_label: {
6229     const DbgLabelInst &DI = cast<DbgLabelInst>(I);
6230     DILabel *Label = DI.getLabel();
6231     assert(Label && "Missing label");
6232 
6233     SDDbgLabel *SDV;
6234     SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
6235     DAG.AddDbgLabel(SDV);
6236     return;
6237   }
6238   case Intrinsic::dbg_assign: {
6239     // Debug intrinsics are handled seperately in assignment tracking mode.
6240     if (AssignmentTrackingEnabled)
6241       return;
6242     // If assignment tracking hasn't been enabled then fall through and treat
6243     // the dbg.assign as a dbg.value.
6244     [[fallthrough]];
6245   }
6246   case Intrinsic::dbg_value: {
6247     // Debug intrinsics are handled seperately in assignment tracking mode.
6248     if (AssignmentTrackingEnabled)
6249       return;
6250     const DbgValueInst &DI = cast<DbgValueInst>(I);
6251     assert(DI.getVariable() && "Missing variable");
6252 
6253     DILocalVariable *Variable = DI.getVariable();
6254     DIExpression *Expression = DI.getExpression();
6255     dropDanglingDebugInfo(Variable, Expression);
6256 
6257     if (DI.isKillLocation()) {
6258       handleKillDebugValue(Variable, Expression, DI.getDebugLoc(), SDNodeOrder);
6259       return;
6260     }
6261 
6262     SmallVector<Value *, 4> Values(DI.getValues());
6263     if (Values.empty())
6264       return;
6265 
6266     bool IsVariadic = DI.hasArgList();
6267     if (!handleDebugValue(Values, Variable, Expression, DI.getDebugLoc(),
6268                           SDNodeOrder, IsVariadic))
6269       addDanglingDebugInfo(&DI, SDNodeOrder);
6270     return;
6271   }
6272 
6273   case Intrinsic::eh_typeid_for: {
6274     // Find the type id for the given typeinfo.
6275     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
6276     unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
6277     Res = DAG.getConstant(TypeID, sdl, MVT::i32);
6278     setValue(&I, Res);
6279     return;
6280   }
6281 
6282   case Intrinsic::eh_return_i32:
6283   case Intrinsic::eh_return_i64:
6284     DAG.getMachineFunction().setCallsEHReturn(true);
6285     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
6286                             MVT::Other,
6287                             getControlRoot(),
6288                             getValue(I.getArgOperand(0)),
6289                             getValue(I.getArgOperand(1))));
6290     return;
6291   case Intrinsic::eh_unwind_init:
6292     DAG.getMachineFunction().setCallsUnwindInit(true);
6293     return;
6294   case Intrinsic::eh_dwarf_cfa:
6295     setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
6296                              TLI.getPointerTy(DAG.getDataLayout()),
6297                              getValue(I.getArgOperand(0))));
6298     return;
6299   case Intrinsic::eh_sjlj_callsite: {
6300     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6301     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(0));
6302     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
6303 
6304     MMI.setCurrentCallSite(CI->getZExtValue());
6305     return;
6306   }
6307   case Intrinsic::eh_sjlj_functioncontext: {
6308     // Get and store the index of the function context.
6309     MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6310     AllocaInst *FnCtx =
6311       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
6312     int FI = FuncInfo.StaticAllocaMap[FnCtx];
6313     MFI.setFunctionContextIndex(FI);
6314     return;
6315   }
6316   case Intrinsic::eh_sjlj_setjmp: {
6317     SDValue Ops[2];
6318     Ops[0] = getRoot();
6319     Ops[1] = getValue(I.getArgOperand(0));
6320     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
6321                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
6322     setValue(&I, Op.getValue(0));
6323     DAG.setRoot(Op.getValue(1));
6324     return;
6325   }
6326   case Intrinsic::eh_sjlj_longjmp:
6327     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
6328                             getRoot(), getValue(I.getArgOperand(0))));
6329     return;
6330   case Intrinsic::eh_sjlj_setup_dispatch:
6331     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
6332                             getRoot()));
6333     return;
6334   case Intrinsic::masked_gather:
6335     visitMaskedGather(I);
6336     return;
6337   case Intrinsic::masked_load:
6338     visitMaskedLoad(I);
6339     return;
6340   case Intrinsic::masked_scatter:
6341     visitMaskedScatter(I);
6342     return;
6343   case Intrinsic::masked_store:
6344     visitMaskedStore(I);
6345     return;
6346   case Intrinsic::masked_expandload:
6347     visitMaskedLoad(I, true /* IsExpanding */);
6348     return;
6349   case Intrinsic::masked_compressstore:
6350     visitMaskedStore(I, true /* IsCompressing */);
6351     return;
6352   case Intrinsic::powi:
6353     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
6354                             getValue(I.getArgOperand(1)), DAG));
6355     return;
6356   case Intrinsic::log:
6357     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6358     return;
6359   case Intrinsic::log2:
6360     setValue(&I,
6361              expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6362     return;
6363   case Intrinsic::log10:
6364     setValue(&I,
6365              expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6366     return;
6367   case Intrinsic::exp:
6368     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6369     return;
6370   case Intrinsic::exp2:
6371     setValue(&I,
6372              expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags));
6373     return;
6374   case Intrinsic::pow:
6375     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6376                            getValue(I.getArgOperand(1)), DAG, TLI, Flags));
6377     return;
6378   case Intrinsic::sqrt:
6379   case Intrinsic::fabs:
6380   case Intrinsic::sin:
6381   case Intrinsic::cos:
6382   case Intrinsic::floor:
6383   case Intrinsic::ceil:
6384   case Intrinsic::trunc:
6385   case Intrinsic::rint:
6386   case Intrinsic::nearbyint:
6387   case Intrinsic::round:
6388   case Intrinsic::roundeven:
6389   case Intrinsic::canonicalize: {
6390     unsigned Opcode;
6391     switch (Intrinsic) {
6392     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6393     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
6394     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
6395     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
6396     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
6397     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
6398     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
6399     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
6400     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
6401     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6402     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
6403     case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break;
6404     case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6405     }
6406 
6407     setValue(&I, DAG.getNode(Opcode, sdl,
6408                              getValue(I.getArgOperand(0)).getValueType(),
6409                              getValue(I.getArgOperand(0)), Flags));
6410     return;
6411   }
6412   case Intrinsic::lround:
6413   case Intrinsic::llround:
6414   case Intrinsic::lrint:
6415   case Intrinsic::llrint: {
6416     unsigned Opcode;
6417     switch (Intrinsic) {
6418     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
6419     case Intrinsic::lround:  Opcode = ISD::LROUND;  break;
6420     case Intrinsic::llround: Opcode = ISD::LLROUND; break;
6421     case Intrinsic::lrint:   Opcode = ISD::LRINT;   break;
6422     case Intrinsic::llrint:  Opcode = ISD::LLRINT;  break;
6423     }
6424 
6425     EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6426     setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6427                              getValue(I.getArgOperand(0))));
6428     return;
6429   }
6430   case Intrinsic::minnum:
6431     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
6432                              getValue(I.getArgOperand(0)).getValueType(),
6433                              getValue(I.getArgOperand(0)),
6434                              getValue(I.getArgOperand(1)), Flags));
6435     return;
6436   case Intrinsic::maxnum:
6437     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
6438                              getValue(I.getArgOperand(0)).getValueType(),
6439                              getValue(I.getArgOperand(0)),
6440                              getValue(I.getArgOperand(1)), Flags));
6441     return;
6442   case Intrinsic::minimum:
6443     setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6444                              getValue(I.getArgOperand(0)).getValueType(),
6445                              getValue(I.getArgOperand(0)),
6446                              getValue(I.getArgOperand(1)), Flags));
6447     return;
6448   case Intrinsic::maximum:
6449     setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6450                              getValue(I.getArgOperand(0)).getValueType(),
6451                              getValue(I.getArgOperand(0)),
6452                              getValue(I.getArgOperand(1)), Flags));
6453     return;
6454   case Intrinsic::copysign:
6455     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6456                              getValue(I.getArgOperand(0)).getValueType(),
6457                              getValue(I.getArgOperand(0)),
6458                              getValue(I.getArgOperand(1)), Flags));
6459     return;
6460   case Intrinsic::ldexp:
6461     setValue(&I, DAG.getNode(ISD::FLDEXP, sdl,
6462                              getValue(I.getArgOperand(0)).getValueType(),
6463                              getValue(I.getArgOperand(0)),
6464                              getValue(I.getArgOperand(1)), Flags));
6465     return;
6466   case Intrinsic::arithmetic_fence: {
6467     setValue(&I, DAG.getNode(ISD::ARITH_FENCE, sdl,
6468                              getValue(I.getArgOperand(0)).getValueType(),
6469                              getValue(I.getArgOperand(0)), Flags));
6470     return;
6471   }
6472   case Intrinsic::fma:
6473     setValue(&I, DAG.getNode(
6474                      ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(),
6475                      getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
6476                      getValue(I.getArgOperand(2)), Flags));
6477     return;
6478 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
6479   case Intrinsic::INTRINSIC:
6480 #include "llvm/IR/ConstrainedOps.def"
6481     visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6482     return;
6483 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID:
6484 #include "llvm/IR/VPIntrinsics.def"
6485     visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I));
6486     return;
6487   case Intrinsic::fptrunc_round: {
6488     // Get the last argument, the metadata and convert it to an integer in the
6489     // call
6490     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(1))->getMetadata();
6491     std::optional<RoundingMode> RoundMode =
6492         convertStrToRoundingMode(cast<MDString>(MD)->getString());
6493 
6494     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6495 
6496     // Propagate fast-math-flags from IR to node(s).
6497     SDNodeFlags Flags;
6498     Flags.copyFMF(*cast<FPMathOperator>(&I));
6499     SelectionDAG::FlagInserter FlagsInserter(DAG, Flags);
6500 
6501     SDValue Result;
6502     Result = DAG.getNode(
6503         ISD::FPTRUNC_ROUND, sdl, VT, getValue(I.getArgOperand(0)),
6504         DAG.getTargetConstant((int)*RoundMode, sdl,
6505                               TLI.getPointerTy(DAG.getDataLayout())));
6506     setValue(&I, Result);
6507 
6508     return;
6509   }
6510   case Intrinsic::fmuladd: {
6511     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6512     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6513         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
6514       setValue(&I, DAG.getNode(ISD::FMA, sdl,
6515                                getValue(I.getArgOperand(0)).getValueType(),
6516                                getValue(I.getArgOperand(0)),
6517                                getValue(I.getArgOperand(1)),
6518                                getValue(I.getArgOperand(2)), Flags));
6519     } else {
6520       // TODO: Intrinsic calls should have fast-math-flags.
6521       SDValue Mul = DAG.getNode(
6522           ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(),
6523           getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags);
6524       SDValue Add = DAG.getNode(ISD::FADD, sdl,
6525                                 getValue(I.getArgOperand(0)).getValueType(),
6526                                 Mul, getValue(I.getArgOperand(2)), Flags);
6527       setValue(&I, Add);
6528     }
6529     return;
6530   }
6531   case Intrinsic::convert_to_fp16:
6532     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6533                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6534                                          getValue(I.getArgOperand(0)),
6535                                          DAG.getTargetConstant(0, sdl,
6536                                                                MVT::i32))));
6537     return;
6538   case Intrinsic::convert_from_fp16:
6539     setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6540                              TLI.getValueType(DAG.getDataLayout(), I.getType()),
6541                              DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6542                                          getValue(I.getArgOperand(0)))));
6543     return;
6544   case Intrinsic::fptosi_sat: {
6545     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6546     setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT,
6547                              getValue(I.getArgOperand(0)),
6548                              DAG.getValueType(VT.getScalarType())));
6549     return;
6550   }
6551   case Intrinsic::fptoui_sat: {
6552     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6553     setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT,
6554                              getValue(I.getArgOperand(0)),
6555                              DAG.getValueType(VT.getScalarType())));
6556     return;
6557   }
6558   case Intrinsic::set_rounding:
6559     Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other,
6560                       {getRoot(), getValue(I.getArgOperand(0))});
6561     setValue(&I, Res);
6562     DAG.setRoot(Res.getValue(0));
6563     return;
6564   case Intrinsic::is_fpclass: {
6565     const DataLayout DLayout = DAG.getDataLayout();
6566     EVT DestVT = TLI.getValueType(DLayout, I.getType());
6567     EVT ArgVT = TLI.getValueType(DLayout, I.getArgOperand(0)->getType());
6568     FPClassTest Test = static_cast<FPClassTest>(
6569         cast<ConstantInt>(I.getArgOperand(1))->getZExtValue());
6570     MachineFunction &MF = DAG.getMachineFunction();
6571     const Function &F = MF.getFunction();
6572     SDValue Op = getValue(I.getArgOperand(0));
6573     SDNodeFlags Flags;
6574     Flags.setNoFPExcept(
6575         !F.getAttributes().hasFnAttr(llvm::Attribute::StrictFP));
6576     // If ISD::IS_FPCLASS should be expanded, do it right now, because the
6577     // expansion can use illegal types. Making expansion early allows
6578     // legalizing these types prior to selection.
6579     if (!TLI.isOperationLegalOrCustom(ISD::IS_FPCLASS, ArgVT)) {
6580       SDValue Result = TLI.expandIS_FPCLASS(DestVT, Op, Test, Flags, sdl, DAG);
6581       setValue(&I, Result);
6582       return;
6583     }
6584 
6585     SDValue Check = DAG.getTargetConstant(Test, sdl, MVT::i32);
6586     SDValue V = DAG.getNode(ISD::IS_FPCLASS, sdl, DestVT, {Op, Check}, Flags);
6587     setValue(&I, V);
6588     return;
6589   }
6590   case Intrinsic::get_fpenv: {
6591     const DataLayout DLayout = DAG.getDataLayout();
6592     EVT EnvVT = TLI.getValueType(DLayout, I.getType());
6593     Align TempAlign = DAG.getEVTAlign(EnvVT);
6594     SDValue Chain = getRoot();
6595     // Use GET_FPENV if it is legal or custom. Otherwise use memory-based node
6596     // and temporary storage in stack.
6597     if (TLI.isOperationLegalOrCustom(ISD::GET_FPENV, EnvVT)) {
6598       Res = DAG.getNode(
6599           ISD::GET_FPENV, sdl,
6600           DAG.getVTList(TLI.getValueType(DAG.getDataLayout(), I.getType()),
6601                         MVT::Other),
6602           Chain);
6603     } else {
6604       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6605       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6606       auto MPI =
6607           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6608       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6609           MPI, MachineMemOperand::MOStore, MemoryLocation::UnknownSize,
6610           TempAlign);
6611       Chain = DAG.getGetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6612       Res = DAG.getLoad(EnvVT, sdl, Chain, Temp, MPI);
6613     }
6614     setValue(&I, Res);
6615     DAG.setRoot(Res.getValue(1));
6616     return;
6617   }
6618   case Intrinsic::set_fpenv: {
6619     const DataLayout DLayout = DAG.getDataLayout();
6620     SDValue Env = getValue(I.getArgOperand(0));
6621     EVT EnvVT = Env.getValueType();
6622     Align TempAlign = DAG.getEVTAlign(EnvVT);
6623     SDValue Chain = getRoot();
6624     // If SET_FPENV is custom or legal, use it. Otherwise use loading
6625     // environment from memory.
6626     if (TLI.isOperationLegalOrCustom(ISD::SET_FPENV, EnvVT)) {
6627       Chain = DAG.getNode(ISD::SET_FPENV, sdl, MVT::Other, Chain, Env);
6628     } else {
6629       // Allocate space in stack, copy environment bits into it and use this
6630       // memory in SET_FPENV_MEM.
6631       SDValue Temp = DAG.CreateStackTemporary(EnvVT, TempAlign.value());
6632       int SPFI = cast<FrameIndexSDNode>(Temp.getNode())->getIndex();
6633       auto MPI =
6634           MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), SPFI);
6635       Chain = DAG.getStore(Chain, sdl, Env, Temp, MPI, TempAlign,
6636                            MachineMemOperand::MOStore);
6637       MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
6638           MPI, MachineMemOperand::MOLoad, MemoryLocation::UnknownSize,
6639           TempAlign);
6640       Chain = DAG.getSetFPEnv(Chain, sdl, Temp, EnvVT, MMO);
6641     }
6642     DAG.setRoot(Chain);
6643     return;
6644   }
6645   case Intrinsic::reset_fpenv:
6646     DAG.setRoot(DAG.getNode(ISD::RESET_FPENV, sdl, MVT::Other, getRoot()));
6647     return;
6648   case Intrinsic::pcmarker: {
6649     SDValue Tmp = getValue(I.getArgOperand(0));
6650     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6651     return;
6652   }
6653   case Intrinsic::readcyclecounter: {
6654     SDValue Op = getRoot();
6655     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6656                       DAG.getVTList(MVT::i64, MVT::Other), Op);
6657     setValue(&I, Res);
6658     DAG.setRoot(Res.getValue(1));
6659     return;
6660   }
6661   case Intrinsic::bitreverse:
6662     setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6663                              getValue(I.getArgOperand(0)).getValueType(),
6664                              getValue(I.getArgOperand(0))));
6665     return;
6666   case Intrinsic::bswap:
6667     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6668                              getValue(I.getArgOperand(0)).getValueType(),
6669                              getValue(I.getArgOperand(0))));
6670     return;
6671   case Intrinsic::cttz: {
6672     SDValue Arg = getValue(I.getArgOperand(0));
6673     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6674     EVT Ty = Arg.getValueType();
6675     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6676                              sdl, Ty, Arg));
6677     return;
6678   }
6679   case Intrinsic::ctlz: {
6680     SDValue Arg = getValue(I.getArgOperand(0));
6681     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6682     EVT Ty = Arg.getValueType();
6683     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6684                              sdl, Ty, Arg));
6685     return;
6686   }
6687   case Intrinsic::ctpop: {
6688     SDValue Arg = getValue(I.getArgOperand(0));
6689     EVT Ty = Arg.getValueType();
6690     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6691     return;
6692   }
6693   case Intrinsic::fshl:
6694   case Intrinsic::fshr: {
6695     bool IsFSHL = Intrinsic == Intrinsic::fshl;
6696     SDValue X = getValue(I.getArgOperand(0));
6697     SDValue Y = getValue(I.getArgOperand(1));
6698     SDValue Z = getValue(I.getArgOperand(2));
6699     EVT VT = X.getValueType();
6700 
6701     if (X == Y) {
6702       auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6703       setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6704     } else {
6705       auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6706       setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6707     }
6708     return;
6709   }
6710   case Intrinsic::sadd_sat: {
6711     SDValue Op1 = getValue(I.getArgOperand(0));
6712     SDValue Op2 = getValue(I.getArgOperand(1));
6713     setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6714     return;
6715   }
6716   case Intrinsic::uadd_sat: {
6717     SDValue Op1 = getValue(I.getArgOperand(0));
6718     SDValue Op2 = getValue(I.getArgOperand(1));
6719     setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6720     return;
6721   }
6722   case Intrinsic::ssub_sat: {
6723     SDValue Op1 = getValue(I.getArgOperand(0));
6724     SDValue Op2 = getValue(I.getArgOperand(1));
6725     setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6726     return;
6727   }
6728   case Intrinsic::usub_sat: {
6729     SDValue Op1 = getValue(I.getArgOperand(0));
6730     SDValue Op2 = getValue(I.getArgOperand(1));
6731     setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6732     return;
6733   }
6734   case Intrinsic::sshl_sat: {
6735     SDValue Op1 = getValue(I.getArgOperand(0));
6736     SDValue Op2 = getValue(I.getArgOperand(1));
6737     setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6738     return;
6739   }
6740   case Intrinsic::ushl_sat: {
6741     SDValue Op1 = getValue(I.getArgOperand(0));
6742     SDValue Op2 = getValue(I.getArgOperand(1));
6743     setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2));
6744     return;
6745   }
6746   case Intrinsic::smul_fix:
6747   case Intrinsic::umul_fix:
6748   case Intrinsic::smul_fix_sat:
6749   case Intrinsic::umul_fix_sat: {
6750     SDValue Op1 = getValue(I.getArgOperand(0));
6751     SDValue Op2 = getValue(I.getArgOperand(1));
6752     SDValue Op3 = getValue(I.getArgOperand(2));
6753     setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6754                              Op1.getValueType(), Op1, Op2, Op3));
6755     return;
6756   }
6757   case Intrinsic::sdiv_fix:
6758   case Intrinsic::udiv_fix:
6759   case Intrinsic::sdiv_fix_sat:
6760   case Intrinsic::udiv_fix_sat: {
6761     SDValue Op1 = getValue(I.getArgOperand(0));
6762     SDValue Op2 = getValue(I.getArgOperand(1));
6763     SDValue Op3 = getValue(I.getArgOperand(2));
6764     setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6765                               Op1, Op2, Op3, DAG, TLI));
6766     return;
6767   }
6768   case Intrinsic::smax: {
6769     SDValue Op1 = getValue(I.getArgOperand(0));
6770     SDValue Op2 = getValue(I.getArgOperand(1));
6771     setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2));
6772     return;
6773   }
6774   case Intrinsic::smin: {
6775     SDValue Op1 = getValue(I.getArgOperand(0));
6776     SDValue Op2 = getValue(I.getArgOperand(1));
6777     setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2));
6778     return;
6779   }
6780   case Intrinsic::umax: {
6781     SDValue Op1 = getValue(I.getArgOperand(0));
6782     SDValue Op2 = getValue(I.getArgOperand(1));
6783     setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2));
6784     return;
6785   }
6786   case Intrinsic::umin: {
6787     SDValue Op1 = getValue(I.getArgOperand(0));
6788     SDValue Op2 = getValue(I.getArgOperand(1));
6789     setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2));
6790     return;
6791   }
6792   case Intrinsic::abs: {
6793     // TODO: Preserve "int min is poison" arg in SDAG?
6794     SDValue Op1 = getValue(I.getArgOperand(0));
6795     setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1));
6796     return;
6797   }
6798   case Intrinsic::stacksave: {
6799     SDValue Op = getRoot();
6800     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6801     Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op);
6802     setValue(&I, Res);
6803     DAG.setRoot(Res.getValue(1));
6804     return;
6805   }
6806   case Intrinsic::stackrestore:
6807     Res = getValue(I.getArgOperand(0));
6808     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6809     return;
6810   case Intrinsic::get_dynamic_area_offset: {
6811     SDValue Op = getRoot();
6812     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6813     EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6814     // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6815     // target.
6816     if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits())
6817       report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6818                          " intrinsic!");
6819     Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6820                       Op);
6821     DAG.setRoot(Op);
6822     setValue(&I, Res);
6823     return;
6824   }
6825   case Intrinsic::stackguard: {
6826     MachineFunction &MF = DAG.getMachineFunction();
6827     const Module &M = *MF.getFunction().getParent();
6828     SDValue Chain = getRoot();
6829     if (TLI.useLoadStackGuardNode()) {
6830       Res = getLoadStackGuard(DAG, sdl, Chain);
6831     } else {
6832       EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6833       const Value *Global = TLI.getSDagStackGuard(M);
6834       Align Align = DAG.getDataLayout().getPrefTypeAlign(Global->getType());
6835       Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6836                         MachinePointerInfo(Global, 0), Align,
6837                         MachineMemOperand::MOVolatile);
6838     }
6839     if (TLI.useStackGuardXorFP())
6840       Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6841     DAG.setRoot(Chain);
6842     setValue(&I, Res);
6843     return;
6844   }
6845   case Intrinsic::stackprotector: {
6846     // Emit code into the DAG to store the stack guard onto the stack.
6847     MachineFunction &MF = DAG.getMachineFunction();
6848     MachineFrameInfo &MFI = MF.getFrameInfo();
6849     SDValue Src, Chain = getRoot();
6850 
6851     if (TLI.useLoadStackGuardNode())
6852       Src = getLoadStackGuard(DAG, sdl, Chain);
6853     else
6854       Src = getValue(I.getArgOperand(0));   // The guard's value.
6855 
6856     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6857 
6858     int FI = FuncInfo.StaticAllocaMap[Slot];
6859     MFI.setStackProtectorIndex(FI);
6860     EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout());
6861 
6862     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6863 
6864     // Store the stack protector onto the stack.
6865     Res = DAG.getStore(
6866         Chain, sdl, Src, FIN,
6867         MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI),
6868         MaybeAlign(), MachineMemOperand::MOVolatile);
6869     setValue(&I, Res);
6870     DAG.setRoot(Res);
6871     return;
6872   }
6873   case Intrinsic::objectsize:
6874     llvm_unreachable("llvm.objectsize.* should have been lowered already");
6875 
6876   case Intrinsic::is_constant:
6877     llvm_unreachable("llvm.is.constant.* should have been lowered already");
6878 
6879   case Intrinsic::annotation:
6880   case Intrinsic::ptr_annotation:
6881   case Intrinsic::launder_invariant_group:
6882   case Intrinsic::strip_invariant_group:
6883     // Drop the intrinsic, but forward the value
6884     setValue(&I, getValue(I.getOperand(0)));
6885     return;
6886 
6887   case Intrinsic::assume:
6888   case Intrinsic::experimental_noalias_scope_decl:
6889   case Intrinsic::var_annotation:
6890   case Intrinsic::sideeffect:
6891     // Discard annotate attributes, noalias scope declarations, assumptions, and
6892     // artificial side-effects.
6893     return;
6894 
6895   case Intrinsic::codeview_annotation: {
6896     // Emit a label associated with this metadata.
6897     MachineFunction &MF = DAG.getMachineFunction();
6898     MCSymbol *Label =
6899         MF.getMMI().getContext().createTempSymbol("annotation", true);
6900     Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6901     MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6902     Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6903     DAG.setRoot(Res);
6904     return;
6905   }
6906 
6907   case Intrinsic::init_trampoline: {
6908     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6909 
6910     SDValue Ops[6];
6911     Ops[0] = getRoot();
6912     Ops[1] = getValue(I.getArgOperand(0));
6913     Ops[2] = getValue(I.getArgOperand(1));
6914     Ops[3] = getValue(I.getArgOperand(2));
6915     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6916     Ops[5] = DAG.getSrcValue(F);
6917 
6918     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6919 
6920     DAG.setRoot(Res);
6921     return;
6922   }
6923   case Intrinsic::adjust_trampoline:
6924     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6925                              TLI.getPointerTy(DAG.getDataLayout()),
6926                              getValue(I.getArgOperand(0))));
6927     return;
6928   case Intrinsic::gcroot: {
6929     assert(DAG.getMachineFunction().getFunction().hasGC() &&
6930            "only valid in functions with gc specified, enforced by Verifier");
6931     assert(GFI && "implied by previous");
6932     const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6933     const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6934 
6935     FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6936     GFI->addStackRoot(FI->getIndex(), TypeMap);
6937     return;
6938   }
6939   case Intrinsic::gcread:
6940   case Intrinsic::gcwrite:
6941     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6942   case Intrinsic::get_rounding:
6943     Res = DAG.getNode(ISD::GET_ROUNDING, sdl, {MVT::i32, MVT::Other}, getRoot());
6944     setValue(&I, Res);
6945     DAG.setRoot(Res.getValue(1));
6946     return;
6947 
6948   case Intrinsic::expect:
6949     // Just replace __builtin_expect(exp, c) with EXP.
6950     setValue(&I, getValue(I.getArgOperand(0)));
6951     return;
6952 
6953   case Intrinsic::ubsantrap:
6954   case Intrinsic::debugtrap:
6955   case Intrinsic::trap: {
6956     StringRef TrapFuncName =
6957         I.getAttributes().getFnAttr("trap-func-name").getValueAsString();
6958     if (TrapFuncName.empty()) {
6959       switch (Intrinsic) {
6960       case Intrinsic::trap:
6961         DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot()));
6962         break;
6963       case Intrinsic::debugtrap:
6964         DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot()));
6965         break;
6966       case Intrinsic::ubsantrap:
6967         DAG.setRoot(DAG.getNode(
6968             ISD::UBSANTRAP, sdl, MVT::Other, getRoot(),
6969             DAG.getTargetConstant(
6970                 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl,
6971                 MVT::i32)));
6972         break;
6973       default: llvm_unreachable("unknown trap intrinsic");
6974       }
6975       return;
6976     }
6977     TargetLowering::ArgListTy Args;
6978     if (Intrinsic == Intrinsic::ubsantrap) {
6979       Args.push_back(TargetLoweringBase::ArgListEntry());
6980       Args[0].Val = I.getArgOperand(0);
6981       Args[0].Node = getValue(Args[0].Val);
6982       Args[0].Ty = Args[0].Val->getType();
6983     }
6984 
6985     TargetLowering::CallLoweringInfo CLI(DAG);
6986     CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6987         CallingConv::C, I.getType(),
6988         DAG.getExternalSymbol(TrapFuncName.data(),
6989                               TLI.getPointerTy(DAG.getDataLayout())),
6990         std::move(Args));
6991 
6992     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6993     DAG.setRoot(Result.second);
6994     return;
6995   }
6996 
6997   case Intrinsic::uadd_with_overflow:
6998   case Intrinsic::sadd_with_overflow:
6999   case Intrinsic::usub_with_overflow:
7000   case Intrinsic::ssub_with_overflow:
7001   case Intrinsic::umul_with_overflow:
7002   case Intrinsic::smul_with_overflow: {
7003     ISD::NodeType Op;
7004     switch (Intrinsic) {
7005     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7006     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
7007     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
7008     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
7009     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
7010     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
7011     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
7012     }
7013     SDValue Op1 = getValue(I.getArgOperand(0));
7014     SDValue Op2 = getValue(I.getArgOperand(1));
7015 
7016     EVT ResultVT = Op1.getValueType();
7017     EVT OverflowVT = MVT::i1;
7018     if (ResultVT.isVector())
7019       OverflowVT = EVT::getVectorVT(
7020           *Context, OverflowVT, ResultVT.getVectorElementCount());
7021 
7022     SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
7023     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
7024     return;
7025   }
7026   case Intrinsic::prefetch: {
7027     SDValue Ops[5];
7028     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7029     auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
7030     Ops[0] = DAG.getRoot();
7031     Ops[1] = getValue(I.getArgOperand(0));
7032     Ops[2] = getValue(I.getArgOperand(1));
7033     Ops[3] = getValue(I.getArgOperand(2));
7034     Ops[4] = getValue(I.getArgOperand(3));
7035     SDValue Result = DAG.getMemIntrinsicNode(
7036         ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops,
7037         EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)),
7038         /* align */ std::nullopt, Flags);
7039 
7040     // Chain the prefetch in parallell with any pending loads, to stay out of
7041     // the way of later optimizations.
7042     PendingLoads.push_back(Result);
7043     Result = getRoot();
7044     DAG.setRoot(Result);
7045     return;
7046   }
7047   case Intrinsic::lifetime_start:
7048   case Intrinsic::lifetime_end: {
7049     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
7050     // Stack coloring is not enabled in O0, discard region information.
7051     if (TM.getOptLevel() == CodeGenOpt::None)
7052       return;
7053 
7054     const int64_t ObjectSize =
7055         cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
7056     Value *const ObjectPtr = I.getArgOperand(1);
7057     SmallVector<const Value *, 4> Allocas;
7058     getUnderlyingObjects(ObjectPtr, Allocas);
7059 
7060     for (const Value *Alloca : Allocas) {
7061       const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca);
7062 
7063       // Could not find an Alloca.
7064       if (!LifetimeObject)
7065         continue;
7066 
7067       // First check that the Alloca is static, otherwise it won't have a
7068       // valid frame index.
7069       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
7070       if (SI == FuncInfo.StaticAllocaMap.end())
7071         return;
7072 
7073       const int FrameIndex = SI->second;
7074       int64_t Offset;
7075       if (GetPointerBaseWithConstantOffset(
7076               ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
7077         Offset = -1; // Cannot determine offset from alloca to lifetime object.
7078       Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
7079                                 Offset);
7080       DAG.setRoot(Res);
7081     }
7082     return;
7083   }
7084   case Intrinsic::pseudoprobe: {
7085     auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
7086     auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
7087     auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
7088     Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr);
7089     DAG.setRoot(Res);
7090     return;
7091   }
7092   case Intrinsic::invariant_start:
7093     // Discard region information.
7094     setValue(&I,
7095              DAG.getUNDEF(TLI.getValueType(DAG.getDataLayout(), I.getType())));
7096     return;
7097   case Intrinsic::invariant_end:
7098     // Discard region information.
7099     return;
7100   case Intrinsic::clear_cache:
7101     /// FunctionName may be null.
7102     if (const char *FunctionName = TLI.getClearCacheBuiltinName())
7103       lowerCallToExternalSymbol(I, FunctionName);
7104     return;
7105   case Intrinsic::donothing:
7106   case Intrinsic::seh_try_begin:
7107   case Intrinsic::seh_scope_begin:
7108   case Intrinsic::seh_try_end:
7109   case Intrinsic::seh_scope_end:
7110     // ignore
7111     return;
7112   case Intrinsic::experimental_stackmap:
7113     visitStackmap(I);
7114     return;
7115   case Intrinsic::experimental_patchpoint_void:
7116   case Intrinsic::experimental_patchpoint_i64:
7117     visitPatchpoint(I);
7118     return;
7119   case Intrinsic::experimental_gc_statepoint:
7120     LowerStatepoint(cast<GCStatepointInst>(I));
7121     return;
7122   case Intrinsic::experimental_gc_result:
7123     visitGCResult(cast<GCResultInst>(I));
7124     return;
7125   case Intrinsic::experimental_gc_relocate:
7126     visitGCRelocate(cast<GCRelocateInst>(I));
7127     return;
7128   case Intrinsic::instrprof_cover:
7129     llvm_unreachable("instrprof failed to lower a cover");
7130   case Intrinsic::instrprof_increment:
7131     llvm_unreachable("instrprof failed to lower an increment");
7132   case Intrinsic::instrprof_timestamp:
7133     llvm_unreachable("instrprof failed to lower a timestamp");
7134   case Intrinsic::instrprof_value_profile:
7135     llvm_unreachable("instrprof failed to lower a value profiling call");
7136   case Intrinsic::localescape: {
7137     MachineFunction &MF = DAG.getMachineFunction();
7138     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
7139 
7140     // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
7141     // is the same on all targets.
7142     for (unsigned Idx = 0, E = I.arg_size(); Idx < E; ++Idx) {
7143       Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
7144       if (isa<ConstantPointerNull>(Arg))
7145         continue; // Skip null pointers. They represent a hole in index space.
7146       AllocaInst *Slot = cast<AllocaInst>(Arg);
7147       assert(FuncInfo.StaticAllocaMap.count(Slot) &&
7148              "can only escape static allocas");
7149       int FI = FuncInfo.StaticAllocaMap[Slot];
7150       MCSymbol *FrameAllocSym =
7151           MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7152               GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
7153       BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
7154               TII->get(TargetOpcode::LOCAL_ESCAPE))
7155           .addSym(FrameAllocSym)
7156           .addFrameIndex(FI);
7157     }
7158 
7159     return;
7160   }
7161 
7162   case Intrinsic::localrecover: {
7163     // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
7164     MachineFunction &MF = DAG.getMachineFunction();
7165 
7166     // Get the symbol that defines the frame offset.
7167     auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
7168     auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
7169     unsigned IdxVal =
7170         unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
7171     MCSymbol *FrameAllocSym =
7172         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
7173             GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
7174 
7175     Value *FP = I.getArgOperand(1);
7176     SDValue FPVal = getValue(FP);
7177     EVT PtrVT = FPVal.getValueType();
7178 
7179     // Create a MCSymbol for the label to avoid any target lowering
7180     // that would make this PC relative.
7181     SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
7182     SDValue OffsetVal =
7183         DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
7184 
7185     // Add the offset to the FP.
7186     SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl);
7187     setValue(&I, Add);
7188 
7189     return;
7190   }
7191 
7192   case Intrinsic::eh_exceptionpointer:
7193   case Intrinsic::eh_exceptioncode: {
7194     // Get the exception pointer vreg, copy from it, and resize it to fit.
7195     const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
7196     MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
7197     const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
7198     unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
7199     SDValue N = DAG.getCopyFromReg(DAG.getEntryNode(), sdl, VReg, PtrVT);
7200     if (Intrinsic == Intrinsic::eh_exceptioncode)
7201       N = DAG.getZExtOrTrunc(N, sdl, MVT::i32);
7202     setValue(&I, N);
7203     return;
7204   }
7205   case Intrinsic::xray_customevent: {
7206     // Here we want to make sure that the intrinsic behaves as if it has a
7207     // specific calling convention, and only for x86_64.
7208     // FIXME: Support other platforms later.
7209     const auto &Triple = DAG.getTarget().getTargetTriple();
7210     if (Triple.getArch() != Triple::x86_64)
7211       return;
7212 
7213     SmallVector<SDValue, 8> Ops;
7214 
7215     // We want to say that we always want the arguments in registers.
7216     SDValue LogEntryVal = getValue(I.getArgOperand(0));
7217     SDValue StrSizeVal = getValue(I.getArgOperand(1));
7218     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7219     SDValue Chain = getRoot();
7220     Ops.push_back(LogEntryVal);
7221     Ops.push_back(StrSizeVal);
7222     Ops.push_back(Chain);
7223 
7224     // We need to enforce the calling convention for the callsite, so that
7225     // argument ordering is enforced correctly, and that register allocation can
7226     // see that some registers may be assumed clobbered and have to preserve
7227     // them across calls to the intrinsic.
7228     MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
7229                                            sdl, NodeTys, Ops);
7230     SDValue patchableNode = SDValue(MN, 0);
7231     DAG.setRoot(patchableNode);
7232     setValue(&I, patchableNode);
7233     return;
7234   }
7235   case Intrinsic::xray_typedevent: {
7236     // Here we want to make sure that the intrinsic behaves as if it has a
7237     // specific calling convention, and only for x86_64.
7238     // FIXME: Support other platforms later.
7239     const auto &Triple = DAG.getTarget().getTargetTriple();
7240     if (Triple.getArch() != Triple::x86_64)
7241       return;
7242 
7243     SmallVector<SDValue, 8> Ops;
7244 
7245     // We want to say that we always want the arguments in registers.
7246     // It's unclear to me how manipulating the selection DAG here forces callers
7247     // to provide arguments in registers instead of on the stack.
7248     SDValue LogTypeId = getValue(I.getArgOperand(0));
7249     SDValue LogEntryVal = getValue(I.getArgOperand(1));
7250     SDValue StrSizeVal = getValue(I.getArgOperand(2));
7251     SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7252     SDValue Chain = getRoot();
7253     Ops.push_back(LogTypeId);
7254     Ops.push_back(LogEntryVal);
7255     Ops.push_back(StrSizeVal);
7256     Ops.push_back(Chain);
7257 
7258     // We need to enforce the calling convention for the callsite, so that
7259     // argument ordering is enforced correctly, and that register allocation can
7260     // see that some registers may be assumed clobbered and have to preserve
7261     // them across calls to the intrinsic.
7262     MachineSDNode *MN = DAG.getMachineNode(
7263         TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, sdl, NodeTys, Ops);
7264     SDValue patchableNode = SDValue(MN, 0);
7265     DAG.setRoot(patchableNode);
7266     setValue(&I, patchableNode);
7267     return;
7268   }
7269   case Intrinsic::experimental_deoptimize:
7270     LowerDeoptimizeCall(&I);
7271     return;
7272   case Intrinsic::experimental_stepvector:
7273     visitStepVector(I);
7274     return;
7275   case Intrinsic::vector_reduce_fadd:
7276   case Intrinsic::vector_reduce_fmul:
7277   case Intrinsic::vector_reduce_add:
7278   case Intrinsic::vector_reduce_mul:
7279   case Intrinsic::vector_reduce_and:
7280   case Intrinsic::vector_reduce_or:
7281   case Intrinsic::vector_reduce_xor:
7282   case Intrinsic::vector_reduce_smax:
7283   case Intrinsic::vector_reduce_smin:
7284   case Intrinsic::vector_reduce_umax:
7285   case Intrinsic::vector_reduce_umin:
7286   case Intrinsic::vector_reduce_fmax:
7287   case Intrinsic::vector_reduce_fmin:
7288   case Intrinsic::vector_reduce_fmaximum:
7289   case Intrinsic::vector_reduce_fminimum:
7290     visitVectorReduce(I, Intrinsic);
7291     return;
7292 
7293   case Intrinsic::icall_branch_funnel: {
7294     SmallVector<SDValue, 16> Ops;
7295     Ops.push_back(getValue(I.getArgOperand(0)));
7296 
7297     int64_t Offset;
7298     auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7299         I.getArgOperand(1), Offset, DAG.getDataLayout()));
7300     if (!Base)
7301       report_fatal_error(
7302           "llvm.icall.branch.funnel operand must be a GlobalValue");
7303     Ops.push_back(DAG.getTargetGlobalAddress(Base, sdl, MVT::i64, 0));
7304 
7305     struct BranchFunnelTarget {
7306       int64_t Offset;
7307       SDValue Target;
7308     };
7309     SmallVector<BranchFunnelTarget, 8> Targets;
7310 
7311     for (unsigned Op = 1, N = I.arg_size(); Op != N; Op += 2) {
7312       auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
7313           I.getArgOperand(Op), Offset, DAG.getDataLayout()));
7314       if (ElemBase != Base)
7315         report_fatal_error("all llvm.icall.branch.funnel operands must refer "
7316                            "to the same GlobalValue");
7317 
7318       SDValue Val = getValue(I.getArgOperand(Op + 1));
7319       auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
7320       if (!GA)
7321         report_fatal_error(
7322             "llvm.icall.branch.funnel operand must be a GlobalValue");
7323       Targets.push_back({Offset, DAG.getTargetGlobalAddress(
7324                                      GA->getGlobal(), sdl, Val.getValueType(),
7325                                      GA->getOffset())});
7326     }
7327     llvm::sort(Targets,
7328                [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
7329                  return T1.Offset < T2.Offset;
7330                });
7331 
7332     for (auto &T : Targets) {
7333       Ops.push_back(DAG.getTargetConstant(T.Offset, sdl, MVT::i32));
7334       Ops.push_back(T.Target);
7335     }
7336 
7337     Ops.push_back(DAG.getRoot()); // Chain
7338     SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, sdl,
7339                                  MVT::Other, Ops),
7340               0);
7341     DAG.setRoot(N);
7342     setValue(&I, N);
7343     HasTailCall = true;
7344     return;
7345   }
7346 
7347   case Intrinsic::wasm_landingpad_index:
7348     // Information this intrinsic contained has been transferred to
7349     // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
7350     // delete it now.
7351     return;
7352 
7353   case Intrinsic::aarch64_settag:
7354   case Intrinsic::aarch64_settag_zero: {
7355     const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7356     bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero;
7357     SDValue Val = TSI.EmitTargetCodeForSetTag(
7358         DAG, sdl, getRoot(), getValue(I.getArgOperand(0)),
7359         getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)),
7360         ZeroMemory);
7361     DAG.setRoot(Val);
7362     setValue(&I, Val);
7363     return;
7364   }
7365   case Intrinsic::ptrmask: {
7366     SDValue Ptr = getValue(I.getOperand(0));
7367     SDValue Const = getValue(I.getOperand(1));
7368 
7369     EVT PtrVT = Ptr.getValueType();
7370     setValue(&I, DAG.getNode(ISD::AND, sdl, PtrVT, Ptr,
7371                              DAG.getZExtOrTrunc(Const, sdl, PtrVT)));
7372     return;
7373   }
7374   case Intrinsic::threadlocal_address: {
7375     setValue(&I, getValue(I.getOperand(0)));
7376     return;
7377   }
7378   case Intrinsic::get_active_lane_mask: {
7379     EVT CCVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7380     SDValue Index = getValue(I.getOperand(0));
7381     EVT ElementVT = Index.getValueType();
7382 
7383     if (!TLI.shouldExpandGetActiveLaneMask(CCVT, ElementVT)) {
7384       visitTargetIntrinsic(I, Intrinsic);
7385       return;
7386     }
7387 
7388     SDValue TripCount = getValue(I.getOperand(1));
7389     auto VecTy = CCVT.changeVectorElementType(ElementVT);
7390 
7391     SDValue VectorIndex = DAG.getSplat(VecTy, sdl, Index);
7392     SDValue VectorTripCount = DAG.getSplat(VecTy, sdl, TripCount);
7393     SDValue VectorStep = DAG.getStepVector(sdl, VecTy);
7394     SDValue VectorInduction = DAG.getNode(
7395         ISD::UADDSAT, sdl, VecTy, VectorIndex, VectorStep);
7396     SDValue SetCC = DAG.getSetCC(sdl, CCVT, VectorInduction,
7397                                  VectorTripCount, ISD::CondCode::SETULT);
7398     setValue(&I, SetCC);
7399     return;
7400   }
7401   case Intrinsic::experimental_get_vector_length: {
7402     assert(cast<ConstantInt>(I.getOperand(1))->getSExtValue() > 0 &&
7403            "Expected positive VF");
7404     unsigned VF = cast<ConstantInt>(I.getOperand(1))->getZExtValue();
7405     bool IsScalable = cast<ConstantInt>(I.getOperand(2))->isOne();
7406 
7407     SDValue Count = getValue(I.getOperand(0));
7408     EVT CountVT = Count.getValueType();
7409 
7410     if (!TLI.shouldExpandGetVectorLength(CountVT, VF, IsScalable)) {
7411       visitTargetIntrinsic(I, Intrinsic);
7412       return;
7413     }
7414 
7415     // Expand to a umin between the trip count and the maximum elements the type
7416     // can hold.
7417     EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7418 
7419     // Extend the trip count to at least the result VT.
7420     if (CountVT.bitsLT(VT)) {
7421       Count = DAG.getNode(ISD::ZERO_EXTEND, sdl, VT, Count);
7422       CountVT = VT;
7423     }
7424 
7425     SDValue MaxEVL = DAG.getElementCount(sdl, CountVT,
7426                                          ElementCount::get(VF, IsScalable));
7427 
7428     SDValue UMin = DAG.getNode(ISD::UMIN, sdl, CountVT, Count, MaxEVL);
7429     // Clip to the result type if needed.
7430     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, sdl, VT, UMin);
7431 
7432     setValue(&I, Trunc);
7433     return;
7434   }
7435   case Intrinsic::vector_insert: {
7436     SDValue Vec = getValue(I.getOperand(0));
7437     SDValue SubVec = getValue(I.getOperand(1));
7438     SDValue Index = getValue(I.getOperand(2));
7439 
7440     // The intrinsic's index type is i64, but the SDNode requires an index type
7441     // suitable for the target. Convert the index as required.
7442     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7443     if (Index.getValueType() != VectorIdxTy)
7444       Index = DAG.getVectorIdxConstant(
7445           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7446 
7447     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7448     setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, ResultVT, Vec, SubVec,
7449                              Index));
7450     return;
7451   }
7452   case Intrinsic::vector_extract: {
7453     SDValue Vec = getValue(I.getOperand(0));
7454     SDValue Index = getValue(I.getOperand(1));
7455     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
7456 
7457     // The intrinsic's index type is i64, but the SDNode requires an index type
7458     // suitable for the target. Convert the index as required.
7459     MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout());
7460     if (Index.getValueType() != VectorIdxTy)
7461       Index = DAG.getVectorIdxConstant(
7462           cast<ConstantSDNode>(Index)->getZExtValue(), sdl);
7463 
7464     setValue(&I,
7465              DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, ResultVT, Vec, Index));
7466     return;
7467   }
7468   case Intrinsic::experimental_vector_reverse:
7469     visitVectorReverse(I);
7470     return;
7471   case Intrinsic::experimental_vector_splice:
7472     visitVectorSplice(I);
7473     return;
7474   case Intrinsic::callbr_landingpad:
7475     visitCallBrLandingPad(I);
7476     return;
7477   case Intrinsic::experimental_vector_interleave2:
7478     visitVectorInterleave(I);
7479     return;
7480   case Intrinsic::experimental_vector_deinterleave2:
7481     visitVectorDeinterleave(I);
7482     return;
7483   }
7484 }
7485 
7486 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
7487     const ConstrainedFPIntrinsic &FPI) {
7488   SDLoc sdl = getCurSDLoc();
7489 
7490   // We do not need to serialize constrained FP intrinsics against
7491   // each other or against (nonvolatile) loads, so they can be
7492   // chained like loads.
7493   SDValue Chain = DAG.getRoot();
7494   SmallVector<SDValue, 4> Opers;
7495   Opers.push_back(Chain);
7496   if (FPI.isUnaryOp()) {
7497     Opers.push_back(getValue(FPI.getArgOperand(0)));
7498   } else if (FPI.isTernaryOp()) {
7499     Opers.push_back(getValue(FPI.getArgOperand(0)));
7500     Opers.push_back(getValue(FPI.getArgOperand(1)));
7501     Opers.push_back(getValue(FPI.getArgOperand(2)));
7502   } else {
7503     Opers.push_back(getValue(FPI.getArgOperand(0)));
7504     Opers.push_back(getValue(FPI.getArgOperand(1)));
7505   }
7506 
7507   auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) {
7508     assert(Result.getNode()->getNumValues() == 2);
7509 
7510     // Push node to the appropriate list so that future instructions can be
7511     // chained up correctly.
7512     SDValue OutChain = Result.getValue(1);
7513     switch (EB) {
7514     case fp::ExceptionBehavior::ebIgnore:
7515       // The only reason why ebIgnore nodes still need to be chained is that
7516       // they might depend on the current rounding mode, and therefore must
7517       // not be moved across instruction that may change that mode.
7518       [[fallthrough]];
7519     case fp::ExceptionBehavior::ebMayTrap:
7520       // These must not be moved across calls or instructions that may change
7521       // floating-point exception masks.
7522       PendingConstrainedFP.push_back(OutChain);
7523       break;
7524     case fp::ExceptionBehavior::ebStrict:
7525       // These must not be moved across calls or instructions that may change
7526       // floating-point exception masks or read floating-point exception flags.
7527       // In addition, they cannot be optimized out even if unused.
7528       PendingConstrainedFPStrict.push_back(OutChain);
7529       break;
7530     }
7531   };
7532 
7533   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7534   EVT VT = TLI.getValueType(DAG.getDataLayout(), FPI.getType());
7535   SDVTList VTs = DAG.getVTList(VT, MVT::Other);
7536   fp::ExceptionBehavior EB = *FPI.getExceptionBehavior();
7537 
7538   SDNodeFlags Flags;
7539   if (EB == fp::ExceptionBehavior::ebIgnore)
7540     Flags.setNoFPExcept(true);
7541 
7542   if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI))
7543     Flags.copyFMF(*FPOp);
7544 
7545   unsigned Opcode;
7546   switch (FPI.getIntrinsicID()) {
7547   default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
7548 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
7549   case Intrinsic::INTRINSIC:                                                   \
7550     Opcode = ISD::STRICT_##DAGN;                                               \
7551     break;
7552 #include "llvm/IR/ConstrainedOps.def"
7553   case Intrinsic::experimental_constrained_fmuladd: {
7554     Opcode = ISD::STRICT_FMA;
7555     // Break fmuladd into fmul and fadd.
7556     if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict ||
7557         !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) {
7558       Opers.pop_back();
7559       SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags);
7560       pushOutChain(Mul, EB);
7561       Opcode = ISD::STRICT_FADD;
7562       Opers.clear();
7563       Opers.push_back(Mul.getValue(1));
7564       Opers.push_back(Mul.getValue(0));
7565       Opers.push_back(getValue(FPI.getArgOperand(2)));
7566     }
7567     break;
7568   }
7569   }
7570 
7571   // A few strict DAG nodes carry additional operands that are not
7572   // set up by the default code above.
7573   switch (Opcode) {
7574   default: break;
7575   case ISD::STRICT_FP_ROUND:
7576     Opers.push_back(
7577         DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())));
7578     break;
7579   case ISD::STRICT_FSETCC:
7580   case ISD::STRICT_FSETCCS: {
7581     auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI);
7582     ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate());
7583     if (TM.Options.NoNaNsFPMath)
7584       Condition = getFCmpCodeWithoutNaN(Condition);
7585     Opers.push_back(DAG.getCondCode(Condition));
7586     break;
7587   }
7588   }
7589 
7590   SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags);
7591   pushOutChain(Result, EB);
7592 
7593   SDValue FPResult = Result.getValue(0);
7594   setValue(&FPI, FPResult);
7595 }
7596 
7597 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) {
7598   std::optional<unsigned> ResOPC;
7599   switch (VPIntrin.getIntrinsicID()) {
7600   case Intrinsic::vp_ctlz: {
7601     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7602     ResOPC = IsZeroUndef ? ISD::VP_CTLZ_ZERO_UNDEF : ISD::VP_CTLZ;
7603     break;
7604   }
7605   case Intrinsic::vp_cttz: {
7606     bool IsZeroUndef = cast<ConstantInt>(VPIntrin.getArgOperand(1))->isOne();
7607     ResOPC = IsZeroUndef ? ISD::VP_CTTZ_ZERO_UNDEF : ISD::VP_CTTZ;
7608     break;
7609   }
7610 #define HELPER_MAP_VPID_TO_VPSD(VPID, VPSD)                                    \
7611   case Intrinsic::VPID:                                                        \
7612     ResOPC = ISD::VPSD;                                                        \
7613     break;
7614 #include "llvm/IR/VPIntrinsics.def"
7615   }
7616 
7617   if (!ResOPC)
7618     llvm_unreachable(
7619         "Inconsistency: no SDNode available for this VPIntrinsic!");
7620 
7621   if (*ResOPC == ISD::VP_REDUCE_SEQ_FADD ||
7622       *ResOPC == ISD::VP_REDUCE_SEQ_FMUL) {
7623     if (VPIntrin.getFastMathFlags().allowReassoc())
7624       return *ResOPC == ISD::VP_REDUCE_SEQ_FADD ? ISD::VP_REDUCE_FADD
7625                                                 : ISD::VP_REDUCE_FMUL;
7626   }
7627 
7628   return *ResOPC;
7629 }
7630 
7631 void SelectionDAGBuilder::visitVPLoad(
7632     const VPIntrinsic &VPIntrin, EVT VT,
7633     const SmallVectorImpl<SDValue> &OpValues) {
7634   SDLoc DL = getCurSDLoc();
7635   Value *PtrOperand = VPIntrin.getArgOperand(0);
7636   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7637   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7638   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7639   SDValue LD;
7640   // Do not serialize variable-length loads of constant memory with
7641   // anything.
7642   if (!Alignment)
7643     Alignment = DAG.getEVTAlign(VT);
7644   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7645   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7646   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7647   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7648       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7649       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7650   LD = DAG.getLoadVP(VT, DL, InChain, OpValues[0], OpValues[1], OpValues[2],
7651                      MMO, false /*IsExpanding */);
7652   if (AddToChain)
7653     PendingLoads.push_back(LD.getValue(1));
7654   setValue(&VPIntrin, LD);
7655 }
7656 
7657 void SelectionDAGBuilder::visitVPGather(
7658     const VPIntrinsic &VPIntrin, EVT VT,
7659     const SmallVectorImpl<SDValue> &OpValues) {
7660   SDLoc DL = getCurSDLoc();
7661   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7662   Value *PtrOperand = VPIntrin.getArgOperand(0);
7663   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7664   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7665   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7666   SDValue LD;
7667   if (!Alignment)
7668     Alignment = DAG.getEVTAlign(VT.getScalarType());
7669   unsigned AS =
7670     PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7671   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7672      MachinePointerInfo(AS), MachineMemOperand::MOLoad,
7673      MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7674   SDValue Base, Index, Scale;
7675   ISD::MemIndexType IndexType;
7676   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7677                                     this, VPIntrin.getParent(),
7678                                     VT.getScalarStoreSize());
7679   if (!UniformBase) {
7680     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7681     Index = getValue(PtrOperand);
7682     IndexType = ISD::SIGNED_SCALED;
7683     Scale = DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7684   }
7685   EVT IdxVT = Index.getValueType();
7686   EVT EltTy = IdxVT.getVectorElementType();
7687   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7688     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7689     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7690   }
7691   LD = DAG.getGatherVP(
7692       DAG.getVTList(VT, MVT::Other), VT, DL,
7693       {DAG.getRoot(), Base, Index, Scale, OpValues[1], OpValues[2]}, MMO,
7694       IndexType);
7695   PendingLoads.push_back(LD.getValue(1));
7696   setValue(&VPIntrin, LD);
7697 }
7698 
7699 void SelectionDAGBuilder::visitVPStore(
7700     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7701   SDLoc DL = getCurSDLoc();
7702   Value *PtrOperand = VPIntrin.getArgOperand(1);
7703   EVT VT = OpValues[0].getValueType();
7704   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7705   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7706   SDValue ST;
7707   if (!Alignment)
7708     Alignment = DAG.getEVTAlign(VT);
7709   SDValue Ptr = OpValues[1];
7710   SDValue Offset = DAG.getUNDEF(Ptr.getValueType());
7711   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7712       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7713       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7714   ST = DAG.getStoreVP(getMemoryRoot(), DL, OpValues[0], Ptr, Offset,
7715                       OpValues[2], OpValues[3], VT, MMO, ISD::UNINDEXED,
7716                       /* IsTruncating */ false, /*IsCompressing*/ false);
7717   DAG.setRoot(ST);
7718   setValue(&VPIntrin, ST);
7719 }
7720 
7721 void SelectionDAGBuilder::visitVPScatter(
7722     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7723   SDLoc DL = getCurSDLoc();
7724   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7725   Value *PtrOperand = VPIntrin.getArgOperand(1);
7726   EVT VT = OpValues[0].getValueType();
7727   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7728   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7729   SDValue ST;
7730   if (!Alignment)
7731     Alignment = DAG.getEVTAlign(VT.getScalarType());
7732   unsigned AS =
7733       PtrOperand->getType()->getScalarType()->getPointerAddressSpace();
7734   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7735       MachinePointerInfo(AS), MachineMemOperand::MOStore,
7736       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7737   SDValue Base, Index, Scale;
7738   ISD::MemIndexType IndexType;
7739   bool UniformBase = getUniformBase(PtrOperand, Base, Index, IndexType, Scale,
7740                                     this, VPIntrin.getParent(),
7741                                     VT.getScalarStoreSize());
7742   if (!UniformBase) {
7743     Base = DAG.getConstant(0, DL, TLI.getPointerTy(DAG.getDataLayout()));
7744     Index = getValue(PtrOperand);
7745     IndexType = ISD::SIGNED_SCALED;
7746     Scale =
7747       DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()));
7748   }
7749   EVT IdxVT = Index.getValueType();
7750   EVT EltTy = IdxVT.getVectorElementType();
7751   if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) {
7752     EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy);
7753     Index = DAG.getNode(ISD::SIGN_EXTEND, DL, NewIdxVT, Index);
7754   }
7755   ST = DAG.getScatterVP(DAG.getVTList(MVT::Other), VT, DL,
7756                         {getMemoryRoot(), OpValues[0], Base, Index, Scale,
7757                          OpValues[2], OpValues[3]},
7758                         MMO, IndexType);
7759   DAG.setRoot(ST);
7760   setValue(&VPIntrin, ST);
7761 }
7762 
7763 void SelectionDAGBuilder::visitVPStridedLoad(
7764     const VPIntrinsic &VPIntrin, EVT VT,
7765     const SmallVectorImpl<SDValue> &OpValues) {
7766   SDLoc DL = getCurSDLoc();
7767   Value *PtrOperand = VPIntrin.getArgOperand(0);
7768   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7769   if (!Alignment)
7770     Alignment = DAG.getEVTAlign(VT.getScalarType());
7771   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7772   const MDNode *Ranges = VPIntrin.getMetadata(LLVMContext::MD_range);
7773   MemoryLocation ML = MemoryLocation::getAfter(PtrOperand, AAInfo);
7774   bool AddToChain = !AA || !AA->pointsToConstantMemory(ML);
7775   SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
7776   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7777       MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad,
7778       MemoryLocation::UnknownSize, *Alignment, AAInfo, Ranges);
7779 
7780   SDValue LD = DAG.getStridedLoadVP(VT, DL, InChain, OpValues[0], OpValues[1],
7781                                     OpValues[2], OpValues[3], MMO,
7782                                     false /*IsExpanding*/);
7783 
7784   if (AddToChain)
7785     PendingLoads.push_back(LD.getValue(1));
7786   setValue(&VPIntrin, LD);
7787 }
7788 
7789 void SelectionDAGBuilder::visitVPStridedStore(
7790     const VPIntrinsic &VPIntrin, const SmallVectorImpl<SDValue> &OpValues) {
7791   SDLoc DL = getCurSDLoc();
7792   Value *PtrOperand = VPIntrin.getArgOperand(1);
7793   EVT VT = OpValues[0].getValueType();
7794   MaybeAlign Alignment = VPIntrin.getPointerAlignment();
7795   if (!Alignment)
7796     Alignment = DAG.getEVTAlign(VT.getScalarType());
7797   AAMDNodes AAInfo = VPIntrin.getAAMetadata();
7798   MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand(
7799       MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore,
7800       MemoryLocation::UnknownSize, *Alignment, AAInfo);
7801 
7802   SDValue ST = DAG.getStridedStoreVP(
7803       getMemoryRoot(), DL, OpValues[0], OpValues[1],
7804       DAG.getUNDEF(OpValues[1].getValueType()), OpValues[2], OpValues[3],
7805       OpValues[4], VT, MMO, ISD::UNINDEXED, /*IsTruncating*/ false,
7806       /*IsCompressing*/ false);
7807 
7808   DAG.setRoot(ST);
7809   setValue(&VPIntrin, ST);
7810 }
7811 
7812 void SelectionDAGBuilder::visitVPCmp(const VPCmpIntrinsic &VPIntrin) {
7813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7814   SDLoc DL = getCurSDLoc();
7815 
7816   ISD::CondCode Condition;
7817   CmpInst::Predicate CondCode = VPIntrin.getPredicate();
7818   bool IsFP = VPIntrin.getOperand(0)->getType()->isFPOrFPVectorTy();
7819   if (IsFP) {
7820     // FIXME: Regular fcmps are FPMathOperators which may have fast-math (nnan)
7821     // flags, but calls that don't return floating-point types can't be
7822     // FPMathOperators, like vp.fcmp. This affects constrained fcmp too.
7823     Condition = getFCmpCondCode(CondCode);
7824     if (TM.Options.NoNaNsFPMath)
7825       Condition = getFCmpCodeWithoutNaN(Condition);
7826   } else {
7827     Condition = getICmpCondCode(CondCode);
7828   }
7829 
7830   SDValue Op1 = getValue(VPIntrin.getOperand(0));
7831   SDValue Op2 = getValue(VPIntrin.getOperand(1));
7832   // #2 is the condition code
7833   SDValue MaskOp = getValue(VPIntrin.getOperand(3));
7834   SDValue EVL = getValue(VPIntrin.getOperand(4));
7835   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7836   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7837          "Unexpected target EVL type");
7838   EVL = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, EVL);
7839 
7840   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7841                                                         VPIntrin.getType());
7842   setValue(&VPIntrin,
7843            DAG.getSetCCVP(DL, DestVT, Op1, Op2, Condition, MaskOp, EVL));
7844 }
7845 
7846 void SelectionDAGBuilder::visitVectorPredicationIntrinsic(
7847     const VPIntrinsic &VPIntrin) {
7848   SDLoc DL = getCurSDLoc();
7849   unsigned Opcode = getISDForVPIntrinsic(VPIntrin);
7850 
7851   auto IID = VPIntrin.getIntrinsicID();
7852 
7853   if (const auto *CmpI = dyn_cast<VPCmpIntrinsic>(&VPIntrin))
7854     return visitVPCmp(*CmpI);
7855 
7856   SmallVector<EVT, 4> ValueVTs;
7857   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7858   ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs);
7859   SDVTList VTs = DAG.getVTList(ValueVTs);
7860 
7861   auto EVLParamPos = VPIntrinsic::getVectorLengthParamPos(IID);
7862 
7863   MVT EVLParamVT = TLI.getVPExplicitVectorLengthTy();
7864   assert(EVLParamVT.isScalarInteger() && EVLParamVT.bitsGE(MVT::i32) &&
7865          "Unexpected target EVL type");
7866 
7867   // Request operands.
7868   SmallVector<SDValue, 7> OpValues;
7869   for (unsigned I = 0; I < VPIntrin.arg_size(); ++I) {
7870     auto Op = getValue(VPIntrin.getArgOperand(I));
7871     if (I == EVLParamPos)
7872       Op = DAG.getNode(ISD::ZERO_EXTEND, DL, EVLParamVT, Op);
7873     OpValues.push_back(Op);
7874   }
7875 
7876   switch (Opcode) {
7877   default: {
7878     SDNodeFlags SDFlags;
7879     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7880       SDFlags.copyFMF(*FPMO);
7881     SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues, SDFlags);
7882     setValue(&VPIntrin, Result);
7883     break;
7884   }
7885   case ISD::VP_LOAD:
7886     visitVPLoad(VPIntrin, ValueVTs[0], OpValues);
7887     break;
7888   case ISD::VP_GATHER:
7889     visitVPGather(VPIntrin, ValueVTs[0], OpValues);
7890     break;
7891   case ISD::EXPERIMENTAL_VP_STRIDED_LOAD:
7892     visitVPStridedLoad(VPIntrin, ValueVTs[0], OpValues);
7893     break;
7894   case ISD::VP_STORE:
7895     visitVPStore(VPIntrin, OpValues);
7896     break;
7897   case ISD::VP_SCATTER:
7898     visitVPScatter(VPIntrin, OpValues);
7899     break;
7900   case ISD::EXPERIMENTAL_VP_STRIDED_STORE:
7901     visitVPStridedStore(VPIntrin, OpValues);
7902     break;
7903   case ISD::VP_FMULADD: {
7904     assert(OpValues.size() == 5 && "Unexpected number of operands");
7905     SDNodeFlags SDFlags;
7906     if (auto *FPMO = dyn_cast<FPMathOperator>(&VPIntrin))
7907       SDFlags.copyFMF(*FPMO);
7908     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
7909         TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), ValueVTs[0])) {
7910       setValue(&VPIntrin, DAG.getNode(ISD::VP_FMA, DL, VTs, OpValues, SDFlags));
7911     } else {
7912       SDValue Mul = DAG.getNode(
7913           ISD::VP_FMUL, DL, VTs,
7914           {OpValues[0], OpValues[1], OpValues[3], OpValues[4]}, SDFlags);
7915       SDValue Add =
7916           DAG.getNode(ISD::VP_FADD, DL, VTs,
7917                       {Mul, OpValues[2], OpValues[3], OpValues[4]}, SDFlags);
7918       setValue(&VPIntrin, Add);
7919     }
7920     break;
7921   }
7922   case ISD::VP_INTTOPTR: {
7923     SDValue N = OpValues[0];
7924     EVT DestVT = TLI.getValueType(DAG.getDataLayout(), VPIntrin.getType());
7925     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), VPIntrin.getType());
7926     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7927                                OpValues[2]);
7928     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7929                              OpValues[2]);
7930     setValue(&VPIntrin, N);
7931     break;
7932   }
7933   case ISD::VP_PTRTOINT: {
7934     SDValue N = OpValues[0];
7935     EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7936                                                           VPIntrin.getType());
7937     EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(),
7938                                        VPIntrin.getOperand(0)->getType());
7939     N = DAG.getVPPtrExtOrTrunc(getCurSDLoc(), PtrMemVT, N, OpValues[1],
7940                                OpValues[2]);
7941     N = DAG.getVPZExtOrTrunc(getCurSDLoc(), DestVT, N, OpValues[1],
7942                              OpValues[2]);
7943     setValue(&VPIntrin, N);
7944     break;
7945   }
7946   case ISD::VP_ABS:
7947   case ISD::VP_CTLZ:
7948   case ISD::VP_CTLZ_ZERO_UNDEF:
7949   case ISD::VP_CTTZ:
7950   case ISD::VP_CTTZ_ZERO_UNDEF: {
7951     SDValue Result =
7952         DAG.getNode(Opcode, DL, VTs, {OpValues[0], OpValues[2], OpValues[3]});
7953     setValue(&VPIntrin, Result);
7954     break;
7955   }
7956   }
7957 }
7958 
7959 SDValue SelectionDAGBuilder::lowerStartEH(SDValue Chain,
7960                                           const BasicBlock *EHPadBB,
7961                                           MCSymbol *&BeginLabel) {
7962   MachineFunction &MF = DAG.getMachineFunction();
7963   MachineModuleInfo &MMI = MF.getMMI();
7964 
7965   // Insert a label before the invoke call to mark the try range.  This can be
7966   // used to detect deletion of the invoke via the MachineModuleInfo.
7967   BeginLabel = MMI.getContext().createTempSymbol();
7968 
7969   // For SjLj, keep track of which landing pads go with which invokes
7970   // so as to maintain the ordering of pads in the LSDA.
7971   unsigned CallSiteIndex = MMI.getCurrentCallSite();
7972   if (CallSiteIndex) {
7973     MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
7974     LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
7975 
7976     // Now that the call site is handled, stop tracking it.
7977     MMI.setCurrentCallSite(0);
7978   }
7979 
7980   return DAG.getEHLabel(getCurSDLoc(), Chain, BeginLabel);
7981 }
7982 
7983 SDValue SelectionDAGBuilder::lowerEndEH(SDValue Chain, const InvokeInst *II,
7984                                         const BasicBlock *EHPadBB,
7985                                         MCSymbol *BeginLabel) {
7986   assert(BeginLabel && "BeginLabel should've been set");
7987 
7988   MachineFunction &MF = DAG.getMachineFunction();
7989   MachineModuleInfo &MMI = MF.getMMI();
7990 
7991   // Insert a label at the end of the invoke call to mark the try range.  This
7992   // can be used to detect deletion of the invoke via the MachineModuleInfo.
7993   MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7994   Chain = DAG.getEHLabel(getCurSDLoc(), Chain, EndLabel);
7995 
7996   // Inform MachineModuleInfo of range.
7997   auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7998   // There is a platform (e.g. wasm) that uses funclet style IR but does not
7999   // actually use outlined funclets and their LSDA info style.
8000   if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
8001     assert(II && "II should've been set");
8002     WinEHFuncInfo *EHInfo = MF.getWinEHFuncInfo();
8003     EHInfo->addIPToStateRange(II, BeginLabel, EndLabel);
8004   } else if (!isScopedEHPersonality(Pers)) {
8005     assert(EHPadBB);
8006     MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
8007   }
8008 
8009   return Chain;
8010 }
8011 
8012 std::pair<SDValue, SDValue>
8013 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
8014                                     const BasicBlock *EHPadBB) {
8015   MCSymbol *BeginLabel = nullptr;
8016 
8017   if (EHPadBB) {
8018     // Both PendingLoads and PendingExports must be flushed here;
8019     // this call might not return.
8020     (void)getRoot();
8021     DAG.setRoot(lowerStartEH(getControlRoot(), EHPadBB, BeginLabel));
8022     CLI.setChain(getRoot());
8023   }
8024 
8025   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8026   std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
8027 
8028   assert((CLI.IsTailCall || Result.second.getNode()) &&
8029          "Non-null chain expected with non-tail call!");
8030   assert((Result.second.getNode() || !Result.first.getNode()) &&
8031          "Null value expected with tail call!");
8032 
8033   if (!Result.second.getNode()) {
8034     // As a special case, a null chain means that a tail call has been emitted
8035     // and the DAG root is already updated.
8036     HasTailCall = true;
8037 
8038     // Since there's no actual continuation from this block, nothing can be
8039     // relying on us setting vregs for them.
8040     PendingExports.clear();
8041   } else {
8042     DAG.setRoot(Result.second);
8043   }
8044 
8045   if (EHPadBB) {
8046     DAG.setRoot(lowerEndEH(getRoot(), cast_or_null<InvokeInst>(CLI.CB), EHPadBB,
8047                            BeginLabel));
8048   }
8049 
8050   return Result;
8051 }
8052 
8053 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee,
8054                                       bool isTailCall,
8055                                       bool isMustTailCall,
8056                                       const BasicBlock *EHPadBB) {
8057   auto &DL = DAG.getDataLayout();
8058   FunctionType *FTy = CB.getFunctionType();
8059   Type *RetTy = CB.getType();
8060 
8061   TargetLowering::ArgListTy Args;
8062   Args.reserve(CB.arg_size());
8063 
8064   const Value *SwiftErrorVal = nullptr;
8065   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8066 
8067   if (isTailCall) {
8068     // Avoid emitting tail calls in functions with the disable-tail-calls
8069     // attribute.
8070     auto *Caller = CB.getParent()->getParent();
8071     if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() ==
8072         "true" && !isMustTailCall)
8073       isTailCall = false;
8074 
8075     // We can't tail call inside a function with a swifterror argument. Lowering
8076     // does not support this yet. It would have to move into the swifterror
8077     // register before the call.
8078     if (TLI.supportSwiftError() &&
8079         Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
8080       isTailCall = false;
8081   }
8082 
8083   for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) {
8084     TargetLowering::ArgListEntry Entry;
8085     const Value *V = *I;
8086 
8087     // Skip empty types
8088     if (V->getType()->isEmptyTy())
8089       continue;
8090 
8091     SDValue ArgNode = getValue(V);
8092     Entry.Node = ArgNode; Entry.Ty = V->getType();
8093 
8094     Entry.setAttributes(&CB, I - CB.arg_begin());
8095 
8096     // Use swifterror virtual register as input to the call.
8097     if (Entry.IsSwiftError && TLI.supportSwiftError()) {
8098       SwiftErrorVal = V;
8099       // We find the virtual register for the actual swifterror argument.
8100       // Instead of using the Value, we use the virtual register instead.
8101       Entry.Node =
8102           DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V),
8103                           EVT(TLI.getPointerTy(DL)));
8104     }
8105 
8106     Args.push_back(Entry);
8107 
8108     // If we have an explicit sret argument that is an Instruction, (i.e., it
8109     // might point to function-local memory), we can't meaningfully tail-call.
8110     if (Entry.IsSRet && isa<Instruction>(V))
8111       isTailCall = false;
8112   }
8113 
8114   // If call site has a cfguardtarget operand bundle, create and add an
8115   // additional ArgListEntry.
8116   if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) {
8117     TargetLowering::ArgListEntry Entry;
8118     Value *V = Bundle->Inputs[0];
8119     SDValue ArgNode = getValue(V);
8120     Entry.Node = ArgNode;
8121     Entry.Ty = V->getType();
8122     Entry.IsCFGuardTarget = true;
8123     Args.push_back(Entry);
8124   }
8125 
8126   // Check if target-independent constraints permit a tail call here.
8127   // Target-dependent constraints are checked within TLI->LowerCallTo.
8128   if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget()))
8129     isTailCall = false;
8130 
8131   // Disable tail calls if there is an swifterror argument. Targets have not
8132   // been updated to support tail calls.
8133   if (TLI.supportSwiftError() && SwiftErrorVal)
8134     isTailCall = false;
8135 
8136   ConstantInt *CFIType = nullptr;
8137   if (CB.isIndirectCall()) {
8138     if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_kcfi)) {
8139       if (!TLI.supportKCFIBundles())
8140         report_fatal_error(
8141             "Target doesn't support calls with kcfi operand bundles.");
8142       CFIType = cast<ConstantInt>(Bundle->Inputs[0]);
8143       assert(CFIType->getType()->isIntegerTy(32) && "Invalid CFI type");
8144     }
8145   }
8146 
8147   TargetLowering::CallLoweringInfo CLI(DAG);
8148   CLI.setDebugLoc(getCurSDLoc())
8149       .setChain(getRoot())
8150       .setCallee(RetTy, FTy, Callee, std::move(Args), CB)
8151       .setTailCall(isTailCall)
8152       .setConvergent(CB.isConvergent())
8153       .setIsPreallocated(
8154           CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0)
8155       .setCFIType(CFIType);
8156   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8157 
8158   if (Result.first.getNode()) {
8159     Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first);
8160     setValue(&CB, Result.first);
8161   }
8162 
8163   // The last element of CLI.InVals has the SDValue for swifterror return.
8164   // Here we copy it to a virtual register and update SwiftErrorMap for
8165   // book-keeping.
8166   if (SwiftErrorVal && TLI.supportSwiftError()) {
8167     // Get the last element of InVals.
8168     SDValue Src = CLI.InVals.back();
8169     Register VReg =
8170         SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal);
8171     SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
8172     DAG.setRoot(CopyNode);
8173   }
8174 }
8175 
8176 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
8177                              SelectionDAGBuilder &Builder) {
8178   // Check to see if this load can be trivially constant folded, e.g. if the
8179   // input is from a string literal.
8180   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
8181     // Cast pointer to the type we really want to load.
8182     Type *LoadTy =
8183         Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
8184     if (LoadVT.isVector())
8185       LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements());
8186 
8187     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
8188                                          PointerType::getUnqual(LoadTy));
8189 
8190     if (const Constant *LoadCst =
8191             ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
8192                                          LoadTy, Builder.DAG.getDataLayout()))
8193       return Builder.getValue(LoadCst);
8194   }
8195 
8196   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
8197   // still constant memory, the input chain can be the entry node.
8198   SDValue Root;
8199   bool ConstantMemory = false;
8200 
8201   // Do not serialize (non-volatile) loads of constant memory with anything.
8202   if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
8203     Root = Builder.DAG.getEntryNode();
8204     ConstantMemory = true;
8205   } else {
8206     // Do not serialize non-volatile loads against each other.
8207     Root = Builder.DAG.getRoot();
8208   }
8209 
8210   SDValue Ptr = Builder.getValue(PtrVal);
8211   SDValue LoadVal =
8212       Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr,
8213                           MachinePointerInfo(PtrVal), Align(1));
8214 
8215   if (!ConstantMemory)
8216     Builder.PendingLoads.push_back(LoadVal.getValue(1));
8217   return LoadVal;
8218 }
8219 
8220 /// Record the value for an instruction that produces an integer result,
8221 /// converting the type where necessary.
8222 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
8223                                                   SDValue Value,
8224                                                   bool IsSigned) {
8225   EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8226                                                     I.getType(), true);
8227   Value = DAG.getExtOrTrunc(IsSigned, Value, getCurSDLoc(), VT);
8228   setValue(&I, Value);
8229 }
8230 
8231 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return
8232 /// true and lower it. Otherwise return false, and it will be lowered like a
8233 /// normal call.
8234 /// The caller already checked that \p I calls the appropriate LibFunc with a
8235 /// correct prototype.
8236 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) {
8237   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
8238   const Value *Size = I.getArgOperand(2);
8239   const ConstantSDNode *CSize = dyn_cast<ConstantSDNode>(getValue(Size));
8240   if (CSize && CSize->getZExtValue() == 0) {
8241     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
8242                                                           I.getType(), true);
8243     setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
8244     return true;
8245   }
8246 
8247   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8248   std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
8249       DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
8250       getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
8251   if (Res.first.getNode()) {
8252     processIntegerCallValue(I, Res.first, true);
8253     PendingLoads.push_back(Res.second);
8254     return true;
8255   }
8256 
8257   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
8258   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
8259   if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
8260     return false;
8261 
8262   // If the target has a fast compare for the given size, it will return a
8263   // preferred load type for that size. Require that the load VT is legal and
8264   // that the target supports unaligned loads of that type. Otherwise, return
8265   // INVALID.
8266   auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
8267     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8268     MVT LVT = TLI.hasFastEqualityCompare(NumBits);
8269     if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
8270       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
8271       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
8272       // TODO: Check alignment of src and dest ptrs.
8273       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
8274       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
8275       if (!TLI.isTypeLegal(LVT) ||
8276           !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
8277           !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
8278         LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
8279     }
8280 
8281     return LVT;
8282   };
8283 
8284   // This turns into unaligned loads. We only do this if the target natively
8285   // supports the MVT we'll be loading or if it is small enough (<= 4) that
8286   // we'll only produce a small number of byte loads.
8287   MVT LoadVT;
8288   unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
8289   switch (NumBitsToCompare) {
8290   default:
8291     return false;
8292   case 16:
8293     LoadVT = MVT::i16;
8294     break;
8295   case 32:
8296     LoadVT = MVT::i32;
8297     break;
8298   case 64:
8299   case 128:
8300   case 256:
8301     LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
8302     break;
8303   }
8304 
8305   if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
8306     return false;
8307 
8308   SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
8309   SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
8310 
8311   // Bitcast to a wide integer type if the loads are vectors.
8312   if (LoadVT.isVector()) {
8313     EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
8314     LoadL = DAG.getBitcast(CmpVT, LoadL);
8315     LoadR = DAG.getBitcast(CmpVT, LoadR);
8316   }
8317 
8318   SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
8319   processIntegerCallValue(I, Cmp, false);
8320   return true;
8321 }
8322 
8323 /// See if we can lower a memchr call into an optimized form. If so, return
8324 /// true and lower it. Otherwise return false, and it will be lowered like a
8325 /// normal call.
8326 /// The caller already checked that \p I calls the appropriate LibFunc with a
8327 /// correct prototype.
8328 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
8329   const Value *Src = I.getArgOperand(0);
8330   const Value *Char = I.getArgOperand(1);
8331   const Value *Length = I.getArgOperand(2);
8332 
8333   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8334   std::pair<SDValue, SDValue> Res =
8335     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
8336                                 getValue(Src), getValue(Char), getValue(Length),
8337                                 MachinePointerInfo(Src));
8338   if (Res.first.getNode()) {
8339     setValue(&I, Res.first);
8340     PendingLoads.push_back(Res.second);
8341     return true;
8342   }
8343 
8344   return false;
8345 }
8346 
8347 /// See if we can lower a mempcpy call into an optimized form. If so, return
8348 /// true and lower it. Otherwise return false, and it will be lowered like a
8349 /// normal call.
8350 /// The caller already checked that \p I calls the appropriate LibFunc with a
8351 /// correct prototype.
8352 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
8353   SDValue Dst = getValue(I.getArgOperand(0));
8354   SDValue Src = getValue(I.getArgOperand(1));
8355   SDValue Size = getValue(I.getArgOperand(2));
8356 
8357   Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne();
8358   Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne();
8359   // DAG::getMemcpy needs Alignment to be defined.
8360   Align Alignment = std::min(DstAlign, SrcAlign);
8361 
8362   SDLoc sdl = getCurSDLoc();
8363 
8364   // In the mempcpy context we need to pass in a false value for isTailCall
8365   // because the return pointer needs to be adjusted by the size of
8366   // the copied memory.
8367   SDValue Root = getMemoryRoot();
8368   SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, false, false,
8369                              /*isTailCall=*/false,
8370                              MachinePointerInfo(I.getArgOperand(0)),
8371                              MachinePointerInfo(I.getArgOperand(1)),
8372                              I.getAAMetadata());
8373   assert(MC.getNode() != nullptr &&
8374          "** memcpy should not be lowered as TailCall in mempcpy context **");
8375   DAG.setRoot(MC);
8376 
8377   // Check if Size needs to be truncated or extended.
8378   Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
8379 
8380   // Adjust return pointer to point just past the last dst byte.
8381   SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
8382                                     Dst, Size);
8383   setValue(&I, DstPlusSize);
8384   return true;
8385 }
8386 
8387 /// See if we can lower a strcpy call into an optimized form.  If so, return
8388 /// true and lower it, otherwise return false and it will be lowered like a
8389 /// normal call.
8390 /// The caller already checked that \p I calls the appropriate LibFunc with a
8391 /// correct prototype.
8392 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
8393   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8394 
8395   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8396   std::pair<SDValue, SDValue> Res =
8397     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
8398                                 getValue(Arg0), getValue(Arg1),
8399                                 MachinePointerInfo(Arg0),
8400                                 MachinePointerInfo(Arg1), isStpcpy);
8401   if (Res.first.getNode()) {
8402     setValue(&I, Res.first);
8403     DAG.setRoot(Res.second);
8404     return true;
8405   }
8406 
8407   return false;
8408 }
8409 
8410 /// See if we can lower a strcmp call into an optimized form.  If so, return
8411 /// true and lower it, otherwise return false and it will be lowered like a
8412 /// normal call.
8413 /// The caller already checked that \p I calls the appropriate LibFunc with a
8414 /// correct prototype.
8415 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
8416   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8417 
8418   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8419   std::pair<SDValue, SDValue> Res =
8420     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
8421                                 getValue(Arg0), getValue(Arg1),
8422                                 MachinePointerInfo(Arg0),
8423                                 MachinePointerInfo(Arg1));
8424   if (Res.first.getNode()) {
8425     processIntegerCallValue(I, Res.first, true);
8426     PendingLoads.push_back(Res.second);
8427     return true;
8428   }
8429 
8430   return false;
8431 }
8432 
8433 /// See if we can lower a strlen call into an optimized form.  If so, return
8434 /// true and lower it, otherwise return false and it will be lowered like a
8435 /// normal call.
8436 /// The caller already checked that \p I calls the appropriate LibFunc with a
8437 /// correct prototype.
8438 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
8439   const Value *Arg0 = I.getArgOperand(0);
8440 
8441   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8442   std::pair<SDValue, SDValue> Res =
8443     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
8444                                 getValue(Arg0), MachinePointerInfo(Arg0));
8445   if (Res.first.getNode()) {
8446     processIntegerCallValue(I, Res.first, false);
8447     PendingLoads.push_back(Res.second);
8448     return true;
8449   }
8450 
8451   return false;
8452 }
8453 
8454 /// See if we can lower a strnlen call into an optimized form.  If so, return
8455 /// true and lower it, otherwise return false and it will be lowered like a
8456 /// normal call.
8457 /// The caller already checked that \p I calls the appropriate LibFunc with a
8458 /// correct prototype.
8459 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
8460   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
8461 
8462   const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
8463   std::pair<SDValue, SDValue> Res =
8464     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
8465                                  getValue(Arg0), getValue(Arg1),
8466                                  MachinePointerInfo(Arg0));
8467   if (Res.first.getNode()) {
8468     processIntegerCallValue(I, Res.first, false);
8469     PendingLoads.push_back(Res.second);
8470     return true;
8471   }
8472 
8473   return false;
8474 }
8475 
8476 /// See if we can lower a unary floating-point operation into an SDNode with
8477 /// the specified Opcode.  If so, return true and lower it, otherwise return
8478 /// false and it will be lowered like a normal call.
8479 /// The caller already checked that \p I calls the appropriate LibFunc with a
8480 /// correct prototype.
8481 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
8482                                               unsigned Opcode) {
8483   // We already checked this call's prototype; verify it doesn't modify errno.
8484   if (!I.onlyReadsMemory())
8485     return false;
8486 
8487   SDNodeFlags Flags;
8488   Flags.copyFMF(cast<FPMathOperator>(I));
8489 
8490   SDValue Tmp = getValue(I.getArgOperand(0));
8491   setValue(&I,
8492            DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags));
8493   return true;
8494 }
8495 
8496 /// See if we can lower a binary floating-point operation into an SDNode with
8497 /// the specified Opcode. If so, return true and lower it. Otherwise return
8498 /// false, and it will be lowered like a normal call.
8499 /// The caller already checked that \p I calls the appropriate LibFunc with a
8500 /// correct prototype.
8501 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
8502                                                unsigned Opcode) {
8503   // We already checked this call's prototype; verify it doesn't modify errno.
8504   if (!I.onlyReadsMemory())
8505     return false;
8506 
8507   SDNodeFlags Flags;
8508   Flags.copyFMF(cast<FPMathOperator>(I));
8509 
8510   SDValue Tmp0 = getValue(I.getArgOperand(0));
8511   SDValue Tmp1 = getValue(I.getArgOperand(1));
8512   EVT VT = Tmp0.getValueType();
8513   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags));
8514   return true;
8515 }
8516 
8517 void SelectionDAGBuilder::visitCall(const CallInst &I) {
8518   // Handle inline assembly differently.
8519   if (I.isInlineAsm()) {
8520     visitInlineAsm(I);
8521     return;
8522   }
8523 
8524   diagnoseDontCall(I);
8525 
8526   if (Function *F = I.getCalledFunction()) {
8527     if (F->isDeclaration()) {
8528       // Is this an LLVM intrinsic or a target-specific intrinsic?
8529       unsigned IID = F->getIntrinsicID();
8530       if (!IID)
8531         if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
8532           IID = II->getIntrinsicID(F);
8533 
8534       if (IID) {
8535         visitIntrinsicCall(I, IID);
8536         return;
8537       }
8538     }
8539 
8540     // Check for well-known libc/libm calls.  If the function is internal, it
8541     // can't be a library call.  Don't do the check if marked as nobuiltin for
8542     // some reason or the call site requires strict floating point semantics.
8543     LibFunc Func;
8544     if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
8545         F->hasName() && LibInfo->getLibFunc(*F, Func) &&
8546         LibInfo->hasOptimizedCodeGen(Func)) {
8547       switch (Func) {
8548       default: break;
8549       case LibFunc_bcmp:
8550         if (visitMemCmpBCmpCall(I))
8551           return;
8552         break;
8553       case LibFunc_copysign:
8554       case LibFunc_copysignf:
8555       case LibFunc_copysignl:
8556         // We already checked this call's prototype; verify it doesn't modify
8557         // errno.
8558         if (I.onlyReadsMemory()) {
8559           SDValue LHS = getValue(I.getArgOperand(0));
8560           SDValue RHS = getValue(I.getArgOperand(1));
8561           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
8562                                    LHS.getValueType(), LHS, RHS));
8563           return;
8564         }
8565         break;
8566       case LibFunc_fabs:
8567       case LibFunc_fabsf:
8568       case LibFunc_fabsl:
8569         if (visitUnaryFloatCall(I, ISD::FABS))
8570           return;
8571         break;
8572       case LibFunc_fmin:
8573       case LibFunc_fminf:
8574       case LibFunc_fminl:
8575         if (visitBinaryFloatCall(I, ISD::FMINNUM))
8576           return;
8577         break;
8578       case LibFunc_fmax:
8579       case LibFunc_fmaxf:
8580       case LibFunc_fmaxl:
8581         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
8582           return;
8583         break;
8584       case LibFunc_sin:
8585       case LibFunc_sinf:
8586       case LibFunc_sinl:
8587         if (visitUnaryFloatCall(I, ISD::FSIN))
8588           return;
8589         break;
8590       case LibFunc_cos:
8591       case LibFunc_cosf:
8592       case LibFunc_cosl:
8593         if (visitUnaryFloatCall(I, ISD::FCOS))
8594           return;
8595         break;
8596       case LibFunc_sqrt:
8597       case LibFunc_sqrtf:
8598       case LibFunc_sqrtl:
8599       case LibFunc_sqrt_finite:
8600       case LibFunc_sqrtf_finite:
8601       case LibFunc_sqrtl_finite:
8602         if (visitUnaryFloatCall(I, ISD::FSQRT))
8603           return;
8604         break;
8605       case LibFunc_floor:
8606       case LibFunc_floorf:
8607       case LibFunc_floorl:
8608         if (visitUnaryFloatCall(I, ISD::FFLOOR))
8609           return;
8610         break;
8611       case LibFunc_nearbyint:
8612       case LibFunc_nearbyintf:
8613       case LibFunc_nearbyintl:
8614         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
8615           return;
8616         break;
8617       case LibFunc_ceil:
8618       case LibFunc_ceilf:
8619       case LibFunc_ceill:
8620         if (visitUnaryFloatCall(I, ISD::FCEIL))
8621           return;
8622         break;
8623       case LibFunc_rint:
8624       case LibFunc_rintf:
8625       case LibFunc_rintl:
8626         if (visitUnaryFloatCall(I, ISD::FRINT))
8627           return;
8628         break;
8629       case LibFunc_round:
8630       case LibFunc_roundf:
8631       case LibFunc_roundl:
8632         if (visitUnaryFloatCall(I, ISD::FROUND))
8633           return;
8634         break;
8635       case LibFunc_trunc:
8636       case LibFunc_truncf:
8637       case LibFunc_truncl:
8638         if (visitUnaryFloatCall(I, ISD::FTRUNC))
8639           return;
8640         break;
8641       case LibFunc_log2:
8642       case LibFunc_log2f:
8643       case LibFunc_log2l:
8644         if (visitUnaryFloatCall(I, ISD::FLOG2))
8645           return;
8646         break;
8647       case LibFunc_exp2:
8648       case LibFunc_exp2f:
8649       case LibFunc_exp2l:
8650         if (visitUnaryFloatCall(I, ISD::FEXP2))
8651           return;
8652         break;
8653       case LibFunc_ldexp:
8654       case LibFunc_ldexpf:
8655       case LibFunc_ldexpl:
8656         if (visitBinaryFloatCall(I, ISD::FLDEXP))
8657           return;
8658         break;
8659       case LibFunc_memcmp:
8660         if (visitMemCmpBCmpCall(I))
8661           return;
8662         break;
8663       case LibFunc_mempcpy:
8664         if (visitMemPCpyCall(I))
8665           return;
8666         break;
8667       case LibFunc_memchr:
8668         if (visitMemChrCall(I))
8669           return;
8670         break;
8671       case LibFunc_strcpy:
8672         if (visitStrCpyCall(I, false))
8673           return;
8674         break;
8675       case LibFunc_stpcpy:
8676         if (visitStrCpyCall(I, true))
8677           return;
8678         break;
8679       case LibFunc_strcmp:
8680         if (visitStrCmpCall(I))
8681           return;
8682         break;
8683       case LibFunc_strlen:
8684         if (visitStrLenCall(I))
8685           return;
8686         break;
8687       case LibFunc_strnlen:
8688         if (visitStrNLenCall(I))
8689           return;
8690         break;
8691       }
8692     }
8693   }
8694 
8695   // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
8696   // have to do anything here to lower funclet bundles.
8697   // CFGuardTarget bundles are lowered in LowerCallTo.
8698   assert(!I.hasOperandBundlesOtherThan(
8699              {LLVMContext::OB_deopt, LLVMContext::OB_funclet,
8700               LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated,
8701               LLVMContext::OB_clang_arc_attachedcall, LLVMContext::OB_kcfi}) &&
8702          "Cannot lower calls with arbitrary operand bundles!");
8703 
8704   SDValue Callee = getValue(I.getCalledOperand());
8705 
8706   if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
8707     LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
8708   else
8709     // Check if we can potentially perform a tail call. More detailed checking
8710     // is be done within LowerCallTo, after more information about the call is
8711     // known.
8712     LowerCallTo(I, Callee, I.isTailCall(), I.isMustTailCall());
8713 }
8714 
8715 namespace {
8716 
8717 /// AsmOperandInfo - This contains information for each constraint that we are
8718 /// lowering.
8719 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
8720 public:
8721   /// CallOperand - If this is the result output operand or a clobber
8722   /// this is null, otherwise it is the incoming operand to the CallInst.
8723   /// This gets modified as the asm is processed.
8724   SDValue CallOperand;
8725 
8726   /// AssignedRegs - If this is a register or register class operand, this
8727   /// contains the set of register corresponding to the operand.
8728   RegsForValue AssignedRegs;
8729 
8730   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
8731     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
8732   }
8733 
8734   /// Whether or not this operand accesses memory
8735   bool hasMemory(const TargetLowering &TLI) const {
8736     // Indirect operand accesses access memory.
8737     if (isIndirect)
8738       return true;
8739 
8740     for (const auto &Code : Codes)
8741       if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
8742         return true;
8743 
8744     return false;
8745   }
8746 };
8747 
8748 
8749 } // end anonymous namespace
8750 
8751 /// Make sure that the output operand \p OpInfo and its corresponding input
8752 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
8753 /// out).
8754 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
8755                                SDISelAsmOperandInfo &MatchingOpInfo,
8756                                SelectionDAG &DAG) {
8757   if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
8758     return;
8759 
8760   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
8761   const auto &TLI = DAG.getTargetLoweringInfo();
8762 
8763   std::pair<unsigned, const TargetRegisterClass *> MatchRC =
8764       TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
8765                                        OpInfo.ConstraintVT);
8766   std::pair<unsigned, const TargetRegisterClass *> InputRC =
8767       TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
8768                                        MatchingOpInfo.ConstraintVT);
8769   if ((OpInfo.ConstraintVT.isInteger() !=
8770        MatchingOpInfo.ConstraintVT.isInteger()) ||
8771       (MatchRC.second != InputRC.second)) {
8772     // FIXME: error out in a more elegant fashion
8773     report_fatal_error("Unsupported asm: input constraint"
8774                        " with a matching output constraint of"
8775                        " incompatible type!");
8776   }
8777   MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
8778 }
8779 
8780 /// Get a direct memory input to behave well as an indirect operand.
8781 /// This may introduce stores, hence the need for a \p Chain.
8782 /// \return The (possibly updated) chain.
8783 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
8784                                         SDISelAsmOperandInfo &OpInfo,
8785                                         SelectionDAG &DAG) {
8786   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8787 
8788   // If we don't have an indirect input, put it in the constpool if we can,
8789   // otherwise spill it to a stack slot.
8790   // TODO: This isn't quite right. We need to handle these according to
8791   // the addressing mode that the constraint wants. Also, this may take
8792   // an additional register for the computation and we don't want that
8793   // either.
8794 
8795   // If the operand is a float, integer, or vector constant, spill to a
8796   // constant pool entry to get its address.
8797   const Value *OpVal = OpInfo.CallOperandVal;
8798   if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
8799       isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
8800     OpInfo.CallOperand = DAG.getConstantPool(
8801         cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
8802     return Chain;
8803   }
8804 
8805   // Otherwise, create a stack slot and emit a store to it before the asm.
8806   Type *Ty = OpVal->getType();
8807   auto &DL = DAG.getDataLayout();
8808   uint64_t TySize = DL.getTypeAllocSize(Ty);
8809   MachineFunction &MF = DAG.getMachineFunction();
8810   int SSFI = MF.getFrameInfo().CreateStackObject(
8811       TySize, DL.getPrefTypeAlign(Ty), false);
8812   SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
8813   Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
8814                             MachinePointerInfo::getFixedStack(MF, SSFI),
8815                             TLI.getMemValueType(DL, Ty));
8816   OpInfo.CallOperand = StackSlot;
8817 
8818   return Chain;
8819 }
8820 
8821 /// GetRegistersForValue - Assign registers (virtual or physical) for the
8822 /// specified operand.  We prefer to assign virtual registers, to allow the
8823 /// register allocator to handle the assignment process.  However, if the asm
8824 /// uses features that we can't model on machineinstrs, we have SDISel do the
8825 /// allocation.  This produces generally horrible, but correct, code.
8826 ///
8827 ///   OpInfo describes the operand
8828 ///   RefOpInfo describes the matching operand if any, the operand otherwise
8829 static std::optional<unsigned>
8830 getRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
8831                      SDISelAsmOperandInfo &OpInfo,
8832                      SDISelAsmOperandInfo &RefOpInfo) {
8833   LLVMContext &Context = *DAG.getContext();
8834   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8835 
8836   MachineFunction &MF = DAG.getMachineFunction();
8837   SmallVector<unsigned, 4> Regs;
8838   const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
8839 
8840   // No work to do for memory/address operands.
8841   if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8842       OpInfo.ConstraintType == TargetLowering::C_Address)
8843     return std::nullopt;
8844 
8845   // If this is a constraint for a single physreg, or a constraint for a
8846   // register class, find it.
8847   unsigned AssignedReg;
8848   const TargetRegisterClass *RC;
8849   std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
8850       &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
8851   // RC is unset only on failure. Return immediately.
8852   if (!RC)
8853     return std::nullopt;
8854 
8855   // Get the actual register value type.  This is important, because the user
8856   // may have asked for (e.g.) the AX register in i32 type.  We need to
8857   // remember that AX is actually i16 to get the right extension.
8858   const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
8859 
8860   if (OpInfo.ConstraintVT != MVT::Other && RegVT != MVT::Untyped) {
8861     // If this is an FP operand in an integer register (or visa versa), or more
8862     // generally if the operand value disagrees with the register class we plan
8863     // to stick it in, fix the operand type.
8864     //
8865     // If this is an input value, the bitcast to the new type is done now.
8866     // Bitcast for output value is done at the end of visitInlineAsm().
8867     if ((OpInfo.Type == InlineAsm::isOutput ||
8868          OpInfo.Type == InlineAsm::isInput) &&
8869         !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
8870       // Try to convert to the first EVT that the reg class contains.  If the
8871       // types are identical size, use a bitcast to convert (e.g. two differing
8872       // vector types).  Note: output bitcast is done at the end of
8873       // visitInlineAsm().
8874       if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
8875         // Exclude indirect inputs while they are unsupported because the code
8876         // to perform the load is missing and thus OpInfo.CallOperand still
8877         // refers to the input address rather than the pointed-to value.
8878         if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
8879           OpInfo.CallOperand =
8880               DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
8881         OpInfo.ConstraintVT = RegVT;
8882         // If the operand is an FP value and we want it in integer registers,
8883         // use the corresponding integer type. This turns an f64 value into
8884         // i64, which can be passed with two i32 values on a 32-bit machine.
8885       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
8886         MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
8887         if (OpInfo.Type == InlineAsm::isInput)
8888           OpInfo.CallOperand =
8889               DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
8890         OpInfo.ConstraintVT = VT;
8891       }
8892     }
8893   }
8894 
8895   // No need to allocate a matching input constraint since the constraint it's
8896   // matching to has already been allocated.
8897   if (OpInfo.isMatchingInputConstraint())
8898     return std::nullopt;
8899 
8900   EVT ValueVT = OpInfo.ConstraintVT;
8901   if (OpInfo.ConstraintVT == MVT::Other)
8902     ValueVT = RegVT;
8903 
8904   // Initialize NumRegs.
8905   unsigned NumRegs = 1;
8906   if (OpInfo.ConstraintVT != MVT::Other)
8907     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT, RegVT);
8908 
8909   // If this is a constraint for a specific physical register, like {r17},
8910   // assign it now.
8911 
8912   // If this associated to a specific register, initialize iterator to correct
8913   // place. If virtual, make sure we have enough registers
8914 
8915   // Initialize iterator if necessary
8916   TargetRegisterClass::iterator I = RC->begin();
8917   MachineRegisterInfo &RegInfo = MF.getRegInfo();
8918 
8919   // Do not check for single registers.
8920   if (AssignedReg) {
8921     I = std::find(I, RC->end(), AssignedReg);
8922     if (I == RC->end()) {
8923       // RC does not contain the selected register, which indicates a
8924       // mismatch between the register and the required type/bitwidth.
8925       return {AssignedReg};
8926     }
8927   }
8928 
8929   for (; NumRegs; --NumRegs, ++I) {
8930     assert(I != RC->end() && "Ran out of registers to allocate!");
8931     Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC);
8932     Regs.push_back(R);
8933   }
8934 
8935   OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
8936   return std::nullopt;
8937 }
8938 
8939 static unsigned
8940 findMatchingInlineAsmOperand(unsigned OperandNo,
8941                              const std::vector<SDValue> &AsmNodeOperands) {
8942   // Scan until we find the definition we already emitted of this operand.
8943   unsigned CurOp = InlineAsm::Op_FirstOperand;
8944   for (; OperandNo; --OperandNo) {
8945     // Advance to the next operand.
8946     unsigned OpFlag =
8947         cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8948     assert((InlineAsm::isRegDefKind(OpFlag) ||
8949             InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
8950             InlineAsm::isMemKind(OpFlag)) &&
8951            "Skipped past definitions?");
8952     CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
8953   }
8954   return CurOp;
8955 }
8956 
8957 namespace {
8958 
8959 class ExtraFlags {
8960   unsigned Flags = 0;
8961 
8962 public:
8963   explicit ExtraFlags(const CallBase &Call) {
8964     const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
8965     if (IA->hasSideEffects())
8966       Flags |= InlineAsm::Extra_HasSideEffects;
8967     if (IA->isAlignStack())
8968       Flags |= InlineAsm::Extra_IsAlignStack;
8969     if (Call.isConvergent())
8970       Flags |= InlineAsm::Extra_IsConvergent;
8971     Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
8972   }
8973 
8974   void update(const TargetLowering::AsmOperandInfo &OpInfo) {
8975     // Ideally, we would only check against memory constraints.  However, the
8976     // meaning of an Other constraint can be target-specific and we can't easily
8977     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
8978     // for Other constraints as well.
8979     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8980         OpInfo.ConstraintType == TargetLowering::C_Other) {
8981       if (OpInfo.Type == InlineAsm::isInput)
8982         Flags |= InlineAsm::Extra_MayLoad;
8983       else if (OpInfo.Type == InlineAsm::isOutput)
8984         Flags |= InlineAsm::Extra_MayStore;
8985       else if (OpInfo.Type == InlineAsm::isClobber)
8986         Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
8987     }
8988   }
8989 
8990   unsigned get() const { return Flags; }
8991 };
8992 
8993 } // end anonymous namespace
8994 
8995 static bool isFunction(SDValue Op) {
8996   if (Op && Op.getOpcode() == ISD::GlobalAddress) {
8997     if (auto *GA = dyn_cast<GlobalAddressSDNode>(Op)) {
8998       auto Fn = dyn_cast_or_null<Function>(GA->getGlobal());
8999 
9000       // In normal "call dllimport func" instruction (non-inlineasm) it force
9001       // indirect access by specifing call opcode. And usually specially print
9002       // asm with indirect symbol (i.g: "*") according to opcode. Inline asm can
9003       // not do in this way now. (In fact, this is similar with "Data Access"
9004       // action). So here we ignore dllimport function.
9005       if (Fn && !Fn->hasDLLImportStorageClass())
9006         return true;
9007     }
9008   }
9009   return false;
9010 }
9011 
9012 /// visitInlineAsm - Handle a call to an InlineAsm object.
9013 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call,
9014                                          const BasicBlock *EHPadBB) {
9015   const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand());
9016 
9017   /// ConstraintOperands - Information about all of the constraints.
9018   SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands;
9019 
9020   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9021   TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
9022       DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call);
9023 
9024   // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
9025   // AsmDialect, MayLoad, MayStore).
9026   bool HasSideEffect = IA->hasSideEffects();
9027   ExtraFlags ExtraInfo(Call);
9028 
9029   for (auto &T : TargetConstraints) {
9030     ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
9031     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
9032 
9033     if (OpInfo.CallOperandVal)
9034       OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
9035 
9036     if (!HasSideEffect)
9037       HasSideEffect = OpInfo.hasMemory(TLI);
9038 
9039     // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
9040     // FIXME: Could we compute this on OpInfo rather than T?
9041 
9042     // Compute the constraint code and ConstraintType to use.
9043     TLI.ComputeConstraintToUse(T, SDValue());
9044 
9045     if (T.ConstraintType == TargetLowering::C_Immediate &&
9046         OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand))
9047       // We've delayed emitting a diagnostic like the "n" constraint because
9048       // inlining could cause an integer showing up.
9049       return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) +
9050                                           "' expects an integer constant "
9051                                           "expression");
9052 
9053     ExtraInfo.update(T);
9054   }
9055 
9056   // We won't need to flush pending loads if this asm doesn't touch
9057   // memory and is nonvolatile.
9058   SDValue Glue, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
9059 
9060   bool EmitEHLabels = isa<InvokeInst>(Call);
9061   if (EmitEHLabels) {
9062     assert(EHPadBB && "InvokeInst must have an EHPadBB");
9063   }
9064   bool IsCallBr = isa<CallBrInst>(Call);
9065 
9066   if (IsCallBr || EmitEHLabels) {
9067     // If this is a callbr or invoke we need to flush pending exports since
9068     // inlineasm_br and invoke are terminators.
9069     // We need to do this before nodes are glued to the inlineasm_br node.
9070     Chain = getControlRoot();
9071   }
9072 
9073   MCSymbol *BeginLabel = nullptr;
9074   if (EmitEHLabels) {
9075     Chain = lowerStartEH(Chain, EHPadBB, BeginLabel);
9076   }
9077 
9078   int OpNo = -1;
9079   SmallVector<StringRef> AsmStrs;
9080   IA->collectAsmStrs(AsmStrs);
9081 
9082   // Second pass over the constraints: compute which constraint option to use.
9083   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9084     if (OpInfo.hasArg() || OpInfo.Type == InlineAsm::isOutput)
9085       OpNo++;
9086 
9087     // If this is an output operand with a matching input operand, look up the
9088     // matching input. If their types mismatch, e.g. one is an integer, the
9089     // other is floating point, or their sizes are different, flag it as an
9090     // error.
9091     if (OpInfo.hasMatchingInput()) {
9092       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
9093       patchMatchingInput(OpInfo, Input, DAG);
9094     }
9095 
9096     // Compute the constraint code and ConstraintType to use.
9097     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
9098 
9099     if ((OpInfo.ConstraintType == TargetLowering::C_Memory &&
9100          OpInfo.Type == InlineAsm::isClobber) ||
9101         OpInfo.ConstraintType == TargetLowering::C_Address)
9102       continue;
9103 
9104     // In Linux PIC model, there are 4 cases about value/label addressing:
9105     //
9106     // 1: Function call or Label jmp inside the module.
9107     // 2: Data access (such as global variable, static variable) inside module.
9108     // 3: Function call or Label jmp outside the module.
9109     // 4: Data access (such as global variable) outside the module.
9110     //
9111     // Due to current llvm inline asm architecture designed to not "recognize"
9112     // the asm code, there are quite troubles for us to treat mem addressing
9113     // differently for same value/adress used in different instuctions.
9114     // For example, in pic model, call a func may in plt way or direclty
9115     // pc-related, but lea/mov a function adress may use got.
9116     //
9117     // Here we try to "recognize" function call for the case 1 and case 3 in
9118     // inline asm. And try to adjust the constraint for them.
9119     //
9120     // TODO: Due to current inline asm didn't encourage to jmp to the outsider
9121     // label, so here we don't handle jmp function label now, but we need to
9122     // enhance it (especilly in PIC model) if we meet meaningful requirements.
9123     if (OpInfo.isIndirect && isFunction(OpInfo.CallOperand) &&
9124         TLI.isInlineAsmTargetBranch(AsmStrs, OpNo) &&
9125         TM.getCodeModel() != CodeModel::Large) {
9126       OpInfo.isIndirect = false;
9127       OpInfo.ConstraintType = TargetLowering::C_Address;
9128     }
9129 
9130     // If this is a memory input, and if the operand is not indirect, do what we
9131     // need to provide an address for the memory input.
9132     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
9133         !OpInfo.isIndirect) {
9134       assert((OpInfo.isMultipleAlternative ||
9135               (OpInfo.Type == InlineAsm::isInput)) &&
9136              "Can only indirectify direct input operands!");
9137 
9138       // Memory operands really want the address of the value.
9139       Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
9140 
9141       // There is no longer a Value* corresponding to this operand.
9142       OpInfo.CallOperandVal = nullptr;
9143 
9144       // It is now an indirect operand.
9145       OpInfo.isIndirect = true;
9146     }
9147 
9148   }
9149 
9150   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
9151   std::vector<SDValue> AsmNodeOperands;
9152   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
9153   AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
9154       IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout())));
9155 
9156   // If we have a !srcloc metadata node associated with it, we want to attach
9157   // this to the ultimately generated inline asm machineinstr.  To do this, we
9158   // pass in the third operand as this (potentially null) inline asm MDNode.
9159   const MDNode *SrcLoc = Call.getMetadata("srcloc");
9160   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
9161 
9162   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
9163   // bits as operand 3.
9164   AsmNodeOperands.push_back(DAG.getTargetConstant(
9165       ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9166 
9167   // Third pass: Loop over operands to prepare DAG-level operands.. As part of
9168   // this, assign virtual and physical registers for inputs and otput.
9169   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9170     // Assign Registers.
9171     SDISelAsmOperandInfo &RefOpInfo =
9172         OpInfo.isMatchingInputConstraint()
9173             ? ConstraintOperands[OpInfo.getMatchedOperand()]
9174             : OpInfo;
9175     const auto RegError =
9176         getRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
9177     if (RegError) {
9178       const MachineFunction &MF = DAG.getMachineFunction();
9179       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9180       const char *RegName = TRI.getName(*RegError);
9181       emitInlineAsmError(Call, "register '" + Twine(RegName) +
9182                                    "' allocated for constraint '" +
9183                                    Twine(OpInfo.ConstraintCode) +
9184                                    "' does not match required type");
9185       return;
9186     }
9187 
9188     auto DetectWriteToReservedRegister = [&]() {
9189       const MachineFunction &MF = DAG.getMachineFunction();
9190       const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9191       for (unsigned Reg : OpInfo.AssignedRegs.Regs) {
9192         if (Register::isPhysicalRegister(Reg) &&
9193             TRI.isInlineAsmReadOnlyReg(MF, Reg)) {
9194           const char *RegName = TRI.getName(Reg);
9195           emitInlineAsmError(Call, "write to reserved register '" +
9196                                        Twine(RegName) + "'");
9197           return true;
9198         }
9199       }
9200       return false;
9201     };
9202     assert((OpInfo.ConstraintType != TargetLowering::C_Address ||
9203             (OpInfo.Type == InlineAsm::isInput &&
9204              !OpInfo.isMatchingInputConstraint())) &&
9205            "Only address as input operand is allowed.");
9206 
9207     switch (OpInfo.Type) {
9208     case InlineAsm::isOutput:
9209       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9210         unsigned ConstraintID =
9211             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9212         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9213                "Failed to convert memory constraint code to constraint id.");
9214 
9215         // Add information to the INLINEASM node to know about this output.
9216         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9217         OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
9218         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
9219                                                         MVT::i32));
9220         AsmNodeOperands.push_back(OpInfo.CallOperand);
9221       } else {
9222         // Otherwise, this outputs to a register (directly for C_Register /
9223         // C_RegisterClass, and a target-defined fashion for
9224         // C_Immediate/C_Other). Find a register that we can use.
9225         if (OpInfo.AssignedRegs.Regs.empty()) {
9226           emitInlineAsmError(
9227               Call, "couldn't allocate output register for constraint '" +
9228                         Twine(OpInfo.ConstraintCode) + "'");
9229           return;
9230         }
9231 
9232         if (DetectWriteToReservedRegister())
9233           return;
9234 
9235         // Add information to the INLINEASM node to know that this register is
9236         // set.
9237         OpInfo.AssignedRegs.AddInlineAsmOperands(
9238             OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
9239                                   : InlineAsm::Kind_RegDef,
9240             false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
9241       }
9242       break;
9243 
9244     case InlineAsm::isInput:
9245     case InlineAsm::isLabel: {
9246       SDValue InOperandVal = OpInfo.CallOperand;
9247 
9248       if (OpInfo.isMatchingInputConstraint()) {
9249         // If this is required to match an output register we have already set,
9250         // just use its register.
9251         auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
9252                                                   AsmNodeOperands);
9253         unsigned OpFlag =
9254           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
9255         if (InlineAsm::isRegDefKind(OpFlag) ||
9256             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
9257           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
9258           if (OpInfo.isIndirect) {
9259             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
9260             emitInlineAsmError(Call, "inline asm not supported yet: "
9261                                      "don't know how to handle tied "
9262                                      "indirect register inputs");
9263             return;
9264           }
9265 
9266           SmallVector<unsigned, 4> Regs;
9267           MachineFunction &MF = DAG.getMachineFunction();
9268           MachineRegisterInfo &MRI = MF.getRegInfo();
9269           const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
9270           auto *R = cast<RegisterSDNode>(AsmNodeOperands[CurOp+1]);
9271           Register TiedReg = R->getReg();
9272           MVT RegVT = R->getSimpleValueType(0);
9273           const TargetRegisterClass *RC =
9274               TiedReg.isVirtual()     ? MRI.getRegClass(TiedReg)
9275               : RegVT != MVT::Untyped ? TLI.getRegClassFor(RegVT)
9276                                       : TRI.getMinimalPhysRegClass(TiedReg);
9277           unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
9278           for (unsigned i = 0; i != NumRegs; ++i)
9279             Regs.push_back(MRI.createVirtualRegister(RC));
9280 
9281           RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
9282 
9283           SDLoc dl = getCurSDLoc();
9284           // Use the produced MatchedRegs object to
9285           MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue, &Call);
9286           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
9287                                            true, OpInfo.getMatchedOperand(), dl,
9288                                            DAG, AsmNodeOperands);
9289           break;
9290         }
9291 
9292         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
9293         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
9294                "Unexpected number of operands");
9295         // Add information to the INLINEASM node to know about this input.
9296         // See InlineAsm.h isUseOperandTiedToDef.
9297         OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
9298         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
9299                                                     OpInfo.getMatchedOperand());
9300         AsmNodeOperands.push_back(DAG.getTargetConstant(
9301             OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9302         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
9303         break;
9304       }
9305 
9306       // Treat indirect 'X' constraint as memory.
9307       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
9308           OpInfo.isIndirect)
9309         OpInfo.ConstraintType = TargetLowering::C_Memory;
9310 
9311       if (OpInfo.ConstraintType == TargetLowering::C_Immediate ||
9312           OpInfo.ConstraintType == TargetLowering::C_Other) {
9313         std::vector<SDValue> Ops;
9314         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
9315                                           Ops, DAG);
9316         if (Ops.empty()) {
9317           if (OpInfo.ConstraintType == TargetLowering::C_Immediate)
9318             if (isa<ConstantSDNode>(InOperandVal)) {
9319               emitInlineAsmError(Call, "value out of range for constraint '" +
9320                                            Twine(OpInfo.ConstraintCode) + "'");
9321               return;
9322             }
9323 
9324           emitInlineAsmError(Call,
9325                              "invalid operand for inline asm constraint '" +
9326                                  Twine(OpInfo.ConstraintCode) + "'");
9327           return;
9328         }
9329 
9330         // Add information to the INLINEASM node to know about this input.
9331         unsigned ResOpType =
9332           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
9333         AsmNodeOperands.push_back(DAG.getTargetConstant(
9334             ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
9335         llvm::append_range(AsmNodeOperands, Ops);
9336         break;
9337       }
9338 
9339       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
9340         assert((OpInfo.isIndirect ||
9341                 OpInfo.ConstraintType != TargetLowering::C_Memory) &&
9342                "Operand must be indirect to be a mem!");
9343         assert(InOperandVal.getValueType() ==
9344                    TLI.getPointerTy(DAG.getDataLayout()) &&
9345                "Memory operands expect pointer values");
9346 
9347         unsigned ConstraintID =
9348             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9349         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9350                "Failed to convert memory constraint code to constraint id.");
9351 
9352         // Add information to the INLINEASM node to know about this input.
9353         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9354         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9355         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
9356                                                         getCurSDLoc(),
9357                                                         MVT::i32));
9358         AsmNodeOperands.push_back(InOperandVal);
9359         break;
9360       }
9361 
9362       if (OpInfo.ConstraintType == TargetLowering::C_Address) {
9363         assert(InOperandVal.getValueType() ==
9364                    TLI.getPointerTy(DAG.getDataLayout()) &&
9365                "Address operands expect pointer values");
9366 
9367         unsigned ConstraintID =
9368             TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
9369         assert(ConstraintID != InlineAsm::Constraint_Unknown &&
9370                "Failed to convert memory constraint code to constraint id.");
9371 
9372         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
9373 
9374         SDValue AsmOp = InOperandVal;
9375         if (isFunction(InOperandVal)) {
9376           auto *GA = cast<GlobalAddressSDNode>(InOperandVal);
9377           ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Func, 1);
9378           AsmOp = DAG.getTargetGlobalAddress(GA->getGlobal(), getCurSDLoc(),
9379                                              InOperandVal.getValueType(),
9380                                              GA->getOffset());
9381         }
9382 
9383         // Add information to the INLINEASM node to know about this input.
9384         ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
9385 
9386         AsmNodeOperands.push_back(
9387             DAG.getTargetConstant(ResOpType, getCurSDLoc(), MVT::i32));
9388 
9389         AsmNodeOperands.push_back(AsmOp);
9390         break;
9391       }
9392 
9393       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
9394               OpInfo.ConstraintType == TargetLowering::C_Register) &&
9395              "Unknown constraint type!");
9396 
9397       // TODO: Support this.
9398       if (OpInfo.isIndirect) {
9399         emitInlineAsmError(
9400             Call, "Don't know how to handle indirect register inputs yet "
9401                   "for constraint '" +
9402                       Twine(OpInfo.ConstraintCode) + "'");
9403         return;
9404       }
9405 
9406       // Copy the input into the appropriate registers.
9407       if (OpInfo.AssignedRegs.Regs.empty()) {
9408         emitInlineAsmError(Call,
9409                            "couldn't allocate input reg for constraint '" +
9410                                Twine(OpInfo.ConstraintCode) + "'");
9411         return;
9412       }
9413 
9414       if (DetectWriteToReservedRegister())
9415         return;
9416 
9417       SDLoc dl = getCurSDLoc();
9418 
9419       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Glue,
9420                                         &Call);
9421 
9422       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
9423                                                dl, DAG, AsmNodeOperands);
9424       break;
9425     }
9426     case InlineAsm::isClobber:
9427       // Add the clobbered value to the operand list, so that the register
9428       // allocator is aware that the physreg got clobbered.
9429       if (!OpInfo.AssignedRegs.Regs.empty())
9430         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
9431                                                  false, 0, getCurSDLoc(), DAG,
9432                                                  AsmNodeOperands);
9433       break;
9434     }
9435   }
9436 
9437   // Finish up input operands.  Set the input chain and add the flag last.
9438   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
9439   if (Glue.getNode()) AsmNodeOperands.push_back(Glue);
9440 
9441   unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM;
9442   Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
9443                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
9444   Glue = Chain.getValue(1);
9445 
9446   // Do additional work to generate outputs.
9447 
9448   SmallVector<EVT, 1> ResultVTs;
9449   SmallVector<SDValue, 1> ResultValues;
9450   SmallVector<SDValue, 8> OutChains;
9451 
9452   llvm::Type *CallResultType = Call.getType();
9453   ArrayRef<Type *> ResultTypes;
9454   if (StructType *StructResult = dyn_cast<StructType>(CallResultType))
9455     ResultTypes = StructResult->elements();
9456   else if (!CallResultType->isVoidTy())
9457     ResultTypes = ArrayRef(CallResultType);
9458 
9459   auto CurResultType = ResultTypes.begin();
9460   auto handleRegAssign = [&](SDValue V) {
9461     assert(CurResultType != ResultTypes.end() && "Unexpected value");
9462     assert((*CurResultType)->isSized() && "Unexpected unsized type");
9463     EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
9464     ++CurResultType;
9465     // If the type of the inline asm call site return value is different but has
9466     // same size as the type of the asm output bitcast it.  One example of this
9467     // is for vectors with different width / number of elements.  This can
9468     // happen for register classes that can contain multiple different value
9469     // types.  The preg or vreg allocated may not have the same VT as was
9470     // expected.
9471     //
9472     // This can also happen for a return value that disagrees with the register
9473     // class it is put in, eg. a double in a general-purpose register on a
9474     // 32-bit machine.
9475     if (ResultVT != V.getValueType() &&
9476         ResultVT.getSizeInBits() == V.getValueSizeInBits())
9477       V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
9478     else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
9479              V.getValueType().isInteger()) {
9480       // If a result value was tied to an input value, the computed result
9481       // may have a wider width than the expected result.  Extract the
9482       // relevant portion.
9483       V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
9484     }
9485     assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
9486     ResultVTs.push_back(ResultVT);
9487     ResultValues.push_back(V);
9488   };
9489 
9490   // Deal with output operands.
9491   for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
9492     if (OpInfo.Type == InlineAsm::isOutput) {
9493       SDValue Val;
9494       // Skip trivial output operands.
9495       if (OpInfo.AssignedRegs.Regs.empty())
9496         continue;
9497 
9498       switch (OpInfo.ConstraintType) {
9499       case TargetLowering::C_Register:
9500       case TargetLowering::C_RegisterClass:
9501         Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
9502                                                   Chain, &Glue, &Call);
9503         break;
9504       case TargetLowering::C_Immediate:
9505       case TargetLowering::C_Other:
9506         Val = TLI.LowerAsmOutputForConstraint(Chain, Glue, getCurSDLoc(),
9507                                               OpInfo, DAG);
9508         break;
9509       case TargetLowering::C_Memory:
9510         break; // Already handled.
9511       case TargetLowering::C_Address:
9512         break; // Silence warning.
9513       case TargetLowering::C_Unknown:
9514         assert(false && "Unexpected unknown constraint");
9515       }
9516 
9517       // Indirect output manifest as stores. Record output chains.
9518       if (OpInfo.isIndirect) {
9519         const Value *Ptr = OpInfo.CallOperandVal;
9520         assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
9521         SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
9522                                      MachinePointerInfo(Ptr));
9523         OutChains.push_back(Store);
9524       } else {
9525         // generate CopyFromRegs to associated registers.
9526         assert(!Call.getType()->isVoidTy() && "Bad inline asm!");
9527         if (Val.getOpcode() == ISD::MERGE_VALUES) {
9528           for (const SDValue &V : Val->op_values())
9529             handleRegAssign(V);
9530         } else
9531           handleRegAssign(Val);
9532       }
9533     }
9534   }
9535 
9536   // Set results.
9537   if (!ResultValues.empty()) {
9538     assert(CurResultType == ResultTypes.end() &&
9539            "Mismatch in number of ResultTypes");
9540     assert(ResultValues.size() == ResultTypes.size() &&
9541            "Mismatch in number of output operands in asm result");
9542 
9543     SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
9544                             DAG.getVTList(ResultVTs), ResultValues);
9545     setValue(&Call, V);
9546   }
9547 
9548   // Collect store chains.
9549   if (!OutChains.empty())
9550     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
9551 
9552   if (EmitEHLabels) {
9553     Chain = lowerEndEH(Chain, cast<InvokeInst>(&Call), EHPadBB, BeginLabel);
9554   }
9555 
9556   // Only Update Root if inline assembly has a memory effect.
9557   if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr ||
9558       EmitEHLabels)
9559     DAG.setRoot(Chain);
9560 }
9561 
9562 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call,
9563                                              const Twine &Message) {
9564   LLVMContext &Ctx = *DAG.getContext();
9565   Ctx.emitError(&Call, Message);
9566 
9567   // Make sure we leave the DAG in a valid state
9568   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9569   SmallVector<EVT, 1> ValueVTs;
9570   ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs);
9571 
9572   if (ValueVTs.empty())
9573     return;
9574 
9575   SmallVector<SDValue, 1> Ops;
9576   for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
9577     Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
9578 
9579   setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc()));
9580 }
9581 
9582 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
9583   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
9584                           MVT::Other, getRoot(),
9585                           getValue(I.getArgOperand(0)),
9586                           DAG.getSrcValue(I.getArgOperand(0))));
9587 }
9588 
9589 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
9590   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9591   const DataLayout &DL = DAG.getDataLayout();
9592   SDValue V = DAG.getVAArg(
9593       TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
9594       getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
9595       DL.getABITypeAlign(I.getType()).value());
9596   DAG.setRoot(V.getValue(1));
9597 
9598   if (I.getType()->isPointerTy())
9599     V = DAG.getPtrExtOrTrunc(
9600         V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
9601   setValue(&I, V);
9602 }
9603 
9604 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
9605   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
9606                           MVT::Other, getRoot(),
9607                           getValue(I.getArgOperand(0)),
9608                           DAG.getSrcValue(I.getArgOperand(0))));
9609 }
9610 
9611 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
9612   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
9613                           MVT::Other, getRoot(),
9614                           getValue(I.getArgOperand(0)),
9615                           getValue(I.getArgOperand(1)),
9616                           DAG.getSrcValue(I.getArgOperand(0)),
9617                           DAG.getSrcValue(I.getArgOperand(1))));
9618 }
9619 
9620 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
9621                                                     const Instruction &I,
9622                                                     SDValue Op) {
9623   const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
9624   if (!Range)
9625     return Op;
9626 
9627   ConstantRange CR = getConstantRangeFromMetadata(*Range);
9628   if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
9629     return Op;
9630 
9631   APInt Lo = CR.getUnsignedMin();
9632   if (!Lo.isMinValue())
9633     return Op;
9634 
9635   APInt Hi = CR.getUnsignedMax();
9636   unsigned Bits = std::max(Hi.getActiveBits(),
9637                            static_cast<unsigned>(IntegerType::MIN_INT_BITS));
9638 
9639   EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
9640 
9641   SDLoc SL = getCurSDLoc();
9642 
9643   SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
9644                              DAG.getValueType(SmallVT));
9645   unsigned NumVals = Op.getNode()->getNumValues();
9646   if (NumVals == 1)
9647     return ZExt;
9648 
9649   SmallVector<SDValue, 4> Ops;
9650 
9651   Ops.push_back(ZExt);
9652   for (unsigned I = 1; I != NumVals; ++I)
9653     Ops.push_back(Op.getValue(I));
9654 
9655   return DAG.getMergeValues(Ops, SL);
9656 }
9657 
9658 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
9659 /// the call being lowered.
9660 ///
9661 /// This is a helper for lowering intrinsics that follow a target calling
9662 /// convention or require stack pointer adjustment. Only a subset of the
9663 /// intrinsic's operands need to participate in the calling convention.
9664 void SelectionDAGBuilder::populateCallLoweringInfo(
9665     TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
9666     unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
9667     bool IsPatchPoint) {
9668   TargetLowering::ArgListTy Args;
9669   Args.reserve(NumArgs);
9670 
9671   // Populate the argument list.
9672   // Attributes for args start at offset 1, after the return attribute.
9673   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
9674        ArgI != ArgE; ++ArgI) {
9675     const Value *V = Call->getOperand(ArgI);
9676 
9677     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
9678 
9679     TargetLowering::ArgListEntry Entry;
9680     Entry.Node = getValue(V);
9681     Entry.Ty = V->getType();
9682     Entry.setAttributes(Call, ArgI);
9683     Args.push_back(Entry);
9684   }
9685 
9686   CLI.setDebugLoc(getCurSDLoc())
9687       .setChain(getRoot())
9688       .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
9689       .setDiscardResult(Call->use_empty())
9690       .setIsPatchPoint(IsPatchPoint)
9691       .setIsPreallocated(
9692           Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0);
9693 }
9694 
9695 /// Add a stack map intrinsic call's live variable operands to a stackmap
9696 /// or patchpoint target node's operand list.
9697 ///
9698 /// Constants are converted to TargetConstants purely as an optimization to
9699 /// avoid constant materialization and register allocation.
9700 ///
9701 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
9702 /// generate addess computation nodes, and so FinalizeISel can convert the
9703 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
9704 /// address materialization and register allocation, but may also be required
9705 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
9706 /// alloca in the entry block, then the runtime may assume that the alloca's
9707 /// StackMap location can be read immediately after compilation and that the
9708 /// location is valid at any point during execution (this is similar to the
9709 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
9710 /// only available in a register, then the runtime would need to trap when
9711 /// execution reaches the StackMap in order to read the alloca's location.
9712 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx,
9713                                 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
9714                                 SelectionDAGBuilder &Builder) {
9715   SelectionDAG &DAG = Builder.DAG;
9716   for (unsigned I = StartIdx; I < Call.arg_size(); I++) {
9717     SDValue Op = Builder.getValue(Call.getArgOperand(I));
9718 
9719     // Things on the stack are pointer-typed, meaning that they are already
9720     // legal and can be emitted directly to target nodes.
9721     if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Op)) {
9722       Ops.push_back(DAG.getTargetFrameIndex(FI->getIndex(), Op.getValueType()));
9723     } else {
9724       // Otherwise emit a target independent node to be legalised.
9725       Ops.push_back(Builder.getValue(Call.getArgOperand(I)));
9726     }
9727   }
9728 }
9729 
9730 /// Lower llvm.experimental.stackmap.
9731 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
9732   // void @llvm.experimental.stackmap(i64 <id>, i32 <numShadowBytes>,
9733   //                                  [live variables...])
9734 
9735   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
9736 
9737   SDValue Chain, InGlue, Callee;
9738   SmallVector<SDValue, 32> Ops;
9739 
9740   SDLoc DL = getCurSDLoc();
9741   Callee = getValue(CI.getCalledOperand());
9742 
9743   // The stackmap intrinsic only records the live variables (the arguments
9744   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
9745   // intrinsic, this won't be lowered to a function call. This means we don't
9746   // have to worry about calling conventions and target specific lowering code.
9747   // Instead we perform the call lowering right here.
9748   //
9749   // chain, flag = CALLSEQ_START(chain, 0, 0)
9750   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
9751   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
9752   //
9753   Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
9754   InGlue = Chain.getValue(1);
9755 
9756   // Add the STACKMAP operands, starting with DAG house-keeping.
9757   Ops.push_back(Chain);
9758   Ops.push_back(InGlue);
9759 
9760   // Add the <id>, <numShadowBytes> operands.
9761   //
9762   // These do not require legalisation, and can be emitted directly to target
9763   // constant nodes.
9764   SDValue ID = getValue(CI.getArgOperand(0));
9765   assert(ID.getValueType() == MVT::i64);
9766   SDValue IDConst = DAG.getTargetConstant(
9767       cast<ConstantSDNode>(ID)->getZExtValue(), DL, ID.getValueType());
9768   Ops.push_back(IDConst);
9769 
9770   SDValue Shad = getValue(CI.getArgOperand(1));
9771   assert(Shad.getValueType() == MVT::i32);
9772   SDValue ShadConst = DAG.getTargetConstant(
9773       cast<ConstantSDNode>(Shad)->getZExtValue(), DL, Shad.getValueType());
9774   Ops.push_back(ShadConst);
9775 
9776   // Add the live variables.
9777   addStackMapLiveVars(CI, 2, DL, Ops, *this);
9778 
9779   // Create the STACKMAP node.
9780   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9781   Chain = DAG.getNode(ISD::STACKMAP, DL, NodeTys, Ops);
9782   InGlue = Chain.getValue(1);
9783 
9784   Chain = DAG.getCALLSEQ_END(Chain, 0, 0, InGlue, DL);
9785 
9786   // Stackmaps don't generate values, so nothing goes into the NodeMap.
9787 
9788   // Set the root to the target-lowered call chain.
9789   DAG.setRoot(Chain);
9790 
9791   // Inform the Frame Information that we have a stackmap in this function.
9792   FuncInfo.MF->getFrameInfo().setHasStackMap();
9793 }
9794 
9795 /// Lower llvm.experimental.patchpoint directly to its target opcode.
9796 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB,
9797                                           const BasicBlock *EHPadBB) {
9798   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
9799   //                                                 i32 <numBytes>,
9800   //                                                 i8* <target>,
9801   //                                                 i32 <numArgs>,
9802   //                                                 [Args...],
9803   //                                                 [live variables...])
9804 
9805   CallingConv::ID CC = CB.getCallingConv();
9806   bool IsAnyRegCC = CC == CallingConv::AnyReg;
9807   bool HasDef = !CB.getType()->isVoidTy();
9808   SDLoc dl = getCurSDLoc();
9809   SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos));
9810 
9811   // Handle immediate and symbolic callees.
9812   if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
9813     Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
9814                                    /*isTarget=*/true);
9815   else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
9816     Callee =  DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
9817                                          SDLoc(SymbolicCallee),
9818                                          SymbolicCallee->getValueType(0));
9819 
9820   // Get the real number of arguments participating in the call <numArgs>
9821   SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos));
9822   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
9823 
9824   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
9825   // Intrinsics include all meta-operands up to but not including CC.
9826   unsigned NumMetaOpers = PatchPointOpers::CCPos;
9827   assert(CB.arg_size() >= NumMetaOpers + NumArgs &&
9828          "Not enough arguments provided to the patchpoint intrinsic");
9829 
9830   // For AnyRegCC the arguments are lowered later on manually.
9831   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
9832   Type *ReturnTy =
9833       IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType();
9834 
9835   TargetLowering::CallLoweringInfo CLI(DAG);
9836   populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee,
9837                            ReturnTy, true);
9838   std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
9839 
9840   SDNode *CallEnd = Result.second.getNode();
9841   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
9842     CallEnd = CallEnd->getOperand(0).getNode();
9843 
9844   /// Get a call instruction from the call sequence chain.
9845   /// Tail calls are not allowed.
9846   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
9847          "Expected a callseq node.");
9848   SDNode *Call = CallEnd->getOperand(0).getNode();
9849   bool HasGlue = Call->getGluedNode();
9850 
9851   // Replace the target specific call node with the patchable intrinsic.
9852   SmallVector<SDValue, 8> Ops;
9853 
9854   // Push the chain.
9855   Ops.push_back(*(Call->op_begin()));
9856 
9857   // Optionally, push the glue (if any).
9858   if (HasGlue)
9859     Ops.push_back(*(Call->op_end() - 1));
9860 
9861   // Push the register mask info.
9862   if (HasGlue)
9863     Ops.push_back(*(Call->op_end() - 2));
9864   else
9865     Ops.push_back(*(Call->op_end() - 1));
9866 
9867   // Add the <id> and <numBytes> constants.
9868   SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos));
9869   Ops.push_back(DAG.getTargetConstant(
9870                   cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
9871   SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos));
9872   Ops.push_back(DAG.getTargetConstant(
9873                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
9874                   MVT::i32));
9875 
9876   // Add the callee.
9877   Ops.push_back(Callee);
9878 
9879   // Adjust <numArgs> to account for any arguments that have been passed on the
9880   // stack instead.
9881   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
9882   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
9883   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
9884   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
9885 
9886   // Add the calling convention
9887   Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
9888 
9889   // Add the arguments we omitted previously. The register allocator should
9890   // place these in any free register.
9891   if (IsAnyRegCC)
9892     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
9893       Ops.push_back(getValue(CB.getArgOperand(i)));
9894 
9895   // Push the arguments from the call instruction.
9896   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
9897   Ops.append(Call->op_begin() + 2, e);
9898 
9899   // Push live variables for the stack map.
9900   addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this);
9901 
9902   SDVTList NodeTys;
9903   if (IsAnyRegCC && HasDef) {
9904     // Create the return types based on the intrinsic definition
9905     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9906     SmallVector<EVT, 3> ValueVTs;
9907     ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs);
9908     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
9909 
9910     // There is always a chain and a glue type at the end
9911     ValueVTs.push_back(MVT::Other);
9912     ValueVTs.push_back(MVT::Glue);
9913     NodeTys = DAG.getVTList(ValueVTs);
9914   } else
9915     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
9916 
9917   // Replace the target specific call node with a PATCHPOINT node.
9918   SDValue PPV = DAG.getNode(ISD::PATCHPOINT, dl, NodeTys, Ops);
9919 
9920   // Update the NodeMap.
9921   if (HasDef) {
9922     if (IsAnyRegCC)
9923       setValue(&CB, SDValue(PPV.getNode(), 0));
9924     else
9925       setValue(&CB, Result.first);
9926   }
9927 
9928   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
9929   // call sequence. Furthermore the location of the chain and glue can change
9930   // when the AnyReg calling convention is used and the intrinsic returns a
9931   // value.
9932   if (IsAnyRegCC && HasDef) {
9933     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
9934     SDValue To[] = {PPV.getValue(1), PPV.getValue(2)};
9935     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
9936   } else
9937     DAG.ReplaceAllUsesWith(Call, PPV.getNode());
9938   DAG.DeleteNode(Call);
9939 
9940   // Inform the Frame Information that we have a patchpoint in this function.
9941   FuncInfo.MF->getFrameInfo().setHasPatchPoint();
9942 }
9943 
9944 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
9945                                             unsigned Intrinsic) {
9946   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9947   SDValue Op1 = getValue(I.getArgOperand(0));
9948   SDValue Op2;
9949   if (I.arg_size() > 1)
9950     Op2 = getValue(I.getArgOperand(1));
9951   SDLoc dl = getCurSDLoc();
9952   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
9953   SDValue Res;
9954   SDNodeFlags SDFlags;
9955   if (auto *FPMO = dyn_cast<FPMathOperator>(&I))
9956     SDFlags.copyFMF(*FPMO);
9957 
9958   switch (Intrinsic) {
9959   case Intrinsic::vector_reduce_fadd:
9960     if (SDFlags.hasAllowReassociation())
9961       Res = DAG.getNode(ISD::FADD, dl, VT, Op1,
9962                         DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags),
9963                         SDFlags);
9964     else
9965       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags);
9966     break;
9967   case Intrinsic::vector_reduce_fmul:
9968     if (SDFlags.hasAllowReassociation())
9969       Res = DAG.getNode(ISD::FMUL, dl, VT, Op1,
9970                         DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags),
9971                         SDFlags);
9972     else
9973       Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags);
9974     break;
9975   case Intrinsic::vector_reduce_add:
9976     Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
9977     break;
9978   case Intrinsic::vector_reduce_mul:
9979     Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
9980     break;
9981   case Intrinsic::vector_reduce_and:
9982     Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
9983     break;
9984   case Intrinsic::vector_reduce_or:
9985     Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
9986     break;
9987   case Intrinsic::vector_reduce_xor:
9988     Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
9989     break;
9990   case Intrinsic::vector_reduce_smax:
9991     Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
9992     break;
9993   case Intrinsic::vector_reduce_smin:
9994     Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
9995     break;
9996   case Intrinsic::vector_reduce_umax:
9997     Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
9998     break;
9999   case Intrinsic::vector_reduce_umin:
10000     Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
10001     break;
10002   case Intrinsic::vector_reduce_fmax:
10003     Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags);
10004     break;
10005   case Intrinsic::vector_reduce_fmin:
10006     Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags);
10007     break;
10008   case Intrinsic::vector_reduce_fmaximum:
10009     Res = DAG.getNode(ISD::VECREDUCE_FMAXIMUM, dl, VT, Op1, SDFlags);
10010     break;
10011   case Intrinsic::vector_reduce_fminimum:
10012     Res = DAG.getNode(ISD::VECREDUCE_FMINIMUM, dl, VT, Op1, SDFlags);
10013     break;
10014   default:
10015     llvm_unreachable("Unhandled vector reduce intrinsic");
10016   }
10017   setValue(&I, Res);
10018 }
10019 
10020 /// Returns an AttributeList representing the attributes applied to the return
10021 /// value of the given call.
10022 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
10023   SmallVector<Attribute::AttrKind, 2> Attrs;
10024   if (CLI.RetSExt)
10025     Attrs.push_back(Attribute::SExt);
10026   if (CLI.RetZExt)
10027     Attrs.push_back(Attribute::ZExt);
10028   if (CLI.IsInReg)
10029     Attrs.push_back(Attribute::InReg);
10030 
10031   return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
10032                             Attrs);
10033 }
10034 
10035 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
10036 /// implementation, which just calls LowerCall.
10037 /// FIXME: When all targets are
10038 /// migrated to using LowerCall, this hook should be integrated into SDISel.
10039 std::pair<SDValue, SDValue>
10040 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
10041   // Handle the incoming return values from the call.
10042   CLI.Ins.clear();
10043   Type *OrigRetTy = CLI.RetTy;
10044   SmallVector<EVT, 4> RetTys;
10045   SmallVector<uint64_t, 4> Offsets;
10046   auto &DL = CLI.DAG.getDataLayout();
10047   ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets, 0);
10048 
10049   if (CLI.IsPostTypeLegalization) {
10050     // If we are lowering a libcall after legalization, split the return type.
10051     SmallVector<EVT, 4> OldRetTys;
10052     SmallVector<uint64_t, 4> OldOffsets;
10053     RetTys.swap(OldRetTys);
10054     Offsets.swap(OldOffsets);
10055 
10056     for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
10057       EVT RetVT = OldRetTys[i];
10058       uint64_t Offset = OldOffsets[i];
10059       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
10060       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
10061       unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
10062       RetTys.append(NumRegs, RegisterVT);
10063       for (unsigned j = 0; j != NumRegs; ++j)
10064         Offsets.push_back(Offset + j * RegisterVTByteSZ);
10065     }
10066   }
10067 
10068   SmallVector<ISD::OutputArg, 4> Outs;
10069   GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
10070 
10071   bool CanLowerReturn =
10072       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
10073                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
10074 
10075   SDValue DemoteStackSlot;
10076   int DemoteStackIdx = -100;
10077   if (!CanLowerReturn) {
10078     // FIXME: equivalent assert?
10079     // assert(!CS.hasInAllocaArgument() &&
10080     //        "sret demotion is incompatible with inalloca");
10081     uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
10082     Align Alignment = DL.getPrefTypeAlign(CLI.RetTy);
10083     MachineFunction &MF = CLI.DAG.getMachineFunction();
10084     DemoteStackIdx =
10085         MF.getFrameInfo().CreateStackObject(TySize, Alignment, false);
10086     Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
10087                                               DL.getAllocaAddrSpace());
10088 
10089     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
10090     ArgListEntry Entry;
10091     Entry.Node = DemoteStackSlot;
10092     Entry.Ty = StackSlotPtrType;
10093     Entry.IsSExt = false;
10094     Entry.IsZExt = false;
10095     Entry.IsInReg = false;
10096     Entry.IsSRet = true;
10097     Entry.IsNest = false;
10098     Entry.IsByVal = false;
10099     Entry.IsByRef = false;
10100     Entry.IsReturned = false;
10101     Entry.IsSwiftSelf = false;
10102     Entry.IsSwiftAsync = false;
10103     Entry.IsSwiftError = false;
10104     Entry.IsCFGuardTarget = false;
10105     Entry.Alignment = Alignment;
10106     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
10107     CLI.NumFixedArgs += 1;
10108     CLI.getArgs()[0].IndirectType = CLI.RetTy;
10109     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
10110 
10111     // sret demotion isn't compatible with tail-calls, since the sret argument
10112     // points into the callers stack frame.
10113     CLI.IsTailCall = false;
10114   } else {
10115     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10116         CLI.RetTy, CLI.CallConv, CLI.IsVarArg, DL);
10117     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10118       ISD::ArgFlagsTy Flags;
10119       if (NeedsRegBlock) {
10120         Flags.setInConsecutiveRegs();
10121         if (I == RetTys.size() - 1)
10122           Flags.setInConsecutiveRegsLast();
10123       }
10124       EVT VT = RetTys[I];
10125       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10126                                                      CLI.CallConv, VT);
10127       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10128                                                        CLI.CallConv, VT);
10129       for (unsigned i = 0; i != NumRegs; ++i) {
10130         ISD::InputArg MyFlags;
10131         MyFlags.Flags = Flags;
10132         MyFlags.VT = RegisterVT;
10133         MyFlags.ArgVT = VT;
10134         MyFlags.Used = CLI.IsReturnValueUsed;
10135         if (CLI.RetTy->isPointerTy()) {
10136           MyFlags.Flags.setPointer();
10137           MyFlags.Flags.setPointerAddrSpace(
10138               cast<PointerType>(CLI.RetTy)->getAddressSpace());
10139         }
10140         if (CLI.RetSExt)
10141           MyFlags.Flags.setSExt();
10142         if (CLI.RetZExt)
10143           MyFlags.Flags.setZExt();
10144         if (CLI.IsInReg)
10145           MyFlags.Flags.setInReg();
10146         CLI.Ins.push_back(MyFlags);
10147       }
10148     }
10149   }
10150 
10151   // We push in swifterror return as the last element of CLI.Ins.
10152   ArgListTy &Args = CLI.getArgs();
10153   if (supportSwiftError()) {
10154     for (const ArgListEntry &Arg : Args) {
10155       if (Arg.IsSwiftError) {
10156         ISD::InputArg MyFlags;
10157         MyFlags.VT = getPointerTy(DL);
10158         MyFlags.ArgVT = EVT(getPointerTy(DL));
10159         MyFlags.Flags.setSwiftError();
10160         CLI.Ins.push_back(MyFlags);
10161       }
10162     }
10163   }
10164 
10165   // Handle all of the outgoing arguments.
10166   CLI.Outs.clear();
10167   CLI.OutVals.clear();
10168   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
10169     SmallVector<EVT, 4> ValueVTs;
10170     ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
10171     // FIXME: Split arguments if CLI.IsPostTypeLegalization
10172     Type *FinalType = Args[i].Ty;
10173     if (Args[i].IsByVal)
10174       FinalType = Args[i].IndirectType;
10175     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
10176         FinalType, CLI.CallConv, CLI.IsVarArg, DL);
10177     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
10178          ++Value) {
10179       EVT VT = ValueVTs[Value];
10180       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
10181       SDValue Op = SDValue(Args[i].Node.getNode(),
10182                            Args[i].Node.getResNo() + Value);
10183       ISD::ArgFlagsTy Flags;
10184 
10185       // Certain targets (such as MIPS), may have a different ABI alignment
10186       // for a type depending on the context. Give the target a chance to
10187       // specify the alignment it wants.
10188       const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL));
10189       Flags.setOrigAlign(OriginalAlignment);
10190 
10191       if (Args[i].Ty->isPointerTy()) {
10192         Flags.setPointer();
10193         Flags.setPointerAddrSpace(
10194             cast<PointerType>(Args[i].Ty)->getAddressSpace());
10195       }
10196       if (Args[i].IsZExt)
10197         Flags.setZExt();
10198       if (Args[i].IsSExt)
10199         Flags.setSExt();
10200       if (Args[i].IsInReg) {
10201         // If we are using vectorcall calling convention, a structure that is
10202         // passed InReg - is surely an HVA
10203         if (CLI.CallConv == CallingConv::X86_VectorCall &&
10204             isa<StructType>(FinalType)) {
10205           // The first value of a structure is marked
10206           if (0 == Value)
10207             Flags.setHvaStart();
10208           Flags.setHva();
10209         }
10210         // Set InReg Flag
10211         Flags.setInReg();
10212       }
10213       if (Args[i].IsSRet)
10214         Flags.setSRet();
10215       if (Args[i].IsSwiftSelf)
10216         Flags.setSwiftSelf();
10217       if (Args[i].IsSwiftAsync)
10218         Flags.setSwiftAsync();
10219       if (Args[i].IsSwiftError)
10220         Flags.setSwiftError();
10221       if (Args[i].IsCFGuardTarget)
10222         Flags.setCFGuardTarget();
10223       if (Args[i].IsByVal)
10224         Flags.setByVal();
10225       if (Args[i].IsByRef)
10226         Flags.setByRef();
10227       if (Args[i].IsPreallocated) {
10228         Flags.setPreallocated();
10229         // Set the byval flag for CCAssignFn callbacks that don't know about
10230         // preallocated.  This way we can know how many bytes we should've
10231         // allocated and how many bytes a callee cleanup function will pop.  If
10232         // we port preallocated to more targets, we'll have to add custom
10233         // preallocated handling in the various CC lowering callbacks.
10234         Flags.setByVal();
10235       }
10236       if (Args[i].IsInAlloca) {
10237         Flags.setInAlloca();
10238         // Set the byval flag for CCAssignFn callbacks that don't know about
10239         // inalloca.  This way we can know how many bytes we should've allocated
10240         // and how many bytes a callee cleanup function will pop.  If we port
10241         // inalloca to more targets, we'll have to add custom inalloca handling
10242         // in the various CC lowering callbacks.
10243         Flags.setByVal();
10244       }
10245       Align MemAlign;
10246       if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) {
10247         unsigned FrameSize = DL.getTypeAllocSize(Args[i].IndirectType);
10248         Flags.setByValSize(FrameSize);
10249 
10250         // info is not there but there are cases it cannot get right.
10251         if (auto MA = Args[i].Alignment)
10252           MemAlign = *MA;
10253         else
10254           MemAlign = Align(getByValTypeAlignment(Args[i].IndirectType, DL));
10255       } else if (auto MA = Args[i].Alignment) {
10256         MemAlign = *MA;
10257       } else {
10258         MemAlign = OriginalAlignment;
10259       }
10260       Flags.setMemAlign(MemAlign);
10261       if (Args[i].IsNest)
10262         Flags.setNest();
10263       if (NeedsRegBlock)
10264         Flags.setInConsecutiveRegs();
10265 
10266       MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10267                                                  CLI.CallConv, VT);
10268       unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10269                                                         CLI.CallConv, VT);
10270       SmallVector<SDValue, 4> Parts(NumParts);
10271       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
10272 
10273       if (Args[i].IsSExt)
10274         ExtendKind = ISD::SIGN_EXTEND;
10275       else if (Args[i].IsZExt)
10276         ExtendKind = ISD::ZERO_EXTEND;
10277 
10278       // Conservatively only handle 'returned' on non-vectors that can be lowered,
10279       // for now.
10280       if (Args[i].IsReturned && !Op.getValueType().isVector() &&
10281           CanLowerReturn) {
10282         assert((CLI.RetTy == Args[i].Ty ||
10283                 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() &&
10284                  CLI.RetTy->getPointerAddressSpace() ==
10285                      Args[i].Ty->getPointerAddressSpace())) &&
10286                RetTys.size() == NumValues && "unexpected use of 'returned'");
10287         // Before passing 'returned' to the target lowering code, ensure that
10288         // either the register MVT and the actual EVT are the same size or that
10289         // the return value and argument are extended in the same way; in these
10290         // cases it's safe to pass the argument register value unchanged as the
10291         // return register value (although it's at the target's option whether
10292         // to do so)
10293         // TODO: allow code generation to take advantage of partially preserved
10294         // registers rather than clobbering the entire register when the
10295         // parameter extension method is not compatible with the return
10296         // extension method
10297         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
10298             (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
10299              CLI.RetZExt == Args[i].IsZExt))
10300           Flags.setReturned();
10301       }
10302 
10303       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB,
10304                      CLI.CallConv, ExtendKind);
10305 
10306       for (unsigned j = 0; j != NumParts; ++j) {
10307         // if it isn't first piece, alignment must be 1
10308         // For scalable vectors the scalable part is currently handled
10309         // by individual targets, so we just use the known minimum size here.
10310         ISD::OutputArg MyFlags(
10311             Flags, Parts[j].getValueType().getSimpleVT(), VT,
10312             i < CLI.NumFixedArgs, i,
10313             j * Parts[j].getValueType().getStoreSize().getKnownMinValue());
10314         if (NumParts > 1 && j == 0)
10315           MyFlags.Flags.setSplit();
10316         else if (j != 0) {
10317           MyFlags.Flags.setOrigAlign(Align(1));
10318           if (j == NumParts - 1)
10319             MyFlags.Flags.setSplitEnd();
10320         }
10321 
10322         CLI.Outs.push_back(MyFlags);
10323         CLI.OutVals.push_back(Parts[j]);
10324       }
10325 
10326       if (NeedsRegBlock && Value == NumValues - 1)
10327         CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
10328     }
10329   }
10330 
10331   SmallVector<SDValue, 4> InVals;
10332   CLI.Chain = LowerCall(CLI, InVals);
10333 
10334   // Update CLI.InVals to use outside of this function.
10335   CLI.InVals = InVals;
10336 
10337   // Verify that the target's LowerCall behaved as expected.
10338   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
10339          "LowerCall didn't return a valid chain!");
10340   assert((!CLI.IsTailCall || InVals.empty()) &&
10341          "LowerCall emitted a return value for a tail call!");
10342   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
10343          "LowerCall didn't emit the correct number of values!");
10344 
10345   // For a tail call, the return value is merely live-out and there aren't
10346   // any nodes in the DAG representing it. Return a special value to
10347   // indicate that a tail call has been emitted and no more Instructions
10348   // should be processed in the current block.
10349   if (CLI.IsTailCall) {
10350     CLI.DAG.setRoot(CLI.Chain);
10351     return std::make_pair(SDValue(), SDValue());
10352   }
10353 
10354 #ifndef NDEBUG
10355   for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
10356     assert(InVals[i].getNode() && "LowerCall emitted a null value!");
10357     assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
10358            "LowerCall emitted a value with the wrong type!");
10359   }
10360 #endif
10361 
10362   SmallVector<SDValue, 4> ReturnValues;
10363   if (!CanLowerReturn) {
10364     // The instruction result is the result of loading from the
10365     // hidden sret parameter.
10366     SmallVector<EVT, 1> PVTs;
10367     Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
10368 
10369     ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
10370     assert(PVTs.size() == 1 && "Pointers should fit in one register");
10371     EVT PtrVT = PVTs[0];
10372 
10373     unsigned NumValues = RetTys.size();
10374     ReturnValues.resize(NumValues);
10375     SmallVector<SDValue, 4> Chains(NumValues);
10376 
10377     // An aggregate return value cannot wrap around the address space, so
10378     // offsets to its parts don't wrap either.
10379     SDNodeFlags Flags;
10380     Flags.setNoUnsignedWrap(true);
10381 
10382     MachineFunction &MF = CLI.DAG.getMachineFunction();
10383     Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx);
10384     for (unsigned i = 0; i < NumValues; ++i) {
10385       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
10386                                     CLI.DAG.getConstant(Offsets[i], CLI.DL,
10387                                                         PtrVT), Flags);
10388       SDValue L = CLI.DAG.getLoad(
10389           RetTys[i], CLI.DL, CLI.Chain, Add,
10390           MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
10391                                             DemoteStackIdx, Offsets[i]),
10392           HiddenSRetAlign);
10393       ReturnValues[i] = L;
10394       Chains[i] = L.getValue(1);
10395     }
10396 
10397     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
10398   } else {
10399     // Collect the legal value parts into potentially illegal values
10400     // that correspond to the original function's return values.
10401     std::optional<ISD::NodeType> AssertOp;
10402     if (CLI.RetSExt)
10403       AssertOp = ISD::AssertSext;
10404     else if (CLI.RetZExt)
10405       AssertOp = ISD::AssertZext;
10406     unsigned CurReg = 0;
10407     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
10408       EVT VT = RetTys[I];
10409       MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
10410                                                      CLI.CallConv, VT);
10411       unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
10412                                                        CLI.CallConv, VT);
10413 
10414       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
10415                                               NumRegs, RegisterVT, VT, nullptr,
10416                                               CLI.CallConv, AssertOp));
10417       CurReg += NumRegs;
10418     }
10419 
10420     // For a function returning void, there is no return value. We can't create
10421     // such a node, so we just return a null return value in that case. In
10422     // that case, nothing will actually look at the value.
10423     if (ReturnValues.empty())
10424       return std::make_pair(SDValue(), CLI.Chain);
10425   }
10426 
10427   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
10428                                 CLI.DAG.getVTList(RetTys), ReturnValues);
10429   return std::make_pair(Res, CLI.Chain);
10430 }
10431 
10432 /// Places new result values for the node in Results (their number
10433 /// and types must exactly match those of the original return values of
10434 /// the node), or leaves Results empty, which indicates that the node is not
10435 /// to be custom lowered after all.
10436 void TargetLowering::LowerOperationWrapper(SDNode *N,
10437                                            SmallVectorImpl<SDValue> &Results,
10438                                            SelectionDAG &DAG) const {
10439   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
10440 
10441   if (!Res.getNode())
10442     return;
10443 
10444   // If the original node has one result, take the return value from
10445   // LowerOperation as is. It might not be result number 0.
10446   if (N->getNumValues() == 1) {
10447     Results.push_back(Res);
10448     return;
10449   }
10450 
10451   // If the original node has multiple results, then the return node should
10452   // have the same number of results.
10453   assert((N->getNumValues() == Res->getNumValues()) &&
10454       "Lowering returned the wrong number of results!");
10455 
10456   // Places new result values base on N result number.
10457   for (unsigned I = 0, E = N->getNumValues(); I != E; ++I)
10458     Results.push_back(Res.getValue(I));
10459 }
10460 
10461 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
10462   llvm_unreachable("LowerOperation not implemented for this target!");
10463 }
10464 
10465 void SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V,
10466                                                      unsigned Reg,
10467                                                      ISD::NodeType ExtendType) {
10468   SDValue Op = getNonRegisterValue(V);
10469   assert((Op.getOpcode() != ISD::CopyFromReg ||
10470           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
10471          "Copy from a reg to the same reg!");
10472   assert(!Register::isPhysicalRegister(Reg) && "Is a physreg");
10473 
10474   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10475   // If this is an InlineAsm we have to match the registers required, not the
10476   // notional registers required by the type.
10477 
10478   RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
10479                    std::nullopt); // This is not an ABI copy.
10480   SDValue Chain = DAG.getEntryNode();
10481 
10482   if (ExtendType == ISD::ANY_EXTEND) {
10483     auto PreferredExtendIt = FuncInfo.PreferredExtendType.find(V);
10484     if (PreferredExtendIt != FuncInfo.PreferredExtendType.end())
10485       ExtendType = PreferredExtendIt->second;
10486   }
10487   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
10488   PendingExports.push_back(Chain);
10489 }
10490 
10491 #include "llvm/CodeGen/SelectionDAGISel.h"
10492 
10493 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
10494 /// entry block, return true.  This includes arguments used by switches, since
10495 /// the switch may expand into multiple basic blocks.
10496 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
10497   // With FastISel active, we may be splitting blocks, so force creation
10498   // of virtual registers for all non-dead arguments.
10499   if (FastISel)
10500     return A->use_empty();
10501 
10502   const BasicBlock &Entry = A->getParent()->front();
10503   for (const User *U : A->users())
10504     if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
10505       return false;  // Use not in entry block.
10506 
10507   return true;
10508 }
10509 
10510 using ArgCopyElisionMapTy =
10511     DenseMap<const Argument *,
10512              std::pair<const AllocaInst *, const StoreInst *>>;
10513 
10514 /// Scan the entry block of the function in FuncInfo for arguments that look
10515 /// like copies into a local alloca. Record any copied arguments in
10516 /// ArgCopyElisionCandidates.
10517 static void
10518 findArgumentCopyElisionCandidates(const DataLayout &DL,
10519                                   FunctionLoweringInfo *FuncInfo,
10520                                   ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
10521   // Record the state of every static alloca used in the entry block. Argument
10522   // allocas are all used in the entry block, so we need approximately as many
10523   // entries as we have arguments.
10524   enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
10525   SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
10526   unsigned NumArgs = FuncInfo->Fn->arg_size();
10527   StaticAllocas.reserve(NumArgs * 2);
10528 
10529   auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
10530     if (!V)
10531       return nullptr;
10532     V = V->stripPointerCasts();
10533     const auto *AI = dyn_cast<AllocaInst>(V);
10534     if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
10535       return nullptr;
10536     auto Iter = StaticAllocas.insert({AI, Unknown});
10537     return &Iter.first->second;
10538   };
10539 
10540   // Look for stores of arguments to static allocas. Look through bitcasts and
10541   // GEPs to handle type coercions, as long as the alloca is fully initialized
10542   // by the store. Any non-store use of an alloca escapes it and any subsequent
10543   // unanalyzed store might write it.
10544   // FIXME: Handle structs initialized with multiple stores.
10545   for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
10546     // Look for stores, and handle non-store uses conservatively.
10547     const auto *SI = dyn_cast<StoreInst>(&I);
10548     if (!SI) {
10549       // We will look through cast uses, so ignore them completely.
10550       if (I.isCast())
10551         continue;
10552       // Ignore debug info and pseudo op intrinsics, they don't escape or store
10553       // to allocas.
10554       if (I.isDebugOrPseudoInst())
10555         continue;
10556       // This is an unknown instruction. Assume it escapes or writes to all
10557       // static alloca operands.
10558       for (const Use &U : I.operands()) {
10559         if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
10560           *Info = StaticAllocaInfo::Clobbered;
10561       }
10562       continue;
10563     }
10564 
10565     // If the stored value is a static alloca, mark it as escaped.
10566     if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
10567       *Info = StaticAllocaInfo::Clobbered;
10568 
10569     // Check if the destination is a static alloca.
10570     const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
10571     StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
10572     if (!Info)
10573       continue;
10574     const AllocaInst *AI = cast<AllocaInst>(Dst);
10575 
10576     // Skip allocas that have been initialized or clobbered.
10577     if (*Info != StaticAllocaInfo::Unknown)
10578       continue;
10579 
10580     // Check if the stored value is an argument, and that this store fully
10581     // initializes the alloca.
10582     // If the argument type has padding bits we can't directly forward a pointer
10583     // as the upper bits may contain garbage.
10584     // Don't elide copies from the same argument twice.
10585     const Value *Val = SI->getValueOperand()->stripPointerCasts();
10586     const auto *Arg = dyn_cast<Argument>(Val);
10587     if (!Arg || Arg->hasPassPointeeByValueCopyAttr() ||
10588         Arg->getType()->isEmptyTy() ||
10589         DL.getTypeStoreSize(Arg->getType()) !=
10590             DL.getTypeAllocSize(AI->getAllocatedType()) ||
10591         !DL.typeSizeEqualsStoreSize(Arg->getType()) ||
10592         ArgCopyElisionCandidates.count(Arg)) {
10593       *Info = StaticAllocaInfo::Clobbered;
10594       continue;
10595     }
10596 
10597     LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
10598                       << '\n');
10599 
10600     // Mark this alloca and store for argument copy elision.
10601     *Info = StaticAllocaInfo::Elidable;
10602     ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
10603 
10604     // Stop scanning if we've seen all arguments. This will happen early in -O0
10605     // builds, which is useful, because -O0 builds have large entry blocks and
10606     // many allocas.
10607     if (ArgCopyElisionCandidates.size() == NumArgs)
10608       break;
10609   }
10610 }
10611 
10612 /// Try to elide argument copies from memory into a local alloca. Succeeds if
10613 /// ArgVal is a load from a suitable fixed stack object.
10614 static void tryToElideArgumentCopy(
10615     FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains,
10616     DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
10617     SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
10618     ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
10619     ArrayRef<SDValue> ArgVals, bool &ArgHasUses) {
10620   // Check if this is a load from a fixed stack object.
10621   auto *LNode = dyn_cast<LoadSDNode>(ArgVals[0]);
10622   if (!LNode)
10623     return;
10624   auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
10625   if (!FINode)
10626     return;
10627 
10628   // Check that the fixed stack object is the right size and alignment.
10629   // Look at the alignment that the user wrote on the alloca instead of looking
10630   // at the stack object.
10631   auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
10632   assert(ArgCopyIter != ArgCopyElisionCandidates.end());
10633   const AllocaInst *AI = ArgCopyIter->second.first;
10634   int FixedIndex = FINode->getIndex();
10635   int &AllocaIndex = FuncInfo.StaticAllocaMap[AI];
10636   int OldIndex = AllocaIndex;
10637   MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo();
10638   if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
10639     LLVM_DEBUG(
10640         dbgs() << "  argument copy elision failed due to bad fixed stack "
10641                   "object size\n");
10642     return;
10643   }
10644   Align RequiredAlignment = AI->getAlign();
10645   if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) {
10646     LLVM_DEBUG(dbgs() << "  argument copy elision failed: alignment of alloca "
10647                          "greater than stack argument alignment ("
10648                       << DebugStr(RequiredAlignment) << " vs "
10649                       << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n");
10650     return;
10651   }
10652 
10653   // Perform the elision. Delete the old stack object and replace its only use
10654   // in the variable info map. Mark the stack object as mutable.
10655   LLVM_DEBUG({
10656     dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
10657            << "  Replacing frame index " << OldIndex << " with " << FixedIndex
10658            << '\n';
10659   });
10660   MFI.RemoveStackObject(OldIndex);
10661   MFI.setIsImmutableObjectIndex(FixedIndex, false);
10662   AllocaIndex = FixedIndex;
10663   ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
10664   for (SDValue ArgVal : ArgVals)
10665     Chains.push_back(ArgVal.getValue(1));
10666 
10667   // Avoid emitting code for the store implementing the copy.
10668   const StoreInst *SI = ArgCopyIter->second.second;
10669   ElidedArgCopyInstrs.insert(SI);
10670 
10671   // Check for uses of the argument again so that we can avoid exporting ArgVal
10672   // if it is't used by anything other than the store.
10673   for (const Value *U : Arg.users()) {
10674     if (U != SI) {
10675       ArgHasUses = true;
10676       break;
10677     }
10678   }
10679 }
10680 
10681 void SelectionDAGISel::LowerArguments(const Function &F) {
10682   SelectionDAG &DAG = SDB->DAG;
10683   SDLoc dl = SDB->getCurSDLoc();
10684   const DataLayout &DL = DAG.getDataLayout();
10685   SmallVector<ISD::InputArg, 16> Ins;
10686 
10687   // In Naked functions we aren't going to save any registers.
10688   if (F.hasFnAttribute(Attribute::Naked))
10689     return;
10690 
10691   if (!FuncInfo->CanLowerReturn) {
10692     // Put in an sret pointer parameter before all the other parameters.
10693     SmallVector<EVT, 1> ValueVTs;
10694     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10695                     F.getReturnType()->getPointerTo(
10696                         DAG.getDataLayout().getAllocaAddrSpace()),
10697                     ValueVTs);
10698 
10699     // NOTE: Assuming that a pointer will never break down to more than one VT
10700     // or one register.
10701     ISD::ArgFlagsTy Flags;
10702     Flags.setSRet();
10703     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
10704     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
10705                          ISD::InputArg::NoArgIndex, 0);
10706     Ins.push_back(RetArg);
10707   }
10708 
10709   // Look for stores of arguments to static allocas. Mark such arguments with a
10710   // flag to ask the target to give us the memory location of that argument if
10711   // available.
10712   ArgCopyElisionMapTy ArgCopyElisionCandidates;
10713   findArgumentCopyElisionCandidates(DL, FuncInfo.get(),
10714                                     ArgCopyElisionCandidates);
10715 
10716   // Set up the incoming argument description vector.
10717   for (const Argument &Arg : F.args()) {
10718     unsigned ArgNo = Arg.getArgNo();
10719     SmallVector<EVT, 4> ValueVTs;
10720     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10721     bool isArgValueUsed = !Arg.use_empty();
10722     unsigned PartBase = 0;
10723     Type *FinalType = Arg.getType();
10724     if (Arg.hasAttribute(Attribute::ByVal))
10725       FinalType = Arg.getParamByValType();
10726     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
10727         FinalType, F.getCallingConv(), F.isVarArg(), DL);
10728     for (unsigned Value = 0, NumValues = ValueVTs.size();
10729          Value != NumValues; ++Value) {
10730       EVT VT = ValueVTs[Value];
10731       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
10732       ISD::ArgFlagsTy Flags;
10733 
10734 
10735       if (Arg.getType()->isPointerTy()) {
10736         Flags.setPointer();
10737         Flags.setPointerAddrSpace(
10738             cast<PointerType>(Arg.getType())->getAddressSpace());
10739       }
10740       if (Arg.hasAttribute(Attribute::ZExt))
10741         Flags.setZExt();
10742       if (Arg.hasAttribute(Attribute::SExt))
10743         Flags.setSExt();
10744       if (Arg.hasAttribute(Attribute::InReg)) {
10745         // If we are using vectorcall calling convention, a structure that is
10746         // passed InReg - is surely an HVA
10747         if (F.getCallingConv() == CallingConv::X86_VectorCall &&
10748             isa<StructType>(Arg.getType())) {
10749           // The first value of a structure is marked
10750           if (0 == Value)
10751             Flags.setHvaStart();
10752           Flags.setHva();
10753         }
10754         // Set InReg Flag
10755         Flags.setInReg();
10756       }
10757       if (Arg.hasAttribute(Attribute::StructRet))
10758         Flags.setSRet();
10759       if (Arg.hasAttribute(Attribute::SwiftSelf))
10760         Flags.setSwiftSelf();
10761       if (Arg.hasAttribute(Attribute::SwiftAsync))
10762         Flags.setSwiftAsync();
10763       if (Arg.hasAttribute(Attribute::SwiftError))
10764         Flags.setSwiftError();
10765       if (Arg.hasAttribute(Attribute::ByVal))
10766         Flags.setByVal();
10767       if (Arg.hasAttribute(Attribute::ByRef))
10768         Flags.setByRef();
10769       if (Arg.hasAttribute(Attribute::InAlloca)) {
10770         Flags.setInAlloca();
10771         // Set the byval flag for CCAssignFn callbacks that don't know about
10772         // inalloca.  This way we can know how many bytes we should've allocated
10773         // and how many bytes a callee cleanup function will pop.  If we port
10774         // inalloca to more targets, we'll have to add custom inalloca handling
10775         // in the various CC lowering callbacks.
10776         Flags.setByVal();
10777       }
10778       if (Arg.hasAttribute(Attribute::Preallocated)) {
10779         Flags.setPreallocated();
10780         // Set the byval flag for CCAssignFn callbacks that don't know about
10781         // preallocated.  This way we can know how many bytes we should've
10782         // allocated and how many bytes a callee cleanup function will pop.  If
10783         // we port preallocated to more targets, we'll have to add custom
10784         // preallocated handling in the various CC lowering callbacks.
10785         Flags.setByVal();
10786       }
10787 
10788       // Certain targets (such as MIPS), may have a different ABI alignment
10789       // for a type depending on the context. Give the target a chance to
10790       // specify the alignment it wants.
10791       const Align OriginalAlignment(
10792           TLI->getABIAlignmentForCallingConv(ArgTy, DL));
10793       Flags.setOrigAlign(OriginalAlignment);
10794 
10795       Align MemAlign;
10796       Type *ArgMemTy = nullptr;
10797       if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() ||
10798           Flags.isByRef()) {
10799         if (!ArgMemTy)
10800           ArgMemTy = Arg.getPointeeInMemoryValueType();
10801 
10802         uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy);
10803 
10804         // For in-memory arguments, size and alignment should be passed from FE.
10805         // BE will guess if this info is not there but there are cases it cannot
10806         // get right.
10807         if (auto ParamAlign = Arg.getParamStackAlign())
10808           MemAlign = *ParamAlign;
10809         else if ((ParamAlign = Arg.getParamAlign()))
10810           MemAlign = *ParamAlign;
10811         else
10812           MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL));
10813         if (Flags.isByRef())
10814           Flags.setByRefSize(MemSize);
10815         else
10816           Flags.setByValSize(MemSize);
10817       } else if (auto ParamAlign = Arg.getParamStackAlign()) {
10818         MemAlign = *ParamAlign;
10819       } else {
10820         MemAlign = OriginalAlignment;
10821       }
10822       Flags.setMemAlign(MemAlign);
10823 
10824       if (Arg.hasAttribute(Attribute::Nest))
10825         Flags.setNest();
10826       if (NeedsRegBlock)
10827         Flags.setInConsecutiveRegs();
10828       if (ArgCopyElisionCandidates.count(&Arg))
10829         Flags.setCopyElisionCandidate();
10830       if (Arg.hasAttribute(Attribute::Returned))
10831         Flags.setReturned();
10832 
10833       MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
10834           *CurDAG->getContext(), F.getCallingConv(), VT);
10835       unsigned NumRegs = TLI->getNumRegistersForCallingConv(
10836           *CurDAG->getContext(), F.getCallingConv(), VT);
10837       for (unsigned i = 0; i != NumRegs; ++i) {
10838         // For scalable vectors, use the minimum size; individual targets
10839         // are responsible for handling scalable vector arguments and
10840         // return values.
10841         ISD::InputArg MyFlags(
10842             Flags, RegisterVT, VT, isArgValueUsed, ArgNo,
10843             PartBase + i * RegisterVT.getStoreSize().getKnownMinValue());
10844         if (NumRegs > 1 && i == 0)
10845           MyFlags.Flags.setSplit();
10846         // if it isn't first piece, alignment must be 1
10847         else if (i > 0) {
10848           MyFlags.Flags.setOrigAlign(Align(1));
10849           if (i == NumRegs - 1)
10850             MyFlags.Flags.setSplitEnd();
10851         }
10852         Ins.push_back(MyFlags);
10853       }
10854       if (NeedsRegBlock && Value == NumValues - 1)
10855         Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
10856       PartBase += VT.getStoreSize().getKnownMinValue();
10857     }
10858   }
10859 
10860   // Call the target to set up the argument values.
10861   SmallVector<SDValue, 8> InVals;
10862   SDValue NewRoot = TLI->LowerFormalArguments(
10863       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
10864 
10865   // Verify that the target's LowerFormalArguments behaved as expected.
10866   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
10867          "LowerFormalArguments didn't return a valid chain!");
10868   assert(InVals.size() == Ins.size() &&
10869          "LowerFormalArguments didn't emit the correct number of values!");
10870   LLVM_DEBUG({
10871     for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
10872       assert(InVals[i].getNode() &&
10873              "LowerFormalArguments emitted a null value!");
10874       assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
10875              "LowerFormalArguments emitted a value with the wrong type!");
10876     }
10877   });
10878 
10879   // Update the DAG with the new chain value resulting from argument lowering.
10880   DAG.setRoot(NewRoot);
10881 
10882   // Set up the argument values.
10883   unsigned i = 0;
10884   if (!FuncInfo->CanLowerReturn) {
10885     // Create a virtual register for the sret pointer, and put in a copy
10886     // from the sret argument into it.
10887     SmallVector<EVT, 1> ValueVTs;
10888     ComputeValueVTs(*TLI, DAG.getDataLayout(),
10889                     F.getReturnType()->getPointerTo(
10890                         DAG.getDataLayout().getAllocaAddrSpace()),
10891                     ValueVTs);
10892     MVT VT = ValueVTs[0].getSimpleVT();
10893     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
10894     std::optional<ISD::NodeType> AssertOp;
10895     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
10896                                         nullptr, F.getCallingConv(), AssertOp);
10897 
10898     MachineFunction& MF = SDB->DAG.getMachineFunction();
10899     MachineRegisterInfo& RegInfo = MF.getRegInfo();
10900     Register SRetReg =
10901         RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
10902     FuncInfo->DemoteRegister = SRetReg;
10903     NewRoot =
10904         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
10905     DAG.setRoot(NewRoot);
10906 
10907     // i indexes lowered arguments.  Bump it past the hidden sret argument.
10908     ++i;
10909   }
10910 
10911   SmallVector<SDValue, 4> Chains;
10912   DenseMap<int, int> ArgCopyElisionFrameIndexMap;
10913   for (const Argument &Arg : F.args()) {
10914     SmallVector<SDValue, 4> ArgValues;
10915     SmallVector<EVT, 4> ValueVTs;
10916     ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
10917     unsigned NumValues = ValueVTs.size();
10918     if (NumValues == 0)
10919       continue;
10920 
10921     bool ArgHasUses = !Arg.use_empty();
10922 
10923     // Elide the copying store if the target loaded this argument from a
10924     // suitable fixed stack object.
10925     if (Ins[i].Flags.isCopyElisionCandidate()) {
10926       unsigned NumParts = 0;
10927       for (EVT VT : ValueVTs)
10928         NumParts += TLI->getNumRegistersForCallingConv(*CurDAG->getContext(),
10929                                                        F.getCallingConv(), VT);
10930 
10931       tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
10932                              ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
10933                              ArrayRef(&InVals[i], NumParts), ArgHasUses);
10934     }
10935 
10936     // If this argument is unused then remember its value. It is used to generate
10937     // debugging information.
10938     bool isSwiftErrorArg =
10939         TLI->supportSwiftError() &&
10940         Arg.hasAttribute(Attribute::SwiftError);
10941     if (!ArgHasUses && !isSwiftErrorArg) {
10942       SDB->setUnusedArgValue(&Arg, InVals[i]);
10943 
10944       // Also remember any frame index for use in FastISel.
10945       if (FrameIndexSDNode *FI =
10946           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
10947         FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10948     }
10949 
10950     for (unsigned Val = 0; Val != NumValues; ++Val) {
10951       EVT VT = ValueVTs[Val];
10952       MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
10953                                                       F.getCallingConv(), VT);
10954       unsigned NumParts = TLI->getNumRegistersForCallingConv(
10955           *CurDAG->getContext(), F.getCallingConv(), VT);
10956 
10957       // Even an apparent 'unused' swifterror argument needs to be returned. So
10958       // we do generate a copy for it that can be used on return from the
10959       // function.
10960       if (ArgHasUses || isSwiftErrorArg) {
10961         std::optional<ISD::NodeType> AssertOp;
10962         if (Arg.hasAttribute(Attribute::SExt))
10963           AssertOp = ISD::AssertSext;
10964         else if (Arg.hasAttribute(Attribute::ZExt))
10965           AssertOp = ISD::AssertZext;
10966 
10967         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
10968                                              PartVT, VT, nullptr,
10969                                              F.getCallingConv(), AssertOp));
10970       }
10971 
10972       i += NumParts;
10973     }
10974 
10975     // We don't need to do anything else for unused arguments.
10976     if (ArgValues.empty())
10977       continue;
10978 
10979     // Note down frame index.
10980     if (FrameIndexSDNode *FI =
10981         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
10982       FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
10983 
10984     SDValue Res = DAG.getMergeValues(ArrayRef(ArgValues.data(), NumValues),
10985                                      SDB->getCurSDLoc());
10986 
10987     SDB->setValue(&Arg, Res);
10988     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
10989       // We want to associate the argument with the frame index, among
10990       // involved operands, that correspond to the lowest address. The
10991       // getCopyFromParts function, called earlier, is swapping the order of
10992       // the operands to BUILD_PAIR depending on endianness. The result of
10993       // that swapping is that the least significant bits of the argument will
10994       // be in the first operand of the BUILD_PAIR node, and the most
10995       // significant bits will be in the second operand.
10996       unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
10997       if (LoadSDNode *LNode =
10998           dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
10999         if (FrameIndexSDNode *FI =
11000             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
11001           FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
11002     }
11003 
11004     // Analyses past this point are naive and don't expect an assertion.
11005     if (Res.getOpcode() == ISD::AssertZext)
11006       Res = Res.getOperand(0);
11007 
11008     // Update the SwiftErrorVRegDefMap.
11009     if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
11010       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11011       if (Register::isVirtualRegister(Reg))
11012         SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(),
11013                                    Reg);
11014     }
11015 
11016     // If this argument is live outside of the entry block, insert a copy from
11017     // wherever we got it to the vreg that other BB's will reference it as.
11018     if (Res.getOpcode() == ISD::CopyFromReg) {
11019       // If we can, though, try to skip creating an unnecessary vreg.
11020       // FIXME: This isn't very clean... it would be nice to make this more
11021       // general.
11022       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
11023       if (Register::isVirtualRegister(Reg)) {
11024         FuncInfo->ValueMap[&Arg] = Reg;
11025         continue;
11026       }
11027     }
11028     if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
11029       FuncInfo->InitializeRegForValue(&Arg);
11030       SDB->CopyToExportRegsIfNeeded(&Arg);
11031     }
11032   }
11033 
11034   if (!Chains.empty()) {
11035     Chains.push_back(NewRoot);
11036     NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
11037   }
11038 
11039   DAG.setRoot(NewRoot);
11040 
11041   assert(i == InVals.size() && "Argument register count mismatch!");
11042 
11043   // If any argument copy elisions occurred and we have debug info, update the
11044   // stale frame indices used in the dbg.declare variable info table.
11045   if (!ArgCopyElisionFrameIndexMap.empty()) {
11046     for (MachineFunction::VariableDbgInfo &VI :
11047          MF->getInStackSlotVariableDbgInfo()) {
11048       auto I = ArgCopyElisionFrameIndexMap.find(VI.getStackSlot());
11049       if (I != ArgCopyElisionFrameIndexMap.end())
11050         VI.updateStackSlot(I->second);
11051     }
11052   }
11053 
11054   // Finally, if the target has anything special to do, allow it to do so.
11055   emitFunctionEntryCode();
11056 }
11057 
11058 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
11059 /// ensure constants are generated when needed.  Remember the virtual registers
11060 /// that need to be added to the Machine PHI nodes as input.  We cannot just
11061 /// directly add them, because expansion might result in multiple MBB's for one
11062 /// BB.  As such, the start of the BB might correspond to a different MBB than
11063 /// the end.
11064 void
11065 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
11066   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11067 
11068   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
11069 
11070   // Check PHI nodes in successors that expect a value to be available from this
11071   // block.
11072   for (const BasicBlock *SuccBB : successors(LLVMBB->getTerminator())) {
11073     if (!isa<PHINode>(SuccBB->begin())) continue;
11074     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
11075 
11076     // If this terminator has multiple identical successors (common for
11077     // switches), only handle each succ once.
11078     if (!SuccsHandled.insert(SuccMBB).second)
11079       continue;
11080 
11081     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
11082 
11083     // At this point we know that there is a 1-1 correspondence between LLVM PHI
11084     // nodes and Machine PHI nodes, but the incoming operands have not been
11085     // emitted yet.
11086     for (const PHINode &PN : SuccBB->phis()) {
11087       // Ignore dead phi's.
11088       if (PN.use_empty())
11089         continue;
11090 
11091       // Skip empty types
11092       if (PN.getType()->isEmptyTy())
11093         continue;
11094 
11095       unsigned Reg;
11096       const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
11097 
11098       if (const auto *C = dyn_cast<Constant>(PHIOp)) {
11099         unsigned &RegOut = ConstantsOut[C];
11100         if (RegOut == 0) {
11101           RegOut = FuncInfo.CreateRegs(C);
11102           // We need to zero/sign extend ConstantInt phi operands to match
11103           // assumptions in FunctionLoweringInfo::ComputePHILiveOutRegInfo.
11104           ISD::NodeType ExtendType = ISD::ANY_EXTEND;
11105           if (auto *CI = dyn_cast<ConstantInt>(C))
11106             ExtendType = TLI.signExtendConstant(CI) ? ISD::SIGN_EXTEND
11107                                                     : ISD::ZERO_EXTEND;
11108           CopyValueToVirtualRegister(C, RegOut, ExtendType);
11109         }
11110         Reg = RegOut;
11111       } else {
11112         DenseMap<const Value *, Register>::iterator I =
11113           FuncInfo.ValueMap.find(PHIOp);
11114         if (I != FuncInfo.ValueMap.end())
11115           Reg = I->second;
11116         else {
11117           assert(isa<AllocaInst>(PHIOp) &&
11118                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
11119                  "Didn't codegen value into a register!??");
11120           Reg = FuncInfo.CreateRegs(PHIOp);
11121           CopyValueToVirtualRegister(PHIOp, Reg);
11122         }
11123       }
11124 
11125       // Remember that this register needs to added to the machine PHI node as
11126       // the input for this MBB.
11127       SmallVector<EVT, 4> ValueVTs;
11128       ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
11129       for (EVT VT : ValueVTs) {
11130         const unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
11131         for (unsigned i = 0; i != NumRegisters; ++i)
11132           FuncInfo.PHINodesToUpdate.push_back(
11133               std::make_pair(&*MBBI++, Reg + i));
11134         Reg += NumRegisters;
11135       }
11136     }
11137   }
11138 
11139   ConstantsOut.clear();
11140 }
11141 
11142 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
11143   MachineFunction::iterator I(MBB);
11144   if (++I == FuncInfo.MF->end())
11145     return nullptr;
11146   return &*I;
11147 }
11148 
11149 /// During lowering new call nodes can be created (such as memset, etc.).
11150 /// Those will become new roots of the current DAG, but complications arise
11151 /// when they are tail calls. In such cases, the call lowering will update
11152 /// the root, but the builder still needs to know that a tail call has been
11153 /// lowered in order to avoid generating an additional return.
11154 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
11155   // If the node is null, we do have a tail call.
11156   if (MaybeTC.getNode() != nullptr)
11157     DAG.setRoot(MaybeTC);
11158   else
11159     HasTailCall = true;
11160 }
11161 
11162 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
11163                                         MachineBasicBlock *SwitchMBB,
11164                                         MachineBasicBlock *DefaultMBB) {
11165   MachineFunction *CurMF = FuncInfo.MF;
11166   MachineBasicBlock *NextMBB = nullptr;
11167   MachineFunction::iterator BBI(W.MBB);
11168   if (++BBI != FuncInfo.MF->end())
11169     NextMBB = &*BBI;
11170 
11171   unsigned Size = W.LastCluster - W.FirstCluster + 1;
11172 
11173   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11174 
11175   if (Size == 2 && W.MBB == SwitchMBB) {
11176     // If any two of the cases has the same destination, and if one value
11177     // is the same as the other, but has one bit unset that the other has set,
11178     // use bit manipulation to do two compares at once.  For example:
11179     // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
11180     // TODO: This could be extended to merge any 2 cases in switches with 3
11181     // cases.
11182     // TODO: Handle cases where W.CaseBB != SwitchBB.
11183     CaseCluster &Small = *W.FirstCluster;
11184     CaseCluster &Big = *W.LastCluster;
11185 
11186     if (Small.Low == Small.High && Big.Low == Big.High &&
11187         Small.MBB == Big.MBB) {
11188       const APInt &SmallValue = Small.Low->getValue();
11189       const APInt &BigValue = Big.Low->getValue();
11190 
11191       // Check that there is only one bit different.
11192       APInt CommonBit = BigValue ^ SmallValue;
11193       if (CommonBit.isPowerOf2()) {
11194         SDValue CondLHS = getValue(Cond);
11195         EVT VT = CondLHS.getValueType();
11196         SDLoc DL = getCurSDLoc();
11197 
11198         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
11199                                  DAG.getConstant(CommonBit, DL, VT));
11200         SDValue Cond = DAG.getSetCC(
11201             DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
11202             ISD::SETEQ);
11203 
11204         // Update successor info.
11205         // Both Small and Big will jump to Small.BB, so we sum up the
11206         // probabilities.
11207         addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
11208         if (BPI)
11209           addSuccessorWithProb(
11210               SwitchMBB, DefaultMBB,
11211               // The default destination is the first successor in IR.
11212               BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
11213         else
11214           addSuccessorWithProb(SwitchMBB, DefaultMBB);
11215 
11216         // Insert the true branch.
11217         SDValue BrCond =
11218             DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
11219                         DAG.getBasicBlock(Small.MBB));
11220         // Insert the false branch.
11221         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
11222                              DAG.getBasicBlock(DefaultMBB));
11223 
11224         DAG.setRoot(BrCond);
11225         return;
11226       }
11227     }
11228   }
11229 
11230   if (TM.getOptLevel() != CodeGenOpt::None) {
11231     // Here, we order cases by probability so the most likely case will be
11232     // checked first. However, two clusters can have the same probability in
11233     // which case their relative ordering is non-deterministic. So we use Low
11234     // as a tie-breaker as clusters are guaranteed to never overlap.
11235     llvm::sort(W.FirstCluster, W.LastCluster + 1,
11236                [](const CaseCluster &a, const CaseCluster &b) {
11237       return a.Prob != b.Prob ?
11238              a.Prob > b.Prob :
11239              a.Low->getValue().slt(b.Low->getValue());
11240     });
11241 
11242     // Rearrange the case blocks so that the last one falls through if possible
11243     // without changing the order of probabilities.
11244     for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
11245       --I;
11246       if (I->Prob > W.LastCluster->Prob)
11247         break;
11248       if (I->Kind == CC_Range && I->MBB == NextMBB) {
11249         std::swap(*I, *W.LastCluster);
11250         break;
11251       }
11252     }
11253   }
11254 
11255   // Compute total probability.
11256   BranchProbability DefaultProb = W.DefaultProb;
11257   BranchProbability UnhandledProbs = DefaultProb;
11258   for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
11259     UnhandledProbs += I->Prob;
11260 
11261   MachineBasicBlock *CurMBB = W.MBB;
11262   for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
11263     bool FallthroughUnreachable = false;
11264     MachineBasicBlock *Fallthrough;
11265     if (I == W.LastCluster) {
11266       // For the last cluster, fall through to the default destination.
11267       Fallthrough = DefaultMBB;
11268       FallthroughUnreachable = isa<UnreachableInst>(
11269           DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
11270     } else {
11271       Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
11272       CurMF->insert(BBI, Fallthrough);
11273       // Put Cond in a virtual register to make it available from the new blocks.
11274       ExportFromCurrentBlock(Cond);
11275     }
11276     UnhandledProbs -= I->Prob;
11277 
11278     switch (I->Kind) {
11279       case CC_JumpTable: {
11280         // FIXME: Optimize away range check based on pivot comparisons.
11281         JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first;
11282         SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second;
11283 
11284         // The jump block hasn't been inserted yet; insert it here.
11285         MachineBasicBlock *JumpMBB = JT->MBB;
11286         CurMF->insert(BBI, JumpMBB);
11287 
11288         auto JumpProb = I->Prob;
11289         auto FallthroughProb = UnhandledProbs;
11290 
11291         // If the default statement is a target of the jump table, we evenly
11292         // distribute the default probability to successors of CurMBB. Also
11293         // update the probability on the edge from JumpMBB to Fallthrough.
11294         for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
11295                                               SE = JumpMBB->succ_end();
11296              SI != SE; ++SI) {
11297           if (*SI == DefaultMBB) {
11298             JumpProb += DefaultProb / 2;
11299             FallthroughProb -= DefaultProb / 2;
11300             JumpMBB->setSuccProbability(SI, DefaultProb / 2);
11301             JumpMBB->normalizeSuccProbs();
11302             break;
11303           }
11304         }
11305 
11306         if (FallthroughUnreachable)
11307           JTH->FallthroughUnreachable = true;
11308 
11309         if (!JTH->FallthroughUnreachable)
11310           addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
11311         addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
11312         CurMBB->normalizeSuccProbs();
11313 
11314         // The jump table header will be inserted in our current block, do the
11315         // range check, and fall through to our fallthrough block.
11316         JTH->HeaderBB = CurMBB;
11317         JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
11318 
11319         // If we're in the right place, emit the jump table header right now.
11320         if (CurMBB == SwitchMBB) {
11321           visitJumpTableHeader(*JT, *JTH, SwitchMBB);
11322           JTH->Emitted = true;
11323         }
11324         break;
11325       }
11326       case CC_BitTests: {
11327         // FIXME: Optimize away range check based on pivot comparisons.
11328         BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex];
11329 
11330         // The bit test blocks haven't been inserted yet; insert them here.
11331         for (BitTestCase &BTC : BTB->Cases)
11332           CurMF->insert(BBI, BTC.ThisBB);
11333 
11334         // Fill in fields of the BitTestBlock.
11335         BTB->Parent = CurMBB;
11336         BTB->Default = Fallthrough;
11337 
11338         BTB->DefaultProb = UnhandledProbs;
11339         // If the cases in bit test don't form a contiguous range, we evenly
11340         // distribute the probability on the edge to Fallthrough to two
11341         // successors of CurMBB.
11342         if (!BTB->ContiguousRange) {
11343           BTB->Prob += DefaultProb / 2;
11344           BTB->DefaultProb -= DefaultProb / 2;
11345         }
11346 
11347         if (FallthroughUnreachable)
11348           BTB->FallthroughUnreachable = true;
11349 
11350         // If we're in the right place, emit the bit test header right now.
11351         if (CurMBB == SwitchMBB) {
11352           visitBitTestHeader(*BTB, SwitchMBB);
11353           BTB->Emitted = true;
11354         }
11355         break;
11356       }
11357       case CC_Range: {
11358         const Value *RHS, *LHS, *MHS;
11359         ISD::CondCode CC;
11360         if (I->Low == I->High) {
11361           // Check Cond == I->Low.
11362           CC = ISD::SETEQ;
11363           LHS = Cond;
11364           RHS=I->Low;
11365           MHS = nullptr;
11366         } else {
11367           // Check I->Low <= Cond <= I->High.
11368           CC = ISD::SETLE;
11369           LHS = I->Low;
11370           MHS = Cond;
11371           RHS = I->High;
11372         }
11373 
11374         // If Fallthrough is unreachable, fold away the comparison.
11375         if (FallthroughUnreachable)
11376           CC = ISD::SETTRUE;
11377 
11378         // The false probability is the sum of all unhandled cases.
11379         CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
11380                      getCurSDLoc(), I->Prob, UnhandledProbs);
11381 
11382         if (CurMBB == SwitchMBB)
11383           visitSwitchCase(CB, SwitchMBB);
11384         else
11385           SL->SwitchCases.push_back(CB);
11386 
11387         break;
11388       }
11389     }
11390     CurMBB = Fallthrough;
11391   }
11392 }
11393 
11394 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
11395                                               CaseClusterIt First,
11396                                               CaseClusterIt Last) {
11397   return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
11398     if (X.Prob != CC.Prob)
11399       return X.Prob > CC.Prob;
11400 
11401     // Ties are broken by comparing the case value.
11402     return X.Low->getValue().slt(CC.Low->getValue());
11403   });
11404 }
11405 
11406 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
11407                                         const SwitchWorkListItem &W,
11408                                         Value *Cond,
11409                                         MachineBasicBlock *SwitchMBB) {
11410   assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
11411          "Clusters not sorted?");
11412 
11413   assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
11414 
11415   // Balance the tree based on branch probabilities to create a near-optimal (in
11416   // terms of search time given key frequency) binary search tree. See e.g. Kurt
11417   // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
11418   CaseClusterIt LastLeft = W.FirstCluster;
11419   CaseClusterIt FirstRight = W.LastCluster;
11420   auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
11421   auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
11422 
11423   // Move LastLeft and FirstRight towards each other from opposite directions to
11424   // find a partitioning of the clusters which balances the probability on both
11425   // sides. If LeftProb and RightProb are equal, alternate which side is
11426   // taken to ensure 0-probability nodes are distributed evenly.
11427   unsigned I = 0;
11428   while (LastLeft + 1 < FirstRight) {
11429     if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
11430       LeftProb += (++LastLeft)->Prob;
11431     else
11432       RightProb += (--FirstRight)->Prob;
11433     I++;
11434   }
11435 
11436   while (true) {
11437     // Our binary search tree differs from a typical BST in that ours can have up
11438     // to three values in each leaf. The pivot selection above doesn't take that
11439     // into account, which means the tree might require more nodes and be less
11440     // efficient. We compensate for this here.
11441 
11442     unsigned NumLeft = LastLeft - W.FirstCluster + 1;
11443     unsigned NumRight = W.LastCluster - FirstRight + 1;
11444 
11445     if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
11446       // If one side has less than 3 clusters, and the other has more than 3,
11447       // consider taking a cluster from the other side.
11448 
11449       if (NumLeft < NumRight) {
11450         // Consider moving the first cluster on the right to the left side.
11451         CaseCluster &CC = *FirstRight;
11452         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11453         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11454         if (LeftSideRank <= RightSideRank) {
11455           // Moving the cluster to the left does not demote it.
11456           ++LastLeft;
11457           ++FirstRight;
11458           continue;
11459         }
11460       } else {
11461         assert(NumRight < NumLeft);
11462         // Consider moving the last element on the left to the right side.
11463         CaseCluster &CC = *LastLeft;
11464         unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
11465         unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
11466         if (RightSideRank <= LeftSideRank) {
11467           // Moving the cluster to the right does not demot it.
11468           --LastLeft;
11469           --FirstRight;
11470           continue;
11471         }
11472       }
11473     }
11474     break;
11475   }
11476 
11477   assert(LastLeft + 1 == FirstRight);
11478   assert(LastLeft >= W.FirstCluster);
11479   assert(FirstRight <= W.LastCluster);
11480 
11481   // Use the first element on the right as pivot since we will make less-than
11482   // comparisons against it.
11483   CaseClusterIt PivotCluster = FirstRight;
11484   assert(PivotCluster > W.FirstCluster);
11485   assert(PivotCluster <= W.LastCluster);
11486 
11487   CaseClusterIt FirstLeft = W.FirstCluster;
11488   CaseClusterIt LastRight = W.LastCluster;
11489 
11490   const ConstantInt *Pivot = PivotCluster->Low;
11491 
11492   // New blocks will be inserted immediately after the current one.
11493   MachineFunction::iterator BBI(W.MBB);
11494   ++BBI;
11495 
11496   // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
11497   // we can branch to its destination directly if it's squeezed exactly in
11498   // between the known lower bound and Pivot - 1.
11499   MachineBasicBlock *LeftMBB;
11500   if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
11501       FirstLeft->Low == W.GE &&
11502       (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
11503     LeftMBB = FirstLeft->MBB;
11504   } else {
11505     LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11506     FuncInfo.MF->insert(BBI, LeftMBB);
11507     WorkList.push_back(
11508         {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
11509     // Put Cond in a virtual register to make it available from the new blocks.
11510     ExportFromCurrentBlock(Cond);
11511   }
11512 
11513   // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
11514   // single cluster, RHS.Low == Pivot, and we can branch to its destination
11515   // directly if RHS.High equals the current upper bound.
11516   MachineBasicBlock *RightMBB;
11517   if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
11518       W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
11519     RightMBB = FirstRight->MBB;
11520   } else {
11521     RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
11522     FuncInfo.MF->insert(BBI, RightMBB);
11523     WorkList.push_back(
11524         {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
11525     // Put Cond in a virtual register to make it available from the new blocks.
11526     ExportFromCurrentBlock(Cond);
11527   }
11528 
11529   // Create the CaseBlock record that will be used to lower the branch.
11530   CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
11531                getCurSDLoc(), LeftProb, RightProb);
11532 
11533   if (W.MBB == SwitchMBB)
11534     visitSwitchCase(CB, SwitchMBB);
11535   else
11536     SL->SwitchCases.push_back(CB);
11537 }
11538 
11539 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
11540 // from the swith statement.
11541 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
11542                                             BranchProbability PeeledCaseProb) {
11543   if (PeeledCaseProb == BranchProbability::getOne())
11544     return BranchProbability::getZero();
11545   BranchProbability SwitchProb = PeeledCaseProb.getCompl();
11546 
11547   uint32_t Numerator = CaseProb.getNumerator();
11548   uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
11549   return BranchProbability(Numerator, std::max(Numerator, Denominator));
11550 }
11551 
11552 // Try to peel the top probability case if it exceeds the threshold.
11553 // Return current MachineBasicBlock for the switch statement if the peeling
11554 // does not occur.
11555 // If the peeling is performed, return the newly created MachineBasicBlock
11556 // for the peeled switch statement. Also update Clusters to remove the peeled
11557 // case. PeeledCaseProb is the BranchProbability for the peeled case.
11558 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
11559     const SwitchInst &SI, CaseClusterVector &Clusters,
11560     BranchProbability &PeeledCaseProb) {
11561   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11562   // Don't perform if there is only one cluster or optimizing for size.
11563   if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
11564       TM.getOptLevel() == CodeGenOpt::None ||
11565       SwitchMBB->getParent()->getFunction().hasMinSize())
11566     return SwitchMBB;
11567 
11568   BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
11569   unsigned PeeledCaseIndex = 0;
11570   bool SwitchPeeled = false;
11571   for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
11572     CaseCluster &CC = Clusters[Index];
11573     if (CC.Prob < TopCaseProb)
11574       continue;
11575     TopCaseProb = CC.Prob;
11576     PeeledCaseIndex = Index;
11577     SwitchPeeled = true;
11578   }
11579   if (!SwitchPeeled)
11580     return SwitchMBB;
11581 
11582   LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
11583                     << TopCaseProb << "\n");
11584 
11585   // Record the MBB for the peeled switch statement.
11586   MachineFunction::iterator BBI(SwitchMBB);
11587   ++BBI;
11588   MachineBasicBlock *PeeledSwitchMBB =
11589       FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
11590   FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
11591 
11592   ExportFromCurrentBlock(SI.getCondition());
11593   auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
11594   SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
11595                           nullptr,   nullptr,      TopCaseProb.getCompl()};
11596   lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
11597 
11598   Clusters.erase(PeeledCaseIt);
11599   for (CaseCluster &CC : Clusters) {
11600     LLVM_DEBUG(
11601         dbgs() << "Scale the probablity for one cluster, before scaling: "
11602                << CC.Prob << "\n");
11603     CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
11604     LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
11605   }
11606   PeeledCaseProb = TopCaseProb;
11607   return PeeledSwitchMBB;
11608 }
11609 
11610 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
11611   // Extract cases from the switch.
11612   BranchProbabilityInfo *BPI = FuncInfo.BPI;
11613   CaseClusterVector Clusters;
11614   Clusters.reserve(SI.getNumCases());
11615   for (auto I : SI.cases()) {
11616     MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
11617     const ConstantInt *CaseVal = I.getCaseValue();
11618     BranchProbability Prob =
11619         BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
11620             : BranchProbability(1, SI.getNumCases() + 1);
11621     Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
11622   }
11623 
11624   MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
11625 
11626   // Cluster adjacent cases with the same destination. We do this at all
11627   // optimization levels because it's cheap to do and will make codegen faster
11628   // if there are many clusters.
11629   sortAndRangeify(Clusters);
11630 
11631   // The branch probablity of the peeled case.
11632   BranchProbability PeeledCaseProb = BranchProbability::getZero();
11633   MachineBasicBlock *PeeledSwitchMBB =
11634       peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
11635 
11636   // If there is only the default destination, jump there directly.
11637   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
11638   if (Clusters.empty()) {
11639     assert(PeeledSwitchMBB == SwitchMBB);
11640     SwitchMBB->addSuccessor(DefaultMBB);
11641     if (DefaultMBB != NextBlock(SwitchMBB)) {
11642       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
11643                               getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
11644     }
11645     return;
11646   }
11647 
11648   SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI());
11649   SL->findBitTestClusters(Clusters, &SI);
11650 
11651   LLVM_DEBUG({
11652     dbgs() << "Case clusters: ";
11653     for (const CaseCluster &C : Clusters) {
11654       if (C.Kind == CC_JumpTable)
11655         dbgs() << "JT:";
11656       if (C.Kind == CC_BitTests)
11657         dbgs() << "BT:";
11658 
11659       C.Low->getValue().print(dbgs(), true);
11660       if (C.Low != C.High) {
11661         dbgs() << '-';
11662         C.High->getValue().print(dbgs(), true);
11663       }
11664       dbgs() << ' ';
11665     }
11666     dbgs() << '\n';
11667   });
11668 
11669   assert(!Clusters.empty());
11670   SwitchWorkList WorkList;
11671   CaseClusterIt First = Clusters.begin();
11672   CaseClusterIt Last = Clusters.end() - 1;
11673   auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
11674   // Scale the branchprobability for DefaultMBB if the peel occurs and
11675   // DefaultMBB is not replaced.
11676   if (PeeledCaseProb != BranchProbability::getZero() &&
11677       DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
11678     DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
11679   WorkList.push_back(
11680       {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
11681 
11682   while (!WorkList.empty()) {
11683     SwitchWorkListItem W = WorkList.pop_back_val();
11684     unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
11685 
11686     if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
11687         !DefaultMBB->getParent()->getFunction().hasMinSize()) {
11688       // For optimized builds, lower large range as a balanced binary tree.
11689       splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
11690       continue;
11691     }
11692 
11693     lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);
11694   }
11695 }
11696 
11697 void SelectionDAGBuilder::visitStepVector(const CallInst &I) {
11698   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11699   auto DL = getCurSDLoc();
11700   EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11701   setValue(&I, DAG.getStepVector(DL, ResultVT));
11702 }
11703 
11704 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) {
11705   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11706   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11707 
11708   SDLoc DL = getCurSDLoc();
11709   SDValue V = getValue(I.getOperand(0));
11710   assert(VT == V.getValueType() && "Malformed vector.reverse!");
11711 
11712   if (VT.isScalableVector()) {
11713     setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V));
11714     return;
11715   }
11716 
11717   // Use VECTOR_SHUFFLE for the fixed-length vector
11718   // to maintain existing behavior.
11719   SmallVector<int, 8> Mask;
11720   unsigned NumElts = VT.getVectorMinNumElements();
11721   for (unsigned i = 0; i != NumElts; ++i)
11722     Mask.push_back(NumElts - 1 - i);
11723 
11724   setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask));
11725 }
11726 
11727 void SelectionDAGBuilder::visitVectorDeinterleave(const CallInst &I) {
11728   auto DL = getCurSDLoc();
11729   SDValue InVec = getValue(I.getOperand(0));
11730   EVT OutVT =
11731       InVec.getValueType().getHalfNumVectorElementsVT(*DAG.getContext());
11732 
11733   unsigned OutNumElts = OutVT.getVectorMinNumElements();
11734 
11735   // ISD Node needs the input vectors split into two equal parts
11736   SDValue Lo = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11737                            DAG.getVectorIdxConstant(0, DL));
11738   SDValue Hi = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, OutVT, InVec,
11739                            DAG.getVectorIdxConstant(OutNumElts, DL));
11740 
11741   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11742   // legalisation and combines.
11743   if (OutVT.isFixedLengthVector()) {
11744     SDValue Even = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11745                                         createStrideMask(0, 2, OutNumElts));
11746     SDValue Odd = DAG.getVectorShuffle(OutVT, DL, Lo, Hi,
11747                                        createStrideMask(1, 2, OutNumElts));
11748     SDValue Res = DAG.getMergeValues({Even, Odd}, getCurSDLoc());
11749     setValue(&I, Res);
11750     return;
11751   }
11752 
11753   SDValue Res = DAG.getNode(ISD::VECTOR_DEINTERLEAVE, DL,
11754                             DAG.getVTList(OutVT, OutVT), Lo, Hi);
11755   setValue(&I, Res);
11756 }
11757 
11758 void SelectionDAGBuilder::visitVectorInterleave(const CallInst &I) {
11759   auto DL = getCurSDLoc();
11760   EVT InVT = getValue(I.getOperand(0)).getValueType();
11761   SDValue InVec0 = getValue(I.getOperand(0));
11762   SDValue InVec1 = getValue(I.getOperand(1));
11763   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11764   EVT OutVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11765 
11766   // Use VECTOR_SHUFFLE for fixed-length vectors to benefit from existing
11767   // legalisation and combines.
11768   if (OutVT.isFixedLengthVector()) {
11769     unsigned NumElts = InVT.getVectorMinNumElements();
11770     SDValue V = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, InVec0, InVec1);
11771     setValue(&I, DAG.getVectorShuffle(OutVT, DL, V, DAG.getUNDEF(OutVT),
11772                                       createInterleaveMask(NumElts, 2)));
11773     return;
11774   }
11775 
11776   SDValue Res = DAG.getNode(ISD::VECTOR_INTERLEAVE, DL,
11777                             DAG.getVTList(InVT, InVT), InVec0, InVec1);
11778   Res = DAG.getNode(ISD::CONCAT_VECTORS, DL, OutVT, Res.getValue(0),
11779                     Res.getValue(1));
11780   setValue(&I, Res);
11781 }
11782 
11783 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) {
11784   SmallVector<EVT, 4> ValueVTs;
11785   ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
11786                   ValueVTs);
11787   unsigned NumValues = ValueVTs.size();
11788   if (NumValues == 0) return;
11789 
11790   SmallVector<SDValue, 4> Values(NumValues);
11791   SDValue Op = getValue(I.getOperand(0));
11792 
11793   for (unsigned i = 0; i != NumValues; ++i)
11794     Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i],
11795                             SDValue(Op.getNode(), Op.getResNo() + i));
11796 
11797   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11798                            DAG.getVTList(ValueVTs), Values));
11799 }
11800 
11801 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) {
11802   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11803   EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
11804 
11805   SDLoc DL = getCurSDLoc();
11806   SDValue V1 = getValue(I.getOperand(0));
11807   SDValue V2 = getValue(I.getOperand(1));
11808   int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue();
11809 
11810   // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node.
11811   if (VT.isScalableVector()) {
11812     MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
11813     setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2,
11814                              DAG.getConstant(Imm, DL, IdxVT)));
11815     return;
11816   }
11817 
11818   unsigned NumElts = VT.getVectorNumElements();
11819 
11820   uint64_t Idx = (NumElts + Imm) % NumElts;
11821 
11822   // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors.
11823   SmallVector<int, 8> Mask;
11824   for (unsigned i = 0; i < NumElts; ++i)
11825     Mask.push_back(Idx + i);
11826   setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask));
11827 }
11828 
11829 // Consider the following MIR after SelectionDAG, which produces output in
11830 // phyregs in the first case or virtregs in the second case.
11831 //
11832 // INLINEASM_BR ..., implicit-def $ebx, ..., implicit-def $edx
11833 // %5:gr32 = COPY $ebx
11834 // %6:gr32 = COPY $edx
11835 // %1:gr32 = COPY %6:gr32
11836 // %0:gr32 = COPY %5:gr32
11837 //
11838 // INLINEASM_BR ..., def %5:gr32, ..., def %6:gr32
11839 // %1:gr32 = COPY %6:gr32
11840 // %0:gr32 = COPY %5:gr32
11841 //
11842 // Given %0, we'd like to return $ebx in the first case and %5 in the second.
11843 // Given %1, we'd like to return $edx in the first case and %6 in the second.
11844 //
11845 // If a callbr has outputs, it will have a single mapping in FuncInfo.ValueMap
11846 // to a single virtreg (such as %0). The remaining outputs monotonically
11847 // increase in virtreg number from there. If a callbr has no outputs, then it
11848 // should not have a corresponding callbr landingpad; in fact, the callbr
11849 // landingpad would not even be able to refer to such a callbr.
11850 static Register FollowCopyChain(MachineRegisterInfo &MRI, Register Reg) {
11851   MachineInstr *MI = MRI.def_begin(Reg)->getParent();
11852   // There is definitely at least one copy.
11853   assert(MI->getOpcode() == TargetOpcode::COPY &&
11854          "start of copy chain MUST be COPY");
11855   Reg = MI->getOperand(1).getReg();
11856   MI = MRI.def_begin(Reg)->getParent();
11857   // There may be an optional second copy.
11858   if (MI->getOpcode() == TargetOpcode::COPY) {
11859     assert(Reg.isVirtual() && "expected COPY of virtual register");
11860     Reg = MI->getOperand(1).getReg();
11861     assert(Reg.isPhysical() && "expected COPY of physical register");
11862     MI = MRI.def_begin(Reg)->getParent();
11863   }
11864   // The start of the chain must be an INLINEASM_BR.
11865   assert(MI->getOpcode() == TargetOpcode::INLINEASM_BR &&
11866          "end of copy chain MUST be INLINEASM_BR");
11867   return Reg;
11868 }
11869 
11870 // We must do this walk rather than the simpler
11871 //   setValue(&I, getCopyFromRegs(CBR, CBR->getType()));
11872 // otherwise we will end up with copies of virtregs only valid along direct
11873 // edges.
11874 void SelectionDAGBuilder::visitCallBrLandingPad(const CallInst &I) {
11875   SmallVector<EVT, 8> ResultVTs;
11876   SmallVector<SDValue, 8> ResultValues;
11877   const auto *CBR =
11878       cast<CallBrInst>(I.getParent()->getUniquePredecessor()->getTerminator());
11879 
11880   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
11881   const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
11882   MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
11883 
11884   unsigned InitialDef = FuncInfo.ValueMap[CBR];
11885   SDValue Chain = DAG.getRoot();
11886 
11887   // Re-parse the asm constraints string.
11888   TargetLowering::AsmOperandInfoVector TargetConstraints =
11889       TLI.ParseConstraints(DAG.getDataLayout(), TRI, *CBR);
11890   for (auto &T : TargetConstraints) {
11891     SDISelAsmOperandInfo OpInfo(T);
11892     if (OpInfo.Type != InlineAsm::isOutput)
11893       continue;
11894 
11895     // Pencil in OpInfo.ConstraintType and OpInfo.ConstraintVT based on the
11896     // individual constraint.
11897     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
11898 
11899     switch (OpInfo.ConstraintType) {
11900     case TargetLowering::C_Register:
11901     case TargetLowering::C_RegisterClass: {
11902       // Fill in OpInfo.AssignedRegs.Regs.
11903       getRegistersForValue(DAG, getCurSDLoc(), OpInfo, OpInfo);
11904 
11905       // getRegistersForValue may produce 1 to many registers based on whether
11906       // the OpInfo.ConstraintVT is legal on the target or not.
11907       for (size_t i = 0, e = OpInfo.AssignedRegs.Regs.size(); i != e; ++i) {
11908         Register OriginalDef = FollowCopyChain(MRI, InitialDef++);
11909         if (Register::isPhysicalRegister(OriginalDef))
11910           FuncInfo.MBB->addLiveIn(OriginalDef);
11911         // Update the assigned registers to use the original defs.
11912         OpInfo.AssignedRegs.Regs[i] = OriginalDef;
11913       }
11914 
11915       SDValue V = OpInfo.AssignedRegs.getCopyFromRegs(
11916           DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, CBR);
11917       ResultValues.push_back(V);
11918       ResultVTs.push_back(OpInfo.ConstraintVT);
11919       break;
11920     }
11921     case TargetLowering::C_Other: {
11922       SDValue Flag;
11923       SDValue V = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
11924                                                   OpInfo, DAG);
11925       ++InitialDef;
11926       ResultValues.push_back(V);
11927       ResultVTs.push_back(OpInfo.ConstraintVT);
11928       break;
11929     }
11930     default:
11931       break;
11932     }
11933   }
11934   SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
11935                           DAG.getVTList(ResultVTs), ResultValues);
11936   setValue(&I, V);
11937 }
11938