1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This implements routines for translating from LLVM IR into SelectionDAG IR. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "SelectionDAGBuilder.h" 14 #include "SDNodeDbgValue.h" 15 #include "llvm/ADT/APFloat.h" 16 #include "llvm/ADT/APInt.h" 17 #include "llvm/ADT/BitVector.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/Optional.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/SmallPtrSet.h" 22 #include "llvm/ADT/SmallSet.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/ADT/Triple.h" 25 #include "llvm/ADT/Twine.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/BlockFrequencyInfo.h" 28 #include "llvm/Analysis/BranchProbabilityInfo.h" 29 #include "llvm/Analysis/ConstantFolding.h" 30 #include "llvm/Analysis/EHPersonalities.h" 31 #include "llvm/Analysis/Loads.h" 32 #include "llvm/Analysis/MemoryLocation.h" 33 #include "llvm/Analysis/ProfileSummaryInfo.h" 34 #include "llvm/Analysis/TargetLibraryInfo.h" 35 #include "llvm/Analysis/ValueTracking.h" 36 #include "llvm/Analysis/VectorUtils.h" 37 #include "llvm/CodeGen/Analysis.h" 38 #include "llvm/CodeGen/FunctionLoweringInfo.h" 39 #include "llvm/CodeGen/GCMetadata.h" 40 #include "llvm/CodeGen/MachineBasicBlock.h" 41 #include "llvm/CodeGen/MachineFrameInfo.h" 42 #include "llvm/CodeGen/MachineFunction.h" 43 #include "llvm/CodeGen/MachineInstr.h" 44 #include "llvm/CodeGen/MachineInstrBuilder.h" 45 #include "llvm/CodeGen/MachineJumpTableInfo.h" 46 #include "llvm/CodeGen/MachineMemOperand.h" 47 #include "llvm/CodeGen/MachineModuleInfo.h" 48 #include "llvm/CodeGen/MachineOperand.h" 49 #include "llvm/CodeGen/MachineRegisterInfo.h" 50 #include "llvm/CodeGen/RuntimeLibcalls.h" 51 #include "llvm/CodeGen/SelectionDAG.h" 52 #include "llvm/CodeGen/SelectionDAGTargetInfo.h" 53 #include "llvm/CodeGen/StackMaps.h" 54 #include "llvm/CodeGen/SwiftErrorValueTracking.h" 55 #include "llvm/CodeGen/TargetFrameLowering.h" 56 #include "llvm/CodeGen/TargetInstrInfo.h" 57 #include "llvm/CodeGen/TargetOpcodes.h" 58 #include "llvm/CodeGen/TargetRegisterInfo.h" 59 #include "llvm/CodeGen/TargetSubtargetInfo.h" 60 #include "llvm/CodeGen/WinEHFuncInfo.h" 61 #include "llvm/IR/Argument.h" 62 #include "llvm/IR/Attributes.h" 63 #include "llvm/IR/BasicBlock.h" 64 #include "llvm/IR/CFG.h" 65 #include "llvm/IR/CallingConv.h" 66 #include "llvm/IR/Constant.h" 67 #include "llvm/IR/ConstantRange.h" 68 #include "llvm/IR/Constants.h" 69 #include "llvm/IR/DataLayout.h" 70 #include "llvm/IR/DebugInfoMetadata.h" 71 #include "llvm/IR/DerivedTypes.h" 72 #include "llvm/IR/Function.h" 73 #include "llvm/IR/GetElementPtrTypeIterator.h" 74 #include "llvm/IR/InlineAsm.h" 75 #include "llvm/IR/InstrTypes.h" 76 #include "llvm/IR/Instructions.h" 77 #include "llvm/IR/IntrinsicInst.h" 78 #include "llvm/IR/Intrinsics.h" 79 #include "llvm/IR/IntrinsicsAArch64.h" 80 #include "llvm/IR/IntrinsicsWebAssembly.h" 81 #include "llvm/IR/LLVMContext.h" 82 #include "llvm/IR/Metadata.h" 83 #include "llvm/IR/Module.h" 84 #include "llvm/IR/Operator.h" 85 #include "llvm/IR/PatternMatch.h" 86 #include "llvm/IR/Statepoint.h" 87 #include "llvm/IR/Type.h" 88 #include "llvm/IR/User.h" 89 #include "llvm/IR/Value.h" 90 #include "llvm/MC/MCContext.h" 91 #include "llvm/MC/MCSymbol.h" 92 #include "llvm/Support/AtomicOrdering.h" 93 #include "llvm/Support/Casting.h" 94 #include "llvm/Support/CommandLine.h" 95 #include "llvm/Support/Compiler.h" 96 #include "llvm/Support/Debug.h" 97 #include "llvm/Support/MathExtras.h" 98 #include "llvm/Support/raw_ostream.h" 99 #include "llvm/Target/TargetIntrinsicInfo.h" 100 #include "llvm/Target/TargetMachine.h" 101 #include "llvm/Target/TargetOptions.h" 102 #include "llvm/Transforms/Utils/Local.h" 103 #include <cstddef> 104 #include <cstring> 105 #include <iterator> 106 #include <limits> 107 #include <numeric> 108 #include <tuple> 109 110 using namespace llvm; 111 using namespace PatternMatch; 112 using namespace SwitchCG; 113 114 #define DEBUG_TYPE "isel" 115 116 /// LimitFloatPrecision - Generate low-precision inline sequences for 117 /// some float libcalls (6, 8 or 12 bits). 118 static unsigned LimitFloatPrecision; 119 120 static cl::opt<bool> 121 InsertAssertAlign("insert-assert-align", cl::init(true), 122 cl::desc("Insert the experimental `assertalign` node."), 123 cl::ReallyHidden); 124 125 static cl::opt<unsigned, true> 126 LimitFPPrecision("limit-float-precision", 127 cl::desc("Generate low-precision inline sequences " 128 "for some float libcalls"), 129 cl::location(LimitFloatPrecision), cl::Hidden, 130 cl::init(0)); 131 132 static cl::opt<unsigned> SwitchPeelThreshold( 133 "switch-peel-threshold", cl::Hidden, cl::init(66), 134 cl::desc("Set the case probability threshold for peeling the case from a " 135 "switch statement. A value greater than 100 will void this " 136 "optimization")); 137 138 // Limit the width of DAG chains. This is important in general to prevent 139 // DAG-based analysis from blowing up. For example, alias analysis and 140 // load clustering may not complete in reasonable time. It is difficult to 141 // recognize and avoid this situation within each individual analysis, and 142 // future analyses are likely to have the same behavior. Limiting DAG width is 143 // the safe approach and will be especially important with global DAGs. 144 // 145 // MaxParallelChains default is arbitrarily high to avoid affecting 146 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st 147 // sequence over this should have been converted to llvm.memcpy by the 148 // frontend. It is easy to induce this behavior with .ll code such as: 149 // %buffer = alloca [4096 x i8] 150 // %data = load [4096 x i8]* %argPtr 151 // store [4096 x i8] %data, [4096 x i8]* %buffer 152 static const unsigned MaxParallelChains = 64; 153 154 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 155 const SDValue *Parts, unsigned NumParts, 156 MVT PartVT, EVT ValueVT, const Value *V, 157 Optional<CallingConv::ID> CC); 158 159 /// getCopyFromParts - Create a value that contains the specified legal parts 160 /// combined into the value they represent. If the parts combine to a type 161 /// larger than ValueVT then AssertOp can be used to specify whether the extra 162 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT 163 /// (ISD::AssertSext). 164 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL, 165 const SDValue *Parts, unsigned NumParts, 166 MVT PartVT, EVT ValueVT, const Value *V, 167 Optional<CallingConv::ID> CC = None, 168 Optional<ISD::NodeType> AssertOp = None) { 169 // Let the target assemble the parts if it wants to 170 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 171 if (SDValue Val = TLI.joinRegisterPartsIntoValue(DAG, DL, Parts, NumParts, 172 PartVT, ValueVT, CC)) 173 return Val; 174 175 if (ValueVT.isVector()) 176 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V, 177 CC); 178 179 assert(NumParts > 0 && "No parts to assemble!"); 180 SDValue Val = Parts[0]; 181 182 if (NumParts > 1) { 183 // Assemble the value from multiple parts. 184 if (ValueVT.isInteger()) { 185 unsigned PartBits = PartVT.getSizeInBits(); 186 unsigned ValueBits = ValueVT.getSizeInBits(); 187 188 // Assemble the power of 2 part. 189 unsigned RoundParts = 190 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts; 191 unsigned RoundBits = PartBits * RoundParts; 192 EVT RoundVT = RoundBits == ValueBits ? 193 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits); 194 SDValue Lo, Hi; 195 196 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2); 197 198 if (RoundParts > 2) { 199 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2, 200 PartVT, HalfVT, V); 201 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2, 202 RoundParts / 2, PartVT, HalfVT, V); 203 } else { 204 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]); 205 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]); 206 } 207 208 if (DAG.getDataLayout().isBigEndian()) 209 std::swap(Lo, Hi); 210 211 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi); 212 213 if (RoundParts < NumParts) { 214 // Assemble the trailing non-power-of-2 part. 215 unsigned OddParts = NumParts - RoundParts; 216 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits); 217 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT, 218 OddVT, V, CC); 219 220 // Combine the round and odd parts. 221 Lo = Val; 222 if (DAG.getDataLayout().isBigEndian()) 223 std::swap(Lo, Hi); 224 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 225 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi); 226 Hi = 227 DAG.getNode(ISD::SHL, DL, TotalVT, Hi, 228 DAG.getConstant(Lo.getValueSizeInBits(), DL, 229 TLI.getPointerTy(DAG.getDataLayout()))); 230 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo); 231 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi); 232 } 233 } else if (PartVT.isFloatingPoint()) { 234 // FP split into multiple FP parts (for ppcf128) 235 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 && 236 "Unexpected split"); 237 SDValue Lo, Hi; 238 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]); 239 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]); 240 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout())) 241 std::swap(Lo, Hi); 242 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi); 243 } else { 244 // FP split into integer parts (soft fp) 245 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() && 246 !PartVT.isVector() && "Unexpected split"); 247 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 248 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC); 249 } 250 } 251 252 // There is now one part, held in Val. Correct it to match ValueVT. 253 // PartEVT is the type of the register class that holds the value. 254 // ValueVT is the type of the inline asm operation. 255 EVT PartEVT = Val.getValueType(); 256 257 if (PartEVT == ValueVT) 258 return Val; 259 260 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() && 261 ValueVT.bitsLT(PartEVT)) { 262 // For an FP value in an integer part, we need to truncate to the right 263 // width first. 264 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 265 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val); 266 } 267 268 // Handle types that have the same size. 269 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits()) 270 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 271 272 // Handle types with different sizes. 273 if (PartEVT.isInteger() && ValueVT.isInteger()) { 274 if (ValueVT.bitsLT(PartEVT)) { 275 // For a truncate, see if we have any information to 276 // indicate whether the truncated bits will always be 277 // zero or sign-extension. 278 if (AssertOp.hasValue()) 279 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val, 280 DAG.getValueType(ValueVT)); 281 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 282 } 283 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val); 284 } 285 286 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 287 // FP_ROUND's are always exact here. 288 if (ValueVT.bitsLT(Val.getValueType())) 289 return DAG.getNode( 290 ISD::FP_ROUND, DL, ValueVT, Val, 291 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout()))); 292 293 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val); 294 } 295 296 // Handle MMX to a narrower integer type by bitcasting MMX to integer and 297 // then truncating. 298 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() && 299 ValueVT.bitsLT(PartEVT)) { 300 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val); 301 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 302 } 303 304 report_fatal_error("Unknown mismatch in getCopyFromParts!"); 305 } 306 307 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V, 308 const Twine &ErrMsg) { 309 const Instruction *I = dyn_cast_or_null<Instruction>(V); 310 if (!V) 311 return Ctx.emitError(ErrMsg); 312 313 const char *AsmError = ", possible invalid constraint for vector type"; 314 if (const CallInst *CI = dyn_cast<CallInst>(I)) 315 if (CI->isInlineAsm()) 316 return Ctx.emitError(I, ErrMsg + AsmError); 317 318 return Ctx.emitError(I, ErrMsg); 319 } 320 321 /// getCopyFromPartsVector - Create a value that contains the specified legal 322 /// parts combined into the value they represent. If the parts combine to a 323 /// type larger than ValueVT then AssertOp can be used to specify whether the 324 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from 325 /// ValueVT (ISD::AssertSext). 326 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL, 327 const SDValue *Parts, unsigned NumParts, 328 MVT PartVT, EVT ValueVT, const Value *V, 329 Optional<CallingConv::ID> CallConv) { 330 assert(ValueVT.isVector() && "Not a vector value"); 331 assert(NumParts > 0 && "No parts to assemble!"); 332 const bool IsABIRegCopy = CallConv.hasValue(); 333 334 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 335 SDValue Val = Parts[0]; 336 337 // Handle a multi-element vector. 338 if (NumParts > 1) { 339 EVT IntermediateVT; 340 MVT RegisterVT; 341 unsigned NumIntermediates; 342 unsigned NumRegs; 343 344 if (IsABIRegCopy) { 345 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 346 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 347 NumIntermediates, RegisterVT); 348 } else { 349 NumRegs = 350 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 351 NumIntermediates, RegisterVT); 352 } 353 354 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 355 NumParts = NumRegs; // Silence a compiler warning. 356 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 357 assert(RegisterVT.getSizeInBits() == 358 Parts[0].getSimpleValueType().getSizeInBits() && 359 "Part type sizes don't match!"); 360 361 // Assemble the parts into intermediate operands. 362 SmallVector<SDValue, 8> Ops(NumIntermediates); 363 if (NumIntermediates == NumParts) { 364 // If the register was not expanded, truncate or copy the value, 365 // as appropriate. 366 for (unsigned i = 0; i != NumParts; ++i) 367 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1, 368 PartVT, IntermediateVT, V, CallConv); 369 } else if (NumParts > 0) { 370 // If the intermediate type was expanded, build the intermediate 371 // operands from the parts. 372 assert(NumParts % NumIntermediates == 0 && 373 "Must expand into a divisible number of parts!"); 374 unsigned Factor = NumParts / NumIntermediates; 375 for (unsigned i = 0; i != NumIntermediates; ++i) 376 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor, 377 PartVT, IntermediateVT, V, CallConv); 378 } 379 380 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the 381 // intermediate operands. 382 EVT BuiltVectorTy = 383 IntermediateVT.isVector() 384 ? EVT::getVectorVT( 385 *DAG.getContext(), IntermediateVT.getScalarType(), 386 IntermediateVT.getVectorElementCount() * NumParts) 387 : EVT::getVectorVT(*DAG.getContext(), 388 IntermediateVT.getScalarType(), 389 NumIntermediates); 390 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS 391 : ISD::BUILD_VECTOR, 392 DL, BuiltVectorTy, Ops); 393 } 394 395 // There is now one part, held in Val. Correct it to match ValueVT. 396 EVT PartEVT = Val.getValueType(); 397 398 if (PartEVT == ValueVT) 399 return Val; 400 401 if (PartEVT.isVector()) { 402 // If the element type of the source/dest vectors are the same, but the 403 // parts vector has more elements than the value vector, then we have a 404 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the 405 // elements we want. 406 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) { 407 assert((PartEVT.getVectorElementCount().getKnownMinValue() > 408 ValueVT.getVectorElementCount().getKnownMinValue()) && 409 (PartEVT.getVectorElementCount().isScalable() == 410 ValueVT.getVectorElementCount().isScalable()) && 411 "Cannot narrow, it would be a lossy transformation"); 412 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val, 413 DAG.getVectorIdxConstant(0, DL)); 414 } 415 416 // Vector/Vector bitcast. 417 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) 418 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 419 420 assert(PartEVT.getVectorElementCount() == ValueVT.getVectorElementCount() && 421 "Cannot handle this kind of promotion"); 422 // Promoted vector extract 423 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT); 424 425 } 426 427 // Trivial bitcast if the types are the same size and the destination 428 // vector type is legal. 429 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() && 430 TLI.isTypeLegal(ValueVT)) 431 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 432 433 if (ValueVT.getVectorNumElements() != 1) { 434 // Certain ABIs require that vectors are passed as integers. For vectors 435 // are the same size, this is an obvious bitcast. 436 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) { 437 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 438 } else if (ValueVT.bitsLT(PartEVT)) { 439 const uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 440 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 441 // Drop the extra bits. 442 Val = DAG.getNode(ISD::TRUNCATE, DL, IntermediateType, Val); 443 return DAG.getBitcast(ValueVT, Val); 444 } 445 446 diagnosePossiblyInvalidConstraint( 447 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion"); 448 return DAG.getUNDEF(ValueVT); 449 } 450 451 // Handle cases such as i8 -> <1 x i1> 452 EVT ValueSVT = ValueVT.getVectorElementType(); 453 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT) { 454 if (ValueSVT.getSizeInBits() == PartEVT.getSizeInBits()) 455 Val = DAG.getNode(ISD::BITCAST, DL, ValueSVT, Val); 456 else 457 Val = ValueVT.isFloatingPoint() 458 ? DAG.getFPExtendOrRound(Val, DL, ValueSVT) 459 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT); 460 } 461 462 return DAG.getBuildVector(ValueVT, DL, Val); 463 } 464 465 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl, 466 SDValue Val, SDValue *Parts, unsigned NumParts, 467 MVT PartVT, const Value *V, 468 Optional<CallingConv::ID> CallConv); 469 470 /// getCopyToParts - Create a series of nodes that contain the specified value 471 /// split into legal parts. If the parts contain more bits than Val, then, for 472 /// integers, ExtendKind can be used to specify how to generate the extra bits. 473 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, 474 SDValue *Parts, unsigned NumParts, MVT PartVT, 475 const Value *V, 476 Optional<CallingConv::ID> CallConv = None, 477 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) { 478 // Let the target split the parts if it wants to 479 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 480 if (TLI.splitValueIntoRegisterParts(DAG, DL, Val, Parts, NumParts, PartVT, 481 CallConv)) 482 return; 483 EVT ValueVT = Val.getValueType(); 484 485 // Handle the vector case separately. 486 if (ValueVT.isVector()) 487 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V, 488 CallConv); 489 490 unsigned PartBits = PartVT.getSizeInBits(); 491 unsigned OrigNumParts = NumParts; 492 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) && 493 "Copying to an illegal type!"); 494 495 if (NumParts == 0) 496 return; 497 498 assert(!ValueVT.isVector() && "Vector case handled elsewhere"); 499 EVT PartEVT = PartVT; 500 if (PartEVT == ValueVT) { 501 assert(NumParts == 1 && "No-op copy with multiple parts!"); 502 Parts[0] = Val; 503 return; 504 } 505 506 if (NumParts * PartBits > ValueVT.getSizeInBits()) { 507 // If the parts cover more bits than the value has, promote the value. 508 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) { 509 assert(NumParts == 1 && "Do not know what to promote to!"); 510 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val); 511 } else { 512 if (ValueVT.isFloatingPoint()) { 513 // FP values need to be bitcast, then extended if they are being put 514 // into a larger container. 515 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits()); 516 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val); 517 } 518 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 519 ValueVT.isInteger() && 520 "Unknown mismatch!"); 521 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 522 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val); 523 if (PartVT == MVT::x86mmx) 524 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 525 } 526 } else if (PartBits == ValueVT.getSizeInBits()) { 527 // Different types of the same size. 528 assert(NumParts == 1 && PartEVT != ValueVT); 529 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 530 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) { 531 // If the parts cover less bits than value has, truncate the value. 532 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) && 533 ValueVT.isInteger() && 534 "Unknown mismatch!"); 535 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 536 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 537 if (PartVT == MVT::x86mmx) 538 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 539 } 540 541 // The value may have changed - recompute ValueVT. 542 ValueVT = Val.getValueType(); 543 assert(NumParts * PartBits == ValueVT.getSizeInBits() && 544 "Failed to tile the value with PartVT!"); 545 546 if (NumParts == 1) { 547 if (PartEVT != ValueVT) { 548 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V, 549 "scalar-to-vector conversion failed"); 550 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 551 } 552 553 Parts[0] = Val; 554 return; 555 } 556 557 // Expand the value into multiple parts. 558 if (NumParts & (NumParts - 1)) { 559 // The number of parts is not a power of 2. Split off and copy the tail. 560 assert(PartVT.isInteger() && ValueVT.isInteger() && 561 "Do not know what to expand to!"); 562 unsigned RoundParts = 1 << Log2_32(NumParts); 563 unsigned RoundBits = RoundParts * PartBits; 564 unsigned OddParts = NumParts - RoundParts; 565 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val, 566 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false)); 567 568 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V, 569 CallConv); 570 571 if (DAG.getDataLayout().isBigEndian()) 572 // The odd parts were reversed by getCopyToParts - unreverse them. 573 std::reverse(Parts + RoundParts, Parts + NumParts); 574 575 NumParts = RoundParts; 576 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits); 577 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val); 578 } 579 580 // The number of parts is a power of 2. Repeatedly bisect the value using 581 // EXTRACT_ELEMENT. 582 Parts[0] = DAG.getNode(ISD::BITCAST, DL, 583 EVT::getIntegerVT(*DAG.getContext(), 584 ValueVT.getSizeInBits()), 585 Val); 586 587 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) { 588 for (unsigned i = 0; i < NumParts; i += StepSize) { 589 unsigned ThisBits = StepSize * PartBits / 2; 590 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits); 591 SDValue &Part0 = Parts[i]; 592 SDValue &Part1 = Parts[i+StepSize/2]; 593 594 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 595 ThisVT, Part0, DAG.getIntPtrConstant(1, DL)); 596 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, 597 ThisVT, Part0, DAG.getIntPtrConstant(0, DL)); 598 599 if (ThisBits == PartBits && ThisVT != PartVT) { 600 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0); 601 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1); 602 } 603 } 604 } 605 606 if (DAG.getDataLayout().isBigEndian()) 607 std::reverse(Parts, Parts + OrigNumParts); 608 } 609 610 static SDValue widenVectorToPartType(SelectionDAG &DAG, 611 SDValue Val, const SDLoc &DL, EVT PartVT) { 612 if (!PartVT.isFixedLengthVector()) 613 return SDValue(); 614 615 EVT ValueVT = Val.getValueType(); 616 unsigned PartNumElts = PartVT.getVectorNumElements(); 617 unsigned ValueNumElts = ValueVT.getVectorNumElements(); 618 if (PartNumElts > ValueNumElts && 619 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) { 620 EVT ElementVT = PartVT.getVectorElementType(); 621 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in 622 // undef elements. 623 SmallVector<SDValue, 16> Ops; 624 DAG.ExtractVectorElements(Val, Ops); 625 SDValue EltUndef = DAG.getUNDEF(ElementVT); 626 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i) 627 Ops.push_back(EltUndef); 628 629 // FIXME: Use CONCAT for 2x -> 4x. 630 return DAG.getBuildVector(PartVT, DL, Ops); 631 } 632 633 return SDValue(); 634 } 635 636 /// getCopyToPartsVector - Create a series of nodes that contain the specified 637 /// value split into legal parts. 638 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL, 639 SDValue Val, SDValue *Parts, unsigned NumParts, 640 MVT PartVT, const Value *V, 641 Optional<CallingConv::ID> CallConv) { 642 EVT ValueVT = Val.getValueType(); 643 assert(ValueVT.isVector() && "Not a vector"); 644 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 645 const bool IsABIRegCopy = CallConv.hasValue(); 646 647 if (NumParts == 1) { 648 EVT PartEVT = PartVT; 649 if (PartEVT == ValueVT) { 650 // Nothing to do. 651 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) { 652 // Bitconvert vector->vector case. 653 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val); 654 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) { 655 Val = Widened; 656 } else if (PartVT.isVector() && 657 PartEVT.getVectorElementType().bitsGE( 658 ValueVT.getVectorElementType()) && 659 PartEVT.getVectorElementCount() == 660 ValueVT.getVectorElementCount()) { 661 662 // Promoted vector extract 663 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 664 } else { 665 if (ValueVT.getVectorElementCount().isScalar()) { 666 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val, 667 DAG.getVectorIdxConstant(0, DL)); 668 } else { 669 uint64_t ValueSize = ValueVT.getFixedSizeInBits(); 670 assert(PartVT.getFixedSizeInBits() > ValueSize && 671 "lossy conversion of vector to scalar type"); 672 EVT IntermediateType = EVT::getIntegerVT(*DAG.getContext(), ValueSize); 673 Val = DAG.getBitcast(IntermediateType, Val); 674 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT); 675 } 676 } 677 678 assert(Val.getValueType() == PartVT && "Unexpected vector part value type"); 679 Parts[0] = Val; 680 return; 681 } 682 683 // Handle a multi-element vector. 684 EVT IntermediateVT; 685 MVT RegisterVT; 686 unsigned NumIntermediates; 687 unsigned NumRegs; 688 if (IsABIRegCopy) { 689 NumRegs = TLI.getVectorTypeBreakdownForCallingConv( 690 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT, 691 NumIntermediates, RegisterVT); 692 } else { 693 NumRegs = 694 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT, 695 NumIntermediates, RegisterVT); 696 } 697 698 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!"); 699 NumParts = NumRegs; // Silence a compiler warning. 700 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!"); 701 702 assert(IntermediateVT.isScalableVector() == ValueVT.isScalableVector() && 703 "Mixing scalable and fixed vectors when copying in parts"); 704 705 Optional<ElementCount> DestEltCnt; 706 707 if (IntermediateVT.isVector()) 708 DestEltCnt = IntermediateVT.getVectorElementCount() * NumIntermediates; 709 else 710 DestEltCnt = ElementCount::getFixed(NumIntermediates); 711 712 EVT BuiltVectorTy = EVT::getVectorVT( 713 *DAG.getContext(), IntermediateVT.getScalarType(), DestEltCnt.getValue()); 714 715 if (ValueVT == BuiltVectorTy) { 716 // Nothing to do. 717 } else if (ValueVT.getSizeInBits() == BuiltVectorTy.getSizeInBits()) { 718 // Bitconvert vector->vector case. 719 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val); 720 } else if (SDValue Widened = 721 widenVectorToPartType(DAG, Val, DL, BuiltVectorTy)) { 722 Val = Widened; 723 } else if (BuiltVectorTy.getVectorElementType().bitsGE( 724 ValueVT.getVectorElementType()) && 725 BuiltVectorTy.getVectorElementCount() == 726 ValueVT.getVectorElementCount()) { 727 // Promoted vector extract 728 Val = DAG.getAnyExtOrTrunc(Val, DL, BuiltVectorTy); 729 } 730 731 assert(Val.getValueType() == BuiltVectorTy && "Unexpected vector value type"); 732 733 // Split the vector into intermediate operands. 734 SmallVector<SDValue, 8> Ops(NumIntermediates); 735 for (unsigned i = 0; i != NumIntermediates; ++i) { 736 if (IntermediateVT.isVector()) { 737 // This does something sensible for scalable vectors - see the 738 // definition of EXTRACT_SUBVECTOR for further details. 739 unsigned IntermediateNumElts = IntermediateVT.getVectorMinNumElements(); 740 Ops[i] = 741 DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val, 742 DAG.getVectorIdxConstant(i * IntermediateNumElts, DL)); 743 } else { 744 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val, 745 DAG.getVectorIdxConstant(i, DL)); 746 } 747 } 748 749 // Split the intermediate operands into legal parts. 750 if (NumParts == NumIntermediates) { 751 // If the register was not expanded, promote or copy the value, 752 // as appropriate. 753 for (unsigned i = 0; i != NumParts; ++i) 754 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv); 755 } else if (NumParts > 0) { 756 // If the intermediate type was expanded, split each the value into 757 // legal parts. 758 assert(NumIntermediates != 0 && "division by zero"); 759 assert(NumParts % NumIntermediates == 0 && 760 "Must expand into a divisible number of parts!"); 761 unsigned Factor = NumParts / NumIntermediates; 762 for (unsigned i = 0; i != NumIntermediates; ++i) 763 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V, 764 CallConv); 765 } 766 } 767 768 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> ®s, MVT regvt, 769 EVT valuevt, Optional<CallingConv::ID> CC) 770 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs), 771 RegCount(1, regs.size()), CallConv(CC) {} 772 773 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI, 774 const DataLayout &DL, unsigned Reg, Type *Ty, 775 Optional<CallingConv::ID> CC) { 776 ComputeValueVTs(TLI, DL, Ty, ValueVTs); 777 778 CallConv = CC; 779 780 for (EVT ValueVT : ValueVTs) { 781 unsigned NumRegs = 782 isABIMangled() 783 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT) 784 : TLI.getNumRegisters(Context, ValueVT); 785 MVT RegisterVT = 786 isABIMangled() 787 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT) 788 : TLI.getRegisterType(Context, ValueVT); 789 for (unsigned i = 0; i != NumRegs; ++i) 790 Regs.push_back(Reg + i); 791 RegVTs.push_back(RegisterVT); 792 RegCount.push_back(NumRegs); 793 Reg += NumRegs; 794 } 795 } 796 797 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG, 798 FunctionLoweringInfo &FuncInfo, 799 const SDLoc &dl, SDValue &Chain, 800 SDValue *Flag, const Value *V) const { 801 // A Value with type {} or [0 x %t] needs no registers. 802 if (ValueVTs.empty()) 803 return SDValue(); 804 805 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 806 807 // Assemble the legal parts into the final values. 808 SmallVector<SDValue, 4> Values(ValueVTs.size()); 809 SmallVector<SDValue, 8> Parts; 810 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 811 // Copy the legal parts from the registers. 812 EVT ValueVT = ValueVTs[Value]; 813 unsigned NumRegs = RegCount[Value]; 814 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 815 *DAG.getContext(), 816 CallConv.getValue(), RegVTs[Value]) 817 : RegVTs[Value]; 818 819 Parts.resize(NumRegs); 820 for (unsigned i = 0; i != NumRegs; ++i) { 821 SDValue P; 822 if (!Flag) { 823 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT); 824 } else { 825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag); 826 *Flag = P.getValue(2); 827 } 828 829 Chain = P.getValue(1); 830 Parts[i] = P; 831 832 // If the source register was virtual and if we know something about it, 833 // add an assert node. 834 if (!Register::isVirtualRegister(Regs[Part + i]) || 835 !RegisterVT.isInteger()) 836 continue; 837 838 const FunctionLoweringInfo::LiveOutInfo *LOI = 839 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]); 840 if (!LOI) 841 continue; 842 843 unsigned RegSize = RegisterVT.getScalarSizeInBits(); 844 unsigned NumSignBits = LOI->NumSignBits; 845 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros(); 846 847 if (NumZeroBits == RegSize) { 848 // The current value is a zero. 849 // Explicitly express that as it would be easier for 850 // optimizations to kick in. 851 Parts[i] = DAG.getConstant(0, dl, RegisterVT); 852 continue; 853 } 854 855 // FIXME: We capture more information than the dag can represent. For 856 // now, just use the tightest assertzext/assertsext possible. 857 bool isSExt; 858 EVT FromVT(MVT::Other); 859 if (NumZeroBits) { 860 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits); 861 isSExt = false; 862 } else if (NumSignBits > 1) { 863 FromVT = 864 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1); 865 isSExt = true; 866 } else { 867 continue; 868 } 869 // Add an assertion node. 870 assert(FromVT != MVT::Other); 871 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl, 872 RegisterVT, P, DAG.getValueType(FromVT)); 873 } 874 875 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs, 876 RegisterVT, ValueVT, V, CallConv); 877 Part += NumRegs; 878 Parts.clear(); 879 } 880 881 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values); 882 } 883 884 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, 885 const SDLoc &dl, SDValue &Chain, SDValue *Flag, 886 const Value *V, 887 ISD::NodeType PreferredExtendType) const { 888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 889 ISD::NodeType ExtendKind = PreferredExtendType; 890 891 // Get the list of the values's legal parts. 892 unsigned NumRegs = Regs.size(); 893 SmallVector<SDValue, 8> Parts(NumRegs); 894 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) { 895 unsigned NumParts = RegCount[Value]; 896 897 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv( 898 *DAG.getContext(), 899 CallConv.getValue(), RegVTs[Value]) 900 : RegVTs[Value]; 901 902 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT)) 903 ExtendKind = ISD::ZERO_EXTEND; 904 905 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part], 906 NumParts, RegisterVT, V, CallConv, ExtendKind); 907 Part += NumParts; 908 } 909 910 // Copy the parts into the registers. 911 SmallVector<SDValue, 8> Chains(NumRegs); 912 for (unsigned i = 0; i != NumRegs; ++i) { 913 SDValue Part; 914 if (!Flag) { 915 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]); 916 } else { 917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag); 918 *Flag = Part.getValue(1); 919 } 920 921 Chains[i] = Part.getValue(0); 922 } 923 924 if (NumRegs == 1 || Flag) 925 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is 926 // flagged to it. That is the CopyToReg nodes and the user are considered 927 // a single scheduling unit. If we create a TokenFactor and return it as 928 // chain, then the TokenFactor is both a predecessor (operand) of the 929 // user as well as a successor (the TF operands are flagged to the user). 930 // c1, f1 = CopyToReg 931 // c2, f2 = CopyToReg 932 // c3 = TokenFactor c1, c2 933 // ... 934 // = op c3, ..., f2 935 Chain = Chains[NumRegs-1]; 936 else 937 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 938 } 939 940 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching, 941 unsigned MatchingIdx, const SDLoc &dl, 942 SelectionDAG &DAG, 943 std::vector<SDValue> &Ops) const { 944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 945 946 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size()); 947 if (HasMatching) 948 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx); 949 else if (!Regs.empty() && Register::isVirtualRegister(Regs.front())) { 950 // Put the register class of the virtual registers in the flag word. That 951 // way, later passes can recompute register class constraints for inline 952 // assembly as well as normal instructions. 953 // Don't do this for tied operands that can use the regclass information 954 // from the def. 955 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); 956 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front()); 957 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID()); 958 } 959 960 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32); 961 Ops.push_back(Res); 962 963 if (Code == InlineAsm::Kind_Clobber) { 964 // Clobbers should always have a 1:1 mapping with registers, and may 965 // reference registers that have illegal (e.g. vector) types. Hence, we 966 // shouldn't try to apply any sort of splitting logic to them. 967 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() && 968 "No 1:1 mapping from clobbers to regs?"); 969 Register SP = TLI.getStackPointerRegisterToSaveRestore(); 970 (void)SP; 971 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) { 972 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I])); 973 assert( 974 (Regs[I] != SP || 975 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) && 976 "If we clobbered the stack pointer, MFI should know about it."); 977 } 978 return; 979 } 980 981 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) { 982 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]); 983 MVT RegisterVT = RegVTs[Value]; 984 for (unsigned i = 0; i != NumRegs; ++i) { 985 assert(Reg < Regs.size() && "Mismatch in # registers expected"); 986 unsigned TheReg = Regs[Reg++]; 987 Ops.push_back(DAG.getRegister(TheReg, RegisterVT)); 988 } 989 } 990 } 991 992 SmallVector<std::pair<unsigned, TypeSize>, 4> 993 RegsForValue::getRegsAndSizes() const { 994 SmallVector<std::pair<unsigned, TypeSize>, 4> OutVec; 995 unsigned I = 0; 996 for (auto CountAndVT : zip_first(RegCount, RegVTs)) { 997 unsigned RegCount = std::get<0>(CountAndVT); 998 MVT RegisterVT = std::get<1>(CountAndVT); 999 TypeSize RegisterSize = RegisterVT.getSizeInBits(); 1000 for (unsigned E = I + RegCount; I != E; ++I) 1001 OutVec.push_back(std::make_pair(Regs[I], RegisterSize)); 1002 } 1003 return OutVec; 1004 } 1005 1006 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa, 1007 const TargetLibraryInfo *li) { 1008 AA = aa; 1009 GFI = gfi; 1010 LibInfo = li; 1011 DL = &DAG.getDataLayout(); 1012 Context = DAG.getContext(); 1013 LPadToCallSiteMap.clear(); 1014 SL->init(DAG.getTargetLoweringInfo(), TM, DAG.getDataLayout()); 1015 } 1016 1017 void SelectionDAGBuilder::clear() { 1018 NodeMap.clear(); 1019 UnusedArgNodeMap.clear(); 1020 PendingLoads.clear(); 1021 PendingExports.clear(); 1022 PendingConstrainedFP.clear(); 1023 PendingConstrainedFPStrict.clear(); 1024 CurInst = nullptr; 1025 HasTailCall = false; 1026 SDNodeOrder = LowestSDNodeOrder; 1027 StatepointLowering.clear(); 1028 } 1029 1030 void SelectionDAGBuilder::clearDanglingDebugInfo() { 1031 DanglingDebugInfoMap.clear(); 1032 } 1033 1034 // Update DAG root to include dependencies on Pending chains. 1035 SDValue SelectionDAGBuilder::updateRoot(SmallVectorImpl<SDValue> &Pending) { 1036 SDValue Root = DAG.getRoot(); 1037 1038 if (Pending.empty()) 1039 return Root; 1040 1041 // Add current root to PendingChains, unless we already indirectly 1042 // depend on it. 1043 if (Root.getOpcode() != ISD::EntryToken) { 1044 unsigned i = 0, e = Pending.size(); 1045 for (; i != e; ++i) { 1046 assert(Pending[i].getNode()->getNumOperands() > 1); 1047 if (Pending[i].getNode()->getOperand(0) == Root) 1048 break; // Don't add the root if we already indirectly depend on it. 1049 } 1050 1051 if (i == e) 1052 Pending.push_back(Root); 1053 } 1054 1055 if (Pending.size() == 1) 1056 Root = Pending[0]; 1057 else 1058 Root = DAG.getTokenFactor(getCurSDLoc(), Pending); 1059 1060 DAG.setRoot(Root); 1061 Pending.clear(); 1062 return Root; 1063 } 1064 1065 SDValue SelectionDAGBuilder::getMemoryRoot() { 1066 return updateRoot(PendingLoads); 1067 } 1068 1069 SDValue SelectionDAGBuilder::getRoot() { 1070 // Chain up all pending constrained intrinsics together with all 1071 // pending loads, by simply appending them to PendingLoads and 1072 // then calling getMemoryRoot(). 1073 PendingLoads.reserve(PendingLoads.size() + 1074 PendingConstrainedFP.size() + 1075 PendingConstrainedFPStrict.size()); 1076 PendingLoads.append(PendingConstrainedFP.begin(), 1077 PendingConstrainedFP.end()); 1078 PendingLoads.append(PendingConstrainedFPStrict.begin(), 1079 PendingConstrainedFPStrict.end()); 1080 PendingConstrainedFP.clear(); 1081 PendingConstrainedFPStrict.clear(); 1082 return getMemoryRoot(); 1083 } 1084 1085 SDValue SelectionDAGBuilder::getControlRoot() { 1086 // We need to emit pending fpexcept.strict constrained intrinsics, 1087 // so append them to the PendingExports list. 1088 PendingExports.append(PendingConstrainedFPStrict.begin(), 1089 PendingConstrainedFPStrict.end()); 1090 PendingConstrainedFPStrict.clear(); 1091 return updateRoot(PendingExports); 1092 } 1093 1094 void SelectionDAGBuilder::visit(const Instruction &I) { 1095 // Set up outgoing PHI node register values before emitting the terminator. 1096 if (I.isTerminator()) { 1097 HandlePHINodesInSuccessorBlocks(I.getParent()); 1098 } 1099 1100 // Increase the SDNodeOrder if dealing with a non-debug instruction. 1101 if (!isa<DbgInfoIntrinsic>(I)) 1102 ++SDNodeOrder; 1103 1104 CurInst = &I; 1105 1106 visit(I.getOpcode(), I); 1107 1108 if (!I.isTerminator() && !HasTailCall && 1109 !isa<GCStatepointInst>(I)) // statepoints handle their exports internally 1110 CopyToExportRegsIfNeeded(&I); 1111 1112 CurInst = nullptr; 1113 } 1114 1115 void SelectionDAGBuilder::visitPHI(const PHINode &) { 1116 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!"); 1117 } 1118 1119 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) { 1120 // Note: this doesn't use InstVisitor, because it has to work with 1121 // ConstantExpr's in addition to instructions. 1122 switch (Opcode) { 1123 default: llvm_unreachable("Unknown instruction type encountered!"); 1124 // Build the switch statement using the Instruction.def file. 1125 #define HANDLE_INST(NUM, OPCODE, CLASS) \ 1126 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break; 1127 #include "llvm/IR/Instruction.def" 1128 } 1129 } 1130 1131 void SelectionDAGBuilder::addDanglingDebugInfo(const DbgValueInst *DI, 1132 DebugLoc DL, unsigned Order) { 1133 // We treat variadic dbg_values differently at this stage. 1134 if (DI->hasArgList()) { 1135 // For variadic dbg_values we will now insert an undef. 1136 // FIXME: We can potentially recover these! 1137 SmallVector<SDDbgOperand, 2> Locs; 1138 for (const Value *V : DI->getValues()) { 1139 auto Undef = UndefValue::get(V->getType()); 1140 Locs.push_back(SDDbgOperand::fromConst(Undef)); 1141 } 1142 SDDbgValue *SDV = DAG.getDbgValueList( 1143 DI->getVariable(), DI->getExpression(), Locs, {}, 1144 /*IsIndirect=*/false, DL, Order, /*IsVariadic=*/true); 1145 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1146 } else { 1147 // TODO: Dangling debug info will eventually either be resolved or produce 1148 // an Undef DBG_VALUE. However in the resolution case, a gap may appear 1149 // between the original dbg.value location and its resolved DBG_VALUE, 1150 // which we should ideally fill with an extra Undef DBG_VALUE. 1151 assert(DI->getNumVariableLocationOps() == 1 && 1152 "DbgValueInst without an ArgList should have a single location " 1153 "operand."); 1154 DanglingDebugInfoMap[DI->getValue(0)].emplace_back(DI, DL, Order); 1155 } 1156 } 1157 1158 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable, 1159 const DIExpression *Expr) { 1160 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) { 1161 const DbgValueInst *DI = DDI.getDI(); 1162 DIVariable *DanglingVariable = DI->getVariable(); 1163 DIExpression *DanglingExpr = DI->getExpression(); 1164 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) { 1165 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n"); 1166 return true; 1167 } 1168 return false; 1169 }; 1170 1171 for (auto &DDIMI : DanglingDebugInfoMap) { 1172 DanglingDebugInfoVector &DDIV = DDIMI.second; 1173 1174 // If debug info is to be dropped, run it through final checks to see 1175 // whether it can be salvaged. 1176 for (auto &DDI : DDIV) 1177 if (isMatchingDbgValue(DDI)) 1178 salvageUnresolvedDbgValue(DDI); 1179 1180 erase_if(DDIV, isMatchingDbgValue); 1181 } 1182 } 1183 1184 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V, 1185 // generate the debug data structures now that we've seen its definition. 1186 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V, 1187 SDValue Val) { 1188 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V); 1189 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end()) 1190 return; 1191 1192 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second; 1193 for (auto &DDI : DDIV) { 1194 const DbgValueInst *DI = DDI.getDI(); 1195 assert(!DI->hasArgList() && "Not implemented for variadic dbg_values"); 1196 assert(DI && "Ill-formed DanglingDebugInfo"); 1197 DebugLoc dl = DDI.getdl(); 1198 unsigned ValSDNodeOrder = Val.getNode()->getIROrder(); 1199 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder(); 1200 DILocalVariable *Variable = DI->getVariable(); 1201 DIExpression *Expr = DI->getExpression(); 1202 assert(Variable->isValidLocationForIntrinsic(dl) && 1203 "Expected inlined-at fields to agree"); 1204 SDDbgValue *SDV; 1205 if (Val.getNode()) { 1206 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a 1207 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if 1208 // we couldn't resolve it directly when examining the DbgValue intrinsic 1209 // in the first place we should not be more successful here). Unless we 1210 // have some test case that prove this to be correct we should avoid 1211 // calling EmitFuncArgumentDbgValue here. 1212 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) { 1213 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order=" 1214 << DbgSDNodeOrder << "] for:\n " << *DI << "\n"); 1215 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump()); 1216 // Increase the SDNodeOrder for the DbgValue here to make sure it is 1217 // inserted after the definition of Val when emitting the instructions 1218 // after ISel. An alternative could be to teach 1219 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly. 1220 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs() 1221 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to " 1222 << ValSDNodeOrder << "\n"); 1223 SDV = getDbgValue(Val, Variable, Expr, dl, 1224 std::max(DbgSDNodeOrder, ValSDNodeOrder)); 1225 DAG.AddDbgValue(SDV, false); 1226 } else 1227 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI 1228 << "in EmitFuncArgumentDbgValue\n"); 1229 } else { 1230 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n"); 1231 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1232 auto SDV = 1233 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder); 1234 DAG.AddDbgValue(SDV, false); 1235 } 1236 } 1237 DDIV.clear(); 1238 } 1239 1240 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) { 1241 assert(!DDI.getDI()->hasArgList() && 1242 "Not implemented for variadic dbg_values"); 1243 Value *V = DDI.getDI()->getValue(0); 1244 DILocalVariable *Var = DDI.getDI()->getVariable(); 1245 DIExpression *Expr = DDI.getDI()->getExpression(); 1246 DebugLoc DL = DDI.getdl(); 1247 DebugLoc InstDL = DDI.getDI()->getDebugLoc(); 1248 unsigned SDOrder = DDI.getSDNodeOrder(); 1249 // Currently we consider only dbg.value intrinsics -- we tell the salvager 1250 // that DW_OP_stack_value is desired. 1251 assert(isa<DbgValueInst>(DDI.getDI())); 1252 bool StackValue = true; 1253 1254 // Can this Value can be encoded without any further work? 1255 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, /*IsVariadic=*/false)) 1256 return; 1257 1258 // Attempt to salvage back through as many instructions as possible. Bail if 1259 // a non-instruction is seen, such as a constant expression or global 1260 // variable. FIXME: Further work could recover those too. 1261 while (isa<Instruction>(V)) { 1262 Instruction &VAsInst = *cast<Instruction>(V); 1263 // Temporary "0", awaiting real implementation. 1264 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue, 0); 1265 1266 // If we cannot salvage any further, and haven't yet found a suitable debug 1267 // expression, bail out. 1268 if (!NewExpr) 1269 break; 1270 1271 // New value and expr now represent this debuginfo. 1272 V = VAsInst.getOperand(0); 1273 Expr = NewExpr; 1274 1275 // Some kind of simplification occurred: check whether the operand of the 1276 // salvaged debug expression can be encoded in this DAG. 1277 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder, 1278 /*IsVariadic=*/false)) { 1279 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n " 1280 << DDI.getDI() << "\nBy stripping back to:\n " << V); 1281 return; 1282 } 1283 } 1284 1285 // This was the final opportunity to salvage this debug information, and it 1286 // couldn't be done. Place an undef DBG_VALUE at this location to terminate 1287 // any earlier variable location. 1288 auto Undef = UndefValue::get(DDI.getDI()->getValue(0)->getType()); 1289 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder); 1290 DAG.AddDbgValue(SDV, false); 1291 1292 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI() 1293 << "\n"); 1294 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0) 1295 << "\n"); 1296 } 1297 1298 bool SelectionDAGBuilder::handleDebugValue(ArrayRef<const Value *> Values, 1299 DILocalVariable *Var, 1300 DIExpression *Expr, DebugLoc dl, 1301 DebugLoc InstDL, unsigned Order, 1302 bool IsVariadic) { 1303 if (Values.empty()) 1304 return true; 1305 SmallVector<SDDbgOperand> LocationOps; 1306 SmallVector<SDNode *> Dependencies; 1307 for (const Value *V : Values) { 1308 // Constant value. 1309 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) || 1310 isa<ConstantPointerNull>(V)) { 1311 LocationOps.emplace_back(SDDbgOperand::fromConst(V)); 1312 continue; 1313 } 1314 1315 // If the Value is a frame index, we can create a FrameIndex debug value 1316 // without relying on the DAG at all. 1317 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1318 auto SI = FuncInfo.StaticAllocaMap.find(AI); 1319 if (SI != FuncInfo.StaticAllocaMap.end()) { 1320 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(SI->second)); 1321 continue; 1322 } 1323 } 1324 1325 // Do not use getValue() in here; we don't want to generate code at 1326 // this point if it hasn't been done yet. 1327 SDValue N = NodeMap[V]; 1328 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map. 1329 N = UnusedArgNodeMap[V]; 1330 if (N.getNode()) { 1331 // Only emit func arg dbg value for non-variadic dbg.values for now. 1332 if (!IsVariadic && EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N)) 1333 return true; 1334 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 1335 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can 1336 // describe stack slot locations. 1337 // 1338 // Consider "int x = 0; int *px = &x;". There are two kinds of 1339 // interesting debug values here after optimization: 1340 // 1341 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 1342 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 1343 // 1344 // Both describe the direct values of their associated variables. 1345 Dependencies.push_back(N.getNode()); 1346 LocationOps.emplace_back(SDDbgOperand::fromFrameIdx(FISDN->getIndex())); 1347 continue; 1348 } 1349 LocationOps.emplace_back( 1350 SDDbgOperand::fromNode(N.getNode(), N.getResNo())); 1351 continue; 1352 } 1353 1354 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1355 // Special rules apply for the first dbg.values of parameter variables in a 1356 // function. Identify them by the fact they reference Argument Values, that 1357 // they're parameters, and they are parameters of the current function. We 1358 // need to let them dangle until they get an SDNode. 1359 bool IsParamOfFunc = 1360 isa<Argument>(V) && Var->isParameter() && !InstDL.getInlinedAt(); 1361 if (IsParamOfFunc) 1362 return false; 1363 1364 // The value is not used in this block yet (or it would have an SDNode). 1365 // We still want the value to appear for the user if possible -- if it has 1366 // an associated VReg, we can refer to that instead. 1367 auto VMI = FuncInfo.ValueMap.find(V); 1368 if (VMI != FuncInfo.ValueMap.end()) { 1369 unsigned Reg = VMI->second; 1370 // If this is a PHI node, it may be split up into several MI PHI nodes 1371 // (in FunctionLoweringInfo::set). 1372 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, 1373 V->getType(), None); 1374 if (RFV.occupiesMultipleRegs()) { 1375 // FIXME: We could potentially support variadic dbg_values here. 1376 if (IsVariadic) 1377 return false; 1378 unsigned Offset = 0; 1379 unsigned BitsToDescribe = 0; 1380 if (auto VarSize = Var->getSizeInBits()) 1381 BitsToDescribe = *VarSize; 1382 if (auto Fragment = Expr->getFragmentInfo()) 1383 BitsToDescribe = Fragment->SizeInBits; 1384 for (auto RegAndSize : RFV.getRegsAndSizes()) { 1385 // Bail out if all bits are described already. 1386 if (Offset >= BitsToDescribe) 1387 break; 1388 // TODO: handle scalable vectors. 1389 unsigned RegisterSize = RegAndSize.second; 1390 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe) 1391 ? BitsToDescribe - Offset 1392 : RegisterSize; 1393 auto FragmentExpr = DIExpression::createFragmentExpression( 1394 Expr, Offset, FragmentSize); 1395 if (!FragmentExpr) 1396 continue; 1397 SDDbgValue *SDV = DAG.getVRegDbgValue( 1398 Var, *FragmentExpr, RegAndSize.first, false, dl, SDNodeOrder); 1399 DAG.AddDbgValue(SDV, false); 1400 Offset += RegisterSize; 1401 } 1402 return true; 1403 } 1404 // We can use simple vreg locations for variadic dbg_values as well. 1405 LocationOps.emplace_back(SDDbgOperand::fromVReg(Reg)); 1406 continue; 1407 } 1408 // We failed to create a SDDbgOperand for V. 1409 return false; 1410 } 1411 1412 // We have created a SDDbgOperand for each Value in Values. 1413 // Should use Order instead of SDNodeOrder? 1414 assert(!LocationOps.empty()); 1415 SDDbgValue *SDV = 1416 DAG.getDbgValueList(Var, Expr, LocationOps, Dependencies, 1417 /*IsIndirect=*/false, dl, SDNodeOrder, IsVariadic); 1418 DAG.AddDbgValue(SDV, /*isParameter=*/false); 1419 return true; 1420 } 1421 1422 void SelectionDAGBuilder::resolveOrClearDbgInfo() { 1423 // Try to fixup any remaining dangling debug info -- and drop it if we can't. 1424 for (auto &Pair : DanglingDebugInfoMap) 1425 for (auto &DDI : Pair.second) 1426 salvageUnresolvedDbgValue(DDI); 1427 clearDanglingDebugInfo(); 1428 } 1429 1430 /// getCopyFromRegs - If there was virtual register allocated for the value V 1431 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise. 1432 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) { 1433 DenseMap<const Value *, Register>::iterator It = FuncInfo.ValueMap.find(V); 1434 SDValue Result; 1435 1436 if (It != FuncInfo.ValueMap.end()) { 1437 Register InReg = It->second; 1438 1439 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), 1440 DAG.getDataLayout(), InReg, Ty, 1441 None); // This is not an ABI copy. 1442 SDValue Chain = DAG.getEntryNode(); 1443 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, 1444 V); 1445 resolveDanglingDebugInfo(V, Result); 1446 } 1447 1448 return Result; 1449 } 1450 1451 /// getValue - Return an SDValue for the given Value. 1452 SDValue SelectionDAGBuilder::getValue(const Value *V) { 1453 // If we already have an SDValue for this value, use it. It's important 1454 // to do this first, so that we don't create a CopyFromReg if we already 1455 // have a regular SDValue. 1456 SDValue &N = NodeMap[V]; 1457 if (N.getNode()) return N; 1458 1459 // If there's a virtual register allocated and initialized for this 1460 // value, use it. 1461 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType())) 1462 return copyFromReg; 1463 1464 // Otherwise create a new SDValue and remember it. 1465 SDValue Val = getValueImpl(V); 1466 NodeMap[V] = Val; 1467 resolveDanglingDebugInfo(V, Val); 1468 return Val; 1469 } 1470 1471 /// getNonRegisterValue - Return an SDValue for the given Value, but 1472 /// don't look in FuncInfo.ValueMap for a virtual register. 1473 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) { 1474 // If we already have an SDValue for this value, use it. 1475 SDValue &N = NodeMap[V]; 1476 if (N.getNode()) { 1477 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) { 1478 // Remove the debug location from the node as the node is about to be used 1479 // in a location which may differ from the original debug location. This 1480 // is relevant to Constant and ConstantFP nodes because they can appear 1481 // as constant expressions inside PHI nodes. 1482 N->setDebugLoc(DebugLoc()); 1483 } 1484 return N; 1485 } 1486 1487 // Otherwise create a new SDValue and remember it. 1488 SDValue Val = getValueImpl(V); 1489 NodeMap[V] = Val; 1490 resolveDanglingDebugInfo(V, Val); 1491 return Val; 1492 } 1493 1494 /// getValueImpl - Helper function for getValue and getNonRegisterValue. 1495 /// Create an SDValue for the given value. 1496 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) { 1497 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1498 1499 if (const Constant *C = dyn_cast<Constant>(V)) { 1500 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true); 1501 1502 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C)) 1503 return DAG.getConstant(*CI, getCurSDLoc(), VT); 1504 1505 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C)) 1506 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT); 1507 1508 if (isa<ConstantPointerNull>(C)) { 1509 unsigned AS = V->getType()->getPointerAddressSpace(); 1510 return DAG.getConstant(0, getCurSDLoc(), 1511 TLI.getPointerTy(DAG.getDataLayout(), AS)); 1512 } 1513 1514 if (match(C, m_VScale(DAG.getDataLayout()))) 1515 return DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1)); 1516 1517 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) 1518 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT); 1519 1520 if (isa<UndefValue>(C) && !V->getType()->isAggregateType()) 1521 return DAG.getUNDEF(VT); 1522 1523 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 1524 visit(CE->getOpcode(), *CE); 1525 SDValue N1 = NodeMap[V]; 1526 assert(N1.getNode() && "visit didn't populate the NodeMap!"); 1527 return N1; 1528 } 1529 1530 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) { 1531 SmallVector<SDValue, 4> Constants; 1532 for (const Use &U : C->operands()) { 1533 SDNode *Val = getValue(U).getNode(); 1534 // If the operand is an empty aggregate, there are no values. 1535 if (!Val) continue; 1536 // Add each leaf value from the operand to the Constants list 1537 // to form a flattened list of all the values. 1538 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1539 Constants.push_back(SDValue(Val, i)); 1540 } 1541 1542 return DAG.getMergeValues(Constants, getCurSDLoc()); 1543 } 1544 1545 if (const ConstantDataSequential *CDS = 1546 dyn_cast<ConstantDataSequential>(C)) { 1547 SmallVector<SDValue, 4> Ops; 1548 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { 1549 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode(); 1550 // Add each leaf value from the operand to the Constants list 1551 // to form a flattened list of all the values. 1552 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i) 1553 Ops.push_back(SDValue(Val, i)); 1554 } 1555 1556 if (isa<ArrayType>(CDS->getType())) 1557 return DAG.getMergeValues(Ops, getCurSDLoc()); 1558 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1559 } 1560 1561 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) { 1562 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) && 1563 "Unknown struct or array constant!"); 1564 1565 SmallVector<EVT, 4> ValueVTs; 1566 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs); 1567 unsigned NumElts = ValueVTs.size(); 1568 if (NumElts == 0) 1569 return SDValue(); // empty struct 1570 SmallVector<SDValue, 4> Constants(NumElts); 1571 for (unsigned i = 0; i != NumElts; ++i) { 1572 EVT EltVT = ValueVTs[i]; 1573 if (isa<UndefValue>(C)) 1574 Constants[i] = DAG.getUNDEF(EltVT); 1575 else if (EltVT.isFloatingPoint()) 1576 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1577 else 1578 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT); 1579 } 1580 1581 return DAG.getMergeValues(Constants, getCurSDLoc()); 1582 } 1583 1584 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) 1585 return DAG.getBlockAddress(BA, VT); 1586 1587 if (const auto *Equiv = dyn_cast<DSOLocalEquivalent>(C)) 1588 return getValue(Equiv->getGlobalValue()); 1589 1590 VectorType *VecTy = cast<VectorType>(V->getType()); 1591 1592 // Now that we know the number and type of the elements, get that number of 1593 // elements into the Ops array based on what kind of constant it is. 1594 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) { 1595 SmallVector<SDValue, 16> Ops; 1596 unsigned NumElements = cast<FixedVectorType>(VecTy)->getNumElements(); 1597 for (unsigned i = 0; i != NumElements; ++i) 1598 Ops.push_back(getValue(CV->getOperand(i))); 1599 1600 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1601 } else if (isa<ConstantAggregateZero>(C)) { 1602 EVT EltVT = 1603 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType()); 1604 1605 SDValue Op; 1606 if (EltVT.isFloatingPoint()) 1607 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT); 1608 else 1609 Op = DAG.getConstant(0, getCurSDLoc(), EltVT); 1610 1611 if (isa<ScalableVectorType>(VecTy)) 1612 return NodeMap[V] = DAG.getSplatVector(VT, getCurSDLoc(), Op); 1613 else { 1614 SmallVector<SDValue, 16> Ops; 1615 Ops.assign(cast<FixedVectorType>(VecTy)->getNumElements(), Op); 1616 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops); 1617 } 1618 } 1619 llvm_unreachable("Unknown vector constant"); 1620 } 1621 1622 // If this is a static alloca, generate it as the frameindex instead of 1623 // computation. 1624 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) { 1625 DenseMap<const AllocaInst*, int>::iterator SI = 1626 FuncInfo.StaticAllocaMap.find(AI); 1627 if (SI != FuncInfo.StaticAllocaMap.end()) 1628 return DAG.getFrameIndex(SI->second, 1629 TLI.getFrameIndexTy(DAG.getDataLayout())); 1630 } 1631 1632 // If this is an instruction which fast-isel has deferred, select it now. 1633 if (const Instruction *Inst = dyn_cast<Instruction>(V)) { 1634 unsigned InReg = FuncInfo.InitializeRegForValue(Inst); 1635 1636 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg, 1637 Inst->getType(), None); 1638 SDValue Chain = DAG.getEntryNode(); 1639 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V); 1640 } 1641 1642 if (const MetadataAsValue *MD = dyn_cast<MetadataAsValue>(V)) { 1643 return DAG.getMDNode(cast<MDNode>(MD->getMetadata())); 1644 } 1645 llvm_unreachable("Can't get register for value!"); 1646 } 1647 1648 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) { 1649 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1650 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX; 1651 bool IsCoreCLR = Pers == EHPersonality::CoreCLR; 1652 bool IsSEH = isAsynchronousEHPersonality(Pers); 1653 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB; 1654 if (!IsSEH) 1655 CatchPadMBB->setIsEHScopeEntry(); 1656 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues. 1657 if (IsMSVCCXX || IsCoreCLR) 1658 CatchPadMBB->setIsEHFuncletEntry(); 1659 } 1660 1661 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) { 1662 // Update machine-CFG edge. 1663 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()]; 1664 FuncInfo.MBB->addSuccessor(TargetMBB); 1665 TargetMBB->setIsEHCatchretTarget(true); 1666 DAG.getMachineFunction().setHasEHCatchret(true); 1667 1668 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1669 bool IsSEH = isAsynchronousEHPersonality(Pers); 1670 if (IsSEH) { 1671 // If this is not a fall-through branch or optimizations are switched off, 1672 // emit the branch. 1673 if (TargetMBB != NextBlock(FuncInfo.MBB) || 1674 TM.getOptLevel() == CodeGenOpt::None) 1675 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 1676 getControlRoot(), DAG.getBasicBlock(TargetMBB))); 1677 return; 1678 } 1679 1680 // Figure out the funclet membership for the catchret's successor. 1681 // This will be used by the FuncletLayout pass to determine how to order the 1682 // BB's. 1683 // A 'catchret' returns to the outer scope's color. 1684 Value *ParentPad = I.getCatchSwitchParentPad(); 1685 const BasicBlock *SuccessorColor; 1686 if (isa<ConstantTokenNone>(ParentPad)) 1687 SuccessorColor = &FuncInfo.Fn->getEntryBlock(); 1688 else 1689 SuccessorColor = cast<Instruction>(ParentPad)->getParent(); 1690 assert(SuccessorColor && "No parent funclet for catchret!"); 1691 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor]; 1692 assert(SuccessorColorMBB && "No MBB for SuccessorColor!"); 1693 1694 // Create the terminator node. 1695 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other, 1696 getControlRoot(), DAG.getBasicBlock(TargetMBB), 1697 DAG.getBasicBlock(SuccessorColorMBB)); 1698 DAG.setRoot(Ret); 1699 } 1700 1701 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) { 1702 // Don't emit any special code for the cleanuppad instruction. It just marks 1703 // the start of an EH scope/funclet. 1704 FuncInfo.MBB->setIsEHScopeEntry(); 1705 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1706 if (Pers != EHPersonality::Wasm_CXX) { 1707 FuncInfo.MBB->setIsEHFuncletEntry(); 1708 FuncInfo.MBB->setIsCleanupFuncletEntry(); 1709 } 1710 } 1711 1712 // In wasm EH, even though a catchpad may not catch an exception if a tag does 1713 // not match, it is OK to add only the first unwind destination catchpad to the 1714 // successors, because there will be at least one invoke instruction within the 1715 // catch scope that points to the next unwind destination, if one exists, so 1716 // CFGSort cannot mess up with BB sorting order. 1717 // (All catchpads with 'catch (type)' clauses have a 'llvm.rethrow' intrinsic 1718 // call within them, and catchpads only consisting of 'catch (...)' have a 1719 // '__cxa_end_catch' call within them, both of which generate invokes in case 1720 // the next unwind destination exists, i.e., the next unwind destination is not 1721 // the caller.) 1722 // 1723 // Having at most one EH pad successor is also simpler and helps later 1724 // transformations. 1725 // 1726 // For example, 1727 // current: 1728 // invoke void @foo to ... unwind label %catch.dispatch 1729 // catch.dispatch: 1730 // %0 = catchswitch within ... [label %catch.start] unwind label %next 1731 // catch.start: 1732 // ... 1733 // ... in this BB or some other child BB dominated by this BB there will be an 1734 // invoke that points to 'next' BB as an unwind destination 1735 // 1736 // next: ; We don't need to add this to 'current' BB's successor 1737 // ... 1738 static void findWasmUnwindDestinations( 1739 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1740 BranchProbability Prob, 1741 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1742 &UnwindDests) { 1743 while (EHPadBB) { 1744 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1745 if (isa<CleanupPadInst>(Pad)) { 1746 // Stop on cleanup pads. 1747 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1748 UnwindDests.back().first->setIsEHScopeEntry(); 1749 break; 1750 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1751 // Add the catchpad handlers to the possible destinations. We don't 1752 // continue to the unwind destination of the catchswitch for wasm. 1753 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1754 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1755 UnwindDests.back().first->setIsEHScopeEntry(); 1756 } 1757 break; 1758 } else { 1759 continue; 1760 } 1761 } 1762 } 1763 1764 /// When an invoke or a cleanupret unwinds to the next EH pad, there are 1765 /// many places it could ultimately go. In the IR, we have a single unwind 1766 /// destination, but in the machine CFG, we enumerate all the possible blocks. 1767 /// This function skips over imaginary basic blocks that hold catchswitch 1768 /// instructions, and finds all the "real" machine 1769 /// basic block destinations. As those destinations may not be successors of 1770 /// EHPadBB, here we also calculate the edge probability to those destinations. 1771 /// The passed-in Prob is the edge probability to EHPadBB. 1772 static void findUnwindDestinations( 1773 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB, 1774 BranchProbability Prob, 1775 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>> 1776 &UnwindDests) { 1777 EHPersonality Personality = 1778 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 1779 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX; 1780 bool IsCoreCLR = Personality == EHPersonality::CoreCLR; 1781 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX; 1782 bool IsSEH = isAsynchronousEHPersonality(Personality); 1783 1784 if (IsWasmCXX) { 1785 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests); 1786 assert(UnwindDests.size() <= 1 && 1787 "There should be at most one unwind destination for wasm"); 1788 return; 1789 } 1790 1791 while (EHPadBB) { 1792 const Instruction *Pad = EHPadBB->getFirstNonPHI(); 1793 BasicBlock *NewEHPadBB = nullptr; 1794 if (isa<LandingPadInst>(Pad)) { 1795 // Stop on landingpads. They are not funclets. 1796 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1797 break; 1798 } else if (isa<CleanupPadInst>(Pad)) { 1799 // Stop on cleanup pads. Cleanups are always funclet entries for all known 1800 // personalities. 1801 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob); 1802 UnwindDests.back().first->setIsEHScopeEntry(); 1803 UnwindDests.back().first->setIsEHFuncletEntry(); 1804 break; 1805 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) { 1806 // Add the catchpad handlers to the possible destinations. 1807 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) { 1808 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob); 1809 // For MSVC++ and the CLR, catchblocks are funclets and need prologues. 1810 if (IsMSVCCXX || IsCoreCLR) 1811 UnwindDests.back().first->setIsEHFuncletEntry(); 1812 if (!IsSEH) 1813 UnwindDests.back().first->setIsEHScopeEntry(); 1814 } 1815 NewEHPadBB = CatchSwitch->getUnwindDest(); 1816 } else { 1817 continue; 1818 } 1819 1820 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1821 if (BPI && NewEHPadBB) 1822 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB); 1823 EHPadBB = NewEHPadBB; 1824 } 1825 } 1826 1827 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) { 1828 // Update successor info. 1829 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 1830 auto UnwindDest = I.getUnwindDest(); 1831 BranchProbabilityInfo *BPI = FuncInfo.BPI; 1832 BranchProbability UnwindDestProb = 1833 (BPI && UnwindDest) 1834 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest) 1835 : BranchProbability::getZero(); 1836 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests); 1837 for (auto &UnwindDest : UnwindDests) { 1838 UnwindDest.first->setIsEHPad(); 1839 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second); 1840 } 1841 FuncInfo.MBB->normalizeSuccProbs(); 1842 1843 // Create the terminator node. 1844 SDValue Ret = 1845 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot()); 1846 DAG.setRoot(Ret); 1847 } 1848 1849 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) { 1850 report_fatal_error("visitCatchSwitch not yet implemented!"); 1851 } 1852 1853 void SelectionDAGBuilder::visitRet(const ReturnInst &I) { 1854 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 1855 auto &DL = DAG.getDataLayout(); 1856 SDValue Chain = getControlRoot(); 1857 SmallVector<ISD::OutputArg, 8> Outs; 1858 SmallVector<SDValue, 8> OutVals; 1859 1860 // Calls to @llvm.experimental.deoptimize don't generate a return value, so 1861 // lower 1862 // 1863 // %val = call <ty> @llvm.experimental.deoptimize() 1864 // ret <ty> %val 1865 // 1866 // differently. 1867 if (I.getParent()->getTerminatingDeoptimizeCall()) { 1868 LowerDeoptimizingReturn(); 1869 return; 1870 } 1871 1872 if (!FuncInfo.CanLowerReturn) { 1873 unsigned DemoteReg = FuncInfo.DemoteRegister; 1874 const Function *F = I.getParent()->getParent(); 1875 1876 // Emit a store of the return value through the virtual register. 1877 // Leave Outs empty so that LowerReturn won't try to load return 1878 // registers the usual way. 1879 SmallVector<EVT, 1> PtrValueVTs; 1880 ComputeValueVTs(TLI, DL, 1881 F->getReturnType()->getPointerTo( 1882 DAG.getDataLayout().getAllocaAddrSpace()), 1883 PtrValueVTs); 1884 1885 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), 1886 DemoteReg, PtrValueVTs[0]); 1887 SDValue RetOp = getValue(I.getOperand(0)); 1888 1889 SmallVector<EVT, 4> ValueVTs, MemVTs; 1890 SmallVector<uint64_t, 4> Offsets; 1891 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs, 1892 &Offsets); 1893 unsigned NumValues = ValueVTs.size(); 1894 1895 SmallVector<SDValue, 4> Chains(NumValues); 1896 Align BaseAlign = DL.getPrefTypeAlign(I.getOperand(0)->getType()); 1897 for (unsigned i = 0; i != NumValues; ++i) { 1898 // An aggregate return value cannot wrap around the address space, so 1899 // offsets to its parts don't wrap either. 1900 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, 1901 TypeSize::Fixed(Offsets[i])); 1902 1903 SDValue Val = RetOp.getValue(RetOp.getResNo() + i); 1904 if (MemVTs[i] != ValueVTs[i]) 1905 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]); 1906 Chains[i] = DAG.getStore( 1907 Chain, getCurSDLoc(), Val, 1908 // FIXME: better loc info would be nice. 1909 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()), 1910 commonAlignment(BaseAlign, Offsets[i])); 1911 } 1912 1913 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), 1914 MVT::Other, Chains); 1915 } else if (I.getNumOperands() != 0) { 1916 SmallVector<EVT, 4> ValueVTs; 1917 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs); 1918 unsigned NumValues = ValueVTs.size(); 1919 if (NumValues) { 1920 SDValue RetOp = getValue(I.getOperand(0)); 1921 1922 const Function *F = I.getParent()->getParent(); 1923 1924 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters( 1925 I.getOperand(0)->getType(), F->getCallingConv(), 1926 /*IsVarArg*/ false); 1927 1928 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 1929 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1930 Attribute::SExt)) 1931 ExtendKind = ISD::SIGN_EXTEND; 1932 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex, 1933 Attribute::ZExt)) 1934 ExtendKind = ISD::ZERO_EXTEND; 1935 1936 LLVMContext &Context = F->getContext(); 1937 bool RetInReg = F->getAttributes().hasAttribute( 1938 AttributeList::ReturnIndex, Attribute::InReg); 1939 1940 for (unsigned j = 0; j != NumValues; ++j) { 1941 EVT VT = ValueVTs[j]; 1942 1943 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) 1944 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind); 1945 1946 CallingConv::ID CC = F->getCallingConv(); 1947 1948 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT); 1949 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT); 1950 SmallVector<SDValue, 4> Parts(NumParts); 1951 getCopyToParts(DAG, getCurSDLoc(), 1952 SDValue(RetOp.getNode(), RetOp.getResNo() + j), 1953 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind); 1954 1955 // 'inreg' on function refers to return value 1956 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1957 if (RetInReg) 1958 Flags.setInReg(); 1959 1960 if (I.getOperand(0)->getType()->isPointerTy()) { 1961 Flags.setPointer(); 1962 Flags.setPointerAddrSpace( 1963 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace()); 1964 } 1965 1966 if (NeedsRegBlock) { 1967 Flags.setInConsecutiveRegs(); 1968 if (j == NumValues - 1) 1969 Flags.setInConsecutiveRegsLast(); 1970 } 1971 1972 // Propagate extension type if any 1973 if (ExtendKind == ISD::SIGN_EXTEND) 1974 Flags.setSExt(); 1975 else if (ExtendKind == ISD::ZERO_EXTEND) 1976 Flags.setZExt(); 1977 1978 for (unsigned i = 0; i < NumParts; ++i) { 1979 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(), 1980 VT, /*isfixed=*/true, 0, 0)); 1981 OutVals.push_back(Parts[i]); 1982 } 1983 } 1984 } 1985 } 1986 1987 // Push in swifterror virtual register as the last element of Outs. This makes 1988 // sure swifterror virtual register will be returned in the swifterror 1989 // physical register. 1990 const Function *F = I.getParent()->getParent(); 1991 if (TLI.supportSwiftError() && 1992 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) { 1993 assert(SwiftError.getFunctionArg() && "Need a swift error argument"); 1994 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy(); 1995 Flags.setSwiftError(); 1996 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/, 1997 EVT(TLI.getPointerTy(DL)) /*argvt*/, 1998 true /*isfixed*/, 1 /*origidx*/, 1999 0 /*partOffs*/)); 2000 // Create SDNode for the swifterror virtual register. 2001 OutVals.push_back( 2002 DAG.getRegister(SwiftError.getOrCreateVRegUseAt( 2003 &I, FuncInfo.MBB, SwiftError.getFunctionArg()), 2004 EVT(TLI.getPointerTy(DL)))); 2005 } 2006 2007 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg(); 2008 CallingConv::ID CallConv = 2009 DAG.getMachineFunction().getFunction().getCallingConv(); 2010 Chain = DAG.getTargetLoweringInfo().LowerReturn( 2011 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG); 2012 2013 // Verify that the target's LowerReturn behaved as expected. 2014 assert(Chain.getNode() && Chain.getValueType() == MVT::Other && 2015 "LowerReturn didn't return a valid chain!"); 2016 2017 // Update the DAG with the new chain value resulting from return lowering. 2018 DAG.setRoot(Chain); 2019 } 2020 2021 /// CopyToExportRegsIfNeeded - If the given value has virtual registers 2022 /// created for it, emit nodes to copy the value into the virtual 2023 /// registers. 2024 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) { 2025 // Skip empty types 2026 if (V->getType()->isEmptyTy()) 2027 return; 2028 2029 DenseMap<const Value *, Register>::iterator VMI = FuncInfo.ValueMap.find(V); 2030 if (VMI != FuncInfo.ValueMap.end()) { 2031 assert(!V->use_empty() && "Unused value assigned virtual registers!"); 2032 CopyValueToVirtualRegister(V, VMI->second); 2033 } 2034 } 2035 2036 /// ExportFromCurrentBlock - If this condition isn't known to be exported from 2037 /// the current basic block, add it to ValueMap now so that we'll get a 2038 /// CopyTo/FromReg. 2039 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) { 2040 // No need to export constants. 2041 if (!isa<Instruction>(V) && !isa<Argument>(V)) return; 2042 2043 // Already exported? 2044 if (FuncInfo.isExportedInst(V)) return; 2045 2046 unsigned Reg = FuncInfo.InitializeRegForValue(V); 2047 CopyValueToVirtualRegister(V, Reg); 2048 } 2049 2050 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V, 2051 const BasicBlock *FromBB) { 2052 // The operands of the setcc have to be in this block. We don't know 2053 // how to export them from some other block. 2054 if (const Instruction *VI = dyn_cast<Instruction>(V)) { 2055 // Can export from current BB. 2056 if (VI->getParent() == FromBB) 2057 return true; 2058 2059 // Is already exported, noop. 2060 return FuncInfo.isExportedInst(V); 2061 } 2062 2063 // If this is an argument, we can export it if the BB is the entry block or 2064 // if it is already exported. 2065 if (isa<Argument>(V)) { 2066 if (FromBB == &FromBB->getParent()->getEntryBlock()) 2067 return true; 2068 2069 // Otherwise, can only export this if it is already exported. 2070 return FuncInfo.isExportedInst(V); 2071 } 2072 2073 // Otherwise, constants can always be exported. 2074 return true; 2075 } 2076 2077 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks. 2078 BranchProbability 2079 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src, 2080 const MachineBasicBlock *Dst) const { 2081 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2082 const BasicBlock *SrcBB = Src->getBasicBlock(); 2083 const BasicBlock *DstBB = Dst->getBasicBlock(); 2084 if (!BPI) { 2085 // If BPI is not available, set the default probability as 1 / N, where N is 2086 // the number of successors. 2087 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1); 2088 return BranchProbability(1, SuccSize); 2089 } 2090 return BPI->getEdgeProbability(SrcBB, DstBB); 2091 } 2092 2093 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src, 2094 MachineBasicBlock *Dst, 2095 BranchProbability Prob) { 2096 if (!FuncInfo.BPI) 2097 Src->addSuccessorWithoutProb(Dst); 2098 else { 2099 if (Prob.isUnknown()) 2100 Prob = getEdgeProbability(Src, Dst); 2101 Src->addSuccessor(Dst, Prob); 2102 } 2103 } 2104 2105 static bool InBlock(const Value *V, const BasicBlock *BB) { 2106 if (const Instruction *I = dyn_cast<Instruction>(V)) 2107 return I->getParent() == BB; 2108 return true; 2109 } 2110 2111 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions. 2112 /// This function emits a branch and is used at the leaves of an OR or an 2113 /// AND operator tree. 2114 void 2115 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond, 2116 MachineBasicBlock *TBB, 2117 MachineBasicBlock *FBB, 2118 MachineBasicBlock *CurBB, 2119 MachineBasicBlock *SwitchBB, 2120 BranchProbability TProb, 2121 BranchProbability FProb, 2122 bool InvertCond) { 2123 const BasicBlock *BB = CurBB->getBasicBlock(); 2124 2125 // If the leaf of the tree is a comparison, merge the condition into 2126 // the caseblock. 2127 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) { 2128 // The operands of the cmp have to be in this block. We don't know 2129 // how to export them from some other block. If this is the first block 2130 // of the sequence, no exporting is needed. 2131 if (CurBB == SwitchBB || 2132 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) && 2133 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) { 2134 ISD::CondCode Condition; 2135 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) { 2136 ICmpInst::Predicate Pred = 2137 InvertCond ? IC->getInversePredicate() : IC->getPredicate(); 2138 Condition = getICmpCondCode(Pred); 2139 } else { 2140 const FCmpInst *FC = cast<FCmpInst>(Cond); 2141 FCmpInst::Predicate Pred = 2142 InvertCond ? FC->getInversePredicate() : FC->getPredicate(); 2143 Condition = getFCmpCondCode(Pred); 2144 if (TM.Options.NoNaNsFPMath) 2145 Condition = getFCmpCodeWithoutNaN(Condition); 2146 } 2147 2148 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr, 2149 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2150 SL->SwitchCases.push_back(CB); 2151 return; 2152 } 2153 } 2154 2155 // Create a CaseBlock record representing this branch. 2156 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ; 2157 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()), 2158 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb); 2159 SL->SwitchCases.push_back(CB); 2160 } 2161 2162 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond, 2163 MachineBasicBlock *TBB, 2164 MachineBasicBlock *FBB, 2165 MachineBasicBlock *CurBB, 2166 MachineBasicBlock *SwitchBB, 2167 Instruction::BinaryOps Opc, 2168 BranchProbability TProb, 2169 BranchProbability FProb, 2170 bool InvertCond) { 2171 // Skip over not part of the tree and remember to invert op and operands at 2172 // next level. 2173 Value *NotCond; 2174 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) && 2175 InBlock(NotCond, CurBB->getBasicBlock())) { 2176 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb, 2177 !InvertCond); 2178 return; 2179 } 2180 2181 const Instruction *BOp = dyn_cast<Instruction>(Cond); 2182 const Value *BOpOp0, *BOpOp1; 2183 // Compute the effective opcode for Cond, taking into account whether it needs 2184 // to be inverted, e.g. 2185 // and (not (or A, B)), C 2186 // gets lowered as 2187 // and (and (not A, not B), C) 2188 Instruction::BinaryOps BOpc = (Instruction::BinaryOps)0; 2189 if (BOp) { 2190 BOpc = match(BOp, m_LogicalAnd(m_Value(BOpOp0), m_Value(BOpOp1))) 2191 ? Instruction::And 2192 : (match(BOp, m_LogicalOr(m_Value(BOpOp0), m_Value(BOpOp1))) 2193 ? Instruction::Or 2194 : (Instruction::BinaryOps)0); 2195 if (InvertCond) { 2196 if (BOpc == Instruction::And) 2197 BOpc = Instruction::Or; 2198 else if (BOpc == Instruction::Or) 2199 BOpc = Instruction::And; 2200 } 2201 } 2202 2203 // If this node is not part of the or/and tree, emit it as a branch. 2204 // Note that all nodes in the tree should have same opcode. 2205 bool BOpIsInOrAndTree = BOpc && BOpc == Opc && BOp->hasOneUse(); 2206 if (!BOpIsInOrAndTree || BOp->getParent() != CurBB->getBasicBlock() || 2207 !InBlock(BOpOp0, CurBB->getBasicBlock()) || 2208 !InBlock(BOpOp1, CurBB->getBasicBlock())) { 2209 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB, 2210 TProb, FProb, InvertCond); 2211 return; 2212 } 2213 2214 // Create TmpBB after CurBB. 2215 MachineFunction::iterator BBI(CurBB); 2216 MachineFunction &MF = DAG.getMachineFunction(); 2217 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock()); 2218 CurBB->getParent()->insert(++BBI, TmpBB); 2219 2220 if (Opc == Instruction::Or) { 2221 // Codegen X | Y as: 2222 // BB1: 2223 // jmp_if_X TBB 2224 // jmp TmpBB 2225 // TmpBB: 2226 // jmp_if_Y TBB 2227 // jmp FBB 2228 // 2229 2230 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2231 // The requirement is that 2232 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB) 2233 // = TrueProb for original BB. 2234 // Assuming the original probabilities are A and B, one choice is to set 2235 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to 2236 // A/(1+B) and 2B/(1+B). This choice assumes that 2237 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB. 2238 // Another choice is to assume TrueProb for BB1 equals to TrueProb for 2239 // TmpBB, but the math is more complicated. 2240 2241 auto NewTrueProb = TProb / 2; 2242 auto NewFalseProb = TProb / 2 + FProb; 2243 // Emit the LHS condition. 2244 FindMergedConditions(BOpOp0, TBB, TmpBB, CurBB, SwitchBB, Opc, NewTrueProb, 2245 NewFalseProb, InvertCond); 2246 2247 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B). 2248 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb}; 2249 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2250 // Emit the RHS condition into TmpBB. 2251 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2252 Probs[1], InvertCond); 2253 } else { 2254 assert(Opc == Instruction::And && "Unknown merge op!"); 2255 // Codegen X & Y as: 2256 // BB1: 2257 // jmp_if_X TmpBB 2258 // jmp FBB 2259 // TmpBB: 2260 // jmp_if_Y TBB 2261 // jmp FBB 2262 // 2263 // This requires creation of TmpBB after CurBB. 2264 2265 // We have flexibility in setting Prob for BB1 and Prob for TmpBB. 2266 // The requirement is that 2267 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB) 2268 // = FalseProb for original BB. 2269 // Assuming the original probabilities are A and B, one choice is to set 2270 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to 2271 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 == 2272 // TrueProb for BB1 * FalseProb for TmpBB. 2273 2274 auto NewTrueProb = TProb + FProb / 2; 2275 auto NewFalseProb = FProb / 2; 2276 // Emit the LHS condition. 2277 FindMergedConditions(BOpOp0, TmpBB, FBB, CurBB, SwitchBB, Opc, NewTrueProb, 2278 NewFalseProb, InvertCond); 2279 2280 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A). 2281 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2}; 2282 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end()); 2283 // Emit the RHS condition into TmpBB. 2284 FindMergedConditions(BOpOp1, TBB, FBB, TmpBB, SwitchBB, Opc, Probs[0], 2285 Probs[1], InvertCond); 2286 } 2287 } 2288 2289 /// If the set of cases should be emitted as a series of branches, return true. 2290 /// If we should emit this as a bunch of and/or'd together conditions, return 2291 /// false. 2292 bool 2293 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) { 2294 if (Cases.size() != 2) return true; 2295 2296 // If this is two comparisons of the same values or'd or and'd together, they 2297 // will get folded into a single comparison, so don't emit two blocks. 2298 if ((Cases[0].CmpLHS == Cases[1].CmpLHS && 2299 Cases[0].CmpRHS == Cases[1].CmpRHS) || 2300 (Cases[0].CmpRHS == Cases[1].CmpLHS && 2301 Cases[0].CmpLHS == Cases[1].CmpRHS)) { 2302 return false; 2303 } 2304 2305 // Handle: (X != null) | (Y != null) --> (X|Y) != 0 2306 // Handle: (X == null) & (Y == null) --> (X|Y) == 0 2307 if (Cases[0].CmpRHS == Cases[1].CmpRHS && 2308 Cases[0].CC == Cases[1].CC && 2309 isa<Constant>(Cases[0].CmpRHS) && 2310 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) { 2311 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB) 2312 return false; 2313 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB) 2314 return false; 2315 } 2316 2317 return true; 2318 } 2319 2320 void SelectionDAGBuilder::visitBr(const BranchInst &I) { 2321 MachineBasicBlock *BrMBB = FuncInfo.MBB; 2322 2323 // Update machine-CFG edges. 2324 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)]; 2325 2326 if (I.isUnconditional()) { 2327 // Update machine-CFG edges. 2328 BrMBB->addSuccessor(Succ0MBB); 2329 2330 // If this is not a fall-through branch or optimizations are switched off, 2331 // emit the branch. 2332 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None) 2333 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2334 MVT::Other, getControlRoot(), 2335 DAG.getBasicBlock(Succ0MBB))); 2336 2337 return; 2338 } 2339 2340 // If this condition is one of the special cases we handle, do special stuff 2341 // now. 2342 const Value *CondVal = I.getCondition(); 2343 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)]; 2344 2345 // If this is a series of conditions that are or'd or and'd together, emit 2346 // this as a sequence of branches instead of setcc's with and/or operations. 2347 // As long as jumps are not expensive (exceptions for multi-use logic ops, 2348 // unpredictable branches, and vector extracts because those jumps are likely 2349 // expensive for any target), this should improve performance. 2350 // For example, instead of something like: 2351 // cmp A, B 2352 // C = seteq 2353 // cmp D, E 2354 // F = setle 2355 // or C, F 2356 // jnz foo 2357 // Emit: 2358 // cmp A, B 2359 // je foo 2360 // cmp D, E 2361 // jle foo 2362 const Instruction *BOp = dyn_cast<Instruction>(CondVal); 2363 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp && 2364 BOp->hasOneUse() && !I.hasMetadata(LLVMContext::MD_unpredictable)) { 2365 Value *Vec; 2366 const Value *BOp0, *BOp1; 2367 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)0; 2368 if (match(BOp, m_LogicalAnd(m_Value(BOp0), m_Value(BOp1)))) 2369 Opcode = Instruction::And; 2370 else if (match(BOp, m_LogicalOr(m_Value(BOp0), m_Value(BOp1)))) 2371 Opcode = Instruction::Or; 2372 2373 if (Opcode && !(match(BOp0, m_ExtractElt(m_Value(Vec), m_Value())) && 2374 match(BOp1, m_ExtractElt(m_Specific(Vec), m_Value())))) { 2375 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB, Opcode, 2376 getEdgeProbability(BrMBB, Succ0MBB), 2377 getEdgeProbability(BrMBB, Succ1MBB), 2378 /*InvertCond=*/false); 2379 // If the compares in later blocks need to use values not currently 2380 // exported from this block, export them now. This block should always 2381 // be the first entry. 2382 assert(SL->SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!"); 2383 2384 // Allow some cases to be rejected. 2385 if (ShouldEmitAsBranches(SL->SwitchCases)) { 2386 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) { 2387 ExportFromCurrentBlock(SL->SwitchCases[i].CmpLHS); 2388 ExportFromCurrentBlock(SL->SwitchCases[i].CmpRHS); 2389 } 2390 2391 // Emit the branch for this block. 2392 visitSwitchCase(SL->SwitchCases[0], BrMBB); 2393 SL->SwitchCases.erase(SL->SwitchCases.begin()); 2394 return; 2395 } 2396 2397 // Okay, we decided not to do this, remove any inserted MBB's and clear 2398 // SwitchCases. 2399 for (unsigned i = 1, e = SL->SwitchCases.size(); i != e; ++i) 2400 FuncInfo.MF->erase(SL->SwitchCases[i].ThisBB); 2401 2402 SL->SwitchCases.clear(); 2403 } 2404 } 2405 2406 // Create a CaseBlock record representing this branch. 2407 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()), 2408 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc()); 2409 2410 // Use visitSwitchCase to actually insert the fast branch sequence for this 2411 // cond branch. 2412 visitSwitchCase(CB, BrMBB); 2413 } 2414 2415 /// visitSwitchCase - Emits the necessary code to represent a single node in 2416 /// the binary search tree resulting from lowering a switch instruction. 2417 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB, 2418 MachineBasicBlock *SwitchBB) { 2419 SDValue Cond; 2420 SDValue CondLHS = getValue(CB.CmpLHS); 2421 SDLoc dl = CB.DL; 2422 2423 if (CB.CC == ISD::SETTRUE) { 2424 // Branch or fall through to TrueBB. 2425 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2426 SwitchBB->normalizeSuccProbs(); 2427 if (CB.TrueBB != NextBlock(SwitchBB)) { 2428 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(), 2429 DAG.getBasicBlock(CB.TrueBB))); 2430 } 2431 return; 2432 } 2433 2434 auto &TLI = DAG.getTargetLoweringInfo(); 2435 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType()); 2436 2437 // Build the setcc now. 2438 if (!CB.CmpMHS) { 2439 // Fold "(X == true)" to X and "(X == false)" to !X to 2440 // handle common cases produced by branch lowering. 2441 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) && 2442 CB.CC == ISD::SETEQ) 2443 Cond = CondLHS; 2444 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) && 2445 CB.CC == ISD::SETEQ) { 2446 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType()); 2447 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True); 2448 } else { 2449 SDValue CondRHS = getValue(CB.CmpRHS); 2450 2451 // If a pointer's DAG type is larger than its memory type then the DAG 2452 // values are zero-extended. This breaks signed comparisons so truncate 2453 // back to the underlying type before doing the compare. 2454 if (CondLHS.getValueType() != MemVT) { 2455 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT); 2456 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT); 2457 } 2458 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC); 2459 } 2460 } else { 2461 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now"); 2462 2463 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue(); 2464 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue(); 2465 2466 SDValue CmpOp = getValue(CB.CmpMHS); 2467 EVT VT = CmpOp.getValueType(); 2468 2469 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) { 2470 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT), 2471 ISD::SETLE); 2472 } else { 2473 SDValue SUB = DAG.getNode(ISD::SUB, dl, 2474 VT, CmpOp, DAG.getConstant(Low, dl, VT)); 2475 Cond = DAG.getSetCC(dl, MVT::i1, SUB, 2476 DAG.getConstant(High-Low, dl, VT), ISD::SETULE); 2477 } 2478 } 2479 2480 // Update successor info 2481 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb); 2482 // TrueBB and FalseBB are always different unless the incoming IR is 2483 // degenerate. This only happens when running llc on weird IR. 2484 if (CB.TrueBB != CB.FalseBB) 2485 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb); 2486 SwitchBB->normalizeSuccProbs(); 2487 2488 // If the lhs block is the next block, invert the condition so that we can 2489 // fall through to the lhs instead of the rhs block. 2490 if (CB.TrueBB == NextBlock(SwitchBB)) { 2491 std::swap(CB.TrueBB, CB.FalseBB); 2492 SDValue True = DAG.getConstant(1, dl, Cond.getValueType()); 2493 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True); 2494 } 2495 2496 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2497 MVT::Other, getControlRoot(), Cond, 2498 DAG.getBasicBlock(CB.TrueBB)); 2499 2500 // Insert the false branch. Do this even if it's a fall through branch, 2501 // this makes it easier to do DAG optimizations which require inverting 2502 // the branch condition. 2503 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2504 DAG.getBasicBlock(CB.FalseBB)); 2505 2506 DAG.setRoot(BrCond); 2507 } 2508 2509 /// visitJumpTable - Emit JumpTable node in the current MBB 2510 void SelectionDAGBuilder::visitJumpTable(SwitchCG::JumpTable &JT) { 2511 // Emit the code for the jump table 2512 assert(JT.Reg != -1U && "Should lower JT Header first!"); 2513 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()); 2514 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(), 2515 JT.Reg, PTy); 2516 SDValue Table = DAG.getJumpTable(JT.JTI, PTy); 2517 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(), 2518 MVT::Other, Index.getValue(1), 2519 Table, Index); 2520 DAG.setRoot(BrJumpTable); 2521 } 2522 2523 /// visitJumpTableHeader - This function emits necessary code to produce index 2524 /// in the JumpTable from switch case. 2525 void SelectionDAGBuilder::visitJumpTableHeader(SwitchCG::JumpTable &JT, 2526 JumpTableHeader &JTH, 2527 MachineBasicBlock *SwitchBB) { 2528 SDLoc dl = getCurSDLoc(); 2529 2530 // Subtract the lowest switch case value from the value being switched on. 2531 SDValue SwitchOp = getValue(JTH.SValue); 2532 EVT VT = SwitchOp.getValueType(); 2533 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp, 2534 DAG.getConstant(JTH.First, dl, VT)); 2535 2536 // The SDNode we just created, which holds the value being switched on minus 2537 // the smallest case value, needs to be copied to a virtual register so it 2538 // can be used as an index into the jump table in a subsequent basic block. 2539 // This value may be smaller or larger than the target's pointer type, and 2540 // therefore require extension or truncating. 2541 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2542 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout())); 2543 2544 unsigned JumpTableReg = 2545 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout())); 2546 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, 2547 JumpTableReg, SwitchOp); 2548 JT.Reg = JumpTableReg; 2549 2550 if (!JTH.OmitRangeCheck) { 2551 // Emit the range check for the jump table, and branch to the default block 2552 // for the switch statement if the value being switched on exceeds the 2553 // largest case in the switch. 2554 SDValue CMP = DAG.getSetCC( 2555 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2556 Sub.getValueType()), 2557 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT); 2558 2559 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2560 MVT::Other, CopyTo, CMP, 2561 DAG.getBasicBlock(JT.Default)); 2562 2563 // Avoid emitting unnecessary branches to the next block. 2564 if (JT.MBB != NextBlock(SwitchBB)) 2565 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond, 2566 DAG.getBasicBlock(JT.MBB)); 2567 2568 DAG.setRoot(BrCond); 2569 } else { 2570 // Avoid emitting unnecessary branches to the next block. 2571 if (JT.MBB != NextBlock(SwitchBB)) 2572 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo, 2573 DAG.getBasicBlock(JT.MBB))); 2574 else 2575 DAG.setRoot(CopyTo); 2576 } 2577 } 2578 2579 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global 2580 /// variable if there exists one. 2581 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL, 2582 SDValue &Chain) { 2583 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2584 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2585 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2586 MachineFunction &MF = DAG.getMachineFunction(); 2587 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent()); 2588 MachineSDNode *Node = 2589 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain); 2590 if (Global) { 2591 MachinePointerInfo MPInfo(Global); 2592 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant | 2593 MachineMemOperand::MODereferenceable; 2594 MachineMemOperand *MemRef = MF.getMachineMemOperand( 2595 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlign(PtrTy)); 2596 DAG.setNodeMemRefs(Node, {MemRef}); 2597 } 2598 if (PtrTy != PtrMemTy) 2599 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy); 2600 return SDValue(Node, 0); 2601 } 2602 2603 /// Codegen a new tail for a stack protector check ParentMBB which has had its 2604 /// tail spliced into a stack protector check success bb. 2605 /// 2606 /// For a high level explanation of how this fits into the stack protector 2607 /// generation see the comment on the declaration of class 2608 /// StackProtectorDescriptor. 2609 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD, 2610 MachineBasicBlock *ParentBB) { 2611 2612 // First create the loads to the guard/stack slot for the comparison. 2613 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2614 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout()); 2615 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout()); 2616 2617 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo(); 2618 int FI = MFI.getStackProtectorIndex(); 2619 2620 SDValue Guard; 2621 SDLoc dl = getCurSDLoc(); 2622 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy); 2623 const Module &M = *ParentBB->getParent()->getFunction().getParent(); 2624 Align Align = DL->getPrefTypeAlign(Type::getInt8PtrTy(M.getContext())); 2625 2626 // Generate code to load the content of the guard slot. 2627 SDValue GuardVal = DAG.getLoad( 2628 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr, 2629 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align, 2630 MachineMemOperand::MOVolatile); 2631 2632 if (TLI.useStackGuardXorFP()) 2633 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl); 2634 2635 // Retrieve guard check function, nullptr if instrumentation is inlined. 2636 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) { 2637 // The target provides a guard check function to validate the guard value. 2638 // Generate a call to that function with the content of the guard slot as 2639 // argument. 2640 FunctionType *FnTy = GuardCheckFn->getFunctionType(); 2641 assert(FnTy->getNumParams() == 1 && "Invalid function signature"); 2642 2643 TargetLowering::ArgListTy Args; 2644 TargetLowering::ArgListEntry Entry; 2645 Entry.Node = GuardVal; 2646 Entry.Ty = FnTy->getParamType(0); 2647 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg)) 2648 Entry.IsInReg = true; 2649 Args.push_back(Entry); 2650 2651 TargetLowering::CallLoweringInfo CLI(DAG); 2652 CLI.setDebugLoc(getCurSDLoc()) 2653 .setChain(DAG.getEntryNode()) 2654 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(), 2655 getValue(GuardCheckFn), std::move(Args)); 2656 2657 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 2658 DAG.setRoot(Result.second); 2659 return; 2660 } 2661 2662 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD. 2663 // Otherwise, emit a volatile load to retrieve the stack guard value. 2664 SDValue Chain = DAG.getEntryNode(); 2665 if (TLI.useLoadStackGuardNode()) { 2666 Guard = getLoadStackGuard(DAG, dl, Chain); 2667 } else { 2668 const Value *IRGuard = TLI.getSDagStackGuard(M); 2669 SDValue GuardPtr = getValue(IRGuard); 2670 2671 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr, 2672 MachinePointerInfo(IRGuard, 0), Align, 2673 MachineMemOperand::MOVolatile); 2674 } 2675 2676 // Perform the comparison via a getsetcc. 2677 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(), 2678 *DAG.getContext(), 2679 Guard.getValueType()), 2680 Guard, GuardVal, ISD::SETNE); 2681 2682 // If the guard/stackslot do not equal, branch to failure MBB. 2683 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl, 2684 MVT::Other, GuardVal.getOperand(0), 2685 Cmp, DAG.getBasicBlock(SPD.getFailureMBB())); 2686 // Otherwise branch to success MBB. 2687 SDValue Br = DAG.getNode(ISD::BR, dl, 2688 MVT::Other, BrCond, 2689 DAG.getBasicBlock(SPD.getSuccessMBB())); 2690 2691 DAG.setRoot(Br); 2692 } 2693 2694 /// Codegen the failure basic block for a stack protector check. 2695 /// 2696 /// A failure stack protector machine basic block consists simply of a call to 2697 /// __stack_chk_fail(). 2698 /// 2699 /// For a high level explanation of how this fits into the stack protector 2700 /// generation see the comment on the declaration of class 2701 /// StackProtectorDescriptor. 2702 void 2703 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) { 2704 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2705 TargetLowering::MakeLibCallOptions CallOptions; 2706 CallOptions.setDiscardResult(true); 2707 SDValue Chain = 2708 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid, 2709 None, CallOptions, getCurSDLoc()).second; 2710 // On PS4, the "return address" must still be within the calling function, 2711 // even if it's at the very end, so emit an explicit TRAP here. 2712 // Passing 'true' for doesNotReturn above won't generate the trap for us. 2713 if (TM.getTargetTriple().isPS4CPU()) 2714 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2715 // WebAssembly needs an unreachable instruction after a non-returning call, 2716 // because the function return type can be different from __stack_chk_fail's 2717 // return type (void). 2718 if (TM.getTargetTriple().isWasm()) 2719 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain); 2720 2721 DAG.setRoot(Chain); 2722 } 2723 2724 /// visitBitTestHeader - This function emits necessary code to produce value 2725 /// suitable for "bit tests" 2726 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B, 2727 MachineBasicBlock *SwitchBB) { 2728 SDLoc dl = getCurSDLoc(); 2729 2730 // Subtract the minimum value. 2731 SDValue SwitchOp = getValue(B.SValue); 2732 EVT VT = SwitchOp.getValueType(); 2733 SDValue RangeSub = 2734 DAG.getNode(ISD::SUB, dl, VT, SwitchOp, DAG.getConstant(B.First, dl, VT)); 2735 2736 // Determine the type of the test operands. 2737 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2738 bool UsePtrType = false; 2739 if (!TLI.isTypeLegal(VT)) { 2740 UsePtrType = true; 2741 } else { 2742 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i) 2743 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) { 2744 // Switch table case range are encoded into series of masks. 2745 // Just use pointer type, it's guaranteed to fit. 2746 UsePtrType = true; 2747 break; 2748 } 2749 } 2750 SDValue Sub = RangeSub; 2751 if (UsePtrType) { 2752 VT = TLI.getPointerTy(DAG.getDataLayout()); 2753 Sub = DAG.getZExtOrTrunc(Sub, dl, VT); 2754 } 2755 2756 B.RegVT = VT.getSimpleVT(); 2757 B.Reg = FuncInfo.CreateReg(B.RegVT); 2758 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub); 2759 2760 MachineBasicBlock* MBB = B.Cases[0].ThisBB; 2761 2762 if (!B.OmitRangeCheck) 2763 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb); 2764 addSuccessorWithProb(SwitchBB, MBB, B.Prob); 2765 SwitchBB->normalizeSuccProbs(); 2766 2767 SDValue Root = CopyTo; 2768 if (!B.OmitRangeCheck) { 2769 // Conditional branch to the default block. 2770 SDValue RangeCmp = DAG.getSetCC(dl, 2771 TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), 2772 RangeSub.getValueType()), 2773 RangeSub, DAG.getConstant(B.Range, dl, RangeSub.getValueType()), 2774 ISD::SETUGT); 2775 2776 Root = DAG.getNode(ISD::BRCOND, dl, MVT::Other, Root, RangeCmp, 2777 DAG.getBasicBlock(B.Default)); 2778 } 2779 2780 // Avoid emitting unnecessary branches to the next block. 2781 if (MBB != NextBlock(SwitchBB)) 2782 Root = DAG.getNode(ISD::BR, dl, MVT::Other, Root, DAG.getBasicBlock(MBB)); 2783 2784 DAG.setRoot(Root); 2785 } 2786 2787 /// visitBitTestCase - this function produces one "bit test" 2788 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB, 2789 MachineBasicBlock* NextMBB, 2790 BranchProbability BranchProbToNext, 2791 unsigned Reg, 2792 BitTestCase &B, 2793 MachineBasicBlock *SwitchBB) { 2794 SDLoc dl = getCurSDLoc(); 2795 MVT VT = BB.RegVT; 2796 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT); 2797 SDValue Cmp; 2798 unsigned PopCount = countPopulation(B.Mask); 2799 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2800 if (PopCount == 1) { 2801 // Testing for a single bit; just compare the shift count with what it 2802 // would need to be to shift a 1 bit in that position. 2803 Cmp = DAG.getSetCC( 2804 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2805 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT), 2806 ISD::SETEQ); 2807 } else if (PopCount == BB.Range) { 2808 // There is only one zero bit in the range, test for it directly. 2809 Cmp = DAG.getSetCC( 2810 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2811 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT), 2812 ISD::SETNE); 2813 } else { 2814 // Make desired shift 2815 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT, 2816 DAG.getConstant(1, dl, VT), ShiftOp); 2817 2818 // Emit bit tests and jumps 2819 SDValue AndOp = DAG.getNode(ISD::AND, dl, 2820 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT)); 2821 Cmp = DAG.getSetCC( 2822 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT), 2823 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE); 2824 } 2825 2826 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb. 2827 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb); 2828 // The branch probability from SwitchBB to NextMBB is BranchProbToNext. 2829 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext); 2830 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is 2831 // one as they are relative probabilities (and thus work more like weights), 2832 // and hence we need to normalize them to let the sum of them become one. 2833 SwitchBB->normalizeSuccProbs(); 2834 2835 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl, 2836 MVT::Other, getControlRoot(), 2837 Cmp, DAG.getBasicBlock(B.TargetBB)); 2838 2839 // Avoid emitting unnecessary branches to the next block. 2840 if (NextMBB != NextBlock(SwitchBB)) 2841 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd, 2842 DAG.getBasicBlock(NextMBB)); 2843 2844 DAG.setRoot(BrAnd); 2845 } 2846 2847 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) { 2848 MachineBasicBlock *InvokeMBB = FuncInfo.MBB; 2849 2850 // Retrieve successors. Look through artificial IR level blocks like 2851 // catchswitch for successors. 2852 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)]; 2853 const BasicBlock *EHPadBB = I.getSuccessor(1); 2854 2855 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2856 // have to do anything here to lower funclet bundles. 2857 assert(!I.hasOperandBundlesOtherThan( 2858 {LLVMContext::OB_deopt, LLVMContext::OB_gc_transition, 2859 LLVMContext::OB_gc_live, LLVMContext::OB_funclet, 2860 LLVMContext::OB_cfguardtarget, 2861 LLVMContext::OB_clang_arc_attachedcall}) && 2862 "Cannot lower invokes with arbitrary operand bundles yet!"); 2863 2864 const Value *Callee(I.getCalledOperand()); 2865 const Function *Fn = dyn_cast<Function>(Callee); 2866 if (isa<InlineAsm>(Callee)) 2867 visitInlineAsm(I); 2868 else if (Fn && Fn->isIntrinsic()) { 2869 switch (Fn->getIntrinsicID()) { 2870 default: 2871 llvm_unreachable("Cannot invoke this intrinsic"); 2872 case Intrinsic::donothing: 2873 // Ignore invokes to @llvm.donothing: jump directly to the next BB. 2874 break; 2875 case Intrinsic::experimental_patchpoint_void: 2876 case Intrinsic::experimental_patchpoint_i64: 2877 visitPatchpoint(I, EHPadBB); 2878 break; 2879 case Intrinsic::experimental_gc_statepoint: 2880 LowerStatepoint(cast<GCStatepointInst>(I), EHPadBB); 2881 break; 2882 case Intrinsic::wasm_rethrow: { 2883 // This is usually done in visitTargetIntrinsic, but this intrinsic is 2884 // special because it can be invoked, so we manually lower it to a DAG 2885 // node here. 2886 SmallVector<SDValue, 8> Ops; 2887 Ops.push_back(getRoot()); // inchain 2888 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2889 Ops.push_back( 2890 DAG.getTargetConstant(Intrinsic::wasm_rethrow, getCurSDLoc(), 2891 TLI.getPointerTy(DAG.getDataLayout()))); 2892 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain 2893 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops)); 2894 break; 2895 } 2896 } 2897 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) { 2898 // Currently we do not lower any intrinsic calls with deopt operand bundles. 2899 // Eventually we will support lowering the @llvm.experimental.deoptimize 2900 // intrinsic, and right now there are no plans to support other intrinsics 2901 // with deopt state. 2902 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB); 2903 } else { 2904 LowerCallTo(I, getValue(Callee), false, EHPadBB); 2905 } 2906 2907 // If the value of the invoke is used outside of its defining block, make it 2908 // available as a virtual register. 2909 // We already took care of the exported value for the statepoint instruction 2910 // during call to the LowerStatepoint. 2911 if (!isa<GCStatepointInst>(I)) { 2912 CopyToExportRegsIfNeeded(&I); 2913 } 2914 2915 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests; 2916 BranchProbabilityInfo *BPI = FuncInfo.BPI; 2917 BranchProbability EHPadBBProb = 2918 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB) 2919 : BranchProbability::getZero(); 2920 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests); 2921 2922 // Update successor info. 2923 addSuccessorWithProb(InvokeMBB, Return); 2924 for (auto &UnwindDest : UnwindDests) { 2925 UnwindDest.first->setIsEHPad(); 2926 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second); 2927 } 2928 InvokeMBB->normalizeSuccProbs(); 2929 2930 // Drop into normal successor. 2931 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(), 2932 DAG.getBasicBlock(Return))); 2933 } 2934 2935 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) { 2936 MachineBasicBlock *CallBrMBB = FuncInfo.MBB; 2937 2938 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 2939 // have to do anything here to lower funclet bundles. 2940 assert(!I.hasOperandBundlesOtherThan( 2941 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) && 2942 "Cannot lower callbrs with arbitrary operand bundles yet!"); 2943 2944 assert(I.isInlineAsm() && "Only know how to handle inlineasm callbr"); 2945 visitInlineAsm(I); 2946 CopyToExportRegsIfNeeded(&I); 2947 2948 // Retrieve successors. 2949 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()]; 2950 2951 // Update successor info. 2952 addSuccessorWithProb(CallBrMBB, Return, BranchProbability::getOne()); 2953 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) { 2954 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)]; 2955 addSuccessorWithProb(CallBrMBB, Target, BranchProbability::getZero()); 2956 Target->setIsInlineAsmBrIndirectTarget(); 2957 } 2958 CallBrMBB->normalizeSuccProbs(); 2959 2960 // Drop into default successor. 2961 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), 2962 MVT::Other, getControlRoot(), 2963 DAG.getBasicBlock(Return))); 2964 } 2965 2966 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) { 2967 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!"); 2968 } 2969 2970 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) { 2971 assert(FuncInfo.MBB->isEHPad() && 2972 "Call to landingpad not in landing pad!"); 2973 2974 // If there aren't registers to copy the values into (e.g., during SjLj 2975 // exceptions), then don't bother to create these DAG nodes. 2976 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 2977 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn(); 2978 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 && 2979 TLI.getExceptionSelectorRegister(PersonalityFn) == 0) 2980 return; 2981 2982 // If landingpad's return type is token type, we don't create DAG nodes 2983 // for its exception pointer and selector value. The extraction of exception 2984 // pointer or selector value from token type landingpads is not currently 2985 // supported. 2986 if (LP.getType()->isTokenTy()) 2987 return; 2988 2989 SmallVector<EVT, 2> ValueVTs; 2990 SDLoc dl = getCurSDLoc(); 2991 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs); 2992 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported"); 2993 2994 // Get the two live-in registers as SDValues. The physregs have already been 2995 // copied into virtual registers. 2996 SDValue Ops[2]; 2997 if (FuncInfo.ExceptionPointerVirtReg) { 2998 Ops[0] = DAG.getZExtOrTrunc( 2999 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3000 FuncInfo.ExceptionPointerVirtReg, 3001 TLI.getPointerTy(DAG.getDataLayout())), 3002 dl, ValueVTs[0]); 3003 } else { 3004 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout())); 3005 } 3006 Ops[1] = DAG.getZExtOrTrunc( 3007 DAG.getCopyFromReg(DAG.getEntryNode(), dl, 3008 FuncInfo.ExceptionSelectorVirtReg, 3009 TLI.getPointerTy(DAG.getDataLayout())), 3010 dl, ValueVTs[1]); 3011 3012 // Merge into one. 3013 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl, 3014 DAG.getVTList(ValueVTs), Ops); 3015 setValue(&LP, Res); 3016 } 3017 3018 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First, 3019 MachineBasicBlock *Last) { 3020 // Update JTCases. 3021 for (unsigned i = 0, e = SL->JTCases.size(); i != e; ++i) 3022 if (SL->JTCases[i].first.HeaderBB == First) 3023 SL->JTCases[i].first.HeaderBB = Last; 3024 3025 // Update BitTestCases. 3026 for (unsigned i = 0, e = SL->BitTestCases.size(); i != e; ++i) 3027 if (SL->BitTestCases[i].Parent == First) 3028 SL->BitTestCases[i].Parent = Last; 3029 } 3030 3031 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) { 3032 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB; 3033 3034 // Update machine-CFG edges with unique successors. 3035 SmallSet<BasicBlock*, 32> Done; 3036 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) { 3037 BasicBlock *BB = I.getSuccessor(i); 3038 bool Inserted = Done.insert(BB).second; 3039 if (!Inserted) 3040 continue; 3041 3042 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB]; 3043 addSuccessorWithProb(IndirectBrMBB, Succ); 3044 } 3045 IndirectBrMBB->normalizeSuccProbs(); 3046 3047 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(), 3048 MVT::Other, getControlRoot(), 3049 getValue(I.getAddress()))); 3050 } 3051 3052 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) { 3053 if (!DAG.getTarget().Options.TrapUnreachable) 3054 return; 3055 3056 // We may be able to ignore unreachable behind a noreturn call. 3057 if (DAG.getTarget().Options.NoTrapAfterNoreturn) { 3058 const BasicBlock &BB = *I.getParent(); 3059 if (&I != &BB.front()) { 3060 BasicBlock::const_iterator PredI = 3061 std::prev(BasicBlock::const_iterator(&I)); 3062 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) { 3063 if (Call->doesNotReturn()) 3064 return; 3065 } 3066 } 3067 } 3068 3069 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot())); 3070 } 3071 3072 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) { 3073 SDNodeFlags Flags; 3074 3075 SDValue Op = getValue(I.getOperand(0)); 3076 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(), 3077 Op, Flags); 3078 setValue(&I, UnNodeValue); 3079 } 3080 3081 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) { 3082 SDNodeFlags Flags; 3083 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) { 3084 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap()); 3085 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap()); 3086 } 3087 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) 3088 Flags.setExact(ExactOp->isExact()); 3089 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3090 Flags.copyFMF(*FPOp); 3091 3092 SDValue Op1 = getValue(I.getOperand(0)); 3093 SDValue Op2 = getValue(I.getOperand(1)); 3094 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), 3095 Op1, Op2, Flags); 3096 setValue(&I, BinNodeValue); 3097 } 3098 3099 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) { 3100 SDValue Op1 = getValue(I.getOperand(0)); 3101 SDValue Op2 = getValue(I.getOperand(1)); 3102 3103 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy( 3104 Op1.getValueType(), DAG.getDataLayout()); 3105 3106 // Coerce the shift amount to the right type if we can. 3107 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) { 3108 unsigned ShiftSize = ShiftTy.getSizeInBits(); 3109 unsigned Op2Size = Op2.getValueSizeInBits(); 3110 SDLoc DL = getCurSDLoc(); 3111 3112 // If the operand is smaller than the shift count type, promote it. 3113 if (ShiftSize > Op2Size) 3114 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2); 3115 3116 // If the operand is larger than the shift count type but the shift 3117 // count type has enough bits to represent any shift value, truncate 3118 // it now. This is a common case and it exposes the truncate to 3119 // optimization early. 3120 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits())) 3121 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2); 3122 // Otherwise we'll need to temporarily settle for some other convenient 3123 // type. Type legalization will make adjustments once the shiftee is split. 3124 else 3125 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32); 3126 } 3127 3128 bool nuw = false; 3129 bool nsw = false; 3130 bool exact = false; 3131 3132 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) { 3133 3134 if (const OverflowingBinaryOperator *OFBinOp = 3135 dyn_cast<const OverflowingBinaryOperator>(&I)) { 3136 nuw = OFBinOp->hasNoUnsignedWrap(); 3137 nsw = OFBinOp->hasNoSignedWrap(); 3138 } 3139 if (const PossiblyExactOperator *ExactOp = 3140 dyn_cast<const PossiblyExactOperator>(&I)) 3141 exact = ExactOp->isExact(); 3142 } 3143 SDNodeFlags Flags; 3144 Flags.setExact(exact); 3145 Flags.setNoSignedWrap(nsw); 3146 Flags.setNoUnsignedWrap(nuw); 3147 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2, 3148 Flags); 3149 setValue(&I, Res); 3150 } 3151 3152 void SelectionDAGBuilder::visitSDiv(const User &I) { 3153 SDValue Op1 = getValue(I.getOperand(0)); 3154 SDValue Op2 = getValue(I.getOperand(1)); 3155 3156 SDNodeFlags Flags; 3157 Flags.setExact(isa<PossiblyExactOperator>(&I) && 3158 cast<PossiblyExactOperator>(&I)->isExact()); 3159 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1, 3160 Op2, Flags)); 3161 } 3162 3163 void SelectionDAGBuilder::visitICmp(const User &I) { 3164 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE; 3165 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I)) 3166 predicate = IC->getPredicate(); 3167 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I)) 3168 predicate = ICmpInst::Predicate(IC->getPredicate()); 3169 SDValue Op1 = getValue(I.getOperand(0)); 3170 SDValue Op2 = getValue(I.getOperand(1)); 3171 ISD::CondCode Opcode = getICmpCondCode(predicate); 3172 3173 auto &TLI = DAG.getTargetLoweringInfo(); 3174 EVT MemVT = 3175 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3176 3177 // If a pointer's DAG type is larger than its memory type then the DAG values 3178 // are zero-extended. This breaks signed comparisons so truncate back to the 3179 // underlying type before doing the compare. 3180 if (Op1.getValueType() != MemVT) { 3181 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT); 3182 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT); 3183 } 3184 3185 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3186 I.getType()); 3187 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode)); 3188 } 3189 3190 void SelectionDAGBuilder::visitFCmp(const User &I) { 3191 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE; 3192 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I)) 3193 predicate = FC->getPredicate(); 3194 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I)) 3195 predicate = FCmpInst::Predicate(FC->getPredicate()); 3196 SDValue Op1 = getValue(I.getOperand(0)); 3197 SDValue Op2 = getValue(I.getOperand(1)); 3198 3199 ISD::CondCode Condition = getFCmpCondCode(predicate); 3200 auto *FPMO = cast<FPMathOperator>(&I); 3201 if (FPMO->hasNoNaNs() || TM.Options.NoNaNsFPMath) 3202 Condition = getFCmpCodeWithoutNaN(Condition); 3203 3204 SDNodeFlags Flags; 3205 Flags.copyFMF(*FPMO); 3206 SelectionDAG::FlagInserter FlagsInserter(DAG, Flags); 3207 3208 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3209 I.getType()); 3210 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition)); 3211 } 3212 3213 // Check if the condition of the select has one use or two users that are both 3214 // selects with the same condition. 3215 static bool hasOnlySelectUsers(const Value *Cond) { 3216 return llvm::all_of(Cond->users(), [](const Value *V) { 3217 return isa<SelectInst>(V); 3218 }); 3219 } 3220 3221 void SelectionDAGBuilder::visitSelect(const User &I) { 3222 SmallVector<EVT, 4> ValueVTs; 3223 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 3224 ValueVTs); 3225 unsigned NumValues = ValueVTs.size(); 3226 if (NumValues == 0) return; 3227 3228 SmallVector<SDValue, 4> Values(NumValues); 3229 SDValue Cond = getValue(I.getOperand(0)); 3230 SDValue LHSVal = getValue(I.getOperand(1)); 3231 SDValue RHSVal = getValue(I.getOperand(2)); 3232 SmallVector<SDValue, 1> BaseOps(1, Cond); 3233 ISD::NodeType OpCode = 3234 Cond.getValueType().isVector() ? ISD::VSELECT : ISD::SELECT; 3235 3236 bool IsUnaryAbs = false; 3237 bool Negate = false; 3238 3239 SDNodeFlags Flags; 3240 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 3241 Flags.copyFMF(*FPOp); 3242 3243 // Min/max matching is only viable if all output VTs are the same. 3244 if (is_splat(ValueVTs)) { 3245 EVT VT = ValueVTs[0]; 3246 LLVMContext &Ctx = *DAG.getContext(); 3247 auto &TLI = DAG.getTargetLoweringInfo(); 3248 3249 // We care about the legality of the operation after it has been type 3250 // legalized. 3251 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal) 3252 VT = TLI.getTypeToTransformTo(Ctx, VT); 3253 3254 // If the vselect is legal, assume we want to leave this as a vector setcc + 3255 // vselect. Otherwise, if this is going to be scalarized, we want to see if 3256 // min/max is legal on the scalar type. 3257 bool UseScalarMinMax = VT.isVector() && 3258 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT); 3259 3260 Value *LHS, *RHS; 3261 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS); 3262 ISD::NodeType Opc = ISD::DELETED_NODE; 3263 switch (SPR.Flavor) { 3264 case SPF_UMAX: Opc = ISD::UMAX; break; 3265 case SPF_UMIN: Opc = ISD::UMIN; break; 3266 case SPF_SMAX: Opc = ISD::SMAX; break; 3267 case SPF_SMIN: Opc = ISD::SMIN; break; 3268 case SPF_FMINNUM: 3269 switch (SPR.NaNBehavior) { 3270 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3271 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break; 3272 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break; 3273 case SPNB_RETURNS_ANY: { 3274 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT)) 3275 Opc = ISD::FMINNUM; 3276 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)) 3277 Opc = ISD::FMINIMUM; 3278 else if (UseScalarMinMax) 3279 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ? 3280 ISD::FMINNUM : ISD::FMINIMUM; 3281 break; 3282 } 3283 } 3284 break; 3285 case SPF_FMAXNUM: 3286 switch (SPR.NaNBehavior) { 3287 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?"); 3288 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break; 3289 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break; 3290 case SPNB_RETURNS_ANY: 3291 3292 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT)) 3293 Opc = ISD::FMAXNUM; 3294 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)) 3295 Opc = ISD::FMAXIMUM; 3296 else if (UseScalarMinMax) 3297 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ? 3298 ISD::FMAXNUM : ISD::FMAXIMUM; 3299 break; 3300 } 3301 break; 3302 case SPF_NABS: 3303 Negate = true; 3304 LLVM_FALLTHROUGH; 3305 case SPF_ABS: 3306 IsUnaryAbs = true; 3307 Opc = ISD::ABS; 3308 break; 3309 default: break; 3310 } 3311 3312 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE && 3313 (TLI.isOperationLegalOrCustom(Opc, VT) || 3314 (UseScalarMinMax && 3315 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) && 3316 // If the underlying comparison instruction is used by any other 3317 // instruction, the consumed instructions won't be destroyed, so it is 3318 // not profitable to convert to a min/max. 3319 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) { 3320 OpCode = Opc; 3321 LHSVal = getValue(LHS); 3322 RHSVal = getValue(RHS); 3323 BaseOps.clear(); 3324 } 3325 3326 if (IsUnaryAbs) { 3327 OpCode = Opc; 3328 LHSVal = getValue(LHS); 3329 BaseOps.clear(); 3330 } 3331 } 3332 3333 if (IsUnaryAbs) { 3334 for (unsigned i = 0; i != NumValues; ++i) { 3335 SDLoc dl = getCurSDLoc(); 3336 EVT VT = LHSVal.getNode()->getValueType(LHSVal.getResNo() + i); 3337 Values[i] = 3338 DAG.getNode(OpCode, dl, VT, LHSVal.getValue(LHSVal.getResNo() + i)); 3339 if (Negate) 3340 Values[i] = DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(0, dl, VT), 3341 Values[i]); 3342 } 3343 } else { 3344 for (unsigned i = 0; i != NumValues; ++i) { 3345 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end()); 3346 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i)); 3347 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i)); 3348 Values[i] = DAG.getNode( 3349 OpCode, getCurSDLoc(), 3350 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops, Flags); 3351 } 3352 } 3353 3354 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3355 DAG.getVTList(ValueVTs), Values)); 3356 } 3357 3358 void SelectionDAGBuilder::visitTrunc(const User &I) { 3359 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest). 3360 SDValue N = getValue(I.getOperand(0)); 3361 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3362 I.getType()); 3363 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N)); 3364 } 3365 3366 void SelectionDAGBuilder::visitZExt(const User &I) { 3367 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3368 // ZExt also can't be a cast to bool for same reason. So, nothing much to do 3369 SDValue N = getValue(I.getOperand(0)); 3370 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3371 I.getType()); 3372 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N)); 3373 } 3374 3375 void SelectionDAGBuilder::visitSExt(const User &I) { 3376 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest). 3377 // SExt also can't be a cast to bool for same reason. So, nothing much to do 3378 SDValue N = getValue(I.getOperand(0)); 3379 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3380 I.getType()); 3381 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N)); 3382 } 3383 3384 void SelectionDAGBuilder::visitFPTrunc(const User &I) { 3385 // FPTrunc is never a no-op cast, no need to check 3386 SDValue N = getValue(I.getOperand(0)); 3387 SDLoc dl = getCurSDLoc(); 3388 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3389 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3390 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N, 3391 DAG.getTargetConstant( 3392 0, dl, TLI.getPointerTy(DAG.getDataLayout())))); 3393 } 3394 3395 void SelectionDAGBuilder::visitFPExt(const User &I) { 3396 // FPExt is never a no-op cast, no need to check 3397 SDValue N = getValue(I.getOperand(0)); 3398 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3399 I.getType()); 3400 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N)); 3401 } 3402 3403 void SelectionDAGBuilder::visitFPToUI(const User &I) { 3404 // FPToUI is never a no-op cast, no need to check 3405 SDValue N = getValue(I.getOperand(0)); 3406 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3407 I.getType()); 3408 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N)); 3409 } 3410 3411 void SelectionDAGBuilder::visitFPToSI(const User &I) { 3412 // FPToSI is never a no-op cast, no need to check 3413 SDValue N = getValue(I.getOperand(0)); 3414 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3415 I.getType()); 3416 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N)); 3417 } 3418 3419 void SelectionDAGBuilder::visitUIToFP(const User &I) { 3420 // UIToFP is never a no-op cast, no need to check 3421 SDValue N = getValue(I.getOperand(0)); 3422 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3423 I.getType()); 3424 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N)); 3425 } 3426 3427 void SelectionDAGBuilder::visitSIToFP(const User &I) { 3428 // SIToFP is never a no-op cast, no need to check 3429 SDValue N = getValue(I.getOperand(0)); 3430 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3431 I.getType()); 3432 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N)); 3433 } 3434 3435 void SelectionDAGBuilder::visitPtrToInt(const User &I) { 3436 // What to do depends on the size of the integer and the size of the pointer. 3437 // We can either truncate, zero extend, or no-op, accordingly. 3438 SDValue N = getValue(I.getOperand(0)); 3439 auto &TLI = DAG.getTargetLoweringInfo(); 3440 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3441 I.getType()); 3442 EVT PtrMemVT = 3443 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType()); 3444 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3445 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT); 3446 setValue(&I, N); 3447 } 3448 3449 void SelectionDAGBuilder::visitIntToPtr(const User &I) { 3450 // What to do depends on the size of the integer and the size of the pointer. 3451 // We can either truncate, zero extend, or no-op, accordingly. 3452 SDValue N = getValue(I.getOperand(0)); 3453 auto &TLI = DAG.getTargetLoweringInfo(); 3454 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3455 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 3456 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT); 3457 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT); 3458 setValue(&I, N); 3459 } 3460 3461 void SelectionDAGBuilder::visitBitCast(const User &I) { 3462 SDValue N = getValue(I.getOperand(0)); 3463 SDLoc dl = getCurSDLoc(); 3464 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 3465 I.getType()); 3466 3467 // BitCast assures us that source and destination are the same size so this is 3468 // either a BITCAST or a no-op. 3469 if (DestVT != N.getValueType()) 3470 setValue(&I, DAG.getNode(ISD::BITCAST, dl, 3471 DestVT, N)); // convert types. 3472 // Check if the original LLVM IR Operand was a ConstantInt, because getValue() 3473 // might fold any kind of constant expression to an integer constant and that 3474 // is not what we are looking for. Only recognize a bitcast of a genuine 3475 // constant integer as an opaque constant. 3476 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0))) 3477 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false, 3478 /*isOpaque*/true)); 3479 else 3480 setValue(&I, N); // noop cast. 3481 } 3482 3483 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) { 3484 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3485 const Value *SV = I.getOperand(0); 3486 SDValue N = getValue(SV); 3487 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3488 3489 unsigned SrcAS = SV->getType()->getPointerAddressSpace(); 3490 unsigned DestAS = I.getType()->getPointerAddressSpace(); 3491 3492 if (!TM.isNoopAddrSpaceCast(SrcAS, DestAS)) 3493 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS); 3494 3495 setValue(&I, N); 3496 } 3497 3498 void SelectionDAGBuilder::visitInsertElement(const User &I) { 3499 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3500 SDValue InVec = getValue(I.getOperand(0)); 3501 SDValue InVal = getValue(I.getOperand(1)); 3502 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(), 3503 TLI.getVectorIdxTy(DAG.getDataLayout())); 3504 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(), 3505 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3506 InVec, InVal, InIdx)); 3507 } 3508 3509 void SelectionDAGBuilder::visitExtractElement(const User &I) { 3510 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3511 SDValue InVec = getValue(I.getOperand(0)); 3512 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(), 3513 TLI.getVectorIdxTy(DAG.getDataLayout())); 3514 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(), 3515 TLI.getValueType(DAG.getDataLayout(), I.getType()), 3516 InVec, InIdx)); 3517 } 3518 3519 void SelectionDAGBuilder::visitShuffleVector(const User &I) { 3520 SDValue Src1 = getValue(I.getOperand(0)); 3521 SDValue Src2 = getValue(I.getOperand(1)); 3522 ArrayRef<int> Mask; 3523 if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I)) 3524 Mask = SVI->getShuffleMask(); 3525 else 3526 Mask = cast<ConstantExpr>(I).getShuffleMask(); 3527 SDLoc DL = getCurSDLoc(); 3528 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3529 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 3530 EVT SrcVT = Src1.getValueType(); 3531 3532 if (all_of(Mask, [](int Elem) { return Elem == 0; }) && 3533 VT.isScalableVector()) { 3534 // Canonical splat form of first element of first input vector. 3535 SDValue FirstElt = 3536 DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, SrcVT.getScalarType(), Src1, 3537 DAG.getVectorIdxConstant(0, DL)); 3538 setValue(&I, DAG.getNode(ISD::SPLAT_VECTOR, DL, VT, FirstElt)); 3539 return; 3540 } 3541 3542 // For now, we only handle splats for scalable vectors. 3543 // The DAGCombiner will perform a BUILD_VECTOR -> SPLAT_VECTOR transformation 3544 // for targets that support a SPLAT_VECTOR for non-scalable vector types. 3545 assert(!VT.isScalableVector() && "Unsupported scalable vector shuffle"); 3546 3547 unsigned SrcNumElts = SrcVT.getVectorNumElements(); 3548 unsigned MaskNumElts = Mask.size(); 3549 3550 if (SrcNumElts == MaskNumElts) { 3551 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask)); 3552 return; 3553 } 3554 3555 // Normalize the shuffle vector since mask and vector length don't match. 3556 if (SrcNumElts < MaskNumElts) { 3557 // Mask is longer than the source vectors. We can use concatenate vector to 3558 // make the mask and vectors lengths match. 3559 3560 if (MaskNumElts % SrcNumElts == 0) { 3561 // Mask length is a multiple of the source vector length. 3562 // Check if the shuffle is some kind of concatenation of the input 3563 // vectors. 3564 unsigned NumConcat = MaskNumElts / SrcNumElts; 3565 bool IsConcat = true; 3566 SmallVector<int, 8> ConcatSrcs(NumConcat, -1); 3567 for (unsigned i = 0; i != MaskNumElts; ++i) { 3568 int Idx = Mask[i]; 3569 if (Idx < 0) 3570 continue; 3571 // Ensure the indices in each SrcVT sized piece are sequential and that 3572 // the same source is used for the whole piece. 3573 if ((Idx % SrcNumElts != (i % SrcNumElts)) || 3574 (ConcatSrcs[i / SrcNumElts] >= 0 && 3575 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) { 3576 IsConcat = false; 3577 break; 3578 } 3579 // Remember which source this index came from. 3580 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts; 3581 } 3582 3583 // The shuffle is concatenating multiple vectors together. Just emit 3584 // a CONCAT_VECTORS operation. 3585 if (IsConcat) { 3586 SmallVector<SDValue, 8> ConcatOps; 3587 for (auto Src : ConcatSrcs) { 3588 if (Src < 0) 3589 ConcatOps.push_back(DAG.getUNDEF(SrcVT)); 3590 else if (Src == 0) 3591 ConcatOps.push_back(Src1); 3592 else 3593 ConcatOps.push_back(Src2); 3594 } 3595 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps)); 3596 return; 3597 } 3598 } 3599 3600 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts); 3601 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts; 3602 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(), 3603 PaddedMaskNumElts); 3604 3605 // Pad both vectors with undefs to make them the same length as the mask. 3606 SDValue UndefVal = DAG.getUNDEF(SrcVT); 3607 3608 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal); 3609 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal); 3610 MOps1[0] = Src1; 3611 MOps2[0] = Src2; 3612 3613 Src1 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1); 3614 Src2 = DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2); 3615 3616 // Readjust mask for new input vector length. 3617 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1); 3618 for (unsigned i = 0; i != MaskNumElts; ++i) { 3619 int Idx = Mask[i]; 3620 if (Idx >= (int)SrcNumElts) 3621 Idx -= SrcNumElts - PaddedMaskNumElts; 3622 MappedOps[i] = Idx; 3623 } 3624 3625 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps); 3626 3627 // If the concatenated vector was padded, extract a subvector with the 3628 // correct number of elements. 3629 if (MaskNumElts != PaddedMaskNumElts) 3630 Result = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Result, 3631 DAG.getVectorIdxConstant(0, DL)); 3632 3633 setValue(&I, Result); 3634 return; 3635 } 3636 3637 if (SrcNumElts > MaskNumElts) { 3638 // Analyze the access pattern of the vector to see if we can extract 3639 // two subvectors and do the shuffle. 3640 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from 3641 bool CanExtract = true; 3642 for (int Idx : Mask) { 3643 unsigned Input = 0; 3644 if (Idx < 0) 3645 continue; 3646 3647 if (Idx >= (int)SrcNumElts) { 3648 Input = 1; 3649 Idx -= SrcNumElts; 3650 } 3651 3652 // If all the indices come from the same MaskNumElts sized portion of 3653 // the sources we can use extract. Also make sure the extract wouldn't 3654 // extract past the end of the source. 3655 int NewStartIdx = alignDown(Idx, MaskNumElts); 3656 if (NewStartIdx + MaskNumElts > SrcNumElts || 3657 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx)) 3658 CanExtract = false; 3659 // Make sure we always update StartIdx as we use it to track if all 3660 // elements are undef. 3661 StartIdx[Input] = NewStartIdx; 3662 } 3663 3664 if (StartIdx[0] < 0 && StartIdx[1] < 0) { 3665 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used. 3666 return; 3667 } 3668 if (CanExtract) { 3669 // Extract appropriate subvector and generate a vector shuffle 3670 for (unsigned Input = 0; Input < 2; ++Input) { 3671 SDValue &Src = Input == 0 ? Src1 : Src2; 3672 if (StartIdx[Input] < 0) 3673 Src = DAG.getUNDEF(VT); 3674 else { 3675 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, VT, Src, 3676 DAG.getVectorIdxConstant(StartIdx[Input], DL)); 3677 } 3678 } 3679 3680 // Calculate new mask. 3681 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end()); 3682 for (int &Idx : MappedOps) { 3683 if (Idx >= (int)SrcNumElts) 3684 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts; 3685 else if (Idx >= 0) 3686 Idx -= StartIdx[0]; 3687 } 3688 3689 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps)); 3690 return; 3691 } 3692 } 3693 3694 // We can't use either concat vectors or extract subvectors so fall back to 3695 // replacing the shuffle with extract and build vector. 3696 // to insert and build vector. 3697 EVT EltVT = VT.getVectorElementType(); 3698 SmallVector<SDValue,8> Ops; 3699 for (int Idx : Mask) { 3700 SDValue Res; 3701 3702 if (Idx < 0) { 3703 Res = DAG.getUNDEF(EltVT); 3704 } else { 3705 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2; 3706 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts; 3707 3708 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, EltVT, Src, 3709 DAG.getVectorIdxConstant(Idx, DL)); 3710 } 3711 3712 Ops.push_back(Res); 3713 } 3714 3715 setValue(&I, DAG.getBuildVector(VT, DL, Ops)); 3716 } 3717 3718 void SelectionDAGBuilder::visitInsertValue(const User &I) { 3719 ArrayRef<unsigned> Indices; 3720 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I)) 3721 Indices = IV->getIndices(); 3722 else 3723 Indices = cast<ConstantExpr>(&I)->getIndices(); 3724 3725 const Value *Op0 = I.getOperand(0); 3726 const Value *Op1 = I.getOperand(1); 3727 Type *AggTy = I.getType(); 3728 Type *ValTy = Op1->getType(); 3729 bool IntoUndef = isa<UndefValue>(Op0); 3730 bool FromUndef = isa<UndefValue>(Op1); 3731 3732 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3733 3734 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3735 SmallVector<EVT, 4> AggValueVTs; 3736 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs); 3737 SmallVector<EVT, 4> ValValueVTs; 3738 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3739 3740 unsigned NumAggValues = AggValueVTs.size(); 3741 unsigned NumValValues = ValValueVTs.size(); 3742 SmallVector<SDValue, 4> Values(NumAggValues); 3743 3744 // Ignore an insertvalue that produces an empty object 3745 if (!NumAggValues) { 3746 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3747 return; 3748 } 3749 3750 SDValue Agg = getValue(Op0); 3751 unsigned i = 0; 3752 // Copy the beginning value(s) from the original aggregate. 3753 for (; i != LinearIndex; ++i) 3754 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3755 SDValue(Agg.getNode(), Agg.getResNo() + i); 3756 // Copy values from the inserted value(s). 3757 if (NumValValues) { 3758 SDValue Val = getValue(Op1); 3759 for (; i != LinearIndex + NumValValues; ++i) 3760 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3761 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex); 3762 } 3763 // Copy remaining value(s) from the original aggregate. 3764 for (; i != NumAggValues; ++i) 3765 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) : 3766 SDValue(Agg.getNode(), Agg.getResNo() + i); 3767 3768 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3769 DAG.getVTList(AggValueVTs), Values)); 3770 } 3771 3772 void SelectionDAGBuilder::visitExtractValue(const User &I) { 3773 ArrayRef<unsigned> Indices; 3774 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I)) 3775 Indices = EV->getIndices(); 3776 else 3777 Indices = cast<ConstantExpr>(&I)->getIndices(); 3778 3779 const Value *Op0 = I.getOperand(0); 3780 Type *AggTy = Op0->getType(); 3781 Type *ValTy = I.getType(); 3782 bool OutOfUndef = isa<UndefValue>(Op0); 3783 3784 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices); 3785 3786 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3787 SmallVector<EVT, 4> ValValueVTs; 3788 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs); 3789 3790 unsigned NumValValues = ValValueVTs.size(); 3791 3792 // Ignore a extractvalue that produces an empty object 3793 if (!NumValValues) { 3794 setValue(&I, DAG.getUNDEF(MVT(MVT::Other))); 3795 return; 3796 } 3797 3798 SmallVector<SDValue, 4> Values(NumValValues); 3799 3800 SDValue Agg = getValue(Op0); 3801 // Copy out the selected value(s). 3802 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i) 3803 Values[i - LinearIndex] = 3804 OutOfUndef ? 3805 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) : 3806 SDValue(Agg.getNode(), Agg.getResNo() + i); 3807 3808 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 3809 DAG.getVTList(ValValueVTs), Values)); 3810 } 3811 3812 void SelectionDAGBuilder::visitGetElementPtr(const User &I) { 3813 Value *Op0 = I.getOperand(0); 3814 // Note that the pointer operand may be a vector of pointers. Take the scalar 3815 // element which holds a pointer. 3816 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace(); 3817 SDValue N = getValue(Op0); 3818 SDLoc dl = getCurSDLoc(); 3819 auto &TLI = DAG.getTargetLoweringInfo(); 3820 3821 // Normalize Vector GEP - all scalar operands should be converted to the 3822 // splat vector. 3823 bool IsVectorGEP = I.getType()->isVectorTy(); 3824 ElementCount VectorElementCount = 3825 IsVectorGEP ? cast<VectorType>(I.getType())->getElementCount() 3826 : ElementCount::getFixed(0); 3827 3828 if (IsVectorGEP && !N.getValueType().isVector()) { 3829 LLVMContext &Context = *DAG.getContext(); 3830 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorElementCount); 3831 if (VectorElementCount.isScalable()) 3832 N = DAG.getSplatVector(VT, dl, N); 3833 else 3834 N = DAG.getSplatBuildVector(VT, dl, N); 3835 } 3836 3837 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I); 3838 GTI != E; ++GTI) { 3839 const Value *Idx = GTI.getOperand(); 3840 if (StructType *StTy = GTI.getStructTypeOrNull()) { 3841 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue(); 3842 if (Field) { 3843 // N = N + Offset 3844 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field); 3845 3846 // In an inbounds GEP with an offset that is nonnegative even when 3847 // interpreted as signed, assume there is no unsigned overflow. 3848 SDNodeFlags Flags; 3849 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds()) 3850 Flags.setNoUnsignedWrap(true); 3851 3852 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, 3853 DAG.getConstant(Offset, dl, N.getValueType()), Flags); 3854 } 3855 } else { 3856 // IdxSize is the width of the arithmetic according to IR semantics. 3857 // In SelectionDAG, we may prefer to do arithmetic in a wider bitwidth 3858 // (and fix up the result later). 3859 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS); 3860 MVT IdxTy = MVT::getIntegerVT(IdxSize); 3861 TypeSize ElementSize = DL->getTypeAllocSize(GTI.getIndexedType()); 3862 // We intentionally mask away the high bits here; ElementSize may not 3863 // fit in IdxTy. 3864 APInt ElementMul(IdxSize, ElementSize.getKnownMinSize()); 3865 bool ElementScalable = ElementSize.isScalable(); 3866 3867 // If this is a scalar constant or a splat vector of constants, 3868 // handle it quickly. 3869 const auto *C = dyn_cast<Constant>(Idx); 3870 if (C && isa<VectorType>(C->getType())) 3871 C = C->getSplatValue(); 3872 3873 const auto *CI = dyn_cast_or_null<ConstantInt>(C); 3874 if (CI && CI->isZero()) 3875 continue; 3876 if (CI && !ElementScalable) { 3877 APInt Offs = ElementMul * CI->getValue().sextOrTrunc(IdxSize); 3878 LLVMContext &Context = *DAG.getContext(); 3879 SDValue OffsVal; 3880 if (IsVectorGEP) 3881 OffsVal = DAG.getConstant( 3882 Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorElementCount)); 3883 else 3884 OffsVal = DAG.getConstant(Offs, dl, IdxTy); 3885 3886 // In an inbounds GEP with an offset that is nonnegative even when 3887 // interpreted as signed, assume there is no unsigned overflow. 3888 SDNodeFlags Flags; 3889 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds()) 3890 Flags.setNoUnsignedWrap(true); 3891 3892 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType()); 3893 3894 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags); 3895 continue; 3896 } 3897 3898 // N = N + Idx * ElementMul; 3899 SDValue IdxN = getValue(Idx); 3900 3901 if (!IdxN.getValueType().isVector() && IsVectorGEP) { 3902 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), 3903 VectorElementCount); 3904 if (VectorElementCount.isScalable()) 3905 IdxN = DAG.getSplatVector(VT, dl, IdxN); 3906 else 3907 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN); 3908 } 3909 3910 // If the index is smaller or larger than intptr_t, truncate or extend 3911 // it. 3912 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType()); 3913 3914 if (ElementScalable) { 3915 EVT VScaleTy = N.getValueType().getScalarType(); 3916 SDValue VScale = DAG.getNode( 3917 ISD::VSCALE, dl, VScaleTy, 3918 DAG.getConstant(ElementMul.getZExtValue(), dl, VScaleTy)); 3919 if (IsVectorGEP) 3920 VScale = DAG.getSplatVector(N.getValueType(), dl, VScale); 3921 IdxN = DAG.getNode(ISD::MUL, dl, N.getValueType(), IdxN, VScale); 3922 } else { 3923 // If this is a multiply by a power of two, turn it into a shl 3924 // immediately. This is a very common case. 3925 if (ElementMul != 1) { 3926 if (ElementMul.isPowerOf2()) { 3927 unsigned Amt = ElementMul.logBase2(); 3928 IdxN = DAG.getNode(ISD::SHL, dl, 3929 N.getValueType(), IdxN, 3930 DAG.getConstant(Amt, dl, IdxN.getValueType())); 3931 } else { 3932 SDValue Scale = DAG.getConstant(ElementMul.getZExtValue(), dl, 3933 IdxN.getValueType()); 3934 IdxN = DAG.getNode(ISD::MUL, dl, 3935 N.getValueType(), IdxN, Scale); 3936 } 3937 } 3938 } 3939 3940 N = DAG.getNode(ISD::ADD, dl, 3941 N.getValueType(), N, IdxN); 3942 } 3943 } 3944 3945 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS); 3946 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS); 3947 if (IsVectorGEP) { 3948 PtrTy = MVT::getVectorVT(PtrTy, VectorElementCount); 3949 PtrMemTy = MVT::getVectorVT(PtrMemTy, VectorElementCount); 3950 } 3951 3952 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds()) 3953 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy); 3954 3955 setValue(&I, N); 3956 } 3957 3958 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) { 3959 // If this is a fixed sized alloca in the entry block of the function, 3960 // allocate it statically on the stack. 3961 if (FuncInfo.StaticAllocaMap.count(&I)) 3962 return; // getValue will auto-populate this. 3963 3964 SDLoc dl = getCurSDLoc(); 3965 Type *Ty = I.getAllocatedType(); 3966 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 3967 auto &DL = DAG.getDataLayout(); 3968 uint64_t TySize = DL.getTypeAllocSize(Ty); 3969 MaybeAlign Alignment = std::max(DL.getPrefTypeAlign(Ty), I.getAlign()); 3970 3971 SDValue AllocSize = getValue(I.getArraySize()); 3972 3973 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace()); 3974 if (AllocSize.getValueType() != IntPtr) 3975 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr); 3976 3977 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr, 3978 AllocSize, 3979 DAG.getConstant(TySize, dl, IntPtr)); 3980 3981 // Handle alignment. If the requested alignment is less than or equal to 3982 // the stack alignment, ignore it. If the size is greater than or equal to 3983 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node. 3984 Align StackAlign = DAG.getSubtarget().getFrameLowering()->getStackAlign(); 3985 if (*Alignment <= StackAlign) 3986 Alignment = None; 3987 3988 const uint64_t StackAlignMask = StackAlign.value() - 1U; 3989 // Round the size of the allocation up to the stack alignment size 3990 // by add SA-1 to the size. This doesn't overflow because we're computing 3991 // an address inside an alloca. 3992 SDNodeFlags Flags; 3993 Flags.setNoUnsignedWrap(true); 3994 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize, 3995 DAG.getConstant(StackAlignMask, dl, IntPtr), Flags); 3996 3997 // Mask out the low bits for alignment purposes. 3998 AllocSize = DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize, 3999 DAG.getConstant(~StackAlignMask, dl, IntPtr)); 4000 4001 SDValue Ops[] = { 4002 getRoot(), AllocSize, 4003 DAG.getConstant(Alignment ? Alignment->value() : 0, dl, IntPtr)}; 4004 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other); 4005 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops); 4006 setValue(&I, DSA); 4007 DAG.setRoot(DSA.getValue(1)); 4008 4009 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects()); 4010 } 4011 4012 void SelectionDAGBuilder::visitLoad(const LoadInst &I) { 4013 if (I.isAtomic()) 4014 return visitAtomicLoad(I); 4015 4016 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4017 const Value *SV = I.getOperand(0); 4018 if (TLI.supportSwiftError()) { 4019 // Swifterror values can come from either a function parameter with 4020 // swifterror attribute or an alloca with swifterror attribute. 4021 if (const Argument *Arg = dyn_cast<Argument>(SV)) { 4022 if (Arg->hasSwiftErrorAttr()) 4023 return visitLoadFromSwiftError(I); 4024 } 4025 4026 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) { 4027 if (Alloca->isSwiftError()) 4028 return visitLoadFromSwiftError(I); 4029 } 4030 } 4031 4032 SDValue Ptr = getValue(SV); 4033 4034 Type *Ty = I.getType(); 4035 Align Alignment = I.getAlign(); 4036 4037 AAMDNodes AAInfo; 4038 I.getAAMetadata(AAInfo); 4039 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4040 4041 SmallVector<EVT, 4> ValueVTs, MemVTs; 4042 SmallVector<uint64_t, 4> Offsets; 4043 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets); 4044 unsigned NumValues = ValueVTs.size(); 4045 if (NumValues == 0) 4046 return; 4047 4048 bool isVolatile = I.isVolatile(); 4049 4050 SDValue Root; 4051 bool ConstantMemory = false; 4052 if (isVolatile) 4053 // Serialize volatile loads with other side effects. 4054 Root = getRoot(); 4055 else if (NumValues > MaxParallelChains) 4056 Root = getMemoryRoot(); 4057 else if (AA && 4058 AA->pointsToConstantMemory(MemoryLocation( 4059 SV, 4060 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4061 AAInfo))) { 4062 // Do not serialize (non-volatile) loads of constant memory with anything. 4063 Root = DAG.getEntryNode(); 4064 ConstantMemory = true; 4065 } else { 4066 // Do not serialize non-volatile loads against each other. 4067 Root = DAG.getRoot(); 4068 } 4069 4070 SDLoc dl = getCurSDLoc(); 4071 4072 if (isVolatile) 4073 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG); 4074 4075 // An aggregate load cannot wrap around the address space, so offsets to its 4076 // parts don't wrap either. 4077 SDNodeFlags Flags; 4078 Flags.setNoUnsignedWrap(true); 4079 4080 SmallVector<SDValue, 4> Values(NumValues); 4081 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4082 EVT PtrVT = Ptr.getValueType(); 4083 4084 MachineMemOperand::Flags MMOFlags 4085 = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4086 4087 unsigned ChainI = 0; 4088 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4089 // Serializing loads here may result in excessive register pressure, and 4090 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling 4091 // could recover a bit by hoisting nodes upward in the chain by recognizing 4092 // they are side-effect free or do not alias. The optimizer should really 4093 // avoid this case by converting large object/array copies to llvm.memcpy 4094 // (MaxParallelChains should always remain as failsafe). 4095 if (ChainI == MaxParallelChains) { 4096 assert(PendingLoads.empty() && "PendingLoads must be serialized first"); 4097 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4098 makeArrayRef(Chains.data(), ChainI)); 4099 Root = Chain; 4100 ChainI = 0; 4101 } 4102 SDValue A = DAG.getNode(ISD::ADD, dl, 4103 PtrVT, Ptr, 4104 DAG.getConstant(Offsets[i], dl, PtrVT), 4105 Flags); 4106 4107 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A, 4108 MachinePointerInfo(SV, Offsets[i]), Alignment, 4109 MMOFlags, AAInfo, Ranges); 4110 Chains[ChainI] = L.getValue(1); 4111 4112 if (MemVTs[i] != ValueVTs[i]) 4113 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]); 4114 4115 Values[i] = L; 4116 } 4117 4118 if (!ConstantMemory) { 4119 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4120 makeArrayRef(Chains.data(), ChainI)); 4121 if (isVolatile) 4122 DAG.setRoot(Chain); 4123 else 4124 PendingLoads.push_back(Chain); 4125 } 4126 4127 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl, 4128 DAG.getVTList(ValueVTs), Values)); 4129 } 4130 4131 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) { 4132 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4133 "call visitStoreToSwiftError when backend supports swifterror"); 4134 4135 SmallVector<EVT, 4> ValueVTs; 4136 SmallVector<uint64_t, 4> Offsets; 4137 const Value *SrcV = I.getOperand(0); 4138 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4139 SrcV->getType(), ValueVTs, &Offsets); 4140 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4141 "expect a single EVT for swifterror"); 4142 4143 SDValue Src = getValue(SrcV); 4144 // Create a virtual register, then update the virtual register. 4145 Register VReg = 4146 SwiftError.getOrCreateVRegDefAt(&I, FuncInfo.MBB, I.getPointerOperand()); 4147 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue 4148 // Chain can be getRoot or getControlRoot. 4149 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg, 4150 SDValue(Src.getNode(), Src.getResNo())); 4151 DAG.setRoot(CopyNode); 4152 } 4153 4154 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) { 4155 assert(DAG.getTargetLoweringInfo().supportSwiftError() && 4156 "call visitLoadFromSwiftError when backend supports swifterror"); 4157 4158 assert(!I.isVolatile() && 4159 !I.hasMetadata(LLVMContext::MD_nontemporal) && 4160 !I.hasMetadata(LLVMContext::MD_invariant_load) && 4161 "Support volatile, non temporal, invariant for load_from_swift_error"); 4162 4163 const Value *SV = I.getOperand(0); 4164 Type *Ty = I.getType(); 4165 AAMDNodes AAInfo; 4166 I.getAAMetadata(AAInfo); 4167 assert( 4168 (!AA || 4169 !AA->pointsToConstantMemory(MemoryLocation( 4170 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)), 4171 AAInfo))) && 4172 "load_from_swift_error should not be constant memory"); 4173 4174 SmallVector<EVT, 4> ValueVTs; 4175 SmallVector<uint64_t, 4> Offsets; 4176 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty, 4177 ValueVTs, &Offsets); 4178 assert(ValueVTs.size() == 1 && Offsets[0] == 0 && 4179 "expect a single EVT for swifterror"); 4180 4181 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT 4182 SDValue L = DAG.getCopyFromReg( 4183 getRoot(), getCurSDLoc(), 4184 SwiftError.getOrCreateVRegUseAt(&I, FuncInfo.MBB, SV), ValueVTs[0]); 4185 4186 setValue(&I, L); 4187 } 4188 4189 void SelectionDAGBuilder::visitStore(const StoreInst &I) { 4190 if (I.isAtomic()) 4191 return visitAtomicStore(I); 4192 4193 const Value *SrcV = I.getOperand(0); 4194 const Value *PtrV = I.getOperand(1); 4195 4196 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4197 if (TLI.supportSwiftError()) { 4198 // Swifterror values can come from either a function parameter with 4199 // swifterror attribute or an alloca with swifterror attribute. 4200 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) { 4201 if (Arg->hasSwiftErrorAttr()) 4202 return visitStoreToSwiftError(I); 4203 } 4204 4205 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) { 4206 if (Alloca->isSwiftError()) 4207 return visitStoreToSwiftError(I); 4208 } 4209 } 4210 4211 SmallVector<EVT, 4> ValueVTs, MemVTs; 4212 SmallVector<uint64_t, 4> Offsets; 4213 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), 4214 SrcV->getType(), ValueVTs, &MemVTs, &Offsets); 4215 unsigned NumValues = ValueVTs.size(); 4216 if (NumValues == 0) 4217 return; 4218 4219 // Get the lowered operands. Note that we do this after 4220 // checking if NumResults is zero, because with zero results 4221 // the operands won't have values in the map. 4222 SDValue Src = getValue(SrcV); 4223 SDValue Ptr = getValue(PtrV); 4224 4225 SDValue Root = I.isVolatile() ? getRoot() : getMemoryRoot(); 4226 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues)); 4227 SDLoc dl = getCurSDLoc(); 4228 Align Alignment = I.getAlign(); 4229 AAMDNodes AAInfo; 4230 I.getAAMetadata(AAInfo); 4231 4232 auto MMOFlags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4233 4234 // An aggregate load cannot wrap around the address space, so offsets to its 4235 // parts don't wrap either. 4236 SDNodeFlags Flags; 4237 Flags.setNoUnsignedWrap(true); 4238 4239 unsigned ChainI = 0; 4240 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) { 4241 // See visitLoad comments. 4242 if (ChainI == MaxParallelChains) { 4243 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4244 makeArrayRef(Chains.data(), ChainI)); 4245 Root = Chain; 4246 ChainI = 0; 4247 } 4248 SDValue Add = 4249 DAG.getMemBasePlusOffset(Ptr, TypeSize::Fixed(Offsets[i]), dl, Flags); 4250 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i); 4251 if (MemVTs[i] != ValueVTs[i]) 4252 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]); 4253 SDValue St = 4254 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]), 4255 Alignment, MMOFlags, AAInfo); 4256 Chains[ChainI] = St; 4257 } 4258 4259 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, 4260 makeArrayRef(Chains.data(), ChainI)); 4261 DAG.setRoot(StoreNode); 4262 } 4263 4264 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I, 4265 bool IsCompressing) { 4266 SDLoc sdl = getCurSDLoc(); 4267 4268 auto getMaskedStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4269 MaybeAlign &Alignment) { 4270 // llvm.masked.store.*(Src0, Ptr, alignment, Mask) 4271 Src0 = I.getArgOperand(0); 4272 Ptr = I.getArgOperand(1); 4273 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getMaybeAlignValue(); 4274 Mask = I.getArgOperand(3); 4275 }; 4276 auto getCompressingStoreOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4277 MaybeAlign &Alignment) { 4278 // llvm.masked.compressstore.*(Src0, Ptr, Mask) 4279 Src0 = I.getArgOperand(0); 4280 Ptr = I.getArgOperand(1); 4281 Mask = I.getArgOperand(2); 4282 Alignment = None; 4283 }; 4284 4285 Value *PtrOperand, *MaskOperand, *Src0Operand; 4286 MaybeAlign Alignment; 4287 if (IsCompressing) 4288 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4289 else 4290 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4291 4292 SDValue Ptr = getValue(PtrOperand); 4293 SDValue Src0 = getValue(Src0Operand); 4294 SDValue Mask = getValue(MaskOperand); 4295 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4296 4297 EVT VT = Src0.getValueType(); 4298 if (!Alignment) 4299 Alignment = DAG.getEVTAlign(VT); 4300 4301 AAMDNodes AAInfo; 4302 I.getAAMetadata(AAInfo); 4303 4304 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4305 MachinePointerInfo(PtrOperand), MachineMemOperand::MOStore, 4306 // TODO: Make MachineMemOperands aware of scalable 4307 // vectors. 4308 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo); 4309 SDValue StoreNode = 4310 DAG.getMaskedStore(getMemoryRoot(), sdl, Src0, Ptr, Offset, Mask, VT, MMO, 4311 ISD::UNINDEXED, false /* Truncating */, IsCompressing); 4312 DAG.setRoot(StoreNode); 4313 setValue(&I, StoreNode); 4314 } 4315 4316 // Get a uniform base for the Gather/Scatter intrinsic. 4317 // The first argument of the Gather/Scatter intrinsic is a vector of pointers. 4318 // We try to represent it as a base pointer + vector of indices. 4319 // Usually, the vector of pointers comes from a 'getelementptr' instruction. 4320 // The first operand of the GEP may be a single pointer or a vector of pointers 4321 // Example: 4322 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind 4323 // or 4324 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind 4325 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, .. 4326 // 4327 // When the first GEP operand is a single pointer - it is the uniform base we 4328 // are looking for. If first operand of the GEP is a splat vector - we 4329 // extract the splat value and use it as a uniform base. 4330 // In all other cases the function returns 'false'. 4331 static bool getUniformBase(const Value *Ptr, SDValue &Base, SDValue &Index, 4332 ISD::MemIndexType &IndexType, SDValue &Scale, 4333 SelectionDAGBuilder *SDB, const BasicBlock *CurBB) { 4334 SelectionDAG& DAG = SDB->DAG; 4335 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4336 const DataLayout &DL = DAG.getDataLayout(); 4337 4338 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type"); 4339 4340 // Handle splat constant pointer. 4341 if (auto *C = dyn_cast<Constant>(Ptr)) { 4342 C = C->getSplatValue(); 4343 if (!C) 4344 return false; 4345 4346 Base = SDB->getValue(C); 4347 4348 unsigned NumElts = cast<FixedVectorType>(Ptr->getType())->getNumElements(); 4349 EVT VT = EVT::getVectorVT(*DAG.getContext(), TLI.getPointerTy(DL), NumElts); 4350 Index = DAG.getConstant(0, SDB->getCurSDLoc(), VT); 4351 IndexType = ISD::SIGNED_SCALED; 4352 Scale = DAG.getTargetConstant(1, SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4353 return true; 4354 } 4355 4356 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr); 4357 if (!GEP || GEP->getParent() != CurBB) 4358 return false; 4359 4360 if (GEP->getNumOperands() != 2) 4361 return false; 4362 4363 const Value *BasePtr = GEP->getPointerOperand(); 4364 const Value *IndexVal = GEP->getOperand(GEP->getNumOperands() - 1); 4365 4366 // Make sure the base is scalar and the index is a vector. 4367 if (BasePtr->getType()->isVectorTy() || !IndexVal->getType()->isVectorTy()) 4368 return false; 4369 4370 Base = SDB->getValue(BasePtr); 4371 Index = SDB->getValue(IndexVal); 4372 IndexType = ISD::SIGNED_SCALED; 4373 Scale = DAG.getTargetConstant( 4374 DL.getTypeAllocSize(GEP->getResultElementType()), 4375 SDB->getCurSDLoc(), TLI.getPointerTy(DL)); 4376 return true; 4377 } 4378 4379 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) { 4380 SDLoc sdl = getCurSDLoc(); 4381 4382 // llvm.masked.scatter.*(Src0, Ptrs, alignment, Mask) 4383 const Value *Ptr = I.getArgOperand(1); 4384 SDValue Src0 = getValue(I.getArgOperand(0)); 4385 SDValue Mask = getValue(I.getArgOperand(3)); 4386 EVT VT = Src0.getValueType(); 4387 Align Alignment = cast<ConstantInt>(I.getArgOperand(2)) 4388 ->getMaybeAlignValue() 4389 .getValueOr(DAG.getEVTAlign(VT)); 4390 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4391 4392 AAMDNodes AAInfo; 4393 I.getAAMetadata(AAInfo); 4394 4395 SDValue Base; 4396 SDValue Index; 4397 ISD::MemIndexType IndexType; 4398 SDValue Scale; 4399 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4400 I.getParent()); 4401 4402 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4403 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4404 MachinePointerInfo(AS), MachineMemOperand::MOStore, 4405 // TODO: Make MachineMemOperands aware of scalable 4406 // vectors. 4407 MemoryLocation::UnknownSize, Alignment, AAInfo); 4408 if (!UniformBase) { 4409 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4410 Index = getValue(Ptr); 4411 IndexType = ISD::SIGNED_UNSCALED; 4412 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4413 } 4414 4415 EVT IdxVT = Index.getValueType(); 4416 EVT EltTy = IdxVT.getVectorElementType(); 4417 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4418 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4419 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4420 } 4421 4422 SDValue Ops[] = { getMemoryRoot(), Src0, Mask, Base, Index, Scale }; 4423 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl, 4424 Ops, MMO, IndexType, false); 4425 DAG.setRoot(Scatter); 4426 setValue(&I, Scatter); 4427 } 4428 4429 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) { 4430 SDLoc sdl = getCurSDLoc(); 4431 4432 auto getMaskedLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4433 MaybeAlign &Alignment) { 4434 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0) 4435 Ptr = I.getArgOperand(0); 4436 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getMaybeAlignValue(); 4437 Mask = I.getArgOperand(2); 4438 Src0 = I.getArgOperand(3); 4439 }; 4440 auto getExpandingLoadOps = [&](Value *&Ptr, Value *&Mask, Value *&Src0, 4441 MaybeAlign &Alignment) { 4442 // @llvm.masked.expandload.*(Ptr, Mask, Src0) 4443 Ptr = I.getArgOperand(0); 4444 Alignment = None; 4445 Mask = I.getArgOperand(1); 4446 Src0 = I.getArgOperand(2); 4447 }; 4448 4449 Value *PtrOperand, *MaskOperand, *Src0Operand; 4450 MaybeAlign Alignment; 4451 if (IsExpanding) 4452 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4453 else 4454 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment); 4455 4456 SDValue Ptr = getValue(PtrOperand); 4457 SDValue Src0 = getValue(Src0Operand); 4458 SDValue Mask = getValue(MaskOperand); 4459 SDValue Offset = DAG.getUNDEF(Ptr.getValueType()); 4460 4461 EVT VT = Src0.getValueType(); 4462 if (!Alignment) 4463 Alignment = DAG.getEVTAlign(VT); 4464 4465 AAMDNodes AAInfo; 4466 I.getAAMetadata(AAInfo); 4467 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4468 4469 // Do not serialize masked loads of constant memory with anything. 4470 MemoryLocation ML; 4471 if (VT.isScalableVector()) 4472 ML = MemoryLocation::getAfter(PtrOperand); 4473 else 4474 ML = MemoryLocation(PtrOperand, LocationSize::precise( 4475 DAG.getDataLayout().getTypeStoreSize(I.getType())), 4476 AAInfo); 4477 bool AddToChain = !AA || !AA->pointsToConstantMemory(ML); 4478 4479 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode(); 4480 4481 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4482 MachinePointerInfo(PtrOperand), MachineMemOperand::MOLoad, 4483 // TODO: Make MachineMemOperands aware of scalable 4484 // vectors. 4485 VT.getStoreSize().getKnownMinSize(), *Alignment, AAInfo, Ranges); 4486 4487 SDValue Load = 4488 DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Offset, Mask, Src0, VT, MMO, 4489 ISD::UNINDEXED, ISD::NON_EXTLOAD, IsExpanding); 4490 if (AddToChain) 4491 PendingLoads.push_back(Load.getValue(1)); 4492 setValue(&I, Load); 4493 } 4494 4495 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) { 4496 SDLoc sdl = getCurSDLoc(); 4497 4498 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0) 4499 const Value *Ptr = I.getArgOperand(0); 4500 SDValue Src0 = getValue(I.getArgOperand(3)); 4501 SDValue Mask = getValue(I.getArgOperand(2)); 4502 4503 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4504 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4505 Align Alignment = cast<ConstantInt>(I.getArgOperand(1)) 4506 ->getMaybeAlignValue() 4507 .getValueOr(DAG.getEVTAlign(VT)); 4508 4509 AAMDNodes AAInfo; 4510 I.getAAMetadata(AAInfo); 4511 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range); 4512 4513 SDValue Root = DAG.getRoot(); 4514 SDValue Base; 4515 SDValue Index; 4516 ISD::MemIndexType IndexType; 4517 SDValue Scale; 4518 bool UniformBase = getUniformBase(Ptr, Base, Index, IndexType, Scale, this, 4519 I.getParent()); 4520 unsigned AS = Ptr->getType()->getScalarType()->getPointerAddressSpace(); 4521 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4522 MachinePointerInfo(AS), MachineMemOperand::MOLoad, 4523 // TODO: Make MachineMemOperands aware of scalable 4524 // vectors. 4525 MemoryLocation::UnknownSize, Alignment, AAInfo, Ranges); 4526 4527 if (!UniformBase) { 4528 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4529 Index = getValue(Ptr); 4530 IndexType = ISD::SIGNED_UNSCALED; 4531 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout())); 4532 } 4533 4534 EVT IdxVT = Index.getValueType(); 4535 EVT EltTy = IdxVT.getVectorElementType(); 4536 if (TLI.shouldExtendGSIndex(IdxVT, EltTy)) { 4537 EVT NewIdxVT = IdxVT.changeVectorElementType(EltTy); 4538 Index = DAG.getNode(ISD::SIGN_EXTEND, sdl, NewIdxVT, Index); 4539 } 4540 4541 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale }; 4542 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl, 4543 Ops, MMO, IndexType, ISD::NON_EXTLOAD); 4544 4545 PendingLoads.push_back(Gather.getValue(1)); 4546 setValue(&I, Gather); 4547 } 4548 4549 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) { 4550 SDLoc dl = getCurSDLoc(); 4551 AtomicOrdering SuccessOrdering = I.getSuccessOrdering(); 4552 AtomicOrdering FailureOrdering = I.getFailureOrdering(); 4553 SyncScope::ID SSID = I.getSyncScopeID(); 4554 4555 SDValue InChain = getRoot(); 4556 4557 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType(); 4558 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other); 4559 4560 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4561 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4562 4563 MachineFunction &MF = DAG.getMachineFunction(); 4564 MachineMemOperand *MMO = MF.getMachineMemOperand( 4565 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4566 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, SuccessOrdering, 4567 FailureOrdering); 4568 4569 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, 4570 dl, MemVT, VTs, InChain, 4571 getValue(I.getPointerOperand()), 4572 getValue(I.getCompareOperand()), 4573 getValue(I.getNewValOperand()), MMO); 4574 4575 SDValue OutChain = L.getValue(2); 4576 4577 setValue(&I, L); 4578 DAG.setRoot(OutChain); 4579 } 4580 4581 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) { 4582 SDLoc dl = getCurSDLoc(); 4583 ISD::NodeType NT; 4584 switch (I.getOperation()) { 4585 default: llvm_unreachable("Unknown atomicrmw operation"); 4586 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break; 4587 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break; 4588 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break; 4589 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break; 4590 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break; 4591 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break; 4592 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break; 4593 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break; 4594 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break; 4595 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break; 4596 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break; 4597 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break; 4598 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break; 4599 } 4600 AtomicOrdering Ordering = I.getOrdering(); 4601 SyncScope::ID SSID = I.getSyncScopeID(); 4602 4603 SDValue InChain = getRoot(); 4604 4605 auto MemVT = getValue(I.getValOperand()).getSimpleValueType(); 4606 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4607 auto Flags = TLI.getAtomicMemOperandFlags(I, DAG.getDataLayout()); 4608 4609 MachineFunction &MF = DAG.getMachineFunction(); 4610 MachineMemOperand *MMO = MF.getMachineMemOperand( 4611 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4612 DAG.getEVTAlign(MemVT), AAMDNodes(), nullptr, SSID, Ordering); 4613 4614 SDValue L = 4615 DAG.getAtomic(NT, dl, MemVT, InChain, 4616 getValue(I.getPointerOperand()), getValue(I.getValOperand()), 4617 MMO); 4618 4619 SDValue OutChain = L.getValue(1); 4620 4621 setValue(&I, L); 4622 DAG.setRoot(OutChain); 4623 } 4624 4625 void SelectionDAGBuilder::visitFence(const FenceInst &I) { 4626 SDLoc dl = getCurSDLoc(); 4627 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4628 SDValue Ops[3]; 4629 Ops[0] = getRoot(); 4630 Ops[1] = DAG.getTargetConstant((unsigned)I.getOrdering(), dl, 4631 TLI.getFenceOperandTy(DAG.getDataLayout())); 4632 Ops[2] = DAG.getTargetConstant(I.getSyncScopeID(), dl, 4633 TLI.getFenceOperandTy(DAG.getDataLayout())); 4634 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops)); 4635 } 4636 4637 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) { 4638 SDLoc dl = getCurSDLoc(); 4639 AtomicOrdering Order = I.getOrdering(); 4640 SyncScope::ID SSID = I.getSyncScopeID(); 4641 4642 SDValue InChain = getRoot(); 4643 4644 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4645 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 4646 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType()); 4647 4648 if (!TLI.supportsUnalignedAtomics() && 4649 I.getAlignment() < MemVT.getSizeInBits() / 8) 4650 report_fatal_error("Cannot generate unaligned atomic load"); 4651 4652 auto Flags = TLI.getLoadMemOperandFlags(I, DAG.getDataLayout()); 4653 4654 MachineMemOperand *MMO = DAG.getMachineFunction().getMachineMemOperand( 4655 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4656 I.getAlign(), AAMDNodes(), nullptr, SSID, Order); 4657 4658 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG); 4659 4660 SDValue Ptr = getValue(I.getPointerOperand()); 4661 4662 if (TLI.lowerAtomicLoadAsLoadSDNode(I)) { 4663 // TODO: Once this is better exercised by tests, it should be merged with 4664 // the normal path for loads to prevent future divergence. 4665 SDValue L = DAG.getLoad(MemVT, dl, InChain, Ptr, MMO); 4666 if (MemVT != VT) 4667 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4668 4669 setValue(&I, L); 4670 SDValue OutChain = L.getValue(1); 4671 if (!I.isUnordered()) 4672 DAG.setRoot(OutChain); 4673 else 4674 PendingLoads.push_back(OutChain); 4675 return; 4676 } 4677 4678 SDValue L = DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain, 4679 Ptr, MMO); 4680 4681 SDValue OutChain = L.getValue(1); 4682 if (MemVT != VT) 4683 L = DAG.getPtrExtOrTrunc(L, dl, VT); 4684 4685 setValue(&I, L); 4686 DAG.setRoot(OutChain); 4687 } 4688 4689 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) { 4690 SDLoc dl = getCurSDLoc(); 4691 4692 AtomicOrdering Ordering = I.getOrdering(); 4693 SyncScope::ID SSID = I.getSyncScopeID(); 4694 4695 SDValue InChain = getRoot(); 4696 4697 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4698 EVT MemVT = 4699 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType()); 4700 4701 if (I.getAlignment() < MemVT.getSizeInBits() / 8) 4702 report_fatal_error("Cannot generate unaligned atomic store"); 4703 4704 auto Flags = TLI.getStoreMemOperandFlags(I, DAG.getDataLayout()); 4705 4706 MachineFunction &MF = DAG.getMachineFunction(); 4707 MachineMemOperand *MMO = MF.getMachineMemOperand( 4708 MachinePointerInfo(I.getPointerOperand()), Flags, MemVT.getStoreSize(), 4709 I.getAlign(), AAMDNodes(), nullptr, SSID, Ordering); 4710 4711 SDValue Val = getValue(I.getValueOperand()); 4712 if (Val.getValueType() != MemVT) 4713 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT); 4714 SDValue Ptr = getValue(I.getPointerOperand()); 4715 4716 if (TLI.lowerAtomicStoreAsStoreSDNode(I)) { 4717 // TODO: Once this is better exercised by tests, it should be merged with 4718 // the normal path for stores to prevent future divergence. 4719 SDValue S = DAG.getStore(InChain, dl, Val, Ptr, MMO); 4720 DAG.setRoot(S); 4721 return; 4722 } 4723 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain, 4724 Ptr, Val, MMO); 4725 4726 4727 DAG.setRoot(OutChain); 4728 } 4729 4730 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC 4731 /// node. 4732 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I, 4733 unsigned Intrinsic) { 4734 // Ignore the callsite's attributes. A specific call site may be marked with 4735 // readnone, but the lowering code will expect the chain based on the 4736 // definition. 4737 const Function *F = I.getCalledFunction(); 4738 bool HasChain = !F->doesNotAccessMemory(); 4739 bool OnlyLoad = HasChain && F->onlyReadsMemory(); 4740 4741 // Build the operand list. 4742 SmallVector<SDValue, 8> Ops; 4743 if (HasChain) { // If this intrinsic has side-effects, chainify it. 4744 if (OnlyLoad) { 4745 // We don't need to serialize loads against other loads. 4746 Ops.push_back(DAG.getRoot()); 4747 } else { 4748 Ops.push_back(getRoot()); 4749 } 4750 } 4751 4752 // Info is set by getTgtMemInstrinsic 4753 TargetLowering::IntrinsicInfo Info; 4754 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 4755 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, 4756 DAG.getMachineFunction(), 4757 Intrinsic); 4758 4759 // Add the intrinsic ID as an integer operand if it's not a target intrinsic. 4760 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID || 4761 Info.opc == ISD::INTRINSIC_W_CHAIN) 4762 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(), 4763 TLI.getPointerTy(DAG.getDataLayout()))); 4764 4765 // Add all operands of the call to the operand list. 4766 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) { 4767 const Value *Arg = I.getArgOperand(i); 4768 if (!I.paramHasAttr(i, Attribute::ImmArg)) { 4769 Ops.push_back(getValue(Arg)); 4770 continue; 4771 } 4772 4773 // Use TargetConstant instead of a regular constant for immarg. 4774 EVT VT = TLI.getValueType(*DL, Arg->getType(), true); 4775 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Arg)) { 4776 assert(CI->getBitWidth() <= 64 && 4777 "large intrinsic immediates not handled"); 4778 Ops.push_back(DAG.getTargetConstant(*CI, SDLoc(), VT)); 4779 } else { 4780 Ops.push_back( 4781 DAG.getTargetConstantFP(*cast<ConstantFP>(Arg), SDLoc(), VT)); 4782 } 4783 } 4784 4785 SmallVector<EVT, 4> ValueVTs; 4786 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs); 4787 4788 if (HasChain) 4789 ValueVTs.push_back(MVT::Other); 4790 4791 SDVTList VTs = DAG.getVTList(ValueVTs); 4792 4793 // Create the node. 4794 SDValue Result; 4795 if (IsTgtIntrinsic) { 4796 // This is target intrinsic that touches memory 4797 AAMDNodes AAInfo; 4798 I.getAAMetadata(AAInfo); 4799 Result = 4800 DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs, Ops, Info.memVT, 4801 MachinePointerInfo(Info.ptrVal, Info.offset), 4802 Info.align, Info.flags, Info.size, AAInfo); 4803 } else if (!HasChain) { 4804 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops); 4805 } else if (!I.getType()->isVoidTy()) { 4806 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops); 4807 } else { 4808 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops); 4809 } 4810 4811 if (HasChain) { 4812 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1); 4813 if (OnlyLoad) 4814 PendingLoads.push_back(Chain); 4815 else 4816 DAG.setRoot(Chain); 4817 } 4818 4819 if (!I.getType()->isVoidTy()) { 4820 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) { 4821 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy); 4822 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result); 4823 } else 4824 Result = lowerRangeToAssertZExt(DAG, I, Result); 4825 4826 MaybeAlign Alignment = I.getRetAlign(); 4827 if (!Alignment) 4828 Alignment = F->getAttributes().getRetAlignment(); 4829 // Insert `assertalign` node if there's an alignment. 4830 if (InsertAssertAlign && Alignment) { 4831 Result = 4832 DAG.getAssertAlign(getCurSDLoc(), Result, Alignment.valueOrOne()); 4833 } 4834 4835 setValue(&I, Result); 4836 } 4837 } 4838 4839 /// GetSignificand - Get the significand and build it into a floating-point 4840 /// number with exponent of 1: 4841 /// 4842 /// Op = (Op & 0x007fffff) | 0x3f800000; 4843 /// 4844 /// where Op is the hexadecimal representation of floating point value. 4845 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) { 4846 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4847 DAG.getConstant(0x007fffff, dl, MVT::i32)); 4848 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1, 4849 DAG.getConstant(0x3f800000, dl, MVT::i32)); 4850 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2); 4851 } 4852 4853 /// GetExponent - Get the exponent: 4854 /// 4855 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127); 4856 /// 4857 /// where Op is the hexadecimal representation of floating point value. 4858 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op, 4859 const TargetLowering &TLI, const SDLoc &dl) { 4860 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op, 4861 DAG.getConstant(0x7f800000, dl, MVT::i32)); 4862 SDValue t1 = DAG.getNode( 4863 ISD::SRL, dl, MVT::i32, t0, 4864 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout()))); 4865 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1, 4866 DAG.getConstant(127, dl, MVT::i32)); 4867 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2); 4868 } 4869 4870 /// getF32Constant - Get 32-bit floating point constant. 4871 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt, 4872 const SDLoc &dl) { 4873 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl, 4874 MVT::f32); 4875 } 4876 4877 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl, 4878 SelectionDAG &DAG) { 4879 // TODO: What fast-math-flags should be set on the floating-point nodes? 4880 4881 // IntegerPartOfX = ((int32_t)(t0); 4882 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0); 4883 4884 // FractionalPartOfX = t0 - (float)IntegerPartOfX; 4885 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX); 4886 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1); 4887 4888 // IntegerPartOfX <<= 23; 4889 IntegerPartOfX = DAG.getNode( 4890 ISD::SHL, dl, MVT::i32, IntegerPartOfX, 4891 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy( 4892 DAG.getDataLayout()))); 4893 4894 SDValue TwoToFractionalPartOfX; 4895 if (LimitFloatPrecision <= 6) { 4896 // For floating-point precision of 6: 4897 // 4898 // TwoToFractionalPartOfX = 4899 // 0.997535578f + 4900 // (0.735607626f + 0.252464424f * x) * x; 4901 // 4902 // error 0.0144103317, which is 6 bits 4903 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4904 getF32Constant(DAG, 0x3e814304, dl)); 4905 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4906 getF32Constant(DAG, 0x3f3c50c8, dl)); 4907 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4908 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4909 getF32Constant(DAG, 0x3f7f5e7e, dl)); 4910 } else if (LimitFloatPrecision <= 12) { 4911 // For floating-point precision of 12: 4912 // 4913 // TwoToFractionalPartOfX = 4914 // 0.999892986f + 4915 // (0.696457318f + 4916 // (0.224338339f + 0.792043434e-1f * x) * x) * x; 4917 // 4918 // error 0.000107046256, which is 13 to 14 bits 4919 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4920 getF32Constant(DAG, 0x3da235e3, dl)); 4921 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4922 getF32Constant(DAG, 0x3e65b8f3, dl)); 4923 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4924 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4925 getF32Constant(DAG, 0x3f324b07, dl)); 4926 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4927 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4928 getF32Constant(DAG, 0x3f7ff8fd, dl)); 4929 } else { // LimitFloatPrecision <= 18 4930 // For floating-point precision of 18: 4931 // 4932 // TwoToFractionalPartOfX = 4933 // 0.999999982f + 4934 // (0.693148872f + 4935 // (0.240227044f + 4936 // (0.554906021e-1f + 4937 // (0.961591928e-2f + 4938 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x; 4939 // error 2.47208000*10^(-7), which is better than 18 bits 4940 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 4941 getF32Constant(DAG, 0x3924b03e, dl)); 4942 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 4943 getF32Constant(DAG, 0x3ab24b87, dl)); 4944 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 4945 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 4946 getF32Constant(DAG, 0x3c1d8c17, dl)); 4947 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 4948 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 4949 getF32Constant(DAG, 0x3d634a1d, dl)); 4950 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 4951 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 4952 getF32Constant(DAG, 0x3e75fe14, dl)); 4953 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 4954 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10, 4955 getF32Constant(DAG, 0x3f317234, dl)); 4956 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X); 4957 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12, 4958 getF32Constant(DAG, 0x3f800000, dl)); 4959 } 4960 4961 // Add the exponent into the result in integer domain. 4962 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX); 4963 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, 4964 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX)); 4965 } 4966 4967 /// expandExp - Lower an exp intrinsic. Handles the special sequences for 4968 /// limited-precision mode. 4969 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4970 const TargetLowering &TLI, SDNodeFlags Flags) { 4971 if (Op.getValueType() == MVT::f32 && 4972 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4973 4974 // Put the exponent in the right bit position for later addition to the 4975 // final result: 4976 // 4977 // t0 = Op * log2(e) 4978 4979 // TODO: What fast-math-flags should be set here? 4980 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op, 4981 DAG.getConstantFP(numbers::log2ef, dl, MVT::f32)); 4982 return getLimitedPrecisionExp2(t0, dl, DAG); 4983 } 4984 4985 // No special expansion. 4986 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op, Flags); 4987 } 4988 4989 /// expandLog - Lower a log intrinsic. Handles the special sequences for 4990 /// limited-precision mode. 4991 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 4992 const TargetLowering &TLI, SDNodeFlags Flags) { 4993 // TODO: What fast-math-flags should be set on the floating-point nodes? 4994 4995 if (Op.getValueType() == MVT::f32 && 4996 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 4997 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 4998 4999 // Scale the exponent by log(2). 5000 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5001 SDValue LogOfExponent = 5002 DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5003 DAG.getConstantFP(numbers::ln2f, dl, MVT::f32)); 5004 5005 // Get the significand and build it into a floating-point number with 5006 // exponent of 1. 5007 SDValue X = GetSignificand(DAG, Op1, dl); 5008 5009 SDValue LogOfMantissa; 5010 if (LimitFloatPrecision <= 6) { 5011 // For floating-point precision of 6: 5012 // 5013 // LogofMantissa = 5014 // -1.1609546f + 5015 // (1.4034025f - 0.23903021f * x) * x; 5016 // 5017 // error 0.0034276066, which is better than 8 bits 5018 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5019 getF32Constant(DAG, 0xbe74c456, dl)); 5020 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5021 getF32Constant(DAG, 0x3fb3a2b1, dl)); 5022 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5023 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5024 getF32Constant(DAG, 0x3f949a29, dl)); 5025 } else if (LimitFloatPrecision <= 12) { 5026 // For floating-point precision of 12: 5027 // 5028 // LogOfMantissa = 5029 // -1.7417939f + 5030 // (2.8212026f + 5031 // (-1.4699568f + 5032 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x; 5033 // 5034 // error 0.000061011436, which is 14 bits 5035 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5036 getF32Constant(DAG, 0xbd67b6d6, dl)); 5037 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5038 getF32Constant(DAG, 0x3ee4f4b8, dl)); 5039 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5040 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5041 getF32Constant(DAG, 0x3fbc278b, dl)); 5042 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5043 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5044 getF32Constant(DAG, 0x40348e95, dl)); 5045 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5046 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5047 getF32Constant(DAG, 0x3fdef31a, dl)); 5048 } else { // LimitFloatPrecision <= 18 5049 // For floating-point precision of 18: 5050 // 5051 // LogOfMantissa = 5052 // -2.1072184f + 5053 // (4.2372794f + 5054 // (-3.7029485f + 5055 // (2.2781945f + 5056 // (-0.87823314f + 5057 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x; 5058 // 5059 // error 0.0000023660568, which is better than 18 bits 5060 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5061 getF32Constant(DAG, 0xbc91e5ac, dl)); 5062 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5063 getF32Constant(DAG, 0x3e4350aa, dl)); 5064 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5065 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5066 getF32Constant(DAG, 0x3f60d3e3, dl)); 5067 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5068 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5069 getF32Constant(DAG, 0x4011cdf0, dl)); 5070 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5071 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5072 getF32Constant(DAG, 0x406cfd1c, dl)); 5073 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5074 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5075 getF32Constant(DAG, 0x408797cb, dl)); 5076 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5077 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5078 getF32Constant(DAG, 0x4006dcab, dl)); 5079 } 5080 5081 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa); 5082 } 5083 5084 // No special expansion. 5085 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op, Flags); 5086 } 5087 5088 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for 5089 /// limited-precision mode. 5090 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5091 const TargetLowering &TLI, SDNodeFlags Flags) { 5092 // TODO: What fast-math-flags should be set on the floating-point nodes? 5093 5094 if (Op.getValueType() == MVT::f32 && 5095 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5096 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5097 5098 // Get the exponent. 5099 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl); 5100 5101 // Get the significand and build it into a floating-point number with 5102 // exponent of 1. 5103 SDValue X = GetSignificand(DAG, Op1, dl); 5104 5105 // Different possible minimax approximations of significand in 5106 // floating-point for various degrees of accuracy over [1,2]. 5107 SDValue Log2ofMantissa; 5108 if (LimitFloatPrecision <= 6) { 5109 // For floating-point precision of 6: 5110 // 5111 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x; 5112 // 5113 // error 0.0049451742, which is more than 7 bits 5114 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5115 getF32Constant(DAG, 0xbeb08fe0, dl)); 5116 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5117 getF32Constant(DAG, 0x40019463, dl)); 5118 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5119 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5120 getF32Constant(DAG, 0x3fd6633d, dl)); 5121 } else if (LimitFloatPrecision <= 12) { 5122 // For floating-point precision of 12: 5123 // 5124 // Log2ofMantissa = 5125 // -2.51285454f + 5126 // (4.07009056f + 5127 // (-2.12067489f + 5128 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x; 5129 // 5130 // error 0.0000876136000, which is better than 13 bits 5131 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5132 getF32Constant(DAG, 0xbda7262e, dl)); 5133 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5134 getF32Constant(DAG, 0x3f25280b, dl)); 5135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5136 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5137 getF32Constant(DAG, 0x4007b923, dl)); 5138 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5139 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5140 getF32Constant(DAG, 0x40823e2f, dl)); 5141 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5142 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5143 getF32Constant(DAG, 0x4020d29c, dl)); 5144 } else { // LimitFloatPrecision <= 18 5145 // For floating-point precision of 18: 5146 // 5147 // Log2ofMantissa = 5148 // -3.0400495f + 5149 // (6.1129976f + 5150 // (-5.3420409f + 5151 // (3.2865683f + 5152 // (-1.2669343f + 5153 // (0.27515199f - 5154 // 0.25691327e-1f * x) * x) * x) * x) * x) * x; 5155 // 5156 // error 0.0000018516, which is better than 18 bits 5157 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5158 getF32Constant(DAG, 0xbcd2769e, dl)); 5159 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5160 getF32Constant(DAG, 0x3e8ce0b9, dl)); 5161 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5162 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5163 getF32Constant(DAG, 0x3fa22ae7, dl)); 5164 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5165 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4, 5166 getF32Constant(DAG, 0x40525723, dl)); 5167 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5168 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6, 5169 getF32Constant(DAG, 0x40aaf200, dl)); 5170 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5171 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8, 5172 getF32Constant(DAG, 0x40c39dad, dl)); 5173 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X); 5174 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10, 5175 getF32Constant(DAG, 0x4042902c, dl)); 5176 } 5177 5178 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa); 5179 } 5180 5181 // No special expansion. 5182 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op, Flags); 5183 } 5184 5185 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for 5186 /// limited-precision mode. 5187 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5188 const TargetLowering &TLI, SDNodeFlags Flags) { 5189 // TODO: What fast-math-flags should be set on the floating-point nodes? 5190 5191 if (Op.getValueType() == MVT::f32 && 5192 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5193 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op); 5194 5195 // Scale the exponent by log10(2) [0.30102999f]. 5196 SDValue Exp = GetExponent(DAG, Op1, TLI, dl); 5197 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp, 5198 getF32Constant(DAG, 0x3e9a209a, dl)); 5199 5200 // Get the significand and build it into a floating-point number with 5201 // exponent of 1. 5202 SDValue X = GetSignificand(DAG, Op1, dl); 5203 5204 SDValue Log10ofMantissa; 5205 if (LimitFloatPrecision <= 6) { 5206 // For floating-point precision of 6: 5207 // 5208 // Log10ofMantissa = 5209 // -0.50419619f + 5210 // (0.60948995f - 0.10380950f * x) * x; 5211 // 5212 // error 0.0014886165, which is 6 bits 5213 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5214 getF32Constant(DAG, 0xbdd49a13, dl)); 5215 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0, 5216 getF32Constant(DAG, 0x3f1c0789, dl)); 5217 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5218 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2, 5219 getF32Constant(DAG, 0x3f011300, dl)); 5220 } else if (LimitFloatPrecision <= 12) { 5221 // For floating-point precision of 12: 5222 // 5223 // Log10ofMantissa = 5224 // -0.64831180f + 5225 // (0.91751397f + 5226 // (-0.31664806f + 0.47637168e-1f * x) * x) * x; 5227 // 5228 // error 0.00019228036, which is better than 12 bits 5229 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5230 getF32Constant(DAG, 0x3d431f31, dl)); 5231 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5232 getF32Constant(DAG, 0x3ea21fb2, dl)); 5233 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5234 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5235 getF32Constant(DAG, 0x3f6ae232, dl)); 5236 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5237 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5238 getF32Constant(DAG, 0x3f25f7c3, dl)); 5239 } else { // LimitFloatPrecision <= 18 5240 // For floating-point precision of 18: 5241 // 5242 // Log10ofMantissa = 5243 // -0.84299375f + 5244 // (1.5327582f + 5245 // (-1.0688956f + 5246 // (0.49102474f + 5247 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x; 5248 // 5249 // error 0.0000037995730, which is better than 18 bits 5250 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X, 5251 getF32Constant(DAG, 0x3c5d51ce, dl)); 5252 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, 5253 getF32Constant(DAG, 0x3e00685a, dl)); 5254 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X); 5255 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2, 5256 getF32Constant(DAG, 0x3efb6798, dl)); 5257 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X); 5258 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4, 5259 getF32Constant(DAG, 0x3f88d192, dl)); 5260 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X); 5261 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6, 5262 getF32Constant(DAG, 0x3fc4316c, dl)); 5263 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X); 5264 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8, 5265 getF32Constant(DAG, 0x3f57ce70, dl)); 5266 } 5267 5268 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa); 5269 } 5270 5271 // No special expansion. 5272 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op, Flags); 5273 } 5274 5275 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for 5276 /// limited-precision mode. 5277 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG, 5278 const TargetLowering &TLI, SDNodeFlags Flags) { 5279 if (Op.getValueType() == MVT::f32 && 5280 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) 5281 return getLimitedPrecisionExp2(Op, dl, DAG); 5282 5283 // No special expansion. 5284 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op, Flags); 5285 } 5286 5287 /// visitPow - Lower a pow intrinsic. Handles the special sequences for 5288 /// limited-precision mode with x == 10.0f. 5289 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS, 5290 SelectionDAG &DAG, const TargetLowering &TLI, 5291 SDNodeFlags Flags) { 5292 bool IsExp10 = false; 5293 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 && 5294 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) { 5295 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) { 5296 APFloat Ten(10.0f); 5297 IsExp10 = LHSC->isExactlyValue(Ten); 5298 } 5299 } 5300 5301 // TODO: What fast-math-flags should be set on the FMUL node? 5302 if (IsExp10) { 5303 // Put the exponent in the right bit position for later addition to the 5304 // final result: 5305 // 5306 // #define LOG2OF10 3.3219281f 5307 // t0 = Op * LOG2OF10; 5308 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS, 5309 getF32Constant(DAG, 0x40549a78, dl)); 5310 return getLimitedPrecisionExp2(t0, dl, DAG); 5311 } 5312 5313 // No special expansion. 5314 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS, Flags); 5315 } 5316 5317 /// ExpandPowI - Expand a llvm.powi intrinsic. 5318 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS, 5319 SelectionDAG &DAG) { 5320 // If RHS is a constant, we can expand this out to a multiplication tree, 5321 // otherwise we end up lowering to a call to __powidf2 (for example). When 5322 // optimizing for size, we only want to do this if the expansion would produce 5323 // a small number of multiplies, otherwise we do the full expansion. 5324 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) { 5325 // Get the exponent as a positive value. 5326 unsigned Val = RHSC->getSExtValue(); 5327 if ((int)Val < 0) Val = -Val; 5328 5329 // powi(x, 0) -> 1.0 5330 if (Val == 0) 5331 return DAG.getConstantFP(1.0, DL, LHS.getValueType()); 5332 5333 bool OptForSize = DAG.shouldOptForSize(); 5334 if (!OptForSize || 5335 // If optimizing for size, don't insert too many multiplies. 5336 // This inserts up to 5 multiplies. 5337 countPopulation(Val) + Log2_32(Val) < 7) { 5338 // We use the simple binary decomposition method to generate the multiply 5339 // sequence. There are more optimal ways to do this (for example, 5340 // powi(x,15) generates one more multiply than it should), but this has 5341 // the benefit of being both really simple and much better than a libcall. 5342 SDValue Res; // Logically starts equal to 1.0 5343 SDValue CurSquare = LHS; 5344 // TODO: Intrinsics should have fast-math-flags that propagate to these 5345 // nodes. 5346 while (Val) { 5347 if (Val & 1) { 5348 if (Res.getNode()) 5349 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare); 5350 else 5351 Res = CurSquare; // 1.0*CurSquare. 5352 } 5353 5354 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(), 5355 CurSquare, CurSquare); 5356 Val >>= 1; 5357 } 5358 5359 // If the original was negative, invert the result, producing 1/(x*x*x). 5360 if (RHSC->getSExtValue() < 0) 5361 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(), 5362 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res); 5363 return Res; 5364 } 5365 } 5366 5367 // Otherwise, expand to a libcall. 5368 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS); 5369 } 5370 5371 static SDValue expandDivFix(unsigned Opcode, const SDLoc &DL, 5372 SDValue LHS, SDValue RHS, SDValue Scale, 5373 SelectionDAG &DAG, const TargetLowering &TLI) { 5374 EVT VT = LHS.getValueType(); 5375 bool Signed = Opcode == ISD::SDIVFIX || Opcode == ISD::SDIVFIXSAT; 5376 bool Saturating = Opcode == ISD::SDIVFIXSAT || Opcode == ISD::UDIVFIXSAT; 5377 LLVMContext &Ctx = *DAG.getContext(); 5378 5379 // If the type is legal but the operation isn't, this node might survive all 5380 // the way to operation legalization. If we end up there and we do not have 5381 // the ability to widen the type (if VT*2 is not legal), we cannot expand the 5382 // node. 5383 5384 // Coax the legalizer into expanding the node during type legalization instead 5385 // by bumping the size by one bit. This will force it to Promote, enabling the 5386 // early expansion and avoiding the need to expand later. 5387 5388 // We don't have to do this if Scale is 0; that can always be expanded, unless 5389 // it's a saturating signed operation. Those can experience true integer 5390 // division overflow, a case which we must avoid. 5391 5392 // FIXME: We wouldn't have to do this (or any of the early 5393 // expansion/promotion) if it was possible to expand a libcall of an 5394 // illegal type during operation legalization. But it's not, so things 5395 // get a bit hacky. 5396 unsigned ScaleInt = cast<ConstantSDNode>(Scale)->getZExtValue(); 5397 if ((ScaleInt > 0 || (Saturating && Signed)) && 5398 (TLI.isTypeLegal(VT) || 5399 (VT.isVector() && TLI.isTypeLegal(VT.getVectorElementType())))) { 5400 TargetLowering::LegalizeAction Action = TLI.getFixedPointOperationAction( 5401 Opcode, VT, ScaleInt); 5402 if (Action != TargetLowering::Legal && Action != TargetLowering::Custom) { 5403 EVT PromVT; 5404 if (VT.isScalarInteger()) 5405 PromVT = EVT::getIntegerVT(Ctx, VT.getSizeInBits() + 1); 5406 else if (VT.isVector()) { 5407 PromVT = VT.getVectorElementType(); 5408 PromVT = EVT::getIntegerVT(Ctx, PromVT.getSizeInBits() + 1); 5409 PromVT = EVT::getVectorVT(Ctx, PromVT, VT.getVectorElementCount()); 5410 } else 5411 llvm_unreachable("Wrong VT for DIVFIX?"); 5412 if (Signed) { 5413 LHS = DAG.getSExtOrTrunc(LHS, DL, PromVT); 5414 RHS = DAG.getSExtOrTrunc(RHS, DL, PromVT); 5415 } else { 5416 LHS = DAG.getZExtOrTrunc(LHS, DL, PromVT); 5417 RHS = DAG.getZExtOrTrunc(RHS, DL, PromVT); 5418 } 5419 EVT ShiftTy = TLI.getShiftAmountTy(PromVT, DAG.getDataLayout()); 5420 // For saturating operations, we need to shift up the LHS to get the 5421 // proper saturation width, and then shift down again afterwards. 5422 if (Saturating) 5423 LHS = DAG.getNode(ISD::SHL, DL, PromVT, LHS, 5424 DAG.getConstant(1, DL, ShiftTy)); 5425 SDValue Res = DAG.getNode(Opcode, DL, PromVT, LHS, RHS, Scale); 5426 if (Saturating) 5427 Res = DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, PromVT, Res, 5428 DAG.getConstant(1, DL, ShiftTy)); 5429 return DAG.getZExtOrTrunc(Res, DL, VT); 5430 } 5431 } 5432 5433 return DAG.getNode(Opcode, DL, VT, LHS, RHS, Scale); 5434 } 5435 5436 // getUnderlyingArgRegs - Find underlying registers used for a truncated, 5437 // bitcasted, or split argument. Returns a list of <Register, size in bits> 5438 static void 5439 getUnderlyingArgRegs(SmallVectorImpl<std::pair<unsigned, TypeSize>> &Regs, 5440 const SDValue &N) { 5441 switch (N.getOpcode()) { 5442 case ISD::CopyFromReg: { 5443 SDValue Op = N.getOperand(1); 5444 Regs.emplace_back(cast<RegisterSDNode>(Op)->getReg(), 5445 Op.getValueType().getSizeInBits()); 5446 return; 5447 } 5448 case ISD::BITCAST: 5449 case ISD::AssertZext: 5450 case ISD::AssertSext: 5451 case ISD::TRUNCATE: 5452 getUnderlyingArgRegs(Regs, N.getOperand(0)); 5453 return; 5454 case ISD::BUILD_PAIR: 5455 case ISD::BUILD_VECTOR: 5456 case ISD::CONCAT_VECTORS: 5457 for (SDValue Op : N->op_values()) 5458 getUnderlyingArgRegs(Regs, Op); 5459 return; 5460 default: 5461 return; 5462 } 5463 } 5464 5465 /// If the DbgValueInst is a dbg_value of a function argument, create the 5466 /// corresponding DBG_VALUE machine instruction for it now. At the end of 5467 /// instruction selection, they will be inserted to the entry BB. 5468 /// We don't currently support this for variadic dbg_values, as they shouldn't 5469 /// appear for function arguments or in the prologue. 5470 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue( 5471 const Value *V, DILocalVariable *Variable, DIExpression *Expr, 5472 DILocation *DL, bool IsDbgDeclare, const SDValue &N) { 5473 const Argument *Arg = dyn_cast<Argument>(V); 5474 if (!Arg) 5475 return false; 5476 5477 if (!IsDbgDeclare) { 5478 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5479 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in 5480 // the entry block. 5481 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front(); 5482 if (!IsInEntryBlock) 5483 return false; 5484 5485 // ArgDbgValues are hoisted to the beginning of the entry block. So we 5486 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a 5487 // variable that also is a param. 5488 // 5489 // Although, if we are at the top of the entry block already, we can still 5490 // emit using ArgDbgValue. This might catch some situations when the 5491 // dbg.value refers to an argument that isn't used in the entry block, so 5492 // any CopyToReg node would be optimized out and the only way to express 5493 // this DBG_VALUE is by using the physical reg (or FI) as done in this 5494 // method. ArgDbgValues are hoisted to the beginning of the entry block. So 5495 // we should only emit as ArgDbgValue if the Variable is an argument to the 5496 // current function, and the dbg.value intrinsic is found in the entry 5497 // block. 5498 bool VariableIsFunctionInputArg = Variable->isParameter() && 5499 !DL->getInlinedAt(); 5500 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder; 5501 if (!IsInPrologue && !VariableIsFunctionInputArg) 5502 return false; 5503 5504 // Here we assume that a function argument on IR level only can be used to 5505 // describe one input parameter on source level. If we for example have 5506 // source code like this 5507 // 5508 // struct A { long x, y; }; 5509 // void foo(struct A a, long b) { 5510 // ... 5511 // b = a.x; 5512 // ... 5513 // } 5514 // 5515 // and IR like this 5516 // 5517 // define void @foo(i32 %a1, i32 %a2, i32 %b) { 5518 // entry: 5519 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment 5520 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment 5521 // call void @llvm.dbg.value(metadata i32 %b, "b", 5522 // ... 5523 // call void @llvm.dbg.value(metadata i32 %a1, "b" 5524 // ... 5525 // 5526 // then the last dbg.value is describing a parameter "b" using a value that 5527 // is an argument. But since we already has used %a1 to describe a parameter 5528 // we should not handle that last dbg.value here (that would result in an 5529 // incorrect hoisting of the DBG_VALUE to the function entry). 5530 // Notice that we allow one dbg.value per IR level argument, to accommodate 5531 // for the situation with fragments above. 5532 if (VariableIsFunctionInputArg) { 5533 unsigned ArgNo = Arg->getArgNo(); 5534 if (ArgNo >= FuncInfo.DescribedArgs.size()) 5535 FuncInfo.DescribedArgs.resize(ArgNo + 1, false); 5536 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo)) 5537 return false; 5538 FuncInfo.DescribedArgs.set(ArgNo); 5539 } 5540 } 5541 5542 MachineFunction &MF = DAG.getMachineFunction(); 5543 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 5544 5545 bool IsIndirect = false; 5546 Optional<MachineOperand> Op; 5547 // Some arguments' frame index is recorded during argument lowering. 5548 int FI = FuncInfo.getArgumentFrameIndex(Arg); 5549 if (FI != std::numeric_limits<int>::max()) 5550 Op = MachineOperand::CreateFI(FI); 5551 5552 SmallVector<std::pair<unsigned, TypeSize>, 8> ArgRegsAndSizes; 5553 if (!Op && N.getNode()) { 5554 getUnderlyingArgRegs(ArgRegsAndSizes, N); 5555 Register Reg; 5556 if (ArgRegsAndSizes.size() == 1) 5557 Reg = ArgRegsAndSizes.front().first; 5558 5559 if (Reg && Reg.isVirtual()) { 5560 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 5561 Register PR = RegInfo.getLiveInPhysReg(Reg); 5562 if (PR) 5563 Reg = PR; 5564 } 5565 if (Reg) { 5566 Op = MachineOperand::CreateReg(Reg, false); 5567 IsIndirect = IsDbgDeclare; 5568 } 5569 } 5570 5571 if (!Op && N.getNode()) { 5572 // Check if frame index is available. 5573 SDValue LCandidate = peekThroughBitcasts(N); 5574 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode())) 5575 if (FrameIndexSDNode *FINode = 5576 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 5577 Op = MachineOperand::CreateFI(FINode->getIndex()); 5578 } 5579 5580 if (!Op) { 5581 // Create a DBG_VALUE for each decomposed value in ArgRegs to cover Reg 5582 auto splitMultiRegDbgValue = [&](ArrayRef<std::pair<unsigned, TypeSize>> 5583 SplitRegs) { 5584 unsigned Offset = 0; 5585 for (auto RegAndSize : SplitRegs) { 5586 // If the expression is already a fragment, the current register 5587 // offset+size might extend beyond the fragment. In this case, only 5588 // the register bits that are inside the fragment are relevant. 5589 int RegFragmentSizeInBits = RegAndSize.second; 5590 if (auto ExprFragmentInfo = Expr->getFragmentInfo()) { 5591 uint64_t ExprFragmentSizeInBits = ExprFragmentInfo->SizeInBits; 5592 // The register is entirely outside the expression fragment, 5593 // so is irrelevant for debug info. 5594 if (Offset >= ExprFragmentSizeInBits) 5595 break; 5596 // The register is partially outside the expression fragment, only 5597 // the low bits within the fragment are relevant for debug info. 5598 if (Offset + RegFragmentSizeInBits > ExprFragmentSizeInBits) { 5599 RegFragmentSizeInBits = ExprFragmentSizeInBits - Offset; 5600 } 5601 } 5602 5603 auto FragmentExpr = DIExpression::createFragmentExpression( 5604 Expr, Offset, RegFragmentSizeInBits); 5605 Offset += RegAndSize.second; 5606 // If a valid fragment expression cannot be created, the variable's 5607 // correct value cannot be determined and so it is set as Undef. 5608 if (!FragmentExpr) { 5609 SDDbgValue *SDV = DAG.getConstantDbgValue( 5610 Variable, Expr, UndefValue::get(V->getType()), DL, SDNodeOrder); 5611 DAG.AddDbgValue(SDV, false); 5612 continue; 5613 } 5614 FuncInfo.ArgDbgValues.push_back( 5615 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare, 5616 RegAndSize.first, Variable, *FragmentExpr)); 5617 } 5618 }; 5619 5620 // Check if ValueMap has reg number. 5621 DenseMap<const Value *, Register>::const_iterator 5622 VMI = FuncInfo.ValueMap.find(V); 5623 if (VMI != FuncInfo.ValueMap.end()) { 5624 const auto &TLI = DAG.getTargetLoweringInfo(); 5625 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second, 5626 V->getType(), None); 5627 if (RFV.occupiesMultipleRegs()) { 5628 splitMultiRegDbgValue(RFV.getRegsAndSizes()); 5629 return true; 5630 } 5631 5632 Op = MachineOperand::CreateReg(VMI->second, false); 5633 IsIndirect = IsDbgDeclare; 5634 } else if (ArgRegsAndSizes.size() > 1) { 5635 // This was split due to the calling convention, and no virtual register 5636 // mapping exists for the value. 5637 splitMultiRegDbgValue(ArgRegsAndSizes); 5638 return true; 5639 } 5640 } 5641 5642 if (!Op) 5643 return false; 5644 5645 assert(Variable->isValidLocationForIntrinsic(DL) && 5646 "Expected inlined-at fields to agree"); 5647 IsIndirect = (Op->isReg()) ? IsIndirect : true; 5648 FuncInfo.ArgDbgValues.push_back( 5649 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect, 5650 *Op, Variable, Expr)); 5651 5652 return true; 5653 } 5654 5655 /// Return the appropriate SDDbgValue based on N. 5656 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N, 5657 DILocalVariable *Variable, 5658 DIExpression *Expr, 5659 const DebugLoc &dl, 5660 unsigned DbgSDNodeOrder) { 5661 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) { 5662 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe 5663 // stack slot locations. 5664 // 5665 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting 5666 // debug values here after optimization: 5667 // 5668 // dbg.value(i32* %px, !"int *px", !DIExpression()), and 5669 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref)) 5670 // 5671 // Both describe the direct values of their associated variables. 5672 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(), 5673 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5674 } 5675 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(), 5676 /*IsIndirect*/ false, dl, DbgSDNodeOrder); 5677 } 5678 5679 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) { 5680 switch (Intrinsic) { 5681 case Intrinsic::smul_fix: 5682 return ISD::SMULFIX; 5683 case Intrinsic::umul_fix: 5684 return ISD::UMULFIX; 5685 case Intrinsic::smul_fix_sat: 5686 return ISD::SMULFIXSAT; 5687 case Intrinsic::umul_fix_sat: 5688 return ISD::UMULFIXSAT; 5689 case Intrinsic::sdiv_fix: 5690 return ISD::SDIVFIX; 5691 case Intrinsic::udiv_fix: 5692 return ISD::UDIVFIX; 5693 case Intrinsic::sdiv_fix_sat: 5694 return ISD::SDIVFIXSAT; 5695 case Intrinsic::udiv_fix_sat: 5696 return ISD::UDIVFIXSAT; 5697 default: 5698 llvm_unreachable("Unhandled fixed point intrinsic"); 5699 } 5700 } 5701 5702 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I, 5703 const char *FunctionName) { 5704 assert(FunctionName && "FunctionName must not be nullptr"); 5705 SDValue Callee = DAG.getExternalSymbol( 5706 FunctionName, 5707 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout())); 5708 LowerCallTo(I, Callee, I.isTailCall()); 5709 } 5710 5711 /// Given a @llvm.call.preallocated.setup, return the corresponding 5712 /// preallocated call. 5713 static const CallBase *FindPreallocatedCall(const Value *PreallocatedSetup) { 5714 assert(cast<CallBase>(PreallocatedSetup) 5715 ->getCalledFunction() 5716 ->getIntrinsicID() == Intrinsic::call_preallocated_setup && 5717 "expected call_preallocated_setup Value"); 5718 for (auto *U : PreallocatedSetup->users()) { 5719 auto *UseCall = cast<CallBase>(U); 5720 const Function *Fn = UseCall->getCalledFunction(); 5721 if (!Fn || Fn->getIntrinsicID() != Intrinsic::call_preallocated_arg) { 5722 return UseCall; 5723 } 5724 } 5725 llvm_unreachable("expected corresponding call to preallocated setup/arg"); 5726 } 5727 5728 /// Lower the call to the specified intrinsic function. 5729 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, 5730 unsigned Intrinsic) { 5731 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 5732 SDLoc sdl = getCurSDLoc(); 5733 DebugLoc dl = getCurDebugLoc(); 5734 SDValue Res; 5735 5736 SDNodeFlags Flags; 5737 if (auto *FPOp = dyn_cast<FPMathOperator>(&I)) 5738 Flags.copyFMF(*FPOp); 5739 5740 switch (Intrinsic) { 5741 default: 5742 // By default, turn this into a target intrinsic node. 5743 visitTargetIntrinsic(I, Intrinsic); 5744 return; 5745 case Intrinsic::vscale: { 5746 match(&I, m_VScale(DAG.getDataLayout())); 5747 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5748 setValue(&I, 5749 DAG.getVScale(getCurSDLoc(), VT, APInt(VT.getSizeInBits(), 1))); 5750 return; 5751 } 5752 case Intrinsic::vastart: visitVAStart(I); return; 5753 case Intrinsic::vaend: visitVAEnd(I); return; 5754 case Intrinsic::vacopy: visitVACopy(I); return; 5755 case Intrinsic::returnaddress: 5756 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, 5757 TLI.getPointerTy(DAG.getDataLayout()), 5758 getValue(I.getArgOperand(0)))); 5759 return; 5760 case Intrinsic::addressofreturnaddress: 5761 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl, 5762 TLI.getPointerTy(DAG.getDataLayout()))); 5763 return; 5764 case Intrinsic::sponentry: 5765 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl, 5766 TLI.getFrameIndexTy(DAG.getDataLayout()))); 5767 return; 5768 case Intrinsic::frameaddress: 5769 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, 5770 TLI.getFrameIndexTy(DAG.getDataLayout()), 5771 getValue(I.getArgOperand(0)))); 5772 return; 5773 case Intrinsic::read_volatile_register: 5774 case Intrinsic::read_register: { 5775 Value *Reg = I.getArgOperand(0); 5776 SDValue Chain = getRoot(); 5777 SDValue RegName = 5778 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5779 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 5780 Res = DAG.getNode(ISD::READ_REGISTER, sdl, 5781 DAG.getVTList(VT, MVT::Other), Chain, RegName); 5782 setValue(&I, Res); 5783 DAG.setRoot(Res.getValue(1)); 5784 return; 5785 } 5786 case Intrinsic::write_register: { 5787 Value *Reg = I.getArgOperand(0); 5788 Value *RegValue = I.getArgOperand(1); 5789 SDValue Chain = getRoot(); 5790 SDValue RegName = 5791 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata())); 5792 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain, 5793 RegName, getValue(RegValue))); 5794 return; 5795 } 5796 case Intrinsic::memcpy: { 5797 const auto &MCI = cast<MemCpyInst>(I); 5798 SDValue Op1 = getValue(I.getArgOperand(0)); 5799 SDValue Op2 = getValue(I.getArgOperand(1)); 5800 SDValue Op3 = getValue(I.getArgOperand(2)); 5801 // @llvm.memcpy defines 0 and 1 to both mean no alignment. 5802 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5803 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5804 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5805 bool isVol = MCI.isVolatile(); 5806 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5807 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5808 // node. 5809 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5810 SDValue MC = DAG.getMemcpy(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5811 /* AlwaysInline */ false, isTC, 5812 MachinePointerInfo(I.getArgOperand(0)), 5813 MachinePointerInfo(I.getArgOperand(1))); 5814 updateDAGForMaybeTailCall(MC); 5815 return; 5816 } 5817 case Intrinsic::memcpy_inline: { 5818 const auto &MCI = cast<MemCpyInlineInst>(I); 5819 SDValue Dst = getValue(I.getArgOperand(0)); 5820 SDValue Src = getValue(I.getArgOperand(1)); 5821 SDValue Size = getValue(I.getArgOperand(2)); 5822 assert(isa<ConstantSDNode>(Size) && "memcpy_inline needs constant size"); 5823 // @llvm.memcpy.inline defines 0 and 1 to both mean no alignment. 5824 Align DstAlign = MCI.getDestAlign().valueOrOne(); 5825 Align SrcAlign = MCI.getSourceAlign().valueOrOne(); 5826 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5827 bool isVol = MCI.isVolatile(); 5828 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5829 // FIXME: Support passing different dest/src alignments to the memcpy DAG 5830 // node. 5831 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Alignment, isVol, 5832 /* AlwaysInline */ true, isTC, 5833 MachinePointerInfo(I.getArgOperand(0)), 5834 MachinePointerInfo(I.getArgOperand(1))); 5835 updateDAGForMaybeTailCall(MC); 5836 return; 5837 } 5838 case Intrinsic::memset: { 5839 const auto &MSI = cast<MemSetInst>(I); 5840 SDValue Op1 = getValue(I.getArgOperand(0)); 5841 SDValue Op2 = getValue(I.getArgOperand(1)); 5842 SDValue Op3 = getValue(I.getArgOperand(2)); 5843 // @llvm.memset defines 0 and 1 to both mean no alignment. 5844 Align Alignment = MSI.getDestAlign().valueOrOne(); 5845 bool isVol = MSI.isVolatile(); 5846 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5847 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5848 SDValue MS = DAG.getMemset(Root, sdl, Op1, Op2, Op3, Alignment, isVol, isTC, 5849 MachinePointerInfo(I.getArgOperand(0))); 5850 updateDAGForMaybeTailCall(MS); 5851 return; 5852 } 5853 case Intrinsic::memmove: { 5854 const auto &MMI = cast<MemMoveInst>(I); 5855 SDValue Op1 = getValue(I.getArgOperand(0)); 5856 SDValue Op2 = getValue(I.getArgOperand(1)); 5857 SDValue Op3 = getValue(I.getArgOperand(2)); 5858 // @llvm.memmove defines 0 and 1 to both mean no alignment. 5859 Align DstAlign = MMI.getDestAlign().valueOrOne(); 5860 Align SrcAlign = MMI.getSourceAlign().valueOrOne(); 5861 Align Alignment = commonAlignment(DstAlign, SrcAlign); 5862 bool isVol = MMI.isVolatile(); 5863 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5864 // FIXME: Support passing different dest/src alignments to the memmove DAG 5865 // node. 5866 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 5867 SDValue MM = DAG.getMemmove(Root, sdl, Op1, Op2, Op3, Alignment, isVol, 5868 isTC, MachinePointerInfo(I.getArgOperand(0)), 5869 MachinePointerInfo(I.getArgOperand(1))); 5870 updateDAGForMaybeTailCall(MM); 5871 return; 5872 } 5873 case Intrinsic::memcpy_element_unordered_atomic: { 5874 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I); 5875 SDValue Dst = getValue(MI.getRawDest()); 5876 SDValue Src = getValue(MI.getRawSource()); 5877 SDValue Length = getValue(MI.getLength()); 5878 5879 unsigned DstAlign = MI.getDestAlignment(); 5880 unsigned SrcAlign = MI.getSourceAlignment(); 5881 Type *LengthTy = MI.getLength()->getType(); 5882 unsigned ElemSz = MI.getElementSizeInBytes(); 5883 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5884 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src, 5885 SrcAlign, Length, LengthTy, ElemSz, isTC, 5886 MachinePointerInfo(MI.getRawDest()), 5887 MachinePointerInfo(MI.getRawSource())); 5888 updateDAGForMaybeTailCall(MC); 5889 return; 5890 } 5891 case Intrinsic::memmove_element_unordered_atomic: { 5892 auto &MI = cast<AtomicMemMoveInst>(I); 5893 SDValue Dst = getValue(MI.getRawDest()); 5894 SDValue Src = getValue(MI.getRawSource()); 5895 SDValue Length = getValue(MI.getLength()); 5896 5897 unsigned DstAlign = MI.getDestAlignment(); 5898 unsigned SrcAlign = MI.getSourceAlignment(); 5899 Type *LengthTy = MI.getLength()->getType(); 5900 unsigned ElemSz = MI.getElementSizeInBytes(); 5901 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5902 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src, 5903 SrcAlign, Length, LengthTy, ElemSz, isTC, 5904 MachinePointerInfo(MI.getRawDest()), 5905 MachinePointerInfo(MI.getRawSource())); 5906 updateDAGForMaybeTailCall(MC); 5907 return; 5908 } 5909 case Intrinsic::memset_element_unordered_atomic: { 5910 auto &MI = cast<AtomicMemSetInst>(I); 5911 SDValue Dst = getValue(MI.getRawDest()); 5912 SDValue Val = getValue(MI.getValue()); 5913 SDValue Length = getValue(MI.getLength()); 5914 5915 unsigned DstAlign = MI.getDestAlignment(); 5916 Type *LengthTy = MI.getLength()->getType(); 5917 unsigned ElemSz = MI.getElementSizeInBytes(); 5918 bool isTC = I.isTailCall() && isInTailCallPosition(I, DAG.getTarget()); 5919 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length, 5920 LengthTy, ElemSz, isTC, 5921 MachinePointerInfo(MI.getRawDest())); 5922 updateDAGForMaybeTailCall(MC); 5923 return; 5924 } 5925 case Intrinsic::call_preallocated_setup: { 5926 const CallBase *PreallocatedCall = FindPreallocatedCall(&I); 5927 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5928 SDValue Res = DAG.getNode(ISD::PREALLOCATED_SETUP, sdl, MVT::Other, 5929 getRoot(), SrcValue); 5930 setValue(&I, Res); 5931 DAG.setRoot(Res); 5932 return; 5933 } 5934 case Intrinsic::call_preallocated_arg: { 5935 const CallBase *PreallocatedCall = FindPreallocatedCall(I.getOperand(0)); 5936 SDValue SrcValue = DAG.getSrcValue(PreallocatedCall); 5937 SDValue Ops[3]; 5938 Ops[0] = getRoot(); 5939 Ops[1] = SrcValue; 5940 Ops[2] = DAG.getTargetConstant(*cast<ConstantInt>(I.getArgOperand(1)), sdl, 5941 MVT::i32); // arg index 5942 SDValue Res = DAG.getNode( 5943 ISD::PREALLOCATED_ARG, sdl, 5944 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Ops); 5945 setValue(&I, Res); 5946 DAG.setRoot(Res.getValue(1)); 5947 return; 5948 } 5949 case Intrinsic::dbg_addr: 5950 case Intrinsic::dbg_declare: { 5951 // Assume dbg.addr and dbg.declare can not currently use DIArgList, i.e. 5952 // they are non-variadic. 5953 const auto &DI = cast<DbgVariableIntrinsic>(I); 5954 assert(!DI.hasArgList() && "Only dbg.value should currently use DIArgList"); 5955 DILocalVariable *Variable = DI.getVariable(); 5956 DIExpression *Expression = DI.getExpression(); 5957 dropDanglingDebugInfo(Variable, Expression); 5958 assert(Variable && "Missing variable"); 5959 LLVM_DEBUG(dbgs() << "SelectionDAG visiting debug intrinsic: " << DI 5960 << "\n"); 5961 // Check if address has undef value. 5962 const Value *Address = DI.getVariableLocationOp(0); 5963 if (!Address || isa<UndefValue>(Address) || 5964 (Address->use_empty() && !isa<Argument>(Address))) { 5965 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 5966 << " (bad/undef/unused-arg address)\n"); 5967 return; 5968 } 5969 5970 bool isParameter = Variable->isParameter() || isa<Argument>(Address); 5971 5972 // Check if this variable can be described by a frame index, typically 5973 // either as a static alloca or a byval parameter. 5974 int FI = std::numeric_limits<int>::max(); 5975 if (const auto *AI = 5976 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) { 5977 if (AI->isStaticAlloca()) { 5978 auto I = FuncInfo.StaticAllocaMap.find(AI); 5979 if (I != FuncInfo.StaticAllocaMap.end()) 5980 FI = I->second; 5981 } 5982 } else if (const auto *Arg = dyn_cast<Argument>( 5983 Address->stripInBoundsConstantOffsets())) { 5984 FI = FuncInfo.getArgumentFrameIndex(Arg); 5985 } 5986 5987 // llvm.dbg.addr is control dependent and always generates indirect 5988 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in 5989 // the MachineFunction variable table. 5990 if (FI != std::numeric_limits<int>::max()) { 5991 if (Intrinsic == Intrinsic::dbg_addr) { 5992 SDDbgValue *SDV = DAG.getFrameIndexDbgValue( 5993 Variable, Expression, FI, getRoot().getNode(), /*IsIndirect*/ true, 5994 dl, SDNodeOrder); 5995 DAG.AddDbgValue(SDV, isParameter); 5996 } else { 5997 LLVM_DEBUG(dbgs() << "Skipping " << DI 5998 << " (variable info stashed in MF side table)\n"); 5999 } 6000 return; 6001 } 6002 6003 SDValue &N = NodeMap[Address]; 6004 if (!N.getNode() && isa<Argument>(Address)) 6005 // Check unused arguments map. 6006 N = UnusedArgNodeMap[Address]; 6007 SDDbgValue *SDV; 6008 if (N.getNode()) { 6009 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address)) 6010 Address = BCI->getOperand(0); 6011 // Parameters are handled specially. 6012 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode()); 6013 if (isParameter && FINode) { 6014 // Byval parameter. We have a frame index at this point. 6015 SDV = 6016 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(), 6017 /*IsIndirect*/ true, dl, SDNodeOrder); 6018 } else if (isa<Argument>(Address)) { 6019 // Address is an argument, so try to emit its dbg value using 6020 // virtual register info from the FuncInfo.ValueMap. 6021 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N); 6022 return; 6023 } else { 6024 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(), 6025 true, dl, SDNodeOrder); 6026 } 6027 DAG.AddDbgValue(SDV, isParameter); 6028 } else { 6029 // If Address is an argument then try to emit its dbg value using 6030 // virtual register info from the FuncInfo.ValueMap. 6031 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, 6032 N)) { 6033 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI 6034 << " (could not emit func-arg dbg_value)\n"); 6035 } 6036 } 6037 return; 6038 } 6039 case Intrinsic::dbg_label: { 6040 const DbgLabelInst &DI = cast<DbgLabelInst>(I); 6041 DILabel *Label = DI.getLabel(); 6042 assert(Label && "Missing label"); 6043 6044 SDDbgLabel *SDV; 6045 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder); 6046 DAG.AddDbgLabel(SDV); 6047 return; 6048 } 6049 case Intrinsic::dbg_value: { 6050 const DbgValueInst &DI = cast<DbgValueInst>(I); 6051 assert(DI.getVariable() && "Missing variable"); 6052 6053 DILocalVariable *Variable = DI.getVariable(); 6054 DIExpression *Expression = DI.getExpression(); 6055 dropDanglingDebugInfo(Variable, Expression); 6056 SmallVector<Value *, 4> Values(DI.getValues()); 6057 if (Values.empty()) 6058 return; 6059 6060 if (std::count(Values.begin(), Values.end(), nullptr)) 6061 return; 6062 6063 bool IsVariadic = DI.hasArgList(); 6064 if (!handleDebugValue(Values, Variable, Expression, dl, DI.getDebugLoc(), 6065 SDNodeOrder, IsVariadic)) 6066 addDanglingDebugInfo(&DI, dl, SDNodeOrder); 6067 return; 6068 } 6069 6070 case Intrinsic::eh_typeid_for: { 6071 // Find the type id for the given typeinfo. 6072 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0)); 6073 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV); 6074 Res = DAG.getConstant(TypeID, sdl, MVT::i32); 6075 setValue(&I, Res); 6076 return; 6077 } 6078 6079 case Intrinsic::eh_return_i32: 6080 case Intrinsic::eh_return_i64: 6081 DAG.getMachineFunction().setCallsEHReturn(true); 6082 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl, 6083 MVT::Other, 6084 getControlRoot(), 6085 getValue(I.getArgOperand(0)), 6086 getValue(I.getArgOperand(1)))); 6087 return; 6088 case Intrinsic::eh_unwind_init: 6089 DAG.getMachineFunction().setCallsUnwindInit(true); 6090 return; 6091 case Intrinsic::eh_dwarf_cfa: 6092 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl, 6093 TLI.getPointerTy(DAG.getDataLayout()), 6094 getValue(I.getArgOperand(0)))); 6095 return; 6096 case Intrinsic::eh_sjlj_callsite: { 6097 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI(); 6098 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0)); 6099 assert(CI && "Non-constant call site value in eh.sjlj.callsite!"); 6100 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!"); 6101 6102 MMI.setCurrentCallSite(CI->getZExtValue()); 6103 return; 6104 } 6105 case Intrinsic::eh_sjlj_functioncontext: { 6106 // Get and store the index of the function context. 6107 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo(); 6108 AllocaInst *FnCtx = 6109 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts()); 6110 int FI = FuncInfo.StaticAllocaMap[FnCtx]; 6111 MFI.setFunctionContextIndex(FI); 6112 return; 6113 } 6114 case Intrinsic::eh_sjlj_setjmp: { 6115 SDValue Ops[2]; 6116 Ops[0] = getRoot(); 6117 Ops[1] = getValue(I.getArgOperand(0)); 6118 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl, 6119 DAG.getVTList(MVT::i32, MVT::Other), Ops); 6120 setValue(&I, Op.getValue(0)); 6121 DAG.setRoot(Op.getValue(1)); 6122 return; 6123 } 6124 case Intrinsic::eh_sjlj_longjmp: 6125 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other, 6126 getRoot(), getValue(I.getArgOperand(0)))); 6127 return; 6128 case Intrinsic::eh_sjlj_setup_dispatch: 6129 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other, 6130 getRoot())); 6131 return; 6132 case Intrinsic::masked_gather: 6133 visitMaskedGather(I); 6134 return; 6135 case Intrinsic::masked_load: 6136 visitMaskedLoad(I); 6137 return; 6138 case Intrinsic::masked_scatter: 6139 visitMaskedScatter(I); 6140 return; 6141 case Intrinsic::masked_store: 6142 visitMaskedStore(I); 6143 return; 6144 case Intrinsic::masked_expandload: 6145 visitMaskedLoad(I, true /* IsExpanding */); 6146 return; 6147 case Intrinsic::masked_compressstore: 6148 visitMaskedStore(I, true /* IsCompressing */); 6149 return; 6150 case Intrinsic::powi: 6151 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)), 6152 getValue(I.getArgOperand(1)), DAG)); 6153 return; 6154 case Intrinsic::log: 6155 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6156 return; 6157 case Intrinsic::log2: 6158 setValue(&I, 6159 expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6160 return; 6161 case Intrinsic::log10: 6162 setValue(&I, 6163 expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6164 return; 6165 case Intrinsic::exp: 6166 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6167 return; 6168 case Intrinsic::exp2: 6169 setValue(&I, 6170 expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI, Flags)); 6171 return; 6172 case Intrinsic::pow: 6173 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)), 6174 getValue(I.getArgOperand(1)), DAG, TLI, Flags)); 6175 return; 6176 case Intrinsic::sqrt: 6177 case Intrinsic::fabs: 6178 case Intrinsic::sin: 6179 case Intrinsic::cos: 6180 case Intrinsic::floor: 6181 case Intrinsic::ceil: 6182 case Intrinsic::trunc: 6183 case Intrinsic::rint: 6184 case Intrinsic::nearbyint: 6185 case Intrinsic::round: 6186 case Intrinsic::roundeven: 6187 case Intrinsic::canonicalize: { 6188 unsigned Opcode; 6189 switch (Intrinsic) { 6190 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6191 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break; 6192 case Intrinsic::fabs: Opcode = ISD::FABS; break; 6193 case Intrinsic::sin: Opcode = ISD::FSIN; break; 6194 case Intrinsic::cos: Opcode = ISD::FCOS; break; 6195 case Intrinsic::floor: Opcode = ISD::FFLOOR; break; 6196 case Intrinsic::ceil: Opcode = ISD::FCEIL; break; 6197 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break; 6198 case Intrinsic::rint: Opcode = ISD::FRINT; break; 6199 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break; 6200 case Intrinsic::round: Opcode = ISD::FROUND; break; 6201 case Intrinsic::roundeven: Opcode = ISD::FROUNDEVEN; break; 6202 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break; 6203 } 6204 6205 setValue(&I, DAG.getNode(Opcode, sdl, 6206 getValue(I.getArgOperand(0)).getValueType(), 6207 getValue(I.getArgOperand(0)), Flags)); 6208 return; 6209 } 6210 case Intrinsic::lround: 6211 case Intrinsic::llround: 6212 case Intrinsic::lrint: 6213 case Intrinsic::llrint: { 6214 unsigned Opcode; 6215 switch (Intrinsic) { 6216 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6217 case Intrinsic::lround: Opcode = ISD::LROUND; break; 6218 case Intrinsic::llround: Opcode = ISD::LLROUND; break; 6219 case Intrinsic::lrint: Opcode = ISD::LRINT; break; 6220 case Intrinsic::llrint: Opcode = ISD::LLRINT; break; 6221 } 6222 6223 EVT RetVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6224 setValue(&I, DAG.getNode(Opcode, sdl, RetVT, 6225 getValue(I.getArgOperand(0)))); 6226 return; 6227 } 6228 case Intrinsic::minnum: 6229 setValue(&I, DAG.getNode(ISD::FMINNUM, sdl, 6230 getValue(I.getArgOperand(0)).getValueType(), 6231 getValue(I.getArgOperand(0)), 6232 getValue(I.getArgOperand(1)), Flags)); 6233 return; 6234 case Intrinsic::maxnum: 6235 setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl, 6236 getValue(I.getArgOperand(0)).getValueType(), 6237 getValue(I.getArgOperand(0)), 6238 getValue(I.getArgOperand(1)), Flags)); 6239 return; 6240 case Intrinsic::minimum: 6241 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl, 6242 getValue(I.getArgOperand(0)).getValueType(), 6243 getValue(I.getArgOperand(0)), 6244 getValue(I.getArgOperand(1)), Flags)); 6245 return; 6246 case Intrinsic::maximum: 6247 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl, 6248 getValue(I.getArgOperand(0)).getValueType(), 6249 getValue(I.getArgOperand(0)), 6250 getValue(I.getArgOperand(1)), Flags)); 6251 return; 6252 case Intrinsic::copysign: 6253 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl, 6254 getValue(I.getArgOperand(0)).getValueType(), 6255 getValue(I.getArgOperand(0)), 6256 getValue(I.getArgOperand(1)), Flags)); 6257 return; 6258 case Intrinsic::fma: 6259 setValue(&I, DAG.getNode( 6260 ISD::FMA, sdl, getValue(I.getArgOperand(0)).getValueType(), 6261 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), 6262 getValue(I.getArgOperand(2)), Flags)); 6263 return; 6264 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 6265 case Intrinsic::INTRINSIC: 6266 #include "llvm/IR/ConstrainedOps.def" 6267 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I)); 6268 return; 6269 #define BEGIN_REGISTER_VP_INTRINSIC(VPID, ...) case Intrinsic::VPID: 6270 #include "llvm/IR/VPIntrinsics.def" 6271 visitVectorPredicationIntrinsic(cast<VPIntrinsic>(I)); 6272 return; 6273 case Intrinsic::fmuladd: { 6274 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6275 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict && 6276 TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), VT)) { 6277 setValue(&I, DAG.getNode(ISD::FMA, sdl, 6278 getValue(I.getArgOperand(0)).getValueType(), 6279 getValue(I.getArgOperand(0)), 6280 getValue(I.getArgOperand(1)), 6281 getValue(I.getArgOperand(2)), Flags)); 6282 } else { 6283 // TODO: Intrinsic calls should have fast-math-flags. 6284 SDValue Mul = DAG.getNode( 6285 ISD::FMUL, sdl, getValue(I.getArgOperand(0)).getValueType(), 6286 getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)), Flags); 6287 SDValue Add = DAG.getNode(ISD::FADD, sdl, 6288 getValue(I.getArgOperand(0)).getValueType(), 6289 Mul, getValue(I.getArgOperand(2)), Flags); 6290 setValue(&I, Add); 6291 } 6292 return; 6293 } 6294 case Intrinsic::convert_to_fp16: 6295 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16, 6296 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16, 6297 getValue(I.getArgOperand(0)), 6298 DAG.getTargetConstant(0, sdl, 6299 MVT::i32)))); 6300 return; 6301 case Intrinsic::convert_from_fp16: 6302 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl, 6303 TLI.getValueType(DAG.getDataLayout(), I.getType()), 6304 DAG.getNode(ISD::BITCAST, sdl, MVT::f16, 6305 getValue(I.getArgOperand(0))))); 6306 return; 6307 case Intrinsic::fptosi_sat: { 6308 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6309 setValue(&I, DAG.getNode(ISD::FP_TO_SINT_SAT, sdl, VT, 6310 getValue(I.getArgOperand(0)), 6311 DAG.getValueType(VT.getScalarType()))); 6312 return; 6313 } 6314 case Intrinsic::fptoui_sat: { 6315 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6316 setValue(&I, DAG.getNode(ISD::FP_TO_UINT_SAT, sdl, VT, 6317 getValue(I.getArgOperand(0)), 6318 DAG.getValueType(VT.getScalarType()))); 6319 return; 6320 } 6321 case Intrinsic::set_rounding: 6322 Res = DAG.getNode(ISD::SET_ROUNDING, sdl, MVT::Other, 6323 {getRoot(), getValue(I.getArgOperand(0))}); 6324 setValue(&I, Res); 6325 DAG.setRoot(Res.getValue(0)); 6326 return; 6327 case Intrinsic::pcmarker: { 6328 SDValue Tmp = getValue(I.getArgOperand(0)); 6329 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp)); 6330 return; 6331 } 6332 case Intrinsic::readcyclecounter: { 6333 SDValue Op = getRoot(); 6334 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl, 6335 DAG.getVTList(MVT::i64, MVT::Other), Op); 6336 setValue(&I, Res); 6337 DAG.setRoot(Res.getValue(1)); 6338 return; 6339 } 6340 case Intrinsic::bitreverse: 6341 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl, 6342 getValue(I.getArgOperand(0)).getValueType(), 6343 getValue(I.getArgOperand(0)))); 6344 return; 6345 case Intrinsic::bswap: 6346 setValue(&I, DAG.getNode(ISD::BSWAP, sdl, 6347 getValue(I.getArgOperand(0)).getValueType(), 6348 getValue(I.getArgOperand(0)))); 6349 return; 6350 case Intrinsic::cttz: { 6351 SDValue Arg = getValue(I.getArgOperand(0)); 6352 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6353 EVT Ty = Arg.getValueType(); 6354 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF, 6355 sdl, Ty, Arg)); 6356 return; 6357 } 6358 case Intrinsic::ctlz: { 6359 SDValue Arg = getValue(I.getArgOperand(0)); 6360 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1)); 6361 EVT Ty = Arg.getValueType(); 6362 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF, 6363 sdl, Ty, Arg)); 6364 return; 6365 } 6366 case Intrinsic::ctpop: { 6367 SDValue Arg = getValue(I.getArgOperand(0)); 6368 EVT Ty = Arg.getValueType(); 6369 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg)); 6370 return; 6371 } 6372 case Intrinsic::fshl: 6373 case Intrinsic::fshr: { 6374 bool IsFSHL = Intrinsic == Intrinsic::fshl; 6375 SDValue X = getValue(I.getArgOperand(0)); 6376 SDValue Y = getValue(I.getArgOperand(1)); 6377 SDValue Z = getValue(I.getArgOperand(2)); 6378 EVT VT = X.getValueType(); 6379 6380 if (X == Y) { 6381 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR; 6382 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z)); 6383 } else { 6384 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR; 6385 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z)); 6386 } 6387 return; 6388 } 6389 case Intrinsic::sadd_sat: { 6390 SDValue Op1 = getValue(I.getArgOperand(0)); 6391 SDValue Op2 = getValue(I.getArgOperand(1)); 6392 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6393 return; 6394 } 6395 case Intrinsic::uadd_sat: { 6396 SDValue Op1 = getValue(I.getArgOperand(0)); 6397 SDValue Op2 = getValue(I.getArgOperand(1)); 6398 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2)); 6399 return; 6400 } 6401 case Intrinsic::ssub_sat: { 6402 SDValue Op1 = getValue(I.getArgOperand(0)); 6403 SDValue Op2 = getValue(I.getArgOperand(1)); 6404 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6405 return; 6406 } 6407 case Intrinsic::usub_sat: { 6408 SDValue Op1 = getValue(I.getArgOperand(0)); 6409 SDValue Op2 = getValue(I.getArgOperand(1)); 6410 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2)); 6411 return; 6412 } 6413 case Intrinsic::sshl_sat: { 6414 SDValue Op1 = getValue(I.getArgOperand(0)); 6415 SDValue Op2 = getValue(I.getArgOperand(1)); 6416 setValue(&I, DAG.getNode(ISD::SSHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6417 return; 6418 } 6419 case Intrinsic::ushl_sat: { 6420 SDValue Op1 = getValue(I.getArgOperand(0)); 6421 SDValue Op2 = getValue(I.getArgOperand(1)); 6422 setValue(&I, DAG.getNode(ISD::USHLSAT, sdl, Op1.getValueType(), Op1, Op2)); 6423 return; 6424 } 6425 case Intrinsic::smul_fix: 6426 case Intrinsic::umul_fix: 6427 case Intrinsic::smul_fix_sat: 6428 case Intrinsic::umul_fix_sat: { 6429 SDValue Op1 = getValue(I.getArgOperand(0)); 6430 SDValue Op2 = getValue(I.getArgOperand(1)); 6431 SDValue Op3 = getValue(I.getArgOperand(2)); 6432 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6433 Op1.getValueType(), Op1, Op2, Op3)); 6434 return; 6435 } 6436 case Intrinsic::sdiv_fix: 6437 case Intrinsic::udiv_fix: 6438 case Intrinsic::sdiv_fix_sat: 6439 case Intrinsic::udiv_fix_sat: { 6440 SDValue Op1 = getValue(I.getArgOperand(0)); 6441 SDValue Op2 = getValue(I.getArgOperand(1)); 6442 SDValue Op3 = getValue(I.getArgOperand(2)); 6443 setValue(&I, expandDivFix(FixedPointIntrinsicToOpcode(Intrinsic), sdl, 6444 Op1, Op2, Op3, DAG, TLI)); 6445 return; 6446 } 6447 case Intrinsic::smax: { 6448 SDValue Op1 = getValue(I.getArgOperand(0)); 6449 SDValue Op2 = getValue(I.getArgOperand(1)); 6450 setValue(&I, DAG.getNode(ISD::SMAX, sdl, Op1.getValueType(), Op1, Op2)); 6451 return; 6452 } 6453 case Intrinsic::smin: { 6454 SDValue Op1 = getValue(I.getArgOperand(0)); 6455 SDValue Op2 = getValue(I.getArgOperand(1)); 6456 setValue(&I, DAG.getNode(ISD::SMIN, sdl, Op1.getValueType(), Op1, Op2)); 6457 return; 6458 } 6459 case Intrinsic::umax: { 6460 SDValue Op1 = getValue(I.getArgOperand(0)); 6461 SDValue Op2 = getValue(I.getArgOperand(1)); 6462 setValue(&I, DAG.getNode(ISD::UMAX, sdl, Op1.getValueType(), Op1, Op2)); 6463 return; 6464 } 6465 case Intrinsic::umin: { 6466 SDValue Op1 = getValue(I.getArgOperand(0)); 6467 SDValue Op2 = getValue(I.getArgOperand(1)); 6468 setValue(&I, DAG.getNode(ISD::UMIN, sdl, Op1.getValueType(), Op1, Op2)); 6469 return; 6470 } 6471 case Intrinsic::abs: { 6472 // TODO: Preserve "int min is poison" arg in SDAG? 6473 SDValue Op1 = getValue(I.getArgOperand(0)); 6474 setValue(&I, DAG.getNode(ISD::ABS, sdl, Op1.getValueType(), Op1)); 6475 return; 6476 } 6477 case Intrinsic::stacksave: { 6478 SDValue Op = getRoot(); 6479 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6480 Res = DAG.getNode(ISD::STACKSAVE, sdl, DAG.getVTList(VT, MVT::Other), Op); 6481 setValue(&I, Res); 6482 DAG.setRoot(Res.getValue(1)); 6483 return; 6484 } 6485 case Intrinsic::stackrestore: 6486 Res = getValue(I.getArgOperand(0)); 6487 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res)); 6488 return; 6489 case Intrinsic::get_dynamic_area_offset: { 6490 SDValue Op = getRoot(); 6491 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6492 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6493 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for 6494 // target. 6495 if (PtrTy.getFixedSizeInBits() < ResTy.getFixedSizeInBits()) 6496 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset" 6497 " intrinsic!"); 6498 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy), 6499 Op); 6500 DAG.setRoot(Op); 6501 setValue(&I, Res); 6502 return; 6503 } 6504 case Intrinsic::stackguard: { 6505 MachineFunction &MF = DAG.getMachineFunction(); 6506 const Module &M = *MF.getFunction().getParent(); 6507 SDValue Chain = getRoot(); 6508 if (TLI.useLoadStackGuardNode()) { 6509 Res = getLoadStackGuard(DAG, sdl, Chain); 6510 } else { 6511 EVT PtrTy = TLI.getValueType(DAG.getDataLayout(), I.getType()); 6512 const Value *Global = TLI.getSDagStackGuard(M); 6513 Align Align = DL->getPrefTypeAlign(Global->getType()); 6514 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global), 6515 MachinePointerInfo(Global, 0), Align, 6516 MachineMemOperand::MOVolatile); 6517 } 6518 if (TLI.useStackGuardXorFP()) 6519 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl); 6520 DAG.setRoot(Chain); 6521 setValue(&I, Res); 6522 return; 6523 } 6524 case Intrinsic::stackprotector: { 6525 // Emit code into the DAG to store the stack guard onto the stack. 6526 MachineFunction &MF = DAG.getMachineFunction(); 6527 MachineFrameInfo &MFI = MF.getFrameInfo(); 6528 SDValue Src, Chain = getRoot(); 6529 6530 if (TLI.useLoadStackGuardNode()) 6531 Src = getLoadStackGuard(DAG, sdl, Chain); 6532 else 6533 Src = getValue(I.getArgOperand(0)); // The guard's value. 6534 6535 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); 6536 6537 int FI = FuncInfo.StaticAllocaMap[Slot]; 6538 MFI.setStackProtectorIndex(FI); 6539 EVT PtrTy = TLI.getFrameIndexTy(DAG.getDataLayout()); 6540 6541 SDValue FIN = DAG.getFrameIndex(FI, PtrTy); 6542 6543 // Store the stack protector onto the stack. 6544 Res = DAG.getStore( 6545 Chain, sdl, Src, FIN, 6546 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), 6547 MaybeAlign(), MachineMemOperand::MOVolatile); 6548 setValue(&I, Res); 6549 DAG.setRoot(Res); 6550 return; 6551 } 6552 case Intrinsic::objectsize: 6553 llvm_unreachable("llvm.objectsize.* should have been lowered already"); 6554 6555 case Intrinsic::is_constant: 6556 llvm_unreachable("llvm.is.constant.* should have been lowered already"); 6557 6558 case Intrinsic::annotation: 6559 case Intrinsic::ptr_annotation: 6560 case Intrinsic::launder_invariant_group: 6561 case Intrinsic::strip_invariant_group: 6562 // Drop the intrinsic, but forward the value 6563 setValue(&I, getValue(I.getOperand(0))); 6564 return; 6565 6566 case Intrinsic::assume: 6567 case Intrinsic::experimental_noalias_scope_decl: 6568 case Intrinsic::var_annotation: 6569 case Intrinsic::sideeffect: 6570 // Discard annotate attributes, noalias scope declarations, assumptions, and 6571 // artificial side-effects. 6572 return; 6573 6574 case Intrinsic::codeview_annotation: { 6575 // Emit a label associated with this metadata. 6576 MachineFunction &MF = DAG.getMachineFunction(); 6577 MCSymbol *Label = 6578 MF.getMMI().getContext().createTempSymbol("annotation", true); 6579 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata(); 6580 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD)); 6581 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label); 6582 DAG.setRoot(Res); 6583 return; 6584 } 6585 6586 case Intrinsic::init_trampoline: { 6587 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts()); 6588 6589 SDValue Ops[6]; 6590 Ops[0] = getRoot(); 6591 Ops[1] = getValue(I.getArgOperand(0)); 6592 Ops[2] = getValue(I.getArgOperand(1)); 6593 Ops[3] = getValue(I.getArgOperand(2)); 6594 Ops[4] = DAG.getSrcValue(I.getArgOperand(0)); 6595 Ops[5] = DAG.getSrcValue(F); 6596 6597 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops); 6598 6599 DAG.setRoot(Res); 6600 return; 6601 } 6602 case Intrinsic::adjust_trampoline: 6603 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl, 6604 TLI.getPointerTy(DAG.getDataLayout()), 6605 getValue(I.getArgOperand(0)))); 6606 return; 6607 case Intrinsic::gcroot: { 6608 assert(DAG.getMachineFunction().getFunction().hasGC() && 6609 "only valid in functions with gc specified, enforced by Verifier"); 6610 assert(GFI && "implied by previous"); 6611 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts(); 6612 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1)); 6613 6614 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode()); 6615 GFI->addStackRoot(FI->getIndex(), TypeMap); 6616 return; 6617 } 6618 case Intrinsic::gcread: 6619 case Intrinsic::gcwrite: 6620 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!"); 6621 case Intrinsic::flt_rounds: 6622 Res = DAG.getNode(ISD::FLT_ROUNDS_, sdl, {MVT::i32, MVT::Other}, getRoot()); 6623 setValue(&I, Res); 6624 DAG.setRoot(Res.getValue(1)); 6625 return; 6626 6627 case Intrinsic::expect: 6628 // Just replace __builtin_expect(exp, c) with EXP. 6629 setValue(&I, getValue(I.getArgOperand(0))); 6630 return; 6631 6632 case Intrinsic::ubsantrap: 6633 case Intrinsic::debugtrap: 6634 case Intrinsic::trap: { 6635 StringRef TrapFuncName = 6636 I.getAttributes() 6637 .getAttribute(AttributeList::FunctionIndex, "trap-func-name") 6638 .getValueAsString(); 6639 if (TrapFuncName.empty()) { 6640 switch (Intrinsic) { 6641 case Intrinsic::trap: 6642 DAG.setRoot(DAG.getNode(ISD::TRAP, sdl, MVT::Other, getRoot())); 6643 break; 6644 case Intrinsic::debugtrap: 6645 DAG.setRoot(DAG.getNode(ISD::DEBUGTRAP, sdl, MVT::Other, getRoot())); 6646 break; 6647 case Intrinsic::ubsantrap: 6648 DAG.setRoot(DAG.getNode( 6649 ISD::UBSANTRAP, sdl, MVT::Other, getRoot(), 6650 DAG.getTargetConstant( 6651 cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(), sdl, 6652 MVT::i32))); 6653 break; 6654 default: llvm_unreachable("unknown trap intrinsic"); 6655 } 6656 return; 6657 } 6658 TargetLowering::ArgListTy Args; 6659 if (Intrinsic == Intrinsic::ubsantrap) { 6660 Args.push_back(TargetLoweringBase::ArgListEntry()); 6661 Args[0].Val = I.getArgOperand(0); 6662 Args[0].Node = getValue(Args[0].Val); 6663 Args[0].Ty = Args[0].Val->getType(); 6664 } 6665 6666 TargetLowering::CallLoweringInfo CLI(DAG); 6667 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee( 6668 CallingConv::C, I.getType(), 6669 DAG.getExternalSymbol(TrapFuncName.data(), 6670 TLI.getPointerTy(DAG.getDataLayout())), 6671 std::move(Args)); 6672 6673 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 6674 DAG.setRoot(Result.second); 6675 return; 6676 } 6677 6678 case Intrinsic::uadd_with_overflow: 6679 case Intrinsic::sadd_with_overflow: 6680 case Intrinsic::usub_with_overflow: 6681 case Intrinsic::ssub_with_overflow: 6682 case Intrinsic::umul_with_overflow: 6683 case Intrinsic::smul_with_overflow: { 6684 ISD::NodeType Op; 6685 switch (Intrinsic) { 6686 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 6687 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break; 6688 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break; 6689 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break; 6690 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break; 6691 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break; 6692 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break; 6693 } 6694 SDValue Op1 = getValue(I.getArgOperand(0)); 6695 SDValue Op2 = getValue(I.getArgOperand(1)); 6696 6697 EVT ResultVT = Op1.getValueType(); 6698 EVT OverflowVT = MVT::i1; 6699 if (ResultVT.isVector()) 6700 OverflowVT = EVT::getVectorVT( 6701 *Context, OverflowVT, ResultVT.getVectorElementCount()); 6702 6703 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT); 6704 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2)); 6705 return; 6706 } 6707 case Intrinsic::prefetch: { 6708 SDValue Ops[5]; 6709 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6710 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore; 6711 Ops[0] = DAG.getRoot(); 6712 Ops[1] = getValue(I.getArgOperand(0)); 6713 Ops[2] = getValue(I.getArgOperand(1)); 6714 Ops[3] = getValue(I.getArgOperand(2)); 6715 Ops[4] = getValue(I.getArgOperand(3)); 6716 SDValue Result = DAG.getMemIntrinsicNode( 6717 ISD::PREFETCH, sdl, DAG.getVTList(MVT::Other), Ops, 6718 EVT::getIntegerVT(*Context, 8), MachinePointerInfo(I.getArgOperand(0)), 6719 /* align */ None, Flags); 6720 6721 // Chain the prefetch in parallell with any pending loads, to stay out of 6722 // the way of later optimizations. 6723 PendingLoads.push_back(Result); 6724 Result = getRoot(); 6725 DAG.setRoot(Result); 6726 return; 6727 } 6728 case Intrinsic::lifetime_start: 6729 case Intrinsic::lifetime_end: { 6730 bool IsStart = (Intrinsic == Intrinsic::lifetime_start); 6731 // Stack coloring is not enabled in O0, discard region information. 6732 if (TM.getOptLevel() == CodeGenOpt::None) 6733 return; 6734 6735 const int64_t ObjectSize = 6736 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue(); 6737 Value *const ObjectPtr = I.getArgOperand(1); 6738 SmallVector<const Value *, 4> Allocas; 6739 getUnderlyingObjects(ObjectPtr, Allocas); 6740 6741 for (const Value *Alloca : Allocas) { 6742 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(Alloca); 6743 6744 // Could not find an Alloca. 6745 if (!LifetimeObject) 6746 continue; 6747 6748 // First check that the Alloca is static, otherwise it won't have a 6749 // valid frame index. 6750 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject); 6751 if (SI == FuncInfo.StaticAllocaMap.end()) 6752 return; 6753 6754 const int FrameIndex = SI->second; 6755 int64_t Offset; 6756 if (GetPointerBaseWithConstantOffset( 6757 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject) 6758 Offset = -1; // Cannot determine offset from alloca to lifetime object. 6759 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize, 6760 Offset); 6761 DAG.setRoot(Res); 6762 } 6763 return; 6764 } 6765 case Intrinsic::pseudoprobe: { 6766 auto Guid = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue(); 6767 auto Index = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue(); 6768 auto Attr = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); 6769 Res = DAG.getPseudoProbeNode(sdl, getRoot(), Guid, Index, Attr); 6770 DAG.setRoot(Res); 6771 return; 6772 } 6773 case Intrinsic::invariant_start: 6774 // Discard region information. 6775 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout()))); 6776 return; 6777 case Intrinsic::invariant_end: 6778 // Discard region information. 6779 return; 6780 case Intrinsic::clear_cache: 6781 /// FunctionName may be null. 6782 if (const char *FunctionName = TLI.getClearCacheBuiltinName()) 6783 lowerCallToExternalSymbol(I, FunctionName); 6784 return; 6785 case Intrinsic::donothing: 6786 // ignore 6787 return; 6788 case Intrinsic::experimental_stackmap: 6789 visitStackmap(I); 6790 return; 6791 case Intrinsic::experimental_patchpoint_void: 6792 case Intrinsic::experimental_patchpoint_i64: 6793 visitPatchpoint(I); 6794 return; 6795 case Intrinsic::experimental_gc_statepoint: 6796 LowerStatepoint(cast<GCStatepointInst>(I)); 6797 return; 6798 case Intrinsic::experimental_gc_result: 6799 visitGCResult(cast<GCResultInst>(I)); 6800 return; 6801 case Intrinsic::experimental_gc_relocate: 6802 visitGCRelocate(cast<GCRelocateInst>(I)); 6803 return; 6804 case Intrinsic::instrprof_increment: 6805 llvm_unreachable("instrprof failed to lower an increment"); 6806 case Intrinsic::instrprof_value_profile: 6807 llvm_unreachable("instrprof failed to lower a value profiling call"); 6808 case Intrinsic::localescape: { 6809 MachineFunction &MF = DAG.getMachineFunction(); 6810 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo(); 6811 6812 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission 6813 // is the same on all targets. 6814 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) { 6815 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts(); 6816 if (isa<ConstantPointerNull>(Arg)) 6817 continue; // Skip null pointers. They represent a hole in index space. 6818 AllocaInst *Slot = cast<AllocaInst>(Arg); 6819 assert(FuncInfo.StaticAllocaMap.count(Slot) && 6820 "can only escape static allocas"); 6821 int FI = FuncInfo.StaticAllocaMap[Slot]; 6822 MCSymbol *FrameAllocSym = 6823 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6824 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx); 6825 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl, 6826 TII->get(TargetOpcode::LOCAL_ESCAPE)) 6827 .addSym(FrameAllocSym) 6828 .addFrameIndex(FI); 6829 } 6830 6831 return; 6832 } 6833 6834 case Intrinsic::localrecover: { 6835 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx) 6836 MachineFunction &MF = DAG.getMachineFunction(); 6837 6838 // Get the symbol that defines the frame offset. 6839 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts()); 6840 auto *Idx = cast<ConstantInt>(I.getArgOperand(2)); 6841 unsigned IdxVal = 6842 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max())); 6843 MCSymbol *FrameAllocSym = 6844 MF.getMMI().getContext().getOrCreateFrameAllocSymbol( 6845 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal); 6846 6847 Value *FP = I.getArgOperand(1); 6848 SDValue FPVal = getValue(FP); 6849 EVT PtrVT = FPVal.getValueType(); 6850 6851 // Create a MCSymbol for the label to avoid any target lowering 6852 // that would make this PC relative. 6853 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT); 6854 SDValue OffsetVal = 6855 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym); 6856 6857 // Add the offset to the FP. 6858 SDValue Add = DAG.getMemBasePlusOffset(FPVal, OffsetVal, sdl); 6859 setValue(&I, Add); 6860 6861 return; 6862 } 6863 6864 case Intrinsic::eh_exceptionpointer: 6865 case Intrinsic::eh_exceptioncode: { 6866 // Get the exception pointer vreg, copy from it, and resize it to fit. 6867 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0)); 6868 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout()); 6869 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT); 6870 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC); 6871 SDValue N = 6872 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT); 6873 if (Intrinsic == Intrinsic::eh_exceptioncode) 6874 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32); 6875 setValue(&I, N); 6876 return; 6877 } 6878 case Intrinsic::xray_customevent: { 6879 // Here we want to make sure that the intrinsic behaves as if it has a 6880 // specific calling convention, and only for x86_64. 6881 // FIXME: Support other platforms later. 6882 const auto &Triple = DAG.getTarget().getTargetTriple(); 6883 if (Triple.getArch() != Triple::x86_64) 6884 return; 6885 6886 SDLoc DL = getCurSDLoc(); 6887 SmallVector<SDValue, 8> Ops; 6888 6889 // We want to say that we always want the arguments in registers. 6890 SDValue LogEntryVal = getValue(I.getArgOperand(0)); 6891 SDValue StrSizeVal = getValue(I.getArgOperand(1)); 6892 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6893 SDValue Chain = getRoot(); 6894 Ops.push_back(LogEntryVal); 6895 Ops.push_back(StrSizeVal); 6896 Ops.push_back(Chain); 6897 6898 // We need to enforce the calling convention for the callsite, so that 6899 // argument ordering is enforced correctly, and that register allocation can 6900 // see that some registers may be assumed clobbered and have to preserve 6901 // them across calls to the intrinsic. 6902 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL, 6903 DL, NodeTys, Ops); 6904 SDValue patchableNode = SDValue(MN, 0); 6905 DAG.setRoot(patchableNode); 6906 setValue(&I, patchableNode); 6907 return; 6908 } 6909 case Intrinsic::xray_typedevent: { 6910 // Here we want to make sure that the intrinsic behaves as if it has a 6911 // specific calling convention, and only for x86_64. 6912 // FIXME: Support other platforms later. 6913 const auto &Triple = DAG.getTarget().getTargetTriple(); 6914 if (Triple.getArch() != Triple::x86_64) 6915 return; 6916 6917 SDLoc DL = getCurSDLoc(); 6918 SmallVector<SDValue, 8> Ops; 6919 6920 // We want to say that we always want the arguments in registers. 6921 // It's unclear to me how manipulating the selection DAG here forces callers 6922 // to provide arguments in registers instead of on the stack. 6923 SDValue LogTypeId = getValue(I.getArgOperand(0)); 6924 SDValue LogEntryVal = getValue(I.getArgOperand(1)); 6925 SDValue StrSizeVal = getValue(I.getArgOperand(2)); 6926 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 6927 SDValue Chain = getRoot(); 6928 Ops.push_back(LogTypeId); 6929 Ops.push_back(LogEntryVal); 6930 Ops.push_back(StrSizeVal); 6931 Ops.push_back(Chain); 6932 6933 // We need to enforce the calling convention for the callsite, so that 6934 // argument ordering is enforced correctly, and that register allocation can 6935 // see that some registers may be assumed clobbered and have to preserve 6936 // them across calls to the intrinsic. 6937 MachineSDNode *MN = DAG.getMachineNode( 6938 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops); 6939 SDValue patchableNode = SDValue(MN, 0); 6940 DAG.setRoot(patchableNode); 6941 setValue(&I, patchableNode); 6942 return; 6943 } 6944 case Intrinsic::experimental_deoptimize: 6945 LowerDeoptimizeCall(&I); 6946 return; 6947 case Intrinsic::experimental_stepvector: 6948 visitStepVector(I); 6949 return; 6950 case Intrinsic::vector_reduce_fadd: 6951 case Intrinsic::vector_reduce_fmul: 6952 case Intrinsic::vector_reduce_add: 6953 case Intrinsic::vector_reduce_mul: 6954 case Intrinsic::vector_reduce_and: 6955 case Intrinsic::vector_reduce_or: 6956 case Intrinsic::vector_reduce_xor: 6957 case Intrinsic::vector_reduce_smax: 6958 case Intrinsic::vector_reduce_smin: 6959 case Intrinsic::vector_reduce_umax: 6960 case Intrinsic::vector_reduce_umin: 6961 case Intrinsic::vector_reduce_fmax: 6962 case Intrinsic::vector_reduce_fmin: 6963 visitVectorReduce(I, Intrinsic); 6964 return; 6965 6966 case Intrinsic::icall_branch_funnel: { 6967 SmallVector<SDValue, 16> Ops; 6968 Ops.push_back(getValue(I.getArgOperand(0))); 6969 6970 int64_t Offset; 6971 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6972 I.getArgOperand(1), Offset, DAG.getDataLayout())); 6973 if (!Base) 6974 report_fatal_error( 6975 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6976 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0)); 6977 6978 struct BranchFunnelTarget { 6979 int64_t Offset; 6980 SDValue Target; 6981 }; 6982 SmallVector<BranchFunnelTarget, 8> Targets; 6983 6984 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) { 6985 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset( 6986 I.getArgOperand(Op), Offset, DAG.getDataLayout())); 6987 if (ElemBase != Base) 6988 report_fatal_error("all llvm.icall.branch.funnel operands must refer " 6989 "to the same GlobalValue"); 6990 6991 SDValue Val = getValue(I.getArgOperand(Op + 1)); 6992 auto *GA = dyn_cast<GlobalAddressSDNode>(Val); 6993 if (!GA) 6994 report_fatal_error( 6995 "llvm.icall.branch.funnel operand must be a GlobalValue"); 6996 Targets.push_back({Offset, DAG.getTargetGlobalAddress( 6997 GA->getGlobal(), getCurSDLoc(), 6998 Val.getValueType(), GA->getOffset())}); 6999 } 7000 llvm::sort(Targets, 7001 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) { 7002 return T1.Offset < T2.Offset; 7003 }); 7004 7005 for (auto &T : Targets) { 7006 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32)); 7007 Ops.push_back(T.Target); 7008 } 7009 7010 Ops.push_back(DAG.getRoot()); // Chain 7011 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL, 7012 getCurSDLoc(), MVT::Other, Ops), 7013 0); 7014 DAG.setRoot(N); 7015 setValue(&I, N); 7016 HasTailCall = true; 7017 return; 7018 } 7019 7020 case Intrinsic::wasm_landingpad_index: 7021 // Information this intrinsic contained has been transferred to 7022 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely 7023 // delete it now. 7024 return; 7025 7026 case Intrinsic::aarch64_settag: 7027 case Intrinsic::aarch64_settag_zero: { 7028 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7029 bool ZeroMemory = Intrinsic == Intrinsic::aarch64_settag_zero; 7030 SDValue Val = TSI.EmitTargetCodeForSetTag( 7031 DAG, getCurSDLoc(), getRoot(), getValue(I.getArgOperand(0)), 7032 getValue(I.getArgOperand(1)), MachinePointerInfo(I.getArgOperand(0)), 7033 ZeroMemory); 7034 DAG.setRoot(Val); 7035 setValue(&I, Val); 7036 return; 7037 } 7038 case Intrinsic::ptrmask: { 7039 SDValue Ptr = getValue(I.getOperand(0)); 7040 SDValue Const = getValue(I.getOperand(1)); 7041 7042 EVT PtrVT = Ptr.getValueType(); 7043 setValue(&I, DAG.getNode(ISD::AND, getCurSDLoc(), PtrVT, Ptr, 7044 DAG.getZExtOrTrunc(Const, getCurSDLoc(), PtrVT))); 7045 return; 7046 } 7047 case Intrinsic::get_active_lane_mask: { 7048 auto DL = getCurSDLoc(); 7049 SDValue Index = getValue(I.getOperand(0)); 7050 SDValue TripCount = getValue(I.getOperand(1)); 7051 Type *ElementTy = I.getOperand(0)->getType(); 7052 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7053 unsigned VecWidth = VT.getVectorNumElements(); 7054 7055 SmallVector<SDValue, 16> OpsTripCount; 7056 SmallVector<SDValue, 16> OpsIndex; 7057 SmallVector<SDValue, 16> OpsStepConstants; 7058 for (unsigned i = 0; i < VecWidth; i++) { 7059 OpsTripCount.push_back(TripCount); 7060 OpsIndex.push_back(Index); 7061 OpsStepConstants.push_back( 7062 DAG.getConstant(i, DL, EVT::getEVT(ElementTy))); 7063 } 7064 7065 EVT CCVT = EVT::getVectorVT(I.getContext(), MVT::i1, VecWidth); 7066 7067 auto VecTy = EVT::getEVT(FixedVectorType::get(ElementTy, VecWidth)); 7068 SDValue VectorIndex = DAG.getBuildVector(VecTy, DL, OpsIndex); 7069 SDValue VectorStep = DAG.getBuildVector(VecTy, DL, OpsStepConstants); 7070 SDValue VectorInduction = DAG.getNode( 7071 ISD::UADDO, DL, DAG.getVTList(VecTy, CCVT), VectorIndex, VectorStep); 7072 SDValue VectorTripCount = DAG.getBuildVector(VecTy, DL, OpsTripCount); 7073 SDValue SetCC = DAG.getSetCC(DL, CCVT, VectorInduction.getValue(0), 7074 VectorTripCount, ISD::CondCode::SETULT); 7075 setValue(&I, DAG.getNode(ISD::AND, DL, CCVT, 7076 DAG.getNOT(DL, VectorInduction.getValue(1), CCVT), 7077 SetCC)); 7078 return; 7079 } 7080 case Intrinsic::experimental_vector_insert: { 7081 auto DL = getCurSDLoc(); 7082 7083 SDValue Vec = getValue(I.getOperand(0)); 7084 SDValue SubVec = getValue(I.getOperand(1)); 7085 SDValue Index = getValue(I.getOperand(2)); 7086 7087 // The intrinsic's index type is i64, but the SDNode requires an index type 7088 // suitable for the target. Convert the index as required. 7089 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7090 if (Index.getValueType() != VectorIdxTy) 7091 Index = DAG.getVectorIdxConstant( 7092 cast<ConstantSDNode>(Index)->getZExtValue(), DL); 7093 7094 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7095 setValue(&I, DAG.getNode(ISD::INSERT_SUBVECTOR, DL, ResultVT, Vec, SubVec, 7096 Index)); 7097 return; 7098 } 7099 case Intrinsic::experimental_vector_extract: { 7100 auto DL = getCurSDLoc(); 7101 7102 SDValue Vec = getValue(I.getOperand(0)); 7103 SDValue Index = getValue(I.getOperand(1)); 7104 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 7105 7106 // The intrinsic's index type is i64, but the SDNode requires an index type 7107 // suitable for the target. Convert the index as required. 7108 MVT VectorIdxTy = TLI.getVectorIdxTy(DAG.getDataLayout()); 7109 if (Index.getValueType() != VectorIdxTy) 7110 Index = DAG.getVectorIdxConstant( 7111 cast<ConstantSDNode>(Index)->getZExtValue(), DL); 7112 7113 setValue(&I, DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ResultVT, Vec, Index)); 7114 return; 7115 } 7116 case Intrinsic::experimental_vector_reverse: 7117 visitVectorReverse(I); 7118 return; 7119 case Intrinsic::experimental_vector_splice: 7120 visitVectorSplice(I); 7121 return; 7122 } 7123 } 7124 7125 void SelectionDAGBuilder::visitConstrainedFPIntrinsic( 7126 const ConstrainedFPIntrinsic &FPI) { 7127 SDLoc sdl = getCurSDLoc(); 7128 7129 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7130 SmallVector<EVT, 4> ValueVTs; 7131 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs); 7132 ValueVTs.push_back(MVT::Other); // Out chain 7133 7134 // We do not need to serialize constrained FP intrinsics against 7135 // each other or against (nonvolatile) loads, so they can be 7136 // chained like loads. 7137 SDValue Chain = DAG.getRoot(); 7138 SmallVector<SDValue, 4> Opers; 7139 Opers.push_back(Chain); 7140 if (FPI.isUnaryOp()) { 7141 Opers.push_back(getValue(FPI.getArgOperand(0))); 7142 } else if (FPI.isTernaryOp()) { 7143 Opers.push_back(getValue(FPI.getArgOperand(0))); 7144 Opers.push_back(getValue(FPI.getArgOperand(1))); 7145 Opers.push_back(getValue(FPI.getArgOperand(2))); 7146 } else { 7147 Opers.push_back(getValue(FPI.getArgOperand(0))); 7148 Opers.push_back(getValue(FPI.getArgOperand(1))); 7149 } 7150 7151 auto pushOutChain = [this](SDValue Result, fp::ExceptionBehavior EB) { 7152 assert(Result.getNode()->getNumValues() == 2); 7153 7154 // Push node to the appropriate list so that future instructions can be 7155 // chained up correctly. 7156 SDValue OutChain = Result.getValue(1); 7157 switch (EB) { 7158 case fp::ExceptionBehavior::ebIgnore: 7159 // The only reason why ebIgnore nodes still need to be chained is that 7160 // they might depend on the current rounding mode, and therefore must 7161 // not be moved across instruction that may change that mode. 7162 LLVM_FALLTHROUGH; 7163 case fp::ExceptionBehavior::ebMayTrap: 7164 // These must not be moved across calls or instructions that may change 7165 // floating-point exception masks. 7166 PendingConstrainedFP.push_back(OutChain); 7167 break; 7168 case fp::ExceptionBehavior::ebStrict: 7169 // These must not be moved across calls or instructions that may change 7170 // floating-point exception masks or read floating-point exception flags. 7171 // In addition, they cannot be optimized out even if unused. 7172 PendingConstrainedFPStrict.push_back(OutChain); 7173 break; 7174 } 7175 }; 7176 7177 SDVTList VTs = DAG.getVTList(ValueVTs); 7178 fp::ExceptionBehavior EB = FPI.getExceptionBehavior().getValue(); 7179 7180 SDNodeFlags Flags; 7181 if (EB == fp::ExceptionBehavior::ebIgnore) 7182 Flags.setNoFPExcept(true); 7183 7184 if (auto *FPOp = dyn_cast<FPMathOperator>(&FPI)) 7185 Flags.copyFMF(*FPOp); 7186 7187 unsigned Opcode; 7188 switch (FPI.getIntrinsicID()) { 7189 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here. 7190 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \ 7191 case Intrinsic::INTRINSIC: \ 7192 Opcode = ISD::STRICT_##DAGN; \ 7193 break; 7194 #include "llvm/IR/ConstrainedOps.def" 7195 case Intrinsic::experimental_constrained_fmuladd: { 7196 Opcode = ISD::STRICT_FMA; 7197 // Break fmuladd into fmul and fadd. 7198 if (TM.Options.AllowFPOpFusion == FPOpFusion::Strict || 7199 !TLI.isFMAFasterThanFMulAndFAdd(DAG.getMachineFunction(), 7200 ValueVTs[0])) { 7201 Opers.pop_back(); 7202 SDValue Mul = DAG.getNode(ISD::STRICT_FMUL, sdl, VTs, Opers, Flags); 7203 pushOutChain(Mul, EB); 7204 Opcode = ISD::STRICT_FADD; 7205 Opers.clear(); 7206 Opers.push_back(Mul.getValue(1)); 7207 Opers.push_back(Mul.getValue(0)); 7208 Opers.push_back(getValue(FPI.getArgOperand(2))); 7209 } 7210 break; 7211 } 7212 } 7213 7214 // A few strict DAG nodes carry additional operands that are not 7215 // set up by the default code above. 7216 switch (Opcode) { 7217 default: break; 7218 case ISD::STRICT_FP_ROUND: 7219 Opers.push_back( 7220 DAG.getTargetConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()))); 7221 break; 7222 case ISD::STRICT_FSETCC: 7223 case ISD::STRICT_FSETCCS: { 7224 auto *FPCmp = dyn_cast<ConstrainedFPCmpIntrinsic>(&FPI); 7225 ISD::CondCode Condition = getFCmpCondCode(FPCmp->getPredicate()); 7226 if (TM.Options.NoNaNsFPMath) 7227 Condition = getFCmpCodeWithoutNaN(Condition); 7228 Opers.push_back(DAG.getCondCode(Condition)); 7229 break; 7230 } 7231 } 7232 7233 SDValue Result = DAG.getNode(Opcode, sdl, VTs, Opers, Flags); 7234 pushOutChain(Result, EB); 7235 7236 SDValue FPResult = Result.getValue(0); 7237 setValue(&FPI, FPResult); 7238 } 7239 7240 static unsigned getISDForVPIntrinsic(const VPIntrinsic &VPIntrin) { 7241 Optional<unsigned> ResOPC; 7242 switch (VPIntrin.getIntrinsicID()) { 7243 #define BEGIN_REGISTER_VP_INTRINSIC(INTRIN, ...) case Intrinsic::INTRIN: 7244 #define BEGIN_REGISTER_VP_SDNODE(VPSDID, ...) ResOPC = ISD::VPSDID; 7245 #define END_REGISTER_VP_INTRINSIC(...) break; 7246 #include "llvm/IR/VPIntrinsics.def" 7247 } 7248 7249 if (!ResOPC.hasValue()) 7250 llvm_unreachable( 7251 "Inconsistency: no SDNode available for this VPIntrinsic!"); 7252 7253 return ResOPC.getValue(); 7254 } 7255 7256 void SelectionDAGBuilder::visitVectorPredicationIntrinsic( 7257 const VPIntrinsic &VPIntrin) { 7258 unsigned Opcode = getISDForVPIntrinsic(VPIntrin); 7259 7260 SmallVector<EVT, 4> ValueVTs; 7261 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7262 ComputeValueVTs(TLI, DAG.getDataLayout(), VPIntrin.getType(), ValueVTs); 7263 SDVTList VTs = DAG.getVTList(ValueVTs); 7264 7265 // Request operands. 7266 SmallVector<SDValue, 7> OpValues; 7267 for (int i = 0; i < (int)VPIntrin.getNumArgOperands(); ++i) 7268 OpValues.push_back(getValue(VPIntrin.getArgOperand(i))); 7269 7270 SDLoc DL = getCurSDLoc(); 7271 SDValue Result = DAG.getNode(Opcode, DL, VTs, OpValues); 7272 setValue(&VPIntrin, Result); 7273 } 7274 7275 std::pair<SDValue, SDValue> 7276 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI, 7277 const BasicBlock *EHPadBB) { 7278 MachineFunction &MF = DAG.getMachineFunction(); 7279 MachineModuleInfo &MMI = MF.getMMI(); 7280 MCSymbol *BeginLabel = nullptr; 7281 7282 if (EHPadBB) { 7283 // Insert a label before the invoke call to mark the try range. This can be 7284 // used to detect deletion of the invoke via the MachineModuleInfo. 7285 BeginLabel = MMI.getContext().createTempSymbol(); 7286 7287 // For SjLj, keep track of which landing pads go with which invokes 7288 // so as to maintain the ordering of pads in the LSDA. 7289 unsigned CallSiteIndex = MMI.getCurrentCallSite(); 7290 if (CallSiteIndex) { 7291 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex); 7292 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex); 7293 7294 // Now that the call site is handled, stop tracking it. 7295 MMI.setCurrentCallSite(0); 7296 } 7297 7298 // Both PendingLoads and PendingExports must be flushed here; 7299 // this call might not return. 7300 (void)getRoot(); 7301 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel)); 7302 7303 CLI.setChain(getRoot()); 7304 } 7305 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7306 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI); 7307 7308 assert((CLI.IsTailCall || Result.second.getNode()) && 7309 "Non-null chain expected with non-tail call!"); 7310 assert((Result.second.getNode() || !Result.first.getNode()) && 7311 "Null value expected with tail call!"); 7312 7313 if (!Result.second.getNode()) { 7314 // As a special case, a null chain means that a tail call has been emitted 7315 // and the DAG root is already updated. 7316 HasTailCall = true; 7317 7318 // Since there's no actual continuation from this block, nothing can be 7319 // relying on us setting vregs for them. 7320 PendingExports.clear(); 7321 } else { 7322 DAG.setRoot(Result.second); 7323 } 7324 7325 if (EHPadBB) { 7326 // Insert a label at the end of the invoke call to mark the try range. This 7327 // can be used to detect deletion of the invoke via the MachineModuleInfo. 7328 MCSymbol *EndLabel = MMI.getContext().createTempSymbol(); 7329 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel)); 7330 7331 // Inform MachineModuleInfo of range. 7332 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn()); 7333 // There is a platform (e.g. wasm) that uses funclet style IR but does not 7334 // actually use outlined funclets and their LSDA info style. 7335 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) { 7336 assert(CLI.CB); 7337 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo(); 7338 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CB), BeginLabel, EndLabel); 7339 } else if (!isScopedEHPersonality(Pers)) { 7340 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel); 7341 } 7342 } 7343 7344 return Result; 7345 } 7346 7347 void SelectionDAGBuilder::LowerCallTo(const CallBase &CB, SDValue Callee, 7348 bool isTailCall, 7349 const BasicBlock *EHPadBB) { 7350 auto &DL = DAG.getDataLayout(); 7351 FunctionType *FTy = CB.getFunctionType(); 7352 Type *RetTy = CB.getType(); 7353 7354 TargetLowering::ArgListTy Args; 7355 Args.reserve(CB.arg_size()); 7356 7357 const Value *SwiftErrorVal = nullptr; 7358 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7359 7360 if (isTailCall) { 7361 // Avoid emitting tail calls in functions with the disable-tail-calls 7362 // attribute. 7363 auto *Caller = CB.getParent()->getParent(); 7364 if (Caller->getFnAttribute("disable-tail-calls").getValueAsString() == 7365 "true") 7366 isTailCall = false; 7367 7368 // We can't tail call inside a function with a swifterror argument. Lowering 7369 // does not support this yet. It would have to move into the swifterror 7370 // register before the call. 7371 if (TLI.supportSwiftError() && 7372 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) 7373 isTailCall = false; 7374 } 7375 7376 for (auto I = CB.arg_begin(), E = CB.arg_end(); I != E; ++I) { 7377 TargetLowering::ArgListEntry Entry; 7378 const Value *V = *I; 7379 7380 // Skip empty types 7381 if (V->getType()->isEmptyTy()) 7382 continue; 7383 7384 SDValue ArgNode = getValue(V); 7385 Entry.Node = ArgNode; Entry.Ty = V->getType(); 7386 7387 Entry.setAttributes(&CB, I - CB.arg_begin()); 7388 7389 // Use swifterror virtual register as input to the call. 7390 if (Entry.IsSwiftError && TLI.supportSwiftError()) { 7391 SwiftErrorVal = V; 7392 // We find the virtual register for the actual swifterror argument. 7393 // Instead of using the Value, we use the virtual register instead. 7394 Entry.Node = 7395 DAG.getRegister(SwiftError.getOrCreateVRegUseAt(&CB, FuncInfo.MBB, V), 7396 EVT(TLI.getPointerTy(DL))); 7397 } 7398 7399 Args.push_back(Entry); 7400 7401 // If we have an explicit sret argument that is an Instruction, (i.e., it 7402 // might point to function-local memory), we can't meaningfully tail-call. 7403 if (Entry.IsSRet && isa<Instruction>(V)) 7404 isTailCall = false; 7405 } 7406 7407 // If call site has a cfguardtarget operand bundle, create and add an 7408 // additional ArgListEntry. 7409 if (auto Bundle = CB.getOperandBundle(LLVMContext::OB_cfguardtarget)) { 7410 TargetLowering::ArgListEntry Entry; 7411 Value *V = Bundle->Inputs[0]; 7412 SDValue ArgNode = getValue(V); 7413 Entry.Node = ArgNode; 7414 Entry.Ty = V->getType(); 7415 Entry.IsCFGuardTarget = true; 7416 Args.push_back(Entry); 7417 } 7418 7419 // Check if target-independent constraints permit a tail call here. 7420 // Target-dependent constraints are checked within TLI->LowerCallTo. 7421 if (isTailCall && !isInTailCallPosition(CB, DAG.getTarget())) 7422 isTailCall = false; 7423 7424 // Disable tail calls if there is an swifterror argument. Targets have not 7425 // been updated to support tail calls. 7426 if (TLI.supportSwiftError() && SwiftErrorVal) 7427 isTailCall = false; 7428 7429 TargetLowering::CallLoweringInfo CLI(DAG); 7430 CLI.setDebugLoc(getCurSDLoc()) 7431 .setChain(getRoot()) 7432 .setCallee(RetTy, FTy, Callee, std::move(Args), CB) 7433 .setTailCall(isTailCall) 7434 .setConvergent(CB.isConvergent()) 7435 .setIsPreallocated( 7436 CB.countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 7437 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 7438 7439 if (Result.first.getNode()) { 7440 Result.first = lowerRangeToAssertZExt(DAG, CB, Result.first); 7441 setValue(&CB, Result.first); 7442 } 7443 7444 // The last element of CLI.InVals has the SDValue for swifterror return. 7445 // Here we copy it to a virtual register and update SwiftErrorMap for 7446 // book-keeping. 7447 if (SwiftErrorVal && TLI.supportSwiftError()) { 7448 // Get the last element of InVals. 7449 SDValue Src = CLI.InVals.back(); 7450 Register VReg = 7451 SwiftError.getOrCreateVRegDefAt(&CB, FuncInfo.MBB, SwiftErrorVal); 7452 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src); 7453 DAG.setRoot(CopyNode); 7454 } 7455 } 7456 7457 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT, 7458 SelectionDAGBuilder &Builder) { 7459 // Check to see if this load can be trivially constant folded, e.g. if the 7460 // input is from a string literal. 7461 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) { 7462 // Cast pointer to the type we really want to load. 7463 Type *LoadTy = 7464 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits()); 7465 if (LoadVT.isVector()) 7466 LoadTy = FixedVectorType::get(LoadTy, LoadVT.getVectorNumElements()); 7467 7468 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput), 7469 PointerType::getUnqual(LoadTy)); 7470 7471 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr( 7472 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL)) 7473 return Builder.getValue(LoadCst); 7474 } 7475 7476 // Otherwise, we have to emit the load. If the pointer is to unfoldable but 7477 // still constant memory, the input chain can be the entry node. 7478 SDValue Root; 7479 bool ConstantMemory = false; 7480 7481 // Do not serialize (non-volatile) loads of constant memory with anything. 7482 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) { 7483 Root = Builder.DAG.getEntryNode(); 7484 ConstantMemory = true; 7485 } else { 7486 // Do not serialize non-volatile loads against each other. 7487 Root = Builder.DAG.getRoot(); 7488 } 7489 7490 SDValue Ptr = Builder.getValue(PtrVal); 7491 SDValue LoadVal = 7492 Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root, Ptr, 7493 MachinePointerInfo(PtrVal), Align(1)); 7494 7495 if (!ConstantMemory) 7496 Builder.PendingLoads.push_back(LoadVal.getValue(1)); 7497 return LoadVal; 7498 } 7499 7500 /// Record the value for an instruction that produces an integer result, 7501 /// converting the type where necessary. 7502 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I, 7503 SDValue Value, 7504 bool IsSigned) { 7505 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7506 I.getType(), true); 7507 if (IsSigned) 7508 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT); 7509 else 7510 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT); 7511 setValue(&I, Value); 7512 } 7513 7514 /// See if we can lower a memcmp/bcmp call into an optimized form. If so, return 7515 /// true and lower it. Otherwise return false, and it will be lowered like a 7516 /// normal call. 7517 /// The caller already checked that \p I calls the appropriate LibFunc with a 7518 /// correct prototype. 7519 bool SelectionDAGBuilder::visitMemCmpBCmpCall(const CallInst &I) { 7520 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1); 7521 const Value *Size = I.getArgOperand(2); 7522 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size); 7523 if (CSize && CSize->getZExtValue() == 0) { 7524 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(), 7525 I.getType(), true); 7526 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT)); 7527 return true; 7528 } 7529 7530 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7531 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp( 7532 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS), 7533 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS)); 7534 if (Res.first.getNode()) { 7535 processIntegerCallValue(I, Res.first, true); 7536 PendingLoads.push_back(Res.second); 7537 return true; 7538 } 7539 7540 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0 7541 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0 7542 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I)) 7543 return false; 7544 7545 // If the target has a fast compare for the given size, it will return a 7546 // preferred load type for that size. Require that the load VT is legal and 7547 // that the target supports unaligned loads of that type. Otherwise, return 7548 // INVALID. 7549 auto hasFastLoadsAndCompare = [&](unsigned NumBits) { 7550 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 7551 MVT LVT = TLI.hasFastEqualityCompare(NumBits); 7552 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) { 7553 // TODO: Handle 5 byte compare as 4-byte + 1 byte. 7554 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads. 7555 // TODO: Check alignment of src and dest ptrs. 7556 unsigned DstAS = LHS->getType()->getPointerAddressSpace(); 7557 unsigned SrcAS = RHS->getType()->getPointerAddressSpace(); 7558 if (!TLI.isTypeLegal(LVT) || 7559 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) || 7560 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS)) 7561 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE; 7562 } 7563 7564 return LVT; 7565 }; 7566 7567 // This turns into unaligned loads. We only do this if the target natively 7568 // supports the MVT we'll be loading or if it is small enough (<= 4) that 7569 // we'll only produce a small number of byte loads. 7570 MVT LoadVT; 7571 unsigned NumBitsToCompare = CSize->getZExtValue() * 8; 7572 switch (NumBitsToCompare) { 7573 default: 7574 return false; 7575 case 16: 7576 LoadVT = MVT::i16; 7577 break; 7578 case 32: 7579 LoadVT = MVT::i32; 7580 break; 7581 case 64: 7582 case 128: 7583 case 256: 7584 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare); 7585 break; 7586 } 7587 7588 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE) 7589 return false; 7590 7591 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this); 7592 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this); 7593 7594 // Bitcast to a wide integer type if the loads are vectors. 7595 if (LoadVT.isVector()) { 7596 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits()); 7597 LoadL = DAG.getBitcast(CmpVT, LoadL); 7598 LoadR = DAG.getBitcast(CmpVT, LoadR); 7599 } 7600 7601 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE); 7602 processIntegerCallValue(I, Cmp, false); 7603 return true; 7604 } 7605 7606 /// See if we can lower a memchr call into an optimized form. If so, return 7607 /// true and lower it. Otherwise return false, and it will be lowered like a 7608 /// normal call. 7609 /// The caller already checked that \p I calls the appropriate LibFunc with a 7610 /// correct prototype. 7611 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) { 7612 const Value *Src = I.getArgOperand(0); 7613 const Value *Char = I.getArgOperand(1); 7614 const Value *Length = I.getArgOperand(2); 7615 7616 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7617 std::pair<SDValue, SDValue> Res = 7618 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(), 7619 getValue(Src), getValue(Char), getValue(Length), 7620 MachinePointerInfo(Src)); 7621 if (Res.first.getNode()) { 7622 setValue(&I, Res.first); 7623 PendingLoads.push_back(Res.second); 7624 return true; 7625 } 7626 7627 return false; 7628 } 7629 7630 /// See if we can lower a mempcpy call into an optimized form. If so, return 7631 /// true and lower it. Otherwise return false, and it will be lowered like a 7632 /// normal call. 7633 /// The caller already checked that \p I calls the appropriate LibFunc with a 7634 /// correct prototype. 7635 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) { 7636 SDValue Dst = getValue(I.getArgOperand(0)); 7637 SDValue Src = getValue(I.getArgOperand(1)); 7638 SDValue Size = getValue(I.getArgOperand(2)); 7639 7640 Align DstAlign = DAG.InferPtrAlign(Dst).valueOrOne(); 7641 Align SrcAlign = DAG.InferPtrAlign(Src).valueOrOne(); 7642 // DAG::getMemcpy needs Alignment to be defined. 7643 Align Alignment = std::min(DstAlign, SrcAlign); 7644 7645 bool isVol = false; 7646 SDLoc sdl = getCurSDLoc(); 7647 7648 // In the mempcpy context we need to pass in a false value for isTailCall 7649 // because the return pointer needs to be adjusted by the size of 7650 // the copied memory. 7651 SDValue Root = isVol ? getRoot() : getMemoryRoot(); 7652 SDValue MC = DAG.getMemcpy(Root, sdl, Dst, Src, Size, Alignment, isVol, false, 7653 /*isTailCall=*/false, 7654 MachinePointerInfo(I.getArgOperand(0)), 7655 MachinePointerInfo(I.getArgOperand(1))); 7656 assert(MC.getNode() != nullptr && 7657 "** memcpy should not be lowered as TailCall in mempcpy context **"); 7658 DAG.setRoot(MC); 7659 7660 // Check if Size needs to be truncated or extended. 7661 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType()); 7662 7663 // Adjust return pointer to point just past the last dst byte. 7664 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(), 7665 Dst, Size); 7666 setValue(&I, DstPlusSize); 7667 return true; 7668 } 7669 7670 /// See if we can lower a strcpy call into an optimized form. If so, return 7671 /// true and lower it, otherwise return false and it will be lowered like a 7672 /// normal call. 7673 /// The caller already checked that \p I calls the appropriate LibFunc with a 7674 /// correct prototype. 7675 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) { 7676 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7677 7678 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7679 std::pair<SDValue, SDValue> Res = 7680 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(), 7681 getValue(Arg0), getValue(Arg1), 7682 MachinePointerInfo(Arg0), 7683 MachinePointerInfo(Arg1), isStpcpy); 7684 if (Res.first.getNode()) { 7685 setValue(&I, Res.first); 7686 DAG.setRoot(Res.second); 7687 return true; 7688 } 7689 7690 return false; 7691 } 7692 7693 /// See if we can lower a strcmp call into an optimized form. If so, return 7694 /// true and lower it, otherwise return false and it will be lowered like a 7695 /// normal call. 7696 /// The caller already checked that \p I calls the appropriate LibFunc with a 7697 /// correct prototype. 7698 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) { 7699 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7700 7701 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7702 std::pair<SDValue, SDValue> Res = 7703 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(), 7704 getValue(Arg0), getValue(Arg1), 7705 MachinePointerInfo(Arg0), 7706 MachinePointerInfo(Arg1)); 7707 if (Res.first.getNode()) { 7708 processIntegerCallValue(I, Res.first, true); 7709 PendingLoads.push_back(Res.second); 7710 return true; 7711 } 7712 7713 return false; 7714 } 7715 7716 /// See if we can lower a strlen call into an optimized form. If so, return 7717 /// true and lower it, otherwise return false and it will be lowered like a 7718 /// normal call. 7719 /// The caller already checked that \p I calls the appropriate LibFunc with a 7720 /// correct prototype. 7721 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) { 7722 const Value *Arg0 = I.getArgOperand(0); 7723 7724 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7725 std::pair<SDValue, SDValue> Res = 7726 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(), 7727 getValue(Arg0), MachinePointerInfo(Arg0)); 7728 if (Res.first.getNode()) { 7729 processIntegerCallValue(I, Res.first, false); 7730 PendingLoads.push_back(Res.second); 7731 return true; 7732 } 7733 7734 return false; 7735 } 7736 7737 /// See if we can lower a strnlen call into an optimized form. If so, return 7738 /// true and lower it, otherwise return false and it will be lowered like a 7739 /// normal call. 7740 /// The caller already checked that \p I calls the appropriate LibFunc with a 7741 /// correct prototype. 7742 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) { 7743 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1); 7744 7745 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo(); 7746 std::pair<SDValue, SDValue> Res = 7747 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(), 7748 getValue(Arg0), getValue(Arg1), 7749 MachinePointerInfo(Arg0)); 7750 if (Res.first.getNode()) { 7751 processIntegerCallValue(I, Res.first, false); 7752 PendingLoads.push_back(Res.second); 7753 return true; 7754 } 7755 7756 return false; 7757 } 7758 7759 /// See if we can lower a unary floating-point operation into an SDNode with 7760 /// the specified Opcode. If so, return true and lower it, otherwise return 7761 /// false and it will be lowered like a normal call. 7762 /// The caller already checked that \p I calls the appropriate LibFunc with a 7763 /// correct prototype. 7764 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I, 7765 unsigned Opcode) { 7766 // We already checked this call's prototype; verify it doesn't modify errno. 7767 if (!I.onlyReadsMemory()) 7768 return false; 7769 7770 SDNodeFlags Flags; 7771 Flags.copyFMF(cast<FPMathOperator>(I)); 7772 7773 SDValue Tmp = getValue(I.getArgOperand(0)); 7774 setValue(&I, 7775 DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp, Flags)); 7776 return true; 7777 } 7778 7779 /// See if we can lower a binary floating-point operation into an SDNode with 7780 /// the specified Opcode. If so, return true and lower it. Otherwise return 7781 /// false, and it will be lowered like a normal call. 7782 /// The caller already checked that \p I calls the appropriate LibFunc with a 7783 /// correct prototype. 7784 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I, 7785 unsigned Opcode) { 7786 // We already checked this call's prototype; verify it doesn't modify errno. 7787 if (!I.onlyReadsMemory()) 7788 return false; 7789 7790 SDNodeFlags Flags; 7791 Flags.copyFMF(cast<FPMathOperator>(I)); 7792 7793 SDValue Tmp0 = getValue(I.getArgOperand(0)); 7794 SDValue Tmp1 = getValue(I.getArgOperand(1)); 7795 EVT VT = Tmp0.getValueType(); 7796 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1, Flags)); 7797 return true; 7798 } 7799 7800 void SelectionDAGBuilder::visitCall(const CallInst &I) { 7801 // Handle inline assembly differently. 7802 if (I.isInlineAsm()) { 7803 visitInlineAsm(I); 7804 return; 7805 } 7806 7807 if (Function *F = I.getCalledFunction()) { 7808 if (F->isDeclaration()) { 7809 // Is this an LLVM intrinsic or a target-specific intrinsic? 7810 unsigned IID = F->getIntrinsicID(); 7811 if (!IID) 7812 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) 7813 IID = II->getIntrinsicID(F); 7814 7815 if (IID) { 7816 visitIntrinsicCall(I, IID); 7817 return; 7818 } 7819 } 7820 7821 // Check for well-known libc/libm calls. If the function is internal, it 7822 // can't be a library call. Don't do the check if marked as nobuiltin for 7823 // some reason or the call site requires strict floating point semantics. 7824 LibFunc Func; 7825 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() && 7826 F->hasName() && LibInfo->getLibFunc(*F, Func) && 7827 LibInfo->hasOptimizedCodeGen(Func)) { 7828 switch (Func) { 7829 default: break; 7830 case LibFunc_bcmp: 7831 if (visitMemCmpBCmpCall(I)) 7832 return; 7833 break; 7834 case LibFunc_copysign: 7835 case LibFunc_copysignf: 7836 case LibFunc_copysignl: 7837 // We already checked this call's prototype; verify it doesn't modify 7838 // errno. 7839 if (I.onlyReadsMemory()) { 7840 SDValue LHS = getValue(I.getArgOperand(0)); 7841 SDValue RHS = getValue(I.getArgOperand(1)); 7842 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(), 7843 LHS.getValueType(), LHS, RHS)); 7844 return; 7845 } 7846 break; 7847 case LibFunc_fabs: 7848 case LibFunc_fabsf: 7849 case LibFunc_fabsl: 7850 if (visitUnaryFloatCall(I, ISD::FABS)) 7851 return; 7852 break; 7853 case LibFunc_fmin: 7854 case LibFunc_fminf: 7855 case LibFunc_fminl: 7856 if (visitBinaryFloatCall(I, ISD::FMINNUM)) 7857 return; 7858 break; 7859 case LibFunc_fmax: 7860 case LibFunc_fmaxf: 7861 case LibFunc_fmaxl: 7862 if (visitBinaryFloatCall(I, ISD::FMAXNUM)) 7863 return; 7864 break; 7865 case LibFunc_sin: 7866 case LibFunc_sinf: 7867 case LibFunc_sinl: 7868 if (visitUnaryFloatCall(I, ISD::FSIN)) 7869 return; 7870 break; 7871 case LibFunc_cos: 7872 case LibFunc_cosf: 7873 case LibFunc_cosl: 7874 if (visitUnaryFloatCall(I, ISD::FCOS)) 7875 return; 7876 break; 7877 case LibFunc_sqrt: 7878 case LibFunc_sqrtf: 7879 case LibFunc_sqrtl: 7880 case LibFunc_sqrt_finite: 7881 case LibFunc_sqrtf_finite: 7882 case LibFunc_sqrtl_finite: 7883 if (visitUnaryFloatCall(I, ISD::FSQRT)) 7884 return; 7885 break; 7886 case LibFunc_floor: 7887 case LibFunc_floorf: 7888 case LibFunc_floorl: 7889 if (visitUnaryFloatCall(I, ISD::FFLOOR)) 7890 return; 7891 break; 7892 case LibFunc_nearbyint: 7893 case LibFunc_nearbyintf: 7894 case LibFunc_nearbyintl: 7895 if (visitUnaryFloatCall(I, ISD::FNEARBYINT)) 7896 return; 7897 break; 7898 case LibFunc_ceil: 7899 case LibFunc_ceilf: 7900 case LibFunc_ceill: 7901 if (visitUnaryFloatCall(I, ISD::FCEIL)) 7902 return; 7903 break; 7904 case LibFunc_rint: 7905 case LibFunc_rintf: 7906 case LibFunc_rintl: 7907 if (visitUnaryFloatCall(I, ISD::FRINT)) 7908 return; 7909 break; 7910 case LibFunc_round: 7911 case LibFunc_roundf: 7912 case LibFunc_roundl: 7913 if (visitUnaryFloatCall(I, ISD::FROUND)) 7914 return; 7915 break; 7916 case LibFunc_trunc: 7917 case LibFunc_truncf: 7918 case LibFunc_truncl: 7919 if (visitUnaryFloatCall(I, ISD::FTRUNC)) 7920 return; 7921 break; 7922 case LibFunc_log2: 7923 case LibFunc_log2f: 7924 case LibFunc_log2l: 7925 if (visitUnaryFloatCall(I, ISD::FLOG2)) 7926 return; 7927 break; 7928 case LibFunc_exp2: 7929 case LibFunc_exp2f: 7930 case LibFunc_exp2l: 7931 if (visitUnaryFloatCall(I, ISD::FEXP2)) 7932 return; 7933 break; 7934 case LibFunc_memcmp: 7935 if (visitMemCmpBCmpCall(I)) 7936 return; 7937 break; 7938 case LibFunc_mempcpy: 7939 if (visitMemPCpyCall(I)) 7940 return; 7941 break; 7942 case LibFunc_memchr: 7943 if (visitMemChrCall(I)) 7944 return; 7945 break; 7946 case LibFunc_strcpy: 7947 if (visitStrCpyCall(I, false)) 7948 return; 7949 break; 7950 case LibFunc_stpcpy: 7951 if (visitStrCpyCall(I, true)) 7952 return; 7953 break; 7954 case LibFunc_strcmp: 7955 if (visitStrCmpCall(I)) 7956 return; 7957 break; 7958 case LibFunc_strlen: 7959 if (visitStrLenCall(I)) 7960 return; 7961 break; 7962 case LibFunc_strnlen: 7963 if (visitStrNLenCall(I)) 7964 return; 7965 break; 7966 } 7967 } 7968 } 7969 7970 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't 7971 // have to do anything here to lower funclet bundles. 7972 // CFGuardTarget bundles are lowered in LowerCallTo. 7973 assert(!I.hasOperandBundlesOtherThan( 7974 {LLVMContext::OB_deopt, LLVMContext::OB_funclet, 7975 LLVMContext::OB_cfguardtarget, LLVMContext::OB_preallocated, 7976 LLVMContext::OB_clang_arc_attachedcall}) && 7977 "Cannot lower calls with arbitrary operand bundles!"); 7978 7979 SDValue Callee = getValue(I.getCalledOperand()); 7980 7981 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) 7982 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr); 7983 else 7984 // Check if we can potentially perform a tail call. More detailed checking 7985 // is be done within LowerCallTo, after more information about the call is 7986 // known. 7987 LowerCallTo(I, Callee, I.isTailCall()); 7988 } 7989 7990 namespace { 7991 7992 /// AsmOperandInfo - This contains information for each constraint that we are 7993 /// lowering. 7994 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo { 7995 public: 7996 /// CallOperand - If this is the result output operand or a clobber 7997 /// this is null, otherwise it is the incoming operand to the CallInst. 7998 /// This gets modified as the asm is processed. 7999 SDValue CallOperand; 8000 8001 /// AssignedRegs - If this is a register or register class operand, this 8002 /// contains the set of register corresponding to the operand. 8003 RegsForValue AssignedRegs; 8004 8005 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info) 8006 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) { 8007 } 8008 8009 /// Whether or not this operand accesses memory 8010 bool hasMemory(const TargetLowering &TLI) const { 8011 // Indirect operand accesses access memory. 8012 if (isIndirect) 8013 return true; 8014 8015 for (const auto &Code : Codes) 8016 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory) 8017 return true; 8018 8019 return false; 8020 } 8021 8022 /// getCallOperandValEVT - Return the EVT of the Value* that this operand 8023 /// corresponds to. If there is no Value* for this operand, it returns 8024 /// MVT::Other. 8025 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI, 8026 const DataLayout &DL) const { 8027 if (!CallOperandVal) return MVT::Other; 8028 8029 if (isa<BasicBlock>(CallOperandVal)) 8030 return TLI.getProgramPointerTy(DL); 8031 8032 llvm::Type *OpTy = CallOperandVal->getType(); 8033 8034 // FIXME: code duplicated from TargetLowering::ParseConstraints(). 8035 // If this is an indirect operand, the operand is a pointer to the 8036 // accessed type. 8037 if (isIndirect) { 8038 PointerType *PtrTy = dyn_cast<PointerType>(OpTy); 8039 if (!PtrTy) 8040 report_fatal_error("Indirect operand for inline asm not a pointer!"); 8041 OpTy = PtrTy->getElementType(); 8042 } 8043 8044 // Look for vector wrapped in a struct. e.g. { <16 x i8> }. 8045 if (StructType *STy = dyn_cast<StructType>(OpTy)) 8046 if (STy->getNumElements() == 1) 8047 OpTy = STy->getElementType(0); 8048 8049 // If OpTy is not a single value, it may be a struct/union that we 8050 // can tile with integers. 8051 if (!OpTy->isSingleValueType() && OpTy->isSized()) { 8052 unsigned BitSize = DL.getTypeSizeInBits(OpTy); 8053 switch (BitSize) { 8054 default: break; 8055 case 1: 8056 case 8: 8057 case 16: 8058 case 32: 8059 case 64: 8060 case 128: 8061 OpTy = IntegerType::get(Context, BitSize); 8062 break; 8063 } 8064 } 8065 8066 return TLI.getValueType(DL, OpTy, true); 8067 } 8068 }; 8069 8070 8071 } // end anonymous namespace 8072 8073 /// Make sure that the output operand \p OpInfo and its corresponding input 8074 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error 8075 /// out). 8076 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo, 8077 SDISelAsmOperandInfo &MatchingOpInfo, 8078 SelectionDAG &DAG) { 8079 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT) 8080 return; 8081 8082 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo(); 8083 const auto &TLI = DAG.getTargetLoweringInfo(); 8084 8085 std::pair<unsigned, const TargetRegisterClass *> MatchRC = 8086 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode, 8087 OpInfo.ConstraintVT); 8088 std::pair<unsigned, const TargetRegisterClass *> InputRC = 8089 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode, 8090 MatchingOpInfo.ConstraintVT); 8091 if ((OpInfo.ConstraintVT.isInteger() != 8092 MatchingOpInfo.ConstraintVT.isInteger()) || 8093 (MatchRC.second != InputRC.second)) { 8094 // FIXME: error out in a more elegant fashion 8095 report_fatal_error("Unsupported asm: input constraint" 8096 " with a matching output constraint of" 8097 " incompatible type!"); 8098 } 8099 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT; 8100 } 8101 8102 /// Get a direct memory input to behave well as an indirect operand. 8103 /// This may introduce stores, hence the need for a \p Chain. 8104 /// \return The (possibly updated) chain. 8105 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location, 8106 SDISelAsmOperandInfo &OpInfo, 8107 SelectionDAG &DAG) { 8108 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8109 8110 // If we don't have an indirect input, put it in the constpool if we can, 8111 // otherwise spill it to a stack slot. 8112 // TODO: This isn't quite right. We need to handle these according to 8113 // the addressing mode that the constraint wants. Also, this may take 8114 // an additional register for the computation and we don't want that 8115 // either. 8116 8117 // If the operand is a float, integer, or vector constant, spill to a 8118 // constant pool entry to get its address. 8119 const Value *OpVal = OpInfo.CallOperandVal; 8120 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) || 8121 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) { 8122 OpInfo.CallOperand = DAG.getConstantPool( 8123 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout())); 8124 return Chain; 8125 } 8126 8127 // Otherwise, create a stack slot and emit a store to it before the asm. 8128 Type *Ty = OpVal->getType(); 8129 auto &DL = DAG.getDataLayout(); 8130 uint64_t TySize = DL.getTypeAllocSize(Ty); 8131 MachineFunction &MF = DAG.getMachineFunction(); 8132 int SSFI = MF.getFrameInfo().CreateStackObject( 8133 TySize, DL.getPrefTypeAlign(Ty), false); 8134 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL)); 8135 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot, 8136 MachinePointerInfo::getFixedStack(MF, SSFI), 8137 TLI.getMemValueType(DL, Ty)); 8138 OpInfo.CallOperand = StackSlot; 8139 8140 return Chain; 8141 } 8142 8143 /// GetRegistersForValue - Assign registers (virtual or physical) for the 8144 /// specified operand. We prefer to assign virtual registers, to allow the 8145 /// register allocator to handle the assignment process. However, if the asm 8146 /// uses features that we can't model on machineinstrs, we have SDISel do the 8147 /// allocation. This produces generally horrible, but correct, code. 8148 /// 8149 /// OpInfo describes the operand 8150 /// RefOpInfo describes the matching operand if any, the operand otherwise 8151 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL, 8152 SDISelAsmOperandInfo &OpInfo, 8153 SDISelAsmOperandInfo &RefOpInfo) { 8154 LLVMContext &Context = *DAG.getContext(); 8155 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8156 8157 MachineFunction &MF = DAG.getMachineFunction(); 8158 SmallVector<unsigned, 4> Regs; 8159 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8160 8161 // No work to do for memory operations. 8162 if (OpInfo.ConstraintType == TargetLowering::C_Memory) 8163 return; 8164 8165 // If this is a constraint for a single physreg, or a constraint for a 8166 // register class, find it. 8167 unsigned AssignedReg; 8168 const TargetRegisterClass *RC; 8169 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint( 8170 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT); 8171 // RC is unset only on failure. Return immediately. 8172 if (!RC) 8173 return; 8174 8175 // Get the actual register value type. This is important, because the user 8176 // may have asked for (e.g.) the AX register in i32 type. We need to 8177 // remember that AX is actually i16 to get the right extension. 8178 const MVT RegVT = *TRI.legalclasstypes_begin(*RC); 8179 8180 if (OpInfo.ConstraintVT != MVT::Other) { 8181 // If this is an FP operand in an integer register (or visa versa), or more 8182 // generally if the operand value disagrees with the register class we plan 8183 // to stick it in, fix the operand type. 8184 // 8185 // If this is an input value, the bitcast to the new type is done now. 8186 // Bitcast for output value is done at the end of visitInlineAsm(). 8187 if ((OpInfo.Type == InlineAsm::isOutput || 8188 OpInfo.Type == InlineAsm::isInput) && 8189 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) { 8190 // Try to convert to the first EVT that the reg class contains. If the 8191 // types are identical size, use a bitcast to convert (e.g. two differing 8192 // vector types). Note: output bitcast is done at the end of 8193 // visitInlineAsm(). 8194 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) { 8195 // Exclude indirect inputs while they are unsupported because the code 8196 // to perform the load is missing and thus OpInfo.CallOperand still 8197 // refers to the input address rather than the pointed-to value. 8198 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect) 8199 OpInfo.CallOperand = 8200 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand); 8201 OpInfo.ConstraintVT = RegVT; 8202 // If the operand is an FP value and we want it in integer registers, 8203 // use the corresponding integer type. This turns an f64 value into 8204 // i64, which can be passed with two i32 values on a 32-bit machine. 8205 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) { 8206 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits()); 8207 if (OpInfo.Type == InlineAsm::isInput) 8208 OpInfo.CallOperand = 8209 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand); 8210 OpInfo.ConstraintVT = VT; 8211 } 8212 } 8213 } 8214 8215 // No need to allocate a matching input constraint since the constraint it's 8216 // matching to has already been allocated. 8217 if (OpInfo.isMatchingInputConstraint()) 8218 return; 8219 8220 EVT ValueVT = OpInfo.ConstraintVT; 8221 if (OpInfo.ConstraintVT == MVT::Other) 8222 ValueVT = RegVT; 8223 8224 // Initialize NumRegs. 8225 unsigned NumRegs = 1; 8226 if (OpInfo.ConstraintVT != MVT::Other) 8227 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT); 8228 8229 // If this is a constraint for a specific physical register, like {r17}, 8230 // assign it now. 8231 8232 // If this associated to a specific register, initialize iterator to correct 8233 // place. If virtual, make sure we have enough registers 8234 8235 // Initialize iterator if necessary 8236 TargetRegisterClass::iterator I = RC->begin(); 8237 MachineRegisterInfo &RegInfo = MF.getRegInfo(); 8238 8239 // Do not check for single registers. 8240 if (AssignedReg) { 8241 for (; *I != AssignedReg; ++I) 8242 assert(I != RC->end() && "AssignedReg should be member of RC"); 8243 } 8244 8245 for (; NumRegs; --NumRegs, ++I) { 8246 assert(I != RC->end() && "Ran out of registers to allocate!"); 8247 Register R = AssignedReg ? Register(*I) : RegInfo.createVirtualRegister(RC); 8248 Regs.push_back(R); 8249 } 8250 8251 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT); 8252 } 8253 8254 static unsigned 8255 findMatchingInlineAsmOperand(unsigned OperandNo, 8256 const std::vector<SDValue> &AsmNodeOperands) { 8257 // Scan until we find the definition we already emitted of this operand. 8258 unsigned CurOp = InlineAsm::Op_FirstOperand; 8259 for (; OperandNo; --OperandNo) { 8260 // Advance to the next operand. 8261 unsigned OpFlag = 8262 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8263 assert((InlineAsm::isRegDefKind(OpFlag) || 8264 InlineAsm::isRegDefEarlyClobberKind(OpFlag) || 8265 InlineAsm::isMemKind(OpFlag)) && 8266 "Skipped past definitions?"); 8267 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1; 8268 } 8269 return CurOp; 8270 } 8271 8272 namespace { 8273 8274 class ExtraFlags { 8275 unsigned Flags = 0; 8276 8277 public: 8278 explicit ExtraFlags(const CallBase &Call) { 8279 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8280 if (IA->hasSideEffects()) 8281 Flags |= InlineAsm::Extra_HasSideEffects; 8282 if (IA->isAlignStack()) 8283 Flags |= InlineAsm::Extra_IsAlignStack; 8284 if (Call.isConvergent()) 8285 Flags |= InlineAsm::Extra_IsConvergent; 8286 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect; 8287 } 8288 8289 void update(const TargetLowering::AsmOperandInfo &OpInfo) { 8290 // Ideally, we would only check against memory constraints. However, the 8291 // meaning of an Other constraint can be target-specific and we can't easily 8292 // reason about it. Therefore, be conservative and set MayLoad/MayStore 8293 // for Other constraints as well. 8294 if (OpInfo.ConstraintType == TargetLowering::C_Memory || 8295 OpInfo.ConstraintType == TargetLowering::C_Other) { 8296 if (OpInfo.Type == InlineAsm::isInput) 8297 Flags |= InlineAsm::Extra_MayLoad; 8298 else if (OpInfo.Type == InlineAsm::isOutput) 8299 Flags |= InlineAsm::Extra_MayStore; 8300 else if (OpInfo.Type == InlineAsm::isClobber) 8301 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore); 8302 } 8303 } 8304 8305 unsigned get() const { return Flags; } 8306 }; 8307 8308 } // end anonymous namespace 8309 8310 /// visitInlineAsm - Handle a call to an InlineAsm object. 8311 void SelectionDAGBuilder::visitInlineAsm(const CallBase &Call) { 8312 const InlineAsm *IA = cast<InlineAsm>(Call.getCalledOperand()); 8313 8314 /// ConstraintOperands - Information about all of the constraints. 8315 SmallVector<SDISelAsmOperandInfo, 16> ConstraintOperands; 8316 8317 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8318 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints( 8319 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), Call); 8320 8321 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack, 8322 // AsmDialect, MayLoad, MayStore). 8323 bool HasSideEffect = IA->hasSideEffects(); 8324 ExtraFlags ExtraInfo(Call); 8325 8326 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst. 8327 unsigned ResNo = 0; // ResNo - The result number of the next output. 8328 unsigned NumMatchingOps = 0; 8329 for (auto &T : TargetConstraints) { 8330 ConstraintOperands.push_back(SDISelAsmOperandInfo(T)); 8331 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back(); 8332 8333 // Compute the value type for each operand. 8334 if (OpInfo.Type == InlineAsm::isInput || 8335 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) { 8336 OpInfo.CallOperandVal = Call.getArgOperand(ArgNo++); 8337 8338 // Process the call argument. BasicBlocks are labels, currently appearing 8339 // only in asm's. 8340 if (isa<CallBrInst>(Call) && 8341 ArgNo - 1 >= (cast<CallBrInst>(&Call)->getNumArgOperands() - 8342 cast<CallBrInst>(&Call)->getNumIndirectDests() - 8343 NumMatchingOps) && 8344 (NumMatchingOps == 0 || 8345 ArgNo - 1 < (cast<CallBrInst>(&Call)->getNumArgOperands() - 8346 NumMatchingOps))) { 8347 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal); 8348 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true); 8349 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT); 8350 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) { 8351 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]); 8352 } else { 8353 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal); 8354 } 8355 8356 EVT VT = OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, 8357 DAG.getDataLayout()); 8358 OpInfo.ConstraintVT = VT.isSimple() ? VT.getSimpleVT() : MVT::Other; 8359 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) { 8360 // The return value of the call is this value. As such, there is no 8361 // corresponding argument. 8362 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8363 if (StructType *STy = dyn_cast<StructType>(Call.getType())) { 8364 OpInfo.ConstraintVT = TLI.getSimpleValueType( 8365 DAG.getDataLayout(), STy->getElementType(ResNo)); 8366 } else { 8367 assert(ResNo == 0 && "Asm only has one result!"); 8368 OpInfo.ConstraintVT = 8369 TLI.getSimpleValueType(DAG.getDataLayout(), Call.getType()); 8370 } 8371 ++ResNo; 8372 } else { 8373 OpInfo.ConstraintVT = MVT::Other; 8374 } 8375 8376 if (OpInfo.hasMatchingInput()) 8377 ++NumMatchingOps; 8378 8379 if (!HasSideEffect) 8380 HasSideEffect = OpInfo.hasMemory(TLI); 8381 8382 // Determine if this InlineAsm MayLoad or MayStore based on the constraints. 8383 // FIXME: Could we compute this on OpInfo rather than T? 8384 8385 // Compute the constraint code and ConstraintType to use. 8386 TLI.ComputeConstraintToUse(T, SDValue()); 8387 8388 if (T.ConstraintType == TargetLowering::C_Immediate && 8389 OpInfo.CallOperand && !isa<ConstantSDNode>(OpInfo.CallOperand)) 8390 // We've delayed emitting a diagnostic like the "n" constraint because 8391 // inlining could cause an integer showing up. 8392 return emitInlineAsmError(Call, "constraint '" + Twine(T.ConstraintCode) + 8393 "' expects an integer constant " 8394 "expression"); 8395 8396 ExtraInfo.update(T); 8397 } 8398 8399 8400 // We won't need to flush pending loads if this asm doesn't touch 8401 // memory and is nonvolatile. 8402 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot(); 8403 8404 bool IsCallBr = isa<CallBrInst>(Call); 8405 if (IsCallBr) { 8406 // If this is a callbr we need to flush pending exports since inlineasm_br 8407 // is a terminator. We need to do this before nodes are glued to 8408 // the inlineasm_br node. 8409 Chain = getControlRoot(); 8410 } 8411 8412 // Second pass over the constraints: compute which constraint option to use. 8413 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8414 // If this is an output operand with a matching input operand, look up the 8415 // matching input. If their types mismatch, e.g. one is an integer, the 8416 // other is floating point, or their sizes are different, flag it as an 8417 // error. 8418 if (OpInfo.hasMatchingInput()) { 8419 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput]; 8420 patchMatchingInput(OpInfo, Input, DAG); 8421 } 8422 8423 // Compute the constraint code and ConstraintType to use. 8424 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG); 8425 8426 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8427 OpInfo.Type == InlineAsm::isClobber) 8428 continue; 8429 8430 // If this is a memory input, and if the operand is not indirect, do what we 8431 // need to provide an address for the memory input. 8432 if (OpInfo.ConstraintType == TargetLowering::C_Memory && 8433 !OpInfo.isIndirect) { 8434 assert((OpInfo.isMultipleAlternative || 8435 (OpInfo.Type == InlineAsm::isInput)) && 8436 "Can only indirectify direct input operands!"); 8437 8438 // Memory operands really want the address of the value. 8439 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG); 8440 8441 // There is no longer a Value* corresponding to this operand. 8442 OpInfo.CallOperandVal = nullptr; 8443 8444 // It is now an indirect operand. 8445 OpInfo.isIndirect = true; 8446 } 8447 8448 } 8449 8450 // AsmNodeOperands - The operands for the ISD::INLINEASM node. 8451 std::vector<SDValue> AsmNodeOperands; 8452 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain 8453 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol( 8454 IA->getAsmString().c_str(), TLI.getProgramPointerTy(DAG.getDataLayout()))); 8455 8456 // If we have a !srcloc metadata node associated with it, we want to attach 8457 // this to the ultimately generated inline asm machineinstr. To do this, we 8458 // pass in the third operand as this (potentially null) inline asm MDNode. 8459 const MDNode *SrcLoc = Call.getMetadata("srcloc"); 8460 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc)); 8461 8462 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore 8463 // bits as operand 3. 8464 AsmNodeOperands.push_back(DAG.getTargetConstant( 8465 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8466 8467 // Third pass: Loop over operands to prepare DAG-level operands.. As part of 8468 // this, assign virtual and physical registers for inputs and otput. 8469 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8470 // Assign Registers. 8471 SDISelAsmOperandInfo &RefOpInfo = 8472 OpInfo.isMatchingInputConstraint() 8473 ? ConstraintOperands[OpInfo.getMatchedOperand()] 8474 : OpInfo; 8475 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo); 8476 8477 auto DetectWriteToReservedRegister = [&]() { 8478 const MachineFunction &MF = DAG.getMachineFunction(); 8479 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); 8480 for (unsigned Reg : OpInfo.AssignedRegs.Regs) { 8481 if (Register::isPhysicalRegister(Reg) && 8482 TRI.isInlineAsmReadOnlyReg(MF, Reg)) { 8483 const char *RegName = TRI.getName(Reg); 8484 emitInlineAsmError(Call, "write to reserved register '" + 8485 Twine(RegName) + "'"); 8486 return true; 8487 } 8488 } 8489 return false; 8490 }; 8491 8492 switch (OpInfo.Type) { 8493 case InlineAsm::isOutput: 8494 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8495 unsigned ConstraintID = 8496 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8497 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8498 "Failed to convert memory constraint code to constraint id."); 8499 8500 // Add information to the INLINEASM node to know about this output. 8501 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8502 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID); 8503 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(), 8504 MVT::i32)); 8505 AsmNodeOperands.push_back(OpInfo.CallOperand); 8506 } else { 8507 // Otherwise, this outputs to a register (directly for C_Register / 8508 // C_RegisterClass, and a target-defined fashion for 8509 // C_Immediate/C_Other). Find a register that we can use. 8510 if (OpInfo.AssignedRegs.Regs.empty()) { 8511 emitInlineAsmError( 8512 Call, "couldn't allocate output register for constraint '" + 8513 Twine(OpInfo.ConstraintCode) + "'"); 8514 return; 8515 } 8516 8517 if (DetectWriteToReservedRegister()) 8518 return; 8519 8520 // Add information to the INLINEASM node to know that this register is 8521 // set. 8522 OpInfo.AssignedRegs.AddInlineAsmOperands( 8523 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber 8524 : InlineAsm::Kind_RegDef, 8525 false, 0, getCurSDLoc(), DAG, AsmNodeOperands); 8526 } 8527 break; 8528 8529 case InlineAsm::isInput: { 8530 SDValue InOperandVal = OpInfo.CallOperand; 8531 8532 if (OpInfo.isMatchingInputConstraint()) { 8533 // If this is required to match an output register we have already set, 8534 // just use its register. 8535 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(), 8536 AsmNodeOperands); 8537 unsigned OpFlag = 8538 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue(); 8539 if (InlineAsm::isRegDefKind(OpFlag) || 8540 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) { 8541 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs. 8542 if (OpInfo.isIndirect) { 8543 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c 8544 emitInlineAsmError(Call, "inline asm not supported yet: " 8545 "don't know how to handle tied " 8546 "indirect register inputs"); 8547 return; 8548 } 8549 8550 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType(); 8551 SmallVector<unsigned, 4> Regs; 8552 8553 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) { 8554 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag); 8555 MachineRegisterInfo &RegInfo = 8556 DAG.getMachineFunction().getRegInfo(); 8557 for (unsigned i = 0; i != NumRegs; ++i) 8558 Regs.push_back(RegInfo.createVirtualRegister(RC)); 8559 } else { 8560 emitInlineAsmError(Call, 8561 "inline asm error: This value type register " 8562 "class is not natively supported!"); 8563 return; 8564 } 8565 8566 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType()); 8567 8568 SDLoc dl = getCurSDLoc(); 8569 // Use the produced MatchedRegs object to 8570 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, &Call); 8571 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, 8572 true, OpInfo.getMatchedOperand(), dl, 8573 DAG, AsmNodeOperands); 8574 break; 8575 } 8576 8577 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!"); 8578 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 && 8579 "Unexpected number of operands"); 8580 // Add information to the INLINEASM node to know about this input. 8581 // See InlineAsm.h isUseOperandTiedToDef. 8582 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag); 8583 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag, 8584 OpInfo.getMatchedOperand()); 8585 AsmNodeOperands.push_back(DAG.getTargetConstant( 8586 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8587 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]); 8588 break; 8589 } 8590 8591 // Treat indirect 'X' constraint as memory. 8592 if (OpInfo.ConstraintType == TargetLowering::C_Other && 8593 OpInfo.isIndirect) 8594 OpInfo.ConstraintType = TargetLowering::C_Memory; 8595 8596 if (OpInfo.ConstraintType == TargetLowering::C_Immediate || 8597 OpInfo.ConstraintType == TargetLowering::C_Other) { 8598 std::vector<SDValue> Ops; 8599 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode, 8600 Ops, DAG); 8601 if (Ops.empty()) { 8602 if (OpInfo.ConstraintType == TargetLowering::C_Immediate) 8603 if (isa<ConstantSDNode>(InOperandVal)) { 8604 emitInlineAsmError(Call, "value out of range for constraint '" + 8605 Twine(OpInfo.ConstraintCode) + "'"); 8606 return; 8607 } 8608 8609 emitInlineAsmError(Call, 8610 "invalid operand for inline asm constraint '" + 8611 Twine(OpInfo.ConstraintCode) + "'"); 8612 return; 8613 } 8614 8615 // Add information to the INLINEASM node to know about this input. 8616 unsigned ResOpType = 8617 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size()); 8618 AsmNodeOperands.push_back(DAG.getTargetConstant( 8619 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout()))); 8620 llvm::append_range(AsmNodeOperands, Ops); 8621 break; 8622 } 8623 8624 if (OpInfo.ConstraintType == TargetLowering::C_Memory) { 8625 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!"); 8626 assert(InOperandVal.getValueType() == 8627 TLI.getPointerTy(DAG.getDataLayout()) && 8628 "Memory operands expect pointer values"); 8629 8630 unsigned ConstraintID = 8631 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode); 8632 assert(ConstraintID != InlineAsm::Constraint_Unknown && 8633 "Failed to convert memory constraint code to constraint id."); 8634 8635 // Add information to the INLINEASM node to know about this input. 8636 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1); 8637 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID); 8638 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType, 8639 getCurSDLoc(), 8640 MVT::i32)); 8641 AsmNodeOperands.push_back(InOperandVal); 8642 break; 8643 } 8644 8645 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass || 8646 OpInfo.ConstraintType == TargetLowering::C_Register) && 8647 "Unknown constraint type!"); 8648 8649 // TODO: Support this. 8650 if (OpInfo.isIndirect) { 8651 emitInlineAsmError( 8652 Call, "Don't know how to handle indirect register inputs yet " 8653 "for constraint '" + 8654 Twine(OpInfo.ConstraintCode) + "'"); 8655 return; 8656 } 8657 8658 // Copy the input into the appropriate registers. 8659 if (OpInfo.AssignedRegs.Regs.empty()) { 8660 emitInlineAsmError(Call, 8661 "couldn't allocate input reg for constraint '" + 8662 Twine(OpInfo.ConstraintCode) + "'"); 8663 return; 8664 } 8665 8666 if (DetectWriteToReservedRegister()) 8667 return; 8668 8669 SDLoc dl = getCurSDLoc(); 8670 8671 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag, 8672 &Call); 8673 8674 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0, 8675 dl, DAG, AsmNodeOperands); 8676 break; 8677 } 8678 case InlineAsm::isClobber: 8679 // Add the clobbered value to the operand list, so that the register 8680 // allocator is aware that the physreg got clobbered. 8681 if (!OpInfo.AssignedRegs.Regs.empty()) 8682 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber, 8683 false, 0, getCurSDLoc(), DAG, 8684 AsmNodeOperands); 8685 break; 8686 } 8687 } 8688 8689 // Finish up input operands. Set the input chain and add the flag last. 8690 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain; 8691 if (Flag.getNode()) AsmNodeOperands.push_back(Flag); 8692 8693 unsigned ISDOpc = IsCallBr ? ISD::INLINEASM_BR : ISD::INLINEASM; 8694 Chain = DAG.getNode(ISDOpc, getCurSDLoc(), 8695 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands); 8696 Flag = Chain.getValue(1); 8697 8698 // Do additional work to generate outputs. 8699 8700 SmallVector<EVT, 1> ResultVTs; 8701 SmallVector<SDValue, 1> ResultValues; 8702 SmallVector<SDValue, 8> OutChains; 8703 8704 llvm::Type *CallResultType = Call.getType(); 8705 ArrayRef<Type *> ResultTypes; 8706 if (StructType *StructResult = dyn_cast<StructType>(CallResultType)) 8707 ResultTypes = StructResult->elements(); 8708 else if (!CallResultType->isVoidTy()) 8709 ResultTypes = makeArrayRef(CallResultType); 8710 8711 auto CurResultType = ResultTypes.begin(); 8712 auto handleRegAssign = [&](SDValue V) { 8713 assert(CurResultType != ResultTypes.end() && "Unexpected value"); 8714 assert((*CurResultType)->isSized() && "Unexpected unsized type"); 8715 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType); 8716 ++CurResultType; 8717 // If the type of the inline asm call site return value is different but has 8718 // same size as the type of the asm output bitcast it. One example of this 8719 // is for vectors with different width / number of elements. This can 8720 // happen for register classes that can contain multiple different value 8721 // types. The preg or vreg allocated may not have the same VT as was 8722 // expected. 8723 // 8724 // This can also happen for a return value that disagrees with the register 8725 // class it is put in, eg. a double in a general-purpose register on a 8726 // 32-bit machine. 8727 if (ResultVT != V.getValueType() && 8728 ResultVT.getSizeInBits() == V.getValueSizeInBits()) 8729 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V); 8730 else if (ResultVT != V.getValueType() && ResultVT.isInteger() && 8731 V.getValueType().isInteger()) { 8732 // If a result value was tied to an input value, the computed result 8733 // may have a wider width than the expected result. Extract the 8734 // relevant portion. 8735 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V); 8736 } 8737 assert(ResultVT == V.getValueType() && "Asm result value mismatch!"); 8738 ResultVTs.push_back(ResultVT); 8739 ResultValues.push_back(V); 8740 }; 8741 8742 // Deal with output operands. 8743 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) { 8744 if (OpInfo.Type == InlineAsm::isOutput) { 8745 SDValue Val; 8746 // Skip trivial output operands. 8747 if (OpInfo.AssignedRegs.Regs.empty()) 8748 continue; 8749 8750 switch (OpInfo.ConstraintType) { 8751 case TargetLowering::C_Register: 8752 case TargetLowering::C_RegisterClass: 8753 Val = OpInfo.AssignedRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), 8754 Chain, &Flag, &Call); 8755 break; 8756 case TargetLowering::C_Immediate: 8757 case TargetLowering::C_Other: 8758 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(), 8759 OpInfo, DAG); 8760 break; 8761 case TargetLowering::C_Memory: 8762 break; // Already handled. 8763 case TargetLowering::C_Unknown: 8764 assert(false && "Unexpected unknown constraint"); 8765 } 8766 8767 // Indirect output manifest as stores. Record output chains. 8768 if (OpInfo.isIndirect) { 8769 const Value *Ptr = OpInfo.CallOperandVal; 8770 assert(Ptr && "Expected value CallOperandVal for indirect asm operand"); 8771 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr), 8772 MachinePointerInfo(Ptr)); 8773 OutChains.push_back(Store); 8774 } else { 8775 // generate CopyFromRegs to associated registers. 8776 assert(!Call.getType()->isVoidTy() && "Bad inline asm!"); 8777 if (Val.getOpcode() == ISD::MERGE_VALUES) { 8778 for (const SDValue &V : Val->op_values()) 8779 handleRegAssign(V); 8780 } else 8781 handleRegAssign(Val); 8782 } 8783 } 8784 } 8785 8786 // Set results. 8787 if (!ResultValues.empty()) { 8788 assert(CurResultType == ResultTypes.end() && 8789 "Mismatch in number of ResultTypes"); 8790 assert(ResultValues.size() == ResultTypes.size() && 8791 "Mismatch in number of output operands in asm result"); 8792 8793 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 8794 DAG.getVTList(ResultVTs), ResultValues); 8795 setValue(&Call, V); 8796 } 8797 8798 // Collect store chains. 8799 if (!OutChains.empty()) 8800 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains); 8801 8802 // Only Update Root if inline assembly has a memory effect. 8803 if (ResultValues.empty() || HasSideEffect || !OutChains.empty() || IsCallBr) 8804 DAG.setRoot(Chain); 8805 } 8806 8807 void SelectionDAGBuilder::emitInlineAsmError(const CallBase &Call, 8808 const Twine &Message) { 8809 LLVMContext &Ctx = *DAG.getContext(); 8810 Ctx.emitError(&Call, Message); 8811 8812 // Make sure we leave the DAG in a valid state 8813 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8814 SmallVector<EVT, 1> ValueVTs; 8815 ComputeValueVTs(TLI, DAG.getDataLayout(), Call.getType(), ValueVTs); 8816 8817 if (ValueVTs.empty()) 8818 return; 8819 8820 SmallVector<SDValue, 1> Ops; 8821 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i) 8822 Ops.push_back(DAG.getUNDEF(ValueVTs[i])); 8823 8824 setValue(&Call, DAG.getMergeValues(Ops, getCurSDLoc())); 8825 } 8826 8827 void SelectionDAGBuilder::visitVAStart(const CallInst &I) { 8828 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(), 8829 MVT::Other, getRoot(), 8830 getValue(I.getArgOperand(0)), 8831 DAG.getSrcValue(I.getArgOperand(0)))); 8832 } 8833 8834 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) { 8835 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 8836 const DataLayout &DL = DAG.getDataLayout(); 8837 SDValue V = DAG.getVAArg( 8838 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(), 8839 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)), 8840 DL.getABITypeAlign(I.getType()).value()); 8841 DAG.setRoot(V.getValue(1)); 8842 8843 if (I.getType()->isPointerTy()) 8844 V = DAG.getPtrExtOrTrunc( 8845 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType())); 8846 setValue(&I, V); 8847 } 8848 8849 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) { 8850 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(), 8851 MVT::Other, getRoot(), 8852 getValue(I.getArgOperand(0)), 8853 DAG.getSrcValue(I.getArgOperand(0)))); 8854 } 8855 8856 void SelectionDAGBuilder::visitVACopy(const CallInst &I) { 8857 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(), 8858 MVT::Other, getRoot(), 8859 getValue(I.getArgOperand(0)), 8860 getValue(I.getArgOperand(1)), 8861 DAG.getSrcValue(I.getArgOperand(0)), 8862 DAG.getSrcValue(I.getArgOperand(1)))); 8863 } 8864 8865 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG, 8866 const Instruction &I, 8867 SDValue Op) { 8868 const MDNode *Range = I.getMetadata(LLVMContext::MD_range); 8869 if (!Range) 8870 return Op; 8871 8872 ConstantRange CR = getConstantRangeFromMetadata(*Range); 8873 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped()) 8874 return Op; 8875 8876 APInt Lo = CR.getUnsignedMin(); 8877 if (!Lo.isMinValue()) 8878 return Op; 8879 8880 APInt Hi = CR.getUnsignedMax(); 8881 unsigned Bits = std::max(Hi.getActiveBits(), 8882 static_cast<unsigned>(IntegerType::MIN_INT_BITS)); 8883 8884 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits); 8885 8886 SDLoc SL = getCurSDLoc(); 8887 8888 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op, 8889 DAG.getValueType(SmallVT)); 8890 unsigned NumVals = Op.getNode()->getNumValues(); 8891 if (NumVals == 1) 8892 return ZExt; 8893 8894 SmallVector<SDValue, 4> Ops; 8895 8896 Ops.push_back(ZExt); 8897 for (unsigned I = 1; I != NumVals; ++I) 8898 Ops.push_back(Op.getValue(I)); 8899 8900 return DAG.getMergeValues(Ops, SL); 8901 } 8902 8903 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of 8904 /// the call being lowered. 8905 /// 8906 /// This is a helper for lowering intrinsics that follow a target calling 8907 /// convention or require stack pointer adjustment. Only a subset of the 8908 /// intrinsic's operands need to participate in the calling convention. 8909 void SelectionDAGBuilder::populateCallLoweringInfo( 8910 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call, 8911 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy, 8912 bool IsPatchPoint) { 8913 TargetLowering::ArgListTy Args; 8914 Args.reserve(NumArgs); 8915 8916 // Populate the argument list. 8917 // Attributes for args start at offset 1, after the return attribute. 8918 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs; 8919 ArgI != ArgE; ++ArgI) { 8920 const Value *V = Call->getOperand(ArgI); 8921 8922 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic."); 8923 8924 TargetLowering::ArgListEntry Entry; 8925 Entry.Node = getValue(V); 8926 Entry.Ty = V->getType(); 8927 Entry.setAttributes(Call, ArgI); 8928 Args.push_back(Entry); 8929 } 8930 8931 CLI.setDebugLoc(getCurSDLoc()) 8932 .setChain(getRoot()) 8933 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args)) 8934 .setDiscardResult(Call->use_empty()) 8935 .setIsPatchPoint(IsPatchPoint) 8936 .setIsPreallocated( 8937 Call->countOperandBundlesOfType(LLVMContext::OB_preallocated) != 0); 8938 } 8939 8940 /// Add a stack map intrinsic call's live variable operands to a stackmap 8941 /// or patchpoint target node's operand list. 8942 /// 8943 /// Constants are converted to TargetConstants purely as an optimization to 8944 /// avoid constant materialization and register allocation. 8945 /// 8946 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not 8947 /// generate addess computation nodes, and so FinalizeISel can convert the 8948 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids 8949 /// address materialization and register allocation, but may also be required 8950 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an 8951 /// alloca in the entry block, then the runtime may assume that the alloca's 8952 /// StackMap location can be read immediately after compilation and that the 8953 /// location is valid at any point during execution (this is similar to the 8954 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were 8955 /// only available in a register, then the runtime would need to trap when 8956 /// execution reaches the StackMap in order to read the alloca's location. 8957 static void addStackMapLiveVars(const CallBase &Call, unsigned StartIdx, 8958 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops, 8959 SelectionDAGBuilder &Builder) { 8960 for (unsigned i = StartIdx, e = Call.arg_size(); i != e; ++i) { 8961 SDValue OpVal = Builder.getValue(Call.getArgOperand(i)); 8962 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) { 8963 Ops.push_back( 8964 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64)); 8965 Ops.push_back( 8966 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64)); 8967 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) { 8968 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo(); 8969 Ops.push_back(Builder.DAG.getTargetFrameIndex( 8970 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout()))); 8971 } else 8972 Ops.push_back(OpVal); 8973 } 8974 } 8975 8976 /// Lower llvm.experimental.stackmap directly to its target opcode. 8977 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) { 8978 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>, 8979 // [live variables...]) 8980 8981 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value."); 8982 8983 SDValue Chain, InFlag, Callee, NullPtr; 8984 SmallVector<SDValue, 32> Ops; 8985 8986 SDLoc DL = getCurSDLoc(); 8987 Callee = getValue(CI.getCalledOperand()); 8988 NullPtr = DAG.getIntPtrConstant(0, DL, true); 8989 8990 // The stackmap intrinsic only records the live variables (the arguments 8991 // passed to it) and emits NOPS (if requested). Unlike the patchpoint 8992 // intrinsic, this won't be lowered to a function call. This means we don't 8993 // have to worry about calling conventions and target specific lowering code. 8994 // Instead we perform the call lowering right here. 8995 // 8996 // chain, flag = CALLSEQ_START(chain, 0, 0) 8997 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag) 8998 // chain, flag = CALLSEQ_END(chain, 0, 0, flag) 8999 // 9000 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL); 9001 InFlag = Chain.getValue(1); 9002 9003 // Add the <id> and <numBytes> constants. 9004 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos)); 9005 Ops.push_back(DAG.getTargetConstant( 9006 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64)); 9007 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos)); 9008 Ops.push_back(DAG.getTargetConstant( 9009 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL, 9010 MVT::i32)); 9011 9012 // Push live variables for the stack map. 9013 addStackMapLiveVars(CI, 2, DL, Ops, *this); 9014 9015 // We are not pushing any register mask info here on the operands list, 9016 // because the stackmap doesn't clobber anything. 9017 9018 // Push the chain and the glue flag. 9019 Ops.push_back(Chain); 9020 Ops.push_back(InFlag); 9021 9022 // Create the STACKMAP node. 9023 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9024 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops); 9025 Chain = SDValue(SM, 0); 9026 InFlag = Chain.getValue(1); 9027 9028 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL); 9029 9030 // Stackmaps don't generate values, so nothing goes into the NodeMap. 9031 9032 // Set the root to the target-lowered call chain. 9033 DAG.setRoot(Chain); 9034 9035 // Inform the Frame Information that we have a stackmap in this function. 9036 FuncInfo.MF->getFrameInfo().setHasStackMap(); 9037 } 9038 9039 /// Lower llvm.experimental.patchpoint directly to its target opcode. 9040 void SelectionDAGBuilder::visitPatchpoint(const CallBase &CB, 9041 const BasicBlock *EHPadBB) { 9042 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>, 9043 // i32 <numBytes>, 9044 // i8* <target>, 9045 // i32 <numArgs>, 9046 // [Args...], 9047 // [live variables...]) 9048 9049 CallingConv::ID CC = CB.getCallingConv(); 9050 bool IsAnyRegCC = CC == CallingConv::AnyReg; 9051 bool HasDef = !CB.getType()->isVoidTy(); 9052 SDLoc dl = getCurSDLoc(); 9053 SDValue Callee = getValue(CB.getArgOperand(PatchPointOpers::TargetPos)); 9054 9055 // Handle immediate and symbolic callees. 9056 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee)) 9057 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl, 9058 /*isTarget=*/true); 9059 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee)) 9060 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(), 9061 SDLoc(SymbolicCallee), 9062 SymbolicCallee->getValueType(0)); 9063 9064 // Get the real number of arguments participating in the call <numArgs> 9065 SDValue NArgVal = getValue(CB.getArgOperand(PatchPointOpers::NArgPos)); 9066 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue(); 9067 9068 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs> 9069 // Intrinsics include all meta-operands up to but not including CC. 9070 unsigned NumMetaOpers = PatchPointOpers::CCPos; 9071 assert(CB.arg_size() >= NumMetaOpers + NumArgs && 9072 "Not enough arguments provided to the patchpoint intrinsic"); 9073 9074 // For AnyRegCC the arguments are lowered later on manually. 9075 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs; 9076 Type *ReturnTy = 9077 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CB.getType(); 9078 9079 TargetLowering::CallLoweringInfo CLI(DAG); 9080 populateCallLoweringInfo(CLI, &CB, NumMetaOpers, NumCallArgs, Callee, 9081 ReturnTy, true); 9082 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB); 9083 9084 SDNode *CallEnd = Result.second.getNode(); 9085 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg)) 9086 CallEnd = CallEnd->getOperand(0).getNode(); 9087 9088 /// Get a call instruction from the call sequence chain. 9089 /// Tail calls are not allowed. 9090 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END && 9091 "Expected a callseq node."); 9092 SDNode *Call = CallEnd->getOperand(0).getNode(); 9093 bool HasGlue = Call->getGluedNode(); 9094 9095 // Replace the target specific call node with the patchable intrinsic. 9096 SmallVector<SDValue, 8> Ops; 9097 9098 // Add the <id> and <numBytes> constants. 9099 SDValue IDVal = getValue(CB.getArgOperand(PatchPointOpers::IDPos)); 9100 Ops.push_back(DAG.getTargetConstant( 9101 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64)); 9102 SDValue NBytesVal = getValue(CB.getArgOperand(PatchPointOpers::NBytesPos)); 9103 Ops.push_back(DAG.getTargetConstant( 9104 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl, 9105 MVT::i32)); 9106 9107 // Add the callee. 9108 Ops.push_back(Callee); 9109 9110 // Adjust <numArgs> to account for any arguments that have been passed on the 9111 // stack instead. 9112 // Call Node: Chain, Target, {Args}, RegMask, [Glue] 9113 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3); 9114 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs; 9115 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32)); 9116 9117 // Add the calling convention 9118 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32)); 9119 9120 // Add the arguments we omitted previously. The register allocator should 9121 // place these in any free register. 9122 if (IsAnyRegCC) 9123 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i) 9124 Ops.push_back(getValue(CB.getArgOperand(i))); 9125 9126 // Push the arguments from the call instruction up to the register mask. 9127 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1; 9128 Ops.append(Call->op_begin() + 2, e); 9129 9130 // Push live variables for the stack map. 9131 addStackMapLiveVars(CB, NumMetaOpers + NumArgs, dl, Ops, *this); 9132 9133 // Push the register mask info. 9134 if (HasGlue) 9135 Ops.push_back(*(Call->op_end()-2)); 9136 else 9137 Ops.push_back(*(Call->op_end()-1)); 9138 9139 // Push the chain (this is originally the first operand of the call, but 9140 // becomes now the last or second to last operand). 9141 Ops.push_back(*(Call->op_begin())); 9142 9143 // Push the glue flag (last operand). 9144 if (HasGlue) 9145 Ops.push_back(*(Call->op_end()-1)); 9146 9147 SDVTList NodeTys; 9148 if (IsAnyRegCC && HasDef) { 9149 // Create the return types based on the intrinsic definition 9150 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9151 SmallVector<EVT, 3> ValueVTs; 9152 ComputeValueVTs(TLI, DAG.getDataLayout(), CB.getType(), ValueVTs); 9153 assert(ValueVTs.size() == 1 && "Expected only one return value type."); 9154 9155 // There is always a chain and a glue type at the end 9156 ValueVTs.push_back(MVT::Other); 9157 ValueVTs.push_back(MVT::Glue); 9158 NodeTys = DAG.getVTList(ValueVTs); 9159 } else 9160 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); 9161 9162 // Replace the target specific call node with a PATCHPOINT node. 9163 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT, 9164 dl, NodeTys, Ops); 9165 9166 // Update the NodeMap. 9167 if (HasDef) { 9168 if (IsAnyRegCC) 9169 setValue(&CB, SDValue(MN, 0)); 9170 else 9171 setValue(&CB, Result.first); 9172 } 9173 9174 // Fixup the consumers of the intrinsic. The chain and glue may be used in the 9175 // call sequence. Furthermore the location of the chain and glue can change 9176 // when the AnyReg calling convention is used and the intrinsic returns a 9177 // value. 9178 if (IsAnyRegCC && HasDef) { 9179 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)}; 9180 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)}; 9181 DAG.ReplaceAllUsesOfValuesWith(From, To, 2); 9182 } else 9183 DAG.ReplaceAllUsesWith(Call, MN); 9184 DAG.DeleteNode(Call); 9185 9186 // Inform the Frame Information that we have a patchpoint in this function. 9187 FuncInfo.MF->getFrameInfo().setHasPatchPoint(); 9188 } 9189 9190 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I, 9191 unsigned Intrinsic) { 9192 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9193 SDValue Op1 = getValue(I.getArgOperand(0)); 9194 SDValue Op2; 9195 if (I.getNumArgOperands() > 1) 9196 Op2 = getValue(I.getArgOperand(1)); 9197 SDLoc dl = getCurSDLoc(); 9198 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 9199 SDValue Res; 9200 SDNodeFlags SDFlags; 9201 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) 9202 SDFlags.copyFMF(*FPMO); 9203 9204 switch (Intrinsic) { 9205 case Intrinsic::vector_reduce_fadd: 9206 if (SDFlags.hasAllowReassociation()) 9207 Res = DAG.getNode(ISD::FADD, dl, VT, Op1, 9208 DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2, SDFlags), 9209 SDFlags); 9210 else 9211 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FADD, dl, VT, Op1, Op2, SDFlags); 9212 break; 9213 case Intrinsic::vector_reduce_fmul: 9214 if (SDFlags.hasAllowReassociation()) 9215 Res = DAG.getNode(ISD::FMUL, dl, VT, Op1, 9216 DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2, SDFlags), 9217 SDFlags); 9218 else 9219 Res = DAG.getNode(ISD::VECREDUCE_SEQ_FMUL, dl, VT, Op1, Op2, SDFlags); 9220 break; 9221 case Intrinsic::vector_reduce_add: 9222 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1); 9223 break; 9224 case Intrinsic::vector_reduce_mul: 9225 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1); 9226 break; 9227 case Intrinsic::vector_reduce_and: 9228 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1); 9229 break; 9230 case Intrinsic::vector_reduce_or: 9231 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1); 9232 break; 9233 case Intrinsic::vector_reduce_xor: 9234 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1); 9235 break; 9236 case Intrinsic::vector_reduce_smax: 9237 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1); 9238 break; 9239 case Intrinsic::vector_reduce_smin: 9240 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1); 9241 break; 9242 case Intrinsic::vector_reduce_umax: 9243 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1); 9244 break; 9245 case Intrinsic::vector_reduce_umin: 9246 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1); 9247 break; 9248 case Intrinsic::vector_reduce_fmax: 9249 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1, SDFlags); 9250 break; 9251 case Intrinsic::vector_reduce_fmin: 9252 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1, SDFlags); 9253 break; 9254 default: 9255 llvm_unreachable("Unhandled vector reduce intrinsic"); 9256 } 9257 setValue(&I, Res); 9258 } 9259 9260 /// Returns an AttributeList representing the attributes applied to the return 9261 /// value of the given call. 9262 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) { 9263 SmallVector<Attribute::AttrKind, 2> Attrs; 9264 if (CLI.RetSExt) 9265 Attrs.push_back(Attribute::SExt); 9266 if (CLI.RetZExt) 9267 Attrs.push_back(Attribute::ZExt); 9268 if (CLI.IsInReg) 9269 Attrs.push_back(Attribute::InReg); 9270 9271 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex, 9272 Attrs); 9273 } 9274 9275 /// TargetLowering::LowerCallTo - This is the default LowerCallTo 9276 /// implementation, which just calls LowerCall. 9277 /// FIXME: When all targets are 9278 /// migrated to using LowerCall, this hook should be integrated into SDISel. 9279 std::pair<SDValue, SDValue> 9280 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const { 9281 // Handle the incoming return values from the call. 9282 CLI.Ins.clear(); 9283 Type *OrigRetTy = CLI.RetTy; 9284 SmallVector<EVT, 4> RetTys; 9285 SmallVector<uint64_t, 4> Offsets; 9286 auto &DL = CLI.DAG.getDataLayout(); 9287 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets); 9288 9289 if (CLI.IsPostTypeLegalization) { 9290 // If we are lowering a libcall after legalization, split the return type. 9291 SmallVector<EVT, 4> OldRetTys; 9292 SmallVector<uint64_t, 4> OldOffsets; 9293 RetTys.swap(OldRetTys); 9294 Offsets.swap(OldOffsets); 9295 9296 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) { 9297 EVT RetVT = OldRetTys[i]; 9298 uint64_t Offset = OldOffsets[i]; 9299 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT); 9300 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT); 9301 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8; 9302 RetTys.append(NumRegs, RegisterVT); 9303 for (unsigned j = 0; j != NumRegs; ++j) 9304 Offsets.push_back(Offset + j * RegisterVTByteSZ); 9305 } 9306 } 9307 9308 SmallVector<ISD::OutputArg, 4> Outs; 9309 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL); 9310 9311 bool CanLowerReturn = 9312 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(), 9313 CLI.IsVarArg, Outs, CLI.RetTy->getContext()); 9314 9315 SDValue DemoteStackSlot; 9316 int DemoteStackIdx = -100; 9317 if (!CanLowerReturn) { 9318 // FIXME: equivalent assert? 9319 // assert(!CS.hasInAllocaArgument() && 9320 // "sret demotion is incompatible with inalloca"); 9321 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy); 9322 Align Alignment = DL.getPrefTypeAlign(CLI.RetTy); 9323 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9324 DemoteStackIdx = 9325 MF.getFrameInfo().CreateStackObject(TySize, Alignment, false); 9326 Type *StackSlotPtrType = PointerType::get(CLI.RetTy, 9327 DL.getAllocaAddrSpace()); 9328 9329 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL)); 9330 ArgListEntry Entry; 9331 Entry.Node = DemoteStackSlot; 9332 Entry.Ty = StackSlotPtrType; 9333 Entry.IsSExt = false; 9334 Entry.IsZExt = false; 9335 Entry.IsInReg = false; 9336 Entry.IsSRet = true; 9337 Entry.IsNest = false; 9338 Entry.IsByVal = false; 9339 Entry.IsByRef = false; 9340 Entry.IsReturned = false; 9341 Entry.IsSwiftSelf = false; 9342 Entry.IsSwiftError = false; 9343 Entry.IsCFGuardTarget = false; 9344 Entry.Alignment = Alignment; 9345 CLI.getArgs().insert(CLI.getArgs().begin(), Entry); 9346 CLI.NumFixedArgs += 1; 9347 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext()); 9348 9349 // sret demotion isn't compatible with tail-calls, since the sret argument 9350 // points into the callers stack frame. 9351 CLI.IsTailCall = false; 9352 } else { 9353 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9354 CLI.RetTy, CLI.CallConv, CLI.IsVarArg); 9355 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9356 ISD::ArgFlagsTy Flags; 9357 if (NeedsRegBlock) { 9358 Flags.setInConsecutiveRegs(); 9359 if (I == RetTys.size() - 1) 9360 Flags.setInConsecutiveRegsLast(); 9361 } 9362 EVT VT = RetTys[I]; 9363 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9364 CLI.CallConv, VT); 9365 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9366 CLI.CallConv, VT); 9367 for (unsigned i = 0; i != NumRegs; ++i) { 9368 ISD::InputArg MyFlags; 9369 MyFlags.Flags = Flags; 9370 MyFlags.VT = RegisterVT; 9371 MyFlags.ArgVT = VT; 9372 MyFlags.Used = CLI.IsReturnValueUsed; 9373 if (CLI.RetTy->isPointerTy()) { 9374 MyFlags.Flags.setPointer(); 9375 MyFlags.Flags.setPointerAddrSpace( 9376 cast<PointerType>(CLI.RetTy)->getAddressSpace()); 9377 } 9378 if (CLI.RetSExt) 9379 MyFlags.Flags.setSExt(); 9380 if (CLI.RetZExt) 9381 MyFlags.Flags.setZExt(); 9382 if (CLI.IsInReg) 9383 MyFlags.Flags.setInReg(); 9384 CLI.Ins.push_back(MyFlags); 9385 } 9386 } 9387 } 9388 9389 // We push in swifterror return as the last element of CLI.Ins. 9390 ArgListTy &Args = CLI.getArgs(); 9391 if (supportSwiftError()) { 9392 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9393 if (Args[i].IsSwiftError) { 9394 ISD::InputArg MyFlags; 9395 MyFlags.VT = getPointerTy(DL); 9396 MyFlags.ArgVT = EVT(getPointerTy(DL)); 9397 MyFlags.Flags.setSwiftError(); 9398 CLI.Ins.push_back(MyFlags); 9399 } 9400 } 9401 } 9402 9403 // Handle all of the outgoing arguments. 9404 CLI.Outs.clear(); 9405 CLI.OutVals.clear(); 9406 for (unsigned i = 0, e = Args.size(); i != e; ++i) { 9407 SmallVector<EVT, 4> ValueVTs; 9408 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs); 9409 // FIXME: Split arguments if CLI.IsPostTypeLegalization 9410 Type *FinalType = Args[i].Ty; 9411 if (Args[i].IsByVal) 9412 FinalType = cast<PointerType>(Args[i].Ty)->getElementType(); 9413 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters( 9414 FinalType, CLI.CallConv, CLI.IsVarArg); 9415 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues; 9416 ++Value) { 9417 EVT VT = ValueVTs[Value]; 9418 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext()); 9419 SDValue Op = SDValue(Args[i].Node.getNode(), 9420 Args[i].Node.getResNo() + Value); 9421 ISD::ArgFlagsTy Flags; 9422 9423 // Certain targets (such as MIPS), may have a different ABI alignment 9424 // for a type depending on the context. Give the target a chance to 9425 // specify the alignment it wants. 9426 const Align OriginalAlignment(getABIAlignmentForCallingConv(ArgTy, DL)); 9427 Flags.setOrigAlign(OriginalAlignment); 9428 9429 if (Args[i].Ty->isPointerTy()) { 9430 Flags.setPointer(); 9431 Flags.setPointerAddrSpace( 9432 cast<PointerType>(Args[i].Ty)->getAddressSpace()); 9433 } 9434 if (Args[i].IsZExt) 9435 Flags.setZExt(); 9436 if (Args[i].IsSExt) 9437 Flags.setSExt(); 9438 if (Args[i].IsInReg) { 9439 // If we are using vectorcall calling convention, a structure that is 9440 // passed InReg - is surely an HVA 9441 if (CLI.CallConv == CallingConv::X86_VectorCall && 9442 isa<StructType>(FinalType)) { 9443 // The first value of a structure is marked 9444 if (0 == Value) 9445 Flags.setHvaStart(); 9446 Flags.setHva(); 9447 } 9448 // Set InReg Flag 9449 Flags.setInReg(); 9450 } 9451 if (Args[i].IsSRet) 9452 Flags.setSRet(); 9453 if (Args[i].IsSwiftSelf) 9454 Flags.setSwiftSelf(); 9455 if (Args[i].IsSwiftError) 9456 Flags.setSwiftError(); 9457 if (Args[i].IsCFGuardTarget) 9458 Flags.setCFGuardTarget(); 9459 if (Args[i].IsByVal) 9460 Flags.setByVal(); 9461 if (Args[i].IsByRef) 9462 Flags.setByRef(); 9463 if (Args[i].IsPreallocated) { 9464 Flags.setPreallocated(); 9465 // Set the byval flag for CCAssignFn callbacks that don't know about 9466 // preallocated. This way we can know how many bytes we should've 9467 // allocated and how many bytes a callee cleanup function will pop. If 9468 // we port preallocated to more targets, we'll have to add custom 9469 // preallocated handling in the various CC lowering callbacks. 9470 Flags.setByVal(); 9471 } 9472 if (Args[i].IsInAlloca) { 9473 Flags.setInAlloca(); 9474 // Set the byval flag for CCAssignFn callbacks that don't know about 9475 // inalloca. This way we can know how many bytes we should've allocated 9476 // and how many bytes a callee cleanup function will pop. If we port 9477 // inalloca to more targets, we'll have to add custom inalloca handling 9478 // in the various CC lowering callbacks. 9479 Flags.setByVal(); 9480 } 9481 Align MemAlign; 9482 if (Args[i].IsByVal || Args[i].IsInAlloca || Args[i].IsPreallocated) { 9483 PointerType *Ty = cast<PointerType>(Args[i].Ty); 9484 Type *ElementTy = Ty->getElementType(); 9485 9486 unsigned FrameSize = DL.getTypeAllocSize( 9487 Args[i].ByValType ? Args[i].ByValType : ElementTy); 9488 Flags.setByValSize(FrameSize); 9489 9490 // info is not there but there are cases it cannot get right. 9491 if (auto MA = Args[i].Alignment) 9492 MemAlign = *MA; 9493 else 9494 MemAlign = Align(getByValTypeAlignment(ElementTy, DL)); 9495 } else if (auto MA = Args[i].Alignment) { 9496 MemAlign = *MA; 9497 } else { 9498 MemAlign = OriginalAlignment; 9499 } 9500 Flags.setMemAlign(MemAlign); 9501 if (Args[i].IsNest) 9502 Flags.setNest(); 9503 if (NeedsRegBlock) 9504 Flags.setInConsecutiveRegs(); 9505 9506 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9507 CLI.CallConv, VT); 9508 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9509 CLI.CallConv, VT); 9510 SmallVector<SDValue, 4> Parts(NumParts); 9511 ISD::NodeType ExtendKind = ISD::ANY_EXTEND; 9512 9513 if (Args[i].IsSExt) 9514 ExtendKind = ISD::SIGN_EXTEND; 9515 else if (Args[i].IsZExt) 9516 ExtendKind = ISD::ZERO_EXTEND; 9517 9518 // Conservatively only handle 'returned' on non-vectors that can be lowered, 9519 // for now. 9520 if (Args[i].IsReturned && !Op.getValueType().isVector() && 9521 CanLowerReturn) { 9522 assert((CLI.RetTy == Args[i].Ty || 9523 (CLI.RetTy->isPointerTy() && Args[i].Ty->isPointerTy() && 9524 CLI.RetTy->getPointerAddressSpace() == 9525 Args[i].Ty->getPointerAddressSpace())) && 9526 RetTys.size() == NumValues && "unexpected use of 'returned'"); 9527 // Before passing 'returned' to the target lowering code, ensure that 9528 // either the register MVT and the actual EVT are the same size or that 9529 // the return value and argument are extended in the same way; in these 9530 // cases it's safe to pass the argument register value unchanged as the 9531 // return register value (although it's at the target's option whether 9532 // to do so) 9533 // TODO: allow code generation to take advantage of partially preserved 9534 // registers rather than clobbering the entire register when the 9535 // parameter extension method is not compatible with the return 9536 // extension method 9537 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) || 9538 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt && 9539 CLI.RetZExt == Args[i].IsZExt)) 9540 Flags.setReturned(); 9541 } 9542 9543 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT, CLI.CB, 9544 CLI.CallConv, ExtendKind); 9545 9546 for (unsigned j = 0; j != NumParts; ++j) { 9547 // if it isn't first piece, alignment must be 1 9548 // For scalable vectors the scalable part is currently handled 9549 // by individual targets, so we just use the known minimum size here. 9550 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT, 9551 i < CLI.NumFixedArgs, i, 9552 j*Parts[j].getValueType().getStoreSize().getKnownMinSize()); 9553 if (NumParts > 1 && j == 0) 9554 MyFlags.Flags.setSplit(); 9555 else if (j != 0) { 9556 MyFlags.Flags.setOrigAlign(Align(1)); 9557 if (j == NumParts - 1) 9558 MyFlags.Flags.setSplitEnd(); 9559 } 9560 9561 CLI.Outs.push_back(MyFlags); 9562 CLI.OutVals.push_back(Parts[j]); 9563 } 9564 9565 if (NeedsRegBlock && Value == NumValues - 1) 9566 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast(); 9567 } 9568 } 9569 9570 SmallVector<SDValue, 4> InVals; 9571 CLI.Chain = LowerCall(CLI, InVals); 9572 9573 // Update CLI.InVals to use outside of this function. 9574 CLI.InVals = InVals; 9575 9576 // Verify that the target's LowerCall behaved as expected. 9577 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other && 9578 "LowerCall didn't return a valid chain!"); 9579 assert((!CLI.IsTailCall || InVals.empty()) && 9580 "LowerCall emitted a return value for a tail call!"); 9581 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) && 9582 "LowerCall didn't emit the correct number of values!"); 9583 9584 // For a tail call, the return value is merely live-out and there aren't 9585 // any nodes in the DAG representing it. Return a special value to 9586 // indicate that a tail call has been emitted and no more Instructions 9587 // should be processed in the current block. 9588 if (CLI.IsTailCall) { 9589 CLI.DAG.setRoot(CLI.Chain); 9590 return std::make_pair(SDValue(), SDValue()); 9591 } 9592 9593 #ifndef NDEBUG 9594 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) { 9595 assert(InVals[i].getNode() && "LowerCall emitted a null value!"); 9596 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() && 9597 "LowerCall emitted a value with the wrong type!"); 9598 } 9599 #endif 9600 9601 SmallVector<SDValue, 4> ReturnValues; 9602 if (!CanLowerReturn) { 9603 // The instruction result is the result of loading from the 9604 // hidden sret parameter. 9605 SmallVector<EVT, 1> PVTs; 9606 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace()); 9607 9608 ComputeValueVTs(*this, DL, PtrRetTy, PVTs); 9609 assert(PVTs.size() == 1 && "Pointers should fit in one register"); 9610 EVT PtrVT = PVTs[0]; 9611 9612 unsigned NumValues = RetTys.size(); 9613 ReturnValues.resize(NumValues); 9614 SmallVector<SDValue, 4> Chains(NumValues); 9615 9616 // An aggregate return value cannot wrap around the address space, so 9617 // offsets to its parts don't wrap either. 9618 SDNodeFlags Flags; 9619 Flags.setNoUnsignedWrap(true); 9620 9621 MachineFunction &MF = CLI.DAG.getMachineFunction(); 9622 Align HiddenSRetAlign = MF.getFrameInfo().getObjectAlign(DemoteStackIdx); 9623 for (unsigned i = 0; i < NumValues; ++i) { 9624 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot, 9625 CLI.DAG.getConstant(Offsets[i], CLI.DL, 9626 PtrVT), Flags); 9627 SDValue L = CLI.DAG.getLoad( 9628 RetTys[i], CLI.DL, CLI.Chain, Add, 9629 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(), 9630 DemoteStackIdx, Offsets[i]), 9631 HiddenSRetAlign); 9632 ReturnValues[i] = L; 9633 Chains[i] = L.getValue(1); 9634 } 9635 9636 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains); 9637 } else { 9638 // Collect the legal value parts into potentially illegal values 9639 // that correspond to the original function's return values. 9640 Optional<ISD::NodeType> AssertOp; 9641 if (CLI.RetSExt) 9642 AssertOp = ISD::AssertSext; 9643 else if (CLI.RetZExt) 9644 AssertOp = ISD::AssertZext; 9645 unsigned CurReg = 0; 9646 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) { 9647 EVT VT = RetTys[I]; 9648 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(), 9649 CLI.CallConv, VT); 9650 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(), 9651 CLI.CallConv, VT); 9652 9653 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg], 9654 NumRegs, RegisterVT, VT, nullptr, 9655 CLI.CallConv, AssertOp)); 9656 CurReg += NumRegs; 9657 } 9658 9659 // For a function returning void, there is no return value. We can't create 9660 // such a node, so we just return a null return value in that case. In 9661 // that case, nothing will actually look at the value. 9662 if (ReturnValues.empty()) 9663 return std::make_pair(SDValue(), CLI.Chain); 9664 } 9665 9666 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL, 9667 CLI.DAG.getVTList(RetTys), ReturnValues); 9668 return std::make_pair(Res, CLI.Chain); 9669 } 9670 9671 /// Places new result values for the node in Results (their number 9672 /// and types must exactly match those of the original return values of 9673 /// the node), or leaves Results empty, which indicates that the node is not 9674 /// to be custom lowered after all. 9675 void TargetLowering::LowerOperationWrapper(SDNode *N, 9676 SmallVectorImpl<SDValue> &Results, 9677 SelectionDAG &DAG) const { 9678 SDValue Res = LowerOperation(SDValue(N, 0), DAG); 9679 9680 if (!Res.getNode()) 9681 return; 9682 9683 // If the original node has one result, take the return value from 9684 // LowerOperation as is. It might not be result number 0. 9685 if (N->getNumValues() == 1) { 9686 Results.push_back(Res); 9687 return; 9688 } 9689 9690 // If the original node has multiple results, then the return node should 9691 // have the same number of results. 9692 assert((N->getNumValues() == Res->getNumValues()) && 9693 "Lowering returned the wrong number of results!"); 9694 9695 // Places new result values base on N result number. 9696 for (unsigned I = 0, E = N->getNumValues(); I != E; ++I) 9697 Results.push_back(Res.getValue(I)); 9698 } 9699 9700 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { 9701 llvm_unreachable("LowerOperation not implemented for this target!"); 9702 } 9703 9704 void 9705 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) { 9706 SDValue Op = getNonRegisterValue(V); 9707 assert((Op.getOpcode() != ISD::CopyFromReg || 9708 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) && 9709 "Copy from a reg to the same reg!"); 9710 assert(!Register::isPhysicalRegister(Reg) && "Is a physreg"); 9711 9712 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 9713 // If this is an InlineAsm we have to match the registers required, not the 9714 // notional registers required by the type. 9715 9716 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(), 9717 None); // This is not an ABI copy. 9718 SDValue Chain = DAG.getEntryNode(); 9719 9720 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) == 9721 FuncInfo.PreferredExtendType.end()) 9722 ? ISD::ANY_EXTEND 9723 : FuncInfo.PreferredExtendType[V]; 9724 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType); 9725 PendingExports.push_back(Chain); 9726 } 9727 9728 #include "llvm/CodeGen/SelectionDAGISel.h" 9729 9730 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the 9731 /// entry block, return true. This includes arguments used by switches, since 9732 /// the switch may expand into multiple basic blocks. 9733 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) { 9734 // With FastISel active, we may be splitting blocks, so force creation 9735 // of virtual registers for all non-dead arguments. 9736 if (FastISel) 9737 return A->use_empty(); 9738 9739 const BasicBlock &Entry = A->getParent()->front(); 9740 for (const User *U : A->users()) 9741 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U)) 9742 return false; // Use not in entry block. 9743 9744 return true; 9745 } 9746 9747 using ArgCopyElisionMapTy = 9748 DenseMap<const Argument *, 9749 std::pair<const AllocaInst *, const StoreInst *>>; 9750 9751 /// Scan the entry block of the function in FuncInfo for arguments that look 9752 /// like copies into a local alloca. Record any copied arguments in 9753 /// ArgCopyElisionCandidates. 9754 static void 9755 findArgumentCopyElisionCandidates(const DataLayout &DL, 9756 FunctionLoweringInfo *FuncInfo, 9757 ArgCopyElisionMapTy &ArgCopyElisionCandidates) { 9758 // Record the state of every static alloca used in the entry block. Argument 9759 // allocas are all used in the entry block, so we need approximately as many 9760 // entries as we have arguments. 9761 enum StaticAllocaInfo { Unknown, Clobbered, Elidable }; 9762 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas; 9763 unsigned NumArgs = FuncInfo->Fn->arg_size(); 9764 StaticAllocas.reserve(NumArgs * 2); 9765 9766 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * { 9767 if (!V) 9768 return nullptr; 9769 V = V->stripPointerCasts(); 9770 const auto *AI = dyn_cast<AllocaInst>(V); 9771 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI)) 9772 return nullptr; 9773 auto Iter = StaticAllocas.insert({AI, Unknown}); 9774 return &Iter.first->second; 9775 }; 9776 9777 // Look for stores of arguments to static allocas. Look through bitcasts and 9778 // GEPs to handle type coercions, as long as the alloca is fully initialized 9779 // by the store. Any non-store use of an alloca escapes it and any subsequent 9780 // unanalyzed store might write it. 9781 // FIXME: Handle structs initialized with multiple stores. 9782 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) { 9783 // Look for stores, and handle non-store uses conservatively. 9784 const auto *SI = dyn_cast<StoreInst>(&I); 9785 if (!SI) { 9786 // We will look through cast uses, so ignore them completely. 9787 if (I.isCast()) 9788 continue; 9789 // Ignore debug info and pseudo op intrinsics, they don't escape or store 9790 // to allocas. 9791 if (I.isDebugOrPseudoInst()) 9792 continue; 9793 // This is an unknown instruction. Assume it escapes or writes to all 9794 // static alloca operands. 9795 for (const Use &U : I.operands()) { 9796 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U)) 9797 *Info = StaticAllocaInfo::Clobbered; 9798 } 9799 continue; 9800 } 9801 9802 // If the stored value is a static alloca, mark it as escaped. 9803 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand())) 9804 *Info = StaticAllocaInfo::Clobbered; 9805 9806 // Check if the destination is a static alloca. 9807 const Value *Dst = SI->getPointerOperand()->stripPointerCasts(); 9808 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst); 9809 if (!Info) 9810 continue; 9811 const AllocaInst *AI = cast<AllocaInst>(Dst); 9812 9813 // Skip allocas that have been initialized or clobbered. 9814 if (*Info != StaticAllocaInfo::Unknown) 9815 continue; 9816 9817 // Check if the stored value is an argument, and that this store fully 9818 // initializes the alloca. Don't elide copies from the same argument twice. 9819 const Value *Val = SI->getValueOperand()->stripPointerCasts(); 9820 const auto *Arg = dyn_cast<Argument>(Val); 9821 if (!Arg || Arg->hasPassPointeeByValueCopyAttr() || 9822 Arg->getType()->isEmptyTy() || 9823 DL.getTypeStoreSize(Arg->getType()) != 9824 DL.getTypeAllocSize(AI->getAllocatedType()) || 9825 ArgCopyElisionCandidates.count(Arg)) { 9826 *Info = StaticAllocaInfo::Clobbered; 9827 continue; 9828 } 9829 9830 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI 9831 << '\n'); 9832 9833 // Mark this alloca and store for argument copy elision. 9834 *Info = StaticAllocaInfo::Elidable; 9835 ArgCopyElisionCandidates.insert({Arg, {AI, SI}}); 9836 9837 // Stop scanning if we've seen all arguments. This will happen early in -O0 9838 // builds, which is useful, because -O0 builds have large entry blocks and 9839 // many allocas. 9840 if (ArgCopyElisionCandidates.size() == NumArgs) 9841 break; 9842 } 9843 } 9844 9845 /// Try to elide argument copies from memory into a local alloca. Succeeds if 9846 /// ArgVal is a load from a suitable fixed stack object. 9847 static void tryToElideArgumentCopy( 9848 FunctionLoweringInfo &FuncInfo, SmallVectorImpl<SDValue> &Chains, 9849 DenseMap<int, int> &ArgCopyElisionFrameIndexMap, 9850 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs, 9851 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg, 9852 SDValue ArgVal, bool &ArgHasUses) { 9853 // Check if this is a load from a fixed stack object. 9854 auto *LNode = dyn_cast<LoadSDNode>(ArgVal); 9855 if (!LNode) 9856 return; 9857 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()); 9858 if (!FINode) 9859 return; 9860 9861 // Check that the fixed stack object is the right size and alignment. 9862 // Look at the alignment that the user wrote on the alloca instead of looking 9863 // at the stack object. 9864 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg); 9865 assert(ArgCopyIter != ArgCopyElisionCandidates.end()); 9866 const AllocaInst *AI = ArgCopyIter->second.first; 9867 int FixedIndex = FINode->getIndex(); 9868 int &AllocaIndex = FuncInfo.StaticAllocaMap[AI]; 9869 int OldIndex = AllocaIndex; 9870 MachineFrameInfo &MFI = FuncInfo.MF->getFrameInfo(); 9871 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) { 9872 LLVM_DEBUG( 9873 dbgs() << " argument copy elision failed due to bad fixed stack " 9874 "object size\n"); 9875 return; 9876 } 9877 Align RequiredAlignment = AI->getAlign(); 9878 if (MFI.getObjectAlign(FixedIndex) < RequiredAlignment) { 9879 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca " 9880 "greater than stack argument alignment (" 9881 << DebugStr(RequiredAlignment) << " vs " 9882 << DebugStr(MFI.getObjectAlign(FixedIndex)) << ")\n"); 9883 return; 9884 } 9885 9886 // Perform the elision. Delete the old stack object and replace its only use 9887 // in the variable info map. Mark the stack object as mutable. 9888 LLVM_DEBUG({ 9889 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n' 9890 << " Replacing frame index " << OldIndex << " with " << FixedIndex 9891 << '\n'; 9892 }); 9893 MFI.RemoveStackObject(OldIndex); 9894 MFI.setIsImmutableObjectIndex(FixedIndex, false); 9895 AllocaIndex = FixedIndex; 9896 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex}); 9897 Chains.push_back(ArgVal.getValue(1)); 9898 9899 // Avoid emitting code for the store implementing the copy. 9900 const StoreInst *SI = ArgCopyIter->second.second; 9901 ElidedArgCopyInstrs.insert(SI); 9902 9903 // Check for uses of the argument again so that we can avoid exporting ArgVal 9904 // if it is't used by anything other than the store. 9905 for (const Value *U : Arg.users()) { 9906 if (U != SI) { 9907 ArgHasUses = true; 9908 break; 9909 } 9910 } 9911 } 9912 9913 void SelectionDAGISel::LowerArguments(const Function &F) { 9914 SelectionDAG &DAG = SDB->DAG; 9915 SDLoc dl = SDB->getCurSDLoc(); 9916 const DataLayout &DL = DAG.getDataLayout(); 9917 SmallVector<ISD::InputArg, 16> Ins; 9918 9919 // In Naked functions we aren't going to save any registers. 9920 if (F.hasFnAttribute(Attribute::Naked)) 9921 return; 9922 9923 if (!FuncInfo->CanLowerReturn) { 9924 // Put in an sret pointer parameter before all the other parameters. 9925 SmallVector<EVT, 1> ValueVTs; 9926 ComputeValueVTs(*TLI, DAG.getDataLayout(), 9927 F.getReturnType()->getPointerTo( 9928 DAG.getDataLayout().getAllocaAddrSpace()), 9929 ValueVTs); 9930 9931 // NOTE: Assuming that a pointer will never break down to more than one VT 9932 // or one register. 9933 ISD::ArgFlagsTy Flags; 9934 Flags.setSRet(); 9935 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]); 9936 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 9937 ISD::InputArg::NoArgIndex, 0); 9938 Ins.push_back(RetArg); 9939 } 9940 9941 // Look for stores of arguments to static allocas. Mark such arguments with a 9942 // flag to ask the target to give us the memory location of that argument if 9943 // available. 9944 ArgCopyElisionMapTy ArgCopyElisionCandidates; 9945 findArgumentCopyElisionCandidates(DL, FuncInfo.get(), 9946 ArgCopyElisionCandidates); 9947 9948 // Set up the incoming argument description vector. 9949 for (const Argument &Arg : F.args()) { 9950 unsigned ArgNo = Arg.getArgNo(); 9951 SmallVector<EVT, 4> ValueVTs; 9952 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 9953 bool isArgValueUsed = !Arg.use_empty(); 9954 unsigned PartBase = 0; 9955 Type *FinalType = Arg.getType(); 9956 if (Arg.hasAttribute(Attribute::ByVal)) 9957 FinalType = Arg.getParamByValType(); 9958 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters( 9959 FinalType, F.getCallingConv(), F.isVarArg()); 9960 for (unsigned Value = 0, NumValues = ValueVTs.size(); 9961 Value != NumValues; ++Value) { 9962 EVT VT = ValueVTs[Value]; 9963 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext()); 9964 ISD::ArgFlagsTy Flags; 9965 9966 9967 if (Arg.getType()->isPointerTy()) { 9968 Flags.setPointer(); 9969 Flags.setPointerAddrSpace( 9970 cast<PointerType>(Arg.getType())->getAddressSpace()); 9971 } 9972 if (Arg.hasAttribute(Attribute::ZExt)) 9973 Flags.setZExt(); 9974 if (Arg.hasAttribute(Attribute::SExt)) 9975 Flags.setSExt(); 9976 if (Arg.hasAttribute(Attribute::InReg)) { 9977 // If we are using vectorcall calling convention, a structure that is 9978 // passed InReg - is surely an HVA 9979 if (F.getCallingConv() == CallingConv::X86_VectorCall && 9980 isa<StructType>(Arg.getType())) { 9981 // The first value of a structure is marked 9982 if (0 == Value) 9983 Flags.setHvaStart(); 9984 Flags.setHva(); 9985 } 9986 // Set InReg Flag 9987 Flags.setInReg(); 9988 } 9989 if (Arg.hasAttribute(Attribute::StructRet)) 9990 Flags.setSRet(); 9991 if (Arg.hasAttribute(Attribute::SwiftSelf)) 9992 Flags.setSwiftSelf(); 9993 if (Arg.hasAttribute(Attribute::SwiftError)) 9994 Flags.setSwiftError(); 9995 if (Arg.hasAttribute(Attribute::ByVal)) 9996 Flags.setByVal(); 9997 if (Arg.hasAttribute(Attribute::ByRef)) 9998 Flags.setByRef(); 9999 if (Arg.hasAttribute(Attribute::InAlloca)) { 10000 Flags.setInAlloca(); 10001 // Set the byval flag for CCAssignFn callbacks that don't know about 10002 // inalloca. This way we can know how many bytes we should've allocated 10003 // and how many bytes a callee cleanup function will pop. If we port 10004 // inalloca to more targets, we'll have to add custom inalloca handling 10005 // in the various CC lowering callbacks. 10006 Flags.setByVal(); 10007 } 10008 if (Arg.hasAttribute(Attribute::Preallocated)) { 10009 Flags.setPreallocated(); 10010 // Set the byval flag for CCAssignFn callbacks that don't know about 10011 // preallocated. This way we can know how many bytes we should've 10012 // allocated and how many bytes a callee cleanup function will pop. If 10013 // we port preallocated to more targets, we'll have to add custom 10014 // preallocated handling in the various CC lowering callbacks. 10015 Flags.setByVal(); 10016 } 10017 10018 // Certain targets (such as MIPS), may have a different ABI alignment 10019 // for a type depending on the context. Give the target a chance to 10020 // specify the alignment it wants. 10021 const Align OriginalAlignment( 10022 TLI->getABIAlignmentForCallingConv(ArgTy, DL)); 10023 Flags.setOrigAlign(OriginalAlignment); 10024 10025 Align MemAlign; 10026 Type *ArgMemTy = nullptr; 10027 if (Flags.isByVal() || Flags.isInAlloca() || Flags.isPreallocated() || 10028 Flags.isByRef()) { 10029 if (!ArgMemTy) 10030 ArgMemTy = Arg.getPointeeInMemoryValueType(); 10031 10032 uint64_t MemSize = DL.getTypeAllocSize(ArgMemTy); 10033 10034 // For in-memory arguments, size and alignment should be passed from FE. 10035 // BE will guess if this info is not there but there are cases it cannot 10036 // get right. 10037 if (auto ParamAlign = Arg.getParamStackAlign()) 10038 MemAlign = *ParamAlign; 10039 else if ((ParamAlign = Arg.getParamAlign())) 10040 MemAlign = *ParamAlign; 10041 else 10042 MemAlign = Align(TLI->getByValTypeAlignment(ArgMemTy, DL)); 10043 if (Flags.isByRef()) 10044 Flags.setByRefSize(MemSize); 10045 else 10046 Flags.setByValSize(MemSize); 10047 } else if (auto ParamAlign = Arg.getParamStackAlign()) { 10048 MemAlign = *ParamAlign; 10049 } else { 10050 MemAlign = OriginalAlignment; 10051 } 10052 Flags.setMemAlign(MemAlign); 10053 10054 if (Arg.hasAttribute(Attribute::Nest)) 10055 Flags.setNest(); 10056 if (NeedsRegBlock) 10057 Flags.setInConsecutiveRegs(); 10058 if (ArgCopyElisionCandidates.count(&Arg)) 10059 Flags.setCopyElisionCandidate(); 10060 if (Arg.hasAttribute(Attribute::Returned)) 10061 Flags.setReturned(); 10062 10063 MVT RegisterVT = TLI->getRegisterTypeForCallingConv( 10064 *CurDAG->getContext(), F.getCallingConv(), VT); 10065 unsigned NumRegs = TLI->getNumRegistersForCallingConv( 10066 *CurDAG->getContext(), F.getCallingConv(), VT); 10067 for (unsigned i = 0; i != NumRegs; ++i) { 10068 // For scalable vectors, use the minimum size; individual targets 10069 // are responsible for handling scalable vector arguments and 10070 // return values. 10071 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed, 10072 ArgNo, PartBase+i*RegisterVT.getStoreSize().getKnownMinSize()); 10073 if (NumRegs > 1 && i == 0) 10074 MyFlags.Flags.setSplit(); 10075 // if it isn't first piece, alignment must be 1 10076 else if (i > 0) { 10077 MyFlags.Flags.setOrigAlign(Align(1)); 10078 if (i == NumRegs - 1) 10079 MyFlags.Flags.setSplitEnd(); 10080 } 10081 Ins.push_back(MyFlags); 10082 } 10083 if (NeedsRegBlock && Value == NumValues - 1) 10084 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast(); 10085 PartBase += VT.getStoreSize().getKnownMinSize(); 10086 } 10087 } 10088 10089 // Call the target to set up the argument values. 10090 SmallVector<SDValue, 8> InVals; 10091 SDValue NewRoot = TLI->LowerFormalArguments( 10092 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals); 10093 10094 // Verify that the target's LowerFormalArguments behaved as expected. 10095 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other && 10096 "LowerFormalArguments didn't return a valid chain!"); 10097 assert(InVals.size() == Ins.size() && 10098 "LowerFormalArguments didn't emit the correct number of values!"); 10099 LLVM_DEBUG({ 10100 for (unsigned i = 0, e = Ins.size(); i != e; ++i) { 10101 assert(InVals[i].getNode() && 10102 "LowerFormalArguments emitted a null value!"); 10103 assert(EVT(Ins[i].VT) == InVals[i].getValueType() && 10104 "LowerFormalArguments emitted a value with the wrong type!"); 10105 } 10106 }); 10107 10108 // Update the DAG with the new chain value resulting from argument lowering. 10109 DAG.setRoot(NewRoot); 10110 10111 // Set up the argument values. 10112 unsigned i = 0; 10113 if (!FuncInfo->CanLowerReturn) { 10114 // Create a virtual register for the sret pointer, and put in a copy 10115 // from the sret argument into it. 10116 SmallVector<EVT, 1> ValueVTs; 10117 ComputeValueVTs(*TLI, DAG.getDataLayout(), 10118 F.getReturnType()->getPointerTo( 10119 DAG.getDataLayout().getAllocaAddrSpace()), 10120 ValueVTs); 10121 MVT VT = ValueVTs[0].getSimpleVT(); 10122 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT); 10123 Optional<ISD::NodeType> AssertOp = None; 10124 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT, 10125 nullptr, F.getCallingConv(), AssertOp); 10126 10127 MachineFunction& MF = SDB->DAG.getMachineFunction(); 10128 MachineRegisterInfo& RegInfo = MF.getRegInfo(); 10129 Register SRetReg = 10130 RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT)); 10131 FuncInfo->DemoteRegister = SRetReg; 10132 NewRoot = 10133 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue); 10134 DAG.setRoot(NewRoot); 10135 10136 // i indexes lowered arguments. Bump it past the hidden sret argument. 10137 ++i; 10138 } 10139 10140 SmallVector<SDValue, 4> Chains; 10141 DenseMap<int, int> ArgCopyElisionFrameIndexMap; 10142 for (const Argument &Arg : F.args()) { 10143 SmallVector<SDValue, 4> ArgValues; 10144 SmallVector<EVT, 4> ValueVTs; 10145 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs); 10146 unsigned NumValues = ValueVTs.size(); 10147 if (NumValues == 0) 10148 continue; 10149 10150 bool ArgHasUses = !Arg.use_empty(); 10151 10152 // Elide the copying store if the target loaded this argument from a 10153 // suitable fixed stack object. 10154 if (Ins[i].Flags.isCopyElisionCandidate()) { 10155 tryToElideArgumentCopy(*FuncInfo, Chains, ArgCopyElisionFrameIndexMap, 10156 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg, 10157 InVals[i], ArgHasUses); 10158 } 10159 10160 // If this argument is unused then remember its value. It is used to generate 10161 // debugging information. 10162 bool isSwiftErrorArg = 10163 TLI->supportSwiftError() && 10164 Arg.hasAttribute(Attribute::SwiftError); 10165 if (!ArgHasUses && !isSwiftErrorArg) { 10166 SDB->setUnusedArgValue(&Arg, InVals[i]); 10167 10168 // Also remember any frame index for use in FastISel. 10169 if (FrameIndexSDNode *FI = 10170 dyn_cast<FrameIndexSDNode>(InVals[i].getNode())) 10171 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10172 } 10173 10174 for (unsigned Val = 0; Val != NumValues; ++Val) { 10175 EVT VT = ValueVTs[Val]; 10176 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(), 10177 F.getCallingConv(), VT); 10178 unsigned NumParts = TLI->getNumRegistersForCallingConv( 10179 *CurDAG->getContext(), F.getCallingConv(), VT); 10180 10181 // Even an apparent 'unused' swifterror argument needs to be returned. So 10182 // we do generate a copy for it that can be used on return from the 10183 // function. 10184 if (ArgHasUses || isSwiftErrorArg) { 10185 Optional<ISD::NodeType> AssertOp; 10186 if (Arg.hasAttribute(Attribute::SExt)) 10187 AssertOp = ISD::AssertSext; 10188 else if (Arg.hasAttribute(Attribute::ZExt)) 10189 AssertOp = ISD::AssertZext; 10190 10191 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts, 10192 PartVT, VT, nullptr, 10193 F.getCallingConv(), AssertOp)); 10194 } 10195 10196 i += NumParts; 10197 } 10198 10199 // We don't need to do anything else for unused arguments. 10200 if (ArgValues.empty()) 10201 continue; 10202 10203 // Note down frame index. 10204 if (FrameIndexSDNode *FI = 10205 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode())) 10206 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10207 10208 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues), 10209 SDB->getCurSDLoc()); 10210 10211 SDB->setValue(&Arg, Res); 10212 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) { 10213 // We want to associate the argument with the frame index, among 10214 // involved operands, that correspond to the lowest address. The 10215 // getCopyFromParts function, called earlier, is swapping the order of 10216 // the operands to BUILD_PAIR depending on endianness. The result of 10217 // that swapping is that the least significant bits of the argument will 10218 // be in the first operand of the BUILD_PAIR node, and the most 10219 // significant bits will be in the second operand. 10220 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0; 10221 if (LoadSDNode *LNode = 10222 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode())) 10223 if (FrameIndexSDNode *FI = 10224 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode())) 10225 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex()); 10226 } 10227 10228 // Analyses past this point are naive and don't expect an assertion. 10229 if (Res.getOpcode() == ISD::AssertZext) 10230 Res = Res.getOperand(0); 10231 10232 // Update the SwiftErrorVRegDefMap. 10233 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) { 10234 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10235 if (Register::isVirtualRegister(Reg)) 10236 SwiftError->setCurrentVReg(FuncInfo->MBB, SwiftError->getFunctionArg(), 10237 Reg); 10238 } 10239 10240 // If this argument is live outside of the entry block, insert a copy from 10241 // wherever we got it to the vreg that other BB's will reference it as. 10242 if (Res.getOpcode() == ISD::CopyFromReg) { 10243 // If we can, though, try to skip creating an unnecessary vreg. 10244 // FIXME: This isn't very clean... it would be nice to make this more 10245 // general. 10246 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg(); 10247 if (Register::isVirtualRegister(Reg)) { 10248 FuncInfo->ValueMap[&Arg] = Reg; 10249 continue; 10250 } 10251 } 10252 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) { 10253 FuncInfo->InitializeRegForValue(&Arg); 10254 SDB->CopyToExportRegsIfNeeded(&Arg); 10255 } 10256 } 10257 10258 if (!Chains.empty()) { 10259 Chains.push_back(NewRoot); 10260 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains); 10261 } 10262 10263 DAG.setRoot(NewRoot); 10264 10265 assert(i == InVals.size() && "Argument register count mismatch!"); 10266 10267 // If any argument copy elisions occurred and we have debug info, update the 10268 // stale frame indices used in the dbg.declare variable info table. 10269 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo(); 10270 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) { 10271 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) { 10272 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot); 10273 if (I != ArgCopyElisionFrameIndexMap.end()) 10274 VI.Slot = I->second; 10275 } 10276 } 10277 10278 // Finally, if the target has anything special to do, allow it to do so. 10279 emitFunctionEntryCode(); 10280 } 10281 10282 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to 10283 /// ensure constants are generated when needed. Remember the virtual registers 10284 /// that need to be added to the Machine PHI nodes as input. We cannot just 10285 /// directly add them, because expansion might result in multiple MBB's for one 10286 /// BB. As such, the start of the BB might correspond to a different MBB than 10287 /// the end. 10288 void 10289 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) { 10290 const Instruction *TI = LLVMBB->getTerminator(); 10291 10292 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled; 10293 10294 // Check PHI nodes in successors that expect a value to be available from this 10295 // block. 10296 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) { 10297 const BasicBlock *SuccBB = TI->getSuccessor(succ); 10298 if (!isa<PHINode>(SuccBB->begin())) continue; 10299 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB]; 10300 10301 // If this terminator has multiple identical successors (common for 10302 // switches), only handle each succ once. 10303 if (!SuccsHandled.insert(SuccMBB).second) 10304 continue; 10305 10306 MachineBasicBlock::iterator MBBI = SuccMBB->begin(); 10307 10308 // At this point we know that there is a 1-1 correspondence between LLVM PHI 10309 // nodes and Machine PHI nodes, but the incoming operands have not been 10310 // emitted yet. 10311 for (const PHINode &PN : SuccBB->phis()) { 10312 // Ignore dead phi's. 10313 if (PN.use_empty()) 10314 continue; 10315 10316 // Skip empty types 10317 if (PN.getType()->isEmptyTy()) 10318 continue; 10319 10320 unsigned Reg; 10321 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB); 10322 10323 if (const Constant *C = dyn_cast<Constant>(PHIOp)) { 10324 unsigned &RegOut = ConstantsOut[C]; 10325 if (RegOut == 0) { 10326 RegOut = FuncInfo.CreateRegs(C); 10327 CopyValueToVirtualRegister(C, RegOut); 10328 } 10329 Reg = RegOut; 10330 } else { 10331 DenseMap<const Value *, Register>::iterator I = 10332 FuncInfo.ValueMap.find(PHIOp); 10333 if (I != FuncInfo.ValueMap.end()) 10334 Reg = I->second; 10335 else { 10336 assert(isa<AllocaInst>(PHIOp) && 10337 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) && 10338 "Didn't codegen value into a register!??"); 10339 Reg = FuncInfo.CreateRegs(PHIOp); 10340 CopyValueToVirtualRegister(PHIOp, Reg); 10341 } 10342 } 10343 10344 // Remember that this register needs to added to the machine PHI node as 10345 // the input for this MBB. 10346 SmallVector<EVT, 4> ValueVTs; 10347 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10348 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs); 10349 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) { 10350 EVT VT = ValueVTs[vti]; 10351 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT); 10352 for (unsigned i = 0, e = NumRegisters; i != e; ++i) 10353 FuncInfo.PHINodesToUpdate.push_back( 10354 std::make_pair(&*MBBI++, Reg + i)); 10355 Reg += NumRegisters; 10356 } 10357 } 10358 } 10359 10360 ConstantsOut.clear(); 10361 } 10362 10363 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB 10364 /// is 0. 10365 MachineBasicBlock * 10366 SelectionDAGBuilder::StackProtectorDescriptor:: 10367 AddSuccessorMBB(const BasicBlock *BB, 10368 MachineBasicBlock *ParentMBB, 10369 bool IsLikely, 10370 MachineBasicBlock *SuccMBB) { 10371 // If SuccBB has not been created yet, create it. 10372 if (!SuccMBB) { 10373 MachineFunction *MF = ParentMBB->getParent(); 10374 MachineFunction::iterator BBI(ParentMBB); 10375 SuccMBB = MF->CreateMachineBasicBlock(BB); 10376 MF->insert(++BBI, SuccMBB); 10377 } 10378 // Add it as a successor of ParentMBB. 10379 ParentMBB->addSuccessor( 10380 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely)); 10381 return SuccMBB; 10382 } 10383 10384 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) { 10385 MachineFunction::iterator I(MBB); 10386 if (++I == FuncInfo.MF->end()) 10387 return nullptr; 10388 return &*I; 10389 } 10390 10391 /// During lowering new call nodes can be created (such as memset, etc.). 10392 /// Those will become new roots of the current DAG, but complications arise 10393 /// when they are tail calls. In such cases, the call lowering will update 10394 /// the root, but the builder still needs to know that a tail call has been 10395 /// lowered in order to avoid generating an additional return. 10396 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) { 10397 // If the node is null, we do have a tail call. 10398 if (MaybeTC.getNode() != nullptr) 10399 DAG.setRoot(MaybeTC); 10400 else 10401 HasTailCall = true; 10402 } 10403 10404 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond, 10405 MachineBasicBlock *SwitchMBB, 10406 MachineBasicBlock *DefaultMBB) { 10407 MachineFunction *CurMF = FuncInfo.MF; 10408 MachineBasicBlock *NextMBB = nullptr; 10409 MachineFunction::iterator BBI(W.MBB); 10410 if (++BBI != FuncInfo.MF->end()) 10411 NextMBB = &*BBI; 10412 10413 unsigned Size = W.LastCluster - W.FirstCluster + 1; 10414 10415 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10416 10417 if (Size == 2 && W.MBB == SwitchMBB) { 10418 // If any two of the cases has the same destination, and if one value 10419 // is the same as the other, but has one bit unset that the other has set, 10420 // use bit manipulation to do two compares at once. For example: 10421 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)" 10422 // TODO: This could be extended to merge any 2 cases in switches with 3 10423 // cases. 10424 // TODO: Handle cases where W.CaseBB != SwitchBB. 10425 CaseCluster &Small = *W.FirstCluster; 10426 CaseCluster &Big = *W.LastCluster; 10427 10428 if (Small.Low == Small.High && Big.Low == Big.High && 10429 Small.MBB == Big.MBB) { 10430 const APInt &SmallValue = Small.Low->getValue(); 10431 const APInt &BigValue = Big.Low->getValue(); 10432 10433 // Check that there is only one bit different. 10434 APInt CommonBit = BigValue ^ SmallValue; 10435 if (CommonBit.isPowerOf2()) { 10436 SDValue CondLHS = getValue(Cond); 10437 EVT VT = CondLHS.getValueType(); 10438 SDLoc DL = getCurSDLoc(); 10439 10440 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS, 10441 DAG.getConstant(CommonBit, DL, VT)); 10442 SDValue Cond = DAG.getSetCC( 10443 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT), 10444 ISD::SETEQ); 10445 10446 // Update successor info. 10447 // Both Small and Big will jump to Small.BB, so we sum up the 10448 // probabilities. 10449 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob); 10450 if (BPI) 10451 addSuccessorWithProb( 10452 SwitchMBB, DefaultMBB, 10453 // The default destination is the first successor in IR. 10454 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0)); 10455 else 10456 addSuccessorWithProb(SwitchMBB, DefaultMBB); 10457 10458 // Insert the true branch. 10459 SDValue BrCond = 10460 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond, 10461 DAG.getBasicBlock(Small.MBB)); 10462 // Insert the false branch. 10463 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond, 10464 DAG.getBasicBlock(DefaultMBB)); 10465 10466 DAG.setRoot(BrCond); 10467 return; 10468 } 10469 } 10470 } 10471 10472 if (TM.getOptLevel() != CodeGenOpt::None) { 10473 // Here, we order cases by probability so the most likely case will be 10474 // checked first. However, two clusters can have the same probability in 10475 // which case their relative ordering is non-deterministic. So we use Low 10476 // as a tie-breaker as clusters are guaranteed to never overlap. 10477 llvm::sort(W.FirstCluster, W.LastCluster + 1, 10478 [](const CaseCluster &a, const CaseCluster &b) { 10479 return a.Prob != b.Prob ? 10480 a.Prob > b.Prob : 10481 a.Low->getValue().slt(b.Low->getValue()); 10482 }); 10483 10484 // Rearrange the case blocks so that the last one falls through if possible 10485 // without changing the order of probabilities. 10486 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) { 10487 --I; 10488 if (I->Prob > W.LastCluster->Prob) 10489 break; 10490 if (I->Kind == CC_Range && I->MBB == NextMBB) { 10491 std::swap(*I, *W.LastCluster); 10492 break; 10493 } 10494 } 10495 } 10496 10497 // Compute total probability. 10498 BranchProbability DefaultProb = W.DefaultProb; 10499 BranchProbability UnhandledProbs = DefaultProb; 10500 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I) 10501 UnhandledProbs += I->Prob; 10502 10503 MachineBasicBlock *CurMBB = W.MBB; 10504 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) { 10505 bool FallthroughUnreachable = false; 10506 MachineBasicBlock *Fallthrough; 10507 if (I == W.LastCluster) { 10508 // For the last cluster, fall through to the default destination. 10509 Fallthrough = DefaultMBB; 10510 FallthroughUnreachable = isa<UnreachableInst>( 10511 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg()); 10512 } else { 10513 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock()); 10514 CurMF->insert(BBI, Fallthrough); 10515 // Put Cond in a virtual register to make it available from the new blocks. 10516 ExportFromCurrentBlock(Cond); 10517 } 10518 UnhandledProbs -= I->Prob; 10519 10520 switch (I->Kind) { 10521 case CC_JumpTable: { 10522 // FIXME: Optimize away range check based on pivot comparisons. 10523 JumpTableHeader *JTH = &SL->JTCases[I->JTCasesIndex].first; 10524 SwitchCG::JumpTable *JT = &SL->JTCases[I->JTCasesIndex].second; 10525 10526 // The jump block hasn't been inserted yet; insert it here. 10527 MachineBasicBlock *JumpMBB = JT->MBB; 10528 CurMF->insert(BBI, JumpMBB); 10529 10530 auto JumpProb = I->Prob; 10531 auto FallthroughProb = UnhandledProbs; 10532 10533 // If the default statement is a target of the jump table, we evenly 10534 // distribute the default probability to successors of CurMBB. Also 10535 // update the probability on the edge from JumpMBB to Fallthrough. 10536 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(), 10537 SE = JumpMBB->succ_end(); 10538 SI != SE; ++SI) { 10539 if (*SI == DefaultMBB) { 10540 JumpProb += DefaultProb / 2; 10541 FallthroughProb -= DefaultProb / 2; 10542 JumpMBB->setSuccProbability(SI, DefaultProb / 2); 10543 JumpMBB->normalizeSuccProbs(); 10544 break; 10545 } 10546 } 10547 10548 if (FallthroughUnreachable) { 10549 // Skip the range check if the fallthrough block is unreachable. 10550 JTH->OmitRangeCheck = true; 10551 } 10552 10553 if (!JTH->OmitRangeCheck) 10554 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb); 10555 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb); 10556 CurMBB->normalizeSuccProbs(); 10557 10558 // The jump table header will be inserted in our current block, do the 10559 // range check, and fall through to our fallthrough block. 10560 JTH->HeaderBB = CurMBB; 10561 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader. 10562 10563 // If we're in the right place, emit the jump table header right now. 10564 if (CurMBB == SwitchMBB) { 10565 visitJumpTableHeader(*JT, *JTH, SwitchMBB); 10566 JTH->Emitted = true; 10567 } 10568 break; 10569 } 10570 case CC_BitTests: { 10571 // FIXME: Optimize away range check based on pivot comparisons. 10572 BitTestBlock *BTB = &SL->BitTestCases[I->BTCasesIndex]; 10573 10574 // The bit test blocks haven't been inserted yet; insert them here. 10575 for (BitTestCase &BTC : BTB->Cases) 10576 CurMF->insert(BBI, BTC.ThisBB); 10577 10578 // Fill in fields of the BitTestBlock. 10579 BTB->Parent = CurMBB; 10580 BTB->Default = Fallthrough; 10581 10582 BTB->DefaultProb = UnhandledProbs; 10583 // If the cases in bit test don't form a contiguous range, we evenly 10584 // distribute the probability on the edge to Fallthrough to two 10585 // successors of CurMBB. 10586 if (!BTB->ContiguousRange) { 10587 BTB->Prob += DefaultProb / 2; 10588 BTB->DefaultProb -= DefaultProb / 2; 10589 } 10590 10591 if (FallthroughUnreachable) { 10592 // Skip the range check if the fallthrough block is unreachable. 10593 BTB->OmitRangeCheck = true; 10594 } 10595 10596 // If we're in the right place, emit the bit test header right now. 10597 if (CurMBB == SwitchMBB) { 10598 visitBitTestHeader(*BTB, SwitchMBB); 10599 BTB->Emitted = true; 10600 } 10601 break; 10602 } 10603 case CC_Range: { 10604 const Value *RHS, *LHS, *MHS; 10605 ISD::CondCode CC; 10606 if (I->Low == I->High) { 10607 // Check Cond == I->Low. 10608 CC = ISD::SETEQ; 10609 LHS = Cond; 10610 RHS=I->Low; 10611 MHS = nullptr; 10612 } else { 10613 // Check I->Low <= Cond <= I->High. 10614 CC = ISD::SETLE; 10615 LHS = I->Low; 10616 MHS = Cond; 10617 RHS = I->High; 10618 } 10619 10620 // If Fallthrough is unreachable, fold away the comparison. 10621 if (FallthroughUnreachable) 10622 CC = ISD::SETTRUE; 10623 10624 // The false probability is the sum of all unhandled cases. 10625 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB, 10626 getCurSDLoc(), I->Prob, UnhandledProbs); 10627 10628 if (CurMBB == SwitchMBB) 10629 visitSwitchCase(CB, SwitchMBB); 10630 else 10631 SL->SwitchCases.push_back(CB); 10632 10633 break; 10634 } 10635 } 10636 CurMBB = Fallthrough; 10637 } 10638 } 10639 10640 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC, 10641 CaseClusterIt First, 10642 CaseClusterIt Last) { 10643 return std::count_if(First, Last + 1, [&](const CaseCluster &X) { 10644 if (X.Prob != CC.Prob) 10645 return X.Prob > CC.Prob; 10646 10647 // Ties are broken by comparing the case value. 10648 return X.Low->getValue().slt(CC.Low->getValue()); 10649 }); 10650 } 10651 10652 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList, 10653 const SwitchWorkListItem &W, 10654 Value *Cond, 10655 MachineBasicBlock *SwitchMBB) { 10656 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) && 10657 "Clusters not sorted?"); 10658 10659 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!"); 10660 10661 // Balance the tree based on branch probabilities to create a near-optimal (in 10662 // terms of search time given key frequency) binary search tree. See e.g. Kurt 10663 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975). 10664 CaseClusterIt LastLeft = W.FirstCluster; 10665 CaseClusterIt FirstRight = W.LastCluster; 10666 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2; 10667 auto RightProb = FirstRight->Prob + W.DefaultProb / 2; 10668 10669 // Move LastLeft and FirstRight towards each other from opposite directions to 10670 // find a partitioning of the clusters which balances the probability on both 10671 // sides. If LeftProb and RightProb are equal, alternate which side is 10672 // taken to ensure 0-probability nodes are distributed evenly. 10673 unsigned I = 0; 10674 while (LastLeft + 1 < FirstRight) { 10675 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1))) 10676 LeftProb += (++LastLeft)->Prob; 10677 else 10678 RightProb += (--FirstRight)->Prob; 10679 I++; 10680 } 10681 10682 while (true) { 10683 // Our binary search tree differs from a typical BST in that ours can have up 10684 // to three values in each leaf. The pivot selection above doesn't take that 10685 // into account, which means the tree might require more nodes and be less 10686 // efficient. We compensate for this here. 10687 10688 unsigned NumLeft = LastLeft - W.FirstCluster + 1; 10689 unsigned NumRight = W.LastCluster - FirstRight + 1; 10690 10691 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) { 10692 // If one side has less than 3 clusters, and the other has more than 3, 10693 // consider taking a cluster from the other side. 10694 10695 if (NumLeft < NumRight) { 10696 // Consider moving the first cluster on the right to the left side. 10697 CaseCluster &CC = *FirstRight; 10698 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10699 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10700 if (LeftSideRank <= RightSideRank) { 10701 // Moving the cluster to the left does not demote it. 10702 ++LastLeft; 10703 ++FirstRight; 10704 continue; 10705 } 10706 } else { 10707 assert(NumRight < NumLeft); 10708 // Consider moving the last element on the left to the right side. 10709 CaseCluster &CC = *LastLeft; 10710 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft); 10711 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster); 10712 if (RightSideRank <= LeftSideRank) { 10713 // Moving the cluster to the right does not demot it. 10714 --LastLeft; 10715 --FirstRight; 10716 continue; 10717 } 10718 } 10719 } 10720 break; 10721 } 10722 10723 assert(LastLeft + 1 == FirstRight); 10724 assert(LastLeft >= W.FirstCluster); 10725 assert(FirstRight <= W.LastCluster); 10726 10727 // Use the first element on the right as pivot since we will make less-than 10728 // comparisons against it. 10729 CaseClusterIt PivotCluster = FirstRight; 10730 assert(PivotCluster > W.FirstCluster); 10731 assert(PivotCluster <= W.LastCluster); 10732 10733 CaseClusterIt FirstLeft = W.FirstCluster; 10734 CaseClusterIt LastRight = W.LastCluster; 10735 10736 const ConstantInt *Pivot = PivotCluster->Low; 10737 10738 // New blocks will be inserted immediately after the current one. 10739 MachineFunction::iterator BBI(W.MBB); 10740 ++BBI; 10741 10742 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster, 10743 // we can branch to its destination directly if it's squeezed exactly in 10744 // between the known lower bound and Pivot - 1. 10745 MachineBasicBlock *LeftMBB; 10746 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range && 10747 FirstLeft->Low == W.GE && 10748 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) { 10749 LeftMBB = FirstLeft->MBB; 10750 } else { 10751 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10752 FuncInfo.MF->insert(BBI, LeftMBB); 10753 WorkList.push_back( 10754 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2}); 10755 // Put Cond in a virtual register to make it available from the new blocks. 10756 ExportFromCurrentBlock(Cond); 10757 } 10758 10759 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a 10760 // single cluster, RHS.Low == Pivot, and we can branch to its destination 10761 // directly if RHS.High equals the current upper bound. 10762 MachineBasicBlock *RightMBB; 10763 if (FirstRight == LastRight && FirstRight->Kind == CC_Range && 10764 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) { 10765 RightMBB = FirstRight->MBB; 10766 } else { 10767 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock()); 10768 FuncInfo.MF->insert(BBI, RightMBB); 10769 WorkList.push_back( 10770 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2}); 10771 // Put Cond in a virtual register to make it available from the new blocks. 10772 ExportFromCurrentBlock(Cond); 10773 } 10774 10775 // Create the CaseBlock record that will be used to lower the branch. 10776 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB, 10777 getCurSDLoc(), LeftProb, RightProb); 10778 10779 if (W.MBB == SwitchMBB) 10780 visitSwitchCase(CB, SwitchMBB); 10781 else 10782 SL->SwitchCases.push_back(CB); 10783 } 10784 10785 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb 10786 // from the swith statement. 10787 static BranchProbability scaleCaseProbality(BranchProbability CaseProb, 10788 BranchProbability PeeledCaseProb) { 10789 if (PeeledCaseProb == BranchProbability::getOne()) 10790 return BranchProbability::getZero(); 10791 BranchProbability SwitchProb = PeeledCaseProb.getCompl(); 10792 10793 uint32_t Numerator = CaseProb.getNumerator(); 10794 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator()); 10795 return BranchProbability(Numerator, std::max(Numerator, Denominator)); 10796 } 10797 10798 // Try to peel the top probability case if it exceeds the threshold. 10799 // Return current MachineBasicBlock for the switch statement if the peeling 10800 // does not occur. 10801 // If the peeling is performed, return the newly created MachineBasicBlock 10802 // for the peeled switch statement. Also update Clusters to remove the peeled 10803 // case. PeeledCaseProb is the BranchProbability for the peeled case. 10804 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster( 10805 const SwitchInst &SI, CaseClusterVector &Clusters, 10806 BranchProbability &PeeledCaseProb) { 10807 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10808 // Don't perform if there is only one cluster or optimizing for size. 10809 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 || 10810 TM.getOptLevel() == CodeGenOpt::None || 10811 SwitchMBB->getParent()->getFunction().hasMinSize()) 10812 return SwitchMBB; 10813 10814 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100); 10815 unsigned PeeledCaseIndex = 0; 10816 bool SwitchPeeled = false; 10817 for (unsigned Index = 0; Index < Clusters.size(); ++Index) { 10818 CaseCluster &CC = Clusters[Index]; 10819 if (CC.Prob < TopCaseProb) 10820 continue; 10821 TopCaseProb = CC.Prob; 10822 PeeledCaseIndex = Index; 10823 SwitchPeeled = true; 10824 } 10825 if (!SwitchPeeled) 10826 return SwitchMBB; 10827 10828 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: " 10829 << TopCaseProb << "\n"); 10830 10831 // Record the MBB for the peeled switch statement. 10832 MachineFunction::iterator BBI(SwitchMBB); 10833 ++BBI; 10834 MachineBasicBlock *PeeledSwitchMBB = 10835 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock()); 10836 FuncInfo.MF->insert(BBI, PeeledSwitchMBB); 10837 10838 ExportFromCurrentBlock(SI.getCondition()); 10839 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex; 10840 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt, 10841 nullptr, nullptr, TopCaseProb.getCompl()}; 10842 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB); 10843 10844 Clusters.erase(PeeledCaseIt); 10845 for (CaseCluster &CC : Clusters) { 10846 LLVM_DEBUG( 10847 dbgs() << "Scale the probablity for one cluster, before scaling: " 10848 << CC.Prob << "\n"); 10849 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb); 10850 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n"); 10851 } 10852 PeeledCaseProb = TopCaseProb; 10853 return PeeledSwitchMBB; 10854 } 10855 10856 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) { 10857 // Extract cases from the switch. 10858 BranchProbabilityInfo *BPI = FuncInfo.BPI; 10859 CaseClusterVector Clusters; 10860 Clusters.reserve(SI.getNumCases()); 10861 for (auto I : SI.cases()) { 10862 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()]; 10863 const ConstantInt *CaseVal = I.getCaseValue(); 10864 BranchProbability Prob = 10865 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex()) 10866 : BranchProbability(1, SI.getNumCases() + 1); 10867 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob)); 10868 } 10869 10870 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()]; 10871 10872 // Cluster adjacent cases with the same destination. We do this at all 10873 // optimization levels because it's cheap to do and will make codegen faster 10874 // if there are many clusters. 10875 sortAndRangeify(Clusters); 10876 10877 // The branch probablity of the peeled case. 10878 BranchProbability PeeledCaseProb = BranchProbability::getZero(); 10879 MachineBasicBlock *PeeledSwitchMBB = 10880 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb); 10881 10882 // If there is only the default destination, jump there directly. 10883 MachineBasicBlock *SwitchMBB = FuncInfo.MBB; 10884 if (Clusters.empty()) { 10885 assert(PeeledSwitchMBB == SwitchMBB); 10886 SwitchMBB->addSuccessor(DefaultMBB); 10887 if (DefaultMBB != NextBlock(SwitchMBB)) { 10888 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, 10889 getControlRoot(), DAG.getBasicBlock(DefaultMBB))); 10890 } 10891 return; 10892 } 10893 10894 SL->findJumpTables(Clusters, &SI, DefaultMBB, DAG.getPSI(), DAG.getBFI()); 10895 SL->findBitTestClusters(Clusters, &SI); 10896 10897 LLVM_DEBUG({ 10898 dbgs() << "Case clusters: "; 10899 for (const CaseCluster &C : Clusters) { 10900 if (C.Kind == CC_JumpTable) 10901 dbgs() << "JT:"; 10902 if (C.Kind == CC_BitTests) 10903 dbgs() << "BT:"; 10904 10905 C.Low->getValue().print(dbgs(), true); 10906 if (C.Low != C.High) { 10907 dbgs() << '-'; 10908 C.High->getValue().print(dbgs(), true); 10909 } 10910 dbgs() << ' '; 10911 } 10912 dbgs() << '\n'; 10913 }); 10914 10915 assert(!Clusters.empty()); 10916 SwitchWorkList WorkList; 10917 CaseClusterIt First = Clusters.begin(); 10918 CaseClusterIt Last = Clusters.end() - 1; 10919 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB); 10920 // Scale the branchprobability for DefaultMBB if the peel occurs and 10921 // DefaultMBB is not replaced. 10922 if (PeeledCaseProb != BranchProbability::getZero() && 10923 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()]) 10924 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb); 10925 WorkList.push_back( 10926 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb}); 10927 10928 while (!WorkList.empty()) { 10929 SwitchWorkListItem W = WorkList.pop_back_val(); 10930 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1; 10931 10932 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None && 10933 !DefaultMBB->getParent()->getFunction().hasMinSize()) { 10934 // For optimized builds, lower large range as a balanced binary tree. 10935 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB); 10936 continue; 10937 } 10938 10939 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB); 10940 } 10941 } 10942 10943 void SelectionDAGBuilder::visitStepVector(const CallInst &I) { 10944 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10945 auto DL = getCurSDLoc(); 10946 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10947 EVT OpVT = 10948 TLI.getTypeToTransformTo(*DAG.getContext(), ResultVT.getScalarType()); 10949 SDValue Step = DAG.getConstant(1, DL, OpVT); 10950 setValue(&I, DAG.getStepVector(DL, ResultVT, Step)); 10951 } 10952 10953 void SelectionDAGBuilder::visitVectorReverse(const CallInst &I) { 10954 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10955 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10956 10957 SDLoc DL = getCurSDLoc(); 10958 SDValue V = getValue(I.getOperand(0)); 10959 assert(VT == V.getValueType() && "Malformed vector.reverse!"); 10960 10961 if (VT.isScalableVector()) { 10962 setValue(&I, DAG.getNode(ISD::VECTOR_REVERSE, DL, VT, V)); 10963 return; 10964 } 10965 10966 // Use VECTOR_SHUFFLE for the fixed-length vector 10967 // to maintain existing behavior. 10968 SmallVector<int, 8> Mask; 10969 unsigned NumElts = VT.getVectorMinNumElements(); 10970 for (unsigned i = 0; i != NumElts; ++i) 10971 Mask.push_back(NumElts - 1 - i); 10972 10973 setValue(&I, DAG.getVectorShuffle(VT, DL, V, DAG.getUNDEF(VT), Mask)); 10974 } 10975 10976 void SelectionDAGBuilder::visitFreeze(const FreezeInst &I) { 10977 SmallVector<EVT, 4> ValueVTs; 10978 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(), 10979 ValueVTs); 10980 unsigned NumValues = ValueVTs.size(); 10981 if (NumValues == 0) return; 10982 10983 SmallVector<SDValue, 4> Values(NumValues); 10984 SDValue Op = getValue(I.getOperand(0)); 10985 10986 for (unsigned i = 0; i != NumValues; ++i) 10987 Values[i] = DAG.getNode(ISD::FREEZE, getCurSDLoc(), ValueVTs[i], 10988 SDValue(Op.getNode(), Op.getResNo() + i)); 10989 10990 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(), 10991 DAG.getVTList(ValueVTs), Values)); 10992 } 10993 10994 void SelectionDAGBuilder::visitVectorSplice(const CallInst &I) { 10995 const TargetLowering &TLI = DAG.getTargetLoweringInfo(); 10996 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType()); 10997 10998 SDLoc DL = getCurSDLoc(); 10999 SDValue V1 = getValue(I.getOperand(0)); 11000 SDValue V2 = getValue(I.getOperand(1)); 11001 int64_t Imm = cast<ConstantInt>(I.getOperand(2))->getSExtValue(); 11002 11003 // VECTOR_SHUFFLE doesn't support a scalable mask so use a dedicated node. 11004 if (VT.isScalableVector()) { 11005 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout()); 11006 setValue(&I, DAG.getNode(ISD::VECTOR_SPLICE, DL, VT, V1, V2, 11007 DAG.getConstant(Imm, DL, IdxVT))); 11008 return; 11009 } 11010 11011 unsigned NumElts = VT.getVectorNumElements(); 11012 11013 if ((-Imm > NumElts) || (Imm >= NumElts)) { 11014 // Result is undefined if immediate is out-of-bounds. 11015 setValue(&I, DAG.getUNDEF(VT)); 11016 return; 11017 } 11018 11019 uint64_t Idx = (NumElts + Imm) % NumElts; 11020 11021 // Use VECTOR_SHUFFLE to maintain original behaviour for fixed-length vectors. 11022 SmallVector<int, 8> Mask; 11023 for (unsigned i = 0; i < NumElts; ++i) 11024 Mask.push_back(Idx + i); 11025 setValue(&I, DAG.getVectorShuffle(VT, DL, V1, V2, Mask)); 11026 } 11027