1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This implements routines for translating from LLVM IR into SelectionDAG IR. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #define DEBUG_TYPE "isel" 15 #include "SDNodeDbgValue.h" 16 #include "SelectionDAGBuilder.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/PostOrderIterator.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/Analysis/AliasAnalysis.h" 21 #include "llvm/Analysis/ConstantFolding.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/Constants.h" 24 #include "llvm/CallingConv.h" 25 #include "llvm/DebugInfo.h" 26 #include "llvm/DerivedTypes.h" 27 #include "llvm/Function.h" 28 #include "llvm/GlobalVariable.h" 29 #include "llvm/InlineAsm.h" 30 #include "llvm/Instructions.h" 31 #include "llvm/Intrinsics.h" 32 #include "llvm/IntrinsicInst.h" 33 #include "llvm/LLVMContext.h" 34 #include "llvm/Module.h" 35 #include "llvm/CodeGen/Analysis.h" 36 #include "llvm/CodeGen/FastISel.h" 37 #include "llvm/CodeGen/FunctionLoweringInfo.h" 38 #include "llvm/CodeGen/GCStrategy.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineFunction.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineJumpTableInfo.h" 44 #include "llvm/CodeGen/MachineModuleInfo.h" 45 #include "llvm/CodeGen/MachineRegisterInfo.h" 46 #include "llvm/CodeGen/SelectionDAG.h" 47 #include "llvm/Target/TargetData.h" 48 #include "llvm/Target/TargetFrameLowering.h" 49 #include "llvm/Target/TargetInstrInfo.h" 50 #include "llvm/Target/TargetIntrinsicInfo.h" 51 #include "llvm/Target/TargetLibraryInfo.h" 52 #include "llvm/Target/TargetLowering.h" 53 #include "llvm/Target/TargetOptions.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/IntegersSubsetMapping.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MathExtras.h" 59 #include "llvm/Support/raw_ostream.h" 60 #include <algorithm> 61 using namespace llvm; 62 63 /// LimitFloatPrecision - Generate low-precision inline sequences for 64 /// some float libcalls (6, 8 or 12 bits). 65 static unsigned LimitFloatPrecision; 66 67 static cl::opt<unsigned, true> 68 LimitFPPrecision("limit-float-precision", 69 cl::desc("Generate low-precision inline sequences " 70 "for some float libcalls"), 71 cl::location(LimitFloatPrecision), 72 cl::init(0)); 73 74 // Limit the width of DAG chains. This is important in general to prevent 75 // prevent DAG-based analysis from blowing up. For example, alias analysis and 76 // load clustering may not complete in reasonable time. It is difficult to 77 // recognize and avoid this situation within each individual analysis, and 78 // future analyses are likely to have the same behavior. Limiting DAG width is 79 // the safe approach, and will be especially important with global DAGs. 80 // 81 // MaxParallelChains default is arbitrarily high to avoid affecting 82 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 83 // sequence over this should have been converted to llvm.memcpy by the 84 // frontend. It easy to induce this behavior with .ll code such as: 85 // %buffer = alloca [4096 x i8] 86 // %data = load [4096 x i8]* %argPtr 87 // store [4096 x i8] %data, [4096 x i8]* %buffer 88 static const unsigned MaxParallelChains = 64; 89 90 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 91 const SDValue *Parts, unsigned NumParts, 92 EVT PartVT, EVT ValueVT, const Value *V); 93 94 /// getCopyFromParts - Create a value that contains the specified legal parts 95 /// combined into the value they represent. If the parts combine to a type 96 /// larger then ValueVT then AssertOp can be used to specify whether the extra 97 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 98 /// (ISD::AssertSext). 99 static SDValue getCopyFromParts(SelectionDAG &DAG, DebugLoc DL, 100 const SDValue *Parts, 101 unsigned NumParts, EVT PartVT, EVT ValueVT, 102 const Value *V, 103 ISD::NodeType AssertOp = ISD::DELETED_NODE) { 104 if (ValueVT.isVector()) 105 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, 106 PartVT, ValueVT, V); 107 108 assert(NumParts > 0 && "No parts to assemble!"); 109 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 110 SDValue Val = Parts[0]; 111 112 if (NumParts > 1) { 113 // Assemble the value from multiple parts. 114 if (ValueVT.isInteger()) { 115 unsigned PartBits = PartVT.getSizeInBits(); 116 unsigned ValueBits = ValueVT.getSizeInBits(); 117 118 // Assemble the power of 2 part. 119 unsigned RoundParts = NumParts & (NumParts - 1) ? 120 1 << Log2_32(NumParts) : NumParts; 121 unsigned RoundBits = PartBits * RoundParts; 122 EVT RoundVT = RoundBits == ValueBits ? 123 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 124 SDValue Lo, Hi; 125 126 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 127 128 if (RoundParts > 2) { 129 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 130 PartVT, HalfVT, V); 131 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 132 RoundParts / 2, PartVT, HalfVT, V); 133 } else { 134 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 135 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 136 } 137 138 if (TLI.isBigEndian()) 139 std::swap(Lo, Hi); 140 141 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 142 143 if (RoundParts < NumParts) { 144 // Assemble the trailing non-power-of-2 part. 145 unsigned OddParts = NumParts - RoundParts; 146 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 147 Hi = getCopyFromParts(DAG, DL, 148 Parts + RoundParts, OddParts, PartVT, OddVT, V); 149 150 // Combine the round and odd parts. 151 Lo = Val; 152 if (TLI.isBigEndian()) 153 std::swap(Lo, Hi); 154 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 155 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 156 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 157 DAG.getConstant(Lo.getValueType().getSizeInBits(), 158 TLI.getPointerTy())); 159 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 160 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 161 } 162 } else if (PartVT.isFloatingPoint()) { 163 // FP split into multiple FP parts (for ppcf128) 164 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == EVT(MVT::f64) && 165 "Unexpected split"); 166 SDValue Lo, Hi; 167 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 168 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 169 if (TLI.isBigEndian()) 170 std::swap(Lo, Hi); 171 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 172 } else { 173 // FP split into integer parts (soft fp) 174 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 175 !PartVT.isVector() && "Unexpected split"); 176 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 177 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V); 178 } 179 } 180 181 // There is now one part, held in Val. Correct it to match ValueVT. 182 PartVT = Val.getValueType(); 183 184 if (PartVT == ValueVT) 185 return Val; 186 187 if (PartVT.isInteger() && ValueVT.isInteger()) { 188 if (ValueVT.bitsLT(PartVT)) { 189 // For a truncate, see if we have any information to 190 // indicate whether the truncated bits will always be 191 // zero or sign-extension. 192 if (AssertOp != ISD::DELETED_NODE) 193 Val = DAG.getNode(AssertOp, DL, PartVT, Val, 194 DAG.getValueType(ValueVT)); 195 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 196 } 197 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 198 } 199 200 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 201 // FP_ROUND's are always exact here. 202 if (ValueVT.bitsLT(Val.getValueType())) 203 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val, 204 DAG.getTargetConstant(1, TLI.getPointerTy())); 205 206 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 207 } 208 209 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) 210 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 211 212 llvm_unreachable("Unknown mismatch!"); 213 } 214 215 /// getCopyFromPartsVector - Create a value that contains the specified legal 216 /// parts combined into the value they represent. If the parts combine to a 217 /// type larger then ValueVT then AssertOp can be used to specify whether the 218 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 219 /// ValueVT (ISD::AssertSext). 220 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, DebugLoc DL, 221 const SDValue *Parts, unsigned NumParts, 222 EVT PartVT, EVT ValueVT, const Value *V) { 223 assert(ValueVT.isVector() && "Not a vector value"); 224 assert(NumParts > 0 && "No parts to assemble!"); 225 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 226 SDValue Val = Parts[0]; 227 228 // Handle a multi-element vector. 229 if (NumParts > 1) { 230 EVT IntermediateVT, RegisterVT; 231 unsigned NumIntermediates; 232 unsigned NumRegs = 233 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 234 NumIntermediates, RegisterVT); 235 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 236 NumParts = NumRegs; // Silence a compiler warning. 237 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 238 assert(RegisterVT == Parts[0].getValueType() && 239 "Part type doesn't match part!"); 240 241 // Assemble the parts into intermediate operands. 242 SmallVector<SDValue, 8> Ops(NumIntermediates); 243 if (NumIntermediates == NumParts) { 244 // If the register was not expanded, truncate or copy the value, 245 // as appropriate. 246 for (unsigned i = 0; i != NumParts; ++i) 247 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 248 PartVT, IntermediateVT, V); 249 } else if (NumParts > 0) { 250 // If the intermediate type was expanded, build the intermediate 251 // operands from the parts. 252 assert(NumParts % NumIntermediates == 0 && 253 "Must expand into a divisible number of parts!"); 254 unsigned Factor = NumParts / NumIntermediates; 255 for (unsigned i = 0; i != NumIntermediates; ++i) 256 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 257 PartVT, IntermediateVT, V); 258 } 259 260 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 261 // intermediate operands. 262 Val = DAG.getNode(IntermediateVT.isVector() ? 263 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL, 264 ValueVT, &Ops[0], NumIntermediates); 265 } 266 267 // There is now one part, held in Val. Correct it to match ValueVT. 268 PartVT = Val.getValueType(); 269 270 if (PartVT == ValueVT) 271 return Val; 272 273 if (PartVT.isVector()) { 274 // If the element type of the source/dest vectors are the same, but the 275 // parts vector has more elements than the value vector, then we have a 276 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 277 // elements we want. 278 if (PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 279 assert(PartVT.getVectorNumElements() > ValueVT.getVectorNumElements() && 280 "Cannot narrow, it would be a lossy transformation"); 281 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 282 DAG.getIntPtrConstant(0)); 283 } 284 285 // Vector/Vector bitcast. 286 if (ValueVT.getSizeInBits() == PartVT.getSizeInBits()) 287 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 288 289 assert(PartVT.getVectorNumElements() == ValueVT.getVectorNumElements() && 290 "Cannot handle this kind of promotion"); 291 // Promoted vector extract 292 bool Smaller = ValueVT.bitsLE(PartVT); 293 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 294 DL, ValueVT, Val); 295 296 } 297 298 // Trivial bitcast if the types are the same size and the destination 299 // vector type is legal. 300 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits() && 301 TLI.isTypeLegal(ValueVT)) 302 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 303 304 // Handle cases such as i8 -> <1 x i1> 305 if (ValueVT.getVectorNumElements() != 1) { 306 LLVMContext &Ctx = *DAG.getContext(); 307 Twine ErrMsg("non-trivial scalar-to-vector conversion"); 308 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) { 309 if (const CallInst *CI = dyn_cast<CallInst>(I)) 310 if (isa<InlineAsm>(CI->getCalledValue())) 311 ErrMsg = ErrMsg + ", possible invalid constraint for vector type"; 312 Ctx.emitError(I, ErrMsg); 313 } else { 314 Ctx.emitError(ErrMsg); 315 } 316 report_fatal_error("Cannot handle scalar-to-vector conversion!"); 317 } 318 319 if (ValueVT.getVectorNumElements() == 1 && 320 ValueVT.getVectorElementType() != PartVT) { 321 bool Smaller = ValueVT.bitsLE(PartVT); 322 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 323 DL, ValueVT.getScalarType(), Val); 324 } 325 326 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val); 327 } 328 329 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc dl, 330 SDValue Val, SDValue *Parts, unsigned NumParts, 331 EVT PartVT); 332 333 /// getCopyToParts - Create a series of nodes that contain the specified value 334 /// split into legal parts. If the parts contain more bits than Val, then, for 335 /// integers, ExtendKind can be used to specify how to generate the extra bits. 336 static void getCopyToParts(SelectionDAG &DAG, DebugLoc DL, 337 SDValue Val, SDValue *Parts, unsigned NumParts, 338 EVT PartVT, 339 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 340 EVT ValueVT = Val.getValueType(); 341 342 // Handle the vector case separately. 343 if (ValueVT.isVector()) 344 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT); 345 346 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 347 unsigned PartBits = PartVT.getSizeInBits(); 348 unsigned OrigNumParts = NumParts; 349 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!"); 350 351 if (NumParts == 0) 352 return; 353 354 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 355 if (PartVT == ValueVT) { 356 assert(NumParts == 1 && "No-op copy with multiple parts!"); 357 Parts[0] = Val; 358 return; 359 } 360 361 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 362 // If the parts cover more bits than the value has, promote the value. 363 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 364 assert(NumParts == 1 && "Do not know what to promote to!"); 365 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 366 } else { 367 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 368 ValueVT.isInteger() && 369 "Unknown mismatch!"); 370 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 371 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 372 if (PartVT == MVT::x86mmx) 373 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 374 } 375 } else if (PartBits == ValueVT.getSizeInBits()) { 376 // Different types of the same size. 377 assert(NumParts == 1 && PartVT != ValueVT); 378 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 379 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 380 // If the parts cover less bits than value has, truncate the value. 381 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 382 ValueVT.isInteger() && 383 "Unknown mismatch!"); 384 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 385 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 386 if (PartVT == MVT::x86mmx) 387 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 388 } 389 390 // The value may have changed - recompute ValueVT. 391 ValueVT = Val.getValueType(); 392 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 393 "Failed to tile the value with PartVT!"); 394 395 if (NumParts == 1) { 396 assert(PartVT == ValueVT && "Type conversion failed!"); 397 Parts[0] = Val; 398 return; 399 } 400 401 // Expand the value into multiple parts. 402 if (NumParts & (NumParts - 1)) { 403 // The number of parts is not a power of 2. Split off and copy the tail. 404 assert(PartVT.isInteger() && ValueVT.isInteger() && 405 "Do not know what to expand to!"); 406 unsigned RoundParts = 1 << Log2_32(NumParts); 407 unsigned RoundBits = RoundParts * PartBits; 408 unsigned OddParts = NumParts - RoundParts; 409 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 410 DAG.getIntPtrConstant(RoundBits)); 411 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT); 412 413 if (TLI.isBigEndian()) 414 // The odd parts were reversed by getCopyToParts - unreverse them. 415 std::reverse(Parts + RoundParts, Parts + NumParts); 416 417 NumParts = RoundParts; 418 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 419 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 420 } 421 422 // The number of parts is a power of 2. Repeatedly bisect the value using 423 // EXTRACT_ELEMENT. 424 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 425 EVT::getIntegerVT(*DAG.getContext(), 426 ValueVT.getSizeInBits()), 427 Val); 428 429 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 430 for (unsigned i = 0; i < NumParts; i += StepSize) { 431 unsigned ThisBits = StepSize * PartBits / 2; 432 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 433 SDValue &Part0 = Parts[i]; 434 SDValue &Part1 = Parts[i+StepSize/2]; 435 436 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 437 ThisVT, Part0, DAG.getIntPtrConstant(1)); 438 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 439 ThisVT, Part0, DAG.getIntPtrConstant(0)); 440 441 if (ThisBits == PartBits && ThisVT != PartVT) { 442 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 443 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 444 } 445 } 446 } 447 448 if (TLI.isBigEndian()) 449 std::reverse(Parts, Parts + OrigNumParts); 450 } 451 452 453 /// getCopyToPartsVector - Create a series of nodes that contain the specified 454 /// value split into legal parts. 455 static void getCopyToPartsVector(SelectionDAG &DAG, DebugLoc DL, 456 SDValue Val, SDValue *Parts, unsigned NumParts, 457 EVT PartVT) { 458 EVT ValueVT = Val.getValueType(); 459 assert(ValueVT.isVector() && "Not a vector"); 460 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 461 462 if (NumParts == 1) { 463 if (PartVT == ValueVT) { 464 // Nothing to do. 465 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 466 // Bitconvert vector->vector case. 467 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 468 } else if (PartVT.isVector() && 469 PartVT.getVectorElementType() == ValueVT.getVectorElementType() && 470 PartVT.getVectorNumElements() > ValueVT.getVectorNumElements()) { 471 EVT ElementVT = PartVT.getVectorElementType(); 472 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 473 // undef elements. 474 SmallVector<SDValue, 16> Ops; 475 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i) 476 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 477 ElementVT, Val, DAG.getIntPtrConstant(i))); 478 479 for (unsigned i = ValueVT.getVectorNumElements(), 480 e = PartVT.getVectorNumElements(); i != e; ++i) 481 Ops.push_back(DAG.getUNDEF(ElementVT)); 482 483 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size()); 484 485 // FIXME: Use CONCAT for 2x -> 4x. 486 487 //SDValue UndefElts = DAG.getUNDEF(VectorTy); 488 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts); 489 } else if (PartVT.isVector() && 490 PartVT.getVectorElementType().bitsGE( 491 ValueVT.getVectorElementType()) && 492 PartVT.getVectorNumElements() == ValueVT.getVectorNumElements()) { 493 494 // Promoted vector extract 495 bool Smaller = PartVT.bitsLE(ValueVT); 496 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 497 DL, PartVT, Val); 498 } else{ 499 // Vector -> scalar conversion. 500 assert(ValueVT.getVectorNumElements() == 1 && 501 "Only trivial vector-to-scalar conversions should get here!"); 502 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 503 PartVT, Val, DAG.getIntPtrConstant(0)); 504 505 bool Smaller = ValueVT.bitsLE(PartVT); 506 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND), 507 DL, PartVT, Val); 508 } 509 510 Parts[0] = Val; 511 return; 512 } 513 514 // Handle a multi-element vector. 515 EVT IntermediateVT, RegisterVT; 516 unsigned NumIntermediates; 517 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, 518 IntermediateVT, 519 NumIntermediates, RegisterVT); 520 unsigned NumElements = ValueVT.getVectorNumElements(); 521 522 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 523 NumParts = NumRegs; // Silence a compiler warning. 524 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 525 526 // Split the vector into intermediate operands. 527 SmallVector<SDValue, 8> Ops(NumIntermediates); 528 for (unsigned i = 0; i != NumIntermediates; ++i) { 529 if (IntermediateVT.isVector()) 530 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, 531 IntermediateVT, Val, 532 DAG.getIntPtrConstant(i * (NumElements / NumIntermediates))); 533 else 534 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, 535 IntermediateVT, Val, DAG.getIntPtrConstant(i)); 536 } 537 538 // Split the intermediate operands into legal parts. 539 if (NumParts == NumIntermediates) { 540 // If the register was not expanded, promote or copy the value, 541 // as appropriate. 542 for (unsigned i = 0; i != NumParts; ++i) 543 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT); 544 } else if (NumParts > 0) { 545 // If the intermediate type was expanded, split each the value into 546 // legal parts. 547 assert(NumParts % NumIntermediates == 0 && 548 "Must expand into a divisible number of parts!"); 549 unsigned Factor = NumParts / NumIntermediates; 550 for (unsigned i = 0; i != NumIntermediates; ++i) 551 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT); 552 } 553 } 554 555 556 557 558 namespace { 559 /// RegsForValue - This struct represents the registers (physical or virtual) 560 /// that a particular set of values is assigned, and the type information 561 /// about the value. The most common situation is to represent one value at a 562 /// time, but struct or array values are handled element-wise as multiple 563 /// values. The splitting of aggregates is performed recursively, so that we 564 /// never have aggregate-typed registers. The values at this point do not 565 /// necessarily have legal types, so each value may require one or more 566 /// registers of some legal type. 567 /// 568 struct RegsForValue { 569 /// ValueVTs - The value types of the values, which may not be legal, and 570 /// may need be promoted or synthesized from one or more registers. 571 /// 572 SmallVector<EVT, 4> ValueVTs; 573 574 /// RegVTs - The value types of the registers. This is the same size as 575 /// ValueVTs and it records, for each value, what the type of the assigned 576 /// register or registers are. (Individual values are never synthesized 577 /// from more than one type of register.) 578 /// 579 /// With virtual registers, the contents of RegVTs is redundant with TLI's 580 /// getRegisterType member function, however when with physical registers 581 /// it is necessary to have a separate record of the types. 582 /// 583 SmallVector<EVT, 4> RegVTs; 584 585 /// Regs - This list holds the registers assigned to the values. 586 /// Each legal or promoted value requires one register, and each 587 /// expanded value requires multiple registers. 588 /// 589 SmallVector<unsigned, 4> Regs; 590 591 RegsForValue() {} 592 593 RegsForValue(const SmallVector<unsigned, 4> ®s, 594 EVT regvt, EVT valuevt) 595 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {} 596 597 RegsForValue(LLVMContext &Context, const TargetLowering &tli, 598 unsigned Reg, Type *Ty) { 599 ComputeValueVTs(tli, Ty, ValueVTs); 600 601 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 602 EVT ValueVT = ValueVTs[Value]; 603 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT); 604 EVT RegisterVT = tli.getRegisterType(Context, ValueVT); 605 for (unsigned i = 0; i != NumRegs; ++i) 606 Regs.push_back(Reg + i); 607 RegVTs.push_back(RegisterVT); 608 Reg += NumRegs; 609 } 610 } 611 612 /// areValueTypesLegal - Return true if types of all the values are legal. 613 bool areValueTypesLegal(const TargetLowering &TLI) { 614 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) { 615 EVT RegisterVT = RegVTs[Value]; 616 if (!TLI.isTypeLegal(RegisterVT)) 617 return false; 618 } 619 return true; 620 } 621 622 /// append - Add the specified values to this one. 623 void append(const RegsForValue &RHS) { 624 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end()); 625 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end()); 626 Regs.append(RHS.Regs.begin(), RHS.Regs.end()); 627 } 628 629 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 630 /// this value and returns the result as a ValueVTs value. This uses 631 /// Chain/Flag as the input and updates them for the output Chain/Flag. 632 /// If the Flag pointer is NULL, no flag is used. 633 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo, 634 DebugLoc dl, 635 SDValue &Chain, SDValue *Flag, 636 const Value *V = 0) const; 637 638 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 639 /// specified value into the registers specified by this object. This uses 640 /// Chain/Flag as the input and updates them for the output Chain/Flag. 641 /// If the Flag pointer is NULL, no flag is used. 642 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 643 SDValue &Chain, SDValue *Flag) const; 644 645 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 646 /// operand list. This adds the code marker, matching input operand index 647 /// (if applicable), and includes the number of values added into it. 648 void AddInlineAsmOperands(unsigned Kind, 649 bool HasMatching, unsigned MatchingIdx, 650 SelectionDAG &DAG, 651 std::vector<SDValue> &Ops) const; 652 }; 653 } 654 655 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from 656 /// this value and returns the result as a ValueVT value. This uses 657 /// Chain/Flag as the input and updates them for the output Chain/Flag. 658 /// If the Flag pointer is NULL, no flag is used. 659 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 660 FunctionLoweringInfo &FuncInfo, 661 DebugLoc dl, 662 SDValue &Chain, SDValue *Flag, 663 const Value *V) const { 664 // A Value with type {} or [0 x %t] needs no registers. 665 if (ValueVTs.empty()) 666 return SDValue(); 667 668 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 669 670 // Assemble the legal parts into the final values. 671 SmallVector<SDValue, 4> Values(ValueVTs.size()); 672 SmallVector<SDValue, 8> Parts; 673 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 674 // Copy the legal parts from the registers. 675 EVT ValueVT = ValueVTs[Value]; 676 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 677 EVT RegisterVT = RegVTs[Value]; 678 679 Parts.resize(NumRegs); 680 for (unsigned i = 0; i != NumRegs; ++i) { 681 SDValue P; 682 if (Flag == 0) { 683 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 684 } else { 685 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 686 *Flag = P.getValue(2); 687 } 688 689 Chain = P.getValue(1); 690 Parts[i] = P; 691 692 // If the source register was virtual and if we know something about it, 693 // add an assert node. 694 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) || 695 !RegisterVT.isInteger() || RegisterVT.isVector()) 696 continue; 697 698 const FunctionLoweringInfo::LiveOutInfo *LOI = 699 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 700 if (!LOI) 701 continue; 702 703 unsigned RegSize = RegisterVT.getSizeInBits(); 704 unsigned NumSignBits = LOI->NumSignBits; 705 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes(); 706 707 // FIXME: We capture more information than the dag can represent. For 708 // now, just use the tightest assertzext/assertsext possible. 709 bool isSExt = true; 710 EVT FromVT(MVT::Other); 711 if (NumSignBits == RegSize) 712 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1 713 else if (NumZeroBits >= RegSize-1) 714 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1 715 else if (NumSignBits > RegSize-8) 716 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8 717 else if (NumZeroBits >= RegSize-8) 718 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8 719 else if (NumSignBits > RegSize-16) 720 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16 721 else if (NumZeroBits >= RegSize-16) 722 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16 723 else if (NumSignBits > RegSize-32) 724 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32 725 else if (NumZeroBits >= RegSize-32) 726 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32 727 else 728 continue; 729 730 // Add an assertion node. 731 assert(FromVT != MVT::Other); 732 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 733 RegisterVT, P, DAG.getValueType(FromVT)); 734 } 735 736 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), 737 NumRegs, RegisterVT, ValueVT, V); 738 Part += NumRegs; 739 Parts.clear(); 740 } 741 742 return DAG.getNode(ISD::MERGE_VALUES, dl, 743 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 744 &Values[0], ValueVTs.size()); 745 } 746 747 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the 748 /// specified value into the registers specified by this object. This uses 749 /// Chain/Flag as the input and updates them for the output Chain/Flag. 750 /// If the Flag pointer is NULL, no flag is used. 751 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, DebugLoc dl, 752 SDValue &Chain, SDValue *Flag) const { 753 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 754 755 // Get the list of the values's legal parts. 756 unsigned NumRegs = Regs.size(); 757 SmallVector<SDValue, 8> Parts(NumRegs); 758 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 759 EVT ValueVT = ValueVTs[Value]; 760 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT); 761 EVT RegisterVT = RegVTs[Value]; 762 763 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), 764 &Parts[Part], NumParts, RegisterVT); 765 Part += NumParts; 766 } 767 768 // Copy the parts into the registers. 769 SmallVector<SDValue, 8> Chains(NumRegs); 770 for (unsigned i = 0; i != NumRegs; ++i) { 771 SDValue Part; 772 if (Flag == 0) { 773 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 774 } else { 775 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 776 *Flag = Part.getValue(1); 777 } 778 779 Chains[i] = Part.getValue(0); 780 } 781 782 if (NumRegs == 1 || Flag) 783 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 784 // flagged to it. That is the CopyToReg nodes and the user are considered 785 // a single scheduling unit. If we create a TokenFactor and return it as 786 // chain, then the TokenFactor is both a predecessor (operand) of the 787 // user as well as a successor (the TF operands are flagged to the user). 788 // c1, f1 = CopyToReg 789 // c2, f2 = CopyToReg 790 // c3 = TokenFactor c1, c2 791 // ... 792 // = op c3, ..., f2 793 Chain = Chains[NumRegs-1]; 794 else 795 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs); 796 } 797 798 /// AddInlineAsmOperands - Add this value to the specified inlineasm node 799 /// operand list. This adds the code marker and includes the number of 800 /// values added into it. 801 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 802 unsigned MatchingIdx, 803 SelectionDAG &DAG, 804 std::vector<SDValue> &Ops) const { 805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 806 807 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 808 if (HasMatching) 809 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 810 else if (!Regs.empty() && 811 TargetRegisterInfo::isVirtualRegister(Regs.front())) { 812 // Put the register class of the virtual registers in the flag word. That 813 // way, later passes can recompute register class constraints for inline 814 // assembly as well as normal instructions. 815 // Don't do this for tied operands that can use the regclass information 816 // from the def. 817 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 818 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 819 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 820 } 821 822 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32); 823 Ops.push_back(Res); 824 825 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 826 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 827 EVT RegisterVT = RegVTs[Value]; 828 for (unsigned i = 0; i != NumRegs; ++i) { 829 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 830 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT)); 831 } 832 } 833 } 834 835 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa, 836 const TargetLibraryInfo *li) { 837 AA = &aa; 838 GFI = gfi; 839 LibInfo = li; 840 TD = DAG.getTarget().getTargetData(); 841 Context = DAG.getContext(); 842 LPadToCallSiteMap.clear(); 843 } 844 845 /// clear - Clear out the current SelectionDAG and the associated 846 /// state and prepare this SelectionDAGBuilder object to be used 847 /// for a new block. This doesn't clear out information about 848 /// additional blocks that are needed to complete switch lowering 849 /// or PHI node updating; that information is cleared out as it is 850 /// consumed. 851 void SelectionDAGBuilder::clear() { 852 NodeMap.clear(); 853 UnusedArgNodeMap.clear(); 854 PendingLoads.clear(); 855 PendingExports.clear(); 856 CurDebugLoc = DebugLoc(); 857 HasTailCall = false; 858 } 859 860 /// clearDanglingDebugInfo - Clear the dangling debug information 861 /// map. This function is separated from the clear so that debug 862 /// information that is dangling in a basic block can be properly 863 /// resolved in a different basic block. This allows the 864 /// SelectionDAG to resolve dangling debug information attached 865 /// to PHI nodes. 866 void SelectionDAGBuilder::clearDanglingDebugInfo() { 867 DanglingDebugInfoMap.clear(); 868 } 869 870 /// getRoot - Return the current virtual root of the Selection DAG, 871 /// flushing any PendingLoad items. This must be done before emitting 872 /// a store or any other node that may need to be ordered after any 873 /// prior load instructions. 874 /// 875 SDValue SelectionDAGBuilder::getRoot() { 876 if (PendingLoads.empty()) 877 return DAG.getRoot(); 878 879 if (PendingLoads.size() == 1) { 880 SDValue Root = PendingLoads[0]; 881 DAG.setRoot(Root); 882 PendingLoads.clear(); 883 return Root; 884 } 885 886 // Otherwise, we have to make a token factor node. 887 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 888 &PendingLoads[0], PendingLoads.size()); 889 PendingLoads.clear(); 890 DAG.setRoot(Root); 891 return Root; 892 } 893 894 /// getControlRoot - Similar to getRoot, but instead of flushing all the 895 /// PendingLoad items, flush all the PendingExports items. It is necessary 896 /// to do this before emitting a terminator instruction. 897 /// 898 SDValue SelectionDAGBuilder::getControlRoot() { 899 SDValue Root = DAG.getRoot(); 900 901 if (PendingExports.empty()) 902 return Root; 903 904 // Turn all of the CopyToReg chains into one factored node. 905 if (Root.getOpcode() != ISD::EntryToken) { 906 unsigned i = 0, e = PendingExports.size(); 907 for (; i != e; ++i) { 908 assert(PendingExports[i].getNode()->getNumOperands() > 1); 909 if (PendingExports[i].getNode()->getOperand(0) == Root) 910 break; // Don't add the root if we already indirectly depend on it. 911 } 912 913 if (i == e) 914 PendingExports.push_back(Root); 915 } 916 917 Root = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 918 &PendingExports[0], 919 PendingExports.size()); 920 PendingExports.clear(); 921 DAG.setRoot(Root); 922 return Root; 923 } 924 925 void SelectionDAGBuilder::AssignOrderingToNode(const SDNode *Node) { 926 if (DAG.GetOrdering(Node) != 0) return; // Already has ordering. 927 DAG.AssignOrdering(Node, SDNodeOrder); 928 929 for (unsigned I = 0, E = Node->getNumOperands(); I != E; ++I) 930 AssignOrderingToNode(Node->getOperand(I).getNode()); 931 } 932 933 void SelectionDAGBuilder::visit(const Instruction &I) { 934 // Set up outgoing PHI node register values before emitting the terminator. 935 if (isa<TerminatorInst>(&I)) 936 HandlePHINodesInSuccessorBlocks(I.getParent()); 937 938 CurDebugLoc = I.getDebugLoc(); 939 940 visit(I.getOpcode(), I); 941 942 if (!isa<TerminatorInst>(&I) && !HasTailCall) 943 CopyToExportRegsIfNeeded(&I); 944 945 CurDebugLoc = DebugLoc(); 946 } 947 948 void SelectionDAGBuilder::visitPHI(const PHINode &) { 949 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 950 } 951 952 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 953 // Note: this doesn't use InstVisitor, because it has to work with 954 // ConstantExpr's in addition to instructions. 955 switch (Opcode) { 956 default: llvm_unreachable("Unknown instruction type encountered!"); 957 // Build the switch statement using the Instruction.def file. 958 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 959 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 960 #include "llvm/Instruction.def" 961 } 962 963 // Assign the ordering to the freshly created DAG nodes. 964 if (NodeMap.count(&I)) { 965 ++SDNodeOrder; 966 AssignOrderingToNode(getValue(&I).getNode()); 967 } 968 } 969 970 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 971 // generate the debug data structures now that we've seen its definition. 972 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 973 SDValue Val) { 974 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V]; 975 if (DDI.getDI()) { 976 const DbgValueInst *DI = DDI.getDI(); 977 DebugLoc dl = DDI.getdl(); 978 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 979 MDNode *Variable = DI->getVariable(); 980 uint64_t Offset = DI->getOffset(); 981 SDDbgValue *SDV; 982 if (Val.getNode()) { 983 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) { 984 SDV = DAG.getDbgValue(Variable, Val.getNode(), 985 Val.getResNo(), Offset, dl, DbgSDNodeOrder); 986 DAG.AddDbgValue(SDV, Val.getNode(), false); 987 } 988 } else 989 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 990 DanglingDebugInfoMap[V] = DanglingDebugInfo(); 991 } 992 } 993 994 /// getValue - Return an SDValue for the given Value. 995 SDValue SelectionDAGBuilder::getValue(const Value *V) { 996 // If we already have an SDValue for this value, use it. It's important 997 // to do this first, so that we don't create a CopyFromReg if we already 998 // have a regular SDValue. 999 SDValue &N = NodeMap[V]; 1000 if (N.getNode()) return N; 1001 1002 // If there's a virtual register allocated and initialized for this 1003 // value, use it. 1004 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V); 1005 if (It != FuncInfo.ValueMap.end()) { 1006 unsigned InReg = It->second; 1007 RegsForValue RFV(*DAG.getContext(), TLI, InReg, V->getType()); 1008 SDValue Chain = DAG.getEntryNode(); 1009 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V); 1010 resolveDanglingDebugInfo(V, N); 1011 return N; 1012 } 1013 1014 // Otherwise create a new SDValue and remember it. 1015 SDValue Val = getValueImpl(V); 1016 NodeMap[V] = Val; 1017 resolveDanglingDebugInfo(V, Val); 1018 return Val; 1019 } 1020 1021 /// getNonRegisterValue - Return an SDValue for the given Value, but 1022 /// don't look in FuncInfo.ValueMap for a virtual register. 1023 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1024 // If we already have an SDValue for this value, use it. 1025 SDValue &N = NodeMap[V]; 1026 if (N.getNode()) return N; 1027 1028 // Otherwise create a new SDValue and remember it. 1029 SDValue Val = getValueImpl(V); 1030 NodeMap[V] = Val; 1031 resolveDanglingDebugInfo(V, Val); 1032 return Val; 1033 } 1034 1035 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1036 /// Create an SDValue for the given value. 1037 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1038 if (const Constant *C = dyn_cast<Constant>(V)) { 1039 EVT VT = TLI.getValueType(V->getType(), true); 1040 1041 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1042 return DAG.getConstant(*CI, VT); 1043 1044 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1045 return DAG.getGlobalAddress(GV, getCurDebugLoc(), VT); 1046 1047 if (isa<ConstantPointerNull>(C)) 1048 return DAG.getConstant(0, TLI.getPointerTy()); 1049 1050 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1051 return DAG.getConstantFP(*CFP, VT); 1052 1053 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1054 return DAG.getUNDEF(VT); 1055 1056 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1057 visit(CE->getOpcode(), *CE); 1058 SDValue N1 = NodeMap[V]; 1059 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1060 return N1; 1061 } 1062 1063 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1064 SmallVector<SDValue, 4> Constants; 1065 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end(); 1066 OI != OE; ++OI) { 1067 SDNode *Val = getValue(*OI).getNode(); 1068 // If the operand is an empty aggregate, there are no values. 1069 if (!Val) continue; 1070 // Add each leaf value from the operand to the Constants list 1071 // to form a flattened list of all the values. 1072 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1073 Constants.push_back(SDValue(Val, i)); 1074 } 1075 1076 return DAG.getMergeValues(&Constants[0], Constants.size(), 1077 getCurDebugLoc()); 1078 } 1079 1080 if (const ConstantDataSequential *CDS = 1081 dyn_cast<ConstantDataSequential>(C)) { 1082 SmallVector<SDValue, 4> Ops; 1083 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1084 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1085 // Add each leaf value from the operand to the Constants list 1086 // to form a flattened list of all the values. 1087 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1088 Ops.push_back(SDValue(Val, i)); 1089 } 1090 1091 if (isa<ArrayType>(CDS->getType())) 1092 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurDebugLoc()); 1093 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1094 VT, &Ops[0], Ops.size()); 1095 } 1096 1097 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1098 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1099 "Unknown struct or array constant!"); 1100 1101 SmallVector<EVT, 4> ValueVTs; 1102 ComputeValueVTs(TLI, C->getType(), ValueVTs); 1103 unsigned NumElts = ValueVTs.size(); 1104 if (NumElts == 0) 1105 return SDValue(); // empty struct 1106 SmallVector<SDValue, 4> Constants(NumElts); 1107 for (unsigned i = 0; i != NumElts; ++i) { 1108 EVT EltVT = ValueVTs[i]; 1109 if (isa<UndefValue>(C)) 1110 Constants[i] = DAG.getUNDEF(EltVT); 1111 else if (EltVT.isFloatingPoint()) 1112 Constants[i] = DAG.getConstantFP(0, EltVT); 1113 else 1114 Constants[i] = DAG.getConstant(0, EltVT); 1115 } 1116 1117 return DAG.getMergeValues(&Constants[0], NumElts, 1118 getCurDebugLoc()); 1119 } 1120 1121 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1122 return DAG.getBlockAddress(BA, VT); 1123 1124 VectorType *VecTy = cast<VectorType>(V->getType()); 1125 unsigned NumElements = VecTy->getNumElements(); 1126 1127 // Now that we know the number and type of the elements, get that number of 1128 // elements into the Ops array based on what kind of constant it is. 1129 SmallVector<SDValue, 16> Ops; 1130 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1131 for (unsigned i = 0; i != NumElements; ++i) 1132 Ops.push_back(getValue(CV->getOperand(i))); 1133 } else { 1134 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!"); 1135 EVT EltVT = TLI.getValueType(VecTy->getElementType()); 1136 1137 SDValue Op; 1138 if (EltVT.isFloatingPoint()) 1139 Op = DAG.getConstantFP(0, EltVT); 1140 else 1141 Op = DAG.getConstant(0, EltVT); 1142 Ops.assign(NumElements, Op); 1143 } 1144 1145 // Create a BUILD_VECTOR node. 1146 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 1147 VT, &Ops[0], Ops.size()); 1148 } 1149 1150 // If this is a static alloca, generate it as the frameindex instead of 1151 // computation. 1152 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1153 DenseMap<const AllocaInst*, int>::iterator SI = 1154 FuncInfo.StaticAllocaMap.find(AI); 1155 if (SI != FuncInfo.StaticAllocaMap.end()) 1156 return DAG.getFrameIndex(SI->second, TLI.getPointerTy()); 1157 } 1158 1159 // If this is an instruction which fast-isel has deferred, select it now. 1160 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1161 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1162 RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType()); 1163 SDValue Chain = DAG.getEntryNode(); 1164 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), Chain, NULL, V); 1165 } 1166 1167 llvm_unreachable("Can't get register for value!"); 1168 } 1169 1170 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1171 SDValue Chain = getControlRoot(); 1172 SmallVector<ISD::OutputArg, 8> Outs; 1173 SmallVector<SDValue, 8> OutVals; 1174 1175 if (!FuncInfo.CanLowerReturn) { 1176 unsigned DemoteReg = FuncInfo.DemoteRegister; 1177 const Function *F = I.getParent()->getParent(); 1178 1179 // Emit a store of the return value through the virtual register. 1180 // Leave Outs empty so that LowerReturn won't try to load return 1181 // registers the usual way. 1182 SmallVector<EVT, 1> PtrValueVTs; 1183 ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()), 1184 PtrValueVTs); 1185 1186 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]); 1187 SDValue RetOp = getValue(I.getOperand(0)); 1188 1189 SmallVector<EVT, 4> ValueVTs; 1190 SmallVector<uint64_t, 4> Offsets; 1191 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets); 1192 unsigned NumValues = ValueVTs.size(); 1193 1194 SmallVector<SDValue, 4> Chains(NumValues); 1195 for (unsigned i = 0; i != NumValues; ++i) { 1196 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), 1197 RetPtr.getValueType(), RetPtr, 1198 DAG.getIntPtrConstant(Offsets[i])); 1199 Chains[i] = 1200 DAG.getStore(Chain, getCurDebugLoc(), 1201 SDValue(RetOp.getNode(), RetOp.getResNo() + i), 1202 // FIXME: better loc info would be nice. 1203 Add, MachinePointerInfo(), false, false, 0); 1204 } 1205 1206 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 1207 MVT::Other, &Chains[0], NumValues); 1208 } else if (I.getNumOperands() != 0) { 1209 SmallVector<EVT, 4> ValueVTs; 1210 ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs); 1211 unsigned NumValues = ValueVTs.size(); 1212 if (NumValues) { 1213 SDValue RetOp = getValue(I.getOperand(0)); 1214 for (unsigned j = 0, f = NumValues; j != f; ++j) { 1215 EVT VT = ValueVTs[j]; 1216 1217 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1218 1219 const Function *F = I.getParent()->getParent(); 1220 if (F->paramHasAttr(0, Attribute::SExt)) 1221 ExtendKind = ISD::SIGN_EXTEND; 1222 else if (F->paramHasAttr(0, Attribute::ZExt)) 1223 ExtendKind = ISD::ZERO_EXTEND; 1224 1225 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1226 VT = TLI.getTypeForExtArgOrReturn(*DAG.getContext(), VT, ExtendKind); 1227 1228 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), VT); 1229 EVT PartVT = TLI.getRegisterType(*DAG.getContext(), VT); 1230 SmallVector<SDValue, 4> Parts(NumParts); 1231 getCopyToParts(DAG, getCurDebugLoc(), 1232 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1233 &Parts[0], NumParts, PartVT, ExtendKind); 1234 1235 // 'inreg' on function refers to return value 1236 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1237 if (F->paramHasAttr(0, Attribute::InReg)) 1238 Flags.setInReg(); 1239 1240 // Propagate extension type if any 1241 if (ExtendKind == ISD::SIGN_EXTEND) 1242 Flags.setSExt(); 1243 else if (ExtendKind == ISD::ZERO_EXTEND) 1244 Flags.setZExt(); 1245 1246 for (unsigned i = 0; i < NumParts; ++i) { 1247 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1248 /*isfixed=*/true)); 1249 OutVals.push_back(Parts[i]); 1250 } 1251 } 1252 } 1253 } 1254 1255 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg(); 1256 CallingConv::ID CallConv = 1257 DAG.getMachineFunction().getFunction()->getCallingConv(); 1258 Chain = TLI.LowerReturn(Chain, CallConv, isVarArg, 1259 Outs, OutVals, getCurDebugLoc(), DAG); 1260 1261 // Verify that the target's LowerReturn behaved as expected. 1262 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 1263 "LowerReturn didn't return a valid chain!"); 1264 1265 // Update the DAG with the new chain value resulting from return lowering. 1266 DAG.setRoot(Chain); 1267 } 1268 1269 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 1270 /// created for it, emit nodes to copy the value into the virtual 1271 /// registers. 1272 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 1273 // Skip empty types 1274 if (V->getType()->isEmptyTy()) 1275 return; 1276 1277 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 1278 if (VMI != FuncInfo.ValueMap.end()) { 1279 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 1280 CopyValueToVirtualRegister(V, VMI->second); 1281 } 1282 } 1283 1284 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 1285 /// the current basic block, add it to ValueMap now so that we'll get a 1286 /// CopyTo/FromReg. 1287 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 1288 // No need to export constants. 1289 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 1290 1291 // Already exported? 1292 if (FuncInfo.isExportedInst(V)) return; 1293 1294 unsigned Reg = FuncInfo.InitializeRegForValue(V); 1295 CopyValueToVirtualRegister(V, Reg); 1296 } 1297 1298 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 1299 const BasicBlock *FromBB) { 1300 // The operands of the setcc have to be in this block. We don't know 1301 // how to export them from some other block. 1302 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 1303 // Can export from current BB. 1304 if (VI->getParent() == FromBB) 1305 return true; 1306 1307 // Is already exported, noop. 1308 return FuncInfo.isExportedInst(V); 1309 } 1310 1311 // If this is an argument, we can export it if the BB is the entry block or 1312 // if it is already exported. 1313 if (isa<Argument>(V)) { 1314 if (FromBB == &FromBB->getParent()->getEntryBlock()) 1315 return true; 1316 1317 // Otherwise, can only export this if it is already exported. 1318 return FuncInfo.isExportedInst(V); 1319 } 1320 1321 // Otherwise, constants can always be exported. 1322 return true; 1323 } 1324 1325 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 1326 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src, 1327 const MachineBasicBlock *Dst) const { 1328 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1329 if (!BPI) 1330 return 0; 1331 const BasicBlock *SrcBB = Src->getBasicBlock(); 1332 const BasicBlock *DstBB = Dst->getBasicBlock(); 1333 return BPI->getEdgeWeight(SrcBB, DstBB); 1334 } 1335 1336 void SelectionDAGBuilder:: 1337 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst, 1338 uint32_t Weight /* = 0 */) { 1339 if (!Weight) 1340 Weight = getEdgeWeight(Src, Dst); 1341 Src->addSuccessor(Dst, Weight); 1342 } 1343 1344 1345 static bool InBlock(const Value *V, const BasicBlock *BB) { 1346 if (const Instruction *I = dyn_cast<Instruction>(V)) 1347 return I->getParent() == BB; 1348 return true; 1349 } 1350 1351 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 1352 /// This function emits a branch and is used at the leaves of an OR or an 1353 /// AND operator tree. 1354 /// 1355 void 1356 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 1357 MachineBasicBlock *TBB, 1358 MachineBasicBlock *FBB, 1359 MachineBasicBlock *CurBB, 1360 MachineBasicBlock *SwitchBB) { 1361 const BasicBlock *BB = CurBB->getBasicBlock(); 1362 1363 // If the leaf of the tree is a comparison, merge the condition into 1364 // the caseblock. 1365 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 1366 // The operands of the cmp have to be in this block. We don't know 1367 // how to export them from some other block. If this is the first block 1368 // of the sequence, no exporting is needed. 1369 if (CurBB == SwitchBB || 1370 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 1371 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 1372 ISD::CondCode Condition; 1373 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 1374 Condition = getICmpCondCode(IC->getPredicate()); 1375 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) { 1376 Condition = getFCmpCondCode(FC->getPredicate()); 1377 if (TM.Options.NoNaNsFPMath) 1378 Condition = getFCmpCodeWithoutNaN(Condition); 1379 } else { 1380 Condition = ISD::SETEQ; // silence warning. 1381 llvm_unreachable("Unknown compare instruction"); 1382 } 1383 1384 CaseBlock CB(Condition, BOp->getOperand(0), 1385 BOp->getOperand(1), NULL, TBB, FBB, CurBB); 1386 SwitchCases.push_back(CB); 1387 return; 1388 } 1389 } 1390 1391 // Create a CaseBlock record representing this branch. 1392 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()), 1393 NULL, TBB, FBB, CurBB); 1394 SwitchCases.push_back(CB); 1395 } 1396 1397 /// FindMergedConditions - If Cond is an expression like 1398 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 1399 MachineBasicBlock *TBB, 1400 MachineBasicBlock *FBB, 1401 MachineBasicBlock *CurBB, 1402 MachineBasicBlock *SwitchBB, 1403 unsigned Opc) { 1404 // If this node is not part of the or/and tree, emit it as a branch. 1405 const Instruction *BOp = dyn_cast<Instruction>(Cond); 1406 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) || 1407 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() || 1408 BOp->getParent() != CurBB->getBasicBlock() || 1409 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) || 1410 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) { 1411 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB); 1412 return; 1413 } 1414 1415 // Create TmpBB after CurBB. 1416 MachineFunction::iterator BBI = CurBB; 1417 MachineFunction &MF = DAG.getMachineFunction(); 1418 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 1419 CurBB->getParent()->insert(++BBI, TmpBB); 1420 1421 if (Opc == Instruction::Or) { 1422 // Codegen X | Y as: 1423 // jmp_if_X TBB 1424 // jmp TmpBB 1425 // TmpBB: 1426 // jmp_if_Y TBB 1427 // jmp FBB 1428 // 1429 1430 // Emit the LHS condition. 1431 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc); 1432 1433 // Emit the RHS condition into TmpBB. 1434 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1435 } else { 1436 assert(Opc == Instruction::And && "Unknown merge op!"); 1437 // Codegen X & Y as: 1438 // jmp_if_X TmpBB 1439 // jmp FBB 1440 // TmpBB: 1441 // jmp_if_Y TBB 1442 // jmp FBB 1443 // 1444 // This requires creation of TmpBB after CurBB. 1445 1446 // Emit the LHS condition. 1447 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc); 1448 1449 // Emit the RHS condition into TmpBB. 1450 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc); 1451 } 1452 } 1453 1454 /// If the set of cases should be emitted as a series of branches, return true. 1455 /// If we should emit this as a bunch of and/or'd together conditions, return 1456 /// false. 1457 bool 1458 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){ 1459 if (Cases.size() != 2) return true; 1460 1461 // If this is two comparisons of the same values or'd or and'd together, they 1462 // will get folded into a single comparison, so don't emit two blocks. 1463 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 1464 Cases[0].CmpRHS == Cases[1].CmpRHS) || 1465 (Cases[0].CmpRHS == Cases[1].CmpLHS && 1466 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 1467 return false; 1468 } 1469 1470 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 1471 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 1472 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 1473 Cases[0].CC == Cases[1].CC && 1474 isa<Constant>(Cases[0].CmpRHS) && 1475 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 1476 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 1477 return false; 1478 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 1479 return false; 1480 } 1481 1482 return true; 1483 } 1484 1485 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 1486 MachineBasicBlock *BrMBB = FuncInfo.MBB; 1487 1488 // Update machine-CFG edges. 1489 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 1490 1491 // Figure out which block is immediately after the current one. 1492 MachineBasicBlock *NextBlock = 0; 1493 MachineFunction::iterator BBI = BrMBB; 1494 if (++BBI != FuncInfo.MF->end()) 1495 NextBlock = BBI; 1496 1497 if (I.isUnconditional()) { 1498 // Update machine-CFG edges. 1499 BrMBB->addSuccessor(Succ0MBB); 1500 1501 // If this is not a fall-through branch, emit the branch. 1502 if (Succ0MBB != NextBlock) 1503 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1504 MVT::Other, getControlRoot(), 1505 DAG.getBasicBlock(Succ0MBB))); 1506 1507 return; 1508 } 1509 1510 // If this condition is one of the special cases we handle, do special stuff 1511 // now. 1512 const Value *CondVal = I.getCondition(); 1513 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 1514 1515 // If this is a series of conditions that are or'd or and'd together, emit 1516 // this as a sequence of branches instead of setcc's with and/or operations. 1517 // As long as jumps are not expensive, this should improve performance. 1518 // For example, instead of something like: 1519 // cmp A, B 1520 // C = seteq 1521 // cmp D, E 1522 // F = setle 1523 // or C, F 1524 // jnz foo 1525 // Emit: 1526 // cmp A, B 1527 // je foo 1528 // cmp D, E 1529 // jle foo 1530 // 1531 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) { 1532 if (!TLI.isJumpExpensive() && 1533 BOp->hasOneUse() && 1534 (BOp->getOpcode() == Instruction::And || 1535 BOp->getOpcode() == Instruction::Or)) { 1536 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, 1537 BOp->getOpcode()); 1538 // If the compares in later blocks need to use values not currently 1539 // exported from this block, export them now. This block should always 1540 // be the first entry. 1541 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 1542 1543 // Allow some cases to be rejected. 1544 if (ShouldEmitAsBranches(SwitchCases)) { 1545 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) { 1546 ExportFromCurrentBlock(SwitchCases[i].CmpLHS); 1547 ExportFromCurrentBlock(SwitchCases[i].CmpRHS); 1548 } 1549 1550 // Emit the branch for this block. 1551 visitSwitchCase(SwitchCases[0], BrMBB); 1552 SwitchCases.erase(SwitchCases.begin()); 1553 return; 1554 } 1555 1556 // Okay, we decided not to do this, remove any inserted MBB's and clear 1557 // SwitchCases. 1558 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) 1559 FuncInfo.MF->erase(SwitchCases[i].ThisBB); 1560 1561 SwitchCases.clear(); 1562 } 1563 } 1564 1565 // Create a CaseBlock record representing this branch. 1566 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 1567 NULL, Succ0MBB, Succ1MBB, BrMBB); 1568 1569 // Use visitSwitchCase to actually insert the fast branch sequence for this 1570 // cond branch. 1571 visitSwitchCase(CB, BrMBB); 1572 } 1573 1574 /// visitSwitchCase - Emits the necessary code to represent a single node in 1575 /// the binary search tree resulting from lowering a switch instruction. 1576 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 1577 MachineBasicBlock *SwitchBB) { 1578 SDValue Cond; 1579 SDValue CondLHS = getValue(CB.CmpLHS); 1580 DebugLoc dl = getCurDebugLoc(); 1581 1582 // Build the setcc now. 1583 if (CB.CmpMHS == NULL) { 1584 // Fold "(X == true)" to X and "(X == false)" to !X to 1585 // handle common cases produced by branch lowering. 1586 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 1587 CB.CC == ISD::SETEQ) 1588 Cond = CondLHS; 1589 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 1590 CB.CC == ISD::SETEQ) { 1591 SDValue True = DAG.getConstant(1, CondLHS.getValueType()); 1592 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 1593 } else 1594 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC); 1595 } else { 1596 assert(CB.CC == ISD::SETCC_INVALID && 1597 "Condition is undefined for to-the-range belonging check."); 1598 1599 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 1600 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 1601 1602 SDValue CmpOp = getValue(CB.CmpMHS); 1603 EVT VT = CmpOp.getValueType(); 1604 1605 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(false)) { 1606 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT), 1607 ISD::SETULE); 1608 } else { 1609 SDValue SUB = DAG.getNode(ISD::SUB, dl, 1610 VT, CmpOp, DAG.getConstant(Low, VT)); 1611 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 1612 DAG.getConstant(High-Low, VT), ISD::SETULE); 1613 } 1614 } 1615 1616 // Update successor info 1617 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight); 1618 // TrueBB and FalseBB are always different unless the incoming IR is 1619 // degenerate. This only happens when running llc on weird IR. 1620 if (CB.TrueBB != CB.FalseBB) 1621 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight); 1622 1623 // Set NextBlock to be the MBB immediately after the current one, if any. 1624 // This is used to avoid emitting unnecessary branches to the next block. 1625 MachineBasicBlock *NextBlock = 0; 1626 MachineFunction::iterator BBI = SwitchBB; 1627 if (++BBI != FuncInfo.MF->end()) 1628 NextBlock = BBI; 1629 1630 // If the lhs block is the next block, invert the condition so that we can 1631 // fall through to the lhs instead of the rhs block. 1632 if (CB.TrueBB == NextBlock) { 1633 std::swap(CB.TrueBB, CB.FalseBB); 1634 SDValue True = DAG.getConstant(1, Cond.getValueType()); 1635 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 1636 } 1637 1638 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 1639 MVT::Other, getControlRoot(), Cond, 1640 DAG.getBasicBlock(CB.TrueBB)); 1641 1642 // Insert the false branch. Do this even if it's a fall through branch, 1643 // this makes it easier to do DAG optimizations which require inverting 1644 // the branch condition. 1645 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 1646 DAG.getBasicBlock(CB.FalseBB)); 1647 1648 DAG.setRoot(BrCond); 1649 } 1650 1651 /// visitJumpTable - Emit JumpTable node in the current MBB 1652 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) { 1653 // Emit the code for the jump table 1654 assert(JT.Reg != -1U && "Should lower JT Header first!"); 1655 EVT PTy = TLI.getPointerTy(); 1656 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1657 JT.Reg, PTy); 1658 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 1659 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurDebugLoc(), 1660 MVT::Other, Index.getValue(1), 1661 Table, Index); 1662 DAG.setRoot(BrJumpTable); 1663 } 1664 1665 /// visitJumpTableHeader - This function emits necessary code to produce index 1666 /// in the JumpTable from switch case. 1667 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT, 1668 JumpTableHeader &JTH, 1669 MachineBasicBlock *SwitchBB) { 1670 // Subtract the lowest switch case value from the value being switched on and 1671 // conditional branch to default mbb if the result is greater than the 1672 // difference between smallest and largest cases. 1673 SDValue SwitchOp = getValue(JTH.SValue); 1674 EVT VT = SwitchOp.getValueType(); 1675 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1676 DAG.getConstant(JTH.First, VT)); 1677 1678 // The SDNode we just created, which holds the value being switched on minus 1679 // the smallest case value, needs to be copied to a virtual register so it 1680 // can be used as an index into the jump table in a subsequent basic block. 1681 // This value may be smaller or larger than the target's pointer type, and 1682 // therefore require extension or truncating. 1683 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), TLI.getPointerTy()); 1684 1685 unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy()); 1686 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1687 JumpTableReg, SwitchOp); 1688 JT.Reg = JumpTableReg; 1689 1690 // Emit the range check for the jump table, and branch to the default block 1691 // for the switch statement if the value being switched on exceeds the largest 1692 // case in the switch. 1693 SDValue CMP = DAG.getSetCC(getCurDebugLoc(), 1694 TLI.getSetCCResultType(Sub.getValueType()), Sub, 1695 DAG.getConstant(JTH.Last-JTH.First,VT), 1696 ISD::SETUGT); 1697 1698 // Set NextBlock to be the MBB immediately after the current one, if any. 1699 // This is used to avoid emitting unnecessary branches to the next block. 1700 MachineBasicBlock *NextBlock = 0; 1701 MachineFunction::iterator BBI = SwitchBB; 1702 1703 if (++BBI != FuncInfo.MF->end()) 1704 NextBlock = BBI; 1705 1706 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1707 MVT::Other, CopyTo, CMP, 1708 DAG.getBasicBlock(JT.Default)); 1709 1710 if (JT.MBB != NextBlock) 1711 BrCond = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrCond, 1712 DAG.getBasicBlock(JT.MBB)); 1713 1714 DAG.setRoot(BrCond); 1715 } 1716 1717 /// visitBitTestHeader - This function emits necessary code to produce value 1718 /// suitable for "bit tests" 1719 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 1720 MachineBasicBlock *SwitchBB) { 1721 // Subtract the minimum value 1722 SDValue SwitchOp = getValue(B.SValue); 1723 EVT VT = SwitchOp.getValueType(); 1724 SDValue Sub = DAG.getNode(ISD::SUB, getCurDebugLoc(), VT, SwitchOp, 1725 DAG.getConstant(B.First, VT)); 1726 1727 // Check range 1728 SDValue RangeCmp = DAG.getSetCC(getCurDebugLoc(), 1729 TLI.getSetCCResultType(Sub.getValueType()), 1730 Sub, DAG.getConstant(B.Range, VT), 1731 ISD::SETUGT); 1732 1733 // Determine the type of the test operands. 1734 bool UsePtrType = false; 1735 if (!TLI.isTypeLegal(VT)) 1736 UsePtrType = true; 1737 else { 1738 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 1739 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 1740 // Switch table case range are encoded into series of masks. 1741 // Just use pointer type, it's guaranteed to fit. 1742 UsePtrType = true; 1743 break; 1744 } 1745 } 1746 if (UsePtrType) { 1747 VT = TLI.getPointerTy(); 1748 Sub = DAG.getZExtOrTrunc(Sub, getCurDebugLoc(), VT); 1749 } 1750 1751 B.RegVT = VT; 1752 B.Reg = FuncInfo.CreateReg(VT); 1753 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurDebugLoc(), 1754 B.Reg, Sub); 1755 1756 // Set NextBlock to be the MBB immediately after the current one, if any. 1757 // This is used to avoid emitting unnecessary branches to the next block. 1758 MachineBasicBlock *NextBlock = 0; 1759 MachineFunction::iterator BBI = SwitchBB; 1760 if (++BBI != FuncInfo.MF->end()) 1761 NextBlock = BBI; 1762 1763 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 1764 1765 addSuccessorWithWeight(SwitchBB, B.Default); 1766 addSuccessorWithWeight(SwitchBB, MBB); 1767 1768 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1769 MVT::Other, CopyTo, RangeCmp, 1770 DAG.getBasicBlock(B.Default)); 1771 1772 if (MBB != NextBlock) 1773 BrRange = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, CopyTo, 1774 DAG.getBasicBlock(MBB)); 1775 1776 DAG.setRoot(BrRange); 1777 } 1778 1779 /// visitBitTestCase - this function produces one "bit test" 1780 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 1781 MachineBasicBlock* NextMBB, 1782 uint32_t BranchWeightToNext, 1783 unsigned Reg, 1784 BitTestCase &B, 1785 MachineBasicBlock *SwitchBB) { 1786 EVT VT = BB.RegVT; 1787 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurDebugLoc(), 1788 Reg, VT); 1789 SDValue Cmp; 1790 unsigned PopCount = CountPopulation_64(B.Mask); 1791 if (PopCount == 1) { 1792 // Testing for a single bit; just compare the shift count with what it 1793 // would need to be to shift a 1 bit in that position. 1794 Cmp = DAG.getSetCC(getCurDebugLoc(), 1795 TLI.getSetCCResultType(VT), 1796 ShiftOp, 1797 DAG.getConstant(CountTrailingZeros_64(B.Mask), VT), 1798 ISD::SETEQ); 1799 } else if (PopCount == BB.Range) { 1800 // There is only one zero bit in the range, test for it directly. 1801 Cmp = DAG.getSetCC(getCurDebugLoc(), 1802 TLI.getSetCCResultType(VT), 1803 ShiftOp, 1804 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), 1805 ISD::SETNE); 1806 } else { 1807 // Make desired shift 1808 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurDebugLoc(), VT, 1809 DAG.getConstant(1, VT), ShiftOp); 1810 1811 // Emit bit tests and jumps 1812 SDValue AndOp = DAG.getNode(ISD::AND, getCurDebugLoc(), 1813 VT, SwitchVal, DAG.getConstant(B.Mask, VT)); 1814 Cmp = DAG.getSetCC(getCurDebugLoc(), 1815 TLI.getSetCCResultType(VT), 1816 AndOp, DAG.getConstant(0, VT), 1817 ISD::SETNE); 1818 } 1819 1820 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight. 1821 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight); 1822 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext. 1823 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext); 1824 1825 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurDebugLoc(), 1826 MVT::Other, getControlRoot(), 1827 Cmp, DAG.getBasicBlock(B.TargetBB)); 1828 1829 // Set NextBlock to be the MBB immediately after the current one, if any. 1830 // This is used to avoid emitting unnecessary branches to the next block. 1831 MachineBasicBlock *NextBlock = 0; 1832 MachineFunction::iterator BBI = SwitchBB; 1833 if (++BBI != FuncInfo.MF->end()) 1834 NextBlock = BBI; 1835 1836 if (NextMBB != NextBlock) 1837 BrAnd = DAG.getNode(ISD::BR, getCurDebugLoc(), MVT::Other, BrAnd, 1838 DAG.getBasicBlock(NextMBB)); 1839 1840 DAG.setRoot(BrAnd); 1841 } 1842 1843 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 1844 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 1845 1846 // Retrieve successors. 1847 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 1848 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)]; 1849 1850 const Value *Callee(I.getCalledValue()); 1851 const Function *Fn = dyn_cast<Function>(Callee); 1852 if (isa<InlineAsm>(Callee)) 1853 visitInlineAsm(&I); 1854 else if (Fn && Fn->isIntrinsic()) { 1855 assert(Fn->getIntrinsicID() == Intrinsic::donothing); 1856 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 1857 } else 1858 LowerCallTo(&I, getValue(Callee), false, LandingPad); 1859 1860 // If the value of the invoke is used outside of its defining block, make it 1861 // available as a virtual register. 1862 CopyToExportRegsIfNeeded(&I); 1863 1864 // Update successor info 1865 addSuccessorWithWeight(InvokeMBB, Return); 1866 addSuccessorWithWeight(InvokeMBB, LandingPad); 1867 1868 // Drop into normal successor. 1869 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 1870 MVT::Other, getControlRoot(), 1871 DAG.getBasicBlock(Return))); 1872 } 1873 1874 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 1875 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 1876 } 1877 1878 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 1879 assert(FuncInfo.MBB->isLandingPad() && 1880 "Call to landingpad not in landing pad!"); 1881 1882 MachineBasicBlock *MBB = FuncInfo.MBB; 1883 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 1884 AddLandingPadInfo(LP, MMI, MBB); 1885 1886 // If there aren't registers to copy the values into (e.g., during SjLj 1887 // exceptions), then don't bother to create these DAG nodes. 1888 if (TLI.getExceptionPointerRegister() == 0 && 1889 TLI.getExceptionSelectorRegister() == 0) 1890 return; 1891 1892 SmallVector<EVT, 2> ValueVTs; 1893 ComputeValueVTs(TLI, LP.getType(), ValueVTs); 1894 1895 // Insert the EXCEPTIONADDR instruction. 1896 assert(FuncInfo.MBB->isLandingPad() && 1897 "Call to eh.exception not in landing pad!"); 1898 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1899 SDValue Ops[2]; 1900 Ops[0] = DAG.getRoot(); 1901 SDValue Op1 = DAG.getNode(ISD::EXCEPTIONADDR, getCurDebugLoc(), VTs, Ops, 1); 1902 SDValue Chain = Op1.getValue(1); 1903 1904 // Insert the EHSELECTION instruction. 1905 VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other); 1906 Ops[0] = Op1; 1907 Ops[1] = Chain; 1908 SDValue Op2 = DAG.getNode(ISD::EHSELECTION, getCurDebugLoc(), VTs, Ops, 2); 1909 Chain = Op2.getValue(1); 1910 Op2 = DAG.getSExtOrTrunc(Op2, getCurDebugLoc(), MVT::i32); 1911 1912 Ops[0] = Op1; 1913 Ops[1] = Op2; 1914 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 1915 DAG.getVTList(&ValueVTs[0], ValueVTs.size()), 1916 &Ops[0], 2); 1917 1918 std::pair<SDValue, SDValue> RetPair = std::make_pair(Res, Chain); 1919 setValue(&LP, RetPair.first); 1920 DAG.setRoot(RetPair.second); 1921 } 1922 1923 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for 1924 /// small case ranges). 1925 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR, 1926 CaseRecVector& WorkList, 1927 const Value* SV, 1928 MachineBasicBlock *Default, 1929 MachineBasicBlock *SwitchBB) { 1930 // Size is the number of Cases represented by this range. 1931 size_t Size = CR.Range.second - CR.Range.first; 1932 if (Size > 3) 1933 return false; 1934 1935 // Get the MachineFunction which holds the current MBB. This is used when 1936 // inserting any additional MBBs necessary to represent the switch. 1937 MachineFunction *CurMF = FuncInfo.MF; 1938 1939 // Figure out which block is immediately after the current one. 1940 MachineBasicBlock *NextBlock = 0; 1941 MachineFunction::iterator BBI = CR.CaseBB; 1942 1943 if (++BBI != FuncInfo.MF->end()) 1944 NextBlock = BBI; 1945 1946 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1947 // If any two of the cases has the same destination, and if one value 1948 // is the same as the other, but has one bit unset that the other has set, 1949 // use bit manipulation to do two compares at once. For example: 1950 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 1951 // TODO: This could be extended to merge any 2 cases in switches with 3 cases. 1952 // TODO: Handle cases where CR.CaseBB != SwitchBB. 1953 if (Size == 2 && CR.CaseBB == SwitchBB) { 1954 Case &Small = *CR.Range.first; 1955 Case &Big = *(CR.Range.second-1); 1956 1957 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) { 1958 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue(); 1959 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue(); 1960 1961 // Check that there is only one bit different. 1962 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 && 1963 (SmallValue | BigValue) == BigValue) { 1964 // Isolate the common bit. 1965 APInt CommonBit = BigValue & ~SmallValue; 1966 assert((SmallValue | CommonBit) == BigValue && 1967 CommonBit.countPopulation() == 1 && "Not a common bit?"); 1968 1969 SDValue CondLHS = getValue(SV); 1970 EVT VT = CondLHS.getValueType(); 1971 DebugLoc DL = getCurDebugLoc(); 1972 1973 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 1974 DAG.getConstant(CommonBit, VT)); 1975 SDValue Cond = DAG.getSetCC(DL, MVT::i1, 1976 Or, DAG.getConstant(BigValue, VT), 1977 ISD::SETEQ); 1978 1979 // Update successor info. 1980 // Both Small and Big will jump to Small.BB, so we sum up the weights. 1981 addSuccessorWithWeight(SwitchBB, Small.BB, 1982 Small.ExtraWeight + Big.ExtraWeight); 1983 addSuccessorWithWeight(SwitchBB, Default, 1984 // The default destination is the first successor in IR. 1985 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0); 1986 1987 // Insert the true branch. 1988 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other, 1989 getControlRoot(), Cond, 1990 DAG.getBasicBlock(Small.BB)); 1991 1992 // Insert the false branch. 1993 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 1994 DAG.getBasicBlock(Default)); 1995 1996 DAG.setRoot(BrCond); 1997 return true; 1998 } 1999 } 2000 } 2001 2002 // Order cases by weight so the most likely case will be checked first. 2003 uint32_t UnhandledWeights = 0; 2004 if (BPI) { 2005 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) { 2006 uint32_t IWeight = I->ExtraWeight; 2007 UnhandledWeights += IWeight; 2008 for (CaseItr J = CR.Range.first; J < I; ++J) { 2009 uint32_t JWeight = J->ExtraWeight; 2010 if (IWeight > JWeight) 2011 std::swap(*I, *J); 2012 } 2013 } 2014 } 2015 // Rearrange the case blocks so that the last one falls through if possible. 2016 Case &BackCase = *(CR.Range.second-1); 2017 if (Size > 1 && 2018 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) { 2019 // The last case block won't fall through into 'NextBlock' if we emit the 2020 // branches in this order. See if rearranging a case value would help. 2021 // We start at the bottom as it's the case with the least weight. 2022 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I){ 2023 if (I->BB == NextBlock) { 2024 std::swap(*I, BackCase); 2025 break; 2026 } 2027 } 2028 } 2029 2030 // Create a CaseBlock record representing a conditional branch to 2031 // the Case's target mbb if the value being switched on SV is equal 2032 // to C. 2033 MachineBasicBlock *CurBlock = CR.CaseBB; 2034 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2035 MachineBasicBlock *FallThrough; 2036 if (I != E-1) { 2037 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock()); 2038 CurMF->insert(BBI, FallThrough); 2039 2040 // Put SV in a virtual register to make it available from the new blocks. 2041 ExportFromCurrentBlock(SV); 2042 } else { 2043 // If the last case doesn't match, go to the default block. 2044 FallThrough = Default; 2045 } 2046 2047 const Value *RHS, *LHS, *MHS; 2048 ISD::CondCode CC; 2049 if (I->High == I->Low) { 2050 // This is just small small case range :) containing exactly 1 case 2051 CC = ISD::SETEQ; 2052 LHS = SV; RHS = I->High; MHS = NULL; 2053 } else { 2054 CC = ISD::SETCC_INVALID; 2055 LHS = I->Low; MHS = SV; RHS = I->High; 2056 } 2057 2058 // The false weight should be sum of all un-handled cases. 2059 UnhandledWeights -= I->ExtraWeight; 2060 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough, 2061 /* me */ CurBlock, 2062 /* trueweight */ I->ExtraWeight, 2063 /* falseweight */ UnhandledWeights); 2064 2065 // If emitting the first comparison, just call visitSwitchCase to emit the 2066 // code into the current block. Otherwise, push the CaseBlock onto the 2067 // vector to be later processed by SDISel, and insert the node's MBB 2068 // before the next MBB. 2069 if (CurBlock == SwitchBB) 2070 visitSwitchCase(CB, SwitchBB); 2071 else 2072 SwitchCases.push_back(CB); 2073 2074 CurBlock = FallThrough; 2075 } 2076 2077 return true; 2078 } 2079 2080 static inline bool areJTsAllowed(const TargetLowering &TLI) { 2081 return TLI.supportJumpTables() && 2082 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) || 2083 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other)); 2084 } 2085 2086 static APInt ComputeRange(const APInt &First, const APInt &Last) { 2087 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1; 2088 APInt LastExt = Last.zext(BitWidth), FirstExt = First.zext(BitWidth); 2089 return (LastExt - FirstExt + 1ULL); 2090 } 2091 2092 /// handleJTSwitchCase - Emit jumptable for current switch case range 2093 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR, 2094 CaseRecVector &WorkList, 2095 const Value *SV, 2096 MachineBasicBlock *Default, 2097 MachineBasicBlock *SwitchBB) { 2098 Case& FrontCase = *CR.Range.first; 2099 Case& BackCase = *(CR.Range.second-1); 2100 2101 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2102 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2103 2104 APInt TSize(First.getBitWidth(), 0); 2105 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) 2106 TSize += I->size(); 2107 2108 if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries())) 2109 return false; 2110 2111 APInt Range = ComputeRange(First, Last); 2112 // The density is TSize / Range. Require at least 40%. 2113 // It should not be possible for IntTSize to saturate for sane code, but make 2114 // sure we handle Range saturation correctly. 2115 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10); 2116 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10); 2117 if (IntTSize * 10 < IntRange * 4) 2118 return false; 2119 2120 DEBUG(dbgs() << "Lowering jump table\n" 2121 << "First entry: " << First << ". Last entry: " << Last << '\n' 2122 << "Range: " << Range << ". Size: " << TSize << ".\n\n"); 2123 2124 // Get the MachineFunction which holds the current MBB. This is used when 2125 // inserting any additional MBBs necessary to represent the switch. 2126 MachineFunction *CurMF = FuncInfo.MF; 2127 2128 // Figure out which block is immediately after the current one. 2129 MachineFunction::iterator BBI = CR.CaseBB; 2130 ++BBI; 2131 2132 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2133 2134 // Create a new basic block to hold the code for loading the address 2135 // of the jump table, and jumping to it. Update successor information; 2136 // we will either branch to the default case for the switch, or the jump 2137 // table. 2138 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2139 CurMF->insert(BBI, JumpTableBB); 2140 2141 addSuccessorWithWeight(CR.CaseBB, Default); 2142 addSuccessorWithWeight(CR.CaseBB, JumpTableBB); 2143 2144 // Build a vector of destination BBs, corresponding to each target 2145 // of the jump table. If the value of the jump table slot corresponds to 2146 // a case statement, push the case's BB onto the vector, otherwise, push 2147 // the default BB. 2148 std::vector<MachineBasicBlock*> DestBBs; 2149 APInt TEI = First; 2150 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) { 2151 const APInt &Low = cast<ConstantInt>(I->Low)->getValue(); 2152 const APInt &High = cast<ConstantInt>(I->High)->getValue(); 2153 2154 if (Low.ule(TEI) && TEI.ule(High)) { 2155 DestBBs.push_back(I->BB); 2156 if (TEI==High) 2157 ++I; 2158 } else { 2159 DestBBs.push_back(Default); 2160 } 2161 } 2162 2163 // Calculate weight for each unique destination in CR. 2164 DenseMap<MachineBasicBlock*, uint32_t> DestWeights; 2165 if (FuncInfo.BPI) 2166 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) { 2167 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2168 DestWeights.find(I->BB); 2169 if (Itr != DestWeights.end()) 2170 Itr->second += I->ExtraWeight; 2171 else 2172 DestWeights[I->BB] = I->ExtraWeight; 2173 } 2174 2175 // Update successor info. Add one edge to each unique successor. 2176 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs()); 2177 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(), 2178 E = DestBBs.end(); I != E; ++I) { 2179 if (!SuccsHandled[(*I)->getNumber()]) { 2180 SuccsHandled[(*I)->getNumber()] = true; 2181 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr = 2182 DestWeights.find(*I); 2183 addSuccessorWithWeight(JumpTableBB, *I, 2184 Itr != DestWeights.end() ? Itr->second : 0); 2185 } 2186 } 2187 2188 // Create a jump table index for this jump table. 2189 unsigned JTEncoding = TLI.getJumpTableEncoding(); 2190 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding) 2191 ->createJumpTableIndex(DestBBs); 2192 2193 // Set the jump table information so that we can codegen it as a second 2194 // MachineBasicBlock 2195 JumpTable JT(-1U, JTI, JumpTableBB, Default); 2196 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB)); 2197 if (CR.CaseBB == SwitchBB) 2198 visitJumpTableHeader(JT, JTH, SwitchBB); 2199 2200 JTCases.push_back(JumpTableBlock(JTH, JT)); 2201 return true; 2202 } 2203 2204 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into 2205 /// 2 subtrees. 2206 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR, 2207 CaseRecVector& WorkList, 2208 const Value* SV, 2209 MachineBasicBlock *Default, 2210 MachineBasicBlock *SwitchBB) { 2211 // Get the MachineFunction which holds the current MBB. This is used when 2212 // inserting any additional MBBs necessary to represent the switch. 2213 MachineFunction *CurMF = FuncInfo.MF; 2214 2215 // Figure out which block is immediately after the current one. 2216 MachineFunction::iterator BBI = CR.CaseBB; 2217 ++BBI; 2218 2219 Case& FrontCase = *CR.Range.first; 2220 Case& BackCase = *(CR.Range.second-1); 2221 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2222 2223 // Size is the number of Cases represented by this range. 2224 unsigned Size = CR.Range.second - CR.Range.first; 2225 2226 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue(); 2227 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue(); 2228 double FMetric = 0; 2229 CaseItr Pivot = CR.Range.first + Size/2; 2230 2231 // Select optimal pivot, maximizing sum density of LHS and RHS. This will 2232 // (heuristically) allow us to emit JumpTable's later. 2233 APInt TSize(First.getBitWidth(), 0); 2234 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2235 I!=E; ++I) 2236 TSize += I->size(); 2237 2238 APInt LSize = FrontCase.size(); 2239 APInt RSize = TSize-LSize; 2240 DEBUG(dbgs() << "Selecting best pivot: \n" 2241 << "First: " << First << ", Last: " << Last <<'\n' 2242 << "LSize: " << LSize << ", RSize: " << RSize << '\n'); 2243 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second; 2244 J!=E; ++I, ++J) { 2245 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue(); 2246 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue(); 2247 APInt Range = ComputeRange(LEnd, RBegin); 2248 assert((Range - 2ULL).isNonNegative() && 2249 "Invalid case distance"); 2250 // Use volatile double here to avoid excess precision issues on some hosts, 2251 // e.g. that use 80-bit X87 registers. 2252 volatile double LDensity = 2253 (double)LSize.roundToDouble() / 2254 (LEnd - First + 1ULL).roundToDouble(); 2255 volatile double RDensity = 2256 (double)RSize.roundToDouble() / 2257 (Last - RBegin + 1ULL).roundToDouble(); 2258 double Metric = Range.logBase2()*(LDensity+RDensity); 2259 // Should always split in some non-trivial place 2260 DEBUG(dbgs() <<"=>Step\n" 2261 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n' 2262 << "LDensity: " << LDensity 2263 << ", RDensity: " << RDensity << '\n' 2264 << "Metric: " << Metric << '\n'); 2265 if (FMetric < Metric) { 2266 Pivot = J; 2267 FMetric = Metric; 2268 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n'); 2269 } 2270 2271 LSize += J->size(); 2272 RSize -= J->size(); 2273 } 2274 if (areJTsAllowed(TLI)) { 2275 // If our case is dense we *really* should handle it earlier! 2276 assert((FMetric > 0) && "Should handle dense range earlier!"); 2277 } else { 2278 Pivot = CR.Range.first + Size/2; 2279 } 2280 2281 CaseRange LHSR(CR.Range.first, Pivot); 2282 CaseRange RHSR(Pivot, CR.Range.second); 2283 const Constant *C = Pivot->Low; 2284 MachineBasicBlock *FalseBB = 0, *TrueBB = 0; 2285 2286 // We know that we branch to the LHS if the Value being switched on is 2287 // less than the Pivot value, C. We use this to optimize our binary 2288 // tree a bit, by recognizing that if SV is greater than or equal to the 2289 // LHS's Case Value, and that Case Value is exactly one less than the 2290 // Pivot's Value, then we can branch directly to the LHS's Target, 2291 // rather than creating a leaf node for it. 2292 if ((LHSR.second - LHSR.first) == 1 && 2293 LHSR.first->High == CR.GE && 2294 cast<ConstantInt>(C)->getValue() == 2295 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) { 2296 TrueBB = LHSR.first->BB; 2297 } else { 2298 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2299 CurMF->insert(BBI, TrueBB); 2300 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR)); 2301 2302 // Put SV in a virtual register to make it available from the new blocks. 2303 ExportFromCurrentBlock(SV); 2304 } 2305 2306 // Similar to the optimization above, if the Value being switched on is 2307 // known to be less than the Constant CR.LT, and the current Case Value 2308 // is CR.LT - 1, then we can branch directly to the target block for 2309 // the current Case Value, rather than emitting a RHS leaf node for it. 2310 if ((RHSR.second - RHSR.first) == 1 && CR.LT && 2311 cast<ConstantInt>(RHSR.first->Low)->getValue() == 2312 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) { 2313 FalseBB = RHSR.first->BB; 2314 } else { 2315 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2316 CurMF->insert(BBI, FalseBB); 2317 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR)); 2318 2319 // Put SV in a virtual register to make it available from the new blocks. 2320 ExportFromCurrentBlock(SV); 2321 } 2322 2323 // Create a CaseBlock record representing a conditional branch to 2324 // the LHS node if the value being switched on SV is less than C. 2325 // Otherwise, branch to LHS. 2326 CaseBlock CB(ISD::SETULT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB); 2327 2328 if (CR.CaseBB == SwitchBB) 2329 visitSwitchCase(CB, SwitchBB); 2330 else 2331 SwitchCases.push_back(CB); 2332 2333 return true; 2334 } 2335 2336 /// handleBitTestsSwitchCase - if current case range has few destination and 2337 /// range span less, than machine word bitwidth, encode case range into series 2338 /// of masks and emit bit tests with these masks. 2339 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR, 2340 CaseRecVector& WorkList, 2341 const Value* SV, 2342 MachineBasicBlock* Default, 2343 MachineBasicBlock *SwitchBB){ 2344 EVT PTy = TLI.getPointerTy(); 2345 unsigned IntPtrBits = PTy.getSizeInBits(); 2346 2347 Case& FrontCase = *CR.Range.first; 2348 Case& BackCase = *(CR.Range.second-1); 2349 2350 // Get the MachineFunction which holds the current MBB. This is used when 2351 // inserting any additional MBBs necessary to represent the switch. 2352 MachineFunction *CurMF = FuncInfo.MF; 2353 2354 // If target does not have legal shift left, do not emit bit tests at all. 2355 if (!TLI.isOperationLegal(ISD::SHL, TLI.getPointerTy())) 2356 return false; 2357 2358 size_t numCmps = 0; 2359 for (CaseItr I = CR.Range.first, E = CR.Range.second; 2360 I!=E; ++I) { 2361 // Single case counts one, case range - two. 2362 numCmps += (I->Low == I->High ? 1 : 2); 2363 } 2364 2365 // Count unique destinations 2366 SmallSet<MachineBasicBlock*, 4> Dests; 2367 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2368 Dests.insert(I->BB); 2369 if (Dests.size() > 3) 2370 // Don't bother the code below, if there are too much unique destinations 2371 return false; 2372 } 2373 DEBUG(dbgs() << "Total number of unique destinations: " 2374 << Dests.size() << '\n' 2375 << "Total number of comparisons: " << numCmps << '\n'); 2376 2377 // Compute span of values. 2378 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue(); 2379 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue(); 2380 APInt cmpRange = maxValue - minValue; 2381 2382 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n' 2383 << "Low bound: " << minValue << '\n' 2384 << "High bound: " << maxValue << '\n'); 2385 2386 if (cmpRange.uge(IntPtrBits) || 2387 (!(Dests.size() == 1 && numCmps >= 3) && 2388 !(Dests.size() == 2 && numCmps >= 5) && 2389 !(Dests.size() >= 3 && numCmps >= 6))) 2390 return false; 2391 2392 DEBUG(dbgs() << "Emitting bit tests\n"); 2393 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth()); 2394 2395 // Optimize the case where all the case values fit in a 2396 // word without having to subtract minValue. In this case, 2397 // we can optimize away the subtraction. 2398 if (maxValue.ult(IntPtrBits)) { 2399 cmpRange = maxValue; 2400 } else { 2401 lowBound = minValue; 2402 } 2403 2404 CaseBitsVector CasesBits; 2405 unsigned i, count = 0; 2406 2407 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) { 2408 MachineBasicBlock* Dest = I->BB; 2409 for (i = 0; i < count; ++i) 2410 if (Dest == CasesBits[i].BB) 2411 break; 2412 2413 if (i == count) { 2414 assert((count < 3) && "Too much destinations to test!"); 2415 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/)); 2416 count++; 2417 } 2418 2419 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue(); 2420 const APInt& highValue = cast<ConstantInt>(I->High)->getValue(); 2421 2422 uint64_t lo = (lowValue - lowBound).getZExtValue(); 2423 uint64_t hi = (highValue - lowBound).getZExtValue(); 2424 CasesBits[i].ExtraWeight += I->ExtraWeight; 2425 2426 for (uint64_t j = lo; j <= hi; j++) { 2427 CasesBits[i].Mask |= 1ULL << j; 2428 CasesBits[i].Bits++; 2429 } 2430 2431 } 2432 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp()); 2433 2434 BitTestInfo BTC; 2435 2436 // Figure out which block is immediately after the current one. 2437 MachineFunction::iterator BBI = CR.CaseBB; 2438 ++BBI; 2439 2440 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock(); 2441 2442 DEBUG(dbgs() << "Cases:\n"); 2443 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) { 2444 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask 2445 << ", Bits: " << CasesBits[i].Bits 2446 << ", BB: " << CasesBits[i].BB << '\n'); 2447 2448 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB); 2449 CurMF->insert(BBI, CaseBB); 2450 BTC.push_back(BitTestCase(CasesBits[i].Mask, 2451 CaseBB, 2452 CasesBits[i].BB, CasesBits[i].ExtraWeight)); 2453 2454 // Put SV in a virtual register to make it available from the new blocks. 2455 ExportFromCurrentBlock(SV); 2456 } 2457 2458 BitTestBlock BTB(lowBound, cmpRange, SV, 2459 -1U, MVT::Other, (CR.CaseBB == SwitchBB), 2460 CR.CaseBB, Default, BTC); 2461 2462 if (CR.CaseBB == SwitchBB) 2463 visitBitTestHeader(BTB, SwitchBB); 2464 2465 BitTestCases.push_back(BTB); 2466 2467 return true; 2468 } 2469 2470 /// Clusterify - Transform simple list of Cases into list of CaseRange's 2471 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases, 2472 const SwitchInst& SI) { 2473 2474 /// Use a shorter form of declaration, and also 2475 /// show the we want to use CRSBuilder as Clusterifier. 2476 typedef IntegersSubsetMapping<MachineBasicBlock> Clusterifier; 2477 2478 Clusterifier TheClusterifier; 2479 2480 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2481 // Start with "simple" cases 2482 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end(); 2483 i != e; ++i) { 2484 const BasicBlock *SuccBB = i.getCaseSuccessor(); 2485 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB]; 2486 2487 TheClusterifier.add(i.getCaseValueEx(), SMBB, 2488 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0); 2489 } 2490 2491 TheClusterifier.optimize(); 2492 2493 size_t numCmps = 0; 2494 for (Clusterifier::RangeIterator i = TheClusterifier.begin(), 2495 e = TheClusterifier.end(); i != e; ++i, ++numCmps) { 2496 Clusterifier::Cluster &C = *i; 2497 // Update edge weight for the cluster. 2498 unsigned W = C.first.Weight; 2499 2500 // FIXME: Currently work with ConstantInt based numbers. 2501 // Changing it to APInt based is a pretty heavy for this commit. 2502 Cases.push_back(Case(C.first.getLow().toConstantInt(), 2503 C.first.getHigh().toConstantInt(), C.second, W)); 2504 2505 if (C.first.getLow() != C.first.getHigh()) 2506 // A range counts double, since it requires two compares. 2507 ++numCmps; 2508 } 2509 2510 return numCmps; 2511 } 2512 2513 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 2514 MachineBasicBlock *Last) { 2515 // Update JTCases. 2516 for (unsigned i = 0, e = JTCases.size(); i != e; ++i) 2517 if (JTCases[i].first.HeaderBB == First) 2518 JTCases[i].first.HeaderBB = Last; 2519 2520 // Update BitTestCases. 2521 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i) 2522 if (BitTestCases[i].Parent == First) 2523 BitTestCases[i].Parent = Last; 2524 } 2525 2526 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 2527 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 2528 2529 // Figure out which block is immediately after the current one. 2530 MachineBasicBlock *NextBlock = 0; 2531 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()]; 2532 2533 // If there is only the default destination, branch to it if it is not the 2534 // next basic block. Otherwise, just fall through. 2535 if (!SI.getNumCases()) { 2536 // Update machine-CFG edges. 2537 2538 // If this is not a fall-through branch, emit the branch. 2539 SwitchMBB->addSuccessor(Default); 2540 if (Default != NextBlock) 2541 DAG.setRoot(DAG.getNode(ISD::BR, getCurDebugLoc(), 2542 MVT::Other, getControlRoot(), 2543 DAG.getBasicBlock(Default))); 2544 2545 return; 2546 } 2547 2548 // If there are any non-default case statements, create a vector of Cases 2549 // representing each one, and sort the vector so that we can efficiently 2550 // create a binary search tree from them. 2551 CaseVector Cases; 2552 size_t numCmps = Clusterify(Cases, SI); 2553 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size() 2554 << ". Total compares: " << numCmps << '\n'); 2555 (void)numCmps; 2556 2557 // Get the Value to be switched on and default basic blocks, which will be 2558 // inserted into CaseBlock records, representing basic blocks in the binary 2559 // search tree. 2560 const Value *SV = SI.getCondition(); 2561 2562 // Push the initial CaseRec onto the worklist 2563 CaseRecVector WorkList; 2564 WorkList.push_back(CaseRec(SwitchMBB,0,0, 2565 CaseRange(Cases.begin(),Cases.end()))); 2566 2567 while (!WorkList.empty()) { 2568 // Grab a record representing a case range to process off the worklist 2569 CaseRec CR = WorkList.back(); 2570 WorkList.pop_back(); 2571 2572 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2573 continue; 2574 2575 // If the range has few cases (two or less) emit a series of specific 2576 // tests. 2577 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB)) 2578 continue; 2579 2580 // If the switch has more than N blocks, and is at least 40% dense, and the 2581 // target supports indirect branches, then emit a jump table rather than 2582 // lowering the switch to a binary tree of conditional branches. 2583 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries(). 2584 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB)) 2585 continue; 2586 2587 // Emit binary tree. We need to pick a pivot, and push left and right ranges 2588 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call. 2589 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB); 2590 } 2591 } 2592 2593 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 2594 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 2595 2596 // Update machine-CFG edges with unique successors. 2597 SmallVector<BasicBlock*, 32> succs; 2598 succs.reserve(I.getNumSuccessors()); 2599 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) 2600 succs.push_back(I.getSuccessor(i)); 2601 array_pod_sort(succs.begin(), succs.end()); 2602 succs.erase(std::unique(succs.begin(), succs.end()), succs.end()); 2603 for (unsigned i = 0, e = succs.size(); i != e; ++i) { 2604 MachineBasicBlock *Succ = FuncInfo.MBBMap[succs[i]]; 2605 addSuccessorWithWeight(IndirectBrMBB, Succ); 2606 } 2607 2608 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurDebugLoc(), 2609 MVT::Other, getControlRoot(), 2610 getValue(I.getAddress()))); 2611 } 2612 2613 void SelectionDAGBuilder::visitFSub(const User &I) { 2614 // -0.0 - X --> fneg 2615 Type *Ty = I.getType(); 2616 if (isa<Constant>(I.getOperand(0)) && 2617 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) { 2618 SDValue Op2 = getValue(I.getOperand(1)); 2619 setValue(&I, DAG.getNode(ISD::FNEG, getCurDebugLoc(), 2620 Op2.getValueType(), Op2)); 2621 return; 2622 } 2623 2624 visitBinary(I, ISD::FSUB); 2625 } 2626 2627 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) { 2628 SDValue Op1 = getValue(I.getOperand(0)); 2629 SDValue Op2 = getValue(I.getOperand(1)); 2630 setValue(&I, DAG.getNode(OpCode, getCurDebugLoc(), 2631 Op1.getValueType(), Op1, Op2)); 2632 } 2633 2634 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 2635 SDValue Op1 = getValue(I.getOperand(0)); 2636 SDValue Op2 = getValue(I.getOperand(1)); 2637 2638 MVT ShiftTy = TLI.getShiftAmountTy(Op2.getValueType()); 2639 2640 // Coerce the shift amount to the right type if we can. 2641 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 2642 unsigned ShiftSize = ShiftTy.getSizeInBits(); 2643 unsigned Op2Size = Op2.getValueType().getSizeInBits(); 2644 DebugLoc DL = getCurDebugLoc(); 2645 2646 // If the operand is smaller than the shift count type, promote it. 2647 if (ShiftSize > Op2Size) 2648 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 2649 2650 // If the operand is larger than the shift count type but the shift 2651 // count type has enough bits to represent any shift value, truncate 2652 // it now. This is a common case and it exposes the truncate to 2653 // optimization early. 2654 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits())) 2655 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 2656 // Otherwise we'll need to temporarily settle for some other convenient 2657 // type. Type legalization will make adjustments once the shiftee is split. 2658 else 2659 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 2660 } 2661 2662 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), 2663 Op1.getValueType(), Op1, Op2)); 2664 } 2665 2666 void SelectionDAGBuilder::visitSDiv(const User &I) { 2667 SDValue Op1 = getValue(I.getOperand(0)); 2668 SDValue Op2 = getValue(I.getOperand(1)); 2669 2670 // Turn exact SDivs into multiplications. 2671 // FIXME: This should be in DAGCombiner, but it doesn't have access to the 2672 // exact bit. 2673 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() && 2674 !isa<ConstantSDNode>(Op1) && 2675 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue()) 2676 setValue(&I, TLI.BuildExactSDIV(Op1, Op2, getCurDebugLoc(), DAG)); 2677 else 2678 setValue(&I, DAG.getNode(ISD::SDIV, getCurDebugLoc(), Op1.getValueType(), 2679 Op1, Op2)); 2680 } 2681 2682 void SelectionDAGBuilder::visitICmp(const User &I) { 2683 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 2684 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 2685 predicate = IC->getPredicate(); 2686 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 2687 predicate = ICmpInst::Predicate(IC->getPredicate()); 2688 SDValue Op1 = getValue(I.getOperand(0)); 2689 SDValue Op2 = getValue(I.getOperand(1)); 2690 ISD::CondCode Opcode = getICmpCondCode(predicate); 2691 2692 EVT DestVT = TLI.getValueType(I.getType()); 2693 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Opcode)); 2694 } 2695 2696 void SelectionDAGBuilder::visitFCmp(const User &I) { 2697 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 2698 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 2699 predicate = FC->getPredicate(); 2700 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 2701 predicate = FCmpInst::Predicate(FC->getPredicate()); 2702 SDValue Op1 = getValue(I.getOperand(0)); 2703 SDValue Op2 = getValue(I.getOperand(1)); 2704 ISD::CondCode Condition = getFCmpCondCode(predicate); 2705 if (TM.Options.NoNaNsFPMath) 2706 Condition = getFCmpCodeWithoutNaN(Condition); 2707 EVT DestVT = TLI.getValueType(I.getType()); 2708 setValue(&I, DAG.getSetCC(getCurDebugLoc(), DestVT, Op1, Op2, Condition)); 2709 } 2710 2711 void SelectionDAGBuilder::visitSelect(const User &I) { 2712 SmallVector<EVT, 4> ValueVTs; 2713 ComputeValueVTs(TLI, I.getType(), ValueVTs); 2714 unsigned NumValues = ValueVTs.size(); 2715 if (NumValues == 0) return; 2716 2717 SmallVector<SDValue, 4> Values(NumValues); 2718 SDValue Cond = getValue(I.getOperand(0)); 2719 SDValue TrueVal = getValue(I.getOperand(1)); 2720 SDValue FalseVal = getValue(I.getOperand(2)); 2721 ISD::NodeType OpCode = Cond.getValueType().isVector() ? 2722 ISD::VSELECT : ISD::SELECT; 2723 2724 for (unsigned i = 0; i != NumValues; ++i) 2725 Values[i] = DAG.getNode(OpCode, getCurDebugLoc(), 2726 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i), 2727 Cond, 2728 SDValue(TrueVal.getNode(), 2729 TrueVal.getResNo() + i), 2730 SDValue(FalseVal.getNode(), 2731 FalseVal.getResNo() + i)); 2732 2733 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 2734 DAG.getVTList(&ValueVTs[0], NumValues), 2735 &Values[0], NumValues)); 2736 } 2737 2738 void SelectionDAGBuilder::visitTrunc(const User &I) { 2739 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 2740 SDValue N = getValue(I.getOperand(0)); 2741 EVT DestVT = TLI.getValueType(I.getType()); 2742 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), DestVT, N)); 2743 } 2744 2745 void SelectionDAGBuilder::visitZExt(const User &I) { 2746 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2747 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 2748 SDValue N = getValue(I.getOperand(0)); 2749 EVT DestVT = TLI.getValueType(I.getType()); 2750 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), DestVT, N)); 2751 } 2752 2753 void SelectionDAGBuilder::visitSExt(const User &I) { 2754 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 2755 // SExt also can't be a cast to bool for same reason. So, nothing much to do 2756 SDValue N = getValue(I.getOperand(0)); 2757 EVT DestVT = TLI.getValueType(I.getType()); 2758 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurDebugLoc(), DestVT, N)); 2759 } 2760 2761 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 2762 // FPTrunc is never a no-op cast, no need to check 2763 SDValue N = getValue(I.getOperand(0)); 2764 EVT DestVT = TLI.getValueType(I.getType()); 2765 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurDebugLoc(), 2766 DestVT, N, 2767 DAG.getTargetConstant(0, TLI.getPointerTy()))); 2768 } 2769 2770 void SelectionDAGBuilder::visitFPExt(const User &I){ 2771 // FPExt is never a no-op cast, no need to check 2772 SDValue N = getValue(I.getOperand(0)); 2773 EVT DestVT = TLI.getValueType(I.getType()); 2774 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurDebugLoc(), DestVT, N)); 2775 } 2776 2777 void SelectionDAGBuilder::visitFPToUI(const User &I) { 2778 // FPToUI is never a no-op cast, no need to check 2779 SDValue N = getValue(I.getOperand(0)); 2780 EVT DestVT = TLI.getValueType(I.getType()); 2781 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurDebugLoc(), DestVT, N)); 2782 } 2783 2784 void SelectionDAGBuilder::visitFPToSI(const User &I) { 2785 // FPToSI is never a no-op cast, no need to check 2786 SDValue N = getValue(I.getOperand(0)); 2787 EVT DestVT = TLI.getValueType(I.getType()); 2788 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurDebugLoc(), DestVT, N)); 2789 } 2790 2791 void SelectionDAGBuilder::visitUIToFP(const User &I) { 2792 // UIToFP is never a no-op cast, no need to check 2793 SDValue N = getValue(I.getOperand(0)); 2794 EVT DestVT = TLI.getValueType(I.getType()); 2795 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2796 } 2797 2798 void SelectionDAGBuilder::visitSIToFP(const User &I){ 2799 // SIToFP is never a no-op cast, no need to check 2800 SDValue N = getValue(I.getOperand(0)); 2801 EVT DestVT = TLI.getValueType(I.getType()); 2802 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurDebugLoc(), DestVT, N)); 2803 } 2804 2805 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 2806 // What to do depends on the size of the integer and the size of the pointer. 2807 // We can either truncate, zero extend, or no-op, accordingly. 2808 SDValue N = getValue(I.getOperand(0)); 2809 EVT DestVT = TLI.getValueType(I.getType()); 2810 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2811 } 2812 2813 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 2814 // What to do depends on the size of the integer and the size of the pointer. 2815 // We can either truncate, zero extend, or no-op, accordingly. 2816 SDValue N = getValue(I.getOperand(0)); 2817 EVT DestVT = TLI.getValueType(I.getType()); 2818 setValue(&I, DAG.getZExtOrTrunc(N, getCurDebugLoc(), DestVT)); 2819 } 2820 2821 void SelectionDAGBuilder::visitBitCast(const User &I) { 2822 SDValue N = getValue(I.getOperand(0)); 2823 EVT DestVT = TLI.getValueType(I.getType()); 2824 2825 // BitCast assures us that source and destination are the same size so this is 2826 // either a BITCAST or a no-op. 2827 if (DestVT != N.getValueType()) 2828 setValue(&I, DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 2829 DestVT, N)); // convert types. 2830 else 2831 setValue(&I, N); // noop cast. 2832 } 2833 2834 void SelectionDAGBuilder::visitInsertElement(const User &I) { 2835 SDValue InVec = getValue(I.getOperand(0)); 2836 SDValue InVal = getValue(I.getOperand(1)); 2837 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2838 TLI.getPointerTy(), 2839 getValue(I.getOperand(2))); 2840 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurDebugLoc(), 2841 TLI.getValueType(I.getType()), 2842 InVec, InVal, InIdx)); 2843 } 2844 2845 void SelectionDAGBuilder::visitExtractElement(const User &I) { 2846 SDValue InVec = getValue(I.getOperand(0)); 2847 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, getCurDebugLoc(), 2848 TLI.getPointerTy(), 2849 getValue(I.getOperand(1))); 2850 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 2851 TLI.getValueType(I.getType()), InVec, InIdx)); 2852 } 2853 2854 // Utility for visitShuffleVector - Return true if every element in Mask, 2855 // beginning from position Pos and ending in Pos+Size, falls within the 2856 // specified sequential range [L, L+Pos). or is undef. 2857 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask, 2858 unsigned Pos, unsigned Size, int Low) { 2859 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low) 2860 if (Mask[i] >= 0 && Mask[i] != Low) 2861 return false; 2862 return true; 2863 } 2864 2865 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 2866 SDValue Src1 = getValue(I.getOperand(0)); 2867 SDValue Src2 = getValue(I.getOperand(1)); 2868 2869 SmallVector<int, 8> Mask; 2870 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask); 2871 unsigned MaskNumElts = Mask.size(); 2872 2873 EVT VT = TLI.getValueType(I.getType()); 2874 EVT SrcVT = Src1.getValueType(); 2875 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 2876 2877 if (SrcNumElts == MaskNumElts) { 2878 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2879 &Mask[0])); 2880 return; 2881 } 2882 2883 // Normalize the shuffle vector since mask and vector length don't match. 2884 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) { 2885 // Mask is longer than the source vectors and is a multiple of the source 2886 // vectors. We can use concatenate vector to make the mask and vectors 2887 // lengths match. 2888 if (SrcNumElts*2 == MaskNumElts) { 2889 // First check for Src1 in low and Src2 in high 2890 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) && 2891 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) { 2892 // The shuffle is concatenating two vectors together. 2893 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2894 VT, Src1, Src2)); 2895 return; 2896 } 2897 // Then check for Src2 in low and Src1 in high 2898 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) && 2899 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) { 2900 // The shuffle is concatenating two vectors together. 2901 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurDebugLoc(), 2902 VT, Src2, Src1)); 2903 return; 2904 } 2905 } 2906 2907 // Pad both vectors with undefs to make them the same length as the mask. 2908 unsigned NumConcat = MaskNumElts / SrcNumElts; 2909 bool Src1U = Src1.getOpcode() == ISD::UNDEF; 2910 bool Src2U = Src2.getOpcode() == ISD::UNDEF; 2911 SDValue UndefVal = DAG.getUNDEF(SrcVT); 2912 2913 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 2914 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 2915 MOps1[0] = Src1; 2916 MOps2[0] = Src2; 2917 2918 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2919 getCurDebugLoc(), VT, 2920 &MOps1[0], NumConcat); 2921 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS, 2922 getCurDebugLoc(), VT, 2923 &MOps2[0], NumConcat); 2924 2925 // Readjust mask for new input vector length. 2926 SmallVector<int, 8> MappedOps; 2927 for (unsigned i = 0; i != MaskNumElts; ++i) { 2928 int Idx = Mask[i]; 2929 if (Idx >= (int)SrcNumElts) 2930 Idx -= SrcNumElts - MaskNumElts; 2931 MappedOps.push_back(Idx); 2932 } 2933 2934 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 2935 &MappedOps[0])); 2936 return; 2937 } 2938 2939 if (SrcNumElts > MaskNumElts) { 2940 // Analyze the access pattern of the vector to see if we can extract 2941 // two subvectors and do the shuffle. The analysis is done by calculating 2942 // the range of elements the mask access on both vectors. 2943 int MinRange[2] = { static_cast<int>(SrcNumElts), 2944 static_cast<int>(SrcNumElts)}; 2945 int MaxRange[2] = {-1, -1}; 2946 2947 for (unsigned i = 0; i != MaskNumElts; ++i) { 2948 int Idx = Mask[i]; 2949 unsigned Input = 0; 2950 if (Idx < 0) 2951 continue; 2952 2953 if (Idx >= (int)SrcNumElts) { 2954 Input = 1; 2955 Idx -= SrcNumElts; 2956 } 2957 if (Idx > MaxRange[Input]) 2958 MaxRange[Input] = Idx; 2959 if (Idx < MinRange[Input]) 2960 MinRange[Input] = Idx; 2961 } 2962 2963 // Check if the access is smaller than the vector size and can we find 2964 // a reasonable extract index. 2965 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not 2966 // Extract. 2967 int StartIdx[2]; // StartIdx to extract from 2968 for (unsigned Input = 0; Input < 2; ++Input) { 2969 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) { 2970 RangeUse[Input] = 0; // Unused 2971 StartIdx[Input] = 0; 2972 continue; 2973 } 2974 2975 // Find a good start index that is a multiple of the mask length. Then 2976 // see if the rest of the elements are in range. 2977 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts; 2978 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts && 2979 StartIdx[Input] + MaskNumElts <= SrcNumElts) 2980 RangeUse[Input] = 1; // Extract from a multiple of the mask length. 2981 } 2982 2983 if (RangeUse[0] == 0 && RangeUse[1] == 0) { 2984 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 2985 return; 2986 } 2987 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) { 2988 // Extract appropriate subvector and generate a vector shuffle 2989 for (unsigned Input = 0; Input < 2; ++Input) { 2990 SDValue &Src = Input == 0 ? Src1 : Src2; 2991 if (RangeUse[Input] == 0) 2992 Src = DAG.getUNDEF(VT); 2993 else 2994 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurDebugLoc(), VT, 2995 Src, DAG.getIntPtrConstant(StartIdx[Input])); 2996 } 2997 2998 // Calculate new mask. 2999 SmallVector<int, 8> MappedOps; 3000 for (unsigned i = 0; i != MaskNumElts; ++i) { 3001 int Idx = Mask[i]; 3002 if (Idx >= 0) { 3003 if (Idx < (int)SrcNumElts) 3004 Idx -= StartIdx[0]; 3005 else 3006 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3007 } 3008 MappedOps.push_back(Idx); 3009 } 3010 3011 setValue(&I, DAG.getVectorShuffle(VT, getCurDebugLoc(), Src1, Src2, 3012 &MappedOps[0])); 3013 return; 3014 } 3015 } 3016 3017 // We can't use either concat vectors or extract subvectors so fall back to 3018 // replacing the shuffle with extract and build vector. 3019 // to insert and build vector. 3020 EVT EltVT = VT.getVectorElementType(); 3021 EVT PtrVT = TLI.getPointerTy(); 3022 SmallVector<SDValue,8> Ops; 3023 for (unsigned i = 0; i != MaskNumElts; ++i) { 3024 int Idx = Mask[i]; 3025 SDValue Res; 3026 3027 if (Idx < 0) { 3028 Res = DAG.getUNDEF(EltVT); 3029 } else { 3030 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3031 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3032 3033 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurDebugLoc(), 3034 EltVT, Src, DAG.getConstant(Idx, PtrVT)); 3035 } 3036 3037 Ops.push_back(Res); 3038 } 3039 3040 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurDebugLoc(), 3041 VT, &Ops[0], Ops.size())); 3042 } 3043 3044 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) { 3045 const Value *Op0 = I.getOperand(0); 3046 const Value *Op1 = I.getOperand(1); 3047 Type *AggTy = I.getType(); 3048 Type *ValTy = Op1->getType(); 3049 bool IntoUndef = isa<UndefValue>(Op0); 3050 bool FromUndef = isa<UndefValue>(Op1); 3051 3052 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3053 3054 SmallVector<EVT, 4> AggValueVTs; 3055 ComputeValueVTs(TLI, AggTy, AggValueVTs); 3056 SmallVector<EVT, 4> ValValueVTs; 3057 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3058 3059 unsigned NumAggValues = AggValueVTs.size(); 3060 unsigned NumValValues = ValValueVTs.size(); 3061 SmallVector<SDValue, 4> Values(NumAggValues); 3062 3063 SDValue Agg = getValue(Op0); 3064 unsigned i = 0; 3065 // Copy the beginning value(s) from the original aggregate. 3066 for (; i != LinearIndex; ++i) 3067 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3068 SDValue(Agg.getNode(), Agg.getResNo() + i); 3069 // Copy values from the inserted value(s). 3070 if (NumValValues) { 3071 SDValue Val = getValue(Op1); 3072 for (; i != LinearIndex + NumValValues; ++i) 3073 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3074 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3075 } 3076 // Copy remaining value(s) from the original aggregate. 3077 for (; i != NumAggValues; ++i) 3078 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3079 SDValue(Agg.getNode(), Agg.getResNo() + i); 3080 3081 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3082 DAG.getVTList(&AggValueVTs[0], NumAggValues), 3083 &Values[0], NumAggValues)); 3084 } 3085 3086 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) { 3087 const Value *Op0 = I.getOperand(0); 3088 Type *AggTy = Op0->getType(); 3089 Type *ValTy = I.getType(); 3090 bool OutOfUndef = isa<UndefValue>(Op0); 3091 3092 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices()); 3093 3094 SmallVector<EVT, 4> ValValueVTs; 3095 ComputeValueVTs(TLI, ValTy, ValValueVTs); 3096 3097 unsigned NumValValues = ValValueVTs.size(); 3098 3099 // Ignore a extractvalue that produces an empty object 3100 if (!NumValValues) { 3101 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3102 return; 3103 } 3104 3105 SmallVector<SDValue, 4> Values(NumValValues); 3106 3107 SDValue Agg = getValue(Op0); 3108 // Copy out the selected value(s). 3109 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3110 Values[i - LinearIndex] = 3111 OutOfUndef ? 3112 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3113 SDValue(Agg.getNode(), Agg.getResNo() + i); 3114 3115 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3116 DAG.getVTList(&ValValueVTs[0], NumValValues), 3117 &Values[0], NumValValues)); 3118 } 3119 3120 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3121 SDValue N = getValue(I.getOperand(0)); 3122 // Note that the pointer operand may be a vector of pointers. Take the scalar 3123 // element which holds a pointer. 3124 Type *Ty = I.getOperand(0)->getType()->getScalarType(); 3125 3126 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end(); 3127 OI != E; ++OI) { 3128 const Value *Idx = *OI; 3129 if (StructType *StTy = dyn_cast<StructType>(Ty)) { 3130 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue(); 3131 if (Field) { 3132 // N = N + Offset 3133 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field); 3134 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3135 DAG.getIntPtrConstant(Offset)); 3136 } 3137 3138 Ty = StTy->getElementType(Field); 3139 } else { 3140 Ty = cast<SequentialType>(Ty)->getElementType(); 3141 3142 // If this is a constant subscript, handle it quickly. 3143 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) { 3144 if (CI->isZero()) continue; 3145 uint64_t Offs = 3146 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue(); 3147 SDValue OffsVal; 3148 EVT PTy = TLI.getPointerTy(); 3149 unsigned PtrBits = PTy.getSizeInBits(); 3150 if (PtrBits < 64) 3151 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), 3152 TLI.getPointerTy(), 3153 DAG.getConstant(Offs, MVT::i64)); 3154 else 3155 OffsVal = DAG.getIntPtrConstant(Offs); 3156 3157 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), N.getValueType(), N, 3158 OffsVal); 3159 continue; 3160 } 3161 3162 // N = N + Idx * ElementSize; 3163 APInt ElementSize = APInt(TLI.getPointerTy().getSizeInBits(), 3164 TD->getTypeAllocSize(Ty)); 3165 SDValue IdxN = getValue(Idx); 3166 3167 // If the index is smaller or larger than intptr_t, truncate or extend 3168 // it. 3169 IdxN = DAG.getSExtOrTrunc(IdxN, getCurDebugLoc(), N.getValueType()); 3170 3171 // If this is a multiply by a power of two, turn it into a shl 3172 // immediately. This is a very common case. 3173 if (ElementSize != 1) { 3174 if (ElementSize.isPowerOf2()) { 3175 unsigned Amt = ElementSize.logBase2(); 3176 IdxN = DAG.getNode(ISD::SHL, getCurDebugLoc(), 3177 N.getValueType(), IdxN, 3178 DAG.getConstant(Amt, IdxN.getValueType())); 3179 } else { 3180 SDValue Scale = DAG.getConstant(ElementSize, TLI.getPointerTy()); 3181 IdxN = DAG.getNode(ISD::MUL, getCurDebugLoc(), 3182 N.getValueType(), IdxN, Scale); 3183 } 3184 } 3185 3186 N = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3187 N.getValueType(), N, IdxN); 3188 } 3189 } 3190 3191 setValue(&I, N); 3192 } 3193 3194 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3195 // If this is a fixed sized alloca in the entry block of the function, 3196 // allocate it statically on the stack. 3197 if (FuncInfo.StaticAllocaMap.count(&I)) 3198 return; // getValue will auto-populate this. 3199 3200 Type *Ty = I.getAllocatedType(); 3201 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 3202 unsigned Align = 3203 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty), 3204 I.getAlignment()); 3205 3206 SDValue AllocSize = getValue(I.getArraySize()); 3207 3208 EVT IntPtr = TLI.getPointerTy(); 3209 if (AllocSize.getValueType() != IntPtr) 3210 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurDebugLoc(), IntPtr); 3211 3212 AllocSize = DAG.getNode(ISD::MUL, getCurDebugLoc(), IntPtr, 3213 AllocSize, 3214 DAG.getConstant(TySize, IntPtr)); 3215 3216 // Handle alignment. If the requested alignment is less than or equal to 3217 // the stack alignment, ignore it. If the size is greater than or equal to 3218 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3219 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment(); 3220 if (Align <= StackAlign) 3221 Align = 0; 3222 3223 // Round the size of the allocation up to the stack alignment size 3224 // by add SA-1 to the size. 3225 AllocSize = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3226 AllocSize.getValueType(), AllocSize, 3227 DAG.getIntPtrConstant(StackAlign-1)); 3228 3229 // Mask out the low bits for alignment purposes. 3230 AllocSize = DAG.getNode(ISD::AND, getCurDebugLoc(), 3231 AllocSize.getValueType(), AllocSize, 3232 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1))); 3233 3234 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) }; 3235 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 3236 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurDebugLoc(), 3237 VTs, Ops, 3); 3238 setValue(&I, DSA); 3239 DAG.setRoot(DSA.getValue(1)); 3240 3241 // Inform the Frame Information that we have just allocated a variable-sized 3242 // object. 3243 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1); 3244 } 3245 3246 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 3247 if (I.isAtomic()) 3248 return visitAtomicLoad(I); 3249 3250 const Value *SV = I.getOperand(0); 3251 SDValue Ptr = getValue(SV); 3252 3253 Type *Ty = I.getType(); 3254 3255 bool isVolatile = I.isVolatile(); 3256 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3257 bool isInvariant = I.getMetadata("invariant.load") != 0; 3258 unsigned Alignment = I.getAlignment(); 3259 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3260 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 3261 3262 SmallVector<EVT, 4> ValueVTs; 3263 SmallVector<uint64_t, 4> Offsets; 3264 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets); 3265 unsigned NumValues = ValueVTs.size(); 3266 if (NumValues == 0) 3267 return; 3268 3269 SDValue Root; 3270 bool ConstantMemory = false; 3271 if (I.isVolatile() || NumValues > MaxParallelChains) 3272 // Serialize volatile loads with other side effects. 3273 Root = getRoot(); 3274 else if (AA->pointsToConstantMemory( 3275 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) { 3276 // Do not serialize (non-volatile) loads of constant memory with anything. 3277 Root = DAG.getEntryNode(); 3278 ConstantMemory = true; 3279 } else { 3280 // Do not serialize non-volatile loads against each other. 3281 Root = DAG.getRoot(); 3282 } 3283 3284 SmallVector<SDValue, 4> Values(NumValues); 3285 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3286 NumValues)); 3287 EVT PtrVT = Ptr.getValueType(); 3288 unsigned ChainI = 0; 3289 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3290 // Serializing loads here may result in excessive register pressure, and 3291 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 3292 // could recover a bit by hoisting nodes upward in the chain by recognizing 3293 // they are side-effect free or do not alias. The optimizer should really 3294 // avoid this case by converting large object/array copies to llvm.memcpy 3295 // (MaxParallelChains should always remain as failsafe). 3296 if (ChainI == MaxParallelChains) { 3297 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 3298 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3299 MVT::Other, &Chains[0], ChainI); 3300 Root = Chain; 3301 ChainI = 0; 3302 } 3303 SDValue A = DAG.getNode(ISD::ADD, getCurDebugLoc(), 3304 PtrVT, Ptr, 3305 DAG.getConstant(Offsets[i], PtrVT)); 3306 SDValue L = DAG.getLoad(ValueVTs[i], getCurDebugLoc(), Root, 3307 A, MachinePointerInfo(SV, Offsets[i]), isVolatile, 3308 isNonTemporal, isInvariant, Alignment, TBAAInfo, 3309 Ranges); 3310 3311 Values[i] = L; 3312 Chains[ChainI] = L.getValue(1); 3313 } 3314 3315 if (!ConstantMemory) { 3316 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3317 MVT::Other, &Chains[0], ChainI); 3318 if (isVolatile) 3319 DAG.setRoot(Chain); 3320 else 3321 PendingLoads.push_back(Chain); 3322 } 3323 3324 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 3325 DAG.getVTList(&ValueVTs[0], NumValues), 3326 &Values[0], NumValues)); 3327 } 3328 3329 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 3330 if (I.isAtomic()) 3331 return visitAtomicStore(I); 3332 3333 const Value *SrcV = I.getOperand(0); 3334 const Value *PtrV = I.getOperand(1); 3335 3336 SmallVector<EVT, 4> ValueVTs; 3337 SmallVector<uint64_t, 4> Offsets; 3338 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets); 3339 unsigned NumValues = ValueVTs.size(); 3340 if (NumValues == 0) 3341 return; 3342 3343 // Get the lowered operands. Note that we do this after 3344 // checking if NumResults is zero, because with zero results 3345 // the operands won't have values in the map. 3346 SDValue Src = getValue(SrcV); 3347 SDValue Ptr = getValue(PtrV); 3348 3349 SDValue Root = getRoot(); 3350 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains), 3351 NumValues)); 3352 EVT PtrVT = Ptr.getValueType(); 3353 bool isVolatile = I.isVolatile(); 3354 bool isNonTemporal = I.getMetadata("nontemporal") != 0; 3355 unsigned Alignment = I.getAlignment(); 3356 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa); 3357 3358 unsigned ChainI = 0; 3359 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 3360 // See visitLoad comments. 3361 if (ChainI == MaxParallelChains) { 3362 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3363 MVT::Other, &Chains[0], ChainI); 3364 Root = Chain; 3365 ChainI = 0; 3366 } 3367 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, Ptr, 3368 DAG.getConstant(Offsets[i], PtrVT)); 3369 SDValue St = DAG.getStore(Root, getCurDebugLoc(), 3370 SDValue(Src.getNode(), Src.getResNo() + i), 3371 Add, MachinePointerInfo(PtrV, Offsets[i]), 3372 isVolatile, isNonTemporal, Alignment, TBAAInfo); 3373 Chains[ChainI] = St; 3374 } 3375 3376 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 3377 MVT::Other, &Chains[0], ChainI); 3378 ++SDNodeOrder; 3379 AssignOrderingToNode(StoreNode.getNode()); 3380 DAG.setRoot(StoreNode); 3381 } 3382 3383 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order, 3384 SynchronizationScope Scope, 3385 bool Before, DebugLoc dl, 3386 SelectionDAG &DAG, 3387 const TargetLowering &TLI) { 3388 // Fence, if necessary 3389 if (Before) { 3390 if (Order == AcquireRelease || Order == SequentiallyConsistent) 3391 Order = Release; 3392 else if (Order == Acquire || Order == Monotonic) 3393 return Chain; 3394 } else { 3395 if (Order == AcquireRelease) 3396 Order = Acquire; 3397 else if (Order == Release || Order == Monotonic) 3398 return Chain; 3399 } 3400 SDValue Ops[3]; 3401 Ops[0] = Chain; 3402 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy()); 3403 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy()); 3404 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3); 3405 } 3406 3407 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 3408 DebugLoc dl = getCurDebugLoc(); 3409 AtomicOrdering Order = I.getOrdering(); 3410 SynchronizationScope Scope = I.getSynchScope(); 3411 3412 SDValue InChain = getRoot(); 3413 3414 if (TLI.getInsertFencesForAtomic()) 3415 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3416 DAG, TLI); 3417 3418 SDValue L = 3419 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl, 3420 getValue(I.getCompareOperand()).getValueType().getSimpleVT(), 3421 InChain, 3422 getValue(I.getPointerOperand()), 3423 getValue(I.getCompareOperand()), 3424 getValue(I.getNewValOperand()), 3425 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */, 3426 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3427 Scope); 3428 3429 SDValue OutChain = L.getValue(1); 3430 3431 if (TLI.getInsertFencesForAtomic()) 3432 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3433 DAG, TLI); 3434 3435 setValue(&I, L); 3436 DAG.setRoot(OutChain); 3437 } 3438 3439 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 3440 DebugLoc dl = getCurDebugLoc(); 3441 ISD::NodeType NT; 3442 switch (I.getOperation()) { 3443 default: llvm_unreachable("Unknown atomicrmw operation"); 3444 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 3445 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 3446 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 3447 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 3448 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 3449 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 3450 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 3451 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 3452 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 3453 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 3454 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 3455 } 3456 AtomicOrdering Order = I.getOrdering(); 3457 SynchronizationScope Scope = I.getSynchScope(); 3458 3459 SDValue InChain = getRoot(); 3460 3461 if (TLI.getInsertFencesForAtomic()) 3462 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3463 DAG, TLI); 3464 3465 SDValue L = 3466 DAG.getAtomic(NT, dl, 3467 getValue(I.getValOperand()).getValueType().getSimpleVT(), 3468 InChain, 3469 getValue(I.getPointerOperand()), 3470 getValue(I.getValOperand()), 3471 I.getPointerOperand(), 0 /* Alignment */, 3472 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3473 Scope); 3474 3475 SDValue OutChain = L.getValue(1); 3476 3477 if (TLI.getInsertFencesForAtomic()) 3478 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3479 DAG, TLI); 3480 3481 setValue(&I, L); 3482 DAG.setRoot(OutChain); 3483 } 3484 3485 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 3486 DebugLoc dl = getCurDebugLoc(); 3487 SDValue Ops[3]; 3488 Ops[0] = getRoot(); 3489 Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy()); 3490 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy()); 3491 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3)); 3492 } 3493 3494 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 3495 DebugLoc dl = getCurDebugLoc(); 3496 AtomicOrdering Order = I.getOrdering(); 3497 SynchronizationScope Scope = I.getSynchScope(); 3498 3499 SDValue InChain = getRoot(); 3500 3501 EVT VT = TLI.getValueType(I.getType()); 3502 3503 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3504 report_fatal_error("Cannot generate unaligned atomic load"); 3505 3506 SDValue L = 3507 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain, 3508 getValue(I.getPointerOperand()), 3509 I.getPointerOperand(), I.getAlignment(), 3510 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3511 Scope); 3512 3513 SDValue OutChain = L.getValue(1); 3514 3515 if (TLI.getInsertFencesForAtomic()) 3516 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3517 DAG, TLI); 3518 3519 setValue(&I, L); 3520 DAG.setRoot(OutChain); 3521 } 3522 3523 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 3524 DebugLoc dl = getCurDebugLoc(); 3525 3526 AtomicOrdering Order = I.getOrdering(); 3527 SynchronizationScope Scope = I.getSynchScope(); 3528 3529 SDValue InChain = getRoot(); 3530 3531 EVT VT = TLI.getValueType(I.getValueOperand()->getType()); 3532 3533 if (I.getAlignment() * 8 < VT.getSizeInBits()) 3534 report_fatal_error("Cannot generate unaligned atomic store"); 3535 3536 if (TLI.getInsertFencesForAtomic()) 3537 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl, 3538 DAG, TLI); 3539 3540 SDValue OutChain = 3541 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT, 3542 InChain, 3543 getValue(I.getPointerOperand()), 3544 getValue(I.getValueOperand()), 3545 I.getPointerOperand(), I.getAlignment(), 3546 TLI.getInsertFencesForAtomic() ? Monotonic : Order, 3547 Scope); 3548 3549 if (TLI.getInsertFencesForAtomic()) 3550 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl, 3551 DAG, TLI); 3552 3553 DAG.setRoot(OutChain); 3554 } 3555 3556 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 3557 /// node. 3558 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 3559 unsigned Intrinsic) { 3560 bool HasChain = !I.doesNotAccessMemory(); 3561 bool OnlyLoad = HasChain && I.onlyReadsMemory(); 3562 3563 // Build the operand list. 3564 SmallVector<SDValue, 8> Ops; 3565 if (HasChain) { // If this intrinsic has side-effects, chainify it. 3566 if (OnlyLoad) { 3567 // We don't need to serialize loads against other loads. 3568 Ops.push_back(DAG.getRoot()); 3569 } else { 3570 Ops.push_back(getRoot()); 3571 } 3572 } 3573 3574 // Info is set by getTgtMemInstrinsic 3575 TargetLowering::IntrinsicInfo Info; 3576 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic); 3577 3578 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 3579 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 3580 Info.opc == ISD::INTRINSIC_W_CHAIN) 3581 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy())); 3582 3583 // Add all operands of the call to the operand list. 3584 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 3585 SDValue Op = getValue(I.getArgOperand(i)); 3586 Ops.push_back(Op); 3587 } 3588 3589 SmallVector<EVT, 4> ValueVTs; 3590 ComputeValueVTs(TLI, I.getType(), ValueVTs); 3591 3592 if (HasChain) 3593 ValueVTs.push_back(MVT::Other); 3594 3595 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size()); 3596 3597 // Create the node. 3598 SDValue Result; 3599 if (IsTgtIntrinsic) { 3600 // This is target intrinsic that touches memory 3601 Result = DAG.getMemIntrinsicNode(Info.opc, getCurDebugLoc(), 3602 VTs, &Ops[0], Ops.size(), 3603 Info.memVT, 3604 MachinePointerInfo(Info.ptrVal, Info.offset), 3605 Info.align, Info.vol, 3606 Info.readMem, Info.writeMem); 3607 } else if (!HasChain) { 3608 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurDebugLoc(), 3609 VTs, &Ops[0], Ops.size()); 3610 } else if (!I.getType()->isVoidTy()) { 3611 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurDebugLoc(), 3612 VTs, &Ops[0], Ops.size()); 3613 } else { 3614 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurDebugLoc(), 3615 VTs, &Ops[0], Ops.size()); 3616 } 3617 3618 if (HasChain) { 3619 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 3620 if (OnlyLoad) 3621 PendingLoads.push_back(Chain); 3622 else 3623 DAG.setRoot(Chain); 3624 } 3625 3626 if (!I.getType()->isVoidTy()) { 3627 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 3628 EVT VT = TLI.getValueType(PTy); 3629 Result = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), VT, Result); 3630 } 3631 3632 setValue(&I, Result); 3633 } else { 3634 // Assign order to result here. If the intrinsic does not produce a result, 3635 // it won't be mapped to a SDNode and visit() will not assign it an order 3636 // number. 3637 ++SDNodeOrder; 3638 AssignOrderingToNode(Result.getNode()); 3639 } 3640 } 3641 3642 /// GetSignificand - Get the significand and build it into a floating-point 3643 /// number with exponent of 1: 3644 /// 3645 /// Op = (Op & 0x007fffff) | 0x3f800000; 3646 /// 3647 /// where Op is the hexidecimal representation of floating point value. 3648 static SDValue 3649 GetSignificand(SelectionDAG &DAG, SDValue Op, DebugLoc dl) { 3650 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3651 DAG.getConstant(0x007fffff, MVT::i32)); 3652 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 3653 DAG.getConstant(0x3f800000, MVT::i32)); 3654 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 3655 } 3656 3657 /// GetExponent - Get the exponent: 3658 /// 3659 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 3660 /// 3661 /// where Op is the hexidecimal representation of floating point value. 3662 static SDValue 3663 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI, 3664 DebugLoc dl) { 3665 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 3666 DAG.getConstant(0x7f800000, MVT::i32)); 3667 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0, 3668 DAG.getConstant(23, TLI.getPointerTy())); 3669 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 3670 DAG.getConstant(127, MVT::i32)); 3671 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 3672 } 3673 3674 /// getF32Constant - Get 32-bit floating point constant. 3675 static SDValue 3676 getF32Constant(SelectionDAG &DAG, unsigned Flt) { 3677 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32); 3678 } 3679 3680 /// visitExp - Lower an exp intrinsic. Handles the special sequences for 3681 /// limited-precision mode. 3682 void 3683 SelectionDAGBuilder::visitExp(const CallInst &I) { 3684 SDValue result; 3685 DebugLoc dl = getCurDebugLoc(); 3686 3687 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3688 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3689 SDValue Op = getValue(I.getArgOperand(0)); 3690 3691 // Put the exponent in the right bit position for later addition to the 3692 // final result: 3693 // 3694 // #define LOG2OFe 1.4426950f 3695 // IntegerPartOfX = ((int32_t)(X * LOG2OFe)); 3696 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 3697 getF32Constant(DAG, 0x3fb8aa3b)); 3698 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 3699 3700 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX; 3701 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 3702 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 3703 3704 // IntegerPartOfX <<= 23; 3705 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 3706 DAG.getConstant(23, TLI.getPointerTy())); 3707 3708 if (LimitFloatPrecision <= 6) { 3709 // For floating-point precision of 6: 3710 // 3711 // TwoToFractionalPartOfX = 3712 // 0.997535578f + 3713 // (0.735607626f + 0.252464424f * x) * x; 3714 // 3715 // error 0.0144103317, which is 6 bits 3716 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3717 getF32Constant(DAG, 0x3e814304)); 3718 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3719 getF32Constant(DAG, 0x3f3c50c8)); 3720 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3721 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3722 getF32Constant(DAG, 0x3f7f5e7e)); 3723 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t5); 3724 3725 // Add the exponent into the result in integer domain. 3726 SDValue t6 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3727 TwoToFracPartOfX, IntegerPartOfX); 3728 3729 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t6); 3730 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3731 // For floating-point precision of 12: 3732 // 3733 // TwoToFractionalPartOfX = 3734 // 0.999892986f + 3735 // (0.696457318f + 3736 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 3737 // 3738 // 0.000107046256 error, which is 13 to 14 bits 3739 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3740 getF32Constant(DAG, 0x3da235e3)); 3741 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3742 getF32Constant(DAG, 0x3e65b8f3)); 3743 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3744 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3745 getF32Constant(DAG, 0x3f324b07)); 3746 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3747 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3748 getF32Constant(DAG, 0x3f7ff8fd)); 3749 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl,MVT::i32, t7); 3750 3751 // Add the exponent into the result in integer domain. 3752 SDValue t8 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3753 TwoToFracPartOfX, IntegerPartOfX); 3754 3755 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t8); 3756 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3757 // For floating-point precision of 18: 3758 // 3759 // TwoToFractionalPartOfX = 3760 // 0.999999982f + 3761 // (0.693148872f + 3762 // (0.240227044f + 3763 // (0.554906021e-1f + 3764 // (0.961591928e-2f + 3765 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 3766 // 3767 // error 2.47208000*10^(-7), which is better than 18 bits 3768 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3769 getF32Constant(DAG, 0x3924b03e)); 3770 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 3771 getF32Constant(DAG, 0x3ab24b87)); 3772 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3773 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3774 getF32Constant(DAG, 0x3c1d8c17)); 3775 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3776 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 3777 getF32Constant(DAG, 0x3d634a1d)); 3778 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3779 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3780 getF32Constant(DAG, 0x3e75fe14)); 3781 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3782 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 3783 getF32Constant(DAG, 0x3f317234)); 3784 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 3785 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 3786 getF32Constant(DAG, 0x3f800000)); 3787 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BITCAST, dl, 3788 MVT::i32, t13); 3789 3790 // Add the exponent into the result in integer domain. 3791 SDValue t14 = DAG.getNode(ISD::ADD, dl, MVT::i32, 3792 TwoToFracPartOfX, IntegerPartOfX); 3793 3794 result = DAG.getNode(ISD::BITCAST, dl, MVT::f32, t14); 3795 } 3796 } else { 3797 // No special expansion. 3798 result = DAG.getNode(ISD::FEXP, dl, 3799 getValue(I.getArgOperand(0)).getValueType(), 3800 getValue(I.getArgOperand(0))); 3801 } 3802 3803 setValue(&I, result); 3804 } 3805 3806 /// visitLog - Lower a log intrinsic. Handles the special sequences for 3807 /// limited-precision mode. 3808 void 3809 SelectionDAGBuilder::visitLog(const CallInst &I) { 3810 SDValue result; 3811 DebugLoc dl = getCurDebugLoc(); 3812 3813 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3814 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3815 SDValue Op = getValue(I.getArgOperand(0)); 3816 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3817 3818 // Scale the exponent by log(2) [0.69314718f]. 3819 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 3820 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 3821 getF32Constant(DAG, 0x3f317218)); 3822 3823 // Get the significand and build it into a floating-point number with 3824 // exponent of 1. 3825 SDValue X = GetSignificand(DAG, Op1, dl); 3826 3827 if (LimitFloatPrecision <= 6) { 3828 // For floating-point precision of 6: 3829 // 3830 // LogofMantissa = 3831 // -1.1609546f + 3832 // (1.4034025f - 0.23903021f * x) * x; 3833 // 3834 // error 0.0034276066, which is better than 8 bits 3835 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3836 getF32Constant(DAG, 0xbe74c456)); 3837 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3838 getF32Constant(DAG, 0x3fb3a2b1)); 3839 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3840 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3841 getF32Constant(DAG, 0x3f949a29)); 3842 3843 result = DAG.getNode(ISD::FADD, dl, 3844 MVT::f32, LogOfExponent, LogOfMantissa); 3845 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3846 // For floating-point precision of 12: 3847 // 3848 // LogOfMantissa = 3849 // -1.7417939f + 3850 // (2.8212026f + 3851 // (-1.4699568f + 3852 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 3853 // 3854 // error 0.000061011436, which is 14 bits 3855 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3856 getF32Constant(DAG, 0xbd67b6d6)); 3857 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3858 getF32Constant(DAG, 0x3ee4f4b8)); 3859 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3860 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3861 getF32Constant(DAG, 0x3fbc278b)); 3862 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3863 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3864 getF32Constant(DAG, 0x40348e95)); 3865 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3866 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3867 getF32Constant(DAG, 0x3fdef31a)); 3868 3869 result = DAG.getNode(ISD::FADD, dl, 3870 MVT::f32, LogOfExponent, LogOfMantissa); 3871 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3872 // For floating-point precision of 18: 3873 // 3874 // LogOfMantissa = 3875 // -2.1072184f + 3876 // (4.2372794f + 3877 // (-3.7029485f + 3878 // (2.2781945f + 3879 // (-0.87823314f + 3880 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 3881 // 3882 // error 0.0000023660568, which is better than 18 bits 3883 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3884 getF32Constant(DAG, 0xbc91e5ac)); 3885 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3886 getF32Constant(DAG, 0x3e4350aa)); 3887 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3888 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3889 getF32Constant(DAG, 0x3f60d3e3)); 3890 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3891 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3892 getF32Constant(DAG, 0x4011cdf0)); 3893 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3894 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3895 getF32Constant(DAG, 0x406cfd1c)); 3896 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 3897 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 3898 getF32Constant(DAG, 0x408797cb)); 3899 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 3900 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 3901 getF32Constant(DAG, 0x4006dcab)); 3902 3903 result = DAG.getNode(ISD::FADD, dl, 3904 MVT::f32, LogOfExponent, LogOfMantissa); 3905 } 3906 } else { 3907 // No special expansion. 3908 result = DAG.getNode(ISD::FLOG, dl, 3909 getValue(I.getArgOperand(0)).getValueType(), 3910 getValue(I.getArgOperand(0))); 3911 } 3912 3913 setValue(&I, result); 3914 } 3915 3916 /// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for 3917 /// limited-precision mode. 3918 void 3919 SelectionDAGBuilder::visitLog2(const CallInst &I) { 3920 SDValue result; 3921 DebugLoc dl = getCurDebugLoc(); 3922 3923 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 3924 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 3925 SDValue Op = getValue(I.getArgOperand(0)); 3926 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 3927 3928 // Get the exponent. 3929 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 3930 3931 // Get the significand and build it into a floating-point number with 3932 // exponent of 1. 3933 SDValue X = GetSignificand(DAG, Op1, dl); 3934 3935 // Different possible minimax approximations of significand in 3936 // floating-point for various degrees of accuracy over [1,2]. 3937 if (LimitFloatPrecision <= 6) { 3938 // For floating-point precision of 6: 3939 // 3940 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 3941 // 3942 // error 0.0049451742, which is more than 7 bits 3943 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3944 getF32Constant(DAG, 0xbeb08fe0)); 3945 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3946 getF32Constant(DAG, 0x40019463)); 3947 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3948 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3949 getF32Constant(DAG, 0x3fd6633d)); 3950 3951 result = DAG.getNode(ISD::FADD, dl, 3952 MVT::f32, LogOfExponent, Log2ofMantissa); 3953 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 3954 // For floating-point precision of 12: 3955 // 3956 // Log2ofMantissa = 3957 // -2.51285454f + 3958 // (4.07009056f + 3959 // (-2.12067489f + 3960 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 3961 // 3962 // error 0.0000876136000, which is better than 13 bits 3963 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3964 getF32Constant(DAG, 0xbda7262e)); 3965 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3966 getF32Constant(DAG, 0x3f25280b)); 3967 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3968 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3969 getF32Constant(DAG, 0x4007b923)); 3970 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 3971 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 3972 getF32Constant(DAG, 0x40823e2f)); 3973 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 3974 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 3975 getF32Constant(DAG, 0x4020d29c)); 3976 3977 result = DAG.getNode(ISD::FADD, dl, 3978 MVT::f32, LogOfExponent, Log2ofMantissa); 3979 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 3980 // For floating-point precision of 18: 3981 // 3982 // Log2ofMantissa = 3983 // -3.0400495f + 3984 // (6.1129976f + 3985 // (-5.3420409f + 3986 // (3.2865683f + 3987 // (-1.2669343f + 3988 // (0.27515199f - 3989 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 3990 // 3991 // error 0.0000018516, which is better than 18 bits 3992 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 3993 getF32Constant(DAG, 0xbcd2769e)); 3994 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 3995 getF32Constant(DAG, 0x3e8ce0b9)); 3996 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 3997 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 3998 getF32Constant(DAG, 0x3fa22ae7)); 3999 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4000 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4001 getF32Constant(DAG, 0x40525723)); 4002 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4003 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 4004 getF32Constant(DAG, 0x40aaf200)); 4005 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4006 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4007 getF32Constant(DAG, 0x40c39dad)); 4008 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4009 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 4010 getF32Constant(DAG, 0x4042902c)); 4011 4012 result = DAG.getNode(ISD::FADD, dl, 4013 MVT::f32, LogOfExponent, Log2ofMantissa); 4014 } 4015 } else { 4016 // No special expansion. 4017 result = DAG.getNode(ISD::FLOG2, dl, 4018 getValue(I.getArgOperand(0)).getValueType(), 4019 getValue(I.getArgOperand(0))); 4020 } 4021 4022 setValue(&I, result); 4023 } 4024 4025 /// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for 4026 /// limited-precision mode. 4027 void 4028 SelectionDAGBuilder::visitLog10(const CallInst &I) { 4029 SDValue result; 4030 DebugLoc dl = getCurDebugLoc(); 4031 4032 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4033 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4034 SDValue Op = getValue(I.getArgOperand(0)); 4035 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4036 4037 // Scale the exponent by log10(2) [0.30102999f]. 4038 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 4039 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 4040 getF32Constant(DAG, 0x3e9a209a)); 4041 4042 // Get the significand and build it into a floating-point number with 4043 // exponent of 1. 4044 SDValue X = GetSignificand(DAG, Op1, dl); 4045 4046 if (LimitFloatPrecision <= 6) { 4047 // For floating-point precision of 6: 4048 // 4049 // Log10ofMantissa = 4050 // -0.50419619f + 4051 // (0.60948995f - 0.10380950f * x) * x; 4052 // 4053 // error 0.0014886165, which is 6 bits 4054 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4055 getF32Constant(DAG, 0xbdd49a13)); 4056 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 4057 getF32Constant(DAG, 0x3f1c0789)); 4058 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4059 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 4060 getF32Constant(DAG, 0x3f011300)); 4061 4062 result = DAG.getNode(ISD::FADD, dl, 4063 MVT::f32, LogOfExponent, Log10ofMantissa); 4064 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4065 // For floating-point precision of 12: 4066 // 4067 // Log10ofMantissa = 4068 // -0.64831180f + 4069 // (0.91751397f + 4070 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 4071 // 4072 // error 0.00019228036, which is better than 12 bits 4073 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4074 getF32Constant(DAG, 0x3d431f31)); 4075 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4076 getF32Constant(DAG, 0x3ea21fb2)); 4077 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4078 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4079 getF32Constant(DAG, 0x3f6ae232)); 4080 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4081 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4082 getF32Constant(DAG, 0x3f25f7c3)); 4083 4084 result = DAG.getNode(ISD::FADD, dl, 4085 MVT::f32, LogOfExponent, Log10ofMantissa); 4086 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4087 // For floating-point precision of 18: 4088 // 4089 // Log10ofMantissa = 4090 // -0.84299375f + 4091 // (1.5327582f + 4092 // (-1.0688956f + 4093 // (0.49102474f + 4094 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 4095 // 4096 // error 0.0000037995730, which is better than 18 bits 4097 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4098 getF32Constant(DAG, 0x3c5d51ce)); 4099 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 4100 getF32Constant(DAG, 0x3e00685a)); 4101 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 4102 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4103 getF32Constant(DAG, 0x3efb6798)); 4104 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4105 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 4106 getF32Constant(DAG, 0x3f88d192)); 4107 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4108 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4109 getF32Constant(DAG, 0x3fc4316c)); 4110 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4111 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 4112 getF32Constant(DAG, 0x3f57ce70)); 4113 4114 result = DAG.getNode(ISD::FADD, dl, 4115 MVT::f32, LogOfExponent, Log10ofMantissa); 4116 } 4117 } else { 4118 // No special expansion. 4119 result = DAG.getNode(ISD::FLOG10, dl, 4120 getValue(I.getArgOperand(0)).getValueType(), 4121 getValue(I.getArgOperand(0))); 4122 } 4123 4124 setValue(&I, result); 4125 } 4126 4127 /// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for 4128 /// limited-precision mode. 4129 void 4130 SelectionDAGBuilder::visitExp2(const CallInst &I) { 4131 SDValue result; 4132 DebugLoc dl = getCurDebugLoc(); 4133 4134 if (getValue(I.getArgOperand(0)).getValueType() == MVT::f32 && 4135 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4136 SDValue Op = getValue(I.getArgOperand(0)); 4137 4138 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op); 4139 4140 // FractionalPartOfX = x - (float)IntegerPartOfX; 4141 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4142 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1); 4143 4144 // IntegerPartOfX <<= 23; 4145 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4146 DAG.getConstant(23, TLI.getPointerTy())); 4147 4148 if (LimitFloatPrecision <= 6) { 4149 // For floating-point precision of 6: 4150 // 4151 // TwoToFractionalPartOfX = 4152 // 0.997535578f + 4153 // (0.735607626f + 0.252464424f * x) * x; 4154 // 4155 // error 0.0144103317, which is 6 bits 4156 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4157 getF32Constant(DAG, 0x3e814304)); 4158 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4159 getF32Constant(DAG, 0x3f3c50c8)); 4160 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4161 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4162 getF32Constant(DAG, 0x3f7f5e7e)); 4163 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4164 SDValue TwoToFractionalPartOfX = 4165 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4166 4167 result = DAG.getNode(ISD::BITCAST, dl, 4168 MVT::f32, TwoToFractionalPartOfX); 4169 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4170 // For floating-point precision of 12: 4171 // 4172 // TwoToFractionalPartOfX = 4173 // 0.999892986f + 4174 // (0.696457318f + 4175 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4176 // 4177 // error 0.000107046256, which is 13 to 14 bits 4178 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4179 getF32Constant(DAG, 0x3da235e3)); 4180 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4181 getF32Constant(DAG, 0x3e65b8f3)); 4182 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4183 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4184 getF32Constant(DAG, 0x3f324b07)); 4185 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4186 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4187 getF32Constant(DAG, 0x3f7ff8fd)); 4188 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4189 SDValue TwoToFractionalPartOfX = 4190 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4191 4192 result = DAG.getNode(ISD::BITCAST, dl, 4193 MVT::f32, TwoToFractionalPartOfX); 4194 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4195 // For floating-point precision of 18: 4196 // 4197 // TwoToFractionalPartOfX = 4198 // 0.999999982f + 4199 // (0.693148872f + 4200 // (0.240227044f + 4201 // (0.554906021e-1f + 4202 // (0.961591928e-2f + 4203 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4204 // error 2.47208000*10^(-7), which is better than 18 bits 4205 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4206 getF32Constant(DAG, 0x3924b03e)); 4207 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4208 getF32Constant(DAG, 0x3ab24b87)); 4209 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4210 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4211 getF32Constant(DAG, 0x3c1d8c17)); 4212 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4213 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4214 getF32Constant(DAG, 0x3d634a1d)); 4215 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4216 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4217 getF32Constant(DAG, 0x3e75fe14)); 4218 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4219 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4220 getF32Constant(DAG, 0x3f317234)); 4221 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4222 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4223 getF32Constant(DAG, 0x3f800000)); 4224 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4225 SDValue TwoToFractionalPartOfX = 4226 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4227 4228 result = DAG.getNode(ISD::BITCAST, dl, 4229 MVT::f32, TwoToFractionalPartOfX); 4230 } 4231 } else { 4232 // No special expansion. 4233 result = DAG.getNode(ISD::FEXP2, dl, 4234 getValue(I.getArgOperand(0)).getValueType(), 4235 getValue(I.getArgOperand(0))); 4236 } 4237 4238 setValue(&I, result); 4239 } 4240 4241 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 4242 /// limited-precision mode with x == 10.0f. 4243 void 4244 SelectionDAGBuilder::visitPow(const CallInst &I) { 4245 SDValue result; 4246 const Value *Val = I.getArgOperand(0); 4247 DebugLoc dl = getCurDebugLoc(); 4248 bool IsExp10 = false; 4249 4250 if (getValue(Val).getValueType() == MVT::f32 && 4251 getValue(I.getArgOperand(1)).getValueType() == MVT::f32 && 4252 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4253 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) { 4254 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 4255 APFloat Ten(10.0f); 4256 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten); 4257 } 4258 } 4259 } 4260 4261 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4262 SDValue Op = getValue(I.getArgOperand(1)); 4263 4264 // Put the exponent in the right bit position for later addition to the 4265 // final result: 4266 // 4267 // #define LOG2OF10 3.3219281f 4268 // IntegerPartOfX = (int32_t)(x * LOG2OF10); 4269 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4270 getF32Constant(DAG, 0x40549a78)); 4271 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4272 4273 // FractionalPartOfX = x - (float)IntegerPartOfX; 4274 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4275 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4276 4277 // IntegerPartOfX <<= 23; 4278 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4279 DAG.getConstant(23, TLI.getPointerTy())); 4280 4281 if (LimitFloatPrecision <= 6) { 4282 // For floating-point precision of 6: 4283 // 4284 // twoToFractionalPartOfX = 4285 // 0.997535578f + 4286 // (0.735607626f + 0.252464424f * x) * x; 4287 // 4288 // error 0.0144103317, which is 6 bits 4289 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4290 getF32Constant(DAG, 0x3e814304)); 4291 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4292 getF32Constant(DAG, 0x3f3c50c8)); 4293 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4294 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4295 getF32Constant(DAG, 0x3f7f5e7e)); 4296 SDValue t6 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t5); 4297 SDValue TwoToFractionalPartOfX = 4298 DAG.getNode(ISD::ADD, dl, MVT::i32, t6, IntegerPartOfX); 4299 4300 result = DAG.getNode(ISD::BITCAST, dl, 4301 MVT::f32, TwoToFractionalPartOfX); 4302 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) { 4303 // For floating-point precision of 12: 4304 // 4305 // TwoToFractionalPartOfX = 4306 // 0.999892986f + 4307 // (0.696457318f + 4308 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4309 // 4310 // error 0.000107046256, which is 13 to 14 bits 4311 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4312 getF32Constant(DAG, 0x3da235e3)); 4313 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4314 getF32Constant(DAG, 0x3e65b8f3)); 4315 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4316 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4317 getF32Constant(DAG, 0x3f324b07)); 4318 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4319 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4320 getF32Constant(DAG, 0x3f7ff8fd)); 4321 SDValue t8 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t7); 4322 SDValue TwoToFractionalPartOfX = 4323 DAG.getNode(ISD::ADD, dl, MVT::i32, t8, IntegerPartOfX); 4324 4325 result = DAG.getNode(ISD::BITCAST, dl, 4326 MVT::f32, TwoToFractionalPartOfX); 4327 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18 4328 // For floating-point precision of 18: 4329 // 4330 // TwoToFractionalPartOfX = 4331 // 0.999999982f + 4332 // (0.693148872f + 4333 // (0.240227044f + 4334 // (0.554906021e-1f + 4335 // (0.961591928e-2f + 4336 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4337 // error 2.47208000*10^(-7), which is better than 18 bits 4338 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4339 getF32Constant(DAG, 0x3924b03e)); 4340 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4341 getF32Constant(DAG, 0x3ab24b87)); 4342 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4343 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4344 getF32Constant(DAG, 0x3c1d8c17)); 4345 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4346 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4347 getF32Constant(DAG, 0x3d634a1d)); 4348 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4349 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4350 getF32Constant(DAG, 0x3e75fe14)); 4351 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4352 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4353 getF32Constant(DAG, 0x3f317234)); 4354 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4355 SDValue t13 = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4356 getF32Constant(DAG, 0x3f800000)); 4357 SDValue t14 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, t13); 4358 SDValue TwoToFractionalPartOfX = 4359 DAG.getNode(ISD::ADD, dl, MVT::i32, t14, IntegerPartOfX); 4360 4361 result = DAG.getNode(ISD::BITCAST, dl, 4362 MVT::f32, TwoToFractionalPartOfX); 4363 } 4364 } else { 4365 // No special expansion. 4366 result = DAG.getNode(ISD::FPOW, dl, 4367 getValue(I.getArgOperand(0)).getValueType(), 4368 getValue(I.getArgOperand(0)), 4369 getValue(I.getArgOperand(1))); 4370 } 4371 4372 setValue(&I, result); 4373 } 4374 4375 4376 /// ExpandPowI - Expand a llvm.powi intrinsic. 4377 static SDValue ExpandPowI(DebugLoc DL, SDValue LHS, SDValue RHS, 4378 SelectionDAG &DAG) { 4379 // If RHS is a constant, we can expand this out to a multiplication tree, 4380 // otherwise we end up lowering to a call to __powidf2 (for example). When 4381 // optimizing for size, we only want to do this if the expansion would produce 4382 // a small number of multiplies, otherwise we do the full expansion. 4383 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 4384 // Get the exponent as a positive value. 4385 unsigned Val = RHSC->getSExtValue(); 4386 if ((int)Val < 0) Val = -Val; 4387 4388 // powi(x, 0) -> 1.0 4389 if (Val == 0) 4390 return DAG.getConstantFP(1.0, LHS.getValueType()); 4391 4392 const Function *F = DAG.getMachineFunction().getFunction(); 4393 if (!F->hasFnAttr(Attribute::OptimizeForSize) || 4394 // If optimizing for size, don't insert too many multiplies. This 4395 // inserts up to 5 multiplies. 4396 CountPopulation_32(Val)+Log2_32(Val) < 7) { 4397 // We use the simple binary decomposition method to generate the multiply 4398 // sequence. There are more optimal ways to do this (for example, 4399 // powi(x,15) generates one more multiply than it should), but this has 4400 // the benefit of being both really simple and much better than a libcall. 4401 SDValue Res; // Logically starts equal to 1.0 4402 SDValue CurSquare = LHS; 4403 while (Val) { 4404 if (Val & 1) { 4405 if (Res.getNode()) 4406 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 4407 else 4408 Res = CurSquare; // 1.0*CurSquare. 4409 } 4410 4411 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 4412 CurSquare, CurSquare); 4413 Val >>= 1; 4414 } 4415 4416 // If the original was negative, invert the result, producing 1/(x*x*x). 4417 if (RHSC->getSExtValue() < 0) 4418 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 4419 DAG.getConstantFP(1.0, LHS.getValueType()), Res); 4420 return Res; 4421 } 4422 } 4423 4424 // Otherwise, expand to a libcall. 4425 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 4426 } 4427 4428 // getTruncatedArgReg - Find underlying register used for an truncated 4429 // argument. 4430 static unsigned getTruncatedArgReg(const SDValue &N) { 4431 if (N.getOpcode() != ISD::TRUNCATE) 4432 return 0; 4433 4434 const SDValue &Ext = N.getOperand(0); 4435 if (Ext.getOpcode() == ISD::AssertZext || Ext.getOpcode() == ISD::AssertSext){ 4436 const SDValue &CFR = Ext.getOperand(0); 4437 if (CFR.getOpcode() == ISD::CopyFromReg) 4438 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg(); 4439 if (CFR.getOpcode() == ISD::TRUNCATE) 4440 return getTruncatedArgReg(CFR); 4441 } 4442 return 0; 4443 } 4444 4445 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function 4446 /// argument, create the corresponding DBG_VALUE machine instruction for it now. 4447 /// At the end of instruction selection, they will be inserted to the entry BB. 4448 bool 4449 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable, 4450 int64_t Offset, 4451 const SDValue &N) { 4452 const Argument *Arg = dyn_cast<Argument>(V); 4453 if (!Arg) 4454 return false; 4455 4456 MachineFunction &MF = DAG.getMachineFunction(); 4457 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo(); 4458 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo(); 4459 4460 // Ignore inlined function arguments here. 4461 DIVariable DV(Variable); 4462 if (DV.isInlinedFnArgument(MF.getFunction())) 4463 return false; 4464 4465 unsigned Reg = 0; 4466 // Some arguments' frame index is recorded during argument lowering. 4467 Offset = FuncInfo.getArgumentFrameIndex(Arg); 4468 if (Offset) 4469 Reg = TRI->getFrameRegister(MF); 4470 4471 if (!Reg && N.getNode()) { 4472 if (N.getOpcode() == ISD::CopyFromReg) 4473 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg(); 4474 else 4475 Reg = getTruncatedArgReg(N); 4476 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) { 4477 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 4478 unsigned PR = RegInfo.getLiveInPhysReg(Reg); 4479 if (PR) 4480 Reg = PR; 4481 } 4482 } 4483 4484 if (!Reg) { 4485 // Check if ValueMap has reg number. 4486 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V); 4487 if (VMI != FuncInfo.ValueMap.end()) 4488 Reg = VMI->second; 4489 } 4490 4491 if (!Reg && N.getNode()) { 4492 // Check if frame index is available. 4493 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode())) 4494 if (FrameIndexSDNode *FINode = 4495 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) { 4496 Reg = TRI->getFrameRegister(MF); 4497 Offset = FINode->getIndex(); 4498 } 4499 } 4500 4501 if (!Reg) 4502 return false; 4503 4504 MachineInstrBuilder MIB = BuildMI(MF, getCurDebugLoc(), 4505 TII->get(TargetOpcode::DBG_VALUE)) 4506 .addReg(Reg, RegState::Debug).addImm(Offset).addMetadata(Variable); 4507 FuncInfo.ArgDbgValues.push_back(&*MIB); 4508 return true; 4509 } 4510 4511 // VisualStudio defines setjmp as _setjmp 4512 #if defined(_MSC_VER) && defined(setjmp) && \ 4513 !defined(setjmp_undefined_for_msvc) 4514 # pragma push_macro("setjmp") 4515 # undef setjmp 4516 # define setjmp_undefined_for_msvc 4517 #endif 4518 4519 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If 4520 /// we want to emit this as a call to a named external function, return the name 4521 /// otherwise lower it and return null. 4522 const char * 4523 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) { 4524 DebugLoc dl = getCurDebugLoc(); 4525 SDValue Res; 4526 4527 switch (Intrinsic) { 4528 default: 4529 // By default, turn this into a target intrinsic node. 4530 visitTargetIntrinsic(I, Intrinsic); 4531 return 0; 4532 case Intrinsic::vastart: visitVAStart(I); return 0; 4533 case Intrinsic::vaend: visitVAEnd(I); return 0; 4534 case Intrinsic::vacopy: visitVACopy(I); return 0; 4535 case Intrinsic::returnaddress: 4536 setValue(&I, DAG.getNode(ISD::RETURNADDR, dl, TLI.getPointerTy(), 4537 getValue(I.getArgOperand(0)))); 4538 return 0; 4539 case Intrinsic::frameaddress: 4540 setValue(&I, DAG.getNode(ISD::FRAMEADDR, dl, TLI.getPointerTy(), 4541 getValue(I.getArgOperand(0)))); 4542 return 0; 4543 case Intrinsic::setjmp: 4544 return &"_setjmp"[!TLI.usesUnderscoreSetJmp()]; 4545 case Intrinsic::longjmp: 4546 return &"_longjmp"[!TLI.usesUnderscoreLongJmp()]; 4547 case Intrinsic::memcpy: { 4548 // Assert for address < 256 since we support only user defined address 4549 // spaces. 4550 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4551 < 256 && 4552 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4553 < 256 && 4554 "Unknown address space"); 4555 SDValue Op1 = getValue(I.getArgOperand(0)); 4556 SDValue Op2 = getValue(I.getArgOperand(1)); 4557 SDValue Op3 = getValue(I.getArgOperand(2)); 4558 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4559 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4560 DAG.setRoot(DAG.getMemcpy(getRoot(), dl, Op1, Op2, Op3, Align, isVol, false, 4561 MachinePointerInfo(I.getArgOperand(0)), 4562 MachinePointerInfo(I.getArgOperand(1)))); 4563 return 0; 4564 } 4565 case Intrinsic::memset: { 4566 // Assert for address < 256 since we support only user defined address 4567 // spaces. 4568 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4569 < 256 && 4570 "Unknown address space"); 4571 SDValue Op1 = getValue(I.getArgOperand(0)); 4572 SDValue Op2 = getValue(I.getArgOperand(1)); 4573 SDValue Op3 = getValue(I.getArgOperand(2)); 4574 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4575 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4576 DAG.setRoot(DAG.getMemset(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4577 MachinePointerInfo(I.getArgOperand(0)))); 4578 return 0; 4579 } 4580 case Intrinsic::memmove: { 4581 // Assert for address < 256 since we support only user defined address 4582 // spaces. 4583 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace() 4584 < 256 && 4585 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace() 4586 < 256 && 4587 "Unknown address space"); 4588 SDValue Op1 = getValue(I.getArgOperand(0)); 4589 SDValue Op2 = getValue(I.getArgOperand(1)); 4590 SDValue Op3 = getValue(I.getArgOperand(2)); 4591 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue(); 4592 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue(); 4593 DAG.setRoot(DAG.getMemmove(getRoot(), dl, Op1, Op2, Op3, Align, isVol, 4594 MachinePointerInfo(I.getArgOperand(0)), 4595 MachinePointerInfo(I.getArgOperand(1)))); 4596 return 0; 4597 } 4598 case Intrinsic::dbg_declare: { 4599 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I); 4600 MDNode *Variable = DI.getVariable(); 4601 const Value *Address = DI.getAddress(); 4602 if (!Address || !DIVariable(Variable).Verify()) { 4603 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4604 return 0; 4605 } 4606 4607 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4608 // but do not always have a corresponding SDNode built. The SDNodeOrder 4609 // absolute, but not relative, values are different depending on whether 4610 // debug info exists. 4611 ++SDNodeOrder; 4612 4613 // Check if address has undef value. 4614 if (isa<UndefValue>(Address) || 4615 (Address->use_empty() && !isa<Argument>(Address))) { 4616 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4617 return 0; 4618 } 4619 4620 SDValue &N = NodeMap[Address]; 4621 if (!N.getNode() && isa<Argument>(Address)) 4622 // Check unused arguments map. 4623 N = UnusedArgNodeMap[Address]; 4624 SDDbgValue *SDV; 4625 if (N.getNode()) { 4626 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 4627 Address = BCI->getOperand(0); 4628 // Parameters are handled specially. 4629 bool isParameter = 4630 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable || 4631 isa<Argument>(Address)); 4632 4633 const AllocaInst *AI = dyn_cast<AllocaInst>(Address); 4634 4635 if (isParameter && !AI) { 4636 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 4637 if (FINode) 4638 // Byval parameter. We have a frame index at this point. 4639 SDV = DAG.getDbgValue(Variable, FINode->getIndex(), 4640 0, dl, SDNodeOrder); 4641 else { 4642 // Address is an argument, so try to emit its dbg value using 4643 // virtual register info from the FuncInfo.ValueMap. 4644 EmitFuncArgumentDbgValue(Address, Variable, 0, N); 4645 return 0; 4646 } 4647 } else if (AI) 4648 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(), 4649 0, dl, SDNodeOrder); 4650 else { 4651 // Can't do anything with other non-AI cases yet. 4652 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4653 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t"); 4654 DEBUG(Address->dump()); 4655 return 0; 4656 } 4657 DAG.AddDbgValue(SDV, N.getNode(), isParameter); 4658 } else { 4659 // If Address is an argument then try to emit its dbg value using 4660 // virtual register info from the FuncInfo.ValueMap. 4661 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) { 4662 // If variable is pinned by a alloca in dominating bb then 4663 // use StaticAllocaMap. 4664 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) { 4665 if (AI->getParent() != DI.getParent()) { 4666 DenseMap<const AllocaInst*, int>::iterator SI = 4667 FuncInfo.StaticAllocaMap.find(AI); 4668 if (SI != FuncInfo.StaticAllocaMap.end()) { 4669 SDV = DAG.getDbgValue(Variable, SI->second, 4670 0, dl, SDNodeOrder); 4671 DAG.AddDbgValue(SDV, 0, false); 4672 return 0; 4673 } 4674 } 4675 } 4676 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4677 } 4678 } 4679 return 0; 4680 } 4681 case Intrinsic::dbg_value: { 4682 const DbgValueInst &DI = cast<DbgValueInst>(I); 4683 if (!DIVariable(DI.getVariable()).Verify()) 4684 return 0; 4685 4686 MDNode *Variable = DI.getVariable(); 4687 uint64_t Offset = DI.getOffset(); 4688 const Value *V = DI.getValue(); 4689 if (!V) 4690 return 0; 4691 4692 // Build an entry in DbgOrdering. Debug info input nodes get an SDNodeOrder 4693 // but do not always have a corresponding SDNode built. The SDNodeOrder 4694 // absolute, but not relative, values are different depending on whether 4695 // debug info exists. 4696 ++SDNodeOrder; 4697 SDDbgValue *SDV; 4698 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) { 4699 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder); 4700 DAG.AddDbgValue(SDV, 0, false); 4701 } else { 4702 // Do not use getValue() in here; we don't want to generate code at 4703 // this point if it hasn't been done yet. 4704 SDValue N = NodeMap[V]; 4705 if (!N.getNode() && isa<Argument>(V)) 4706 // Check unused arguments map. 4707 N = UnusedArgNodeMap[V]; 4708 if (N.getNode()) { 4709 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) { 4710 SDV = DAG.getDbgValue(Variable, N.getNode(), 4711 N.getResNo(), Offset, dl, SDNodeOrder); 4712 DAG.AddDbgValue(SDV, N.getNode(), false); 4713 } 4714 } else if (!V->use_empty() ) { 4715 // Do not call getValue(V) yet, as we don't want to generate code. 4716 // Remember it for later. 4717 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder); 4718 DanglingDebugInfoMap[V] = DDI; 4719 } else { 4720 // We may expand this to cover more cases. One case where we have no 4721 // data available is an unreferenced parameter. 4722 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n"); 4723 } 4724 } 4725 4726 // Build a debug info table entry. 4727 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V)) 4728 V = BCI->getOperand(0); 4729 const AllocaInst *AI = dyn_cast<AllocaInst>(V); 4730 // Don't handle byval struct arguments or VLAs, for example. 4731 if (!AI) { 4732 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n"); 4733 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n"); 4734 return 0; 4735 } 4736 DenseMap<const AllocaInst*, int>::iterator SI = 4737 FuncInfo.StaticAllocaMap.find(AI); 4738 if (SI == FuncInfo.StaticAllocaMap.end()) 4739 return 0; // VLAs. 4740 int FI = SI->second; 4741 4742 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4743 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo()) 4744 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc()); 4745 return 0; 4746 } 4747 4748 case Intrinsic::eh_typeid_for: { 4749 // Find the type id for the given typeinfo. 4750 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0)); 4751 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV); 4752 Res = DAG.getConstant(TypeID, MVT::i32); 4753 setValue(&I, Res); 4754 return 0; 4755 } 4756 4757 case Intrinsic::eh_return_i32: 4758 case Intrinsic::eh_return_i64: 4759 DAG.getMachineFunction().getMMI().setCallsEHReturn(true); 4760 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, dl, 4761 MVT::Other, 4762 getControlRoot(), 4763 getValue(I.getArgOperand(0)), 4764 getValue(I.getArgOperand(1)))); 4765 return 0; 4766 case Intrinsic::eh_unwind_init: 4767 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true); 4768 return 0; 4769 case Intrinsic::eh_dwarf_cfa: { 4770 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), dl, 4771 TLI.getPointerTy()); 4772 SDValue Offset = DAG.getNode(ISD::ADD, dl, 4773 TLI.getPointerTy(), 4774 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, dl, 4775 TLI.getPointerTy()), 4776 CfaArg); 4777 SDValue FA = DAG.getNode(ISD::FRAMEADDR, dl, 4778 TLI.getPointerTy(), 4779 DAG.getConstant(0, TLI.getPointerTy())); 4780 setValue(&I, DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), 4781 FA, Offset)); 4782 return 0; 4783 } 4784 case Intrinsic::eh_sjlj_callsite: { 4785 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 4786 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 4787 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 4788 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 4789 4790 MMI.setCurrentCallSite(CI->getZExtValue()); 4791 return 0; 4792 } 4793 case Intrinsic::eh_sjlj_functioncontext: { 4794 // Get and store the index of the function context. 4795 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); 4796 AllocaInst *FnCtx = 4797 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 4798 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 4799 MFI->setFunctionContextIndex(FI); 4800 return 0; 4801 } 4802 case Intrinsic::eh_sjlj_setjmp: { 4803 SDValue Ops[2]; 4804 Ops[0] = getRoot(); 4805 Ops[1] = getValue(I.getArgOperand(0)); 4806 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, dl, 4807 DAG.getVTList(MVT::i32, MVT::Other), 4808 Ops, 2); 4809 setValue(&I, Op.getValue(0)); 4810 DAG.setRoot(Op.getValue(1)); 4811 return 0; 4812 } 4813 case Intrinsic::eh_sjlj_longjmp: { 4814 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, dl, MVT::Other, 4815 getRoot(), getValue(I.getArgOperand(0)))); 4816 return 0; 4817 } 4818 4819 case Intrinsic::x86_mmx_pslli_w: 4820 case Intrinsic::x86_mmx_pslli_d: 4821 case Intrinsic::x86_mmx_pslli_q: 4822 case Intrinsic::x86_mmx_psrli_w: 4823 case Intrinsic::x86_mmx_psrli_d: 4824 case Intrinsic::x86_mmx_psrli_q: 4825 case Intrinsic::x86_mmx_psrai_w: 4826 case Intrinsic::x86_mmx_psrai_d: { 4827 SDValue ShAmt = getValue(I.getArgOperand(1)); 4828 if (isa<ConstantSDNode>(ShAmt)) { 4829 visitTargetIntrinsic(I, Intrinsic); 4830 return 0; 4831 } 4832 unsigned NewIntrinsic = 0; 4833 EVT ShAmtVT = MVT::v2i32; 4834 switch (Intrinsic) { 4835 case Intrinsic::x86_mmx_pslli_w: 4836 NewIntrinsic = Intrinsic::x86_mmx_psll_w; 4837 break; 4838 case Intrinsic::x86_mmx_pslli_d: 4839 NewIntrinsic = Intrinsic::x86_mmx_psll_d; 4840 break; 4841 case Intrinsic::x86_mmx_pslli_q: 4842 NewIntrinsic = Intrinsic::x86_mmx_psll_q; 4843 break; 4844 case Intrinsic::x86_mmx_psrli_w: 4845 NewIntrinsic = Intrinsic::x86_mmx_psrl_w; 4846 break; 4847 case Intrinsic::x86_mmx_psrli_d: 4848 NewIntrinsic = Intrinsic::x86_mmx_psrl_d; 4849 break; 4850 case Intrinsic::x86_mmx_psrli_q: 4851 NewIntrinsic = Intrinsic::x86_mmx_psrl_q; 4852 break; 4853 case Intrinsic::x86_mmx_psrai_w: 4854 NewIntrinsic = Intrinsic::x86_mmx_psra_w; 4855 break; 4856 case Intrinsic::x86_mmx_psrai_d: 4857 NewIntrinsic = Intrinsic::x86_mmx_psra_d; 4858 break; 4859 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4860 } 4861 4862 // The vector shift intrinsics with scalars uses 32b shift amounts but 4863 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits 4864 // to be zero. 4865 // We must do this early because v2i32 is not a legal type. 4866 DebugLoc dl = getCurDebugLoc(); 4867 SDValue ShOps[2]; 4868 ShOps[0] = ShAmt; 4869 ShOps[1] = DAG.getConstant(0, MVT::i32); 4870 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, dl, ShAmtVT, &ShOps[0], 2); 4871 EVT DestVT = TLI.getValueType(I.getType()); 4872 ShAmt = DAG.getNode(ISD::BITCAST, dl, DestVT, ShAmt); 4873 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT, 4874 DAG.getConstant(NewIntrinsic, MVT::i32), 4875 getValue(I.getArgOperand(0)), ShAmt); 4876 setValue(&I, Res); 4877 return 0; 4878 } 4879 case Intrinsic::x86_avx_vinsertf128_pd_256: 4880 case Intrinsic::x86_avx_vinsertf128_ps_256: 4881 case Intrinsic::x86_avx_vinsertf128_si_256: 4882 case Intrinsic::x86_avx2_vinserti128: { 4883 DebugLoc dl = getCurDebugLoc(); 4884 EVT DestVT = TLI.getValueType(I.getType()); 4885 EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType()); 4886 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) * 4887 ElVT.getVectorNumElements(); 4888 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, dl, DestVT, 4889 getValue(I.getArgOperand(0)), 4890 getValue(I.getArgOperand(1)), 4891 DAG.getIntPtrConstant(Idx)); 4892 setValue(&I, Res); 4893 return 0; 4894 } 4895 case Intrinsic::x86_avx_vextractf128_pd_256: 4896 case Intrinsic::x86_avx_vextractf128_ps_256: 4897 case Intrinsic::x86_avx_vextractf128_si_256: 4898 case Intrinsic::x86_avx2_vextracti128: { 4899 DebugLoc dl = getCurDebugLoc(); 4900 EVT DestVT = TLI.getValueType(I.getType()); 4901 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) * 4902 DestVT.getVectorNumElements(); 4903 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, dl, DestVT, 4904 getValue(I.getArgOperand(0)), 4905 DAG.getIntPtrConstant(Idx)); 4906 setValue(&I, Res); 4907 return 0; 4908 } 4909 case Intrinsic::convertff: 4910 case Intrinsic::convertfsi: 4911 case Intrinsic::convertfui: 4912 case Intrinsic::convertsif: 4913 case Intrinsic::convertuif: 4914 case Intrinsic::convertss: 4915 case Intrinsic::convertsu: 4916 case Intrinsic::convertus: 4917 case Intrinsic::convertuu: { 4918 ISD::CvtCode Code = ISD::CVT_INVALID; 4919 switch (Intrinsic) { 4920 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 4921 case Intrinsic::convertff: Code = ISD::CVT_FF; break; 4922 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break; 4923 case Intrinsic::convertfui: Code = ISD::CVT_FU; break; 4924 case Intrinsic::convertsif: Code = ISD::CVT_SF; break; 4925 case Intrinsic::convertuif: Code = ISD::CVT_UF; break; 4926 case Intrinsic::convertss: Code = ISD::CVT_SS; break; 4927 case Intrinsic::convertsu: Code = ISD::CVT_SU; break; 4928 case Intrinsic::convertus: Code = ISD::CVT_US; break; 4929 case Intrinsic::convertuu: Code = ISD::CVT_UU; break; 4930 } 4931 EVT DestVT = TLI.getValueType(I.getType()); 4932 const Value *Op1 = I.getArgOperand(0); 4933 Res = DAG.getConvertRndSat(DestVT, getCurDebugLoc(), getValue(Op1), 4934 DAG.getValueType(DestVT), 4935 DAG.getValueType(getValue(Op1).getValueType()), 4936 getValue(I.getArgOperand(1)), 4937 getValue(I.getArgOperand(2)), 4938 Code); 4939 setValue(&I, Res); 4940 return 0; 4941 } 4942 case Intrinsic::sqrt: 4943 setValue(&I, DAG.getNode(ISD::FSQRT, dl, 4944 getValue(I.getArgOperand(0)).getValueType(), 4945 getValue(I.getArgOperand(0)))); 4946 return 0; 4947 case Intrinsic::powi: 4948 setValue(&I, ExpandPowI(dl, getValue(I.getArgOperand(0)), 4949 getValue(I.getArgOperand(1)), DAG)); 4950 return 0; 4951 case Intrinsic::sin: 4952 setValue(&I, DAG.getNode(ISD::FSIN, dl, 4953 getValue(I.getArgOperand(0)).getValueType(), 4954 getValue(I.getArgOperand(0)))); 4955 return 0; 4956 case Intrinsic::cos: 4957 setValue(&I, DAG.getNode(ISD::FCOS, dl, 4958 getValue(I.getArgOperand(0)).getValueType(), 4959 getValue(I.getArgOperand(0)))); 4960 return 0; 4961 case Intrinsic::log: 4962 visitLog(I); 4963 return 0; 4964 case Intrinsic::log2: 4965 visitLog2(I); 4966 return 0; 4967 case Intrinsic::log10: 4968 visitLog10(I); 4969 return 0; 4970 case Intrinsic::exp: 4971 visitExp(I); 4972 return 0; 4973 case Intrinsic::exp2: 4974 visitExp2(I); 4975 return 0; 4976 case Intrinsic::pow: 4977 visitPow(I); 4978 return 0; 4979 case Intrinsic::fabs: 4980 setValue(&I, DAG.getNode(ISD::FABS, dl, 4981 getValue(I.getArgOperand(0)).getValueType(), 4982 getValue(I.getArgOperand(0)))); 4983 return 0; 4984 case Intrinsic::floor: 4985 setValue(&I, DAG.getNode(ISD::FFLOOR, dl, 4986 getValue(I.getArgOperand(0)).getValueType(), 4987 getValue(I.getArgOperand(0)))); 4988 return 0; 4989 case Intrinsic::fma: 4990 setValue(&I, DAG.getNode(ISD::FMA, dl, 4991 getValue(I.getArgOperand(0)).getValueType(), 4992 getValue(I.getArgOperand(0)), 4993 getValue(I.getArgOperand(1)), 4994 getValue(I.getArgOperand(2)))); 4995 return 0; 4996 case Intrinsic::fmuladd: { 4997 EVT VT = TLI.getValueType(I.getType()); 4998 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 4999 TLI.isOperationLegal(ISD::FMA, VT) && 5000 TLI.isFMAFasterThanMulAndAdd(VT)){ 5001 setValue(&I, DAG.getNode(ISD::FMA, dl, 5002 getValue(I.getArgOperand(0)).getValueType(), 5003 getValue(I.getArgOperand(0)), 5004 getValue(I.getArgOperand(1)), 5005 getValue(I.getArgOperand(2)))); 5006 } else { 5007 SDValue Mul = DAG.getNode(ISD::FMUL, dl, 5008 getValue(I.getArgOperand(0)).getValueType(), 5009 getValue(I.getArgOperand(0)), 5010 getValue(I.getArgOperand(1))); 5011 SDValue Add = DAG.getNode(ISD::FADD, dl, 5012 getValue(I.getArgOperand(0)).getValueType(), 5013 Mul, 5014 getValue(I.getArgOperand(2))); 5015 setValue(&I, Add); 5016 } 5017 return 0; 5018 } 5019 case Intrinsic::convert_to_fp16: 5020 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, dl, 5021 MVT::i16, getValue(I.getArgOperand(0)))); 5022 return 0; 5023 case Intrinsic::convert_from_fp16: 5024 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, dl, 5025 MVT::f32, getValue(I.getArgOperand(0)))); 5026 return 0; 5027 case Intrinsic::pcmarker: { 5028 SDValue Tmp = getValue(I.getArgOperand(0)); 5029 DAG.setRoot(DAG.getNode(ISD::PCMARKER, dl, MVT::Other, getRoot(), Tmp)); 5030 return 0; 5031 } 5032 case Intrinsic::readcyclecounter: { 5033 SDValue Op = getRoot(); 5034 Res = DAG.getNode(ISD::READCYCLECOUNTER, dl, 5035 DAG.getVTList(MVT::i64, MVT::Other), 5036 &Op, 1); 5037 setValue(&I, Res); 5038 DAG.setRoot(Res.getValue(1)); 5039 return 0; 5040 } 5041 case Intrinsic::bswap: 5042 setValue(&I, DAG.getNode(ISD::BSWAP, dl, 5043 getValue(I.getArgOperand(0)).getValueType(), 5044 getValue(I.getArgOperand(0)))); 5045 return 0; 5046 case Intrinsic::cttz: { 5047 SDValue Arg = getValue(I.getArgOperand(0)); 5048 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5049 EVT Ty = Arg.getValueType(); 5050 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 5051 dl, Ty, Arg)); 5052 return 0; 5053 } 5054 case Intrinsic::ctlz: { 5055 SDValue Arg = getValue(I.getArgOperand(0)); 5056 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 5057 EVT Ty = Arg.getValueType(); 5058 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 5059 dl, Ty, Arg)); 5060 return 0; 5061 } 5062 case Intrinsic::ctpop: { 5063 SDValue Arg = getValue(I.getArgOperand(0)); 5064 EVT Ty = Arg.getValueType(); 5065 setValue(&I, DAG.getNode(ISD::CTPOP, dl, Ty, Arg)); 5066 return 0; 5067 } 5068 case Intrinsic::stacksave: { 5069 SDValue Op = getRoot(); 5070 Res = DAG.getNode(ISD::STACKSAVE, dl, 5071 DAG.getVTList(TLI.getPointerTy(), MVT::Other), &Op, 1); 5072 setValue(&I, Res); 5073 DAG.setRoot(Res.getValue(1)); 5074 return 0; 5075 } 5076 case Intrinsic::stackrestore: { 5077 Res = getValue(I.getArgOperand(0)); 5078 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, dl, MVT::Other, getRoot(), Res)); 5079 return 0; 5080 } 5081 case Intrinsic::stackprotector: { 5082 // Emit code into the DAG to store the stack guard onto the stack. 5083 MachineFunction &MF = DAG.getMachineFunction(); 5084 MachineFrameInfo *MFI = MF.getFrameInfo(); 5085 EVT PtrTy = TLI.getPointerTy(); 5086 5087 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value. 5088 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 5089 5090 int FI = FuncInfo.StaticAllocaMap[Slot]; 5091 MFI->setStackProtectorIndex(FI); 5092 5093 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 5094 5095 // Store the stack protector onto the stack. 5096 Res = DAG.getStore(getRoot(), getCurDebugLoc(), Src, FIN, 5097 MachinePointerInfo::getFixedStack(FI), 5098 true, false, 0); 5099 setValue(&I, Res); 5100 DAG.setRoot(Res); 5101 return 0; 5102 } 5103 case Intrinsic::objectsize: { 5104 // If we don't know by now, we're never going to know. 5105 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1)); 5106 5107 assert(CI && "Non-constant type in __builtin_object_size?"); 5108 5109 SDValue Arg = getValue(I.getCalledValue()); 5110 EVT Ty = Arg.getValueType(); 5111 5112 if (CI->isZero()) 5113 Res = DAG.getConstant(-1ULL, Ty); 5114 else 5115 Res = DAG.getConstant(0, Ty); 5116 5117 setValue(&I, Res); 5118 return 0; 5119 } 5120 case Intrinsic::var_annotation: 5121 // Discard annotate attributes 5122 return 0; 5123 5124 case Intrinsic::init_trampoline: { 5125 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 5126 5127 SDValue Ops[6]; 5128 Ops[0] = getRoot(); 5129 Ops[1] = getValue(I.getArgOperand(0)); 5130 Ops[2] = getValue(I.getArgOperand(1)); 5131 Ops[3] = getValue(I.getArgOperand(2)); 5132 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 5133 Ops[5] = DAG.getSrcValue(F); 5134 5135 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, dl, MVT::Other, Ops, 6); 5136 5137 DAG.setRoot(Res); 5138 return 0; 5139 } 5140 case Intrinsic::adjust_trampoline: { 5141 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, dl, 5142 TLI.getPointerTy(), 5143 getValue(I.getArgOperand(0)))); 5144 return 0; 5145 } 5146 case Intrinsic::gcroot: 5147 if (GFI) { 5148 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 5149 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 5150 5151 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 5152 GFI->addStackRoot(FI->getIndex(), TypeMap); 5153 } 5154 return 0; 5155 case Intrinsic::gcread: 5156 case Intrinsic::gcwrite: 5157 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 5158 case Intrinsic::flt_rounds: 5159 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, dl, MVT::i32)); 5160 return 0; 5161 5162 case Intrinsic::expect: { 5163 // Just replace __builtin_expect(exp, c) with EXP. 5164 setValue(&I, getValue(I.getArgOperand(0))); 5165 return 0; 5166 } 5167 5168 case Intrinsic::trap: { 5169 StringRef TrapFuncName = TM.Options.getTrapFunctionName(); 5170 if (TrapFuncName.empty()) { 5171 DAG.setRoot(DAG.getNode(ISD::TRAP, dl,MVT::Other, getRoot())); 5172 return 0; 5173 } 5174 TargetLowering::ArgListTy Args; 5175 TargetLowering:: 5176 CallLoweringInfo CLI(getRoot(), I.getType(), 5177 false, false, false, false, 0, CallingConv::C, 5178 /*isTailCall=*/false, 5179 /*doesNotRet=*/false, /*isReturnValueUsed=*/true, 5180 DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()), 5181 Args, DAG, getCurDebugLoc()); 5182 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 5183 DAG.setRoot(Result.second); 5184 return 0; 5185 } 5186 case Intrinsic::debugtrap: { 5187 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, dl,MVT::Other, getRoot())); 5188 return 0; 5189 } 5190 case Intrinsic::uadd_with_overflow: 5191 case Intrinsic::sadd_with_overflow: 5192 case Intrinsic::usub_with_overflow: 5193 case Intrinsic::ssub_with_overflow: 5194 case Intrinsic::umul_with_overflow: 5195 case Intrinsic::smul_with_overflow: { 5196 ISD::NodeType Op; 5197 switch (Intrinsic) { 5198 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 5199 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 5200 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 5201 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 5202 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 5203 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 5204 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 5205 } 5206 SDValue Op1 = getValue(I.getArgOperand(0)); 5207 SDValue Op2 = getValue(I.getArgOperand(1)); 5208 5209 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1); 5210 setValue(&I, DAG.getNode(Op, getCurDebugLoc(), VTs, Op1, Op2)); 5211 return 0; 5212 } 5213 case Intrinsic::prefetch: { 5214 SDValue Ops[5]; 5215 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 5216 Ops[0] = getRoot(); 5217 Ops[1] = getValue(I.getArgOperand(0)); 5218 Ops[2] = getValue(I.getArgOperand(1)); 5219 Ops[3] = getValue(I.getArgOperand(2)); 5220 Ops[4] = getValue(I.getArgOperand(3)); 5221 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, dl, 5222 DAG.getVTList(MVT::Other), 5223 &Ops[0], 5, 5224 EVT::getIntegerVT(*Context, 8), 5225 MachinePointerInfo(I.getArgOperand(0)), 5226 0, /* align */ 5227 false, /* volatile */ 5228 rw==0, /* read */ 5229 rw==1)); /* write */ 5230 return 0; 5231 } 5232 case Intrinsic::lifetime_start: 5233 case Intrinsic::lifetime_end: { 5234 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 5235 // Stack coloring is not enabled in O0, discard region information. 5236 if (TM.getOptLevel() == CodeGenOpt::None) 5237 return 0; 5238 5239 SmallVector<Value *, 4> Allocas; 5240 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD); 5241 5242 for (SmallVector<Value*, 4>::iterator Object = Allocas.begin(), 5243 E = Allocas.end(); Object != E; ++Object) { 5244 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object); 5245 5246 // Could not find an Alloca. 5247 if (!LifetimeObject) 5248 continue; 5249 5250 int FI = FuncInfo.StaticAllocaMap[LifetimeObject]; 5251 5252 SDValue Ops[2]; 5253 Ops[0] = getRoot(); 5254 Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true); 5255 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END); 5256 5257 Res = DAG.getNode(Opcode, dl, MVT::Other, Ops, 2); 5258 DAG.setRoot(Res); 5259 } 5260 } 5261 case Intrinsic::invariant_start: 5262 // Discard region information. 5263 setValue(&I, DAG.getUNDEF(TLI.getPointerTy())); 5264 return 0; 5265 case Intrinsic::invariant_end: 5266 // Discard region information. 5267 return 0; 5268 case Intrinsic::donothing: 5269 // ignore 5270 return 0; 5271 } 5272 } 5273 5274 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee, 5275 bool isTailCall, 5276 MachineBasicBlock *LandingPad) { 5277 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); 5278 FunctionType *FTy = cast<FunctionType>(PT->getElementType()); 5279 Type *RetTy = FTy->getReturnType(); 5280 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5281 MCSymbol *BeginLabel = 0; 5282 5283 TargetLowering::ArgListTy Args; 5284 TargetLowering::ArgListEntry Entry; 5285 Args.reserve(CS.arg_size()); 5286 5287 // Check whether the function can return without sret-demotion. 5288 SmallVector<ISD::OutputArg, 4> Outs; 5289 GetReturnInfo(RetTy, CS.getAttributes().getRetAttributes(), 5290 Outs, TLI); 5291 5292 bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), 5293 DAG.getMachineFunction(), 5294 FTy->isVarArg(), Outs, 5295 FTy->getContext()); 5296 5297 SDValue DemoteStackSlot; 5298 int DemoteStackIdx = -100; 5299 5300 if (!CanLowerReturn) { 5301 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize( 5302 FTy->getReturnType()); 5303 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment( 5304 FTy->getReturnType()); 5305 MachineFunction &MF = DAG.getMachineFunction(); 5306 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 5307 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType()); 5308 5309 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI.getPointerTy()); 5310 Entry.Node = DemoteStackSlot; 5311 Entry.Ty = StackSlotPtrType; 5312 Entry.isSExt = false; 5313 Entry.isZExt = false; 5314 Entry.isInReg = false; 5315 Entry.isSRet = true; 5316 Entry.isNest = false; 5317 Entry.isByVal = false; 5318 Entry.Alignment = Align; 5319 Args.push_back(Entry); 5320 RetTy = Type::getVoidTy(FTy->getContext()); 5321 } 5322 5323 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); 5324 i != e; ++i) { 5325 const Value *V = *i; 5326 5327 // Skip empty types 5328 if (V->getType()->isEmptyTy()) 5329 continue; 5330 5331 SDValue ArgNode = getValue(V); 5332 Entry.Node = ArgNode; Entry.Ty = V->getType(); 5333 5334 unsigned attrInd = i - CS.arg_begin() + 1; 5335 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt); 5336 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt); 5337 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg); 5338 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet); 5339 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest); 5340 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal); 5341 Entry.Alignment = CS.getParamAlignment(attrInd); 5342 Args.push_back(Entry); 5343 } 5344 5345 if (LandingPad) { 5346 // Insert a label before the invoke call to mark the try range. This can be 5347 // used to detect deletion of the invoke via the MachineModuleInfo. 5348 BeginLabel = MMI.getContext().CreateTempSymbol(); 5349 5350 // For SjLj, keep track of which landing pads go with which invokes 5351 // so as to maintain the ordering of pads in the LSDA. 5352 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 5353 if (CallSiteIndex) { 5354 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 5355 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex); 5356 5357 // Now that the call site is handled, stop tracking it. 5358 MMI.setCurrentCallSite(0); 5359 } 5360 5361 // Both PendingLoads and PendingExports must be flushed here; 5362 // this call might not return. 5363 (void)getRoot(); 5364 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getControlRoot(), BeginLabel)); 5365 } 5366 5367 // Check if target-independent constraints permit a tail call here. 5368 // Target-dependent constraints are checked within TLI.LowerCallTo. 5369 if (isTailCall && 5370 !isInTailCallPosition(CS, CS.getAttributes().getRetAttributes(), TLI)) 5371 isTailCall = false; 5372 5373 // If there's a possibility that fast-isel has already selected some amount 5374 // of the current basic block, don't emit a tail call. 5375 if (isTailCall && TM.Options.EnableFastISel) 5376 isTailCall = false; 5377 5378 TargetLowering:: 5379 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG, 5380 getCurDebugLoc(), CS); 5381 std::pair<SDValue,SDValue> Result = TLI.LowerCallTo(CLI); 5382 assert((isTailCall || Result.second.getNode()) && 5383 "Non-null chain expected with non-tail call!"); 5384 assert((Result.second.getNode() || !Result.first.getNode()) && 5385 "Null value expected with tail call!"); 5386 if (Result.first.getNode()) { 5387 setValue(CS.getInstruction(), Result.first); 5388 } else if (!CanLowerReturn && Result.second.getNode()) { 5389 // The instruction result is the result of loading from the 5390 // hidden sret parameter. 5391 SmallVector<EVT, 1> PVTs; 5392 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType()); 5393 5394 ComputeValueVTs(TLI, PtrRetTy, PVTs); 5395 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 5396 EVT PtrVT = PVTs[0]; 5397 5398 SmallVector<EVT, 4> RetTys; 5399 SmallVector<uint64_t, 4> Offsets; 5400 RetTy = FTy->getReturnType(); 5401 ComputeValueVTs(TLI, RetTy, RetTys, &Offsets); 5402 5403 unsigned NumValues = RetTys.size(); 5404 SmallVector<SDValue, 4> Values(NumValues); 5405 SmallVector<SDValue, 4> Chains(NumValues); 5406 5407 for (unsigned i = 0; i < NumValues; ++i) { 5408 SDValue Add = DAG.getNode(ISD::ADD, getCurDebugLoc(), PtrVT, 5409 DemoteStackSlot, 5410 DAG.getConstant(Offsets[i], PtrVT)); 5411 SDValue L = DAG.getLoad(RetTys[i], getCurDebugLoc(), Result.second, Add, 5412 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), 5413 false, false, false, 1); 5414 Values[i] = L; 5415 Chains[i] = L.getValue(1); 5416 } 5417 5418 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), 5419 MVT::Other, &Chains[0], NumValues); 5420 PendingLoads.push_back(Chain); 5421 5422 setValue(CS.getInstruction(), 5423 DAG.getNode(ISD::MERGE_VALUES, getCurDebugLoc(), 5424 DAG.getVTList(&RetTys[0], RetTys.size()), 5425 &Values[0], Values.size())); 5426 } 5427 5428 // Assign order to nodes here. If the call does not produce a result, it won't 5429 // be mapped to a SDNode and visit() will not assign it an order number. 5430 if (!Result.second.getNode()) { 5431 // As a special case, a null chain means that a tail call has been emitted and 5432 // the DAG root is already updated. 5433 HasTailCall = true; 5434 ++SDNodeOrder; 5435 AssignOrderingToNode(DAG.getRoot().getNode()); 5436 } else { 5437 DAG.setRoot(Result.second); 5438 ++SDNodeOrder; 5439 AssignOrderingToNode(Result.second.getNode()); 5440 } 5441 5442 if (LandingPad) { 5443 // Insert a label at the end of the invoke call to mark the try range. This 5444 // can be used to detect deletion of the invoke via the MachineModuleInfo. 5445 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol(); 5446 DAG.setRoot(DAG.getEHLabel(getCurDebugLoc(), getRoot(), EndLabel)); 5447 5448 // Inform MachineModuleInfo of range. 5449 MMI.addInvoke(LandingPad, BeginLabel, EndLabel); 5450 } 5451 } 5452 5453 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the 5454 /// value is equal or not-equal to zero. 5455 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) { 5456 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end(); 5457 UI != E; ++UI) { 5458 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI)) 5459 if (IC->isEquality()) 5460 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1))) 5461 if (C->isNullValue()) 5462 continue; 5463 // Unknown instruction. 5464 return false; 5465 } 5466 return true; 5467 } 5468 5469 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 5470 Type *LoadTy, 5471 SelectionDAGBuilder &Builder) { 5472 5473 // Check to see if this load can be trivially constant folded, e.g. if the 5474 // input is from a string literal. 5475 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 5476 // Cast pointer to the type we really want to load. 5477 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 5478 PointerType::getUnqual(LoadTy)); 5479 5480 if (const Constant *LoadCst = 5481 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput), 5482 Builder.TD)) 5483 return Builder.getValue(LoadCst); 5484 } 5485 5486 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 5487 // still constant memory, the input chain can be the entry node. 5488 SDValue Root; 5489 bool ConstantMemory = false; 5490 5491 // Do not serialize (non-volatile) loads of constant memory with anything. 5492 if (Builder.AA->pointsToConstantMemory(PtrVal)) { 5493 Root = Builder.DAG.getEntryNode(); 5494 ConstantMemory = true; 5495 } else { 5496 // Do not serialize non-volatile loads against each other. 5497 Root = Builder.DAG.getRoot(); 5498 } 5499 5500 SDValue Ptr = Builder.getValue(PtrVal); 5501 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurDebugLoc(), Root, 5502 Ptr, MachinePointerInfo(PtrVal), 5503 false /*volatile*/, 5504 false /*nontemporal*/, 5505 false /*isinvariant*/, 1 /* align=1 */); 5506 5507 if (!ConstantMemory) 5508 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 5509 return LoadVal; 5510 } 5511 5512 5513 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form. 5514 /// If so, return true and lower it, otherwise return false and it will be 5515 /// lowered like a normal call. 5516 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) { 5517 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t) 5518 if (I.getNumArgOperands() != 3) 5519 return false; 5520 5521 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 5522 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() || 5523 !I.getArgOperand(2)->getType()->isIntegerTy() || 5524 !I.getType()->isIntegerTy()) 5525 return false; 5526 5527 const ConstantInt *Size = dyn_cast<ConstantInt>(I.getArgOperand(2)); 5528 5529 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 5530 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 5531 if (Size && IsOnlyUsedInZeroEqualityComparison(&I)) { 5532 bool ActuallyDoIt = true; 5533 MVT LoadVT; 5534 Type *LoadTy; 5535 switch (Size->getZExtValue()) { 5536 default: 5537 LoadVT = MVT::Other; 5538 LoadTy = 0; 5539 ActuallyDoIt = false; 5540 break; 5541 case 2: 5542 LoadVT = MVT::i16; 5543 LoadTy = Type::getInt16Ty(Size->getContext()); 5544 break; 5545 case 4: 5546 LoadVT = MVT::i32; 5547 LoadTy = Type::getInt32Ty(Size->getContext()); 5548 break; 5549 case 8: 5550 LoadVT = MVT::i64; 5551 LoadTy = Type::getInt64Ty(Size->getContext()); 5552 break; 5553 /* 5554 case 16: 5555 LoadVT = MVT::v4i32; 5556 LoadTy = Type::getInt32Ty(Size->getContext()); 5557 LoadTy = VectorType::get(LoadTy, 4); 5558 break; 5559 */ 5560 } 5561 5562 // This turns into unaligned loads. We only do this if the target natively 5563 // supports the MVT we'll be loading or if it is small enough (<= 4) that 5564 // we'll only produce a small number of byte loads. 5565 5566 // Require that we can find a legal MVT, and only do this if the target 5567 // supports unaligned loads of that type. Expanding into byte loads would 5568 // bloat the code. 5569 if (ActuallyDoIt && Size->getZExtValue() > 4) { 5570 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 5571 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 5572 if (!TLI.isTypeLegal(LoadVT) ||!TLI.allowsUnalignedMemoryAccesses(LoadVT)) 5573 ActuallyDoIt = false; 5574 } 5575 5576 if (ActuallyDoIt) { 5577 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this); 5578 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this); 5579 5580 SDValue Res = DAG.getSetCC(getCurDebugLoc(), MVT::i1, LHSVal, RHSVal, 5581 ISD::SETNE); 5582 EVT CallVT = TLI.getValueType(I.getType(), true); 5583 setValue(&I, DAG.getZExtOrTrunc(Res, getCurDebugLoc(), CallVT)); 5584 return true; 5585 } 5586 } 5587 5588 5589 return false; 5590 } 5591 5592 /// visitUnaryFloatCall - If a call instruction is a unary floating-point 5593 /// operation (as expected), translate it to an SDNode with the specified opcode 5594 /// and return true. 5595 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 5596 unsigned Opcode) { 5597 // Sanity check that it really is a unary floating-point call. 5598 if (I.getNumArgOperands() != 1 || 5599 !I.getArgOperand(0)->getType()->isFloatingPointTy() || 5600 I.getType() != I.getArgOperand(0)->getType() || 5601 !I.onlyReadsMemory()) 5602 return false; 5603 5604 SDValue Tmp = getValue(I.getArgOperand(0)); 5605 setValue(&I, DAG.getNode(Opcode, getCurDebugLoc(), Tmp.getValueType(), Tmp)); 5606 return true; 5607 } 5608 5609 void SelectionDAGBuilder::visitCall(const CallInst &I) { 5610 // Handle inline assembly differently. 5611 if (isa<InlineAsm>(I.getCalledValue())) { 5612 visitInlineAsm(&I); 5613 return; 5614 } 5615 5616 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 5617 ComputeUsesVAFloatArgument(I, &MMI); 5618 5619 const char *RenameFn = 0; 5620 if (Function *F = I.getCalledFunction()) { 5621 if (F->isDeclaration()) { 5622 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) { 5623 if (unsigned IID = II->getIntrinsicID(F)) { 5624 RenameFn = visitIntrinsicCall(I, IID); 5625 if (!RenameFn) 5626 return; 5627 } 5628 } 5629 if (unsigned IID = F->getIntrinsicID()) { 5630 RenameFn = visitIntrinsicCall(I, IID); 5631 if (!RenameFn) 5632 return; 5633 } 5634 } 5635 5636 // Check for well-known libc/libm calls. If the function is internal, it 5637 // can't be a library call. 5638 LibFunc::Func Func; 5639 if (!F->hasLocalLinkage() && F->hasName() && 5640 LibInfo->getLibFunc(F->getName(), Func) && 5641 LibInfo->hasOptimizedCodeGen(Func)) { 5642 switch (Func) { 5643 default: break; 5644 case LibFunc::copysign: 5645 case LibFunc::copysignf: 5646 case LibFunc::copysignl: 5647 if (I.getNumArgOperands() == 2 && // Basic sanity checks. 5648 I.getArgOperand(0)->getType()->isFloatingPointTy() && 5649 I.getType() == I.getArgOperand(0)->getType() && 5650 I.getType() == I.getArgOperand(1)->getType() && 5651 I.onlyReadsMemory()) { 5652 SDValue LHS = getValue(I.getArgOperand(0)); 5653 SDValue RHS = getValue(I.getArgOperand(1)); 5654 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurDebugLoc(), 5655 LHS.getValueType(), LHS, RHS)); 5656 return; 5657 } 5658 break; 5659 case LibFunc::fabs: 5660 case LibFunc::fabsf: 5661 case LibFunc::fabsl: 5662 if (visitUnaryFloatCall(I, ISD::FABS)) 5663 return; 5664 break; 5665 case LibFunc::sin: 5666 case LibFunc::sinf: 5667 case LibFunc::sinl: 5668 if (visitUnaryFloatCall(I, ISD::FSIN)) 5669 return; 5670 break; 5671 case LibFunc::cos: 5672 case LibFunc::cosf: 5673 case LibFunc::cosl: 5674 if (visitUnaryFloatCall(I, ISD::FCOS)) 5675 return; 5676 break; 5677 case LibFunc::sqrt: 5678 case LibFunc::sqrtf: 5679 case LibFunc::sqrtl: 5680 if (visitUnaryFloatCall(I, ISD::FSQRT)) 5681 return; 5682 break; 5683 case LibFunc::floor: 5684 case LibFunc::floorf: 5685 case LibFunc::floorl: 5686 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 5687 return; 5688 break; 5689 case LibFunc::nearbyint: 5690 case LibFunc::nearbyintf: 5691 case LibFunc::nearbyintl: 5692 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 5693 return; 5694 break; 5695 case LibFunc::ceil: 5696 case LibFunc::ceilf: 5697 case LibFunc::ceill: 5698 if (visitUnaryFloatCall(I, ISD::FCEIL)) 5699 return; 5700 break; 5701 case LibFunc::rint: 5702 case LibFunc::rintf: 5703 case LibFunc::rintl: 5704 if (visitUnaryFloatCall(I, ISD::FRINT)) 5705 return; 5706 break; 5707 case LibFunc::trunc: 5708 case LibFunc::truncf: 5709 case LibFunc::truncl: 5710 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 5711 return; 5712 break; 5713 case LibFunc::log2: 5714 case LibFunc::log2f: 5715 case LibFunc::log2l: 5716 if (visitUnaryFloatCall(I, ISD::FLOG2)) 5717 return; 5718 break; 5719 case LibFunc::exp2: 5720 case LibFunc::exp2f: 5721 case LibFunc::exp2l: 5722 if (visitUnaryFloatCall(I, ISD::FEXP2)) 5723 return; 5724 break; 5725 case LibFunc::memcmp: 5726 if (visitMemCmpCall(I)) 5727 return; 5728 break; 5729 } 5730 } 5731 } 5732 5733 SDValue Callee; 5734 if (!RenameFn) 5735 Callee = getValue(I.getCalledValue()); 5736 else 5737 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy()); 5738 5739 // Check if we can potentially perform a tail call. More detailed checking is 5740 // be done within LowerCallTo, after more information about the call is known. 5741 LowerCallTo(&I, Callee, I.isTailCall()); 5742 } 5743 5744 namespace { 5745 5746 /// AsmOperandInfo - This contains information for each constraint that we are 5747 /// lowering. 5748 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 5749 public: 5750 /// CallOperand - If this is the result output operand or a clobber 5751 /// this is null, otherwise it is the incoming operand to the CallInst. 5752 /// This gets modified as the asm is processed. 5753 SDValue CallOperand; 5754 5755 /// AssignedRegs - If this is a register or register class operand, this 5756 /// contains the set of register corresponding to the operand. 5757 RegsForValue AssignedRegs; 5758 5759 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 5760 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) { 5761 } 5762 5763 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 5764 /// corresponds to. If there is no Value* for this operand, it returns 5765 /// MVT::Other. 5766 EVT getCallOperandValEVT(LLVMContext &Context, 5767 const TargetLowering &TLI, 5768 const TargetData *TD) const { 5769 if (CallOperandVal == 0) return MVT::Other; 5770 5771 if (isa<BasicBlock>(CallOperandVal)) 5772 return TLI.getPointerTy(); 5773 5774 llvm::Type *OpTy = CallOperandVal->getType(); 5775 5776 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 5777 // If this is an indirect operand, the operand is a pointer to the 5778 // accessed type. 5779 if (isIndirect) { 5780 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 5781 if (!PtrTy) 5782 report_fatal_error("Indirect operand for inline asm not a pointer!"); 5783 OpTy = PtrTy->getElementType(); 5784 } 5785 5786 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 5787 if (StructType *STy = dyn_cast<StructType>(OpTy)) 5788 if (STy->getNumElements() == 1) 5789 OpTy = STy->getElementType(0); 5790 5791 // If OpTy is not a single value, it may be a struct/union that we 5792 // can tile with integers. 5793 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 5794 unsigned BitSize = TD->getTypeSizeInBits(OpTy); 5795 switch (BitSize) { 5796 default: break; 5797 case 1: 5798 case 8: 5799 case 16: 5800 case 32: 5801 case 64: 5802 case 128: 5803 OpTy = IntegerType::get(Context, BitSize); 5804 break; 5805 } 5806 } 5807 5808 return TLI.getValueType(OpTy, true); 5809 } 5810 }; 5811 5812 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector; 5813 5814 } // end anonymous namespace 5815 5816 /// GetRegistersForValue - Assign registers (virtual or physical) for the 5817 /// specified operand. We prefer to assign virtual registers, to allow the 5818 /// register allocator to handle the assignment process. However, if the asm 5819 /// uses features that we can't model on machineinstrs, we have SDISel do the 5820 /// allocation. This produces generally horrible, but correct, code. 5821 /// 5822 /// OpInfo describes the operand. 5823 /// 5824 static void GetRegistersForValue(SelectionDAG &DAG, 5825 const TargetLowering &TLI, 5826 DebugLoc DL, 5827 SDISelAsmOperandInfo &OpInfo) { 5828 LLVMContext &Context = *DAG.getContext(); 5829 5830 MachineFunction &MF = DAG.getMachineFunction(); 5831 SmallVector<unsigned, 4> Regs; 5832 5833 // If this is a constraint for a single physreg, or a constraint for a 5834 // register class, find it. 5835 std::pair<unsigned, const TargetRegisterClass*> PhysReg = 5836 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 5837 OpInfo.ConstraintVT); 5838 5839 unsigned NumRegs = 1; 5840 if (OpInfo.ConstraintVT != MVT::Other) { 5841 // If this is a FP input in an integer register (or visa versa) insert a bit 5842 // cast of the input value. More generally, handle any case where the input 5843 // value disagrees with the register class we plan to stick this in. 5844 if (OpInfo.Type == InlineAsm::isInput && 5845 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) { 5846 // Try to convert to the first EVT that the reg class contains. If the 5847 // types are identical size, use a bitcast to convert (e.g. two differing 5848 // vector types). 5849 EVT RegVT = *PhysReg.second->vt_begin(); 5850 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 5851 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5852 RegVT, OpInfo.CallOperand); 5853 OpInfo.ConstraintVT = RegVT; 5854 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 5855 // If the input is a FP value and we want it in FP registers, do a 5856 // bitcast to the corresponding integer type. This turns an f64 value 5857 // into i64, which can be passed with two i32 values on a 32-bit 5858 // machine. 5859 RegVT = EVT::getIntegerVT(Context, 5860 OpInfo.ConstraintVT.getSizeInBits()); 5861 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL, 5862 RegVT, OpInfo.CallOperand); 5863 OpInfo.ConstraintVT = RegVT; 5864 } 5865 } 5866 5867 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 5868 } 5869 5870 EVT RegVT; 5871 EVT ValueVT = OpInfo.ConstraintVT; 5872 5873 // If this is a constraint for a specific physical register, like {r17}, 5874 // assign it now. 5875 if (unsigned AssignedReg = PhysReg.first) { 5876 const TargetRegisterClass *RC = PhysReg.second; 5877 if (OpInfo.ConstraintVT == MVT::Other) 5878 ValueVT = *RC->vt_begin(); 5879 5880 // Get the actual register value type. This is important, because the user 5881 // may have asked for (e.g.) the AX register in i32 type. We need to 5882 // remember that AX is actually i16 to get the right extension. 5883 RegVT = *RC->vt_begin(); 5884 5885 // This is a explicit reference to a physical register. 5886 Regs.push_back(AssignedReg); 5887 5888 // If this is an expanded reference, add the rest of the regs to Regs. 5889 if (NumRegs != 1) { 5890 TargetRegisterClass::iterator I = RC->begin(); 5891 for (; *I != AssignedReg; ++I) 5892 assert(I != RC->end() && "Didn't find reg!"); 5893 5894 // Already added the first reg. 5895 --NumRegs; ++I; 5896 for (; NumRegs; --NumRegs, ++I) { 5897 assert(I != RC->end() && "Ran out of registers to allocate!"); 5898 Regs.push_back(*I); 5899 } 5900 } 5901 5902 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5903 return; 5904 } 5905 5906 // Otherwise, if this was a reference to an LLVM register class, create vregs 5907 // for this reference. 5908 if (const TargetRegisterClass *RC = PhysReg.second) { 5909 RegVT = *RC->vt_begin(); 5910 if (OpInfo.ConstraintVT == MVT::Other) 5911 ValueVT = RegVT; 5912 5913 // Create the appropriate number of virtual registers. 5914 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5915 for (; NumRegs; --NumRegs) 5916 Regs.push_back(RegInfo.createVirtualRegister(RC)); 5917 5918 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 5919 return; 5920 } 5921 5922 // Otherwise, we couldn't allocate enough registers for this. 5923 } 5924 5925 /// visitInlineAsm - Handle a call to an InlineAsm object. 5926 /// 5927 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) { 5928 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue()); 5929 5930 /// ConstraintOperands - Information about all of the constraints. 5931 SDISelAsmOperandInfoVector ConstraintOperands; 5932 5933 TargetLowering::AsmOperandInfoVector 5934 TargetConstraints = TLI.ParseConstraints(CS); 5935 5936 bool hasMemory = false; 5937 5938 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 5939 unsigned ResNo = 0; // ResNo - The result number of the next output. 5940 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { 5941 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i])); 5942 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 5943 5944 EVT OpVT = MVT::Other; 5945 5946 // Compute the value type for each operand. 5947 switch (OpInfo.Type) { 5948 case InlineAsm::isOutput: 5949 // Indirect outputs just consume an argument. 5950 if (OpInfo.isIndirect) { 5951 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5952 break; 5953 } 5954 5955 // The return value of the call is this value. As such, there is no 5956 // corresponding argument. 5957 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 5958 if (StructType *STy = dyn_cast<StructType>(CS.getType())) { 5959 OpVT = TLI.getValueType(STy->getElementType(ResNo)); 5960 } else { 5961 assert(ResNo == 0 && "Asm only has one result!"); 5962 OpVT = TLI.getValueType(CS.getType()); 5963 } 5964 ++ResNo; 5965 break; 5966 case InlineAsm::isInput: 5967 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++)); 5968 break; 5969 case InlineAsm::isClobber: 5970 // Nothing to do. 5971 break; 5972 } 5973 5974 // If this is an input or an indirect output, process the call argument. 5975 // BasicBlocks are labels, currently appearing only in asm's. 5976 if (OpInfo.CallOperandVal) { 5977 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 5978 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 5979 } else { 5980 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 5981 } 5982 5983 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, TD); 5984 } 5985 5986 OpInfo.ConstraintVT = OpVT; 5987 5988 // Indirect operand accesses access memory. 5989 if (OpInfo.isIndirect) 5990 hasMemory = true; 5991 else { 5992 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) { 5993 TargetLowering::ConstraintType 5994 CType = TLI.getConstraintType(OpInfo.Codes[j]); 5995 if (CType == TargetLowering::C_Memory) { 5996 hasMemory = true; 5997 break; 5998 } 5999 } 6000 } 6001 } 6002 6003 SDValue Chain, Flag; 6004 6005 // We won't need to flush pending loads if this asm doesn't touch 6006 // memory and is nonvolatile. 6007 if (hasMemory || IA->hasSideEffects()) 6008 Chain = getRoot(); 6009 else 6010 Chain = DAG.getRoot(); 6011 6012 // Second pass over the constraints: compute which constraint option to use 6013 // and assign registers to constraints that want a specific physreg. 6014 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6015 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6016 6017 // If this is an output operand with a matching input operand, look up the 6018 // matching input. If their types mismatch, e.g. one is an integer, the 6019 // other is floating point, or their sizes are different, flag it as an 6020 // error. 6021 if (OpInfo.hasMatchingInput()) { 6022 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 6023 6024 if (OpInfo.ConstraintVT != Input.ConstraintVT) { 6025 std::pair<unsigned, const TargetRegisterClass*> MatchRC = 6026 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode, 6027 OpInfo.ConstraintVT); 6028 std::pair<unsigned, const TargetRegisterClass*> InputRC = 6029 TLI.getRegForInlineAsmConstraint(Input.ConstraintCode, 6030 Input.ConstraintVT); 6031 if ((OpInfo.ConstraintVT.isInteger() != 6032 Input.ConstraintVT.isInteger()) || 6033 (MatchRC.second != InputRC.second)) { 6034 report_fatal_error("Unsupported asm: input constraint" 6035 " with a matching output constraint of" 6036 " incompatible type!"); 6037 } 6038 Input.ConstraintVT = OpInfo.ConstraintVT; 6039 } 6040 } 6041 6042 // Compute the constraint code and ConstraintType to use. 6043 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 6044 6045 // If this is a memory input, and if the operand is not indirect, do what we 6046 // need to to provide an address for the memory input. 6047 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 6048 !OpInfo.isIndirect) { 6049 assert((OpInfo.isMultipleAlternative || 6050 (OpInfo.Type == InlineAsm::isInput)) && 6051 "Can only indirectify direct input operands!"); 6052 6053 // Memory operands really want the address of the value. If we don't have 6054 // an indirect input, put it in the constpool if we can, otherwise spill 6055 // it to a stack slot. 6056 // TODO: This isn't quite right. We need to handle these according to 6057 // the addressing mode that the constraint wants. Also, this may take 6058 // an additional register for the computation and we don't want that 6059 // either. 6060 6061 // If the operand is a float, integer, or vector constant, spill to a 6062 // constant pool entry to get its address. 6063 const Value *OpVal = OpInfo.CallOperandVal; 6064 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 6065 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 6066 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal), 6067 TLI.getPointerTy()); 6068 } else { 6069 // Otherwise, create a stack slot and emit a store to it before the 6070 // asm. 6071 Type *Ty = OpVal->getType(); 6072 uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty); 6073 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty); 6074 MachineFunction &MF = DAG.getMachineFunction(); 6075 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false); 6076 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy()); 6077 Chain = DAG.getStore(Chain, getCurDebugLoc(), 6078 OpInfo.CallOperand, StackSlot, 6079 MachinePointerInfo::getFixedStack(SSFI), 6080 false, false, 0); 6081 OpInfo.CallOperand = StackSlot; 6082 } 6083 6084 // There is no longer a Value* corresponding to this operand. 6085 OpInfo.CallOperandVal = 0; 6086 6087 // It is now an indirect operand. 6088 OpInfo.isIndirect = true; 6089 } 6090 6091 // If this constraint is for a specific register, allocate it before 6092 // anything else. 6093 if (OpInfo.ConstraintType == TargetLowering::C_Register) 6094 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6095 } 6096 6097 // Second pass - Loop over all of the operands, assigning virtual or physregs 6098 // to register class operands. 6099 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6100 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6101 6102 // C_Register operands have already been allocated, Other/Memory don't need 6103 // to be. 6104 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass) 6105 GetRegistersForValue(DAG, TLI, getCurDebugLoc(), OpInfo); 6106 } 6107 6108 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 6109 std::vector<SDValue> AsmNodeOperands; 6110 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 6111 AsmNodeOperands.push_back( 6112 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), 6113 TLI.getPointerTy())); 6114 6115 // If we have a !srcloc metadata node associated with it, we want to attach 6116 // this to the ultimately generated inline asm machineinstr. To do this, we 6117 // pass in the third operand as this (potentially null) inline asm MDNode. 6118 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc"); 6119 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 6120 6121 // Remember the HasSideEffect, AlignStack and AsmDialect bits as operand 3. 6122 unsigned ExtraInfo = 0; 6123 if (IA->hasSideEffects()) 6124 ExtraInfo |= InlineAsm::Extra_HasSideEffects; 6125 if (IA->isAlignStack()) 6126 ExtraInfo |= InlineAsm::Extra_IsAlignStack; 6127 // Set the asm dialect. 6128 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 6129 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo, 6130 TLI.getPointerTy())); 6131 6132 // Loop over all of the inputs, copying the operand values into the 6133 // appropriate registers and processing the output regs. 6134 RegsForValue RetValRegs; 6135 6136 // IndirectStoresToEmit - The set of stores to emit after the inline asm node. 6137 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit; 6138 6139 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) { 6140 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i]; 6141 6142 switch (OpInfo.Type) { 6143 case InlineAsm::isOutput: { 6144 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass && 6145 OpInfo.ConstraintType != TargetLowering::C_Register) { 6146 // Memory output, or 'other' output (e.g. 'X' constraint). 6147 assert(OpInfo.isIndirect && "Memory output must be indirect operand"); 6148 6149 // Add information to the INLINEASM node to know about this output. 6150 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6151 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, 6152 TLI.getPointerTy())); 6153 AsmNodeOperands.push_back(OpInfo.CallOperand); 6154 break; 6155 } 6156 6157 // Otherwise, this is a register or register class output. 6158 6159 // Copy the output from the appropriate register. Find a register that 6160 // we can use. 6161 if (OpInfo.AssignedRegs.Regs.empty()) { 6162 LLVMContext &Ctx = *DAG.getContext(); 6163 Ctx.emitError(CS.getInstruction(), 6164 "couldn't allocate output register for constraint '" + 6165 Twine(OpInfo.ConstraintCode) + "'"); 6166 break; 6167 } 6168 6169 // If this is an indirect operand, store through the pointer after the 6170 // asm. 6171 if (OpInfo.isIndirect) { 6172 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs, 6173 OpInfo.CallOperandVal)); 6174 } else { 6175 // This is the result value of the call. 6176 assert(!CS.getType()->isVoidTy() && "Bad inline asm!"); 6177 // Concatenate this output onto the outputs list. 6178 RetValRegs.append(OpInfo.AssignedRegs); 6179 } 6180 6181 // Add information to the INLINEASM node to know that this register is 6182 // set. 6183 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ? 6184 InlineAsm::Kind_RegDefEarlyClobber : 6185 InlineAsm::Kind_RegDef, 6186 false, 6187 0, 6188 DAG, 6189 AsmNodeOperands); 6190 break; 6191 } 6192 case InlineAsm::isInput: { 6193 SDValue InOperandVal = OpInfo.CallOperand; 6194 6195 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint? 6196 // If this is required to match an output register we have already set, 6197 // just use its register. 6198 unsigned OperandNo = OpInfo.getMatchedOperand(); 6199 6200 // Scan until we find the definition we already emitted of this operand. 6201 // When we find it, create a RegsForValue operand. 6202 unsigned CurOp = InlineAsm::Op_FirstOperand; 6203 for (; OperandNo; --OperandNo) { 6204 // Advance to the next operand. 6205 unsigned OpFlag = 6206 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6207 assert((InlineAsm::isRegDefKind(OpFlag) || 6208 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 6209 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?"); 6210 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1; 6211 } 6212 6213 unsigned OpFlag = 6214 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 6215 if (InlineAsm::isRegDefKind(OpFlag) || 6216 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 6217 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 6218 if (OpInfo.isIndirect) { 6219 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 6220 LLVMContext &Ctx = *DAG.getContext(); 6221 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:" 6222 " don't know how to handle tied " 6223 "indirect register inputs"); 6224 } 6225 6226 RegsForValue MatchedRegs; 6227 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType()); 6228 EVT RegVT = AsmNodeOperands[CurOp+1].getValueType(); 6229 MatchedRegs.RegVTs.push_back(RegVT); 6230 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo(); 6231 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag); 6232 i != e; ++i) 6233 MatchedRegs.Regs.push_back 6234 (RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT))); 6235 6236 // Use the produced MatchedRegs object to 6237 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6238 Chain, &Flag); 6239 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 6240 true, OpInfo.getMatchedOperand(), 6241 DAG, AsmNodeOperands); 6242 break; 6243 } 6244 6245 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 6246 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 6247 "Unexpected number of operands"); 6248 // Add information to the INLINEASM node to know about this input. 6249 // See InlineAsm.h isUseOperandTiedToDef. 6250 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 6251 OpInfo.getMatchedOperand()); 6252 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag, 6253 TLI.getPointerTy())); 6254 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 6255 break; 6256 } 6257 6258 // Treat indirect 'X' constraint as memory. 6259 if (OpInfo.ConstraintType == TargetLowering::C_Other && 6260 OpInfo.isIndirect) 6261 OpInfo.ConstraintType = TargetLowering::C_Memory; 6262 6263 if (OpInfo.ConstraintType == TargetLowering::C_Other) { 6264 std::vector<SDValue> Ops; 6265 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 6266 Ops, DAG); 6267 if (Ops.empty()) { 6268 LLVMContext &Ctx = *DAG.getContext(); 6269 Ctx.emitError(CS.getInstruction(), 6270 "invalid operand for inline asm constraint '" + 6271 Twine(OpInfo.ConstraintCode) + "'"); 6272 break; 6273 } 6274 6275 // Add information to the INLINEASM node to know about this input. 6276 unsigned ResOpType = 6277 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 6278 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6279 TLI.getPointerTy())); 6280 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end()); 6281 break; 6282 } 6283 6284 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 6285 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 6286 assert(InOperandVal.getValueType() == TLI.getPointerTy() && 6287 "Memory operands expect pointer values"); 6288 6289 // Add information to the INLINEASM node to know about this input. 6290 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 6291 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 6292 TLI.getPointerTy())); 6293 AsmNodeOperands.push_back(InOperandVal); 6294 break; 6295 } 6296 6297 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 6298 OpInfo.ConstraintType == TargetLowering::C_Register) && 6299 "Unknown constraint type!"); 6300 6301 // TODO: Support this. 6302 if (OpInfo.isIndirect) { 6303 LLVMContext &Ctx = *DAG.getContext(); 6304 Ctx.emitError(CS.getInstruction(), 6305 "Don't know how to handle indirect register inputs yet " 6306 "for constraint '" + Twine(OpInfo.ConstraintCode) + "'"); 6307 break; 6308 } 6309 6310 // Copy the input into the appropriate registers. 6311 if (OpInfo.AssignedRegs.Regs.empty()) { 6312 LLVMContext &Ctx = *DAG.getContext(); 6313 Ctx.emitError(CS.getInstruction(), 6314 "couldn't allocate input reg for constraint '" + 6315 Twine(OpInfo.ConstraintCode) + "'"); 6316 break; 6317 } 6318 6319 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurDebugLoc(), 6320 Chain, &Flag); 6321 6322 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 6323 DAG, AsmNodeOperands); 6324 break; 6325 } 6326 case InlineAsm::isClobber: { 6327 // Add the clobbered value to the operand list, so that the register 6328 // allocator is aware that the physreg got clobbered. 6329 if (!OpInfo.AssignedRegs.Regs.empty()) 6330 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 6331 false, 0, DAG, 6332 AsmNodeOperands); 6333 break; 6334 } 6335 } 6336 } 6337 6338 // Finish up input operands. Set the input chain and add the flag last. 6339 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 6340 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 6341 6342 Chain = DAG.getNode(ISD::INLINEASM, getCurDebugLoc(), 6343 DAG.getVTList(MVT::Other, MVT::Glue), 6344 &AsmNodeOperands[0], AsmNodeOperands.size()); 6345 Flag = Chain.getValue(1); 6346 6347 // If this asm returns a register value, copy the result from that register 6348 // and set it as the value of the call. 6349 if (!RetValRegs.Regs.empty()) { 6350 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6351 Chain, &Flag, CS.getInstruction()); 6352 6353 // FIXME: Why don't we do this for inline asms with MRVs? 6354 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) { 6355 EVT ResultType = TLI.getValueType(CS.getType()); 6356 6357 // If any of the results of the inline asm is a vector, it may have the 6358 // wrong width/num elts. This can happen for register classes that can 6359 // contain multiple different value types. The preg or vreg allocated may 6360 // not have the same VT as was expected. Convert it to the right type 6361 // with bit_convert. 6362 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) { 6363 Val = DAG.getNode(ISD::BITCAST, getCurDebugLoc(), 6364 ResultType, Val); 6365 6366 } else if (ResultType != Val.getValueType() && 6367 ResultType.isInteger() && Val.getValueType().isInteger()) { 6368 // If a result value was tied to an input value, the computed result may 6369 // have a wider width than the expected result. Extract the relevant 6370 // portion. 6371 Val = DAG.getNode(ISD::TRUNCATE, getCurDebugLoc(), ResultType, Val); 6372 } 6373 6374 assert(ResultType == Val.getValueType() && "Asm result value mismatch!"); 6375 } 6376 6377 setValue(CS.getInstruction(), Val); 6378 // Don't need to use this as a chain in this case. 6379 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty()) 6380 return; 6381 } 6382 6383 std::vector<std::pair<SDValue, const Value *> > StoresToEmit; 6384 6385 // Process indirect outputs, first output all of the flagged copies out of 6386 // physregs. 6387 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) { 6388 RegsForValue &OutRegs = IndirectStoresToEmit[i].first; 6389 const Value *Ptr = IndirectStoresToEmit[i].second; 6390 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurDebugLoc(), 6391 Chain, &Flag, IA); 6392 StoresToEmit.push_back(std::make_pair(OutVal, Ptr)); 6393 } 6394 6395 // Emit the non-flagged stores from the physregs. 6396 SmallVector<SDValue, 8> OutChains; 6397 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) { 6398 SDValue Val = DAG.getStore(Chain, getCurDebugLoc(), 6399 StoresToEmit[i].first, 6400 getValue(StoresToEmit[i].second), 6401 MachinePointerInfo(StoresToEmit[i].second), 6402 false, false, 0); 6403 OutChains.push_back(Val); 6404 } 6405 6406 if (!OutChains.empty()) 6407 Chain = DAG.getNode(ISD::TokenFactor, getCurDebugLoc(), MVT::Other, 6408 &OutChains[0], OutChains.size()); 6409 6410 DAG.setRoot(Chain); 6411 } 6412 6413 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 6414 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurDebugLoc(), 6415 MVT::Other, getRoot(), 6416 getValue(I.getArgOperand(0)), 6417 DAG.getSrcValue(I.getArgOperand(0)))); 6418 } 6419 6420 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 6421 const TargetData &TD = *TLI.getTargetData(); 6422 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurDebugLoc(), 6423 getRoot(), getValue(I.getOperand(0)), 6424 DAG.getSrcValue(I.getOperand(0)), 6425 TD.getABITypeAlignment(I.getType())); 6426 setValue(&I, V); 6427 DAG.setRoot(V.getValue(1)); 6428 } 6429 6430 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 6431 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurDebugLoc(), 6432 MVT::Other, getRoot(), 6433 getValue(I.getArgOperand(0)), 6434 DAG.getSrcValue(I.getArgOperand(0)))); 6435 } 6436 6437 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 6438 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurDebugLoc(), 6439 MVT::Other, getRoot(), 6440 getValue(I.getArgOperand(0)), 6441 getValue(I.getArgOperand(1)), 6442 DAG.getSrcValue(I.getArgOperand(0)), 6443 DAG.getSrcValue(I.getArgOperand(1)))); 6444 } 6445 6446 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 6447 /// implementation, which just calls LowerCall. 6448 /// FIXME: When all targets are 6449 /// migrated to using LowerCall, this hook should be integrated into SDISel. 6450 std::pair<SDValue, SDValue> 6451 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 6452 // Handle all of the outgoing arguments. 6453 CLI.Outs.clear(); 6454 CLI.OutVals.clear(); 6455 ArgListTy &Args = CLI.Args; 6456 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 6457 SmallVector<EVT, 4> ValueVTs; 6458 ComputeValueVTs(*this, Args[i].Ty, ValueVTs); 6459 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6460 Value != NumValues; ++Value) { 6461 EVT VT = ValueVTs[Value]; 6462 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 6463 SDValue Op = SDValue(Args[i].Node.getNode(), 6464 Args[i].Node.getResNo() + Value); 6465 ISD::ArgFlagsTy Flags; 6466 unsigned OriginalAlignment = 6467 getTargetData()->getABITypeAlignment(ArgTy); 6468 6469 if (Args[i].isZExt) 6470 Flags.setZExt(); 6471 if (Args[i].isSExt) 6472 Flags.setSExt(); 6473 if (Args[i].isInReg) 6474 Flags.setInReg(); 6475 if (Args[i].isSRet) 6476 Flags.setSRet(); 6477 if (Args[i].isByVal) { 6478 Flags.setByVal(); 6479 PointerType *Ty = cast<PointerType>(Args[i].Ty); 6480 Type *ElementTy = Ty->getElementType(); 6481 Flags.setByValSize(getTargetData()->getTypeAllocSize(ElementTy)); 6482 // For ByVal, alignment should come from FE. BE will guess if this 6483 // info is not there but there are cases it cannot get right. 6484 unsigned FrameAlign; 6485 if (Args[i].Alignment) 6486 FrameAlign = Args[i].Alignment; 6487 else 6488 FrameAlign = getByValTypeAlignment(ElementTy); 6489 Flags.setByValAlign(FrameAlign); 6490 } 6491 if (Args[i].isNest) 6492 Flags.setNest(); 6493 Flags.setOrigAlign(OriginalAlignment); 6494 6495 EVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT); 6496 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT); 6497 SmallVector<SDValue, 4> Parts(NumParts); 6498 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 6499 6500 if (Args[i].isSExt) 6501 ExtendKind = ISD::SIGN_EXTEND; 6502 else if (Args[i].isZExt) 6503 ExtendKind = ISD::ZERO_EXTEND; 6504 6505 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, 6506 PartVT, ExtendKind); 6507 6508 for (unsigned j = 0; j != NumParts; ++j) { 6509 // if it isn't first piece, alignment must be 1 6510 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), 6511 i < CLI.NumFixedArgs); 6512 if (NumParts > 1 && j == 0) 6513 MyFlags.Flags.setSplit(); 6514 else if (j != 0) 6515 MyFlags.Flags.setOrigAlign(1); 6516 6517 CLI.Outs.push_back(MyFlags); 6518 CLI.OutVals.push_back(Parts[j]); 6519 } 6520 } 6521 } 6522 6523 // Handle the incoming return values from the call. 6524 CLI.Ins.clear(); 6525 SmallVector<EVT, 4> RetTys; 6526 ComputeValueVTs(*this, CLI.RetTy, RetTys); 6527 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6528 EVT VT = RetTys[I]; 6529 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6530 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6531 for (unsigned i = 0; i != NumRegs; ++i) { 6532 ISD::InputArg MyFlags; 6533 MyFlags.VT = RegisterVT.getSimpleVT(); 6534 MyFlags.Used = CLI.IsReturnValueUsed; 6535 if (CLI.RetSExt) 6536 MyFlags.Flags.setSExt(); 6537 if (CLI.RetZExt) 6538 MyFlags.Flags.setZExt(); 6539 if (CLI.IsInReg) 6540 MyFlags.Flags.setInReg(); 6541 CLI.Ins.push_back(MyFlags); 6542 } 6543 } 6544 6545 SmallVector<SDValue, 4> InVals; 6546 CLI.Chain = LowerCall(CLI, InVals); 6547 6548 // Verify that the target's LowerCall behaved as expected. 6549 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 6550 "LowerCall didn't return a valid chain!"); 6551 assert((!CLI.IsTailCall || InVals.empty()) && 6552 "LowerCall emitted a return value for a tail call!"); 6553 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 6554 "LowerCall didn't emit the correct number of values!"); 6555 6556 // For a tail call, the return value is merely live-out and there aren't 6557 // any nodes in the DAG representing it. Return a special value to 6558 // indicate that a tail call has been emitted and no more Instructions 6559 // should be processed in the current block. 6560 if (CLI.IsTailCall) { 6561 CLI.DAG.setRoot(CLI.Chain); 6562 return std::make_pair(SDValue(), SDValue()); 6563 } 6564 6565 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 6566 assert(InVals[i].getNode() && 6567 "LowerCall emitted a null value!"); 6568 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 6569 "LowerCall emitted a value with the wrong type!"); 6570 }); 6571 6572 // Collect the legal value parts into potentially illegal values 6573 // that correspond to the original function's return values. 6574 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6575 if (CLI.RetSExt) 6576 AssertOp = ISD::AssertSext; 6577 else if (CLI.RetZExt) 6578 AssertOp = ISD::AssertZext; 6579 SmallVector<SDValue, 4> ReturnValues; 6580 unsigned CurReg = 0; 6581 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 6582 EVT VT = RetTys[I]; 6583 EVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT); 6584 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT); 6585 6586 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 6587 NumRegs, RegisterVT, VT, NULL, 6588 AssertOp)); 6589 CurReg += NumRegs; 6590 } 6591 6592 // For a function returning void, there is no return value. We can't create 6593 // such a node, so we just return a null return value in that case. In 6594 // that case, nothing will actually look at the value. 6595 if (ReturnValues.empty()) 6596 return std::make_pair(SDValue(), CLI.Chain); 6597 6598 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 6599 CLI.DAG.getVTList(&RetTys[0], RetTys.size()), 6600 &ReturnValues[0], ReturnValues.size()); 6601 return std::make_pair(Res, CLI.Chain); 6602 } 6603 6604 void TargetLowering::LowerOperationWrapper(SDNode *N, 6605 SmallVectorImpl<SDValue> &Results, 6606 SelectionDAG &DAG) const { 6607 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 6608 if (Res.getNode()) 6609 Results.push_back(Res); 6610 } 6611 6612 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 6613 llvm_unreachable("LowerOperation not implemented for this target!"); 6614 } 6615 6616 void 6617 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 6618 SDValue Op = getNonRegisterValue(V); 6619 assert((Op.getOpcode() != ISD::CopyFromReg || 6620 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 6621 "Copy from a reg to the same reg!"); 6622 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg"); 6623 6624 RegsForValue RFV(V->getContext(), TLI, Reg, V->getType()); 6625 SDValue Chain = DAG.getEntryNode(); 6626 RFV.getCopyToRegs(Op, DAG, getCurDebugLoc(), Chain, 0); 6627 PendingExports.push_back(Chain); 6628 } 6629 6630 #include "llvm/CodeGen/SelectionDAGISel.h" 6631 6632 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 6633 /// entry block, return true. This includes arguments used by switches, since 6634 /// the switch may expand into multiple basic blocks. 6635 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 6636 // With FastISel active, we may be splitting blocks, so force creation 6637 // of virtual registers for all non-dead arguments. 6638 if (FastISel) 6639 return A->use_empty(); 6640 6641 const BasicBlock *Entry = A->getParent()->begin(); 6642 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end(); 6643 UI != E; ++UI) { 6644 const User *U = *UI; 6645 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U)) 6646 return false; // Use not in entry block. 6647 } 6648 return true; 6649 } 6650 6651 void SelectionDAGISel::LowerArguments(const BasicBlock *LLVMBB) { 6652 // If this is the entry block, emit arguments. 6653 const Function &F = *LLVMBB->getParent(); 6654 SelectionDAG &DAG = SDB->DAG; 6655 DebugLoc dl = SDB->getCurDebugLoc(); 6656 const TargetData *TD = TLI.getTargetData(); 6657 SmallVector<ISD::InputArg, 16> Ins; 6658 6659 // Check whether the function can return without sret-demotion. 6660 SmallVector<ISD::OutputArg, 4> Outs; 6661 GetReturnInfo(F.getReturnType(), F.getAttributes().getRetAttributes(), 6662 Outs, TLI); 6663 6664 if (!FuncInfo->CanLowerReturn) { 6665 // Put in an sret pointer parameter before all the other parameters. 6666 SmallVector<EVT, 1> ValueVTs; 6667 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6668 6669 // NOTE: Assuming that a pointer will never break down to more than one VT 6670 // or one register. 6671 ISD::ArgFlagsTy Flags; 6672 Flags.setSRet(); 6673 EVT RegisterVT = TLI.getRegisterType(*DAG.getContext(), ValueVTs[0]); 6674 ISD::InputArg RetArg(Flags, RegisterVT, true); 6675 Ins.push_back(RetArg); 6676 } 6677 6678 // Set up the incoming argument description vector. 6679 unsigned Idx = 1; 6680 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); 6681 I != E; ++I, ++Idx) { 6682 SmallVector<EVT, 4> ValueVTs; 6683 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6684 bool isArgValueUsed = !I->use_empty(); 6685 for (unsigned Value = 0, NumValues = ValueVTs.size(); 6686 Value != NumValues; ++Value) { 6687 EVT VT = ValueVTs[Value]; 6688 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 6689 ISD::ArgFlagsTy Flags; 6690 unsigned OriginalAlignment = 6691 TD->getABITypeAlignment(ArgTy); 6692 6693 if (F.paramHasAttr(Idx, Attribute::ZExt)) 6694 Flags.setZExt(); 6695 if (F.paramHasAttr(Idx, Attribute::SExt)) 6696 Flags.setSExt(); 6697 if (F.paramHasAttr(Idx, Attribute::InReg)) 6698 Flags.setInReg(); 6699 if (F.paramHasAttr(Idx, Attribute::StructRet)) 6700 Flags.setSRet(); 6701 if (F.paramHasAttr(Idx, Attribute::ByVal)) { 6702 Flags.setByVal(); 6703 PointerType *Ty = cast<PointerType>(I->getType()); 6704 Type *ElementTy = Ty->getElementType(); 6705 Flags.setByValSize(TD->getTypeAllocSize(ElementTy)); 6706 // For ByVal, alignment should be passed from FE. BE will guess if 6707 // this info is not there but there are cases it cannot get right. 6708 unsigned FrameAlign; 6709 if (F.getParamAlignment(Idx)) 6710 FrameAlign = F.getParamAlignment(Idx); 6711 else 6712 FrameAlign = TLI.getByValTypeAlignment(ElementTy); 6713 Flags.setByValAlign(FrameAlign); 6714 } 6715 if (F.paramHasAttr(Idx, Attribute::Nest)) 6716 Flags.setNest(); 6717 Flags.setOrigAlign(OriginalAlignment); 6718 6719 EVT RegisterVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6720 unsigned NumRegs = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6721 for (unsigned i = 0; i != NumRegs; ++i) { 6722 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed); 6723 if (NumRegs > 1 && i == 0) 6724 MyFlags.Flags.setSplit(); 6725 // if it isn't first piece, alignment must be 1 6726 else if (i > 0) 6727 MyFlags.Flags.setOrigAlign(1); 6728 Ins.push_back(MyFlags); 6729 } 6730 } 6731 } 6732 6733 // Call the target to set up the argument values. 6734 SmallVector<SDValue, 8> InVals; 6735 SDValue NewRoot = TLI.LowerFormalArguments(DAG.getRoot(), F.getCallingConv(), 6736 F.isVarArg(), Ins, 6737 dl, DAG, InVals); 6738 6739 // Verify that the target's LowerFormalArguments behaved as expected. 6740 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 6741 "LowerFormalArguments didn't return a valid chain!"); 6742 assert(InVals.size() == Ins.size() && 6743 "LowerFormalArguments didn't emit the correct number of values!"); 6744 DEBUG({ 6745 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 6746 assert(InVals[i].getNode() && 6747 "LowerFormalArguments emitted a null value!"); 6748 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 6749 "LowerFormalArguments emitted a value with the wrong type!"); 6750 } 6751 }); 6752 6753 // Update the DAG with the new chain value resulting from argument lowering. 6754 DAG.setRoot(NewRoot); 6755 6756 // Set up the argument values. 6757 unsigned i = 0; 6758 Idx = 1; 6759 if (!FuncInfo->CanLowerReturn) { 6760 // Create a virtual register for the sret pointer, and put in a copy 6761 // from the sret argument into it. 6762 SmallVector<EVT, 1> ValueVTs; 6763 ComputeValueVTs(TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs); 6764 EVT VT = ValueVTs[0]; 6765 EVT RegVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6766 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6767 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, 6768 RegVT, VT, NULL, AssertOp); 6769 6770 MachineFunction& MF = SDB->DAG.getMachineFunction(); 6771 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 6772 unsigned SRetReg = RegInfo.createVirtualRegister(TLI.getRegClassFor(RegVT)); 6773 FuncInfo->DemoteRegister = SRetReg; 6774 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurDebugLoc(), 6775 SRetReg, ArgValue); 6776 DAG.setRoot(NewRoot); 6777 6778 // i indexes lowered arguments. Bump it past the hidden sret argument. 6779 // Idx indexes LLVM arguments. Don't touch it. 6780 ++i; 6781 } 6782 6783 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; 6784 ++I, ++Idx) { 6785 SmallVector<SDValue, 4> ArgValues; 6786 SmallVector<EVT, 4> ValueVTs; 6787 ComputeValueVTs(TLI, I->getType(), ValueVTs); 6788 unsigned NumValues = ValueVTs.size(); 6789 6790 // If this argument is unused then remember its value. It is used to generate 6791 // debugging information. 6792 if (I->use_empty() && NumValues) 6793 SDB->setUnusedArgValue(I, InVals[i]); 6794 6795 for (unsigned Val = 0; Val != NumValues; ++Val) { 6796 EVT VT = ValueVTs[Val]; 6797 EVT PartVT = TLI.getRegisterType(*CurDAG->getContext(), VT); 6798 unsigned NumParts = TLI.getNumRegisters(*CurDAG->getContext(), VT); 6799 6800 if (!I->use_empty()) { 6801 ISD::NodeType AssertOp = ISD::DELETED_NODE; 6802 if (F.paramHasAttr(Idx, Attribute::SExt)) 6803 AssertOp = ISD::AssertSext; 6804 else if (F.paramHasAttr(Idx, Attribute::ZExt)) 6805 AssertOp = ISD::AssertZext; 6806 6807 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], 6808 NumParts, PartVT, VT, 6809 NULL, AssertOp)); 6810 } 6811 6812 i += NumParts; 6813 } 6814 6815 // We don't need to do anything else for unused arguments. 6816 if (ArgValues.empty()) 6817 continue; 6818 6819 // Note down frame index. 6820 if (FrameIndexSDNode *FI = 6821 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 6822 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6823 6824 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues, 6825 SDB->getCurDebugLoc()); 6826 6827 SDB->setValue(I, Res); 6828 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 6829 if (LoadSDNode *LNode = 6830 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode())) 6831 if (FrameIndexSDNode *FI = 6832 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 6833 FuncInfo->setArgumentFrameIndex(I, FI->getIndex()); 6834 } 6835 6836 // If this argument is live outside of the entry block, insert a copy from 6837 // wherever we got it to the vreg that other BB's will reference it as. 6838 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) { 6839 // If we can, though, try to skip creating an unnecessary vreg. 6840 // FIXME: This isn't very clean... it would be nice to make this more 6841 // general. It's also subtly incompatible with the hacks FastISel 6842 // uses with vregs. 6843 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 6844 if (TargetRegisterInfo::isVirtualRegister(Reg)) { 6845 FuncInfo->ValueMap[I] = Reg; 6846 continue; 6847 } 6848 } 6849 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) { 6850 FuncInfo->InitializeRegForValue(I); 6851 SDB->CopyToExportRegsIfNeeded(I); 6852 } 6853 } 6854 6855 assert(i == InVals.size() && "Argument register count mismatch!"); 6856 6857 // Finally, if the target has anything special to do, allow it to do so. 6858 // FIXME: this should insert code into the DAG! 6859 EmitFunctionEntryCode(); 6860 } 6861 6862 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 6863 /// ensure constants are generated when needed. Remember the virtual registers 6864 /// that need to be added to the Machine PHI nodes as input. We cannot just 6865 /// directly add them, because expansion might result in multiple MBB's for one 6866 /// BB. As such, the start of the BB might correspond to a different MBB than 6867 /// the end. 6868 /// 6869 void 6870 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 6871 const TerminatorInst *TI = LLVMBB->getTerminator(); 6872 6873 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 6874 6875 // Check successor nodes' PHI nodes that expect a constant to be available 6876 // from this block. 6877 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 6878 const BasicBlock *SuccBB = TI->getSuccessor(succ); 6879 if (!isa<PHINode>(SuccBB->begin())) continue; 6880 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 6881 6882 // If this terminator has multiple identical successors (common for 6883 // switches), only handle each succ once. 6884 if (!SuccsHandled.insert(SuccMBB)) continue; 6885 6886 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 6887 6888 // At this point we know that there is a 1-1 correspondence between LLVM PHI 6889 // nodes and Machine PHI nodes, but the incoming operands have not been 6890 // emitted yet. 6891 for (BasicBlock::const_iterator I = SuccBB->begin(); 6892 const PHINode *PN = dyn_cast<PHINode>(I); ++I) { 6893 // Ignore dead phi's. 6894 if (PN->use_empty()) continue; 6895 6896 // Skip empty types 6897 if (PN->getType()->isEmptyTy()) 6898 continue; 6899 6900 unsigned Reg; 6901 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB); 6902 6903 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 6904 unsigned &RegOut = ConstantsOut[C]; 6905 if (RegOut == 0) { 6906 RegOut = FuncInfo.CreateRegs(C->getType()); 6907 CopyValueToVirtualRegister(C, RegOut); 6908 } 6909 Reg = RegOut; 6910 } else { 6911 DenseMap<const Value *, unsigned>::iterator I = 6912 FuncInfo.ValueMap.find(PHIOp); 6913 if (I != FuncInfo.ValueMap.end()) 6914 Reg = I->second; 6915 else { 6916 assert(isa<AllocaInst>(PHIOp) && 6917 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 6918 "Didn't codegen value into a register!??"); 6919 Reg = FuncInfo.CreateRegs(PHIOp->getType()); 6920 CopyValueToVirtualRegister(PHIOp, Reg); 6921 } 6922 } 6923 6924 // Remember that this register needs to added to the machine PHI node as 6925 // the input for this MBB. 6926 SmallVector<EVT, 4> ValueVTs; 6927 ComputeValueVTs(TLI, PN->getType(), ValueVTs); 6928 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 6929 EVT VT = ValueVTs[vti]; 6930 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 6931 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 6932 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i)); 6933 Reg += NumRegisters; 6934 } 6935 } 6936 } 6937 ConstantsOut.clear(); 6938 } 6939